
EDITED BY :  Mario Senden, Judith Peters, Florian Röhrbein, Rainer Goebel 

and Gustavo Deco

PUBLISHED IN :  Frontiers in Computational Neuroscience, Frontiers in Neurorobotics 

and Frontiers in Systems Neuroscience

THE EMBODIED BRAIN: COMPUTATIONAL MECHANISMS 
OF INTEGRATED SENSORIMOTOR INTERACTIONS WITH A 
DYNAMIC ENVIRONMENT

https://www.frontiersin.org/research-topics/8147/the-embodied-brain-computational-mechanisms-of-integrated-sensorimotor-interactions-with-a-dynamic-e
https://www.frontiersin.org/research-topics/8147/the-embodied-brain-computational-mechanisms-of-integrated-sensorimotor-interactions-with-a-dynamic-e
https://www.frontiersin.org/research-topics/8147/the-embodied-brain-computational-mechanisms-of-integrated-sensorimotor-interactions-with-a-dynamic-e
https://www.frontiersin.org/research-topics/8147/the-embodied-brain-computational-mechanisms-of-integrated-sensorimotor-interactions-with-a-dynamic-e
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/systems-neuroscience


Frontiers in Computational Neuroscience 1 August 2020 | The Embodied Brain

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88963-910-6 

DOI 10.3389/978-2-88963-910-6

https://www.frontiersin.org/research-topics/8147/the-embodied-brain-computational-mechanisms-of-integrated-sensorimotor-interactions-with-a-dynamic-e
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience


Frontiers in Computational Neuroscience 2 August 2020 | The Embodied Brain

THE EMBODIED BRAIN: COMPUTATIONAL MECHANISMS 
OF INTEGRATED SENSORIMOTOR INTERACTIONS WITH A 
DYNAMIC ENVIRONMENT

Topic Editors: 
Mario Senden, Maastricht University, Netherlands
Judith Peters, Maastricht University, Netherlands 
Florian Röhrbein, Independent researcher, Germany
Rainer Goebel, Maastricht University, Netherlands
Gustavo Deco, Pompeu Fabra University, Spain

Citation: Senden, M., Peters, J., Röhrbein, F., Goebel, R., Deco, G., eds. (2020). The 
Embodied Brain: Computational Mechanisms of Integrated Sensorimotor 
Interactions with a Dynamic Environment. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88963-910-6

https://www.frontiersin.org/research-topics/8147/the-embodied-brain-computational-mechanisms-of-integrated-sensorimotor-interactions-with-a-dynamic-e
http://doi.org/10.3389/978-2-88963-910-6
https://www.frontiersin.org/journals/computational-neuroscience


Frontiers in Computational Neuroscience 3 August 2020 | The Embodied Brain

05 Editorial: The Embodied Brain: Computational Mechanisms of Integrated 
Sensorimotor Interactions With a Dynamic Environment

Mario Senden, Judith Peters, Florian Röhrbein, Gustavo Deco and 
Rainer Goebel

08 Spike Timing Neural Model of Motion Perception and Decision Making

Petia D. Koprinkova-Hristova, Nadejda Bocheva, Simona Nedelcheva and 
Mirsolava Stefanova

15 Running Large-Scale Simulations on the Neurorobotics Platform to 
Understand Vision – The Case of Visual Crowding

Alban Bornet, Jacques Kaiser, Alexander Kroner, Egidio Falotico, 
Alessandro Ambrosano, Kepa Cantero, Michael H. Herzog and 
Gregory Francis

29 Complex Electroresponsive Dynamics in Olivocerebellar Neurons 
Represented With Extended-Generalized Leaky Integrate and Fire Models

Alice Geminiani, Claudia Casellato, Egidio D’Angelo and Alessandra Pedrocchi

41 Corrigendum: Complex Electroresponsive Dynamics in Olivocerebellar 
Neurons Represented With Extended-Generalized Leaky Integrate and 
Fire Models

Alice Geminiani, Claudia Casellato, Egidio D’Angelo and Alessandra Pedrocchi

42 The Embodied Brain of SOVEREIGN2: From Space-Variant Conscious 
Percepts During Visual Search and Navigation to Learning Invariant 
Object Categories and Cognitive-Emotional Plans for Acquiring Valued 
Goals

Stephen Grossberg

74 The Energy Homeostasis Principle: Neuronal Energy Regulation Drives 
Local Network Dynamics Generating Behavior

Rodrigo C. Vergara, Sebastián Jaramillo-Riveri, Alejandro Luarte, 
Cristóbal Moënne-Loccoz, Rómulo Fuentes, Andrés Couve and 
Pedro E. Maldonado

92 A Closed-Loop Toolchain for Neural Network Simulations of Learning 
Autonomous Agents

Jakob Jordan, Philipp Weidel and Abigail Morrison

103 A Biomimetic Control Method Increases the Adaptability of a Humanoid 
Robot Acting in a Dynamic Environment

Marie Claire Capolei, Emmanouil Angelidis, Egidio Falotico, 
Henrik Hautop Lund and Silvia Tolu

121 Combining Evolutionary and Adaptive Control Strategies for Quadruped 
Robotic Locomotion

Elisa Massi, Lorenzo Vannucci, Ugo Albanese, Marie Claire Capolei, 
Alexander Vandesompele, Gabriel Urbain, Angelo Maria Sabatini, 
Joni Dambre, Cecilia Laschi, Silvia Tolu and Egidio Falotico

140 Generating Pointing Motions for a Humanoid Robot by Combining Motor 
Primitives

J. Camilo Vasquez Tieck, Tristan Schnell, Jacques Kaiser, Felix Mauch, 
Arne Roennau and Rüdiger Dillmann

Table of Contents

https://www.frontiersin.org/research-topics/8147/the-embodied-brain-computational-mechanisms-of-integrated-sensorimotor-interactions-with-a-dynamic-e
https://www.frontiersin.org/journals/computational-neuroscience


Frontiers in Computational Neuroscience 4 August 2020 | The Embodied Brain

149 Response Dynamics in an Olivocerebellar Spiking Neural Network With 
Non-linear Neuron Properties

Alice Geminiani, Alessandra Pedrocchi, Egidio D’Angelo and Claudia Casellato

164 Embodied Synaptic Plasticity With Online Reinforcement Learning

Jacques Kaiser, Michael Hoff, Andreas Konle, J. Camilo Vasquez Tieck, 
David Kappel, Daniel Reichard, Anand Subramoney, Robert Legenstein, 
Arne Roennau, Wolfgang Maass and Rüdiger Dillmann

175 Autonomous Sequence Generation for a Neural Dynamic Robot: Scene 
Perception, Serial Order, and Object-Oriented Movement

Jan Tekülve, Adrien Fois, Yulia Sandamirskaya and Gregor Schöner

193 Experimental and Computational Study on Motor Control and Recovery 
After Stroke: Toward a Constructive Loop Between Experimental and 
Virtual Embodied Neuroscience

Anna Letizia Allegra Mascaro, Egidio Falotico, Spase Petkoski, 
Maria Pasquini, Lorenzo Vannucci, Núria Tort-Colet, Emilia Conti, 
Francesco Resta, Cristina Spalletti, Shravan Tata Ramalingasetty, 
Axel von Arnim, Emanuele Formento, Emmanouil Angelidis, 
Camilla H. Blixhavn, Trygve B. Leergaard, Matteo Caleo, Alain Destexhe, 
Auke Ijspeert, Silvestro Micera, Cecilia Laschi, Viktor Jirsa, 
Marc-Oliver Gewaltig and Francesco S. Pavone

https://www.frontiersin.org/research-topics/8147/the-embodied-brain-computational-mechanisms-of-integrated-sensorimotor-interactions-with-a-dynamic-e
https://www.frontiersin.org/journals/computational-neuroscience


EDITORIAL
published: 18 June 2020

doi: 10.3389/fncom.2020.00053

Frontiers in Computational Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 53

Edited and reviewed by:

Si Wu,

Peking University, China

*Correspondence:

Mario Senden

mario.senden@maastrichtuniversity.nl

†These authors have contributed

equally to this work

‡Present address:

Florian Röhrbein,

Alfred Kärcher SE Co. & KG,

Winnenden, Germany

Received: 09 May 2020

Accepted: 15 May 2020

Published: 18 June 2020

Citation:

Senden M, Peters J, Röhrbein F,

Deco G and Goebel R (2020) Editorial:

The Embodied Brain: Computational

Mechanisms of Integrated

Sensorimotor Interactions With a

Dynamic Environment.

Front. Comput. Neurosci. 14:53.

doi: 10.3389/fncom.2020.00053

Editorial: The Embodied Brain:
Computational Mechanisms of
Integrated Sensorimotor Interactions
With a Dynamic Environment

Mario Senden 1,2*†, Judith Peters 1,2,3†, Florian Röhrbein 4‡, Gustavo Deco 5,6 and

Rainer Goebel 1,2,3

1Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht,

Netherlands, 2Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands, 3Department of

Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW),

Amsterdam, Netherlands, 4 Institut für Informatik VI, Technische Universität München, Munich, Germany, 5Center for Brain

and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies,

Universitat Pompeu Fabra, Barcelona, Spain, 6 Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat

Pompeu Fabra, Barcelona, Spain

Keywords: sensorimotor integration, embodiment, neurorobotics, motor control, reinforcement learning and

plasticity, neural computation

Editorial on the Research Topic

The Embodied Brain: Computational Mechanisms of Integrated Sensorimotor Interactions

With a Dynamic Environment

The paradigm shift toward an action-oriented view (Engel et al., 2013) stresses that cognition
permits meaningful interactions with a dynamic environment and cannot be reduced to thinking-
related mental representations. Consequently, the emerging field of embodied neuroscience has
been inspired by recent achievements in robotics. At the same time, the fields of robotics
and artificial intelligence increasingly turn to neuroscience to utilize insights on the neural
underpinnings of sensorimotor interactions and embodied cognition.

As contribution to this integration of computational neuroscience, artificial intelligence,
robotics and neurobiology, this Research Topic provides an overview of recent advances in
sensorimotor integration and embodied cognition from a multidisciplinary perspective. A total
of nine contributions present important scientific insights into embodied sensorimotor systems
while another four contributions present comprehensive frameworks and toolchains that support
the interdisciplinary study of embodied agents.

EMBODIED SENSORIMOTOR SYSTEMS

Embodied agents need to be able to autonomously and adaptively interact with their environment.
Grossberg presents a large-scale visuomotor architecture: the Self-Organizing, Vision, Expectation,
Recognition, Emotion, Intelligent, Goal-oriented Navigation model (SOVEREIGN; Gnadt and
Grossberg, 2008). This architecture consists of several sensory, motor and memory components
and is able to perform motor sequences under different motivational states as well as to learn
more efficient sequences in response to rewards. Grossberg reviews the SOVEREIGN architecture
as well as advancements in the field over the past decade and presents an updated version of
the architecture, SOVEREIGN2. SOVEREIGN2 incorporates resonant dynamics which allow new
perceptual, cognitive and navigational properties to emerge.
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One highly complex cognitive aspect of sensorimotor
integration, involving the recruitment and concerted interplay
among a large number of cortical and subcortical brain regions,
is action selection. Koprinkova-Hristova et al. capture this
complexity with a biologically plausible large-scale architecture
able to generate eye movement decisions. This architecture,
implemented as a hierarchical spiking neural network (SNN),
consists of multiple layers including the retina, several thalamic
nuclei as well as cortical regions along the dorsal stream from
V1 to the lateral intraparietal cortex. When probed with stimuli
mimicking optic flow patterns of forward self-motion, the model
selects eye movements that correctly align its gaze with the
direction of self-motion.

Tekülve et al. approach a sequential pointing task from the
perspective of dynamic field theory (Schöner and Spencer, 2016).
Their contribution presents a spiking neural network (SNN)
architecture comprised of: a perceptual subnetwork able to create
a working memory representation of the visual scene, a motor
subnetwork able to generate movement commands for a robotic
arm, and a cognitive subnetwork able to represent positions in
a sequence as well as to initiate shifts between positions. This
architecture allows a robot to memorize a sequence of distinct
objects (presented by a human), and subsequently point at these
objects for random spatial arrangements of these objects.

Another robotic agent able to perform pointing movements is
presented by Tieck et al.. They developed an SNN of the primary
motor cortex that is able to adaptively combine motor primitives,
a low-dimensional vocabulary of motor actions (Rizzolatti et al.,
1988; Santello et al., 1998; Ciocarlie et al., 2007). A humanoid
robot, utilizing this network, could successfully point at different
targets marked on a plane.

The cerebellum is a key structure for sensorimotor control,
as it coordinates voluntary movements through prediction
and sensory feedback (Johansson and Westling, 1988; Wolpert
and Flanagan, 2001; Xu-Wilson et al., 2009; Manto et al.,
2012). Capolei et al. present a cerebellar microcircuit which,
supplanted with a classic control method, allows for adaptive
and robust control of a robot’s movements as it balances a
board with a rolling ball. The contributors show that cerebellar
plasticity contributes to learning of dynamics related to arm-
object interactions, and thus supports adaptive corrections to
executed actions.

Inspired by the fact that evolution does not act on static,
but rather on plastic systems learning from experiences in their
environment, Massi et al. combine cerebellar plasticity with
an evolutionary algorithm for optimizing quadruped robotic
locomotion. Their control structure consists of a spinal central
pattern generator (CPG) and a cerebellar adaptive controller able
to learn online from feedback, while the parameters of the CPG
are optimized offline via an evolutionary algorithm. Their results
show that locomotion in a quadruped robot improves when
the cerebellar controller is allowed to learn during evolutionary
optimization as opposed to only afterwards. This suggests that
parameters controlling the CPG need to be selected to benefit
optimally from the adaptive controller.

The benefits conveyed by the cerebellum are intricately
linked to its complex electroresponsive dynamics afforded by the
plethora of cerebellar neuron types. Geminiani, Casellato et al.

present a novel point neuron model able to capture the
dynamics of several neurons of the olivocerebellar circuit.
Their Extended-Generalized Leaky Integrate-And-Fire (E-GLIF)
neuron is optimized to capture the input-output relationships
of Golgi cells, granule cells, Purkinje cells, molecular layer
interneurons, deep cerebellar nuclei cells and inferior olivary
cells. Geminiani, Pedrocchi, et al. utilize the E-GLIF to investigate
how single neuron dynamics in conjunction with geometrical
modular connectivity profiles shape the dynamics exhibited by
cerebellar circuits involved in eye blink classical conditioning.
Their simulations produce response properties in Purkinje and
deep nuclei cells similar to those reported in vivowhen relying on
the E-GLIF neuron model, but not when using simplified point
neuron models.

This highlights the significance of neuron dynamics.
Importantly, these dynamics are not only affected by
neuron morphology. Vergara et al. argue that the balance
between energy income, expenditure and availability determine
neural dynamics to a significant extent. Importantly, the
contributors argue, the effects of these factors manifest
themselves at all levels from molecular to behavioral. In arguing
their case, the contributors provide a comprehensive overview of
energy demands of neurons culminating in the proposal of the
Energy Homeostasis Principle.

TOOLCHAINS AND FRAMEWORKS

Constructing state-of-the-art embodied systems that are able
to intelligently interact with their environment in a closed
loop, requires the development of large-scale architectures
incorporating several structural as well as functional
components. The immensity of this task requires a high
degree of collaboration among research disciplines. In order
to facilitate such collaboration, universally available platforms,
toolchains, and shared frameworks are indispensable.

One platform aiming to facilitate integration of several
structural and functional components into an embodied agent is
the neurorobotics platform (NRP; Falotico et al., 2017). Bornet
et al. show how the NRP enables to connect models of diverse
visual functions, developed by different research groups, into a
coherent architecture. Their architecture, consisting of a retina
model, a saliency model and a segmentation model, is able to
explain visual crowding phenomena.

Jordan et al. present a novel toolchain for reinforcement
learning in autonomous agents controlled by biologically
plausible neural networks. This toolchain connects
benchmarking tools from machine learning with network
simulators from computational neuroscience. The collaborators
demonstrate the functionality of the toolchain by implementing
a rate neuron actor critic architecture in the NEST simulator
(Gewaltig and Diesmann, 2007) and training on the grid world
and mountain car environments.

The possibility to perform online reward-based learning with
spiking neurons in the NEST simulator is provided by the
Synaptic Plasticity with Online Reinforcement learning (SPORE)
framework (Kappel et al., 2015, 2017, 2018). Kaiser et al. utilize
the NRP to evaluate SPORE for training robotic agents on a
closed loop reaching and lane-following task. The contributors
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show that SPORE was capable of learning shallow feedforward
policies online for moderately difficult embodied tasks.

Mascaro et al. present an iterative loop between experiment
and model simulation to refine and validate models with
experimental data as well as adjust experiments based on
simulations. The contributors demonstrate the feasibility of
their iterative loop for two separate scenarios. In the first,
the iterative loop allowed them to replicate the evolution of
functional connectivity in the mouse brain after stroke using
neural mass model simulations. In the second, the contributors
integrated their iterative loop with the NRP to embody a spinal
cord model of the mouse and were able to reproduce goal-
directed forelimb movements. Such a framework that simulates
all relevant components of an experimental study, facilitates the
continuous integration of novel experimental results into model
simulations. In turn, modeling results can contribute to ongoing
improvements in experimental design.

CONCLUSION

Understanding how an embodied brain can meaningfully
interact with its dynamic external environment while
managing inner homeostatic requirements is a challenging
task. Indeed, identifying the functional capacities that an
embodied nervous system needs to implement, the physical

constraints it is subjected to as well as specifying representations,
transformations and dynamics realizing these capacities requires
input from computational neuroscientists, roboticists, machine
learning experts, and neurobiologists. Contributions to this
Research Topic reflect current advances in embodied action
mechanisms across fields. However, for a comprehensive
understanding of embodied cognition and its utilization in
neurorobotics, it is essential that efforts become increasingly
collaborative in the future. For this collaboration to be fruitful,
support by an infrastructure enabling researchers to effectively
integrate their empirical results and modeling efforts into
large-scale closed-loop architectures will be indispensable.
The frameworks and toolchains presented within the present
Research Topic are an important step in that direction.
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The paper presents a hierarchical spike timing neural network model developed in NEST

simulator aimed to reproduce human decision making in simplified simulated visual

navigation tasks. It includes multiple layers starting from retina photoreceptors and retinal

ganglion cells (RGC) via thalamic relay including lateral geniculate nucleus (LGN), thalamic

reticular nucleus (TRN), and interneurons (IN) mediating connections to the higher

brain areas—visual cortex (V1), middle temporal (MT), and medial superior temporal

(MTS) areas, involved in dorsal pathway processing of spatial and dynamic visual

information. The last layer—lateral intraparietal cortex (LIP)—is responsible for decision

making and organization of the subsequent motor response (saccade generation). We

simulated two possible decision options having LIP layer with two sub-regions with

mutual inhibitory connections whose increased firing rate corresponds to the perceptual

decision about motor response—left or right saccade. Each stage of the model was

tested by appropriately chosen stimuli corresponding to its selectivity to specific stimulus

characteristics (orientation for V1, direction for MT, and expansion/contraction movement

templates for MST, respectively). The overall model performance was tested with stimuli

simulating optic flow patterns of forward self-motion on a linear trajectory to the left or to

the right from straight ahead with a gaze in the direction of heading.

Keywords: visual perception, self-motion, spike timing neuron model, visual cortex, LGN, MT, MST, LIP

INTRODUCTION

Vision has to encode and interpret in real time the complex, ambiguous, and dynamic
information from the environment in order to ensure successive interaction with it. In the process
of evolution, in the mammalian brain have emerged areas with a specific type of functionality
that can be regarded as a hierarchical structure processing the visual input. The incoming light is
initially converted in the retina into electrical signal by retinal ganglion cells (RGC), passed through
the relay station—lateral geniculate nucleus (LGN) and thalamic reticular nucleus (TRN)—to
the primary visual cortex (V1) where the visual information splits in two parallel pathways
involved in encoding spatial layout and motion (dorsal) and shape (ventral) information. Motion
information encoding and interpretation pose serious challenges due to its different sources (self-
motion, object motion, or eye movements), the need to integrate local measurements in order
to resolve the ambiguities in the incoming dynamic stream of information, but also the need
to segregate the signals coming from different objects. The motion information processing is
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performed predominantly by themiddle temporal area (MT) that
encodes the speed and direction of the moving objects and the
medial superior temporal area (MST) that extracts information
about the self-motion of the observer.

Most of the existing motion information processing models
are restricted to the interactions between the areas in the dorsal
pathway: V1 and MT (e.g., Simoncelli and Heeger, 1998; Bayerl
and Neumann, 2004; Bayerl, 2005; Chessa et al., 2016), V1, MT,
and MST (Raudies et al., 2012) or MT and MST (Grossberg
et al., 1999; Perrone, 2012). Many models consider only the
feedforward interactions (e.g., Simoncelli and Heeger, 1998;
Solari et al., 2015) disregarding the feedback connectivity; others
employ rate-based equations (e.g., Grossberg et al., 2001; Raudies
and Neumann, 2010) considering an average number of spikes in
a population of neurons.

Here we present spike-timing neural network as an attempt
to simulate realistically the interactions between all described
processing stages of encoding of dynamic visual information
in the human brain. To take into account the process of
decision making based on perceived visual information and the
preparation of a saccade to the desired location, we included the
lateral intraparietal area (LIP) as the output layer. The model
behavior was tested with simplified visual stimuli mimicking self-
motion with gaze fixed, considering its output as a decision for
saccade toward the determined heading direction.

The model is implemented using NEST 2.12.0 simulator
(Kunkel et al., 2017).

The paper is organized as follows: Section Model Structure
describes briefly the overall model structure; Section Simulation
Results reports results from its performance testing; Section
Discussion presents a brief discussion of the model limitations
and the directions of future work.

MODEL STRUCTURE

The proposed here hierarchical model, shown on Figure 1, is
based on the available data about brain structures playing a
role in visual motion information processing and perceptual
decision making, as well as their connectivity. Each layer consists
of neurons positioned in a regular two-dimensional grid. The
receptive field of each neuron depends both on the function
of the layer it belongs to and on its spatial position within
its layer.

The reaction of RGC to luminosity changes is simulated by
a convolution of a spatiotemporal filter with the images falling
on the retina, following models from Troyer et al. (1998) and
Kremkow et al. (2016). Its spatial component has a circular
shape modeled by a difference of two Gaussians (DOG) while
the temporal component has a bi-phasic profile determined by
the difference of two Gamma functions. The model contains
two layers of ON and OFF RGC and their corresponding
LGN and IN/TRN neurons, having identical relative to visual
scene positions and opposite [“on-center off-surround” (ON)
and “off-center on-surround” (OFF)] receptive fields placed
in reverse order like in Kremkow et al. (2016). Each layer
consists of totally 400 neurons, positioned on 20 × 20 grid.

FIGURE 1 | Model structure. Each rectangle denotes a two-dimensional grid

of neurons having corresponding to the layer functionality and receptive fields.

The model output has two LIP neurons with a preference for preparing a

left/right saccade decision based on sensory data. MTSe and MTSc represent

MTS neurons with expansion/contraction movement templates.

The continuous current generated by RGC is injected into LGN
and IN via one-to-one connections. The structure of direct
excitatory synaptic feedforward connectivity between LGN and
V1 is also adopted fromKremkow et al. (2016). LGN also receives
inhibitory feedback from V1 via IN and TRN according to
(Ghodratia et al., 2017).

As in Kremkow et al. (2016), the neurons in V1 are separated
into four groups—two exciting and two inhibiting, having a ratio
of 4/1 exciting/inhibiting neurons (400/100 in our model) and
connected via corresponding excitatory and inhibitory lateral
connections. All exciting neurons are positioned at 20 × 20 grid
while the 10 × 10 inhibiting neurons are dispersed among them.
Being orientation sensitive, V1 neurons have elongated receptive
fields defined by Gabor probability function as in Nedelcheva
and Koprinkova-Hristova (2019). The “pinwheel structure” of
the spatiotemporal maps of the orientations and phases of V1
neurons receptive fields was generated using a relatively new
and easily implemented model (Sadeh and Rotter, 2014). An
example of V1 orientation map (Nedelcheva and Koprinkova-
Hristova, 2019) for a spatial frequency λ of the generating
grating stimulus is shown in Figure 2A. Lateral connections in
V1 are determined by Gabor correlations between the positions,
phases, and orientations of each pair of neurons. As in Kremkow
et al. (2016), neurons from inhibitory populations connect
preferentially to neurons having a receptive field phase difference
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FIGURE 2 | Representation of some of the model layers and their connections: (A) orientation columns of V1 layer; (B) direction selectivity of MT layer; (C) expansion

(a) and contraction (b) binary patterns T (δ) of MT–MST connections (blue star and red dot denote the expansion/contraction focal points while the arrows show the

direction selectivity of MT cells eligible to be connected to corresponding MST pattern) and corresponding to them connection templates Te(c) on (c,d).

of around 180◦. In our model, the frequencies, and standard
deviations of Gabor filters for lateral connections were chosen
so that all neurons in the layer have approximately circular
receptive fields.

MT has identical to V1 size and structure and its lateral
connections are designed in the same way while the connections
from V1 cells depend on the angle ϕij between the orientation
preferences of each two cells like in Escobar et al. (2009):

wij =

{

kcwcs

(

xMT
i − xV1j , yMT

i − yV1j

)

cosϕij, 0 ≤ ϕij ≤
π
2

0, π
2 < ϕij < π

Here kc is amplification factor and wcs is weight factor associated
with the MT neuron receptive field, modeled as DOG function:

wcs

(

xMT
i − xV1

j , yMT
i − yV1

j

)

=
ace

−

√

(

xMT
i −xV1

j

)2
+

(

yMT
i −yV1

j

)2

σ2c

σ 2
c

−
ase

−

√

(

xMT
i −xV1

j

)2
+

(

yMT
i −yV1

j

)2

σ2s

σ 2
s

where ac and as are the center and surround weights and σc and
σs are the corresponding standard deviations. The orientation
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and phase maps of this layer were generated in the same way as
those of V1. An example of direction selectivity map of MT is
shown on Figure 2B.

The MST consist of two layers, each one containing
400 neurons positioned on 20 × 20 grid, sensitive to
expansion and contraction movement patterns, respectively,
like in Layton and Fajen (2017). Each MST cell has assigned
an expansion/contraction connection template Te(c) having a
circular shape with width d and focal point

(

xe(c),ye(c)
)

at MT
as follows:

Te(c)

(

xe(c), ye(c), xMT , yMT

)

= T (δ) e
−d

(

(xe(c)−xMT)
2
+(ye(c)−yMT)

2
)

δ = arctg
ye(c) − yMT

xe(c) − xMT

Here δ is the radial template angle determined by the
position of each MT cell

(

xMT ,yMT

)

and the given pattern
expansion/contraction focal point. The binary pattern variable
T (δ) is non-zero only if the corresponding MT cell has
direction preference toward/against the contraction/expansion
center of MST. Figure 2C shows examples of MT cells (with
direction selectivity presented by arrows at corresponding
positions) that are eligible for connection to corresponding
expansion/contraction MST cells having focal points marked
by blue star and red dot [(a) and (b)] and the corresponding
connection templates [(c) and (d)].

The MST neurons have on-center receptive fields with
standard deviation σ . EachMST neuron collects inputs fromMT

FIGURE 3 | Test stimulus consisting of horizontal and diagonal bars moving

parallel to the bar orientations in each of the two stimulus regions as shown by

dashed pink lines). The blue thick line shows estimated in V1 layer average

orientation of the stimulus. The red arrow points toward estimated in MT layer

average direction of bar movement within the stimulus.

cells corresponding to its pattern template as follows:

we(c)

(

xMT , yMT , xMST , yMST

)

= Te(c)

(

xe(c), ye(c), xMT , yMT

)

e
−

(xMT−xMST)2+(yMT−yMST)2

2σ2I

√

2πσ 2
I

Both layers have intra- and interlayer excitatory/inhibitory
recurrent connections between cells having similar/different
sensitivity as shown on Figure 1.

These lateral connections are determined based on neurons’
positions and template similarities. All neurons have Gaussian
receptive fields. Connections within expansion/contraction
layers are excitatory or inhibitory in dependence on their focal
points similarity as follows:

wintra
e(c)

(

x1MST , y
1
MST , x

2
MST , y

2
MST

)

=















+e
−

(x1MST
−x2

MST)
2
+(y1MST

−xy2
MST)

2

2σ2ts , if x1
e(c)

= x2
e(c)

and y1
e(c)

= y2
e(c)

−e
−

(x1MST
−x2

MST)
2
+(y1MST

−xy2
MST)

2

2σ2ts , otherwise

Connections between expansion and contraction layers are all
inhibitory and depend both on similarities of their positions and
focal points as follows:

w
c(e)
e(c)

(

xeMST , y
e
MST , x

c
MST , y

c
MST

)

=

−e
−

(xeMST
−xc

MST)
2
+(yeMST

−xyc
MST)

2

2σ2ts e
−

(

xe
e(c)

−xc
e(c)

)2
+

(

ye
e(c)

−xyc
e(c)

)2

2σ2ts

In present work, we used only three focal points having identical
vertical positions ye(c)= 0.

Since our model aims to decide whether the expansion
center of a moving dot stimulus is left or right from
the stimulus center, here we proposed a task-dependent
design of excitatory/inhibitory connections from MST
expansion/contraction layers to the two LIP sub-regions
whose increased firing rate corresponds to two taken decisions
for two alternative motor responses—eye movement to the left
or to the right. Both LIP areas are modeled by two neurons
receiving excitatory input from MST expansion layer neurons
having focal points corresponding to their decision responses
(left or right) and inhibitory input from all other MST neurons.
There are also lateral inhibitory connections between both LIP
areas (Figure 1).

For the neurons in LGN conductance-based leaky integrate-
and-fire neuron model as in Casti et al. (2008) (iaf_chxk_2008
in NEST) was adopted. For the rest of neurons, leaky integrate-
and-fire model with exponential shaped postsynaptic currents
according to Tsodyks et al. (2000) (iaf_psc_exp in NEST) was
used. All connection parameters are the same as in the cited
literature sources.
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FIGURE 4 | LIP neurons spikes induced by moving dot stimuli (on the top) having expansion centers (denoted by stars indicating the predominant directions of

motion of the dots) with varying displacements to the left or to the right from the screen center. The arrows pointing to the left and right denote the corresponding

neuron spikes (blue for the left and red for the right, respectively).

SIMULATION RESULTS

In our previous work (Nedelcheva and Koprinkova-Hristova,
2019) we tested orientation selectivity of V1 in order to tune
parameters of receptive fields of both LGN and V1 and the spatial
frequency of V1 orientation columns using moving bar stimuli
with two orientations. In Koprinkova-Hristova et al. (2018) we
demonstrated that feedback inhibitory connections from V1 to
LGN via TRN/IN modulates V1 neurons selectivity.

Further, we tested responses ofMT using a stimulus composed
of horizontal and diagonal bars moving with equal speed
along different directions. To evaluate model responses, the

vector-averaged population decoding of V1, and MT was
determined as in (Webb et al., 2010):

ORest = arctg

∑

i nisinθi
∑

i nicosθi

where ni is the total number of spikes generated by neurons
having sensitivity to i-th orientation/direction. Estimated
orientation and direction of stimulus shown on Figure 3 in V1
and MT were 50.83◦ and 93.26◦ and correspond approximately
to the mean values of the underlying stimulus characteristics.
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The overall model was tested using visual stimulation
simulating an observer’s motion on a linear trajectory with eyes
fixed in the heading direction. The stimuli consisted of 50moving
dots (36 of which moved radially and 14 with randommovement
directions) having expansion centers left or right from the visual
scene center. Each dot lasted for 100ms after which it was re-
positioned randomly preserving its motion direction. On every
frame, only one-third of the dots changed position. Variations
of stimuli having seven expansion center positions ranging from
0.67 to 4.67◦ of arc (20–140 pixels) to the left or to the right
of the screen center were generated. A detailed description of
the experiment and the results with human subjects are given in
Bocheva et al. (2018).

Spike trains generated by both LIP neurons (left and
right) in response to the stimuli with varying center
displacements (in pixels) moving for a duration of 600ms
are presented on Figure 4.

The simulation data showed that in all cases after a period of
uncertainty the firing rate in the LIP area corresponding to the
correct expansion center position is higher. The moment when
correct decision starts to prevail depends on the task difficulty,
i.e., the displacement magnitude. The LIP neuron reaching the
correct decision has a shorter period of uncertainty with length
inversely proportional to the center displacement magnitude.We
also observed asymmetrical behavior of left/right LIP areas: the
right decision is taken faster while for the left the model needed
300–400ms to switch to the correct decision for intermediate
displacements and longer time for the largest one.

DISCUSSION

The model has several limitations. We have focused only on
the dorsal pathway and disregarded the interactions between
the two visual pathways. However, the stimulation we used
for model testing does not require additional complication
even though its performance might be better at the MT stage
if the information about the motion boundaries between the
two regions of the stimulus configuration were extracted and
supplied by the ventral pathway. The model parameters are based
predominately on the data published in the literature. They have
to be additionally tuned to represent the human performance in
behavioral experiments with the same type of stimuli, as those
reported by Bocheva et al. (2018).

The simulation data were obtained for fixed stimulus duration
and suggest that the correct choice is achieved in <600ms.
However, the human observers, especially the older ones, needed
more time to make a response. Only about 10 percent of the
responses were shorter than 600ms and only 53.4% of these

short responses were correct. While this suggests that the model
outperforms the observers in accuracy and speed and is more
effective in integrating the spatial and temporal information
than the human observers, it needs to be emphasized that the
reaction time of the human observers contains also non-decision
components that involve the preparation of the motor response.
Indeed, our data show that the component of the reaction
time not related to decision-making is on average 342ms for
the young age group, 520ms for the middle aged and 825ms
for the elderly. This non-decision time could not be taken
into account in the model as it simulates only the decision
making based on the accumulation of sensory information.
In the future, we will test the model for longer stimulus
duration and implement an ability to make a choice after the
stimulus extinction.

In spite of its limitations, our model reproduced certain
characteristics of the behavioral data like the trend for
increased response times with the decrease in expansion
center displacement.

We need to emphasize also that more elaborated stimuli were
used for model testing than the typically used gratings or random
dot patterns with the supposition that if the model performs well
with these stimuli, it will perform well with simpler stimuli as
well. However, even though our stimuli are more complex than
the typical ones, they are simplified versions of the stimulation
experienced in natural conditions and tasks. Additional tests with
a larger set of stimuli are needed in order to improve model
behavior. This will allow adjusting model parameters so that they
replicate the age differences in performance in different tasks in
dynamic conditions. The involvement of other brain structures
contributing to saccade programming is another direction in our
future work.
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Traditionally, human vision research has focused on specific paradigms and proposed
models to explain very specific properties of visual perception. However, the
complexity and scope of modern psychophysical paradigms undermine the success
of this approach. For example, perception of an element strongly deteriorates when
neighboring elements are presented in addition (visual crowding). As it was shown
recently, the magnitude of deterioration depends not only on the directly neighboring
elements but on almost all elements and their specific configuration. Hence, to fully
explain human visual perception, one needs to take large parts of the visual field into
account and combine all the aspects of vision that become relevant at such scale. These
efforts require sophisticated and collaborative modeling. The Neurorobotics Platform
(NRP) of the Human Brain Project offers a unique opportunity to connect models of
all sorts of visual functions, even those developed by different research groups, into a
coherently functioning system. Here, we describe how we used the NRP to connect
and simulate a segmentation model, a retina model, and a saliency model to explain
complex results about visual perception. The combination of models highlights the
versatility of the NRP and provides novel explanations for inward-outward anisotropy
in visual crowding.

Keywords: visual crowding, neurorobotics, modeling, large-scale simulation, vision

INTRODUCTION

Within the classic framework, vision starts with the analysis of basic features such as oriented
edges. These basic features are then pooled along a feed-forward visual hierarchy to form more
complex feature detectors until neurons respond to objects. A strength of modeling visual
perception as a feed-forward process is that it breaks down the complexity of vision into
mathematically treatable sub-problems. Whereas this approach has proven capable of explaining
simple paradigms, it often fails when put in broader contexts (Oberfeld and Stahn, 2012; Clarke
et al., 2014; Herzog et al., 2016; Overvliet and Sayim, 2016; Saarela et al., 2010). To fully understand
vision, one needs to build complex models that process large parts of the visual field. At
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such scale, many aspects of vision potentially become relevant.
For example, it is well known that spatial resolution is highest
in the fovea and strongly declines toward the periphery of the
visual field (Daniel and Whitteridge, 1961; Cowey and Rolls,
1974). In addition, analysis of the visual field occurs by successive
eye movements, which often brings the most salient aspects of
the visual image into the center of fixation (Koch and Ullman,
1985; Itti et al., 1998). Moreover, the brain is also able to covertly
attend to salient parts of the visual field and detect peripheral
objects, without requiring eye movements (Eriksen and Hoffman,
1972; Posner, 1980; Wright and Ward, 2008). Hence, a full model
of vision needs many functions that each requires sophisticated
modeling, but these many functions are not easy to achieve within
one research lab. To utilize different aspects of vision in one
coherent system, we need a platform where many experts in the
various subfields of vision can combine their models and test
them in experimental conditions.

Efforts to simulate many models for different functions of
perception as a single system can encounter many challenges,
including the following.

Frameworks
Different models often come with very different computational
frameworks. For example, one of the models might be a spiking
neural network and another might be an algorithm involving a set
of spatial convolutions. The models need a common simulation
ground to talk to each other efficiently.

Emulation
Even if models coming from different research groups are simple,
producing computer code to efficiently and reliably emulate
models can be a daunting task. Few labs have the expertise needed
to produce (or reproduce) models that address rather different
parts of the visual system.

Analysis of the System
It is necessary, but often complicated, to determine the
contribution of each model to the general output of the system.
Moreover, competing models and hypotheses might be tested on
the same data. To address these challenges, models should be
treated as modules that can be easily removed from or added to
the system. In the same vein, it is important to have a common
visualization interface for the output of all simulated models.

Synchronization
It might be difficult to synchronize all the models in a common
simulation. For example, one model might be a simple feed-
forward input-output transformation, and another model might
be a recurrent neural network that evolves through time even
for a constant stimulus. It is important to make sure that
interactions between those models are consistent with their states
at every time-step.

Scalability
For many models, it is not straightforward to simulate the system
efficiently and adapt the resource management to the workload
of the simulation.

Reproducibility
It is important for scientists to be able to reproduce and extend
simulation results. This means not only access to model code but
also the ability to reproduce stimuli. Contextual elements such as
lighting, distance to the stimulus, stimulus eccentricity or even
the display screen, might matter in a complex model system. The
simulated environment should ensure a common set of stimuli
for all scientists.

The NRP, developed within the Human Brain Project, aims
to address these challenges. The NRP provides an interface to
study the interactions between an agent (a virtual robot) and
a virtual environment through the simulation of a brain model
(Falotico et al., 2017). The platform provides tools to enable
the simulation of a full experiment, from sensory processing
to motor execution. The simulated brain can comprise many
functions, as long as the interactions between the various
functions are defined in a specified python format (Figure 1).
The main brain simulator of the platform is NEST (Gewaltig
and Diesmann, 2007) but the platform also supports various
mathematical libraries, such as TensorFlow (Abadi et al.,
2016), to implement rate based neural networks. The virtual
environment, the robot, and its sensors are simulated using
Gazebo (Koenig and Howard, 2004). During the simulation, the
platform provides an interactive visualization of the environment
and of the output of all models that constitute the brain.
Importantly, the user does not have to worry about the multiple
synchronizations occurring during the simulation. The platform
implements a closed loop that takes care of data exchanges and
synchronizations between the virtual environment, the robot,
and the brain models.

Here, we show that the NRP can easily combine different
visual modules, even those programmed by different research
groups. We show that these combined components can explain
complex observations about visual perception, taking visual
crowding as an example. We made the code publicly available at
https://bitbucket.org/albornet/crowding_asymmetry_nrp. In the
next section, we define visual crowding and the challenges that is

FIGURE 1 | A schematic outline of the NRP components. The platform can
simulate a virtual environment (right) and a NEST brain model (left).
Interactions between the brain and the virtual environment are set in python
functions (center). These functions also take care of models that are not
simulated in NEST, importing the required libraries as python packages.
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addresses to vision research. Then, we describe the models that
are combined in our visual system and their interactions. Next,
we present the results of the simulation of the visual system that
we built on the NRP. Finally, we discuss the results, followed
by a conclusion.

THE CASE OF VISUAL CROWDING

In crowding, perception of a target strongly deteriorates when
it is presented together with surrounding elements (called
flankers) that share similar features with the target (Figure 2A,
Bouma, 1973). As for many other phenomena, crowding
was traditionally explained by local mechanisms within the
framework of object recognition (Wilson, 1997; Parkes et al.,
2001; Pelli, 2008; Nandy and Tjan, 2012). In this view,
crowding occurs when flanking elements are pooled with
target information along the processing hierarchy. Pooling can
explain crowding when a few flankers are present but fails
to match human behavior when more flankers are presented.
For example, pooling models predict that flankers beyond the
pooling region should not influence performance on the target,
and that adding flankers can only increase crowding. Both
predictions have been shown to be wrong. Adding flankers
up to a very large distance from the target can improve
performance and even fully undo crowding (Figures 2B–C;
Manassi et al., 2012, 2013). Another feature of crowding that
remains unexplained by pooling models is inward-outward
anisotropy, which is the tendency for flankers that lie between

the fixation point and the target to produce less crowding
than remote flankers (Figure 3; Bouma, 1973; Petrov et al.,
2007; Farzin et al., 2009; Petrov and Meleshkevich, 2011;
Manassi et al., 2012).

Local models cannot explain these aspects of vision (Herzog
and Manassi, 2015; Herzog et al., 2015; Manassi et al., 2015;
Doerig et al., 2019). To fully explain crowding, one needs to
take the spatial configuration of large parts of the visual field
into account. Francis et al. (2017) recently explained crowding
and uncrowding with a complex dynamical model that segments
an input image into several distinct perceptual groups and
computes illusory contours from the edges in the image. In the
model, a group is defined by a set of edges that are linked
by actual or illusory contours. Interference only occurs within
each group, and the target is released from crowding if the
flankers make a group on their own, as described in more detail
below (Figure 4). However, the model does not generate inward-
outward anisotropy, because it does not contain any source
of asymmetry. To determine whether the grouping explanation
can account for inward-outward anisotropy, we propose to
incorporate the model in a more complex and realistic visual
system, described in the next section.

MATERIALS AND METHODS

In this section, we describe the models that we connected, using
the NRP, to explain inward-outward anisotropy in crowding.
Then, we describe how the models interact with each other.

FIGURE 2 | Crowding and uncrowding. Figure reproduced from Doerig et al. (2019). (A) Example of crowding. The task is to determine the direction of the offset of
the Vernier target (tilted vertical bars), while looking at the red fixation dot. When the target is flanked by a surrounding square (left), the task is harder than when it is
presented alone (right). (B) Uncrowding (experiment 1 of Manassi et al., 2013). Observers performed the Vernier discrimination task as presented in (A), the stimuli
being always displayed in the right visual field, at 9◦ of eccentricity. The y-axis shows the target-offset threshold, for which observers correctly discriminate the
Vernier offset in 75% of trials (performance is good when the threshold is low). Performance for the target-only condition is shown as the dashed horizontal line. The
single-square condition highlights the classic crowding effect. Importantly, adding more flanking squares improves performance gradually (Manassi et al., 2013). We
call this effect uncrowding. (C) Performance is not determined by local interactions only. In this display, fine-grained Vernier acuity of about 200” depends on
elements as far away as 8.5◦ from the Vernier target – a difference of two orders of magnitude, extending far beyond the hypothesized pooling region [here defined
as Bouma’s window; Bouma (1970)].
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FIGURE 3 | Inward-outward anisotropy in visual crowding. (A) Inward-outward anisotropy in a Vernier discrimination task (experiment 1b of Manassi et al., 2012).
Observers performed the Vernier discrimination task as presented in Figure 2A. The stimuli were always presented in the right visual field. The y-axis shows the
target-offset threshold elevation, which is defined as the threshold of the condition divided by the threshold of the unflanked condition. Stronger crowding is
observed for an outer flanker than for an inner flanker. (B) Stimuli used in the crowding paradigm of experiment 5 of Farzin et al. (2009), measuring inward-outward
anisotropy with Mooney faces. The red dot is the fixation point. In this paradigm, the target Mooney face is shown either in the left or the right visual hemi-field,
together with either an inner flanker, an outer flanker, or with no flanker and at different eccentricities of 3◦, 6◦, and 10◦ (one block per eccentricity and per flanker
configuration). Observers were asked to discriminate an upright from an inverted target Mooney face (2-AFC discrimination task). (C) Data from experiment 5 of
Farzin et al. (2009). Note that the y-axis is the proportion of correct discrimination, and that a high value means a good discrimination performance. The stars
indicate significant differences between conditions. The amount of inward-outward anisotropy (how much the inner-flanker condition produces better performance
than the outer-flanker condition) interacts with the stimulus eccentricity.

FIGURE 4 | Laminart model. (A) Activity in the segmentation model. The intensity of each pixel corresponds to the activity of an orientation-selective neuron
encoding the stimulus as a local feature detector. The color of the pixel represents the orientation of the most active neuron at that location (red: vertical, green:
horizontal). Visual elements linked together by illusory contours form a potential group. The blue circles mark example locations at which the segmentation dynamics
are initiated after stimulus onset. From these locations, thanks to recurrent processing, segmentation propagates along connected (illusory or real) contours, until the
stimulus is represented by several distinct neural populations, called segmentation layers (two here: SL0 and SL1). Each segmentation layer represents a perceptual
group. Crowding is high if other elements are grouped in the same population as the Vernier target, and low if the target is alone. On the left, the flanker is hard to
segment because of its proximity to the target. Across the trials, the selection signals often overlap with the whole stimulus, considered as a single group. Therefore,
the flanker interferes with the target in most trials, and crowding is high. On the right, the flankers are linked by illusory contours and form a group that spans a large
surface. In this case, the selection signal can easily hit the flankers group without hitting the target. The Vernier target thus ends up alone in its layer in most trials and
crowding is low. (B) Threshold measurement from the segmentation model’s output for all conditions of Figure 2B. The model threshold is measured by matching
the output of the model to a target template over 20 segmentation trials, and then plotting the mean of the template match on a reversed axis [see Francis et al.
(2017) for more details]. The segmentation model generates uncrowding and fits the behavioral data well.

The visual system is composed of the segmentation model of
Francis et al. (2017), a retina model inspired by Ambrosano et al.
(2016), and a saliency model, which is a simplified version of the
model introduced by Kroner et al. (2019). These specific parts
of human vision were chosen because the segmentation model
already explains many features of visual crowding (Figure 4)
and because retinal processing, as well as saliency computation,
are potential sources of anisotropy for the segmentation output.

Indeed, the retina model is equipped with retinal magnification
and the saliency model produces a central bias. In our simulated
visual system, the visual environment is first processed by the
retina model and its output is sent to the segmentation model.
In parallel, saliency is computed as a 2-dimensional array which
corresponds to the probabilities of making an eye movement
to locations in the visual field. The current simulations do not
contain any eye movement, but rather use the output of the
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saliency model as a proxy for covert attention to determine the
location where segmentation is initiated in the segmentation
model. Finally, we measure crowding from the output of the
segmentation model. We explain the model interactions and the
crowding measurement process in more details further below.

Cortical Model for Segmentation
The Laminart model by Cao and Grossberg (2005) is a neural
network that explains a wide variety of visual properties.
A critical property is the creation of illusory contours between
collinear lines. Francis et al. (2017) augmented the model with a
segmentation mechanism, in which elements linked by contours
(illusory or real) are grouped together by dedicated neural
populations. The goal was to provide a two-stage model of
crowding, with a strong grouping component: stimuli are first
segmented into different groups and, subsequently, elements
within a group interfere. After dynamical processing, different
groups are represented by distinct neural populations. Crowding
is determined by matching the model’s output to a target
template. Importantly, crowding is weak when the target is alone
in its group (i.e., when the population representing the target does
not also represent other elements) and strong otherwise.

The segmentation process is triggered by local selection
signals that spread along connected contours (Figure 4). The
location of the selection signals determines the output of the
segmentation process. Uncrowding occurs when a selection
signal touches a group of flankers without touching the target.
In the original version of the model, the location of each
selection signal followed a spatial distribution tuned to maximize
successful segmentation of the target from the flanker in the
crowding paradigm. This assumption follows the idea that, in
psychophysical paradigms, an observer does the best job possible
to succeed in the task. Here, we try a different approach by
using the output of the saliency model to bias the location of the
selection signal toward interesting regions of the visual field, as
described further below.

Retina Model
Previous work has integrated a retina model as part of a
neurorobotic experiment in the NRP (Ambrosano et al., 2016) by
using the COREM (Computational Retina Modeling framework;
Martínez-Cañada et al., 2015, 2016). COREM is a set of building
blocks that are often used to describe the behavior of the retina
at different levels of detail. The system includes a variety of retina
microcircuits, such as spatial integration filters, temporal linear
filters, and static non-linearities. The retina model that is adopted
for this work is an adaptation of a model of the X cells in the
cat retina as described by Wohrer and Kornprobst (2009). We
also use the COREM framework to simulate the retina model in
the NRP. The model uses feedback loops between retinal layers
to control contrast gain (Shapley and Victor, 1978). The X cells
are chosen in this work because of their tonic and fine-grained
response, as our paradigm involves highly detailed stimuli.

In addition, we include space variant Gaussian filters provided
by COREM that mimic retinal magnification. Along the retinal
layers, visual information is pooled with less spatial precision
in the periphery than in foveal locations because the Gaussian

integration filters are broader with eccentricity. Finally, the
output of the retina, i.e., the activity array of the ON- and OFF-
centered ganglion cells, is distorted by a log-polar transform to
mimic the magnification that results from the mapping of the
retina neurons to the visual cortex. An example of the model’s
output is shown in Figure 5.

FIGURE 5 | Retina model. Left: input example. Right: associated output of the
retina model (OFF-centered ganglion cells on top and ON-centered ganglion
cells below). We generated these input and output images by simulating the
retina model on the NRP. The ON- and OFF-centered ganglion cells react to
bright and dark regions of the image, respectively, and are more active around
regions of high contrast. The output images look distorted, because fewer
retinal ganglion cells, whose output is represented by one pixel for each cell,
encode the same portion of the visual field as the eccentricity grows. For
example, the left side of the TV screen looks smaller than its right side, closer
to the fovea. Note that the image on the left has been rendered by the NRP
and that the real input of the retina model is not rendered. For example, the
shadows are not fed to the retina model, which does not impact our
experimental setup because no shadows are involved in the crowding
paradigms we reproduce.

Saliency Model
Computational models of saliency aim to identify image regions
that attract human eye movements when viewing complex
natural scenes. The contribution of stimulus features to the
allocation of overt attention can then best be captured in a task-
free experimental scenario. As a model of saliency computation,
we used a deep convolutional neural network, simulated in
TensorFlow (Abadi et al., 2016), that automatically learns
useful image representations to accurately predict empirical
fixation density maps. Compared to early approaches based on
biologically motivated feature channels, such as color, intensity,
and orientation (Itti et al., 1998), the architecture extracts
information at increasingly complex levels along its hierarchy.

The model is an encoder-decoder network that learned a non-
linear mapping from raw images to topographic fixation maps.
It constitutes a simplified version of the model introduced by
Kroner et al. (2019), pruning the contextual layers to achieve
computationally more efficient image processing. The VGG16
architecture (Simonyan and Zisserman, 2014), pre-trained on a
visual classification task, serves as the model backbone to detect
high-level features in the input space. Activation maps from the
final convolutional encoding layer are then forwarded to the
decoder, which restores the input resolution by applying bilinear
up-sampling followed by a 3 × 3 convolution repeatedly. The
task of saliency prediction is defined in a probabilistic framework
and therefore aims to minimize the statistical distance between
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the estimated distribution and the ground truth. The model
we used in this work was trained on the large-scale SALICON
data set (Jiang et al., 2015), used as a proxy for eye tracking
data. After training, the model produces a saliency map for
any input image, such as in Figure 6. In our visual system,
the saliency model output determines where the segmentation
model selects objects of interest. The local selection signals that
trigger segmentation in the model follow the saliency output
as a probability density distribution. Although the saliency

FIGURE 6 | Saliency model. Left: input example that the saliency model can
process. Right: corresponding saliency probability distribution that the model
produces after training. Here, the most salient regions are the faces and
the sign.

network models the empirical distribution of overt attention
across images, we use it as a proxy of covert attention to select
interesting objects from the background.

Virtual Experiment and Model Interactions
The virtual environment reproduces the conditions of two
experiments that measure inward-outward anisotropy in visual
crowding (see Figure 3): experiment 1b of Manassi et al. (2012)
and experiment 5 of Farzin et al. (2009). A screen displays the
visual stimulus (flankers and target) to the eyes of an iCub robot
at a specific distance and a specific eccentricity, depending on
the conditions of the simulated experiment. In all simulated
conditions, the task of the robot is to give a measure of crowding
associated to the stimulus, by trying to segment the flanker from
the target over many trials. For each trial, the stimulus appears
in the periphery of the right visual field of the robot, while the
integrated camera of the right eye of the robot constantly records
its visual environment and sends its output to the visual system.
To process the visual stimulus, the models of the visual system are
connected to each other according to the scheme in Figure 7A.

Figure 7B shows the result of an example trial simulated
with the NRP and highlights the output of all models of the
visual system. When the visual stimulus (the target with either

FIGURE 7 | (A) Model interactions in the visual system (blue box) of the robot. The camera of the right eye of the robot processes the visual environment (gray box)
and sends a gray-scale input image to both the retina and the saliency models. The retina model sends its output, i.e., the contrast-related activity of ON- and
OFF-centered ganglion cells, to the input layer of the segmentation model. The saliency model delivers its output to the segmentation model as a 2-dimensional
probability density distribution that determines where each selection signal (such as the blue circle in Figure 4) starts the segmentation dynamics, whenever the
visual stimulus appears to the robot’s eyes. Finally, a threshold measurement (yellow box) is computed from the segmentation model’s output. Since neither the robot
nor the robot’s eyes move, there is no arrow going from the visual system to the environment. (B) Example of the result of the simulation of the visual system for one
segmentation trial. In this example, the environment of the robot reproduces one of the conditions of the paradigm that measures inward-outward anisotropy in
visual crowding in Manassi et al. (2012; see Figure 3A). All displayed windows are interactive visualizations of the output of the models that constitute the visual
system (see A). They can be displayed while the simulation is running. (1) Output of the camera of the right eye of the robot, which is fed to the retina and the
saliency models. (2) Output of the retina model (ON- and OFF-centered ganglion cells, respectively on the right and on the left). (3) Output of the saliency model. The
visual stimulus is very salient (white spot). (4) Output of the segmentation model. Each slot of the segmentation model’s output corresponds to a different
segmentation layer (as in Figure 4A, except SL0 and SL1 are above and below here). The intensity of each pixel corresponds to the activity of an
orientation-selective neuron encoding the stimulus as a local feature detector. The color of the pixel represents the orientation of the most active neuron at that
location (red: vertical, green: horizontal, blue: diagonal, and turquoise or purple: intermediate orientations). The output associated to the stimulus is not a straight
vertical line, as in Figure 4A, because the input of the segmentation model is distorted by the retina model. Here, the segmentation has not been successful,
because the target and the flankers end up in the same segmentation layer. This means that at stimulus onset, the segmentation signal drawn from the saliency
distribution overlapped with both the target and the flanker, spreading the segmentation to the whole stimulus.
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FIGURE 8 | Threshold computation, taking as an example the output
generated by the segmentation model for all stimuli of experiment 1b of
Manassi et al. (2012; see Figure 3A). The output of the segmentation model
for these stimuli do not look like straight lines, because the input is distorted
by the retina model. For all these conditions, the target corresponds to the
shape in the template array. The template was built by presenting the target
alone to the visual system and taking the mean of the segmentation model’s
output over several time-steps. The circled minus sign represents the
following computation. After taking the mean of the arrays over all
orientations, any pixel from the response array is multiplied by the value of the
same pixel of the template array to obtain the value of the same pixel in the
signal array, and by 1 min the value of the same pixel of the template array to
obtain the value of the same pixel in the noise array. In other words, the pixels
that match the template are assigned to the signal, and the ones that do not
correspond to it are assigned to noise. Then, the threshold is computed as a
measure of interference between the signal and the noise arrays,
according to equation (1).

an inner flanker, an outer flanker, or unflanked) appears on the
screen, the camera of the robot sends its output to the retina
model whose output is delivered to the segmentation model.

Because of the magnification applied by the retina model, the
segmentation model represents elements in the visual field with
less precision if they appear in the periphery than if they appear
near the fovea. At the same time, the saliency model is also fed
with the output of the camera. The saliency model is not fed
with the output of the retina model because it has been trained
on undistorted images. In the simulation, the output of the
saliency model corresponds to a probability density distribution
of the selection signals that are sent to the segmentation model
(see blue circle in Figure 4). After stimulus onset, a selection
signal, whose location is sampled from the saliency map intensity,
starts the segmentation dynamics of the segmentation model.
The selection signal is sent to locations near the visual stimulus,
because it is very salient. After some processing time, the
segmentation stabilizes (groups are formed in the segmentation
layers). The location of the selection signal drives the output
of the segmentation. If it overlaps with both the target and the
flanker, the segmentation is unsuccessful because the flanker and
the target interact. If not, the segmentation is successful because
the target ends up alone in its segmentation layer. When the
target disappears, the activity of the segmentation model is reset
by an overall inhibition signal, and the loop starts over.

For each condition of experiment 1b of Manassi et al. (2012)
and experiment 5 of Farzin et al. (2009; Figure 3), we simulate
the visual system of the robot for 20 trials. For each trial, we
record a threshold measurement, based on the output of the
segmentation model. First, we compare the output array to a
target template to separate it into a signal and a noise array
(Figure 8). The target template is the mean of the segmentation
model’s output over several time-steps that is generated when the
target is presented alone.

Those signal and noise arrays are then used to measure the
match M between the output of the segmentation model and the

FIGURE 9 | Output of all models, for both flanked conditions of experiment 1b of Manassi et al. (2012; see Figure 3A). The arrows represent the interactions that
are described in Figure 7A. In the visual input and the saliency windows, the position of the fixation point corresponds to the center of the leftmost column. The
retina window shows the output of the ON- and OFF-centered ganglion cells at the top and the bottom, respectively. The red rectangle highlights the portion of the
ganglion cells output that is fed to the segmentation model, to gain computation time. The segmentation window shows the initial state of the model output in the
first row, with an example of a selection signal occurrence, drawn from the saliency distribution (blue circle), and the resulting output of the model in the second row,
after the segmentation dynamics have stabilized. Each column of the segmentation window corresponds to one segmentation layer, as in Figure 4. Here, the inner
flanker condition led to a successful segmentation trial, and the outer flanker condition led to a failed segmentation trial.
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FIGURE 10 | Model results, reproducing the conditions of inward-outward anisotropy in experiment 1b of Manassi et al. (2012; see Figure 3A). In each bar graph,
the red dashed line shows the threshold for the unflanked condition (Vernier target alone). To compare the model with the data, we measured threshold elevation
defined as the threshold of a condition divided by the threshold of the unflanked condition (see Methods section). (A) Behavioral data from experiment 1b in Manassi
et al. (2012). (B) Simulation results obtained with the full visual system (retina, saliency, and segmentation). Contrary to the human data, we cannot compute error
bars across observers because only a single set of model parameters is used in the simulations. The model fits the human data well, producing a similar anisotropy.
(C) Comparison of the simulation results with and without the activation of the different modules of the visual system. Error bars were computed by simulating the
system over 10 sessions (20 trials per session for each condition). When the retina model is inactive, the camera of the robot sends its signal directly to the
segmentation model. When the saliency model is inactive, the selection signals are sent as they were in the original version of the segmentation model, i.e., sampling
their location according a two-dimensional Gaussian distribution centered on the location that maximizes segmentation success. The best fit comes from the full
visual system, and a bigger threshold elevation for the outer flanker condition, compared to the inner flanker condition, is generated only when the retina model
is active.

FIGURE 11 | Characteristic examples of segmentation processes for both
conditions of experiment 1b of Manassi et al. (2012). Every row corresponds
to the segmentation model’s output at a certain time after stimulus onset,
indicated by the arrowed axis. Each pair of columns corresponds to the
output of a simulation, and the content of each segmentation layer is
indicated by SL0 and SL1 (as in Figure 4A). (A) Two examples of successful
segmentation trials for the inner flanker condition. (B) Example of a failed
segmentation trial for the outer flanker condition. The probability of
successfully segmenting the flanker from the target is higher in the outer
flanker condition than in the inner flanker condition. The inner flanker is better
represented by the retina output than the outer one, because it is presented
closer to the fovea. The inner flanker appears bigger and further from the
target. The resulting threshold elevation for the inner flanker condition is thus
lower than for the outer flanker, corroborating the inward-outward anisotropy
measured in experiment 1b of Manassi et al. (2012). Both conditions often
lead to unsuccessful segmentation because the flankers are quite close to the
target, given the eccentricity of the stimulus, and because the saliency
model’s output computes the whole stimulus as only one object (see
Figure 9). Thresholds for both flanked conditions are hence substantially
larger than for the unflanked condition.

target template, according to equation (1).

M =
∑

i,j

(sij −
∑
k,l

nkl · I0 · e−
√

(i−k)2
+(j−l)2

σ ) (1)

The intensity of pixel (i, j) of the signal array is denoted by sij and
the intensity of pixel (k, l) of the noise array by nkl. The weight
of interference between those two pixels decreases exponentially
with the distance between them. I0 is the strength of interaction
and sigma is the rate of exponential decrease. I0 is set to 10−3,
a value that was determined to generate sufficient interaction
between the target and the flanker, without killing the signal
completely. Sigma is set to 30 pixels, a value that was determined
to follow approximately the pooling range defined by Bouma’s
window (Bouma, 1970). Given this fixed value, the pooling range
increases with eccentricity in the image space. The more flanker
elements, in addition to the target, that are in the segmentation
layer, the smaller the match. Note that even for a fully successful
segmentation trial, when the target ends up completely alone in
one of the segmentation layers, the match is not perfect, because
the representation of the target has intrinsic noise and dynamics
and thus does not perfectly match the template (Figure 8, first
row). Also note that a small target generates less signal, and
thus a weaker match, than a larger version of the same target.
Difficulty of judging Vernier direction is usually measured by
identifying the threshold separation needed for an observer to
be 75% correct. In the model, we suppose that the threshold is a
negative linear function of the match value (the higher the match,
the lower the threshold), exactly as in Francis et al. (2017).

Finally, for each condition, we take the mean of the thresholds
(Ti) across the trials and divide this value by the mean thresholds
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FIGURE 12 | Output of all models and for all conditions of experiment 5 of Farzin et al. (2009; see Figures 3B–C). The description of the windows for each condition
is the same as in Figure 9. Each row of conditions displays the output of the visual system for a specific eccentricity. Note that the visual stimulus appears smaller in
the retina model’s output (and hence in the segmentation model’s output) as the eccentricity grows. To highlight how different it is to segment the flanker from the
target for various eccentricities, the output of the retina model as well as the segmentation model have the same scale across the conditions (e.g., the selection
signal always has the same size).

of the unflanked condition, where only the target is presented to
the robot. We define this final number as the model measurement
of the threshold elevation of the flanking configuration [see
equation (2)].

Ei=
1
N

∑N
n=1 Ti(n)

1
N

∑N
n=1 Tu(n)

(2)

Where Ei is the threshold elevation of condition i, N is the
number of trials, Ti(n) is the threshold measurement associated
to the segmented output of trial n for condition i, and Tu(n) is

the threshold measurement associated to the segmented output
of trial n for the unflanked condition.

RESULTS

Vernier Discrimination Task
First, we reproduced the crowding paradigm of experiment 1b of
Manassi et al. (2012; see Figure 3A). This experiment measured
inward-outward anisotropy in a Vernier discrimination task. In
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FIGURE 13 | (a) Data from experiment 5 of Farzin et al. (2009), that measures
inward-outward anisotropy in visual crowding with Mooney faces. The figure
has been re-drawn from Figure 3C as bars that report the proportion of
incorrect trials, to compare to the model results. Here, a value closer to the
top corresponds to a bad performance, like in a threshold measure. The
amount of inward-outward anisotropy (how much the inner flanker condition
differs from the outer flanker condition) varies with eccentricity. The stars
indicate significant differences between conditions. (B) Threshold elevation
measurement obtained with the simulation of the full visual system (retina,
saliency, and segmentation), reproducing all conditions of the original
experiment on the NRP. To compute the threshold elevation for each
condition, we divided each threshold by the threshold of the unflanked
condition at 3◦ of eccentricity (the lowest threshold value). The model
threshold measurements highlight the same interaction as in the data,
between the eccentricity and the amount of inward-outward anisotropy.
Ranking the model threshold elevation measurements from the lowest to the
highest value almost perfectly matches the data, ranking from the highest to
the lowest performance. The only difference is that the threshold elevations
that the model produces for the unflanked and the inner flanker condition are
swapped at 10◦ of eccentricity (the model predicts that the unflanked
condition is always better than both flanked conditions at the same
eccentricity). In terms of quantitative differences, the model produces more
inward-outward anisotropy for 6◦ than for 10◦ of eccentricity, which does not
fit the data (the data shows a significant difference between the inner and the
outer flanker condition for 10◦ but not for 6◦ of eccentricity).

the simulation, we showed a Vernier target at a fixed eccentricity
of 3.89◦ from the fovea in the right visual field of the robot.
The target was either flanked by a short bar on the left side,
on the right side, or not flanked at all. Representative outputs
of the retina model, the saliency model, and the segmentation
model for both flanked conditions are presented in Figure 9.
The threshold measurements for all conditions, coming from

the NRP simulation as well as from the behavioral data, are
shown in Figures 10A–B. To investigate the role of each model
in the general output of the system, we de-activated the different
modules of the visual system and measured the corresponding
model output thresholds (Figure 10C). Crucially, the simulation
of the full visual system (retina, saliency and segmentation
models) produces the best fit of the data (i.e., a larger threshold
when the target was flanked by an outer bar than when flanked
by an inner bar). De-activating only the saliency model in the
visual system also generated the same kind of asymmetry as in the
data, but to a smaller extent, suggesting that the retina is the main
source of asymmetry in this paradigm. Indeed, an inner flanker
is better represented by the retina model than an outer flanker,
because it appears at a smaller eccentricity. When the flanker
is presented on the foveal side, its representation is bigger and
appears further from the target, and the segmentation model is
more prone to segregate it from the target. This small but crucial
difference between both flankers is illustrated in Figure 11.

Mooney Face Discrimination Task
Next, we reproduced the crowding paradigm of experiment
5 of Farzin et al. (2009; see Figures 3B–C). This experiment
measured inward-outward anisotropy using Mooney faces. In
this paradigm, the target Mooney face is shown either in
the left or the right visual hemi-field, together with either
an inner flanker, an outer flanker, or with no flanker and
at different eccentricities of 3◦, 6◦, and 10◦ (one block per
eccentricity and per flanker configuration). Observers were asked
to discriminate an upright from an inverted target Mooney face
(2-AFC discrimination task). We performed the same model
measurements as in the previous simulations. We ran the visual
system and collected threshold elevation results for all different
eccentricities of the original experiment; presenting the Mooney
face target together with either an inner or an outer flanker.
The outputs of the retina model, of the saliency model, and
of the segmentation model in response to all conditions are
presented in Figure 12. The threshold measurements, coming
from the NRP simulation as well as from the behavioral
data, are shown in Figure 13. The simulation generates the
same interaction between the eccentricity and the amount of
inward-outward anisotropy that is found in the empirical data.
A substantial difference of threshold elevation between the inner
flanker and the outer flanker conditions is measured only for
big eccentricities (6◦ and 10◦). The reason is that for a small
eccentricity (3◦), the representation of the target generated by
the retina model is so big that the segmentation is successful
in almost every trial. For an inner flanker, the region to select
only one of the objects is very large, and the selection signals
thus have a very low probability of hitting both the target and
the flanker at the same time. For an outer flanker, even if
the flanker region gets substantially smaller, the target region
is still very big, and most of the selection signals fall on the
target, also leading to a very high segmentation success rate.
In other words, the task is too easy to highlight any difference
between the inner and the outer flanker conditions. For larger
eccentricities, the size of the retina output associated with the
stimulus becomes smaller, which makes the task more difficult.

Frontiers in Neurorobotics | www.frontiersin.org 10 May 2019 | Volume 13 | Article 3324

https://www.frontiersin.org/journals/neurorobotics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-13-00033 May 29, 2019 Time: 9:2 # 11

Bornet et al. Crowding on the Neurorobotics Platform

FIGURE 14 | Characteristic examples of segmentation processes for all conditions of experiment 5 of Farzin et al. (2009; see Figures 3B–C). The output of the
segmentation model has the same scale across the conditions (e.g., the selection signals always have the same size). For both conditions at 3◦ of eccentricity, the
retina model represents the stimulus with such details, that the task is easy even for an outer flanker, resulting in a high rate of segmentation success across the
trials, and no substantial difference of threshold between those conditions. For larger eccentricities, the whole stimulus representation has a lower resolution. The
target appears smaller, and the flankers appear closer to the target. Many trials thus lead to unsuccessful segmentation, because the selection signals have only a
very small region to select only one of the objects. At the same time, the inner flanker is always better represented than the outer flanker. The model thus generates
differences of thresholds between the inner-flanker and the outer-flanker conditions.

Over the trials, many selection signals can be unsuccessful (fall on
both the target and the flanker) for both inner and outer flanker
conditions, highlighting substantial differences in their threshold
measurements. Those critical differences between the conditions
are illustrated in Figure 14.

DISCUSSION

Using the NRP, we simulated a complex visual system composed
of several models coming from different research labs. The
platform provides satisfactory answers to many of the challenges
described in the Introduction. Here, we summarize these issues
and briefly explain how the NRP addresses them.

Frameworks
Even if the models that we use have different computational
frameworks, the platform allows us to easily integrate them
into a common visual system, define their interactions, and
simulate them with a minimal amount of code. For example, the
segmentation and the saliency models use NEST and TensorFlow,
respectively, which the platform supports.

Emulation
The collaborative aspect of the platform made it possible to
quickly integrate the retina model to the simulation. The retina-
modeling framework was already incorporated to the platform
by other users (Ambrosano et al., 2016), together with some
documentation and examples.

Analysis of the System
The NRP allows researchers to de-activate models, simply by
commenting out a single line in the setup file of the virtual
experiment. This is a powerful tool to investigate how each model
contributes to the general output of the system (see Figure 11C),
or to test competing hypotheses (e.g., compare how two
competing models for the same function of vision fit some data).

Synchronization
The platform takes care of the synchronization between the
simulated models. In our visual system, the segmentation model
is a recurrent network and the saliency model is a feed-forward
input-output transform and the NRP ensures that their respective
inputs are always consistent. The models are first run in parallel
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FIGURE 15 | Formation of illusory contours in the full visual system for the
5-square-flankers condition of Figure 4A. The image on the top is the visual
input to the visual system, both images in the middle are the output of the
ON-centered (left) and OFF-centered (right) ganglion cells of the retina model
(only the right visual field), and the image on the bottom is the output of the
segmentation model. Illusory contours are formed between almost all squares,
but they sometimes come from the alignment of the very top of one square
with the inner part of the top of the other square.

for a short amount of time. Then the platform collects data from
the simulation and computes the relevant inputs for the next
simulation step.

Scalability
However, some challenges were handled with less success.
Simulating the whole visual system with the required input
resolution required very long computational times (2 weeks
to simulate all conditions). The platform is currently used
online with servers that have rather limited resources. The
platform is in development and will soon support high-
performance computing.

Reproducibility
Because of the computational limitations, we could not reach the
resolution that was required to identify the high-level features
of some stimuli (e.g., “face-ness” of the Mooney faces). It would
be interesting to check if the “face-ness” of the Mooney faces
drastically changes the output of the saliency model and if the
model threshold results substantially change.

Ultimately, simulating the visual system on the NRP allowed
us to enhance understanding about visual crowding. We could
show that the segmentation model that explains crowding and
uncrowding (Manassi et al., 2012, 2013; Francis et al., 2017)
is able to explain inward-outward anisotropy as well, if it

is connected to a retina model. Traditional explanations of
crowding (e.g., pooling models) combined with retinal and
cortical magnification would predict that an outer flanker
produces less crowding than an inner flanker. The representation
of an outer flanker in the visual cortex would appear smaller than
the one of an inner flanker, thus causing less interaction with
the target through pooling, whose range is expressed in cortical
distance. Here, on the contrary, simulating the segmentation
model of Francis et al. (2017) in a complex visual system, the
prediction is exactly the opposite, thereby matching the data.
Indeed, it becomes harder for the visual system to segment the
flanker from the target, if the representation of the flanker is
small. In other words, the visual system is more likely to treat the
flanker and the target as a single object (or group). The grouping
hypothesis of Francis et al. (2017) can thus explain uncrowding
as well as inward-outward anisotropy. This gives more evidence
to the idea that grouping is a central function of human vision
(Manassi et al., 2012; Chaney et al., 2014; Harrison and Bex, 2016;
Doerig et al., 2019).

The full model simulated with the NRP makes the prediction
that inward-outward anisotropy can be observed only for a fixed
range of eccentricities. If the eccentricity is too small (e.g., 3◦
for the paradigm of Farzin et al. (2009); see Figures 13, 14), no
difference can be observed between the inner flanker and outer
flanker conditions because the segmentation is almost always
successful in both cases. Indeed, the retinal output related to the
visual stimulus is substantially larger than the selection signals,
and the probability that the signal covers both the target and
the flanker is very low. If the eccentricity is too large (i.e., even
bigger eccentricities than in Figures 13, 14, e.g., 13◦, 16◦, or
20◦), an inner or an outer flanker becomes indistinguishable from
the target, because the stimulus is represented as a tiny spot
by the retina. The selection signal of the segmentation model
would always cover the whole stimulus, segmenting the target
and the flanker as a single group, thereby making no difference
between an inner and an outer flanker. In Figure 13, the model
produces a stronger inward-outward anisotropy for 6◦ than for
10◦ of eccentricity, which does not fit the human data. We
attribute this discrepancy to a sub-optimal choice of the size of
the selection signals in the segmentation model (the radius of
the blue circles, e.g., in Figure 14). As said above, the radius of
the selection signals directly affects the range of eccentricity at
which inward-outward anisotropy is observed. If the signals were
smaller, the eccentricity at which inward-outward anisotropy is
maximal would be larger and vice versa. In general, this tells us
that a more sophisticated mechanism should be used to trigger
segmentation events. For example, at stimulus onset, the saliency
output could instantiate a soft neural competition to determine
the location and the size of the selection signal. A threshold,
put on the time derivative of all pixel intensities of the saliency
output, could even be used to determine when and where to
trigger such a competition.

Furthermore, it would be interesting to test how inward-
outward anisotropy interacts with uncrowding. A new interesting
paradigm would be to continue the experiment 1b of Manassi
et al. (2012) with different numbers of short flanking bars.
Previously, it has been shown that crowding weakens when
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adding more bars on both sides of the target, if they are
aligned with each other (experiment 1a of Manassi et al. (2012)).
To simulate such paradigms, we need to investigate whether
our model of the visual system allows the creation of illusory
contours between aligned flankers, such as between the squares of
Figure 4A, to produce uncrowding. We expect that the distortion
due to the retina model impairs the formation of illusory contours
between aligned edges, because the segmentation model assumes
that spatial pixels correspond to retinal pixels (see Francis et al.
(2017) for the exact mechanism). We reproduced the 5-square-
flankers condition of Figure 4A in the NRP and we simulated
the model visual system (Figure 15). The segmentation model
still generates illusory contours but to a lesser extent. We suspect
that the mechanisms need not be changed but the way an aligned
neighbor is encoded in the model should be redefined. This
simulation highlights how challenging it is to merge different
models. The NRP forces us to recognize a challenge in integrating
the retina and the segmentation model. Future work is thus
needed in order to simulate this kind of paradigm properly.

CONCLUSION

Breaking down the complexity of vision into simple mechanisms
fails when the simple mechanisms are put in broader contexts.
To fully understand human vision, one needs to build complex
systems that process large parts of the visual field and combine
many aspects of vision that all require sophisticated modeling.
Using the NRP, we could start to simulate such a system by
connecting a segmentation model, a saliency model, and a retina
model, thereby providing explanations for complex results in
visual crowding, such as inward-outward anisotropy. Crucially,

the explanation is in line with the grouping hypothesis of Francis
et al. (2017) and predicts how much inward-outward anisotropy
would be measured at bigger eccentricities. This early use of the
NRP suggests that it provides a solution to some of the challenges
that come with simulating big connected systems. We believe the
system will prove useful beyond the specific models utilized here;
and that it will provide a common platform for general purpose
modeling of perception, cognition, and neuroscience.
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The neurons of the olivocerebellar circuit exhibit complex electroresponsive dynamics,
which are thought to play a fundamental role for network entraining, plasticity induction,
signal processing, and noise filtering. In order to reproduce these properties in
single-point neuron models, we have optimized the Extended-Generalized Leaky
Integrate and Fire (E-GLIF) neuron through a multi-objective gradient-based algorithm
targeting the desired input–output relationships. In this way, E-GLIF was tuned toward
the unique input–output properties of Golgi cells, granule cells, Purkinje cells, molecular
layer interneurons, deep cerebellar nuclei cells, and inferior olivary cells. E-GLIF proved
able to simulate the complex cell-specific electroresponsive dynamics of the main
olivocerebellar neurons including pacemaking, adaptation, bursting, post-inhibitory
rebound excitation, subthreshold oscillations, resonance, and phase reset. The
integration of these E-GLIF point-neuron models into olivocerebellar Spiking Neural
Networks will allow to evaluate the impact of complex electroresponsive dynamics at the
higher scales, up to motor behavior, in closed-loop simulations of sensorimotor tasks.

Keywords: neuronal modeling, point neuron, neuron model simplification, neuronal electroresponsiveness,
olivocerebellar neurons

INTRODUCTION

The variety of neuron types and spiking patterns is thought to play a fundamental role for
cerebellar signal processing (Llinás, 1988, 2014) and eventually for motor learning and control.
By exploiting pacemaking, bursting, adaptation and more complex properties like oscillation and
resonance, cerebellar neurons can precisely encode sensorimotor signals, induce plasticity, filter
noise, and efficiently communicate with different cerebellar layers and extra-cerebellar circuits
(D’Angelo et al., 2016a).

The electroresponsiveness of cerebellar neurons has been deeply characterized in vitro and
in vivo, allowing to identify, for each neuron type, a set of electrophysiological properties, which
can be used as a reference for tuning single neuron models (Table 1). All cerebellar cortical neurons
except granule cells show autorhythmic activity that becomes irregular in vivo due to synaptic
inputs. All cerebellar neurons show an almost linear relationship between input current and
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firing rate, although with different slopes. In addition, the
different cerebellar neurons show specific properties. The Golgi
Cells (GoCs) show spike-frequency adaptation (SFA) when
depolarized by prolonged currents, post-inhibitory rebound
bursts, phase reset, sub-threshold oscillations (STO), and
resonance in theta band (Solinas et al., 2007a,b). The granule
cells (GRs) exhibit near-threshold oscillations and resonance in
theta band (D’Angelo et al., 1998, 2001). The Purkinje Cells
(PCs) show a discontinuous f-Istim curve, hysteresis following
current ramp stimulation and bistability emerging with high
stimulus currents (intrinsic bursting) (McKay and Turner, 2005;
Masoli et al., 2015; Buchin et al., 2016). Intrinsic bursting is
characterized by a sequence of bursts (depolarized spiking states)
and pauses (hyperpolarized quiescent states), which correlate
with burst-pause responses observed in vivo during behavior
(Loewenstein et al., 2005). PC responses consist of simple
and complex spikes: simple spikes are high-frequency regular
spikes, generated spontaneously or following Parallel Fiber (PF)
activation. Complex spikes consist of a burst of action potentials
or spikelets, followed by a pause, resulting from Climbing
Fiber (CF) excitation (Miall et al., 1998; Rokni et al., 2009).
Molecular Layer Interneurons (MLIs) fire spontaneously with
an increased firing irregularity in vivo (Lachamp et al., 2009;
Jörntell et al., 2010) and have no significant SFA (Galliano
et al., 2013). These properties derive from the specific set
of ionic channels and from their localization on neuronal
dendrites, soma and axons, as well as from the specific nature of
synaptic inputs.

The deep cerebellar nuclei cells (DCNs) express SFA and
post-inhibitory rebound bursting, which is fundamental in vivo to
modulate the motor output (Hoebeek et al., 2010; Uusisaari and
Knöpfel, 2011; Ten Brinke et al., 2017). Based on the expression
of marker proteins, two major types of DCN neurons have
been identified, with different morphologies, electrophysiological
properties, and connectivity patterns (Uusisaari et al., 2007).
Large non-GABAergic DCNs (DCNnL) mainly project to
pre-motor areas, adapting motor commands during learning
tasks, while small GABAergic DCNs (DCNp) are connected to
the Inferior Olive, providing feedback on the learning process
(Uusisaari and Knöpfel, 2011).

The olivocerebellar circuit functioning strongly relies on
the complex dynamics of Inferior Olive (IO) neurons. They
exhibit a stereotyped response with slow STO undergoing
phase-reset after impulse currents (Long et al., 2002; Kazantsev
et al., 2004; Choi et al., 2010; Lefler et al., 2013). Following
hyperpolarization, IO neurons generate rebound spikes (De
Zeeuw et al., 2003), while when a depolarizing input is
applied, single somatic action potentials are translated into
bursts of axonal spikes at instantaneous frequency that can
exceed 400 Hz (Maruta et al., 2007; Mathy et al., 2009). IO
bursts elicit PC complex spikes and promote plasticity in the
cerebellar cortex.

In this scenario, single neuron properties have been described
in detailed models based on multi-compartment neurons for
the different cerebellar layers (Solinas et al., 2007b; Steuber
et al., 2011; De Gruijl et al., 2012; D’Angelo et al., 2013;
Masoli and D’Angelo, 2017). However, representing this rich

set of electroresponsive patterns through simplified neuron
models is fundamental to develop realistic multiscale Spiking
Neural Networks (SNNs). To tackle this issue, we here
exploited the Extended-Generalized Leaky Integrate and Fire
(E-GLIF) point neuron that allows to model single-point
neurons while keeping a realistic picture of multiple essential
electrophysiological features such as autorhythm, bursting,
adaptation, oscillations, and resonance (Geminiani et al.,
2018). The E-GLIF, which was originally used to reproduce
the GoC electroresponsiveness (Geminiani et al., 2018), was
used here to optimize and test the other cerebellar neurons:
GRs, PCs, MLIs, DCNs, and IO. The results shown here
are fundamental in view of SNNs simulations where the
impact of complex single neuron dynamics will be evaluated
at the network and, eventually, at the behavioral level
(D’Angelo et al., 2016a).

MATERIALS AND METHODS

Single Neuron Model
To reproduce the firing patterns described in the Section
“Introduction,” single neurons were modeled as E-GLIF point
neurons. In previous work, E-GLIF proved able to generate the
complete set of GoC spiking responses to different inputs, with
a minimum number of equations and free parameters. This
makes it the best candidate to be used in SNNs to optimize the
compromise between biological plausibility and computational
load (Geminiani et al., 2018).

Extended-Generalized Leaky Integrate and Fire couples time-
dependent with event-driven algorithmic components and
includes three linear Ordinary Differential Equations describing
the time evolution of membrane potential (Vm) and of two
intrinsic currents (Iadapt and Idep). These three state variables
are updated at spike events, which are generated according to a
probabilistic threshold crossing.

The model is defined as follows:
d Vm(t)

dt = 1
Cm

(
Cm
τm

(Vm (t)− EL)− Iadap (t)+ Idep (t)+ Ie + Istim
)

d Iadap(t)
dt = kadap (Vm (t)− EL)− k2Iadap (t)

d Idep(t)
dt = −k1Idep (t)

Where:
Istim = external stimulation current;
Cm = membrane capacitance;
τm = membrane time constant;
EL = resting potential;
Ie = endogenous current;
kadap, k2 = adaptation constants;
k1 = Idep decay rate.

If the neuron is in the refractory period tref , spikes cannot
be emitted. Otherwise, a spike is generated stochastically at time
tspk, according to an escape rate noise: the nearer Vm is to the
threshold potential Vth, the higher the probability to have a spike,
depending on an exponential function (Gerstner and Kistler,
2002; Jolivet et al., 2006).
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TABLE 1 | Electroresponsive properties of cerebellar neurons.

Auto-rhythm
(Hz)

CVISI

(in vitro)
f-Istim slope

(Hz/pA)
SFA Post-

inhibitory
rebound

Phase
reset

Resonance STO

GoC
Forti et al., 2006; Solinas et al.,
2007b; D’Angelo et al., 2013

5–15 0.03 ∼0.2 X X X X
(ϑ band)

X
(ϑ band)

GR
D’Angelo et al., 2001; Masoli
et al., 2017

– – ∼4 ÷ 10 – – – X
(ϑ band)

X
(ϑ band)

MLI
Lachamp et al., 2009; Galliano
et al., 2013

∼8.5 0.36 ∼2.5 – – – – –

PC
McKay and Turner, 2005;
Molineux et al., 2006; Lennon
et al., 2014; Masoli et al., 2015

40–80 0.04 ∼0.08 X X – – –

DCNnL
Llinás, 1988; Aizenman and
Linden, 1999; Uusisaari et al.,
2007; De Schutter and
Steuber, 2009

∼30 0.06 ∼0.2 X X – – –

DCNp
Uusisaari et al., 2007

∼10 N.A. ∼0.18 X X – – –

IO
De Gruijl et al., 2012; Lefler
et al., 2013

∼1 – – – X X X X
(1–7 Hz)

CVISI, coefficient of variation of inter-spike intervals; SFA, spike-frequency adaptation; STO, sub-threshold oscillations. Reference literature studies are reported in
the first column.

At each spike event, the state variables are updated according
to the rules: 

Vm

(
t+spk
)

=Vr

Iadap
(
t+spk
)

=Iadap
(
tspk
)
+ A2

Idep
(
t+spk
)

=A1

Where:
t+spk = time instant immediately following the spike time tspk;
Vr = reset potential;
A2, A1 = update constants of Iadap and Idep, respectively.

Based on k2 and kadap values, the model exhibits exponential
or oscillatory responses (Figure 1A). Elements in the model can
be associated to different mechanisms that contribute to the spike
patterns. The endogenous current, Ie, accounts for autorhythm
and regulation of the intrinsic steady-state membrane potential;
the adaptive current, Iadap, coupled with Vm accounts for
intrinsic sub-threshold oscillations of the membrane potential
and represents the slow hyperpolarizing sub-cellular currents,
e.g., the K+ channel currents; the spike-triggered current, Idep,
accounts for fast depolarizing mechanisms, e.g., the Na+ and
low threshold voltage activated Ca2+ channel currents. For
neuron connections within SNNs, conductance-based synapses
are used, with spike-triggered change of synaptic conductance,
gsyn, according to an alpha function (Cavallari et al., 2014;
Geminiani et al., 2018):

gsyn (t) = Gsyn
t − tspk

τsyn
e1 −

t−tspk
τsyn

where Gsyn is the maximum conductance change and τsyn the
synaptic time constant.

Neuron Model Optimization
Analogously to the GoC E-GLIF optimization, for each cerebellar
neuron we derived the parameters related to neurophysiological
quantities (i.e., Cm, τm, EL, 1tref , Vth, Vr) from literature in vitro
experiments (Table 2). For the remaining parameters (i.e., kadap,
k2, k1, A2, A1, Ie), we used the optimization strategy described
in Geminiani et al. (2018), developed in MATLAB, where the
cost and constraint functions were adapted to consider the
electroresponsive properties of each neuron type as in Table 1.

Optimization Stimulation Protocol
Exploiting the analytical solution of the model, the optimization
algorithm aimed at minimizing the error on spike times during
three sub-intervals of a current step stimulation period, where
the Vm solution could be computed: the time to the first
spike, the time between first and second spike and the time
between two steady-state spikes (Figure 1B). A multi-step
stimulation protocol was considered for optimization, including:
a zero-current phase, three phases with increasing depolarizing
currents (exc1 < exc2 < exc3), and a zero-current phase following
a stimulation interval with a negative current, inh.

Cost Function
The cost function evaluated the error on the desired spike
times (computed from desired output frequency), in order
to fit cell-specific quantitative input–output relationships
(Supplementary Table S1): (i) autorhythm frequency, when
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FIGURE 1 | Optimization methods. (A) Parameter space for different solution
regimes in E-GLIF neuron model, depending on values of parameters kadap

and k2. The red line corresponds to not-damped oscillatory solutions, the red
region to oscillatory damped solutions, while the green area corresponds to
exponential stable solutions. Adapted from Geminiani et al. (2018). (B)
Stimulation protocol for evaluation of model analytical solution used for
optimization in specific sub-intervals: time to first spike and between first and
second spike, at the beginning of zero-/depolarizing current steps and
following a hyperpolarizing step (double white arrows); time between two
spikes at steady-state (white arrow); time to first spike (pause) at the end of a
strong depolarizing current step, exc3, only for PC E-GLIF optimization, to fit
the burst-pause response (black arrow).

Istim = 0, (ii) response rates (freq1 < freq2 < freq3), with increasing
amplitudes of Istim (exc1 < exc2 < exc3), and (iii) rebound burst
latency and initial frequency, following an inhibitory current step,
inh. To take into account SFA during depolarizing current steps,
the desired steady-state firing rate was obtained from desired
frequencies (freq1 < freq2 < freq3) multiplied by an attenuating
factor (factor1, factor2, factor3) based on experimental values.

In addition, only PCs exhibit the burst-pause response (Masoli
et al., 2015): to account for this specific property, the PC cost
function evaluated also the time to the first spike (i.e., the pause),
just after the turning off of Istim = exc3 (Figure 1B).

Optimization Constraints
The cell-specific constraints (Supplementary Table S2) were
customized to obtain:

• Neurophysiological ranges of currents in the model;
• Neurophysiological steady-state value of the membrane

potential during inhibition (Vm_inh);
• Oscillatory damped or not (red area in Figure 1A) or

exponential (green area in Figure 1A) Vm dynamics
(Geminiani et al., 2018), based on k2 and kadap ranges as
in Figure 1A;
• Neurophysiological values of oscillation frequency, in case

of oscillatory neurons, i.e., GRs and IOs;
• Sub-threshold value of the steady-state membrane

potential (Vm_ss_tonic) and limited amplitude of oscillations
(Aosc_tonic) to prevent spontaneous firing in oscillatory
neurons without autorhythm – GRs and IOs, in case of
zero external input.

The mathematical expression of the cost function, the
fitted input-output quantitative patterns and the values
of the constraints are reported with proper details in
Supplementary Material.

Optimization Implementation
For each neuron type, we ran five optimizations with different
random initializations of parameters within their ranges, to test
the robustness of results with respect to initialization. We chose
the optimal parameter set as the median of the final parameters
in each optimization run.

Neuron Model Validation
To validate the outcome of optimization and test the effective
proper functioning of the model based on literature data, we
simulated the E-GLIF responses during a continuous stimulation
protocol with current steps in PyNEST (Diesmann and Gewaltig,
2002). This validation was fundamental to assess the result
of optimization that was based on the evaluation of the
neuron response only in sub-sampled intervals of a continuous
simulation. In order to evaluate all the electroresponsive
properties in Table 1, the stimulation protocol included a first
phase with zero external current, where to measure autorhythm
and irregular firing, followed by three depolarizing phases
lasting 1 s and interleaved with 1-s zero-current intervals, to
measure intrinsic excitability and adaptation. Afterward, a 1-s
inhibitory current was applied and turned off in the subsequent
step, to test rebound bursting (Figure 2A, left panel). The
amplitudes of current steps in each phase were the same used
during optimization, but the whole continuous response was
here assessed, and not just the sub-intervals included in the
optimization. The stimulation protocol was then customized
with additional or modified phases for neurons with specific
electroresponsive patterns:

• For PCs, we reduced the third depolarizing interval from
1 to 0.01 s (Figure 2A, right panel) to test the burst-pause
response with high input currents (McKay and Turner,
2005) and evaluate the effect of current pulses (analogous
to CF bursts);
• For GRs, we included an additional phase with input

current step trains at increasing frequencies (0.3-3-6-9-12-
15 Hz), to evaluate resonance (Figure 2B);
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TABLE 2 | Electrophysiological passive properties chosen from literature for the different cerebellar neurons.

Cm (pF) τ m (ms) EL (mV) tref (ms) Vr (mV) Vth (mV)

GoC
Forti et al., 2006; Solinas et al.,
2007a; Tripathy et al., 2014

145
(145 ± 73)

44
(44 ± 22)

−62
(−62)

2
(2 ± 0.4)

−75
(−75)

−55
(−55 ± 1)

GR
D’Angelo et al., 1998, 2001;
Tripathy et al., 2014; Houston
et al., 2017

7
(5.5 ± 0.5)

24.15
(24.15 ± 2)

−62
(−62 ± 11)

1.5
(1.5 ± 0.4)

−70
(−70)

−41
(−41 ± 3)

MLI
Lennon et al., 2014

14.6
(14.6)

9.125
(9.125)

−68
(−68)

1.59
(1.59)

−78
(−78)

−53
(−53)

PC
Hourez et al., 2011; Hoxha
et al., 2012

334
(334 ± 106)

47
(47 ± 32)

−59
(−59 ± 6)

0.5
(0.5 ± 0.1)

−69
(−69)

−43
(−43 ± 2)

DCNnL
Uusisaari et al., 2007

142
(142 ± 31)

33
(33 ± 18)

−45
(−45 ± 13)

1.5
(1.5 ± 0.2)

−55
(−55)

−36
(−36 ± 7)

DCNp
Uusisaari et al., 2007

56
(56 ± 26)

56
(56 ± 30)

−40
(−40 ± 13)

3.02
(3.02 ± 0.3)

−55
(−55)

−39
(−39 ± 8)

IO
Long et al., 2002; De Zeeuw
et al., 2003; Van Der Giessen
et al., 2008

189
(189 ± 12)

11
(11 ± 4)

−45
(−45)

1
(1)

−45
(−45)

−35
(−35)

Experimental reference values are reported in brackets as mean ± SD (Standard Deviation – when available), from literature reference studies reported in the first column.

FIGURE 2 | Stimulation protocol for E-GLIF model validation in PyNEST simulations. (A) General in vitro protocol with the three depolarizing current steps (exc1,2,3)
and the inhibitory step (inh) used for PyNEST simulations of MLI and DCN E-GLIF (left panel); a shorter exc3 current step is used for PCs to test the burst-pause
response (right panel). The current amplitude values are the same used in the optimization process, where only sub-intervals of each stimulation phase were
considered. (B) Customized protocol for GR E-GLIF to test resonance through a stimulation phase with periodic spike trains at increasing frequencies. (C)
Customized protocol for IO E-GLIF with one shorter depolarizing step and an impulse stimulus to evaluate phase reset of membrane potential oscillations.

TABLE 3 | Optimized parameter sets of E-GLIF models for each neuron type.

kadap (MH−1) k2 (ms−1) A2 (pA) k1 (ms−1) A1 (pA) Ie (pA)

GoC (Geminiani et al., 2018) 0.217 0.023 178.01 0.031 259.988 16.214

GR 0.022 0.041 −0.94 0.311 0.01 −0.888

MLI 2.025 1.096 5.863 1.887 5.953 3.711

PC 1.491 0.041 172.622 0.195 157.622 742.534

DCNnL 0.408 0.047 3.477 0.697 13.857 75.385

DCNp 0.079 0.044 176.358 0.041 176.358 2.384

IO 1.928 0.091 1358.197 0.191 1810.923 −18.101

• For IOs, we considered only one depolarizing phase
lasting 0.05 s, to adapt to literature reference protocols
for in vitro experiments. Then, we tested the effect
of different current amplitudes on burst response

properties and we evaluated phase reset of STO,
following a current impulse (amplitude = 1 nA,
duration = 5 ms), during a zero-current interval lasting
1.5 s (Figure 2C).
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We ran 10 simulations for each neuron and computed the
mean ± Standard Deviation (SD) of activity parameters (see
section “Validation Data Analysis”).

Validation Data Analysis
Significant parameters were extracted from spiking time instants
to evaluate single neuron firing patterns in validation protocols:

• The tonic firing rate, ftonic, as the inverse of the mean
inter-spike interval (ISI), and the coefficient of variation of
inter-spike intervals (CVISI) to quantify the irregularity of
firing, during the zero-current phase;
• The firing rate, f, as the inverse of the mean ISI, during the

first three spikes of each depolarizing phase;
• The steady-state firing rate, fss, as the inverse of the mean

ISI, during the last six spikes of each 1-s depolarizing phase;
• The f-Istim slope derived from initial responses to the

excitatory step currents;
• The SFA gain, computed as the ratio between f and fss;
• Latency and initial frequency (i.e., inverse of the

first burst ISI), measured in the rebound burst after
hyperpolarization (lat_rebound and rebound_freq,
respectively). Post-inhibitory activity was considered
a rebound burst if lat_rebound and rebound_freq were
lower than the autorhythm ISI and higher than the
autorhythm frequency, respectively.

To quantify resonance in GRs, we also computed the response
speed as the inverse of the mean spike latency in each resonance
step; the values from multiple simulation tests and frequencies
were fitted through a smoothing spline in order to obtain the
resonance curve (Gandolfi et al., 2013).

RESULTS

The single-point models of cerebellar neurons were generated
using E-GLIF protocol (Geminiani et al., 2018) and were
tuned toward their specific neurophysiological response patterns.
For GoCs, we used the same optimal parameters reported
in Geminiani et al. (2018). For the other neurons, after
fixing the passive properties from literature data (Table 2),
the optimization algorithm was used to tune the remaining
model parameters toward specific electrophysiological features.
In most cases, the algorithm converged to the same region
of the parameter space over the five optimization runs
(Supplementary Figures S1, S2). The resulting parameter
sets achieved the optimal compromise between minimum
cost function and constraint violation (below 1.0 and 0.1,
respectively), best reproducing the electroresponsiveness of each
neuron type (Table 3).

Tuned E-GLIF neurons were then tested in PyNEST
simulations with the stimulation protocol described in the
Section “Neuron Model Validation.” The model was able to
capture the intrinsic excitability of all neurons, generating
linearly increasing firing rates with depolarizing current steps.
As shown in Figure 3, frequencies values and f-Istim slope
were close to the target values for all neurons or within

FIGURE 3 | Plots of f-Istim relationships for GRs, PCs, MLIs, and DCNnL
neurons, comparing outcome of PyNEST simulations (black markers) with
literature target values used for optimization (blue markers), at the beginning
(circles), and after 1-s (squares) current step stimulation. Experimental data
taken from D’Angelo et al. (2001), McKay and Turner (2005), Uusisaari et al.
(2007), and Galliano et al. (2013).
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TABLE 4 | Intrinsic excitability properties of optimized E-GLIF neurons.

ftonic (Hz) CVISI (mean) f-Istim slope lat_rebound (ms) rebound_freq (Hz)

GR – – 3.70 – –

MLI 9.51 ± 0.17 0.13 2.16 (172.96 ± 11.07) (10.03 ± 1.54)

PC 60.96 ± 0.15 0.04 0.08 10.62 ± 0.15 183.01 ± 6.14

DCNnL 31.48 ± 0.16 0.06 0.28 23.95 ± 0.39 64.81 ± 4.49

DCNp 14.37 ± 0.1 0.09 0.4 69.32 ± 0.94 42.14 ± 3.54

IO – – – 59.22 ± 1.96 –

Values are reported as mean ± SD over the 10 PyNEST simulations for each neuron type.

acceptable ranges. For GRs the f-Istim slope was lower than in
the reference study (D’Angelo et al., 1998) but still consistent
with experimental ranges (Spanne et al., 2014; Masoli et al.,
2017). In DCNnL, depolarization frequencies were higher than
target values, but linearly increasing with an acceptable f-Istim
slope (Table 4). SFA was present for PCs and DCNnL with
average SFA gain of 1.1 at all Istim values, close to the target
values of adaptation gain from electrophysiological recordings
(1.1 and 1.2, respectively) (Uusisaari et al., 2007; Kim et al.,
2013). In DCNp, SFA was more pronounced, with an average
gain of 1.3 for Istim = exc2,3 (Uusisaari et al., 2007). In absence
of external stimuli, PC, MLI and both DCN E-GLIF produced
irregular autorhythm at physiological frequencies, while GRs and
IOs generated STO at 6 and 7 Hz, respectively (Figure 4). At the
end of a hyperpolarizing current step, PCs and DCNs exhibited
rebound excitation (doublets/bursts), which is fundamental for
efficient signal transmission (Figure 4). In IOs, post-inhibitory
rebound spikes were generated with 50% probability, as in
experiments (De Zeeuw et al., 2003; Mathy et al., 2009). When
stimulating PC with current pulses of 2.4 nA, the typical intrinsic
bursting (burst-pause response) was generated. This was achieved
thanks to the balance of model currents, Idep and Iadap that
accounted for subcellular mechanisms leading to PC complex
spikes (De Zeeuw et al., 2011). A 10-ms pulse caused a burst
at 254.58 ± 18.26 Hz followed by a pause of 23.47 ± 2.38 ms,
longer than the tonic ISI (Figure 5A); with a 50-ms current
step the neuron was silent for 32.46 ± 1.22 ms after a burst
at 234.87 ± 2.70 Hz (Figure 5B; Grasselli et al., 2016). This
spiking pattern well fits with the PC response to dendritic current
injection; however, the typical PC bistable regime caused by a
continuous high-amplitude stimulation could not be reproduced
in the model without losing other electroresponsive properties
(Masoli et al., 2015). Intrinsic STO in GRs lead to resonance
at 6 Hz, when stimulating the GR neuron model with periodic
spike trains at increasing frequencies (Figure 6A). Finally,
the optimized E-GLIF model was able to generate also the
typical IO bursting response (193.91 ± 24.58 Hz) in case of
current step input, thanks to the rapid effect of Idep at the
beginning of stimulation and the slower accumulation of Iadap
that blocked the firing (Figure 5B). Increased amplitudes of
the input current caused a non-linear increase of the burst
frequency, within physiological ranges; instead, lower currents
(i.e., 200 pA) were not sufficient to activate bursts, but they only
produced single spikes followed by a pause. Current pulses in
the IO E-GLIF induced a spike and a subsequent phase reset of

STO, independent from the phase of the stimulus (Figure 6B).
Consistently with experimental results, post-impulse STO phase
in the model was (0.87 ± 0.02)·T for pre-stimulus phases
ranging from 0.06·T to 0.92·T, being T the period of oscillations
(Kazantsev et al., 2004; Lefler et al., 2013).

Therefore, the whole set of olivo-cerebellar cells could be
modeled with E-GLIF neurons, generating realistic spiking
patterns and capturing crucial electroresponsive properties for
cerebellar functioning.

DISCUSSION

In this paper, the E-GLIF model (Geminiani et al., 2018),
that was previously developed and validated for Golgi cells,
was tuned toward the unique electroresponsive properties of
granule cells, Purkinje cells, molecular layer interneurons, deep
cerebellar nuclei cells and inferior olivary cells. In these neurons,
E-GLIF effectively reproduced pacemaking, adaptation, bursting,
post-inhibitory rebound excitation, subthreshold oscillations,
resonance, and phase reset. Therefore, for the first time, a whole
set of single point neurons is made available to investigate the
functional dynamics of the olivocerebellar circuit (Voogd and
Glickstein, 1998; Ruigrok, 2011; D’Angelo et al., 2013; Witter
et al., 2013; Zhou et al., 2014). These include oscillations and
resonance, which are thought to play a critical role for network
entraining into large-scale brain oscillations (De Zeeuw et al.,
2011; Courtemanche et al., 2013; Llinás, 2014), and long-term
synaptic plasticity, which is considered the main mechanism
underlying the cerebellar role in motor control and learning (Ito
et al., 2014; D’Angelo et al., 2016b).

Modeled Single Neuron Dynamics
Extended-Generalized Leaky Integrate and Fire (Geminiani
et al., 2018) is a simplified point-neuron based on a system
of three linear ordinary differential equations and its analytical
tractability allows to define different solution regimes and to
tune model parameters through a generalizable optimization
algorithm. In the current work, E-GLIF was able to simulate
complex input-output relationships of cerebellar and IO neurons,
generating cell-specific intrinsic excitability and non-linear firing
properties that would not be possible using previous GLIF models
(Mihalaş and Niebur, 2009).

For neurons with oscillatory Vm, the second order dynamics
of the model allowed to simulate intrinsic self-sustained
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FIGURE 4 | E-GLIF responses to zero-input current (left column) and following a hyperpolarizing current step (right column) for the main olivo-cerebellar neurons.
Zero-current inputs cause STO in GR and IO neurons, and autorhythm in the others. Post-inhibitory rebound excitation (burst or spike) is highlighted in the blue
circle, where present.

STO. Second order dynamics allowed to reproduce also other
non-linear electroresponsive behaviors like resonance in GRs
and phase reset of STO in IO neurons. These properties
have been measured in single-neuron experiments and are

probably amplified at network level (D’Angelo et al., 2001).
Specifically, the feedback inhibitory loop from GoCs to GRs
is supposed to contribute to resonance and oscillations in
the Granular layer network, enhancing theta-band signals
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FIGURE 5 | Bursting responses in E-GLIF simulations. (A) Burst-pause in PC E-GLIF with a 10-ms input current step (left panel) and 50-ms input current step (right
panel). Vm and input current traces are reported in top panels, showing the burst during the stimulation phase and the subsequent pause (blue segment) when the
current goes back to 0 nA. Model current traces are reported in bottom panels, with respect to their steady-state value (1I). The Iadap current is reported in negative
values as it has a hyperpolarizing effect in the neuron model. At the end of the stimulation, the accumulated inhibitory effect of Iadap causes the pause, until it decays,
and the tonic balance of currents is restored. (B) Bursting response in IO E-GLIF during a 50-ms current step stimulus, showing a first doublet (zoom in the inset)
followed by a pause (blue segment); even in this case, the intrinsic model currents drive the Vm response (bottom panel).

FIGURE 6 | Oscillation-driven properties in E-GLIF simulations. (A) Resonance in GR E-GLIF following spike train stimulation at increasing frequencies. The
resonance curve was obtained fitting the data points from 10 simulations (black dots) with a smoothing spline. (B) Phase-reset of IO E-GLIF Vm during 10
simulations with the same current pulse, causing a spike and a subsequent reset of oscillation phase, independent from the phase before the stimulus.

coming from extra-cerebellar regions (D’Angelo and Casali,
2013; Gandolfi et al., 2013). Future simulations of the granular
layer network with E-GLIF neurons will help to elucidate the
different contribution of single cell and circuit properties on
network oscillations and resonance. This would extend the
results of previous studies where detailed microcircuit models
and SNNs with Leaky Integrate-and-Fire units were exploited

(D’Angelo et al., 2013; Casali et al., 2019). In the IO circuit,
phase reset of STO has been measured in single neurons
(Kazantsev et al., 2004), but synchronous stimulation of an
olivary area was shown to amplify this response (Lefler et al.,
2013). The IO E-GLIF could reproduce the first response
during simulation of in vitro protocols. In principle, adding
gap junctions to the neuron model would account also for the
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phase-reset amplification at network level, thanks to the intrinsic
communication within IO nuclei.

To simulate IO neurons, E-GLIF was optimized taking the
axonal bursting regime as the target behavior (Maruta et al.,
2007; Mathy et al., 2009). This aspect challenges the traditional
view of CFs as a low-frequency all-or-none signaling pathway:
indeed, bursting and rebound activity in IO is fundamental
for information encoding, as rebound excitation amplifies the
feedback from DCNp cells and olivary bursts elicit complex
spikes at PC level. PC E-GLIF successfully reproduced regular
firing and the burst-pause pattern following dendritic current
stimulation in vitro, which can be associated to simple and
complex spikes in vivo (Masoli et al., 2015). However, bistability
and spiking patterns with longer bursts and pauses could not
be obtained in the E-GLIF model without losing intrinsic
excitability properties. For simulations in SNNs, this is a
sufficient approximation since it allows to generate the typical
PC network spiking patterns, as shown in the Section “Results.”
However, for a more detailed representation even of axonal
responses, a multi-compartment version of the PC E-GLIF
could be implemented, where multiple E-GLIF neurons are
optimized to reproduce the electroresponsiveness of the main
PC compartments.

In cerebellar nuclei neurons, rebound excitation has been
widely proven in vitro but long debated in vivo (Alviña
et al., 2008). However, recent experimental findings demonstrate
that rebound bursting correlates with motor responses and is
fundamental for integrating synaptic inputs from PCs, MFs,
and IO neurons that all converge in the cerebellar nuclei
(Hoebeek et al., 2010; Manto and Oulad Ben Taib, 2010; Witter
et al., 2013; Sarnaik and Raman, 2018). Rebound excitation
also contributes to cerebellum-driven learning, as demonstrated
for associative learning (Ten Brinke et al., 2017). Single-neuron
rebound properties are thus crucial in SNNs aimed at multiscale
simulations of sensorimotor tasks.

This scenario shows the capability of the E-GLIF point neuron
to reproduce the variety of olivo-cerebellar spiking responses
following different input stimuli, through a single optimal set
of model parameters. Conversely, the traditional approach for
single neuron modeling aims at identifying different regions of
the parameter space corresponding to different spiking behaviors
(Izhikevich, 2003). This makes E-GLIF a best candidate for
simulations of SNNs, where neuron response needs to depend
on the received input, rather than on the parameter values,
achieving higher neurophysiological realism without increasing
computational load.

CONCLUSION

The E-GLIF single-point neuron models were able to
capture the complex non-linear dynamics of olivocerebellar
neurons including spontaneous firing, subthreshold oscillations,
bursting, phase-reset, and resonance. These ingredients,
coupled to algorithms accounting for synaptic integration
over dendrites (e.g., Marasco et al., 2012; Rössert et al.,
2016), will provide the fundamental ingredients to reconstruct
non-linear dynamics in extended spiking cerebellar networks.
Future work will include embedding these neuron models
into cerebellar SNNs to simulate cerebellum-driven motor
paradigms and evaluate the impact of single neuron
electroresponsiveness on network dynamics, plasticity and,
eventually, motor behavior.
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The Embodied Brain of
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Acquiring Valued Goals
Stephen Grossberg*
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This article develops a model of how reactive and planned behaviors interact in real time.
Controllers for both animals and animats need reactive mechanisms for exploration,
and learned plans to efficiently reach goal objects once an environment becomes
familiar. The SOVEREIGN model embodied these capabilities, and was tested in a 3D
virtual reality environment. Neural models have characterized important adaptive and
intelligent processes that were not included in SOVEREIGN. A major research program
is summarized herein by which to consistently incorporate them into an enhanced
model called SOVEREIGN2. Key new perceptual, cognitive, cognitive-emotional, and
navigational processes require feedback networks which regulate resonant brain states
that support conscious experiences of seeing, feeling, and knowing. Also included
are computationally complementary processes of the mammalian neocortical What
and Where processing streams, and homologous mechanisms for spatial navigation
and arm movement control. These include: Unpredictably moving targets are tracked
using coordinated smooth pursuit and saccadic movements. Estimates of target and
present position are computed in the Where stream, and can activate approach
movements. Motion cues can elicit orienting movements to bring new targets into
view. Cumulative movement estimates are derived from visual and vestibular cues.
Arbitrary navigational routes are incrementally learned as a labeled graph of angles
turned and distances traveled between turns. Noisy and incomplete visual sensor data
are transformed into representations of visual form and motion. Invariant recognition
categories are learned in the What stream. Sequences of invariant object categories
are stored in a cognitive working memory, whereas sequences of movement positions
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and directions are stored in a spatial working memory. Stored sequences trigger
learning of cognitive and spatial/motor sequence categories or plans, also called
list chunks, which control planned decisions and movements toward valued goal
objects. Predictively successful list chunk combinations are selectively enhanced or
suppressed via reinforcement learning and incentive motivational learning. Expected
vs. unexpected event disconfirmations regulate these enhancement and suppressive
processes. Adaptively timed learning enables attention and action to match task
constraints. Social cognitive joint attention enables imitation learning of skills by learners
who observe teachers from different spatial vantage points.

Keywords: invariant object category learning, spatial navigation, visual search, working memory, reinforcement
learning, motion perception, attention, adaptive resonance theory

1. PERCEPTION, LEARNING, INVARIANT
RECOGNITION AND PLANNING DURING
SEARCH AND NAVIGATION CYCLES

This article contributes to an emerging scientific and
computational revolution aimed at understanding and designing
increasingly autonomous adaptive intelligent algorithms and
mobile agents. In particular, it summarizes an emerging neural
architecture that is capable of visually searching and navigating
an unfamiliar environment while it autonomously learns to
recognize, plan, and efficiently navigate toward and acquire
valued goal objects. This article accordingly reviews, and outlines
how to extend, the SOVEREIGN architecture of Gnadt and
Grossberg (2008) (Figure 1A). The purpose of that architecture
is described in the subtitle of the article: An autonomous neural
system for incrementally learning planned action sequences to
navigate towards a rewarded goal.

The architecture was called SOVEREIGN because it describes
how Self-Organizing, Vision, Expectation, Recognition,
Emotion, Intelligent, and Goal-oriented Navigation processes
interact during adaptive mobile behaviors. The term Self-
Organizing emphasizes that SOVEREIGN’s learning is carried
out autonomously and incrementally in real time, using
unconstrained combinations of unsupervised or supervised
learning. Expectation refers to the fact that key learning
processes in SOVEREIGN learn expectations that match
incoming data, or predict future outcomes. Good enough
matches focus attention upon expected combinations of
critical features, while mismatches drive memory searches to
learn better representations of an environment. Recognition
acknowledges that SOVEREIGN learns object categories, or
“chunks,” whereby to recognize objects and events. Emotion
denotes that SOVEREIGN carries out reinforcement learning
whereby unfamiliar objects can learn to become conditioned
reinforcers, as well as sources of incentive motivation that can
maintain attention upon valued goals, while actions to acquire
those goals are carried out. Reinforcement learning also supports
the learning of value categories that can recognize valued
combinations of homeostatic drive inputs. Intelligent means that
SOVEREIGN includes processes whereby sequences, or lists, of
objects and positions may be temporarily stored in cognitive
and spatial working memories as they are experienced in real

time. Stored sequences trigger learning of sequence categories or
plans, also called list chunks, that recognize particular sequential
contexts and learn to predict the most likely future outcomes
as they are modulated by reinforcement learning and incentive
motivational learning. Goal-oriented navigation means that
SOVEREIGN includes circuits for controlling exploratory
and planned movements while navigating unfamiliar and
familiar environments.

1.1. Learning Routes as a Labeled Graph
of Angles Turned and Distances Traveled
SOVEREIGN used these capabilities to simulate how an animal,
or animat, can autonomously learn to reach valued goal objects
through planned sequences of navigational movements within
a virtual reality environment. Learning was simulated in a
cross maze (Figure 2A) that was seen by the animat as a
virtual reality 3D rendering of the maze as it navigated it
through time. At the end of each corridor in the maze, a
different visual cue was displayed (triangle, star, cross, and
square). Sequences of virtual reality views on two navigational
routes, shown in color for vividness, are summarized in
Figures 2B,C, where the floor is green, the walls are blue,
the ceiling in black, and the interior corners where pairs of
maze corridors meet are in red. Figure 2B illustrates how
the views change as the animat navigates straight down one
corridor, and Figure 2C illustrates how the views change as
the animal makes a turn from facing one corridor to facing a
perpendicular one.

SOVEREIGN incrementally learned how to navigate
to a rewarded goal object in this cross maze, which is
the perhaps the simplest environment that requires all of
the SOVEREIGN designs to explore an unfamiliar visual
environment (Figure 2D) while learning efficient routes
whereby to acquire a valued goal, rather than less efficient or
valued routes (Figure 2E). Several different types of neural
circuits, systems, and learning are needed to achieve this
competence. They will be described in the subsequent sections.
The same mechanisms generalize to much more complex visual
environments, especially because, as will be described below,
all the perceptual, cognitive, and affective learning mechanisms
scale to more complex environments and dynamically self-
stabilize their memories using learned expectation and attention
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FIGURE 1 | (A) The main interactions between functional systems of the SOVEREIGN model. (B) The Motor Approach and Orienting System flow diagram depicts
the control hierarchy that generates outflow motor commands. See the text for details [Reprinted with permission from Gnadt and Grossberg (2008)].

FIGURE 2 | (A) The 3D graphical simulation of the virtual reality plus maze generates perspective views from any position within the maze. (B) Snapshots from the
3D virtual reality simulation depict changes in the scene during reactive homing toward the triangle cue. (C) During reactive approach to the triangle cue, visual
motion signals trigger a reactive head orienting movement to bring the star cue into view. Two overhead views of a plus maze show (D) a typical initial exploratory
reactive path, and (E) an efficient learned planned path to the goal [Adapted with permission from Gnadt and Grossberg (2008)].

mechanisms, while the spatial and motor mechanisms are
platform independent.

One key SOVEREIGN accomplishment is worthy of mention
now because it illustrates how SOVEREIGN goes beyond
reactive navigation to autonomously learn the most efficient

routes whereby to acquire a valued goal, while rejecting less
efficient routes that were taken early in the exploratory process.
SOVEREIGN explains how arbitrary navigational trajectories
can be incrementally learned as sequences of turns and linear
movements until the next turn. In other words, the model
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explains how route-based navigation can learn a labeled graph
of angles turned and distances that are traveled between turns.
The angular and linear velocity signals that are experienced at
such times are used in the model to learn the angles that a
navigator turns, and the distances that are traveled in a straight
path before the next turn.

The prediction that a labeled graph is learned during
route navigation has recently received strong experimental
support in Warren et al. (2017) who show how, when humans
navigate in a virtual reality environment, such a labeled graph
controls their navigational choices during route finding, novel
detours, and shortcuts.

1.2. From SOVEREIGN to SOVEREIGN2:
New Processes and Capabilities
SOVEREIGN did not include various brain processes and
psychological functions of humans that are needed to realize a
more sophisticated level of autonomous adaptive intelligence.
This article summarizes some of the neural models that have
been developed to explain these functions, and that can be
consistently incorporated into an enhanced architecture called
SOVEREIGN2. These processes have been rigorously modeled
and parametrically simulated over a 40-year period, culminating
in recent syntheses such as Grossberg (2013, 2017, 2018). They
are reviewed heuristically here to bring together in one place the
basic design principles, mechanisms, and architectures that they
embody. Rigorous embodiment of all of these competences in
SOVEREIGN2 will require a sustained research program. The
current article provides a roadmap for that task.

The most important new perceptual, cognitive, and
navigational properties emerge within feedback networks that
regulate one or another kind of attention as part of resonant brain
states that support conscious experiences of seeing, feeling, and
knowing. These resonant states are modeled as part of Adaptive
Resonance Theory, or ART. Table 1a also lists resonances that
arise during auditory processing. Auditory processing will not be
considered below, but is described with the others in Grossberg
(2017). SOVEREIGN2 will embody such resonant dynamics,
including states that in humans support consciousness, because
of a deep computational connection that has been modeled
between conscious states and the choice of effective task-relevant
actions. ART hereby provides explanations of what goes on in
each of our brains when we consciously see, hear, feel, or know
something; where it is going on; and why evolution may have
been driven to discover conscious states of mind.

Additional processes in SOVEREIGN2 include circuits for
target tracking with smooth pursuit and saccadic eye or camera
movements (see section 3.2); visual form and motion perception
in response to noisy and incomplete sensor signals (see section
4.13); incremental unsupervised view-, size-, and position-
specific object category learning and hypothesis testing in real
time in response to arbitrarily large non-stationary databases
that may include unexpected events (see sections 4.2–4.9, 6.2,
and 6.3); incremental unsupervised learning of view-, size-, and
position- invariant object categories during free scanning of a
scene with eye or camera movements (see sections 4.1, 6.1,

TABLE 1 | (a) Types of resonances and the conscious experiences that they
embody. (b) Complementary What and Where cortical stream properties.

Cortical What stream perceptual and cognitive representations can solve the
stability-plasticity dilemma, using brain regions like inferotemporal (IT) cortex,
where recognition categories are learned. These processes carry out excitatory
matching and match-based learning. Cortical Where stream spatial and motor
processes do not solve the stability-plasticity dilemma, but rather adapt to
changing bodily parameters, using brain regions like posterior parietal cortex
(PPC). Whereas the recognition categories in the cortical What stream become
increasingly invariant at higher cortical levels with respect to object views, positions,
and sizes, the cortical Where stream elaborates spatial representations of object
positions and mechanisms whereby to act upon them. Together the two streams
can learn to recognize and become conscious of valued objects and scenes,
while directing appropriate actions toward them [Reprinted with permission from
Grossberg (2017)].

and 6.4); selective storage in working memory of task-relevant
object, spatial, or motor event sequences (see sections 4.10,
6.9, 6.10, and 7); unsupervised learning of cognitive and motor
plans based upon working memory storage of event sequences
in real time, and Where’s Waldo search for currently valued
goal objects (see sections 6.10 and 7); unsupervised learning
of reaching behaviors that automatically supports accurate tool
manipulation in space (see section 5.4); unsupervised learning of
present position in space using path integration during spatial
navigation (see sections 6.11 and 8); platform-independent
navigational control using either leg or wheel movements (see
section 5.6); unsupervised learning of adaptively timed actions
and maintenance of motivated attention while these actions
are executed (see sections 6.7 and 6.8); and social cognitive
capabilities like joint attention and imitation learning whereby
a classroom of robots can learn spatial skills by each observing a
teacher from its own unique spatial perspective (see section 5.5).

2. BRAINS ASSEMBLE EQUATIONS AND
MICROCIRCUITS INTO MODAL
ARCHITECTURES: CONTRAST DEEP
LEARNING

ART architectures embody key design principles that are
found in advanced brains, and which enable general-purpose
autonomous adaptive intelligence to work. These designs have
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enabled biological neural networks to offer unified principled
explanations of large psychological and neurobiological databases
(e.g., see Grossberg, 2013, 2017, 2018) using just a small set
of mathematical laws or equations−such as the laws for short-
term memory or STM, medium-term memory or MTM, and
long-term memory or LTM−and a somewhat larger set of
characteristic microcircuits that embody useful combinations
of functional properties−such as properties of cognitive and
cognitive-emotional learning and memory, decision-making,
prediction, and action. Just as in physics, only a few basic
equations are used to explain and predict many facts about
mind and brain, when they are embodied in a somewhat larger
number of microcircuits that may be thought of as the “atoms”
or “molecules” of intelligence. Specializations of these laws
and microcircuits are then combined into larger systems that
are called modal architectures, where the word “modal” stands
for different modalities of intelligence, such as vision, speech,
cognition, emotion, and action. Modal architectures are less
general than a general-purpose von Neumann computer, but far
more general than a traditional algorithm from AI.

As I will illustrate throughout this article, these designs
embody computational paradigms that are called complementary
computing, hierarchical resolution of uncertainty, and adaptive
resonance. In addition, the paradigm of laminar computing shows
how these designs may be realized in the layered circuits of the
cerebral cortex and, in so doing, achieve even more powerful
computational capabilities. These computational paradigms
differ qualitatively from currently popular algorithms in AI and
machine learning, notably Deep Learning (Hinton et al., 2012;
LeCun et al., 2015) and its variants like Deep Reinforcement
Learning (Mnih et al., 2013). Despite their successes in
demonstrating various recent applications, these algorithms do
not come close to matching the generality, adaptability, and
intelligence that is found in models that more closely emulate
brain designs. As just one of many problems, Deep Learning
algorithms are susceptible to undergoing catastrophic forgetting,
or an unexpected collapse of the memory of previously learned
information while new information is being learned, a property
that is shared by all variants of the classical back propagation
algorithm (Grossberg, 1988). This kind of problem becomes
increasingly destructive as a Deep Learning algorithm tries to
learn from very large databases. The ART-based systems that are
summarized below do not experience these problems.

No less problematic is that Deep Learning is just a
feedforward adaptive filter. It does not carry out any of the
basic kinds of information processing that are typically identified
as “intelligent,” but which are carried out within ART and
other biological learning algorithms that are embedded within
neural network architectures. Deep Learning has none of the
architectural features, such as learned top-down expectations,
attentional focusing, and mismatch-mediated memory search
and hypothesis testing, that are needed for stable learning in a
non-stationary world of Big Data.

Perhaps these problems are why Geoffrey Hinton said in an
Axios interview on September 15, 2017 (LeVine, 2017) that he is
“deeply suspicious of back propagation. . .I don’t think it’s how
the brain works. We clearly don’t need all the labeled data. . .My

view is, throw it all away and start over” (italics mine). This essay
illustrates that we do not need to start over.

Section 17 in Grossberg (1988) lists 17 different learning
and performance properties of Back Propagation and Adaptive
Resonance Theory. The third of the 17 differences between
Back Propagation and ART is that ART does not need labeled
data to learn. ART can learn using arbitrary combinations
of unsupervised and supervised learning. ART also does
not experience any of the computational problems that
compromise Back Propagation and Deep Learning, including
catastrophic forgetting.

3. BUILDING UPON THREE BASIC
DESIGN THEMES: BALANCING
REACTIVE AND PLANNED BEHAVIORS

The original SOVEREIGN architecture contributed models of
three basic design themes about how advanced brains work. The
first theme concerns how brains learn to balance between reactive
and planned behaviors. During initial exploration of a novel
environment, many reactive movements may occur in response
to unfamiliar and unexpected environmental cues (Leonard and
McNaughton, 1990). These movements may seem initially to
be random, as an animal orients toward and approaches many
stimuli (Figure 2D). As the animal becomes familiar with its
surroundings, it learns to discriminate between objects likely
to yield a reward and those that lead to punishment or to
no valued consequences. Such approach-avoidance behavior is
typically learned via reinforcement learning during a perception-
cognition-emotion-action cycle in which an action and its
consequences elicit sensory cues that are associated with them.
When objects are out of direct viewing or reaching ranges,
reactive exploratory movements may be triggered to bring them
closer. Eventually, reactive exploratory behaviors are replaced by
more efficient planned sequential trajectories within a familiar
environment (Figure 2E). One of the main goals of SOVEREIGN
was to explain how erratic reactive exploratory behaviors trigger
learning to carry out organized planned behaviors, and how both
reactive and planned behaviors may remain balanced so that
planned behaviors can be carried out where appropriate, without
losing the ability to respond quickly to novel reactive challenges.

3.1. Parallel Streams for Computing
Visual Form and Motion
One way that SOVEREIGN realizes a flexible balance between
reactive and planned behaviors is its organization into parallel
streams for computing visual form and motion. In Figure 3A,
these streams are labeled PARVO and MAGNO, corresponding
to contributions at early visual processing stages of parvocellular
cells to form processing and magnocellular cells to motion
processing (e.g., Maunsell and Newsome, 1987; DeYoe and
Van Essen, 1988; Maunsell et al., 1990; Schiller et al., 1990).
Roughly speaking, the form stream supports sustained attention
upon foveated objects, whereas the motion stream attracts
attention and bodily movements in response to sudden changes,
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including motions, in the periphery. sections 3.2 and 4.13 will
further describe how SOVEREIGN carries out form processing
and will outline how SOVEREIGN2 can achieve much more
powerful form processing capabilities. Figure 3B provides a
more detailed summary of the early motion processing that
enables SOVEREIGN to track objects moving at variable
speeds (Chey et al., 1997; Berzhanskaya et al., 2007). Orienting
movements to a source of motion were controlled algorithmically
in SOVEREIGN; e.g., see the Head-Orienting Movement
Module in Figure 3A.

3.2. Log Polar Retinas and Fixating
Unpredictably Moving Targets With Eye
Movements
Many primate retinas have a localized region of high visual acuity
that is called the fovea, with resolution decreasing with distance
from the fovea (see Supplementary Figure S4) to realize a cortical
magnification factor whereby spatial representations of retinal
inputs in the visual cortex get coarser as they move from the
foveal region to the periphery (Daniel and Whitteridge, 1961;
Fischer, 1973; Tootell et al., 1982; Schwartz, 1984; Polimeni et al.,
2006). The cortical magnification factor is approximated by a log-
polar function, which allows a huge reduction in the number
of cells that are needed to see Schwartz (1984), Wallace et al.
(1984), Schwartz et al. (1995). However, because of this retinal
organization, eye and head movements are needed to move the
fovea to look at objects of interest.

Both smooth pursuit movements and saccadic eye movements
are used to keep the fovea looking at objects of interest. During
a smooth pursuit movement, as the eyes track a moving target
in a given direction, the entire scene moves in the opposite
direction on the retina (Supplementary Figure S1). Why does
not this background motion interfere with tracking by causing an
involuntary motion, called nystagmus, in the opposite direction
than the target is moving? How does accurate tracking continue,
even after the eye catches up with the moving target, so that there
is no net speed of the target on the fovea, and thus no retinal
slip signals from the foveal region of the eyes to move them
toward the target?

Remarkably, both of these questions seem to have the same
answer, which includes the fact that the background motion
facilitates tracking, rather than interfering with it, in the
manner that is summarized in Supplementary Figures S1, S2.
Supplementary Figure S1 summarizes the fact that, for fixed
target speed, as the target speed on the retina decreases due
to increasingly good target tracking, the background speed in
the opposite direction on the retina increases. Supplementary
Figure S2 schematizes the smooth pursuit eye movement, or
SPEM, model of Pack et al. (2001) of how cells in the dorsal
Medial Superior Temporal region (MSTd), which are activated
by the background motion, excite cells that are sensitive to
the opposite direction in the ventral MST (MSTv) region. The
MSTv cells are the ones that control the movement commands
whereby the eyes pursue the moving target. When the eyes catch
up to the target, they can maintain accurate foveation even in
the absence of retinal slip signals, because background motion

signals compensate for the reduced retina speed of the target,
and can thus be used to accurately move the eyes in the desired
direction at the target speed (Supplementary Figure S1). This
kind of SPEM model can replace the Head-Orienting Movement
Module in SOVEREIGN if an animat with orienting eyes or
cameras is used.

When a valued target suddenly changes its speed or direction
of motion, then smooth pursuit movements may be insufficient.
Ballistic saccadic movements can then catch up with the target.
Animals such as humans and monkeys can coordinate smooth
pursuit and ballistic saccadic eye movements to catch up
efficiently. Indeed, the current speed and direction of smooth
pursuit when the target suddenly changes its speed or direction
may be used to calibrate a ballistic saccade with the best chance
to catch up. This kind of predictive coordination is achieved
by the SAC-SPEM model of Grossberg et al. (2012). The sheer
number of brain regions that work together to accomplish such
coordination (Supplementary Figure S3) will challenge future
mobile robotic designers to embody this tracking competence in
the simplest possible way.

4. BUILDING UPON THREE BASIC
DESIGN THEMES: COMPLEMENTARY
COMPUTING, HIERARCHICAL
RESOLUTION OF UNCERTAINTY, AND
ADAPTIVE RESONANCE

The second design theme is that advanced brains are organized
into parallel processing streams with computationally
complementary properties (Grossberg, 2000, 2017).
Complementary computing means that each stream’s properties
are related to those of a complementary stream much as a key fits
into a lock, or two pieces of a puzzle fit together. The mechanisms
that enable each stream to compute one set of properties prevent
it from computing a complementary set of properties. As a result,
each of these streams exhibits complementary strengths and
weaknesses. Interactions between these processing streams use
multiple processing stages to overcome their complementary
deficiencies and generate psychological properties that lead to
successful behaviors. This interactive multi-stage process is called
hierarchical resolution of uncertainty.

Two of these complementary streams are the ventral What
cortical stream for object perception and recognition, and the
dorsal Where (or Where/How) cortical processing stream for
spatial representation and action (Ungerleider and Mishkin,
1982; Mishkin, 1982; Mishkin et al., 1983; Goodale et al., 1991;
Goodale and Milner, 1992). Key properties of these cortical
processing streams have been shown to be computationally
complementary (Table 1b).

4.1. Invariant Object Category Learning
One of several basic reasons for this particular kind of
complementarity is that the cortical What stream learns object
recognition categories that become substantially invariant under
changes in an object’s view, size, and position at higher
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FIGURE 3 | (A) The Visual Form System (PARVO) and Motion System (MAGNO) flow diagrams depict the stages of visual processing in SOVEREIGN. (B) Detailed
stages of motion processing within the Motion System are shown in this diagram. The Directional Transient Cell Network module comprises multiple stages of
processing. The Motion Left/Right Decision generates signals that are capable of eliciting a reactive left or right head-orienting signal. The several transient cell
stages enable the Motion System to retain its directional selectivity in response to motions at variable speeds. See the text for details.

cortical processing stages, such as at the anterior inferotemporal
cortex (ITa) and beyond (Tanaka, 1997, 2000; Booth and Rolls,
1998; Fazl et al., 2009; Cao et al., 2011; Chang et al., 2014).
These invariant object categories have a compact representation
that enables valued objects to be recognized without causing
the combinatorial explosion that would have occurred if our
brains needed to store every individual exemplar of every
object that was ever experienced. However, because they are
invariant, these categories cannot, by themselves, locate and
act upon a desired object in space. Cortical Where stream
spatial and motor representations can locate objects and trigger
actions toward them, but cannot recognize them. By interacting
together, the What and Where streams can consciously see and
recognize valued objects and direct appropriate goal-oriented
actions toward them.

The original SOVEREIGN model explained simple properties
of how such invariant categories are learned as an animal,
or animat, explores a novel environment. It used log-polar
preprocessing of input images, followed by coarse-coding and
algorithmic shift operations, to generate size-invariant and
position-invariant input images. These preprocessed images were
then input to a Fuzzy ART classifier (Carpenter et al., 1991b)
for learning invariant visual 2D view-specific categories whereby
SOVEREIGN could recognize an object at variable distances.
These view-specific categories were converted into categories that
were view-invariant, as well as positionally invariant and size-
invariant, by algorithmically associating multiple view-specific
categories with a shared view-invariant category (Figure 4A).

Since SOVEREIGN was published, the 3D ARTSCAN
SEARCH model was developed to explain how humans and other
primates may accomplish incremental unsupervised learning

of view-, position-, and size-invariant categories, without any
algorithmic shortcuts, and how these invariant categories can be
used to trigger a cognitively or motivationally driven Where’s
Waldo search for a desired object in a cluttered scene (Fazl
et al., 2009; Grossberg, 2009b; Cao et al., 2011; Foley et al.,
2012; Chang et al., 2014; Grossberg et al., 2014). These important
Recognition and Where’s Waldo search capabilities, which will be
further discussed in sections 6.1 and 6.4, can also be incorporated
into SOVEREIGN2 instead of the bottom two category learning
processes in Figure 4A.

4.2. Adaptive Resonance Theory: A
Universal Design for Autonomous
Classification and Prediction
The ART in the Fuzzy ART algorithm abbreviates Adaptive
Resonance Theory, which was introduced in 1976 (Grossberg,
1976a,b) and developed into the most advanced cognitive
and neural theory of how advanced brains learn to attend,
recognize, and predict objects and events in complex changing
environments that may be filled with unexpected events. ART
currently has an unrivalled explanatory and predictive range
about how processes of consciousness, learning, expectation,
attention, resonance, and synchrony interact in advanced brains.
Along the way, all of the foundational hypotheses of ART
have been confirmed by later psychological and neurobiological
experiments. See Grossberg (2013, 2017, 2018) for recent
reviews and syntheses.

ART’s significance is highlighted by the fact that its design
principles and mechanisms can be derived from a thought
experiment whose simple assumptions are familiar to us all
as facts that we experience ubiquitously in our daily lives.
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FIGURE 4 | (A) The Visual Working Memory and Planning System computes motivationally reinforced representations of sequences of 3D object categories. (B) The
Motor Working Memory and Planning System computes motivationally reinforced representations of sequences of motor map positions/directions. See the text for
details. [Reprinted with permission from Gnadt and Grossberg (2008)].

These facts embody environmental constraints which, taken
together, define a multiple constraint problem that evolution
has solved in order to enable humans and other higher animals
to be able to autonomously learn to attend, recognize, and
predict their unique and changing worlds. Such a competence
is essential in autonomous adaptive mobile agents, which
is why some ART algorithms were already algorithmically
implemented in SOVEREIGN.

4.3. Predictive Brain: Intention, Attention,
and Resonance Solve the
Stability-Plasticity Dilemma
One of the critical properties of ART that enable it to support
open-ended incremental autonomous learning is that resonant
states can trigger rapid learning about a changing world while
solving the stability-plasticity dilemma. This dilemma asks how
can our brains learn quickly without being forced to forget
previously learned, but still useful, memories just as quickly?

The stability-plasticity dilemma was articulated before the
catastrophic forgetting problem was stated (French, 1999), and
clarifies that it is a problem of balance between fast learning
and stable memory. Catastrophic forgetting means that an
unpredictable part of previously learned memories can rapidly
and unpredictably collapse during new learning. This problem
becomes particularly acute when learning any kind of Big Data
problem, notably during the kind of open-ended incremental
learning that an autonomous adaptive robot might need to do
as it navigates unfamiliar environments. A catastrophic collapse
of previous memories while trying to completely learn about
a huge database, not to mention a database that is continually

changing through time, is intolerable in any application that can
have serious real world consequences. Popular machine learning
algorithms such as Back Propagation and its recent variant,
Deep Learning (Hinton et al., 2012; LeCun et al., 2015), do
not solve the catastrophic forgetting problem. In brief, Deep
Learning is unreliable.

A resonant brain state is a dynamical state during which
neuronal firings across a brain network are amplified and
synchronized when they interact via reciprocal excitatory
feedback signals during an attentive matching process that occurs
between bottom-up and top-down pathways. In the case of
learning recognition categories, the bottom-up pathways are
adaptive filters that tune their adaptive weights, or LTM traces,
to more reliably activate the category that best matches the
input feature patterns that activate them. The top-down pathways
are learned recognition expectations whose LTM traces focus
attention upon a prototype of critical features that best predict
the active category. As will be explained in greater detail below
(see Figure 7 below), a resonance of this kind is called a feature-
category resonance in order to distinguish it from the multiple
other kinds of resonances that dynamically stabilize learning in
different brain systems.

A resonance represents a system-wide consensus that the
attended information is worthy of being learned. It is because
resonances can trigger fast learning that they are called
adaptive resonances, and why the theory that explicates them
is called Adaptive Resonance Theory. ART’s proposed solution
of the stability-plasticity dilemma mechanistically links the
process of stable learning and memory with the mechanisms
of Consciousness, Expectation, Attention, Resonance, and
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Synchrony that enable it. Due to their mechanistic linkage, these
processes are often abbreviated as the CLEARS processes.

ART hereby predicts that interactions among CLEARS
mechanisms solve the stability-plasticity dilemma. That is why
humans and other higher animals are intentional and attentional
beings who use learned expectations to pay attention to salient
objects and events, why “all conscious states are resonant
states,” and how brains can learn both many-to-one maps
(representations whereby many object views, positions, and
sizes learn to activate the same invariant object category), and
one-to-many maps (learned representations that enable us to
expertly know many things about individual objects and events).

As will be explained in greater detail below, the link between
Consciousness, Learning, and Resonance is a particularly
important one for understanding both characteristically human
experiences and how future machine learning algorithms
may embody them.

4.4. Object Attention Dynamically
Stabilizes Learning Using the ART
Matching Rule
ART solves the stability-plasticity dilemma by using learned
expectations and attentional focusing to selectively process only
those data that are predicted to be relevant in any given situation.
Because of the CLEARS relationships, such selective attentive
processing also solves the stability-plasticity dilemma.

For this to work, the correct laws of object attention
need to be used. ART has predicted how object attention
is realized in human and other advanced primate brains
(e.g., Grossberg, 1980, 2013; Carpenter and Grossberg, 1987a,
1991). In order to dynamically stabilize learning, the learned
expectations that focus attention obey a top-down, modulatory
on-center, off-surround network. This network is said to obey the
ART Matching Rule.

In such a network, when a bottom-up input pattern is received
at a processing stage, it can activate its target cells, if nothing else
is happening. When a top-down expectation pattern is received
at this stage, it can provide excitatory modulatory, or priming,
signals to cells in its on-center, and driving inhibitory signals
to cells in its off-surround, if nothing else is happening. The
on-center is modulatory because the off-surround network also
inhibits the on-center cells, and these excitatory and inhibitory
inputs are approximately balanced (“one-against-one”). When a
bottom-up input pattern and a top-down expectation are both
active, cells that receive both bottom-up excitatory inputs and
top-down excitatory priming signals can fire (“two-against-one”),
while other cells are inhibited. In this way, only cells can fire
whose features are “expected” by the top-down expectation, and
an attentional focus starts to form at these cells. As a result
only attended feature patterns are learned. The system wherein
category learning takes place is thus called an attentional system.

The property of the ART Matching Rule that bottom-up
sensory activity may be enhanced when matched by top-
down signals is in accord with an extensive neurophysiological
literature showing the facilitatory effect of attentional feedback
(e.g., Sillito et al., 1994; Luck et al., 1997; Roelfsema et al., 1998).

This property contradicts popular models, such as Bayesian
Explaining Away models, in which matches with top-down
feedback cause only suppression (Mumford, 1992; Rao and
Ballard, 1999). A related problem is that suppressive matching
circuits cannot solve the stability-plasticity dilemma.

An ART expectation is a top-down, adaptive, and specific event
that activates its target cells during a match within the attentional
system. “Adaptive” means that the top-down pathways contain
adaptive weights that can learn to encode a prototype of the
recognition category that activates it. “Specific” means that each
top-down expectation reads out its learned prototype pattern.
One psychophysiological marker of such a resonant match is the
processing negativity, or PN, event-related potential (Grossberg,
1978, 1984b; Näätänen, 1982; Banquet and Grossberg, 1987).

4.5. ART Is a Self-Organizing Production
System: Lifelong Learning of Expertise
The above properties of an expectation are italicized because, as
will be seen below, they are computationally complementary to
those of an orienting system that enables ART to autonomously
learn about arbitrarily many novel events in a non-stationary
environment without experiencing catastrophic forgetting. As
will be explained more fully below, if a top-down expectation
mismatches an incoming bottom-up input pattern too much, the
orienting system is activated and drives a memory search and
hypothesis testing for either a better-matching category if the
input represents information that is familiar to the network, or
a novel category if it is not.

Taken together, the ART attentional and orienting systems
constitute a self-organizing production system that can learn to
become increasingly expert about the world that it experiences
throughout the life span of the individual or machine into
which it is embedded.

4.6. ART Can Carry Out Open-Ended
Stable Learning of Huge Non-stationary
Databases
Our ability to achieve learning throughout life can be stated
in another way that emphasizes its critical importance in
human societies no less than in designing autonomous adaptive
robots with real intelligence: Without stable memories of past
experiences, we could learn very little about the world, since
our present learning would wash away previous memories
unless we continually rehearsed them. But if we had to
continuously rehearse everything that we learned, then we
could learn very little, because there is just so much time
in a day to rehearse. Having an active top-down matching
mechanism greatly amplifies the amount of information that
humans can quickly learn and stably remember about the
world. This capability, in turn, sets the stage for developing a
sense of self, which requires that we can learn and remember
a record of many experiences that are uniquely ours over a
period of years.

With appropriately implemented ART algorithms on board,
a SOVEREIGN2 robot can continue to learn indefinitely for its
entire lifespan.
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4.7. Large-Scale Machine Learning
Applications in Engineering and
Technology
ART enables a general-purpose category learning, recognition,
and prediction capability that has already been used in multiple
large-scale applications in engineering and technology. When
it is embodied completely enough in SOVEREIGN2, then
SOVEREIGN2 can also be used to carry out such applications,
and can do so with the advantage being able to navigate
environments where these applications occur.

Fielded applications include: airplane design (including
the Boeing 777); medical database diagnosis and prediction;
remote sensing and geospatial mapping and classification;
multidimensional data fusion; classification of data from artificial
sensors with high noise and dynamic range (synthetic aperture
radar, laser radar, multi-spectral infrared, night vision); speaker-
normalized speech recognition; sonar classification; music
analysis; automatic rule extraction and hierarchical knowledge
discovery; machine vision and image understanding; mobile
robot controllers; satellite remote sensing image classification;
electrocardiogram wave recognition; prediction of protein
secondary structure; strength prediction for concrete mixes;
tool failure monitoring; chemical analysis from ultraviolet
and infrared spectra; design of electromagnetic systems; face
recognition; familiarity discrimination; and power transmission
line fault diagnosis. Some of these applications are listed at http:
//techlab.bu.edu/resources/articles/C5/.

4.8. Mathematically Provable ART
Learning Properties Support Large-Scale
Applications
It is because the good learning properties of ART have been
mathematically proved and tested with comparative computer
simulation benchmarks that ART has been used with confidence
in these applications (e.g., Carpenter and Grossberg, 1987a,b,
1990; Carpenter et al., 1989, 1991a,b, 1992, 1998).

These theorems prove how ART can rapidly learn, from
arbitrary combinations of unsupervised and supervised trials,
to categorize complex, and arbitrarily large, non-stationary
databases, dynamically stabilize their learned memories, directly
access the globally best matching categories with no search during
recognition, and use these categories to predict the most likely
outcomes in a given situation.

In particular, ART provably solved the catastrophic forgetting
problem that other approaches to machine learning have
failed to solve.

4.9. ART Solves the Explainable AI
Problem and Extracts Knowledge
Hierarchies From Data
ART offers a solution of another problem that other researchers
in machine learning and AI are still seeking. The learned
weights of the fuzzy ARTMAP algorithm (Carpenter et al., 1992)
translate, at any stage of learning, into fuzzy IF-THEN rules
that “explain” why the learned predictions work. Understanding

why particular predictions are made is no less important than
their predictive success in applications that have life or death
consequences, such as medical database diagnosis and prediction,
to which ART has been successfully applied. This problem has
not yet been solved in traditional AI, as illustrated by the current
DARPA Explainable AI program (XAI1).

In addition, ART can self-organize hierarchical knowledge
structures from masses of incomplete and partially incompatible
data taken from multiple observers who do not communicate
with each other, and who may use different combinations of
object names and sensors to incrementally collect their data
at different times, locations, and scales (Carpenter et al., 2005;
Carpenter and Ravindran, 2008). If swarms of SOVEREIGN2
robots collect data in this distributed way, then they can share
it wirelessly to self-organize such cognitive hierarchies of rules.

4.10. Cognitive and Spatial Working
Memories and Plans
Figure 4A also summarizes higher cognitive and cognitive-
emotional processes that are modeled in SOVEREIGN. Together
with Figure 4B, these contribute to SOVEREIGN’s Intelligent
and Goal-oriented navigation processing whereby cognitive
working memories (Figure 4A) and spatial working memories
(Figure 4B) provide the information whereby cognitive plans
(Figure 4A) and spatial plans (Figure 4B) are learned and used
to control actions to acquire valued goals. The cognitive working
memory temporarily stores the temporal order of sequences of
invariant object categories that represent recently experienced
objects. These sequences are themselves categorized during
learning of cognitive plans, or list chunks, that fire selectively in
response to particular stored object sequences. Such a network of
list chunks is called a Masking Field (Grossberg, 1978; Cohen and
Grossberg, 1986, 1987; Grossberg and Myers, 2000; Grossberg
and Kazerounian, 2011; Kazerounian and Grossberg, 2014).
The corresponding spatial working memory and Masking Field
in Figure 4B do the same thing for the stored sequences of
navigational movements—notably combinations of turns and
straight excursions in space—that SOVEREIGN carries out while
exploring the maze. These processes will be discussed further in
sections 6.9, 6.10, and 7, notably how they need to be enhanced in
SOVEREIGN2 to achieve selective processing and storage of only
task-relevant sequences of information.

4.11. Reinforcement Learning and
Incentive Motivation to Acquire Valued
Goals
These cognitive and spatial processes do not themselves compute
indices of predictive success and failure. The processes that
accomplish goal-oriented selectivity—including gated multipoles
and drive representations—occur next (See Figure 12 below).
These reinforcement learning and incentive motivational
processes enable SOVEREIGN to select, amplify, and sustain
in working memory those previous event sequences that have
led to predictive success in the past, and to use these list

1https://www.darpa.mil/program/explainable-artificial-intelligence
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categories to predict the actions most likely to achieve valued
goals in the future. These processes will be further discussed
in sections 6.5–6.7.

4.12. Prefrontal Regulation of Cognitive
and Cognitive-Emotional Dynamics
Since SOVEREIGN appeared, the predictive Adaptive Resonance
Theory, or pART, model (Grossberg, 2018) has proposed how
several parts of the prefrontal cortex (PFC) learn to interact
with multiple brain regions to carry out cognitive and spatial
working memory, planning, and cognitive-emotional processes.
The seven prefrontal cortical regions marked in green in
Figure 5 illustrate this complexity. As one of its several
explanatory accomplishments, pART clarifies how a top-down
cognitive prime from the PFC can bias object attention in
the What cortical stream to anticipate expected objects and
events, while it also focuses spatial attention in the Where
cortical stream to trigger actions that acquire currently valued
objects (Fuster, 1973; Baldauf and Desimone, 2014; Bichot et al.,
2015). Section 7 will summarize several of these enhanced
capabilities of pART. As these enhanced capabilities of pART
are incorporated into SOVEREIGN2, it will be able to carry out
more sophisticated cognitive, cognitive-emotional, and Where’s
Waldo search capabilities than can the SOVEREIGN or the 3D
ARTSCAN SEARCH models.

The pART model embodies several different kinds of brain
resonances. In particular, the Fuzzy ART classifier in Figure 4A
is an algorithmic realization of the kind of feature-category
resonance that links cortical areas V4 and ITp in Figure 5.
Such a resonance focuses attention upon salient combinations of
features while it triggers learning in the bottom-up adaptive filters
and top-down learned expectations that bind the attended feature
patterns to the object categories that are used to recognize them.
Adaptive Resonance Theory, or ART, explicates several different
kinds of brain resonances and their different functional roles, as
will be further discussed in sections 4.15 and 4.16.

4.13. From Incomplete Early Sensory
Representations to Conscious
Awareness and Effective Action
Hierarchical resolution of uncertainty occurs even at the
earliest cortical processing levels. One of the most important
consequences of hierarchical resolution of uncertainty arises
from the fact that the perceptual representations that are
computed at early processing stages may not be able to control
effective actions. These processing stages did not have to be
included in SOVEREIGN because it directly processed simplified
virtual reality images (Figure 2). SOVEREIGN thus did not
have to deal with problems that are raised when images are
processed by noisy detectors that are made from biological or
physical components.

For example, visual images that are registered on the retina of
a human eye are noisy and incomplete due to the existence of the
blind spot and retinal veins, which prevent visual features from
being registered on the retina at their positions (Supplementary
Figure S4). Supplementary Figure S5 illustrates this problem

FIGURE 5 | Macrocircuit of the main brain regions, and connections between
them, that are modeled in the predictive Adaptive Resonance Theory (pART)
model of working memory and cognitive-emotional dynamics. Abbreviations in
green denote brain regions used in working memory dynamics, whereas
abbreviations in red denote brain regions used in cognitive-emotional
dynamics. Black abbreviations refer to brain regions that process visual data
during visual perception and are used to learn visual object categories. Arrows
denote non-adaptive excitatory synapses. Hemidiscs denote adaptive
excitatory synapses. Many adaptive synapses are bidirectional, thereby
supporting synchronous resonant dynamics among multiple cortical regions.
The output signals from the basal ganglia that regulate reinforcement learning
and gating of multiple cortical areas are not shown. Also not shown are output
signals from cortical areas to motor responses. V1, striate, or primary, visual
cortex; V2 and V4, areas of prestriate visual cortex; MT, middle temporal
cortex; MST, medial superior temporal area; ITp, posterior inferotemporal
cortex; ITa, anterior inferotemporal cortex; PPC, posterior parietal cortex; LIP,
lateral intraparietal area; VPA, ventral prearcuate gyrus; FEF, frontal eye fields;
PHC, parahippocampal cortex; DLPFC, dorsolateral hippocampal cortex;
HIPPO, hippocampus; LH, lateral hypothalamus; BG, basal ganglia; AMGY,
amygdala; OFC, orbitofrontal cortex; PRC, perirhinal cortex; VPS, ventral bank
of the principal sulcus; VLPFC, ventrolateral prefrontal cortex. See text for
further details. [Reprinted with permission from Grossberg (2018)].

with the simple example of a line that is occluded by the blind
spot and some retinal veins. The parts of the line that are occluded
need to be completed at higher processing stages before actions
like looking and reaching can be directed to these positions.
Processes of boundary completion and surface filling-in are
needed to generate a sufficiently complete, context-sensitive,
and stable visual surface representation upon which subsequent
actions can be based (Grossberg, 1994, 1997, 2013, 2017).

The front end of SOVEREIGN2 can be consistently extended
to include these boundary completion and surface filling-in
processes, instead of the Render 3-D Scene and Figure-Ground
Separation processes in Figure 3A. SOVEREIGN2 can then
function even using sensory detectors that may be pixelated or
degraded in various ways due to use. Such detectors include
artificial sensors such as Synthetic Aperture Radar, Laser Radar,
and Multispectral Infrared. Synthetic Aperture Radar, or SAR,
can be used to process images that can see through the weather.
Figure 6 shows a computer simulation of how a SAR image
can be processed by boundary completion and surface filling-in
processes that compensate for sensor failures.
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FIGURE 6 | A Synthetic Aperture Radar (SAR) input image (upper left panel) is
normalized (upper right panel) before it is used to compute boundaries (lower
left panel) that join statistically regular pixel contrasts. Then the still highly
pixelated normalized image fills-in the compartments defined by the
boundaries (lower right image) to generate a representation of a scene in
upper New York State in which a diagonal road crosses over a highway in a
wooded area. See text for details. [Adapted with permission from
Mingolla et al. (1999)].

Boundary completion and surface filling-in processes
illustrate one of the best known examples of complementary
computing (Grossberg, 1984a, 1994, 1997; Grossberg and
Mingolla, 1985): Boundaries are completed inwardly between
pairs or greater numbers of inducers in an oriented fashion.
Boundary completion is also triggered after the processing
stage where cortical complex cells pool signals from simple
cells that are sensitive to opposite contrast polarities, thus
becoming insensitive to direction of contrast. Because they
pool over opposite contrast polarities−including achromatic
black–white contrasts, and chromatic red–green and blue–
yellow contrasts−boundaries cannot represent conscious visual
qualia. That is, all boundaries are invisible. Surface filling-in of
brightness and color spread outwardly in an unoriented fashion
until they hit a boundary, or attenuate due to their spatial spread.
Surface filling-in is also sensitive to direction of contrast. All
conscious percepts of visual qualia are surface percepts. These
three pairs of properties (inward vs. outward, oriented vs.
unoriented, and insensitive vs. sensitive to direction of contrast)
are manifestly complementary.

4.14. Why Did Evolution Discover
Consciousness? Conscious States
Control Adaptive Actions
The above review of some of the early processing stages in
the visual system provides a foundation for understanding how
ART provides a rigorous computational proposal both for what
happens in each brain and how and where it happens as it
learns to consciously see, hear, feel, or know something, as
well as for why evolution was driven to discover conscious

FIGURE 7 | During an adaptive resonance, attended feature patterns interact
with recognition categories, both stored in short-term memory (STM), via
positive feedback pathways that can synchronize, amplify, and prolong the
resonating cell activities. Such a resonance can trigger learning in the adaptive
weights, or long-term memory (LTM) traces, within both the bottom-up
adaptive filter pathways and the top-down learned expectation pathways. In
the present example, the resonance is a feature-category
resonance (see Table 1a).

states in the first place (Grossberg, 2017). In particular, as
noted above, in order to resolve the computational uncertainties
caused by complementary computing, the brain needs to use
multiple processing stages that include interactions between
pairs of complementary cortical processing streams to realize a
hierarchical resolution of uncertainty.

Because the light that falls on our retinas may be occluded by
the blind spot, multiple retinal veins, and all the other retinal
layers through which light passes before it reaches the light-
sensitive photoreceptors (Supplementary Figures S4, S5), these
retinal images are highly noisy and incomplete. Using them to
control actions like looking and reaching could lead to incorrect,
and potentially disastrous, actions.

In order to compute the functional units of visual
perception, namely 3D boundaries and surfaces, three pairs
of computationally complementary uncertainties need to be
resolved using a hierarchical resolution of uncertainty. If this
is indeed the case, then why do not the earlier processing
stages undermine behavior by causing incorrect, and potentially
disastrous, actions to be taken? In the case of visual perception,
the proposed answer is that brain resonance, and with it conscious
awareness of visual qualia, is triggered at the cortical processing
stage that represents 3D surface representations, after they are
complete, context-sensitive, and stable enough to control visually
based actions like attentive looking and reaching. The conscious
state is an “extra degree of freedom” that selectively “lights up”
this surface representation and enables our brains to selectively
use it to control adaptive actions.

ART hereby links the evolution of consciousness to the ability
of advanced brains to learn how to control adaptive actions.
In the case of visual perception, this surface representation is
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predicted to occur in prestriate visual cortical area V4, where
a surface-shroud resonance that supports conscious seeing is
predicted to be triggered between V4 and the posterior parietal
cortex, or PPC (Figure 5), before it propagates both top-down to
V2 and V1 and bottom-up to the PFC. The PPC is in the dorsal
Where cortical stream. An attentional shroud is spatial attention
that fits itself to the shape of an attended object surface (Tyler and
Kontsevich, 1995). An active surface-shroud resonance maintains
spatial attention on the surface throughout the duration of the
resonance. When spatial attention shifts, the resonance collapses
and another object can be attended.

While a surface-shroud resonance is still active, it regulates
saccadic eye movement sequences that foveate salient features
on the attended object surface. These properties mechanistically
explain the distinction between two different functional roles
of PPC: its control of top-down attention from PPC to V4
and its control of the intention to move, a distinction that has
been reported in both psychophysical and neurophysiological
experiments (e.g., Andersen et al., 1985; Gnadt and Andersen,
1988; Snyder et al., 1997, 1998). How spatial attention regulates
the learning of invariant object categories during free scanning of
a scene using its intentional choice of scanning eye movements
that foveate sequences of salient surface features will be
summarized in section 6.4.

The proposed link between consciousness and action
is relevant to the design of future autonomous adaptive
robots, and provides a new computational perspective for
discussing whether machine consciousness is possible, and
how it may be necessary to control a robot’s choice of
context-appropriate actions.

4.15. Synchronized Resonances for
Seeing and Knowing: Visual Neglect and
Agnosia
Many psychological and neurobiological data have been
explained using ART resonances. For example, surface-shroud
resonances for conscious seeing and feature-category resonances
for conscious knowing of visual events can synchronize via
shared visual representations in the prestriate cortical areas V2
and V4 when a person sees and knows about a familiar object
(Figure 5). A lesion of the parietal cortex in one hemisphere
can prevent a surface-shroud resonance from forming, thereby
leading to the clinical syndrome of visual neglect, whereby an
individual may draw only one half of the world, dress only one
half of the body, and make erroneous reaches. A lesion of the
inferotemporal cortex can prevent a feature-category resonance
from forming, thereby leading to the clinical syndrome of visual
agnosia, whereby a human can accurately reach for an object
without knowing anything about it. See Grossberg (2017) for
mechanistic explanations.

4.16. Classification of Adaptive
Resonances for Seeing, Hearing,
Feeling, Knowing, and Acting
In addition to the surface-shroud resonances that supports
conscious seeing and the feature-category resonances that

support conscious knowing, ART explains what resonances
support hearing and feeling, and how resonances supporting
knowing are synchronously linked to them. All of these
resonances support different kinds of learning that solve the
stability-plasticity dilemma; e.g., visual and auditory learning,
reinforcement learning, cognitive recognition learning, and
cognitive speech and language learning.

In summary, surface-shroud resonances support conscious
percepts of visual qualia. Feature-category resonances support
conscious learning and recognition of visual objects and
scenes. Both kinds of resonances may synchronize during
conscious seeing and recognition, so that we know what
a familiar object is as we see it. Stream-shroud resonances
support conscious percepts of auditory qualia. Spectral-
pitch-and-timbre resonances support conscious learning and
recognition of sources in auditory streams. Stream-shroud
and spectral-pitch-and-timbre resonances may synchronize
during conscious hearing and recognition of auditory streams.
Item-list resonances support conscious learning and recognition
of speech and language. They may synchronize with stream-
shroud and spectral-pitch-and-timbre resonances during
conscious hearing of speech and language, and build upon
the selection of auditory sources by spectral-pitch-and-timbre
resonances in order to recognize the acoustical signals that are
grouped together within these streams. Cognitive-emotional
resonances support conscious percepts of feelings, as well
as learning and recognition of the objects or events that
cause these feelings. Cognitive-emotional resonances can
synchronize with resonances that support conscious qualia and
knowledge about them.

These resonances embody parametric properties of individual
conscious experiences that enable effective actions to be
chosen without interference from earlier processing stages.
For example, surface-shroud resonances help to control
looking and reaching; stream-shroud resonances help to
control auditory communication, speech, and language;
and cognitive-emotional resonances help to acquire valued
goal objects. In autonomous adaptive systems that solve the
stability-plasticity dilemma using ART dynamics, formal
mechanistic homologs of such different states of resonant
consciousness may be needed to choose the different kinds
of actions that they control. More information will be
summarized below about cognitive-emotional resonances
in sections 6.5–6.7.

5. BUILDING UPON THREE BASIC
DESIGN THEMES: HOMOLOGOUS
CIRCUITS FOR REACHING AND
NAVIGATING

A third design theme that is realized by the SOVEREIGN
model is that advanced brains use homologous circuits to
compute arm movements during reaching behaviors, and
body movements during spatial navigation. In particular, both
navigational movements and arm movements are controlled
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by circuits which share a similar mismatch learning law—
called a Vector Associative Map, or VAM (Gaudiano and
Grossberg, 1991, 1992; see section 5.3)—that enables learned
calibration of difference vectors in the manner described
below. This proposed homology clarifies how navigational and
arm movements can be coordinated when a body navigates
toward a goal object before grasping it. SOVEREIGN used
difference vectors to model navigational movements. It did
not, however, include a controller for arm movements that
could grasp a valued object when it came within range. The
text below indicates how unsupervised incremental learning in
SOVEREIGN2 realizes such a capability and can, moreover, do
so using a tool (see section 5.4).

5.1. Arm Movement Control Using
Difference Vectors and Volitional GO
Signals
Neural models of arm movement trajectory control, such as the
Vector Integration to Endpoint, or VITE, model (Bullock and
Grossberg, 1988) (Figure 8, left panel) and their refinements
(e.g., Bullock et al., 1993) (Figure 8, right panel) propose how
cortical arm movement control circuits compute a representation
of where the arm wants to move (i.e., the target position vector
T) and subtracts from it an outflow representation of where the
arm is now (i.e., the present position vector P). The resulting
difference vector D between target position T and present position
P represents the direction and distance that the arm needs to
move to reach its goal position. Basal ganglia (BG) volitional
signals of various kinds, such as a GO signal G, transform the
difference vector D into a motor trajectory that can move with
variable speed by multiplying D with G, before this product
is integrated by P. Because P integrates the product DG, DG
represents the commanded outflow movement speed. Then P
moves at a speed that increases with G, other things being
equal. As P approaches T, D approaches zero, along with the
outflow speed DG, so the movement terminates at the desired
target position.

5.2. Computing Present Position for
Spatial Navigation From Vestibular
Signals: Place Cells
Because the arm is attached to the body, the present position of
the arm can be computed using outflow, or corollary discharge,
commands P that are derived directly from the movement
commands to the arm itself (Figure 8, left panel). In contrast,
when a body moves with respect to the world, no such
immediately available present position command is available. The
ability to compute a difference vector between a target position
and the present position of the body−in order to determine
the direction and distance that the body needs to navigate to
acquire the target−requires more elaborate brain machinery. At
the time SOVEREIGN was published, computation of such a
Present Position Vector, called NET in SOVEREIGN, used an
algorithm to estimate the information that vestibular signals
compute in vivo.

FIGURE 8 | (Left) Vector Integration To Endpoint, or VITE, model circuit for
reaching. A present position vector (P) is subtracted from a target position
vector (T ) to compute a difference vector (D) that represents the distance and
direction in which the arm must move. The rectified difference vector ([D]),
where [D] = max(D, 0), is multiplied by a volitional GO signal (G) before the
velocity vector [D]G is integrated by P until P equals T, hence the model name
Vector Integration to Endpoint. [Adapted with permission from Bullock and
Grossberg (1988)]. (Right) DIRECT model circuit. This refinement of VITE
processing enables the brain to carry out motor equivalent reaching. DIRECT
can move a tool under visual guidance to its correct endpoint position on the
first try, without measuring the dimensions of the tool or the angle that it
makes with the hand. DIRECT hereby clarifies how a spatial affordance for
tool use may have arisen from the ability of the brain to learn reaches in space
during infant development. An endogenous random generator, or ERG,
provides the “energy” to drive motor learning during a critical developmental
period of motor babbling. The ERG activates a motor direction vector (DVm)
that moves the hand/arm via the motor present position vector (PPVm). As the
hand/arm moves, the eyes reactively track the position of the moving hand,
and thereby compute the visually activated spatial target position vector
(TPVs) and the spatial present position vector (PPVs). These vectors, which
coincide during reactive tracking, are used to compute the spatial difference
vector (DVs). This spatial transformation, along with the mapping from spatial
directions into motor directions, gives the model its motor equivalent reaching
capabilities. To compute them, the PPVs activates the spatio-motor present
position vector (PPVsm), which is subtracted from the TPVs. As a result, the
PPVs signal that reaches the TPVs is slightly delayed, thereby enabling the
DVs computation to occur. The PPVsm stage is one of two stages in the
model where spatial and motor representations are combined. The subscripts
“s” and “m” denote spatial and motor, respectively. A transformation, called a
circular reaction (Piaget, 1945, 1951, 1952), is learned from spatial-to-motor
and motor-to-spatial representations at two adaptive pathways that are
denoted by hemispherical synapses. The spatial direction vector (DVs) is
hereby adaptively mapped into the motor direction vector (DVm) to transform
visual Direction Into joint Rotation that gives the DIRECT model its name.
[Reprinted with permission from Bullock et al. (1993)].

SOVEREIGN breaks down spatial navigation into sequences
of straight excursions in fixed directions, after which a
head/body turn changes the direction before another straight
excursion occurs. In vivo, vestibular signals provide angular
velocity and linear velocity signals that can be integrated
to compute these head/body angles and straight movement
distances. The SOVEREIGN algorithm adds the head/body
turn angles, as well as the body approach distances for each
straight excursion, to compute NET. Then, as Figure 1B
summarizes, NET is subtracted from the Reactive Visual TPV
Storage to compute a Reactive DV, which controls the next
straight movement in space. Each head/body turn resets NET
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to allow the next NET estimate to be computed. Using
such computations, SOVEREIGN was able to learn how to
navigate toward valued goals in structured environments like the
maze in Figure 2.

In sufficiently advanced terrestrial animals, from rats to
humans, an animal’s position in space is computed from a
combination of both visual and path integration information. The
visual information is derived from 3D perceptual representations
that are completed by processes such as boundary completion
and surface filling-in. The path integration information is
derived from vestibular angular velocity and linear velocity
signals that are activated by an animal’s navigational movements.
This vestibular information is transformed by entorhinal grid
cells and hippocampal place cells into representations of the
animal’s present position in space (O’Keefe and Nadel, 1978;
Hafting et al., 2005). The GridPlaceMap model simulated how
these cells learn their spatial representations as the animal
navigates realistic trajectories (e.g., Grossberg and Pilly, 2014).
Key properties of the GridPlaceMap model and some of
the grid cell and place cell data that it can explain are
summarized in section 8.

When SOVEREIGN2 replaces the algorithmic computations
of NET in Figure 1B by circuits that learn grid and place cells, it
can then autonomously learn spatial NET estimates as the animat
navigates novel environments that may be far more complicated
than the plus maze in Figure 2. When such a self-organized
NET estimate is used to compute a difference vector between the
present and target positions, a volitional GO signal can move
the animat toward the desired target, just as in the case of
an arm movement.

5.3. From VITE to VAM: How a Circular
Reaction Drives Mismatch Learning to
Calibrate VITE
In order for VITE dynamics to work properly, its difference
vectors need to be properly calibrated. In particular, when T
and P represent the same position in space, D must equal zero.
However, T and P are computed in two different networks of cells.
It is too much to expect that the activities of these two networks,
and the gains of the pathways that carry their signals to D, become
perfectly matched without the benefit of some kind of learning.
The Vector Associative Map, or VAM model explains how this
kind of learning occurs (Gaudiano and Grossberg, 1991, 1992).
In brief, the VAM model corrects this problem using a form of
mismatch learning that adaptively changes the gains in the T-to-
D pathways until they match those in the P-to-D pathways, so
that when T = P, D = 0.

The VAM model does this using what has been called
a circular reaction since the pioneering work of Jean Piaget
on infant development (Piaget, 1945, 1951, 1952). All infants
normally go through a babbling phase, and it is during such
a babbling phase that a circular reaction can be learned. In
particular, during a visual circular reaction, babies endogenously
babble, or spontaneously generate, hand/arm movements to
multiple positions around their bodies. As their hands move
in front of them, their eyes automatically, or reactively, look

at their moving hands. While the baby’s eyes are looking
at its moving hands, the baby learns an associative map
from its hand positions to the corresponding eye positions,
and from eye positions to hand positions. Learning of the
map between eye and hand in both directions constitutes the
“circular” reaction.

After map learning occurs, when a baby, child, or adult looks at
a target position with its eyes, this eye position can use the learned
associative map to generate a movement command to reach the
corresponding position in space. In order for the command to be
read out, a volitional GO signal from the BG−notably from the
substantia nigra pars reticulata, or SNr—opens the corresponding
movement gate (Prescott, 2008). Such a gate-opening signal
realizes “the will to act.” Then the hand/arm can reach to the
foveated position in space under volitional control. Because our
bodies continue to grow for many years as we develop from
babies into children, teenagers, and adults, these maps continue
updating themselves throughout our lives.

In a VAM, endogenous babbling is accomplished by an
Endogenous Random Generator, or ERG+, that sends random
signals to P that cause the arm to automatically babble a
movement in its workspace. This movement is thus not under
volitional control. When P gets activated, in addition to causing
the arm to move, it sends signals that input an inhibitory copy of
itself to D.

The ERG has an opponent organization. It is the ERG ON,
or ERG+, component that energizes the babbled arm moment.
When ERG+ momentarily shuts off, ERG OFF, or ERG−, is
disinhibited and opens a gate that lets P get copied at T, where
it is stored. At this moment, both T and P represent the same
position in space. If the model were correctly calibrated, the
excitatory T-to-D and inhibitory P-to-D signals that input to D in
response to the same positions at T and P would cancel, causing
D to equal zero. If D is not zero under these circumstances,
then the signals are not properly calibrated. The VAM model
uses such non-zero D vectors as mismatch teaching signals that
adaptively calibrate the T-to-D signals. As perfect calibration is
achieved, D approaches zero, at which time mismatch learning
self-terminates.

Another refinement of VITE showed how arm movements can
compensate for variable loads and obstacles, and interpreted the
hand/arm trajectory formation stages in terms of identified cells
in motor and parietal cortex, whose temporal dynamics during
reaching behaviors were quantitatively simulated (Bullock et al.,
1998; Cisek et al., 1998).

5.4. Motor-Equivalent Reaching With
Clamped Joints and Tools: The DIRECT
Model
Yet another VITE model refinement, called the DIRECT model
(Figure 8, right panel), builds upon VAM calibration to propose
how motor-equivalent reaching is learned (Bullock et al., 1993).
Motor-equivalent reaching explains how, during movement
planning, either arm, or even the nose, could be moved
to a target position, depending on which movement system
receives a GO signal.
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The DIRECT model also begins to learn by using a circular
reaction that is energized by an ERG (Figure 8, right panel).
Motor-equivalent reaching emphasizes that reaching is not just a
matter of combining visual and motor information to transform
a target position on the retina into a target position in body
coordinates. Instead, these visual and motor signals are first
combined to learn a representation of the space around the
actor which can then be downloaded to move any of several
motor effectors.

Remarkably, after the DIRECT model uses its circular reaction
to learn its spatial representations and transformations, its motor-
equivalence properties enable it to accurately move an arm, even
when its joints are clamped, to any position in its workspace on
the first try. DIRECT can also manipulate a tool in space. The
conceptual importance of this result cannot be overemphasized:
Without measuring tool length or angle with respect to the
hand, the model can move the tool’s endpoint to touch the
target’s position correctly under visual guidance on its first
try, in a single reach without later corrective movements, and
without additional learning. In other words, the spatial affordance
for tool use, a critical foundation of human societies, follows
from the brain’s ability to learn a circular reaction for motor-
equivalent reaching in space. Adding these reaching capabilities
to SOVEREIGN2 will enable it to use tools to manipulate target
objects after it navigates to them.

5.5. Social Cognition: Joint Attention and
Imitation Learning Using CRIB Circular
Reactions
The DIRECT model shows how the spatial affordance for
tool use could arise as a result of the circular reactions
that enable reaching behaviors to develop. With DIRECT
on board, a child, monkey, or robot could then volitionally
reach objects with its own hand, or even using a tool like
a stick. If a monkey happened to pick up a stick in this
way, put it into an ant hill, and pulled it out with some
ants on it, it could learn this skill to eat ants in the future
whenever it wanted to do so. However, another monkey looking
at this skill could not learn it from the first one without
further brain machinery, because the two monkeys experience
this event from two different spatial vantage points. This
additional brain machinery is needed for social cognitive skills
to be learned, including the learning of joint attention and
imitation learning. These are competences upon which all human
societies have built.

Grossberg and Vladusich (2010) develops the Circular
Reactions for Imitative Behavior, or CRIB, model to explain
how imitation learning utilizes inter-personal circular reactions
that take place between teacher and learner, notably how a
learner can follow a teacher’s gaze to fixate a valued goal
object, and distinguishes them from the classical intra-personal
circular reactions of Piaget that take place within a single
learner, such as the one that enables reaching behaviors to
be learned. After a learner can volitionally reach objects on
its own, it can also learn, using an inter-personal circular
reaction, to reach an object at which a teacher is looking,

such as a stick with which to retrieve ants from an anthill. By
building upon intra-personal circular reactions that are capable
of learning motor-equivalent reaches, the CRIB model hereby
clarifies how a pupil can learn from a teacher to manipulate
a tool in space.

In order to achieve joint attention and imitation learning, the
learner needs to be able to bridge the gap between the teacher’s
coordinates and its own. In the neurobiological literature, this
capability is often attributed to mirror neurons that fire either
if an individual is carrying out an action or just watching
someone else perform the same action (Rizzolatti and Craighero,
2004; Rizzolatti, 2005). This attribution does not, however,
mechanistically explain how the properties of mirror neurons
arise. The CRIB model proposes that the “glue” that binds these
two coordinate systems, or perspectives, together is a surface-
shroud resonance. How this works is modeled in Grossberg
and Vladusich (2010). It is also known that a breakdown of
joint attention can cause severe social difficulties in individuals
with autism. How these and other breakdowns in learning
cause symptoms of autism are modeled by the iSTART model
(Grossberg and Seidman, 2006).

If CRIB-like social cognition capabilities are incorporated
into a “classroom” of SOVEREIGN2 robots, they can then all
learn sensory-motor skills from a teacher who they see from
different vantage points.

5.6. Platform Independent Movement
Control
If SOVEREIGN2 is used to control an embodied mobile robot,
then an important design choice is whether to use legs or
wheels with which to navigate. Difference vector (DV) control
of direction and distance that is gated by a GO signal can be
used in either case.

To help guide the development of a legged robot, neural
network models have shown how leg movements can be
performed with different gaits, such as walk or run in bipeds, and
walk, trot, pace, and gallop in quadrupeds, as the GO signal size
increases (Pribe et al., 1997).

An example of DV-GO control in a wheeled mobile robot
was developed by Zalama et al. (1995) and Chang and Gaudiano
(1998) and tested on robots such as the Khepera and Pioneer 1
mobile robots to demonstrate VAM learning of how to approach
rewards and avoid obstacles in a cluttered environment, with
no prior knowledge of the geometry of the robot or of the
quality, number, or configuration of the robot’s sensors. Learning
in one environment generalized to other environments because
it is based on the robot’s egocentric frame of reference. The
robot also adapted on line to miscalibrations produced by wheel
slippage, changes in wheel sizes, and changes in the distance
between the wheels.

In summary, both navigational movements in the world and
movements of limbs with respect to the body use a difference
vector computational strategy.

Sections 6–8 provide a deeper and broader conceptual and
mechanistic insight into the themes that the earlier sections
have introduced.
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6. RESONANT DYNAMICS FOR
PERCEPTION, COGNITION, AFFECT,
AND PLANNING

6.1. Invariant Object Category Learning
Uses Feature-Category Resonances and
Surface-Shroud Resonances
Many of the enhanced capabilities of SOVEREIGN2 will use
resonant processes. In particular, in order for SOVEREIGN2
to learn view-, position-, and size-invariant object categories
as it scans a scene with eye, or camera, movements, two
different types of resonances need to be coordinated: feature-
category resonances and surface-shroud resonances. In vivo,
view-, position-, and size-specific visual percepts in the striate and
prestriate visual cortices V1, V2, and V4 are transformed into
view-, position-, and size-specific object recognition categories
in the posterior inferotemporal cortex (ITp) via feature-
category resonances (Table 1a and Figure 7) within the What
cortical stream.

Within SOVEREIGN, the specific categories in ITp were
learned using the unsupervised Fuzzy ART model (Figure 4A).
Fuzzy ART can also be used for this purpose in SOVEREIGN2,
with visual inputs now coming from 3D boundary and surface
representations. Recognition learning may be supervised by
replacing Fuzzy ART with Fuzzy ARTMAP (Carpenter et al.,
1992) or any similar dynamical or algorithmic supervised
version of ART. As will be summarized below, however, truly
autonomous invariant object category learning that avoids
the algorithmic tricks of SOVEREIGN will require more
sophisticated network interactions.

Despite its simplicity, Fuzzy ART is an algorithmic realization
of dynamical properties of ART that embody both a feature-
category resonance (Figure 6) and a classical example of
complementary computing. Complementary computing enables
feature-category resonances to continuously learn to recognize
novel objects using interactions between an attentional system
in which category learning occurs, and an orienting system
that drives memory searches and hypothesis testing for
novel categories in response to large enough mismatches
between bottom-up and top-down input patterns (Figure 9)
(Grossberg, 1976b, 1980, 2017).

6.2. Complementary Computing: ART
Hypothesis Testing and Learning of
Predictive Categories
The need for an orienting system can be seen by answering
the question: If learning can occur only if there is a sufficiently
good match between bottom-up input patterns and top-down
expectations, then how is anything truly novel ever learned?
Here is where complementary properties of attentional matching
and orienting search are crucial: A sufficiently bad mismatch
between an active top-down expectation and a bottom-up input,
say because the input is unfamiliar, can drive a memory search
and hypothesis testing. Such a mismatch within the attentional
system activates the complementary orienting system, which

FIGURE 9 | ART cycle of match-induced resonant learning and
mismatch-induced reset and search. (A) The input pattern I is instated across
feature detectors at level F1 as an activity pattern X, as it also inputs to the
orienting system A with a gain ρ called vigilance. Activity pattern X sends
inhibitory signals to A and a bottom-up excitatory input pattern S to the
category level F2. Balanced excitatory inputs from I and inhibitory inputs from
X keeps A quiet. S inputs are multiplied by learned adaptive weights to define
the input pattern T to F2. Inputs T are contrast-enhanced and normalized
within F2 by recurrent lateral inhibitory signals that obey the membrane
equations of neurophysiology, also called shunting interactions. A small
number of cells within F2 that receive the largest inputs are chosen by this
competition. These cells represent the category Y that codes the feature
pattern at F1. A winner-take-all category is shown. (B) Category Y generates
top-down signals U that are multiplied by adaptive weights to form a
prototype, or critical feature pattern, V. V represents the expectation that Y
has learned of the feature pattern to expect at F1. If V mismatches I at F1,
then a new STM activity pattern X∗ (the hatched pattern), is chosen at cells
where the patterns match well enough; that is, X∗ is active at I features that
are confirmed by V. Mismatched features (white area) are inhibited. When X
changes to X∗, total inhibition decreases from F1 to A. (C) If inhibition
decreases sufficiently, A triggers non-specific arousal to F2, thereby
instantiating that “novel events are arousing.” Vigilance ρ determines how bad
a match will be tolerated before non-specific arousal is triggered. Arousal
initiates a memory search for a better-matching category in the following way:
First, arousal resets F2 by inhibiting Y. (D) After Y is inhibited, X is reinstated
and Y stays inhibited as X activates a different category Y∗ at F2. Search
continues until a better matching, or novel, category is selected. When search
ends, a resonance develops that supports learning of the attended data in the
adaptive weights within both the bottom-up and top-down pathways. After
learning, inputs I can activate the globally best-matching categories directly
through the adaptive filter without activating the orienting system. [Adapted
with permission from Carpenter and Grossberg (1993)].

is sensitive to unexpected and unfamiliar events. The ART
attentional system includes the inferotemporal and prefrontal
cortices, whereas the orienting system includes the non-specific
thalamus and hippocampal system. See Carpenter and Grossberg
(1993) and Grossberg and Versace (2008) for supportive
neurobiological data.

The fact that ART learns only if a sufficiently good match
occurs also imposes constraints upon how top-down adaptive
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weights are initially chosen to enable category learning to get
started: In any ART system, the top-down adaptive weights that
represent learned expectations need to be broadly distributed and
large before learning occurs, so that they can match whatever
input pattern first initiates learning of a new category. Indeed,
when a new category is first activated, it is not known at the
category level what pattern of features caused the category to
be activated. Whatever feature pattern was active needs to be
matched by the top-down expectation on the first learning trial,
so that resonance and weight learning can begin. Hence the
need for the initial values of top-down weights to be broadly
distributed and sufficiently large to match any feature pattern.

Given that top-down weights are initially broadly distributed,
the learning of top-down expectations is a process of pruning
weights on subsequent learning trials, and uses mismatch-
based reset events to discover categories capable of representing
the environment. The large initial adaptive weights in top-
down expectations helps to explain otherwise mysterious
neurobiological data, such as why there is an Inverted-U through
time in the power of beta oscillations when an animal first
navigates a new maze (Berke et al., 2008; Grossberg, 2009a).

6.3. Complementary PN and N200 Event
Related Potentials During Attention and
Memory Search
In contrast to the top-down, adaptive, specific, and match
properties that occur during an attentive match, an orienting
system mismatch is bottom-up, non-adaptive, non-specific, and
mismatch: A mismatch occurs when bottom-up activation of
the orienting system cannot be adequately inhibited by the
bottom-up inhibition from the matched pattern (Figure 9B).
The signals to and from the orienting system are non-adaptive,
or not subject to learning. Mismatch-activated output from the
orienting system non-specifically arouses all the category cells
because the orienting system cannot determine which categories
read out the expectation that led to mismatch (Figure 9C). Any
category may be responsible, and may thus need to be reset by
arousal (Figure 9D). Finally, the orienting system is activated by
a sufficiently big mismatch.

These are properties of the N200 event-related potential, or
ERP (Näätänen et al., 1982; Sams et al., 1985). More generally,
during an ART memory search, sequences of the predicted
mismatch, arousal, and reset events occur that exhibit properties
of the sequentially occurring P120, N200, and P300 ERPs,
respectively (Banquet and Grossberg, 1987).

In summary, four sets of properties of the attentional system
are complementary to those of the orienting system (top-
down vs. bottom-up, adaptive vs. non-adaptive, specific vs.
non-specific, match vs. mismatch), with the PN and N200
ERPs illustrating these complementary properties. The orienting
system can detect that an error has occurred, but does know
what category prediction caused it. The attentional system knows
what categories are active, but not if these categories adequately
represent current inputs. By interacting, these systems can
determine what the error is and discover and learn a new category
to correct it. Complementary computing hereby accomplishes

incremental learning and autonomous error correction of a
large non-stationary database, without incurring the risk of
catastrophic forgetting.

6.4. Autonomous Solution of the
Invariant Pattern Recognition Problem
During Active Vision
In our brains, as ITp categories are learned using feature-category
resonances, they create the substrate for learning view-, position-,
and size-invariant object recognition categories within the
ventral What cortical processing stream, notably in the anterior
inferotemporal cortex, or ITa. The 3D ARTSCAN Search model
has been incrementally developed to explain in detail how our
brains learn to solve the invariant pattern recognition problem
during active vision, a problem that is just as important for
human survival as it is for designing machine learning algorithms
that can autonomously learn in the real world (Fazl et al., 2009;
Cao et al., 2011; Grossberg et al., 2011, 2014; Foley et al., 2012;
Chang et al., 2014; Grossberg, 2017). When it is implemented
in SOVEREIGN2, the 3D ARTSCAN Search architecture can
be used to provide previously unavailable machine learning,
recognition, and prediction abilities in autonomous adaptive
mobile systems, notably self-training robots.

To carry out effective invariant category learning, the model
needed to solve a basic View-to-Object Binding Problem, which
concerns how our brains automatically know, without external
supervision or prior learning, which views of a novel scene
belong to the same object−and thus can be associated with
the same invariant category−and which do not−so should
not be associated. As a result, the model can learn invariant
object categories in response to arbitrary combinations of
unsupervised and supervised learning trials as the eyes freely scan
a complex scene.

As ITp categories are learned using feature-category
resonances (Figure 7), they are associated with cells in the
anterior inferotemporal (ITa) cortex that learn to become view-,
position-, and size-invariant object recognition categories.
Figure 10 illustrates how the View-to-Object Binding Problem is
solved during invariant object category learning in ITa within the
What cortical stream, with the help of modulation by the PPC in
the Where cortical stream, including the inferior parietal sulcus
(IPS), the lateral intraparietal area (LIP), and the medial superior
parietal lobule (SPL). Surface-shroud resonances that are
triggered between V4 and IPS play a critical role in modulating
this invariant category learning modulation process, while they
also support conscious visibility of the attended object surface.

An active surface-shroud resonance embodies the brain state
that maintains spatial attention upon the object that is being
learned about. While the object is attended, its shroud also
inhibits category reset cells in SPL (Figure 10). While the surface-
shroud resonance maintains attention on an object surface, it
also regulates eye movements that successively foveate the most
salient features on the attended surface (not shown in Figure 10),
but not other objects in the scene, thereby solving the View-to-
Object Binding Problem. Each foveation can lead to the learning
of a different specific ITp category. The first such ITp category to
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FIGURE 10 | Learning of view-invariant categories in the What cortical stream
is modulated by surface-shroud resonances in the Where cortical stream. The
surface-shroud resonance prevents the invariant category from being reset as
multiple view-specific categories are learned and associated with it as the
eyes scan an attended object surface. See the text for details.

be learned chooses cells in ITa with which it will be associated via
typical ART dynamics (Figure 10). As successive ITp categories
are learned, they can all be associated with the same ITa cells
because they cannot be inhibited by SPL. These ITa calls hereby
learn to become an invariant object category by being associated
with multiple specific ITp categories.

When spatial attention shifts from the object, its shroud
collapses, thereby disinhibiting the reset cells in SPL. A transient
burst of inhibition from these SPL cells resets the active invariant
object category in ITa (Chiu and Yantis, 2009; Fazl et al., 2009).
As the invariant object category collapses and the eyes attend
another object’s surface, new specific ITp and invariant ITa
object categories can be learned to represent other objects in a
scene. The cycle can then repeat itself. The model can hereby
autonomously learn invariant object categories in response to
arbitrary combinations of unsupervised and supervised learning
trials as its eyes or cameras are directed to scan a complex scene.

After invariant categories are learned, the system can also solve
the Where’s Waldo Problem; that is, it can search a scene for
a desired goal object within it. Such a search requires What-to-
Where stream interactions.

6.5. Conditioned Reinforcer and
Motivational Learning Use
Cognitive-Emotional Resonance
Invariant object categories in ITa (sensory cortex in Figure 11A)
learn to activate value categories via conditioned reinforcer
pathways, whereas value categories learn to activate object-
value categories in the orbitofrontal cortex (OFC) via incentive
motivational pathways. Both kinds of learning occur during
a cognitive-emotional resonance that is triggered when a
conditioned stimulus, such as a buzzer sound, activates its
invariant object category while an unconditioned stimulus, or

primary reward such as presentation of food to a hungry animal,
activates its value category.

A cognitive-emotional resonance begins when object-value
categories fire in response to converging inputs from sensory
cortex and a value category. Then top-down feedback from the
object-value category to its invariant object category closes a
feedback loop between sensory cortex, amygdala (AMYG), and
OFC that supports the cognitive-emotional resonance. This kind
of resonance focuses motivated attention upon valued objects,
while triggering context-appropriate actions toward them.

The model in Figure 11A that accomplishes conditioned
reinforcer learning, incentive motivational learning, and release
of motor actions toward valued goal objects is called the
Cognitive-Emotional-Motor, or CogEM, model. CogEM has
been getting incrementally developed since it was introduced
in 1971 (e.g., Grossberg, 1971, 1982, 1984b; Grossberg and
Gutowski, 1987; Dranias et al., 2008). The drive representations
of the CogEM model include opponent processing channels
called gated dipoles (Grossberg, 1972a,b, 1984b) that organize
affective processing into opponent channels such as fear vs.
relief, and hunger vs. frustration, which help to regulate
behaviors like approach vs. avoidance, and exploration vs.
consummation (cf. exploration vs. exploitation). Each gated
dipole controls the balance between one pair of opponent
affective representations. Variations of the gated dipole design
occur in multiple brain processes, including the representation
of opponent colors such as red vs. green, opponent directions
such as up vs. down, and opponent muscles such as agonists
vs. antagonists. Gated dipoles are thus a general design that
helps to reset brain dynamics in response to sudden changes in
environmental contingencies, and to restore brain dynamics to
an unbiased state.

6.6. Antagonistic Rebounds Enable
Opponent Extinction and Learning From
Disconfirmations
Gated dipole reset takes the form of an antagonistic rebound
during which activation in its ON channel is replaced by
a transient activation, or rebound, in its OFF channel. An
antagonistic rebound can be triggered in response to a sudden
decrease in the phasic input that was activating the ON
channel, or to an unexpected event that causes a sudden
increase in the arousal that activates both the ON and
OFF channels (Grossberg, 1984b; Grossberg and Schmajuk,
1987). In this way, changing environmental contingencies,
including the disconfirmation of expected events, can have
reinforcing properties that can modulate which learned plans
will be chosen to triggered goal-oriented actions in a particular
environmental context.

When adaptive weights learn from both ON channel
activations and OFF channel rebounds in response to
disconfirmations of previous learning, then approximately
equal learned inputs to both the ON and OFF channels can
occur and lead to competitive suppression of output signals. The
emotional and motivational support for such behaviors is then
eliminated; the behavior has been extinguished. Recurrent gated
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FIGURE 11 | (A) Cognitive-Emotional-Motor (CogEM) model macrocircuit. CogEM models how invariant object categories in sensory cortex can activate value
categories, also called drive representations, in the amygdala and hypothalamus, and object-value categories in the orbitofrontal cortex. Converging activation from
an object category and its value category can fire the corresponding object-value category. An invariant object category can activate an object-value category by
itself if prior conditioned reinforcer learning and incentive motivational learning strengthen the pathways that pass through the value category. An active object-value
category sends positive feedback to sensory cortex that enhances the activity of its invariant object category. This motivationally enhanced object representation can
then better compete with other object representations via a recurrent competitive network (not shown) and draw attention to itself. Maintaining feedback between
object, value, and object-value categories via a cognitive-emotional resonance can induce a conscious percept of having a particular feeling about the attended
object, as well as knowing what it is. The active object-value category can also generate output signals to activate cognitive expectations and actions through other
brain circuits. [Adapted from Grossberg (1971) and subsequent CogEM articles]. (B) Macrocircuit of the neurotrophic Spectrally Timed Adaptive Resonance Theory,
or nSTART, model. The sensory cortex sends signals to the prefrontal cortex, notably the inferotemporal cortex, as in (A). In addition to the connections between
these regions and the amygdala, nSTART also includes adaptively timed inputs from the sensory cortex to the hippocampus, which then inputs to prefrontal cortex.
A similar circuit (not shown) connects thalamus to sensory cortex, amygdala, and hippocampus. nSTART also includes adaptive connections from thalamus to
sensory cortex, and from sensory cortex to orbitofrontal cortex, that support object category learning. An adaptively timed cortico-hippocampal resonance can
maintain the cognitive-emotional resonance that passes through amygdala, thereby supporting conscious feelings and awareness of the objects that cause them.
The pontine nuclei serve as a final common pathway for reading-out conditioned responses. Cerebellar dynamics are not simulated in nSTART. Key:
arrowhead = excitatory synapse; hemidisc = adaptive weight; square = habituative transmitter gate; square followed by a hemidisc = habituative transmitter gate
followed by an adaptive weight. See the text for details. [Reprinted with permission from Franklin and Grossberg (2017)]. (C) In the START model, conditioning,
attention, and timing are integrated. Adaptively timed hippocampal signals R maintain motivated attention via a cortico-hippocampal-cortical feedback pathway, at
the same time that they inhibit activation of orienting system circuits A via an amygdala drive representation D. The orienting system A is also assumed to occur in
the hippocampus. The adaptively timed signal is learned at a spectrum of cells whose activities respond at different rates rj and are gated by different adaptive
weights zij . A transient Now Print learning signal N drives learned changes in these adaptive weights. In the nSTART model in (B), the hippocampal feedback circuit
operate in parallel to the amygdala, rather than through it. See the text for details. [Adapted with permission from Grossberg and Merrill (1992)].

dipoles called READ circuits, for Recurrent Associative Dipole,
enable opponent learning and extinction to go on throughout
life, without ever saturating the learned weights, no matter
how many learning and extinction trials they may experience
(Grossberg and Schmajuk, 1987).

SOVEREIGN models an array of gated dipoles, called gated
multipoles (Figures 4, 12), in which multiple opponent affective
states compete with each other to decide which one of them has
the momentarily best combination of sensory and motivational
inputs to control behavioral choices as environmental conditions
change. Gated multiples within CogEM circuits will also
occur in SOVEREIGN2.

6.7. Adaptively Timed
Cortico-Hippocampal Resonances
Support Learning Across Temporal Gaps
Learning often requires that learned associations form between
sensory cues and reinforcers that are separated in time, with
the sensory cues shutting off hundreds of milliseconds or even
seconds before the reinforcer turns on. The CogEM model
cannot learn in such situations because the AMYG cannot
bridge temporal gaps of such a long duration. In vivo, the
hippocampus (HIPPO) enables conditioning to bridge temporal
gaps using a type of adaptively timed learning (Figure 11B)
that is called spectral timing (Grossberg and Schmajuk, 1989;
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FIGURE 12 | The Gated Multipole network includes multiple gated dipoles that regulate reinforcement learning and incentive motivational learning to help chose
those object and spatial list chunks that control actions which predict the most valued outcomes in the current environment. See the text for details. [Reprinted with
permission from Gnadt and Grossberg (2008)].

Grossberg and Merrill, 1992, 1996). Spectrally timed learning can
bridge time intervals of hundreds of milliseconds between the
offset of a conditioned stimulus (CS) and the onset of a rewarding
unconditioned stimulus (US), as occurs during reinforcement
learning paradigms like trace conditioning and delayed-non-
match to sample. It does so using populations of cells that each
respond at different times (the “spectrum”), but for much shorter
time intervals than the population response as a whole can span.

How do neurons, which typically fire on a millisecond
time scale, span hundreds of milliseconds? Fiala et al. (1996)
developed a detailed spectral timing model of cerebellar adaptive
timing that links biochemistry, neurophysiology, neuroanatomy,
and behavior, and predicts how the metabotropic glutamate
(mGluR) receptor system may create a spectrum of delays
during cerebellar adaptively timed learning. mGluRs are a form
of glutamate receptor that is different from the ionotropic
glutamate receptors that support widespread excitatory signaling
throughout the brain. Unlike ionotropic glutamate receptors,
which directly activate ion channels, mGluR receptors activate
biochemical cascades. Spectral timing properties are predicted to
be an example of such a biochemical cascade, with intracellular
calcium regulating the different response rates of the cells
within such a spectrum. This prediction has been supported by
several subsequent experiments (e.g., Finch and Augustine, 1998;
Takechi et al., 1998; Ichise et al., 2000; Miyata et al., 2000).

In addition to the mGluR spectral timing circuits that have
modeled adaptively timed actions using the cerebellum (Fiala
et al., 1996), similar mGluR circuits have modeled maintenance of
adaptively timed incentive motivation that supports such actions
using the HIPPO (Grossberg and Schmajuk, 1989; Grossberg

and Merrill, 1992, 1996), and adaptively timed reinforcement
learning in response to unexpected rewards and punishments
using the BG (Brown et al., 1999, 2004). Indeed, variants of
spectral timing seem to be an ancient evolutionary discovery that
includes non-neural systems. Simpler versions of such calcium-
modulated spectra also occur in non-neural tissues such as HeLa
cancer cells (Bootman and Berridge, 1996), the puffs in Xenopus
oocytes (Yao et al., 1995), and the sparks in cardiac myocytes
(Cannell et al., 1995; López-López et al., 1995).

In particular, the Spectrally Timed Adaptive Resonance
Theory, or START, model has explained and simulated how
spectrally timed learning may occur in dentate-hippocampal
circuits (Figure 11C) (Grossberg and Schmajuk, 1989; Grossberg
and Merrill, 1992, 1996). Data about both normal and abnormal
learned timing have been explained by this model, including
explanations of timing failures in individuals with autism and
Fragile X syndrome (Grossberg and Seidman, 2006; Grossberg
and Kishnan, 2018).

The neurotrophic START, or nSTART, model (Figure 11B)
developed hippocampal spectral timing properties a different
direction by proposing how spectral timing supports memory
consolidation of previously learned associations using a
combination of endogenous hippocampal bursting and
modulation by brain-derived neurotrophic factor, or BDNF,
during the consolidation period, which often occurs during
periods of sleep (Franklin and Grossberg, 2017). If the HIPPO is
ablated shortly after learning, then memory consolidation cannot
take place, and medial temporal amnesia can be caused. More
generally, the nSTART model explains and simulates why lesions
of thalamus, AMYG, HIPPO, and OFC have different effects
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on memory consolidation, depending on the phase of learning
when they occur.

Both START and nSTART explain how a cortico-hippocampal
resonance sustains cognitive-emotional resonances using its
adaptively timed learning long enough for brains to become
conscious of feelings and the events that caused them. The pART
model circuit in Figure 5 includes spectrally timed interactions
between anterior inferotemporal cortex (ITa), HIPPO, and OFC,
which then closes the adaptively timed feedback loop with ITa.

Adaptively timed behaviors are essential for success in an
autonomous adaptive mobile system, including learning to
properly time goal-oriented actions and to maintain motivated
attention upon desired goal objects long enough to do so.
A model HIPPO and cerebellum can be joined to the CogEM
multipole model to enable SOVEREIGN2 to learn and control
both of these kinds of adaptively timed behaviors.

6.8. Expected vs. Unexpected
Disconfirmations Regulate
Consummation vs. Exploration
Combining ART and START circuits into a larger architecture
enables a brain to adaptively cope with situations wherein cues
that have led to expected consequences in the past no longer do
so. In particular, it enables humans to wait for delayed rewards,
yet also prevents perseveration of behaviors to acquire a goal that
is no longer forthcoming, with possibly disastrous consequences,
such as starvation if food is no longer available. This competence
is achieved by distinguishing expected disconfirmations−also
called expected non-occurrences−of reward from unexpected
disconfirmations−or unexpected non-occurrences−of reward.

In particular, why do not animals treat expected non-
occurrences of reward as predictive failures? Why do they not
always become frustrated by the immediate non-occurrence of
a reliable reward that is typically delayed in time, and trigger
exploratory behavior to find it elsewhere, leading to relentless
exploration for immediate gratification? And if animals do
wait, but the reward does not appear at the expected time,
how does the animal adaptively respond to the unexpected
non-occurrence of the reward−that is, to the occurrence of
nothing? In normal animals, expected disconfirmations do not
prevent acquisition of a delayed reward, even though unexpected
disconfirmations can trigger reset of working memory, attention
shifts, frustrative rebounds that can extinguish unsuccessful gated
dipole associations, and the release of exploratory behaviors to
discover better sources of the desired goal object.

In either case, if the reward happens to occur earlier than
expected, the animal could still perceive it via a cognitive-
emotional resonance and release a consummatory response.
Thus, the registration of ART-like sensory matches is not
inhibited during either expected or unexpected non-occurrences
(Figure 9). However, during an expected disconfirmation, the
effects of mismatches upon activation the ART orienting system,
which cause a reduction of ART inhibition there (Figure 9B),are
compensated by the addition of adaptively timed input from
the HIPPO (Figure 11C). Activation of the orienting system is
hereby prevented during an expected disconfirmation, and with

it reset of working memory, attention shifts, frustrative rebounds,
and the release of exploratory behaviors. In contrast, during an
unexpected non-occurrence, the orienting system is disinhibited
by the ART mismatch because the spectral timing circuit is
not active then, so reset of working memory, attention shifts,
frustrative rebounds, and the release of exploratory behaviors can
occur with which to correct the predictive error.

A spectral timing response begins immediately after its
triggering stimulus, and builds throughout the interstimulus
interval, or ISI, between the CS and US (Grossberg and Schmajuk,
1989; Grossberg and Merrill, 1992, 1996). It can thus maintain
inhibition of the orienting system until the expected time of
occurrence of the rewarding stimulus (Figure 11C). Adaptively
timed excitation can also maintain motivated attention upon the
correct orbitofrontal representation throughout this time interval
(Figure 11C). By peaking at the expected time of the reward,
motivated attention can most probably elicit a learned response
when the reward is expected.

6.9. Working Memories and Learning of
List Chunk Plans Using Item-List
Resonances
During cognitive and cognitive-emotional learning and action
cycles, as an animal or animat navigates through its environment,
sequences of object categories may be temporarily stored
in an object working memory (Figure 4A) that occurs in
human and other primate brains in the ventrolateral prefrontal
cortex (VLPFC), at the same time that sequences of the
positions/directions where they are found in a scene are
temporarily stored in a spatial working memory (Figure 4B) in
the dorsolateral prefrontal cortex (DLPFC; see Figure 5).

As they are stored in working memory, object category
sequences trigger learning of object plans, or object list chunks,
while stored position/direction sequences trigger learning of
spatial plans, or spatial list chunks, that selectively respond
to the particular sequences that are stored in their working
memory. A network that can learn list chunks of variable length
is called a Masking Field (Figure 4) (Cohen and Grossberg,
1986, 1987; Grossberg and Kazerounian, 2011; Kazerounian and
Grossberg, 2014). As illustrated in Figure 13, a Masking Field
contains cells of variable size in which larger cells respond
selectively to longer working memory lists. Masking Fields can
learn these properties using simple laws of activity-dependent
cell growth during their development, which leads to a multiple-
scale network of self-similar cells whose cell body sizes and
connection strengths covary (Cohen and Grossberg, 1987;
Kazerounian and Grossberg, 2014).

The learning of list chunks by a Masking Field in SOVEREIGN
used only bottom-up adaptive filter pathways (Figure 4).
In vivo, list chunk learning is dynamically stabilized by item-
list resonances in the corresponding parts of the PFC (Table 1a).
Figure 13 illustrates the fact that the top-down learned
expectation pathways that interact with bottom-up adaptive
filter pathways to trigger and sustain an item-list resonance
can also regulate choice of the most predictive list chunk in
each environment and prime the sequences of working memory
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FIGURE 13 | An Item-Order-Rank working memory (lower level) for the
short-term sequential storage of item chunks (e.g., M, Y, S, E, L, F) can
activate a multiple-scale Masking Field list chunking network (upper level)
through a bottom-up adaptive filter. The larger cell sizes and interaction
strengths of the list chunks that categorize longer lists (e.g., MYSELF vs. MY)
enable the Masking Field to choose the list chunk that currently receives the
largest total input, and thus best predicts the sequence that is currently stored
in the Item-Order-Rank working memory. The chosen list chunk can then
read-out the most likely prediction of what will happen next in that temporal
context. Green connections are excitatory. Red connections are inhibitory.
Arrowheads at the ends of Masking Field inhibitory recurrent pathways denote
connections that undergo no learning. Hemidiscs denote connections that can
undergo learning, both in the bottom-up filter connections and the top-down
expectation connections. Recurrent on-center off-surround connections in the
Item-and-Order working memory are not shown, for simplicity. Recurrent
self-excitatory connections in the Masking Field are also not shown, again for
simplicity. [Reprinted with permission from Grossberg (2018)].

items that support that choice. Such item-list resonances in
SOVEREIGN2 can greatly increase the stability of this kind of
learning under multiple kinds of perturbations.

6.10. Masking Fields Learn List Chunks
From Resonating Item-Order-Rank
Working Memories
These particular working memories and list chunking networks
are used because they embody fundamental design principles
that are needed for autonomous adaptive storage and learning
of event sequences. In particular, feedback interactions between
both types of circuits solve a Temporal Chunking Problem,
which concerns how a new word, motor skill, or navigational
route gets learned when it is composed of familiar subsequences,
without undermining previous learning of the subsequences. In
the case of language, for example, suppose that the new word is
composed of syllables that are themselves already familiar words.
The problem is: Why is not the brain forced to process the
new word as a sequence of smaller familiar words? How does a
not-yet-established word representation overcome the salience of
already well-learned phoneme, syllable, or word representations
to enable learning of the novel word to occur? How does this
occur, moreover, under unsupervised learning conditions?

For example, suppose that the words MY, ELF, and SELF have
already been learned, and have their own list chunks. When
the novel word MYSELF is presented for the first time, all of
its familiar subwords also get presented as part of this longer

sequence. What mechanisms prevent the familiarity of MY, ELF,
and SELF, which are trying to activate their own list chunks, from
forcing the novel longer list MYSELF from being processed as a
sequence of these smaller familiar chunks, rather than eventually
as a newly learned unitized whole? If this did happen, then longer
words could never be learned. Nor could longer navigational
routes that include familiar subroutes, or more complex motor
skills that include familiar gestures. Our brains would experience
a reductio ad absurdum. It is because the multiple scales of a
Masking Field are self-similar that the larger scale that is activated
by MYSELF can inhibit the smaller scales that are activated by
MY, ELF, and SELF, even before the list chunk for MYSELF is
tuned by category learning. The multiple self-similar spatial scales
of Masking Fields hereby enable them to learn how to categorize
lists of variable lengths.

Even if a novel longer list like MYSELF could overcome
competition from its familiar subwords, what would prevent
its new learning from forcing catastrophic forgetting of the list
chunks of its familiar subwords? A solution of this problem is said
to obey the LTM Invariance Principle. Item-Order-Rank working
memories solve the LTM Invariance Principle (Grossberg, 1978,
2017; Bradski et al., 1992, 1994; Grossberg and Myers, 2000;
Grossberg and Pearson, 2008; Grossberg and Kazerounian, 2011;
Silver et al., 2011; Kazerounian and Grossberg, 2014). They
store the temporal order of sequences of events occurring in
time into an evolving spatial gradient of activities over content-
addressable item representations that can represent items that
are repeated multiple times; that is, have different ranks (e.g.,
ABACAD). Thus, Item-Order-Rank working memories can store
sequences of events with repeats while satisfying the LTM
Invariance Principle. They do so by preserving the relative
activities of stored items as new items in a sequence are stored,
even while the total activity of all stored items can change
greatly through time.

Because all working memories need to satisfy the LTM
Invariance Principle, all working memories, whether linguistic,
motor, or spatial, were predicted to be realized by a similar kind
of circuit. This circuit was shown to be a specialized version of a
type of circuit that is ubiquitous in the brain; namely, a recurrent
shunting on-center off-surround network, thereby clarifying how
such a seemingly sophisticated design as a working memory
could be discovered during evolution. Masking Fields are also
recurrent shunting on-center off-surround networks, and thus
are also working memories, albeit working memories that also
represent list chunks.

Feedback interactions between an Item-Order-Rank working
memory and a Masking Field solve the Temporal Chunking
Problem, and can do so under unsupervised learning conditions.
These feedback interactions trigger an item-list resonance that
dynamically stabilizes the bottom-up list chunk learning and the
learning of the top-down expectations that enable list chunks
to activate sequences of events in working memory for skilled
performance. Item-list resonances hereby illustrate how ART
dynamics solve the stability-plasticity dilemma in the temporal
domain, and include predictions about the oscillatory dynamics,
including gamma and beta oscillations, that occur during these
resonances in primate brains.
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All of the predicted properties of Item-Order-Rank working
memories have been supported by subsequent psychological data
(e.g., Jones et al., 1995; Page and Norris, 1998; Farrell and
Lewandowsky, 2004; Agam et al., 2005, 2007) and neurobiological
data (e.g., Averbeck et al., 2002, 2003a,b; Bastos et al., 2018;
Lundqvist et al., 2018).

In SOVEREIGN2, with item-list feedback signals
implemented, each learned list chunk, or plan, can be selectively
activated by motivationally salient sequences of previously
experienced objects and positions/directions, and can then
read out context-sensitive predictions of the objects and
positions/directions that should be acquired next, thereby
generalizing the SOVEREIGN interactions in Figure 4. This
learning and performance cycle can continue through time in
an unsupervised way using only the world itself as a teacher, but
may also be supervised by a human teacher at arbitrary times.
As noted in sections 6.5 and 6.6, CogEM includes supervision
by rewards, punishments, and unexpected outcomes to drive its
reinforcement learning.

6.11. Entorhinal-Hippocampal
Resonances That Support Spatial
Navigation Are Not Conscious
Yet another kind of resonance may be incorporated into
SOVEREIGN2. This is the entorhinal-hippocampal resonance that
supports learning and stable memory of entorhinal grid cells
and hippocampal place cells during spatial navigation that were
mentioned in section 5.2. This kind of resonance will be discussed
in section 8. It illustrates the claim that, although “all conscious
states are resonant states,” the converse statement is not true. In
order for a resonant state to become conscious, it is necessary
for it to include either representations of external sensory cues,
such as visual or auditory cues, or internal sensory cues, such
as emotional cues.

7. PREFRONTAL COORDINATION OF
WORKING MEMORY, PLANNING, AND
COGNITIVE-EMOTIONAL DYNAMICS

The kind of adaptive mobile intelligence that is exhibited by
humans and other primates required a major expansion of the
PFC to enable its working memory and planning networks
to flexibly interact with multiple other brain systems, notably
cognitive-emotional systems. The predictive ART, or pART,
model (Figure 5) (Grossberg, 2018) has clarified how these
properties arise through interactions of orbitofrontal cortex
(OFC), VLPFC, and DLPFC with the inferotemporal cortex
(ITp and ITa), perirhinal cortex (PRC), parahippocampal cortex
(PHC), ventral bank of the principal sulcus (VPS), ventral
prearcuate gyrus (VPA), frontal eye fields (FEF), hippocampus
(HIPPO), amygdala (AMYG), basal ganglia (BG), hypothalamus
(LH), PPC, lateral intraparietal cortex (LIP), and visual cortical
areas V1, V2, V3A, V4, MT, and MST.

pART model explanations more fully embody and extend
many of the processes that were included in SOVEREIGN,

including how the value of visual objects and events is computed,
which objects and events cause desired consequences and
which may be ignored as predictively irrelevant, and how to
plan and act to realize these consequences. To achieve this
properties, pART includes reinforcement learning and incentive
motivational learning; object and spatial working memory
dynamics; and category learning, including the learning of object
categories, value categories, object-value categories, and sequence
categories, or list chunks. pART also explains properties that
go beyond SOVEREIGN and other neural models, such as how
to selectively filter expected vs. unexpected events to determine
which events get stored in working memory, and how such
filtering controls movements toward, and conscious perception
of, expected events.

Incorporating this level of sophistication in SOVEREIGN2
will require a coordinated research program. Here primarily
the new competences will be reviewed of how events can be
selectively filtered before being stored in working memory, and
how that ability alters the understanding of how a top-down
cognitive prime from the PFC can bias object attention in the
What cortical stream to anticipate expected objects and events,
while it also focuses spatial attention in the Where cortical stream
to trigger actions that acquire currently valued objects (Fuster,
1973; Baldauf and Desimone, 2014; Bichot et al., 2015).

7.1. Minimal Anatomy for Foveating
Valued Objects in a Scene: Where’s
Waldo?
As explained in greater detail in the pART model (Grossberg,
2018), after Where-to-What stream interactions help to learn
invariant object categories, What-to-Where stream interactions
regulate how to foveate valued target objects in a scene. Previous
models like ARTSCAN Search and ARTSCENE Search proposed
a minimal anatomy that could carry out this function, while
also simulating challenging reaction time (RT) data about visual
search for target objects (Huang and Grossberg, 2010; Chang
et al., 2014). Such a minimal anatomy models how an invariant
object representation in the What stream can activate a positional
representation in the Where stream that can be used to foveate
a valued target object in a scene. However, it did not try
to solve the problem of how the brain can selectively filter
desired targets from a stream that also contains distractors,
so that it only attends, stores, and foveates matched targets.
This additional computational property is explained by the
pART model (Figure 5). However, given the ability of the
minimal anatomy to quantitatively simulate challenging RT data
in many visual search experiments, it may have evolved before
the prefrontal mechanisms of selective working memory storage
did, and may operate in parallel with them. It may be worth
testing if these simpler circuits are still functional when prefrontal
mechanisms are lesioned.

In the minimal anatomy of ARTSCENE Search, winning
VLPFC activities send a top-down attentional prime to ITa using
a circuit that obeys the ART Matching Rule. In order to transform
the primed ITa cells into firing cells, an additional input must
converge on ITa. This kind of signal is regulated by the BG
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(cf. BG in Figure 5). A volitional gate-opening signal from
the BG−notably from the substantia nigra pars recitulata, or
SNr−lets the primed ITa cells fire. The activated ITa cells then
prime the positionally sensitive categories in ITp with which
they were associated when ITa was being learned using resonant
bottom-up and top-down interactions (Figure 5). If one of the
primed ITp categories also receives a bottom-up input from an
object at its position, then it can fire and activate positional
representations in eye movement control regions like LIP and
FEF. These positional representations can then move the eyes to
the position in space that they represent.

7.2. Cortical What Working Memory
Filtering and Activation of Where Target
Positions
Multiple experiments show that selective working memory
storage in the PFC does occur. The pART model offers an
explanation of how this is predicted to work (Figure 5).
For example, PFC working memory cells do not fire during
such tasks that do not require storage of visual information
(Fuster, 1973; Kojima and Goldman-Rakic, 1984). Moreover,
given the presentation of identical stimuli, neural selectivity in
PFC depends on subsequent task demands (Warden and Miller,
2010). Imaging data show that success on working memory
tasks covaries with an individual’s ability to selectively identify
and store task-related stimuli from a larger sequence of stimuli
(Awh and Vogel, 2008; McNab and Klingberg, 2008). Subliminal
distracters can damage performance in attention tasks, but
making distracters supra-threshold can improve performance
deficits by facilitating the ability to filter them out (Tsushima
et al., 2008). During a memory saccade task in which a salient
distractor is flashed at a variable time and position during
the memory delay, responses to the salient distractor are more
strongly suppressed and correlated with performance in DLPFC
than in LIP (Suzuki and Gottlieb, 2013).

In addition to this kind of task-sensitive filtering of individual
items before they reach the working memory, a mechanistically
distinct processes enables all the items that get through the filter
to be stably stored after they reach the working memory; namely,
keeping an SNr gate open to enable the recurrent excitatory
connections within PFC to maintain working memory storage.
Closing this SNr gate can rapidly reset, or delete, the entire stored
sequence from working memory when there is an attention shift
to do a different task.

7.3. Interacting Feature-Based Attention,
Saccadic Choice, and Selective Working
Memory Storage
The property of selective working memory storage clarifies the
functional role of neurophysiological data about the role of VPA
as “a source for feature-based attention” (Bichot et al., 2015,
p. 832), notably why VPA cells selectively match desired
combinations of object features, resonate with a target
that matches these features, and activate an FEF positional
representation that commands a saccade to the target. These
properties were discovered when fixating monkeys were

presented with a central cue object that defined a search
target, followed by a delay during which the monkeys held
a representation of the target in memory. Then an array of
eight stimuli appeared which included the search target and
seven distractors. The monkeys were rewarded for foveating and
maintaining fixation on the target for 800 ms. While the monkeys
performed, Bichot et al. (2015) simultaneously recorded from
IT, VPA, and FEF in two monkeys, and VPS, VPA, and FEF in
two other monkeys.

pART proposes the following mechanistic and functional
explanation of how these cells interact together to enable matched
objects to be selectively processed and stored by PFC (Figure 5):
Both ITp (TEO) and ITa (TE) topographically project to PFC
(Barbas and Pandya, 1989; Webster et al., 1994; Tanaka, 1996).
The ITp projection is to VPA, whose cells, just like the ones in
ITp (Tanaka, 1996), exhibit significant sensitivity to extrafoveal
positions (Bichot et al., 2015). The ITa projections are to PRC and
VPS, which in turn projects to VLPFC. In the data of Bichot et al.
(2015), VPS had the largest spatial tuning curves of any cells in
their data, consistent with ITa invariance properties.

Active VLPFC top-down signals project to both VPS and VPA,
and learn modulatory top-down expectations when VPS and VPA
cells are also active. In pART, these expectations obey the ART
Matching Rule that is realized by a top-down, modulatory on-
center, off-surround network.

VPA cells that receive a previously learned VLPFC-to-VPA
prime are enhanced when an extrafoveal object matches its target
features, and are suppressed when the object mismatches them,
properties that are consistent with the ART Matching Rule.
This enhanced VPA activity is sufficient to trigger an output
signal to FEF at the corresponding FEF positional representation
in FEF. This property is supported by Bichot et al. (2015)
data showing VPA activating around 20 ms. before FEF does.
FEF can then trigger a saccade to foveate the target. Because
objects that mismatch the VPA expectation are inhibited, they
are not foveated.

A similar match-mismatch dichotomy regulates the activity
of VPS cells when they receive an active VLPFC-to-VPS
prime. Their activity is enhanced when an ITa invariant object
category matches their receptive field, and are suppressed by a
mismatch, again consistent with the ART Matching Rule. When
a match occurs, a synchronous VPS-ITa resonance develops that
enables the category’s temporal order to be stored in VLPFC.
This resonance can also propagate top-down through multiple
cortical areas (e.g., ITa-ITp-V4-V2-V1 in Figure 5) and supports
conscious recognition of the object.

8. LEARNING THE PRESENT POSITION
IN SPACE OF A NAVIGATOR USING GRID
CELLS AND PLACE CELLS

Section 5.2 noted that a representation of an animal’s Present
Position Vector, or NET, as it navigates in space is derived in
SOVEREIGN from an algorithm that computes a head/body
turn angle as well the length of the next straight distance
that is navigated. That section also noted that, in order for
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NET to be computed without algorithmic short cuts, an animal
or animat needs to learn a representation of its present
position in space as it navigates in different environments.
The GridPlaceMap model of spatial navigation (Figure 14A)
proposes how entorhinal grid cells and hippocampal place cells
accomplish this as they are learned in a hierarchy of self-
organizing maps. This model forms part of a larger entorhinal-
hippocampal system that shows how learning of these maps
may be dynamically stabilized by an entorhinal-hippocampal
resonance (see section 6.11; Figure 14B; Grossberg and Pilly,
2014). This larger system explains why hippocampal place cells
may be viewed as learned spatial categories in an entorhinal-
hippocampal ART system that enables a stable computation
of NET to be autonomously learned in a wide variety of
navigated environments.

The GridPlaceMap model and its variants have explained
and simulated many behavioral and neurobiological data about
spatial navigation and how its circuits learn and remember
(e.g., Grossberg and Pilly, 2012, 2014; Mhatre et al., 2012;
Pilly and Grossberg, 2012; Grossberg, 2013; Grossberg et al.,
2014). A comprehensive review of such data goes beyond the
explanatory goals of the current exposition. Some basic facts are
nonetheless worth mentioning here:

The model responds to realistic rat navigational trajectories
by learning both grid cells with hexagonal grid firing fields
of multiple spatial scales, and place cells with one or more
firing fields, that match neurophysiological data about their
development in juvenile rats. The fact that individual grid cells
can fire at positions on a hexagonal lattice when rats navigate in
an open field is one of the most remarkable facts in contemporary
neuroscience (Hafting et al., 2005). The GridPlaceMap model
and its variants show that this property emerges in a grid
cell self-organizing map model (Figure 14) as a result of basic
trigonometric properties of navigation in a two-dimensional
space. The fact that hippocampal place cells may be viewed as
learned spatial categories in an entorhinal-hippocampal ART
system that are dynamically stabilized by top-down attention
from hippocampal cortex to entorhinal cortex is supported by
neurophysiological data from several labs (Morris and Frey, 1997;
Kentros et al., 1998, 2004; Bonnevie et al., 2013).

Other properties of the GridPlaceMap model are also worth
summarizing both because they are so parsimonious and data-
predictive, and because they will simplify their embodiment
in SOVEREIGN 2. For example, the same self-organizing map
model equations can learn both grid cells and place cells.
The different response properties seem to arise entirely due
to their different stages of processing in a hierarchy of self-
organizing maps (Figure 14B). In this hierarchy, hexagonal
grid cell response fields are learned in response to stripe cells,
which are derived from vestibular angular head velocity and
linear velocity signals as realistic spatial trajectories are navigated
(Figure 14). Place cells with unimodal response fields are learned
in response to inputs from the emerging grid cells. Despite
their very different response properties, both grid cells and
place cells can develop by detecting, learning, and remembering
the most frequent and energetic co-occurrences of their inputs.
Because each place cell learns to respond to grid cells of several

different spatial scales, the spatial scale of the resulting place cell
is the least common multiple of the grid cell scales that input
to it. Thus grid cells that respond on a centimeter scale can
support learning of place cells that can represent spaces that are
many meters in size.

Figure 14B also includes the known direct pathway from
entorhinal cortex (EC111) to the hippocampal CA1 region that
bypasses the grid cells. This pathway may learn place cells in
CA1 with small spatial scales while, for example, rat pups are
still in their nests. An explosion of coordinated grid cell and
place cell development occurs as rats emerge from their nests
(Langston et al., 2010; Wills et al., 2010), and presumably helps
to learn the much larger spatial scales that are needed for adult
spatial navigation.

Parsimonious properties also occur at the earliest stages of
the GridPlaceMap model. For example, similar ring attractor
networks are used to convert vestibular angular velocity signals
into responses of head direction cells, and linear velocity signals
into responses of stripe cells (Figure 14B). Both spatial and
temporal learning in the entorhinal-hippocampal system seem
to use homologous mechanisms to create a gradient from
small to large scales along a dorsoventral axis. The temporal
learning is the adaptively timed hippocampal learning that was
described in sections 6.7 and 6.8. In particular, during both
spatial and temporal learning, cells in different positions along
the gradient respond at slower rates from dorsal to ventral. Spatial
learning of grid cells and place cells along the dorsoventral axis
passes through the medial entorhinal cortex to HIPPO, with
the largest grid and place cell spatial scales occurring at ventral
positions. Spatial learning hereby converts slower cell response
rates into larger learned spatial scales. Temporal learning along
the dorsoventral axis passes through the lateral entorhinal
cortex to HIPPO, with the longest time intervals spanned at
the most ventral positions in this gradient. Temporal learning
uses spectrally timed conditioning with cells in the spectrum
responding more slowly at more ventral positions (Figure 11C).

This computational homology provides a harmonious
explanation of why both spatial and temporal representations
occur in the entorhinal-hippocampal system. Many challenging
neurophysiological data are explained by this homology between
spatial learning in the medial entorhinal-hippocampal system
and adaptively timed temporal learning in the lateral entorhinal-
hippocampal system (e.g., Hargreaves et al., 2005; Aminoff et al.,
2007; Kerr et al., 2007; Eichenbaum and Lipton, 2008; van Strien
et al., 2009; Keene et al., 2016). When comparing these spatial
and temporal circuits, the GridPlaceMap model is called spectral
spacing to match the term spectral timing. The computational
homology between them is called neural relativity.

The top-down hippocampus-to-entorhinal attentional
network that stabilizes map learning uses the same ART
Matching Rule that stabilizes learning of all ART circuits,
including object categories learned via a feature-category
resonance (Figures 7, 9). In the entorhinal-hippocampal system,
this attentive matching process helps to explain neurobiological
data about theta, beta, and gamma oscillations, such as, as
mentioned above, why there is an Inverted-U through time in
the power of beta oscillations when an animal first navigates a
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FIGURE 14 | (A) The GridPlaceMap model circuit for spatial representation defines a hierarchy of self-organizing maps (SOM) that learns both grid cell and place cell
maps. Stripe cells (Sdas) in the deeper layer of medial entorhinal cortex (MEC), self-organizing grid cells (Gjs) in layer II of MEC, and self-organizing place cells (Pk ) in
hippocampal area CA3 learn to represent increasingly large spaces in response to internally generated signals based on vestibular linear velocity and angular velocity
signals that are activated by navigational movements through the environment. Notice bigger stripe fields and spacings going from dorsal to ventral locations in the
model organization. [Adapted with permission from Pilly and Grossberg (2012)]. (B) The hierarchy of self-organizing maps that learn grid cell and place cell maps is
part of an ART system in which top-down feedback from place cells to stripe cells can dynamically stabilize the learned grid and place fields. See the text for details.

new maze (Berke et al., 2008; Grossberg, 2009a). Also explained
are data about how hippocampal, septal, or acetylcholine
inactivation may disrupt grid cell learning and performance.

9. CONCLUDING REMARKS

This article summarizes basic design principles, networks, and
functional capabilities of the SOVEREIGN architecture (Gnadt
and Grossberg, 2008) and outlines a major research program
whereby additional brain mechanisms and psychological
functions can be consistently added to create a SOVEREIGN2
architecture with much greater capabilities for autonomous
adaptive navigation and goal-oriented cognition, emotion, and
action in changing environments.

SOVEREIGN was designed to serve as an autonomous neural
system for incrementally learning planned action sequences to
navigate toward a rewarded goal. SOVEREIGN also illustrates
how brains may, at several different organizational levels,
regulate the balance between reactive and planned behaviors,
and proposes how homologous circuit designs regulate spatial
navigation and reaching behaviors. These capabilities were
demonstrated by learning efficient routes whereby to navigate to
a valued goal in a virtual reality environment.

Some of the designs in SOVEREIGN were realized
algorithmically, and can be realized dynamically in
SOVEREIGN2. Other processes that are needed to achieve
a more comprehensive autonomous adaptive intelligence in an
embodied mobile system were not included at all. This article
summarizes neural models of important missing capabilities
with enough detail to define a research program that that can
consistently incorporate them into SOVEREIGN2. Missing
designs occur across both the What and Where processing
streams of SOVEREIGN (e.g., Figure 4).

In order to include these missing designs, SOVEREIGN2
embodies foundational brain design principles such as

complementary computing, hierarchical resolution of
uncertainty, and adaptive resonance that enable biological
brains to realize their autonomous adaptive intelligence. Some of
the missing designs in the What stream occur at early processing
stages, such as visual boundary completion and surface filling-in.
These processes require hierarchical resolution of uncertainty to
be completed. How this occurs sheds light on deep computational
reasons for how and why animals like humans and other primates
become conscious in order to generate effective actions.

Other missing What stream processes occur at higher
processing stages, such as autonomous learning of view-,
position-, and size-invariant recognition categories. Such
invariant learning requires modulatory interactions from parietal
regions of the Where cortical stream to inferotemporal regions
of the What cortical stream in order to ensure that only views
of a single object get bound together by associative learning in a
single invariant object category. The surface-shroud resonances
that support invariant category learning also play a role in
enabling social cognitive skills such as joint attention and
imitation learning to occur between a teacher and a student who
experience the world through different spatial perspectives.

Still higher levels of processing have parallel object and spatial
processing systems in both the What and Where cortical streams.
For example, prefrontal object and spatial working memories
need to be able to selectively filter targets from distractors before
storing them and their target positions in working memory. The
filtering machinery that does this also allows attention to be paid
to salient targets, and to use those targets to drive orienting
movements toward them.

Cognitive-emotional circuits are needed to enhance
predictions and actions that lead to valued outcomes, and
to attenuate those that do not. In order to do this effectively,
cognitive-emotional learning needs to be able to associate
sensory and rewarding cues that are separated in time.
Spectral timing circuits in the HIPPO help to support
cognitive-emotional learning in inferotemporal-amygdala/
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hypothalamus-orbitofrontal circuits. These circuits, in turn,
amplify or suppress cognitive and spatial working memory
circuits and plans according to whether they generate successful
goal-oriented actions or not.

Although looking and reaching behaviors can use target
position and present position estimates that can both be
directly computed from either external sensory cues or internally
generated movement commands, navigational movements need
more sophisticated networks to learn a navigator’s present
position in space. Entorhinal grid cells and hippocampal place
cells interact to incrementally learn place cells that can represent
spatial scales that are sufficiently large to support navigation
in ecologically relevant spaces. These learned spatial categories
are dynamically stabilized using the same Adaptive Resonance
Theory, or ART, Matching Rule that is found in the resonant
dynamics of many of the missing competences from which
SOVEREIGN2 can benefit.

These resonances include feature-category resonances,
surface-shroud resonances, cognitive-emotional resonances,
entorhinal-hippocampal resonances, and item-list resonances.
All of these resonances help to dynamically stabilize the learned
memories of their respective networks, and thereby enable
them to successfully operate in open-ended non-stationary
environments without experiencing the learning and forgetting
problems, notably catastrophic forgetting, that plagues all
algorithms of back propagation type, including the currently
popular and useful Deep Learning algorithms, and Bayesian
Explaining Away algorithms, among others.
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FIGURE S1 | Smooth pursuit of a target moving with a fixed speed and direction
creates retinal slip signals on the retina until the target is foveated, as well as
background motion signals in the opposite direction. As the target is acquired, the
background motion signals increase, and can maintain predictive pursuit that
maintains the target on the fovea. See the text for details. [Reprinted with
permission from Pack et al. (2001)].

FIGURE S2 | (a) A leftward eye movement channel. All connections are
excitatory. The retinal image is processed by two types of cells in MT. MT cells
with inhibitory surrounds (MT−) connect to MSTv cells, with MT cells preferring
greater speeds weighted more heavily. MT cells with excitatory surrounds (MT+)
connect to MSTd cells. MSTv cells have excitatory connections with
MSTd cells that prefer opposite directions. MSTv cells drive pursuit eye
movements in their preferred direction, and the resulting eye velocity is fed back to
MSTv and MSTd cells (thick arrows). Leftward eye rotation causes rightward
retinal motion of the background. The MT and MST cells are drawn so as to
approximate their relative receptive field sizes. (b) Model MST connectivity.
Excitatory connections are shown by solid lines. Inhibitory connections are
indicated by dashed lines. Thick line emanating from the pursuit pathway indicate
efference copy inputs. The leftward eye movement channel consists of an MSTv
cell preferring leftward motion and an MSTd cell preferring rightward motion, and
receives an efference copy signaling leftward eye movement. The rightward
eye channel is defined analogously. [Reprinted with permission from
Pack et al. (2001)].

FIGURE S3 | In this figure, black boxes denote areas belonging to the saccadic
eye movement system (SAC), white boxes the smooth pursuit eye movement
system (SPEM), and gray boxes, both systems. The abbreviations for the different
brain regions are: LIP, lateral intra-parietal area; FPA, frontal pursuit area; MST,
middle superior temporal area; MT, middle temporal area; FEF, frontal eye fields;
NRTP, nucleus reticularis tegmenti pontis; DLPN, dorso-lateral pontine nuclei; SC,
superior colliculus; CBM, cerebellum; MVN/rLVN, medial and rostro-lateral
vestibular nuclei; PPRF, a peri-pontine reticular formation; TN, tonic neurons.
Although an analysis of how this system works is beyond the scope of this article,
the macrocircuit does serve as a reminder that seemingly effortless behavioral
competences are often emergent properties of beautifully coordinated brain
dynamics among multiple brain regions with different functional roles to play
[Reprinted with permission from Grossberg et al. (2012)].

FIGURE S4 | Two views of the eye and retina. The top image shows a drawing of
a cross-sectional cut through the eye showing the retinal veins occluding the light
coming into the pupil before it reaches the photoreceptors. The photoreceptors
send axons to the brain via the optic nerve which, as seen in the bottom image of
a top-down view of retina, creates a blind spot that is comparable in size to the
fovea [Adapted with permission from Kolb, Fernandez, and Anderson
(http://retina.umh.es/Webvision/sretina.html)].

FIGURE S5 | This image emphasizes that, even the retinal image of a simple
object like a line can be occluded in multiple places by retinal veins and the blind
spot, thereby creating multiple positions along the line that do not provide reliable
inputs to the brain for directing actions to those positions.
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A major goal of neuroscience is understanding how neurons arrange themselves

into neural networks that result in behavior. Most theoretical and experimental efforts

have focused on a top-down approach which seeks to identify neuronal correlates of

behaviors. This has been accomplished by effectively mapping specific behaviors to

distinct neural patterns, or by creating computational models that produce a desired

behavioral outcome. Nonetheless, these approaches have only implicitly considered

the fact that neural tissue, like any other physical system, is subjected to several

restrictions and boundaries of operations. Here, we proposed a new, bottom-up

conceptual paradigm: The Energy Homeostasis Principle, where the balance between

energy income, expenditure, and availability are the key parameters in determining the

dynamics of neuronal phenomena found from molecular to behavioral levels. Neurons

display high energy consumption relative to other cells, with metabolic consumption

of the brain representing 20% of the whole-body oxygen uptake, contrasting with

this organ representing only 2% of the body weight. Also, neurons have specialized

surrounding tissue providing the necessary energy which, in the case of the brain, is

provided by astrocytes. Moreover, and unlike other cell types with high energy demands

such as muscle cells, neurons have strict aerobic metabolism. These facts indicate that

neurons are highly sensitive to energy limitations, with Gibb’s free energy dictating the

direction of all cellular metabolic processes. From this activity, the largest energy, by far,

is expended by action potentials and post-synaptic potentials; therefore, plasticity can

be reinterpreted in terms of their energy context. Consequently, neurons, through their

synapses, impose energy demands over post-synaptic neurons in a close loop-manner,

modulating the dynamics of local circuits. Subsequently, the energy dynamics end

up impacting the homeostatic mechanisms of neuronal networks. Furthermore, local

energy management also emerges as a neural population property, where most of

the energy expenses are triggered by sensory or other modulatory inputs. Local
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energy management in neurons may be sufficient to explain the emergence of behavior,

enabling the assessment of which properties arise in neural circuits and how. Essentially,

the proposal of the Energy Homeostasis Principle is also readily testable for simple

neuronal networks.

Keywords: homeostasis, energy, neuronal networks, behavior, emergent properties

INTRODUCTION

Throughout evolution, the development of the nervous system
has enabled animals with the capacity to manifest ever-
growing complex behavior, which has helped them survive in
a changing environment. Understanding how neurons arrange
themselves into neural networks that work at producing different
behaviors has always been a major goal of neuroscience.
Various conceptual frameworks have aimed to explain how
behavior emerges from neuronal activity. Arguably, the most
relevant is the Neuron Doctrine, proposed by Santiago Ramón
y Cajal and further developed by Heinrich Waldeyer-Hartz and
Horace Barlow (Barlow, 1972; Bock, 2013). Since then, the
same logic has spread into coding paradigms (Lettvin et al.,
1959; Fairhall, 2014; Yuste, 2015), especially in information
processing frameworks (Fodor, 1983; Friston, 2002; Robbins,
2010; Lorenz et al., 2011), and has been scaled from neurons
up to neural networks (Yuste, 2015). A common and key
element of these conceptual approaches has been to find
neuronal correlates of behaviors, effectively associating specific
behaviors with distinct neural patterns. This top-down approach
(using behavior as a reference to be mapped into neuronal
circuits) has been very successful in providing single-unit or
network models that can implement the observed behaviors, yet
simultaneously, may make difficult the capture of the emergence
of behavior, which is by-large a bottom-up phenomenon. This
methodological approach also limits our capacity of predicting
the boundaries of the capabilities or the spectrum of behaviors
of a given system, because we map or associate only those
behaviors that have been well-characterized. More importantly,
all theoretical approaches, to our knowledge, have only implicitly
addressed the fact that neural tissue, like any other physical
system, is subjected to several restrictions and boundaries
of operations.

Cells use energy to stay alive and at the same time,
maintain some reserves to respond and adapt to dynamic
situations, maintaining their homeostasis. For neurons, energy
availability would be further important, as their energy expenses
are high, as compared to other somatic cells (Attwell and
Laughlin, 2001; Shulman et al., 2004). Indeed, the metabolic
consumption of the brain, which represents 20% of whole-
body oxygen consumption, contrasts with the neural tissue
representing only 2% of whole body weight (Shulman et al.,
2004). Interestingly, the total brain energy consumption increases
proportionally with the number of neurons among different
species, including humans (Herculano-Houzel, 2011), and
the total energy expenditure associated to a neuron during
the signaling and resting states is constant in different
mammalian species (Hyder et al., 2013). Thus, neurons seem

to present a highly specialized system for managing their
energy demands.

Several evidences demonstrate that it is reasonable to assume
a constant value for energy availability for neurons over the long
term (energetic homeostasis). For instance, cultured neurons
exhibit a steady value for free adenosine triphosphate (ATP)
in basal conditions, which transiently decrease during the
induction of glutamatergic synaptic activity through various
energy challenges (Marcaida et al., 1995, 1997; Rangaraju et al.,
2014; Lange et al., 2015). This tight energy management suggests
a relevant role for neuronal energy homeostasis on neuronal and
network functional properties.

Here, we propose a new bottom-up conceptual paradigm
for neuronal networks: The Energy Homeostasis Principle.
Under this principle, the condition of maintaining neuronal
homeostasis triggers synaptic changes in the individual but
connected neurons, resulting in the local energy balance
scaling up to a network property. This conceptual framework
supposes that energy management might be critical in
determining plasticity, network functional connectivity,
and ultimately behavior.

CELLULAR HOMEOSTASIS AND GIBBS

FREE ENERGY

In this article, we propose that behavior may raise as an emergent
property rooted in energy requirement of neurons, thus, we
would like to start from the level of biochemistry andmetabolism.
As such, we will begin with the fact that cells are dynamic
molecular machines that require the nutrient intake to stay alive.
Many biological processes are thermodynamically unfavorable,
and through metabolism, cells draw energy from nutrients, and
generate metabolic resources necessary to drive their cellular
activities (Hofmeyr and Cornish-Bowden, 2000) (for a schematic,
see Figure 1A). Cellular homeostasis can be defined as a state
where the production and consumption of metabolic resources
balance each-other, and thus their concentration is constant
in time. For our specific context, balancing the intake and
consumption of metabolic resources will unavoidably have a
global impact on the cellular processes. The network of metabolic
processes is large and complex, limiting, to some extent, our
capacity to predict cellular behavior using basic principles.
Nonetheless, biochemical reactions must be consistent with the
laws of thermodynamics.

Thermodynamics can help us understand how a system
evolves in time through the comparison of the thermodynamic
potential between an initial and final state. For processes
at a constant temperature and pressure, the thermodynamic
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FIGURE 1 | Homeostasis requires a balance between ATP production (metabolism) and ATP consumption (synaptic activity): (A) Production of energy molecules by

metabolism supports neuron activity, in addition to cell maintenance processes, most notably by ATP [A(t)]. Neuronal homeostasis depends on a balance between

production and consumption of high-energy molecules. (B) Synaptic activity has been estimated to amount for half of total ATP consumption [diagram redrawn from

(Harris et al., 2012)]. For cellular homeostasis to be achieved, neurons must regulate their activity and metabolism in response to changing external perturbations. We

propose that regulatory mechanisms, responsible for changes synaptic plasticity, reflect the requirement for maintaining a constant level of energy resources available

for neurons to function.

potential is given by Gibbs Free Energy (G). This thermodynamic
potential will dictate a directional bias of chemical reactions. The
Gibbs Free Energy—supporting cellular processes—is provided
with a finite amount of metabolic resources. Thus, there is
a trade-off between the potential for metabolic work and
metabolic expenses, which, we propose, may explain some well-
established phenomenology of how cells respond to external
perturbations. Additionally, the change in the Gibbs Free Energy
(1G) and the rate associated with chemical transformations
are related (Crooks, 1999). To illustrate the relation between
thermodynamics and kinetics, for a reversible reaction X⇔Y, the
following relation constrains kinetic rates:

rate (X→ Y)

rate (X← Y)
= eG(X)−G(Y) (1)

In simple terms, the difference 1G{X⇒Y} can be thought of as a
“directional bias,” indicating how favorable one direction is over
the other. In more detail, the Gibbs Free Energy is divided into
two components, Enthalpy (H) and Entropy (S):

G (X) = H (X)− TS (X) (2)

Where, T is the absolute temperature (Silbey et al., 2004).
In the context of chemical transformations, Enthalpy is a
measure of the energy required to form a given substance,
disregarding interactions with other molecules; whereas Entropy
can be interpreted as a correction accounting for all possible
combinations by which molecules can react (Danos and Oury,
2013). Given the combinatorial nature of entropy, it can also
be interpreted as a measure of disorder or information, but
certain care must be taken for this interpretation to have physical
meaning (Jaynes, 1965). We wish to recognize that the direct
application of thermodynamics to biology has many challenges,
particularly in describing macro-molecular processes (Cannon,

2014; Cannon and Baker, 2017; Ouldridge, 2018), combining
large systems of reactions (e.g., kinetic parameters may be
required), and accounting for fluctuations from average behavior
(Marsland and England, 2018).

A long-standing observation in biology, rooted in
thermodynamic laws is that for cells to function, they must
couple unfavorable reactions (1G > 0) with more favorable ones
(1G < 0). Common examples of unfavorable processes are the
synthesis of macromolecules, and the maintenance of membrane
potential; which are coupled with the hydrolysis of ATP, and GTP
providing more favorable 1G (Nicholls, 2013). In turn, ATP,
GTP, and monomers for macro-molecules are synthesized from
nutrients through metabolism (Nicholls, 2013). For instance, the
maximum free energy provided by ATP hydrolysis is related to
the concentration of ATP, ADP, and phosphate.

1G (ATP→ ADP + Pi) = 1G◦ + RT
(

log [ADP]

+ log [Pi]− log [ATP]
)

(3)

Where, 1G◦ is the standard free energy, and log, the
natural logarithm. For generality, we will call hereafter “energy
resources” the set of reactants that allow cells to maintain
unfavorable reactions in the direction conducive to cellular
functioning and survival. We wish to emphasize that balancing
the internal production and consumption of metabolic resources
by different reactions is critical, given that metabolic resources
are finite and shared by many cellular processes. Thus, cells
must manage their internal production and consumption of
metabolic resources to stay alive and remain functional, which
may be of special consequence to cellular activities with high
energy demands, such as synaptic activity in neurons. Given
that neurons are active most of the time, it is reasonable to
expect that current and future disposal of energy resources is
privileged, which may be reflected in the regulatory mechanisms
responsible for synaptic plastic changes. In the following section,

Frontiers in Computational Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 4976

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Vergara et al. The Energy Homeostasis Principle

we will explain how current evidence regarding neuron plasticity
appears to support a relatively simple rule: maintain the levels
of energy disposal constant, by reducing the consumption of
energy resources (e.g., reducing discharge rate, post-synaptic
potential), or by increasing high-energy molecule production
(e.g., mitochondria and interactions with glia).

ENERGY MANAGEMENT OF

BRAIN NEURONS

Neurons are the paramount example of energy expenditure for
their function and survival. This situation is reflected in their
large metabolic rates and by the comparatively higher sensibility
of brain tissues to oxygen and glucose deprivation (Ames, 2000).
Reactions controlling the conversion of nutrients into available
cytosolic levels of ATP are important to generate the potential
metabolic work that is available to a neuron at any given time.
During normal conditions, the primary energy substrate in the
brain for neurons is blood-derived glucose; however, when at
elevated levels in the blood, ketone bodies and lactate can be
used as energy sources as well (Magistretti and Allaman, 2018).
The glycolytic pathway is the first step to glucose processing,
where two pyruvates and two ATPs are generated from one
molecule of glucose. In addition, the pyruvate could either be
reduced to lactate or enter the Krebs cycle to produce metabolic
reducing intermediates that will generate nearly 29 additional
ATP molecules per glucose (through oxidative phosphorylation
in the mitochondria). Although neurons and astrocytes are
capable of glucose uptake and performing both glycolysis and
the Krebs cycle, accumulated evidence supports the hypothesis
that neurons may “outsource” glycolytic activity to astrocytes
under activity conditions (Weber and Barros, 2015). In addition,
the central nervous system is provided with small glycogen
reserves, which are predominantly present in astrocytes (Brown
and Ransom, 2007), but also found in neurons (Saez et al., 2014).
In any case, the lactate derived from glycogen break-down may
also provide ATP to the neurons under ischemic or sustained
electric activity conditions (Brown and Ransom, 2007).

ATP sources change dynamically with neuronal activity and
several mechanisms account for this fine-tuning response. First,
neuronal mitochondria are capable of raising ATP synthesis in
response to increased synaptic stimuli (Jekabsons and Nicholls,
2004; Connolly et al., 2014; Rangaraju et al., 2014; Toloe
et al., 2014; Lange et al., 2015). Although the molecular
meditators for this activation are not completely elucidated,
the increase of the respiratory rate of an isolated mitochondria
correlates well with the ADP concentration (Brown, 1992), and
neuronal mitochondrial function has been satisfactorily modeled
considering the changes in ATP and ADP levels (Berndt et al.,
2015). As an alternative mechanism, it has been reported that
operating on milder stimulation conditions, the activity of Na-
pump rapidly induces ATP synthesis of the mitochondria, in
response to neuronal activity independent from changes in
the adenosine nucleotides (Baeza-Lehnert et al., 2018). Second,
neuronal activity is known to elicit local increases in blood

flow (neurovascular coupling), glucose uptake, and oxygen
consumption (Sokoloff, 2008). Coherently, glucose uptake and
glycolytic rate of astrocytes are further increased in response to
the activity of excitatory neurons, potentially as a consequence
of the local rise of glutamate, ammonium (NH4), nitric oxide
(NO), and importantly, K+ (Magistretti and Allaman, 2018).
As such, an increased glycolytic rate on astrocytes leads to
lactate accumulation that is shuttled into neurons which generate
ATP through oxidative phosphorylation. Thus, in CNS neurons,
different neuronal and non-neuronal ATP sources work “on
demand,” depending on the local levels of synaptic activity.

What Is ATP Used for in Neurons?
Neurons are perhaps the largest eukaryotic cell in nature, their
surface may be up to 10,000 times larger than an average cell
(Horton and Ehlers, 2003). The large size of neurons supposes
that structural processes, such as protein and lipid synthesis
or the traffic of subcellular organelles, should be sustained by
high levels of ATP synthesis. In addition to this fact, energy
consumption during signaling is far more important. Indeed, it
has been estimated that nearly 75% of the gray-matter energy
budget is used during signaling; a number that is coherent with
the decrease of energy consumption, observed under anesthesia,
and is estimated to be around 20% of the total energy budget
(Attwell and Laughlin, 2001; Harris et al., 2012).

Most of the neuron’s energy budget during signaling is used
to restore ion gradients across the plasma membrane, mediated
by the action of different ATP-dependent pumps. For example,
assuming an average firing rate of 4Hz, a presynaptic neuron’s
ATP is mostly used for restoring the Na+ gradient due to
action potentials, and to sustain the resting potential (22% and
20% of energy consumption, respectively). Meanwhile, at the
post-synaptic neuron, ATP is primarily used to extrude ions
participating in post-synaptic currents—about 50% of the energy
consumption (Harris et al., 2012). More detailed descriptions of
the neuron energy budget is provided in Figure 1B.

Neuron’s ATP Availability Is

Tightly Regulated
All cellular organizations require a minimum amount of ATP
for survival. It is well-known that when ATP levels decrease
below a certain threshold for different eukaryotic cells, apoptosis
or necrosis is induced (Eguchi et al., 1997). Nevertheless,
determining the maximum and minimum thresholds of a cell’s
ATP requirement for not only to survive but to realize a
specialized function, is less apparent. In any case, this feature
must be necessarily shaped by evolutionary adaptations of cells to
their specific tissue environment. It is not completely clear how
a neuron’s ATP levels, during rest and upon activity, may impact
its structure and function. Interestingly, by computational and
mathematical modeling, it has been proposed that a compromise
among energy consumption and information processing capacity
has shaped the fundamental features of neuronal structure and
physiology, including neuronal body size, ion channel density,
and the size and frequency of synaptic inputs (Sengupta et al.,
2013). For example, a larger neuronal body has a better capacity
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to discriminate and respond to different synaptic inputs (coding
capacity), but at the cost of higher energy consumption. On the
other hand, with a fixed size for the soma, the ion channel density
required to obtain maximum energy efficiency is at a lower
value than the density needed to maximize the coding capacity.
Similarly, although small synaptic inputs at low frequencies are
energetically more efficient, better coding capacity arises with
larger inputs and rates. These energy constraints may have
introduced important consequences during cellular evolution,
such that neurons with similar shape and function may harbor
similar metabolic features, even across different species.

Remarkably, it has been found that energy consumption
of neurons, across the brains of varying species, is constant
(Herculano-Houzel, 2011). This result supposes a critical
restriction for the function of neuronal networks and their coding
properties. For example, sparse coding i.e., brain computations
that emerge from the increased firing rate of a few neurons during
a task, has been proposed as a mechanistic solution to the limited
energy availability for brain neurons (Attwell and Laughlin,
2001; Laughlin, 2001; Lennie, 2003; Weber and Barros, 2015).
Thus, it is also possible that variables such as the ATP cytosolic
concentration may have been finely tuned during evolution to
allow for the emergence of fundamental properties, including
some forms of synaptic plasticity.

Accumulating evidence supports that neurons, in time, harbor
a narrow window of ATP cytosolic concentration availability
[A(t)]. Despite not having dynamic measurements with absolute
values of A(t), different experimental approaches on cultured
neurons show that this variable tends to remain constant at
resting conditions and after momentary synaptic challenges.
Accordingly, 60min of different sorts of glutamatergic
stimulation leads to a nearly 5-fold decrease of A(t) (Marcaida
et al., 1995, 1997), but when a brief glutamatergic or electric
stimulation is applied, only a transient and reversible decrease
on ATP levels occurs and the A(t) is subsequently restored to
basal levels (Rangaraju et al., 2014; Lange et al., 2015).

Tight management of A(t) also operates on axonal
compartments with important functional consequences.
For instance, isolated axons from the optical nerve, under low
glucose conditions, demonstrate a pronounced decay of ATP
levels during high-frequency stimulation (50–100Hz) (Trevisiol
et al., 2017). Interestingly, compound action potentials (CAPs),
generated by those stimulated axons, are reduced to the same
extent and in high coincidence as the A(t), suggesting that
electric activity depends on A(t) (Trevisiol et al., 2017). In
addition, isolated axons exhibit a constant value for A(t), which
immediately and steeply decays after the inhibition of glycolysis
and oxidative phosphorylation, in concomitance with CAPs.
However, when inhibitors are washed out, both A(t) and CAPs
return to basal levels, further supporting that the system tends
to reach a constant value for A(t). The tendency of the system to
set a constant value for A(t) is also manifest in conditions where
expenditures are highly reduced. For example, A(t) remains
constant on pre-synaptic terminals of cultured hippocampal
neurons, despite the inhibition of action potential firing due to
incubation with the Na+ channel blocker Tetrodotoxin (TTX)
(Rangaraju et al., 2014). Conversely, the same study showed

that electrical stimulation of 10Hz by 1min, concomitantly
evokes ATP synthesis on pre-synaptic terminals, restoring A(t)
to basal levels (Rangaraju et al., 2014). From now on, we will
call the basal value of A(t) as the homeostatic availability of
ATP (AH).

Mechanisms accounting for the intrinsic control of AH in
neurons are less explored than in other cells. In the short term,
there is a direct and fast effect of ATP molecules and their
hydrolysis products, such as AMP/ADP, over the activity of
different metabolic enzymes and ion channels. Indeed, neurons
are largely known for being extremely, even disproportionately,
sensitive to decreases in ATP sources, leading to a fast and
significant inhibition of electrical activity (Ames, 2000). For
example, ATP-sensitive K+ channels open during decreased ATP
levels, hyperpolarizing the neuron to reduce endocytosis and the
opening of voltage-sensitive Na+ channels, thus preventing the
ATP expenditure associated to both processes (Ben-Ari et al.,
1990). On the other hand, it has been elegantly shown that
action potential firing on pre-synaptic terminals’ gate activity-
driven ATP production is also required to allow proper synaptic
transmission (Rangaraju et al., 2014). This close dependency
of ATP levels to synaptic functioning has suggested that the
affinity constant for ATP (e.g., Km) of different pre-synaptic
enzymes, might be close to certain resting ATP levels (Rangaraju
et al., 2014). It is tempting to speculate that the fine-tuning
of the affinity constant from key enzymes might be a broader
phenomenon in neurons. In addition, it is known that calcium
entry, which is transiently modified by electrical activity, is
capable of orchestrating changes in ATP production. For
example, synaptic stimulation with brief NMDA pulses, not only
lead to pronounced increases of cytosolic calcium levels, but also
of the mitochondrial matrix, whose ATP producing enzymes are
known to be stimulated by calcium increases (Tarasov et al., 2012;
Lange et al., 2015). Indeed, transient increases of calcium levels
are thought to be a sort of metabolic alarm which prepares cells
to confront high energy demands by increasing ATP production
by the mitochondria (Bhosale et al., 2015).

As a complementary mechanism, changes in the ATP and
AMP ratio gate the activity of other metabolic sensors which,
in turn, induce a specific signaling cascade for short and
long-term adaptations of neuronal functions. For example,
all known eukaryotic cells, including neurons, harbor energy
sensors, such as AMP-activated protein kinase (AMPK), which
tend to restore ATP concentration by decreasing anabolic
and/or energy consuming processes, while increasing energy
production through catabolism post-energy challenges (Potter
et al., 2010; Hardie, 2011; Hardie et al., 2012). AMPK is a
highly evolutionary-conserved serine/threonine kinase enzyme
that is activated either by diminished cellular energy (high
AMP/ATP ratio) and/or through increased calcium (Hardie
et al., 2012). Recent evidence shows that in dorsal root
ganglion neurons—which express the transient receptor potential
ankyrin 1 (TRPA1) channel for thermal and pain transduction—
the AMPK activation results in a fast, down-regulation of
membrane-associated TRPA1 and its channel activity within
minutes, which is consistent with lowering energy expenditure
by diminishing post-synaptic currents (Wang et al., 2018).
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Furthermore, it has been demonstrated that calcium overload,
induced by an excitotoxic NMDA stimulus on cultured cortical
neurons, can be reduced by the activation of AMPK, which
would save the energy involved in the reversal of a Ca++

potential (Anilkumar et al., 2013). Interestingly, the actions
of the catalytic subunit of neuronal AMPK also includes the
inhibition of axon outgrowth and dendritic arborization during
neuronal development, for adapting to metabolic stress mediated
by the suppression of Akt and mTOR signaling pathways
(Ramamurthy et al., 2014). This result suggests that AMPK may
also operate in mediating structural synaptic changes during
the activity of mature neurons, contributing to control energy
expenditures in the long-term. Furthermore, it has been shown
that the maintenance of long-term potentiation (LTP), which is
energetically demanding, is dampened when AMPK activity is
pharmacologically activated (mimicking a low ATP/AMP ratio),
or conversely, LTP could be rescued when an ATP mimetic,
ara-A, was added during an energy challenge. Thus, under low
energy conditions, neuronal AMPK tends to inhibit changes on
ionic gradients and reduce changes on cytoarchitecture, which
can upregulate the value of A(t), impacting plastic capacity
as well.

Summarizing, each neuron has a certain amount of
ATP available to them, which is constantly consumed by
their different functions which can mostly be explained
using ion gradient changes on axons and dendrites. At
the same time, ATP production will compensate the ATP
expenditure reaching an AH that should remain constant
until another specific synaptic challenge arrives (Figure 2).
In the next section, we will discuss the potential functional
consequences of these adaptations in special cases of
neuronal plasticity.

Revisiting Neuronal Plasticity Under the

Perspective of Energy Constraints
A narrow window of ATP cytosolic concentration across time
supports a bottom-up view of neuronal energy constraints, which
may explain some well-described plastic adaptations from the
literature. Measurements of glucose and oxygen consumption
(reflecting energy consumption) have not distinguished between
the contribution from glial and neuronal metabolism and the
total energy expenditure attributed to one neuron (Hyder et al.,
2013). Nonetheless, neurons would keep energy availability
during the increment of energy demands, which include action
potentials, potential propagation or dendritic depolarization,
by dynamically sharing expenses with astrocytes glial cells
(Hyder et al., 2006; Barros, 2013). It is worth mentioning that
energy management is partly performed by these latter cells
(Magistretti, 2006; Magistretti and Allaman, 2015). Indeed, we
must consider that ATP neural production is provided by the
local pyruvate and glial lactate. Where a theoretical model aimed
to explain brain energy availability from rat and human brains,
it indirectly suggested that glial and neuron lactate sources may
dynamically vary across different species and activity levels, with
the condition of maintaining a rather constant energy production
(Hyder et al., 2013).

We will follow a very simplified view of ATP metabolism
characterized by two collections of processes: Those that produce
ATP (e.g., from local pyruvate and glial lactate), and those
that consume ATP (e.g., recovery of ion gradients, structural
and functional synapse maintenance). We can formalize the
effect of these processes on ATP concentration (A) by a simply
differential equation:

∂A

∂t
= P (t,A, . . .)− C (t,A, . . .) (4)

Where, P (t,A, . . .) is a function that represents the sum of all
reaction rates that produce ATP (e.g., anaerobic and aerobic
metabolism), whereas C (t,A, . . .) is the sum of all reaction rates
that consume ATP (e.g., membrane repolarization, structural
and functional synapse maintenance). Both production (P) and
consumption (C) rates are dynamic (they depend on time), but,
more importantly, they depend on the levels of ATP available (A).
Homeostasis will be achieved when production and consumption
rates are equal, and the concentration of ATP is constant in time.
We will represent the homeostatic concentration of ATP by AH .

We can interpret the observations of relatively constant ATP
concentrations in neurons, as reflecting the action of feedbacks
that adjust ATP production (P) and consumption (C) rates,
compensating deviations of ATP (A), such that neurons return
to homeostatic ATP levels (AH). We can expect that in case
cells have an excess of ATP, they would respond by decreasing
production or/and increasing consumption; and analogously, in
case ATP levels are reduced, cells would respond by increasing
production or/and decreasing consumption. We will call this
regulation the neuron “energy management,” and summarize it
mathematically using these equations:

{

A > AH ⇒
∂P
∂t ≤ 0, ∂C

∂t ≥ 0

A < AH ⇒
∂P
∂t ≥ 0, ∂C

∂t ≤ 0
(5)

Meaning that the differences between A with AH determines
whether ATP production (P) and consumption (C) processes
increase, decrease, or maintain their rates over time. Note that we
also consider the possibility that neurons may respond to energy
challenges by adjusting production and consumption, but it must
be at least one of those variables.

It is critical to notice that this formalization makes some
important simplifications. First, we understand that in addition
to ATP, the concentrations of ADP, AMP, and other energy
resources do determine homeostasis and influence neuronal
changes. ATP is a reasonable departure point, given its prevalence
in metabolism and the evidence supporting its role in synaptic
plasticity, and therefore, will be the main example of energy
resource exploit in our argument. An additional reasonable
assumption is that the magnitude of the change in reaction
rates should correlate with the magnitude of the distance to
homeostasis, which we have omitted from the equations but
will become relevant later in our argument for proposing
experiments. We expect to expand toward a more detailed
formalism in future work. Despite its simplicity, we think that
our model can help to understand several previous studies
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FIGURE 2 | Neuron activity induces changes in metabolism and synaptic activity to maintain homeostatic energy levels: Schematic illustration of neuronal response to

an increase in activity. Above, in scale of colors, ATP concentration indicating from low to high A, with AH at the center. Below, step 1 depicts a resting state with A(t0)

= AH. In time step 2, the increase in activity would result in additional ATP consumption, and therefore reduce ATP concentration. We propose that neurons would

respond to this perturbation by decreasing ATP consumption [C(t)] and increasing its ATP production [P(t)], as represented in time step 3. Finally, neurons would return

to homeostatic levels of ATP (AH), which is illustrated in time step 4. During all these steps, A(t) is colored following the above ATP concentration color scale. Some

factors that contribute to ATP consumption are as follows: synaptic post-excitatory currents (excitatory inputs), firing rate (excitatory outputs), ion channel density, size

of soma, dendrite arborization and axonal length, neurotransmitter recycling and release, and cytoarchitecture adaptations. Whereas, factors contributing to ATP

production are: glycolysis supported by glucose or glycogen breakdown, oxidative phosphorylation supported by neuronal pyruvate, astrocyte-derived lactate, and

ketone bodies. Neurons possess regulatory mechanisms that sense current energy levels (here represented by a rotating wheel with a floating balloon), and control

production and consumption, to maintain homeostasis. Examples of these control mechanisms would include ATP-Sensitive K+ channels, and AMPK signaling.

and propose some experiments aimed at empirically evaluating
the relation between energy resource availability and neural
plasticity. We expect that simple phenomenological models,
such as ours, will encourage both theoretical and experimental
efforts, provided they can be readily falsified empirically,
and be compared to theoretical derivations from biochemical
first principles.

The tendency to set ATP at AH might be compatible with
homeostatic plastic changes that return a neuronal network to a
basal firing rate, after prolonged periods of increased or decreased
synaptic activity (homeostatic synaptic plasticity). Accordingly,
it has been theoretically proposed that the excitability threshold
of neurons might be a direct function of ATP (Huang
et al., 2007). For example, the KATP channel-opener diazoxide
decreases bursting and regular firing activity of the immature
entorhinal cortex neurons (Lemak et al., 2014), which is coherent
with a tight association of firing rates with contingent ATP
concentration. Also, theoretically, neuronal circuits governed
by purely Hebbian-plasticity rules are predicted to converge
on instability, or to the opposite—total inactivity (Miller and
MacKay, 1994). One possible solution to enable neuronal circuits
to remain responsive is to limit the amount of synaptic strength
per neuron. At least on excitatory synapses, this problem has
shown to be solved by another form of synaptic plasticity

termed “homeostatic synaptic plasticity,” and more specifically,
“synaptic scaling” (Turrigiano et al., 1998; Turrigiano, 2012).
Synaptic scaling emerges to counteract the effects of long periods
of increased or decreased synaptic activity in a multiplicative
manner, thus allowing neurons to continuously reset the
weight of their synaptic inputs to remain responsive to new
environmental and cellular contexts. In the long term, the
consequence of this regulation is that the firing rate of cortical
cells in culture is sustained to an average set point (Turrigiano,
2012). As far as we know, no attempt has been made to relate
or prove the influence of neuronal energy load or A(t) on
this phenomenon.

Simple experiments on synaptic scaling could be performed
to examine whether the tendency to reach AH has a predictive
value on the synaptic activity of neuronal networks. As shown
in the seminal experiments of Turrigiano’s group, when a
GABAergic inhibitor bicuculline (Bic) is acutely added to
cultured neurons, it produces a significant increase in average
firing rate. However, during 48 h of stimulation, firing rates
return to control values. On the other hand, neuronal firing
rates can be completely abolished soon after adding either
tetrodotoxin (TTX) or 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX). Nevertheless, during the 48 h of incubation, activity
levels also return to a basal value (Turrigiano et al., 1998). The
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observed adaptive changes that operate in the long-term makes
this experiment ideal for manipulating energy parameters.

Similar to the experiment of synaptic scaling performed
by Turrigiano’s group, in our theoretical experiment, cultured
neurons would be submitted to 48 h of synaptic activity
stimulation with Bic. During the stimulus, A(t) will transiently
decrease, inducing plastic changes on the network that will return
ATP concentration to AH, in a given time period (t1) (Figure 3A).
In all conditions, P(t) and C(t) change accordingly with A(t),
following Equations 4 and 5. However, if, during the stimulus, the
neurons were pharmacologically modified to partially decrease
ATP production [e.g., by blocking oxidative phosphorylation
with sodium azide], expenditures C(t) are expected to be rapidly
lowered and the time window required to return to the AH value
will be shortened (Figure 3B). Conversely, one could “enlarge”
the theoretical value of AH on cultured neurons by adding an
ATP mimetic, such as ara-A. Here we assume that ara-A would
cause inhibition of AMPK signaling, and that concentrations
employed are low enough not to disturb the ATP synthesis. Thus,
we propose that the neurons will take more time to return to
AH (Figure 3C). Under these three conditions, the firing rate of
neurons should also be adapted to the same level as in the initial
state, before stimulation, as well as ATP concentrations should
return to the homeostatic value AH.

FROM MOLECULES TO

BEHAVIORAL HOMEOSTASIS

In the previous sections, we have discussed how the energy
homeostasis can affect synaptic plasticity in one neuron.
Subsequently, this plasticity can impact other neurons that
will trigger the same control systems to keep their AH.
Since energy demands are transferred through synapses, and
synapses appear or disappear according to energy demands,
a network homeostasis comes into play. In this section, we
argue that energy constraints scale up a level of organization
and how homeostasis in one level is affected by homeostasis in
the others.

From Neurons to a Neural Network
The first level is single neuron homeostasis, which is the balance
between C(t) and P(t) in single neurons. Importantly, as far as
an action potential producing a post-synaptic potential goes, it
necessarily imposes an increment in C(t) for the post-synaptic
neuron. As such, neurons manage their energy needs which
also present an external demand from pre-synaptic neurons,
and also imposes an energy demand over the post-synaptic
neurons. The fact that a local increase in the C(t) can produce
a change in post-synaptic neuron’s C(t) supports that energy
management is also a neural population property, which we
will name network homeostasis. The single neuron homeostasis
is closely related to the network homeostasis through a two-
way directional interaction, where the network structure imposes
constraints on the range of possible homeostatic states that a
neuron can achieve, which will, in turn, pose stress on the
network through interactions with neighboring neurons. In the

sameway, these neurons will respond bymodifying their synaptic
weights (also known as network connectivity), the number and
the location of their synapses, thus changing the functionality of
the neural network structure (maybe even micro-anatomically).
In any condition that causes an imbalance between C(t) and
P(t), the neurons will tend to change. Since neurons activate
each other through synapses, this means that the activity of the
pre-synaptic neurons will induce metabolic work in the post-
synaptic ones. In turn, a post-synaptic neuron will modulate its
synaptic weight to couple the input from the pre-synaptic neuron
to its ownmetabolic needs. This process will continue recursively
until the neurons balance their C(t) and P(t), in which case the
network would have reached homeostasis. Essentially, network
homeostasis is driven by the needs of each neuron, as each of
them will change in an attempt to reach their own AH. Note
that it is not necessary that every neuron should reach its own
AH, as the connectivity of activity within the network may not
allow them to improve further. However, every single neuron
must have enough P(t) to devote toward maintenance processes
required to stay alive. As such, network homeostasis becomes a
neural population property.

Network homeostasis is tightly related to single neuron
homeostasis; therefore, neural network homeostasis will be
only achieved when several of the neurons that compose it
individually can maintain themselves within homeostatic ranges
(e.g., achieving AH). It is known that synaptic and dendrite
pruning are a part of healthy development (Huttenlocher, 1990;
Riccomagno and Kolodkin, 2015), which we could interpret
as adjustments required to couple with the trade-off between
maintaining the structure vs. the energy spent in action and
post-synaptic potentials. In worse cases where suboptimal
conditions are imposed on a single neuron by the neural network
homeostasis, we expect to find neuron death. This phenomenon
is documented as a part of normal brain development in some
species (Huttenlocher, 1990), and also in pathological conditions
(Perry et al., 1991; Kostrzewa and Segura-Aguilar, 2003; Pino
et al., 2014).

From Neural Networks to Behavior
Behavior can be broadly described as the set of actions performed
by an organism, or anything that an organism does that
involves movement and response to stimulation. These actions
are adaptive when they increase the survival and reproduction
probability. In a top-down interpretation of behavior, these
actions are the result of the activation of the neuronal circuit that
developed evolutionary to fulfill a need. Nonetheless, according
to the Energy Homeostasis Principle, at the neural circuitry level,
the actions performed by an organism are out of spatial and
temporal context, since all the cells experiences are perturbations
of the network activity. For a given neuron, the activity dynamics
is dependent on the cumulative synaptic currents, regardless of
the type of pre-synaptic cells that evoked them, or in the case of
sensory receptors, the type of energy that is transduced. Similarly,
it makes no difference for a given neuron to have neuron-
neuron or neuro-muscular/endocrine synapses. Conversely, we
can reinterpret behavior as the observed consequence of the
homeostatic activity of an extended neural network (brain) which
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FIGURE 3 | Hypothetical experiment to evaluate the influence of energy availability on synaptic scaling: The influence of energy availability in synaptic plasticity could

be evaluated empirically. Here we propose a simple hypothetical scenario and explain what outcomes we predict under each condition. (A) Cultured neurons are

stimulated with bicuculine (Bic) for 48 h (denoted by a black bar), which presumably induces transient changes in ATP concentration [A(t)]. Neurons respond by

increasing ATP production [P(t)] and reducing ATP consumption [C(t)] by reducing its firing rate, which leads to the reestablishment of homeostatic ATP concentration

within the time window enclosed by dotted lines. (B) During stimulation, cultured neurons can be pharmacologically treated to partially inhibit oxidative

phosphorylation (i.e., reducing ATP synthesis) denoted by a black arrow. Following the Energy Homeostasis Principle, we propose this will result in a further reduction

of ATP concentration, which will induce an accelerated reduction in ATP consumption through the reduction of synapse firing rates. Thus, we propose that in this

scenario the time window required to return to homeostasis is shortened. (C) Almost an identical protocol to (B) is applied to neurons; however, using an ATP mimetic

molecule (denoted by the black arrow). We assume that ATP mimetic molecules would delay the reduction of synapsis firing rate by allosterically inhibiting AMPK,

resulting in an enlarged period of energy consumption. Thus, we propose a wider time window before reaching AH. All graphics follow Equations 4 and 5, with the

additional assumption that the magnitude of the adjustment of P(t) and C(t) are proportional to the distance of ATP levels A(t) to homeostatic levels AH. Results from

these kinds of experiments could advance the understanding (and potentially manipulate) of the mechanisms responsible for neural adaptations, uncovering the

relevant role of metabolic elements, such as metabolic sensors and/or nutrient availability.

interacts with the environment. Sensory input andmotor outputs
can thus be viewed as “environmental synapsis.” Under this
framework, what we call behavior may be not necessarily be
different from the range of actions neurons engage in any circuit.

However, the interaction with the environment has an
important difference that will impact the energy balance in
the neuronal network. We can operationalize behavior in a
neural system as a set of inputs and outputs that occur in a
closed-loop manner. For instance, when we move our eyes,
the brain is generating output activity, which in turn modifies
the subsequent input to the retina. These dynamics occur for
all sensory systems, where motor acts modify sensory inputs
(Ahissar and Assa, 2016). In this process, for each brain action,
we should expect changes to occur in some sensory inputs. In
other words, behavior can be seen as one of the ways in which the
brain stimulates itself.

In principle, this closed-loop scheme would enable the brain
to completely predict the sensory consequence of the motor
actions. This processes of active inference is in line with
previous proposals such as Friston’s free energy principle and
predictive coding (Friston, 2010; Schroeder et al., 2010). It
is crucial to note that Friston’s Free Energy Principle used
an informational approach where aspects such as temperature
do not refer to the absolute temperature measured in an
experimental setting. As such, the Energy Homeostasis Principle
does not conceptually overlap with Friston’s proposal; they
can be considered as complementary. From a bottom-up view,
Friston’s proposal answers the epiphenomena, which can be
related to information processing, rather omitting the underlying
physiological constraints. However, in any of these proposals,
there is an agreement that the brain is capable of predicting
sensory input, and that it seems to reduce uncertainty as far
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as possible. In the case of Friston’s proposal, it refers to the
reduction of informational uncertainty, while in the Energy
Homeostasis Principle, it refers to the reduction of energy
sensorial input uncertainty.

Parsimoniously, the brain cannot fully predict the sensory
inputs that occur after every motor act, because changes that
are independent of the action of the organism also occur in the
environment, and these changes may be critical to its survival.
According to the EnergyHomeostasis Principle, we should expect
that neural networks will operate in a way that will favor the
behavioral input activities within homeostatic energy ranges. If
a given input is energetically too demanding, we should expect a
change in behavior. If a given set of motor activity consistently
produces an energy stressor input, it will cause synaptic changes
in the brain, as the energy balance processes are spread over the
neuronal network.

Sensory input represents the major energy challenge in the
brain, while the motor output is the only way a neural network
can modify this input. This way, the neuron in the network has
the chance to regulate its C(t), given the pressure representing
sensory input. Neural networks will restrict the palette of
behaviors that can be observed, while behavior will impose energy
demands that the neural network will couple with by modifying
behavior. For these reasons, behavior can also be considered as
a phenomenon which affects the energy homeostasis in a two-
way direction. Thus, an at least three-level nested system can be
depicted, where each level will have a two-way interaction with
each other (see Figure 4).

According to the Energy Homeostasis Principle, a key
aspect to explaining adaptive behavior must reside within the
brain’s macro-structure and evolutionary mechanisms. Given a
certain palette of sensory specializations, set of effectors, and
brain structures, it will impose the range of possible energy
disposal attractors that can emerge. For instance, the number
of sensory cells, and their sensitivity to stimuli will determine
the energy input imposed on neural tissue. The effectors given
will determine the space in which a neural network must control
that input. The macrostructure of the brain will then impose
general restrictions on the neural network homeostasis. For
instance, the visual cortex mainly receives visual input, and the
communication through brain regions is mainly achieved using
major tracts. As such, the series of C(t), imposed by one neuron
on another, must follow the paths allowed by the macrostructure.
This means, that neural network homeostasis will not only be a
function of energy input provided by the sensory cells, and the
chances to control it using effectors, but also of macro anatomical
restrictions produced by genetic mechanisms (Gilbert, 2000a,b).

Evolutive pressures must act over all traits—genetic,
physiological, and behavioral—of the organism (Darwin, 2003).
As such, evolutive pressures have selected a sensory and effectors
pallet, as well as a brain macrostructure. We conjecture that
from the set of behaviors that satisfy the energy constrictions,
behaviors that statistically improve the chances of surviving will
be selected. We propose that the macro-anatomical structures
impose a certain system of dynamic energy management among
neural networks, which force the emergence of a certain set of
energy attractors producing, in turn, a specific set of behaviors.

FIGURE 4 | Energy homeostasis: An integrated view of neurons, networks

and behavior schematic of the three nested levels of the energy homeostasis

system. Each level represents one unit and its proximal operations. Neuron

refers to one neuron which must manage its energy consumption, which will

trigger neuron-plastic changes. Many of these neurons will build a network,

which has connectivity properties and population energy demands. Many

networks working together will deploy behavior through motor actions, while

also receive the sensory input. All levels present a two-way energy interaction

between behavior, neural networks, and neurons. The figure intends to present

how sensory input can be considered an energy demand at network and

neuron levels, while motor output through behavior gives room to control part

of the sensory input.

It is important to consider that in animals that display a large
set of behaviors, probably what is selected is the ability to learn.
This concretely would mean that the selected is not a specific
behavior, rather the flexibility with which an organism must
adapt behaviorally during its own life.

Given this bottom-up view, we conclude the existence of
behaviors strictly required for survival, and others which might
present adaptive advantages given the specific context of the
organism. In human primates, for example, there is a vast set
of behaviors that are not strictly for the survival of the single
individual in any context, yet they exist, such as leisure activities,
those related to the production of art in its multiple forms,
and even pathological behaviors which might directly impact
the individual’s health or survival. As far as these non-strictly
adaptive behaviors do not impact the organism’s life, they might
be highly adaptive in certain contexts.

In any case, evolutionary mechanisms will shape the nervous
system’s macrostructure and behavior so that both are aligned
in a way where solving the energy constraints of a single
neuron and the neural network will lead to survival. If not,
that macrostructure is expected to be lost, as those organisms
will die. In fact, there is no need that all these levels work in
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alignment per se, rather they must only be aligned to survive.
Evolutive pressures will remove the organisms where the three
level systems present goals that don’t benefit each other. Since we
can only see the animals that present all three level goals aligned,
we have historically thought that neurons, neural networks,
and organisms share the same goal. We proposed here that
evolution shaped organisms, so when a neuron solves their needs,
the behavior emerges as an epiphenomenon, which enables the
organism to solve its needs, hence surviving.

PERSPECTIVES OF REINTERPRETATION

In this section, we aim to contrast our proposal with evidence and
highlight the corollary aspects which can open new avenues of
research. Concretely, we will evaluate if we can reassess evidence,
considering the Energy Homeostasis Principle. We think that
this proposal is parsimonious as in spirit the rule is simple,
what makes it complex is the wide range of interactions and
properties that can emerge from the neural interaction constraint
imposed by this rule. We believe that our proposal captures
the essence of the concept of Braitenberg’s vehicles (Braitenberg,
1986)1 and provides a plausible solution to the dynamics
elaborated there. Naturally, Energy Homeostasis Principle still
has some limitations. It is unclear how we can scale up this
principle in networks as large as the brain. The metabolic
mechanisms in neurons are quite complex, and still we need
more empirical information to tune the mathematical modeling.
We decided to use ATP as an energetic proxy, but many other
molecules are used by neurons as energetic resources, and may
present a dual signaling-resource condition activating control
systems. We have mention abundant literature that shows an
association between energy related variables and neural activity.
However, we have not presented direct evidence of how energy
constraints shape plasticity and neural network properties.
Despite these limitations, the Energy Homeostasis Principle
can be tested empirically by associating plasticity markers with
energy availability, production, and consumption as mentioned
in section “Revisiting neuronal plasticity under the perspective of
energy constraints.” More importantly, this proposal serves new
empiric avenues to study the working of the brain. For instance,
plasticity has always been thought to be the changes required
to fix a given behavior. However, according to our proposal,
plasticity is a process that takes place not only during learning but
continuously, as a core component of the constant deployment
of behavioral changes. As such, plasticity might not only be a
determinant of behavior acquisition but a key aspect of ongoing
behavior. In the following subsections, we will briefly discuss
different strategies which can be used to extend further from

1Braitenberg vehicle is a concept proposed by Braitenberg (1986), referring to a

simple vehicle that has two sensors, each connected to an effector, i.e., a wheel,

that provides the vehicle the ability to navigate in a given environment. The

activation of the sensors can increase or decrease the speed of the respective wheel.

In addition to the sensor-effector relationship, the physical configuration of the

sensors and the wheels will determine the navigation “behavior” of the vehicle

when the stimuli are present in the environment. One major conclusion of this

concept is that complex behaviors arise from relatively simple properties (sensors,

circuitry, and effectors) of the system in interaction with the environment.

Equation (5), an example of evidence interpreted considering the
Energy Homeostasis Principle, and then discuss other theoretical
and empirical avenues which can be reinterpreted based on
this paradigm.

Modeling Strategies to Implement Energy

Homeostasis Principle
We did not extend our mathematical definitions beyond
(Equations 4 and 5) as we aim to set a theoretical ground fertile
for different modeling strategies. Equations (4) and (5) describe a
quite simple idea that neurons take resources to couple with their
energetic demands, and that these twomust balance each other in
order for the neuron to survive. However, the specific strategies
used to operationalize the terms within (Equations 4 and 5) was
purposefully left open to avoid constrains into specific modeling
paradigms. Equations (1–3) were included to better formalize
the problem at a metabolic level. These equations are relevant to
build the theoretical argument, however, we would not consider
them necessary for modeling, at least in a first approach.

In general terms, Energy Homeostasis Principle requires a
dynamic modeling, and a topographic or structural component
ideally framed from bottom-up. There is already an example that
fits with these requirements (Yuan et al., 2018). In this work,
they used the ratio between the energy consumed in synaptic
transmission and the total metabolic energy consumed in
synaptic transmission and dendritic integration over time. This
ratio is used as a third component of Hebbian synaptic plasticity,
allowing it to change synaptic weighs according to this energetic
ratio and pre-synaptic activity. This is a nice example of how to
include energetics constraints in neural activity modeling. Under
the Energy Homeostasis principle view, the ratio does not make
sense in terms of metabolism and neuron needs, because it only
address energy consumption, without considering the impacts in
productions and availability. Therefore, ignoring the restrictions
in energy consumption derived from production and availability.
This consumption ratio make sense under a top-down view
supported in an information codification logic. Therefore, we
suggest to define that ratio according to Equation (4), including
consumption, availability, and production following the control
mechanisms here presented.

Besides this particular model, graph theory could represent a
starting point to define the structure of a dynamic network, in
which nodes properties can be updated in a temporal fashion.
Graph theory is already used to recall the structural properties
of brain networks (Feng et al., 2007; De Vico Fallani et al.,
2014), therefore, without a doubt it will be suitable representation
which can be extended to consider the energetic management.
Moreover, graph theory contains a vast amount of metrics to
characterize networks (Costa et al., 2007), and more importantly,
could allow to contrast those metrics against real data (Demirtaş
and Deco, 2018; Klinger, 2018).

Strategies such as Free Energy Principle (Friston, 2010), or
those that profit of predictive coding conceptions (Spratling,
2008; Schroeder et al., 2010; Huang and Rao, 2011), can also serve
as a basis for energy homeostatic modeling. However, we suggest
to use energy consumption instead of neural activity as predictor.
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In this case reducing surprise would be analogous to reduce the
chances of a neuron to be driven out of energy homeostasis.
Energy availability and production ideas are more complex to
include. In general terms, and based on the concepts exposed
in the previous sections, energy consumption is constrained to
energy availability and production. As such, to adapt a predictive
coding paradigm requires to include energetic restrictions, which
must take into account the rate and amount of energy or
activity equivalents that can be managed by the neurons within
physiological ranges.

Many other strategies can be used. The above mentioned
are often used in neuroscience, however, any modeling strategy
that suits the temporal dynamic of energy management, and its
topographical bottom-up properties, should be able to capture
the essence of the Energy Homeostasis Principle.

Hybrots: An Analysis Using the Energy

Homeostasis Principle
Let us discuss the energy principle proposed here in the context
of a simple, in vivo network model. Empirically, one critical
aspect of relating energy management with behavior is the major
challenge of controlling sensory inputs. Most of experimental,
in vivo animal models are not only sensible to acoustic, visual,
physical, and chemical stimuli of the environment, but also
to proprioceptive inputs, such as muscle contraction, tendon
tension, blood acidification, hormone levels, among others.
Strictly speaking, there is no way to properly control the sensory
input of an animal in vivo, and the behavioral in vitro protocol
seems to be unreal. Nonetheless, there are some protocols that
can be considered as initial efforts of trying to build in vitro
behavioral protocols. Specifically, some reports demonstrate that
if we connect a neuronal culture of dissociated cortical or
hippocampal neurons to an external device, coherent behavior
can be obtained (Novellino et al., 2007; Tessadori et al., 2013).

Concretely, a system decodes the firing rate of the neurons
in the culture and generates an output which is used to control
two wheels of a vehicle. The vehicle has distance sensors. The
sensor activity is coded to electrical pulses delivered back to
the culture. The stimulation frequency is a function of the
distance to an obstacle in front of the sensors. If the vehicle gets
closer to an obstacle, then the stimulation frequency increases.
If the vehicle crashes into an obstacle, a stimulation (20Hz
for 2 s) is delivered, which is previously known to trigger
plasticity (Jimbo et al., 1999; Tateno and Jimbo, 1999; Madhavan
et al., 2007; Chiappalone et al., 2008; le Feber et al., 2010).
Leaving the vehicle in a circular maze with several obstacles
under the operation of this protocol will cause it to “learn”
to navigate, while avoiding impacts with obstacles (Tessadori
et al., 2012). This model constitutes a protocol that enables
studying the molecular, electrophysiological, and behavioral
properties of neural processing simultaneously; above all, it
allows the full control of the sensory input that this network
will have.

Is this learning-like phenomenon compatible with the Energy
Homeostasis Principle? When a single neuron is submitted to
constant stimulation, we expect to have a 1–1 stimulation-action

potential response. However, at a frequency stimulation as low
as 10Hz, the neurons will decay over time until they are
unresponsive, or their response is importantly delayed (Gal et al.,
2010). If interpreted through the Energy Homeostasis Principle
we can hypothesize the following mechanism. First, we can
postulate that at a frequency of 10Hz or higher, stimulations
become energetically stressful. As a response, neurons will
respond with modifications in their synaptic weights in the
short term, and with changes on their cytoarchitecture in
the long term. Both processes will result in changes to the
network structure. Each time the vehicle crashes, a stressful
20Hz pulse will be delivered inducing plasticity. Functional
restructuration is expected at each impact; leading to a random
walk through different neural functional configurations, where
each neuron will jump from state to state to minimize
energy stress (see Figure 5). It is expected that those network
configurations that decrease the effects of the sensory input
will reduce energy stress due to impacting obstacles. But the
best network configuration to the energy stress is indeed to
avoid it. Eventually, a network configuration will arise which
will prevent the vehicle from crashing. Since no energy stress
will be delivered as a sensory input with this configuration,
this structure will seemingly stabilize on a configuration of
homeostatic energy expenditure (Figure 5). We are aware that
the above interpretationmay oversimplify the actual mechanisms
followed by the neurons. Neuronal changes are most likely
not completely random and more complex regulations may be
taking place. However, we want to point out that they can be
sufficient to explain the phenomenology of the observations. As
such, energy management, as a local rule, will impact the neural
network structure as an emergent property, where, in turn, it will
impact behavior. Critically, in this example, we have focused on
sensorial input as an increment of neural activity. This might not
always be the case (such as under sensorial isolation). Despite
that, under this specific scenario, we propose that networks will
minimize energy consumption; the goal is to arrive to AH, not
to the minimum possible energy expenditure. Therefore, if the
sensorial input would move A(t) below AH, we would expect
network modifications to increase expenses. In any case, the
obtained behaviors must be at least compatible with the dynamic
constraints imposed by C(t), despite it being too high or low. In
this example, behavior emerged to satisfy the energy needs of the
neuron bymeans of C(t). Finally, from all the vehicle movements,
only a few, like avoiding the obstacle, might be interpreted
as purposeful from an observer’s point of view, the remaining
ones may be considered a random trajectory. Importantly, this
attribute is provided by the observer, as the neurons would only
be managing their energetic demands. More research is required
to evaluate what is happening with behavior, when the obstacles
are out of the sensor’s range along with the learning curve
of the vehicle. Nonetheless, the Energy Homeostasis Principle
allowed us to propose this hypothesis (Figure 5C), and it can
be empirically addressed. Naturally, using the same experimental
approach, we can evaluate how plasticity is affected by energetic
demands induced electrically or by altering neurotransmitter
concentrations. We can use the vehicle’s behavior, or we can use
the Graph Theory index already used to characterize networks
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FIGURE 5 | Depiction of Braitenberg’s vehicle behavior as a controlled platform to study learning and network energy adaptation: In this figure we hypothesize, based

on the Energy Homeostasis Principle, how a hybrot would learn. (A) Different behaviors observed at different learning levels of the Braitenberg’s vehicle (top panel),

and the corresponding sensory input (bottom panel) from an obstacle (circle centered to x symbol) is detected by a sensor (dashed area), while the vehicle explores

the environment. (B) Learning curve of the vehicle when learning to avoid the obstacles, passing from frequent collisions to full avoidance behavior. (C) Network

energy adaptation triggered by the sensory input while minimizing the energy stress.

(Costa et al., 2007) to associate neural network properties with
energetic demands and metabolic activity.

The Neuron Doctrine and the Energy

Homeostasis Principle
Historically, the primary efforts to connect neuron activity with
neural network dynamics and behavior was first proposed in 1888
(Barlow, 1972; Bock, 2013), which is referred to as “The Neuron
Doctrine,” maintained and developed to this day (Dehaene, 2003;
Moser and Moser, 2015; Sheppard, 2016). In general terms, this
theoretical proposal tries, in dual form, to solve the information
coding and processing problem and has been supported by
intracranial recordings, where abundant examples can be found
(Lettvin et al., 1959; Fairhall, 2014; Moser and Moser, 2015).
Specifically, neurons are expected to code for specific properties
of the environment, where its activity is associated with the
detection of specific stimuli. For instance, neurons in the primary
visual cortex of mammals are selectively sensible to oriented
bars (Hubel and Wiesel, 1962; Taylor, 1978), while in the Lateral
Geniculate there is evidence supporting the existence of circular
receptive fields representing portions of visual space (Reid and
Shapley, 1992). In these cases, neurons have receptive fields,
which can be interpreted as a specific topologic relation of V1
with a certain retinal region; and therefore, with the image.
Receptive fields with the same selectivity feature can also be
found in the tactile, and auditory primary cortex, evidence of
which is often interpreted as environmental stimuli being coded
as a map in the brain (Penfield and Boldrey, 1937; Penfield,
1965; Ruth Clemo and Stein, 1982). This classic evidence is also

theoretically line up with the recent hippocampus where neurons
(Moser and Moser, 2015).

Critically, most of the evidence supporting the neuron
doctrine is associated to the neuron discharge rate. Since this
discharge rate is a part of the C(t), it necessarily means that
most of the evidence supporting the neuron doctrine supports
the Energy Homeostasis Principle as well. For this reason, it is
plausible to consider that most of the neuron doctrine evidence
is also evidence indicating how energy expenses of one neuron
can be directly associated with behavior. Furthermore, high
discharge rates, as mentioned above, are expected to trigger
plasticity mechanisms. Also, only a low percentage of neurons
present high discharge rates (Olshausen and Field, 2005), which
should be expected under the Energy Homeostasis Principle
scope. Moreover, due to the fact that high discharge rates might
trigger changes in functional connectivity (synaptic weights), it
should not be surprising that when presenting more complex
visual scenes, classic receptive fields are no longer detectable
(Fairhall, 2014). We may consider that classic stimulation
visual protocols impose an energy input, reflected in the high
discharge rate, which needs to be managed. In contrast, visual
scenes are regularly experienced, therefore already managed
energy, and the firing pattern are considerably lower. As such,
we think that the neuron doctrine is not necessarily wrong,
rather it has not focused on how the discharge rate is a
proxy of energy demands imposed on neurons, which in turn
affects their homeostasis. Also, that plasticity might have a
functional role in ongoing behavior rather than only stabilizing
learned behaviors.
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The neural doctrine paradigm has been closely related to
information coding paradigms. The coding paradigms follow
the same logic as the genetic code; the idea that information
is universally coded using the same dictionary or codebook.
In the case of genetics, what we call the genetic code, is an
arrangement of how the sequence of nucleic acids informs
specific amino acid sequences when assembling proteins. In the
case of a neural code, the assumption is that environmental
stimuli are translated into brain activity, which is then translated
into motor output. More specifically, it is possible to map specific
neuron activities to specific properties of the environment. For
instance, the intensity of the stimulation can be mapped to the
discharge rate of the sensory neurons (Gardner and Johnson,
2013). The transduction of the stimuli is usually non-linear and
sensitive to differences with previous stimulation rather than the
raw value of the stimuli—Weber’s law (Gardner and Johnson,
2013). This adaptation law has a direct interpretation in the
context of energy expenditure by neurons, as neurons coding
raw stimuli would demand a greater energy supply. Weber’s
law has also been extended to complex cognitive functions,
such as quantity estimations (Dehaene, 2003)—where discharge
rates are used as the code of quantities for specific neurons—
suggesting that energy saving may be a strategy widely used
by neurons.

Of course, the discharge rate is far from being the only
neural code proposed. Coupled with the complexity of sensory
activity, temporal coding was proposed, where the exact temporal
relationship between each neuron spike would be the key to
understanding how environmental information is translated
into brain activity (Connor and Johnson, 1992; Friston, 1997).
Temporal coding is implicitly related to energy demands, as the
time between action potentials trigger plasticity mechanisms,
associated with one of the most expensive items of the neuron
physiology—post-synaptic potential and plastic mechanisms
(Attwell and Laughlin, 2001). Another strategy was population
coding (Georgopoulos et al., 1986; Nicolelis, 2003; Moxon and
Foffani, 2015). Population coding uses the activity of a high
number of neurons, where the discharge rate, timing, and as
many properties can be extracted make it possible for a human
or non-human primate to move a robotic arm or similar, with
the brain. As more neurons are included, more information
is obtained, and we should expect that we will better predict
the arm movement. This approximation is good when the aim
is to predict behavior but is not useful to understand how
behavior emerges from neural activity. If reassessed using Energy
Homeostasis Principle, we interpret that population coding
works as it is a good assessment of neural network homeostasis,
implicitly providing information about plastic changes and
neural energy management. Up to some extent, all approaches
have to do with when, how much, and which neurons are
discharging, which in turn can be interpreted as when and how
much energy is expended by individual neurons and the network.

When evaluating evidence related to a whole-brain approach,
the neuron doctrine is mostly applied by associating the bold
signals of brain regions to specific behaviors. Critically, the fMRI
signal is derived, to some extent, by the changes triggered through
the glia to couple with the energy demands (Otsu et al., 2015).

Therefore, we can interpret that energy management associated
to glial function, is already associated directly with behavior.
Moreover, it suggests that energy management can be mapped
into networks associated to specific behaviors. Naturally, the
specifics in which Energy Homeostasis Principle would impact
large networks like brains is still elusive, and it probably would
require to incorporate formally the functional properties of
the glia.

In general, the fMRI approach strongly resembles the serial
symbolic programming paradigms, where a module can be
homologized to a programming function, and the network
would be the general architecture of the software. The loss of a
programming function leads to the loss of a specific functionality
of the software. This metaphor was addressed in classic literature
(Hovland, 1960; Searle, 1980), suggesting that the brain processes
information using a symbolic serial paradigm. As such, most
of the neural correlates within the neurocognitive domain are
interpreted as information processing, ranging from a strictly
symbolic to a correlative information approach. However, using
a bottom-up approach and the Energy Homeostasis Principle,
those attributions are an observer’s bias, as the one described in
Braitenberg’s vehicles (Braitenberg, 1986). Behavioral functions
of a neuron or the neural network would be the epiphenomena of
neurons regulating their own homeostasis. In fact, as explained
in the previous section, we can describe how the vehicle
learns to avoid obstacles without using any informational,
symbolic, or teleological explanations. Using this bottom-up
approach, it is expected that an informational approach will
be useful, as far as the neurons’ and the neural network’s
needs are aligned with the organism’s. However, it should be
interpreted as an epiphenomenon of neural networks solving
their own needs.

Reinterpreting Evidence Toward New

Research Avenues
As we have discussed above, energy management, though
implicitly considered, is a key feature of the nervous system.
This necessarily means that most of our current evidence can be
reinterpreted in the light of the Energy Homeostasis Principle.
We expect that this reinterpretation will trigger new ideas and
strategies to understand the neural phenomena. As an example,
we may try to explain the neuronal changes associated with
learning processes, based on iconic paradigms such as the long-
term potentiation (LTP) and depression (LTD) (Nabavi et al.,
2014; Jia and Collingridge, 2017). Both phenomena involve a
large amount of energy expense where the ATP could be followed
to understand the phenomena of plasticity as one of energy
management. This is key, considering that even the Hebbian
rules (Kempter et al., 1999), operates differently, according to
the neuron type (Abbott and Nelson, 2000), highlighting the
difficulties in predicting plasticity according to neural activity.
At the same time, the calcium ion plays a critical signaling role
within neural physiology, where we should ask if it might be a
signal of energy expenditure. It is known that metabolic processes
sense the ATP-AMP ratio (Ames, 2000), however, they have not
been studied in association to the plasticity phenomena.
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Consequentially, we can assess energy management and not
solely from a molecular or electrophysiological perspective. For
instance, can we consider inhibitory neurons as an adaptive
feature to control brain energy expenditure? This is most
intriguing if we consider that inhibitory neurons are key to
increasing the neural circuits’ controlling properties (e.g. negative
feedback structures).

Simultaneously, the central nervous system is the only
structure of the body which is actively isolated from the
vascular system. It has its own system to maintain stable the
neuron proximal environment. Moreover, astrocytes coordinate
themselves through calcium waves, producing local changes in
blood flow and hyperemia (increase on blood irrigation) (Otsu
et al., 2015). The brain-blood barrier is not only a filter, but
it works functionally to support the energy demands of the
neural networks. In fact, synapses are currently suggested as
tripartite structures (neuron-neuron and astrocyte) (Wang and
Bordey, 2008), where the glutamate-release excitatory synapses
are proposed to control neurovascular coupling, and thus, brain
energy during conditioning and behavior (Robinson and Jackson,
2016). This would be a clear example of a neural activity involving
external support for energy management.

Moreover, there is a vast number of shapes for neural cells. It
is currently unknown why some neurons display large, dendritic
arborizations and short axons, while others present long axons
and rather small dendritic arborizations. Similarly, there are
varying basal discharge rates of activity. We think it is worth
exploring whether the likelihood of particular morphologies and
rate of activities are associated with energy constraints. For
instance, can a neuron manage to maintain a long axon and
at the same time a huge dendritic arborization where it must
maintain a large number of dendritic spines? If we explore the
evidence we already have, we are confident that new insights into
neuronmorphology will appear. Evenmore, if an unlikely neuron
shape or size which is energetically more expensive presents itself;
we should expect that those neurons would be more sensible to
energy demands andmay be more susceptible to neural death (Le
Masson et al., 2014). In fact, Paul Bolam proposed that the reason
behind Parkinson’s is due to the dying out of dopaminergic
neurons because of their huge size, which is very expensive in
energy terms (Bolam and Pissadaki, 2012; Pissadaki and Bolam,
2013). It is most likely that many of these traits are genetically
determined, however, energy constraints might limit the possible
morphological variety. Furthermore, that genetic determinants
of neuron specializations may be triggered in response
to the C(t).

Finally, the Energy Homeostasis Principle paradigm,
combined with a bottom-up view, allows us to reinterpret
behavior in a much more flexible way. Animals display many
behaviors that are not intrinsically adaptive. Leisure activities
are an evident example. Why the dog likes to go for the ball
or follow a car? Why would we like to learn how to play the
piano or to paint? Using a top-down approach would force us
to interpret that evolution endorses us with a leisure activity
brain module and that all behaviors are somehow beneficial.
It seems more parsimonious to think that evolution restricted
the system through macrostructure, so that survival-related
brain functions will be selected and inherited. Above all, a wide

set of diverse, seemingly useless behaviors can appear, without
compromising organism survival or neural needs. Therefore, the
only constraint for behavior is that the organisms must stay alive
and that the sensory input can be successfully managed, in terms
of its energy demand, by the neural networks and the neurons
within them. As we already explained before, we think that in the
cases of the vehicles controlled by neural cultures, the rules of
the stimulation given is critical in understanding how they learn
to avoid obstacles. From all the works that reported learning-like
properties of in vitro dissociated cultures of neurons (Novellino
et al., 2007; Mulas and Massobrio, 2010; Tessadori et al.,
2012), two main conclusions can be obtained: (1) learning-like
properties are not dependent on a priori, highly intricate and
sophisticated neural structures, and (2) there is at least one
property which does not require a brain evolution argument
to explain the emergence of behavior (but probably requires a
neural tissue evolution argument). This would be particularly
important in relation to behaviors that are not directly tied
to survival.

Because of the space limitations, many of these latter
considerations are laid out in a basic form. Nonetheless we
stress that some of these speculations can be assessed by
reviewing the current literature under the Energy Homeostasis
Principle rationale. However, the proposal may encourage the
development of falsifiable hypotheses, allowing for the testing of
these intuitions through empiric work. Therefore, we propose
the principle as a novel paradigm from which we can reinterpret
neuroscience experimental data, as well inspire the design of
experiments which may connect biochemical knowledge to
cognitive neuroscience.
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Neural network simulation is an important tool for generating and evaluating hypotheses

on the structure, dynamics, and function of neural circuits. For scientific questions

addressing organisms operating autonomously in their environments, in particular where

learning is involved, it is crucial to be able to operate such simulations in a closed-loop

fashion. In such a set-up, the neural agent continuously receives sensory stimuli from

the environment and provides motor signals that manipulate the environment or move

the agent within it. So far, most studies requiring such functionality have been conducted

with custom simulation scripts and manually implemented tasks. This makes it difficult for

other researchers to reproduce and build upon previous work and nearly impossible to

compare the performance of different learning architectures. In this work, we present

a novel approach to solve this problem, connecting benchmark tools from the field

of machine learning and state-of-the-art neural network simulators from computational

neuroscience. The resulting toolchain enables researchers in both fields to make use

of well-tested high-performance simulation software supporting biologically plausible

neuron, synapse and network models and allows them to evaluate and compare their

approach on the basis of standardized environments with various levels of complexity.

We demonstrate the functionality of the toolchain by implementing a neuronal actor-critic

architecture for reinforcement learning in the NEST simulator and successfully training it

on two different environments from the OpenAI Gym. We compare its performance to a

previously suggested neural network model of reinforcement learning in the basal ganglia

and a generic Q-learning algorithm.

Keywords: closed-loop simulation, reinforcement learning, spiking neuronal networks, virtual environments,

computational neuroscience

1. INTRODUCTION

Simulation is a key component of modern neuroscience, constituting a third methodological pillar
along with experiment and theory. Its uses include, but are not limited to, validation of theory,
generation of hypotheses, production of surrogate data for data analysis tools, and discovery of
structural and dynamical constraints for functional models. Thanks to a variety of initiatives,
researchers now have access to well maintained, high performance simulators for all scales of
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neural systems from molecular simulations (e.g., STEPS; Wils
and De Schutter, 2009) over complex neuron (e.g., NEURON,
Carnevale and Hines, 2006; GENESIS, Bower and Beeman, 2007)
and network models (e.g., NEST, Gewaltig and Diesmann, 2007;
BRIAN, Goodman and Brette, 2009; NENGO, Bekolay et al.,
2013, SINABS, Sheik and Liu, 2019) to whole brain simulations
using neural fields (e.g., TVB, Sanz Leon et al., 2013).

In the realm of spiking neural networks, development of
simulators has been largely driven by two viewpoints: the
physical, concerned with the dynamics of individual neurons
and networks of neurons (e.g. relationship of correlation
structure to connectivity, bifurcation landscapes), and the
electrophysiological, concerned with the response of neurons
and networks to stimuli (e.g. PSTHs, response variability). Thus,
spiking neural network simulators provide good support for
constructing structured networks of neurons with a variety of
dynamics, applying arbitrarily complex stimuli and recording the
evolution of dynamic variables for later analysis.

However, restricting our inquiries to the dynamical and
transformational properties of neuronal networks neglects large
classes of fundamental and exciting neuroscientific questions. In
particular, investigations of embodied cognition, of organisms
operating autonomously in an environment and learning how to
optimize their behavior within it, require a different approach.
Firstly, it is crucial to simulate agents that interact with their
environments, thereby actively shaping their future sensations
rather than merely passively consuming experimentally provided
stimuli (see e.g., Wilson, 2002). This necessitates a closed-loop
set-up, in which the neuronal network can be conceived of as
an autonomous agent within an environment. The neuronal
network receives sensory stimuli from the environment, which
alter its network dynamics. The resulting activity of the network,
or of specific subnetworks of it can be interpreted as motor
commands which alter the agent’s configuration with respect
to its environment (e.g., rotation, lateral movement) or the
configuration of the environment itself (e.g., operation of levers
or buttons). The change in configuration brings about a change
in the sensory stimuli, and thus the neuronal network interacts
with the environment in a continuous cycle. Depending on
the scientific question, the network activity can also drive
plasticity processes in the network, causing alterations in its own
configuration, and thus in its response to sensory stimuli. In this
way, new behavior can be learned through interaction with the
environment, rather than through extensive exposure to labeled
training data.

Secondly, it is important to establish a set of standardized
benchmarks which allow alternative models to be compared with
each other and good models to be improved and extended.
With regard to this latter point, a comparison of the progress
of the fields of machine learning, and learning in neuronal
networks, provides a useful illustration. The last decade has
witnessed major progress in the field of machine learning,
moving from small-scale toy problems to large-scale real-world
applications including image (Krizhevsky et al., 2012) and speech
recognition (Hinton G. et al., 2012), complexmotor-control tasks
(Mnih et al., 2016), and playing (video) games at super-human
performance (Mnih et al., 2015; Silver et al., 2016). This progress

has been driven mainly by an increase in computing power,
especially by training deep networks on graphics processing units
(Raina et al., 2009), and conceptual breakthroughs like layer-
wise pretraining (Hinton and Salakhutdinov, 2006; Bengio et al.,
2007) or dropout (Hinton G.E. et al., 2012). Even so, this rate
of progress would not have been possible without the wide
availability of high-performance ready-to-use tools, e.g., Torch
(Collobert et al., 2002), Theano (James et al., 2010), Caffe (Jia
et al., 2014), TensorFlow (Abadi et al., 2016), and standardized
datasets and environments for benchmarking, such as theMNIST
(LeCun et al., 1998), CIFAR (Krizhevsky and Hinton, 2009),
and ImageNET (Deng et al., 2009) datasets, and the MuJoCo
(Todorov et al., 2012), ALE (Bellemare et al., 2015), and OpenAI
Gym (Brockman et al., 2016) toolkits. While ready-to-use tools
allow researchers to focus on important aspects rather than basic
implementation details, standardized benchmarks have guided
the community as a whole toward promising approaches, as
for example in the case of convolutional networks through the
ImageNET competition (Russakovsky et al., 2015).

Similarly, researchers in the field of computational
neuroscience have benefited from the increase of computational
power and achieved many conceptual breakthroughs over the
last decade, with a plethora of new neuron, synapse and network
models being developed. As mentioned above, a variety of
simulators are available to the computational neuroscientist, yet
so far no generally accepted set of benchmarks exist (but see
Gerstner and Naud, 2009).

One particular area in which the lack of standardized
benchmarks is apparent is research into reinforcement learning
(RL) in neurobiological substrates. Inspired by behavioral
experiments, RL is concerned with the ability of organisms to
learn from previous experiences to optimize their behavior in
order to maximize reward and avoid punishment (see e.g., Sutton
and Barto, 1998). RL has a long tradition in the field of machine
learning which has led to several powerful algorithms, such
as SARSA and Q-learning (Watkins, 1989). Similarly, a large
variety of neurobiological models have been proposed in recent
years (Izhikevich, 2007; Potjans et al., 2009, 2011; Urbanczik and
Senn, 2009; Vasilaki et al., 2009; Frémaux et al., 2010; Frémaux
et al., 2013; Jitsev et al., 2012; Friedrich et al., 2014; Rasmussen
and Eliasmith, 2014; Aswolinskiy and Pipa, 2015; Baladron and
Hamker, 2015; Rombouts et al., 2015; Friedrich and Lengyel,
2016; Rueckert et al., 2016). However, only a small proportion of
these rely on publicly available simulators and all of them employ
custom built environments. Even for fairly simple environments,
this has led to a situation where different network models are
difficult to compare and reproduce, thus creating a fragmentation
of research efforts. Instead of building upon and extending
existing models, researchers are forced to spend too much time
on recreating basic functionality for custom implementations.

The need for closed-loop simulation has led to the Human
Brain Project (2014) (HBP) dedicating significant resources
of a subproject (Neurorobotics) to the development of the
necessary infrastructure that allows users to conduct robotic
experiments in virtual environments and connect these to their
neural network implementations with a web interface (Falotico
et al., 2017). This approach specifically addresses the need of
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researchers developing neuronal or neuro-inspired controllers
for robotic applications. A more pared-down approach, suitable
for researchers who are primarily concerned with understanding
the neural circuits, rather than controlling sophisticated robotic
actuators, is provided by Weidel et al. (2016). This approach
allows any neuronal network simulator that implements the
MUSIC (Djurfeldt et al., 2010) interface (including NEST
and NEURON) to be coupled with any robotic simulator
implementing the ROS (Quigley et al., 2009) interface [including
Gazebo (Koenig and Howard, 2004), Morse (Echeverria et al.,
2011), or Webots (Michel, 2004)].

However, neither approach directly addresses the issue of
the lack of standardized benchmarks for neuronal agents
operating autonomously and learning to optimize their behavior
in an environment. Such benchmarks exist: the OpenAI Gym
(Brockman et al., 2016) provides a rich and generic collection
of standardized RL environments developed to support the
machine learning community in evaluating and comparing
algorithms. All environments are accessible via a simple,
unified interface, that requires an agent to supply an action
and returns an observation and reward for its current state.
The toolkit includes a range of different environments with
varying levels of complexity ranging from low-dimensional
fully discrete (e.g., FrozenLake1) to high-dimensional fully
continuous tasks (e.g., Humanoid1). The consistency of the
OpenAI Gym environments across different releases supports
researchers in reproducing and extending previous work and
allows systematic benchmarking and comparison of learning
algorithms and their implementations. The easy accessibility of
different tasks fosters progress by allowing researchers to focus
on learning algorithms instead of basic implementation details of
particular environments, and prompts researchers to evaluate the
performance of their algorithms on many different tasks.

One possibility to access this set of benchmarks is to
implement spiking networks in tools that are natively compatible
with the OpenAI Gym, such as Tensorflow (Abadi et al., 2016)
or PyTorch (Paszke et al., 2017). However, as the components of
spiking neural network models (e.g., neuron and plastic synapse
models, stimulation, and recording devices) are typically not
shipped with these tools, this once again places the burden of
implementation on the user (but see Hazan et al., 2018 for a
spiking-neural network orientated approach). In particular,
since these tools focus on machine learning applications rather
than exploring biological intelligence, several critical features
for computational modeling of learning in biological neuronal
networks, such as few-compartment neurons, conductance-
based synaptic interactions or neuromodulated plasticity,
lie outside the scope of these libraries. Therefore, to make
a comprehensive resource of benchmarks available to the
computational neuroscience community, we developed a
toolchain to interface neural network simulators with the
OpenAI Gym. Using this toolchain, researchers can rely on well-
tested, high-performance simulation engines for spiking neural
networks to power their models, and evaluate them against
a curated set of standardized environments, allowing more

1https://gym.openai.com/envs

time to focus on neurobiological questions, such as the
configuration and plasticity of neural circuits underlying
exploration of the environment and exploitation of prior
experience.

In the next section we introduce additional pre-existing
components on which our toolchain relies, and afterwards
discuss how it links the different tools. We demonstrate its
functionality by implementing a neural actor-critic in NEST and
successfully training it on two different environments from the
OpenAI Gym.

2. PRE-EXISTING COMPONENTS

All network simulations in this manuscript are carried out
with NEST2 (Gewaltig and Diesmann, 2007), a neural simulator
designed for the efficient simulation of large-scale networks
of simple spiking neuron models with biophysically realistic
connectivity. The simulation kernel scales from small simulations
on a laptop to super computers, with the largest simulation
to date containing about 109 neurons and 1013 synapses,
corresponding to about 10% of the human cortex at the
resolution of individual cells and connections (Kunkel et al.,
2014; Jordan et al., 2018). NEST is actively developed and
maintained by the NEST initiative3 in collaboration with the
community, is freely available under the GPLv2 and is supported
by the HBP with the explicit aim of widespread long-term
availability and maintainability. The simulation set-up, e.g.,
definition of neurons and connections, can conveniently be
performed via an interpreted language (e.g., PyNEST; Eppler
et al., 2009) while the propagation of network dynamics
is implemented in C++. OpenMP is used for node-local
parallelization while MPI provides inter-node communication.
While using a compiled language for the compute-intensive
part provides significant performance gains compared to an
interpreted language, it makes it less straightforward to interface
the simulator with other tools not specifically designed for this.

The OpenAI Gym (Brockman et al., 2016) is a toolkit for
reinforcement learning research focused on ease of use for
machine learning researchers. An explicit goal of the OpenAI
Gym is to compare different RL algorithms with each other in
a consistent fashion. It provides a unified Python interface to a
rich collection of curated RL environments, e.g., Atari games4 or
continuous control tasks for robotic applications5.

An environment in the OpenAI Gym is updated in steps.
In each step, the agent receives an observation representing the
state of the environment, e.g., the agent’s location within it,
or other configurational information. This is typically a vector
of real values. In addition, it receives a real-valued reward for
entering the current environmental state. Depending on the
environmental set-up, the reward may be zero for the majority
of state transitions, and only non-zero (positive for rewards or
negative for punishments) when the agent achieves a well-defined

2http://nest-simulator.org/
3https://nest-initiative.org/
4https://gym.openai.com/envs/#atari
5https://gym.openai.com/envs/#mujoco
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goal. On the basis of the current state and its internal policy,
the agent provides an action to the environment to trigger the
next state transition. The reward can be used as information to
adjust the agent’s policy, such that its behavior in the environment
evolves, typically such that it receives more reward in future trials
in the same environment.

While the network implementation that we present in the
results section relies on the NEST simulator, the toolchain can
also be used with other simulators that support the MUSIC
library, for example NEURON (Carnevale and Hines, 2006). The
MUlti-SImulation Coordinator is a multi-purpose middleware
for neural network simulators built on top of MPI (Message
Passing Interface) that enables online interaction of different
simulation engines (Djurfeldt et al., 2010). MUSIC takes care
of starting all MUSIC-controlled executables (e.g., adapters and
simulators) defined in a configuration file provided by the user
in separate processes. During execution it makes sure that
all processes evolve synchronously with a predefined real-time
factor independent of the computational load of the individual
processes (Moren et al., 2015). MUSIC provides named MPI
channels, referred to as MUSIC ports, which allow the user to
set up communication streams between several processes. While
originally intented to distribute a single neural network model
across different simulators, the MUSIC library can also be used
to connect neural simulators to other applications.

For example, to connect neural simulators to robotic
simulators, we recently developed the ROS-MUSIC Toolchain
(RMT; Weidel et al., 2016) which provides an interface from
MUSIC to the Robotic Operating System (ROS; Quigley et al.,
2009). ROS is the most popular middleware in the robotic
community and is able to interact with many robotic simulators
and hardware platforms. The RMT allows exchange of well-
defined messages between ROS and MUSIC via stand-alone
executables, so called adapters, that were designed with a focus
on modularity. The toolchain contains several different adapters
each performing a rather simple operation on streams of inputs
(e.g., filtering). By concatenating several adapters, the overall
transformation of the original data can become more complex,
for example converting high-dimensional continuous data (e.g.,
sensory data) to low-dimensional discrete data (e.g., action
potentials) or vice-versa. More information and introductory
examples can be found on GitHub6.

3. RESULTS

To enable the online interaction of neural network simulators
and the OpenAI Gym, we rely on two different libraries: MUSIC,
to interface with the neural simulator, and ZeroMQ (Hintjens,
2013) to exchange messages with the environment simulated
in the OpenAI Gym. In the following, we describe these two
parts of the toolchain and demonstrate their functionality by
interfacing a neural network simulation in NEST with two
different environments.

6https://github.com/incf-music/ros-music-adapters

3.1. Extending the ROS—MUSIC Toolchain
We extended the RMT by adding adapters that support
communication via ZeroMQ following a publish-subscribe
pattern. ZeroMQ is a messaging library that allows applications
to exchange messages at runtime via sockets. Continuously
developed by a large community, it offers bindings for a variety
of languages including C++ and Python, and supports most
operating systems. A single communication adapter of the RMT
sends (receives) data via a ZeroMQ socket and receives (sends)
data via a MUSIC port. While the adapters can handle arbitrary
data, we defined a set of specializedmessages in JSON format (see
Supplementary Material) specifically designed to communicate
observations, rewards, and actions as discrete or continuous real-
valued variables of arbitrary dimensions, as used in the OpenAI
Gym. We chose the JSON format due to its simplicity, easy
serialization and broad platform support.

In addition to the ZeroMQ adapters dedicated for
communication with MUSIC, we developed several further
adapters that can perform specific transformations of the data.
OpenAI Gym places few restrictions on the nature of the
environment: it can be continuous or discrete with arbitrary
dimensionality. Thus, in order to generate the required closed-
loop functionality, the observations provided by the environment
must be consistently transformed to a format that can be fed
into neural network simulations. Conversely, the activity of the
neural network must be interpreted and transformed into valid
actions which can be executed in the environment.

A standard way to address the first issue with some degree
of biological plausibility is to introduce a layer of place cells
(Moser et al., 2008). Each of these cells is tuned to a preferred
(multidimensional) observation, i.e., is highly active for a specific
input and less active for other inputs (see e.g., Frémaux et al.,
2013). The dependence of the activity of a single place cell on
observations is described by its tuning curve, often chosen as a
multidimensional Gaussian. To perform the transformation of
observations to activity of place cells, we implemented a discretize
adapter that allows users to specify the position and width of
the tuning curves of an arbitrary number of place cells. One
disadvantage of this approach is that the number of place cells
required to cover the whole observation space evenly scales
exponentially in the number of dimensions of the observation.
For observations with a small number of dimensions, however,
this approach is very suitable.

To perform action selection, we added several adapters
that can, respectively, select the most active neuron (argmax
adapter), threshold the activity across neurons to create a
binary vector (threshold adapter), or linearly combine the
activity of neurons across many input channels (linear decoder).
Depending on the type of action required by the environment
(discrete/continuous), the user can select a single one or a
combination of these. Specifications of the adapters can be found
in the documentation of the RMT7.

In general, we followed the design principle behind the RMT
and developed modular adapters. This makes each individual

7https://github.com/incf-music/music-adapters
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FIGURE 1 | Interfacing RL toolkits with neural network simulators. The RL toolkit (left) is responsible for emulating an environment that provides observations and

rewards which are communicated via ZeroMQ sockets and MUSIC adapters (middle) to a neural network simulator (right). Concurrently, the activity of the simulated

neural network is transformed to an action and fed back to the RL toolkit.

adapter easy to understand and enables users to quickly extend
the toolchain with their own adapters. By combining several
adapters, the RMT allows arbitrarily complex transformations of
the data and can hence be applied to many use-cases.

3.2. ZeroMQ Wrapper for the OpenAI Gym
The second part of the toolchain is a Python wrapper around the
OpenAI Gym that exposes ZeroMQ sockets (Hintjens, 2013) for
communicating actions, observations and rewards (see section 2
and Figure 1). The wrapper consists of four different threads that
coordinate: (i) performing steps in an environment, (ii) receiving
actions via a ZeroMQ SUB socket, (iii) publishing observations
via a ZeroMQ PUB socket, and (iv) publishing rewards via a
ZeroMQ PUB socket.

Before spawning the threads, the wrapper starts a user-
specified environment and creates the necessary communication
buffers. The thread coordinating the environment reads actions
from the corresponding buffer, performs single steps in the
environment and updates the observation and reward buffers
based on the return values of the environment. Upon detecting
that a single episode has ended, e.g., by an agent reaching a certain
goal position, it resets the environment and allows a break of
user-specified duration before starting the next episode.

The communication threads continuously send (receive)
messages via ZeroMQ and read from/write to the corresponding
buffers. All threads can be run with different update intervals,
for example, to slow down movement of the agent by
performing steps on a coarse time grid whilst continuously
receiving action choices from the neural network simulation
running on a fine time grid. The user can specify a variety
of parameters via a configuration file in JSON format (see
Supplementary Material). Detailed specifications of the wrapper
can be found in the documentation.

In contrast to MUSIC-controlled executables, the ZeroQM
wrapper is not started by the MUSIC library. As a result,
the environment and the simulation evolve simultaneously
but asynchronously. The simulator hence continuously receives
input from the environment and vice versa. Due to the possibility
of choosing a real-time factor for MUSIC-controlled processes,
the user can easily achieve reliable interaction between the

environments and the network simulation. The loosely coupled,
asynchronous nature of the toolchain has the benefit that one
could, for example, train the same network on a wide variety of
different environments without stopping the simulation, in order
to investigate transfer learning in spiking neural networks.

3.3. Applications
To demonstrate the functionality of the toolchain, we
implemented a neural network in NEST and trained it on
two different environments simulated in the OpenAI Gym. In
the first task the agent needs to learn to perform a sequence
of actions in order to reach the top of a hill in a continuous
environment. The second task is a classical grid-world in which
an agent needs to learn to navigate to a goal position in a
two-dimensional discrete environment with obstacles. We first
describe the neural network architecture and learning rule and
afterwards discuss the network’s performance on the two tasks.

3.3.1. Neural Network Implementation

We consider a temporal-difference learning algorithm (Sutton
and Barto, 1998) implemented as an actor-critic architecture
based on the spiking neuronal network proposed by Frémaux
et al. (2013). For the purpose of demonstrating the toolchain,
we simplified the model by replacing the spiking neuron models
with rate neurons, thereby avoiding issues arising from noise
introduced by spiking neuron models (Potjans et al., 2011;
Frémaux et al., 2013). Note, however, that the toolchain is not
restricted to rate-based models; any neuron model available in
the neural simulators with MUSIC interfaces can be used.

The neuron dynamics we considered here are given by the
following stochastic differential equation:

τ
dzi(t)

dt
= −zi(t)+ µi + f

(

hi(t)− θi
)

+ ξi(t), (1)

where τ is some positive time constant,µi a baseline activity level,
f (·) some (arbitrary) activation function, hi(t) a time dependent
input field, θi an input threshold and ξi(t) Gaussian white noise
with a certain standard deviation σξ . The input field hi(t) is
determined by the activity of other neurons according to hi(t) : =

Frontiers in Computational Neuroscience | www.frontiersin.org 5 August 2019 | Volume 13 | Article 4696

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Jordan et al. Closed-Loop Learning in Autonomous Agents

FIGURE 2 | Actor-critic architecture for reinforcement learning with rate neurons. Observations are communicated via a MUSIC input port to a population of place

cells. These project both to a critic unit and to actor units arranged in a winner-take-all circuit. The critic and an additional MUSIC input port project to a unit

representing the reward prediction error that modulates the plasticity between the place cells and their downstream targets, the critic and actors. The actor units

project to a MUSIC output port encoding the selected action.

∑

j wijzj(t), with wij denoting the strength of the connection

(weight) from neuron j to neuron i. Here we will exclusively
consider activation functions of the form f (x) : = x (linear case),
and f (x) : = 2(x)x (threshold-linear case, “relu”). Here 2(·)
denotes the Heaviside function, defined as

2(x) : =

{

1 x > 0

0 else
(2)

Neuron dynamics are integrated in NEST on a fixed time-
grid by a stochastic-exponential-Euler method with a step size
determined by the resolution of the simulation. For more details
on the neuron model implementation (see Hahne et al., 2017).

The input layer is a population of threshold-linear rate
neurons which receive inputs through MUSIC and encode
observations from the environment (see Figure 2). These
place cells project via plastic connections to a single neuron
representing the value that the network assigns to the current
state (the critic). An additional neuron calculates the reward-
prediction error by combining the reward received from the
environment with input from the critic. Plasticity of the
projections from inputs to the critic is modulated by this reward
prediction error, as described below.

In addition, neurons in the input layer project to a population
of neurons representing the available actions (the actor). To
enforce selection of a specific action, the actor units are arranged
in a winner-take-all (WTA) circuit. This is implemented by
recurrent connections between actor units that correspond to
short-range excitation and long-range inhibition, the distance
reflecting the similarity of the action that actor units encode.
The activity of actor units is transformed to an action supported
by the environment and communicated to the environment via
the RMT.

To derive a learning rule for the critic, we follow similar
steps as described by Frémaux et al. (2013), but applied to rate

models (Equation 1). The critic activity should approximate a
continuous-time value function defined by Doya (2000):

Vπ (t) : =

∫

∞

t
r(sπ (t′))e−

t′−t
τr dt′. (3)

Here, s(t) denotes the state of the agent at time t, r(sπ (t)) denotes
the reward obtained in state s(t), τr a discounting factor for future
rewards and π the agent’s policy. To achieve this, we define
the following objective function which should be minimized by
gradient descent on the weights from inputs to the critic:

E(t) : =
1

2
(Vπ (t)− z(t))2, (4)

where z(t) represents the activity of the critic unit. By
performing gradient descent on Equation (4), using a
self-consistency equation for Vπ (t) from the derivative of
Equation (3) and bootstrapping on the current prediction
for the value (see Supplementary Material and Doya, 2000;
Frémaux et al., 2013), we obtain the following local Hebbian
three-factor learning rule that approximately minimizes the
objective function (Equation 4):

1wj = ηδ(t)xj(t)2
(

z(t)− θpost
)

, (5)

where η is a learning rate, xj(t) represents the activity of
the jth place cell, 2(·) the Heaviside function and θpost a
parameter that accounts for noise on the postsynaptic unit (see
Supplementary Material for details). The term δ(t) = v̇(t) +
r(t)− 1

τr
v(t) corresponds to the activity of the reward prediction

error unit, acting as a neuromodulatory signal for the Hebbian
plasticity between the presynaptic (xj) and postsynaptic (z) units.
To avoid explicit calculation of the derivative, we approximate
δ(t) by:

δ(t) ≈

(

1

d
−

1

τr

)

v(t)−
1

d
v(t − d)+ r(t). (6)
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FIGURE 3 | A neuronal network simulated in NEST successfully learns to navigate in an environment with continuous states and discrete actions. (A) Reward

obtained by the agent per episode averaged over 10 simulations with different seeds (solid orange curve). Orange band indicates ± one standard deviation. Dark gray

represents the reward obtained from Q-learning. The light gray line marks average reward per episode for which the environment is considered solved. Inset:

screenshot of the environment with agent (stylized vehicle), environment with valley and two hills and goal position (yellow flag). The agent is close to a typical starting

position at the trough. (B) Activity traces of place cells (bottom), actor units (second from bottom), critic unit (second from top) and reward prediction error unit (top).

Shown are neural activities during 6.5 s early (left) and late (right) during learning. The neural network simulation was run with a real-time factor of one.

To compute the derivative we hence implement two connections
from the critic to the reward-prediction error unit: one
instantaneous, and one with delay d > 0.

As proposed by Frémaux et al. (2013), to learn an optimal
policy, we exploit that the actor units follow the same dynamics
as the critic. We hence apply the same learning rule to the
connections between the inputs and the actor units. In order to
assure that at least one actor unit is active, thus preventing a
deadlock, we introduce a minimal weight for each connection
between input and output units and add input noise to the
actor units.

3.3.2. Mountain Car

As an example of an environment with continuous states, we
consider the MountainCar8 environment. The task is to steer
a toy vehicle that starts at a valley between two hills to the
top of the right one (Figure 3A, inset). To make the task more
challenging, the car’s engine is not strong enough to reach the
top in one go, so the agent needs to learn to gain momentum
by swinging back and forth between the two hills. A single
episode in this environment starts when the agent is placed in
the valley and ends when it reaches the final position on the
top of the right hill. The state of the agent is described by two
continuous variables: the x-position x(t) and the x-velocity ẋ(t).
The agent can choose from three different discrete actions that
affect the velocity of the vehicle (accelerate left, no acceleration,
accelerate right). It receives punishment (i.e., negative reward)
from the environment in every step; the goal is to minimize the
total punishment collected over the whole episode. Since it is
challenging for a neuronal network implementation of the actor-
critic architecture with exclusively excitatory synapses to learn
the value function corresponding to a task with solely negative
reinforcement (Potjans et al., 2011), we provide additional reward
when the agent reaches the final position.

To translate the agent’s current state into neuronal activity, we
distribute 25 place cells evenly across the two-dimensional plane

8https://gym.openai.com/envs/MountainCar-v0/

of possible positions and velocities using the discretize adapter
of the RMT. The actor is implemented by a WTA circuit of
three units as shown in (3.3.1). The activity of these units is
transformed into an action via the argmax adapter (3.1).

We compare the performance of our neuronal network
to Q-learning (Watkins and Dayan, 1992) with function
approximation via a multi-layer perceptron (see e.g., Tesauro,
1995; Mnih et al., 2013). The position and velocity of the car are
projected to a population of hidden units with rectifying-linear
activation function, which in turn project to three output units,
encoding the estimated Q-value of each possible action. These Q-
values are used by an epsilon-greedy strategy to select the next
move. We use the ADAM optimizer (Kingma and Ba, 2014) and
memory replay (Lin, 1993) to train the Q-function network (see
Supplementary Material for details).

Initially, the agent explores the environment by selecting
random actions. Due to the WTA circuit dynamics, a single actor
neuron stays active over an extended period of time. The constant
punishment gradually decreases the weights from the place cells
to the corresponding actor unit, eventually leading to another
actor unit becoming active (Figure 3B, left). After a while, the
agent reaches the goal by performing actions that have not been
significantly punished. For this task the stable nature of the WTA
is advantageous, causing the agent to perform the same action
repeatedly allowing efficient exploration of the state space. After
the agent has found the goal once, the number of steps spent on
exploring actions in the following episodes is much smaller. From
the sixth episode on, the performance of the agent is already close
to optimal (Figure 3A). After learning for about ten episodes, the
agent’s performance has converged. The value of the final state
has been successfully propagated backwards over different states,
leading to a ramping of activity of the critic unit from the start of
an episode to the end (Figure 3B, right).

In comparison to Q-learning, the agent avoids high losses at
the start of a training episode. This can most likely be traced
back to two factors, which endow our agent with an advantage
over Q-learning with function approximation. First, our agent
starts with predefined place cells that reliably encode the position
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FIGURE 4 | A neuronal network simulated in NEST successfully learns to navigate in a grid world with discrete states and discrete actions. (A) Orange curve: average

reward collected by the agent over the next 500 steps averaged over 5 simulations. Dark blue curve: performance of Potjans et al. (2011) model averaged over 5

simulations. Shaded bands indicates ± one standard deviation. Gray line: theoretical optimum. Inset: screenshot of the environment with start state (S), frozen states

(F), holes (H), and goal state (G). The position of the agent is indicated in pink. (B) The learned policy and value map of the environment. Red colors indicate positive,

blue colors negative values. Arrows indicate the preferred direction of movement. The neural network simulation was run with a real-time factor of two.

in state space and it only has to learn to appropriately combine
the activities of these place cells. In contrast, Q-learning starts
from a completely blank slate, with no prior knowledge about
the input space. It would be incorrect to conclude from this
that place cells are generally the superior strategy: manually-
defined place cells become infeasible in high-dimensional state
spaces as their number increases exponentially in the number
of input-space dimensions, whereas Q-learning with function
approximation can be scaled to very high-dimensional input
spaces (see e.g., Mnih et al., 2013). The second advantage of
our agent are long transients in action selection. Before learning
the correct sequence of actions, the agent tends to explore a
single action for an extended period of time (see trajectories of
actor units, Figure 3B, left), whereas Q-learning changes action
often. For this particular environment sticking to one action for
an extended period of time, especially during the early phases
of learning, is advantageous as the final strategy involves few
action changes (Figure 3B, right). This disadvantage can most
likely be attenuated by using frame skipping or similar methods
(cf. Mnih et al., 2013).

3.3.3. Frozen Lake

As a second application illustrating the use of the toolchain for
discrete environments, we train the same network model on the
FrozenLake9 environment. This consists of a discrete set of 16
states arranged in a four-by-four grid (Figure 4A, inset). Each
state is either a start state (S), a goal state (G), a hole (H), or a
frozen state (F). From the start position, the agent has to reach
the rewarded state by navigating over the frozen states without
falling into holes which reset the agent to the starting position.
In each step the agent can choose from four different actions:
move west, move north, move east and move south. Usually, the
tiles are “slippery,” i.e., there is a chance that a random action is
executed irrespective of the action chosen by the agent. However,
to simplify learning for demonstration purposes we turn this
feature off. Upon reaching the goal the agent receives a reward
of magnitude one. Since the optimal path involves six steps from
start to goal, the theoretical optimal reward per step is ∼ 0.16.

9https://gym.openai.com/envs/FrozenLake-v0/

To encourage exploration the agent receives a small punishment
in each state and, additionally, to speed up learning the agent is
punished for falling into holes.

Unlike in the continuous MountainCar environment, the
tuning curves of place cells do not overlap in the discrete
case, leading to sharp transitions in the network activity. This
leads to severe issues for associating values and actions with
the respective states. To address this problem we introduced a
simple eligibility trace by evaluating the activity of the pre- and
post synaptic units in the learning rule with a small delay δt
(see Supplementary Material). With this addition, the network
model is able to find the optimal solution for this task within
roughly 2,000 steps (Figure 4A). It also learns to associate holes
with punishment and frozen states with reward if they are on
the path to the goal (Figure 4B). Although there are two possible
paths to the goal, the agent prefers the path with fewer corners,
likely as a consequence of the WTA circuit which tends to select
the same action repeatedly.

We compare the performance of our algorithm to an adapted
spiking neural network model of the basal ganglia implementing
reinforcement learning (Potjans et al., 2011; Jitsev et al., 2012).
Learning in this algorithm is faster than our implementation and
reaches the optimal solution after only 1,000 steps (Figure 4A).
However, the performance of the spiking model drops after 2,000
steps to a sub-optimal value. As this model relies on a very high
discount factor (γ = 0.99), which is close to ’infinite horizon’,
the values of the states saturate in the vicinity to the goal. This
can lead to a low contrast of preferred actions in those states and
therefore to a sub-optimal policy. To resolve this issue is beyond
the scope of this manuscript (see Kato and Morita, 2016 for an
investigation of such matters), but underlines the importance of
comparing alternative models on the same task. Only through
such activities can we identify the strengths and weaknesses
of different functional hypotheses and thus make more rapid
progress in the field.

4. CONCLUSION

In this manuscript, we have argued that standardized
benchmarks are of critical importance to compare and improve
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functional neural network models. Moreover, to investigate the
characteristics of the neural circuits that allow agents to operate
autonomously in their environments and learn appropriate
behaviors, simulation infrastructure must enable closed-loop
interaction between agent and environment.

To make such a set of closed-loop benchmarks available to
the computational neuroscience community, we have developed
a toolchain that closes the loop between the OpenAI Gym
and neural network simulators implementing the MUSIC
interface, notably NEST and NEURON. We demonstrated
the functionality of the toolchain by implementing an actor-
critic architecture in NEST and evaluating its performance
on two different environments. The performance of the
network quickly reached near-optimal performance on these
two tasks.

Compared to creating customized environments within the
framework of a neuronal simulator, using readily available,
well-tested tools is considerably easier (and thus faster) for
the researcher, often computationally more efficient, and most
importantly, supports reproducible science. In addition, having
the OpenAI Gym environments as common benchmarks
in both fields encourages comparison between traditional
machine learning and biologically plausible implementations.
In contrast to models presented in previous studies, our
toolchain makes it easy for other researchers to extend
our implementation of an actor-critic architecture to other
environments, replace neuron models or explore alternative
learning rules. The simulation and visualization scripts to
reproduce the results presented for the network model described
here are publicly available10, and so can serve as a starting
point for more complex models. In addition a dedicated
tutorial introduces the toolchain step-by-step using NEST as an
example simulator11.

While the toolchain currently only supports the OpenAI
Gym, the extension to other toolkits is simple due to a modular
design of the wrapper. The RMT can be found on GitHub
and is available under the GPLv3. The OpenAI Gym ZeroMQ
wrapper is also available via GitHub under the MIT license.
A complementary development to the work presented here is
provided by SPORE, a framework for reward-based learning with
spiking neurons in the NEST simulator12. It provides support
for synapse models with time-driven updates, additional support

10https://github.com/INM-6/closed-loop-learning-in-autonomous-agents
11https://github.com/INM-6/nestrl-tutorial/
12https://github.com/IGITUGraz/spore-nest-module

for recording and evaluating traces of neuronal state variables
and introduces MUSIC ports for communicating rewards to a
running simulation.

With the work presented here we enable researchers to build
more easily upon previous studies and evaluate novel models.We
hope this boosts the progress in computational neuroscience in
uncovering the biophysical mechanisms involved in autonomous
behavior and learning.
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One of the big challenges in robotics is to endow agents with autonomous and adaptive

capabilities. With this purpose, we embedded a cerebellum-based control system into

a humanoid robot that becomes capable of handling dynamical external and internal

complexity. The cerebellum is the area of the brain that coordinates and predicts the

body movements throughout the body-environment interactions. Different biologically

plausible cerebellar models are available in literature and have been employed for motor

learning and control of simplified objects. We built the canonical cerebellar microcircuit

by combining machine learning and computational neuroscience techniques. The control

system is composed of the adaptive cerebellar module and a classic control method; their

combination allows a fast adaptive learning and robust control of the robotic movements

when external disturbances appear. The control structure is built offline, but the dynamic

parameters are learned during an online-phase training. The aforementioned adaptive

control system has been tested in the Neuro-robotics Platform with the virtual humanoid

robot iCub. In the experiment, the robot iCub has to balance with the hand a table with

a ball running on it. In contrast with previous attempts of solving this task, the proposed

neural controller resulted able to quickly adapt when the internal and external conditions

change. Our bio-inspired and flexible control architecture can be applied to different

robotic configurations without an excessive tuning of the parameters or customization.

The cerebellum-based control system is indeed able to deal with changing dynamics

and interactions with the environment. Important insights regarding the relationship

between the bio-inspired control system functioning and the complexity of the task to

be performed are obtained.

Keywords: biomimetic, cerebellar control, motor learning, humanoid robot, adaptive system, forward model,

bio-inspired, neurorobotics
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1. INTRODUCTION

Controlling a robotic system that operates in an uncertain
environment can be a difficult task if the analytical model of the
system is not accurate. Models are the most essential tools in
robotic control (Francis andWonham, 1976), however, modeling
errors are frequently inevitable in complex robots, for instance
humanoids and soft robots. Such redundant modern robots
are mechanically complex and often interacts with unstructured
dynamical environments (Nakanishi et al., 2008; Nguyen-Tuong
et al., 2009). Traditional hand-crafted models and standard
physics-based modeling techniques do not sufficiently take
into account all the unknown nonlinearities and complexities
that these system present. This lack consequentially leads to
a reduced tracking accuracy or, in the worst case, to unstable
null-space behavior.

Modern autonomous and cognitive robots are requested to
adapt not only the decisions but also the forces exerted in any
varying condition and environment. The selected movement can
not be executed properly if the robot does not adjust the forces
according to the changing dynamics. Because of this, modern
learning control methods should automatically generate model
based on sensor data streams, so that the robot is not a closed
entity, but a system that interacts, and evolves through the
interaction with a dynamic environment.

In this paper, we intend to design an adaptive learning
algorithm to control the movements of a complex nonlinear
dynamical system. In particular, we assume that: the Jacobian
poorly describes the actual system; the robot interacts with one or
more unmodeled external objects; the sensor-actuator system is
distributed and not all the states are observable or can be describe
with parametric function designed off-line; the action/state space
is continuous and high-dimensional. The control system should
solve the inverse dynamics control problem of a multiple-
joint robotic system affected by static and dynamic external
disturbances during the execution of a repeated task. The
controller is envisioned to reduce the tracking accuracy of each
actuator through force-based control input.

In early days of adaptive self-tuning control, models were
learned by fitting open parameters of predefined parametric
models (Atkeson et al., 1986; Annaswamy and Narendra,
1989; Wittenmark, 1995; Khalil and Dombre, 2002). Although
this method had great success in system identification and
adaptive control techniques (Ljung, 2007), the estimation of
the open parameters can lead to several problems, such as:
slow adaptation; unmodeled behavior and persistent excitation
issue (Narendra and Annaswamy, 1987); inconsistency of the
estimated physical parameters (Ting et al., 2006); unstable
reaction to high estimation error. In recent years, non-parametric
approach has been shown to be an efficient tool in the resolution
and prevention of the aforementioned problems thanks to
the adaptation of the model to the data complexity (Nguyen-
Tuong and Peters, 2011), and several methods have been
proposed (Farrell and Polycarpou, 2006), such as neural
networks (Patino et al., 2002), and statistical methods (Kocijan
et al., 2004; Nakanishi and Schaal, 2004; Nakanishi et al., 2005).

In the eighties, Narendra’s research group at Yale University
exploited the adaptability of artificial neural networks (ANNs)
to identify and control nonlinear dynamical systems (Narendra
andMukhopadhyay, 1991a,b, 1997; Narendra and Parthasarathy,
1991). Their experiments showed that the versatility of the
ANNs resulted beneficial for controlling the different behaviors
that characterize complex dynamical systems. Although the
robustness of the classic parametric method in most of the
control scenarios, ANNs were largely used in adaptive control to
overcome uncertainties, unmodeled nonlinearities and to handle
more complex state space systems (Glanz et al., 1991; Sontag,
1992; Zhang et al., 2000; Patino et al., 2002; He et al., 2016, 2018).
As matter of fact, the non-linear components and the layered
structure that distinguish the ANNs facilitate the mapping and
constrain the effects of nonlinearities. Furthermore, the on-
line adjustment of the parameters respect to the input-output
relationship without any strict structural parameterization results
advantageous for adapting to time-dependent changes.

In the Nighties thanks to the extended application of ANNs
in robotics, Juyang Weng introduced the Autonomous Mental
Development approach (AMD) to artificial intelligence (Weng
et al., 1999a; Weng and Hwang, 2006). Weng theories were
mainly inspired by how the biological systems efficiently calibrate
their movements under internal and environmental changes.
Accordingly to AMD the robot have to be embodied in
the environment, and its processing is not preprogrammed
but is the result of the continuous and real-time interaction
within the two systems (Weng et al., 1999b, 2000; Weng,
2002). Respect to classic parametric approaches, the developing
artificial agent creates and adapts models describing itself
and its relation with the environment rather than learning
and estimating parameters of a mathematical model built off-
line. These theories found large application for high level
cognition tasks (see Vernon et al., 2007 for a review) but
were also applied to low level control in visually-guided
robots (Metta et al., 1999; Ugur et al., 2015; Luo et al., 2018).

With the aim of mimicking artificially the motor efficiency of
the biological system, James S. Albus proposed a neural network-
based learning algorithm for robotic controller based on
theories of central nervous system (CNS) structure and function:
the “cerebellar model articulation controller," commonly
known as CMAC module (Albus, 1972). Several studies in
literature demonstrated that, the anatomy and physiology of the
cerebellum is suitable for the acquisition, development, storage
and use of the internal models describing the interaction within
body and environment (Wolpert et al., 1998). Moreover, the
cerebellum is composed by separated regions which functionality
relies both on the internal structure of the circuit and on
the connection with other CNS areas (Houk and Wise, 1995;
Caligiore et al., 2017): each region receives both the desired
movements from the cortex and the sensory information from
tendons, joints and muscles spindles and elaborates a signal
that corrects whereas other CNS region are lacking. As matter
of fact, subjects affected by cerebellum damage often present
motor deficit, such as uncoordinated and ballistic multiple-joint
movements (Schmahmann, 2004). For this reason in the last
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decades, scientists tried to explain the roles of the cerebellum in
motor control, especially its contribution to sensory acquisition
and timing and its involvement in the prediction of the sensory
consequences of action. Moreover, this adaptive control nature
motivated several researchers toward a deeper understanding of
the cerebellum for robotics application.

Two main research lines born since Marr and Albus proposed
the first artificial cerebellum-like network as pattern-classifier
for controlling a robotic manipulator (Marr, 1969; Albus, 1972):
the first research line focuses on purely industrial application
and has as major representative W. Thomas Miller; the second
research line, mainly represented byMitsuo Kawato, deep-rooted
in neuroscience and kept investigating on the biological evidence
of the cerebellum structure and functionalities in relation to other
CNS areas (Kawato et al., 1987; Kawato, 1999).

Miller applied the CMAC module in a closed loop vision-
based controller to solve the forward mapping with direct
modeling (Miller, 1987). Although the advantages, such as
the rapid algorithmic computation based on least-mean-square
training and the fast incremental learning, this approach lack of
generalization and is sensitive to noise and large error (Miller
et al., 1990). Over the years, researchers have been focusing on
solving these drawbacks and the CMAC module has been mostly
used as non-linear function approximator to boost the tracking
accuracy of the adaptive controller and mitigate the effects of
the approximation errors (Lin and Chen, 2007; Chen, 2009;
Guan et al., 2018; Jiang et al., 2018). Although the promising
results obtained by these applications of the CMAC network,
this industrial research line did not completely exploit the overall
capabilities and components of the cerebellum. It is worthy to
note that the CMAC module mimic the cerebellar circuit only at
the granular-purkinje level, for this reason only the mapping and
classification functionalities are exploited.

The neuroscientific research line has been investigating
mainly on the layered structure of the cerebellar circuit proposing
several synaptic plasticity models (Luque et al., 2011, 2014, 2016;
Casellato et al., 2015; D’Angelo et al., 2016; Antonietti et al.,
2017), network models (Chapeau-Blondeau and Chauvet, 1991;
Buonomano and Mauk, 1994; Ito, 1997; Mauk and Donegan,
1997; Yamazaki and Tanaka, 2007; Dean et al., 2010), adaptive
linear filter model (Fujita, 1982; Barto et al., 1999; Fujiki et al.,
2015), and combination of both (Tolu et al., 2012, 2013).
These cerebellar-like models were embedded into bio-inspired
control architectures to analyze how the cerebellum adjusts the
output of the descending motor system of the brain during the
generation of movements (Kawato et al., 1987; Ito, 2008), and
how it predicts the action, minimizes the sensory discrepancy
and cancels the noise (Nowak et al., 2007; Porrill and Dean,
2007). The experiments regarded the generation of voluntary
movements with both simulated and real robots, e.g., eye blinking
classical conditioning (Antonietti et al., 2017), vestibulo-ocular
task (Casellato et al., 2014), the gaze stabilization (Vannucci
et al., 2016), and perturbed arm reaching task operating in
closed-loop (Garrido Alcazar et al., 2013; Tolu et al., 2013;
Luque et al., 2016; Ojeda et al., 2017). From the analysis of
the literature, it then emerged that research groups have treated
the robots as stand-alone systems without interactions with the

environment, while the real world is more complex and every
external interaction counts. It is worth mentioning that the
previous works have been employed for motor learning and
control of simplified objects.

In this paper we present a robotic control architecture
to overcome modeling error and to constrain the effects of
uncertainties and external disturbances. The proposed controller
is composed of a static component based on a classic feedback
control methods, and of an adaptive decentralized neural
network that mimic the functionality and morphology of the
cerebellar circuit. The cerebellar-like module add feed-forward
corrective torque to the feedback controller action (Ito, 1984;
Miyamoto et al., 1988). A non-parametric nonlinear function
approximation algorithm have been employed to map on-line
and to reduce the high dimensional and redundant input
space. The algorithm creates the internal model describing
the interaction within system and environment. This model is
kept under development throughout the execution of the task.
The neural network mimic the composition of the cerebellar
microcircuit. The layered structure of the network constrains
the effects of nonlinearities and external perturbations. The
network weights are based on non-linear and multidimensional
learning rules that mimic the cerebellar synaptic
plasticities (Garrido Alcazar et al., 2013; Luque et al., 2014).

This manuscript extends the previous works under three
main aspects: 1. cerebellar-like network topology and input
data; 2. feedback control-input; 3. dynamic control under
external changing conditions. With the aim at giving more
insights into the capacity of the cerebellum of generating
control terms in the framework of accurate control tasks, the
following research questions come naturally to mind: can a
control system be generalized to control robotic agents by
endowing them with adaptive capabilities? Can accurate and
smooth actions in a dynamic environment be performed by
the extrapolation of valuable sensory-motor information from
heterogeneous dynamical stimuli? Does this sensory-motor
information extrapolation facilitate the motor prediction and
adaptation in changing conditions? The tests were carried out
in the Neuro-robotics Platform (Falotico et al., 2017) with the
virtual humanoid robot iCub. The robot arm has to follow
a planned movement overcoming the disturbances provoked
by a table attached to the hand and a ball running on it. A
similar example was solved by employing a conventional control
law together with computer vision techniques (Awtar et al.,
2002; Levinson et al., 2010). However, this approach assumes a
fixed robot morphology defined and described before running
the experiment, and there is no run-time adaptation to the
“biological changes” as we see in human beings. Balancing
a table with a ball running on it is a relevant example of
how humans learn to calibrate, coordinate, and adapt their
movements, hence, we investigate how robots can achieve this
task following the biological approach. Probst et al. (2012) also
followed the biological approach; they tackled the problem taking
into account the dynamics of the system, four different forces
are found by means of a liquid state machine and applied in
four different points of the table to achieve the balancing task.
A supervised learning rule is used for the training step, which
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FIGURE 1 | (A) The figure illustrates the main components of the functional architecture scheme and the link with the artificial robot agent and the external system. (B)

The humanoid Icub holding the table-ball system in the simulation environment NRP. (C) Three controlled joints: wrist prosup ϑ0, wrist yaw ϑ1, wrist pitch ϑ2.

concludes that after 2,500 s no further improvement of the
performance is obtained.

Hence, the main advantages of our model are: the low amount
of (sometimes implausible) prior information for the control,
a fast reactive robotic control system, an on-line self-adaptive
learning system. Thanks to these features the robot can perform
a determinate physical task and adapt to changing conditions. In
conclusion, this approach introduces a fast and flexible control
architecture that can be applied to different robotic platforms
without any/excessive customization.

In the first section that follows, we present the control
architecture, the adopted cerebellar-like model and the
description of the method. In the second section, we report
the experimental setup as well as the results of the comparison
study of four control system approaches including the respective
analysis. Finally, we will discuss the main findings of the study
correlating them to previous literature.

2. MATERIALS AND METHODS

In this section, we present our bio-inspired approach to solve
the problem of controlling the right arm of the ICub humanoid
robot despite the occurrence of an external perturbation. The

experiment consists of a simulated humanoid robot that executes
a requested movement using three controlled joints of the right
arm. During the simulation, a ball is launched on the table that
is attached to the robot’s right hand; the ball is free to roll on the
table, as illustrated in Figure 1B. The movements of the ball are
provoked by the shaking of the robot arm and consequentially
of the table. The key information about the external system
components (e.g., the ball and table) are reported in Table 1.

The proposed control architecture (Figure 1A) is composed
of three main building blocks: the robotic plant, which is the
physical structure (section 2.1); the motor primitive generator,
which is responsible of the trajectory generation (section 2.2); the
controller, which elaborates the torque commands to move each
motor to the desired set point (section 2.3).

2.1. Robotic Plant
The Icub humanoid robot is 104 cm tall and it is equipped with a
large variety of sensors (such as gyroscopes, accelerometers, F/T
sensors, encoders, two digital cameras) and 53 actuated joints
that move the waist, head, eyes, legs, arms, and hands. During
the experimental tests, eight revolute joints of the right arm
were actuated: four joints were kept constant to maintain the
arm up (e.g., elbow, shoulder roll, shoulder yaw, and shoulder
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TABLE 1 | External system features.

Mass [Kg] Volume [m3] Static friction

coefficient

Dynamic friction

coefficient

Ball 0.01 6.54× 10−5 0.02 0.01

Table top 0.1 9× 10−4 0.01 0.01

pitch), and three joints were controlled in effort by the proposed
control system (namely wrist prosup, wrist yaw and wrist pitch).
The axis orientation of the controlled actuators are illustrated in
Figure 1C. Additional information about the actuated joints are
reported in Table 2. In this work, we used the encoder to only
read the state of the controlled joints (e.g., angular position, and
velocity) and save it in the process variables,

Qc
N×1(t) =





ϑc,0(t)
...

ϑc,N(t)



 where N = 2, (1)

Q̇
c
N×1(t) =





ϑ̇c,0(t)
...

ϑ̇c,N(t)



 where N = 2, (2)

2.2. Motor Primitive Generator
The motor primitive generator plans the trajectory for each
actuated joint and communicates the reference value to the
control system at each time step. The reference angular position
and velocity of each joint are defined as oscillators with fixed
amplitude, natural frequency and phase,

Qr
N×1(t) =





ϑr,0(t)
...

ϑr,N(t)



 =





A0 · sin(2π ft + ϕ0)
...

AN · sin(2π ft + ϕN)



 , (3)

Q̇
r
N×1(t) =





ϑ̇r,0(t)
...

ϑ̇r,N(t)



 =





2π fA0 · cos(2π ft + ϕ0)
...

2π fAN · cos(2π ft + ϕN)



 , (4)

where N = 2. The temporal frequency is f = 0.25Hz, while the
oscillations A amplitude and ϕ phase of each joint are set to:

A1×N =
[

A0, A1, A2

]

=
[

0.1727, 0.1363, 0.0345
]

rad

ϕ1×N =
[

ϕ0, ϕ1, ϕ2

]

=
[

0.5π , 0.5π , 0.0
]

rad.

2.3. Controller
The controller block (Figure 1A) is composed of a static
component based on classic control methods (section 2.3.1),
and of an adaptive decentralized block representing the bio-
inspired regulator, i.e., the cerebellar-like circuit (section 2.3.2).
Both sub-blocks receive information about the Qc, Q̇

c
process

variables measured from the encoders located in the robotic
plant (Equations 1, 2), and the Qr ,Q̇

r
reference trajectory

signals from the motor primitive generator (Equations 3, 4).

The controller directly sends the τ tot total control input to
the robot servo controller which actuates the joints for δt =

0.5s. The τ tot total control input is expressed as the result of a
feed-forward compensation (as the AFEL architecture proposed
by Tolu et al., 2012),

τ totN×1 =





τ tot0
...

τ totN



 =





τPID0 + 1τDCN0
...

τPIDN + 1τDCNN



 , (5)

τ totwhere τPIDn and 1τDCNn (where n = 0, ...,N) are the
contributions from the static and the adaptive bio-inspired
controller respectively.

2.3.1. Feedback Controller

The static control system refers to the classic feedback control
scheme with PID regulator. It is defined static due to its time-
constant control terms. The closed-loop system continuously
computes the eϑ̇n

angular velocity error of each joint as the

difference between the ϑ̇r,n reference (Equation 4) and the ϑ̇c,n

process variable (Equation 2),

evelN×1 =





eϑ̇0

...
eϑ̇N



 =





ϑ̇r,0 − ϑ̇c,0

...

ϑ̇r,N − ϑ̇c,N



 . (6)

The eϑ̇n
error (where n = 0, ...,N) is used to apply correction to

each controlled joint in terms of effort,

τPIDN×1 =
[

τPID0 , ... , τPIDN

]T
, (7)

according to the independent joint control law expressed as:

τPIDn (t) = KP,n · eϑ̇n
+ KI,n ·

∫ t

t−1t
eϑ̇n

(t′)dt′ + KD,n ·
dϑ̇n(t)

dt

for n = 0, ... ,N , (8)

where the integration time window is 1t = 10 samples. The
regulator is tuned to weakly operate in a linearized condition
which excludes the presence and disturbance of the ball, hence
the proportional, integrative and derivative terms are static and
set respectively to,

KP =
[

KP,0, KP,1, KP,2

]

=
[

2.9000, 2.3000, 2.3500
]

KI =
[

KI,0, KI,1, KI,2

]

=
[

1.9400, 1.9000, 1.9000
]

KD =
[

KD,0, KD,1, KD,2

]

=
[

0.0050, 0.0001, 0.0004
]

.

2.3.2. Cerebellar-Like Model

The proposed cerebellar-like network has been designed to solve
robotic problems (Figure 2). In particular, the sensory input
and the corrective action in output refer to entities regarding
the actuated motors, such as motor angular position, velocity
or effort. Electrophysiological evidence about the encoding
of movement kinematics has been found at all levels of the
cerebellum; for example, in this review (Ebner et al., 2011),
reported that the mossy fibers (MF) inputs encode the position,
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TABLE 2 | Actuated joints information: the wrist actuators (highlighted in yellow) are controlled in effort while the elbow and shoulder motors are kept to a constant

angular position.

Min ϑ [rad] Max ϑ [rad] Max ϑ̇ [rad · sec−1] Control Value

Wrist prosup n = 0 –0.8726 0.8726 100 Effort Controlled variable

Wrist yaw n = 1 –0.4363 0.4363 100 Effort Controlled variable

Wrist pitch n = 2 –1.1344 0.1745 100 Effort Controlled variable

Elbow 0.0959 1.8500 100 Position Constant = 1.14 [rad]

Shoulder roll 0.0000 2.80649 100 Position Constant = 0.1 [rad]

Shoulder yaw –0.645772 1.74533 100 Position Constant = –0.1 [rad]

Shoulder pitch –1.65806 0.0872665 100 Position Constant = –0.9 [rad]

FIGURE 2 | Proposed cerebellar-like circuit in analogy with D’Angelo et al. (2016). (A) canonical micro-circuit. Proposed cerebellar-like neural network (B) structural

partition and (C) details.

direction, and velocity of limb movements. Moreover, many
hypotheses suggest that the cerebellum directly contributes
to the motor command required to produce a movement.
In our model, the input-output relationship is based on the
previous suggestions and the signal propagation throughout
the cerebellar network layers is in accordance with the robotic
control application. The main design concept is that the signal
propagating inside the circuit have the same dimension of the
1τDCN output signal from the Deep Cerebellar Nuclei (DCN).
The propagated signal is modulated inside the network by other

signals that are correlated with the intrinsic features of the
controlled plant, such as position and velocity terms, in order to
have a complete description of the state.

The neural network structure is divided into separated
modules (Figure 2B), or namely Unit Learning Machine
(uml) (Tolu et al., 2012, 2013). Assuming that the robot
plant is composed by N controllable object, then each uml
is specialized on the n-th controlled object (where n =

0, ...,N), or rather the DCN output of the uml will be the
cerebellar contribution for the specific object. The uml itself is

Frontiers in Neurorobotics | www.frontiersin.org 6 August 2019 | Volume 13 | Article 70108

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Capolei et al. Biomimetic Control for a Humanoid Robot

separated into M sub-modules which represent the canonical
cerebellar microcircuit (ccm). Each ccm is specialized with
respect to a specific feature describing the behavior of the n-th
controlled object. The overall umls and other structures, that are
dedicated to the dimensionality reduction and mapping of the
sensory information, compose together the Modular Cerebellar
Circuit (MCC).

In the proposed experiment, the canonical cerebellar
microcircuits (ccm) of each controlled object are specialized in p
position and in v velocity. In details, the Purkinje layer of each
n−th uml presents a pair of Purkinje cells (PC) (Figure 2C),
specialized in position Pcn,p and velocity Pcn,v respectively
through different climbing fibers (ion,p, and ion,v). Moreover, the
bio-inspired controller receives the same sensory information

FIGURE 3 | Functional architectures representing the proposed experiments.

FIGURE 4 | Angular position and velocity wrist prosup: comparison experiment I and II (A), with zoom on the angular position (C); comparison experiment I and II (B),

with zoom on the angular position (D). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The

vertical green line indicates the moment in which the cerebellar-like controller starts giving the corrective action (t = 40s). The vertical purple line indicates the instant

the ball is launched on the table (t = 5s).
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FIGURE 5 | Wrist prosup experimental results. Resulting angular position error eϑ0
, comparison experiments I and II (A), comparison experiments III IV (B). Control

input τ tot0 evolution, comparison experiments I and II (C), comparison experiments III IV (D). Control input contributions in experiment IV comparisons between: τ tot0

and τPID0 (E); τ tot0 and τDCN0 (F). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The vertical

green line indicates the moment the cerebellar-like controller starts giving the corrective action (t = 40s). The vertical purple line indicates the instant the ball is

launched on the table (t = 5s).

of the feedback controller (section 2.3.1), but it is intended
to correct the eϑn angular position error, whereas the PID
corrects the eϑ̇n

angular velocity error. This is solved through
the connection inferior olive-deep cerebellar nuclei (IO-DCN),
which conveys information about the angular position error. An
additional aspect, the inferior olive signals differs from Kawato’s
feedback error learning theory (Kawato, 1990) and our previous
experiments (Tolu et al., 2012, 2013), because the Jacobian does
not correctly approximate the system, therefore the required
conditions are not satisfied and it is not efficient to compare the
motor signals.

The mossy fibers transmit the information about
the current and reference state of the controlled

joints in terms of angular velocity to the granular
cells (Gr),

MF2N×1(t) =





mf0(t)
...

mf2N(t)



 =

[

Q̇
r
N×1(t)

Q̇
c
N×1(t)

]

=

















ϑ̇r,0(t)
...

ϑ̇r,N(t)

ϑ̇c,0(t)
...

ϑ̇c,N(t)

















. (9)

The granular layer-parallel fibers network is the circuit
area committed to the mapping of the mossy fibers signals
and to the prediction of the next output given the current
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FIGURE 6 | Angular position and velocity wrist yaw: comparison experiment I and II (a), with zoom on the angular position (c); comparison experiment I and II (b),

with zoom on the angular position (d). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The

vertical green line indicates the moment the cerebellar-like controller starts giving the corrective action (t = 40s). The vertical purple line indicates the instant the ball is

launched on the table (t = 5s).

sensory input (Marr, 1969; Albus, 1971). As in our previous
works (Tolu et al., 2012, 2013), we artificially represented this
network with the Locally Weighted Projection Regression
algorithm (LWPR) (Vijayakumar and Schaal, 2000). The
LWPR resulted an efficient method for the fast on-line
approximation of non-linear functions in high dimensional
spaces. Given the MF(t) mossy fibers input vector (Equation 9),
the LWPR creates G local linear models that in our
scheme represent the Grg granular cells (for g = 0, ...,G).

Each linear model employs the MF(t) to make a τ̂
gr
n,g(t)

prediction of the control input τ totn (t − 1) (where n=1,...,N).
The total output of the granular-parallel fibers network
is the weighted mean of all the linear models specialized
in velocity,

τ̂PFn (t) =

∑g=G
g=1 w

gr
n,g(t) · τ̂

gr
n,g(t)

∑g=G
g=1 w

gr
n,g(t)

for n = 1, ...,N, (10)

wherew
gr
n,g and τ̂

gr
n,g are defined in Vijayakumar and Schaal (2000).

In our scheme, there are two Purkinje cells per controlled

joint Pcn,p and Pcn,v (where n = 0, ...,N). The w
pf−pc
n,p

1

synapses connecting the parallel fibers and the Pcn,p (PF-PC
connection) (Garrido Alcazar et al., 2013), are modulated by the

1wpf−pc weighting kernel parameters: LTDmax = 10−3, LTPmax = 10−3, α = 170.

ion,p inferior olive (IO) signal,

ion,p(t) = ẽϑn (t), (11)

that transmits the information about the ẽϑn normalized angular
position error of the n−th joint,

eϑn (t) = ϑr,n(t)− ϑc,n(t), (12)

while the w
pf−pc
n,v

1 synaptic strengths between the parallel fibers
and the Pcn,v, are modulated by the ion,v inferior olive signal,

ion,v(t) = ẽϑ̇n
(t), (13)

that transmits the information about the ẽϑ̇n
normalized angular

velocity error of the n−th joint (Equation 6). Thewpf−pc(t, io0(t))
weighting kernel tends to support the control actions that lead to
an error lower than a specific threshold ethresh,

e
thresh,pc
ϑ =







e
thresh,pc
ϑ0

...

e
thresh,pc
ϑN






=







w
pf−pc
0,p (t, io

p
0(t) = 0) ·max(eϑ0 )

...

w
pf−pc
N,p (t, ioN,p(t) = 0) ·max(eϑN )







=





0.012
0.008
0.002



 [rad], (14)
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FIGURE 7 | Wrist yaw experimental results. Resulting angular position error eϑ1
, comparison experiments I and II (A), comparison experiments III IV (B). The τ tot1

control input evolution, comparison experiments I and II (C), comparison experiments III IV (D). Control input contributions in experiment IV comparisons between: τ tot1

and τPID1 (E); τ tot1 and τDCN1 (F).The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The vertical

green line indicates the moment the cerebellar-like controller starts providing the corrective action (t = 40s). The vertical purple line indicates the instant the ball is

launched on the table (t = 5s).

e
thresh,pc

ϑ̇
=







e
thresh,pc

ϑ̇0

...

e
thresh,pc

ϑ̇N






=







w
pf−pc
0,v (t, iov0(t) = 0) ·max(eϑ̇0

)

...

w
pf−pc
N,v (t, ioN,v(t) = 0) ·max(eϑ̇N

)







=





0.012
0.008
0.002



 [rad · sec−1]. (15)

Respect to our previous work (Tolu et al., 2012, 2013) the output
signals of the Purkinje cells are directly function of the τ̂PFn (t)
prediction instead of the w

gr
n,g weights,

τPCn,p (t) = w
pf−pc
n,p (t, ion,p(t)) · τ̂

PF
n (t) (16)

τPCn,v (t) = w
pf−pc
n,v (t, ion,v(t)) · τ̂

PF
n (t). (17)

Afterwards, the τPCn,p (t) τPCn,v (t) Purkinje cells signals are scaled

by the synaptic weights w
pc−dcn
n,p and w

pc−dcn
n,v

2 (Garrido Alcazar
et al., 2013), that are modulated by the Purkinje cells and the deep
cerebellar nuclei activities (PC-DCN),

w
pc−dcn
n,p = f (t, τPCn,p (t),1τDCNn (t − 1)), (18)

w
pc−dcn
n,v = f (t, τPCn,v (t),1τDCNn (t − 1)). (19)

resulting in the input signals,

τPC−DCN
n,p (t) = w

pc−dcn
n,p · τPCn,p (t) (20)

τPC−DCN
n,v (t) = w

pc−dcn
n,v · τPCn,v (t). (21)

2wpc−dcn weighting kernel parameters: LTDmax = 10−4, LTPmax = 10−4, α = 2.
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FIGURE 8 | Angular position and velocity wrist pitch: comparison experiment I and II (A), with zoom on the angular position (C); comparison experiment I and II (B),

with zoom on the angular position (D). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The

vertical green line indicates the moment the cerebellar-like controller starts providing the corrective action (t = 40s). The vertical purple line indicates the instant the ball

is launched on the table (t = 5s).

In addition, the deep cerebellar nuclei receives the input signals
τMF−DCN
n,p , τMF−DCN

n,v from the mossy fibers and τ IO−DCN
n,p from

the inferior olive. In our proposed circuit, the mossy fibers
connected to the deep cerebellar nuclei (MF-DCN) conveys the
information about the τ totn (t − 1) last control input sent to each
controlled joint (Equation 5). This input is scaled by the synaptic

weights w
mf−dcn
n,p and w

mf−dcn
n,v

3 (Garrido Alcazar et al., 2013),
modulated by the respective n−th Purkinje cells activities,

τMF−DCN
n,p (t) = w

mf−dcn
n,p (t, τPCn,p (t)) · τ

tot
n (t − 1), (22)

τMF−DCN
n,v (t) = w

mf−dcn
n,v (t, τPCn,v (t)) · τ

tot
n (t − 1). (23)

The τ IO−DCN
n,p inferior olive contribution in the deep cerebellar

nuclei (IO-DCN) is given by the ion,p (Equation 11), which is

modulated by the wio−dcn
n,p

4 synaptic weight (Luque et al., 2014),

τ IO−DCN
n,p = wio−dcn

n,p (t, ion,p(t)) · ion,p(t). (24)

3wmf−dcn weighting kernel parameters: LTDmax = 10−4, LTPmax = 10−4, α = 2.
4wio−dcn

n,p weighting kernel parameters: MTDmax = −10−4, MTPmax = −10−5,

α = 100.

The final 1τDCNn cerebellar corrective term is the result of the
τMF−DCN
n modulated control input subtracted by the τPC−DCN

n

prediction modulated by the current error together with the
τ IO−DCN
n,p modulated contribution of the error itself,

1τDCNn = (τMF−DCN
n,p + τMF−DCN

n,v )− (τPC−DCN
n,p + τPC−DCN

n,v )

+ τ IO−DCN
n,p , (25)

or rather,

1τDCNn = (τn(ϑn, τ
tot)+ τn(ϑ̇n, τ

tot))− (τ̂ totn (eϑn )+ τ̂ totn (eϑ̇ ))

+ τn(eϑn ).

2.4. Proposed Experiments and
Performance Measures
The proposed control scheme has been applied in four different
experiments with the aim at analyzing the advantages of the
bio-inspired controller in presence of dynamical disturbances. In
details, the four experiments differ from the presence of the ball
and the cerebellar-like controller contribution (Figure 3):

• Experiment I: control input without both cerebellum
contribution and ball disturbance,

τ tot = τPID (no ball); (26)
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FIGURE 9 | Wrist pitch experimental results. Resulting angular position error eϑ2
, comparison experiments I and II (A), comparison experiments III IV (B). The τ tot2

control input evolution, comparison experiments I and II (C), comparison experiments III IV (D). Control input contributions in experiment IV comparisons between: τ tot2

and τPID2 (E); τ tot2 and τDCN2 (F). The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval (colored area). The vertical

green line indicates the moment the cerebellar-like controller starts providing the corrective action (t = 40s). The vertical purple line indicates the instant the ball is

launched on the table (t = 5s).

• Experiment II: control input with cerebellum contribution,
without ball disturbance,

τ tot = τPID + 1τDCN (no ball); (27)

• Experiment III: control input without cerebellum
contribution, with ball disturbance,

τ tot = τPID (ball); (28)

• Experiment IV: control input with both cerebellum
contribution and ball disturbance,

τ tot = τPID + 1τDCN (ball). (29)

The performance of each experiment will bemeasured by analysis
of the mean absolute error (MAE) evolution computed for the
angular position error of each controlled joint (Equation 12),

maeϑn (k) =

∑t+T
i=t

∣

∣eϑn (i)
∣

∣

T
for n = 0, ...,N. (30)

The MAE is computed for every trajectory period T =

8 s (Equation 3).

3. RESULTS

The software describing the system is based on the ROS (Quigley
et al., 2009) messaging architecture and is integrated in
the Neurorobotics Platform (NRP) (Falotico et al., 2017).
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TABLE 3 | The mean absolute error (MAE) of the initial and final period (T = 4 s).

Ball No ball

Cerebellum No cerebellum Cerebellum No cerebellum

Initial Final Initial Final Initial Final Initial Final

maeϑ0
[rad]

µ 0.4136 0.0241 0.4148 0.1104 0.4068 0.0188 0.4136 0.1037

σ 0.0181 0.0085 0.0273 0.0242 0.0120 0.0017 0.0319 0.0075

maeϑ1
[rad]

µ 0.3148 0.0689 0.3168 0.3123 0.3139 0.0671 0.3172 0.3130

σ 0.0048 0.0093 0.0070 0.0018 0.0012 0.0031 0.0016 0.0005

maeϑ2
[rad]

µ 0.4380 0.0042 0.4395 0.0019 0.4437 0.0037 0.4401 0.0020

σ 0.0045 0.0012 0.0063 0.0001 0.0026 0.0003 0.0013 2.9177e-05

The results express the mean value µ and standard deviation σ of the 20 tests run for the four experiments.

FIGURE 10 | Comparison of the angular position MAE: (A) wrist prosup, (B) wrist yaw and (C) wrist pitch. The plots show the results of the 20 tests in terms of mean

value (solid line) and 95% confidence interval (colored area). The vertical green line indicates the moment the cerebellar-like controller starts providing the corrective

action (t = 40s or iteration = 10).

The NRP is a simulation environment based on ROS and
Gazebo (Koenig and Howard, 2004) which includes a variety
of robots, environments and a detailed physics simulator. The
three wrist motors are controlled in effort through the Gazebo
service ApplyJointEffort, while the elbow and the three shoulder
motors are controlled in position through their specific ROS
topic. The sensory information from the encoders are received
with a sampling frequency of fsampl = 50 Hz. The computer
used for the test has theUbuntu 16.04 Operating system (OS type
64 − bit), the Intel CoreTM i7 − 7700HQ CPU@2.80GHz × 8
processor, and the GeForce GTX 1050/PCIe/SSE2 graphics card.

Each experiment was performed 20 times with a total duration
of about 3 min. The recorded data was saved in.csv files and
processed for the analysis. The results are expressed as mean
value of the 20 tests, and σ standard deviation or 95% confidence
interval. In each experiment, the cerebellar-like circuit is

activated after t = 40 s (or 10th iteration), which is the moment
all the actuated joints reach a stable configuration (included the
shoulder joints and the elbow). In experiments II and IV, the ball
is launched on the table after t = 5 s (purple vertical line in
the figures).

The comparison of the 4 experiments for each controlled
joint are presented separately in 3 parts. In each part, we
analyze the joint states, i.e., ϑc,n(t) angular position and ϑ̇c,n(t)
velocity (Figures 4, 6, 8), respect to the control action (Figures 5,
7, 9). Moreover, we compared the mean absolute error MAE to
measure the performance of the different cases (as reported in
Table 3 and illustrated in Figure 10).

3.1. Wrist Prosup
In the details of Figures 4A,B, the corrective action of the
cerebellar-like circuit (Experiments II, IV) leads ϑc,0 faster to
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the desired trajectory ϑr,0 with respect to the case without
corrections (Experiments I, III). ϑc,0(t) starts getting closer to the
desired position in about one period T = 4 s after the activation
of the cerebellum (Figures 4C,D). In Figures 5A,B it is evident
how the angular position error eϑ0 drops when the cerebellum
action grows (Figures 5C,D). In particular, the mean absolute
error drastically decreased by the 95 and 94% in experiment II
and IV respectively, while it only decreased by the 74 and 73%
in Experiment I and III (Figure 10A, the numerical results are
reported in Table 3). The main difference between experiments
with and without ball is the σ standard deviation. In the final
period, the experiments with the ball present a larger standard
deviation which is 30% (without cerebellum) and 19% (with
cerebellum) respect to the NO ball-case.

3.2. Wrist Yaw
The wrist yaw joint is the most affected by the cerebellum action.
In Figure 6, it is evident how with only the PID contribution
ϑc,1(t) presents a constant and large offset with respect to ϑr,1(t).
As soon as the cerebellum contribution 1τDCN1 grows (around
the 50 s, Figures 7C,D) the error descends (Figures 7A,B). The
mean absolute error decreases by the 78% in experiment II and
IV, while it only drops 1% in experiments I and III (Figure 10B).
In the last period, the experiments with the ball have a standard
deviation 30–33% larger than the NO ball-cases.

3.3. Wrist Pitch
On the other hand, the wrist pitch gains from the cerebellar
action only when the error is larger than ethreshϑ2

, which is around
40–60 s (Figure 8), taking into account that the cerebellum is
started at t = 40 s. The 1τDCN1 gets more silent (Figures 9C–E)
when the angular position error is small (Figures 9A,B). In
Figure 10C is more evident how the cerebellum accelerates the
corrective action between iteration 10 and 15 where the MAE
with the cerebellum (experiment II) is 17% lower respect to
experiment I (in experiment IV the MAE is 16% lower respect
to experiment III).

4. DISCUSSIONS

In this work, a bio-mimetic control scheme is presented in the
framework of a robotic task, in which simultaneous control of
the object dynamics and of the internal force exerted by the
robot arm to follow a trajectory with the object attached to it is
required. To addressmulti-joint corrective responses, we induced
and combined three-joint wrist motions. Thus adaptation skills
are required especially to deal with an external perturbation
acting on the robot-object system. The main observation is
that plastic mechanisms given by a feed-forward cerebellum-like
controller effectively contribute to the learning of the dynamics
model of the robot arm-object system and to the adaptive
corrections in terms of torque commands applied to the joints.
These cerebellar torque contributions, together with feedback
(PID) torque outcome, allow the progressive error reduction
by incorporating distributed synaptic plasticity based on the
feedback from the actual movement.

The results about the three controlled joints showed a fast
reactive control in the test cases when the cerebellum-like model
is active, which is even more evident when the ball (random
perturbation) is present as shown in Figures 4, 6, 8B,D. An
incremental velocity control input is then provided to the
controller of the system to deal with the perturbation. The
purpose of considering a heterogeneous stochastic dynamical
stimuli (board and ball) was to test and examine the activation
of incremental learning and adaptation of the cerebellum-like
controller and at the same time to confirm its coupling with
the feedback control inputs. Previous studies have shown that
the feedback processes are omnipresent in voluntary motor
actions (Scott et al., 2015) and rapid corrective responses occur
even for very small disturbances that approach the natural
variability of limb motion. In human beings, these corrections
commonly require increases in muscle activity generated i.e., by
applied loads (Nashed et al., 2015). By analogy, a similar effect
can be noticed at joint-level in our system. In the experimental
situation, the joints that are more influenced by the limb
dynamics (wrist prosup and yaw joints) under the effect of the
table and ball increase their control input activity as represented
in Figures 5, 7C,D, while the wrist pitch joint has a much more
reduced activity re influenced by the limb dynamics (wrist prosup
and yaw joints) under the effect of the table and ball increase their
control input activity as represented in Figures 9C,D compared
to the previous two joints. This phenomena is also reflected in the
control input provided by the cerebellum-like model. The bigger
the position error is at the beginning of the simulation with only
the PID control case (experiments I and III) themore effective the
cerebellar-like corrections are (experiments II and IV) as shown
in Figures 5, 7, 9A,B. It should be noted that for the wrist pitch
joint the PID controller leads to ∼0.0 (rad) MAE around 40 s
from the beginning of the simulation. However, among all the
joints, the fundamental role of the cerebellum in motor control is
confirmed by its anticipatory response for decreasing the error
as it is appreciated in Figure 10. The control system achieved
these result by creating up to 9 Gr receptive fields per uml at
the granular level (or rather LWPR). In Figure 11, it is possible
to appreciate how the IO inferior olive signals (in blue) of each
ccm promptly influence the synaptic weights (in red) between
the PF parallel fibers and the PC Purkinje cells (left column),
and the contribution of the inferior olive itself on the DCN Deep
Cerebellar nuclei corrective action (right column). In the IO-
DCN connection details, the synaptic weights rapidly increment
in the first tract around 40–60 s where the error is higher and
then keep increasing slowly for the final adjustments. On the
other hand, the PF-PC connection tends to not over-react at the
beginning of the simulation around 40–60 s, while it strengthen
when the error decline. We assume that this opposite influence
of the IO on the synaptic weights makes possible the filtering and
the dumping of any external disturbances or high error.

This control model proposes a plausible explanation on
how control feedback is used by the central nervous system
(CNS) to correct for intrinsic as well as external sources of
disturbances. Furthermore, the bio-mimetic model represents a
plausible control scheme for voluntary movements that can be
generalized to control robotic agents without mayor tuning of
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FIGURE 11 | Learning evolution of the cerebellar-like network in experiment IV: influence of the inferior olive on the PC-PF parallel fibers-Purkinje cells and IO-DCN

inferior olive-Deep cerebellar nuclei connections. The plots show the results of the 20 tests in terms of mean value (solid line) and 95% confidence interval

(colored area).

the parameters. Our controller with distributed plasticity allows
efficient adjustment of the corrective signal regardless of the
dynamic features of the robot arm and of the way the added
perturbations affect the dynamics of the arm plant involved.
According to this, the controller (cerebellum-like and PID) is
adaptable by providing adjustable torque commands among the
joints to overcome external dynamic and stochastic perturbations
and to have a both fast and precise movement. This replies to our
question about if the sensory-motor information extrapolation
made by the cerebellum-like facilitates motor prediction and
adaptation in changing conditions. It should be noted that the
adaptation mechanism adopted here is not constrained to any
specific plant or testing framework, and could therefore be
extrapolated to other common testing paradigms.

D’Angelo et al. (2016) illustrated in their paper the schematic
representation of how the core cerebellar microcircuit is wired
inside the whole brain. The proposed cerebellar-like model has
been designed in analogy with it. In contrast with Garrido Alcazar
et al. (2013), Casellato et al. (2014), Antonietti et al. (2017), the

proposed model encodes the movement kinematics at the mossy
fibers level (Ebner et al., 2011), and presents a coupling at the
Purkinje layer for velocity and position terms representation.
Likewise, the synaptic strengths at PC-DCN level as well the
synaptic strengths at IO-DCN level are modulated by signals
related to position or velocity. The mossy fibers are connected
to the DCN and to some granular cells to convey the efference
copy or motor command information. The IO cells are devoted
to teaching signal error transmission in terms of position
and velocity errors. The teaching errors modulate the synaptic
strengths at PF-PC and IO-DCN levels.

Tokuda et al. (2017) postulated that high dimensionality
problem (high-dimensional sensory-motor inputs vs. low
training data) is accomplished by the cerebellum by regulating
the synchronous firing activities of the inferior olive (IO)
neurons. Though the implementation of coupling mechanisms
at the inferior olive cells would be an interesting work to have a
better explanation onmultiple joint control. This extension could
also provide additional insights into the internal connectivity
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of the cerebellar microcomplex. Further investigation will be
possible in the future of how specific properties of the cells,
of the network topology and synaptic adaptation mechanisms
complement each other in the bio-inspired architecture.

4.1. Neural Basis of Feedback Control for
Voluntary Movements
Feedback control of movement is essential to guarantee
movement success especially to compensate for perturbation
arising from the interaction with the external world. Different
brain areas (primary motor cortex, primary somatosensory
cortex, cerebellum, supplementary motor area, etc.) are involved
during a voluntary movement and cooperate in many levels
of hierarchy. Feedback control theory might be the key for
understanding how the previous areas plan and control the
movement hierarchically. By using control terminology, during
the voluntary movement of a limb, the primary motor cortex
acts as a controller, and the limb connected to neuronal circuits
becomes the controlled object.

The cerebellum learns and provides the internal models
that reproduce the inverse or direct dynamics of the body
part. Thanks to the cerebellar internal model learning, the
primary motor cortex performs the control without an external

feedback (Koziol et al., 2014). By our simulations, we suggest
that such behavior can be confirmed. Indeed, the cerebellar-
like contributions drive the feedback controller toward better
accuracy and precision of the movement. In the future,
a visual feedback input will be considered to probe the
sophistication of feedback control processing and cerebellar-like
learning consolidation.
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In traditional robotics, model-based controllers are usually needed in order to bring

a robotic plant to the next desired state, but they present critical issues when the

dimensionality of the control problem increases and disturbances from the external

environment affect the system behavior, in particular during locomotion tasks. It is

generally accepted that the motion control of quadruped animals is performed by

neural circuits located in the spinal cord that act as a Central Pattern Generator and

can generate appropriate locomotion patterns. This is thought to be the result of

evolutionary processes that have optimized this network. On top of this, fine motor

control is learned during the lifetime of the animal thanks to the plastic connections

of the cerebellum that provide descending corrective inputs. This research aims at

understanding and identifying the possible advantages of using learning during an

evolution-inspired optimization for finding the best locomotion patterns in a robotic

locomotion task. Accordingly, we propose a comparative study between two bio-inspired

control architectures for quadruped legged robots where learning takes place either

during the evolutionary search or only after that. The evolutionary process is carried

out in a simulated environment, on a quadruped legged robot. To verify the possibility

of overcoming the reality gap, the performance of both systems has been analyzed by

changing the robot dynamics and its interaction with the external environment. Results

show better performance metrics for the robotic agent whose locomotion method has

been discovered by applying the adaptive module during the evolutionary exploration for

the locomotion trajectories. Even when the motion dynamics and the interaction with the

environment is altered, the locomotion patterns found on the learning robotic system are

more stable, both in the joint and in the task space.

Keywords: evolutionary algorithm, bio-inspired controller, cerebellum-inspired algorithm, robotic locomotion,

neurorobotics, central pattern generator
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1. INTRODUCTION

From the outside, locomotion appears to be performed
spontaneously and effortlessly by both animals and humans,
but a complex neural system controls it. Movements are mainly
controlled by the Central Nervous System (CNS) which generates
commands at a cortical and spinal level and integrate those
commands based on different sensory feedback. All the muscular
activation and coordination processes can be unexpectedly
produced without the need for conscious control (Takakusaki,
2013). In quadrupeds, the neural control of locomotion happens
along with all the CNS, involving the contribution of cortical
areas as the pre-motor and motor cortices and also more
peripheral areas such as the spinal cord. In particular, the
existence of a Central Pattern Generator (CPG) in the spinal

cord has been first demonstrated in the middle of the twentieth
century (Hughes andWiersma, 1960). It is a network of cells that
generates basic locomotion patterns by the repetitive contraction

of different muscle groups thanks to its periodic oscillations in

exciting or inhibiting certain motoneurons.
The cerebellum plays an important role, too, in both

quadruped and human locomotion. It improves the accuracy
in motor learning, adaptation and cognition on the control
commands from the motor cortex (Ito, 2000), computing
the inverse dynamics of a body component and delivering a
contribution to the present neural signals from the motor cortex
(Kawato and Gomi, 1992; Wolpert et al., 1998). In nature,
the optimal locomotion strategies are discovered by the long
process of evolution. Evolution bases its research on a no-
random selection of randomly generated individuals and the final
evaluation strictly depends on the agent and its interaction with
the surrounding environment. By inspiration from the biological
evolution process, the new concept called Embodied intelligence
or Embodied brain emerged more recently (Starzyk, 2008). The
idea conveys the importance of the body to properly learn the
interaction between intelligence and outer world. Evolution and
learning operate on different time scales but both are forms of
biological adaptation from which is important to take inspiration
from. Evolution reacts to slow environmental changes whereas
learning produces adaptive reactions in an individual during its
lifetime (Pratihar, 2003).

In robotics, finding effective locomotion strategies has always
been a challenge and this task gets even more complicated when
the environmental conditions change. To face dynamical external
conditions, different methods have been developed, in robotics,
and leg-based motion is one of the most effective locomotion
mechanism to deal with changing terrains (Full and Koditschek,
1999). However, legged locomotion is usually very complex to be
modeled and controlled due to the high-dimensional, nonlinear
and dynamically coupled interactions between the robot and
the environment. New approaches, employing synergies and
symmetries, have been proposed to simplify the problem and
decrease its redundancy (Ijspeert, 2008). In some cases, bio-
inspired CPG-based controllers have been used to prove how
a primitive neural circuit used for generating periodic motion
patterns can be extended for generating different types of
locomotion. For instance, the research work from Ijspeert et al.

(2007) shows a CPG model which switches between swimming-
like to walking-like locomotion by just changing a few parameters
of the model, as the oscillation threshold of the system.

The need for refined motor control pushed bio-inspired
robotics to deeply study the cerebellar contribution and design
mathematical models to mimic some of its biological functions
in motion control (Wolpert et al., 1998). Cerebellar-like neuro-
controllers have also been implemented recently. The cerebellum
exploits long-term synaptic plasticity (LTP) to store information
about body-object dynamics and to generate internal models of
movements. This evidence has been studied by Garrido Alcazar
et al. (2013) and implemented for adaptable gain control for
robotic manipulation tasks. In this case, it is useful to have
cerebellar corrective torques which are self-adaptable, operate
over multiple time scales and improve learning accuracy, in
order to minimize the motor error. An error-dependent signal
operating as a teaching contribution is needed for this purpose.

The interesting interaction between CPG-based oscillators
and cerebellar inspired networks has been implemented in bio-
inspired control design, too. In the research work proposed
by Fujiki et al. (2015), the spinal model generates rhythmic
motor commands using an oscillator network based on a Central
Pattern Generator and modulates the commands formulated in
immediate response to foot contact, while the cerebellar model
modifies motor commands, through learning, based on error
information related to the difference between the predicted and
the actual foot contact timings of each leg.

Another interesting research branch is evolutionary robotics
which is becoming a very popular approach in the search for
new robotic morphology and controllers. The main advantage
of this approach is that it is “prejudice-free,” in the sense that
it mainly depends on the behavior of an agent in interaction
with the external environment. In fact, genetic algorithms derive
from the kind of long-term adaptation that humans share with
other species. This idea of adaptation is meant as a relational
property that involves the agent, its environment, and the
maintenance of some constraints and can be in the wide sense
described as the ability of an agent of interacting with its
environment to maintain some existence constraints. Thus, the
idea is exploiting the sensorimotor interactions with a dynamic
environment to minimize the prior assumptions that are built
into a “human-made” model, which reduces the capability of the
model itself to count for new and unknown relevant features or
artifacts in the system (Harvey et al., 2005). Many enhancements
have been done recently, in finding either optimal robotic
morphologies (Corucci et al., 2016) and adaptable robotic brains
(Floreano et al., 2008). Hence, exploiting the interplay robot-
environment, the evolutionary approach represents a model-free
method to discover optimal locomotion patterns based on the
interaction robot-terrain.

In this work, we present a new bio-inspired and model-
free control architecture for quadruped robotic locomotion
which takes advantages from the collaboration of evolution
and adaptation. The evolutionary approach part for optimizing
the Central Pattern Generator model on a simulated robot has
already been investigated and tested (Urbain et al., 2018), while
the cerebellar-like adaptive controller has been proven to be
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effective on both control of voluntarymovements, such as control
of a robotic arm (Tolu et al., 2012, 2013), and control of reflexes,
such as in gaze stabilization tasks (Vannucci et al., 2016, 2017).

In comparison to the previous research works, where the
evolutionary scenario is applied on the CPG parameters of the
quadruped robot Tigrillo (Urbain et al., 2018), we proposed a
comparative research proving the advantages of performing the
evolution on an adaptive quadruped system body + brain. In
the controller, the adaptive part is a cerebellar-inspired circuit
(Tolu et al., 2012), which presents a modular structure for the
quadruped locomotion task case. Further, for the first time,
the paper shows the benefits of using the Cerebellar-inspired
layer, already proposed by Ojeda et al. (2017), for robotic
locomotion task.

To conclude and extend the result to a more general
perspective, it is analyzed a comparison to the case where the
evolution is performed just on the body, while the adaptive
control part is included after the definition of the locomotion
patterns, so after the findings of the locomotion trajectories by
the evolutionary algorithm.

A comparison of the locomotion stability of the two
bio-inspired controllers is then performed under different
experimental constraints, to assess the generalizability of the
results. These final experiments are very important because
of the difficulty to transfer results found in simulation to the
real world due to differences in sensing, actuation, and in the
dynamic interactions between robot and environment. This
phenomenon is called reality gap (Lipson and Pollack, 2000) and
it is even more evident in adaptive approaches, where the control
system is gradually designed and tuned through the repeated
interactions between the agent and the surrounding scenario.
Robots might evolve to match the specificities of the simulation,
which differ from the real-world constraints. To prevent this
problem, many approaches can be possible, such as adding
independent noise to the values of the sensors or changing the
robot dynamic model and its interaction with the environment
(Nolfi et al., 2000; Vandesompele et al., 2019). In comparison
to the classical approach where this simulation variability is
added during the evolutionary optimization, in this research, the
possibility of overcoming the reality gap and the transferability
of the approach is demonstrated afterwards. Furthermore, to
test the robustness of the proposed control architecture in the
interaction with the environment, the static contact friction with
the ground is changed during the test experiments. Usually,
adaptive closed-loop CPG are exploited to counteract the changes
in the environment (Kousuke et al., 2007; Ryu et al., 2010)
while, in this research work, the learning and the adaptation of a
cerebellar-inspired control module (Tolu et al., 2012) are applied
instead to face the dynamically changing interaction with the
external world.

The paper is structured as follows: in section 2 we describe the
architecture of the controller, the evolutionary process employed
and the implementation details; in section 3 we show the results
of the evolutionary procedure and of the subsequent tests that
have been performed; finally, in section 4 we discuss the obtained
results and we draw the conclusions on the advantages of
combining evolutionary processes and adaptive control.

2. MATERIALS AND METHODS

In this work, a bio-inspired control architecture is implemented
for the quadruped configuration of Fable robot (Pacheco et al.,
2014), simulated on the Neurorobotics Platform (Falotico et al.,
2017).

Figure 1 shows the system which consists of two parts: the
controller, which is a simplified model of the CNS, comprising
the CPG and the cerebellar circuit, and a simulated model of a
quadruped robot, the Fable robot (Pacheco et al., 2014).

The robot has two degrees of freedom (DoF) for each leg
(Figure 2A), but only one is actuated (the hip joint), while
keeping the other fixed (Figure 2B) in order to reduce the
number of parameters and simplifying the evolutionary process.
This simplification does not pose a problem, as locomotion
patterns can still be achieved by only using the hip joints.

2.1. Central Pattern Generator (CPG)
In quadruped biological systems, simple locomotion can be
generated as a low-level brain function, in the spinal cord, in the
form of CPG. The term central indicates that there is no need
for peripheral sensory feedback to generate the rhythms. From a
control point of view, the CPG has also very interesting properties
such as distributed control and modulation of locomotion by
simple high-level commands (Ijspeert, 2008).

In our system, this biological neural function is
mathematically modeled as a network of coupled non-linear
oscillators and they are represented as the gray box in Figure 1

(Gay et al., 2013). These oscillators are then used to plan the
angular excursion in time of the hip joints of a quadruped robot
(Figure 2). The benefits of using these oscillators lie in the fact
that they are controlled by a low number of parameters that
specifically affect certain aspects of the locomotion pattern. For
instance, one of the most relevant parameters is the duty cycle (d
in Equation 4) which controls the shape of a skewed sine wave
modulating the protraction-retraction of the hip joint of the
robot as shown in the systems of equations 1-4.

The CPG module is the main block involved in the
evolutionary procedure (Sect. 2.3) and it is implemented in open-
loop in the control architecture.
The initial parameters and the boundaries of the oscillators
(Table 1), employed as a CPG, are selected to be a general starting
point for the optimization algorithm. In defining the variables
of the CPG oscillators, a difference between the front and hind
legs is made to better characterize the morphology of the robot
and to follow the default specifications of the work by Gay
et al. (2013). These variables are the deterministic specifications
which induce a certain type of locomotion for the Fable robot.
Indeed, the locomotion patterns represent the phenotype for the
evolutionary process, which means that they are the observable
characteristics resulting from the interaction of the genotype of
the robot with the environment. Equally, the CPG parameters
(Table 1) represent the genotype which is evolved and mutated
through multiple generations, whose expression are de facto
the locomotion patterns (phenotype). In fact, to not steer the
evolution toward a limited area in the space of the possible
genetic outcomes, the generalizability and unbiasedness of the
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FIGURE 1 | Bio-inspired control system design and implementation. The main modules of the architectures are a CPG-inspired trajectory planner, whose

characteristic parameters have been chosen by a Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) (Hansen, 2006) approach and a Proportional

“Integral” Derivative (PID) feedback controller which can cooperate with a cerebellar-inspired adaptive controller (Ojeda et al., 2017).

FIGURE 2 | The Fable Robot in the Neurorobotics Platform (NRP). The robot has 4 legs (A) and 2 revolute joints per leg (B) which rotate around 2 perpendicular axes

(C) (Pacheco et al., 2014; Falotico et al., 2017).

starting values of the genotype are fundamental.
The selected parameters are listed in Table 1, where their initial
values, boundaries and final optimal results are presented.

Here below, the equations of the unit oscillators model for the
i− th robotic hip, with φ2π = φi(mod 2π):

ṙi = γ
(

µi − r2i
)

ri (1)

φ̇i = ωi +

4
∑

j=1

wij sin(φj − φi − ψij) (2)

θi = ri cos
(

φLi

)

+ oi (3)

φLi =







φ2π
2di

if φ2π < 2πdi
φ2π + 2π(1− 2d)

2(1− di)
otherwise

(4)

r is the radius of the hip oscillator, µ is its hip target amplitude,
ω its frequency, φ its phase, o its offset and θ its output angular
excursion in radians. γ is a positive gain defining the speed of
convergence of the radius to the target amplitudes µ. d is the
virtual duty factor since the actual duty factor depending on
the robot dynamics and on parameters of the gait. The four
hips of the robot are also phase-coupled to synchronize them,
to achieve different gaits. More in details, the coupling between
hip oscillators i and j is obtained by adding the term wijsin(φj −
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TABLE 1 | Distinctive parameters of the coupled oscillators which define the four joint trajectories for the robot.

Parameters Initial values Boundaries Results

Min Max adapt-after-evo adapt-in-evo

CPG EVOLVED PARAMETERS

Front legs amplitude (µ) 1.58 0.5 1.56 1.04 1.46

Hind legs amplitude (µ) 0.88 0.5 1.56 0.69 0.71

Frequency (ω) 5 1 10 4.9 8.57

Phase shift leg 1-2 (φ) 0.001 0 6 1.19 0.38

Phase shift leg 2-3 (φ) 1.14 0 6 5.9 3.42

Phase shift leg 3-4 (φ) 4.35 0 6 1.4 3.32

Duty cycle leg 1 (d) 0.12 0 0.9 0.88 0.29

Duty cycle leg 2 (d) 0.75 0 0.9 0.57 0.73

Duty cycle leg 3 (d) 0.40 0 0.9 0.84 0.28

Duty cycle leg 4 (d) 0.85 0 0.9 0.9 0.69

Offset left front leg (o) −20.8 −60 60 −12.73 22.3

Offset right front leg (o) 18.53 −60 60 36.58 −10.9

Offset left hind leg (o) −17.96 −60 60 57.24 52.47

Offset right hind leg (o) 52.72 −60 60 8.64 26.79

These parameters define the four outputs of the Central Pattern Generator described in Gay et al. (2013) and their values are evolved during the CMA-ES search for the optimal solutions

(Hansen, 2006) either in the adapt-after-evo and in the adapt-in-evo.

FIGURE 3 | The simplified biological model of the cerebellar microcircuit (A) and its functional and computational implementation (B) (Ojeda et al., 2017). The

implementation of the main parts of the biological cerebellar model (A) is represented in the same color in the corresponding control block (B).

φi−ψij) in Equation (2), whereψij is the desired phase difference
between the oscillators controlling hips i and j andwij is a positive
gain. Eventually, φL (Equation 4) is a filter applied on the phase
φ and cos(φL) is used to compute the output angle θ of the
hip oscillator.

The described CPG oscillator acts as a trajectory planner in
the control architecture since coordinates the robotic motion,
defining the locomotion characteristics. In quadrupeds, the
neural signal which descends from the spinal cord along the
motoneurons regulates the contraction of the peripheral muscle
fibers (Takakusaki, 2013). To obtain a consistent motor control
signal, the final signals sent to the robotic legs are joint
efforts. In the case of the Fable robot, these efforts are motor
torques, computed by a PID feedback controller, after the CPG
planning (Figure 1).

2.2. Bio-inspired Adaptive Controller
The proposed bio-inspired controller (in light blue and yellow
in Figure 1) mimics one of the cerebellar roles in locomotion:
the computation of the feedback-error-learningmodel. The body,
or a part of the body as a leg, is a physical entity whose
movements are controlled by the CNS. The controlled entity
can be considered as a cascade of transformations between
motor command (e.g., muscle activations in the biological
case and joint torques in the robotic one) and links motion
(e.g., joint angular position). This cascade of transformations
defines the system dynamics. The neural description, which
models the transformation from the desiredmovement trajectory
to the motor commands needed to obtain it, is called the
inverse model. This concept explains that if the inverse model
is accurate, it can be used as a feedforward controller,
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making the actual trajectory be reasonably comparable to its
reference (Wolpert et al., 1998).

The proposed controller is then composed by a feedback
part and a bio-inspired part (Tolu et al., 2012). The feedback
part element is a PID controller (in light blue in Figure 1),
often used in engineering for torque control, while the bio-
inspired one is a simplifiedmodel of a cerebellar circuit (in yellow
in Figure 1).
The cerebellar-inspired model has the role of computing a
corrective torque contribution based on the inverse model of
the system. As in the biological cerebellum, a specific circuit
is dedicated to the inverse model of each one of the legs, but
still merging information concerning the global body/robot state.
Each circuit works as a Unit Learning Machine (ULM) which
encodes the internal model of a body part to more precisely
perform more precise motion control (Ito, 2008).

In Figure 3, the simplified model of one of the four biological
cerebellar microcircuits and its mathematical implementation
is shown.

The main functional biological sub-parts in the cerebellar
microcircuit are:

• theMossy fibers (MF): they transfer the sensory inputs to the
cerebellum (green in Figure 3);

• theGranular cells (GC): they expand the sensory information
from the mossy fiber to abstract the inverse model of the
body movement corresponding to the specific body part
(orange in Figure 3);

• the Parallel fibers (PF): they transmit the information from
the granular cells to the Purkinje cells. This layer is shared
among all the cerebellar microcircuits and represents where
the information is shared among the four cerebellar modules
(light blue in Figure 3);

• the Purkinje cells (PC): they modulate the input from the
granular cells, which is carrying information about the actual
state of the robot. The modulation is performed thanks to
teaching information coming from the inferior olives through
the climbing fiber (yellow in Figure 3);

FIGURE 4 | Description of the two systems adapt-after-evo and adapt-in-evo. On top, during the evolution, the adapt-after-evo evolves the initial parameters of the

CPG and the PID gains and during the experiments, the bio-inspired module is plug in the architecture. On the bottom, the adapt-in-evo architecture keeps the PID

gains fixed to the initial values of the same values for the adapt-after-evo.
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TABLE 2 | PID gains and hyper-parameters of the Cerebellum-inspired controller.

PID parameters Adapt-after-evo Adapt-in-evo

Boundaries Result values (fixed)

Min Max

Kp 0.5 1 0.86 0.81

Ki 0.001 0.009 0.005 0.005

Kd 0.02 0.06 0.022 0.040

In the adapt-after-evo, the Kp, Ki , and Kd are evolved in the CMA-ES, as the CPG

parameters in Table 1, while in the adapt-in-evo they are fixed as the initial values of the

adapt-after-evo. Concerning the remaining four parameters, they are specifications for the

learning modules of the architecture and for that, they are used just in the adapt-in-evo.

• the Climbing fibers: they carry the teaching signal to
the Purkinje cells to modulate their activity (red dashed
line in Figure 3);

• the Deep nuclear cell (DCN): it gathers and integrates
inputs from the information elaborated by the Purkinje and
Granular cells. It generates the final cerebellar output (white
in Figure 3).

The cerebellar inspired control module contains a total of 4
ULMs, one for each leg (Figure 1). Each ULM is considered
as a single cerebellar microcircuit and the communication and
synchronization through the different circuits are provided by the
PFs layer and encoded as the information pk in the Equation (3).
pk is also transferred between two sub-modules of the learning
machine (in light blue in Figures 3A,B). Each microcircuit
consists of 3 modules: a module for the cortical layer of the
cerebellum (in orange in Figure 3), a module for its molecular
layer, mainly constituted by the Purkinje Cells Layer (PL) (in
yellow in Figure 3), and eventually, a model of the Cerebellar
Nuclei (DCN) (the white circle in Figure 3B). All modules
contribute to computing the final corrective command which
constitutes the inverse model effort contribution uim to the robot.

More in detail, the cortical layer module is implemented
through the Locally Weighted Projection Regression (LWPR)
algorithm. The LWPR is an algorithm for incremental nonlinear
function approximation in high-dimensional spaces with
redundant and irrelevant input dimensions (Vijayakumar
and Schaal, 2000). This machine learning technique is
computationally efficient and numerically robust thanks to
its regression algorithm; it creates and combines N linear
local models which perform the regression analysis in selected
directions of the input space, taking inspiration from the partial
least squares regression. The main advantages of using the
described learning algorithm are listed in the following:

• it optimizes the role of the GC in the cerebellum, which exploit
their particular plasticity to learn the dynamic model of the
body for motor control (orange in Figure 3);

• it acts as a radial basis function filter which implies the
processing of the sensory information input from the MF to
the DCN (pk in Equation 7 and in black in Figure 3);

• it allows rapid learning based on incremental training which
perfectly fit in the specification of the designed system which

should be able to perform online learning, based on the
dynamical environmental constraints;

• its learning is extremely fast and accurate since the weights
of each kernel is based only on local information and its
computational complexity is linear for each input information.

Each LWPR model is fed with the sensory inputs which are the
reference position for the specific leg hip joint (Qd) and the actual
positions (Qlegy for y inULMs) of all the 4 controlled joints. Then,
the algorithm performs an optimal function approximation and
divides the sensorimotor input space into a set of receptive fields
(RFs), which represent the neurons of the cerebellar GCs layer.
The RFs geometry is described by Equation (5), which describes a
Gaussian weighting kernel. For eachmultidimensional input data
point xi, a RF activation pk is computed, based on its distance to
the center of the Gaussian kernel Ck.

pk(xi) = e−
1
2 ((xi−ck)

T
·Dk(xi−ck)) (5)

Basically, each RF activation pk is an indicator of how often an
input happens to be in the validity region of each RF linear
model. The validity region is defined by a positive definite
distance matrix Dk. The distance matrix is updated at each
iteration according to a stochastic leave-one-out cross-validation
technique to allow stable on-line learning. At each iteration, the
LWPR weights pk are sent to the cerebellarmolecular layermodel
and once that the optimal centers and widths are found for each
RF, the accuracy and the learning speed increase. Equation (3)
has been proved to lead to a sparse code of the input data xi and
this facilitates the persistence of remaining sites of plasticity for
the incremental learning process, as in the biological cerebellar
circuit (Dean et al., 2010).
The output of the kth RF is shown in Equation (4), where wk is
the weight vector of the RF and ǫk is the bias.

yk(xi) = wkxi + ǫk (6)

Moreover, the LWPR acts as a radial basis function filter
which elaborates the sensory information and returns it as ulqpr
(Equation 7), that is the contribution from the cortical layer of
the cerebellar microcircuit model. This contribution is modeled
as a weighted linear combination of the kernels outputs yk(xi).

ulwpr(xi) =

∑N
k=1 pk(xi)yk(xi)
∑N

k=1 pk(xi)
(7)

pk (Equation 3) also represents the contribution which is
transmitted through the parallel fiber to the Purkinje Layer (PL).
The parallel fibers gather all the information from the different
GCs kernels. This information is multiplied by a set of weight
rk and thus, we obtain upl, the Purkinje Cell Layer (PL) output
(Equation 6).

upl(xi) =
∑

k

rkpk(xi) (8)

The learning rule used for updating the weights in the Purkinje
Cells Layer is explained in Equation (7), where the update gain δrk
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FIGURE 5 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one.

(A,E) Represent the mean and the standard deviation of the position error of the four legs joints and (B,F) instead describe the mean and the standard deviation of the

contribution ratio of the different modules of the control architecture. (C,G) Describe the periodic behavior relation between the actual joint trajectories of leg 1 and leg

2 compared to their reference values, in pink (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of

the CoM of the robot, on the vertical axis to the ground. By plotting the CoM velocity against its position on the vertical axis, we can extract relevant information about

the stability of the locomotion.
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is computed. β is a small learning rate (usually 0.07) and ufb(xi)
is the motor command from the feedback part of the controller,
used as teaching signal.

δrk = βufb(xi)pk(xi) (9)

Taking inspiration from the biological cerebellar micro-structure,
the final output of the entire cerebellar circuit is the neural
command coming from the Deep Cerebellar Nucleus (DCN) or
Deep Nuclear Cell which represents the inverse model corrective
torque uim (Equation 8).

At each simulation iteration, the total effort command ut to be
sent to the robot is computed as in the Equation (8).

ut(xi) = ufb(xi)+ uim(xi) = ufb(xi)+ ulwpr(xi)+ upl(xi) (10)

2.3. Evolutionary Algorithm
In evolutionary robotics, the desired robotic behaviors emerge
automatically through evolution due to the optimization and
interactions between the robot and its surrounding environment.
As a specification for the evolutionary procedure, a fitness
function, which measures the ability of a robotic individual
to perform the desired task, is defined based on this
optimization procedure, the algorithm identifies the optimal
robotic configuration (Pratihar, 2003).

In this research, an evolutionary algorithm to optimize the
initial parameters of the CPG is applied using a covariance matrix
adaptation evolutionary strategy (CMA-ES) (Hansen, 2006). It is
a stochastic optimization algorithm which, compared to other
evolutionary procedures, has the advantage of converging rapidly
in a landscape with several local minima and requires few
initialization parameters (Hansen, 2006). In an iterative fashion,
the algorithm changes the initial CPG parameters (Table 1) and
simulates the resulting locomotion patterns on the simulated

robotic platform for 2 min. At the end of the simulation,
a fitness function computes a score to give to the different
individuals, based on the distance each robot has covered during
the locomotion simulation. The initial parameters for the CMA-
ES are implemented as described by Hansen (2006).

2.4. Experimental Design
To assess the advantages of exploiting adaptability in employing
evolution strategies for robotic locomotion tasks, two different
configurations of the system are evolved (Figure 4):

• adapt-after-evo: Co-evolution of the CPG parameters and
PID gains (Tables 1, 2)

– genotype: CPG parameters + PID gains
– phenotype: locomotion patterns

• adapt-in-evo: Evolution of the CPG parameters + learning
phase of the cerebellar circuit (fixed PID gains, Tables 1, 2)

– genotype: CPG parameters
– phenotype: locomotion patterns + RFs in the

cerebellar circuit

The PID gains are part of the evolved parameters in the adapt-
after-evo in order to have a fair comparative study of the
performance of the two systems. The classic controller (the
adapt-after-evo) should be also optimized by the evolutionary
exploration. Their initial conditions and the boundaries for the
CPG parameters are the same, as in Table 1.

As a starting point for the evolution, the PID gains are
the same for both robotic configurations: adapt-after-evo and
adapt-in-evo. In the adapt-after-evo configuration, the PID gains
are part of the evolutionary process and their boundaries are
defined according to empirical evaluations on the stability of
the system, while in the adapt-in-evo system configuration when

FIGURE 6 | Histograms which summarize the mean and standard deviation of the distance covered by the 15 individuals with the two control strategies adapt-in-evo

and adapt-after-evo in the three different levels of robot-ground friction. The p-values, regarding the statistical significance of the performance of the two system

adapt-in-evo and adapt-after-evo, are also shown in the figure.
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FIGURE 7 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one, with a

friction coefficient of 0.95 between robot and terrain. (A,E) Represent the mean and the standard deviation of the position error of the four legs joints and (B,F) instead

(Continued)
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FIGURE 7 | describe the mean and the standard deviation of the contribution ratio of the different modules of the control architecture. (C,G) Describe the periodic

behavior relation between the actual joint trajectories of leg 1 and leg 2 compared to their reference values, in pink, and to the behavior of the no perturbed system, in

red (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of the CoM of the robot, on the vertical axis

to the ground, compared the same CoM dynamics when the system is not perturbed (in red).

the cerebellar circuit is plugged in the system, they are fixed
(Figure 4, Table 2).

Concerning the specification of the cerebellar circuit,
an experimental tuning has been performed on four
of the most significant hyper-parameters of the LWPR
algorithm (Vijayakumar and Schaal, 2000) (init_D, init_α,
w_gen and add_threshold in Table 2), to obtain a stable
and corrective system behavior for the frequency range
of the locomotion trajectories (ω in Table 1), used as
starting point of the evolutionary algorithm. This is an
important constraint for the experiments because the
response of the system needs to be stable for all the
possible solutions found by the evolutionary algorithm.
Ensuring stability in the system allows inspecting an unbiased
comparison even if the adaptive part of the controller is
included afterwards.

The first two hyper-parameters considered (init_D and init_α)
are related to the creation of new Receptive Fields, while the
last two (w_gen and add_threshold) directly influence the local
regression algorithm. All the hyper-parameters are the same
for the 4 Unit Learning Machines and they are described
as follows:

• init_D = 0.7, it represents the initial distance metric which is
assigned to each new created Receptive Fields (RFs);

• w_gen = 0.6, it is critical for the creation of new RFs. If no local
model shows an activation greater than this value, a new RF is
generated;

• init_α = 500, it is the initialization value for the learning rate
in the gradient descent algorithm which minimizes the error
in the different regressions of the input space;

• add_threshold = 0.95, it operates as a threshold value to
stand when a new regression direction should be added to
the algorithm. If the ratio between the mean squared error of
the current regression dimension and the same mean squared
error, at the previous time iteration, is lower than this value,
thus, a new regression direction can be exploited in the robot
modeling process.

All the simulations were run on the Neurorobotics Platform
and implemented through its utilities, which has been shown
capable of implementing robotic control loops (Vannucci
et al., 2015). The controller was implemented using a
domain-specific language that eases the development of
robotic controllers, and that is part of the Neurorobotics
Platform simulation engine (Hinkel et al., 2017). Another
tool, called Virtual Coach and also included in the platform
and employed to implement the evolutionary algorithm. It
was used because capable of launching batch simulations
with different parameters and gathering and storing results
from these.

3. EXPERIMENTAL RESULTS

In both evolutionary configurations, each of the 16 generations
consists of 10 individuals. Every simulation lasted for 2 min,
which is enough time for the LWPR to converge. After the
simulation, the fitness function has been computed.

In Table 1, the resultant characteristic parameters of the final
CPG configurations for the best individuals in the adapt-after-evo
and adapt-in-evo configuration, are shown.

In Table 2, for theadapt-after-evo, the PID gains are part
of the genotype and their initial conditions represent the
same fixed controller parameters used for the adapt-in-evo.
Thus, in theadapt-after-evo case, the PID gains are changed
by the evolutionary process, within the experimentally found
boundary conditions for the starting locomotion robotic patterns
to be stable and tolerable. Differently, the adapt-in-evo profits
from the contribution of the cerebellar-inspired controller
(Figure 3B), whose hyper-parameters (init_D, init_α, w_gen
and add_threshold) are set as shown in Table 2 and explained
in section 2.4.

After the evolutionary process, experiments that compare the
behavior of the two systems have been performed. To perform
this comparison, the same cerebellar circuit, that was used in the
adapt-in-evo, was plug in the adapt-after-evo. Thus, both systems
are now adaptive thank to the contribution of the cerebellar
control module and it is possible to test and compare the
benefits of control adaptability during or after the optimization
of the planning of the locomotion trajectories. The two resultant
control architectures are then representative for:

• control adaptability during the evolutionary optimization of
the CPG locomotion patterns (adapt-in-evo)

• control adaptability after the evolutionary optimization of the
CPG locomotion patterns (adapt-after-evo)

While the individual representative for the adapt-in-evo
architecture can safely be chosen as the winner of the
evolutionary algorithm, the effect of adding the adaptive
component to create the adapt-after-evo cannot be easily
predicted. Thus, in order to better choose the individual for the
adapt-after-evo architecture, the cerebellar circuit was added
to the best three individuals resulting from the evolutionary
process. After evaluating again, the fitness with the adaptive
component, the one individual with better performances was
chosen as the representative one.

In general, to provide a fair comparison between the two
systems, the distance is computed only after the cerebellar
algorithm has converged, as in the initial phase, where
learning occurs, we can observe some instability. After this
initial phase, that lasts for around 20 s, we can notice no
significant improvements in the position error on the joint
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FIGURE 8 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one, with a

friction coefficient of 0.5 between robot and terrain. (A,E) Represent the mean and the standard deviation of the position error of the four legs joints and (B,F) instead

(Continued)
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FIGURE 8 | describe the mean and the standard deviation of the contribution ratio of the different modules of the control architecture. (C,G) Describe the periodic

behavior relation between the actual joint trajectories of leg 1 and leg 2 compared to their reference values, in pink, and to the behavior of the no perturbed system, in

red (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of the CoM of the robot, on the vertical axis

to the ground, compared the same CoM dynamics when the system is not perturbed (in red).

trajectories, which could indicate that most of the learning
has been done. This can also be observed by looking at the
number of receptive fields created by the LWPR algorithm,
that is not increasing anymore. Therefore, to avoid having
the learning phase affecting the computation of the distance
covered by the robot, a time window of 20 s is considered,
from 30 to 50 s, during which the distance covered by the
robot is recorded and compared between the two different
cases (adapt-after-evo and adapt-in-evo).

3.1. Base Comparison
After simulating the best adapt-after-evo and adapt-in-evo
individuals 10 times for 1 min, the results show that the
winner robot walks for 1.72 m on average with the adapt-in-
evo controller while it walks for 1.48 m with the adapt-after-evo.
The respective standard deviations are 0.2 m for the adapt-in-
evo controller and 0.11 m for the adapt-after-evo. This shows
that, in the task space, there are benefits in using the adaptive
controller during the search for the best locomotion patterns,
rather than connecting it to the control architecture afterwards.
The superiority of the adapt-in-evo approach is raised also by
the fact that PID gains are no evolved and they keep the values,
presented in Table 2, while the same gains are optimized in the
adapt-after-evo approach.

Regarding the behavior of the two systems in the joint space,
we analyze the differences in their performances as shown in
Figure 5. On the left column, the adapt-after-evo-related plots
are shown and on the right column, the plots related to the
adapt-in-evo-system are presented.

Figures 5A,E represent the mean and the standard deviation
of the position error of all the robotic legs. In both pictures, after
an overshoot at the beginning of the simulation, which represents
the transient where the cerebellar controller is calibrating its
corrective contribution, the error decreases along with the
simulation. Comparing the two plots, it is appreciable that in
the adapt-in-evo trial (e) the error in following the reference
positions is almost half compared to the other case adapt-after-
evo (a). Their Root Mean Square Error (RMSE) are, respectively,
0.035 radians and 0.056 radians.

Then, in Figures 5B,F, the mean and the standard deviation
of the ratio of the contributions of the different parts of the bio-
inspired cerebellar controller are highlighted. It is evident that,
in both cases, the contribution of the LWPR, whose teaching
signal is the global motor command to the robot ut, becomes
predominant compared to the feedback controller contribution
(PID). Furthermore, the PL contribution, whose teaching signal
is the feedback controller ufb, follows the trend of the output of
the PID controller, which decreases along with the simulation,
meaning that the final motor commands to the robot are mostly
relying on the uim output.

On the third line, Figures 5C,G stress the periodic and stable
locomotion which characterizes the system after the first seconds
of simulation. In the Figures 5C,F, just the cyclic behavior of two
robotic legs (leg 1, one of the front legs, and leg 2, one of the
hind legs) has been reported. The remaining two legs present
comparable performances. It is appreciable from Figures 5C,G

that the relation among the angular excursions of the two legs
becomes more periodic along with the simulation time and closer
to the pink limit cycle, shown to mark the reference trajectories
of leg 1 and leg 2.

Ultimately, at the level of the task space, a dynamic analysis
of the robotic locomotion is exhibited in Figures 5D,H when the
robot vertical position is plotted against its vertical speed. In these
images (Figures 5D,H), the dynamics of the system becomemore
defined and constrained over time. It is relevant to point out
that, in the adapt-in-evo case (Figure 5H) the winner locomotion
patterns grant more robust locomotion, which is represented by
a more confined stability region in the phase space with respect
to the adapt-after-evo system (Figure 5D).

3.2. Statistical Analysis on Different
Experimental Conditions
After discussing the results concerning the advantages of using
control adaptability during the optimization of the locomotion
trajectories (adapt-in-evo) rather than employing it afterwards
(adapt-after-evo), we investigated on the effects of altering
the experimental conditions with respect to the simulation
circumstances where the locomotion patterns have been found.
These experiments are also useful for testing the system in more
realistic scenarios, which goes toward overcoming the reality
gap. The adaptation to the changes in the experimental scenario
is possible since the weights of the LWPR are never locked
to certain values, but they are always updating based on the
experimental circumstances.

The changes in the experimental constraints have been applied
in the following order:

• variability in the robotic dynamics;
• variability in the interaction with the environment.

First, to verify the abstraction potential of the previous results, a
population of 15 slightly different Fable robots is generated. After
checking the consistency of the simulation in a certain range of
variation of the robotic model dynamic parameters, we decided
to generate 15 robots with the following features:

• additive white Gaussian noise (AWGN) fed in the encoder of
the motors and randomly selected from a uniform distribution
in the range of [0–10] % of the motor signal;

• damping coefficient, randomly taken from a uniform
distribution in the range of [0.08–0.25] Ns

m , to define the
dynamic model of all the hip joints of the robot.
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FIGURE 9 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one, with a

friction coefficient of 0.3 between robot and terrain. (A,E) Represent the mean and the standard deviation of the position error of the four legs joints and (B,F) instead

(Continued)
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FIGURE 9 | describe the mean and the standard deviation of the contribution ratio of the different modules of the control architecture. (C,G) Describe the periodic

behavior relation between the actual joint trajectories of leg 1 and leg 2 compared to their reference values, in pink, and to the behavior of the no perturbed system, in

red (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of the CoM of the robot, on the vertical axis

to the ground, compared the same CoM dynamics when the system is not perturbed (in red).

Thus, the resulting 15 Fable robots have different dynamic
characteristics and noisy signals injected in their motors’
encoder. These modifications model the variability in the
robotic population.

Subsequently, other experimental constraints have been
modified. They represent the variability in the interaction robot-
environment. Thus, to modulate this aspect of the simulation,
the static friction coefficient is altered in the x − direction of the
world reference frame. The default value of the simulator for this
parameter is 1, meaning maximum static friction between robot
and ground and we decided to affect the experiments by giving
three different levels: 0.3, 0.5, 0.95 of static friction coefficient to
the interaction robot-ground. Lower coefficients imply greater
disturbances to the system. To have consistent results, the
previously generated robotic individuals are simulated ten
times for 1 min in each of the 3 different friction conditions
explained above.

Figure 6 shows histograms with an error bar for the mean
and standard deviation of the distance covered by all the
combinations robot-terrain, simulated with the two different
control architectures adapt-after-evo and adapt-in-evo, 10 times
per individual.

A two-way repeated measures ANOVA (Potvin and Schutz,
2000) was run to determine the effect of the two systems
(adapt-in-evo, and adapt-after-evo), i.e., factor controller over
three different ground-robot interactions (low, medium and high
friction), i.e., factor ground on the explanatory variable walked
distance (D), expressed in meters. Data are mean ± standard
deviation. Analysis of the studentized residuals showed that there
was normality, as assessed by the Shapiro-Wilk test of normality
(Razali and Wah, 2011) and no outliers, as assessed by no
studentized residuals greater than ± 3 standard deviations. The
assumption of sphericity was violated for the interaction term, as
assessed by Mauchly’s test of sphericity (X2(2) = 7.003, p = 0.03)
(Gleser, 1966). There was a statistically significant interaction
between controller and ground on D, F(1.412,19.767) = 4.288, p
= 0.04, ǫ = 0.706 (Greenhouse-Geisser correction Abdi, 2010),
partial ν2 = 0.234.

Simple main effects were run for the factor controller
(Figure 6). D of adapt-in-evo controller was always higher than
that of adapt-after-evo:

• data for low-friction ground were (1.69± 0.71) m and (0.80±
0.27) m, respectively, p-value< 0.0005 (3 stars in Figure 6);

• data for medium-friction ground, (1.66± 0.45) m and (1.34±
0.55) m, respectively, p-value< 0.05 (1 star in Figure 6);

• data for high-friction ground, (1.68 ± 0.38) m and (1.28 ±

0.31) m, respectively, p-value< 0.0005 (3 stars in Figure 6);

Figures 7–9 describe the behavior of the two systems adapt-after-
evo (on the left column) and adapt-in-evo (on the right one) in

the three different friction conditions with the terrain (Figure 7
is high friction, Figure 8 is medium friction and Figure 9 is
low friction). To analyze data from a representative experiment,
the plots (Figures 7–9) include the behavior of one of the ten
reiterations of the robotic individual whose performance, in
covered distance D, is the closest to the average behavior among
all the individuals in the two control cases adapt-after-evo and
adapt-in-evo, for all the 3 levels of friction. This selected agent
has a noise injected in the encoder which is 2% of its total motor
signal, while its joints damping coefficient is 0.19 Ns

m .
In all three cases (Figures 7–9), subplots (a) (adapt-after-evo)

and (e) (adapt-in-evo) highlight that during the first minute of
simulation, the position errors at the joint level are decreasing,
even if the experimental conditions (robotic model and robot-
ground friction coefficient) are changed compared to the initial
simulation constraints, where the locomotion patterns have been
found. The error for the system adapt-in-evo (right column) is
always smaller than for the other system adapt-after-evo (left
column), observing both its mean and standard deviation across
the four legs. In the three different robot-ground interactions
(Figures 7–9), the Root Mean Square Error (RMSE) in the
following of the desired joint trajectories is shown in Table 3.

The contributions of the different modules of the controller
architecture (subplots b and f) show the same trend as in
Figure 5; after a few seconds after the beginning of the
simulation, u-lwpr becomes predominant and u-pl learns the
u-fb and they together decrease their contributions along
the simulation.

The most significant differences between the behavior of
two compared systems adapt-after-evo and adapt-in-evo without
disturbances (Figure 5) and that when the dynamics of the
experiments have been changed (Figures 7–9), can be observed
in subplots (c, d, g, h). At joints level (Figures 7C,G, 8C,G,
9C,G), the performances of the two systems adapt-after-
evo and adapt-in-evo demonstrate a less stable behavior if
compared to the same subplots (c) and (g) in Figure 5. The
trend of the joins trajectories still converges to the limit
cycle obtained by the position references, which is indicated
in pink, and to the periodic shape got in the last 10
s of simulation for the same system without disturbances.
However, lower the friction coefficient value, longer the time
the systems take to converge to the desired periodic behavior
(Figures 7–9). It is also relevant to point out that the entropy
of the joint trajectories increases in inverse proportion to
the static friction coefficient of friction with the ground
(the minimum tested static friction coefficient is showed
in Figure 9).

Eventually, a meaningful index of the difference in the
stability response of the two systems adapt-after-evo and adapt-
in-evo is the plot showing the dynamics of the Center of
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TABLE 3 | Root Mean Square Error in following the desired locomotion

trajectories for the representative Fable robot individuals.

Friction coefficient Adapt-after-evo Adapt-in-evo

High 0.056 rad 0.035 rad

Medium 0.039 rad 0.033 rad

Low 0.044 rad 0.041 rad

These values are related to Figures 7A,E, 8A,E, 9A,E.

Mass (CoM) of the robot (d, h). Here, the stability region
in the no disturbances case is represented in red, while the
behavior for the affected systems is in the remaining color
gradient timeline (Figures 7, 8, 9D,H). In all the three figures
(Figures 7, 8), the behavior of the adapt-in-evo agent (on the
right) is confined in a region of the phase space which is very
close to region covered by the dynamics of the same system
without disturbances (in red in subplots d and h). Instead, the
dynamics of the center of mass of the adapt-after-evo experiments
(on the left column in Figures 7–9) are always more unstable
than its equivalent adapt-in-evo (Figures 7–9), meaning that the
adaptability, brought by the cerebellar inspired module, as a
control feature during the evolutionary exploration for effective
locomotion trajectories, contributes to discovery more flexible
robotic locomotion patterns.

3.3. Dynamically Changing Experimental
Set-Up
After testing the control architecture with a set of simulated
Fable robots with different dynamical characteristics
and friction interactions with the environment, further
experiments are performed. This set of tests has been
carried out to compare the performances of the two
systems with respect to scenarios in which the interaction
with the environment changes dynamically. In this
case, the static friction coefficient is changed during
the experiment, respectively, at 50 and 100 s from the
beginning of the simulation and the simulation lasts 2 min
in total.

For these experiments, the same representative individual
we choose for designing the previous plots (2% of the motor
signal as noise in the encoders and 0.19 Ns

m of joints damping
coefficient) is tested for the dynamically changing set-up, and the
simulations are run 5 times per type of controller (adapt-after-evo
and adapt-in-evo).

Concerning the task space, the average, among the 5 trials, of
the distance covered by the robot, from 50 to 120 s of simulation,
is 6.18m for the adapt-after-evo and 10.28m for the adapt-in-evo,
respectively, with standard deviation 2.25 and 2.40 m.

In Figure 10, we show the response of the two systems
adapt-after-evo, on the left, and adapt-in-evo, on the right,
when the friction coefficient is dynamically changed during
the simulation. As explained in section 3.2, the initial static
friction coefficient is 1, the maximum value allowed in the
Gazebo simulator and then it is decreased to 0, its minimum,
around 50 s from the beginning of the simulation, and increase

again to 0.5 at 100 s. In Figure 10 the same graphs, as for
the previous experiments, are shown. In subplots (a) and (e)
the mean and standard deviation of the legs are shown. A fast
spike is visible around 50 s of simulation when the interaction
with the environment is changed, but then the position error
decreases again and a slight change in the graph is also visible
around 100 s when the friction is changed again. Both systems
adapt-after-evo and adapt-in-evo reject the disturbance given
by changing the static friction coefficient. Also, in this case,
the assessment of the advantage brought by the adapt-in-evo
controller is quantitatively proved by the RMSE which is 0.05
radian in the adapt-after-evo and 0.04 radian in the adapt-in-
evo one.

In Figures 10B,F, it is clear that around 50 s of the simulation,
an unexpected change perturbs the system and the u-lwpr and
u-pl need to learn again the model of the interaction among
robot and ground. The second change in the static friction
coefficient is lightly visible around 100 s from the beginning of
the simulation.
In conclusion, in the Figures 10C,D,G,H, the difference in the
rejection of the disturbances among the two systems adapt-
after-evo and adapt-in-evo, is more evident. In fact, after the
second 50 of simulation, the adapt-after-evo is not able to
completely recover from the disturbance. In fact, the last seconds
of simulation (in dark blue) are slightly different from the
behavior of the no-perturbed system (in red). This happens both
at joint level in Figure 10C and at the task level in Figure 10D.
On the contrary, the adapt-in-evo system feels the change in the
interaction with the environment, but it can return to a state of
the system which is closer to the initial one whose response is
highlighted in red. The temporary divergence of the behavior of
the system is visible around second 50 either in Figure 10G, in
light green, and in Figure 10H, in pink. In these final subplots (c,
e, g, h), the second change in the static friction coefficient does
not have an evident impact, either in the adapt-after-evo and in
the adapt-in-evo case. A significant divergence in the locomotion
stability of the system is visible just in the dynamics of the CoM
of the adapt-after-evo system in Figure 10D.

4. DISCUSSION

For the first time, taking inspiration from nature, the proposed

research uses robotics to suggest the advantages and benefits of

employing adaptive controllers in conjunction with optimization
strategies, such as evolutionary algorithms. For this purpose,

a new bio-inspired approach to control robotic locomotion is
presented. The control design is based on neurophysiological
evidences concerning a simplified model of the neural control in
the locomotion of quadruped animals. In the proposed control
architecture, the trajectory planner is a CPG-inspired system of
equations and the motion controller is composed of a PID and
a bio-inspired algorithm, whose weights are changing on-line
with the simulation time. This latter part of the architecture
models the adaptive role of the Cerebellar-inspired circuit in the
locomotion of vertebrates which encodes information about the
inverse dynamic model of the quadruped.
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FIGURE 10 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one, with a

friction coefficient that has been changed from 1 to 0 at 50 s and from 0 to 0.5 at 100 s. (A,E) Represent the mean and the standard deviation of the position error of

the four legs joints and (B,F) instead describe the mean and the standard deviation of the contribution ratio of the different modules of the control architecture. (C,G)

Describe the periodic behavior relation between the actual joint trajectories of leg 1 and leg 2 compared to their reference values, in pink, and to the behavior of the no

perturbed system, in red (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of the CoM of the

robot, on the vertical axis to the ground, compared the same CoM dynamics when the system is not perturbed (in red).
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The main contribution of the paper is investigating the
advantages of using a learning control module during the
optimization of the locomotion patterns for a quadruped robot
rather than employ it when the optimal locomotion patterns
have already been found (as it is usually done in already existing
approaches, Urbain et al., 2018; Vandesompele et al., 2019). This
idea comes from nature since evolution has always been acting
on plastic and learning systems. The research aims to investigate
if the solutions found out by the evolution-inspired algorithm
are statistically better when a learning module is included in the
controller, during the evolution. The presented approach shows
the advantages of this optimization procedure for quadruped
robotic locomotion both in the task and in the joint space. The
distance covered by the robot is greater when the learningmodule
is involved in the genetic optimization process and, the position
error of the joints is smaller.

These results are also reflected in new experiments when
the robot dynamic characteristics are changed, and some noise
is injected in the robot encoders. The preponderance of the
adapt-in-evo solution has been generalized by running other
experiments with a different robot-environment interaction,
which allows to infer the crossing of the reality gap. Further,
the robot-ground interaction has also been dynamically changed
during the experiments, assessing the potential of the adapt-in-
evo approach in readjusting to different experimental constraints
even though learning stability has already been reached by the
cerebellar inspired module. The results show that the inclusion of
the cerebellar-inspired control in the process of optimization of
the locomotion trajectories allow a maximization of the synergy
between the CPG-inspired trajectory planner and the adaptive
cerebellar controller. The best patterns, which emerge during the
previously explained synergy, are more robust. Even when the
experimental conditions change, in the dynamics of the robot
and in its interaction with the environment, before or during

the experiments, the locomotion preserves more stability both at
joint and task level.

In conclusion, further investigations can be done by testing
the architecture on the real Fable robot since the conducted
experiments aimed at proving the suitability of employing the
same controller in real scenarios. In fact, the results show
that both control strategies, adapt-after-evo and adapt-in-evo,
are robust enough to work, without changing parameters, in
unexpected conditions such as noisy sensors or slippery terrains
(also applied in the same experiment).
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The human motor system is robust, adaptive and very flexible. The underlying principles

of human motion provide inspiration for robotics. Pointing at different targets is a

common robotics task, where insights about human motion can be applied. Traditionally

in robotics, when a motion is generated it has to be validated so that the robot

configurations involved are appropriate. The human brain, in contrast, uses the motor

cortex to generate new motions reusing and combining existing knowledge before

executing the motion. We propose a method to generate and control pointing motions for

a robot using a biological inspired architecture implemented with spiking neural networks.

We outline a simplified model of the human motor cortex that generates motions using

motor primitives. The network learns a base motor primitive for pointing at a target in

the center, and four correction primitives to point at targets up, down, left and right from

the base primitive, respectively. The primitives are combined to reach different targets.

We evaluate the performance of the network with a humanoid robot pointing at different

targets marked on a plane. The network was able to combine one, two or three motor

primitives at the same time to control the robot in real-time to reach a specific target. We

work on extending this work from pointing to a given target to performing a grasping or

tool manipulation task. This has many applications for engineering and industry involving

real robots.

Keywords: neurorobotics, motion generation, spiking neural networks (SNN), pointing a target, motor primitives,

humanoid robot (HR), closed-loop

1. INTRODUCTION

The human motor system has been studied for a considerable period of time. Yet, robots lack
robust, flexible and adaptive controllers comparable to the human motor system (Pfeifer and
Bongard, 2006). One specific example is the capability to generate or pre-shape motions before
execution (Shenoy et al., 2013).

Recent studies provide insights into the mechanisms for motion generation in the motor cortex.
During reaching, activity in the motor cortex as a whole shows a brief but strong rotational
component (Churchland et al., 2012; Russo et al., 2018). Instead of encoding parameters of
movement in single neurons, the motor cortex as a whole can be understood as a dynamical system
that drives motion. An initial state is produced externally and the system naturally relaxes while
producing motor activity, which is then projected down the spinal cord to inter-neurons and

140

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00077
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00077&domain=pdf&date_stamp=2019-09-18
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tieck@fzi.de
https://doi.org/10.3389/fnbot.2019.00077
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00077/full
http://loop.frontiersin.org/people/720747/overview
http://loop.frontiersin.org/people/521786/overview


Tieck et al. Pointing Motion Combining Motor Primitives

motor-neurons (Churchland et al., 2012; Russo et al., 2018).
Neural activity in the motor cortex shows a strong and amplified
but stable response to initial activation (Hennequin et al., 2014).
There is no broad consensus on the role of the motor cortex
in voluntary movement. Nevertheless, neural correlates of many
different types of parameters of arm movements have been
found in the motor cortex (Kalaska, 2009). This behavior can be
replicated by artificial neurons with strong recurrent connections
balanced by strong inhibitory connections (Hennequin et al.,
2014). Activity in the resulting network closely resembles activity
in the motor cortex and can be used as an engine for complex
transient motions (Hennequin et al., 2014). For example, in
Ayaso (2001) an architecture detailing how to generate motor
commands for armmotions is proposed, which also includes how
learning and adaptation can be achieved by changing the gain.

A broadly accepted hypothesis is that the central nervous
system uses linear combinations of a small number of muscle
synergies to produce diverse motor outputs (Bizzi et al., 2008).
The activation of the synergies can change based on sensor
feedback to produce adaptive motions. The neuron activity
in the intermediate zone of the spinal cord resembles motor
primitives rather than individual muscles (Hart and Giszter,
2010). These neurons could act as building blocks for more
complex voluntary movements. Different approaches have used
the concepts of motor primitives to represent and model motions
(Schaal, 2006; Tieck et al., 2018b,c). The dynamic movement
primitives introduces a representation of movement as a spring-
damping system in which the goal state is an attractor that allows
for easily adaptable complex motor behaviors, both rhythmic and
discrete (Schaal, 2006).

A set of approaches implemented with spiking neural
networks (SNN) (Maass, 1997; Vreeken, 2003; Walter et al.,
2016), represent motion using motor primitives to model target
reaching (Tieck et al., 2018c, 2019) and different activation
modalities (Tieck et al., 2018b). An SNN that autonomously
learns to control a robotic arm through motor babbling and
STDP was proposed in Bouganis and Shanahan (2010). In
Chadderdon et al. (2012) an SNN is implemented that learns
to rotate a single joint to a target and the learning is based on
dopamine inspired reinforcement learning with a global reward
and punishment signal. In Tieck et al. (2018a) a combination of
reinforcement learning with a liquid state machine was used to
learn continuous muscle activation of a musculo-skeletal arm.

To control robots in a way closer to biology we can use SNNs
to implement models from neuroscience. Using the principles
outlined in our previous work on motor primitives (Tieck et al.,
2018b,c, 2019) and using the mechanisms for motion generation
from the motor cortex (Ayaso, 2001; Hennequin et al., 2014), we
can model pointing motions for a humanoid robot.

We propose an SNN that combines a simplified model
of the motor cortex to generate motions combining motor
primitives to control pointing motions with a humanoid robot
arm. Our approach for motion generation (pre-shaping) before
execution has three main components (see Figure 1): a motion
generation layer, a motor control layer with motor primitives
and a target representation layer. The motion generation layer
produces circular activity that creates the activation patterns

for the primitives. The motor control layer has one base
primitive for the pointing motion, and four correction primitives
that point to targets left, right, up and down from the base
motion target point. The target representation layer takes the
target position and based on the relative distance to the base
motion target point uses selective disinhibition to activate
the correction primitives. We evaluated our approach with
a humanoid robot, HoLLiE in Hermann et al. (2013), by
defining different targets on a plane and having the robot
point to them (see Supplementary Video 1).

2. APPROACH

Our SNN combines a simplified model of the motor cortex
to generate motions combining motor primitives to control
pointing motions with a humanoid robot arm. And here we
present the details. In the work presented in Tieck et al. (2018c,
2019) we show how to perform online combination of primitives
to achieve perception driven target reaching. In this work,
the SNN performs motion generation (pre-planning) before
execution using a bio inspired architecture.

We formalize the problem as follows: given an initial state
of the robot and a set of primitives, move it to a target point
on a plane. In classical robotics a system calculates the inverse
kinematics (IK) and then validates the configuration to finally
generate a motion trajectory. In contrast, our approach can
do this without calculating the IK and without validating the
resulting configurations. We define motor primitives for the
arm as valid possible motions in the working space. The way
new motions are generated is by using a base primitive that
is activated, combined with a full or partial activation of the
correction primitives. By using motor primitives to represent
motions, we solve the trajectory generation in the “motor
primitive space.” The resulting motions are combination of the
primitives, which have no invalid configurations. In this work,
we do not consider obstacles.

A go-cue in one neuron initiates circular activity in the motor
generation layer that represents the motor cortex (Ayaso, 2001;
Kalaska, 2009; Russo et al., 2018). The activity of this layer is
used to activate the base and correction motor primitives (Tieck
et al., 2018b,c, 2019). Based on an error signal representing the
target, the correction primitives are disinhibited and combined
with the base (Richter et al., 2012; Sridharan and Knudsen,
2015). The resulting spike activation is decoded to motor
commands for the robot joints. The learned weights are the
distance based inhibitory connections in motion generation
layer, the connections to the base motor primitive, and the
connections to the correction primitives. The architecture with
the main components is presented in Figure 1. It has three main
components: a motion generation layer, a motor control layer
with motor primitives and a target representation layer.

The motion generation layer produces circular activity that
creates the activation patterns for the primitives. A population
generates neural activity over a certain period of time. The first
step is to normalize spike activation by changing the weights of
active neurons to get a similar amount of spikes from the whole
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FIGURE 1 | Architecture with main components: a motion generation layer that produces the activation patterns, a motor representation layer with motor primitives

with a base and four corrections primitives, and a target representation layer to perform selective disinhibition.

population. Then, to obtain heterogeneity we add an inhibitory
population with random connections.

The motor control layer provides the low level motor
representation using motor primitives. There is one base motion
primitive for pointing to the center, and four correction
primitives that point to targets left, right, up and down from
the base motion target point. The base primitive is activated
and, depending on the target representation signal, the correction
primitives are disinhibited.

The target representation layer takes the target position and,
based on the relative distance to the base motion target point,
uses selective disinhibition to activate the correction primitives.
The target signal is the relative position to the base primitive
final position, and it is used to regulate the activation of the
correction primitives.

2.1. Motion Generation, M1
In the motion generation layer MG there is a group of
two recurrent populations representing the motor cortex,
one is a 2D grid MGG and the other is an inhibitory
MGI to obtain heterogeneity (see Figure 2). This layer
generates circular neural activity over a period of time
(Churchland et al., 2012; Russo et al., 2018).

To initialize the motion generation layer there are two steps.
First, we stabilize the spike activation inMGG and second we add
the inhibitory connections from and toMGI . Then we go over all
neurons giving a go-cue to each one and we record how long the
activity propagates. The go-cue is a continuous input of spikes to
the respective neuron during 10 ms. For each motion we select
the “go-neuron” as the neuron that produces activity with similar
time to the desired motion.

MGG is square grid of 20 × 20 neurons with recurrent
connections (see Figure 2). There are two types of connections,

the directed excitatory to create the circular activity and the local
inhibitory to stabilize the activity. The excitatory connections
(blue connections in Figure 2) are static and have specific
directed connectivity depending on the quadrant the neurons
area to amplify the activity and force the rotational activation.
The distance based local inhibitory connections (black dotted
circular lines in Figure 2) stabilize the activity.

To normalize the spike activity ofMGG, the inhibitory weights
are changed to achieve a specific total activity MGG

norm with the
following learning procedure. We add a spike recorder to all
MGG neurons. A go-cue (pink dotted arrow in Figure 2) is given
as short burst of 10 ms of spikes into one single neuron at
a time. This initial neuron is chosen randomly every time, so
that there are no “dark” spots in MGG without spike activity.
Every 100 ms 1t (nest.sim(100 ms)) the simulation is stopped.
The total spikes of MGG in that δt are counted as MGG

spikes
. If

MGG
spikes

> MGG
norm, then increase the weights by 1w of the

inhibitory connections coming out of all active neurons. Else
if MGG

spikes
< MGG

norm, then decrease them. The 1w must be

small, so that a weight update does not kill the activity. In other
words, we want to regulate the global total activity of the MGG

population, if it is too high then propagate less, if it is too low then
propagate more.

After training, once the circular activity propagation of MGG

is stable, we add a small population MGI with random input
and output connections to and from the 2D grid MGG to obtain
heterogeneity. Both, input and output connections are static
and random. The output connections—from MGI to MGG—
are strong inhibitory (red connections in Figure 2), and the
input connections are excitatory (green connections in Figure 2).
To set the connections, we set fix numbers of input and
output connections, then we sample random neurons from both
populations and connect them.
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FIGURE 2 | Motion generation layer with circular activation. A grid of neurons

is connected with directed static excitatory connections depending on the

quadrant. There are inhibitory plastic connections based on the distance. A

hidden layer connected with input excitatory and output inhibitory connections

to change the regular activity of the grid.

With MGI and MGG connected, we then go over all neurons
in MGG to asset the resulting activity. We give again a “go-cue”
as short burst of spikes for 10 ms into each single neuron “go-
neuron” (pink circle in Figure 2), and then measure how long
does the activity propagates. The time is measured either until
no more spikes occur, or interrupted after a maximum time
limit in simulation steps. The activity duration for each “go-
neuron” is stored in a table. Then we pick those with similar
time to the desired motions, and this will be the “go-neuron” for
the primitives.

2.2. Base and Correction Motor Primitives
The motor primitive layer MP is a layer for low level motor
representation using motor primitives (Tieck et al., 2018b,c,
2019) (see Figure 3). The primitives are combine to generate a
specific motion activated by the motion generation layer MG. In
MP there are populations, one for the base primitive and one for
each of the correction primitives. During execution of a motion,
the base primitive is activated, and depending on the target
representation signal, the correction primitives are activated.

To generate pointing motions in a certain working space, we
define the following motion representation. We define first a
base primitive MPB (see Figure 3), which is a motion to point at
the center of the working space. Then we define four correction
primitives MPC to point at points to the left, right, up and down
of the center (see Figure 3). This four points define an ellipsoid
as the boundary of the working space in the plane.

For each primitive, a different population is connected toMG.
Each primitive has two motor neurons per joint in the robot.
Each output spike causes small change in the corresponding

FIGURE 3 | Motor primitives layer. The base primitive is detailed for three

joints, the same structure applies to the correction primitives. There are four

correction primitives—left, right, up, and down. All primitives receive activation

input from the motion generation layer.

robot joint, it is defined as a fixed gain factor that regulates the
speed. There is a detailed view of the primitive population for
the base motion in Figure 3. The training is done one by one to
resemble the exemplary motion. We use supervised learning to
minimize the error and adapt the weights and produce a specific
motion (Tieck et al., 2018b).

2.3. Target Representation
The target representation layer is connected to the correction
primitives with inhibitory synapses as shown in Figure 4. The
correction primitives are inhibited by default, and they are
disinhibited according to required adaptation provided by this
layer. This mechanism is called selective disinhibition and it is
used for attention mechanisms, decisions and mechanisms for
target selection (Richter et al., 2012; Sridharan and Knudsen,
2015). For example, if no correction to the right is necessary,
then the right primitive remains fully inhibited. In Kawato
(1999) and Wolpert et al. (1998), they see the cerebellum
as an internal model that can predict how the end result
of a known motion will be like. This prediction can be
compared to a desired target to make the respective corrections
before execution.

In our approach we use a relative target representation, with
the target’s relative position to the base primitive final position.
That signal is used to regulate the activation of the of the neurons
in this layer, by decreasing the input current proportionally
this layer activates the correction primitives using selective
disinhibition. This signal translates to the amount or percentage
of activation, between 0 and 1, of the respective correction
primitives, with 1 being full inhibition and 0 full activation. This
adaptation or pre-shaping happens before executing the motion.
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FIGURE 4 | Target representation. This layer projects with strong inhibitory

connections to the correction primitives The target is represented as a relative

error signal to the target of the base primitive. This signal is used to disinhibit

the primitives, and adapt the resulting motion. The output from the base

primitive and the active correction primitives is combined to produce the

motion commands for the robot.

3. RESULTS

In most modern and more complex robotic applications motions
have to be dynamically generated according to flexible targets
or constraints. A major component of many robot tasks is the
reaching of specific, often dynamic targets. While this is usually
followed by some form of manipulation of an object, the pure act
of reaching a specified goal state with a robot manipulator can
be understood as a pointing motion. Due to this, we use pointing
toward different goal-points on a board plane (see Figure 5) to
evaluate how well the robot generates adaptive motions.

3.1. Experiment Setup
Initially, base motor primitives have to be learned. A base motion
of pointing toward a central target is manually created, but
could easily be generated with motion capture or teached-in. The
network is then trained to produce this specific pointing motion
when all correction primitives are fully inhibited. Afterwards, the
base motion is manually adapted toward 4 specified points in
the target area, each with a distance of 25 cm from the center
to the left, right, top and bottom (red points in Figure 5). The
correction primitives in the network are trained to produce the
difference from the base motion toward these adapted motions,
so that as a whole the network produces them when their the
corresponding correction primitive is uninhibited.

This allows the network to create different motions by
partially inhibiting the corrections primitives. The quality of
the generated motions is measured based on the network’s
ability to point at different targets. The reference points are
used as a coordinate system, with positive x-axis representing
the inverse inhibition of the right primitive and the negative
axis the left primitive, respectively. In the same way, the y-axis
represents the up and down primitives. This allows a mapping
from every point on the board to specific inhibitions of the
correction neurons. A motion is generated with these inhibitions
set manually and the final position of the end-effector of the robot

FIGURE 5 | Basic experiment setup. The robot is in a starting position in front

of the board plane and will produce a motion toward a target point (green x).

Red points show the targets for the base and correction primitives that are

already learned.

is then compared with the intended goal. The distance between
actual and target position is used as a measure of error in the
following experiments.

3.2. Humanoid Robot HoLLiE
HoLLiE, Hermann et al. (2013) is a mobile service robot with
two functional arms and humanoid hands (see Figure 5). The
robot was developed at the FZI Research Center for Information
Technology for different tasks, such as accompanying visitors and
mobile manipulation (see1). With a range of different sensors and
a highly articulated body HoLLiE can handle everyday objects,
interact with humans inmultiple ways and therefore be employed
in various service robotic scenarios. For these characteristics
HoLLiE was chosen to achieve human-like pointing motions, as
the arms are mounted on an upper body in a similar kinematics
to a human arm.

3.3. Implementation Details
Motions are generated by an SNN using the PyNN API
implemented in NEST, Diesmann and Gewaltig (2001) running
on a laptop computer. We use Robot Operating System (ROS)2 as
a communication layer to connect NEST with the robot.

The SNN was simulated in steps of 100 ms and the spikes in
this time frame were accumulated before being sent to the robot.
This frequency is enough to generate smooth real-time robot
movements, and a complete pointing motion takes about 10s.
The generated spikes in the output of the motor-neurons were
directly decoded into changes in joint values for the robot. The
neuron activity is decoded by changing joint position by a fixed
value for each spike. The resulting joint values were than used as
goals for the joint trajectory controller in ROS.

During training of MGG, the weights of one iteration are
stored in a dictionary data-structure where all the required
weight updates are performed. Only after all updates have been
calculated, the “set weights” function in NEST is called, as

1https://www.fzi.de/en/research/projekt-details/hollie/
2http://www.ros.org/
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constant weight changes are greatly reduce the simulation time
for little gain. Using this, the total training time could be reduced
to about 1 h on a single processor.

The network is implemented with basic leaky integrate and
fire neurons LIF. The layerMG is built as a population organized
in a grid of 20 × 20 neurons MGG and an inhibitory population

FIGURE 6 | Spike plots for the motion generation population, time is in milliseconds. (A) Before learning. (B) After learning.

FIGURE 7 | (A) Different points evaluated in the experiments. (B) Error values over target area and error values for learned base points (red). Outside of the circular

area encapsulated by the base points, the error increases significantly.

FIGURE 8 | Frame sample of the experiments. This shows the robot pointing at different types of targets on the board in Figure 7A.
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of 20 neurons MGI . For each of the 5 motor primitives MP (one
base and four correction) 2 neurons are used per joint, with three
active joints being used for the evaluated motions, for a total
of 30 neurons. The total SNN contains 450 neurons and about
20,000 synapses.

3.4. Experiment
The first thing we evaluated was how does the learning in
the network work, specially in the motion generation layer. In
Figure 6 we recorded the spike activity of all the neurons before
and after learning. Without learning, you can see on the left
how the go-cue propagates in the neurons and then saturates,
producing chaotic activation. After learning, you can see on the
right how the activation of the population is periodic (circular)
and is stable.

FIGURE 9 | Error by distance to center for reaching all the base points (red in

Figure 7A).

FIGURE 10 | Error by distance to center for different correction primitives

(black in Figure 7A). Right is the most accurately learned primitive, down the

least accurate one.

Throughout the experiments different types of targets were
attempted to be reached based on the board displayed in
Figure 7. The distance from the target in millimeters is used as
an error for evaluation. The base motion is the center red dot.
The correction primitives are the red dots on the circle. If we
only use one of the correction primitives at a time, we obtain
black dots. A combination of multiple correction primitives are
the green dots. The blue dots are outside of the working space,
but still in the primitive space. The yellow dots on the right are
extrapolations. The frame sample in Figure 8 shows the robot
pointing at different types of targets on the board.

Red points represent the targets for the manually designed
base motions that can be reached by fully inhibiting all or all
but one correction primitives. Figure 9 shows the errors for
the different base motions. It can be seen, that they are not
hit completely accurately, which results from the relatively high
impact single spike inaccuracies have on the end position.

The black points represent motions using only a single,
partially inhibited correction primitive. Figure 10 shows that
there is no additional error created by partially inhibiting
the primitives, other than the already existing inaccuracy
in the learned motions themselves. Green points display
motions combining two correction primitives, but with a total
distance from the base motion not greater than one full
correction primitive.

While Figure 11 can not show as easily how the in these
targets results purely from the base primitives, with the exception
of one point directly on the circular test area all motions
produced a smaller error than the most incorrect base motion.
This again suggests, that no additional error is added through the
combination of two correction primitives. The light blue points
are also created by combining two correction primitives, in this
case, though, their distance to the base is greater than one the
distance of one primitive.

These results (Figure 12) show errors that do not seem to
simply happen from inaccuracies in the learned motions. The

FIGURE 11 | Error by distance to center for points in the different quarters

(green in Figure 7A). For comparison, the error of the most inaccurate

correction primitive is noted.

Frontiers in Neurorobotics | www.frontiersin.org 7 September 2019 | Volume 13 | Article 77146

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tieck et al. Pointing Motion Combining Motor Primitives

FIGURE 12 | Error by distance to center for points in the different quarters

(blue in Figure 7A). For comparison, the error of the most inaccurate

correction primitive is noted.

upper right point using both primitives fully, for example,
generates an error of 14 millimeters, while the sum of the errors
of both used correction primitives is only 12 mm.

All marked points are well within the workspace of the
robot. But yellow points are not reachable with the defined
primitives, meaning an activation of 1 (100) of any combination
of the motions will not go outside of the bounds defined by
the primitives (red dots). Moreover, outside of the circular area
used in the previous experiment the method of combining
primitives loses precision, as a consequence. Finally, the yellow
points are actually unreachable by combining primitives with
total activation. An extrapolation from the right primitive would
be necessary. To accomplish this, the right primitive is not only
uninhibited, but additional spikes are added to generate more
activity. So, there is a correlation of the error with the positions
of the learned base motions. As Figure 13 shows, while direction
of the adaptation is correlated, the error is greatly increased and a
precise correction does not occur. The total errors over the target
area can be seen in Figure 7B. In a circular area between the base
motions, the error can be reduced to inaccuracies in learning,
while outside of this area additional errors can be measured.

4. DISCUSSION

Based on the results and the evaluation form the experiments
we can highlight certain aspects. If the target distance is of one
correction primitive or less, then there is no significant added
error through adaptation. If there is a higher distance, then the
error increases. The error gets a relatively high impact from single
spikes and a reduction by using larger populations and different
encoding techniques would allow for more precision. This is a
low level control problem, and we currently work on a spike
based controller for ROS to achieve smooth control.

We successfully implemented and tested an SNN for voluntary
adaptive motions using an architecture based on recent theories

FIGURE 13 | Error by distance to center for motions using more than one full

primitive (yellow in Figure 7A). Points after 1.0 show a greatly increased error.

about motion generation in the central nervous system. The
network was able to pre-shape motions and generate new
trajectories before the execution by combining primitives using
selective disinhibition. The SNN was able to control a real
humanoid robot in real-time in a closed-loop scenario. This
approach can be used with different robot arms, and is not
dependent on a specific kinematic structure.

In the future we want to benchmark the technical aspects,
and increase the precision and speed of the motions. With the
recent advances in backpropagation-like learning rules for SNN
as in Kaiser et al. (2019), we can learn different motion types for
different tasks in same network, and start them with different
go-cues. We also want to integrate event-based vision to this
system to get the target and drive the adaptation as in Kaiser et al.
(2016), and to explore learning by demonstration as in Kaiser
et al. (2018). We work on extending this work form pointing to
a given target to perform there a grasping or tool manipulation
task. This has many applications for engineering and industry
with real robots.
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Sensorimotor signals are integrated and processed by the cerebellar circuit to predict
accurate control of actions. In order to investigate how single neuron dynamics
and geometrical modular connectivity affect cerebellar processing, we have built
an olivocerebellar Spiking Neural Network (SNN) based on a novel simplification
algorithm for single point models (Extended Generalized Leaky Integrate and Fire,
EGLIF) capturing essential non-linear neuronal dynamics (e.g., pacemaking, bursting,
adaptation, oscillation and resonance). EGLIF models specifically tuned for each neuron
type were embedded into an olivocerebellar scaffold reproducing realistic spatial
organization and physiological convergence and divergence ratios of connections. In
order to emulate the circuit involved in an eye blink response to two associated stimuli,
we modeled two adjacent olivocerebellar microcomplexes with a common mossy fiber
input but different climbing fiber inputs (either on or off). EGLIF-SNN model simulations
revealed the emergence of fundamental response properties in Purkinje cells (burst-
pause) and deep nuclei cells (pause-burst) similar to those reported in vivo. The
expression of these properties depended on the specific activation of climbing fibers
in the microcomplexes and did not emerge with scaffold models using simplified point
neurons. This result supports the importance of embedding SNNs with realistic neuronal
dynamics and appropriate connectivity and anticipates the scale-up of EGLIF-SNN
and the embedding of plasticity rules required to investigate cerebellar functioning at
multiple scales.

Keywords: olivocerebellar circuit, spiking neural network (SNN), point neuron, non-linear neuronal dynamics,
eyeblink response

INTRODUCTION

A broad set of experimental observations has suggested that cerebellar circuit functioning relies on
a number of detailed features distributed over multiple scales. Single neuron properties along with
an organized modular connectivity shape population-specific spiking patterns and spatio-temporal
network dynamics, which in turn determine the relationship between input stimuli and responses.
The precise encoding of spatio-temporal features into the output (which is in motor domain)
corresponds to the cerebellar contribution in sensorimotor tasks (Llinas and Negrello, 2011;
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Llinás, 2014; D’Angelo, 2018). Indeed, together with synaptic
plasticity, single neuron electroresponsiveness and network
connectivity affect motor learning and alterations of these
elements can significantly compromise movement adaptation
(Peter et al., 2016).

At the cerebellar input, the Granular layer is thought
to act as a spatio-temporal filter of sensory inputs (Marr,
1969). This operation has been related to specific properties
of Golgi cells (GoCs) and Granule cells (GrCs), such as
oscillatory and resonant dynamics, along with the arrangement
of microcircuit connectivity, which includes recurrent GoC-
GrC inhibitory loops and GoC local networks (D’Angelo
et al., 2013; Gandolfi et al., 2013). The GoCs contribute to
process sensory signals coming from Mossy Fibers (MFs) by
shaping the activity of GrCs. GrC signals converge to the
Molecular and Purkinje cell layers through Ascending Axons
(AAs) and Parallel Fibers (PFs), with a very precise geometrical
organization. Purkinje cells (PCs) are the final integrators
of the cerebellar cortex, inhibiting the cerebellar output that
drives motor responses (Heiney et al., 2014). In vivo, intrinsic
simple spikes of PCs are modulated by excitation from GrCs
and inhibition from Molecular Layer Interneurons (MLIs).
Moreover, inputs from Inferior Olive (IO), through Climbing
Fibers (CFs), elicit PC complex spikes (Davie et al., 2008).
Deep Cerebellar Nuclei cells (DCNs) are the only output of
the cerebellar circuit, projecting centrally to multiple brain
areas, and peripherally to the motor pathways. Integrating the
inputs from the cerebellar cortex and MFs, DCNs can modify
their spontaneous firing and generate pauses and bursts. Burst-
pauses in PCs and pause-bursts in DCN cells are thought to
be essential to finely tune the motor responses (Shadmehr,
2017). DCNs also continuously control learning processes
through inhibitory feedback loops to the IO (De Zeeuw et al.,
2011). The PC-DCN-IO loop connections are organized to
form microcomplexes: CFs from IO sub-regions project to
different sagittal stripes of PCs, which in turn receive signals
from subvolumes of the granular layer and of the molecular
layer (i.e., microzones); then, PCs of a microcomplex target
the corresponding nuclear regions reached by the same CFs
(Llinas and Negrello, 2011; Ruigrok, 2011; D’Angelo et al.,
2013). On the other hand, GrCs project in the medio-lateral
direction by PFs (Uusisaari and de Schutter, 2011), carrying
the same signals transversally to multiple microcomplexes.
The result is a modular geometrically-organized architecture,
where each microcomplex integrates sensorimotor information
from different sources and emits spike patterns that, in turn,
correlate with specific aspects of behavior (Zhou et al., 2014;
Powell et al., 2015).

In this scenario, single neuron properties and cerebellar
connectivity are sufficiently well characterized and can be
simplified to simulate behavioral tasks using bioinspired
cerebellar models (Yamazaki and Igarashi, 2013; Casellato
et al., 2014; Antonietti et al., 2016). However, the key causal
relationships across scales, i.e., from neuron properties to
network dynamics and finally to behavior, are still unclear.
To what extent do intrinsic excitability and synaptic inputs
contribute to the spiking patterns of PCs and DCN cells during

a behavioral task? How do complex firing patterns emerge in
cascade within the network?

Here, we have reconstructed and simulated an olivocerebellar
microcircuit by integrating monocompartmental neurons with
complex electroresponsiveness into the geometrically-organized
connectivity of a spiking neural network (SNN). The simulations
provide the network with sensory-like stimulation patterns and
monitor the microcircuit responses. Such a computational tool
compromises between biological plausibility and computational
load, allowing a multiscale investigation of the cerebellar
network. This is achieved by integrating two main aspects. The
first one is the Extended-Generalized Leaky Integrate and Fire
(EGLIF) point neuron that maintains salient electrophysiological
features – autorhythm, bursts, adaptation, oscillations and
resonance – by using just a few state variables (Geminiani et al.,
2018b). The EGLIF proved capable to reproduce the rich set
of firing patterns of the main olivocerebellar neurons: GoCs,
GrCs, PCs, MLIs, DCNs, and IO (Geminiani et al., 2019). The
second aspect is network geometry derived from a cerebellar
scaffold model, which reproduces the physiological convergence
and divergence ratios of connections with a realistic spatial
organization (Casali et al., 2019). Here, EGLIF neurons are
here evaluated within the whole SNN, where positioning and
connectivity of each neuron type are based on their morphology
and density within the cerebellar microcircuit (Casali et al., 2019).
Therefore, the EGLIF-SNN is exploited to investigate how single
neuron properties and network architecture allow the emergence
of spatio-temporal dynamic properties, such as burst-pause in
PCs and pause-burst in DCN cells. In particular, the EGLIF-
SNN is tested by using input patterns encoding two types of
sensory signals, whose timing association elicits an eyeblink
motor response with multiple afferent pathways specifically
activating interconnected microcomplexes (De Zeeuw et al.,
2011). The simulations using EGLIF-SNN have been compared
to others using simple LIF neurons, in order to understand
the impact of single neuron dynamics on network functioning
and signal encoding. These results provide a critical assessment
of the role of microcircuit properties needed for future
closed-loop simulations of cerebellum-driven learning tasks
(D’Angelo et al., 2016).

MATERIALS AND METHODS

Reconstruction of the Olivocerebellar
Network
To evaluate the role of single neuron electrophysiology and,
at the same time, of geometrical and statistical connectivity,
a SNN was developed, reproducing an olivocerebellar volume.
The reconstructed volume included 96′767 neurons and
4′151′182 total synapses and represented a portion of two
cerebellar microcomplexes with the corresponding olivary nuclei
(Figure 1). The SNN was built based on the cerebellar scaffold
developed in Casali et al. (2019). In this scaffold, neurons
were placed in the selected volume based on known cell
densities from neurophysiology and geometric features. Then,
they were connected according to connectivity rules based
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FIGURE 1 | Olivocerebellar scaffold with neurons placed in the selected
volume, including two cortical microzones (granular, molecular and PC layers)
with their corresponding nuclear and olivary cells. Connections between PCs
from each microzone and the corresponding target cells in the cerebellar
nuclei are highlighted. The two microcomplexes are labeled in yellow (1) and
blue (2). Granular and molecular layer cells are subsampled and GrC in the
two microzones are not differently labeled for figure readability.

on proximity of neuronal processes (pre-synaptic axon span
extension and post-synaptic dendritic field extension) and on
statistical convergence/divergence ratios (Casali et al., 2019). The
starting network version was made up of cells distributed in
a multi-layered volume including the Molecular, Purkinje and
Granular layers of the cerebellar cortex – 400 × 330 × 400 µm3,
and the underlying cerebellar nuclei – 200 × 600 × 200 µm3

(Table 1). The thickness (along y-direction) was fixed based on
neurophysiology (330 µm for cortex+ 600 µm for nuclei), while
the other two sizes (x and z) were flexible, and there defined in
order to have a complete exemplificative reconstruction, able to
include all the elements in a functional representative module.
Here, we subdivided the scaffold cortex into two sub-volumes,
by a parasagittal plane, so obtaining two microzones with a
transversal length of 200 µm each (along z-axis). Consequently,
we reorganized the PC-DCN connections to be confined within
the same subvolumes, with a neurophysiological crosstalk. This
way, two adjacent microcomplex volumes were reconstructed
(Uusisaari and de Schutter, 2011). Then, we added an olivary
volume of 100 × 200 × 40 µm3 chosen to maintain the ratio
between the cerebellar cortical volume and the olivary one

measured in mice, i.e., ∼ 66–68:1 (Lein et al., 2007). Based on
IO neuron density (i.e., ∼ 15′172 cells/mm3), we positioned
12 cells in the olivary scaffold volume (Zanjani et al., 2004).
The neurons were placed using self-avoiding bounded random
walk procedure. For each olivocerebellar microcomplex, six IO
neurons were included.

In the cerebellar nuclei, we considered two types of neurons:
non-GABAergic DCNs, which are the principal large neurons
projecting outside the cerebellum in an excitatory way (DCNp),
and GABAergic interneurons (DCNi), which send inhibitory
feedback signals to IO. For each DCNp, already present in the
previous scaffold release (Casali et al., 2019), we added one
DCNi, positioned around the corresponding DCNp, at a random
distance d in the range between d1 (minimum to avoid somata
overlap) and d2 (maximum in order to have a DCNi as a satellite
of a specific DCNp, i.e., closer to that DCNp than to the other
DCNp neurons):

d1 = rDCNp + rDCNi

d2 = mean_dist/4− rDCNp − rDCNi

where:
rDCNp, rDCNi = radius of DCN neurons′ somata;
mean_dist = mean pairwise distance between DCNp in the

scaffold (Casali et al., 2019).

Connections to and from IO were organized to mimic
the geometry of microcomplexes. IO and DCN neurons
were divided into two clusters based on their position and
connected to PCs in homologous microzones. This topological
segregation was maintained also in connecting IO to DCNp, and
DCNi to IO cells.

Furthermore, also the connections from IO to MLIs were
introduced following the microcomplex correspondence (Szapiro
and Barbour, 2007; Jörntell et al., 2010). The resulting
convergence/divergence values of the connections within the
entire olivocerebellar scaffold are reported in Table 2.

Single neurons in the SNN were modeled as EGLIF, able to
reproduce the full set of spiking patterns of cerebellar neurons
(Geminiani et al., 2018b). In details, a cell-specific parameter
set was applied to meet the electroresponsive phenotype
of each olivocerebellar neuron (e.g., GoC: autorhythm,
adaptation, rebound bursting, phase reset, subthreshold
oscillations, resonance; GrC: subthreshold oscillations and

TABLE 1 | Neuron types and numbers in the olivocerebellar scaffold.

Neuron type Number of neurons

MF 7073

GoC 219

GrC 88164

MLI 1206

PC 69

DCNp 12

DCNi 12

IO 12
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TABLE 2 | Olivocerebellar scaffold connections with convergence/divergence ratios (reported as mean ± Standard Deviation, SD) and corresponding synaptic
parameters.

Convergence
(mean ± SD)

Divergence
(mean ± SD)

Weight [nS] Delay [ms] τ α [ms] Connection type

MF-GrC 4 50 ± 22 0.15 4.0 5.8
(Prestori et al., 2008)

exc

MF-GoC 65 ± 27 2 ± 1 1.5 4.0 0.23
(Kanichay and Silver, 2008)

exc

GoC-GrC 2 ± 1 624 ± 267 0. 6 2.0 13.6
(Mapelli et al., 2009)

inh

GoC-GoC 34 ± 8 34 ± 9 0.3 1.0 10 inh

AA-GoC 360 ± 81 1 1.2 2.0 0.5
(Kanichay and Silver, 2008)

exc

PF-GoC 1600 4 ± 2 0.05 5.0 0.5
(Kanichay and Silver, 2008)

exc

MLI-MLI 4 ± 2 4 0.2 1.0 2 inh

PF-MLI 1004 ± 221 (BC)
1021 ± 221 (SC)

12 ± 4 (BC)
12 ± 5 (SC)

0.015 5.0 0.64 exc

MLI-PC 20 3 ± 1 0.3 4.0 (BC)
5.0 (SC)

2.8
(He et al., 2015)

inh

AA-PC 249 ± 13 1 0.7 2.0 1.1
(Miyazaki et al., 2004)

exc

PF-PC 28401 ± 776 23 ± 3 0.007 5.0 1.1
(Miyazaki et al., 2004)

exc

PC-DCNp 26 ± 2 5 ± 1 0.4 4.0 0.7
(Uusisaari and Knöpfel, 2008)

inh

PC-DCNi 26 ± 4 5 ± 1 0.12 4.0 1.14
(Uusisaari and Knöpfel, 2008)

inh

MF-DCNp 147 1 0.05 4.0 1
(Wu and Raman, 2017)

exc

CF-PC 1 6 ± 1 (min = 4;
max = 8)

350.0 4.0
(Llinás, 2014)

0.4
(Miyazaki et al., 2004)

exc

CF-MLI 3 ± 1 115 ± 23 1.0 70.0 ± 10.0
(De Zeeuw et al., 2011)

1.2
(Szapiro and Barbour, 2007)

exc

IO-DCNp 6 6 0.1 4.0
(Hoebeek et al., 2010)

1
(Wu and Raman, 2017)

exc

IO-DCNi 6 6 0.2 5.0 3.64
(Uusisaari and Knöpfel, 2008)

exc

DCNi-IO 6 6 3.0 20.0
(Best and Regehr, 2009)

60.0
(Best and Regehr, 2009)

inh

resonance; PC: autorhythm and bursting; DCN: autorhythm,
adaptation and rebound bursting; IO: subthreshold oscillations,
rebound spiking, phase reset), as optimized in Geminiani
et al. (2019) (Supplementary Material). Only the firing
irregularity parameters were modified with respect to Geminiani
et al. (2019), to account during network simulations for
higher noise components that are absent during in vitro
experiments (Supplementary Material). As a result, we obtained
physiological Coefficient of Variation of Inter-Spike Intervals
(CVISI) and average firing frequency (ftonic) observed in vivo
(Ten Brinke et al., 2017; Boele et al., 2018). Specifically, PCs
showed ftonic = 85 Hz and CVISI = 0.2, and DCNp, ftonic = 65 Hz
and CVISI = 0.2.

Then, the same reconstructed circuit was populated by basic
LIF neurons (LIF-SNN). The passive membrane parameters were
set equal for EGLIF and LIF neurons, specific for each neuron
type (Supplementary Material). The intrinsic current generating

spontaneous firing was tuned in the LIF neurons using trial and
error, to obtain the same desired autorhythm rates.

Synaptic transmission was regulated by alpha-shaped
conductance-based synapses, where reversal potentials were
set to 0 mV for all excitatory synapses and −80 mV for
inhibitory synapses (Cavallari et al., 2014). Multiple synapses
on the same post-synaptic neuron were introduced in order to
modulate the impact of different pre-synaptic populations, by
using ad hoc synaptic parameters. The time constants of the
conductance functions (τα) and the synaptic delays were defined
based on scaffold values (Casali et al., 2019) and literature
data (Table 2). Synaptic weights were set through trial and
error in order to generate reference firing rates of each neural
population, during baseline state of the network, i.e., without
external stimuli. In setting those synaptic weights, qualitative
and comparative information were taken as constraints, e.g.,
the robust connections from IOs to PCs through CFs, and the
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stronger effect of GrCs on the post-synaptic neuron when the
connection is through AAs than through PFs (Casali et al.,
2019). Since the non-synaptic “spill-over” interaction between
CFs and MLIs (Szapiro and Barbour, 2007; Jörntell et al., 2010),
delay values of CF-MLI connections were set not all equal, but
randomly chosen within a normal distribution to represent
the slow and gradual neurotransmitter release. Short 1 ms
delays (corresponding to the simulation resolution) were used
in the interneuron inhibitory subnetworks (GoCs-GoCs and
MLIs-MLIs) to mimic gap junctions (Hahne et al., 2015). The
same synaptic delays and weights were used in both EGLIF-SNN
and LIF-SNN, to ensure that the response differences between
the two models could be ascribed unequivocally to different
single neuron dynamics.

Network Stimulation Protocol and Data
Analysis
The reconstructed olivocerebellar network with optimized cell-
specific neuron models (Geminiani et al., 2019) was then
simulated in PyNEST (Diesmann and Gewaltig, 2002; Eppler
et al., 2009). The emergent spatio-temporal dynamics was
analyzed, such as the responses of all neuron populations
to sensory signals involving different input pathways. To
understand the impact of single neuron dynamics in emerging
properties at network and signal encoding level, the same
simulation protocols were applied in the two network models,
EGLIF-SNN and LIF-SNN.

The chosen input signals mimic those used in EyeBlink
classical conditioning (EBCC), a well-known cerebellum-driven
task, commonly used to investigate cerebellar learning and the
underlying circuit mechanisms (Jirenhed et al., 2007). Recruiting
different sensory pathways, the input signals during EBCC are
usually a continuous light signal (a LED) and a time-locked short
air puff stimulation on the eye. On the other hand, the motor
response is an eye closure. Our model focused on the beginning
of this task, when timing associative learning has not occurred
yet, and only the second stimulus is supposed to generate an
attention-triggered motor response. Within our SNN, the light
stimulus was encoded as a 40 Hz Poisson process conveyed
through a wide MF bundle investing both microcomplexes.
Moreover, transversal PF projections from the Granular layer and
MF collaterals to DCN cells allow the signals to travel across
adjacent microcomplexes (Kalmbach et al., 2010). The air puff
was a 500 Hz burst conveyed to CFs belonging specifically to
one microcomplex (Ten Brinke et al., 2015, 2017). The output
motor response was decoded from the net spiking activity of
DCNp neurons.

The network testing protocol included a first 1-s baseline
phase with a 4 Hz Poisson process to MFs. This baseline input
simulated the typical in vivo background noise (Rancz et al.,
2007). Afterward, a 40-Hz MF spike train (associated to LED
light) started, lasting 260 ms. It co-terminated with the 500-Hz
CF burst (associated to air puff) which lasted 10 ms. A final 500-
ms phase was added after this stimulation pair, to evaluate the
capability of the network to return to baseline rest condition (Ten
Brinke et al., 2015, 2017).

The input spike train activated a MF bundle in the scaffold
network, specifically a cylinder with a basis radius of 150 µm
at the center of the transversal x–z plane, and a height of
150 µm thus including the whole granular layer thickness.
This activation pattern was chosen based on the experimental
observation that cerebellar activation is region specific and
topographically organized, with MFs activating in bundles
eliciting local responses (Morissette and Bower, 1996; Diwakar
et al., 2011). In addition, this pattern allowed to avoid edge effects
due to truncated connectivity close to the borders. As a result,
about 80% of glomeruli received the afferent input.

To avoid unnatural synchronization of populations’ initial
spikes, the membrane potential of each neuron was initialized to
a random value between the population-specific resting potential
and threshold potential, in both EGLIF-SNN and LIF-SNN.

Raster plots of example neurons were used to visualize single
neuron responses, while the network activity was represented
as PeriStimulus time histograms (PSTH) with time bin = 5 ms,
for each neural population at rest and during the imposed
stimulation patterns.

PC and DCNp populations represented the convergence
stages of both input stimuli pathways. Therefore, the
instantaneous firing rates of PC and DCNp neurons in the
first microcomplex (the one receiving both MF input and CF
burst) were computed as the convolution between the neuron
spiking patterns and a gaussian sliding window of 5 ms and
10 ms, respectively (Dayan and Abbott, 2001). To evaluate the
difference in the responses between EGLIF-SNN and LIF-SNN,
for each PC and DCNp neuron, we measured the activity
change – response speed – following the second stimulus
(i.e., CF burst):

speedi =
max_ratei − min_ratei

1t
for each neuron i,

being max_ratei and min_ratei, the maximum and minimum
firing rate of the i-th neuron within the 100-ms interval
starting 5 ms after the CF burst onset, and 1t the time
interval between them.

Finally, the resulting motor response was computed from
DCNp activity: the spiking pattern of each microcomplex was
first decoded using an update and decay rule (update constant:
1.0; decay time constant: 10 ms) and then filtered with a
moving average filter using a 50-sample window. The final
eyeblink response was computed from the net decoded activity
of both microcomplexes.

RESULTS

The olivocerebellar SNN was organized into two cortical
microzones, distinguished by their connections from CFs while
sharing information from the granular layer (Voogd and
Glickstein, 1998). The two microzones, differentially connected
to DCN and IO, formed two distinct microcomplexes (Ito, 1984;
Figure 1). The olivocerebellar SNN was able to encode different
inputs into output spike patterns. We have analyzed in detail the
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response to spike trains imitating EBCC-like sensory inputs. The
comparison between the EGLIF-SNN and LIF-SNN allowed to
identify the contribution of non-linear single neuron properties
to ensemble network dynamics.

The basal activity of cerebellar neurons and their response to
MF and CF inputs is illustrated in Figures 2–7. In both EGLIF-
SNN and LIF-SNN models, during baseline MF activation with
random noise at 4 Hz (Rancz et al., 2007), the GrCs were driven
into low frequency firing, and the GoC, MLI, PC and DCN
neurons slightly increased their firing rate compared to intrinsic
pacemaking (Geminiani et al., 2019).

The activity of EGLIF-SNN and LIF-SNN changed during
stimulation of the MFs (260 ms at 40 Hz on a MFs bundle,
see section “Materials and Methods”) and when a burst was
generated in CFs coming from the IO (10 ms at 500 Hz
on one microcomplex, see section “Materials and Methods”).
At the onset of stimulation, when only MFs were active, the
firing rates for all neural populations of the cortical microzones
increased with average frequency values within the physiological
range. In particular, an increase of about 10 Hz in PC firing
rate with respect to 85 Hz baseline emerged, consistent with
experimental observations showing that PC activity is largely
sustained by pacemaking (Cerminara and Rawson, 2004). The
responses of DCN neurons demonstrated a reduction in DCNi,
which received only inhibition from PCs, and almost no change
in DCNp, which received balanced excitation from MFs and
inhibition from PCs, revealing the regulatory power of the system
on the cerebellar output. On the other hand, when also the
CF burst was injected, complex dynamic spiking patterns were
elicited, differentiated in the two microcomplexes; and here the
superiority of EGLIF-SNN with respect to LIF-SNN to simulate
non-linear responses emerged.

Granular Layer
Both in EGLIF-SNN and LIF-SNN, the GrCs showed a
background low-frequency sparse activation that increased and
then recovered to baseline without apparent rebounds. The GoCs
also increased firing frequency during the MF stimulus, and then
showed a rapid reduction at its end lasting about 30 ms. This was
due to slow recovery of the pacemaker cycle reflecting a phase-
reset mechanism (Solinas et al., 2007; Geminiani et al., 2018b).
The GrCs did not show a corresponding remarkable rebound
in their firing rate, probably because of the prolonged effect
of GoC-GrC synaptic inhibition, which lasts for about 50 ms
(Bengtsson et al., 2013).

Molecular Layer, PC, and DCN –
Microcomplex 1
The activation of IO neurons connected to microcomplex 1
caused a characteristic spiking pattern. In the EGLIF-SNN,
the IO input burst induced a typical response in connected
PCs, consisting of synchronous complex spikes followed by
a pause (burst-pause). Each complex spike included a first
burst approximating dendritic spikelets, induced by the 10-ms
IO input, and a subsequent pause/hyperpolarization, resulting
from intrinsic neuron model mechanisms (De Zeeuw et al.,
2011; Geminiani et al., 2019). After the burst-pause response,
firing recovered but a second firing decrease occurred, caused
by spillover-mediated inhibition from MLIs (about 70 ms
after the IO burst onset). The PC complex spikes triggered
by the IO silenced DCNp neurons (pause), which, after the
hyperpolarization, generated a rebound burst. The DCNp pause-
burst response matches neurophysiological observations (Pugh
and Raman, 2006; Zheng and Raman, 2010). DCNi received

FIGURE 2 | Raster plots of three examplar GrC and GoC neurons from EGLIF SNN (A) and LIF-SNN (B) simulations. The stimulation paradigm (MF input) is
indicated.
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FIGURE 3 | PSTH of all Granular layer neurons in EGLIF-SNN (A) and LIF-SNN (B). In both cases, stimulation of a MF bundle common to both microcomplexes (top
panel) causes the mean firing rate of granule cells and Golgi cells to increase. Note the similar patterns of neuronal activity in the two networks. The absolute values
of firing rates are within physiological ranges in vivo. Each PSTH bin is 5 ms long.

only PC and IO inputs but not MF excitation, they generated
a rebound spike after the strong inhibition from PC complex
spikes. In the LIF-SNN, the burst-pause regime of PCs and
pause-burst regime of DCN cells did not emerge.

Molecular Layer, PC, and DCN –
Microcomplex 2
Neurons belonging to microcomplex 2 received only the
MF stimulus causing a net increase of firing rates in MLI,
PC and DCNp neurons, and a pause in DCNi cells not
receiving MF excitation.

For PC and DCNp in the microcomplex 1, where PF and
CF stimuli converged, the average firing rate response was
sharper in the EGLIF-SNN (Figure 8A), impacting on the
timing precision of the network output. Indeed, the dynamic
modulation of spike patterns observed using EGLIF could not
be reproduced with LIF network models, since the simplified
dynamics of single neurons prevented from generating bursting,
pause and rebound responses. Consequently, the response speed
was significantly higher in PC and DCNp neural populations
within EGLIF-SNN (PC speed: −23.82 ± 1.96 Hz/ms in EGLIF-
SNN vs.−2.25± 0.91 Hz/ms in LIF-SNN, t-test: p< 0.01; DCNp
speed: 1.72 ± 0.83 Hz/ms in EGLIF-SNN vs. 1 ± 0.06 Hz/ms in
LIF-SNN, t-test: p < 0.01).

As a result, the eyeblink response computed from the net
decoded activity of DCNp neurons was faster and sharper in the
EGLIF-SNN simulations (Figure 8B).

DISCUSSION

The main observation in this study is that neuron models with
realistic non-linear properties EGLIF (Geminiani et al., 2018b,
2019), once embedded into networks with realistic geometry
and connectivity (Casali et al., 2019), have a significant impact
on ensemble response dynamics compared to simpler models
(LIF). The effectiveness of EGLIF emerged as a pattern of burst-
pause and pause-burst responses in PC and DCNp neurons
reproducing observations in vivo (Herzfeld et al., 2015; Moscato
et al., 2019) and was most evident when the microcomplex
received the CF stimuli. Since we used stimulus patterns
emulating those occurring in the eye-blink reflex, it is anticipated
that single neuron properties will reverberate on sensorimotor
control in closed-loop.

Single Neuron Activity and SNN
Responses to Stimuli
In EGLIF-SNN simulations, the integration of bursts on the
CFs and spike trains on PFs proved fundamental for generating
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FIGURE 4 | Raster plots of three example IO, MLI, PC, DCNp and DCNi neurons in the first microcomplex, from EGLIF-SNN (A) and LIF-SNN (B) simulations. The
stimulation paradigm (MF input and CF burst) is indicated.

a realistic PC output. These stimuli caused PCs to shift from
spontaneous background activity to complex spikes and simple
spike trains taking the form of a burst-pause response. The
burst-pause was the consequence of intrinsic PC non-linear

electroresponsive dynamics engaged by patterned synaptic inputs
from PFs, MLIs, and IO (Jirenhed et al., 2013). Always in EGLIF-
SNN simulations, DCNp neurons showed pause-burst responses
deriving from intrinsic DCNp neuron electroresponsiveness
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FIGURE 5 | PSTH of IO, MLI, PC and DCN neurons in microcomplex (1) in EGLIF-SNN (A) and LIF-SNN (B). The first stimulus (MF input) increases the firing rate in
MLI, PC and DCNp neurons during the 260 ms interval, while DCNi cells that do not receive MF inputs, get inhibited by the increased PC firing. The air puff is
encoded as a burst from CFs. MLIs receive the CF stimulus through the IO pathway causing a delayed protracted increase in firing rate about 70 ms after the
stimulus, due to neurotransmitter spillover from CFs. At PC level, CF stimulation results in a complex spike (burst-pause, black arrow) causing a pause-burst in DCN
neurons (white arrow). Note that these dynamic behaviors are observed only in the EGLIF-SNN due to the complex intrinsic dynamics of EGLIF neuron models. In
LIF-SNN, the PC burst caused by CF input is not followed by the pause, while in DCNp neurons the pause due to PC complex spike inhibition is followed by a
synchronous restart of firing (causing the increased instantaneous frequency) without any rebound burst. Note that the lower irregularity of firing in LIF-SNN
simulations resulted in apparent higher firing rates, due to non-physiological synchronization of population spikes. Each PSTH bin is 5 ms long.
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FIGURE 6 | Raster plots of three example MLI, PC, DCNp and DCNi neurons in the second microcomplex, from EGLIF-SNN (A) and LIF-SNN (B) simulations. The
stimulation paradigm (MF input) is indicated.

engaged by synaptic inputs from PCs, MF and CF collaterals
(Herzfeld et al., 2015; Moscato et al., 2019). Indeed, these spiking
patterns proved to have a crucial impact on response speed
and time precision (Figure 8) providing a potential advantage
for cerebellum-driven tasks, in which the cerebellum acts as a
millisecond-precise controller (Bareš et al., 2019; Heck et al.,
2013). The intrinsic bursting properties of the EGLIF model,
already proved in simulations of single neuron responses to
current steps (Geminiani et al., 2019), here proved fundamental
to capture emergent network dynamics. It should be noted
that, in LIF-SNN simulations, burst-pause and pause-burst
responses did not emerge. These results therefore support the

adequacy of EGLIF neurons for realistic simulations of cerebellar
SNNs in closed-loop.

The impact of EGLIF neurons on oscillatory network
dynamics, that are expected to emerge from feedback circuit
loops in the granular layer (D’Angelo et al., 2013; Maex
and De Schutter, 2013), remains to be investigated. Indeed,
the intrinsic membrane potential oscillations of EGLIF in
single neuron stimulation protocols could impact on network
oscillations, and should be further investigated (Geminiani et al.,
2019). An open question is also how the EGLIF representation
compromises with non-linear dendritic processing in PCs, in
which the excitatory post-synaptic potentials are locally amplified
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FIGURE 7 | PSTH of MLI, PC and DCN neurons inmicrocomplex (2) in EGLIF-SNN (A) and LIF-SNN (B). The stimulus causes an increased firing rate in MLIs and
PCs. In the nuclear layers, DCNp neurons receive both a higher excitation from MFs and an increased inhibition from PCs due to the stimulus, resulting in a net
non-significant change of their firing rate. Conversely, DCNp neurons get silenced by the PCs during the stimulation, as they do not receive MF excitation. Each
PSTH bin is 5 ms long.

by Calcium spikes and integrated into complex spatio-temporal
sequences (Masoli et al., 2015; Masoli and D’Angelo, 2017).
A similar case applies to DCN cells too, in which the inhibitory
post-synaptic potentials set up non-linear interactions with low-
threshold calcium spikes (Si Feng et al., 2013). These aspects
need to be further investigated by comparison with detailed
multicompartmental neuron models.

Neuronal Wiring and Synaptic
Transmission in the SNN
The importance of geometry and connectivity was recently
addressed using LIF neurons in a scaffold cerebellar network
(Casali et al., 2019). Here the network has been upgraded with

EGLIF neurons and extended to include the IO-DCN sub-circuit
to form two different microcomplexes, demonstrating additional
network properties. In the current configuration, as said, the
network generated spiking patterns similar to those observed
in vivo. A critical issue in this context is the definition of
synaptic models (Cavallari et al., 2014). Here we have chosen
conductance-based synaptic models implemented with alpha
functions, which accounted in an accurate yet simplified form
for neurotransmission kinetics (Table 2). A future improvement
could be to define conductance changes using specific NMDA,
AMPA and GABA kinetics in each neuron type [e.g., see
(Wu and Raman, 2017)]. In addition, the more precise spiking
patterns of the EGLIF-SNN make this network a better
candidate also to investigate short-term plasticity mechanisms.
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FIGURE 8 | (A) Mean instantaneous population firing rate of PC and DCNp
neurons from microcomplex (1), averaging all neurons (35 PC and 6 DCNp)
and all simulations (n = 5), comparing EGLIF-SNN (continuous line) and
LIF-SNN (dashed line). The presence of burst-pause and pause-burst
responses in EGLIF PC and DCNp neuronal populations, results in a faster
and more precise change of the overall population activity (more sensitivity).
(B) Eyeblink response signal averaged over the five simulations; the DCNp
activity of microcomplexes (1) and (2) is first decoded and then the net signal
of both microcomplexes is computed to obtain the final response. As a result
of the underlying neural mechanisms, the motor response is faster and
sharper in the EGLIF-SNN simulations. The orange bar represents the time of
the CF bursting input.

For example, it could be possible to evaluate whether short-
term facilitation can further enhance the time precision of the
response, amplifying bursting mechanism. In addition, EGLIF-
SNN simulations with short-term plasticity could allow to clarify
how single neuron and synaptic dynamics interact to generate
proper network dynamics.

Finally, phenomena like neurotransmitter spillover and
electrical transmission through gap-junctions were approximated
here by tuning delay parameters, but could be better reproduced
by customized models (Latorre et al., 2013). In GoC and IO
neuronal populations, more realistic gap junctions would allow,
for instance, to investigate more in detail circuit oscillation
properties (Leznik and Llinás, 2005).

Implications for Eyeblink Conditioning
and Other Cerebellum-Driven Paradigms
The stimulation patterns used here mimicked the typical input
signals that are used in EBCC tasks including a prolonged
and spatially distributed sensory stimulus (CS, light) and a
short attentional signal [Unconditioned Stimulus (US), air puff].
The current study focused on the response before learning:
CS excited the granular layer across microzones, consistent
with the operation of signal analysis (through recombinatorial
expansion) carried out by the granular layer (D’Angelo et al.,
2013; Gilmer and Person, 2017). The granular layer output was
then synthesized and further processed in the PC layer (Dean
and Porrill, 2011). US influenced individual microcomplexes
through specific IO projections, segregating the attention (or
error) signal within the network. These modular activation
patterns represent the most elementary instantiation of cerebellar
functioning, i.e., the ability to correlate neural signals transmitted
along different afferent pathways, the MFs and CFs. These signals,
in a behavioral context, are needed to allow the cerebellum to
learn to predict the precise timing of correlated events, setting the
basis for cerebellar contribution to motor and cognitive control
(Ivry, 2000; D’Angelo and Casali, 2013). It seems therefore
highly relevant that the emerging burst-pause and pause-burst
responses in PC and DCNp neurons are precisely reproduced
using EGLIF-SNN. These activity patterns will be critical for
generating the proper time-locked response in future simulations
of EBCC (Rasmussen et al., 2008). This will require to endow
the current SNN model with distributed long-term plasticity to
simulate learning mechanisms (Antonietti et al., 2016). While the
current work evaluated the impact of non-linear single neuron
dynamics and network topology on stimulus-response spiking
patterns, closed-loop simulations of a full cerebellum-driven
learning task with the EGLIF-SNN will allow to evaluate the
impact of long-term plasticity, mainly spike-timing dependent
plasticity mechanisms, driven by IO and PC spikes.

As a result of modularity and specific connectivity to various
brain regions, different cerebellar modules are engaged in
different tasks (D’Angelo and Casali, 2013). The modules receive
various kinds of input signals, which carry information about
specific sensory modalities or specific body parts as well as about
activity in motor and associative cortical areas. The modules can
differ not only in terms of sources and pathways of the incoming
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signals, but also in terms of specific electroresponsive properties
of neurons. For example, differences in the autorhythm of PCs
were observed between regions involved in EBCC and vestibulo-
ocular reflexes (Zhou et al., 2014). Similarly, a modulation of
oscillatory properties emerge in the IO neural population when
encoding either somatosensory or visual stimuli (Llinás, 2014).
The possibility to easily modify neuron models and connectivity
in our olivocerebellar EGLIF-SNN would allow to fine tune
specific features associated to sensorimotor loops and functional
cerebellar regions (Casellato et al., 2014; Geminiani et al., 2017;
Luque et al., 2019).

According to the modular organization of the cerebellum,
these microcomplexes could be multiplied and reconnected
to investigate how input signals are integrated and elaborated
to control complex movements, for example in whisking
and locomotion (Romano et al., 2018). Scaling-up the
network modular architecture would require to re-organize
connectivity among microcomplexes, which can determine
fundamental properties of cerebellar functioning, such as
somatotopic organization, fractured somatotopy mapping and
multimodal sensory fusion.

CONCLUSION

Since the model satisfactorily captures fundamental properties
of microcomplexes, it can help shedding light on the links
between structure, function and dynamics in the cerebellum
under physiological and pathological conditions and during
learning (D’Angelo and Gandini Wheeler-Kingshott, 2017).
These extended applications are warranted by the flexible
structure of the scaffold (Casali et al., 2019) and the tunable
nature of EGLIF neurons (Geminiani et al., 2018b, 2019). For
example, in different species or in pathological conditions,
EGLIF-SNN could account for variations in the number
of neurons as well as in their connectivity and intrinsic
electroresponsiveness, while maintaining high efficiency when
running large-scale simulations in closed-loop. Future work will
endow the EGLIF-SNN cerebellum models with mechanisms
for synaptic plasticity in order to evaluate the impact of single
neuron and network properties on motor learning (Hansel et al.,
2001; Schonewille et al., 2010; Gao et al., 2012; D’Angelo, 2014;
Boele et al., 2018). Eventually, the model may be exploited to

mimic pathological conditions at multiple scales (Geminiani
et al., 2018a) providing new insights into the role of cerebellum
in brain diseases (D’Angelo and Casali, 2013; D’Angelo, 2019;
Schmahmann, 2019). It is also envisaged that the EGLIF scaffold
strategy could be customized to model and simulate other brain
regions (like the cerebral cortex, hippocampus or basal ganglia).
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The endeavor to understand the brain involves multiple collaborating research fields.

Classically, synaptic plasticity rules derived by theoretical neuroscientists are evaluated

in isolation on pattern classification tasks. This contrasts with the biological brain

which purpose is to control a body in closed-loop. This paper contributes to bringing

the fields of computational neuroscience and robotics closer together by integrating

open-source software components from these two fields. The resulting framework allows

to evaluate the validity of biologically-plausibe plasticity models in closed-loop robotics

environments. We demonstrate this framework to evaluate Synaptic Plasticity with Online

REinforcement learning (SPORE), a reward-learning rule based on synaptic sampling, on

two visuomotor tasks: reaching and lane following. We show that SPORE is capable

of learning to perform policies within the course of simulated hours for both tasks.

Provisional parameter explorations indicate that the learning rate and the temperature

driving the stochastic processes that govern synaptic learning dynamics need to be

regulated for performance improvements to be retained. We conclude by discussing

the recent deep reinforcement learning techniques which would be beneficial to increase

the functionality of SPORE on visuomotor tasks.

Keywords: neurorobotics, synaptic plasticity, spiking neural networks, neuromorphic vision, reinforcement

learning

1. INTRODUCTION

The brain evolved over millions of years for the sole purpose of controlling the body in a
goal-directed fashion. Computations are performed relying on neural dynamics and asynchronous
communication. Spiking neural network models base their computations on these computational
principles. Biologically plausible synaptic plasticity rules for functional learning in spiking neural
networks are regularly proposed (Pfister et al., 2006; Urbanczik and Senn, 2014; Neftci, 2017; Kaiser
et al., 2018; Zenke and Ganguli, 2018). In general, these rules are derived to minimize a distance
(referred to as error) between the output of the network and a target. Therefore, the evaluation
of these rules is usually carried out on open-loop pattern classification tasks. By neglecting the
embodiment, this type of evaluation disregards the closed-loop dynamics the brain has to handle
with the environment. Indeed, the decisions taken by the brain have an impact on the environment,
and this change is sensed back by the brain. To get a deeper understanding of the plausibility
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of these rules, an embodied evaluation is necessary. This
evaluation is technically complicated since spiking neurons
are dynamical systems that must be synchronized with the
environment. Additionally, as in biological bodies, sensory
information, and motor commands need to be encoded and
decoded respectively.

In this paper, we bring the fields of computational
neuroscience and robotics closer together by integrating
open-source software components from these two fields. The
resulting framework is capable of learning online the control of
simulated and real robots with a spiking network in a modular
fashion. This framework is demonstrated in the evaluation of
the promising neural reward-learning rule SPORE (Kappel et al.,
2014, 2015, 2018; Yu et al., 2016) on two closed-loop robotic
tasks. SPORE is an instantiation of the synaptic sampling scheme
introduced in Kappel et al. (2018, 2015). It incorporates a policy
sampling method which models the growth of dendritic spines
with respect to dopamine influx. Unlike current state-of-the-art
reinforcement learning methods implemented with conventional
neural networks (Lillicrap et al., 2015; Mnih et al., 2015, 2016),
SPORE learns online from precise spike-time and is entirely
implemented with spiking neurons. We evaluate this learning
rule in a closed-loop reaching and a lane following (Kaiser et al.,
2016; Bing et al., 2018a) setup. In both tasks, an end-to-end
visuomotor policy is learned, mapping visual input to motor
commands. In the last years, important progress have been
made on learning control from visual input with deep learning.
However, deep learning approaches are computationally
expensive and rely on biologically implausible mechanisms such
as dense synchronous communication and batch learning. For
networks of spiking neurons learning visuomotor tasks online
with synaptic plasticity rules remains challenging. In this paper,
visual input is encoded in Address Event Representation with
a Dynamic Vision Sensor (DVS) simulation (Lichtsteiner et al.,
2008; Kaiser et al., 2016). This representation drastically reduces
the redundancy of the visual input as only motion is sensed,
allowing more efficient learning. It agrees with the two pathways
hypothesis which states that motion is processed separately than
color and shape in the visual cortex (Kruger et al., 2013).

The main contribution of this paper is the embodiment of
SPORE and its evaluation on two neurorobotic tasks using
a combination of open-source software components. This
embodiment allowed us to identify crucial techniques to regulate
SPORE learning dynamics, not discussed in previous works
where this learning rule was only evaluated on simple proof-of-
concept learning problems (Kappel et al., 2014, 2015, 2018; Yu
et al., 2016). Our results suggest that an external mechanism such
as learning rate annealing is beneficial to retain a performing
policy on advanced lane following task.

This paper is structured as follows. We provide a review
of the related work in section 2. In section 3, we give a brief
overview of SPORE and discuss the contributed techniques
required for its embodiment. The implementation and evaluation
on the two chosen neurorobotic tasks is carried out in section
4. Finally, we discuss in section 5 how the method could
be improved.

2. RELATED WORK

The year 2015 marked a significant breakthrough in deep
reinforcement learning. Artificial neural networks of analog
neurons are now capable of solving a variety of tasks ranging
from playing video games (Mnih et al., 2015), to controlling
multi-joints robots (Lillicrap et al., 2015; Schulman et al.,
2017), and lane following (Wolf et al., 2017). Most recent
methods (Lillicrap et al., 2015; Schulman et al., 2015, 2017;
Mnih et al., 2016) are based on policy-gradients. Specifically,
policy parameters are updated by performing ascending gradient
steps with backpropagation to maximize the probability of taking
rewarding actions. While functional, these methods are not
based on biologically plausible processes. First, a large part of
neural dynamics are ignored. Importantly, unlike SPORE, these
methods do not learn online—weight updates are performedwith
respect to entire trajectories stored in rollout memory. Second,
learning is based on backpropagation which is not biologically
plausible learning mechanism, as stated in Bengio et al. (2015).

Spiking network models inspired by deep reinforcement
learning techniques were introduced in Bellec et al. (2018)
and Tieck et al. (2018). In both papers, the spiking networks
are implemented with deep learning frameworks (PyTorch
and TensorFlow, respectively) and rely on automatic
differentiation. Their policy-gradient approach is based on (PPO;
Schulman et al., 2017). As the learning mechanism consists of
backpropagating the Proximal Policy Optimization (PPO) loss
(through-time in the case of Bellec et al., 2018), most biological
constraints stated in Bengio et al. (2015) are still violated.
Indeed, the computations are based on spikes (4), but the
backpropagation is purely linear (1), the feedback paths require
precise knowledge of the derivatives (2) and weights (3) of the
corresponding feedforward paths, and the feedforward and
feedback phases alternate synchronously (5) (the enumeration
refers to Bengio et al., 2015).

Only a small body of work focused on reinforcement
learning with spiking neural networks, while addressing the
previous points. Groundwork of reinforcement learning with
spiking networks was presented in Florian (2007), Izhikevich
(2007), and Legenstein et al. (2008). In these works, a
mathematical formalization is introduced characterizing how
dopamine modulated spike-timing-dependent plasticity (DA-
STDP) solves the distal reward problem with eligibility traces.
Specifically, since the reward is received only after a rewarding
action is performed, the brain needs a form of memory to
reinforce previously chosen actions. This problem is solved
with the introduction eligibility traces, which assign credit to
recently active synapses. This concept has been observed in the
brain (Frey and Morris, 1997; Pan et al., 2005), and SPORE
also relies on eligibility traces. Fewer works evaluated DA-STDP
in an embodiment for reward maximization—a recent survey
encompassing this topic is available in Bing et al. (2018b).

The closest previous work related to this paper are Daucé
(2009), Kaiser et al. (2016), and Bing et al. (2018a). In Kaiser et al.
(2016), a neurorobotic lane following task is presented, where
a simulated vehicle is controlled end-to-end from event-based
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vision to motor command. The task is solved with an hard-
coded spiking network of 16 neurons implementing a simple
Braitenberg vehicle. The performance is evaluated with respect to
distance and orientation differences to the middle of the lane. In
this paper, these performancemetrics are combined into a reward
signal which the spiking network maximizes with the SPORE
learning rule.

In Bing et al. (2018a), the authors evaluate DA-STDP (referred
to as R-STDP for reward-modulated STDP) in a similar lane
following environment. Their approach outperforms the hard-
coded Braitenberg vehicle presented in Kaiser et al. (2016). The
two motor neurons controlling the steering receive different
(mirrored) reward signals whether the vehicle is on the left or
on the right of the lane. This way, the reward provides the
information of what motor command should be taken, similar to
a supervised learning setup. Conversely, the approach presented
in this paper is more generic since a global reward is distributed
to all synapses and does not indicate which action the agent
should take.

A similar plasticity rule implementing a policy-gradient
approach is derived in Daucé (2009). Also relying on eligibility
traces, this reward-learning rule uses a “slow” noise term to drive
the exploration. This rule is demonstrated on a target reaching
task comparable to the one discussed in section 4.1.1 and achieves
impressive learning times (in the order of 100s) with proper
tuning of the noise term.

In Nakano et al. (2015), a spiking version of the free-energy-
based reinforcement learning framework proposed in Otsuka
et al. (2010) is introduced. In this framework, a spiking Restricted
Boltzmann Machine (RBM) is trained with a reward-modulated
plasticity rule which decreases the free-energy of rewarding
state-action pairs. The approach is evaluated on discrete-
actions tasks where the observations consist of MNIST digits
processed by a pre-trained feature extractor. However, some
characteristics of RBM are biologically implausible and make
their implementation cumbersome: symmetric synapses and
clocked network activity. With our approach, network activity
does not have to be manually synchronized into observation
and action phases of arbitrary duration for learning to
take place.

In Gilra and Gerstner (2017), a supervised synaptic learning
rule named Feedback-based Online Local Learning Of Weights
(FOLLOW) is introduced. This rule is used to learn the
inverse dynamics of a two-link arm—the model predicts control
commands (torques) for a given arm trajectory. The loop is closed
in Gilra and Gerstner (2018) by feeding the predicted torques
as control commands. In contrast, SPORE learns from a reward
signal and can solve a variety of tasks.

3. METHODS

In this section, we give a brief overview of the reward-
based learning rule SPORE. We then discuss how SPORE
was embodied in closed-loop, along with our modifications to
increase the robustness of the learned policy.

3.1. Synaptic Plasticity With Online
Reinforcement Learning (SPORE)
Throughout our experiments we use an implementation of the
reward-based online learning rule for spiking neural networks,
named synaptic sampling, that was introduced in Kappel et al.
(2018). The learning rule employs synaptic updates that are
modulated by a global reward signal to maximize the expected
reward. More precisely, the learning rule does not converge to
a local maximum θ∗ of the synaptic parameter vector θ , but
it continuously samples different solutions θ ∼ p∗(θ) from a
target distribution that peaks at parameter vectors that likely
yield high reward. A temperature parameter T allows to make
the distribution p∗(θ) flatter (high exploration) or more peaked
(high exploitation).

SPORE (Kappel et al., 2017) is an implementation of the
reward-based synaptic sampling rule (Kappel et al., 2018), that
uses the NEST neural simulator (Gewaltig and Diesmann, 2007).
SPORE is optimized for closed-loop applications to form an
online policy-gradient approach.We briefly review here the main
features of the synaptic sampling algorithm.

We consider the goal of reinforcement learning to maximize
the expected future discounted reward V(θ) given by

V(θ) =

〈 ∫

∞

0
e−

τ
τe r(τ ) dτ

〉

p(r|θ)

, (1)

where r(τ ) denotes the reward at time τ and τe is a time constant
that discounts remote rewards.We consider non-negative reward
r(τ ) ≥ 0 at any time such that V(θ) ≥ 0 for all θ . The
distribution p(r|θ) denotes the probability of observing the
sequence of reward r under a given parameter vector θ . Note that
computing this expectation involves averaging over a number of
experimental trials and network responses.

As proposed in Kappel et al. (2018) we replace the standard
goal of reinforcement learning tomaximize the objective function
in Equation (1) by a probabilistic framework that generates
samples from the parameter vector θ according to some target
distribution θ ∼ p∗(θ).Wewill focus on sampling from the target
distribution p∗(θ) of the form

p∗(θ) ∝ p (θ) × V(θ) , (2)

where p (θ) is a prior distribution over the network parameters
that allows us, for example, to introduce constraints on the
sparsity of the network parameters. It has been shown in Kappel
et al. (2018) that the learning goal in is achieved, if all synaptic
parameters θi obey the stochastic differential equation

dθi = β

(

∂

∂θi
log p (θ) +

∂

∂θi
logV(θ)

)

dt +

√

2βT dWi ,

(3)
where β is a scaling parameter that functions as a learning
rate, dWi are the stochastic increments and decrements of a
Wiener process, and T is the temperature parameter. ∂

∂θi
denotes

the partial derivative with respect to the synaptic parameter
θi. The stochastic process in generates samples of θ that are
with high probability close to the local optima of the target
distribution p∗(θ).
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It has been further shown in Kappel et al. (2018) that can
be implemented using a synapse model with local update rules.
The state of each synapse i consists of the dynamic variables yi(t),
ei(t), gi(t), θi(t), and wi(t). The variable yi(t) is the pre-synaptic
spike train filtered with a post-synaptic-potential kernel. ei(t) is
the eligibility trace that maintains a brief history of pre-/post
neural activity. gi(t) is a variable to estimate the reward gradient,
i.e., the gradient of the objective function in Equation (1) with
respect to the synaptic parameter θi(t). wi(t) denotes the weight
of synapse i at time t. In addition each synapse has access to the
global reward signal r(t). The variables ei(t), gi(t), and θi(t) are
updated by solving the differential equations:

dei(t)

dt
= −

1

τe
ei(t) + wi(t) yi(t) (zposti (t)− ρposti (t)) (4)

dgi(t)

dt
= −

1

τg
gi(t) + r(t) ei(t) (5)

dθi(t) = β

(

cp(µ − θi(t))+ cg gi(t)

)

dt +
√

2Tθβ Wi , (6)

where zposti (t) is a sum of Dirac delta pulses placed at the firing
times of the post-synaptic neuron,µ is the prior mean of synaptic
parameters [p (θ) in Equation 2] and ρposti (t) is the instantaneous
firing rate of the post-synaptic neuron at time t. The constants
cp and cg are tuning parameters of the algorithm that scale the
influence of the prior distribution p (θ) against the influence of
the reward-modulated term. Setting cp = 0 corresponds to a
non-informative (flat) prior. In general, the prior distribution is
modeled as a Gaussian centered around µ: p (θ) = N (µ, 1

cp
) .

We used µ = 0 in our simulations. The variance of the
reward gradient estimation (Equation 5) could be reduced by
subtracting a baseline to the reward as introduced in Williams
(1992), although this was not investigated in this paper.

Finally the synaptic weights are given by the projection

wi(t) =

{

w0 exp(θi(t)− θ0) if θi(t) > 0

0 otherwise
, (7)

which scaling and offset parameters w0 and θ0, respectively.
In SPORE the differential equations Equations (4) to (6) are

solved using the Euler method with a time step of 1 ms. The
dynamics of the post-synaptic term yi(t), the eligibility trace ei(t),
and the reward gradient gi(t) are updated at each time step. The
dynamics of θi(t) and wi(t) are updated on a coarser time grid
with step width 100 ms for the sake of simulation speed. The
synaptic weights remain constant between two updates. Synaptic
parameters are clipped at θmin and θmax. Parameter gradients gi(t)
are clipped at±1θmax. The parameters used in our evaluation are
stated in Tables 1–3.

3.2. Closed-Loop Embodiment
Implementation
Usually, synaptic learning rules are solely evaluated on open-
loop pattern classification tasks (Pfister et al., 2006; Urbanczik
and Senn, 2014; Neftci, 2017; Zenke and Ganguli, 2018). An
embodied evaluation is technically more involved and requires a

TABLE 1 | NEST parameters.

Time-step/resolution 1 ms

Synapse update interval 100 ms

(reaching) exploration noise 35 Hz

(reaching) noise to exploration exc. 750.0

(reaching) visual to exploration inh. N (−500, 50)

(reaching) exploration to motor exc. 10.0

TABLE 2 | SPORE parameters.

Visual to motor exc. N (0.8, 0.6) (clipped at 0)

Visual to motor mul. 10

Temperature (T ) 0.1

Initial learning rate (β) 1 × 10−7

Learning rate decay (λ) 8.5 × 10−5

Integration time 50 s

Max synaptic parameter (θmax ) 5.0

Min synaptic parameter (θmin) −2.0

(reaching) episode length 1 s

(lane following) episode length 2 s

TABLE 3 | ROS-MUSIC parameters.

MUSIC time-step 1 ms . . . 3 ms

DVS adapter time-step 1 ms

Decoder time constant 100 ms

closed-loop environment simulation. A core contribution of this
paper is the implementation of a framework allowing to evaluate
the validity of bio-plausibe plasticity models in closed-loop
robotics environments.We rely on this framework to evaluate the
synaptic sampling rule SPORE (Kappel et al., 2017), as depicted
in Figure 1. This framework is tailored for evaluating spiking
network learning rules in an embodiment. Visual sensory input is
sensed, encoded as spikes, processed by the network, and output
spikes are converted to motor commands. The motor commands
are executed by the agent, which modifies the environment.
This modification of the environment is sensed by the agent.
Additionally, a continuous reward signal is emitted from the
environment. SPORE tries to maximize this reward signal online
by steering the ongoing synaptic plasticity processes of the
network toward configurations which are expected to yield more
overall reward. Unlike classical reinforcement learning setup, the
spiking network is treated as a dynamical system continuously
receiving input and outputting motor commands. This allows
us to report learning progress with respect to (biological)
simulated time, unlike classical reinforcement learning which
reports learning progress in number of iterations. Similarly, we
reset the agent only when the task is completed (in the reaching
task) or when the agent goes off-track (in the lane following task).
We do not enforce finite-time episodes and neither the agent nor
SPORE are notified of the reset.

This framework relies on many open-source software
components: As neural simulator we use NEST (Gewaltig
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FIGURE 1 | Implementation of the embodied closed-loop evaluation of the reward-based learning rule SPORE. (Left) Our asynchronous framework based on

open-source software components. The spiking network is implemented with the NEST neural simulator (Gewaltig and Diesmann, 2007), which communicates spikes

with MUSIC (Ekeberg and Djurfeldt, 2008; Djurfeldt et al., 2010). The reward is streamed to all synapses in the spiking network learning with SPORE (Kappel et al.,

2017). Spikes are encoded from address events and decoded to motor commands with ROS-MUSIC tool-chain adapters (Weidel et al., 2016). Address events are

emitted by the DVS plugin (Kaiser et al., 2016) within the simulated robotic environment Gazebo (Koenig and Howard, 2004), which communicates with ROS (Quigley

et al., 2009). (Right) Encoding visual information to spikes for the lane following experiment, see section 4.1.2 for more information. Address events (red and blue

pixels on the rendered image) are downscaled and fed to visual neurons as spikes.

and Diesmann, 2007) combined with the open-source
implementation of SPORE (Kappel et al., 2018)1. The
robotic simulation is managed by Gazebo (Koenig and
Howard, 2004) and ROS (Quigley et al., 2009) and visual
perception is realized using the open-source DVS plugin for
Gazebo (Kaiser et al., 2016)2. This plugin emits polarized
address events when variations in pixel intensity cross a
threshold. The robotic simulator and the neural network
run in different processes. We rely on MUSIC (Ekeberg
and Djurfeldt, 2008; Djurfeldt et al., 2010) to communicate
and transform the spikes and we employ the ROS-MUSIC
tool-chain by Weidel et al. (2016) to bridge between the two
communication frameworks. The latter also synchronizes ROS
time with spiking network time. Most of these components
are also integrated in the Neurorobotics Platform (NRP)
Falotico et al. (2017), except for MUSIC and the ROS-
MUSIC tool-chain. Therefore, the NRP does not support
streaming a reward signal to all synapses, required in
our experiments.

As part of this work, we contributed to the Gazebo DVS
plugin by integrating it to ROS-MUSIC, and to the SPORE
module by integrating it with MUSIC. These contributions
enable researchers to design new ROS-MUSIC experiments
using event-based vision to evaluate SPORE or their own
biologically-plausible learning rules. A clear advantage of this
framework is that the robotic simulation can be substituted
for a real robot seamlessly. However, the necessary human
supervision in real robotics coupled with the many hours
needed by SPORE to learn a performing policy is currently
prohibitive. The simulation of the whole framework was
conducted on a Quad core Intel Core i7-4790K with 16GB RAM
in real-time.

1https://github.com/IGITUGraz/spore-nest-module
2https://github.com/HBPNeurorobotics/gazebo_dvs_plugin

3.3. Learning Rate Annealing
In the original work presenting SPORE (Kappel et al., 2014, 2015,
2018; Yu et al., 2016), the learning rate β and the temperature
T were kept constant throughout the learning process. Note
that in deep learning, learning rates are often regulated by the
optimization processes (Kingma and Ba, 2014). We found that
the learning rate β of SPORE plays an important role in learning
and benefit from an annealingmechanism. This regulation allows
the synaptic weights to converge to a stable configuration and
prevents the network to forget previous policy improvements.
For the lane following experiment presented in this paper, the
learning rate β is decreased over time, which also reduces the
temperature (random exploration), see Equation (3). Specifically,
we decay the learning rate β exponentially with respect to time:

dβ(t)

dt
= −λβ(t). (8)

The learning rate is updated following this equation every
10 min. Independently decaying the temperature term T was
not investigated, however we expect a minor impact on the
performance because of the high variance of the reward gradient
estimation, intrinsically leading the agent to explore.

4. EVALUATION

We evaluate our approach on two neurorobotic tasks: a reaching
task and the lane following task presented in Kaiser et al. (2016)
and Bing et al. (2018a). In the following sections, we describe
these tasks and the ability of SPORE to solve them. Additionally,
we analyze the performance and stability of the learned policies
with respect to the prior distribution p (θ) and learning rate β

(see Equation 3).

4.1. Experimental Setup
The tasks used for our evaluation are depicted in Figure 2.
In both tasks, a feed-forward all-to-all two-layers network of
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FIGURE 2 | Visualization of the setup for the two experiments. (Left) Reaching experiment. The goal of the task is to control the ball to the center of the plane. Visual

input is provided by a DVS simulation above the plane looking downward. The ball is controlled with Cartesian velocity vectors. (Right) Lane following experiment. The

goal of the task is to keep the vehicle on the right lane of the road. Visual input is provided by a DVS simulation attached to the vehicle looking forward to the road. The

vehicle is controlled with steering angles.

spiking neurons is trained with SPORE to maximize a task-
specific reward. Previous work has shown that this architecture
was sufficient for the task complexity considered (Daucé, 2009;
Kaiser et al., 2016; Bing et al., 2018a). The network is end-to-
end and maps the address events of a simulated DVS to motor
commands. The parameters used for the evaluation are presented
in Tables 1–3. In the next paragraphs, we describe the tasks
together with their decoding schemes and reward functions.

4.1.1. Reaching Task

The reaching task is a natural extension of the open-loop blind
reaching task on which SPORE was evaluated in Yu et al. (2016).
A similar visual tracking task was presented in Daucé (2009), with
a different visual input encoding. In our setup, the agent controls
a ball of 2 m radius which has to move toward the 2 m radius
center of a 20 × 20 m plane enclosed with walls. Sensory input
is provided by a simulated DVS with a resolution of 16x16 pixels
located above the center which perceives the ball and the entire
plane. There is one visual neuron corresponding to each DVS
pixel—we make no distinctions between ON and OFF events.
We additionally enhance the input space with an axis feature
neuron for each row and each column. These neurons fire for
each spikes in the respective row or column of neurons they
cover. Both 16x16 visual neurons and 2x16 axis feature neurons
are connected to all 8 motor neurons with 10 plastic SPORE
synapses, resulting in 23,040 learnable parameters. The network
controls the ball with instantaneous velocity vectors through the
Gazebo Planar Move Plugin. Velocity vectors are decoded from
output spikes with the linear decoder:

v =

[

ẋ
ẏ

]

=

[

cos(β1) cos(β2) . . . cos(βN)
sin(β1) sin(β2) . . . sin(βN)

]











a1
a2
...
aN











βk =
2kπ

N
,

(9)

with ak the activity of motor neuron k obtained by applying a
low-pass filter on the spikes with time constant τ . This decoding
scheme consists of equally distributing N motor neurons on a
circle representing their contribution to the displacement vector.

For our experiment, we set N = 8 motor neurons. We add
an additional exploration neuron to the network which excites
the motor neurons and is inhibited by the visual neurons. This
neuron prevents long periods of immobility. Indeed, when the
agent decides to stay motionless, it does not receive any sensory
input as the DVS simulation only senses change. Since the
network is feedforward, the absence of sensory input causes the
neural activity to drop, leading to more immobility.

The ball is reset to a random position on the plane if it has
reached the center. This reset is not signaled to the network—
aside from the abrupt change in visual input—and does not mark
the end of an episode. Let βerr denote the absolute value of the
angle between the straight line to the goal and the direction
taken by the ball. The agent is rewarded if the ball moves in
the direction toward the goal βerr < βlim at a sufficient velocity
v > vlim. Specifically, the reward r(t) is computed as:

r(t) = 35
√
rv(rβ + 1)5

rβ =

{

1− βerr
βlim

, if βerr < βlim

0, otherwise

rv =

{

|v|, if |v| > vlim

0, otherwise
.

(10)

This signal is smoothed with an exponential filter before being
streamed to the agent. This formulation provides a continuous
feedback to the agent, unlike delivering a discrete terminal
reward upon reaching the goal state. In our experiments, discrete
terminal rewards did not suffice for the agent to learn performing
policies in a reasonable amount of time. On the other hand, distal
rewards are supported by SPORE through eligibility traces, as
was demonstrated in Yu et al. (2016) and Kappel et al. (2018),
for open-loop tasks with clearly delimited episodes. This suggests
that additional mechanisms or hyperparameter tuning would be
required for SPORE to learn from distal rewards online.

4.1.2. Lane Following Task

The lane following task was already used to demonstrate spiking
neural controllers in Kaiser et al. (2016) and Bing et al. (2018a).
The goal of the task is to steer a vehicle to stay on the right
lane of a track. Sensory input is provided by a simulated DVS
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with a resolution of 128x32 pixels mounted on top of the
vehicle showing the track in front. There are 16x4 visual neurons
covering the pixels, each neuron responsible for a 8x8 pixel
window. Each visual neuron spikes at a rate correlated to the
amount of events in its window (see Figure 1). The vehicle starts
driving on a fixed starting point with a constant velocity on the
right lane of the track. As soon as the vehicle leaves the track, it is
reset to the starting point. As in the reaching task, this reset is not
explicitly signaled to the network and does not mark the end of a
learning episode.

The network controls the angle of the vehicle by steering it,
while its linear velocity is constant. The output layer is separated
into two neural populations. The steering commands sent to
the agent consist of the difference of activity between these two
populations. Specifically, steering commands are decoded from
output spikes as a ratio between the following linear decoders:

aL =

N/2
∑

i=1

ai,

aR =

N
∑

i=N/2

ai,

r =
aL − aR

aL + aR
.

(11)

The first N/2 neurons pull the steering on one side, while the
remaining N/2 neurons pull steering to the other side. We
set N = 8 so that there are 4 left motor neurons and 4
right motor neurons. The steering command is obtained by
discretizing the ratio r into five possible commands: hard left
(–30◦), left (–15◦), straight (0◦), right (15◦), and hard right
(30◦). The decision boundaries between these steering angles

are r = {−10,−2.5, 2.5, 10}, respectively. This discretization is
similar than the one used in Wolf et al. (2017). It yielded better
performance than directly using r (multiplied with a scaling
constant k) as a continuous-space steering command as in Kaiser
et al. (2016).

The reward signal delivered to the vehicle is equivalent to
the performance metrics used in Kaiser et al. (2016) to evaluate
the policy. As in the reaching task, the reward depends on two
terms—the angular error βerr and the distance error derr. The
angular error βerr is the absolute value of the angle between the
right lane and the vehicle. The distance error derr is the distance
between the vehicle and the center of the right lane. The reward
r(t) is computed as:

r(t) = e−0.03 β2
err × e−70 d2err . (12)

The constants are chosen so that the score is halved every 0.1m
distance error or 5◦ angular error. Note that this reward function
is comprised between [0, 1] and is less informative than the
error used in Bing et al. (2018a). In our case, the same reward
is delivered to all synapses, and a particular reward value does
not indicate whether the vehicle is on the left or on the right
of the lane. The decay of the learning rate is λ = 8.5× 10−5

(see Table 2).

4.2. Results
Our results show that SPORE is capable of learning policies
online for moderately difficult embodied tasks within some
simulated hours (see Supplementary Video). We first discuss
the results on the reaching task, where we evaluated the impact
of the prior distribution. We then present the results on the
lane following task, where the impact of the learning rate
was evaluated.

FIGURE 3 | Results for the reaching task. (Left) Comparing the effect of different prior configurations on the overall learning performance. The results were averaged

over eight trials. The performance is measured with the rate at which the target is reached (the ball moves to the center and is reset at a random position). (Right)

Development of the synaptic weights over the course of learning for two trials: no prior (cp = 0, top) and strong prior (cp = 1, bottom). In both cases, the number of

weak synaptic weights (below 0.07) increases significantly over time.
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4.2.1. Impact of Prior Distribution

For the reaching task, a flat prior cp = 0 yielded the policy with
highest performance (see Figure 3). In this case, the performance
improves rapidly within a few hours of simulated time, and the
ball reaches the center about 90 times every 250 s. Conversely,
a strong prior (cp = 1) forcing the synaptic weights close to 0
prevented performing policies to emerge. In this case, after 13h
of learning, the ball reaches the center only about 10 times on
average every 250 s, a performance comparable to the random
policy. Less constraining priors also affected the performance
of the learned policies compared to the unconstrained case, but
allowed learning to happen. With cp = 0.25, the ball reaches
the center about 60 times on average every 250 s. Additionally,

the number of retracting synapses increases over time—even
in the flat prior case—reducing the computational overhead,
important for a neuromorphic hardware implementation (Bellec
et al., 2017). Indeed, for cp = 0, the number of weak synaptic
weights (below 0.07) increased from 3,329 to 7,557 after 1h
of learning to 14,753 after 5 h of learning (out of 23,040
synapses in total). In other words, only 36% of all synapses
are active. The weight distribution for cp = 0.25 is similar
to the no-prior case cp = 0. The strong prior cp = 1
prevented strong weights to form, trading-off performance.
The same trend is observed for the lane following task, where
only 33% of all synapses are active after 4 h of learning
(see Figure 5).

FIGURE 4 | Policy development for selected points in time in a single trial. On the top (A), the performance over time for a single, well-performing trial is depicted. The

red lines indicate certain points in time, for which the policies are shown in (B–G). Each policy plot consists of a 2d-grid representing the DVS pixels. Hereby, every

pixel contains a vector, which indicates the motion corresponding to the contribution of an event emitted by this pixel. The magnitude of the contribution (vector

strength) is indicated by the outer pixel area. The inner circle color represents the assessment of the vector direction (angular correctness).
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The analysis of a single trial with cp = 0.25 is depicted in
Figure 4. The performance does not converge and rather rise
and drop while the network is sampling configurations. On
initialization (Figure 4B), the policy employs weak actions with
random directions.

After over 4.750 s of learning (Figure 4C), the first local
maximum is reached. Vector directions have largely turned
toward the grid center (see inner pixel colors). Additionally, the
overall magnitude of the weights has largely increased, as could
be expected from the weight histogram in Figure 3. In particular,
patterns of single rows and columns emerge, due to the 2x16 axis
feature neurons described in section 4.1.1. One drawback of the
axis feature neurons can be seen in the center column of pixel.
The axis feature neuron responsible for this column learned to
push the ball down, since the ball mostly visited the upper part of
the grid. However, at the center, the correct direction to push the
ball toward the center is flipped.

At 7.500 s (Figure 4D), the performance has further increased.
The policy, as shown in the second peak has grown even
stronger for many pixels which also point in the right direction.
The pixels pointing in the wrong direction mostly have a low
vector strength.

After 9.250 s (Figure 4E), the performance drops to half its
previous performance. As we can see from the policy, the weights
grew even stronger. Some strong pixels vectors pointing toward
each other have emerged, which can lead to the ball constantly
moving up and down, without receiving any reward.

After this valley, the performance rises slowly again and at
20 000 s of simulation time (Figure 4F) the policy has reached
the maximum performance of this trial. Around the whole grid,
strong motion vectors push the ball toward the center, and the
ball reaches the center around 140 times every 250 s.

Just before the end of the trial, the performance drops again
(Figure 4G). Most vectors still point toward the right direction,
however, the overall strength has largely decreased.

4.2.2. Impact of Learning Rate

For the lane following experiment, we show that the learning
rate β plays an important role for retaining policy improvements.

Specifically, when the learning rate β remains constant over the
course of learning, the policy does not improve compared to
random (see Figure 5). In the random case, the vehicle remains
about 10 s on the right lane until triggering a reset. After
about 3 h of learning, the learning rate β decreased to 40%
of its initial value and the policy starts to improve. After 5 h
of learning, the learning rate β approaches 20% of its initial
value and the performance improvements are retained. Indeed,
while the weights are not frozen, the amplitude of subsequent
synaptic updates are drastically reduced. In this case, the policy
is significantly better than random and the vehicle remains on
the right lane about 60 s on average.

5. CONCLUSION

The endeavor to understand the brain spans over multiple
research fields. Collaborations allowing synaptic learning rules
derived by theoretical neuroscientists to be evaluated in closed-
loop embodiment are an important milestone of this endeavor.
In this paper, we successfully implemented a framework allowing
this evaluation by relying on open-source software components
for spiking network simulation (Gewaltig and Diesmann, 2007;
Kappel et al., 2017), synchronization and communication
(Ekeberg and Djurfeldt, 2008; Quigley et al., 2009; Djurfeldt et al.,
2010; Weidel et al., 2016), and robotic simulation (Koenig and
Howard, 2004; Kaiser et al., 2016). The resulting framework
is capable of learning online the control of simulated and
real robots with a spiking network in a modular fashion.
This framework is used to evaluate the reward-learning rule
SPORE (Kappel et al., 2014, 2015, 2018; Yu et al., 2016) on
two closed-loop visuomotor tasks. Overall, we have shown that
SPORE was capable of learning shallow feedforward policies
online for moderately difficult embodied tasks within some
simulated hours. This evaluation allowed us to characterize
the influence of the prior distribution on the learned policy.
Specifically, constraining priors deteriorate the performance of
the learned policy but prevent strong synaptic weights to emerge
(see Figure 3). Additionally, for the lane following experiment,
we have shown how learning rate regulation enabled policy

FIGURE 5 | Results for the lane following task with a medium prior (cp = 0.25). (Left) Comparing the effect of annealing on the overall learning performance. The

results were averaged over six trials. Without annealing, performance improvements are not retained and the network does not learn to perform the task. With

annealing, the learning rate β decreases over time and performance improvements are retained. (Right) Development of the synaptic weights over the course of

learning for a medium prior of cp = 0.25 with annealing. The number of weak synaptic weights (below 0.07) increases from 41 to 231 after 1h of learning to 342 after

4 h of learning (out of 512 synapses in total).
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improvements to be retained. Inspired by simulated annealing,
we presented a simple method decreasing the learning rate
over time. This method does not model a particular biological
mechanism, but seems to work better in practice. On the other
hand, novelty is known to modulate plasticity through a number
of mechanisms (Hamid et al., 2016; Rangel-Gomez and Meeter,
2016). Therefore, a decrease in learning rate after familiarization
with the task is reasonable.

On a functional scale, deep learning methods still outperform
biologically plausible learning rules such as SPORE. For future
work, the performance gap between SPORE and deep learning
methods should be tackled by taking inspiration from deep
learning methods. Specifically, the online learning method
inherent to SPORE is impacted by the high variance of the
policy evaluation. This problem was alleviated in policy-gradient
methods by introducing a critic trained to estimate the expected
return of a given state. This expected return is used as a baseline
which reduces the variance of the policy evaluation. Decreasing
the variance could also be achieved by considering an action-
space noise as in Daucé (2009) instead of a parameter-space noise
implemented by the Wiener process in . Lastly, an automatic
mechanism to regulate the learning rate β is beneficial for more
complex task. Such a mechanism could be inspired by trust-
region methods (Schulman et al., 2015), which constrains weight
updates to alter the policy little by little. These improvements
should increase SPORE performance so that more complex
tasks such as multi-joint effector control and discrete terminal
rewards—supported by design by the proposed framework—
could be considered.
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Neurally inspired robotics already has a long history that includes reactive systems

emulating reflexes, neural oscillators to generate movement patterns, and neural

networks as trainable filters for high-dimensional sensory information. Neural inspiration

has been less successful at the level of cognition. Decision-making, planning, building

and using memories, for instance, are more often addressed in terms of computational

algorithms than through neural process models. To move neural process models beyond

reactive behavior toward cognition, the capacity to autonomously generate sequences

of processing steps is critical. We review a potential solution to this problem that is

based on strongly recurrent neural networks described as neural dynamic systems.

Their stable states perform elementary motor or cognitive functions while coupled to

sensory inputs. The state of the neural dynamics transitions to a new motor or cognitive

function when a previously stable neural state becomes unstable. Only when a neural

robotic system is capable of acting autonomously does it become a useful to a human

user. We demonstrate how a neural dynamic architecture that supports autonomous

sequence generation can engage in such interaction. A human user presents colored

objects to the robot in a particular order, thus defining a serial order of color concepts.

The user then exposes the system to a visual scene that contains the colored objects

in a new spatial arrangement. The robot autonomously builds a scene representation by

sequentially bringing objects into the attentional foreground. Scene memory updates if

the scene changes. The robot performs visual search and then reaches for the objects

in the instructed serial order. In doing so, the robot generalizes across time and space, is

capable of waiting when an element is missing, and updates its action plans online when

the scene changes. The entire flow of behavior emerges from a time-continuous neural

dynamics without any controlling or supervisory algorithm.

Keywords: neural dynamic modeling, autonomous robot, sequence generation, scene perception, reaching

movement
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1. INTRODUCTION

Neurally inspired robotics already has a long history.
To position our work in this history and review our
conceptual commitments, we discuss three strands of neurallly
inspired robotics.

1.1. Reactive Behaviors
One strand goes back to Grey’s electronic turtle (Grey, 1950)
and Braitenberg’s thought experiments on vehicles (Braitenberg,
1984). This line of work reached maturity in behavior-based
robotics (Brooks, 1991; Mataric, 1998) in which flexibility
emerges from the coordination of elementary behaviors, each
establishing a direct link from sensory inputs to actuators,
in the manner of reflex loops. This is particularly suited to
conceptual “vehicles,” robotic systems in which the sensors are
mounted on the moving actuator. This enables closed loop
situations that greatly reduce the demands on representation
and abstraction. For instance, a visual sensor mounted in a
robot hand makes it possible to achieve reaching by visual
servoing without an explicit representation of objects in the
world (Ruf and Horaud, 1999).

By organizing closed action-perception loops in architectures,
most famously the subsumption architecture (Brooks, 1986),
this form of reactive robotics may generate behaviors of a
certain complexity (Proetzsch et al., 2010). The behavior is
generated autonomously in the sense that sensory information
from a structured environment may trigger the activation of
elementary behaviors, which may lead to chains of activation and
deactivation events through the architecture, inducing sequences
of behavioral decisions, without the need for an explicit internal
plan, schedule, or program. The organization of such behaviors is
implicitly encoded in the architecture itself.

Avoiding representation and abstraction is a feature of the
approach (Brooks, 1990), but also points to a limitation of this
line of neurally inspired robotics: Behavior-based robots are not
very good at cognition. Minimally, cognition is engaged when
the link between sensing and acting becomes less direct. Building
and exploiting memory is an example (Engels and Schöner,
1995). So when an action is based on sensory information that
is no longer directly available on the sensory surface at the time
the action unfolds, relevant information must be represented in
memory. Memories are useful only if they are represented in a
form in which they remain invariant under changes the system
experiences between the acquisition of the memory and its use.
For instance, the memory representation of a movement target
for a vehicle needs to be invariant under rotation of the vehicle
(Bicho et al., 2000). A more demanding form of cognition is
the capacity to perceive sequences of events and store them in a
memory for serial order so that a sequence with a matching serial
order can then be acted out (such as hearing a phone number and
then dialing it). Again, the information needs to abstract from the
sensor data to be useful for the required actions.

Our approach is historically based on behavior-
based thinking, which we extended by adding neural
memory representations and neural mechanism of decision
making (Schöner et al., 1995). Here we will study how memory

for serial order can be built and used to act sequentially in
new environments.

1.2. Neuronal Oscillators and Pattern
Generators
A second strand of neurally inspired robotics is based on the
idea that neural oscillators may generate rhythmic movement
patterns. That idea has been used to generate legged locomotion
in biologically inspired robots (Holmes et al., 2006; Ijspeert,
2008). Such neural oscillator ideas can be integrated with
the dynamics of limbs and muscles and their interaction
with the ground, enabling stable locmotion patterns (Full and
Koditschek, 1999; Ghigliazza et al., 2003). Neural oscillators
are one important class of neural networks in which recurrent
connections are strong enough to induce endogenous patterns
of neural activation that are not mere transformations of input.
That class can be extended to neural timers that generate complex
temporal patterns that may be the basis for certain motor
skills (Buonomano and Laje, 2010). Coupling neural oscillators
provides an account for coordination (Schöner and Kelso, 1988)
and adaptation enables the modulation of rhythmic movement
patterns (Aoi et al., 2017).

Typically, however, these kinds of models do not address
how movement may be directed at targets in the world, such
as when reaching for an object or intercepting a ball. A
related class of neural models going back, perhaps, to Bullock
and Grossberg (1988), generates time courses by integrating
neural activity toward an end-point that may ultimately be
determined by perceptual processes. This is the basis of the
notion of dynamic movement primitives (Schaal et al., 2003),
which is still broadly neurally inspired although it is typically
implemented in a mathematical form that does not explicitly
reference neural processing principles (see Ijspeert et al., 2013
for an excellent review). The dynamical systems framework for
reaching toward objects can address how such movement is
directed at objects in the world (Hersch and Billard, 2008).
Typically, however, the representation of the object’s pose and
kinematic state remains clearly outside the neural metaphor
(while achieving superhuman performance in skills such as
catching, Kim et al., 2014).

Our approach builds on this tradition of using neural
oscillators for timing. We generate individual goal-directed
reaches from an active transient solution of a recurrent neural
dynamics. We extend this tradition by providing a neural
dynamic architecture that obtains from the visual array a neural
representation of the targets of a reaching movement. This
requires that an object’s visual coordinates are transformed into
coordinates anchored in the initial position of the hand (Schöner
et al., 2019). We show how such a neural representation of
movement targets may be linked to the visual array, enabling
online updating of movement generation when the scene
changes (see Knips et al., 2017 for an earlier version of such
online updating).

1.3. Neural Networks for Perception
A third strand of neural inspiration for embodied cognitive
systems is, of course, the use of neural networks to extract

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2019 | Volume 13 | Article 95176

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tekülve et al. Autonomous Sequence Generation

relevant information about the environment from sensory (e.g.,
image, sound) data (Kriegeskorte, 2015). This strand is currently
undergoing explosive growth as the scaling of deep neural
networks in size and learning examples enables superhuman
performance in certain classification and detection tasks (Lecun
et al., 2015; Schmidhuber, 2015). These neural networks
essentially serve as intelligent filters of sensory information, a
critical function when robot cognition is to be linked to the world.

While these networks by themselves do not perform cognitive
functions, they may provide outputs that enable cognition. For
instance, networks may deliver labels for a relational description
of a visual scene (e.g., Kelleher and Dobnik, 2017). In most
cases, the actual reasoning about spatial or other relations is,
however, performed outside a neural processes model, based
on algorithms and probabilistic inference. First steps are being
made, however, toward such models generating the sequential
attentional selection onwhich human visual cognition is centrally
based (Ba et al., 2015).

Our approach is based on the classical notion of feature
extraction along the visual pathway, the simplest step in these
kinds of systems (e.g., Serre et al., 2007). As we do not address
object recognition, we limit ourselves to very simple features here
(see Lomp et al., 2017 for how the approach may link to object
recognition). Instead, we demonstrate how a neural dynamic
system may autonomously generate the sequence of attentional
selections to build a visual scene memory that is intermittently
coupled to the visual array, and thus is sensitive to change and
capable of updating in response to such change.

1.4. Goals
In this paper, we integrate these three strands of neurally
inspired robotics which requires us to extend each of them.
Our emphasis is on how the integrated system—essentially a
network of neural dynamic populations—is continuously or
intermittently coupled to sensory information, while at the same
time being capable of autonomously generating sequences of
decisions, actions, and events. Neural activation is thus generated
endogenously is this system, while retaining the coupling to the
sensory surfaces.

The system addressed four key elements of grounded
cognition: (1) It autonomously builds scene memory, a neural
map of locations and feature values bound to those locations.
Different objects are sequentially brought into the attentional
foreground, in each case creating an entry into scene memory,
which can be updated if change is detected. (2) The system
learns the serial order of events that occur in its visual array.
Each time an attended object changes, the system registers the
transition and learns the new feature value as associated with
its serial position. This provides a possible interface through
which a human user can interact with the system. (3) The system
generates a sequence of actions oriented at objects in the world in
the learned serial order. At any point in the sequence, this entails
finding an object in the visual surrounding that matches the
feature values currently sought, generating the action, and then
transitioning to the next sub-task within the learned sequence.
This exemplifies the capacity of the system to autonomously
generate organized behavior that is not merely reactive but
reflective of a learned plan. (4) Each action consists of a pointing

gesture oriented at an attended object. The action is initiated once
the object has been brought into the attentional foreground, but
may be updated any time if object shifts to a new location. This
is a minimal instantiation of object-oriented action that any form
of cognitive robotics must be capable of.

Key to this demonstration is the notion of neural dynamics,
in which strongly recurrent neural networks, approximated
as spatially and temporally continuous neural fields, evolve
primarily under the influence of their internal interaction that
sets up attractor states. Inputs induce instabilities that bring
about switches of neural states from which sequences of cognitive
or motor states emerge. Such neural dynamics are capable of
making decisions, building working memories, and organizing
sequential transitions (Schöner et al., 2016). Because their neural
states are stable, neural fields retain their functional properties
when they are coupled to other fields. Fields may thus serve as
building blocks of networks of fields, which could be thought
of as neural dynamic architectures. These networks may be
coupled to sensory inputs, while evolving under their own,
endogenous dynamics, resolving the tension between reactive
and cognitive systems.

To make the ideas accessible, we restrict the demonstration
to a very simple scenario. A robot observes a table top on
which a human user places and removes colored objects in a
particular serial order. The user then builds a new visual scene,
that includes the objects with colors contained in the taught
series. The robot points at these objects in the order defined
by the human teacher. When an object of the next required
color is not available, the system waits until such a color is
presented. When the visual array changes, the robot updates its
reaching plans. This may happen online if the change occurs
while the robot is already attempting to point at the object. All
action and observation run autonomously in neural dynamics.
There is no control algorithm outside the neural dynamics. See
Supplementary Videos 1 and 2 for exemplary demonstrations
of teaching and executing the series.

2. DYNAMIC FIELD THEORY

We use Dynamic Field Theory (DFT) (Schöner et al., 2016) as a
conceptual framework. DFT provides neural process accounts for
elementary cognitive functions such as decisionmaking, memory
creation, or the generation of sequences. The core elements
of DFT are neural populations which may generate activation
patterns that are not primarily dictated by input. This is based
on structured and strong recurrent connectivity within the
population. Excitatory recurrent connectivity enables detection
decisions in which neural activation is induced by input, but
then stabilized against decay even as input may weaken again.
The initial detection occurs through an instability, in which
the resting state becomes unstable. The detection is reversed
when the activated state becomes unstable, typically at a lower
level of input than needed for initial detection. If the excitatory
recurrency is sufficiently strong, the reverse detection instability
does not happen, leading to activation that is sustained even
when the inducing input is removed entirely. This is the basis for
working memory.
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Inhibitory recurrent connectivity enables selection decisions,
in which one sub-population becomes activated even if multiple
sub-populations receive supra-threshold input. Such selection
decisions are also stabilized so that the selection of a sub-
population may persist even as inputs to other sub-populations
become stronger (up to a limit, when the selection instability is
encountered). So even though neural populations may be driven
by input, they may realize non-unique mappings from input to
activation states based on their activation history.

When different populations are coupled, they may induce
these kinds of instabilities in each other. This is the basis
for generating sequences of neural activation states. When
the coupling occurs between excitatory and inhibitory sub-
populations, the instabilities may trigger active transients, well-
defined time courses of neural activation from temporally
unstructured input. Neural oscillations are another possible
dynamic regime.

Through their connectivity to sensory or motor surfaces,
neural populations may effectively represent continuous feature
dimensions, x. This leads to the notion of neural dynamic
fields, u(x). We employ a particular mathematical formalization
of the dynamics of such neural populations that goes back to
Amari (1977),

τ u̇(x) = −u(x)+ h+ s+

∫

σ (u(x′))ω(x− x
′)dx′, (1)

where τ describes the field’s relaxation time, h < 0 the
field’s resting level, s the sum of input stimuli, and ω the
field’s interaction kernel that defines the pattern of recurrent
connectivity within the field. Only sufficiently activated field
locations contribute to interaction or project onto other fields, as
formalized by the sigmoidal non-linearity, σ (u). Thus, one may
think of the activation variable, u, as something like a population-
level membrane potential that reflects how close neurons in the
population are to the firing threshold [other formalizations use
the firing rate as a population variable, see Wilson and Cowan
(1973)]. In the meantime, there is a large literature on the
mathematics of such fields (Coombes et al., 2014).

The kernel, ω, combines short-range excitatory coupling with
long-range inhibitory coupling. This leads to localized peaks of

activation as the activation states that emerge from the instability
of the resting state when localized input reaches a threshold
(Figure 1). These peaks are the units of representation in DFT
that specify through their locations particular values along the
represented dimension.

Fields may represent low-dimensional metric spaces. When
their dimensionality grows, the binding problem arises and
can be solved, see Chapter 5 of Schöner et al. (2016). A limit
case are zero-dimensional fields which can be thought of as
populations of neurons that represent categorical states. These
may arise from larger populations through inhomogoneities in
the input or output connectivity. We sometimes call such zero-
dimensional fields neural dynamic nodes and model them by
single activation variables, u(t), subject to a neural dynamics
analogous to Equation (1).

When fields of different dimensionality are coupled, new
functions emerge (Zibner et al., 2011, see also Chapter 9 of
Schöner et al., 2016). In projecting from a higher to a lower
dimensional field, certain dimensions may be marginalized,
which effectively probes for the existence of a peak anywhere
along the marginalized dimensions. In projecting from a lower
to a higher dimensional field, a boost may be given to a
subspace, enabling locations within the subspace to reach the
detection instability. This is the basis for visual search. The
control of peak formation in a field through homogeneous
boosting of its activation level is a mechanism of control
that may effectively gate particular projections by enabling
or disabling peak formation. This mechanism is also central
to sequence generation through the condition of satisfaction
(CoS) (Sandamirskaya and Schöner, 2010) that will play a
central role in our sequence representation model. The neural
representation of the CoS is a neural field or a neural
node that is pre-activated by the currently active behavior.
That behavior predicts the sensory or internal state that will
indicate its successful completion. When a signal matching
that prediction is received from sensory inputs or from
other neural processes, the CoS goes through a detection
instability. It then inhibits the current behavior in a reverse
detection instability and enables the activation of a new
behavior (Sandamirskaya and Schöner, 2010).

FIGURE 1 | A dynamic neural field spanning a metric dimension, x, represents a specific value, x0, along that dimension through a supra-threshold activation peak

that is stabilized by local excitatory and global inhibitory interactions.
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3. MODEL

The neural dynamic architecture described here is a network
of neural fields that are coupled to a camera and a robotic
arm. These links enable online connection to a changing visual
scene and online control of the arm. Three sub-networks
(Figure 2) autonomously organize sequences of activation states
to build visual representations, learn or perform serially ordered
sequences, and generate object-oriented movements.

The perceptual sub-network, connected to the camera, creates

a working memory representation of the visual scene through

autonomous shifts of attention. A motor sub-network drives
an oscillator generating velocity commands for the robotic
arm. The cognitive sub-network represents ordinal positions
in a sequence and may autonomously shift from one ordinal
position to the next. The ordinal system may be used in
two different manners, sequence learning and sequence recall,

controlled by the activation of one of two different task
nodes. These task nodes activate behaviors by boosting fields’
resting levels and enabling fields to generate task relevant
attractor states.

The following sections describe for each sub-network the
states that drive behavior and the mechanism for how the system
switches between those states. The last section addresses the
integration of all three sub-networks for the two tasks Learn
and Recall.

3.1. Perception: Scene Representation
The scene representation sub-network is based on Grieben et al.
(2018) and creates three-dimensional (2D space and 1D color)
working memory representations of objects in the visual scene
captured by the camera. Each entry into the representation
is created sequentially as the sub-network autonomously shifts
attention across different objects in the scene.

FIGURE 2 | Sketch of the dynamic field network with its three sub-networks.

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2019 | Volume 13 | Article 95179

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tekülve et al. Autonomous Sequence Generation

The network’s attention is modeled through peaks of
activation in the two-dimensional Saliency Selection field that
arise at salient locations in the scene. These locations are
represented in the Saliency field which receives input directly
from the camera. Based on their distinctive colors, the table and
the robot’s own arm are subtracted from the image in a pre-
processing step. The saturation channel of the resulting HSV-
image serves as input amplitude at each location.

Combined with a homogeneous boost of its resting level
from the Exploration intention node, activation in the Saliency
field is sufficient to create a single peak in the Saliency
Selection field. Attentional shifts occur whenever the Exploration
node deactivates and subsequently reactivates, causing a
destabilization of the present peak in the Selection field followed
by the emergence of a new peak at a new location. Previously
unattended locations are more likely to be selected because
inhibitory influence from the working memory gives them a
competitive advantage.

The activation of the Saliency Selection field, usel, is governed
by the following neural dynamics:

τ u̇sel(x, y) =− usel(x, y)+ hsel + wexpσ (uexp)

+ wsalσ (usal(x, y))− wmem

∫

σ (umem(x, y, c))dc

+

∫

σ (usel(x
′, y′))ωsel(x− x′, y− y′)dx′dy′,

(2)

where hsel describes the field’s resting level, uexp the homogeneous
boost activation from the Explore intention node, usal(x, y)
the activation of the Saliency field,

∫

σ (umem(x, y, c))dc the
activation of the Working Memory projected onto the two
spatial dimensions, x and y, and ωsel the field’s selective lateral
interaction kernel. Each input, σuin, to the field is weighted by a
specific weight, win. The same notation is used in all following
equations and the concrete parameter values can be found in
the Appendix.

The currently attended location achieves spatial feature
binding: It is forwarded to the three 3D space-color fields, Scene
Space Selection, Working Memory, and WM Space Selection,
ensuring that the color features represented in those fields
originate from the same location. The Scene Space Selection
field combines sub-threshold activation from the Space Color
Maps field, that represents color information in the scene, with
spatial sub-threshold activation from the Saliency Selection field.
Together, these inputs induce a single peak in three dimensions
that represents the attended spatial location and the color
perceived at that location.

That color is extracted and combined with spatial information
from the Saliency Selection field to add a peak in the 3D-
Working Memory field.1 The Working Memory field receives
additional input directly from the camera image that includes the
robot’s arm. That input is proportional to the saturation channel

1Spatial information is taken from the Saliency Selection field rather than directly

from the Scene Space Selection field to allow for possible coordinate transforms

between image and memory space. In the present scenario, the camera is not

moved so that there is no need for a coordinate transform.

from which the table color saturation has been subtracted.
This mask, seen, for instance, in the Working Memory row
of Figure 4, makes it possible to sustain peaks of activation
anywhere where the camera picks up visual structure. Peaks
representing objects can thus remain stable in working memory
when they become occluded by the robot’s arm, but are removed
from working memory when they disappear from the scene at
any other location.

The activation, umem(x, y, c), of the Working Memory field is
governed by the following dynamics:

τ u̇mem(x, y, c)

=− umem(x, y, c)+ hmem + wsel(x, y, c)σ (usel(x, y))

+ wnbk(x, y, c)σ (inbk(x, y))+ wssl

∫

σ (ussl(x, y, c))dxdy

+

∫

σ (umem(x
′, y′, c′))ωmem(x− x′, y− y′, c− c′)dx′dy′dc′,

(3)

where hmem describes the field’s resting level, usel(x, y) the
activation from the Saliency Selection field, inbk(x, y) the
saturation channel from the camera image,

∫

σ (ussl(x, y, c))dxdy
the activation of the Scene Space Selection field projected onto the
color dimension, c, and ωmem the field’s lateral interaction kernel.

Supra-threshold activation of the Working Memory field is
forwarded to the Memory Space Selection field, which works
analogously to the Scene Space Selection field and thus forms a
single 3D activation peak, representing color and spatial location
of the attended location in working memory.

Color information represented in the Scene and Memory
Space Selection fields is forwarded to the Color Match field.
That field forms a peak only when the input from the scene
overlaps in location and color with one of the peaks in the
memory field. A peak in the match field thus signals successful
entry of an item into the Working Memory at the currently
attended location. Supra-threshold activation in the match field
projects onto the CoS Explore node, which in turn inhibits the
Explore intention node. Deactivation of the Explore intention
node removes the resting level boost from the Saliency Selection
field inducing a reverse detection instability that propagates to
the Scene and Memory Space Selection fields, the Color Match
field and ultimately to the CoS Explore node. The newly created
peak in the Working Memory field is sustained and the Explore
intention node is released from inhibition enabling attentional
selection of a new location.

3.1.1. Offset Detector
The scene representation sub-network is capable of detecting
sudden object movement with the help of a two-layer offset
detector connected to the Saliency field. Both layers, udfa and udsl,
are two-dimensional fields over image space that are governed by
the following dynamics with timescales, τdfa < τdsl:

τdfau̇dfa(x, y) =− udfa(x, y)+ hdet − wsinσ (usal(x, y))

+ wdslσ (udsl(x, y)),

τdslu̇dsl(x, y) =− udsl(x, y)+ hdet + wsexσ (usal(x, y)),

(4)
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where hdet describes the common resting level, and σ (usal(x, y))
the thresholded activation of the Saliency field which excites
the slower layer, udsl, and inhibits the faster layer, udfa. Because
inhibitory input is stronger than excitatory input (wsin > wdsl),
static visual structure induces supra-threshold activation in the
slow layer, udsl, not in the fast layer, udsl.

Once an object is removed from the scene, the inhibitory
influence, wsin, vanishes faster than the excitatory influence from
the slow layer, udsl, leading to the formation of a peak in udfa that
represents the detection of an object that moves away from the
location of the peak.

3.2. Motor: Arm Movement
The sub-network responsible for reaching movements, based on
Schöner et al. (2019), autonomously drives an oscillator that
creates velocity commands which move a robotic arm to a given
target in two-dimensional space. A hierarchy of intention and
CoS nodes governs the behavior: The Reach intention node
activates the Oscillate intention node, which initiates an active
transient (see Figure 3). The Cos Oscillate node is activated once
the transient reaches a new steady state, while the CoS Reach
is activated when the representations of target and end-effector
position match. Thus, multiple active transients (oscillations) are
generated until the arm reaches the represented target.

Target and end-effector (EEF) are both represented as peaks
of activation in two-dimensional fields defined over image space,
the Target Position and the EEF Position DNFs, respectively.
Activation originating from working memory causes the creation
of a peak in the Target Position field. Proprioceptive information
from the current arm configuration is mapped through a forward
kinematics into end-effector space and then transformed from
rate to space code inducing a peak in a two-dimensional EEF
Position field. Target and end-effector representations are cross-
correlated with each other to create an end-effector centered
representation of the target position. This representation is input
into a two-layer field of neural oscillators, uexc and uinh. The faster
excitatory layer, uexc, generates an active transient illustrated
in Figure 3: Its input first drives up excitation, which is then
suppressed by inhibition from the slower inhibitory layer, uinh:

τexcu̇exc(x, y) =− uexc(x, y)+ hosc + wcctσ (ucct(x, y))

+ woscσ (uosc)− winhθ(uinh(x, y))

τinhu̇inh(x, y) =− uinh(x, y)+ hosc + wcctσ (ucct(x, y))

+ woscσ (uosc),

(5)

where τexc < τinh are the different relaxation times, hosc
the resting level, σ (ucct(x, y)) the end-effector-centered target
representation, σ (uosc) the homogeneous resting level boost
from the Oscillate intention node, and θ – a semi-linear
threshold function.

The thresholded activation, θ(uexc(x, y)), is transformed into a
rate coded Cartesian velocity vector, v, using a set of feed-forward
weights, wvel(x, y):

v(t) =

∫ ∫

wvel(x, y)θ(uexc(x, y, t))dxdy (6)

FIGURE 3 | An active transient in uexc generated by a two-layer oscillator in

response to an input stimulus, s. The supra-threshold activation level leads to

a bell-shaped velocity profile on read-out. This illustration is zero-dimensional

while in the model, a two-dimensional field of identical oscillators is used.

The weights, wvel(x, y), describe a linear distance function in the
end-effector centered representation of the target position. For
different movement distances, (x, y), these weights are tuned such
that the arm reaches the target position within a fixed movement
time. The velocity vector, v, is transformed into a joint velocity
vector, λ̇, using the pseudo-inverse of the arm’s Jacobian, J+,
which depends on the current joint configuration λ(t):

λ̇ = J
+(λ(t))v(t) (7)

For more details on the generated velocity profile see Schöner
et al. (2019).

While the oscillator is going, its input is not updated, because
the connection from proprioception to the EEF-Position field is
gated by the Oscillate intention node. The EEF-Position field thus
effectively represents the initial position of the hand. Termination
of the transient is detected by the CoS Oscillate node, which
receives excitatory activation from uinh and inhibitory activation
from uexc. Activation of CoS Oscillate inhibits the Oscillate
intention node, which resets the oscillator, and releases the EEF
Position Gate from inhibition so that the end-effector position
is updated. When the target representation overlaps sufficiently
with the updated EEF Position, a peak forms in the Position
Match field and activates the CoS Reach, which terminates
the reach.

3.3. Cognition: Serial Order
The serial order sub-network, based on Sandamirskaya and
Schöner (2010), allows for the autonomous storage and recall
of a sequence of activation patterns. Each activation pattern
is represented through learned inhomogeneous connections
between an ordinal node and a feature field, here the one-
dimensional Sequence Color field. Supra-threshold activation in a
particular ordinal node thus induces a peak in the Sequence Color
field that represents the color associated with that particular stage
in the sequence.

The sub-network consisting of ordinal nodes, memory nodes
and a single CoS node enforces the sequential activation of
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ordinal nodes in a fixed order:

τ ȯi =− oi + h+ woi ,oiσ (oi)− woi ,oj

∑

j 6=i

σ (oj)+ wmi−1 ,oiσ (mi−1)

− wmi ,oiσ (mi)− wCoSσ (uCoS)+ woh+σ (ulrn)

+ woh+σ (urcl)

τ ṁi =−mi + h+ wmi ,miσ (mi)+ woi ,miσ (oi)+ wmh+σ (ulrn)

+ wmh+σ (urcl).

(8)

An active ordinal node, oi, representing the ith position in the
sequence, inhibits all other ordinal nodes, oj, and activates its
own self-sustained memory node, mi. The memory node pre-
activates the next ordinal node, oi+1, through an excitatory
connection and inhibits its own ordinal node, oi, to prevent it
from becoming reactivated after completion of the stage. While
activated, an ordinal node’s self excitation, woi ,oi , is sufficient to
overcome inhibition from its memory node, wmi ,oi . An ordinal
node remains active until the CoS node, uCoS, is activated and
destabilizes all ordinal nodes, which, in turn, removes input
from the CoS node that deactivates. The self-sustained memory
nodes are unaffected, so that upon release from inhibition by the
CoS, the pre-activated ordinal node of the next element in the
sequence is activated. Recurring activation and deactivation of
the CoS node thus creates a sequence of autonomous transitions
between sequence elements in the order of ascending i. Ordinal
and memory nodes can become activated only in the presence
of an excitatory boost, wh+ , from one of the task nodes, Learn
(ulrn) or, Recall (urcl). Deactivation of an active task node leads
to deactivation of all memory and ordinal nodes, effectively
resetting the entire system.

Connection weights, woi ,ucol , between the active ordinal node,
oi, and the active region in the Sequence Color field, ucol, are
strengthened according to a dynamic version of the Hebbian
learning rule:

τ ẇoi ,ucol (c) = ησ (ulrn)σ (oi)(σ (ucol(c))− woi ,ucol (c)), (9)

where η describes the learning rate and ulrn the activation of the
Learn task node that gates the learning process.

Before learning, peaks in the Sequence Color field arise when
a color attended in the Working Memory Selection field is input
through the gate field, Learn color, ulcol:

τ u̇col(c) =− ucol(c)+ h+

∫

σ (ucol(c
′))ωcol(c− c′)dc′

+wlcolσ (ulcol(c))+
∑

i

woi,ucol (c)σ (oi),
(10)

After learning, peaks in the Sequence color field may arise from
previously learned connections, woi ,ucol (c), of an ordinal node,
oi. The selective kernel, ωcol, ensures that only a single color is
represented at all times.

3.4. Task Integration: Learn and Recall
The full network may operate in two different regimes: In the
learning regime, a sequence of colors is presented to the system

and learned. In the recall regime, a learned sequence of colors
is reproduced by pointing at colored objects in a specific order.
Each regime is evoked by the activation of its corresponding task
node, Learn and Recall, which alter the resting level of certain
sub-sets of fields.

Both task nodes boost the resting level of all ordinal and
memory nodes to allow supra-threshold activation. When task
nodes are deactivated, the removal of the corresponding boost
causes activation of all self-sustained nodes to decay, effectively
resetting the system. This happens, for instance, at the end
of the sequence due to activation of the sequence’s condition
of satisfaction.

The Learn node acts as a gate between the Scene
Representation and the Serial Order sub-networks. By boosting
the Learn Color field, the Learn node enables that field to form
supra-threshold peaks. At which color such a peak is erected
is controlled by input from the Memory Space Selection field
that represents the color at the currently attended location.
That color is then imprinted in the connections to the currently
active ordinal node through the learning dynamics (Equation
9). The Learn node pre-activates the Offset Detected node, which
connects to the Sequence CoS. Thus, whenever a single object
is presented in the learning regime, its color is associated with
the currently active ordinal node and its removal from the scene
causes a transition in which the active ordinal node is replaced
by the next ordinal node.

The Recall node is a gate between the sequence generation
and the arm movement sub-networks. It boosts the Recall
Color gating field so that the color represented in the Sequence
Color field is passed on to the three-dimensional Memory Color
Selection field. If an object in working memory overlaps with
that color, a peak forms in the Memory Color Selection field. The
peak’s spatial position is forwarded to the Target Position field
of the Arm Movement sub-network, which initiates a reaching
movement. Once a reach has been successfully performed, the
Reach CoS is activated, which triggers the Sequence CoS, causing
the transition to the next ordinal node. In the recall regime,
the arm will thus move autonomously to colored objects in the
learned order, as long as appropriately colored objects are visible
in the scene.

4. RESULTS

In this section we show how activation within the network
unfolds in time during the learn and recall tasks. We
visualize relevant activation fields to illustrate how the network’s
autonomy enables it to cope with variable timing during learning
and with changes of the scene during recall.

The network is effectively a large dynamical system.We solved
it numerically on digital computers, and that numerical solution
was the only form in which algorithms intervened in the system.
The numerical implementation of the model made use of CEDAR

(Lomp et al., 2016), an open source framework in which DFT
models can be graphically assembled and interactively tuned.
Cedar can be used to simulate robotic behavior, which was done
for the results illustrated in this paper. The visual scene, camera,
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and robot armwere simulated usingWEBOTS (Michel, 2004) that
can be coupled into Cedar. The same Cedar code can also link to
real sensors and robots. We did this, driving the model from a
real camera and manipulating the visual scene by placing colored
objects on a white table top. We also controlled a lightweight
KUKA arm from the same Cedar code to verify its capacity to act
out the planned movements. These informal robotic experiments
are not further documented in this paper.

4.1. Scene Representation: Autonomous
Build-up of Visual Working Memory
The build-up of the scene workingmemory is an ongoing process
that provides visual information to the network irrespective of
the currently active task node. In Figure 4 we show activation
snapshots of different points in time during working memory
build-up in an exemplary scene containing three objects and the
arm’s end-effector.

FIGURE 4 | Time course of building a scene memory.
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At point t0, the Exploration intention node provides a
homogeneous boost to the Saliency Selection field leading to an
activation peak at the location of the purple object. This causes
the emergence of a three-dimensional peak in the Scene Selection
field, of which the color dimension is shown in the third row. The
WorkingMemory field contains no supra-threshold activation yet
but, at the locations of the non-background objects, the resting
level is increased across the whole color dimension.

Once the peak in the Scene Selection field has fully emerged
at t1, its color component is forwarded as a slice toward the
Working Memory, where it overlaps with the tube originating
from the Saliency Selection field and forms a three-dimensional
peak. Subsequently a peak also forms in the Memory Spatial
Selection field, which shares the same color as the peak in the
Scene Space Selection causing an overlap in the Color Match field.

The peak forming in the Color Match field activates the CoS
Explore node, which inhibits the Explore intention node. Thus
the resting level boost is removed from the Saliency Selection
field, which subsequently falls down to sub-threshold activation

at point t2. Only the self-sustained peak in the Working Memory
field remains.

The absence of a peak in the Color Match field causes the CoS
node to fall below threshold again, bringing the sub-network to
its initial state. The following activation of the Explore intention
node, depicted from t3 until t5, follows the same temporal
activation pattern as the previous one with different feature
values for spatial location and color. The spatial location in the
Saliency Selection field differs due to the inhibitory influence
from theWorking Memory field. See Supplementary Video 3 for
a different example of autonomous build-up of visual working
memory in continuous time.

4.2. Learning Demonstration
A particular color sequence is taught to the network in its
learning regime by presenting objects of a certain color one after
another. In Figure 5 activation snapshots of some points in time
during an exemplary learning episode are shown. The top row
depicts the temporal evolution of activation of the ordinal nodes

FIGURE 5 | Time course of learning a three element sequence with varying presentation time.
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and the Sequence CoS node, while each snapshot column shows
the camera image, the activation of the Saliency field, activation
of the fast layer of the Offset Detector, activation of the Sequence
Color field, and the weight values, woi ,ucol , for each ordinal node
at one particular point in time.

In the initial phase of the learning at point t0 no objects are in
the scene, but the Learning task node has been activated leading
to supra-threshold activation in the first ordinal node. All other
ordinal nodes are below threshold activity with a slight advantage
for o2, which already receives an excitatory bias through the
active memory node,m1.

At t1, a green object is inserted into the scene, which forms a
peak in the Saliency field leading to a localized inhibition in the
fastOffSet Detector field. It is also committed to working memory
and leads to the emergence of a peak in the Sequence Color
field encoding the green color. Due to present supra-threshold
activation in the Sequence Color field and the ordinal node o1, the
Hebbian learning rule strengthens weights between the ordinal
node and the green color feature values.

The object is removed from the scene at t2, which destabilizes
the peak in the Saliency field removing the inhibition from the
fast layer of the Offset Detector. The slow layer (not depicted) still
carries supra-threshold activation, exciting the fast layer leading
to the formation of a peak, which will subsequently activate the
Sequence CoS node inhibiting all ordinal nodes. This deactivates
o1 and causes the color peak in the Sequence Color field to
vanish as it is no longer supported by either learned connections
nor color input from the scene. The missing input in the scene
will also ultimately lead to a decay of activation in the slow
Offset Detector layer and subsequently cause a reverse-detection
instability in the fast layer and the Sequence CoS node.

The deactivation of the Sequence CoS node is followed by an
activation of the next ordinal node o2 at t3. Between t2 and t3
a blue object has been added to the scene, whose color is then
connected to the freshly activated ordinal node via the Hebbian
learning rule. Removal of the object at t4 triggers the Offset
Detector and the CoS node enabling the activation of the next
ordinal node o3 at t5. The presented purple object is kept in
the scene for a longer time span than the green or blue one,
which does not influence the learning as the transition to the
next sequence element at t6 is based on the removal event rather
than timing.

4.3. Recall Demonstration
We demonstrate successful sequence recall through a pointing
task, where the network moves the arm to an object in the
scene matching the color of the current sequence element.
Only a successful reach toward that object allows a progress
to the next sequence element. An exemplary recall of three
sequence elements is depicted in Figure 6, which demonstrates
the temporal evolution of the activation of ordinal nodes as
well as the field activity of the Sequence Color, the Target
Position, and the Position Match field at discrete points during
the sequence recall.

At point t0, the Recall task node has been activated, which
lead to the activation of the first ordinal node and the emergence
of a peak in the Sequence Color field at the green location

due to the learned connections, wo1 ,ucol . The color information
converges with the content of the Working Memory field in the
Memory Color Selection field to form a three dimensional peak
specifying position and color. Positional information is projected
to the Target Position field of the Arm Movement sub-network,
where it is forwarded to the movement generating oscillator
and the Position Match field, which compares the current end
effector position (center/left) with the current target position
(bottom/right).

Due to a successful arm movement both positions match at
point t1, which is represented through a peak in the Position
Match field that activates the Sequence CoS deactivating the
current ordinal node. The CoS node itself falls below threshold
activity as soon as the peak in the Position Match field destabilizes
through a missing target representation that vanished through
insufficient color input from the Sequence Color field.

The missing inhibition from the CoS causes an activation of
the next ordinal node o2, which is associated with blue color.
At t2 however the blue peak has emerged in the Sequence Color
field, but the target position has not yet been extracted from
working memory. The column of point t3 depicts the end of
the movement, where the overlap of end effector and target
cause a peak that triggers the Sequence CoS. In this particular
configuration thematch representation is only possible due to the
self-sustaining working memory representation that shields the
blue object representation from the occlusion through the arm.

The movement toward the purple object depicted from
t4 until t6 follows an analog activation pattern in which
the ordinal node causes the formation of a purple peak in
the Sequence Color field, which causes an extraction of the
target position, leading to movement that terminates due
to an represented match of positions. The movement times
of all three movements are roughly the same despite their
differences in distance, which results from the movement
oscillator that enforces the same movement timing for all
movements. See Supplementary Video 4 for another sequence
recall demonstration showing the activation development of
selected fields in continuous time.

4.3.1. Recall With a Moving Object
The autonomy of all three parts of the field network makes the
execution of the recall task robust against unforeseen changes in
the scene. We demonstrate this in an exemplary recall episode,
where one of the objects in the scene is moved while its color
corresponds to the active sequence element. The episode is
depicted in Figure 7, which shows activation snapshots analog to
Figure 6. Additionally activation of the Intention and CoS node
driving the two-layer oscillator are shown as well as snapshots of
theMemory Color Selection field.

In this episode, build-up of the scene memory starts
simultaneously with activation of the recall task, which causes
a delay between the activation of the first ordinal node and the
first movement as the green object, which is the first sequence
element, is the second object committed to memory. This can
be observed at t0 in the Memory Color Selection field, where the
green object forms a peak as it overlaps with the green color slice
specified by the sequence color, while the purple object is present
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FIGURE 6 | Time course of recalling a three element sequence through pointing at colored objects.

as a sub-threshold activation blob, and the blue object is entirely
absent. As the first movement is finished at t1 all three objects are
present in working memory as sub-threshold activation blobs.

Thus at t2, the second movement starts closely after the
activation of the second ordinal node with the blue object as
the target on the right side of the camera image. While the arm
is moving the object is moved to the center/top position of the
image, which results in a non-match between arm and target at
the end of the movement, which can be seen at t3. Here working
memory has updated the position of the blue object, which leads
to an extraction of a different target position that does not match
with the current position of the end effector. Only at t4 after a
second movement was generated, the blue object and the end
effector match, which concludes the recall of the second element
of the sequence.

The last movement toward the purple object is then conducted
without any further perturbations and terminates after a single
movement at t6.

4.3.2. Recall With a Missing Object
In this second recall episode demonstrating the robustness of the
field network we start the recall in a scene that lacks the second
object of the sequence. In Figure 8, activation snapshots of the

same sub-set of fields used in the previous perturbation episode
are shown.

At points t0 and t1, the network’s activation develops analog
to the previous two recall examples with a color slice used to
extract the target position and the position match to determine
the successful termination of the movement. However as the
second ordinal node activates at t2 no blue object is present in
the scene, thus no sub-threshold activation blob overlaps with
the blue color slice in the Memory Color Selection field and no
peak forms.

At point t3, the blue object is added to the scene, which
is committed to memory and afterwards extracted as a valid
target position. The movement than concludes at t4 with the
arm occluding the purple object, which is kept in working
memory due to the self-sustaining kernel. The working memory
information is then used in t5, when the third ordinal node
specifies purple as the next sequence color. Thus the sequence
ends at t6 with no further perturbations.

5. DISCUSSION

We have presented a network of dynamic neural fields that
integrates the complete pathway from the sensor surface (vision)
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FIGURE 7 | Online updating of the movement during sequence recall.

to representations of higher cognition (serial order) and to the
motor system (pointing). The network architecture enables a
robotic agent to autonomously learn a sequence of colors from
demonstration and then to act according to the defined serial
order on a scene. Both during learning and while acting out the
sequence, the transitions between elements of the sequence are
detected without the need for an external control signal (The
switch between learning and recall mode is not autonomous,
however, reflecting a similar need for task instructions when a
human operator performs such a task).

In each of the three sub-networks responsible for scene
representation, the representation of serial order, and movement
generation, sequential transitions between neural activation
states are brought about through the mechanism of the condition
of satisfaction. Thus, visual attention shifts only once a currently
attended item has been committed to working memory. A
transition to the next element in the serial order occurs only
once the robot has successfully acted on the current element. And

an arm movement terminates only once the desired movement
target has been reached. The mechanism of the condition of
satisfaction thus reconciles the capacity to autonomously act
according to learned or structurally determined plans with the
capacity to be responsive to sensory or internal information about
the achievement of goals.

5.1. What the Scenario Stands for
The scenario was simple, but meant to demonstrate
the fundamental components of any neurally grounded
autonomous robot.

(1) A representation of the visual surround is the basis for any
intelligent action directed at the world. It is also the basis for
sharing an environment with a human user. We humans are
particularly tuned to building scene representations which
form the basis of much of our visual cognition (Henderson
and Hollingworth, 1999). Scene representations need to
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FIGURE 8 | Recall with a delayed second object.

include scene memory to deal with occlusions (e.g., by the
agent’s own body or body parts of a collaborating human
user) andwith a limited viewing range. Scene representations
must also be open to updating, however, when the scene
changes over time. Attentional selection is the key process
that provides an interface between the scene and any
action plan. So, while we stripped the system down to the
bare essentials, the core processes of scene representation
were covered.

(2) Directing action to objects in the world requires
transforming attentionally selected scene information
into a coordinate frame anchored in the initial position
of the actuator. In that representation, motor plans
can be framed as movement parameters (Erlhagen and
Schöner, 2002) that characterize the movement as a whole.
Movements must be initiatiated and terminated, and time
courses of motor commands must be generated that take
the effector to the target. In dynamic environments, such as
when a human user interferes with objects, the movement

parameters must be open to online updating. If movements
still fail to reach the target, correction movements must be
generated. Even in our extremely limited implementation,
these core processes of movement generation were covered.
Control issues, which are not trivial in human movement
but are well-understood in robotics, were neglected.

(3) The cognition of goal-directed action was simplified to
serial order. Serial order is a cognitive construct in that it
abstracts from the contents (what is serially ordered) and
from time (when is each item addressed). Based on these
abstractions, a broad set of actions can be conceived of as
serially ordered processing steps. For instance, assembling
a piece of IKEA furniture could be described this way.
Unlike many classical, disembodied cognitive tasks, real
action sequences require the capacity to deal with variable
and perhaps unpredictable amounts of time needed to
achieve each processing step. Learning the—a priori—
arbitrary contents of a serially ordered sequence makes this
scenario quite powerful. It goes beyond, for instance, a
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mere capacity to imitate or emulate behavior, which would
lead to the reproduction of the same movements or effects
without generalization to new conditions. It also goes beyond
the generation of sequences of behaviors that would be
triggered by environmental conditions according to a fixed
organizational scheme encoded in a behavior-based robotic
architecture (Elements of fixed sequencing are contained in
the present system such as when attentional selection always
precedes pointing).

5.2. Scaling Beyond the Simplified Scenario
(1) The scene representation system was built on a single,

trivial color feature. We have previously explored and
demonstrated elsewhere how a neural dynamic system of the
same kind can deal with multiple feature dimensions (e.g.,
Chapter 8 of Schöner et al., 2016 or Grieben et al., 2018). This
entails a feature binding problem that can be solved through
a shared spatial dimension across multiple low-dimensional
feature/space fields. Binding occurs by attending selectively
to a spatial location and transmitting feature information
separately in the different feature/space fields. In this
account, such binding through space is ultimately the reason
why objects need to be attended sequentially. Active gaze
shifts would be another extension, the basis for which
has been outline in previous work (e.g., Wilimzig et al.,
2006). A further generalization would be to extend the
scene representation into a semantic map in which objects
are also classified and their class labels are stored. There
is, of course, a plethora of neurally based feedforward
classification system (reviewed in the section 1), and their
outputs could be treated as such labels. Such modules may
need improvement in terms of object segmentation and pose
estimation (as discussed in Lomp et al., 2017), which clearly
requires attentional processes. Visual search for such labels is
a challenge that may need some research attention.

(2) The motor domain is, of course, a much richer domain
than we were able to demonstrate. There are myriad
problems to be solved such as dealing with many degrees
of freedom, dealing with obstacles, dealing with compliant
actuators, controlling impedance, grasp planning and
control, manipulating objects dynamically, and many more.
For many of these, technical solutions are available or
are being actively researched. Neurally grounded process
accounts have not been developed as strongly as one would
hope, however. The fundamental difference between human
motor control and the control of current robot arms limits
the extent to which approaches inspired by modern control
theory and the theory of optimal control carry over to
neurally inspired robotics (but see Driess et al., 2018).

(3) We have looked at the learning and recall of a single
sequence. To learnmultiple sequences, additional processing
substrate must be introduced that represents activation
of such learned sequences as well as selection of a
neural population when a new sequence is added to the
sequence memory. In principle, an approach inspired by
Adaptive Resonance Theory (Carpenter and Grossberg,
2017) may achieve that. We have outlined such an approach

in related work on contingency learning (Tekülve and
Schöner, 2019), but important questions remain open
such as how to align sequences of different lengths. The
position encoding of serial order in the ordinal nodes
makes it possible, however, to represent sequences that
entail the same elements in different serial positions
(Sandamirskaya and Schöner, 2010).

The sliver of cognition we have captured may be part of
communication, showing each other what to do. If perception
was better (e.g., recognizing events and perceiving relationships
between actuators and objects), and if action was richer (e.g., the
ability to use tools and manipulate objects), then the modeled
interface would already make the robot quite useful. It would
enable a robot to learn the solution of problems from a human
user, as long as the perception system extracts the conceptual
structure of the demonstrated action. A big extension would be
the capacity of the system to solve problems by itself, devising
the sequences of actions required to achieve a goal. This would
require neural processes in new domains such as exploration,
outcome representations, perhaps value systems. There is a
growing literature on such models (Mnih et al., 2015), but their
import for robotic learning is an open research problem.

5.3. Related Work
A number of groups have addressed object-directed action and
the requisite perception in a similar neural-dynamic framework
(Fard et al., 2015; Strauss et al., 2015; Tan et al., 2016). Serial
order and the specific neural mechanism for sequencing neural
activation patterns were not yet part of these efforts, which
otherwise overlap with ours. A number of neural dynamicmodels
of serial order or sequencing have been proposed (e.g., Deco
and Rolls, 2005), but not been brought into robotic problems.
One reason may be the lack of a control structure comparable
to our condition of satisfaction, so that the sequences unfold in
neural dynamics at a given rhythm that is not synchronized with
perceptual events. Such systems would not remain tied to the
actual performance of a sequence in the world.

Related attempts to model in neural terms the entire chain
from perception to action have been made for robotic vehicles.
For instance, Alexander and Sporns (2002) enabled a vehicle
to learn from reward a task directed at objects that a robot
vehicle was able to pick up. pick up. Gurney et al. (2004) realized
a neurally inspired system the organized the organism (This
paper is useful also for its careful discussion of different levels of
descriptions for neurally inspired approaches to robotics). Both
systems are conceptually in the fold of behavior-based robotics, in
that the sequences of actions emerge from a neural architecture,
modulated by adaptation. To our knowledge, systems of that kind
have not yet been shown to be able to form serial order memories
and acquire scene representations.

A different style of neural robotic model for cognition is
SPAUN (Eliasmith et al., 2012). This is an approach based on
the Neural Engineering Framework (Eliasmith, 2005), which
is able to implement any neural dynamic model in a spiking
neural network. Thus, models based on DFT may, in principle,
be implemented within this framework. On the other hand,
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SPAUN has also been turned to approaches to cognition that
may not be compatible with the principles of DFT, in particular,
the Vector Symbolic Architecture (VSA) framework that goes
back to Smolensky, Kanerva, Plate, and Gayler (see Levy and
Gayler, 2008 for review). In VSA, concepts are mapped onto
high-dimensional vectors, that enable processing these concepts
in themanner of symbolmanipulation. If this approach is entirely
free of non-neural algorithmic steps is not clear to us.

6. CONCLUSION

We have shown, in a minimal scenario, how sequences
of attentional shifts, of movements, and of serially ordered
actions can be autonomously generated in a neural dynamic
framework that is free of any non-neural algorithmic control.
The continuous or intermittent coupling to sensory and motor
systems is made possible by creating neural attractor states.
Inducing instabilities in a controlled manner enables the system
to make sequential transitions between such states. As a result,
the neural dynamic robot demonstrates a minimal form of
cognition, learning and acting out serially ordered actions. Much
work remains to be done to scale such systems to the real world.
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APPENDIX

Network Parameters
The following tables list the field parameters of the different
sub-networks. Lateral kernels are constructed according to the

following equation: ω(a, σ , cinh) = cinh+
∑

i ai
1√
2πσi

2
exp(−x2

2σi2
).

The learning rate used in Equation (9) is η = 0.05.

TABLE A1 | Parameter values of the scene representation sub-network.

Name Resting

level

Lateral

Kernel

Inputs

SCENE REPRESENTATION

Saliency usal hsal = −0.5 ωsal : a1 = 1,

σ1 = 3,

cinh = −0.0001

wimg = 1

Saliency selection usel hsel = −2.5 ωsel : a1 = 3,

σ1 = 2,

cinh = −0.08

wsal = 2.2, wexp = 2.0,

wmem = −0.1

Space color maps uscm hscm = −0.5 ωscm :

cinh = −0.0001

wimg = 1

Scene space selection ussl hssl = −1.5 ωssl : cinh =

−0.0001

wscm = 1,wsel = 1

Working memory umemhmem = −5 ωmem : a1 = 5,

σ1 = 2,

a2 = −2.5,

σ2 = 6,

cinh = −0.0001

wsel = 1, wnbk = 3.5,

wssl = 1

WM space selection uwsl hwsl = −1.5 ωwsl :

cinh = −0.0001

wmem = 1,wsel = 1

Color match ucm hcm = −1.5 ωcm :

cinh = −0.0001

wssl = 1,wwsl = 1

Explore int uexp hsel = −0.5 — wecs = −3

Explore CoS uecs hecs = −0.5 — wcm = 1

Off-set detector fast udfa hdfa = −0.2 — wsin = −1,wdsl = 0.5

Off-set detector slow udsl hdsl = −0.2 — wsex = 1

TABLE A2 | Parameter values of the arm movement sub-network.

Name Resting

level

Lateral

Kernel

Inputs

ARM MOVEMENT

Target position utp htp = −0.5 ωtp :

cinh = −0.001

wwcl = 1,wdfa = −2

EEF position uep hep = −0.5 ωep : a = 25,

σ = 2, cinh = −0.3

wepg = 10

EEF position gate uepg hepg = −0.5 ωepg :

cinh = −0.001

wppc = 1,woin = −2

Position match upm hpm = −1.5 — wep = 1,wtp = 1

Oscillator fast uofa hofa = −2.5 ωofa :

cinh = −0.001

woin = 2,wefc = 1,

wosl = −4

Oscillator slow uosl hosl = −2.5 ωosl :

cinh = −0.001

woin = 2,wefc = 1

Oscillate intention uoin hoin = −0.5 — wrea = 1,wocs = −2

Oscillate CoS uocs hocs = −0.5 — wofa = −1,wosl = 1

Reach intention urea hrea = −0.5 — wrcl = 1,wrcs = −2

Reach CoS urcs hrcs = −0.5 — wpm = 1

TABLE A3 | Parameter values of the serial order sub-network.

Name Resting

level

Lateral

Kernel

Inputs

SERIAL ORDER

Ordinal node oi ho = −5 woi ,oi = 4.8 woi ,oj = 2,

wmi−1 ,oi = 2.9,

wmi ,oi = 3.8,

wCoS = 2,

woh+ = 3

Memory node mi hm = −5 wmi ,mi
= 5 woi ,mi

= 2.6,

wmh+ = 3

Sequence CoS uCoS hCoS = −0.5 — wrcs =

1,wdfa = 1

Sequence color ucol hcol = −0.3 ωcol : a = 1,

σ = 3, cinh = −0.3

wlcol = 1,

woi ,ucol ∈ [0, 1]

TABLE A4 | Parameter values of task related fields of the dynamic field network.

Name Resting

level

Lateral

Kernel

Inputs

LEARN AND RECALL

Learn node ulrn hlrn = −0.5 — wmanual = 1

Recall node urcl hrcl = −0.5 — wmanual = 1

Learn color ulcol hlcol = −1.5 — wlrn = 1,wwsl = 1

Recall color urcol hrcol = −1.5 — wcol = 1, wrcl = 1

WM color

selection

uwcl hwcl = −1.5 ωwcl :

cinh = −0.0001

wrcol = 1,

wmem = 1
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Being able to replicate real experiments with computational simulations is a unique

opportunity to refine and validate models with experimental data and redesign the

experiments based on simulations. However, since it is technically demanding to

model all components of an experiment, traditional approaches to modeling reduce

the experimental setups as much as possible. In this study, our goal is to replicate all

the relevant features of an experiment on motor control and motor rehabilitation after

stroke. To this aim, we propose an approach that allows continuous integration of new

experimental data into a computational modeling framework. First, results show that we

could reproduce experimental object displacement with high accuracy via the simulated

embodiment in the virtual world by feeding a spinal cord model with experimental

registration of the cortical activity. Second, by using computational models of multiple

granularities, our preliminary results show the possibility of simulating several features

of the brain after stroke, from the local alteration in neuronal activity to long-range
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connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We

further suggest that additional models could be integrated into the framework thanks

to the versatility of the proposed approach, thus allowing many researchers to achieve

continuously improved experimental design.

Keywords: motor control, stroke, rehabilitation, neural mass, spiking neuronal networks, brain network models,

Kuramoto oscillators, closed-loop simulation

1. INTRODUCTION

In nature, the activity of the brain of an individual interacting
with the environment is conditioned by the response of the
environment itself, in that the output of the brain is relevant only
if it has the ability to impact the future and hence the input the
brain receives. This “closed-loop” can be simulated in a virtual
world, where simulated experiments reproduce actions (output
from the brain) that have consequences (future input to the
brain) (Zrenner et al., 2016). To the aim of reproducing in silico
the complexity of real experiments, different levels of modeling
shall be integrated. However, since modeling all components
of an experiment is very difficult, traditional approaches of
computational neuroscience reduce the experimental setups as
much as possible. An “Embodied brain” (or “task dynamics,”
see Zrenner et al., 2016) approach could overcome these limits
by associating the modeled brain activity with the generation
of behavior within a virtual or real environment, i.e., an
entailment between an output of the brain and a feedback
signal into the brain (Reger et al., 2000; DeMarse et al.,
2001; Tessadori et al., 2012). The experimenter can interfere
with the flow of information between the neural system and
environment on the one hand and the state and transition
dynamics of the environment on the other. Closing the loop
can be performed effectively by (i) validating the models on
experimental data, and (ii) designing new experiments based on
the hypotheses formulated by the simulations. On the example
shown in Figure 1, data on brain activity (be it, for instance,
from electrophysiological recordings or imaging) and on the
environment (e.g., by means of kinematic or dynamic measures)
from the real experiment are used to feed the models of the
in silico representation of the experiment. From a comparison
of the real and model-based data, the features that are most
important to replicate the real experiment are identified, and
thus novel insights are generated (Figure 1). To realize such a
complex virtual system, many choices can be made, for instance
on the brain model or spinal cord model that best represent the
salient features of experimental measures to be replicated. The
ideal framework shall comprise a library of tools to choose from,
to reproduce a variety of experimental paradigms in the virtual
environment. By briefly introducing the state of the art in brain
and spinal cord modeling, we will discuss few classes of models
to pick from an ideal library.

1.1. State of the Art
1.1.1. Local Cortical Network Modeling
Biologically detailed models of a single neuron such as the
Hodgkin and Huxley model (Hodgkin and Huxley, 1952)

take into account the activity of the ion channels in the cell
membrane that lead to changes in the membrane potential,
eventually causing the neuron to spike. However, simpler but
still biologically realistic models of the single cell are preferable
when interested in modeling the dynamics of a larger number
of cells. A good candidate is the adaptive exponential integrate
and fire (adex) neuron model (Brette and Gerstner, 2005),
which has been shown to reproduce the intrinsic neuronal
properties of a number of cell types, including those with spike
frequency adaptation (Destexhe, 2009). Interestingly, adex
neurons network models with different adaptation levels can
reproduce the dynamical properties of distinctive brain states
such as wakefulness, sleep, or anesthesia (Zerlaut et al., 2017;
Nghiem et al., 2020). This property makes adex neuron networks
suitable to model the dynamics of the emerging activity in a
local network of neurons after injury, given that, after a stroke,
the dynamics of the local network switches to a slow oscillatory
rhythm which resembles that of sleep or anesthesia (Butz et al.,
2004). Moreover, alterations in low-frequency cortical activity in
the peri-infact cortex after stroke are known to correlate with
motor recovery (e.g., Yilmaz et al., 2015; Ramanathan et al.,
2018).

1.1.2. Brain Network Modeling
Efforts have been made to reconstruct single brain regions
with as many details as possible (Markram et al., 2015), or
to build detailed networks of multi-compartment oscillators
(Izhikevich and Edelman, 2008). Contrary to the detailed models,
top-down modeling seeks to elucidate whole-brain network
mechanisms, which may underpin a variety of apparently diverse
neurophysiological phenomena. Neural masses formalisms have
been used over many years to develop macroscopic models
that capture the collective dynamics of large neural assemblies
(Deco et al., 2008; Sanz-Leon et al., 2015). In this case the
activity of a macroscopic brain region is often directly derived
from populations of spiking neurons as a mean-field using
concepts from statistical physics (e.g., Wong and Wang, 2006;
Stefanescu and Jirsa, 2008; Zerlaut et al., 2017). In other
cases the statistics of the macroscopic brain activity is derived
more phenomenologically while still conserving some basic
physiological principles such as division on excitatory and
inhibitory neurons, e.g., the seminal Wilson Cowan model
(Wilson and Cowan, 1972). The third subclass of neural masses
contains purely phenomenologically derived computational
models that aim to reproduce certain dynamical properties
of the macroscopic neuronal activity, such as e.g., seizure
dynamics (Jirsa et al., 2014; Saggio et al., 2017), whilst different
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FIGURE 1 | Scheme of the proposed Embodied brain framework. The picture suggests a closed-loop workflow linking real and simulated experiment. The different

types of data obtained from the experiments, from brain activity to dynamic and kinematics of goal-directed movement, are used to feed the whole brain and spinal

cord model, in addition to the virtual mouse and environment. The loop is closed by validation of in silico results on real data. Eventually, the simulated experiment

raises novel hypotheses, to be validated on new real experiments.

realizations of damped or self-sustained oscillators are often
used to model the coherent fluctuations of resting-state activity
(Cabral et al., 2011; Deco et al., 2016). Depending on the
working point of the system, the macroscopic dynamics can
be described not only by physiologically derived mean-fields,
but also by phenomenological models in their canonical form
(Izhikevich, 1998; Deco et al., 2009, 2011). Hence, phase
oscillators (Kuramoto, 1984) are often chosen to model and
study the coactivation patterns in the brain, as some kind of a
minimal model explanation (Batterman and Rice, 2014) for the
synchronized behavior over a network (Pikovsky et al., 2001;
Breakspear et al., 2010).

Connecting the neural masses in large-scale brain network
models (BNM) became possible with the progress of non-
invasive structural brain imaging (Johansen-Berg and
Rushworth, 2009). This allowed extraction of biologically
realistic brain connectivity, the so-called connectome, which
shapes the local neuronal activity to the emergent network
dynamics (Honey et al., 2007; Ghosh et al., 2008; Deco et al.,
2009; Sanz-Leon et al., 2015; Petkoski et al., 2018; Petkoski and
Jirsa, 2019).

The large-scale BNM have been used to interpret healthy
(Cabral et al., 2011; Deco et al., 2016) or pathological (Nakagawa
et al., 2013; Zimmermann et al., 2016; Saenger et al., 2018) brain
activity. This is often reflected in the coherence between brain
rhythms (Lachaux et al., 1999) that also describes the functional

connectivity (FC) of the brain as an important marker of its
spatio-temporal organization (Ghosh et al., 2008; Deco et al.,
2009, 2011; Deco and Jirsa, 2012; Petkoski et al., 2018).

The Virtual Brain (TVB) (Sanz Leon et al., 2013; Sanz-Leon
et al., 2015) is a commonly used neuroinformatics platform
for full brain simulations. It supports a systematic exploration
of the underlying components of a large-scale BNM: the
structural connectivity (SC) and the local dynamics that depend
on the neurophysiological mechanisms or phenomena being
studied. In this way, the BNM allows to describe structural
changes (through connectivity variation including stroke, motor
learning and recovery) and subsequent functional consequences
accessible to modeling and empirical data collection on the
meso, macro and behavioral level. The modeling with TVB thus
represents a useful paradigm for multi-scale integration. TVB
has been already utilized in modeling functional mechanism
of recovery after stroke in humans (Falcon et al., 2015, 2016),
identifying that the post-stroke brain favors excitation-over-
inhibition and local-over-global dynamics. For studying the
changes in synchronization, as we intend to do, TVB offers a
range of oscillatory models for the neural activity. One of these
is the Kuramoto model (KM), which captures the emergent
behavior of a large class of oscillators that are near an Andronov-
Hopf bifurcation (Kuramoto, 1984), including some population
rate models (Ton et al., 2014). This makes the KM well-suited
for assessing how the connectome governs the ynchronization

Frontiers in Systems Neuroscience | www.frontiersin.org 3 July 2020 | Volume 14 | Article 31195

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Allegra Mascaro et al. Toward Closed-Loop Experiments and Simulations

between distant brain regions (Breakspear et al., 2010; Cabral
et al., 2011, 2012; Ponce-Alvarez et al., 2015; Petkoski et al.,
2018).

1.1.3. Spinal Cord Modeling
The brain controls its body through neural signals originating
from the brain and processed by the spinal cord to control
muscle activation in order to perform a large variety of behaviors.
Several biologically realistic functional models of the spinal cord
have been developed and tested in closed loop simulations with
musculoskeletal embodiments. Stienen et al. (2007) developed a
fairly completemodel that includes Ia, Ib, and II sensory afferents,
both monosynaptic and polysynaptic reflexes as well as Renshaw
cells, improving a previous work by Bashor (1998). The model
was tested with a musculoskeletal model consisting of a generic
antagonistic couple of muscles, thus lacking a realistic validation
scenario. Cisi and Kohn developed a web-based framework for
the simulation of generic spinal cord circuits with associated
muscles, that aims at replicating realistic experimental conditions
(i.e., electrical stimulation) (Cisi and Kohn, 2008). Sreenivasa
et al. (2016) developed a specific neuro-musculoskeletal system,
upper limb with biceps and triceps, and validated it against
human recordings. In Moraud et al. (2016), a simple spinal cord
model of the rat, lacking any descending stimuli, was developed
in order to study how such circuitry can correct the gait after
a spinal cord injury and embedded in a closed loop simulation
with biomechanical hindlimbs. All of the mentioned works were
tested primary for the generation of reflex motions, and not as
intermediate levels of more complex controllers such as ones
capable of generating voluntary movements.

1.2. Aim of the Work
We propose a framework (“Embodied brain closed loop”)
endowed with a library of modeling tools that will eventually
allow to realize entirely virtual experiments. We focused on an
experiment on motor control and motor recovery after stroke
described in Spalletti et al. (2017) and Allegra Mascaro et al.
(2019), whose simulation requires two main tiles. The first is
the realization of voluntary movements in a virtual milieu. This
piece requires monitoring and modeling of many components of
movement control, from brain activity to body kinematics and
displacement of virtual objects. The second is the simulation of
brain injury. This includes modeling of acute consequences but
also of neuronal plasticity after brain damage, either spontaneous
or supported by treatment. Both local and long-rangemodulation
of neuronal activity should be accounted to simulate the brain
after stroke, since local alteration of neuronal activity in the peri-
infarct area is known to be associated to remodeling of long-range
functional and structural connectivity (several comprehensive
reviews have summarized this research, e.g., Carmichael et al.,
2017). To build those tiles, we developed two pipelines that target,
on one side, the physiological execution of movements and, on
the other, pathological alterations and plasticity (Figure 2). The
first (“Movement-driven models” pipeline) aims at reproducing
in a virtual environment how a goal-directed movement is
performed and represented in the healthy brain. Data recorded
on healthy mice are used as an input to the spinal cord model,

attached to the muscles of the simulated embodiment (see
Figure 2, red box). The goal of the second pipeline (“Stroke
models”) is to reproduce both local and long-range consequences
of stroke. We developed a spiking neurons model that could
simulate the local brain dynamics, and in particular the abnormal
oscillatory activity taking place in the peri-infarct cortex (see
Figure 2, lower line in the green box). Also, we show how
the simulation of brain activity by neural mass models allows
replicating the evolution of functional connectivity in mouse
brain after a stroke and under rehabilitation (see Figure 2, upper
line in the green box).

2. METHODS

Cortical recordings and behavioral data from the experiments
described in this section are used to build and validate the brain
models and the output in the virtual environment.

2.1. In vivo Experiments
On the experimental side, we performed electrophysiological
recordings (Figure 3A) and wide-field calcium imaging
(Figure 3B) in awake mice performing active forelimb retraction
on a robotic device (M-Platform). These experiments allowed
gathering simultaneous information on the neuronal activity,
force applied during active forelimb retraction and position of
the forelimb, as displayed in the lower panels of Figure 3. The
electrophysiological data and the recordings of limb position
were used to feed the spinal cord model, as described in section
4.1. The features of the wide-field calcium data recordings were
used to build the spiking neurons brain model and to validate
the BNM, section 3.3. All the procedures were in accordance
with the Italian Ministry of Health for care and maintenance
of laboratory animals (law 116/92) and in compliance with the
European Communities Council Directive n. 2010/63/EU, under
authorizations n. 183/2016-PR (imaging experiments) and n.
753/2015-PR (electrophysiology experiments).

2.1.1. Robotic Training on the M-Platform
The M-Platform is a robotic device designed to train mice to
perform active forelimb retraction (Pasquini et al., 2018). Briefly,
the main component of the device is a linear actuator that moves
a linear slide where a custom handle is screwed. Moreover, the
platform is provided with a system to control the friction on the
slide and a pump for the reward. During the experiments, while
the mouse has its left paw connected to the slide, first the linear
actuator extends the forelimb then the animal has to perform an
active pulling movement to come back to the starting point and
to receive a reward. Force signal and position of the forelimb are
recorded respectively by a load cell and a webcam.

In sections 2.1.3 and 2.1.4, we describe two different
experiments with the robotic device. In the first one, the M-
Platform is embedded with Omniplex D System (Plexon, USA)
to obtain in vivo electrophysiological recording during the
task. In the second one, the kinetic and kinematic parameters
are synchronized with wide-field calcium imaging recordings
(Figure 3).
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FIGURE 2 | Scheme of data and simulations. The scheme depicts the approach to build the Embodied brain framework from data to models and back. The workflow

from data to models and simulation in the Embodied brain closed loops is shown. The upper, green box shows the Stroke models closed loop, the lower, red box

shows the Movement-driven models closed loop. Colored images represent experiment data, brain and spinal cord models, and simulation of the environment (from

left to right). Connections between the modeling components are presented as arrows: solid lines represent the output provided to other blocks; dashed lines indicate

the output data of the models that are used for comparison with real data for validation.

2.1.2. Photothrombotic Stroke
To induce focal stroke in the right hemisphere, mice were
injected with Rose Bengal (0.2 ml, 10 mg/ml solution in
Phosphate Buffer Saline). Five minutes after intraperitoneal
injection, a white light from an LED lamp was focused with a
20X objective and used to illuminate the primary motor cortex
(0.5 mm anterior and 1.75 mm lateral from Bregma) for 15 min.

2.1.3. Electrophysiological Recordings on the

M-Platform
Two healthy mice were used for the experiments. Animals
were housed on a 12/12 h light/dark cycle. Mice were water
deprived overnight before training on the platform; daily liquid
supplement was given after the test. Food was available ad
libitum. To have access to the motor cortex, a craniotomy was
performed 3 days before the training to expose the Caudal
Forelimb Area (CFA) of the right hemisphere. The craniotomy
was filled with agarose and silicon (Kwik cast sealant, WPI) and
could be opened and closed several times for acute recordings.

Mice were gradually acclimated to the platform. Then they
performed the task for 2 days, fifteen trials each day. During the
pulling experiment, mice were head fixed to the platform with
their left wrist constrained to the slide. The friction on the slide
was set at 0.3 N. The force signal was acquired by a load cell
(Futek LSB200, CA, USA) along the direction of the movement
at 100 Hz, at the same time a webcam recorded the position of
the slide at 25 Hz and the multi-unit activity was recorded by
Omniplex D System (Plexon, USA) with a frequency of 40 kHz
thanks to a 16 channels linear probe (1 M�, ATLAS, Belgium)
inserted into the CFA at 850 µm of depth (Figure 3A).

2.1.4. Wide-Field Calcium Imaging of Cortical Activity

During Training on the M-Platform
The mouse was housed in clear plastic cage under a 12
h light/dark cycle and was given ad libitum access to
water and food. We used the following mouse line from
Jackson Laboratories (Bar Harbor, Maine USA): C57BL/6J-
Tg(Thy1GCaMP6f)GP5.17Dkim/J (referred to as GCaMP6f
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FIGURE 3 | The real robotic platform. (A) On the top a schematic representation of the experiment during electrophysiological recording in CFA. At the bottom the

synchronized data: force peak (blue), movement of the slide (red), high frequency electrophysiological signal of a single channel (magenta) and the timestamp of a

selected single unit. (B) On the top a scheme of the experiment with the setup to record calcium activity. At the bottom the recorded data after synchronization: force

peak (blue), movement of the slide (red) and calcium response (green).

mice). In this mouse model, the fluorescence indicator GCaMP6f
is mainly expressed in excitatory neurons (Dana, 2014).
GCaMP6f protein is ultra-sensitive to calcium ions concentration
(Chen and Kim, 2013; Dana, 2014) whose increase is associated
with neuronal firing activity (Yasuda and Svoboda, 2004;
Grienberger and Konnerth, 2012).

For wide-field fluorescence imaging of GCaMP6f

fluorescence, we used a custom made microscope described
in Conti et al. (2019). Briefly, the system is composed by a

505 nm LED (M505L3 Thorlabs, New Jersey, United States)
light deflected by a dichroic filter (DC FF 495-DI02 Semrock,

Rochester, New York USA) on the objective (2.5x EC Plan
Neofluar, NA 0.085, Carl Zeiss Microscopy, Oberkochen,
Germany). The fluorescence signal is selected by a band pass
filter (525/50 Semrock, Rochester, New York USA) and collected
on the sensor of a high-speed complementary metal-oxide
semiconductor (CMOS) camera (Orca Flash 4.0 Hamamatsu
Photonics, NJ, USA).

The experiment starts with a mouse being trained and

recorded for 1 week (5 days) on the M-platform (“healthy”
condition, see Figure 3). The focal stroke is then induced at
the beginning of the second week by phototrombosis on the
right primary motor cortex (rM1). Starting 26 days after stroke,
the mouse performance and spontaneous motor remapping was

evaluated on the M-Platform for 5 days a week along 4 more
weeks. The results from the first week 1 month after the injury is
the so-called “stroke” condition, while the results during the last
week, when the animal recovers the motor function is referred to
as “rehab.”

Each day, the beginning of the wide-field imaging session
was triggered by the start of the training session on the M-
Platform. To detect the movement of the wrist of the animal
in the low-light condition of the experiment, an infrared (IR)
emitter was placed on the linear slide, and rigidly connected to
the load cell and thus to the animal’s wrist. Slide displacement
was recorded by an IR camera (EXIS WEBCAM #17003, Trust)
that was placed perpendicular to the antero-posterior axis of
the movement. Position and speed signals were subsequently
extracted from the video recordings and synchronized with the
force signals recorded by the load cell (sampling frequency =
100 Hz) and with the fluorescence signal recorded by the CMOS
sensor (Figure 3B).

2.2. Data Analysis
2.2.1. Spikes and Force Analysis
Data were analyzed offline using custom routines in Matlab
(MathWorks). First, the position signal was extracted by the
video using a white squared marker on the slide as reference. The
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recording frequency of the video was 25 Hz. After applying an
antialiasing FIR lowpass filter, a uniform linear resample of the
movement of the slide was performed, in order to synchronize
the position signal with the force data, recorded at 100 Hz. To
identify the timing of the voluntary activity of the animal, a
threshold method was used to detect force peaks during the
pulling phase of the task. For the following analysis, we picked
out peaks that produced a displacement of the slide, in addition
to crossing the threshold; and we calculate the onset of these
peaks as the minimum of the force derivative just before the
respective peak (Spalletti et al., 2014). The electrophysiological
signal, recorded at 40 kHz as sampling rate, was analyzed by
Offline Sorter (Plexon, Dallas, TX). First, for each channel of the
probe, we sorted waveform that crossed a detection threshold
of the mean ± 3 standard deviations. Then, detected spikes
were clustered using an automatic process based on principal
component analysis. Starting from these clusters, a manual
sorting was executed to isolate all single units which could be
identified in the recorded multi-units signal. The time stamp
of each unit was synchronized with the data of the robot. To
evaluate the temporal behavior-related spike activity, the peri-
stimulus time histograms (PSTHs, NeuroExplorer, Plexon) was
generated with bins of 20 ms in an interval of 1 s around the
onset of force peaks. In addition, the resting activity of each unit
was evaluated selecting intervals of at least 0.6 s with no force
peaks and calculating the average of the number of spikes in bins
of 20 ms. Finally, the PSTHs was used to evaluated when a single
neuron was active, that is when the number of spikes for bin cross
the threshold, calculated as the mean ± 2 standard deviations of
the number of spikes for bin during the respective resting activity.

2.2.2. Phase Coherence and Functional Connectivity
Functional connectivity (FC) among cortical regions was inferred
from phase coherence of activity measurements, and used to
determine changes in brain activity in “stroke” and “rehab”
condition, as compared to the healthy mice. These inferred
activity changes were used to parameterize simulations of the
BNM built over the Allen Brain Atlas mouse connectivity
data (http://connectivity.brain-map.org/; Oh et al., 2014, below
referred to as the Allen Mouse Brain Atlas - AMBA),
incorporated in the extended virtual mouse brain (Melozzi et al.,
2017). In each animal, the camera field-of-view used for activity
measurements was placed in a standard position using the
sagittal suture and its intersection with the coronal suture of the
skull (bregma) as anatomical landmarks. To spatially correlate
our activity measures with the structural connectivity data (Oh
et al., 2014), the camera field-of-view (Figure 3B) was spatially
translated to the Allen Common Coordinate Framework (CCF,
v3, 2015; Wang et al., 2020). Since the CCF lacks stereotactic
skull landmarks, these were introduced by spatially co-registering
all diagrams from a standard stereotaxic mouse brain atlas
(Franklin et al., 2008) to the CCF coordinate space with affine
transformations defined using the QuickNii tool (Puchades et al.,
2019). Using bregma and the sagittal suture as a reference, the
four corners of the downsampled 128x128 pixels field-of-view of
the recorded images were positioned in CCF, taking the 5 degree
lateral tilt of the camera view into account. Delineations of layer

IV cortical regions were then projected onto the camera field-of-
view, and used as a custom atlas reference for all activity maps.

The spectral content of the signals is analyzed to identify the
frequency band which captures the spontaneous brain activity
that occurs simultaneously with the motor-evoked events. The
time-frequency analysis of the calcium recordings is limited by
their sampling rate and the length. The former makes most of
the activity at faster frequency bands inaccessible, but still allows
analysis of the slow oscillations up to 5 Hz, which have been
often associated with the spontaneous brain activity (Vanni et al.,
2017; Wright et al., 2017). Even though the slowest dynamics
<0.5 Hz, which has the highest power, is often a marker of
the resting state (Wright et al., 2017), in this experiment it
also contains the propagation of waves generated during the
limb movements on the platform. The mechanisms behind
stimulation propagation (Spiegler et al., 2016) are different from
the spontaneous oscillations at rest (Deco and Jirsa, 2012) that
we try to study and model here, and hence the lowest frequencies
are excluded from the analysis. In addition, the mice heart rate is
between 6 and 8 Hz, whilst the activity above 10 Hz is too close to
the Nyquist frequency of 12.5 Hz, defined as half of the sampling
rate of the recordings. As a consequence these bands are generally
avoided in the analysis of calcium signals, which is consequently
often centered at the δ band between around 1 and 5 Hz (Vanni
et al., 2017; Wright et al., 2017).

The FC is characterized with the phase coherence of the
analytical phases of the band-passed time-series obtained using
the Hilbert transform (Pikovsky et al., 2001). For this we employ
phase locking values (PLV) (Lachaux et al., 1999) that are a
statistical measure for similarity between the phases of two
signals, hence defined as

PLVij = |
1

M

M
∑

m=1

ei(θi(m)−θj(m))
|, (1)

where the phase difference θi(m) − θj(m) between the regions i
and j is calculated at times m = 1 . . .M. The same procedure
is also applied to surrogate time-series to find the level of
statistically significant phase coherence (Lancaster et al., 2018).

3. MODELS

3.1. Spinal Cord Model
To develop the final model, an incremental approach was
followed, starting from a circuit for a single muscle, adding
inhibitory connections between antagonistic pairs and finally
interneurons to modulate descending stimuli (Figure 4).

For a single muscle, a network with muscle spindles providing
Ia and II afferent fibers activity, a pool of α-motoneurons and
excitatory II-interneurons was considered (Stienen et al., 2007;
Moraud et al., 2016). Ia afferents directly provide excitatory
inputs to the α-motoneurons (monosynaptic stretch reflex
mechanism), while the II afferents output is mediated by a set
of interneurons before reaching the α-motoneurons, creating
a disynaptic reflex. The muscle spindles are implemented
using the model from Vannucci et al. (2017). All other
neurons are modeled as leaky integrate and fire neurons. The
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FIGURE 4 | The spinal cord model for a pair of antagonistic muscles.

number of neurons in the spinal cord populations, as well as
parameters for the synaptic connections are taken from Moraud
et al. (2016), with the exception of the synaptic weights of
the monosynaptic connections, which have been significantly
lowered (see Supplementary Material). The parameters from
the muscle spindle models are taken from Mileusnic et al.
(2006), which are tuned on neurophisiological recordings
of lower mammals. Distribution of parameters for the α-
motoneurons that influence the recruitment order and fiber
strength (membrane capacitance, membrane time constant,
maximum twitch force, time to peak force) are taken from
Sreenivasa et al. (2016):

Di = [dmax − dmin · log(N − i)] · DSF (2)

Ci = πD2
i · cspf (3)

τi = τmax − (Di − τadj) · τslp

Fi = [pmax − pmin · log(N − i)] · FSF

Ti =

[

smin −
ssl

N
i
]

· TSF + smin

where i is the index of the α-motoneuron in the pool,N is the size
of the pool and the others are free parameters that can be adjusted
for every muscle. In this work, the value of these parameters has
not been changed from Sreenivasa et al. (2016).

In order to compute the actual muscle activation from the
motoneurons activity, a special spike integration unit that sums

the fibers twitches was implemented. The spikes were integrated
using the discrete time equations of Cisi and Kohn (2008) with
a non-linear scaling factor from Fuglevand et al. (1993) that
prevents the activation to grow indefinitely:

ai(t) = 2e
−δt
Ti ·ai(t−1)−e

−2δt
Ti ·ai(t−2)+Fi·g(t)·

δt2

Ti
e
1−δt
Ti ·u(t) (4)

where δt is the integration time, and u(t) and g(t) are the spike
function and the non-linear scaling, defined as:

u(t) =

{

1 if a spike is received at t
0 if no spikes are received at t

(5)

g(t) =

{

1 if Ti/ISIi < 0.4

1−e−2(Ti/ISII )
3

Ti/ISII
otherwise

(6)

where ISIi is the observed inter-spike interval of α-motoneuron
i. Moreover, the activation can be scaled between 0 and 1 by
dividing by the maximum theoretical value:

ai,max = lim
t→+∞
ISIi→0

ai(t) = Fi

δt3

T2
i

(

1− e
−2
(

Ti
δt

)3
)

· e

(

1− δt
Ti

)

1− 2e
−

δt
Ti + e

−2 δt
Ti

(7)
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Therefore, the output of the twitch integration module is an
activation value in [0; 1] that is suitable for the muscle model
present on the mouse virtual embodiment. The effect of this
integration is that at low frequencies the individual twitches can
still be seen, while at higher stimulation the twitches fuse into a
tetanic contraction. Moreover, thanks to the non-linear scaling,
the activation reaches a maximum value and higher stimulation
frequencies do not produce any effect, in accordance with the
contractile properties of real muscle fibers.

In order to implement the polysynaptic inhibition
reflex between antagonistic muscles, two populations of Ia-
interneurons were added to the network. Those receive inputs
from all Ia afferents of a synergistic muscle and provide inhibition
to the α-motoneurons of the corresponding antagonistic muscle.
Moreover, as the activation of a muscle should provoke an
inhibition of its antagonist (Pierrot-Deseilligny and Burke,
2005), the Ia-interneurons also receive low-gain positive inputs
from the corresponding descending pathways. Again, the
number of neurons in these population and their parameters
have been taken from Moraud et al. (2016). Finally, as there
is lack of evidence for a direct connection between cortical
neurons and motoneurons in the spinal cord of rodents (Yang
and Lemon, 2003), an intermediate population of neurons
mediating descending signals was added to the circuitry. This
population aims at modeling propriospinal neurons, which
provide an inhibitory action on the signals coming from the
corticospinal tract (Alstermark, 1992). In general, the inhibition
is generated from different peripheral afferents, but we included
only afferents from muscle spindles as these are the only present
in the model. As there is no definitive experimental evidence
on the size of the population of propriospinal neurons and its
parameters, we set the values of these to those of the populations
of Ia-interneurons. Conversely, the synaptic weights and the
number of connections between the descending inputs and the
propriospinal interneurons were empirically tuned starting from
experimental data.

3.2. Simulation Tools and Physical Models
This section describes simulation tools that were used to
synchronize neural and physical simulations and the physical
simulations models that have been developed and used. These
tools andmodel were used in the context of theMovement-driven
models pipeline.

3.2.1. Embodied Mouse in the Neurorobotics Platform
The full musculoskeletal model of the virtual rodent controlled
by the spinal cord model was simulated in the Neurorobotics
Platform (NRP) developed in the Human Brain Project (Falotico
et al., 2017). The main components of the NRP are a world
simulator, a brain simulator and the mechanism that enables
the data flow between the two in a closed-loop. The connection
between the body and the brain is specified through a domain
specific language (Hinkel et al., 2015, 2017), via Python scripts
called Transfer Functions. In these scripts the output of devices
that read neuronal output data can be processed and passed as
input for the virtual body actuators, and vice versa, the sensory
information from the virtual body sensors, in this case muscle

length data, can be passed to devices that map sensory data to
neural input. The brain simulation, which currently is simulating
point-neurons, follows closely the paradigm of NEST (Gewaltig
and Diesmann, 2007), interfaced through PyNN (Davison et al.,
2009). On the other side of the closed loop the world simulator
of choice is Gazebo (Koenig and Howard, 2004), extended to
support muscle simulation through OpenSim (Millard et al.,
2013), which provides its’ own muscle simulation engine.

3.2.2. Musculoskeletal Embodiment
As described earlier the musculoskeletal system comprises of
two elements, the skeletal and the muscle system respectively.
Here both systems are elaborated a bit more in the context of
the experiment. Developing animal skeletal systems is no trivial
task. It involves many complex degrees of freedom and physical
properties such as mass, center of mass and inertias. To ease
this process, NRP has developed a toolkit for Blender (Open
source modeling and animation tool) called RobotDesigner
(HBPNeurorobotics, 2019). RobotDesigner allows to automate
several steps needed to develop skeletal/robot models to be
simulated in the NRP. Using the same, currently NRP hosts
state-of-the-art a full skeletal model of the mouse consisting
of 110 degrees of freedom. More details about the full model
will be soon published following the current article. For the
current experiment, the mouse skeletal model is reduced in
complexity by constraining all the degrees of freedom except the
left forelimb. The forelimb consists of four segments and it is
further constrained to only have flexion-extension movements,
enough to reproduce the passive extension-active retraction
experiment on the M-Platform. The different segments and the
joints of the forelimb are shown in Figure 5.

The physical properties of the skeletal system such as mass,
center of mass and inertia are automatically estimated based on
bounding objects generated for each link (segment) using the
RobotDesigner. Once the skeletal system is established, muscles-
tendon system can be attached to the bones. As mentioned
before, NRP now supports OpenSim for integrating muscle
models into physical animal bodies or even robots. In the
current experiment a pair of antagonist hill-type muscles were
added to each of the joints in the mouse forelimb. The muscle
model in OpenSim is taken from Millard et al. (2013) (see
Supplementary Material). Again RobotDesigner offers a unique
solution to visualize attachments and easily add muscles to the
body in blender. Using the same technique all the muscles for
the mouse forelimb were added. Muscle parameters used in the
current experiment are hand tuned to produce flexion-extension
movements necessary for the experiment. Figure 5 (right panel)
shows the muscle attachments used in the current model.

3.2.3. Robotic Rehabilitation Platform Model
In the real experiment, the mouse forelimb is attached to the
sliding mechanism, which is a prismatic joint, driven by a
DC motor whose rotational motion is converted into a linear
one. The motor that is controlled with a PID controller, whose
reference can be set to a position of the joint between the
minimum and maximum positions. The controller is enabled
when the operator decides to replace the sled in its starting
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FIGURE 5 | Mouse forearm musculoskeletal system (left) Forelimb skeletal system with three joints (1) shoulder (Ball and socket) (2) elbow (hinge) (3) wrist (hinge).

(right) Forelimb muscle system with six muscles (1) humerus-extension (2) humerus-flexion (1) elbow-extension (2) elbow-flexion (1) hand-extension (2) hand-flexion.

position and is disabled afterwards, so that the mouse can
actually pull the sled. In simulation, the same configuration has
been implemented. The musculoskeletal mouse forelimb was
attached to a simulated M-platform, which has been modeled as
a prismatic joint, controlled with a PID controller whose output
is directly applied as a simulated force on the joint, assuming
ideal actuator transfer behavior. Again, the reference to the PID
controller is the position of the prismatic joint in its range, this
time normalized between 0 (minimum) and 1 (maximum). To
simulate the intervention of the operator that puts the slide back
we employed a state machine that automatically controls the
slide, by making use of the PID controller setting 1 as a reference.
Inputs to this state machine are a list of times at which the
slide should be put back. Conversely, to simulate the minimum
amount of force that is required to move the slide in the real
setup, we deactivated the PID controller in simulation only after
a certain activation of the simulated muscles was reached (0.95).

3.3. Stroke Models
3.3.1. Brain Network Model With Kuramoto

Oscillators
To simulate the functional network reorganization during stroke
and recovery given by the phase coherence of the macroscopic
brain activity reflected in calcium signals, we built our BNM
based on Kuramoto oscillators for the local oscillatory dynamics
and the AMBA connectome that dictates the strength of the
couplings between brain regions (Melozzi et al., 2017; Choi and
Mihalas, 2019), Figure 6, and has been validated with empirical
functional data that justifies its use (Melozzi et al., 2019). The
AMBA contains 86 cortical regions (43 per hemisphere), of which
18 were included in the field-of-view (Figure 6, bottom left). The
average calcium signal of the pixels entirely located within a brain
region was used to represent their mean neuronal activity.

Besides their simplicity, phase models exhibit rich dynamics
and a direct link to more complex biophysical models, while
admitting analytic approaches (Roy et al., 2011; Sheppard
et al., 2013; Ton et al., 2014; Stankovski et al., 2016). KM

(Kuramoto, 1984), as a phenomenological model for emergent
group dynamics of weakly coupled oscillators (Pikovsky et al.,
2001) is well-suited for assessing how the connectome governs
the brain oscillatory dynamics that can be reflected in different
neuroimaging modalities (Schmidt et al., 2014; Váša et al., 2015;
Cabral et al., 2017; Petkoski et al., 2018). The constructed BNM is
thus used to identify the structural alterations due to the stroke
and the subsequent recovery, using their causal effects on the
functional changes captured by the calcium recordings of the
cortical brain activity.

Even though delayed interactions due to axonal transmission
can be of crucial importance for the observed dynamics of the
oscillatory systems (Ghosh et al., 2008; Petkoski et al., 2016,
2018), the impact of these delays is much less pronounced for
low frequencies compared with them, as it is the case here.
Moreover, the tracing used for obtaining the AMBAConnectome
(Oh et al., 2014) does not allow tracking the length of the
white fibers. Hence, we assume instantaneous couplings and the
utilizedmodel gives the following evolution of the phases for each
of the N brain regions

θ̇i = 2π f +
1

N

N
∑

j=1

Kij sin(θj − θi)+ ηi(t), i = 1 . . .N. (8)

Here the dynamics of each region i is driven by the natural
frequencies f that are assumed to be identical across the brain. A
stochastic variability is introduced with additive Gaussian noise
defined as 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t

′)〉 = 2Dδ(t − t′)δi,j, where D
is the noise strength and 〈·〉 denotes time-averaging. The activity
of the BNM is then constrained by the structural connectivity,
which for every region is represented by the inputs that they
receive from the other regions j through the coupling strength
Kij = Kwij. This contains the structural weight of the connectome
between these areas, wij, scaled with the same global coupling K
for every link.
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FIGURE 6 | Scheme of the mouse BNM. Brain Network Model consisting of neural masses superimposed over the AMBA connectome simulates the recorded

calcium activity. The average oscillatory neuronal activity of the brain regions is described by Kuramoto oscillators, which are coupled due to the fiber tracts, giving rise

to the simulated recordings. The brain network (right) is reconstructed from the AMBA, with the centers of subcortical regions being small black dots, while larger the

circles are for the cortical regions, with the region of the stroke highlighted. (Left) The field of view during the recordings is overlayed on the reconstructed brain, and

different colors represent the cortical regions according to the AMBA.

3.3.2. Spiking Network Model for Simulation of Slow

Wave Activity in Peri-Infarct Cortex
Besides the phenomenological neural mass model for the
oscillatory activity that we have used in the BNM, we also show
an alternative spiking neural model to reproduce local brain
activity in the acute phase after stroke. In future, this model
should be integrated in the BNM and therefore in the Embodied
brain closed-loop simulation, either by deriving its mean-field
representation, e.g., see Zerlaut et al. (2017), or by co-simulation.
This model aims to reproduce the two-photon calcium signals of
a population of spiking neurons located at the peri-infarct area,
since it is known that slow frequency patterns of synchronized
activity emerge from the damaged areas after an ischemic stroke
(Carmichael and Chesselet, 2002; Butz et al., 2004; Rijsdijk et al.,
2008; Rabiller et al., 2015).

Network of adaptive exponential integrate and fire (adex)

neurons
The network consists of an excitatory (regular spiking, RS) and
inhibitory (fast spiking, FS) population of neurons (Figure 7A).
All cells are modeled as adex neurons, which can be described by
the following equations:











Cm
dV(t)
dt

= Gl(El − V(t))+ Gl1Ve

(

V(t)−Vthre
1V

)

+ Isyn(t,V(t))

−w(t)+ σξ (t)
dw(t)
dt

= −
Gl
Cm

w(t)+ b
∑

k δ(t − tk)+ a(V(t)− El)

(9)
where the synaptic input Isyn is defined as

Isyn(t,V(t)) =
∑

i

g
syn
i (t)(V(t)− E

syn
i ) (10)

with

dg
syn
i (t)

dt
= −g

syn
i (t)/τsyn (11)

Here,Gl = 10 nS is the leak conductance and Cm = 150 pF is the
membrane capacitance. The resting potential, El, is −60 mV or
−65 mV, for excitatory or inhibitory cells, respectively. Similarly,
the steepness of the exponential approach to threshold, 1V is
2.0 mV or 0.5 mV, for excitatory or inhibitory cells, respectively.
When the membrane potential V reaches the threshold, Vthre =

−50 mV, a spike is emitted and V is instantaneously reset and
clamped to Vreset = −65 mV during a refractory period of
Trefrac = 5 ms. The membrane potential of excitatory neurons
is also affected by the adaptation variable, w, with time constant
τw = 500 ms, and the dynamics of adaptation is given by
parameter a = 4 nS. At each spike, w is incremented by a
value b, which regulates the strength of adaptation. b = 60pA
was used to model deep anesthesia, and b = 20 pA for light
anesthesia simulations.

From spikes to fluorescence of two photon signal
In order to model the two-photon calcium signal the spikes and
the values of the membrane potential Vm (Figure 7C, gray trace)
of each neuron were recorded during the simulation, for each
level of adaptation. Increases in theVm lead to an inward calcium
current through voltage-dependent channels. We characterized
the L-type high voltage activated calcium current ICa (Figure 7C,
red trace) as in Rahmati et al. (2016):

ICa = gCas(Vm − ECa) (12)
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FIGURE 7 | Two-photon calcium signal model from a spiking network model. (A) Schematic connectivity between the excitatory population of regular spiking (RS)

neurons and the inhibitory population of fast spiking (FS) neurons of the modeled cortical network. (B) Activation curve of a high-voltage activated calcium channel

that is used to compute the inward calcium current (ICa) from the changes in the Vm. (C) From top to bottom, simulated membrane potential of a neuron emitting three

spikes which are represented by dashed lines, membrane potential with reconstructed spikes, inward calcium current associated with changes in the membrane

potential, cytosolic calcium concentration, and fluorescence emitted by the calcium indicator due to the intracellular concentration of calcium.

where ECa = 120 mV and gCa = 5 mS/cm2 are the
reversal potential and the maximal conductance of this current,
respectively. The steady-state voltage dependent activation of the
channel (Figure 7B), is defined by the Boltzmann function:

s =
1

1+ exp
−

(Vm−V1/2)

ρ

(13)

with a half-activation voltage V1/2 = −25 mV and a slope
factor ρ = 5mV (Ermentrout, 1998; Helton et al., 2005).
The intracellular concentration of calcium (cytosolic [Ca2+],
Figure 7C, dark red trace) increases proportionally to the ICa
current, and then it slowly decays back to a basal value [Ca2+]i
(Traub, 1982):

d[Ca2+]

dt
= −kCaICa −

[Ca2+]− [Ca2+]i

τCa
(14)

with KCa = 0.002 (nM/ms)(µA/cm2)−1, τCa = 760 ms and
[Ca2+]i = 0 nM.

Finally, the fluorescence F(t) associated with the intracellular
calcium concentration (Figure 7C, green trace) is then computed
following the equation:

F(t) = dF+ KF
[Ca2+]nH

[Ca2+]nH + Kd
(15)

where dF = 0 and KF = 10 are the offset and the scaling of
F(t), kd = 375 nM is the dissociation time constant for GCaMP6f
(Chen and Kim, 2013), a measure of the affinity of the fluorescent
indicator to the calcium ion, and nH = 2.3 is the Hill coefficient
(Chen and Kim, 2013).

4. RESULTS

Here we show first the results we obtained on the simulation of
goal-directed movements (“Movement-driven models” pipeline)
and then on the modeling of brain alterations after stroke
(“Stroke models” pipeline).

4.1. Simulation of the Experiment on
Goal-Directed Movements
As the first component of the proposed framework (“Movement-
driven models”), we simulated the experiment on goal-directed
forelimb pulling in the virtual environment and validated the
simulation on experimental data.

In the in-vivo experiment, two healthy mice were trained on
the M-Platform to perform active pulling of the forelimb. As
we expected, the contralateral motor cortex showed a highly
coherent activation with the kinetic data. The coherence between
the force applied by the animal and the signal recorded in the
CFAwas evident both in the low and in the high frequencies band
(Figure 8). For the data that were later used in simulations we
focused on the high band (300 to 40k Hz); in particular we found
an high activation of the motor cortex around the force peaks
for both multi-unit activity and single units analysis. This result
proves that for each recording the SUs were successfully extracted
by the multi-units. The PSTHs was used to evaluate the temporal
behavior-related spike activity of every single unit. The behavior
around the force peaks was different according to the single units
selected, but all of them showed that the activity began to increase
before onset of force peaks and came back to the resting value
after 0.4 s from the onset. In order to simulate the descending
signal from the motor cortex generating the movement of the
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FIGURE 8 | Results from the simulated pulling experiment. Comparison between the simulated slide position and the one recorded in the in-vivo experiment (A) and

comparison between simulated muscle activation levels and force applied to the physical slide (B). To increase the readability of the bottom figure, an upper peak

envelope was applied to the signals.

forelimb, we employed these neurophysiological recordings. In
particular, the events resulting from the single unit spike sorting
were given as spike times for static spike generator in the
neural simulation. As the number of recorded neurons was low,
the spike generators were copied 100 times, while also adding
gaussian noise (with mean = 0ms and standard deviation = 5ms)
to the spike times of the copies to avoid synchronicity. As the
neural recording originates mainly from neurons that control the
pulling, we decided to connect the descending stimuli only to
interneural populations associated with muscles that are active
during the pulling, i.e the flexors of the two actuated joints.
Therefore, the antagonistic muscles would only actuate thanks
to spinal reflexes. To tune the parameters of these connections,
and to produce a muscular activation that was similar in
amplitude to the force recorded in the in-vivo experiments,
we performed a preliminary set of experiments, without the
simulated embodiment, in which we empirically tuned the
synaptic weights and number of connections. Due to the absence
of the embodiment, at this stage there is no muscle spindle
activity and thus no sensory feedback enabling reflexes. Then, the
spinal cord model described in section 3.1 was connected to the
mouse forelimb. In principle, the musculoskeletal embodiment
has three pairs of muscles, but the one controlling the paw
is not significantly involved in the pulling of the limb. We
did not consider those when building the neural network to
decrease simulation times. Thus, we replicated the same spinal
cord circuitry two times and connected it to the four muscles
controlling the elbow and shoulder joints, named humerus and
radius in the simulation. In the closed loop simulated by the
Neurorobotics Platform, the output of the spinal cord model
(muscles activation between 0 and 1) could be directly given
to the simulated mouse actuators, while the muscle lengths and

contraction speed had to be normalized before sending them to
the muscle spindles models.

In Figure 8, we show the results for a simulation trial and
a comparison with data recorded from a physical experiment.
We employed kinematic data recorded alongside neural activity
in the same in-vivo experiment: position of the slide and force
applied to the slide through the trial. As expected, by comparing
the activation levels with the normalized force applied by the
mouse to the slide we can observe that the flexor muscles are
active when there is also a force recorded, and conversely, there is
low activation when the slide is still. It is also worth mentioning
that, although the two muscles receive the same inputs from
the descending stimuli, their activation levels are different due
to the feedback circuitry of the spinal cord and the activity of
muscle spindles, which are different for the two muscles. Thus,
the output of the spinal cord circuitry is not a mere filtering
of the input signals, but it also takes into account the feedback
from the embodiment, which can change during the experiment.
This effect underlies the importance of embedding neural circuits
in a proper, realistic embodiment. The comparison between
the simulated slide position and the recorded one shows that,
thanks to the recorded neural activity, the muscles are able to
overcome the force threshold and release the slide, and that
an actual pulling is performed. Every pulling episode in the
trial is reproduced, even if with different degrees of accuracy.
Overall, the mean absolute error between simulated and recorded
slide positions is 13%. The main discrepancies between the
simulated and the recorded data come from the fact the in
the simulated mode, the muscular activity is mostly directly
proportional to the neural activity, while in the recorded data
this is not always the case. While there is clearly a correlation
between presence of neural activity and motion, the intensity
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of such activity sometimes does not match the intensity of
the motion.

4.2. Local and Global Brain Simulations
After Stroke and Rehabilitation
4.2.1. BNM for Brain Connectivity Changes After

Stroke and Rehabilitation
Within the second pipeline of the framework (“Stroke models”),
in this subsection we simulated different extents of the brain
injury and rehabilitation-induced plasticity after stroke. The
results from the simulations are compared with the experimental
data (Figure 2), allowing us to find the best fit with the
empirical functional reorganization in the parameters space of
the structural changes in the white matter connectivity.

The averaged calcium activity has a local peak in the power
spectrum at around 3.5 Hz (Figure 9A), which is within the
band relevant for the resting state activity. We hence focused
the analysis of the experimental data on the upper delta band,
2.5 − 5Hz, where we consequently band-pass filter the signals.
From these we calculated the pair-wise PLV in each condition,
thus constructing the FC matrices for the cortical regions of
interest. Finally, to remove one condition, we calculate the
changes of the FC during stroke and recovery compared with
the healthy state, and this is the data feature that is then
compared with the simulated data. For this we use the model
described in section 3.3.1, to identified which scenarios of
structural alterations cause the best agreement with the data in
the modeled FC alterations (Figure 9). To minimize the effect of
tissue displacement after stroke (Brown et al., 2007), the analysis
includes only 12 ipsilesional regions located outside the stroke
core (Figures 9B,D).

The stroke affects not only the inherent activity of the rM1,
but all the connected regions. However, the precise breadth and
magnitude of the structural damage, namely which links and to
what extent are they disabled over time, is unknown. Similarly, it
is not knownwhich new links are created or reinforced during the
spontaneous recovery or what is modulated by the rehabilitation.
On the other hand, the stroke was shown to consistently change
the alignment of dendrites and axons toward the core in vivo
(Brown et al., 2007), possibly meaning altered SC, confirming
previous works on structural rewiring after stroke (Dancause,
2005; Nudo, 2013). Hence a numerical exploration of the
different possibilities of the stroke and rewiring in the large-scale
BNM is used to unveil the most probable structural alterations
associated with stroke and recovery. The calcium activity in the
upper delta band that was chosen for the analysis shows highly
coherent co-activation of different parts of the cortex, compared
with the surrogate time-series (Figure 9A). We compared the
functional reorganization associated with spontaneous recovery
after stroke (“stroke” group) to rehabilitation-supported recovery
(“rehab” group). The changes in the functional connectivity in
“stroke” compared to “healthy” mice (Figure 9B, left matrix)
indicate an increased co-activation of all but one somatosensory
areas in the chronic phase after stroke, while visual areas have
increased connectivity with all the regions, and reduced with the
retrosplenial cortex. In the rehabilitated mice (Figure 9B, right
matrix), the increase in connectivity of the somatosensory is

even higher across all the areas, and there is also an increased
FC of the visual areas between each other and with the
somatosensory regions.

A phenomenological neural mass is used to simulate how
ipsilesional FC is changed by stroke and rehabilitation based on
the modifications of the SC. For this, we systematically modified
the SC to account for various impacts of stroke and subsequent
recovery, in order to find the best match with the patterns
observed in the data. The damage due to the stroke is assumed
to be homogeneous across the links connecting rM1, but their
magnitude is varied from 10 to 100%. Similarly, after the recovery
it is assumed that 0 to 500% of the lost connectivity due to stroke
is restored homogeneously across the regions with preexisting
links toward rM1, proportionally to the initial strength of their
link to rM1. We thus explore the possibility of up to 5 times
of weights of the damaged links to be redistributed along the
rest of the links of the nodes directly connected with the infarct
area, in order to also allow for over-compensation of the lost
direct connectivity. The absence of time-delays and the focus on
the phase locking, makes the model insensitive on the chosen
frequencies (Petkoski et al., 2016), which are therefore fixed in the
simulations. The natural time-variability of parameters (Petkoski
and Stefanovska, 2012) is assumed to be stochastic (Petkoski
et al., 2018). We hence fix the level of the noise and we explore
the impact of the global coupling K and the described strategies
of the stroke and recovery. For each combination of parameters
we obtain the same metric of FC as for the empirical data. The
parameters space for the agreement between the modeled and
the experimental data about the changes in the FC for the two
parameters of the stroke-induced structural changes are shown
in Figure 9C.

Figure 9D illustrates the simulated FC for spontaneously
recovered “stroke” and “rehab” mice compared with pre-stroke
conditions (“healthy” group), for fixed global coupling and for
points in the parameters space of the stroke damage and rebound
connectivity that show the best fitting with the empirical data.
Comparing the simulated (Figure 9B), with the empirical FC
(Figure 9D), we see that the best agreement is achieved for the
FC of the somatosensory areas, while that of the visual cortex
areas could be improved by testing different damage and rewiring
strategies for those regions. From the model fitting for different
parameters, it is also visible that generally better fit is achieved if
the extent of damaged links is decreased due to rehabilitation-
induced remapping. There is also a similar tendency for the
rebound connectivity to be decreased due to recovery training,
although there are other possible recovery paths that keep
roughly the same level of rebound connectivity. In conclusion,
the systematic exploration of the model parameters to best fit
the empirical data, allows us to obtain the sufficient structural
changes that can reproduce the modulation in FC after stroke
and rehabilitation.

4.2.2. Simulation of the Calcium Activity of the

Peri-Infarct Network After Stroke
Stroke profoundly alters the functionality at the local level in
addition to long-range connections. The local network next
to the stroke core switches to slow wave activity (Butz et al.,
2004), a type of brain oscillation that is observed during deep
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FIGURE 9 | Simulated and empirical Functional connectivity and fitting the model. (A) Average power spectrum across the regions and the PLV values for each pair of

regions (thin lines) during healthy state, as well as the significance levels from the surrogates (thick dotted lines). Vertical black lines show the boundaries of the upper δ

band. (B) Relative changes of the FC at stroke and at rehabilitation compared to the healthy control for frequency band f = 2.5− 5Hz. (C) Cross correlation of the

model upper triangles of FC between the model and the data for fixed global coupling K = 4.3 and different levels of stroke (0 for complete damage and 0.9 for

damage of 10% of the links) and rebound connectivity (0 for no rewiring and 5 for overall rewiring with strength of 5 times of the damaged links). Parameters:

frequency f = 2Hz, noise strength D = 1. (D) Simulated relative changes of the FC at stroke and rehabilitation relative to the healthy control for the working points

marked with red squares in the parameters space in the panel (C). The abbreviations for the areas in (B,D) are: VIS, visual; RSP, retrosplenial; SS, somatosensory; al,

anterolateral; rl, rostrolateral; p, primary; pm, posteromedial; am, anteromedial; a, anterior; d, dorsal; agl, lateral agranular part; ptr, primary trunk; pll, primary lower

limb; pun, primary unassigned; pul, primary upper limb.

sleep, but also during anesthesia and other pathological brain
states (Sanchez-Vives et al., 2017). Understanding the changes
in the activity patterns at the level of the peri-stroke region
is necessary to get insight on the possible mechanisms that
underlie functional recovery. In order to explore the mechanisms
that drive the neuronal networks of the peri-stroke areas to
oscillate, we developed a model that reproduces the spiking
activity of a local network during slow oscillations and extended
the model to provide the two-photon calcium signal that one
would record from that network. We compared the simulated
calcium data with that of the two-photon experiments conducted
in anesthetized mice (see the “Stroke models” box in Figure 2).

We propose that a deficit in neuromodulation produced by

the decreased cerebral blood flow in the periphery of the region
affected by the stroke could be responsible for the emergence of

slow oscillations and the general flattening of the EEG through

an increase on the level of adaptation of the neurons (Nghiem
et al., 2020). To test this hypothesis, we developed a spiking
network model capable of reproducing the spontaneous activity
of a cortical network during different depths of anesthesia
(Figure 7). The strength of adaptation in the model can be
regulated to produce different types of oscillations. In particular,

we aimed at reproducing the changes in frequency of the slow
oscillation observed both in the two-photon and in the wide
field calcium imaging in vivo experiments when the anesthesia
is reduced (Figure 10A). When adaptation is strong, the model
of deep anesthesia produces slow oscillations at 2.1 Hz, while
decreasing the strength of adaptation (model of light anesthesia)
leads to slightly faster slow oscillations, at a frequency of
2.31 Hz (Figure 10B). Thus, we show that varying the strength of
adaptation allows to reproduce the increase in frequency of the
slow oscillations observed in the calcium imaging experiments
when decreasing the level of anesthesia.

5. DISCUSSION

In this paper, we explored the steps and methods that are
needed to develop a simulation model of a complete experiment.
We designed, validated and combined many components, even
though they are obviously not exhaustive to encounter for the
complexity of the real world.

We first simulated execution of goal-directedmovements with
displacement of objects in the virtual reality setting. Results show
that we could replicate with high accuracy the displacement of an
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FIGURE 10 | Simulation of peri-stroke local network oscillations: experiments and models. (A) Fluorescence traces obtained from three example cells (two-photon

signals) and from the entire field-of-view (wide field signals) recorded in mice under deep and light anesthesia. (B) Raster plot of the spikes (top) and averaged

two-photon calcium signals (bottom) computed for the inhibitory (FS, in red) and excitatory (RS, in green) populations in a model of deep or light anesthesia.

object by a virtual (healthy) mouse in the simulated environment
(Figure 2). While this simulation is only an approximation of
brain-body interactions, it showcases the capability to simulate
large scale neural networks as well as body dynamics in a
virtual environment.

The second pipeline of the framework involved modeling
brain injury. We validated the potential of a brain network
model to predict the long-range stroke-induced connectivity
changes measured in a real experiment. We also tested an
oscillatory spiking network model to simulate local peri-infarct
activity after stroke. In addition, this model could simulate
the fluctuation in calcium concentration due to spiking activity
of homogeneous neuronal network, thus allowing modeling of
calcium imaging data.

Toward the mechanistic understanding of behavior, few
studies already provide tools for closed loop neuroscience (Mulas
et al., 2010; Tessadori et al., 2012; Weidel et al., 2016, for a review
see Potter et al., 2014). In addition, recent studies took advantage
of virtual reality (VR) experiments conducted under controlled
environment, where behavioral strategies could be isolated and
tested (Dombeck and Reiser, 2012). In a VR experiment, a
simulated environment is updated based on the animal’s actions

(Ritter et al., 2001; Chronis et al., 2007; Reiser and Dickinson,
2008; Dombeck et al., 2010). Themain drawback of this approach
is that the activity of animals dictates not only the response of

the VR but also the properties of the neurons being measured.
As a consequence, the closed-loop VR system shall then be
optimized on-line based on the animal’s behavior, which is very
challenging. The approach we propose here instead is based on
an off-line simulation, that allows exploring multiple dimensions
in the parameter space of the dynamical model of mouse brain
and the environment. Anyway, both strategies are synergistic
with the research of effective functional brain machine interfaces
(Santhanam et al., 2006).

5.1. Movement-Driven Models
Closed-Loop
The results showed in section 4.1 demonstrate that is possible
to achieve realistic simulations by integrating some of the
components described previously. Accuracy of the closed-loop
simulation could be increased by removing some simplifications
that are currently in place. Some of them are related to
the physical models of the slide and of the musculoskeletal
embodiment. Regarding the former, a more accurate slide
simulation will allow to introduce friction effects that are
occurring in the real setup, thus we could avoid putting a muscle
activation level threshold for the release of the slide. Moreover,
more detailed spinal cord and musculoskeletal models will be
essential to simulate finer movements.

Results shown in Figure 8 demonstrate the system is able
to simulate the pulling task, albeit with some inaccuracies on
some pulling trials. A presumable cause of this inaccuracy can
be identified in the low number of neurons (less than 20) that
is possible to record during an experiment on the platform with
the 16 channels linear probe. For this reason, it is possible that
the selected units do not encompass the entire population of
neurons involved in the movement. This issue could be mitigated
by employing a multi-unit analysis, however, this will add to the
inputs a significant background activity which may not be useful
to generate the pulling movement.

Many parameters of the spinal cord circuitry can be adjusted,
depending on the inputs, to accurately reproduce the movements
recorded in the in-vivo experiments. While in this work the
tuning was done manually, a more effective and generalized way
would be to use different recordings, both neurophysiological
and kinematic, and employ an optimization similar to what has
been done in Sreenivasa et al. (2016).

The level of detail of the spinal cord circuitry can clearly
be improved. In this work we modeled a minimal set of
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FIGURE 11 | Future perspective of data and simulations. The scheme depicts the approach to build the framework from data to models and back. The workflow from

data to models and simulation in the Embodied brain closed loops is shown. The upper, green box shows the Stroke models closed loop, the lower, red box shows

the Movement-driven models closed loop. Colored images represent experiment data, brain and spinal cord models, and simulation of the environment (from left to

right). Connections between the components are presented as arrows: solid lines represent the output provided to other blocks; dashed lines indicate the output data

of the models that are used for comparison with real data for validation. In gray, models and connections that are still under development. The overlapping green and

red region pictures the future integration of the two pipelines, and in particular of the brain models within the NRP.

components that were capable of replicating experimental data

with a certain degree of realism. To achieve this, it was decided
not to arbitrarily increase the complexity of the models by adding

subcircuits whose impact cannot be clearly measured from a
comparison with experimental data. Among these, it is worth
mentioning the inclusion of proprioceptive feedback from Golgi
tendon organs, which could be potentially implemented with
computational models such as Mileusnic and Loeb (2006) or the
one already included in a spinal cord model in Mugge et al.
(2010). Perhaps more interesting is the modulation of muscle
spindle sensitivity from γ -motoneurons, as this is crucial in the
control of both voluntary and involuntary movements. While
including a population of γ -motoneurons could be done by
replicating populations of α-motoneurons, measuring the impact

of adding this component is not trivial, especially considered
that there is no experimental data measured, in the rehabilitation
setup, that can be used to validate the addition. As such, we
decided not include γ -motoneurons in the spinal cord circuitry.

5.2. Stroke Models Closed-Loop
AMBA was previously tested and demonstrated to have a
predictive value for the resting state dynamics in healthy
conditions, compared with the gold standard individualized
diffusion tensor imaging connectome (Melozzi et al., 2019). One
of the main aims of the stroke modeling pipeline in this study
is to validate the use of AMBA in the cases when there are
significant changes in SC as compared to the healthy state for
which it was obtained (Oh et al., 2014). This requires finding

Frontiers in Systems Neuroscience | www.frontiersin.org 17 July 2020 | Volume 14 | Article 31209

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Allegra Mascaro et al. Toward Closed-Loop Experiments and Simulations

the most probable structural alterations corresponding to the
stroke and recovery. From the perspective of the integrative
neuroscience, this is especially important as it will allow further
application of these altered connectomes validated from the
resting state FC, to generate the particular brain dynamics
associated with active forelimb pulling on the M-platform by
stroke and rehabilitated mice.

To this aim, the present study suggests that rehabilitative
training could reinforce the connectivity between motor and
visual areas. The iterative loop between experiments and
modeling goes toward the confirmation of this hypothesis
via stimulation experiments. New experiments shall verify
the necessity of this feature in promoting the recovery by
stimulating the connections between motor and visual cortex,
and modulation of FC could be achieved via optogenetic
stimulation, which recently showed to be a promising approach
in stroke recovery (e.g., Cheng et al., 2014; Pendharkar et al.,
2016; Conti et al., 2020).

The results from the model identify routes from the stroke
to the recovery in the parameter space that can be related to
neurophysiological quantities, such as the whitematter tracts.We
could thus determine links that need to be restored, or prevented
from being established, for a successful recovery. One such a
recovery path proposed by the model is the rebound in SC after
rehabilitative training, and this is especially true for the links
involving the visual-associated areas. The proposed rebound is
due to newly established links from the regions afferent to the
site of the stroke. This can lead to overall overcompensation
for the SC, and some of these scenarios could be possible
paths for recovery. However, it remains to be seen whether the
structural changes of such magnitude can be achieved. Several
studies previously showed that axonal growth is stimulated by
neurorehabilitative activities after stroke, and that sprouting can
extend to widespread brain systems (Carmichael et al., 2017).
New experiments aimed at verifying the SC modifications shall
verify the hypothesis on the importance of modified connectivity
in the visual areas for recovery. In addition, stimulation
experiments can also strengthen certain links, and with our
modeling framework we can virtually compare the effects of each
such modification to the observed dynamics.

For the best fitting of the data one would also need to allow
different levels of the global coupling, which governs the global
level of synchronization and that is already shown to be increased
during stroke (Falcon et al., 2016; Corbetta et al., 2018), thus
decreasing integration and information capacity (Adhikari et al.,
2017) and modularity (Falcon et al., 2015). Thus, one could
more precisely identify the path from stroke to recovery for a
wider parameters range. This also includes numerically testing
different scenarios for heterogeneous connectivity reinforcing
(Nudo, 2013) such as reinforcing of contralateral links in general,
or those to contralateral stroke region only, or toward the
nodes (ipsi-, contra-lateral, or both) that were connected to the
damaged region prior stroke.

Possible problems could arise from the alignment of the
experimental data, especially after the stroke, due to the
shrinkage and the movement of the tissue (Brown et al., 2007;
Allegra Mascaro et al., 2019). We have tried to avoid this by

excluding from the analysis the regions adjacent to the stroke,
but this reduces the predictive value of the model due to smaller
number of analyzed regions.

Finally, these experiments provide a picture of the ipsilesional
functionality after stroke and rehabilitation, but many other
regions are involved, including the contralesional hemisphere
(see, for instance, Dodd et al., 2017). In the next experiments, the
focus shall be on recording with a higher sampling rate to capture
wider spectrum of brain dynamics, and on enlarging the field-
of-view of the wide-field imaging setup to provide longitudinal
pictures of cortical functionality over both hemispheres. The
latter should also refine the fitting across parameters, which
now contains large areas or similar level of predictability, thus
offering more precise recovery path. Individualized connectome
data by Diffusion Tensor Imaging during the recovery process
is another aspect of the future experiments that should test the
predicted changes in the structure that we propose to be the cause
of the observed functional alterations of different conditions.
In addition, higher resolution SC performed with light-sheet
microscopy on individual mice (Allegra Mascaro et al., 2015)
could test the model prediction at the final time point of the
experiment. As a final step, an individualized therapy could be
proposed targeting specific parts of the brain (Spalletti et al., 2017;
Allegra Mascaro et al., 2019; Conti et al., 2020), depending on the
location and the size of the stroke.

5.3. Integration
We propose viable strategies to integrate the brain models
described here and to embed them within the Embodied brain
framework on the NRP (Falotico et al., 2017) (pictured by
the overlapping green and red boxes in Figure 11). Before
applying it to the simulation of the whole-brain dynamics,
the spiking neurons model shall be extended to include
the heterogeneous long-range connections either via mean-
field approximation or by means of co-simulation with other
neural masses (see the spiking neurons model that receives
calcium imaging data in Figure 11). In addition, a model
for embedding spiking model modules into the whole brain
model is currently under development (displayed as a gray
arrow from the spiking neurons to BNM in Figure 11). This
work includes validating neuronal mass models against high-
dimensional neuronal networks. Once available, this tool will
allow bridging the scales of brain models with different levels of
description, and they will be then implemented in the NRP and
integrated into the Embodied brain framework (gray arrows in
upper box of Figure 11).

To integrate the large-scale BNM with the proposed spinal
cord model, we propose to modulate the activity of the
spiking neurons in the spinal cord by the output of the
cortical regions, mainly those related to the motor activity
(displayed by gray arrows in the Stroke models closed loop,
green upper box in Figure 11). In particular, the firing rate of
the neurons in the spinal cord that triggers the movements
on the NRP can be driven by the mean activity of the
cortical motor regions, or by some specific patterns of their co-
activation, such as a high-level activity propagation, similar as
the one observed during the movements. In this way, the mean
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neuronal activity of the brain regions at different conditions
would trigger movements at the NRP using the activity of
the spinal cord. For the feedback link of the sensory activity,
we envision the information about muscle activity and limb
displacement, which is encoded into the firing patterns of the
spinal cord spiking neurons, to directly modulate the mean
activity of the sensory motor regions (displayed as a dashed
gray arrow in the Stroke models closed loop, upper box in
Figure 11). This on the other hand would impact the overall
brain network dynamics, including the activation patterns of the
motor regions.

To allow the flow of information from the brain to the
virtual environment, we anticipate that the next step will
be the integration of a spiking network model of motor
areas upstream to the spinal cord model. This data-driven
model of the motor cortex will include populations of
pyramidal neurons and interneurons that can be functionally
attached to different lower circuits (displayed by gray arrows
in the Movement-driven closed loop, red lower box in
Figure 11). This integration in the proposed framework can
be an effective strategy to effectively close the Embodied
brain loop.

6. CONCLUSIONS

To summarize, in this study we proposed a methodological
framework (named Embodied brain) to investigate a “brain in the
loop” by a constructive refinement of experiments and simulation
of an embodied mouse.

Our findings suggest that simulation of real experiments
within the proposed framework will help better understand the
complex mechanism that underlies the generation of behavior.
Nevertheless, the actual advantages of the “Embodiment”
approach, still under construction, are largely unexplored. Even
though some aspects of complex animal behavior may be
represented with good accuracy by modeling single neural
components, without embedding the neural simulations in
a physical embodiment it is impossible to show the effect
of such neural systems on the body and the surrounding
environment. In our study, it would be impossible to assess
whether or not the neural models are capable of performing
the pulling task with any degree of accuracy, computed on
the kinematic data. Furthermore, we believe that new features
[e.g., activation of different brain regions for performing the
same task due to degeneracy (Price and Friston, 2002) and
its impact for stroke and recovery] will be disclosed by
the simulation of the entire experiment. In conclusion, the
framework shown in this study will advance the field by
formulating new hypothesis on the mechanism underlying goal-
directed voluntary movements, to be validated on ad hoc
designed experiments. In general, the framework could simulate
new types of experiments that cannot be run in the real word.
Last but not least, the virtual environment will be an essential
tool to reduce the number of animals used in the experiments,
thus making the “Reduction” rule on animal experimentation a
feasible goal.
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