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The immune system provides the host organism with defense mechanisms against 
invading pathogens and tumor development and it plays an active role in tissue and 
organ regeneration. Deviations from the normal physiological functioning of the 
immune system can lead to the development of diseases with various pathologies 
including autoimmune diseases and cancer. Modern research in immunology is 
characterized by an unprecedented level of detail that has progressed towards 
viewing the immune system as numerous components that function together as a 
whole network. Currently, we are facing significant difficulties in analyzing the data 
being generated from high-throughput technologies for understanding immune 
system dynamics and functions, a problem known as the ‘curse of dimensionality’.

As the mainstream research in mathematical immunology is based on low-resolution 
models, a fundamental question is how complex the mathematical models should be? 
To respond to this challenging issue, we advocate a hypothesis-driven approach to 
formulate and apply available mathematical modelling technologies for understanding 
the complexity of the immune system. Moreover, pure empirical analyses of immune 
system behavior and the system’s response to external perturbations can only 
produce a static description of the individual components of the immune system 
and the interactions between them. Shifting our view of the immune system from 
a static schematic perception to a dynamic multi-level system is a daunting task. 
It requires the development of appropriate mathematical methodologies for the 
holistic and quantitative analysis of multi-level molecular and cellular networks. 
Their coordinated behavior is dynamically controlled via distributed feedback and 
feedforward mechanisms which altogether orchestrate immune system functions. 
The molecular regulatory loops inherent to the immune system that mediate cellular 
behaviors, e.g. exhaustion, suppression, activation and tuning, can be analyzed using 
mathematical categories such as multi-stability, switches, ultra-sensitivity, distributed 
system, graph dynamics, or hierarchical control.
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Editorial on the Research Topic

Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease

The immune system is a dynamic and multi-level biological system that protects host organisms
against invading pathogens and tumor development, and plays an active role in tissue homeostasis
and organ regeneration. As such, it needs to respond to a vast diversity of threats while
minimizing damage to its own cells and organs. To perform this task, it is organized as a tightly
regulated, hierarchically controlled and spatially distributed network with soluble and cellular
components. Recent technical advances including life-imaging, multi-color phenotyping, and
“omics” technologies provide with an unprecedented level of detail of a functional immune system.
Since mathematics is the universal language for expressing causal and functional relationships
between observations, it is natural to use mathematical tools for mechanistically describing
immune system dynamics and functioning. However, as both the immune system’s complexity and
experimental data sets are huge, it is a substantial challenge to connect these in a mechanistic way.
The major problems in this respect are known as “curse of dimensionality” and “combinatorial
explosion.” The mainstream research in this field is still based on low-resolution models that often
provide only limited descriptions of individual immune system components and their interactions
after external stimulations. Shifting this simplistic perception of the immune system to a dynamic,
multi-level, and spatially resolved system description with molecular and cellular networks is
daunting and requires the combination of a solid understanding of the underlying systems biology
with the application of appropriate mathematical methodologies. This may ultimately improve the
biological relevance of the generated models and contribute to a better mechanistic understanding
of immune system functioning as well as making biologically and clinically relevant predictions for
diagnosis and treatment of human diseases.

The aim of this Research Topic was to present current state-of-the-art research on using
mathematically driven exploration of the complexity of the immune system. A series of articles
were collected, giving a comprehensive overview of conceptual frameworks and emerging
topics including the “spatial organization of the immune system” and “multifactorial immune-
related diseases.”

In his conceptual review, Grossman focused on the “smart surveillance” theory of how
T cells individually and collectively respond to self- and foreign antigens depending on
contextual parameters. He highlighted that the physiological messages to cells are encoded not
only in the biochemical connections of sets of signaling molecules to the cellular machinery
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but also in their magnitude, kinetics, and time and space
contingencies. The “dynamic tuning hypothesis” is a central
component of his theory and sets the ground for further
theoretical and experimental exploration of immune tolerance,
homeostasis, and diversity. Moreover, Grossman used his
conceptual postulates to discuss conflicting models of HIV
pathogenesis. Castiglione et al. addressed the underlying
mechanism of cross-reactive immune responses and antigenic
sin that may be beneficial, neutral, or detrimental for the host.
They studied the relationship of clonal dominance with memory
cell attrition with an agent-based model. They propose that
attrition could serve as a curbing mechanism for the memory-
anti-naive phenomenon.

Several studies describe novel modeling tools and their
applications. Lanzarotti et al. developed a model for the
prediction of cognate T cell receptor (TCR) targets. It is based
on the similarity to a database of TCRs with known targets and
may have important implications for the rational design of T cell-
based therapies. With their time-resolved experimental data of
splenic transcriptomes from mice infected with the lymphocytic
choriomeningitis virus (LCMV), Pedragosa et al. addressed
the problem of linking gene expression changes from whole
tissue with immune cell dynamics. To this end, they combined
weighted gene co-expression network analysis—with digital cell
quantifier—providing a novel approach to bridge the genomic
with the cellular level during antiviral immune responses.
Meier-Schellersheim et al. discuss how mechanistic rule-based
modeling can be used to test immunological hypotheses through
quantitative simulations. They considered as an example G-
protein-coupled receptor signaling that is utilized by cells to
respond to a wide range of extracellular stimuli and explore the
cross-talk of multiple cytokine pathways, thereby providing basis
for deriving cell population behavior from single-cell models and
bridging a current scale gap. Finally, Enciso et al. demonstrated
how discrete dynamic models can be transformed to continuous
dynamicmodels using Fuzzy logic. This approach enables a better
description of growth and differentiation of T lymphocytes in
various microenvironments.

The consequences of an uneven partitioning of molecular
contents on cell fate regulation were studied by Girel et al.
They introduced a multi-scale mathematical model of CD8T
cell responses in lymph nodes and showed that the degree of
unevenness of molecular partitioning affects the outcome of the
immune response and memory cell generation. Huang et al.
considered virus and interferon spread within an infected host as
two competing processes and analyzed a well-mixed vs. a spatially
segregated scenario. They defined the conditions under which
the interferon response works most effectively and suppresses
the infection.

A series of six publications considered the architecture
and functioning of lymph nodes within an immune response.
Novkovic et al. reviewed available computational lymph node
models with the focus on the structure and organization of
stromal cells. The authors pointed out that hybrid- and multi-
scale models in combination with high-resolution imaging will
be important to unravel the complex immune mechanisms that
are initiated in lymph nodes. The study by Moses et al. is

focused on the definition of rules specifying the search strategies
of T cells for antigen. They discovered striking similarities
between the strategies ant colonies use to forage and the immune
cells use to find pathogens. The strategies are based on a
variety of search behaviors including directional movement using
chemokine gradients, random motion using correlated random
walk, and movement along physical networks. Kalogiros et al.
developed a mathematical framework to characterize spatio-
temporal chemokine gradient formation. With their Bayesian
parameter inference approach, they provided a building block
for subsequent multi-scale modeling. Azarov et al. developed an
agent-based model to investigate the role of T cell-dendritic cell
(DC) chemoattraction in T cell priming in the lymph node. They
stressed that the balance of naive and activated antigen-specific T
cells that are both chemotactically attracted to the neighborhood
of DCs determine the overall amplitude of the specific T cell
response. Grebennikov et al. developed a physics-based model of
T cell motility in lymph nodes. The cell dynamics is determined
by a superposition of autonomous locomotion, intercellular
interactions, and viscous dumping. The model was then used to
predict the required CD8T cell frequencies necessary to detect
HIV-infected cells before they start releasing virus particles.
McDaniel and Ganusov studied lymphocyte recirculation in
sheep. With a series of mathematical models, they estimated the
distribution of residence times in ovine lymph nodes.

Finally, six publications addressed various aspects of multi-
factorial immune-related phenomena and diseases. Presbitero
et al. described the role of alkaline phosphatase (AP) during
cardiac surgery. They developed a mathematical model of
systemic inflammation and suggested that supplemented
AP provides a patient benefit by inducing liver-type tissue
non-specific AP production. Coulibaly et al. formulated a
mathematical model that describes the molecular mechanisms
involved in the IL-15-induced signaling cascade of the hypoxia-
inducible factor 1α (HIF-1α) pathway in natural killer cells.
In combination with experimental work, they identified
mammalian target of rapamycin (mTOR), the nuclear factor-kB
(NF-kB), and the signal transducer and activator of transcription
3 (STAT3) as central regulators of HIF-1α accumulation.
Benchaib et al. studied the interaction between cancer and
immune cells in the lymph node. They delineated with
mathematical models the conditions for the three possible
outcomes, namely, tumor elimination, equilibrium, and tumor
evasion. The study of Blickensdorf et al. compared fungal
infections with Aspergillus fumigatus in murine and human
lungs. They analyzed the spatial infection dynamics with
a hybrid agent-based model that accounts for the specific
lung physiologies. Infections are more efficiently cleared in
mice due to their smaller alveolar surface areas. Peskov et al.
reviewed the state of the art of quantitative systems models
describing tumor and immune system interactions and discussed
approaches for biomarker identification. Finally, Nikolaev et al.
studied fundamental interactions between a pathogen with a
tumor. Their work is based on the recent finding that an acute
influenza infection in the lung promotes melanoma growth
in the dermis of mice. Using models of complex intracellular
biochemical reaction networks, they analyzed virus-specific

Frontiers in Immunology | www.frontiersin.org 2 January 2020 | Volume 10 | Article 29446

https://doi.org/10.3389/fimmu.2019.02522
https://doi.org/10.3389/fimmu.2019.01513
https://doi.org/10.3389/fimmu.2019.02080
https://doi.org/10.3389/fimmu.2019.01002
https://doi.org/10.3389/fimmu.2019.02268
https://doi.org/10.3389/fimmu.2019.01927
https://doi.org/10.3389/fimmu.2019.00230
https://doi.org/10.3389/fimmu.2019.01736
https://doi.org/10.3389/fimmu.2018.02428
https://doi.org/10.3389/fimmu.2019.01357
https://doi.org/10.3389/fimmu.2019.01986
https://doi.org/10.3389/fimmu.2019.01289
https://doi.org/10.3389/fimmu.2019.01213
https://doi.org/10.3389/fimmu.2019.01492
https://doi.org/10.3389/fimmu.2018.02342
https://doi.org/10.3389/fimmu.2019.02401
https://doi.org/10.3389/fbioe.2019.00104
https://doi.org/10.3389/fimmu.2019.00142
https://doi.org/10.3389/fimmu.2019.00924
https://doi.org/10.3389/fimmu.2019.00004
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bocharov et al. Mathematical Modeling of Immune System

and melanoma-specific CD8T cells in the lung. They proposed
that the observed melanoma growth results from sequestering
of tumor-specific effector cells in the lung due to their loss
of motility via PD-1 interactions. In contrast, virus-specific
T cells remain functional and clear the influenza infection
since they adapt to the strong stimulation by their cognate
antigen locally.

Collectively, this Research Topic highlighted the ongoing
attempts to quantitatively describe and mechanistically
understand the complex interactions inherent in immune system
functioning during normal conditions and in disease. While
far from providing a complete view, important mathematical
elements of systems immunology are emerging that are based
on genuine collaborations between experimentalists and applied
mathematicians. Only with such multi-disciplinary efforts will
we be able to enrich immunological research with analytical
and predictive modeling tools that complement the impressive
advances in observational technologies. This area of research is
and will continue to flourish.
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Alkaline phosphatase (AP) is an enzyme that exhibits anti-inflammatory effects

by dephosphorylating inflammation triggering moieties (ITMs) like bacterial

lipopolysaccharides and extracellular nucleotides. AP administration aims to prevent

and treat peri- and post-surgical ischemia reperfusion injury in cardiothoracic surgery

patients. Recent studies reported that intravenous bolus administration and continuous

infusion of AP in patients undergoing coronary artery bypass grafting with cardiac

valve surgery induce an increased release of liver-type “tissue non-specific alkaline

phosphatase” (TNAP) into the bloodstream. The release of liver-type TNAP into

circulation could be the body’s way of strengthening its defense against a massive

ischemic insult. However, the underlying mechanism behind the induction of TNAP is

still unclear. To obtain a deeper insight into the role of AP during surgery, we developed

a mathematical model of systemic inflammation that clarifies the relation between

supplemented AP and TNAP and describes a plausible induction mechanism of TNAP

in patients undergoing cardiothoracic surgery. The model was validated against clinical

data from patients treated with bovine Intestinal AP (bIAP treatment) or without AP

(placebo treatment), in addition to standard care procedures. We performed additional

in-silico experiments adding a secondary source of ITMs after surgery, as observed in

some patients with complications, and predicted the response to different AP treatment

regimens. Our results show a strong protective effect of supplemented AP for patients

with complications. The model provides evidence of the existence of an induction

mechanism of liver-type tissue non-specific alkaline phosphatase, triggered by the

supplementation of AP in patients undergoing cardiac surgery. To the best of our

knowledge this is the first time that a quantitative and validated numerical model of

systemic inflammation under clinical treatment conditions is presented.

Keywords: alkaline phosphatase, innate immune response, cardiac surgery, ODE model, in-silico, clinical trial
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INTRODUCTION

Alkaline Phosphatase (AP) is an enzyme originally known for
its pivotal role in skeletal mineralization (1) but also for its
capability to reduce inflammation. AP is in fact capable to reduce
inflammation in animals by dephosphorylating inflammation
triggering moieties like bacterial lipopolysaccharides (LPS) and
extracellular nucleotides (2–9). In addition, several studies
demonstrated that AP has a key function in maintenance and
restoration of physiological barriers (10) in addition to this
anti-inflammatory role of AP. In fact, many, if not all of these
barriers may become hyper-permeable and or dysfunctional
during such systemic ischemic and inflammation triggering
insult. Extracellular nucleotides, like Adenosine Triphosphate
(ATP) and Adenosine Diphosphate (ADP), having pivotal energy
housekeeping functions, intracellularly act as ITM as soon
they have leaked out of cells exposed to ischemic insults
(11–13). LPS (14), a major component of the Gram negative
bacterial outer membrane that is responsible for mediating
septic shock (15). These inflammation triggeringmoieties (ITMs)

are pro-inflammatory signals that may start local and systemic

inflammatory responses in the innate immune system (16–18).
Clinical trials involving the parenteral administration of AP to

patients with severe sepsis, showed significant improvement in
renal function (19, 20).

Humans have four distinct AP isozymes: tissue-nonspecific
AP (liver/bone/kidney type AP), which is the most predominant
circulating form of isozyme, intestinal-, placental-type, and germ
cell AP. The anti-inflammatory effects of AP have been confirmed
in settings with intestinal-, placental-, and liver-type AP.

Coronary artery bypass grafting (CABG) is one of the most
common types of open-heart surgery which very often triggers
a systemic inflammatory response, the clinical impact thereof
is specific for the specific patient and depends on multiple
factors like age, underlying diseases, and other confounding
factors. The average annual number of CABG procedures in
Western practice is about 62.2 per 100 000, ranging from
29.3 procedures in Spain to 135.4 procedures in Belgium
(21). According to the Society of Thoracic Surgeons National
Database, CABG-mediated complications contribute to 1.8%
in-hospital and 2.2% operative mortalities, but caused 24%
post-operative atrial fibrillation incidences in 151,474 patients
in 2015 (22). We focus on the experiments by Kats et al.
where we assume a systemic insult due to the amounts of
ITMs introduced and generated peri- and post-cardiac surgery.
Cardiac surgery invokes a vigorous systemic inflammatory
response where massive amounts of ITMs are simultaneously
generated from various sources in the body: (a) CABG and
valve surgery under CPB (Cardio Pulmonary Bypass) induces
sheer stress on blood cells damaging them and releasing a
massive amount of ITMs in the process, (b) surgical area
where tissue is damaged locally, and (c) reperfusion damage by
accumulated ITMs that have crossed the gut barrier during hypo-
perfusion and become systemically available upon re-circulation
(23). The body thereby deals with a massive amount of ITMs
that enter the circulation and are transported into the tissue
via blood flow, and circulate in the blood stream due to the

effects of cardio pulmonary bypass grafting and reperfusion
injury.

De novo synthesis and release in circulation of AP induced by
AP prophylaxis could be the body’s way to improve its defense
mechanism. A study in 2012 by Kats et al. (24) demonstrated
that intravenous bolus administration and continuous infusion
of bovine intestinal Alkaline Phosphatase [bIAP, bRESCAP, and
APPIRED studies by Alloksys Life Sciences (7, 9)], in patients
undergoing CABG (with or without valve surgery) results in
the release of endogenous tissue non-specific AP (TNAP), most
likely liver-type AP. This release exhibits a unique feat that was
not before observed in septic shock patients (19). Induction of
liver-type non-specific AP supports the idea that AP contributes
significantly to the immune response. Additional Phase III
clinical trials are currently on the way to confirm the beneficial
effects of AP previously reported in CABG and valve surgery.

If indeed excess AP or the release of additional liver-type
TNAP is beneficial to the clinical outcome of patients undergoing
major surgeries as well as for individuals suffering from acute
and chronic inflammation, then there is an urgent need to
develop computational models that can reproduce and predict
the dynamics of induced TNAP in circulation. The developed
model could then pave way to better understand when and more
importantly how much of this liver type TNAP is expressed and
released back into circulation through in-silico experiments. We
develop a new model of systemic inflammation based on existing
models of the innate immune response to acute inflammation
(25–32), with the purpose of describing, and gaining further
insight on the dynamics of the innate immune system response
through in-silico experiments (33). We thereby report, to the best
of our knowledge, the first calibrated and validated mathematical
model for systemic inflammation.

The human innate immune system (HIIS) is the body’s first
line of defense to an infection or trauma. This is commonly
manifested in the form of acute inflammatory response,
resulting from these and other oxidative stress conditions (34).
Numerous studies were reported aiming to understand the
acute inflammatory response based on the response of a single
population of white blood cells to invading pathogens (25–
29). Unlike in previous models that only deal with a general
population of invading and invaded entities, Dunster et al.
(30) distinguished between populations of white blood cells by
incorporating activated macrophages, activated, apoptotic, and
necrotic neutrophil populations. More specific mathematical
models of HIIS that further distinguish white blood cells into
distinct populations have also been developed. For instance,
Su et al. (31) used a system of partial differential equations
(PDE) that capture the spatial and temporal dynamics of
the innate and adaptive immune response via the following
stages: recognition, initiation, effector response, and resolution
of infection. This model of the human innate immune response
was adapted by Pigozzo et al. (32) who focused on the dynamics
of LPS, neutrophils, pro-inflammatory, and anti-inflammatory
cytokines.

This paper focuses on how the concentrations of the
innate immune response components evolve over time. Partial
differential equations (PDEs) provide ways to analyse both time

Frontiers in Immunology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 23429

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Presbitero et al. Supplemented AP Supports Immune Response

and spatial dynamics of key aspects of HIIS. Since we are
modeling a systemic insult, where a massive amount of ITMs
are coming from various sources in the body and inflammation
is not confined to a specific tissue or organ, we can assume
that these moieties are present and distributed all throughout
the organism. Thus, we regard the “tissue” as representative of
the entire body. Given this assumption, the role of microscopic
spatial effects for the dynamics of the system is negligible and
we use ordinary differential equations (ODEs) to describe the
dynamics of the immune response. However, we take into
account spatial effects by modeling various compartments (liver,
blood stream, and tissue) and the transport of cells andmolecules
between them due to the inflammation in blood and tissue.
This compartmentalization of the organism allows us to account
for chemotaxis at a macroscopic level using the change in
permeability of the endothelium during the different stages
of inflammation to affect the transport of immune cells and
molecules between blood and tissue.

We therefore construct the HIIS model from Reynolds et al.
(28), Su et al. (31), and Pigozzo et al. (32) by introducing the
following key differences: compartmentalization of the organism
into liver, blood and tissue; introduction of the dual pathway
to neutrophils death, necrosis being pro-inflammatory and
apoptosis being anti-inflammatory; introduction of the anti-
inflammatory action of AP and of the mechanism of AP
induction; the dilution of cellular components in tissue typical
of systemic inflammatory responses as opposed to the increased
concentration of cellular components in a localized region typical
of acute inflammatory responses.

MATERIALS AND METHODS

Clinical Trial Data
Patients undergoing open-heart surgery were stratified according
to a risk assessment score system called EuroSCORE (Type
1). EuroSCORE is a risk measure for severe complications
(mortality) associated with this type of surgery. In addition
to standard care treatment, patients undergoing cardiothoracic
surgery were divided into two distinct categories based on
the type of treatments they received: (a) placebo treatment
(physiological buffer containing no AP) and (b) bovine intestinal
AP (bIAP) treatment in the same buffer.

In the APPIRED I study patients with a 2 < EuroSCORE
≤ 6, were initially given either placebo or 1,000 IU of Bovine
Intestinal AP (bIAP) followed by a continuous infusion during
36 h of either placebo (n = 31, with mean EuroSCORE = 3.7 ±

1.4) or 5.6 IU per kg body weight per hour (total 9,000 IU) (n =

32, with mean EuroSCORE= 3.6± 1.2).
In the APPIRED II study patients with a EuroSCORE of

≥ 5, were initially given either placebo (n = 25, with mean
EuroSCORE 5.6 ± 2.6) or 1,000 IU of bIAP followed by a
continuous infusion during 8 h (total 9,000 units) (n = 27 with
mean EuroSCORE 5.8± 3.1) (total 9,000 units).

Where in APPIRED I, 63 patients underwent CABG only, in
APPIRED II a total of 52 patients were included that underwent
CABG combined with valvular surgery under CPB. This type of
combined surgery is associated with an increased risk.

Further details of the APPIRED clinical trials have been
described by Kats et al. (9). The induction of endogenous alkaline
phosphatase in this trial was described in Kats et al. (24). Primary
endpoints were cytokine levels peri- and post- surgery next to
clinical outcome.

The APPIRED II data was used in sections Human Innate
Immune SystemModelWith the InductionMechanism of TNAP
1 and HIIS Model Without the Induction Mechanism of TNAP 2
to validate the model. Data relative to APPIRED I was not used
to validate the model due to the limited number of data points
relative to AP. However, the secondary peak of ITMs observed
in 16% of the patients in APPIRED I was used qualitatively to
investigate the case of patients with complications in APPIRED
II by adding a secondary source of ITMs in-silico in section
Predicting The Innate Immune Response For Patients Having
Excess ITMs Using Different AP Treatment Regimens. This
secondary source of ITMs is relative to the documented median
peak IL6 concentration in septic shock patients in Damas et al.
(35).

Patients underwent CABG combined with valvular surgery.
CABG pumps (heart-lung machine) were used during the
surgery. The operations were primary, therefore operated
specifically for open heart surgery, and were planned prior to
the actual surgery, hence non-emergent. An intra-aortic balloon
pump was not used during the surgery, except for one patient
who exhibited cardiogenic shock with multi-organ failure. The
surgery lasted for an average of 4.7 ± 1.4 h. The average
perfusion time was 134 ± 40 min and average cross clamping
time was 105 ± 40 min. Pre-medication such as relaxants,
anesthetics, antibiotics, and blood products such as red blood
cells or platelets were given prior and during the CABG surgery.
We summarize patients’ demographics, type and method of
cardioplegia used, and patients’ medical history in Tables 1–3 of
the Supplementary Material respectively.

The data used was approved by the Ethics committee with
IRB approval number M09-1965. The set-up of the study as
well as appropriate consent procedures, have been reviewed and
approved by the Institutional Review Board (METC). The central
Independent Ethics Committee of The Netherlands (CCMO) has
been informed. Approval from the METC of ZOL Genk was
obtained in 6. March, 2012. The Belgium Competent Authority
office: FAGG (Federaal Agentschap voor Geneesmiddelen en
Gezondheidsproducten) was informed about theMETC approval
to initiate the study.

Biological Mechanism and Model

Description
The HIIS model is constructed based on the biological
mechanisms that occur in three separate compartments—blood,
tissue, and liver. The blood and tissue are separated by the
endothelial lining that acts as a modulated barrier toward
accessing blood circulation derived components like immune
cells. Models of acute inflammation commonly neglect the
dynamics of immune cells in the blood compartment under
the assumption that it plays a minor role on the dynamics of
the innate immune response, acting as a reservoir of immune
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cells. Systemic inflammation is considerably different and it is
characterized by a dilution of the immune cells in tissue caused
by the delocalized inflammation. Additionally AP is known to act
on ITM both in blood and in tissue. For this reason it is crucial to
model both blood and tissue compartments to accurately capture
the dynamic of resolution of a systemic inflammatory response.

Blood Compartment
Upon a systemic insult cytokines are released by both tissue
cells and immune cells in tissue, with different rates. Cytokines
then migrate first toward the endothelial barrier, with which
they interact changing its permeability to recruit more immune
cells into the inflamed tissue, and then in part migrate into the
bloodstream. Since we only have data about the concentration
of cytokines in blood, our model describes the dynamics of
cytokines (IL-6 and IL-10) in the bloodstream. The rates of
cytokines production used in our model represent the rate with
which cytokines reach the bloodstream after being secreted by
macrophages and necrotic neutrophils in tissue. These rates thus
take into account not only the secretion rate by each cell type in
response to the inflammatory state (presence of ITMs) but also of
the mechanism of transport from tissue to the bloodstream.

In our model we assume that AP is the only component of
the immune system that interacts with ITMs in the bloodstream,
forming ITM-AP complexes that are later removed in the liver
by Kupffer cells. Similarly to immune cells, the transport of AP
and ITMs from the bloodstream into the tissue is controlled by a
permeability factor.

Tissue Compartment
The innate immune response triggered in tissue by invasive
cardiac surgery is shown in Figure 1. We assume that the
presence of ITMs in tissue is mostly due to the migration
into the tissue of ITMs released in bulk in the circulation
through damaged blood cells and gut hypo-perfusion and later
transported via the bloodstream. ITMs in tissue are also due
to local tissue damage caused by the invasive surgery, but
we consider this amount negligible compared to the other
two sources of ITMs. An inflammatory response is triggered
as soon as ITMs activate resting macrophages (MR) leading
them to differentiate into “activated” macrophages residing in
tissue (I). Activatedmacrophages (MA) secrete pro-inflammatory
cytokines (CH), which result in increasing the permeability
of the endothelial barrier (II) via a series of intermediate
stages. Consequently, resting neutrophils (NR) in circulation
are primed by circulating ITMs and then enter the tissue
through the endothelial barrier via a process called “diapedesis”
(III). In the context of the computational model, resting
neutrophils are only rendered active when they enter the
tissue through the endothelial barrier. Activated neutrophils
(NA) phagocytose and/or release their granules to neutralize or
antagonize inflammation (IV). If the inflammation is cleared,
the neutrophils go into apoptosis or programmed death (V).
Activated macrophages remove the apoptotic neutrophils (NDA)
by phagocytosis and in the process induce an anti-inflammatory
effect as shown in Figure 1 by the green arrows (VI). If
inflammation is too intense and not resolved rapidly, the

neutrophils go into a necrotic (NDN) state (designated by the
red arrows in Figure 1), which releases additional ITMs in the
tissue (VII). The presence of yet another batch of ITMs in
the tissue induces ongoing inflammatory responses that causes
tissue damage, which in turn perpetuates overall inflammatory
response bymacrophage activation and neutrophil influx into the
local inflamed tissue areas (VIII).

Liver Compartment
At the onset of surgery a very high concentration of ITMs is
released in the blood stream as a consequence of the damage
to blood cells caused by the cardiac surgery bypass. In response
to this massive ITM insult the liver releases all its stored AP
(∼5,300 IU) into the bloodstream. After 2–4 h the liver is able
to supply newly synthesized AP again (36, 37). Endogenous
AP is naturally produced by the body and is highly expressed
at physiological barriers like the gut, placenta, lungs, kidney
glomerulus, and the blood-brain barrier. Upon interaction with
ITMs that are present in the bloodstream, endogenous AP is
released from the apical membrane of specific physiological
barriers expressing high levels of AP (like liver bile duct
membrane, blood brain barrier, kidney, and gut) and brought
into circulation or gut lumen as ITM-AP conjugates. ITM-AP
complexes are eventually removed from circulation by the liver
Kupffer cells (5). We assume that due to its size AP can, under
normal non-inflammatory conditions, enter the tissue through
the endothelial barrier fenestrae. Intravenously administered
bovine AP (from here on noted as “bIAP treatment”) follows the
same mechanism as endogenous AP, where it enters the tissue
and detoxifies local ITMs through dephosphorylation. Note that
the supplemented AP also detoxifies circulating ITMs directly
and is removed from circulation by the Kupffer cells. In the case
of an oxidative stress insult, such as that induced by cardiac
surgery, ITM-AP is removed from circulation by Kupffer cells
(5). This removal is observed in pre-clinical and clinical studies
as a decrease in AP concentration in plasma. This decrease serves
as a “distress signal” for the liver to release its stored AP at the
bile ductal membrane barrier indirectly into the bloodstream
(38). The release of liver AP into circulation implies that AP
residing at blood- brain-, kidney-, and gut-barriers may also
be released, compromising the integrity of these barriers. This
may result in clinical phenotypic conditions like kidney failure
and cognitive impairment observed upon major surgery. The
hypothesis central to the AP intervention is that by replenishing
AP through either de novo synthesis or supplementation during
surgery, the impairments can be circumvented by helping reduce
the inflammation and preserving the integrity of such barriers.
De novo synthesis, in the strictest sense, refers to the general
production of an entity. In the context of our model, we use the
term “de novo” synthesis as the continuous production of AP by
the liver.

Our HIIS model takes into account the following key
mechanisms: (a) activation and inhibition of MR, (b) changes
in endothelial permeability, (c) phagocytosis of rest products
of ITMs, (d) phagocytosis of NDA and NDN , (e) release of
ITMs from necrotic cells, (f) natural death of immune cells and
degradation of molecular entities, (g) production ofCH andACH
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FIGURE 1 | Description of the innate immune response to inflammation. For details see the main text.

(h), induction of D, and finally (i) delay in necrosis and cytokine
production. The following keymechanisms are used to model the
dynamics of AP: (a) release of endogenous/stored AP from the
liver bile canalicular membrane, (b) de novo synthesis of AP in
the liver, and (c) administration of bIAP into the bloodstream.
The model does not take into account the AP released from other
physiological barriers, since the amount of AP present on these is
negligible compared to the AP released from the liver.

Code Implementation and Repository
We used Python 3.6.5 on a 3.30 GHz Intel R© Core

TM
i7-5820K

CPU with 16.0 GB RAM in all our simulations. Python libraries
used were: numpy, pandas, scipy, joblib, SALib, and scikit-learn.
The python codes and sample data have been uploaded to https://
github.com/avpresbitero/HIIS.

RESULTS

Human Innate Immune System Model With

the Induction Mechanism of TNAP
In the first sub-section we describe first the calibration process
of the model with data from the bIAP branch of APPIRED II

under the assumption that supplemented bIAP stimulates the
liver cells to produce additional TNAP. The calibrated model is
then used to predict the dynamics of the immune response for the
placebo branch. These predictions are validated using data from
the placebo branch of APPIRED II. In the second sub-section
we show the dynamics of all cellular and molecular entities in
the model and highlight the action of bIAP on the dynamics of
systemic inflammation.

In this study we use the median for each branch of the
APPIRED II clinical trial to designate the values that best
represent the population of patients undergoing cardiac surgery.
Since we assume that the induction mechanism of alkaline
phosphatase is inherent to all patients injected with bolus
alkaline phosphatase, we did not cluster patients into different
sub-groups. Although clustering patients into sub-groups based
on their response would lead to a deeper understanding of
the induction mechanism, the current dataset is not large
enough to look into the individual trends of the patients’ blood
parameters. Providing a personalized take on the modeling of
the innate immune response and on the individual response
to the supplemented AP, this endeavor is beyond the scope
of the current research but will be investigated in future
studies.
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Calibration and Validation
Patients in the APPIRED studies were supplemented with a
bolus of AP plus continuous infusion of AP and showed
a surge of TNAP in the bloodstream (Figure 2A, bIAP
Calibration). We calibrate the model parameters (summarized
in 5 of the Supplementary Material) using three datasets: AP,
pro-inflammatory, and anti-inflammatory cytokine profiles of
patients in the bIAP treatment experiment. We summarize the
results in Figure 2.

In response to a massive insult, the liver releases all its stored
AP into the bloodstream. The liver then takes roughly 2 h to
recover. We actually see this dynamics on the in-silico prediction
of the model initially exhibited as a high concentration of AP
at the onset of surgery. This is then followed by an immediate
drop in AP concentration, corresponding to the time interval
when the liver is still recuperating. Note that the effect of the
AP bolus on the concentration disappears within 20min after
its supplementation as attributed to its short half-life and its
interaction with ITMs. Then the liver begins supplying AP again
at around 2 h after surgery.

A continuous supply of bIAP was administrated into the
patients for 8 h, in addition to the initial concentration of 1,000
IU bovine AP. It was observed that liver-type TNAP is induced
in these patients as is shown by the overall concentration of
AP in circulation in Figure 2A. This supports the conjecture
that, as a result of an ischemic condition, added AP serves
as an indirect trigger for the liver to release more AP into
the bloodstream. We therefore introduce an induction term

rinducepeak

1+exp
rinduce(t−tAPdelay)

(APstissue + APsblood) in Equation (15) that is

dependent on the concentration of bolus AP supplied into the
system. The induction mechanism of AP is modeled as a reverse
sigmoid function that is centered at 1 h—corresponding to the
lag of release of AP from the liver, having flushed all its contents,
as the liver recuperates.

The rate at which AP is being used up by the system and
the rate at which AP is replenished back into the bloodstream
from the liver should be the same regardless of the treatment
type. This is because the two groups of patients (bIAP and
placebo branches) underwent the same type of cardiothoracic
surgical procedure. Hence, we assume the same scale of
insult, or the same amount of ITMs on both branches. We
validate our model by using the parameter values that we
have previously calibrated on the supplemented AP treatment
branch to predict the AP profiles of patients in the placebo
treatment branch. Our results are shown in Figure 2B (Placebo
Validation).

Dynamics of the HIIS With the Induction Mechanism

of TNAP

Dynamics of macrophages.
In the case of a massive insult, such as cardiac surgery, where
ITMs are simultaneously originating from numerous sources
in the body, the entire population of resting macrophages
immediately becomes activated. This is evident in Figure 3A

where we see, from simulated data, an immediate drop of resting
macrophage population at the moment surgery is initiated (time

= 0), which corresponds to an immediate rise of activated
macrophage population as shown in Figure 3B.

Dynamics of neutrophils.
In the context of our model, resting neutrophils become
“activated” when they enter the tissue from the bloodstream
via the endothelial barrier. The recruitment of neutrophils is
proportional to the concentration of pro-inflammatory cytokines
that increase the permeability of the endothelial barrier. This
means that the larger the insult, the more resting neutrophils are
recruited from the blood stream into the tissue.

For placebo patients the model predicts (Figure 4) an
increased level of neutrophils necrosis in tissue in response to
slightly higher concentration of ITM in tissue. The increased
number of necrotic neutrophils leads to the production
of additional ITMs, which acts as a positive feedback for
inflammation. In AP-treated patients, the presence of additional
AP prevents or reduces the necrosis of neutrophils. This could
explain the lower number of adverse events reported for the AP
branch of the clinical trial compared to the placebo branch (9).

The model dynamics shown in Figure 4 supports the idea that
AP is an anti-inflammatory mediator that plays an important and
active role in the human innate immune system, even though the
impact of AP observed with the current levels of ITMs appears to
be confined to a small shift in the ratio of apoptotic vs. necrotic
neutrophils.

HIIS Model Without the Induction

Mechanism of TNAP
In this section we present themodel results under the assumption
that supplemented bIAP does not stimulate the liver cells to
produce additional TNAP. In this case we use the previous model
without the induction term introduced in section Calibration and
Validation. We first attempted to calibrate the parameters of this
alternative model on the supplemented bIAP branch. However,
we were not able to model the AP dynamics of the bIAP branch
without the induction term. For this reason we calibrated the
model with data from the placebo branch of APPIRED II. The
calibrated alternative model is then used to predict the dynamics
of the immune response for the bIAP branch. We compare these
predictions with data from the bIAP branch of APPIRED II
and observe that the calibrated model fails to predict the AP
dynamics observed in the clinical trial. Since the model without
the inductionmechanism cannot be validated we do not show the
detailed dynamics of cellular and molecular entities as we did in
section Dynamics of the HIIS With the Induction Mechanism of
TNAP.

Calibration and Validation
Instead of calibrating the parameters using the AP treatment
and validating using the placebo treatment, we now reverse
the process and calibrate instead the parameters in the placebo
treatment first and validate them using the AP patient data. The
aim of which is to find out whether we could model the induced
amount of endogenous AP in the supplemented branch without
using the induction term (see Figures 5A–F).
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FIGURE 2 | Innate immune response to systemic inflammation with the addition of the induction of TNAP by supplemented bIAP. The three plots (A,C,E) on the bIAP

calibration column show the result of the calibration of the model parameters using data from the bIAP branch of APPIRED II. Data points are shown in red and

correspond to the median value of the patients in this branch. The error bar shows the median absolute error. Blue lines correspond to the dynamics of the in silico

model after calibration. (A) shows the dynamics of AP in blood (B) shows the dynamics of the pro-inflammatory cytokine represented in the model compared against

IL6 data. (C) shows the dynamics of anti-inflammatory cytokines in the model against IL10 data. The three plots (B,D,F) on the placebo validation column show the

validation of the model against data from the Placebo branch of APPIRED II. The model is able to predict the dynamics of placebo branch using the parameters

calibrated with the data from the bIAP branch. The model predicts a protective effect of AP. As a consequence, the model predicts a greater concentration of

pro-inflammatory cytokines in the placebo branch (D). See unit conversion of AP and cytokines from molecules
mm3 in Equations (32) and (33) (section 10 of the

Supplementary Material) respectively.
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FIGURE 3 | (A) Resting Macrophages residing in tissue concentration drops within very short time after initiating ischemic insult upon a massive insult and induced by

circulating ITM released under CPB/surgical conditions, which in our case is cardiac surgery. (B) Activated Macrophages concentration is driven to a maximum

brought about by the immediate turnover of resting macrophage population to activated macrophages.

Using the calibrated parameters from the placebo study, we
predict the dynamics of the bIAP study without the induction
term. As shown in Figure 5B, the model without the induction
term is not able to reproduce the AP profile of bIAP treatment
patients. This clearly shows that an additional mechanism
is missing and that the missing term has to account for
additional production of TNAP to be released from the liver
(the major source of stored AP) into the bloodstream. See
Supplementary Material section 9 for details on the dynamics
of the various compartments of the HIIS without the induction
mechanism of TNAP.

Predicting the Innate Immune Response

for Patients Having Excess ITMs Using

Different AP Treatment Regimens
The validation in section Human Innate Immune System Model
With the Induction Mechanism of TNAP shows that the model
with an induction mechanism for TNAP is able to predict the
dynamics of the human innate immune system response in
patients with systemic inflammation. Under the conditions of
reported in APPIRED II patients in the placebo treatment branch
have been able to resolve inflammation almost as effectively as
patients in the bIAP branch, the only measurable difference being
different levels of plasma AP and a reduced number of adverse
events in the bIAP branch. Supplementation of AP under these
conditions has an impact on the amount of necrotic neutrophils
but did not drastically change the dynamics of immune cells
from that of the placebo treatment group. However, since in
the APPIRED I study 16% of patients show an excess amount
of ITMs, the source of which is unknown, we explore the
impact of supplemented AP in a system stressed by an additional
source of ITMs after surgery. We model this scenario by adding
a secondary source of insult in-silico and predicting how the
human innate immune system would respond in different AP
regimens using our model. The amount of this secondary source
of ITMs is set to a reasonable value as indicated in Damas
et al. (35). We perform two sets of in-silico experiments: in the
first set we predict how the immune cells respond to an excess

amount of ITMs; in the second set we predict how different
AP regimens (i.e., different concentrations of bolus AP) affect
the body’s response to an additional source of ITMs as the one
observed in APPIRED I.

In-silico Experiment #1: Innate Immune System

Dynamics for Patients With Excess ITMs
The model predicts a protective effect due to supplemented
AP when a patient is challenged by a second source of
ITMs immediately after or during the surgery. Figures 6,
7 show the predicted dynamics for bIAP and placebo
branches in case of a source of additional ITMs. Apoptotic
neutrophils in supplemented branch have a concentration higher
than in the placebo branch. On the other hand, necrotic
neutrophils and ITMs in placebo branch are higher than in the
supplemented treatment branch. The model predicts a more
intense inflammation in the placebo branch as shown in the pro-
inflammatory cytokines plot (Figure 7C). This is confirmed by
(Figure 7D) which shows more anti-inflammatory cytokines in
the supplemented than in the placebo branch.

In-silico Experiment #2: Treating Patients With

Excess ITMs With Various Alkaline Phosphatase

Regimen
Phase II and Phase IIIa clinical trials have observed an increased
concentration of TNAP in circulation in the AP treatment group
compared to the placebo group given an AP protocol. For
instance in APPIRED I, a bolus of 1,000 IU of bovine AP was
first injected to patients undergoing cardiac surgery followed by a
continuous infusion of 5.6 IU/L per kg body weight for 8 h. In this
section we predict the dynamics of the innate immune response
under the conditions described in section in-silico Experiment #1:
Innate Immune System Dynamics for Patients With Excess ITMs
given two different AP supplementation regimens for which we
increase the supplemented AP to twice and thrice the original
protocol respectively. We then compare the results with the
protocol tested in APPIRED II study.

The model predicts an increasing protective effect the higher
the concentration of supplemented AP by showing an increasing
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FIGURE 4 | Dynamics of (A) ITMs in Plasma, (B) ITMs in Tissue, (C) Resting Neutrophils, (D) Activated Neutrophils, (E) Apoptotic Neutrophils, and (F) Necrotic

Neutrophils in the tissue. Activated neutrophils in the placebo treatment go into necrosis quicker than in the supplemented AP treatment. It seems indeed that the

addition of bolus AP contributes to the human innate immune system as an anti-inflammatory mediator by reducing the amount of neutrophils that go into the necrosis

pathway.

neutralizing effect on ITMs both in plasma and in tissue
(Figures 8A,B). As the concentration of supplemented AP
increases, more and more activated neutrophils are inclined
to go into apoptosis rather than necrosis (Figures 8C,D).
Pro-inflammatory profiles show that increasing supplemented
AP decreases the amount of pro-inflammatory cytokines,
while increasing the population of anti-inflammatory cytokines,
indicating a better resolution of the systemic inflammation.

DISCUSSION

The induction mechanism of liver-type Tissue Non-specific
Alkaline Phosphatase (TNAP) into circulation observed in
patients undergoing coronary artery bypass grafting with cardiac
valve replacement could be the body’s way of strengthening
its defense mechanism against such a massive insult, making
TNAP a de facto key player in the human innate immune
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FIGURE 5 | Innate immune response to systemic inflammation without the induction term. The three plots (A,C,E) on the placebo calibration column summarize the

result of the calibration of the model parameters using data from the placebo branch of APPIRED II. Data points are shown in red and correspond to the median value

of the patients in this branch. The error bar shows the median absolute error. Blue lines correspond to the dynamics of the in silico model after calibration. (A) shows

the dynamics of AP in blood. (B) shows the dynamics of the pro-inflammatory cytokine represented in the model compared against IL6 data. (C) shows the dynamics

of anti-inflammatory cytokines in the model against IL10 data. The three plots (B,D,F) on the bIAP validation column show the validation of the model against data

from the bIAP branch of APPIRED II. Without the induction term, we are not able to reproduce the Alkaline Phosphatase profile in the AP-treated patients. See unit

conversion of AP and cytokines from molecules
mm3 in Equations (32) and (33) (section 10 of the Supplementary Material) respectively.

system. Hence, directing the attention to the role of Alkaline
Phosphatase in systemic inflammation and understanding its
role in supporting an appropriate innate immune response is
of utmost immunological importance. Computational modeling

makes it possible to mimic and understand such intricate details
and mechanisms of the human innate immune system and offers
a predictive power for experimental outcomes through in-silico
experiments.
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FIGURE 6 | (A) Activated Neutrophils, (B) Apoptotic Neutrophils, (C) Necrotic Neutrophils, and (D) ITMs in Tissue in Supplemented and Placebo branches for

patients with excess ITMs. The model predicts higher concentrations of apoptotic neutrophils in the supplemented than in the placebo branch, but higher

concentrations of necrotic neutrophils in the placebo than in the supplemented branch.

To our knowledge, we have developed the first mathematical
model of systemic inflammation that is calibrated and validated
on clinical data. We show that the amount of additional
endogenous TNAP released in circulation in the supplemented
branch is proportional to the total concentration of bolus
AP being supplied. We also provide a plausible mathematical
function that describes this mechanism. Our model predicts a
protective effect of AP in the supplemented branch of APPIRED
II, evidence of which can be concluded from the dynamics of
the neutrophils. This effect, minimal under the conditions of
APPIRED II, becomes obvious when patients exhibit an excess of
ITMs after surgery (as observed in 16% of patients of APPIRED
I study). We present a scenario where we mimic excess ITMs
as seen in some patients by adding a secondary source of
insult and see how the model reacts to different AP regimens
by varying doses of AP supplied to patients. We show that
additional AP has indeed a protective effect and this effect is more
prominent in patients with excess ITMs. In this case in-silico
experiments predict that the amount of apoptotic neutrophils in
the supplemented AP branch is much higher than in the placebo
branch. Additionally the amount of pro-inflammatory cytokines
predicted for the supplemented AP branch is lower than in
the placebo branch, giving further evidence that supplemented
AP reduces the intensity of systemic inflammation. As expected

the model predicts more anti-inflammatory cytokines in the
supplemented branch than in the placebo branch. In other
words, the dynamics predicted by the in-silico model show that
resolution of inflammation is faster and more efficient with
increasing concentration of AP. Hence, our findings suggest that
AP indeed plays an important role in mitigating inflammation
especially in systemic inflammation and that this protective effect
can be modified through variation in AP protocol.

Our model for systemic inflammation is in fact similar to
mechanistic models of physiological process, more specifically
that of pharmacokinetic/pharmacodynamic (PKPD)models, that
are used to develop insights on the dynamics and magnitude of
the effect of a drug through quantitative analysis. These models
are used to describe the dynamics of the physiological variables in
different states. In our case, we model and validate the dynamics
of bolus AP together with the human innate immune response
for patients undergoing cardiac surgery in two treatment
arms respectively: with or without AP supplementation. After
validation, the model is used to understand and predict the
effect of experimental perturbations, such as variations in AP
regime, an approach that is referred to as “forward engineering.”
A synergy, henceforth, is created between systems biology and
PKPD through iterations between computational/mathematical
modeling and experimentation (39). Helmlinger et al. have
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FIGURE 7 | (A) Alkaline Phosphatase, (B) ITMs in Plasma, (C) Pro-inflammatory, and (D) Anti-inflammatory Cytokine Concentrations in Supplemented and Placebo

branches for patients with excess ITMs. The placebo branch produces more pro-inflammatory cytokines and lesser anti-inflammatory cytokines, suggesting a more

intense inflammation in the placebo branch compared to the supplemented branch. See unit conversion of AP and cytokines from molecules
mm3 in Equations (32) and (33)

(section 10 of the Supplementary Material) respectively.

provided a comprehensive review of drug-disease modeling in
the pharmaceutical industry (40). A robust application of systems
pharmacology, or the application of systems biology in order
to understand how drugs affect the human body, is detailed by
Gadkar et al. (41).

The current model has three main limitations: the limited
biological knowledge regarding the mechanism that regulates
the induction of endogenous AP production triggered by
supplemented AP, the potential bias introduced by the modeling
approach, and the bias introduced by studying the median
dynamics rather than attempting to cluster patients in groups
with different dynamics.

1) The goal of this model is to prove the existence of AP
induction and propose a possible mechanism describing this
dynamics. We did validate the existence of the induction of
AP, yet the available experimental data is not sufficient to
unequivocally unravel the underlying mechanism.

2) The other limitation relates to the modeling approach used.
Ordinary differential equations do not take into account the
spatial properties of the innate immune response during
systemic inflammation. The spatial effects are limited to the
compartmentalization of the body into blood, liver and tissue
while microscopic spatial effects of the cellular dynamics are

neglected. It is possible that modeling the spatial properties
of the system would result in a more accurate description of
the dynamics, especially for the first 3 h during which there
is a major displacement of cells between blood and tissue. For
that, we would need a high resolution spatial-temporal clinical
data.

3) Given the data at our disposal we decided to study the systemic
inflammation via the median dynamics of the two branches
of the APPIRED II clinical trial. The large variability in the
dataset suggests that clustering patients in subgroups with
different dynamics might provide a more accurate prediction
of model parameters. However, we believe that the approach
used in this paper is sufficient to prove the existence of the
induction mechanism of AP and to provide a preliminary
description of its dynamics.

The physiological relevance of this study is that to the best of
our knowledge this is the first mathematical model describing
systemic inflammation. Additionally this is the first model
describing the role of Alkaline Phosphatase in the resolution
of inflammation after invasive cardiac surgery, laying the
foundations to understand systemic inflammatory response
syndrome. The main clinically relevant result is the evidence
of the existence of an induction mechanism triggered by
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FIGURE 8 | (A) ITMs in Plasma, (B) ITMs in Tissue, (C) Apoptotic Neutrophils, (D) Necrotic Neutrophils, (E) Pro-Inflammatory Cytokines, and (F) Anti-Inflammatory

Cytokines for AP protocol APPIRED II (red) 2x the amount of AP, (blue), and 3x the amount of AP (green). Here we shoe that the model predicts an increasing

protective effect the higher the concentration of supplemented AP by showing an increasing neutralizing effect on ITMs both in plasma and in tissue, increasing

concentrations of apoptotic neutrophils and anti-inflammatory cytokines, and decreasing concentrations of necrotic neutrophils and pro-inflammatory cytokines. See

unit conversion of cytokines from molecules
mm3 in Equation (33) of section 10 of the Supplementary Material.

supplemented AP. This model provides a starting point to
investigate the amount of endogenous AP induced in the body,
and consequently, the optimal amount of supplemented AP to be
administered during and after invasive cardiac surgery.

Using the proposed model, we have shown in-silico the
dynamics of systemic inflammation within a period of 36 h
using different AP regimens. This information is being taken

into account in the planning of a clinical trial phase III b.
Data from the new multi-center clinical trial will be used to
further refine the model. This model and its future iterations
will be useful to predict the dynamics of neutrophils during
systemic inflammation (namely the balance between apoptotic
and necrotic neutrophils and the subsequent resolution of
inflammation) and act as a tool to optimize the administration
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of anti-inflammatory drugs (not necessarily AP) in clinical trials
dealing with systemic inflammatory response syndromes.

We perform a global sensitivity test (see
Supplementary Material section 8) where we vary our input
parameters within intervals that correspond to the values found
in literature.

The model provides evidence of the existence of an induction
mechanism of liver-type tissue non-specific alkaline phosphatase,
triggered by the supplementation of AP in patients undergoing
cardiac surgery. We show that the AP branch of the clinical
trial can only be explained using a mechanism that induces
a release in circulation of liver TNAP that is proportional
to the amount of supplemented AP. We provide a possible
mathematical description of this induction mechanism. The
model is validated using novel clinical AP, pro-inflammatory
and anti-inflammatory cytokine profiles of placebo- and bIAP-
treated patients. This is the first time that liver-type tissue
non-specific alkaline phosphatase has been modeled together
with the human innate immune system. To date, there are
no other existing published clinical trials that tackle the exact
mechanisms of liver-type TNAP induction, let alone, a model
that describes systemic inflammation. To the best of our
knowledge this is the first numerical model of a complex innate
immune response that is quantitatively validated with clinical
data. Our work paves the way to a deeper understanding of the
immunological mechanisms underpinning this important
innate immune response to oxidative stress mediated
inflammation.
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Adaptive immune responses develop in secondary lymphoid organs such as lymph

nodes (LNs) in a well-coordinated series of interactions between migrating immune

cells and resident stromal cells. Although many processes that occur in LNs are well

understood from an immunological point of view, our understanding of the fundamental

organization and mechanisms that drive these processes is still incomplete. The aim

of systems biology approaches is to unravel the complexity of biological systems and

describe emergent properties that arise from interactions between individual constituents

of the system. The immune system is greater than the sum of its parts, as is the case

with any sufficiently complex system. Here, we review recent work and developments

of computational LN models with focus on the structure and organization of the stromal

cells. We explore various mathematical studies of intranodal T cell motility and migration,

their interactions with the LN-resident stromal cells, and computational models of

functional chemokine gradient fields and lymph flow dynamics. Lastly, we discuss briefly

the importance of hybrid and multi-scale modeling approaches in immunology and the

technical challenges involved.

Keywords: lymph node, stromal cells, systems biology, network topology, morphology, lymph flow, fibroblastic

reticular cells, computational models

INTRODUCTION

The lymphatic vascular system extends throughout the body, collecting interstitial tissue fluid
through a network of initial lymphatic vessels (1). The lymph is then carried to the collecting
lymphatics and distributed through lymphoid organs before returning to the venous circulation.
Secondary lymphoid organs such as lymph nodes (LNs) form at bifurcation points along the
lymphatic vasculature and serve as checkpoints for immune cells (2, 3). Adaptive immune
responses are initiated and maintained in LNs via coordinated interactions between T cells, B cells,
dendritic cells (DCs) and the LN-resident stromal cells (4–6) (Figure 1A). Traditionally, stromal
cells have been described as connective tissue cells which organize the underlying LN infrastructure
and cellular compartmentalization, however in recent decades their critical roles in regulation and
coordination of immune responses have been established (7–9).
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LYMPH NODE STROMAL CELL
FRAMEWORK

CD45− non-hematopoietic stromal cells in LNs originate
from mesenchymal and endothelial precursors and can be
divided into four major subsets based on the expression
of podoplanin (PDPN) and CD31; PDPN−CD31+ blood
endothelial cells (BECs), PDPN+CD31+ lymphatic endothelial
cells (LECs), PDPN+CD31− fibroblastic reticular cells (FRCs)
and PDPN−CD31− double-negative cell fraction (10, 11).
Stromal cell subsets form site-dependent niches customized for
efficient interactions with immune cells, separating the LN into
distinct regions (Figure 1A).

The lymph drains to the LN subcapsular sinus (SCS) through
several afferent lymphatic vessels, carrying antigen, signaling
molecules and immune cells. The SCS is lined with two types
of LECs, the floor and ceiling LECs. It has been demonstrated
that ceiling LECs express the atypical chemokine receptor
CCRL1 (ACKR4) which binds CCR7 ligands CCL19 and CCL21,
whilst floor LECs are devoid of its expression (12). Differential
expression of CCRL1 creates chemokine gradients for DCs to
migrate from the SCS to the LN parenchyma. The outer cortex
of the LN under the SCS contains B cell follicles which are
populated by several stromal cell subsets critical for B cell-
dependent responses. B cells sense the CXCL13 gradient and
migrate to the follicles in a CXCR5-dependent manner (13),
where they interact with a dense network of CD21+CD35+

follicular dendritic cells (FDCs) in order to sample antigens
(14, 15). A monolayer of MadCAM1+ marginal reticular cells
(MRCs) also contributes to B cell homing by expression of
CXCL13 (16) and they have also been shown to express
RANKL (TNFSF11) in LNs (17). The specific expression of
RANKL by MRCs was subsequently confirmed by single-cell
RNA sequencing, although MadCAM1 expression could not
be readily detected (18). It was previously shown that MRCs
are able to proliferate and differentiate into FDCs during
inflammation-induced remodeling of the B cell follicles (19),
however the phenotype and function of MRCs still remain poorly
understood.

Furthermore, the B cell zone-resident reticular cells alongside
the expanding FDC network orchestrate germinal center
formation during inflammation (20). Additional stromal cell
subsets have been reported in the B cell follicle, such as the
CXCL13-producing stromal cells surrounding inflamed B cell
follicles (21) and a CXCL12+ reticular stromal subset in the dark
zone of the germinal center following infection (22). Clearly, the
heterogeneity of B follicle stromal cells requires further dissection
in order to identify the key players in the development of humoral
immunity.

The LN is a highly vascularized organ as the blood
vasculature needs to deliver oxygen and nutrients to cells
in the LN parenchyma. Advances in microscopy technologies
have enabled 3D imaging and quantification of the topology
of the entire microvascular network in LNs (23). Importantly,
during inflammation the vasculature must expand in order to
accommodate the increasing metabolical demand of the LN,
which is achieved through proliferation of BECs and subsequent

return to homeostasis by stochastic deletion of both pre-
existing and newly generated blood vessels (24). The majority
of lymphocytes enter the LN paracortex through specialized
blood vessels called high endothelial venules (HEVs) which
mediate transendothelial extravasation (25, 26). The specific roles
of HEVs in lymphocyte motility and chemotaxis as opposed
to capillary endothelial cells have been recently elucidated by
transcriptional profiling (27).

Upon entering the LN parenchyma, T cells crawl along the
FRC network searching for cognate antigen loaded on DCs
(28–30). FRCs in the T cell zone (TRC) produce homeostatic
chemokines CCL19 and CCL21, guiding T cells and DCs into
the relevant compartments and facilitating T-DC interactions
necessary for developing adaptive immunity and antiviral
responses (31–33) (Figure 1A). The interaction between PDPN+

perivascular FRCs and the platelet-derived C-type lectin-like
receptor 2 (CLEC-2) has been shown to promote VE-cadherin
expression by HEVs through local sphingosine-1-phosphate
(S1P) release by platelets, effectively maintaining the vascular
integrity of HEVs (34). While DCs crawl on the FRC network,
the interaction between PDPN+ FRCs and CLEC-2 on DCs
induces actin cytoskeleton remodeling and promotes DCmotility
(35). Furthermore, the same axis permits stretching of the FRC
network in order to accommodate rapid LN expansion during an
immune response, whilst DC-derived lymphotoxin beta receptor
(LTβR) ligands promote FRC survival by modulating PDPN
expression (36–38). A recent study employing single-cell RNA
sequencing has suggested the existence of nine non-endothelial
stromal cell clusters within LNs, however the expression of
the canonical stromal cell marker PDPN was not sufficient to
distinguish the clusters on a single cell level (18).

In addition to the emerging roles of FRCs in regulation of
immune responses (39), the FRC network serves a fundamental
role in the formation of the LN conduit system (40, 41). The
conduit system emerges as a complex branched mesh of micro-
vessels from the floor of the SCS, comprising of a collagen-
rich core surrounded by a microfibrillar zone and a basement
membrane. A sparse network of conduits enwrapped by FDCs
pervades the B cell follicles and drains the lymph through the
T cell zone where it forms a dense re-entrant loop network
ensheathed by the TRCs (42). The conduits rapidly transport
small signaling molecules, chemokines and soluble antigens with
the lymph and deliver them to the relevant stromal cells and
lymphocytes (43, 44). The conduits size exclusion criterion of
<70 kDa for entry of lymph-borne antigens has been recently
shown to be dependent on plasmalemma vesicle associated
protein (PLVAP) expression by SCS and medullary LECs (45).
Ultimately the lymph is carried through the conduit system to
the medullary lymphatics where it drains out of the LN through
an efferent lymphatic vessel. Egress of lymphocytes occurs at the
cortical and medullary sinuses through sensing of sphingosine-1-
phosphate (S1P) produced by LECs (46–48).

In conclusion, stromal cells exhibit niche-specific functions
and heterogeneity, indicating the complexity of their specialized
interactions with immune cells. Many questions still remain open
regarding their development and plasticity in homeostasis and
during ongoing immune responses.
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FIGURE 1 | Multi-layered microarchitecture of the LN. (A) Schematic overview of the LN architecture and cellular organization. Zoom-in panels represent confocal

microscopy images stained for indicated markers. BF, B cell follicle; IF, inter-follicular; SCS, subcapsular sinus; HEV, high endothelial venule; FDC, follicular dendritic

cell; TRC, T cell zone fibroblastic reticular cell; MRC, marginal reticular cell; BEC, blood endothelial cell; LEC, lymphatic endothelial cell. (B) Network graphs of the TRC

network and equivalent network models; Watts-Strogatz small-world network, Erdos-Renyi random network and 1D ring lattice network. Colors indicate nodes with

low (blue) or high (red) betweenness centrality.

STROMAL-IMMUNE CELL INTERACTION
MODELS

T cell motility and migration patterns arise from cell-intrinsic
cues such as actin polymerization and cell-extrinsic cues
which include integrin-dependent adhesion, physical guidance
of the microenvironment, and chemotactic gradients (49).
Based on these observations it has been proposed that T
cells switch between two modes of intranodal migration (50);
anchorage-dependent motility mediated by engagement of LFA-
1 with ICAM-1 on DCs and FRCs (31, 51), and anchorage-
independent motility driven by FRC-derived chemokines and

lysophosphatidic acid (LPA) (52). Moreover, a recent study
demonstrated that LFA-1 and CCR7 contribute complementary
and not sequentially to intranodal T cell migration. Interestingly,
the authors also show that T cells migrate in a continuous sliding
locomotion rather than in a caterpillar-like manner (53, 54).

Intranodal T cell motility is closely linked to search strategies
employed in order to efficiently find cognate antigen loaded on
DCs (55). Additionally, migration patterns are heterogeneous
between T cell subsets such as CD4 and CD8, and whether they
are naive, activated or memory T cells (56–59). Thus, T cells
can exhibit a spectrum of search patterns, ranging from diffusive
random walks analogous to Brownian motion, superdiffusive
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Lévy walks and subdiffusive random motion (49, 60). It has
been shown in a recent report using Agent-Based Models (ABM)
that naive T cells in LNs exhibit a type of superdiffusive walk
which fits best as a lognormal modulated correlated random
walk among the idealized computational models studied (61)
(Table 1). Similarly, another ABM study demonstrated that T
cell migration in inflamed LNs best fits an inverse heterogeneous
correlated random walk (78).

Numerous computational T cell migration studies in LNs did
not readily include the underlying reticular network structure.
Furthermore, these analyses were performed using rule-derived
modeling methodologies that are phenomenological in nature,
rather than a biophysics-based approach (85). However, several
modeling studies have simulated the TRC network with
randomized connectivity and addressed its involvement in
guiding T cell motion. In one study a 3D ABM approach was
used to simulate infection responses in order to observe T-DC
encounters and T cell differentiation in LNs under different
antigen conditions (77). 3D Cellular Potts Models (CPM) offer a
complementary modeling framework to simulate dynamics of T
cell and DC migration alongside the TRC network. It was shown
that the complex cell movement is determined by the densely
packed LN environment, even though similar migratory behavior
of T cells was observed whether they preferentially adhered to the
TRC network or not (73). Interestingly, the study demonstrated
the existence of small dynamic T cell streams within LNs, which
the authors speculate occur alongside the TRC network fibers.
Another study simulated migration of T cells and DCs on the
TRC network and found that constraining cell movement on
the TRC network does not increase the frequency of T-DC
encounters compared to Brownian motion in free 3D space (75).
A subsequent theoretical study confirmed in simulations that the
TRC network has only a minor effect on the contact probability
between T cells and DCs (76).

A question then naturally arises; do lymphocytes require the
TRC network as a guiding structure for cellular movement?
The answer seems evident from plethora of experimental work,
corroborated by a recent reports demonstrating that deficiency
in CCR7-mediated chemokine sensing and integrin LFA-1-
dependent adhesion in T cells does not abrogate intranodal
migration and firm attachment to the TRC network (53, 72).
However, the existing theoretical models were characterized by
poorly resolved sets of multi-scale control processes regulating
various cell migration modes and antigen-driven functional
states of immune cells. Ultimately, the theoretical framework of
many modeling studies lacked the necessary quantitative data to
faithfully recapitulate the stromal-immune cell interactions. In
order to extend the analogy, the simulations would represent a
“car with no fuel and no wheels, moving along a random road
map.”

An alternative approach to examine the TRC network
at a fundamental level would be to employ the theory of
complex networks, also called graph theory (86, 87). Within
this mathematical framework the TRC network is denoted as a
series of nodes (cells) connected with edges (cell protrusions).
A recent study demonstrated that the TRCs organize as a non-
stochastic small-world network with highly robust topological

properties, ensuring that network failure does not occur even
when up to half of the network is destroyed (66, 88). Specific
genetic ablation of CCL19-producing TRCs led to highly reduced
numbers of hematopoietic cells in LNs and impaired intranodal
migration of T cells with marked reduction in average cell
speed and motility. The few T cells that did enter the LNs
exhibited undirected movement around the HEVs and were
not able to migrate deeper into the paracortex, despite the
conduit system still being present (20, 66). The loss of FRCs
and HEVs is also associated with graft-vs.-host disease after
allogeneic hematopoietic stem cell transplantation and it has
been recently shown that FRCs can prime alloreactive T cells
through Delta-like Notch ligands (89, 90). Moreover, the TRC
network is capable of fully regenerating after complete ablation
and this observation is indicative of a formation of a cost-
effective, optimally robust network structure that simply could
not have a random configuration (91, 92) (Figure 1B). The
heterogeneous topological properties of real world networks
could not be explained by the random network model, thus
it is likely that these networks evolved by optimizing two
competitive selection criteria: high connectivity which confers
efficiency of information transfer and low connection cost during
formation of the network (93). Likewise, spatial embedding in
many real world networks has significant confining effects on
the overall topological structure by restricting the formation of
long-distance connections (94, 95) (Figure 1B).

The intricate structure of LNs determines organ functionality,
however the reverse also holds true; the diverse cellular
interactions require a particular underlying structure to be
present (96). Although it is widely accepted the TRC network
serves as a “road system” for T cell and DC migration (29, 97),
it remains unclear whether and to which extent dynamic cell
movements are spatially constrained by the intricate network
fibers (92, 98). Hence, incorporating quantitative data into
integrative models may provide answers to these fundamental
questions.

INTEGRATIVE LYMPH NODE MODELS

Maintenance of chemokine gradients by stromal cells is crucial
for lymphoid organ development and spatiotemporal segregation
of specialized immune cell compartments (99, 100). Chemotaxis
in LNs has been modeled using ABMs in order to simulate large
numbers of T cells in a computationally efficient manner. By
modeling T cell motion as a persistent randomwalk and allowing
for cell crowding on a 3D lattice, a basic T cell ingress-egress
model in LNs could be constructed (74). Lymphocytes must
navigate efficiently within spatially heterogeneous chemokine
fields that also vary over the time course of an immune
response. It was shown that temporal sensing of rising chemokine
concentrations is required for directional persistence of DC
and neutrophil migration (101). Moreover, chemotactic-driven
directional movement of DCs is steered by soluble forms
of CCL19 and CCL21, whilst immobilized form of CCL21
on FRCs induces both DC motility and integrin-dependent
adhesion (102).
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TABLE 1 | Integrative modeling frameworks for lymph node structures and processes.

Modeling framework Structures and approachesa Processes and modelsa References

Continuous/deterministic LN architecture

1. 2D or 3D lattice model

2. Image-based reconstruction models

3. Topology-based parameterized

computational models

4. Graph theory models

Lymph flow

1. Navier-Stokes equation

2. Poiseuille equation

3. Darcy’s law

4. Starling equation

5. Compartmental models

Transfer of cytokines/chemokines

1. Reaction-diffusion PDEs

2. Pharmacokinetic models with ODEs or DDEs

Cell population dynamics

1. ODEs

2. Compartmental models

3. Distributed parameter systems

4. Reaction-diffusion chemotaxis and haptotaxis PDEs

(23, 62–72)

Discrete/stochastic FRC network

1. CPMs

2. Random network models

Blood vascular networks

1. 3D imaging

2. Computational geometry

Cell motility

1. Physics-based models-dissipative particle dynamics

based on Newton’s second law of motion

2. Cellular Automata type models–CPMs or ABMs

3. Random walks models (Brownian-, Levy-, correlated

walks)

(55, 59–61, 73–78)

Hybrid/multi-scale 2D (lattice-type) LN models integrated with

compartmental models of the whole organism

3D anatomically resolved models of LN

structures

Integrative dynamics of immune cells, humoral factors

and antigens/pathogens using combination systems of

ODEs, PDEs and ABM or CPM derived for single-scale

processes in a computationally consistent manner

(79–84)

aABM, Agent-based model; CPM, Cellular-Potts model; DDE, Delay differential equation; ODE, Ordinary differential equation; PDE, Partial differential equation.

Functional chemokine gradients of CCL19 and CCL21 have
been simulated in various LN regions using a fluid flow
model where the intranodal chemokine dynamics are described
by ordinary (ODE) and partial differential equations (PDE)
(68). Similarly, using a reaction-diffusion PDE model, highly
heterogeneous distribution of IFN-α has been found, where
certain LN subdomains are highly protected, whilst others
are characterized by much lower levels of the cytokine (62).
In a recent theoretical study, it has been demonstrated by
reaction-diffusion-advection modeling that hypersensitivity in
antigen recognition by immune cells can occur when chemotactic
strength is higher than a predicted threshold, leading to immune
system instability (69). In the case of cytokine concentration
fields, it has been demonstrated that the size of cytokine niches on
a single-cell level are governed by a simple mechanism dependent
on cytokine diffusion and the density of consumer cells present in
the niche (103).

It is important to consider another relevant aspect of LN
functionality, namely lymph flow dynamics which contribute
greatly to antigen, cytokine and chemokine transport. In order
to gain insights into the quantitative flow parameters regulating
lymph transport, a computational lymph flow model of the LN
was constructed (63, 65). Interestingly, the model predicted that
90% of lymph traveled the peripheral path through the SCS and
medullary sinuses. In a subsequent study the authors expanded
their computational model to include intranodal CCL19 and
CCL21 chemokine gradients (68). An integrative LN model with
realistic 3D geometry has been recently developed in order
to study lymph transport phenomena (82). The relationship
between the structural LN geometry and fluid pathways has been

investigated using image-based modeling of fluid flow in order
to study the permeability of the LN tissue (64, 71). Furthermore,
fluid flow dynamics of the blood microvasculature and the
conduit system have been successfully integrated in the existing
LN model (67, 70). The model predicted high robustness of the
conduit system, with 60–90% elimination of conduits required
to halt the lymph flux. Moreover, computational simulations of
lymph flow can be expanded on larger spatial scales by modeling
the entire human lymphatic system interconnected between
hundreds of LNs (84).

In order to model complex biological phenomena with
continuous and discrete variables, and across several spatial
scales, hybrid andmulti-scale modeling approaches are necessary
(104–108). In recent years these models have been used to
describe spatial dynamics of immune responses in LNs (79–
81, 83). A summary of the integrative modeling frameworks
described here and their implementation in elaborating LN
processes and functions is available in Table 1. These multi-
scale modeling approaches will prove invaluable in unraveling
complex mechanisms of immune system control in future
studies.

CONCLUDING REMARKS

Systems biology approaches have made tremendous advances
in the past decade due to a high demand for bioinformatics-
based computational methods necessary to describe biological
systems on a global level (109). Likewise, quantitative and
computational in silico models in immunology have become
critical for understanding the emergent properties of both
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single cells and whole tissues (110, 111). However, the
development of mathematical LN models is still confronted
with technical challenges. Understanding the multi-layered
compartmentalization of the LN is an important prerequisite
so that the initial assumptions of the model reflect the
functionality observed experimentally. To date, our knowledge of
the heterogeneity of stromal cells that construct the underlying
foundations of a LN is still incomplete. The directional cues
und critical immunoregulatory functions of stromal cells enable
the formation of specialized micro-environmental niches for
immune cells within the LN, effectively facilitating immune
responses (11). The described computational models largely do
not take into account an additional layer of complexity, which
is introduced by the fact that chemoattractant fields significantly
change during inflammation and ongoing immune responses,
influencing the migration and composition of immune cells.
Moreover, the LN stromal compartment undergoes extensive
remodeling in order to accommodate the increased LN size
and proliferative demands of developing adaptive immune
responses (9). Therefore, mathematical models must take
into account how the spatial constraints of the LN and
heterogeneous chemoattractant gradient fields affect the non-
uniform distribution of immune cells, the spatiotemporal
dynamics of cellular interactions and the anisotropy of non-
Brownian immune cell movement patterns. To this end,
quantitative data on immune cell motility metrics in homeostasis
and disease/inflammatory states are critically needed for the
development and calibration of biophysics-based models.

One major difficulty lies in delineating the complexity
of the fundamental LN architecture and simplifying the
components to a degree necessary to obtain biologically
meaningful conclusions. Morphometric studies have been
instrumental in describing the structural framework of
distinct LN regions. However, quantitative data is still
lacking for the organization of lymphatic endothelium in
the medullary region, a comprehensive description of the B
follicular stromal cells has not been fully elaborated and the
structure of the fine-grained conduit system has not been
extensively studied. Absence of detailed structural parameters
represents a major caveat in data-driven systems biology
approaches (112). Nevertheless, novel high-resolution imaging
technologies coupled with multi-scale computational models
will give us valuable insights into the inner “clockwork” of
the LN.
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It was recently reported that acute influenza infection of the lung promoted distal

melanoma growth in the dermis of mice. Melanoma-specific CD8+ T cells were shunted

to the lung in the presence of the infection, where they expressed high levels of

inflammation-induced cell-activation blocker PD-1, and became incapable of migrating

back to the tumor site. At the same time, co-infection virus-specific CD8+ T cells

remained functional while the infection was cleared. It was also unexpectedly found that

PD-1 blockade immunotherapy reversed this effect. Here, we proceed to ground the

experimental observations in a mechanistic immunobiochemical model that incorporates

T cell pathways that control PD-1 expression. A core component of our model is a

kinetic motif, which we call a PD-1 Double Incoherent Feed-Forward Loop (DIFFL),

and which reflects known interactions between IRF4, Blimp-1, and Bcl-6. The different

activity levels of the PD-1 DIFFL components, as a function of the cognate antigen

levels and the given inflammation context, manifest themselves in phenotypically distinct

outcomes. Collectively, the model allowed us to put forward a few working hypotheses

as follows: (i) the melanoma-specific CD8+ T cells re-circulating with the blood flow

enter the lung where they express high levels of inflammation-induced cell-activation

blocker PD-1 in the presence of infection; (ii) when PD-1 receptors interact with abundant

PD-L1, constitutively expressed in the lung, T cells loose motility; (iii) at the same time,

virus-specific cells adapt to strong stimulation by their cognate antigen by lowering the

transiently-elevated expression of PD-1, remaining functional and mobile in the inflamed

lung, while the infection is cleared. The role that T cell receptor (TCR) activation and

feedback loops play in the underlying processes are also highlighted and discussed.

We hope that the results reported in our study could potentially contribute to the

advancement of immunological approaches to cancer treatment and, as well, to a better

understanding of a broader complexity of fundamental interactions between pathogens

and tumors.

Keywords: influenza, melanoma, PD-1/PD-L1, incoherent feedforward loop, mathematical modeling
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1. INTRODUCTION

It was recently reported that acute influenza A infection
(A/H1N1/PR8) of the lung promoted distal B16-F10
skin melanoma growth in the dermis (1). It was also observed
that melanoma-specific CD8+ T cells were shunted to the lung
in the presence of the infection, where they expressed high
levels of inflammation-induced cell-activation blocker PD-1, and
became incapable of migrating back to the tumor site. At the
same time, co-infection virus-specific CD8+ T cells remained
functional while the infection was cleared. Finally, it was also
unexpectedly found that blockade of PD-1 resulted in reversal of
infection-mediated anti-tumor response disruption.

In this respect, it is very important to mention that the
work by Kohlhapp et al. (1) was primarily motivated by two
still unmet challenges: (i) emerging epidemiological studies
reporting an increased cancer prevalence and cancer-specific
deaths in patients with infections (1), and (ii) despite the fact that
tremendous amount of work on immune response in the context
of pathogenic co-infection has been done, findings in this field
still remain discordant and a matter of debate, as also reviewed
by Kohlhapp et al. (1) and Zloza (2).

Motivated by the need to provide a more conceptual and
quantitative biology insight into “the previously unrecognized
acute non-oncogenic infection factor” accelerating tumor growth
(1) and more broadly into the interactions between pathogens
and cancer, and specifically, in order “to harness these
interactions to improve microbial-based cancer therapy” (2), we
suggest a few immunobiochemical mechanisms and a simple
mathematical model which may help to interpret the observed
phenomena (1).

Our main results relate to two fundamental functional roles
of immunity (3–5): (i) adaptation of immune function, and (ii)
competition between excitation and de-excitation (“push-pull”)
factors possessing different response kinetics. In the context of
this work, the loss of adaptation occurs in the expression of
PD-1 receptors on anti-melanoma CD8+ T cells, a phenomenon
that may constitute the essence of the previously unrecognized
immunologic factor (1), while competing push-pull factors (3)
correspond to opposite outcomes of the corresponding kinetic
motifs identified as incoherent feedforward loops (IFFLs) in the
classification of Alon (6). We briefly note that push-pull factors
also play multiple fundamental roles in physiology (and biology)
in general, e.g., Dampney et al. (7).

Our working hypothesis is that the melanoma-specific T cells
shunted to the lung in the presence of the infection express
high levels of inflammation-induced cell-activation blocker PD-
1, which upon interacting with PD-L1 constitutively expressed in
the lung, render T cell motility paralysis (8). At the same time,
virus-specific cells adapt to strong stimulation by their cognate
antigen by lowering the transiently-elevated expression of PD-1,
remaining functional and mobile while the infection is cleared.

Although other important mechanisms may contribute to the
previously unrecognized acute non-oncogenic infection factor
(1), we focus our efforts on one concrete aspect of the problem,
which is a gene regulatory network (GRN) that controls PD-
1 expression. Indeed, the fact that many other factors may

contribute to the enormously complex molecular makeup of the
acute non-oncogenic infection effect, such factors, obviously, do
not exclude the interaction PD-1:PD-L1 playing a role as clearly
seen from the data collected in Kohlhapp et al. (1). Thus, the
importance of the PD-1:PD-L1 signal sent by the data cannot
be disputed. Moreover, it is the PD-1:PD-L1 signal “detected”
experimentally in Kohlhapp et al. (1) that defines the scope of
our work aimed in uncovering relevant molecular detail in an
unbiased way. We then develop and use a simple mathematical
model in order to further illuminate the PD-1:PD-L1 role.

Specifically, a core component of our PD-1 gene-regulatory
network (GRN) is a kinetic motif, which we call a Double
Incoherent Feed-Forward Loop (PD-1 DIFFL), and which
reflects known interactions between IRF4, Blimp-1, and Bcl-
6 transcription factors (TFs). The different activity levels
of the PD-1 DIFFL components, as a function of (a) the
cognate antigen levels, (b) the T cell receptor (TCR) activity,
and (c) the given inflammation context, manifest themselves
in the T cell phenotypically distinct outcomes discussed in
our work.

The rest of our work is organized as follows. In section 2.1,
the main results of Kohlhapp et al. (1) are briefly outlined.
Alternative hypotheses potentially related to the unrecognized
factor are discussed in section 2.2. Here, the motivation for
the development of the PD-1 DIFFL is also given. The PD-
1 DIFFL is reconstructed in section 2.3. We next attempt to
falsify and validate the kinetic motif (PD-1 DIFFL) against
key experiential observations in section 2.4. The results of our
mathematical modeling are described in section 2.5. Finally, a
literature review of the corresponding mechanistic detail, the
model construction, and the model’s parameter justification can
be found in Supplementary Material.

2. RESULTS

We begin our analysis of the experimental data (1) by discussing
a few alternative hypotheses, followed by the introduction
of a number of mechanisms consistent with the discussed
observations.

The selected mechanisms will then be formalized in terms of
a relevant genetic molecular circuit (PD-1 DIFFL) that regulates
PD-1 expression. Our proposed PD-1 DIFFL model is based
upon molecular detail discovered previously, and is independent
of the results obtained in Kohlhapp et al. (1).

We hope that the strong inference methodological approach
(9) that guides our research will allow us to customize the PD-1
DIFFL to different inflammatory conditions (1) with the ultimate
goal to capture both infection-tumor and infection-infection
interactions at the mechanistic molecular level.

2.1. Linking Observations With
Immunological Mechanisms
A key challenge in the study of T cells within different dual
immunological self (tumor) and non-self (infectious) contexts,
is the organization of large amounts of relevant molecular and
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biochemical information (section SI-1) compactly summarized
in Table 1.

Specifically, Table 1 highlights the following key observations
(O1)–(O5) made in Kohlhapp et al. (1):

(O1) Distant influenza-melanoma interaction: Influenza-

induced loss of anti-melanoma CD8+ T cells from the

tumor micro-environment (TME) and their sequestration

in the infected lung.

(O2) The host immune system’s ability to respond to concomitant
infection challenges: influenza A virus (IAV) infection does
not impede clearance of vaccinia virus (VACV) infection
under the same conditions, nor tumor challenge changes
the ability of the immune system to eliminate the infection.

(O3) Reactivation of exhausted (TEX) anti-melanoma CD8+ T
cells after anti-PD-1 (αPD-1) blockade: (i) reactivated anti-
melanoma CD8+ T cells which continue to reside in the
TME regain their ability to contribute to the anti-tumor

TABLE 1 | A summary of the immunological reconstruction of infection-tumor interactionsa.

Observation Description Mechanism (hypothesis)

(O1) Anti-tumor CD8+ T cells Tumor-specific CD8+ T cells of infected (O1-M1) Low-affinity immunological synapses

are shunted to the infected site. hosts were significantly reduced on day 6 formed between TCRs on anti-tumor CD8+ T

in the TME compared to uninfected hosts cells and self-antigens on tumor cells lead to

and found at high levels at the site of the lack of the Ag-induced arrest of the anti-

infection but not observed in tissues unre- tumor CD8+ T cells in the TME.

lated to the tumor challenge or infection. (O1-M2) Infection-induced chemokines and

cytokines amplify the tumor’s ability to egress

anti-tumor TEFF from the TME.

(O1-M3) Non-specific cardiovascular edema

caused by infection-induced inflammation

affects anti-tumor TEFF trafficking.

(O1-M4) Infection-induced chemokines

chemoattract anti-tumor TEFF to the infected lung.

(O1-M5) Infection-induced IL-2 retains all types of

TEFF in the infected lung.

(O1-M6) Infection-induced cytokines amplify

expression of endothelial PD-L1, which in turn leads

to paralysis of anti-tumor TEFF in the inflamed lung

due to PD-1:PD-L1 bonds.

(O2) Cancer does not suppress Cancer does not alter significantly the (O2-M1) High-affinity immunological synapses

the immune system anti-viral natural clearance of infection. Influenza formed between TCRs on anti-infection CD8+ T

response which is capable at infection also does not alter the natural cells and nonself-antigens on infected cells lead

the same time of eradicating clearance of VACV or the proportion of to the Ag-induced arrest of the anti-infection

concomitant infections VACV-tetramer+ CD8+ T cells at the CD8+ T cells inside the infected sites until a full

efficiently. site of influenza infection. clearance of the infection antigen.

(O3) Therapeutic PD-1 blockade PD-1 blockade decelerates tumor growth (O3-M1) αPD-1 blockade shifts the dynamic

reverses infection-mediated anti- in influenza-infected mice as well as res- equilibrium of the dynamically formed PD-1:PD-L1

tumor response disruption. cues the percentage of anti-tumor CD8+ bonds toward unbound forms of both PD-L1 and

T cells within the TME. PD-1, allowing anti-tumor TEFF to recover from

immunologic paralysis and to gain motility.

(O3-M2) Due to αPD-1 blockade, reactivated

anti-tumor CD8+ T cells may recirculate back

to the TME with constitutive lymph motion.

(O3-M3) αPD-1 blockade reactivates PD-1-blocked

signaling pathways leading to (i) improved killing

capability, (ii) proliferation, (iii) suppression of

PD-1 expression, (iv) protection against exhaustion,

etc. in reactivated CD8+ T cells.

aLiterature citations are directly inserted through the text (section SI-1).
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immune response and, additionally, (ii) reactivated anti-
melanoma CD8+ T cells sequestered in the infected lung
may regain their motility and return back to the TME,
where they also aid in the anti-tumor response.

(O4) Reduced host survival: Infection early in tumor formation
reduces host survival by promoting tumor growth in the
infected host.

(O5) Differential expression of PD-1 receptors by effector cells
(TEFF) in the infected lung: Anti-melanoma CD8+ T cells
express larger amounts of PD-1 receptors than anti-
influenza CD8+ T cells under the same conditions in the
infected lung.

2.2. From a Physiologic Systemic View of
Lymphocyte Re-circulation to Systems
Biology of PD1:PD-L1 Interactions
It is known (10, 11) that non-specific cardiovascular edema
effects, caused by infection-induced inflammation in the infected
site, redirect the blood-flow to the site of infection-induced
inflammation. Therefore, it is highly appealing to explain the
observed accumulation of anti-melanoma CD8+ T cells in the
infected lungs, (O1), by non-specific inflammation effects only.

Note that the lymphocyte recirculation routes are phenotype-
dependent and significantly differ for naïve/memory/effector
subsets (12). We leave the corresponding details specific to
the different subsets out of the discussion that follows. What
is relevant to our work is that all newly activated cytotoxic
T lymphocytes (CTLs) exit the corresponding lymph nodes
into lymph via lymphatic ducts before they enter circulation
via the great veins, and then flow through the pulmonary
circulation (Figure 1). Under resting non-inflamed conditions,
re-circulation of lymphocytes between lungs and blood is very
rapid, with the average residence time in the lungs less than one
minute (16).

After leaving the heart and lungs, the traveling CTLs continue
to flow into systemic circulation, followed by their ultimate
but not instantaneous homing in the corresponding infectious
or tumor sites. Indeed, lymphocytes on average must pass via
vasculature of the lung or liver about 10 times or evenmore times
(15) before they migrate to one of the secondary lymphoid tissues
(12)[BOX 14.2]. For example, it was shown that if anti-tumor
CTLs were activated in the breast, they would perform on average
about eight circulatory transient cycles before extravasation into
the tumor site (15).

Before reconciling the experimental observation (O1) with
these studies, we have to briefly discuss a unique role that the
lung plays in the physiology and immunology of trafficking
lymphocytes under both resting and inflamed conditions.

Experimental studies have revealed that different subsets of
lymphocytes, including naïve/memory/activated effector T cells,
transiently accumulate in the lungs (17, 18) both by means of
and, what is also extremely important, without specific antigen-
dependent recruitment of CTLs to the lung (19). Anderson et al.
(19) further discuss “numerous observations indicating that T
cell trafficking withing the lung is starkly different from what
is known about T cell trafficking in most nonlymphid tissues,”

FIGURE 1 | Schematic representation of lymphocyte re-circulation routes.

There are two different routes for naïve and activated trafficking lymphocytes

(12, 13). First, due to the data discussed in Owen et al. (12, Ch.14) and,

independently estimated in Van den Berg (14, p. 23) after approximately 30

min. transit time in the blood, about 45% of all naïve lymphocytes

(produced by the thymus and bone marrow) migrate to the spleen, where they

reside for about 5 h. Another 45% of lymphocytes enter various peripheral

nodes, where they remain for 12–18 h, scanning stromal cell surfaces. A

smaller fraction of lymphocytes migrate to secondary lymphoid tissues (skin,

gastrintestinal, etc.), to protect the organism against the external environment.

Thus, about 5% of the lymphocytes are, at resting conditions, in the blood,

and the majority resides in the lymph nodes. Second, as discussed in

Poleszczuk et al. (15) activated CTLs enter the blood system via the great

veins, flow through the pulmonary circulation, and, then, continue into

systemic circulation. Venus blood from gastrointestinal tract and spleen goes

to the liver through the hepatic portal vein. In all cases, lymphocytes migrate

from the blood into lymph nodes through high-endothelial venues, specialized

areas in postcappillary venues. (a) MALT is Mucosa Associated Lymphoid

Tissue. (b) Lymph nodes have both afferent and efferent lymphatic vessels,

while MALT, Spleen, and Thymus have efferent lymphatic only (12).

including the fact that lymphocyte extravasation into the lung
is chemokine independent (20, 21). So, one must revisit the
observation (O1) by taking into account the unique role that
the lung may play in lymphocyte retention even in the absence
of influenza A related antigen-induced chemokine gradients that
would additionally force anti-melanoma CTLs to extravasate into
the lung epithelium, should influenza A infection be present.

Unfortunately, the above results and the unique role of the
lung to transiently retain lymphocytes still do not explain the
difference in the observations (O1) and (O2), nor they explain
the observation (O3), for the following reasons.

First, concerning the observations (O1) and (O2), both anti-
melanoma and anti-infection CTLs should follow the same
pattern of multiple vascular re-circulation cycles as discussed
above (Figure 1). However, under similar re-circulation patterns,
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the presence of IAV infection impedes tumor clearance, while, at
the same time, both IAV and another concomitant infection (e.g.,
VACV) are cleared efficiently as one infection would be cleared in
the absence of another. Specifically, the question “Why are anti-
melanoma CTLs retained in the infected lung, while anti-VACV
infection CTLs are not?” remains unanswered.

Given the large literature body on the importance of PD-1
receptors in immune response and the observations (O3) and
(O5), we decided to explore theoretically whether molecular
signaling pathways initiated by PD-1 ligated with PD-L1 would
provide at least one plausible mechanism to explain the results
obtained in Kohlhapp et al. (1).

We have excluded PD-L2 from our model and only consider
PD-L1 in the analysis that follows. Indeed, PD-L2 has restricted
expression on macrophages, dendritic cells (DCs), and mast
cells, while PD-L1 is expressed more broadly in order to
mediate T cell tolerance in non-lymphoid tissues (12, 22).
Besides, mathematical simulations based on the biophysical
and expression data have revealed an unexpectedly limited
contribution of PD-L2 to PD-1 ligation during interactions of
activated T-cells with APCs (23).

To this end, the immune system has apparently evolved
the inhibitory PD-1/PD-L1 pathway as a result of the need
to control the degree of inflammation at locations expressing
the antigen in order to secure normal tissue from damage and
also to maintain peripheral tolerance (4, 22). This includes the
constitutive expression of PD-L1 in large quantities in various
tissues such as lungs, pancreatic islets, ovary, colon, etc. (24–29)
by which cross-reactive effectors that survive positive selection
are also muted to maintain the peripheral tolerance (2).

2.3. Incoherent Feed-Forward Regulation
of PD-1 Expression
PD-1 expression on CD8+ T cells is known to be regulated at
the level of transcription of its gene pdcd1 (30). More precisely,
two upstream conserved regulatory CR-B and CR-C regions
(30) are key for PD-1 expression in response to CD8+ T
cell activation. Specifically, TCR signaling induces PD-1 gene
expression through the transcriptional activator, Nuclear Factor
of Activated T cells, cytoplasmic 1 (NFATc1) (Figure 2), which
binds to CR-C after translocation to the nucleus (30, 31).

Next, the down-regulation of PD-1 during acute infection (32)
suggests that there exists a mechanism that directly represses
its expression after initial activation events. Indeed, Blimp-1
(B Lymphocyte-Induced Maturation Protein 1) (33) has been
found to be induced during the later stages of CD8+ T cell
activation and was shown to be required for the efficient terminal
differentiation of effector CD8+ T cells (30). When Blimp-1 is
suppressed, the same data suggest that in the absence of Blimp-1,
PD-1 expression is maintained by NFATc1 (Figure 2).

For the sake of completeness, we recall that the existing data
also suggest that Blimp-1 represses PD-1 gene expression in
CD8+ T cells using three distinct molecular mechanisms (30):

(1) regulation of the expression of PD-1’s activator NFATc1;
(2) alteration of the local chromatin structure; and

FIGURE 2 | Regulation of PD-1 expression. Two different IFFLs, sharing a

common set of species and regulatory activities highlighted in red, are

presented. Both IFFLs are activated by the same input (Ag). The left hand side

(A) depicts a dose-dependent biphasic activation of PD-1. The elements of

the corresponding IFFL are highlighted in blue and red colors. When the input,

the Ag dose, increases, the output, the PD-1 level, first also increases but then

subsequently decreases. The right hand side (B) corresponds to a

dose-dependent activation of Bcl-6. The elements of the corresponding IFFL

are highlighted in green and red colors. Over a certain range of input dose, the

Ag level, the output, in this case Bcl-6 level, increases but with a subsequent

increase in the Ag dose, the Bcl-6 level then decreases.

(3) eviction of the activator NFATc1 from its site that controls
PD-1 expression.

In addition, Blimp-1 has been found to be a transcriptional
antagonist of proto-oncogene Bcl-6 (B cell lymphoma 6
transcription factor), and vice versa (Figure 2) (i.e., Blimp-1
and Bcl-6 are known to mutually repress one another) (34–38).
Specifically, Blimp-1 can bind to the bcl6 promoter (39).

Although it is not known exactly how Bcl-6 inhibits Blimp-
1 in T cells, it is well known that in B cells Bcl-6, in association
with a corepressor MTA3, represses prdm1 by binding to sites in
prdm1 intron 5 and intron 3 (34, 40, 41). We take this fact into
consideration because signaling pathways and their activation are
similar in both B and T cells (12). Additionally, Bcl-6 binds its
own promoter and inhibits its own transcription (Figure 2), thus
implementing an autoregulatory loop (42, 43) (Figure 2).

Competing with Bcl-6 for intron 5 in prdm1, IRF4 (Interferon
Regulatory Factor) (44–47) is shown to be a direct activator of
prdm1 (Figure 2) by binding to a site in intron 5 (34). At the same
time, IRF4 directly represses gene bcl-6 by binding to a site within
its promoter (34, 45), which is rich in IRF4-binding sites (43).

Because IRF4 is known to be activated both directly via TCR
and by NF-κB (48, 49), we have then sought to determine
who activates NF-κB in this context and found that NF-κB is
activated by TCR signaling (34, 37, 50, 51). Several potential NF-
κB binding sites in the prdm1 promoter have been suggested. It is
also known that IRF4 can bind to its own promoter, supporting a
positive feedback mechanism by which high IRF4 expression can
be maintained (43, 52).

There are additional signaling routes leading to the activation
of IRF4 (e.g., via Akt-mediated pathways) which are not
discussed here (34).
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After a careful analysis of the reconstructed molecular
interactions, we have come to the conclusion that this intricate
reaction network consists of two subnetworks (Figure 2). Both
subnetworks have the same input from the activated TCR, while
the outputs of the subnetworks are different. Namely, PD-1 is the
output of the subnetwork color-coded in blue and red, while Bcl-
6 is the output of the subnetwork color-coded in green and red.
The two subnetworks share a number of common species and
interact with one another via repressive interactions mediated by
the three key species color-coded in red, (i) IRF4, (ii) Blimp-1,
and (iii) Bcl-6.

Each of the two subnetworks corresponds to a gene-regulatory
network (GRN) motif known as an incoherent feed-forward loop
(IFFL) (6). Because the PD-1 circuit is formed of two such IFFLs,
we call it a Double Incoherent Feed-Forward Loop (DIFFL).

Our IFFL network may be viewed as a mechanistic
instantiation of a conceptual signal discrimination model based
on a competition between “excitation” and “de-excitation”
factors possessing different response kinetics, as initially
introduced by Grossman and Paul (3). The latter concept has
been gradually applied successfully in multiple studies since 1992
as reviewed in Grossman and Paul (5). In that sense, we address
with our model the following goal formulated in Grossman
and Paul (3): “More explicit rules of organization, or models,
need to be explored. Such rules should suggest, in particular,
how the functional segregation of immunological responses may
reasonably come about.”

2.4. PD-1 Expression Within Different
Inflammatory Contexts
We next attempt to validate the PD-1 DIFFL motif (Figure 2)
against all observations reported in Kohlhapp et al. (1) by
following the falsification and validation methodology (53),
which is also fundamental to any modeling study. Figure 3 will
be instrumental in our analysis that follows.

Figure 3A shows a biochemical reaction network
reconstruction customized for the case of an anti-influenza
cytotoxic effector T cell, TEFF, in the presence of large amounts of
cognate Ag in the infected lung. In this case, the immunological
complexity of interactions involving cytokines is already
overwhelming (5, 54–58). For example, IL-2 activates and is
simultaneously repressed by active Blimp-1 both directly and
indirectly (31, 59).

The abundance of the cognate viral Ag in the infected lung
leads to a strong TCR activation which, in turn, results in the
simultaneous activation of Blimp-1 and degradation of Bcl-6
(section 2.3) followed by suppression of PD-1 transcription with
its subsequent degradation. The biochemical detail can explains
transient and rapid PD-1 expression followed by downregulation
of PD-1 expression in the presence of acute infection (32), see
also section SI-1.2.

All this may also explain why anti-infection CD8+ T cells are
not exhausted during the first phase of the biphasic response
of the PD-1 DIFFL-circuit (section 2.3) despite the fact that
bystander and tissue cells express large amounts of PD-L1 caused
by large concentrations of pro-inflammatory cytokines such as

INFγ (SI-1.1). Recall that large amounts of PD-L1 are already
constitutively expressed in the lung under resting condition in
the absence of any infection (section 2.3).

Figure 3B shows the response of the reconstructed circuit
in the tumor microenvironment (TME). Specifically, anti-
melanoma CD8+ T cells overexpress PD-1 in the presence of
large amounts of tumor-specific cytokines such as IL-6, a well-
described regulator of Bcl-6 expression (38). Due to relatively low
levels of tumor Ag and a weak self-Ag TCR signal (60) of anti-
tumor CD8+ T cells, the TCR is not activated strongly enough
to activate Blimp-1 and, at the same time, the weak activation
of the TCR sets the first phase of the biphasic response of the
dose-dependent PD-1 DIFFL motif (Figure 2).

Indeed, the PD-1 DIFFL strongly activates Bcl-6 for small
and medium TCR strengths, and weakly activates Bcl-6 for high
activity levels of TCR. As a result, Bcl-6 is overexpressed, while
Blimp-1 is not expressed in the melanoma TME (38), which leads
to the overexpression of PD-1 on the surface of anti-tumor CD8+
T cells.

Figure 3C shows the PD-1 DIFFL in an anti-melanoma TEFF

relocated into the infected lung. In this case, the conditions
discussed just above to introduce Figure 3B play the role of
a spark plug that activates the transcription of Bcl-6, which
represses prdm1 even after the relocation of the anti-tumor TEFF

into the lung.
These relocated TEFF can now sense the elevated levels of INF-

γ and TNF-α, which are abundant in the infected site, and which
are produced by professional antigen presenting cells (APCs)
(section 2.2).

The cytokines strongly stimulate the expression of both PD-1
and PD-L1 (61), as well as maintain the expression of PD-1 on
the surface of the anti-melanoma TEFF, initially sparked by the
ligation of TCRs with cognate tumor Ags during the time when
the TEFF cells were present in the TME before their relocation to
the lung.

Because the tumor Ag is absent from the infected lung,
the TCR is not ligated, and, hence, all routes leading to the
activation of Blimp-1 and IRF4 are disabled.We can thus propose
that the major route contributing to PD-1 overexpression here
is mediated by INFγ and TNFα. The corresponding PD-1
expression activation route is marked by sign + inside a circle in
Figure 3C.

Recall that large quantities of PD-L1 are constitutively
expressed in the lung already under resting conditions
(section 2.2). PD-1 mediated control of immune responses
depends on interactions between PD-1 on CD8+ T cells and PD-
L1 in tissues (62). Importantly, such PD-1:PD-L1 interactions
can result in CD8+ T cell motility paralysis (8, 28, 63).

We introduce the paralysis mechanism (Figure 4) in detail
in (O1-M6) (section SI-1.3) and believe that this mechanism
can provide a valuable insight into the previously unrecognized
factor contributing to the retention of anti-melanoma CD8+ T
cells shunted to the influenza A infected lung (1). Of course,
other yet unknown mechanisms may exist and need to be
elucidated in order to provide a more complete explanation
of the retention effect (1). Therefore, additional experimental
observations should be obtained.
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The study conducted by Cheng et al. (23) reports that “it
now seems that very stable complexes are not prerequisite for
potent inhibitory PD-1:PD-L1 signaling” because measurements
of the human and mouse PD-1 binding to PD- L1 affinities
suggest that potent inhibitory signaling can be mediated by weak
interactions.

Zinselmeyer et al. (8) further stress: “Prolonged motility arrest
is an excellent host strategy to decrease T cell efficiency and likely
facilitates exposure to multiple regulatory pathways. PD-1:PD-
L1 blockade is known to restore function to virus-specific and
tumor-specific T cells, and has shown some promise in recent
clinical trials.”

Although dissociation and association of the complex PD-
1:PD-L1 are assumed to be fast (64, 65), this however does not
preclude the long-known loss of T cell motility due to multiple
PD-1:PD-L1 interactions (66, 67).

Figure 3D shows the PD-1 DIFFL in an anti-melanoma TEFF

cell in the infected lung after administration of PD-1 (αPD-1)
blockade. Recall that the NF-κB pathway is downregulated in
exhausted CD8+ T cells (38). To this end, the PD-1 blockade
(marked by symbol αPD-1 color-coded in red) in Figure 3D,
removes the brake (68) from the corresponding T cell signaling
pathways (see section 2.1, observation O(3), and Table SI-1.1)
leading to overexpression of NF-κB (66, 69). Additionally, NF-κB
activation is positively regulated through TNFR (TNF Receptor)
and TLR (Toll-like Receptor) sensing TNFα and viral materials
in the infected lung, respectively (70–72).

As discussed earlier, NF-κB activates IRF4 (34), and the latter
directly represses Bcl-6 (34). In turn, the repression of Bcl-6
removes the brake from the overexpression of Blimp-1, which
then leads to reduced numbers of PD-1 receptors on the surface
of reactivated anti-melanoma effector cells. This may allow the
reactivated TEFF to becomemobile (Table SI-1.1) with a potential
to relocate back to the melanoma TME with the lymph flow
and blood circulation as discussed in the mechanism (O1-M6).
Indeed, it is well known that after the TEFF re-circulation in the
blood (15), effector T cells are preferentially found in the lymph
nodes in which their activation occurred, and in the area drained
by those lymph nodes (73).

The above conclusions are also based on the experimental
evidence that PD-1:PD-L1 interactions contribute to reduced T
cell motility on day 7, and therapeutic blockade of PD-1:PD-L1
restore CD8+ T cell motility within 30 min (8). Although we
use the references (8, 63) in order to support our hypotheses,
additional experimental research is needed to understand deeper
the paralysis phenomenon (28, 63).

We conclude our discussion of the PD1DFFILmotif by noting
that the core of the reconstruction (Figure 2) fits well to all
discussed inflammatory contexts (Figure 3).

2.5. Probing Immunobiochemical
Reconstruction Modeling
Our modeling goal here is quite simple. Given the discussed
specificity of PD-1 expression (section 2.4) with respect to
different amounts of antigen available in the medium and

different values of TCR affinity in terms of the values of the off-
rate constant koff for the Ag:TCR bond (74, 75), we focus on
the analysis of the dependence of the levels of key species, Bcl-6,
IRF4, Blimp-1, and PD-1, on the two parameters, (i) the antigen
concentration, Ag, and (ii) the values of koff defined in sections
SI-2 and SI-3.

2.5.1. Modeling PD-1 Expression in the Absence of

PD-L1
We first consider the case when the PD-1:PD-L1 interaction
is absent from the model by setting φL(P) ≡ 8(P) ≡ 1
corresponding to the condition L = [PD-1:PD-L1] = 0 in both
Equations (SI-2.1c) and (SI-2.2a).

Typical plots for the (non-dimensional) steady-state (76)
concentration levels of PD-1, Bcl-6, Blimp-1, and IRF4 in the
absence of the PD-1:PD-L1 interaction and at the different values
of koff are shown in Figure 5. Themodel’s nondimensionalization
is done in sections SI-2 and SI-3.

We next discuss the case of small values of koff from the
set of the values given in the legend of Figure 5. We observe
from Figure 5 that the level of PD-1 (Figure 5A) becomes
rapidly elevated already at very small values of the scaled Ag-
concentration (section SI-1). A further increase in the scaled Ag-
concentration results in the formation of the PD-1 level plateau,
followed by a drop in PD-1 levels.

The increase in the level of PD-1 (Figure 5A) is fully
aborted when the level of Blimp-1 (Figure 5C) reaches the
threshold sufficient to suppress PD-1 expression initiated by TCR
activation. We interpret the top (left) plateau in the level of PD-
1 (Figure 5A) as corresponding to the homeostasis maintained
by both the PD-1 DIFFL and the negative feedback activation
of TCR which we discuss shortly below. At the same time
the bottom (right) plateau in the level of PD-1 (Figure 5A)
can be interpreted as an adaptation to high levels of Ag (3),
a direct consequence of adaptive properties of IFFLs (6, 77–
82).

We further observe that in complete agreement with the
theory of IFFLs demonstrating biphasic steady-state behavior
(6, 77, 78), the levels of Blimp-1 and IRF4 first increase and then
decrease, and, at the same time, the level of Bcl-6 first decreases
and then increases, while the level of Ag is constantly increased.
Remarkably, the levels of all the three species almost perfectly
adapt to their respective original states formed initially at very
low levels of Ag, when the level of Ag becomes high enough to
establish adaptation. A similar adaptive phenotype is discussed
using an example of a generalized enzyme network in Chiang
et al. (79).

Consider now the case of large values of koff from the set of the
values given in the legend of Figure 5. In this case, the response
of the PD-1 DIFFL becomes abnormal, when all remarkable
adaptive properties are completely lost. Even in the case of a very
large value of koff, the model predicts a tonic expression of PD-1
corresponding to very small nonzero values coded in black color
in Figure 5A. We believe that this tonic expression of small PD-
1 levels can be attributed to the immune tolerance discussed in
section SI-1.
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FIGURE 3 | The PD-1 DIFFL motif in the context of complex influenza-tumor interactions. (A) Shows the PD-1 DIFFL response in an anti-influenza CD8+ T cell in the

infected lung. (B) Shows the response of the PD-1 DIFFL circuit in an anti-tumor CD8+ T cell in the TME. (C) Shows the PD-1 DIFFL response in an anti-tumor CD8+

T cell in the influenza-infected lung. (D) Shows the PD-1 DIFFL response in an anti-tumor CD8+ T cell in the influenza-infected lung after PD-1 blockade. Gray color

corresponds to weak or disabled reactions shaped by the given inflammation context. Symbol + inside a circle in (C) shows the additional PD-1 activation route

initiated by external cytokines in the case when the Blimp-1 mediated repression of PD-1 expression is absent. This route does not play any significant role in the case

when the expression of PD-1 is suppressed by active Blimp-1 as in (A). Arrows denote activation, and barred lines denote repression. The abbreviation APCs stands

for (influenza) Antigen Presenting Cells.

FIGURE 4 | PD-1:PD-L1 induced paralysis of the anti-tumor exhausted CD8+ T cells in the infected site. (A) Suggests that anti-melanoma TEFF cells become

paralyzed in the infected lung. In contrast, (B) suggests that anti-VACV TEFF studied in Kohlhapp et al. (1) can freely enter and leave the infected lung with the lymph

motion and blood flow due to the lack of large amounts of PD-1 receptors on their surface. The immune suppressive environment (4) induced by inflammation in the

infected lung is caused by multiple interactions between PD-1 receptors, expressed in large quantities on the surface of the anti-melanoma TEFF, and the PD-L1

ligands expressed in large quantities on the surface of various host immune cells (macrophages, DCs, and MDSCs) and the epithelium (29).

Frontiers in Immunology | www.frontiersin.org 8 January 2019 | Volume 10 | Article 439

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nikolaev et al. Infection-Cancer Interactions

FIGURE 5 | PD-1 DIFFL responses in the absence of PD-1:PD-L1 interaction. The color-coded plots corresponds to the PD-1 DIFFL-induced adaptation with respect

to increasing Ag-levels. To obtain a full adaptation, approximately a 103-fold increase in the Ag-level is required. Four different (bottom-up) shades of green color

correspond to koff = 10−4, 2.03× 10−4, 4.13× 10−4, and 5.88× 10−4, respectively. Two shades of blue color correspond to koff = 2.43× 10−3 and

7.01× 10−3, respectively. Four (top-down) shades of purple color correspond to koff = 2.03× 10−2, 4.13× 10−2, 5.88× 10−2, and 8.38× 10−2. Magenta color

corresponds to koff = 1.0. Black color corresponds to koff = 49.24. (A–D) Correspond to the levels of four species, PD-1, Blimp-1, Bcl-6, and IRF4, computed from

the model developed in SI2, respectively.

To better see the role of IFR-4 and its impact on the level
of PD-1, we then completely disabled IRF4 by setting the value
of the parameter kb to zero, kb = 0 in the Equation (SI-3.1d).
This computational experiment can be thought of as an “in silico
IRF4-knockout.” The corresponding plot of PD-1 levels against
the Ag-concentration is shown in Figure 6A.

Surprisingly, the shapes of all PD-1 level plots obtained for the
same set of koff values as in Figure 5 are preserved, and only the
magnitudes of the corresponding levels are changed by a factor of
40 or more.

Motivated by these computational predictions, we checked if
IRF4 knockout results were previously reported in the literature
and found that irf4-deficient CD4+ T cells display increased
expression of PD-1 associated with T cell dysfunction (83, 84).
However, the role of IRF4 is still poorly understood as it can be
completely opposite in the cases of acute and chronic infections
(83, 85).

The second interesting observation (Figure 6B) is that while
the PD-1 DIFFL regulatory function is lost due to in silico
knockout of IRF4, the adaptation of PD-1 expression with respect
to Ag levels (Figure 6A) is still preserved by the negative feedback
regulation of TCR activity (Figure 6B) (5, 86–88). Both the TCR
activation and the negative feedback are interpreted as another
IFFL in Lever et al. (74). Collectively, we can thus conclude
that the PD-1 transcription and its adaptation to high levels
of antigen is regulated by multiple incoherent feed-forward
loops.

2.5.2. Modeling PD-1 Expression in the Presence of

PD-L1
We observe that in the presence of PD-1:PD-L1 interactions, the
maximum levels of PD-1 and Bcl-6 increase (by a factor of 6.75
and 7.86, respectively, but, of course, these numbers are only
meaningful in our model and with the parameters used, and they
do not have biological significance) (Figure 7). At the same time,
the levels for Blimp-1 and IRF4 are negligibly small, which allows
us to interpret that the transcription of these two species is almost
fully suppressed (Figure 7).

From our comparison of the PD-1 level plots in Figures 5,
7, we can conclude that the PD-1:PD-L1 interaction plays the
role of an amplifier of transient activation of PD-1 transcription,
initiated by the ligation of TCR with Ag presented with an MHC
(section SI-1).

PD-1:PD-L1 interactions may terminate signal transduction
pathways, including those pathways that lead to the activation of
IRF4 and Blimp-1, by recruiting phosphatases (68, 89, 90).

Our last computational experiment compares quantitatively
the PD-1 level on the surface of an anti-melanoma CD8+ T cell
shunted to the lung with the PD-1 level on the surface of an
anti-influenza CD8+T cell in the lung under the same conditions.

To conduct the computational experiment, the following
conditions were taken into consideration: (i) the absence of
distant tumor Ag in the lung, leading to the shutting down
of the TCR signal (U = 0 in the Equations (SI-2.1a–d), (ii)
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FIGURE 6 | Expression of PD-1 in the case when the expression of IRF4 is disabled. The levlel of PD-1 receptors in (A) is computed from our model developed in SI2.

The level of TCR activity in (B) is computed from the model developed in Lever et al. (74) as explained in SI-2. All other explanations and parameter values are as in

Figure 5.

the abundance of inflammatory cytokines, including TNFα and
IFNγ , known to induce the expression of both PD-1 and PD-L1
(SI-1), and (iii) the abundance of IL-2, which induces Blimp-1
(SI-1).

To account for the abundance of the lumped TNFα and
IFNγ species, we have replaced the rate constant σp in the
Equation (SI-2.1b) by the rate expression (SI-2.6). To account
for the abundance of IL-2 in the lung compartment, we have
increased the value of the parameter ab by a factor γ in Equation
(SI-2.1d). In this case, we assumed that IL-2 was secreted by
activated T cells (50) and, hence, IL-2 affected Blimp-1 expression
through autocrine and paracrine signaling, depending on the
TCR activation strength.

In the case when the value of the parameter γ was set to one,
the level of PD-1 was increased by a factor of 6 compared with
the maximum level of PD-1 shown in Figure 7 for both anti-
influenza and anti-melanoma cases. So, we can conclude that just
the PD-1 DIFFL alone is not enough to counteract the effect of
the pro-inflammatory cytokines. Only when a “strong action of
IL-2” was taken into consideration by setting γ > 5,000, the
level of PD-1 was suppressed for anti-influenza T cells.

3. DISCUSSION

Below we discuss our modeling studies conducted in order
to complement our immunobiochemical reconstruction toward
a better understanding of the previously unrecognized acute
non-oncogenic infection factor (1). We then discuss potential
implications of our research to further stimulate ongoing efforts
toward developing and improving physiological and functional
cure approaches based on the host’s ability to eliminate non-self
foreign invaders and, at the same time, the host’s inability to
install strong altered-self (cancer) responses (2).

3.1. What We Learn From the Model
Our PD-1 DIFFL reconstruction (Figure 2), when combined
with the mathematical modeling (Figures 5, 7), suggests that it
is the loss of Ag dose-dependent adaptation of the expression of
PD-1 receptors in the anti-tumor CD8+ T cells that could be one

of major factors resulting in the multiple effects in the presence
of acute non-oncogenic infection (1). Specifically, in the case of
acute infection, the level of PD-1 receptors on the surface of Ag-
experienced anti-infection CD8+ T cells first increases and then
decreases to lower levels in the course of the virus replication
(Figure 8B), the hallmark of a fundamental biological adaptation
(3). Therefore, based on the discussion around Figure 3, we
can conclude that chances that the cells with the phenotype
shown in Figure 8B will loose their motility due to PD-1:PD-L1
interactions in the infected lung are low (Figure 4).

In contrast, in the case of Ag-experienced anti-tumor CD8+ T
cells, due to the much smaller levels of tumor antigens presented
with MHCs in the TME, the strength of the TCR signal in
anti-tumor CD8+ T cells may not be enough to activate Blimp-
1 and IRF4 species to suppress PD-1 expression (Figures 2,
3). The lack of the expression of Blimp-1 in melanoma is
known experimentally (38). As a result, chances that T cells
bearing large numbers of PD-1 receptors (Figure 8A) will be
paralyzed in the infected lung due to PD-1:PD-L1 interactions are
high.

Importantly, the higher levels of PD-1 receptors on anti-
melanoma CD8+ T cells compared with much lesser levels of
PD-1 receptors on anti-influenza CD8+ T cells co-localized in
the same infected lung were observed in Kohlhapp et al. (1). This
supports the two different phenotypes shown in Figures 8A,B,
respectively.

Our quantitative estimates obtained from the model
(Figures 5, 7) show that the Ag level should be increased
by several orders of magnitude required to move the Ag-
experienced T cell from phenotype (A) to phenotype (B)
(Figure 5). This means that at least a 1000-fold increase in
cognate Ag levels (Figures 5, 7) may be required for the
adaptation of PD-1 expression to strong antigen-mediated
stimulation.

Although more research into the novel adaptation effect
illuminated by our model as well as into the lymph motion
(93, 94) and molecular mechanisms by which cells are rapidly
moved with the blood (95) is undoubtedly needed, we believe
that it is worth providing some “biological” numbers that support
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FIGURE 7 | PD-1 DIFFL responses in the presence of PD-1:PD-L1 interaction. (A–D) Correspond the case when 20% of PD-1 receptors are ligated with PD-L1.

(E–H) Correspond the case when 50% of PD-1 receptors are ligated with PD-L1. (I–L) correspond the case when 90% of PD-1 receptors are ligated with PD-L1. All

other explanations are provided in the legend for Figure 5.

our findings. For example, for the LCMV system, a gold standard
for infectious biology, the virus titer was increased by factor
about 103 from day 2 to day 5 (92, Figure 4.4). We digitized
the corresponding data points and plotted them in Figure 8

next to Figure 8B. Similar data are reported for influenza A
infection (96, 97). The examples of the population measurements
are well translated to our modeling studies because in
all cases we use dimensionless ratios of the corresponding
concentrations.

Of course, one also needs to make sure whether a T cell
would be capable to provide a large number of TCRs sufficient
to accommodate the above huge increase in Ag-levels. Indeed,
the typical number of TCR molecules is estimated in the range
of 3 × 104 (98), which is a reasonable number to match up with
themodel-suggested transition from phenotype (A) to phenotype
(B) shown in Figure 8. At the same time it is highly unlikely for
tumor cells to divide as fast as the viruses do to build enough
antigen that would be sufficient to change phenotype (A) to
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FIGURE 8 | Schematic illustration of the adaption loss/gain hypothesis. Solid filled circles on the corresponding graphs of PD-1 receptor levels (top panels), plotted

vs. the log-concentrations of Ag, correspond to the levels of PD-1 receptors on anti-melanoma (A) and anti-virus (B) CD8+ T cells, respectively (top panels).

Phenotype (B) corresponds to a fully developed adaptation of the PD-1 expression with respect to the increasing levels of Ag, while phenotype (A) is characterized by

the lack of such adaptation. Bottom (C,D) show time-dependent levels of BCL-1 tumor cells (left) and LCMV virus titers (right) in the spleen. The data points are

digitized from the corresponding plots in Kuznetsov et al. (91) and Bocharov et al. (92), respectively. Comparing (C,D), we observe that the changes in the tumor Ag

levels within the first 7 days are small, corresponding to the fold change less than 10 as seen from (C). At the same time, the viral Ag levels change significantly,

corresponding to the 104-fold increase during the first seven days as seen from (D). The small 7-day tumor Ag-level increase shown in (C) corresponds to the red

solid “snapshot” circle in (A), while the large 7-day increase in the viral Ag level shown in (D) corresponds to the green solid “snapshot” circle in (B). Additional detailed

explanations of (A–D) are provided in the main text.

phenotype (B) within a few days. Indeed, the doubling time for
virus particles can be 43–65 min (99), while the doubling time for
malignant mouse melanoma B16 cells may take up to 2.8 days or
longer (100, 101).

To support the above argument, we note that (91) uses
experimental data where the number of tumor cells is increased
by factor about 102 in the time span of just 40 days. We digitized
the corresponding data points and plotted them in Figure 8 next
to Figure 8A. We can thus conclude that due to our modeling
estimations (Figures 5, 7), such a slow increase in Ag levels
may not be enough to change between the prototypes shown in
Figure 8 for short periods of time (days), when acute infection
develops and is cleared (1). Similar data can be learned from other
independent studies (102).

Note that the discussed transient elevation of PD-1 receptor
levels as function of antigen, Figures 8A,B, was experimentally
observed and was also used as a “window of opportunity” in the
context of the combined radiotherapy (RT) and anti-PD-1:PD-L1

treatments (103). Our theoretical work provides additional
valuable insight into, and add in the development of combined
RT/anit-PD-1:PD-L1 therapy.

3.2. Harnessing Anti-infection and
Anti-bacterial Responses Against Cancer
By addressing the “the previously unrecognized acute non-
oncogenic infection factor” revealed through systematically
collected heterogeneous experimental data encompassing
different pathogens and tumor types (1), we have suggested and
discussed concrete molecular mechanisms which allowed us to
delineate inherently weak anti-cancer (i.e., altered-self) immune
responses from inherently strong anti-infection (i.e., non-self,
foreign) responses, including co-infections.

Our findings may thus have potential clinical relevance
particularly in the context of ever-expanding immunotherapy
efforts and FDA approvals involving PD-1/PD-L1 axis immune
checkpoint blockade. Two relevant scenarios to consider, include
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(1) that patients with cancer treated with such blockade may
also be experiencing a concomitant diagnosed or sub-clinical
undiagnosed infection in a tissue distant to their tumor, and (2)
that selective patients with cancer are being treated with oncolytic
viruses (OVs), which preferentially infect tumor cells, but can
also infect cells in tissues distant to their tumor (104, 105). In
both scenarios, checkpoint blockade may have less-recognized
effects discussed here (e.g., releasing the T cell motility paralysis
caused by an infection in a tissue distant to the tumor) and thus
such blockade may improve patient outcomes, including in the
context of combination with OVs (106). As additional clinical
information is collected from patients receiving checkpoint
blockade (including about infection status and OV viral loads in
non-injected sites), future efforts may provide the data necessary
to reveal and model this blockade effect further.

We conclude this work with a hope that our theoretic
analysis of the newly discovered infection-tumor interaction (1),
made by combining solid immunobiochemical reconstruction
with appropriate mathematical modeling may also be useful in
current developments of both “physiological” and “functional
cures” (2). Specifically, our mechanistic molecular-based analysis
of the novel immunologic phenomenon uncovers important
competing push-pull processes fundamentally inherent in
immunity (3–5). We believe that the results reported may
have broader implication toward developing (i) physiological

cure approaches in order to completely eliminate tumors as

it happens in the case of rapid (one week long) clearance
of acute infection, and, alternatively, toward undertaking (ii)
functional cure treatments to maintain long-term immunologic
control as in the cases of controlled chronic infection and other
disorders as, for example, hypertension (7). However, research
(1) clearly suggests that all such cures must be developed with
care.
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Aspergillus fumigatus is a ubiquitous opportunistic fungal pathogen that can cause

severe infections in immunocompromised patients. Conidia that reach the lower

respiratory tract are confronted with alveolar macrophages, which are the resident

phagocytic cells, constituting the first line of defense. If not efficiently removed in time, A.

fumigatus conidia can germinate causing severe infections associated with high mortality

rates. Mice are the most extensively used model organism in research on A. fumigatus

infections. However, in addition to structural differences in the lung physiology of mice

and the human host, applied infection doses in animal experiments are typically orders

of magnitude larger compared to the daily inhalation doses of humans. The influence

of these factors, which must be taken into account in a quantitative comparison and

knowledge transfer from mice to humans, is difficult to measure since in vivo live cell

imaging of the infection dynamics under physiological conditions is currently not possible.

In the present study, we compare A. fumigatus infection in mice and humans by virtual

infection modeling using a hybrid agent-based model that accounts for the respective

lung physiology and the impact of a wide range of infection doses on the spatial infection

dynamics. Our computer simulations enable comparative quantification of A. fumigatus

infection clearance in the two hosts to elucidate (i) the complex interplay between alveolar

morphometry and the fungal burden and (ii) the dynamics of infection clearance, which

for realistic fungal burdens is found to be more efficiently realized in mice compared to

humans.

Keywords: virtual infection modeling, Aspergillus fumigatus lung infection, mouse model, human model, hybrid

agent-based computer simulations

INTRODUCTION

The concept of systems biology constitutes a powerful approach to investigate biological
phenomena by combining wet-lab and dry-lab investigations that mutually support and
complement each other (1–3). However, systems biology of infection faces problems that can
interrupt the experiment-theory-cycle of systems biology (4–6). First, since in vivo experiments
are predominantly conducted in animals, the general transferability of findings in the context
of immunology to the human system is a matter of ongoing dispute (7, 8). Secondly, even in
animal experiments it may be impossible to capture the spatio-temporal dynamics of infection
processes. For example, in the case for lung infection in vivo time-lapse imaging is challenging due
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to animal breathing. In these cases, virtual infection modeling is
of particular importance, since it has the potential to advance
our knowledge despite the aforementioned limitations and to
generate hypotheses that direct future experiments in a targeted
manner (9, 10). In particular, building in silicomodels of infection
on the available experimental data basis, gives rise to realistic
to-scale models that can be used to compare the outcome of
computer simulations for animal and human systems.

In this study, we use virtual infection modeling to investigate
Aspergillus fumigatus lung infections. A. fumigatus is an
environmentally wide-spread fungus that is an opportunistic
pathogen causing severe infections in immunocompromised
patients (11–14). The fungal conidia are small in size of 2–3µm
(12, 13) and can reach the alveoli in the lower respiratory tract
of the lung. Because alveoli make up about 50% of the lung
volume and also make the largest contribution to lung surface
area, they are by far the most likely niche for infection (15).
If not efficiently removed by the innate immune system, A.
fumigatus can cause invasive pulmonary aspergillosis (IPA) with
high mortality rates of 30–90% (11). The resident immune cells
in the lung are alveolar macrophages (AM) that constitute the
first line of immune defense by phagocytosing the inhaled conidia
(11, 14, 16). Without efficient clearing by innate immunity, A.
fumigatus conidia can undergo morphological changes: Upon
contact to the surfactant layer, which covers the alveolar epithelial
cells (AEC) (15), resting conidia can swell and after ∼6 h start
forming hyphae. These hyphae are able to penetrate the epithelial
tissue of the alveolus and can thereby reach the bloodstream,
from where they may disseminate and cause severe systemic
infections (12, 13, 17). The first six hours after entrance of the
conidia in the lung are therefore considered as a critical time
frame, during which conidia need to be found in order to prevent
damage of host tissue. This implies that the role of adaptive
immunity can be neglected compared to a required rapid
response by innate immunity, e.g., involving the complement
system as well as phagocytic activity by AM and neutrophils.
The condition of neutropenia, i.e., the considerable reduction
in the absolute neutrophil count, poses a major risk factor
for IPA (14, 18). Therefore, the nowadays increasing number
of immunocompromised patients leads to a rising clinical
prevalence, making A. fumigatus a relevant target for fungal
infection research. Due to its complex interactions with the host
immune system and its ability to adopt different morphologies,
various levels of pathogenicity have to be considered in the
development of effective therapy (13, 19).

Various mammalian species have been used for experimental
research on A. fumigatus infection. Besides rats, rabbits, and
guinea pigs, mice models have been used most extensively (20).
It is important to note that—in order to provoke measurable
numbers of interactions between pathogens and host cells—the
experimentally applied infection doses typically are orders of
magnitude higher compared to the natural inhalation dose for
humans, which ranges between a few hundred and thousands of
conidia per day (21–25). Thus, in addition to studying animal
systems with host environments that are quite different from
the human system, the significant differences in the applied
infection doses need as well to be taken into consideration

in the knowledge transfer from animals to humans. However,
little is known about the comparability and transferability of
mouse infection models in wet-lab and natural A. fumigatus
infections in human. Therefore, in this study we compare A.
fumigatus infection in mice and humans using virtual infection
modeling to account for the respective lung morphologies and
study the impact of the infection doses. In passing we note
that, even though daily inhalation doses will be associated with
homeostatic clearance and will typically pass unnoticed, we
here use throughout the more general term infection clearance
involving inflammation, tissue damage and a multifactorial host
response in the case of high fungal doses.

In previous studies, we already implemented an infection
model for the simulation of A. fumigatus infection in humans.
The agent-based model (ABM) was built on an extensive
experimental data basis available from literature and represents
a typical human alveolus in three-dimensional continuous space
(26, 27). The human alveolus was composed of AEC of type I and
II, as well as of Pores of Kohn (PoK) representing connections
between neighboring alveoli (28, 29). Our computer simulations
revealed that AM performing random walk migration are not
able to reliably detect a conidium in the alveolus before the
onset of germination, i.e., before 6 h post infection (17, 26). This
led to the hypothesis that a not yet experimentally identified
chemotactic signal must exist that guides AM to the position of
the conidium in the alveolus (26). The virtual infection model
was then extended to explicitly incorporate chemokine secretion
and diffusion by solving partial differential equations in a hybrid
ABM (27). Scanning all unknown parameters within reasonable
ranges, we determined those relevant for efficient pathogen
clearance. For example, we found that a preferably high ratio
of chemokine secretion by AEC with rate sAEC over chemokine
diffusion with diffusion coefficient D is required to establish a
chemokine gradient that facilitates AM to detect a conidium
before the onset of germination.

While these studies considered the immune response in
human alveoli for daily inhalation doses of A. fumigatus conidia,
the focus of the present study is on comparing A. fumigatus
infections in mice and humans taking into account natural
as well as experimental infection doses. Thus, we significantly
adapted the agent-based virtual infection model to the to-
scale morphometry of mouse alveoli. This enables generating
comparative and quantitative predictions on the influence of
morphological factors as well as dose-dependent effects during
A. fumigatus infection in mice and humans.

RESULTS

Aspergillus fumigatus lung infection is commonly investigated
using mouse models (20), where the pathogens can be
administered in different ways (30): Intranasal deposition
and intra-tracheal/intra-bronchial instillation bring the conidia
directly in the nose or trachea/bronchia and are based on liquid
solutions, while a more natural administration is realized in
inhalation chambers with air-soluted conidia. All methods have
in common that relatively high doses of 106 − 108 conidia
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are applied; however, the amount of conidia which is actually
reaching the lower respiratory tract, i.e., the fungal burden in the
alveoli of the mouse lung is found to be in the range of 103 −

105 conidia (31, 32). On the other hand, it is reported that the
distribution of conidia is fairly uniform only for administration
by inhalation, whereas intranasal administration is accompanied
with the accumulation of conidia in specific lung sections,
i.e., inducing distributions with local variations in the fungal
burden (33). This implies that our in silico experiments need to
incorporate three major issues that differ from simulations of the
human infection scenario: (i) implementing the differences in the
morphometry of the lung for human andmouse, (ii) scanning for
a larger range of infection doses, and (iii) studying the limit of
high local fungal burdens due to the non-uniform distribution of
conidia for administration based on liquid solutions.

As a measure of fungal clearance, we introduced an infection
score ISs=H,M , where the superscript refers to the human (s = H)
or mouse (s = M) system and ISs=H,M = 0 (ISs=H,M = 1)
implies that infections were cleared in each (none) simulations
(for details see Materials and Methods section, Readout of
Simulations).

Putative Morphology-Related Impact on
Infection Clearance in Humans and Mice
As can be seen in Figure 1, the alveoli for human and mouse
have been implemented as to-scale models that are composed
of AEC of type I and II, as well as PoK. Given the differences
in the size and composition of alveoli for the two organisms
(see Table 1 and Supplementary Table 1), it can be expected
that infections may be cleared with different efficiency. For
example, the surface area of the human alveolus is about 20
times larger compared to that of the murine alveolus and the
number of AM per alveolus is about 6 times higher in the
human alveoli. This gives rise to a scanning area per AM, which

is about three times higher in humans suggesting that mice
could cope much better with the detection of alveolar pathogens.
However, the situation is complicated by the fact the number
of PoK per alveolar area is higher by a factor 5.7 in the mouse
alveolus, which together with the alveolar entrance ring gives
rise to an increase of the relative alveolus’ open boundary length
by a factor 3.4 compared to the human alveolus. On the one
hand, since AM can enter and leave the alveolus only across
these boundaries (28, 29), this may result in a faster infection
dynamics of the murine system. On the other hand, chemotactic
signaling molecules can as well flow out of the alveolus via these
boundaries implying that their increased length in the murine
alveolus may be of disadvantage with regard to establishing an
efficient chemokine gradient. Again, this argument may only
be valid for a low pathogen density in the alveolus, because
for high pathogen densities the induced chemokine profile may

TABLE 1 | Comparison of morphometric parameters and innate immune cells.

Parameter Human alveolus Mouse alveolus (references)

Radius of alveolus 116.5 µm 26.2 ± 7.2 µm (29, 34–41)

Number of type 1 AEC 48 4 (42)

Number of type 2 AEC 84 4 ± 2.4 (42–44)

Number of PoK 24 7 (45)

Type 1 AEC radius 27 µm 22 µm

Type 2 AEC edge length 9.34 µm 8.12 µm (42)

Number of alveoli per lung 4.8 × 108 3.3 ± 1.3× 106 (34, 41)

Number of AM 2.1 × 109 2.4 ± 0.7× 106 (42, 46)

Radius of AM 10.6 µm 9.5 µm (47)

The parameters of the human alveolus were taken from the literature search by Pollmächer

et al. (26) and those of the mouse alveolus have been retrieved from the indicated

references.

FIGURE 1 | Visualization of a to-scale alveolus in the hybrid agent-based model for mouse (A) and human (B). The alveolar entrance ring (left) and Pores of Kohn

(black) represent entry/exit points for AM (green) and chemokine flow (white isolines) induced by conidium (red). Alveolar surface is covered with epithelial cells of type

1 (yellow) and 2 (blue).
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provide an ambiguous signal for AM guidance. For the same
fungal burden inmice and humans, the pathogen density is much
higher in the murine alveolus, due to their much lower number
and smaller size. Therefore, A. fumigatus may be much more
efficiently cleared from the human lung. Taken together, these
considerations imply that the efficiency of the infection dynamics
will depend on the combination of the alveolar morphometry and
the fungal burden that together impact on the chemokine profile
for AM migration in a way, which is impossible to quantitatively
predict without performing comparative computer simulations
of to-scale models.

Case of Low Fungal Burden: A. fumigatus

Infection More Efficiently Cleared in Mice
We first consider the case of low fungal burden, which we define
as the case where one A. fumigatus conidium per alveolus is the
highest alveolar occupation number (AON) that is statistically
expected to occur in the whole lung. The corresponding fungal
burden can be derived from the binomial distribution (see
Methods section for details) and is 2.5 × 103 in mice and
3 × 104 in humans (see Figure 2). This implies that the limit of
low fungal burden covers the dose of daily inhalation for humans,
but is relatively low for experimental conditions in typical mice
experiments. Examples of the infection dynamics can be seen for
humans and mice in Supplementary Videos 1, 2, respectively.

Our previous work on A. fumigatus infection in human
alveoli for low fungal burden revealed that a high secretion rate
sAEC of chemotactic molecules combined with a low diffusion
coefficient D of the chemokine is beneficial for a small infection

FIGURE 2 | Alveolar occupation number, the maximal expected number of

present conidia per alveolus, as a function of the fungal burden in mouse (blue)

and human (red). Black line represents the experimental range of fungal

burden, which is reached in typical mice model experiment.

score ISH in humans (27). In the present study, we screened
the diffusion coefficient and the secretion rate in the regimes,
respectively, D =

[

20, 6× 103
]

µm2/min and sAEC =
[

1.5 × 103, 5× 105
]

min−1 for alveoli of mice and humans.
The numerical results for the quantitative comparison between
human and mouse is shown by the infection scores ISH,M in
Figure 3A. It can be observed that, for all combinations of D
and sAEC, the infection score in mice is significantly smaller:
ISM < ISH . Furthermore, it can be seen that the relation of a high
secretion rate and a low diffusion coefficient also leads to a more
efficient infection clearance in mice. The relative difference in the
infection scores of the two organisms, 1IS = 1− ISM/ ISH , is in
the range 50− 90 %, indicating that the murine system performs
always better than the human system in the limit of a low fungal
burden.

Case of Low Fungal Burden: Size of
Alveolus Governs Infection Dynamics
To dissect whether the infection dynamics is governed by the
chemotaxis or the alveolar size, we compared the probability
of directed AM migration resulting from one conidium in the
alveolus ofmice and humans. The chemokine concentration itself
falls off with the distance from the source AEC, i.e., the AEC in
contact with the conidium. In order to avoid that AM perform
mostly random walk migration, the chemokine gradient (i) must
not exceed a certain value to avoid saturation of AM chemokine
receptors and (ii) must not fall below a certain value to provide a
detectable signal. As a qualitative measure of gradient efficiency
we calculated the probability that AM follow the gradient
depending on the distance to the source AEC. This probability
reflects the impact of the chemokine gradient on AM migration
and was computed as explained in Supplemantary Methods (see
section on AM Migration) for optimal chemokine parameters
(Ds

opt , s
s
AECopt

) in the human (s=H) and mouse (s=M) system.

The optimal parameters were computed from the 36 scanned
parameter combinations, {D1 . . .D6} × {sAEC1 . . . sAEC6}, for the
diffusion coefficient and the secretion rate as follows: Based on
the simulation results in terms of the infection score ISDi ,sAECi and
the limits of its respective 95%-confidence interval, we computed
the optimal diffusion coefficient as Dopt =

1
∑

i wi
·
∑

i wi·Di with

weights wi = 1− ISDi ,sAECi for all those parameter combinations
that had infection scores not exceeding the minimal upper
limit of all confidence intervals (see Supplementary Video 3).
The optimal secretion rate sAECopt was determined in the same

way yielding for the human host Dopt
H = 34µm2min−1 and

sHAECopt
= 1.5× 104min−1 and for the murine host Dopt

M =

61µm2min−1 and sMAECopt
= 4.9× 104 min−1 as the optimal

parameters in the limit of low fungal burden.
The probability of directed AM migration for both host

systems and for their respective optimal chemokine parameters
is plotted in Figure 3B. The two curves exhibit quantitative
similarity suggesting that the infection dynamics in the case
of a low fungal burden is mainly governed by the size of the
alveolus rather than the chemokine profile itself. Thus, in contrast
to the significantly larger human alveolus, AM in the murine
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FIGURE 3 | (A) Infection scores IS for random walk migration and selected examples of chemokine parameters in the limit of low fungal burden with AON = 1.

Dashed-dotted black line indicates the threshold infection score at ISt = 5%. Error bars represent 95%-confidence intervals received from bootstrapping. (B) Mean

probability for directed AM migration pdirected following the underlying chemokine gradient as a function of the distance from the source AEC. Chemokine parameters

are set to the corresponding optima Dopt and sAECopt in mice and men.

counterpart will typically perform directed migration across the
entire alveolus.

A. fumigatus More Efficiently Cleared in
Mice for Any Alveolar Occupation Number
Increasing the AON from one to higher conidia numbers, we
again performed computer simulations for various infection
scenarios that differ in the parameters for chemokine secretion
sAEC and diffusion coefficient D. However, multiple conidia
within the alveolus can lead to more complex chemokine
profiles derived from the various conidia-associated AEC that
are simultaneously serving as sources of chemokine secretion. In
Figure 4A the infection scores IS obtained from 103 simulations
are summarized for AON between one and six and for selected
secretion rates sAEC, while the numerical results for the full range
of studied parameter values is shown for human and mouse
in Supplementary Figure 1. Parameter regimes of efficient
infection clearance in these plots resemble those previously
found for one conidium in the human alveolus (27), indicating
that low ratios D/sAEC are as well preferred in the mouse
system.

Extending the computation of optimal chemokine parameters
for one conidium to larger AON enables computing
for both systems the average optimal parameter set (see
Supplementary Figure 2). We obtain for one to six conidia per

alveolus the averaged optimal valuesDopt
H = 26±6.6µm2min−1

and sHAECopt
= 1.1× 104 ± 6× 103 min−1 for the

human host and Dopt
M = 74 ± 22.4 µm2min−1 and

sMAECopt
= 8.0× 104 ± 4, 1× 104 min−1 for the murine

host. In Figure 4B, we show that the resulting infection score IS
as a function of the AON is always significantly lower in mice
compared to humans.

Case of High Fungal Burden: Chemokine
Profile Can Deteriorate Clearance
Efficiency
Due to morphometric differences between the lungs of mice and
humans, the AON is not directly related to the fungal burden.
This follows from our earlier statistical considerations on the
highest AON that is expected to occur in the whole lung for
a given fungal burden (see Figure 2) exhibiting a significant
quantitative difference between mice and humans. Since the
number of more than 108 alveoli in the human lung exceeds that
of mice by more than two orders of magnitude, even in the case
of an extremely high fungal burden with 106 conidia in the lung,
the maximal AON for humans does not exceed two. In contrast,
the same fungal burden in the lung of mice yields a maximal
AON between five and six conidia in one alveolus. It thus follows
that a comparison between mice and humans for the same fungal
burden requires contrasting infection scenarios with different
AON. Of note, our analysis focuses on the maximal AON for a
given fungal burden, because it is argued that this configuration
will be directly correlated with the estimated time needed to
clear all occupied alveoli from the pathogen. In Figures 4C,D

the numerical results for the infection score IS are shown for
mice and humans as a function of the fungal burden, respectively,
for identical chemokine parameters and for the respective
optimal chemokine parameters. Supplementary Figure 3 shows
the infection score IS as a function of the fungal burden for
all the scanned parameter combinations. It can be seen by the
smaller infection scores in the murine host that infections are
still more efficiently cleared for the entire experimentally relevant
range of 103−105 conidia in the lung. In Supplementary Video 3

we indicated all combinations of chemokine parameters for
which the infection score reaches values below the threshold of
ISt = 5%.
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FIGURE 4 | Infection scores IS as a function of the AON (A,B) and the fungal burden (C,D) for selected secretion parameters with diffusion coefficient

D = 200 µm2 min−1 (A,C) and for optimal chemokine parameters Dopt and sAECopt (B,D) in mice and men. Dashed-dotted black line indicates the threshold

infection score at ISt = 5%. Error bars represent 95% confidence intervals. Black line represents the experimental range of fungal burden, which is reached in typical

mice model experiment.

However, as we have mentioned before, administration of
conidia based on liquid solutions is reported to be associated
with higher local fungal burdens due to a more non-uniform
distribution of conidia (33). It can be seen in Figure 2 for a
uniform distribution of conidia that a high fungal burden in the
range 105 − 106 conidia per lung is associated with an AON
of two in the human system, whereas this value ranges between
three and six for the murine system. Consequently, for a non-
uniform distribution of conidia, such high AON can be reached
in the murine lung and these can result in infection scores that
are much higher than for the human system with AON of two,
even if the respective optimal chemokine parameters are applied
(see Figure 4B). Our spatio-temporal computer simulations of
the infection scenarios reveal that higher AON are associated
with chemokine profiles that deteriorate clearance efficiency.
Since the mouse alveolus contains more than 10 times fewer
AEC compared to the human alveolus (see Table 1), multiple
randomly positioned conidia will occupy most of the alveolus’
AEC associated with chemokine secretion from various source
AEC. First of all, this can lead to chemokine saturation that

will turn directed AM migration into random walk migration.
Secondly, if the number of conidia is increased further, this
will not alter the chemokine gradient anymore. Consequently,
AM will perform the inefficient random walk migration until a
sufficient number of conidia is detected, such that AMmigration
becomes again dominated by the chemokine gradient. Obviously,
this complex interplay between the morphometry of the alveolus
and the chemokine profile will be much less pronounced for
the larger human alveolus that consists of many more AEC. To
validate this hypothesis, we computed the mean values of the
chemokine concentration across all alveolar surface grid points
in the simulations and found that significant deviations arise
between the human and mouse alveolus starting at AON of
four. As can be seen in Figure 5, for AON above four the mean
concentration value in the murine alveolus does change only
slightly providing no additional chemotactic guidance to AM,
whereas it is still increasing in the human alveolus and can
provide chemotactic guidance associated with lower infection
scores IS in the human alveolus and in the limit of fungal burdens
well above the typical experimental range.
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FIGURE 5 | Mean of the normalized alveolar chemokine concentration as a

function of the AON in mice and men obtained from simulations. Error bars

represent the standard deviation of this measurement.

Simulation Results Are Qualitatively
Robust Against Variations of Model
Parameters
In the quantitative comparison of infection scenarios in mice
and humans, we so far assumed the same values for the
model parameters. For example, we assumed that the chemokine
secretion rates from human and murine alveolar epithelial cells
are similar. However, it may be argued that this does not
reflect the physiological reality correctly, since murine AEC are
effectively about 33% smaller in area and may thus exhibit a
reduced potential of chemokine secretion. Similarly, it is an
open question today whether the postulated chemotactic signals
in human and mice are transmitted by chemokines that are
structural homologs and can therefore be expected to have similar
diffusion coefficients in the surfactants of mice and humans.
While these uncertainties cannot be avoided, we estimated the
impact of variations in these parameters on the infection score in
humans andmice. To this end, we calculated the relative infection
score between the human andmurinemodel1IS = 1−ISM/ ISH ,
over all simulated parameter combinations in the experimental
range of fungal burdens. Setting both diffusion parameters in
humans and mice to identical values, the mouse shows lower
relative infection scores with a median value of 1IS = 0.49.

Next, we analyzed the robustness of the infection outcome
with regard to the diffusion coefficient and the secretion rate.
To this end, we compared the infection scores for humans and
mice for those simulated parameter combinations that obey the
scaling factors fD = DH/DM for the diffusion coefficient
and fsAEC = sHAEC/sMAEC for the chemokine secretion rate.
For example, comparing diffusion coefficients with scaling factor
fD = 3−1 (i.e., DH = (20, 200, 2000) µm2/min, DM =

(60, 600, 6000) µm2/min) revealed a reduction in the median

FIGURE 6 | Median of the relative infection score between human and mouse,

1IS = 1− ISM/ISH, depending on the scaling factor for chemotaxis

parameters: fD = DH/DM for the diffusion coefficient (purple) and

fsAEC = sH
AEC

/sM
AEC

for the secretion rate (orange). Error bars represent the

standard errors.

value of the relative infection score to 1IS = 0.27 over the
scanned fungal burdens. This indicates that the infection score in
mice is higher in > 50% of all selected parameter combinations,
even if the diffusion coefficient is three times higher in the
murine alveolus (see Figure 6). The scaling factor of the secretion
rate fsAEC has a reversed impact on the relative infection score
reflecting that a high ratio sAEC/D induces low infection scores
(see Figure 6).

Taken together, our simulation results imply that our main
conclusions are qualitative robust against variations in the
chemotaxis parameters. As long as the associated scaling factors
have values fD > 10−1 or fsAEC < 10, the murine system
still shows better infection scores in more than half of all
screened fungal burdens, even if chemotactic signaling becomes
deteriorated. We therefore conclude that within these limits our
simulation results are qualitatively robust against variations in
the chemotaxis parameters.

DISCUSSION

In this study, we investigated clearance of Aspergillus
fumigatus infection from the lung of mice and humans by
computer simulation of the complex interplay between alveolar
morphometry and fungal burden in the dynamics of infection
clearance. Since in vivo live cell imaging of these processes in
the whole lung is still not possible today, we here extended a
previously developed model of IPA in humans (25, 26) to the
murine alveolus. The virtual infectionmodel represents a realistic
to-scale representation that was built on detailed experimental
data available on the morphometry of the alveolus in the two
hosts. Furthermore, alveolar macrophages as well as chemokine
secretion and diffusion were incorporated into the model and
we screened the physiologically relevant parameter ranges for
as small as possible infection scores IS, which represent the
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percentage of simulations for which clearance of all A. fumigatus
conidia from the lung took longer than 6 h.

One important finding of this study is that, for realistic fungal
burdens comprising daily inhalation doses in humans as well as
typical doses in mice experiments, infection clearance is more
efficiently realized in mice compared to humans. This result
holds true in the limit of low fungal burden, where at most
one conidium is present in the alveolus, as well as for larger
fungal burdens with a maximal number of two and three conidia,
respectively, in the alveolus of humans and mice. As we observed
before for the human system (27), a low ratio of chemokine
diffusion over secretion, D/sAEC, leads to more efficient infection
clearance in the murine system. However, our simulations
revealed that in the limit of low fungal burden the dominating
factor of efficient infection clearance in mice is the relatively
short distances between AM and conidia in the relatively small
murine alveolus. On the other hand, the chemokine profile played
a dominant role in the limit of high fungal burden, because for
four and more conidia in the relatively small murine alveolus
this is associated with a featureless chemokine profile that cannot
provide sufficient guidance to AM.

A quantitative comparison revealed that distinct optimal
chemokine parameters exist that ensure minimal infection scores
IS in the different alveoli of the two hosts. We therefore
performed simulations comparing the infection results for both
identical and optimal chemokine parameters. It should be noted
that, even for the same chemotactic molecule in mice and
humans, differences between optimal chemokine parameters can
be induced by various factors that are different in the two hosts,
such as the secretion competence of AEC and the viscosity
of the alveolar surfactant. In any case, the importance of a
well-established chemokine gradient as well as the functional
sensing by AM is reflected by the fact that conidia, which
are not detected within 6 h post infection, pose the risk of
germination, invasion, and systemic infection. We also studied
the case of non-uniform conidia distribution in the lung leading
to locally high AON in alveoli. In this limit, which is more
likely realized by the administration of conidia based on liquid
solutions, our calculations predict that four and more conidia
per alveolus can occur, leading to infection scores that are
clearly higher in mice than in humans. However, in general,
clearance of uniformly distributed conidia in the lung seems
to be more efficiently realized in mice than in humans and we
have demonstrated that this results are qualitatively robust over
a broad range of variations in the chemokine parameters. These
considerations are important with regard to the comparability
and transferability of mouse infection models to the human
system, e.g., with regard to estimating the efficiency of new
therapeutics. Virtual infection modeling in the scope of systems
biology has been applied to a broad range of biological systems
and pathogens, such as bacteria (48) and fungi (9, 10, 49–53),
since it provides a valuable tool to investigate infection processes
that are not directly accessible in experiment. Moreover, this
approach can direct future experiments by identifying key factors
that govern the counterplay of infection and inflammation and
require most attention. It should be mentioned that our results,
indicating that AM are not able to clear the infection in the
limit of a high fungal burden, are in line with previous findings

based on a more phenomenological modeling approach. We
applied evolutionary game theory on graphs to simulate several
aspects of the immune response against A. fumigatus lung
infection, including the complement system, phagocytosis by
AM as well as recruitment and phagocytosis by neutrophils in
one comprehensive model framework (54). This enabled us to
reconcile the contradictory view on AM in the literature (55,
56) and predicted an infection dose-dependent switch in their
function: While under low infection doses AM manage infection
clearance, their role switches to a regulatory function under high
infection doses by recruiting neutrophils (54).

In the future, validation of theoretical predictions needs to
be addressed in experimental investigations. To date, one of the
main limiting factors in understanding host response during
A. fumigatus infections is the poor experimental accessibility
and stable cultivation of alveolar tissue. However, new research
approaches including organ-on-a-chip systems, which reduce
the physiological complexity and bring nature closer to the
simplifying virtual infection models, are promising for a better
validation of e.g., alveolar epithelium properties or chemokine
parameters (57–59). A lung-on-a-chip model will enable testing
chemokine candidates for AM guidance, such as IL-8 that
binds to the AM surface receptor CXCR2 (60). Similarly, the
chemoattractant C5a is known to be activated by A. fumigatus
conidia along the alternative pathway of the complement system
(61, 62) and is able to trigger the secretion of macrophage
inflammatory protein-2 and neutrophil chemoattractant-1 by
AEC (63). Once chemokine parameters will have been identified
and inflammatory conditions in terms of cytokine profiles will be
accessible, the next step will be to extend the hybrid ABM toward
neutrophil recruitment and an explicit phagocytosis model along
the lines of our previous investigations based on evolutionary
game theory (54). This will allow for the investigation of
migration and phagocytic dynamics of AM, neutrophils and
AEC in the alveolar environment during the interaction with
pathogens. Furthermore, morphological changes of A. fumigatus
including swelling and hyphae formation have a strong impact
on phagocytosis of the fungus (17, 64) and can be included in
such a virtual infection model. A further advancement will be in
the scale-up of the alveolus to the higher organizational units of
alveolar sacs for a more comprehensive simulation of infection
scenarios.

MATERIALS AND METHODS

In this study, we extended our previously developed ABM
of in silico infections by Aspergillus fumigatus in the human
alveolus (26, 27) to the mouse alveolus in order to perform
comparative analyses. The ABM is a spatio-temporal multi-scale
model that simulates host-pathogen interactions on the cellular
and molecular level. Thus, cells like the fungal conidia and AM
are simulated as individual agents that migrate and interact in a
rule-based fashion, while the chemokine secretion by AEC and
the molecular diffusion of chemokines is simulated using partial
differential equations. Chemokines are uniformly secreted with
rate sAEC at the surface of each AEC, which is associated with at
least one conidium. The implementation of the ABM is described
in more detail in the Supplementary Material, while here the
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focus is on the main aspects associated with the extension to the
mouse alveolus.

Morphometry of the Mouse Alveolus and
Implementation
A comprehensive literature research was performed to design
the virtual infection model of the mouse alveolus as realistic
as possible. The most important morphology parameters are
summarized and compared with the human alveolus in Table 1,
from which other characteristics can be derived (see for examples
Supplementary Table 1). For example, it can be seen that the
radius (surface area) of a typical human alveolus is about 4.5 (20)-
fold larger compared to a murine alveolus. The numbers of AEC
of type 1 and 2 differ significantly in both organisms, i.e., a human
alveolus contains about 12.0-fold more type 1 and 21-fold more
type 2 AEC. Furthermore, the number of PoK is about 3.4 times
higher in the human alveolus. A video of both model alveoli is
provided in the (Supplementary Videos 1, 2).

Implementation of Mouse Alveolus in
Virtual Infection Model
The ABM was adjusted for the implementation of the mouse
alveolus with parameters as summarized in Table 1 and
Supplementary Table 1. This also required changes in the
algorithm for cell positioning on the alveolar surface. Type 1
AEC were placed as described before around the three-quarter
sphere (see Supplementary Material for details). Previously, type
2 AEC and PoK were placed at the borders between type 1
AEC. However, due to the larger ratio of type 2 AEC and PoK
with respect to type 1 AEC in mice, the positioning of PoK
and type 2 AEC had to be changed. We adjusted the position
of type 2 AEC and PoK uniformly across the whole border of
the type 1 AEC. While these changes in the cell positioning
were required for realistic configurations of mouse alveolus
morphometries, quantitative results of the ABM for the human
alveolus remained within the 95%-confidence interval. Moreover,
the smaller size of the mouse compared to the human alveolus
required adjustment of the Delaunay-triangulated grid, on which
the diffusion equation is solved (27). The number of grid points
could be reduced from 104 in the human alveolus to only
5.1 × 102, keeping the spatial resolution in the mouse alveolus
the same as in the human system (see Supplementary Table 1).

Readout of the Simulations
As a measure of fungal clearance we compute for various
infection scenarios the first-passage-time (FPT) of AM, i.e., the
time required for migrating AM to find all conidia in a particular
alveolus (26, 27). The relation between the FPT and the time
point of conidia germination, which corresponds to about 6 h
post conidia arrival, is obtained from repeating the simulation
of each infection scenario 103 times. From the corresponding
FPT distribution, we then compute an infection score, IS, as the
percentage p of simulations with FPT above 6 h: ISs=H,M =

p(FPT > 6 h), where the superscript refers to the human (s = H)
or mouse (s = M) system and ISs=H,M = 0 (ISs=H,M = 1) implies
that conidia were cleared in each (none) of the 103 simulations.
The various infection scenarios correspond to scanning the
parameter space in terms of AMmigration, chemokine secretion,

and diffusion, as well as conidia infection doses in alveoli of mice
and humans.

Comparison of Fungal Burden
For a given fungal burden δ, the conidia are distributed across
all alveoli nalv of the host’s lung. Assuming an independent
and uniform distribution of these conidia, we can describe the
probability of having ncon conidia present in one alveolus by
the Binomial distribution Bcon

(

δ, p, ncon
)

with probability of

p = 1
nalv

for δ repeats. To estimate the maximal AON that

is associated with a specific fungal burden, we computed ncon
from the 1 − 1

nalv
-quantile of the distribution Bcon

(

δ, p, ncon
)

.

The resulting number corresponds to the maximal AON that
can be expected to occur in the whole lung for a specific fungal
burden (see Figure 2). The corresponding IS was determined
by linear interpolation of the results from our simulations for
various AON.
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Activation of naive CD8 T-cells can lead to the generation of multiple effector and

memory subsets. Multiple parameters associated with activation conditions are involved

in generating this diversity that is associated with heterogeneous molecular contents

of activated cells. Although naive cell polarisation upon antigenic stimulation and the

resulting asymmetric division are known to be a major source of heterogeneity and

cell fate regulation, the consequences of stochastic uneven partitioning of molecular

content upon subsequent divisions remain unclear yet. Here we aim at studying the

impact of uneven partitioning on molecular-content heterogeneity and then on the

immune response dynamics at the cellular level. To do so, we introduce a multiscale

mathematical model of the CD8 T-cell immune response in the lymph node. In the

model, cells are described as agents evolving and interacting in a 2D environment

while a set of differential equations, embedded in each cell, models the regulation of

intra and extracellular proteins involved in cell differentiation. Based on the analysis of

in silico data at the single cell level, we show that immune response dynamics can be

explained by the molecular-content heterogeneity generated by uneven partitioning at

cell division. In particular, uneven partitioning acts as a regulator of cell differentiation and

induces the emergence of two coexisting sub-populations of cells exhibiting antagonistic

fates. We show that the degree of unevenness of molecular partitioning, along all

cell divisions, affects the outcome of the immune response and can promote the

generation of memory cells.

Keywords: multiscale modeling, immune response, asymmetric division, agent-based models, immune memory
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1. INTRODUCTION

Following acute infection, the activation of naive CD8 T-cells
by antigen presenting cells (APCs) triggers the synthesis of
proteins controlling cell proliferation and differentiation up to
the memory state. While CD8 T-cell population dynamics have
been widely described, it is of great interest to better understand
the molecular mechanisms driving the CD8 T-cell response.
In particular, determining the effects of molecular events on

the generation of memory cells is necessary for vaccine design
improvement. In vivo and in vitro studies have demonstrated
that a single presentation of the antigen to naive CD8 T-cells

is sufficient to trigger a complete CD8 T-cell immune response
(1–5). Then, once initiated, antigen-independent molecular
pathways drive a program of CD8 T-cell proliferation and
differentiation (6, 7).

The CD8 T-cell immune response occurs through four main
phases. First the activation of naive CD8 T-cells in secondary
lymphoid organs such as lymph nodes (LN) or spleen by APCs
through MHC class I antigenic peptide/T-cell receptor (TCR)
binding, surface co-receptor/ligands interactions and soluble
cytokines secretion. Once activated, CD8 T-cells proliferate
quickly during the expansion phase, which expands the initial
population by a factor of 103 to 105 (6, 8). Concomitantly,

activated cells differentiate into effector cells, able to kill infected
cells through cytotoxicity. At the end of the expansion phase,
known as the peak of the response, the CD8 T-cell population
begins a contraction phase, where most of the responding cells
die yet leaving a quiescent population of cells with strong
re-activation potential: the memory cells. The memory cell
population survives the contraction phase and may remain for
years in the organism (memory phase) to ensure faster and
stronger host-protection against subsequent infection by the
same pathogen.

The responding effector population is composite and two
subsets with antagonistic fates have been described (9): memory
precursor effector cells (MPEC) and short-lived effector cells
(SLEC), characterised by the expression of two proteins KLRG1
and CD127 (IL-7 receptor). Both MPEC (KLRG1loCD127hi) and
SLEC (KLRG1hiCD127lo) express effector features (cytotoxicity,
proliferation) but MPEC are capable of differentiation into
memory cells while SLEC are destined to die during the
contraction phase (9). Thus, CD8 T-cell population dynamics
arise from cell phenotypic heterogeneity, itself resulting from
molecular-content heterogeneity.

Among the genes, transcription factors and proteins involved
in the CD8 T-cell response, some seem to play key roles in
the differentiation processes. Transcription factors Tbet and
Eomesodermin (Eomes) appear to play critical roles in the
acquisition of effector and memory phenotypes. It has been
shown that the expression of Tbet induces the development
of SLEC and represses the development of MPEC profiles (9–
11). Eomes is not involved in the SLEC vs. MPEC fate choice
(12, 13). However, Eomes is necessary for the development of
several properties of memory cells [survival, lymph node homing
capacities, responsiveness to second infection (11, 12, 14)]. Along
the differentiation from effector to memory, the concentration of

Tbet in a CD8 T-cell decreases, while the concentration of Eomes
increases (11, 15).

Since a unique initial antigenic signal can trigger a complete
response, additional mechanisms are necessary to generate the
observed molecular-content heterogeneity. Arsenio et al. (16),
Chang et al. (17, 18), and Ciocca et al. (19) showed that TCR
binding to MHC-class-I peptide-complex results in polarised
segregation of proteins in activated CD8 T-cell: some proteins
migrate on the TCR side of the T-cell, other migrate on the
opposite side. The subsequent division of the activated CD8 T-
cell splits the mother cell perpendicularly to the polarisation axis,
such that the daughter cell coming from the TCR side (proximal
cell) receives more proteins associated to effector lineage,
including Tbet, while the other one (distal cell) receives more
proteins associated to memory lineage. Asymmetric division of
polarised naive CD8 T-cells appears to be one of the major
mechanisms regulating CD8 T-cell fate decision.

Nevertheless, the role of asymmetric division of polarised
naive cells in the T-cell differentiation process appears to
be controversial (20). While there are several evidences for
asymmetric division of polarised naive CD8 T-cells (21), it
remains uncertain how this polarisation quantitatively depends
on the affinity of the TCR for the MHC-class-I peptide-
complex, the duration of the binding, external chemokines
and interactions with homotypic CD8 T-cells (21). Since the
asymmetric partitioning of Tbet has been evidenced in mice CD8
T-cells, it will be considered hereafter.

Less is known about the partitioning of molecular content
in the course of subsequent cell divisions. However, several
studies support the hypothesis that when a cell divides, a
random, uneven partitioning of the molecular content occurs
(22–29). Partitioning of CFSE dye, a cell staining dye used to
track cell proliferation through dye dilution, during lymphocyte
proliferation has been mathematically studied by Bocharov et al.
(23) and Luzyanina et al. (26). Based on comparison with
in vitro experimental data, these studies suggest that uneven
partitioning, which does not result from cell polarisation, occurs
at T-cell division.

We emphasize that the asymmetric first division of naive cells,
which goes through an active polarisation of the cell, has to be
distinguished from the random partitioning of the molecular
content during the subsequent divisions of non-polarised cells,
hereafter referred to as uneven partitioning (29).

In a recent work (30), we studied how stochastic uneven
molecular partitioning, repeated at each cell division, could
regulate the effector vs. memory cell-fate decision in a CD8
T-cell lineage. To do so, we analysed an impulsive differential
equation describing the concentration of the protein Tbet
in a CD8 T-cell subject to divisions, where impulses were
associated with uneven partitioning of Tbet. In this work, high
and low Tbet concentrations were associated with effector and
memory phenotypes, respectively. We concluded that, for a low
degree of unevenness of molecular partitioning, a CD8 T-cell
expressing a moderate concentration of Tbet can still generate
both memory and effector cells. If the concentration of Tbet
in this cell is high or low enough, the phenotype of the cell
and its progeny becomes irreversible, with low Tbet-expresser
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and high Tbet-expresser differentiating in memory or effector
cells, respectively. Moreover, our study indicates that the increase
in cell cycle length throughout the immune response (31, 32)
favours irreversible cell differentiation.

Several works [see (33) and the references therein], focused
on modeling molecular mechanisms of the immune response
coupled to cell population dynamics. Most of these works involve
agent-based models.

Gong et al. (34, 35) developed a two-compartment model to
study how the number of dentritic cells and the level of MHC-
peptides on their membrane influence the size and composition
of T-cell populations. Since they did not model any dynamics at
the molecular level, they were limited in studying the molecular
origins of cell differentiation and heterogeneity.

Prokopiou et al. (36) and Gao et al. (37) designed a multi-scale
agent-based model of the early CD8 T-cell immune response
(Day 3–5.5 post-infection). At the population scale, a discrete
population of CD8 T-cells and APCs in a LN is modeled by
a cellular Potts model (CPM) (38). At the molecular scale,
the dynamics of a simplified molecular regulatory network
(MRN) containing some key molecular factors is modeled by
a system of differential equations, embedded in each cell of
the population, whose state determines cell phenotype and fate.
Cells communicate with each other through cell-cell contact and
secretion of the cytokine IL2 such that the environment of a
cell affects its molecular profile. Parameter calibration resulted
in good agreement with in vivo data of an immune response
in murine LN after influenza infection, at both cellular and
molecular levels.

The model presented in this article has been developed
from the multi-scale agent-based model previously introduced
in Prokopiou et al. (36) and Gao et al.(37). Since the authors in
Prokopiou et al. (36) and Gao et al. (37) focused on early events
following CD8 T-cell activation, they did not consider processes
leading to the generation of memory cells. We enriched their
model in order to study a complete response, from the activation
of naive cells to the generation of memory cells. In particular,
Eomes has been added to the MRN.

In this paper, we are interested in understanding how, from
the activation of naive CD8 T-cells, an antigen-independent
regulation of intra-cellular molecular content can drive a
complete CD8 T-cell response. We particularly focus on the
role of molecular-content heterogeneity among a CD8 T-cell
population in the generation of memory cells. We first verify
our model’s ability to reproduce in vivo data at both cellular
and molecular scales. Then we study, in an in silico CD8 T-
cell population, the impact of molecular-content heterogeneity
on the emergence of sub-populations, characterised by their
expression of proteins Tbet and Eomes. We discuss how uneven
distribution of molecular content at cell division affects the
cellular dynamics (population size, cell differentiation, and death)
and suggest that memory cell generation efficiency is maximal
for a moderate degree of unevenness. Finally, we show that
memory cells generated by our model are able to reproduce some
features of a secondary CD8 T-cell immune response. Indeed,
when restimulated by antigen in silico they generate more cells
at the peak of the response and in the memory phase.

2. MATERIALS, METHODS, AND MODELS

2.1. Data
4 × 105 naive CD8 T-cells from CD45.1+ F5 TCR transgenic
mice (B6.SJL-PtprcaPepcb/BoyCrl-Tg(CD2-TcraF5, CD2-
TcrbF5)1Kio/Jmar) recognizing the NP68 epitope were
transferred intravenously in congenic CD45.2+ C57BL/6
mice (C57BL6/J). The day after recipient mice were inoculated
intranasally with 2×105 PFU (plaque forming units) of a vaccinia
virus expressing the NP68 epitope (39). From day 4 to day 22
post-infection, the spleens of infected animals where harvested
and the number of F5 transgenic CD8 responder T-cells was
assessed by flow cytometry, based on CD8/CD45.1/CD45.2
expression, to distinguish F5 TCR-transgenic responder
(CD45.1+CD45.2−) from host (CD45.1−CD45.2+) CD8 T-
cells. Naive (CD44− Mki67− Bcl2+), effector (CD44+ Bcl2-)
and memory (CD44+ Mki67− Bcl2+) CD8 T-cells have been
identified (40). All experimental procedures were approved
by an animal experimentation ethics committee (CECCAPP;
Lyon, France), and accreditations have been obtained from
the French government.

OT1 CD8 T cells mRNA expression data time courses come
from the ImmGen project (http://www.immgen.org). According
to the information provided on ImmGen.org, the in vivo mRNA
data (Figure 4) were generated for OT1 T-cells stimulated in
similar experimental settings i.e., the response of transferred
OT1 TCR-transgenic CD8 T-cells following infection by vesicular
stomatitis virus expressing their cognate antigen.

2.2. Molecular Regulation and IL2 Diffusion
We aim at describing the molecular regulation within each
CD8 T-cell during a response to an acute infection, and
how the dynamical molecular state of a cell characterises its
differentiation stage. We present on Figure 1 the MRN that

FIGURE 1 | Simplified molecular regulatory network in a CD8 T-cell. Red

molecular factors dynamics are described by Equations (1–6); yellow

molecular factors dynamics are described by Equation (7); black arrows:

promotion or secretion; green arrows: transition between activated and

non-activated form of IL2R; red dashed arrows: inhibition. The meaning of the

numbered arrows is reported in Table 1.
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will be used throughout this manuscript and give a detailed
description in Table 1. It contains several key molecular factors
involved in CD8 T cell proliferation, differentiation, apoptosis,
and cell communication. This is an updated version of the MRN
developed in Prokopiou et al. (36) and Gao et al.(37) that was
limited to the description of differentiation up to the effector
stage. To account for differentiation into memory cells, we
introduced the protein Eomes and its interactions with the rest
of the network as documented in the literature. Indeed, Eomes is
involved in the development of essential properties of memory
cells such as survival, lymph node homing capacities or faster
response to antigenic stimulation (11, 12, 14).

2.2.1. Molecular Regulatory Network
This MRN is initiated upon antigen presentation to a naive
CD8 T-cell, through the engagement of the TCR. Antigenic
stimulation triggers the synthesis of interleukine-2 (IL2) by the
CD8 T-cell and the production of IL2 receptors (IL2R) on the
cell membrane (44). The synthesised IL2 is then released in the
environment and can bind its receptor (41) to form IL2-IL2R
complex, hereafter referred to as activated IL2R. Activated IL2
receptors enhance the expression of IL2 receptors (44) as well
as IL2 synthesis (44). In the meantime, activated IL2 receptors,
jointly with protein Tbet (see below), inhibit the activation
of the IL2 gene through the action of the mediator protein
Blimp1 (45, 46).

Antigenic stimulation independently stimulates Tbet
synthesis (43), a protein involved in the acquisition of cell
cytotoxicity. Indeed, Tbet is known to induce the expression of
Fas ligand (FasL) (52), a transmembrane protein that can bind to
the transmembrane protein Fas to induce cell apoptosis via the
activation of Caspases in the Fas-expressing cell (53). Caspases
are a family of proteins playing essential role in cell apoptosis
(60). There exist several types of Caspases involved in CD8 T-cell
apoptosis yet, for the sake of simplicity, we aggregated them in a
unique variable [Cas]. Moreover, Tbet induces its own synthesis
(via the gene Tbx21) (54, 55).

Eomes expression, involved in the acquisition of memory
phenotype (12), is first inhibited during the activation phase
due to engagement of the TCR (via activation of the Akt/mTOR
pathway and inhibition of FOXO1 and TCF7) (7, 13, 57). Eomes
is induced later (11, 61) and its expression is enhanced by the
activation of IL2 receptors (7, 13, 56). Eomes promotes the
development of new IL2 receptors on cell membrane (14).

The activation of IL2 receptors, of the TCR and the
protein Eomes prevents apoptosis by inhibiting the activation
of Caspases, in particular through the mediator protein
Bcl2 (12, 50, 51)

2.2.2. Intracellular Molecular Dynamics
Based on the above-described reactions, and from the equations
used in Prokopiou et al. (36) and Gao et al. (37), we describe the
dynamics of the concentrations of non-activated IL2 receptors
([R]), activated IL2 receptors ([L • R]), Tbet ([Tb]), activated Fas
([Fs∗]), Caspases ([Cas]) and Eomes ([E]) in a CD8 T-cell with
the following system of equations

d

dt
[R] = λR1fAPC + (µ−

IL2 + λR2)[L • R]+ λE1[E]

−
(

µ+
IL2[IL2

cm]+ kR
)

[R], (1)

d

dt
[L • R] = µ+

IL2[IL2
cm][R]− µ−

IL2[L • R]− ke[L • R], (2)

d

dt
[Tb] = λT1fAPC + λT2

[Tb]n

λnT3 + [Tb]n
− kT[Tb], (3)

d

dt
[Fs∗] = Hµ+

F [Tb
cm]

(

λF

kF
− [Fs∗]

)

−µ−
F [Fs

∗]− kF[Fs
∗], (4)

d

dt
[Cas] = Gλc1

1

1+ λc2[L • R]
·

1

1+ λc3fAPC
·

1

1+ λE2[E]

+λc4[Fs
∗]− kc[Cas], (5)

d

dt
[E] =

1

1+ λE5fAPC
·

(

λE3[L • R]

λE6 + [L • R]
+

GλE4

1+ λE7[Tb]

)

− kE[E]. (6)

All parameters are positive. Parameters λ are associated
to induction and inhibition effects, µ are associated to
activation and deactivation of transmembrane proteins and k are
degradation and dilution rates. The concentrations of System (1–
6) are assumed to be null in naive CD8 T-cells, and remain null
until TCR engagement.

The effects of the external environment on the intracellular
system (1–6) are taken into account through five variables. The
variable fAPC (Equations 1, 3, 5, 6) is equal to the number of
APCs bound to the considered CD8 T-cell and accounts for TCR
engagement. The variableG (Equations 5, 6) is equal to 0 in naive
CD8 T-cells and to 1 otherwise, i.e., in cells that have already
met with an APC. It accounts for the fact that up-regulation of
Caspases and Eomes described by parameters λc1 and λE4 is not
active in naive cells. The variable H (Equation 4) accounts for
the expression of FasL by effector and memory T-cells and for
the activation of Fas through cell contact. Hence, H is equal to 1
in a non-naive considered CD8 T-cell in contact with an effector
or a memory CD8 T-cell, and equal to 0 otherwise. The variable
[IL2cm] is equal to the concentration of IL2 at the cell membrane,
in the extracellular environment. Finally, [Tbcm] is defined as the
sum of Tbet concentrations in effector and memory CD8 T-cells
in contact with the considered CD8 T-cell and acts as a proxy for
the expression of Fas in those cells.

We introduced the variable [E] and the associated Equation
(6) to the system used in Gao et al. (37) in order to account
for the synthesis of protein Eomes and its interactions with
other molecular factors. The term λE1[E] in (1) accounts for
the up-regulation of IL2 receptors by Eomes. Eomes also limits
cell apoptosis by activating Bcl-2 gene, as do IL2 and activated
TCR. This communal target explains the multiplicative form of
the inhibition of Caspases by Eomes, IL2 and TCR in Equation
(5). We also introduced the function G in (5) to update the
dynamics of Caspases concentration from Prokopiou et al. (36)
and Gao et al. (37).
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TABLE 1 | Description of the molecular signalling pathways in Figure 1 and corresponding bibliographic references.

n◦ Description References

1 Activated TCR induces the development of IL2 receptors (41, 42)

2 Activated TCR induces the synthesis of Tbet (43)

3 Deactivation of activated IL2 receptors (41)

4 Activation of IL2 receptors (41)

5 Activated IL2 receptors induce the development of new IL2 receptors (44)

6 Activated IL2 receptors inhibit the expression of the IL2 gene (via Blimp1) (45)

7 Activated IL2 receptors induce the expression the IL2 gene (44)

8 Tbet enhances the inhibition of the IL2 gene by activated IL2 receptors (46)

9 Internal IL2 is secreted in extracellular environment (41)

10 External IL2 binds the non-activated IL2 receptors to activates them (44)

11 Tbet inhibits the secretion of IL2 (47–49)

12 TCR activation activates IL2 gene (via Erk) (44)

13 TCR activation inhibits the activation of Caspases (via Erk, Bim, Bax and Bcl2) (50)

14 Activated IL2 receptors inhibit the activation of Caspases (via Stat5, BAX et Bcl2) (51)

15 Tbet induces the expression of FasL (52)

16 FasL activates Fas through cell contact (53)

17 Activated Fas induces Caspases activation (53)

18 Tbet activates Tbx21 and induces the synthesis of Tbet (positive feedback loop) (54, 55)

19 Eomes induces the expression of IL2 receptors (14)

20 Activated IL2 receptors induce the expression of Eomes (via Runx3) (7, 13, 56)

21 Activated TCR inhibits Eomes gene expression (via Akt, mTOR, Tcf1, Foxo1) (7, 13, 57)

22 Eomes inhibits the activation of Caspases (via Bcl2) (12)

23 Tbet inhibits the expression of Eomes (via IFNγ , IL12R) (58, 59)

The positive feedback loop on Tbet is modeled with an order
n Hill function in order to allow bistable behaviour of Tbet. As
discussed in the introduction, the concentration of protein Tbet
can be associated to the level of differentiation of an effector CD8
T-cell, with high level of Tbet correlating with fully differentiated
effector cell, while low Tbet levels are associated to memory
precursor effector cells. Proposition 1 below, reproduced from
Girel and Crauste (30), gives necessary and sufficient conditions
to allow bistable behaviour of Tbet concentration.

Proposition 1 (30). Assume fAPC = 0, n > 1 and λT2(n−1)
n−1
n >

nkTλT3, then Equation (3) has exactly three non-negative steady
states: 0 < [Tb]u < [Tb]s, such that 0 and [Tb]s are locally
asymptotically stable and [Tb]u is unstable.

In the following, we will assume that the conditions n > 1 and

λT2(n− 1)
n−1
n > nkTλT3 are fulfilled (see section 3.2).

System (1–6) is embedded in every CD8 T-cell. Nevertheless,
cell-cell contacts, stochastic events (cell cycle length, protein
distribution at division) and external concentrations of IL2 affect
the evolution of the system such that each CD8 T-cell develops a
unique molecular profile based on its own history.

2.2.3. Extracellular IL2 Diffusion
The secretion of IL2 by CD8 T-cells and its isotropic
diffusion in the extracellular domain (with periodic boundary
conditions) are modeled by the following PDE, introduced by

Prokopiou et al. (36),

∂[IL2]

∂t
= D∇2[IL2]+

(

λR3
[L • R]

λR4 + [L • R]
+ λ1fAPC

)

1

1+ λT4[Tb]
− δ[IL2], (7)

where [IL2] is the IL2 concentration. CD8 T-cells react to
extracellular IL2 through their IL2 receptors by means of the
[IL2cm] term, in (1–2), defined as the sum of [IL2] at the
considered cell membrane.

2.3. Cell Differentiation and Division
Rules controlling cell division (including protein distribution
at the division), apoptosis and differentiation are summarised
in Table 2 and detailed hereafter. It must be noted that cells
properties result from their molecular profile. For example, the
properties observed in vivo in memory cells (survival, low IL2
secretion, low cytotoxicity) are not imposed by model rules
but acquired as a consequence of their molecular profile. One
exception is cell cycle duration (see 2.3.2).

2.3.1. Differentiation
We designed a set of rules based on the linear, irreversible
differentiation scheme from Prokopiou et al. (36) and Gao et al.
(37), allowing the description of a full CD8 T cell response, from
the activation of naive cells up to the generation of memory cells.
The differentiation pathway is illustrated in Figure 2.
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TABLE 2 | Main rules applying to APCs and CD8 T-cells in the model.

Cell type

Property Division Apoptosis IL2 FAS FasL

secretion expression expression

APC m 4 m m m

Naive m m m m m

Pre-activated m 4 4 m m

Activated 4 4 4 4 m

Effector 4 4 4 4 4

Memory m 4 4 4 4

4: able, m: unable.

FIGURE 2 | CD8 T-cell differentiation scheme. Red arrows: proliferation; black

arrows: differentiation; th =threshold.

A naive CD8 T-cell binding an APC becomes pre-activated
and maintains the contact with the APC thanks to good
adhesion properties (cf. Section 2.4 and Table S1). If the
concentration [L • R] of activated IL2 receptors in a pre-
activated CD8 T-cell reaches a given threshold IL2Rth, the pre-
activated CD8 T-cell becomes activated, leaves the APC, and
starts to proliferate. When an activated CD8 T-cell divides, it
gives birth to two CD8 T-cells whose states are determined by
their respective concentrations of protein Tbet by comparison
with a given threshold Tbetth: activated if [Tb] < Tbetth,
effector otherwise. Finally, if the concentration of protein
Eomes is greater than the threshold Eomesth, a dividing
activated or effector CD8 T-cell will differentiate into memory
cell and stop proliferating.

2.3.2. Cell Cycle Length
Division is considered only for activated and effector CD8 T-
cells. The cell cycle length (hours) of a cell preparing its k-th
division (k ≥ 0) is chosen, at cell birth, from uniform law
U[ck−4,ck+4] where ck = 6 + 28k2/(k2 + 100) such that the
mean duration of the cycle length increases with the number of
divisions and can range from 2 to 32 h (31, 32). At the outcome
of a division, activated and effector CD8 T-cells immediately
enter a new cycle.

2.3.3. Protein Distribution Between Daughter Cells
When a CD8 T-cell divides, the molecular content of the
mother cell is randomly divided between the two daughter
cells. To account for protein distribution between daughter

cells at each division and for each protein, let us introduce
the parameter m, defined as the degree of unevenness. We
say that divisions are m% uneven if at division one daughter
cell inherits up to (50 + m/2)% of the mother cell’s content,
while the second daughter cell receives the rest, that is at least
(50 − m/2)% of the mother cell’s content. Then, the molecular
content of each daughter cell evolves according to System (1–6)
until the next division.

For the sake of clarity, we emphasise that the degree of
unevenness m is not the percentage of proteins received by
daughters cells at each division but indicates to what extent
stochastic molecular partitioning can be uneven. Based on
estimation from Luzyanina et al. (26), we consider that divisions
are 10% uneven, so that the most uneven partitioning in this case
would split 45 and 55% of the mother cell’s proteins in the two
daughter cells respectively.

The exact value of each daughter cell molecular content
at birth is randomly chosen according to a probabilistic law,
as detailed hereafter. Each protein concentration [i] of the
six proteins in System (1)-(6) is unevenly distributed among
daughter cells: one cell inherits ki[i] and the other (2 − ki)[i].
Coefficients ki, i = 1, . . . , 6, are different for each protein, each
cell, and each division, and are chosen from the probability law
U[1−m/100,1]. Unless otherwise indicated, we consider 10% uneven
divisions (26), i.e., ki ∈ [0.9, 1] for i = 1, . . . , 6. One may note
that ki ∈ [0, 1] so the quantity of molecular material is preserved
at each division, given that the volume of each daughter cell is
half the volume of the mother. Different degrees of unevenness
will be considered in section 3.3.

One special case of division is the asymmetric division, and
its associated unequal repartition of Tbet between daughter
cells. To account for polarisation of naive cells by antigenic
signalling and the consecutive asymmetric divisions, the first
division of a CD8 T-cell following its activation by an APC is
characterised by a very specific uneven distribution of protein

Tbet only between the two daughter cells: a coefficient K is
randomly chosen from the uniform law U[0.5,1], one of the

daughter cells is arbitrarily designated as the proximal daughter

and receives a concentration (2 − K)[Tb] for protein Tbet while
the other one is designated as the distal one and receives a
concentration K[Tb] where [Tb] is the Tbet concentration in the
mother cell, so that Tbet accumulates in proximal cells (17, 18).
Other proteins concentrations are partitioned according to the
previously mentioned rule, see paragraphs above.
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2.3.4. Apoptosis
CD8 T-cell apoptosis occurs as soon as Caspases concentration
[Cas] reaches the threshold Caspasesth. APCs are present from
the beginning of the simulation and their lifetime is randomly
chosen from the uniform law U[48,96] (hours). APCs’ only role is
to activate naive CD8 T-cells, so we do not model any molecular
activity within APCs. Dead cells are removed from the domain.

2.4. Spatial Modeling and Cellular
Interactions
At the cell population scale, we use a cellular Potts model
(CPM), also known as Glazier-Graner-Hegeweg model (38), to
describe a population of CD8 T-cells and APCs evolving in a
two-dimensional domain. Basically, a CPM is a time-discrete
algorithm where cells, or agents, are defined as sets of nodes and
move on a lattice, one node at a time, according to probabilistic
rules based on the minimisation of the energy of the system,
known as the Hamiltonian.

In our model, based on that from Prokopiou et al. (36) and
Gao et al. (37), the domain is a square lattice of S = 150 ×

150 nodes with periodic boundary conditions. Each node Ex
bears an index σ (Ex). A set of nodes bearing the same index
σ defines a cell, also denoted by σ . Finally, each cell σ has a
type τ (σ ) defining its properties. In our case, the different types
are: extracellular medium, APC, naive, pre-activated, activated,
effector and memory CD8 T-cell. Note that, technically, the
extracellular medium is considered as a cell, denoted by σe.

Cell (including extracellular medium) size variation and
displacement result from the succession of copies of index
from nodes to neighbour nodes, based on the minimisation of
the Hamiltonian � [see Equation (8)], thanks to a simulated
annealing algorithm. More precisely, at each iteration, known as
Monte Carlo Step (MCS), of the CPM, the following algorithm is
executed N = 3× S times:

Step 1 Randomly choose a source node xs and, among its first
order neighbours, a target node xg .

Step 2 Compute the Hamiltonian �, and the putative
Hamiltonian �′ that would be obtained if node xs would
copy its index on node xg , i.e., if cell σ (xs) incorporates the
node xg .

Step 3 Compute 1� = � − �′ + 1motility (see Equation
9 below) to evaluate the energy cost of such a copy. If
1� > 0, xs copies its index σ (xs) on xg , i.e., xg is
integrated by cell σ (xs). Else, the copy is accepted with
probability exp(−1�/T), known as Boltzman probability,
where parameter T characterises the propensity of the
system to evolve.

Note that it is conventional to considerN = S pixel copy attempts
per MCS. However, in that case the maximum speed cells can
reach is limited to approximatively 0.1 pixel per MCS (62),
which eventually defines a finer time resolution than expected
for the integration of differential equations. We emphasise that
this limitation can be removed by increasing this number (here
N = 3× S).

The Hamiltonian � is computed using the following formula:

� = λpm 6
σ 6=σe

(pσ − Pτ (σ ))
2

︸ ︷︷ ︸

perimeter

+ λarea 6
σ 6=σe

(aσ − Aτ (σ ))
2

︸ ︷︷ ︸

area

+ 6
neighbours (Ex, Ex∗)

J
τ (σ (Ex)),τ (σ ( Ex∗))(1− δ

σ (Ex),σ ( Ex∗))

︸ ︷︷ ︸

contact

, (8)

where Jτ1 ,τ2 accounts for the contact energy between two cells
of types τ1 and τ2. Thanks to the term 1 − δ

σ (Ex),σ ( Ex∗), two
neighbour nodes belonging to the same cell do not generate
contact energy. pσ and aσ are the actual perimeter and area of cell
σ , respectively, whereas Pτ (σ ) and Aτ (σ ) are the target perimeter
and area, respectively, for a cell of type τ (σ ) ; perimeter and area
constraints then penalize the configurations where the effective
perimeter and area are distant from the target ones. Parameters
λarea and λpm define the weights of those two constraints. The
perimeter constraint has been added to the definition used in
Prokopiou et al. (36) andGao et al. (37) in order to avoid potential
cell fragmentation.

The energy 1motility is defined by

1motility = v(σ (xs))
(

cos(θ(σ (xs), t)), sin(θ(σ (xs), t))
)

· (xg − xs),
(9)

where v(σ (xs)) is the weight associated to the motility energy
for the cell σ (xs) and θ(σ (xs), t) is the privileged angle of
direction for the cell σ (xs) at time t, randomly updated along the
simulation. The operator “·” stands for the dot product. Thus,
1motility is all the more high (and then the copy is all the more
probably accepted) that the copy direction (xg − xs) aligns with
(cos(θ(t)), sin(θ(t))).

2.5. Numerical Resolution
The initial cell population is composed of 30 naive CD8 T-
cells and 3 APCs. A simulation requires 30,000 iterations (MCS)
corresponding to 20 days and 20 h in the real time, that is,
1 MCS represents 1 min. When a simulation starts, APCs are
already present in the LN, ready to activate naive CD8 T-cells.
We consider the initial time to be day 4 post-infection (D4 p.i.)
since our in vivo data set starts D4 p.i..

We assume that a node of the lattice corresponds to 4× 4µm2

for biological interpretation. The target cell area is chosen to be 9
nodes (144µm2) for CD8 T-cells and 140 nodes (2, 240µm2) for
APCs. The target perimeter for CD8 T-cells is 48µm in order to
favour compact shapes ; there is no constraint on APC perimeter.
The simulations have been performed using CC-IN2P3 servers
on Compucell3D software (62) with, unless otherwise stated,
the parameter values from Tables S1–S4. Simulation files are
provided in Supplementary File 2.

In section 3.4, we study the ability of our model to simulate
a secondary response, also called memory response. Our model
has first been calibrated in order to reproduce an in vivo
primary response against Listeria monocytogenes (Lm) infection
from Badovinac et al. (63) (see Figure 8). Then, the same
parameter values have been used to simulated both a primary and
secondary responses. However, secondary response simulations
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are performed with initially 3 APCs and 30 memory CD8 T-
cells (instead of 30 naive CD8 T-cells for the primary response)
that are able to bind an APC to become pre-activated, then
the differentiation scheme presented in section 2.3.1 applies.
The molecular profile of the initial memory cells is set as the
asymptotic molecular profile developed by memory cells at the
end of a primary response, as discussed in section 3.2.

2.6. Model Calibration
Parameters of Equations (1–9) have been calibrated on in vivo
data using parameter values from Prokopiou et al. (36) and Gao
et al. (37). Since handling big cell populations with an agent-
based model implies expensive computation time, we focused on
fitting the proportion, rather than the number, of CD8 T-cells in
each state of differentiation among the whole cell population. In
order to compare in silico and in vivo data at both cellular and
molecular scales weminimised themetricD = Dcell+Dprot where

Dcell =
1

(#S)(#V)

∑

simulation S

·
∑

mouse V

·
∑

cellular type C

·

∑

time step t

|S(C, t)− V(C, t)| (10)

and

Dprot =
1

(#S)(#V)

∑

simulation S

·
∑

mouse V

·

∑

protein P

·
∑

time step t

|S(P , t)− V(P , t)|, (11)

with #S the number of simulations performed with a given
set of parameters and #V the number of mice from which
in vivo data have been collected. S(C, t) (resp. V(C, t)) is the
ratio between the number of cells of type C and the size of the
CD8 T-cell population at time t in the simulation S (resp. the
mouse V). S(P , t) (resp. V(P , t)) is the ratio between the mean
concentration of protein (resp. expression of mRNA) P among
the CD8 T-cell population at time t in the simulation S (resp.
the mouse V) and the maximal concentration (resp. expression)
observed among all the time steps.

Since pre-activated and activated cellular types are not
identified in in vivo data, we gathered pre-activated with naive
T-cells and activated with effector T-cells. Then cellular types C
in Equation (10) are: naive/pre-activated, activated/effector and
memory. In Equation (11), quantities P are the ones for which
we have relevant in vivo mRNA expression data at our disposal:
IL2 receptors, Tbet and Eomes.

Note that we did not perform a parameter estimation
procedure, but a calibration of our model based on experimental
data. Evaluation of accuracy and sensitivity of parameter values
have been investigated in previous studies (36, 37). Since we
modified the model to account for differentiation in memory
cells, a sensitivity analysis of our model to parameter Eomesth is
presented in section 2 (Figures S1, S2) of Supplementary File 1.

3. RESULTS

3.1. Modeling the CD8 T-Cell Immune
Response at Both Cellular and Molecular
Scales
We first briefly illustrate our model’s ability to reproduce in vivo
dynamics at both cellular and molecular scales. The evolution
of the composition of a CD8 T-cell population from D4 to D22
p.i. is presented on Figure 3A. In both in vivo and in silico
data, naive CD8 T-cells are negligible after D6 p.i.. At the peak
of the response, occurring D8 p.i. both in vivo and in silico,
more than 94% of the CD8 T-cells are in the activated or
effector state, while the memory population emerges during the
subsequent contraction phase. As a result of effector cell death
and differentiation, memory cells represent the major part of the
population on D22 p.i.. Figure 3B shows the size, in number
of cells, of the CD8 T-cell population. The qualitative in vivo
dynamics is quite well-reproduced: antigen presentation to naive
CD8 T-cells triggers clonal expansion, population size reaches a
peak D8 p.i. followed by a contraction phase where most cells (64
and 67% in vivo and in silico respectively) die.

On Figure 4, in silico predictions are compared to the mean
IL2 receptors, Tbet and Eomes mRNA expression levels of
CD8 T cells activated in vivo. The kinetics of IL2R and Tbet
are well-reproduced. Indeed, as a result of TCR engagement,
IL2R concentration sharply increases and reaches a peak D5
p.i., allowing cells to capture IL2 and get activated. Then IL2R
concentration decreases until D8 p.i. and slowly increases from
D8 to D15 p.i. Tbet concentration increases from D4 to D6
p.i. and remains stable until D8 p.i., then decreases until D15
p.i. Mean Tbet concentration consistently correlates with the
size of effector CD8 T-cell population (Figures 3A,B) and is in
agreement with its role in the control of cytotoxicity and cell
apoptosis. Regarding Eomes concentration, the in vivo increase
between D4 and D8 p.i. is well-reproduced by our model,
however the increase observed between D8 and D15 p.i. does
not match the in vivo data. As cells evolve toward a memory
phenotype, in silico Eomes concentration increases and up-
regulates the expression of IL2R (Figure 1) to exacerbate the
sensitivity of memory cells to IL2. It should be noted that various
works support that Eomes expression increases in effector cells
progressing toward a memory phenotype (11, 15, 43), contrary to
what is observed in the mRNA dataset from Immgen.

3.2. Cellular Dynamics Arise From Cellular
Heterogeneity
In our model, each cell develops its own molecular profile,
resulting in a heterogeneous cell population. Consequently,
studying the mean concentration of a given protein among the
population, as shown on Figure 4 for example, is not sufficient
to understand the molecular dynamics among the CD8 T-
cell population.

To study the molecular-content heterogeneity and its role
in cellular dynamics, we show in Figure 5 the in silico
concentrations of Tbet, Eomes, and Caspases in each CD8 T-
cell of the population at different times of the response. Cells
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A

B

FIGURE 3 | CD8 T-cell population dynamics. (A) Fraction of each cell type

among the CD8 T-cell population. Gray: naive+pre-activated cells; red:

activated+effector cells; blue: memory cells; full lines with crosses: in silico

(mean ± standard deviation over 10 simulations); transparent lines with

squares: in vivo (mean ± standard deviation over data from 5 mice). Error bars

are most of time very small and then not visible. (B) Size of the CD8 T-cell

population in silico (black crosses, right y-axis, mean ± standard deviation

over 10 simulations) and in vivo (blue squares, left y-axis, mean ± standard

deviation over data from 5 mice).

were ranked according to their Tbet content. D5 to D8 p.i.,
corresponding to the clonal expansion phase (see Figure 3),
concentrations are heterogeneous but uniformly distributed
around the mean value. Most of that heterogeneity comes from
the conditions of activation and from molecular partitioning at
cell division. Yet from D8 to D24 p.i., corresponding to the
contraction phase, two sub-populations of cells clearly emerge:
one with high concentration of Tbet (centred around [Tb]s ≈ 118
mol/L) and one with low concentration of Tbet (≈ 0 mol/L).
The unstable steady state of (3), defined in Proposition 1 and
separating the stable equilibria 0 and [Tb]s, is given by [Tb]u ≈ 21
mol/L. Moreover, cells expressing high levels of Tbet express high
levels of Caspases and low levels of Eomes, a molecular profile
associated with cell death and poor memory potential. On the
contrary, cells expressing low levels of Tbet have good survival
and memory differentiation properties since they express low
levels of Caspases and high levels of Eomes. Progressively, cells
with high concentrations of Tbet die (when their concentrations
of Caspases reach the threshold Caspasesth ≈ 19 mol/L) and
cells with low concentrations of Tbet differentiate into memory

A

B

C

FIGURE 4 | Molecular dynamics. Mean concentration of (A) both activated

and inactivated IL2 receptors, (B) Tbet and (C) Eomes among the CD8 T-cell

population normalised by the concentration value D8 p.i. Lines with crosses:

in silico (mean ± standard deviation over 10 simulations); squares: in vivo

mRNA data from ImmGen.

cells and stop proliferating (when the concentration of Eomes
reaches Eomesth = 16 mol/L). On D24 p.i. there is no cell
with intermediary profile, most of the cells have differentiated
into memory cells while a few effector cells with high Tbet
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concentrations still survive. One can observe that the molecular
profiles of memory cells converge to the same state where [Tb] =
0 mol/L, [E] ≈ 26 mol/L and [Cas] ≈ 9 mol/L.

The coexistence of two sub-populations characterised by
their concentrations of Tbet explains the population dynamics
observed on Figure 3. That is, the contraction of the cytotoxic
effector cell population simultaneously with the emergence of a
memory cell population with survival properties.

As discussed in the introduction, responding CD8 T-cells
can be distinguished between short-lived (SLEC) and memory
precursor (MPEC) effector cells based on the expression of
two proteins: KLRG1 and CD127 (7, 15). In this section,
we investigated how, in our model, the heterogeneity of
Tbet concentrations among a CD8 T-cell population explains
the emergence of two sub-populations of CD8 T-cells. The
first one, expressing high concentrations of Tbet, could be
comparable to SLEC that exhibit properties such as apoptosis
and cytotoxicity, a process regulated by Tbet. The second one
(memory potential, survival) would be similar to the MPEC
population. This is consistent with the litterature, since Tbet is
known to favour the development of SLEC, to the detriment
of MPEC (9–11).

3.3. Moderate Uneven Molecular
Partitioning Favours Efficient Generation
of Memory Cells
A major source of heterogeneity in our model is the uneven
molecular partitioning at cell division determined by the degree
of unevennessm (see section 2.3.3). We compare on Figure 6 the
sizes of the CD8 T-cell population at the peak of the response
as well as the sizes of the memory population on D25 p.i. for
different degrees of unevenness, that is the extent of unevenness
of the stochastic molecular partitioning. We do not however
modify the degree of unevenness of the asymmetric first division,
consecutive to the polarisation of the cell due to APC binding
(17, 18), see section 2.3.3.

First, Figure 6 shows that the size of the CD8 T-cell population
at the peak of the response decreases as the degree of unevenness
increases. Indeed, the more uneven the molecular partitioning,
the sooner CD8 T-cells expressing high levels of Caspases or
Eomes appear and then the sooner cells die by apoptosis or
differentiate in non-proliferating memory cells.

Second, the relation between the degree of unevenness and
the size of the memory population generated at the end of the
response is not monotonous: the biggest memory populations are
observed when considering a moderate unevenness (10–50%).

In section 3.2, the role of Tbet concentration in determining
the fate (death or memory differentiation) of an effector
CD8 T-cell has been discussed. Additionally, we showed
in Girel and Crauste (30) that the progression of a cell
lineage toward death or memory differentiation can be
slowed down or reversed by molecular partitioning depending
on cell cycle length, initial Tbet concentration and the
degree of unevenness. This stressed, on a simplified model,
the influence of the degree of unevenness on cell fate
choice regulation.

On the opposite, when molecular partitioning is symmetrical
(m = 0) and no further T-cell-APC interactions are assumed,
there is no more source of stochasticity and consequently all the
CD8 T-cells of the same lineage express the same concentration
of Tbet. As a consequence of Proposition 1, this concentration
irreversibly converges either to [Tb]s (high Tbet concentration)
or to 0 mol/L (low Tbet concentration). This irreversibly leads to
apoptosis (high Tbet concentration) or memory differentiation
(low Tbet concentration) of the whole cell lineage.

Thus, our result clearly stresses that uneven partitioning
allows the maintenance of a CD8 T-cell compartment with
undetermined fate for some time, through cell fate reversibility.
As long as it is maintained, this compartment is able to produce
both effector cells destined to die and memory cells.

We also showed in Girel and Crauste (30) that the higher
the degree of unevenness, the more reversible the cellular fate.
Surprisingly, strong unevenness (65 − 80%) results in smaller
memory cell populations (Figure 6). In fact, strong unevenness
favours the fast emergence of daughter cells with very high or low
concentrations of Tbet such that those cell lineages are likely to
die or to generate memory cells. In particular, effector cells with
high memory potential poorly expand before they differentiate
hence this leads to the generation of fewer memory cells.

To discuss the efficiency of memory cell generation, we
compare on Figure 6 the number of memory cells generated
at the end of the response to the number of cells at the peak
of the response, viewed as an indicator of the energetic cost of
the response for the organism (red crosses). Figure 6 suggests
that the degree of unevenness in molecular partitioning impacts
memory generation, with the better ratio (more than 30%)
obtained when considering 50% uneven molecular partitioning.

3.4. Memory Response
One of the characteristics of memory cells is their capacity to
mount more rapid effector response than naive cells and to
generate an increased fraction of memory cells (64). To test
whether the memory cells generated by our model exhibit some
of these features we compared the in silico primary response with
a secondary response of in silico generated memory cells.

Figure 7 shows the in silico memory response (or secondary
response), obtained with an initial population of 30 memory
T-cells, as described in section 2.5. This secondary response
is compared to the primary immune response starting with
30 naive CD8 T-cells (section 3.1). The in silico secondary
response is characterised by a bigger CD8 T-cell population, at
any time of the response. From the primary to the secondary
response, there is a small increase in the size of the sub-
population of activated and effector cells but the major change
is in the size of the memory population. Indeed, the number of
memory CD8 T-cells increases much faster during the secondary
response such that D29 p.i. the memory population is two
times bigger than during the primary response. This can be
explained by the fact that memory cells are activated faster
than naive cells, thanks to their molecular profile. Indeed,
memory cells express higher concentrations of IL2 receptors
than naive cells, since it is sustained by the expression of
Eomes. Consequently, the threshold IL2Rth (see section 2.3.1)
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FIGURE 5 | Concentrations (mol/L) of Tbet (red), Eomes (blue), and Caspases (brown) in all cells, sorted (left to right) according to their Tbet concentration. In silico

CD8 T-cell population on D5, D8, D13, D17, D21, and D24 post-infection are represented. To make it easier to read, Eomes and Caspases concentrations have been

multiplied by factor 5.

is reached sooner when starting with memory cells than
with naive cells. As a result, the concentration of Tbet, up-
regulated during APC binding, is lower after the activation of
a memory cell than after the activation of a naive cell, and
low Tbet level is associated to memory precursor fate and
low cytotoxicity.

On Figure 8, we compare in silico primary and secondary
responses from our model with in vivo primary and secondary
responses against Lm infection from Badovinac et al. (63). Since
our model has been calibrated to fit the primary response data,
we do not aspire to reproduce the quantitative dynamics of the
secondary response, but rather to study its qualitative properties.
Namely, the secondary response is characterised by a slower and
weaker contraction phase, from the peak of the response D7 p.i.
to the last time point D29 p.i.. This weaker contraction could
be explained by an early production of memory cells that leads
to a large population of memory cells, as it is the case in our
model (Figure 7).

4. DISCUSSION

Activation of naive CD8 T-cells triggers a primary immune
response, characterised by a well-orchestrated program of cell
proliferation, differentiation, death and migration. It is now
well-known that the responding CD8 T-cell population is
heterogeneous and that a single naive T-cell can generate
differently fated cells (65). However, evaluating how cellular and
molecular events contribute to that heterogeneity and identifying
its consequences on the outcomes of the immune response
remain fundamental questions.

With this in mind, we expanded a hybrid multi-scale model
of the CD8 T-cell immune response, where cell behaviour
is determined by intracellular molecular dynamics. Model
parameters have been calibrated using in vivo data at both
cellular and molecular scales. Because of expensive running
time, we were led to simulate small cell populations so that we
focused on semi-quantitative fitting criteria. After calibration,
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our model succeeded in reproducing the temporal dynamics of
the response regarding the size of the CD8 T-cell population and
the proportion of cells in each differentiation stage. Apart from
a discordance between in silico and in vivo mean concentration
of Eomes on day 15 p.i., our model captured the dynamics of
the mean concentration of IL2 receptors, Tbet and Eomes, which
play key roles in the differentiation processes.

In addition to reproduce primary responses, our model easily
produces secondary responses. Memory cells generated during
the in silico primary response succeeded in mounting a stronger
secondary response upon antigenic stimulation (Figures 7, 8). It
should be noted that the differences between outcomes of the
primary and secondary in silico immune responses only depend,
in this work, on the difference between the molecular profile of
memory and naive CD8 T-cells and do not take into account
a lot of characteristics of the secondary response described in
the literature such as: biggest initial CD8 T-cell population (8),
shorter cell cycle (66) or sensitivity to inflammatory cytokines,
such as IL12 (15).

FIGURE 6 | Size of the CD8 T-cell population at the peak of the response

(black squares, left axis) and size of the memory CD8 T-cell population at the

end of the response D25 p.i. (blue diamonds, left axis) as functions of the

degree unevenness of molecular partitioning (mean ± standard deviation over

5 simulations). Red crosses (right axis) show memory cell generation efficiency,

measured as the ratio between the size of the memory CD8 T-cell population

D25 p.i. and the size of the CD8 T-cell population at the peak of the response

(mean over 5 simulations).

We discussed how a deterministic description of molecular
concentration dynamics combined with stochastic events, such as
uneven partitioning ofmolecular content at division, can regulate
the emergence and the maintenance of two sub-populations
of CD8 T-cells. Those sub-populations, characterised by their
molecular profiles, coexist but express different properties
and antagonistic fates, comparable to those of SLEC and
MPEC described in the literature (9). From that observation,
we showed that the dynamics observed at the cellular scale
(cell differentiation, population size) could be explained by
molecular-content heterogeneity among the cell population,
which mostly originates from uneven partitioning of molecular
content. We did not however consider the effect of stochastic
fluctuations of gene expression, known to be an important
source of heterogeneity (67). Interestingly, Huh and Paulsson
(25) showed that both stochastic gene expression and stochastic
partitioning of molecular content are equally good to explain the
heterogeneity observed at cell division and suggested that much
of the heterogeneity usually attributed to the former actually
results from the latter.

FIGURE 8 | Number of CD8 T-cells, normalised by CD8 T-cell population size

D7 p.i., during in silico primary (black full line) and secondary (blue dashed line)

responses (mean over 10 simulations) compared with in vivo primary (black

squares) and secondary (blue triangles) responses against Listeria

monocytogenes from Badovinac et al. (63).

A B

FIGURE 7 | Number of (A) activated/effector and (B) memory CD8 T-cells during in silico primary (dashed line) and secondary (full line) responses. Mean ± standard

deviation over 10 simulations.
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In our model, cell phenotypic heterogeneity, associated with
molecular-content heterogeneity, first arises upon asymmetric
division of polarised naive cells. This heterogeneity is thereafter
continuously regulated throughout the whole response by means
of uneven partitioning of molecular-content at each division.
This is in agreement with the observations of Lemaître et al.
(68) who state that T-cell diversification is a continuous process,
spread over the whole response, including the asymmetric
first division and late events occurring throughout subsequent
divisions. Besides, Lemaître et al. (68) pointed out that cellular
heterogeneity, that could result from variations in naive T-cell
responsiveness to cytokines or TCR signalling, pre-exists prior
to the first division. In this article we did not consider preexisting
heterogeneity among the naive T-cell pool, that could be achieved
by varying the parameter values of System (1–6) associated to
each naive T-cell. We can expect that it would confer to each
naive T-cell a predisposition to engender a cell lineage oriented
toward either apoptosis or memory differentiation. Moreover,
the initial heterogeneity among naive T-cells could be conserved
through the response, then leading to a heterogeneous pool of
memory cells, a feature that is not reproduced by our model (69).
Note that the in vivo responses presented in this article also result
from transgenic CD8 T-cells bearing the same TCR.

Polarisation of naive cells upon antigenic stimulation has
been observed in CD4 T-cells (21, 70) and B-cells (21,
71, 72). This polarisation results in asymmetric division of
naive cells and may induce heterogeneous cell fates (70–72).
Regarding the subsequent divisions, it can be thought that they
are subject to uneven and random partitioning of molecular
content since this phenomenon has been reported in many
types of cells, including yeast, bacteria and T-cells (22–27).
However, the contribution of uneven and random partitioning
of non-polarised cells in the development of heterogeneous
cell fate has not been studied yet. To that end, it would be
interesting to extend the approach developed in our study to
the differentiation of other lymphocytes, such as B-cells or
CD4 T-cells.

In our study, increasing the degree of unevenness of molecular
partitioning reduces the expansion size of the whole CD8 T-cell
population whereas the size of the sub-population of memory
cells is maximal for intermediate degrees of unevenness. As a
consequence, the ratio between the number of memory cells
generated and the magnitude of the response at its peak, viewed
as a measure of memory generation efficiency, is maximised
when considering a 50% degree of unevenness. As discussed
above, molecular partitioning is not the only regulator of
heterogeneity. In this regard, we can believe that our evaluation
overestimates the value of this optimal degree of unevenness
and rather indicates that generating a moderate heterogeneity all
along the immune response leads to efficient memory generation.

In our manuscript, when the degree of unevenness is
m = 10%, each daughter cell inherit from 45 to 55% of the
mother cell’s molecular content, with uniform probability
distribution. The unevenness of molecular partitioning
remains difficult to measure experimentally. Based on in vitro
experimental data of CFSE dye expression, Luzyanina et al.
(26) estimated that the two daughter cells inherit of 42,3%

and 57,7% of the mother cell’s molecular content, respectively.
Rather than considering a uniform probability distribution
and a degree of unevenness, we could consider that the
molecular partitioning is a binomial phenomenon (24), i.e.,
each protein has the same probability to be attributed to each
daughter cell. Such a discrete distribution can be approximate
by a continuous and truncated (to avoid negative values)
normal distribution whose variance would characterise the
level of unevenness.

Note that, in works dealing with the CD8 T-cell immune
response, it is usual to consider that 5 to 10% of the cells present
at the peak of the response survive the contraction phase and
differentiate into memory cells (8). This is consistent with our
results only for symmetric divisions or for divisions with high
(65–80%) degrees of unevenness. However, this hypothesis can
be challenged, as pointed out in (40), as for the actual in vivo
data presented in Figure 3, D22 p.i. the memory population size
is 19.5% of the whole population at the peak of the response, D8
p.i. This suggests that the amplitude, and possibly the kinetics, of
the cellular contraction is not only an inherent feature of the CD8
immune response but also depends on external factors such as
inflammatory factors.

In many mathematical models of the CD8 T-cell immune
response, as those referenced in (6), cell proliferation and
differentiation depend on the amount of pathogen, in the
manner of prey-predator models used in ecology. In our model
a brief initial antigenic stimulation of naive CD8 T-cells is
sufficient to trigger an autonomous program of proliferation
and differentiation, as stated in the literature (1–3). However,
while dispensable, in vivo inflammatory signals can affect the
immune response outcome (73). A motivating perspective is to
evaluate the respective contributions of both the autonomous
program and extrinsic inflammatory factors to the immune
response, so that the latter could be tuned by mastering the
inflammatory environment. For example, extending our model
by incorporating the inflammatory cytokine IL12, secreted by
APCs, could markedly affect the effector/memory cell balance
since IL12 is known to respectively promote and repress Tbet and
Eomes synthesis (9, 47, 74).

Cell cycle length depends in our model on the number of
divisions the cell has undergone. It would be instructive to
introduce a molecular control of cell proliferation, since the
putative existence of coexisting sub-populations with disparate
cycle lengths could considerably impact the cellular dynamics.
One could for instance consider the transcription factor Foxo1,
known to induce Eomes expression while repressing that of
Tbet and inhibiting cell cycle progression (75), suggesting
that the TbetloEomeshi memory precursor cells discussed in
section 3.2 might adopt a longer cycle than the Tbethi

Eomeslo cells.
In conclusion, our agent-based multiscale model successfully

reproduced several aspects of the CD8 T-cell immune response
at both molecular and cellular scales. Even though we cannot
infer quantitative conclusions from this study, it suggests that
uneven partitioning of molecular content at cell division, as
a source of heterogeneity, can modulate cell fate decision
and act as a regulator of the magnitude of the response and
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of the size of the memory cell pool. Actually, we did not
consider intermediaries, namely DNA transcription and mRNA
translation, between gene activation and protein synthesis.
Consequently, our molecular model is an amalgam between
gene activity and protein synthesis. Therefore, while our
argumentation is based on uneven partitioning of the molecular
content, it could also stand for the situation where, when a cell
divides, the two daughter cells inherit different gene activity
levels for each gene. All in all, our study focuses on molecular
heterogeneity generation upon cell division in general, rather
than the specific case of molecular partitioning. It stresses that
dynamics observed at the cellular scale—including the initiation
of the contraction phase and the origin of memory cells—can
be explained by structural molecular-content heterogeneity,
that is continuously regulated along the response, as
CD8 T-cells divide.
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Following the approval, in recent years, of the first immune checkpoint inhibitor, there

has been an explosion in the development of immuno-modulating pharmacological

modalities for the treatment of various cancers. From the discovery phase to

late-stage clinical testing and regulatory approval, challenges in the development

of immuno-oncology (IO) drugs are multi-fold and complex. In the preclinical

setting, the multiplicity of potential drug targets around immune checkpoints, the

growing list of immuno-modulatory molecular and cellular forces in the tumor

microenvironment—with additional opportunities for IO drug targets, the emergence of

exploratory biomarkers, and the unleashed potential of modality combinations all have

necessitated the development of quantitative, mechanistically-oriented systems models

which incorporate key biology and patho-physiology aspects of immuno-oncology and

the pharmacokinetics of IO-modulating agents. In the clinical setting, the qualification

of surrogate biomarkers predictive of IO treatment efficacy or outcome, and the

corresponding optimization of IO trial design have become major challenges. This

mini-review focuses on the evolution and state-of-the-art of quantitative systems models

describing the tumor vs. immune system interplay, and their merging with quantitative

pharmacology models of IO-modulating agents, as companion tools to support the

addressing of these challenges.

Keywords: immuno-oncology, mechanistic models, tumor vs. immune system, systems pharmacology,

pharmacokinetics, pharmacodynamics, molecular and cellular biomarkers

INTRODUCTION

Immunotherapy of cancer has had a long history of development, starting from pioneering efforts
in using coley toxins to treat patients—a therapeutic approach named after Dr. William Coley (1).
Even though these earlier efforts never turned into a standard treatment, further investigations on
the relationships between tumor cells and the immune system led to discoveries which unveiled
fundamental principles underlying cancer progression, such as immune surveillance (2, 3), cancer
dormancy (4), cancer immuno-editing (5), and the cancer immunity cycle (6). These discoveries
were foundational for clinical successes and corresponding regulatory approvals in recent years,
of therapies targeting the CTLA-4, PD-1, and PD-L1 immune checkpoints. In the wake of these
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successes, there has been an explosion in the development of
immuno-modulating, anti-cancer pharmacological modalities,
leading to the initiation of, literally, thousands of clinical trials
(7, 8). However, from the discovery phase to late-stage clinical
testing and regulatory approval, challenges in the development
of immuno-oncology (IO) drugs are multi-fold and complex
(9), with related complexities in the design of clinical trials;
if unaddressed, these may lead to a decreased probability of
success (10). Some of these challenges can be mapped to an
incomplete mechanistic understanding of immune response
dynamics and the interplay of such immune responses with
tumor infiltration processes and tumor cell growth (11). These
quantitative knowledge gaps hinder: (i) effective translation
of novel promising therapeutic approaches into the clinic,
(ii) identification of predictive response biomarkers, and (iii)
search of therapeutic drug combinations which may overcome
intrinsic or acquired resistance to existing standards of care
(12). This mini-review focuses on quantitative, mechanistically-
oriented modeling approaches which have been sought in IO,
to address, at least partially, the abovementioned challenges and
knowledge gaps.

EVOLUTION OF QUANTITATIVE,
MECHANISTICALLY-ORIENTED IO
SYSTEMS MODELING

Application of mathematical modeling in support of preclinical
and clinical research, as well as decision-making in Oncology,
has a long-standing history covering multiple problems and
addressing a variety of research questions—today often referred
to as computational oncology (13–15). Historical milestones
include adaptations of the Gompertz model for treatment
outcomes in breast cancer (16). These earlier efforts started
from models with a simplistic empirical structure, based on
an ordinary differential equation (ODE) describing tumor
size growth using an exponential or sigmoidal function (17).
Such a model, however, would not adequately describe the
interplay between tumor cells and tissue vs. the immune
system, since it entirely ignores the immune component (18).
It is nevertheless valuable to mathematically describe treatment
response effects following various chemotherapies, which are
adequately captured by generalized Gompertzian kinetics (19). In
fact, such modeling results provided a basis for the use of specific
“dose-dense” chemotherapeutic regimens, which subsequently
showed favorable outcomes in the treatment of breast cancer
(20). Additionally, such empirical considerations allowed for a
gradual evolution of modeling concepts, which today can be
grounded in mechanistically-oriented principles, including for
tumor vs. immune system interactions (Figure 1).

Earlier efforts to describe tumor vs. immune system
relationships via a general mathematical description appeared
in the 1980’s, following the pioneering IO work that introduced
the concept of immune surveillance (2, 3). These mathematical
models considered the addition of a second variable describing
the dynamics of cytotoxic immune cells, which are able to attack
tumor cells (22–24). The resultant “two-ODE” model actually

follows a typical “predator-prey” model introduced by Alfred
Lotka and Vito Volterra, in much earlier days, at the turn of the
20th century. In such a model, tumor cells may be interpreted
as the “prey,” whereas cytotoxic immune cells may be viewed as
the “predator”: their dynamic interplay may result in one possible
system behavior reflective of cancer dormancy (4). Given the
relative simplicity of such a “two-ODE” model and since the
behavior of such a model could be assessed analytically, it gained
immense popularity within the oncology modeling community
and led to several theoretical hypotheses underlying fundamental
principles of cancer progression. For example, it was shown,
through modeling, that key parameters controlling tumor re-
growth under steady-state conditions of cancer dormancy were
those relating to activities of the immune system (25). A corollary
result was that it is a reduction in the probability of achieving
tumor cell kill, rather than a reduction in the probability of tumor
cells being recognized by cytotoxic cells, which best explained
immune evasion by tumor cells (26). Interestingly, this key result,
derived theoretically at the time, has recently been supported
by elegant modeling work linking high-level immunological and
epidemiological data, which suggests that age-related decline in T
cell output correlates better with risk of cancer diagnosis vs. age-
related accumulation of somatic mutations in tumor cells (27).

With the explosive growth of experimental data surrounding
the complexity of tumor vs. immune system interplay,
“two-ODE” models experienced a further evolution with
additional biological entities and mechanisms being taken into
mathematical consideration. At this point and looking forward,
many biological candidates were tested as the “third modeling
variable,” representing either specific immune cells or cytokines
that modulate cytotoxic T lymphocyte (CTL) function (28). Such
models were initially focused on including IL-2 function and
effects, reflective of the potential importance of this cytokine
and its associated dynamics in long-term tumor relapse (29). In
further work, de Pillis et al. used a “three-ODE” model to reveal
a difference between the dynamics of CD8+ CTLs vs. natural
killer cells, which supported the importance of considering
multiple cell types in the overall anti-tumor immune activity
(30). More recently, CD4+ T helper cells were considered as the
third component, in a quantitative, model-based investigation of
adoptive cellular immunotherapy (31).

“Three-ODE” models, however, exhibit one significant
structural limitation, namely they completely lack (an) immuno-
suppressive component(s), which would be crucial when
considering immune evasion mechanisms (32). Therefore,
embedding a fourth variable into such models, to describe
immuno-suppression, would seem rather natural; however,
choices for the most appropriate candidate in this role are multi-
fold. Several types of immuno-suppressive cells or molecules
could be suitable candidates, including regulatory T cells (Tregs),
myeloid-derived suppressor cells (MDSCs), or Type 2 tumor-
associated macrophages, as well as cytokines such as TGFβ or
IL-10. Thus, Arciero et al. chose TGFβ as the fourth model
variable (33), while de Pillis et al. used Tregs as the principal
immuno-suppressive component in their model (34). While
these two modeling examples focused on immuno-suppressive
effectors, other “four-ODE” models abound, declining a vast
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FIGURE 1 | Evaluation of mathematical models which describe tumor vs. immune system interactions. “One-ODE” approach, simplistic description of tumor growth

kinetics; “Two-ODE” approach, a typical “Predator-Prey” model, incorporating a basic description of tumor vs. immune system interactions; “Three-ODE” approach,

incorporating additional immuno-modulating factor(s); “Four-ODE” approach, including considerations for immuno-suppression; mechanistic multi-compartmental

model, taking into account essential biological principles underlying the IO cycle concept (21); TV, tumor volume; CTL, cytotoxic T lymphocytes; IMF,

immuno-modulating factor; ISF, immuno-suppressive factor; mDC, level of mature dendritic cells; nTeff, non-differentiated T effectors cells; dTeff, differentiated T

effectors cells; Treg, regulatory T cells; PD-L1, level of PD-L1 expression; Agsys, level of systemic antigen; IAR, immuno-activation rate function; green line, positive

regulation, red line negative, regulation; back line, variable turnover.

variety of immune players or tumor cell clones (35–41). Such
a variety in potential key immuno-modulating factors made
the generalization of any “three-ODE” or “four-ODE” model
an overly difficult process, since any one of the models cited
above can be challenged with newly generated experimental data
featuring the importance of one vs. another immune factor.
This may also explain, at least partially, the relatively minimal
recognition, to date, of quantitative modeling approaches by
immuno-oncologists (28, 42, 43).

On one hand, some of the biological complexities which
compose the IO cycle, as summarized in recent reviews (6, 44, 45)
clearly indicate the limitations of oversimplified models such as
“prey-predator” models, which appear to be too remote from
experimental reality and would not be applicable or of use
for the majority of research relevant questions. On the other
hand, increasing model complexity with additional mechanistic
insights always comes with challenges of model calibration, as
depicted in this famous quote by John von Neumann, “with
four parameters, I can fit an elephant and with five, I can

make him wiggle his trunk” [see in Dyson (46)]—pointing

to the necessity of avoiding overparameterized “metastatic”
models with unreliable extensions and loss of predictive power.
Achieving such a balance in capturing necessary (not over-
simplified) yet sufficient (not over-developed) features, and as
constrained by the available data, is arguably one of the most
difficult challenges in fit-for-purpose, parsimonious mechanistic
model building and calibration. Overparameterization can easily
negate all benefits brought forward by the incorporation of
exquisite biological details of the system under consideration
(47); models which attempt to explain everything may in fact
not be useful, their predictive power remaining a question
mark (48).

To address this challenge, part of the solution may reside in
the combining of modeling methodologies developed previously
and in other disciplines (49). This would result in a repository of
prior information and knowledge validated elsewhere, to build
mechanistic models in immuno-oncology which, on one hand,
incorporate increasing system complexity and, on the other
hand, avoid overparameterization based on newly generated
data—thereby resulting, using terminology of a Bayesian
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mindset, in a posterior model based on existing, established
quantitative priors (50).

If so, the question then becomes, “where to find such
established prior models?” One obvious domain is quantitative
immunology (51, 52), where the use of various modeling
techniques by experimentalists has already gotten significantly
more traction, arguably, than in other fundamental biological
disciplines (53). For example, modeling has provided
quantitative “inference frameworks” for immunology basics
and fundamentals such as T cell activation, homeostasis
or self / non-self recognition (54–57), immune receptor
signaling (58), and understanding of T cell immunological
memory (59). Prior models from quantitative immunology
may then be combined with prior models from quantitative
pharmacology (60–62), another field where modeling has
provided quantitative “inference frameworks” (63) In the next
section, we will discuss selected works which considered the
combining of modeling methodologies, in attempts to develop
pharmacologically-modulated posterior models, which were
then used to prospectively address questions in the development
of IO therapies (Table 1).

MECHANISTIC MODELING IN SUPPORT
OF IO THERAPY DEVELOPMENT

Applications of mechanistic modeling in support of preclinical
and clinical research, commonly referred to as pharmacokinetic
(PK)/pharmacodynamic (PD) modeling, are traditionally
centered around the optimization of treatment dosing and
scheduling—the “dose” representing a critical component
of any drug development program (82). Such modeling
approaches have thus been used in the development of IO
agents such as PD-1 and PD-L1 inhibitors (83–85). In particular,
mechanistic PKPD modeling has been applied in support
of first-in-human dose selection of pembrolizumab, an anti
PD-1 agent (65); this resulted in a seamless clinical trial
design with a model-informed dose justification, which the
US FDA accepted in the process of an accelerated regulatory
review (86). Label updates with flat dosing schedules were
subsequently granted, for both nivolumab and pembrolizumab,
strongly supported by model-based simulations (87, 88).
PKPD modeling has also been used in the translation of
preclinical data for a conjugated IL-2 therapy, in particular to
gain a better understanding of such a therapy’s downstream
effects (89). PKPD modeling has been further used in the
development of bispecific biologics. Chen et al. used it for
the estimation of the minimally anticipated biological effect
level (MABEL) of a bispecific antibody targeting CD3 and
p-cadherin (66), while Ribba et al. used it for guided dose
escalation study design of cergutuzumab amunaleukin, a fusion
protein consisting of IL-2 and a carcinoembryonic antigen
(CEA) human monoclonal antibody (64). Such models are
great examples of a “fit-for-purpose” quantitative approach,
focused on addressing a specific pharmacological question.
However, they do not take into account details of the tumor
vs. immune system interactions, which would be critical to

gain a better understanding of mechanisms of action (MoA)
of immunotherapies.

Progressively adding components of tumor vs. immune
system interactions into such PKPDmodels may well support the
addressing of questions around pharmacologically-modulated
IO biology, a topic of paramount importance in, for example,
the search for therapeutic IO drug combinations (90). Such a
systems approach may become an indispensable quantitative
tool supporting “go/no-go” decisions in development
programs, especially if sufficient biological knowledge for
viable generalization is considered in the model (91). This
prior knowledge is generally derived from two sources: (i)
connectivity information to determine the system structure,
e.g., molecular & cellular interactions, and their integration
into patho-physiological processes; and (ii) quantitative data,
for the calibration of model parameters. As discussed in the
previous section, an imbalance in structural vs. quantitative
information will in one way or another complicate integration
into, and practical use of a mathematical model. For example, Lai
and Friedman developed an elegant, yet complex model which
includes a high number of biological elements, and considered
their dynamics in space and time using partial differential
equations (PDEs), to better understand the potential synergy
between PD-(L)1 antagonists and either a GVAX vaccination or
BRAFi/MEKi targeted therapies (72, 73). However, assessing the
predictive power of such amodel is impractical, given insufficient
experimental data for model validation. Serre et al. provided
another example of an elegant, yet insufficiently validated
mathematical model describing the potential synergy between
radiotherapy (RT) and immune checkpoint blockade (70).

One obvious way to improve model validation and hence
model predictive power is to use rich experimental data,
to rigorously constrain model parameters. This, however,
requires the use of adequate statistical methods to properly
quantify uncertainty and variability, which are inherent to
any experimental biomedical and life sciences dataset (49, 92).
In oncology drug development, quantitative data supporting
MoA elucidation are typically generated at the preclinical stage.
Parra-Guillen et al. for example, used a nonlinear mixed-effects
(NLME) model and experimental data from syngeneic tumor
models, to reveal the most influential immuno-adjuvant capable
of boosting anti-tumor vaccination effects (21, 67). Such a
modeling approach, which combines mechanistic features and
mixed effects, allows one to incorporate individual-level data
into the model, which may then describe not only mean trends,
but also the full range of individual biomarker dynamics (93).
A similar, combined mechanistic and mixed-effects approach
was used to develop a model describing synergistic effects
between RT and PD-(L)1 blockade in mice (68). This model,
in fact, synthesizes a fit-for-purpose, yet sufficiently detailed
mathematical description of the IO cycle, together with adequate
model validation based on data from multiple experiments.
As a result, this model can be used as a simulation tool for
experimental study design, and is also adequate for determining
optimal schedule and sequencing of RT + IO, and IO + IO
treatment combinations (68, 69). Interestingly, despite the well-
known challenges in translating oncology preclinical results into
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TABLE 1 | Mechanistic models in support of IO therapy development.

Descriptiona Applicationa Limitationsa References

Cergutuzumab amunaleukin (CEA

mAb-IL2v fusion protein) PK/PD

described using a population NLME

modeling approach

Model was used to identify

optimal dosing regimen and

support design of the clinical

dose escalation study

Since mechanisms of tumor vs. immune system

interactions have not been considered, the model cannot

be generalized to other MoAs nor their combinations

(64)

Pembrolisumab (αPD-1 mAb) PK/PD

described using a population NLME

modeling approach

Model was used to estimate

MABEL dose and was applied,

accordingly, for FIH dose

selection

1. Since mechanisms of tumor vs. immune system

interactions have not been considered, the model cannot

be generalized to other MoAs nor their combinations

2. Model is based on preclinical data only

(65)

DART against CD3 and P-cadherin

PK/PD was described using a simple

ODE modeling framework

1. Model was used to estimate

MABEL dose and was applied,

accordingly, for FIH

dose selection 2. Model was

further applied for

identification/better

characterization of PK/PD

relationship and MoA

1. Since mechanisms of tumor vs. immune system

interactions have not been considered, the model cannot

be generalized to other MoAs nor their combinations

2. Model is based on preclinical data only and does not

take into account variability

(66)

Multiple MoAs including vaccination

(CyaA-E7), TLR9 agonist (CpG),

chemotherapy (cyclophosphamide),

and IL-12 administration were

incorporated using a NLME modeling

approach

Model was applied for a better

understanding of synergistic

effects in combination treatment

1. Due to the simple description of tumor vs. immune

system interactions, the model cannot be generalized to

other MoAs

2. Model is based on preclinical data only

(21, 67)

Multiple MoAs including αPD-1 and

αPD-L1, αCTLA4 mAb, OX40

agonists, CXCR2 inhibitors, and RT

were incorporated using a population

NLME modeling approach

1. Model was applied for a better

understanding of synergistic

effects in combination treatment

and identification of

predictive biomarkers 2. Based

on the model simulations, an

optimal sequencing schedule

was proposed for the

combination treatment

1. Model is based on preclinical data only (68, 69)

RT and αCTLA4 mAb were described

using a simple ODE modeling

framework

Model was applied to guide

optimal combination treatment

doses and schedules

1. Due to the simple description of tumor vs. immune

system interactions, pharmacological interventions and

limited validation with experimental data, the model

cannot be generalized to other MoAs nor used for

clinically relevant simulations

2. Model is based on preclinical data only and does not

take into account variability

(70)

Mechanistic physiologically-based

description of clinically-relevant

immune cell fluxes and RT

1. Model was applied for a better

understanding of ICD

systemic effects 2. Optimal RT

administration sites for

metastatic solid tumors

were identified

1. Limited validation with clinical data was performed

during model development stage

2. Model does not take into account variability

(71)

Multiple MoAs including αPD-L1,

BRAF and MEK inhibitors and

vaccination (GVAX) were incorporated

using a simple PDE modeling

framework, to account for spatial

immune species distribution within

the tumor compartment

Model was applied for a better

understanding of synergistic

effects

1. Due to the simple description of tumor vs. immune

system interactions, pharmacological interventions and

limited validation with experimental data, the model

cannot be generalized to other MoAs nor used for

clinically relevant simulations

2. Model is based on preclinical data only and does not

take into account variability

(72, 73)

Multiple MoAs including vaccination

(UV-8101-RE), IL-2 neutralization,

Treg cell depletion, androgen

deprivation therapy and castration

were incorporated using a simple

ODE modeling framework

Model was applied to guide

optimal combination treatment

schemes

1. Due to the simple description of tumor vs. immune

system interactions, pharmacological interventions and

limited validation with experimental data, the model

cannot be generalized to other MoAs nor used for

clinically relevant simulations;

2. Model is based on the preclinical data only and does

not take into account variability

(74)

Alloreactive cytotoxic-T-lymphocytes

transfer was described using a simple

ODE modeling framework

Model was applied for the

identification of predictive

biomarkers

1. Model does not take into account variability

2. Limited validation with clinical data was performed

(75)

(Continued)
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TABLE 1 | Continued

Descriptiona Applicationa Limitationsa References

IL-21 administration was described

using a simple ODE modeling

framework

Model was applied for a better

MoA understanding and the

identification of predictive

biomarkers

1. Model is based on preclinical data only and does not

take into account variability

2. Limited validation with clinical data was performed

(76)

Prostate cancer vaccination effects

were described using a simple ODE

modeling framework

Model was applied for an

evaluation of personalized

treatment strategies

1. Limited validation with clinical data was performed (77)

Multiple MoAs including αPD-L1

mAb, BTK inhibitor (ibrutinib), and

vaccination were incorporated using a

simple ODE modeling framework

Model was applied for guiding

optimal combination treatment

schemes

1. Due to the simple description of tumor vs. immune

system interactions, pharmacological interventions and

limited validation with experimental data model cannot

be generalized to other MoAs nor used for clinically

relevant simulations;

2. Model is based on preclinical data only and does not

take into account variability

(78)

αPD-L1 mAb clinical effects were

described using a 3D ABM framework

Model was applied for an

evaluation of personalized

treatment strategies

1. Limited validation with clinical was performed

2. Systemic treatment effects were not considered

(79)

Generalized effects of adaptive

immunity stimulation and stromal cell

depletion were described using a 2D

and 3D ABM framework

Model was applied for guiding

optimal combination treatment

schemes

1. Generic representation of treatment effects (80, 81)

aMoA, Mechanism of action; CEA, carcinoembryonic antigen; mAb, monoclonal antibody; NLME, nonlinear mixed effects; IO, immuno-oncology; PK, pharmacokinetics; PD,

pharmacodynamics; MABEL, minimally anticipated biological effect level; FIH, first-in-human; RT, radiotherapy; ICD, immunologic cell death; ODE, ordinary differential equations; PDE,

partial differential equation; ABM, agent-based modeling.

the clinic, simulation results from this preclinical modeling
exercise were recently supported, in a qualitative sense, with
clinical data and a corresponding meta-analysis (94, 95). For a
quantitative translation, the Kosinsky et al. model would require
adjustments for multiple quantitative differences that exist
between mouse vs. human immune systems, e.g., appropriate
expressions of immune checkpoints and turnover of specific T
cells (96). Another modeling approach aimed at supporting the
development of such an RT + IO combination therapy was
proposed by Poleszczuk et al. who developed a physiologically-
based model which considered a detailed incorporation of T
cell trafficking and was used for the identification of an optimal
site for RT administration, to maximally increase the probability
of incremental anti-tumor immune effects (71). Predictions
from such a comprehensive modeling effort were also recently
supported by clinical results, which showed that RT administered
to liver metastases triggered a higher immunological response
(97). A mechanistic model has also been proposed by Peng
et al. in the search of an optimal combination strategy against
castration-resistant prostate cancer (74).

The modeling applications discussed to this point emphasize
the importance of addressing multi-pronged questions, e.g., not
only around dose finding, but also on the identification of an
adequate time window for maximizing therapeutic benefits (98).
This problem is particularly challenging in the development of
combination therapies, where multiple options around which
cancer indication, which combination agents, which scheduling
per agent, and which sequencing of the agents make trial design
enormously complex (99, 100). In recent years, platform design
of clinical studies, driven by one master protocol, has gained

momentum (101, 102)—a format which, in fact, benefits even
further from a supportive quantitative mechanistic modeling
approach (103).

MECHANISTIC MODELING IN SUPPORT
OF IO BIOMARKER IDENTIFICATION

A third problem which is highly relevant in the development
of IO therapies is the identification of predictive biomarkers.
Indeed, there still is a lot of room for improving numbers of
responder patients in pivotal IO trials, even in immunologically-
active indications (104). Several computational models focusing
on the identification of predictive biomarkers, with applications
to personalized treatment against glioblastoma and prostate
cancer have been developed (75, 77). These approaches have yet
to find a general use in clinical practice. Part of the challenge
arises from the biological complexity in the IO field, although
there also are significant limitations from an experimental
standpoint, such as differences in fresh vs. archived samples,
difficulties in obtaining multiple biopsies per patient, with related
risk and cost issues (105). One approach to alleviate some of these
problems is the development of novel combinatorial biomarkers
(“signatures”) which may relate multiple, routinely measured
markers with clinically meaningful biological phenotypes (106).
In fact, such a consensus approach, “Immunoscore,” has
recently been validated in a large international study of colon
cancer (107).

Another complicating factor in the development and
interpretation of mechanistic modeling of IO data is the
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tremendous heterogeneity in tumor cell clones and elements
of the surrounding immune microenvironment (108). A rapid
development of novel experimental techniques may overcome
this challenge, at least partially. Thus, the identification of
specific gene expression signatures may help in further validating
existing immunoscores and related biomarkers, even increasing
their discriminatory ability (109), as recently shown with a PD-
L1 expression signature which outperformed a standard PD-
L1 immunohistochemistry (IHC) assay (110). Multiple immune
signatures have now been identified, which allow for a better
characterization of various aspects of anti-tumor immunity (111–
116). Recent technological breakthroughs such as cytometry
by time-of-flight (CyTOF) and single-cell mRNA sequencing
(scRNA-seq) may further advance the utility and robustness
of these immune signatures (117, 118); these techniques may
allow for a deeper, more granular profiling of tumor and
immune cell phenotypes involved in response or resistance
to immunotherapies, in multiple indications (119–123). The
importance in using quantitative models toward the selection
and qualification (within the chain of events, from dosing to
patient response) of IO biomarker signatures cannot be over-
emphasized (108): immune biomarkers involve a high number
of molecular and cellular species, and often exhibit complex
temporal and spatial dynamics; these need to be properly framed
in the context of a quantitative model, especially if the purpose
is to relate multi-variate biomarker signatures to IO treatment
effects and clinical endpoints (124). Quantitative modeling may
also support the development of biomarkers in context, by
integrating different data types, and following a model-based
qualification of biomarkers as surrogate measures of efficacy
and response. Such an approach has been proposed, recently,
in the evaluation of neoantigen fitness as a surrogate measure
of immunogenic quality of the existing neoantigen pool (125,
126). The progressive integration of such consensus, multi-
variate combinatorial biomarkers into a unified, quantitative and
mechanistic modeling framework will help overcome some of the
limitations in the clinical use of IO biomarkers (127, 128).

OTHER MECHANISTIC MODELING
APPROACHES WITH RELEVANCE TO IO

The above sections focused on traditional deterministic models,
which make use of ODEs and PDEs for the description of IO
systems dynamics. Other modeling techniques can be used to
describe tumor vs. immune interactions. For example, cellular
automata and agent-based models (ABMs) (129), as well as
various hybrid models which link continuous and discrete
modeling elements have been developed (130). Such models
may be useful in raising new hypotheses, which may arise from
emergent properties of the system based on existing data, rather
than generating bona fide forward predictions. For example, a
lattice gas automata technique has been used to gain a better
understanding of a vaccination treatment mechanism and its
corresponding anti-tumor immune response dynamics (131,
132). ABMs also represent a popular modeling technique, since
they are well-suited to describe stochastic processes which do

occur at various stages of the IO cycle. For example, Gong
et al. developed an ABM to reveal spatio-temporal characteristics
of PD-L1 blockade (79). In another publication, Kather et al.
presented an elegant 2D ABM framework for an improved
understanding of the role of stromal cells in colorectal cancer
(CRC) (80). These authors determined that malignant cells
hiding in the stroma cannot be eradicated completely, while
stromal cells, at the same time, would not allow for rapid
tumor progression. Consequently, simulations of an immuno-
therapy illustrated how stroma permeabilization, concomitantly
with immune activation, were able to markedly increase response
to therapy in silico. Additionally, it was shown that a stroma-
targeted therapy with insufficient activation of tumor-specific
CTLs can lead to rapid tumor escape and hyper-progression (80).
More recently, this model has been extended and generalized
to a 3D spatial description, incorporating macrophage effects; it
accurately reproduced the tissue architecture typically observed
in CRC and can be used, similarly to ODE systems models, for
the identification of effective IO therapeutic combinations (81).

CONCLUDING REMARKS

Following the approval, in recent years, of the first immune
checkpoint inhibitors, the landscape of cancer treatment has
changed dramatically and has shifted to a deep reconsideration
of the role of the immune system in cancer progression and
treatment. This led to an unprecedented number of clinical
trials and generation of clinical data in the IO field. Clinical
success rates, however, while improving significantly, are still
relatively low. The observed imbalance, between the amount of
biological and clinical data being generated vs. probability of trial
success is not uncommon in biomedical disciplines, and calls
for the development and updating of a companion, integrative,
quantitative modeling framework with predictive value forMoAs
and simulation value for study design purposes. As described by
Sidney Brenner in his “Sequences and Consequences” landmark
paper: “We should welcome with open arms everything that
modern technology has to offer us but we must learn to use it
in new ways. Biology urgently needs a theoretical basis to unify
it and it is only theory that will allow us to convert data to
knowledge” (133). We propose that quantitative, mechanistically-
oriented modeling represents a means toward the establishment
of such a “theoretical basis,” pending proper integration of prior
knowledge gained from biology and clinical research. One of the
main factors limiting a wider application of quantitative systems
modeling is its demand for rich experimental data necessary
for precise parameter estimation. Historically, generation of
such datasets in oncology research has been challenging, due
to translational limitations of experimental preclinical models
and sparse collection of tissue samples in clinical settings. Also,
in the IO field, another challenge is the lack of predictive
power for univariate biomarkers (e.g., PD-L1 IHC status or
tumor mutational burden taken in isolation), which may
unequivocally link immunologically-driven therapeutic effects
to clinical response; a multi-variate approach is clearly needed
(128). Recent developments in multi-modality biomarkers
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and associated molecular signatures, together with innovative
pharmacologies and clinical design under platform trials (134)
will help in the progressive build-out and qualification of
such a unified quantitative modeling framework, which in
turn may help in predicting patient responses based on a
given pharmacological intervention choice and multi-variate
biomarker signatures.
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The host immune response against infection requires the coordinated action of many

diverse cell subsets that dynamically adapt to a pathogen threat. Due to the complexity

of such a response, most immunological studies have focused on a few genes,

proteins, or cell types. With the development of “omic”-technologies and computational

analysis methods, attempts to analyze and understand complex system dynamics

are now feasible. However, the decomposition of transcriptomic data sets generated

from complete organs remains a major challenge. Here, we combined Weighted

Gene Coexpression Network Analysis (WGCNA) and Digital Cell Quantifier (DCQ) to

analyze time-resolved mouse splenic transcriptomes in acute and chronic Lymphocytic

Choriomeningitis Virus (LCMV) infections. This enabled us to generate hypotheses

about complex immune functioning after a virus-induced perturbation. This strategy was

validated by successfully predicting several known immune phenomena, such as effector

cytotoxic T lymphocyte (CTL) expansion and exhaustion. Furthermore, we predicted

and subsequently verified experimentally macrophage-CD8T cell cooperativity and the

participation of virus-specific CD8+ T cells with an early effector transcriptome profile in

the host adaptation to chronic infection. Thus, the linking of gene expression changes

with immune cell kinetics provides novel insights into the complex immune processes

within infected tissues.

Keywords: systems biology, cell dynamics, coexpression networks, WGCNA, DCQ, LCMV, chronic infection

INTRODUCTION

A virus infection of a host organism represents a major perturbation from homeostasis. It is
temporary limited in case of an acute infection or maintained in a chronic infection. Nonetheless,
in both types of virus infections, a large number of the host genes of a lymphatic tissue in which the
immune response is initiated may be differentially expressed compared to the healthy steady state
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indicating the enormous complexity of the overall host
protection response (1, 2). To define the key processes that
determine virus infection fates, and to understand the underlying
mechanisms, most analyses have concentrated on few immune
cell subtypes or regulatory factors, without addressing the
interactions between them [reviewed in (3)]. Higher resolution
techniques likemass cytometry, single-cell technologies andmass
spectrometry were then used to further characterize cell subtype
populations (4–6) or fine-map intracellular processes of selected
cell types (7, 8). The respective data demonstrated a large degree
of functional diversity even within virus-specific immune cell
subtypes and characterized specific functional cell states (9, 10).

An alternative, holistic strategy to analyse virus-induced
host perturbations is to apply a high resolution technique
like RNA-Seq for capturing all processes within a complete
organ. This strategy however has the disadvantage that the
use of total organ RNA eliminates all information about organ
cell type composition at the time of analysis and cell origin
of the RNAs. Nonetheless, recent work using infection of
mice with influenza A virus and lymphocytic choriomeningitis
virus (LCMV), and analyzing lung or splenic transcriptomes,
respectively, gave important insights into the systems regulation.
Altboum et al. developed a computational method named
digital cell quantifier (DCQ) that infers quantitative changes
of over 200 defined immune cell subpopulations from time-
resolved lung transcriptome data (11). They then predicted and
subsequently verified experimentally that different dendritic cell
populations have specific roles at early and late time points
of acute Flu infections. More recently, we used weighted gene
coexpression network analysis (WGCNA) to characterize systems
perturbations during acute and chronic LCMV infections (1).
From spleen transcriptome-derived coexpression modules and
subsequent immunological analyses we demonstrated a delicate
adaptation process toward a chronic virus infection with both
immunosuppressive and immunostimulatory processes involved.
However, only a tiny fraction of the global information content
has been utilized and the bulk awaits exploitation.

To gain better insights into the mechanisms of chronicity
development and virus control, we here combined DCQ
with WGCNA, and explored further our time-resolved splenic
transcriptome data sets. We show that: (i) DCQ predictions fit
well with the current knowledge of the immune cell dynamics
during acute and chronic LCMV-infections, (ii) the combination
of WGCNA and DCQ allows to better characterize the dynamic
cell events occurring in complex tissues, and (iii) during the
evolution toward the chronic infection state, the chemokine
XCL1 is produced by CD8+ T cells that express markers of early
effector cells. Together this demonstrates the utility of combining
DCQ and WGCNA for analyzing complex RNA-Seq data sets.

MATERIALS AND METHODS

Animals, Infections, and Depletion of
Macrophages
Male C57BL/6J mice aged 4–8 weeks were purchased from
Charles River Laboratories and maintained under specific

pathogen-free conditions at the animal facility of the Parc de
Recerca Biomèdica de Barcelona (PRBB). Animals were treated
according to the Guidelines of the Basel Declaration and from the
Generalitat de Catalunya (project number 9422), and approved
by the ethical committee for animal experimentation (CEEA-
PRBB, Spain; permit license number JMR-16-0046). Animals
were infected intraperitoneally (i.p.) with either 2 × 102 (low
dose, LD) or 2 × 106 (high dose, HD) plaque forming units
(PFU) of the strain Docile of LCMV (4–7 animals per group)
to induce an acute or chronic infection, respectively. Viral
titers from spleens of infected mice were determined on MC57
cells using focus-forming assay (12). For in vivo depletion of
macrophages, mice were injected i.v. with 300 µl of clodronate-
loaded liposomes (Liposoma BV; 5 mg/ml) (13), or PBS-loaded
liposomes as a control.

Cell Surface and Intracellular Cytokine
Staining by Flow Cytometry
For Flow Cytometry analysis and cell sorting, spleens were
harvested and single-cell suspensions were generated. Cells
were then stained with the following antibodies to analyze
B cells, and effector and regulatory T cells: CD4-PE (Clone
H129.19), CD8-PECy5 (Clone 53-6.7), CD8a-PercpCy5.5 (Clone
53-6.7), CD25-APCCy7 (Clone PC61), CXCR5-PECy7 (Clone
SPRCL5), CD83-Alexa Fluor 488 (Clone Michel-19), CD199-
BV421 (Clone CW-1.2), CD153-BV421 (Clone RM153), CD19-
FITC (Clone 1D3), CD43-PE (Clone eBioR2/60), CD5-APC
(Clone 53-7.3), IgM-PECy7 (Clone II/41), CD23-eFluor450
(Clone B3B4), XCL1-Unconjugated (Clone 80222), mouse anti-
rat IgG2a-Alexa Fluor 647 (Clone 2A8F4), IFNÈ-FITC (Clone
XMG1.2), FOXP3-Alexa Fluor 647 (Clone MF23), and the
polyclonal TLR7-FITC. To analyze monocyte/macrophage and
neutrophil populations, cells were stained with CD3e-PECy7
(Clone 145-2C11), NK1.1-PECF594 (Clone PK136), CD11b-
APC (CloneM1/70), and CD27-FITC (Clone LG.7F9) for natural
killer T cells, and with CD45R-PECF594 (Clone RA3-6B2),
NK1.1-PECF594 (Clone PK136), CD11c-PercpCy5.5 (Clone
HL3), CD11b-PECy7 (Clone M1/70), Ly-6G-PE (Clone 1A8),
and Ly-6C-FITC (Clone AL-21). For determination of XCL1- and
TLR7-producing T cells, splenocytes were directly put into media
containing Brefeldin A (Sigma Aldrich) without stimulation
before intracellular cytokine staining (ICS). Staining of FOXP3-
expressing cells was performed following the manufacturer
instructions (eBiosciences). To visualize IFN production, cells
were first stimulated with LCMV gp33 peptide for 3 h followed
with the addition of brefeldin A for 2 h. All antibodies were
purchased from either BD Biosciences, eBioscience, Biolegend or
R&D Systems. A LSR Fortessa (BD Biosciences) was used for flow
cytometry and data were analyzed using FlowJo 10.1 software.
A FACSAria II SORP (BD Biosciences) sorter was used for cell
sorting. All samples were kept at 4◦C during cell sorting. Sort
purity was >95% for all cell populations.

Digital Cell Quantifier (DCQ)
DCQ was performed as previously described (11). Briefly, the
DCQ took as an input: (i) an immune cell compendium of
transcriptional profiles, consisting of 213 different immune cell
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subsets and their corresponding cell surface markers; and (ii)
differentially expressed genes from spleens from acute and
chronic LCMV-infected mice (1). We used the glmnet R package
(14) with the parameters α = 0.05, lambda.min.ratio = 0.2. To
evaluate the robustness of the predicted results, DCQ was run
100 times using only a random collection of 50% of the cell
types in the compendium on each run, resulting in 100 different
solutions. Standard deviations were calculated across these 100
solutions. The robustness score (significance of a predicted
change in quantity) was assessed by evaluating whether the
sample of relative quantities is significantly different from zero
(p-value score). Significantly changing cell types were defined
as those whose –Log10 p-value score was lower than −20 (cell
decrease) or higher than 20 (cell increase) in at least one of the
infections (Supplementary Table 1).

ImmGen Data
To compare gene expression levels between early and late effector
CD8+ T cells, the tool “Population Comparison” from the
ImmGen data browser (http://www.immgen.org/) was used. This
tool provided a ranked table of genes that are always expressed
in OVA-specific effector CD8+ T cells analyzed 12 and 24 h
post-infection with Listeria (LisOva) and never expressed in
the same cells analyzed at days 5, 6, and 8 post-infection with
Listeria (LisOva) or Vesicular stomatitis virus (VSVOva). Default
thresholds from the ImmGen tool were used. To analyze the
pattern of expression of the genes Xcl1, Tnfsf8, Tlr7, Ccr9,
and Cd83 across OVA-specific CD8+ T cells in the ImmGen
compendium, we used the tool “My GeneSet” (http://www.
immgen.org/) using Microarray V1 data set. Expression values
were obtained as the log2 of each gene expression value/average
expression value of all genes.

RNA-Sequencing and Bioinformatic
Analysis
Total RNA from sorted cells from uninfected (2 pools of 2 mice,
day 0) or acute (2 pools of 2 mice, day 0, day 7) infected mice (5×
104 cells per sample) was isolated according to themanufacturer’s
instructions using Qiagen RNeasy Micro kit (Qiagen). The
quality and concentration of RNAwere determined by an Agilent
Bioanalyzer. RNA was submitted for sequencing to Macrogen
Inc. (Seoul, Korea). Sequencing libraries were obtained after
removing ribosomal RNA by a Ribo-Zero kit (Illumina). cDNA
was synthesized and tagged by addition of barcoded Truseq
adapters. Libraries were quantified using the KAPA Library
Quantification Kit (KapaBiosystems) prior to amplification with
Illumina’s cBot. Four libraries were pooled and sequenced (single
strand, 50 nts) on an Illumina HiSeq2000 sequencer to obtain 50–
60 million reads per sample. RNA-Seq reads were mapped to the
reference mouse genome (GRCm38, gencode M18) with STAR
(15) and genes were quantified with RSEM (16). Differential
expression analysis was performed with DESeq2 (17). Genes with
a false discovery rate (FDR)<5% were considered significant.
Gene ontology (GO) enrichment analysis was performed with
DAVID (http://david.ncifcrf.gov/) (18).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
software version 6.0 (GraphPad Software Inc., CA, USA). Data
were analyzed using non-parametric one-way ANOVA or two-
tailed t-test. For correlation between modules and DCQ-inferred
cell kinetics, Pearson’s correlation was used. Fisher’s exact test
was used to quantify the significance of gene overlap between
acute-brownmodule hub genes and genes fromCD8+ T cells and
monocytes/macrophage cell subsets. Non-significant differences
were indicated as “ns.” P-values (p) below 0.05 were considered
significant and were indicated by asterisks: ∗p≤ 0.05; ∗∗p≤ 0.01;
∗∗∗p ≤ 0.001; ∗∗∗∗p ≤ 0.0001.

Data Access
The complete RNA-Seq datasets are available from the Gene
Expression Omnibus (accession number GSE123134).

RESULTS

Immune Cell Dynamics During Acute and
Chronic LCMV Infection
To obtain a global view of the biological processes that participate
in and control acute and chronic LCMV infection fates, we
created a new computational approach that combines WGCNA-
derived gene coexpression networks with DCQ-inferred immune
cell kinetics. As input, we used our previously generated RNA-Seq
data set (1) that consists of time-resolved splenic transcriptomes
from C57BL/6J mice infected with a low-dose (2 × 102 PFU;
acute infection) or a high-dose (2 × 106 PFU; chronic infection)
of LCMV strain Docile (LCMVDoc) (Figure 1). The time points
[days 0, 3, 5, 6, 7, 9, and 31 post-infection (p.i.)] were selected
according to the main viral and immunological features, and
therefore represent the main states of an acute and a chronic
LCMV infection. Thirteen thousand nine hundred seventy-one
genes were identified as differentially expressed (DE) when
compared to uninfected animals, and were analyzed by WGCNA
to obtain modules of highly coexpressed genes (1) (Figure 1).

To predict the immune cell dynamics during acute and
chronic LCMV infection, we used the expression kinetics of the
DE genes as an input for DCQ (11). The DCQ output consisted
of the suggested kinetics of 207 different immune cell subsets. Of
these, 125 cell subsets had a significant change in their quantity
between at least two consecutive time points (robustness score
higher/lower than ± 20, see methods). A comprehensive map
of the dynamic changes of these 125 cell subsets during the
infection courses is shown in Figure 2. Sixty-eight cell subsets
were predicted to increase and 57 were predicted to decrease
in both, acute and chronic infection (Supplementary Table 1).
Note that the different cell subsets are named according to the
nomenclature of the immune cell compendium which was used
to establish DCQ (11). The respective names are also used below
and given in brackets when referring to the different subsets as
of Figure 2.

Effector CD8+ T cells play a critical role during LCMV
infections. They control virus expansion in acute infection
while CD8+ T cell exhaustion is a hallmark of chronic

Frontiers in Immunology | www.frontiersin.org 3 May 2019 | Volume 10 | Article 100287

http://www.immgen.org/
http://www.immgen.org/
http://www.immgen.org/
http://david.ncifcrf.gov/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pedragosa et al. Linking Coexpression Networks to Cells

FIGURE 1 | Schematic representation of the experimental design. Mice were infected with either 2 × 102 or 2 × 106 PFU of LCMV Docile (LCMVDoc), and spleens

were collected at the indicated days post-infection to obtain time-resolved transcriptomes in acute and chronic infections, respectively. Differentially expressed (DE)

gene kinetics obtained by RNA-Seq were used as input for weighted gene coexpression network analysis (WGCNA) and digital cell quantifier (DCQ) to obtain modules

of highly coexpressed genes and predictions of immune cell kinetics in spleen, respectively. To identify the cell subsets expressing a cluster of genes from a particular

module, we performed a Pearson’s correlation analysis of the module eigengene with DCQ-inferred cell kinetics, and novel hypotheses are generated.

infection (19). After an acute LCMVDoc infection, virus-
specific CD8+ T cells expand at d6-d7 and their percentages
remained high at d31. In contrast, during a chronic infection,

IFN È-producing CD8+ T cells drop in their numbers at
d7-d9 (Supplementary Figure 1A), and maintain an elevated
expression of inhibitory receptors such as PD-1 and TIM-3
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FIGURE 2 | DCQ reconstruction of global immune cell dynamics during acute and chronic LCMV infections. Global dynamics in immune cell quantities

(green/increase, red/decrease in relative cell quantities) after acute and chronic LCMV infections, predicted by DCQ at different time points post-infection (columns) for

125 different immune cell types (rows). Each cell type heading is followed by the code of the tissue from which the cell type was isolated in the compendium. For

effector CD8+ T cells cells obtained from infected mice, pathogens, and time points post-infection are also indicated. The box at the bottom left contains details for

these abbreviations.
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(1). In order to verify that DCQ can correctly predict
changes in the dynamics of immune cell subsets with major
roles during LCMV infection, we first focused on the DCQ-
inferred kinetics of effector CD8+ T cells. The original
compendium of immune cells used as input for the DCQ
contains effector CD8+ T cells obtained at 5, 6, and 8 days

post-infection with Listeria (T.CD8+EFF, OT-I & LIS) or
Vesicular stomatitis virus (T.CD8+EFF, OT-I & VSV). DCQ
correctly predicted an increase of these effector CD8+ T
cells in both acute and chronic LCMV infections (Figure 2
and Supplementary Figures 1A,B). Importantly, DCQ also
predicted exhaustion in chronic infection, showing a drastic

FIGURE 3 | Acute-brown module correlates with effector CD8+ T cells and monocyte/macrophage subsets. (A) Radar chart showing the correlation values of

immune cell subsets from acute infection with acute-brown module eigengene kinetics (only shown cell subsets with a correlation >0.5). Red line shows Pearson’s

correlation score with a p = 0.05. (B) Kinetics of acute-brown module eigengene (right axis) and the CD8+ T cell, macrophage and monocyte subsets (left axis) with

the highest correlation scores.
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decrease of these effector cells between days 7 and 9 post-
infection with LCMV (Supplementary Figure 1B). Moreover,
the kinetics of memory CD8+ T cells (T.CD8+EFF, OT-I & VSV-
15 days, and T.CD8+MEM, OT-I & LIS-100 days) also showed
the failure of chronically infected mice to generate a memory
T cell response, in contrast to acute infected mice (Figure 2
and Supplementary Figure 1B).

DCQ also correctly predicted the changes in immune cell
quantities of several other cell subsets with a specific role
in chronic LCMV infection. For example, CD4+ regulatory
T cells (T.CD4+FP3+CD25+) only increased late in chronic
infection (day 31 p.i.), as previously described (20) and further
validated by flow cytometry (Supplementary Figure 2A). Two
subsets of conventional dendritic cell (cDC) expressing the
marker CD103 showed an increase from day 9 in chronic
infection (cDC.CD103+CD11b–) (Supplementary Figure 2B).
These CD103+ CD11b− DCs that were sampled for the
immune cell compendium from intestine, are also present
in other tissues such as the spleen. They express CD8 and
the chemokine receptor XCR1, and are specialized in antigen
cross-presentation (21). Thus, the predicted DC kinetics likely
represents the appearance of XCR1+ DCs that we have recently
described to contribute to the maintenance of an antiviral
cytotoxic T cell response and viral control during the chronic
infection phase (1). Finally, DCQ also predicted a transient
increase of two neutrophil subsets (GN.ARTH) in acute infection
that only in chronically infected mice remained elevated at
day 31 p.i. (Supplementary Figure 2C). These neutrophils,
which were monitored from arthritic mice in the immune
cell compendium, likely represent the previously reported
appearance of neutrophilic suppressor cells which have an
immunomodulatory role during chronic infections (22).

Other predicted immune cell subset kinetics showed a
similar overall behavior in acute and chronic infected mice.
For example, despite previous reports that attributed different
roles to NK cells in the two infection outcomes (23, 24),
activated NK cells (NK and NK.H+, MCMV) showed a
similar kinetic in acute and chronic infection (Figure 2 and
Supplementary Figure 3A), with an early peak at days 5 and
3 p.i., respectively. The predicted increase of activated NK
cells was validated by analyzing the kinetics of NK cells at
different maturation states by staining cells with anti-CD11b
and anti-CD27 antibodies (25). Interestingly, only activated
effector NK cells coexpressing these two surface marker showed
the kinetics as predicted by DCQ while immature NK cells
differed (Supplementary Figure 3B). This nicely demonstrates
the ability of DCQ to predict the quantity of immune cell subsets
in a particular functional state. DCQ-predictions of monocyte
kinetics were also validated by flow cytometry, showing a rapid
increase of inflammatory Ly6c+ monocytes followed by an
increase of resident Ly6c− monocytes at later time points in both
acute and chronic infection (Supplementary Figures 3C,D).
Finally, B cells showed a decrease in numbers in both acute
and chronic infections (Figure 2 and Supplementary Figure 4),
in agreement with previous publications that reported a
type I IFN- or NK-mediated depetion of B cells in LCMV
infection (26–28).

FIGURE 4 | Monocytes/macrophages and CD8+ T cells cooperate in the

induction of the T cell response during LCMV acute infection. (A) Venn

diagram of overlaps among differentially expressed genes between days 0 and

7 after acute LCMV infection from sorted monocytes/macrophages and CD8+

T cells, and hub genes from acute-brown module [genes with intramodular

connectivity (KIM)>0.6]. The significance of gene overlap between

monocytes/macrophages (red line) and CD8+ T cells (blue line) with

acute-brown module was calculated by Fisher’s Exact Test. (B–C) Ten

representative GO terms enriched in genes from CD8+ T cells (B) and

monocytes/macrophages (C) (dashed lines mark p = 0.05). Enrichment

analysis was performed using DAVID (http://david.ncifcrf.gov/).

WGCNA-Derived Modules Representing T
Cell Responses Correlate With Effector
CD8+ T Cells and Macrophages
Using the same RNA-Seq data set from acute and chronic LCMV
infections, our group previously generated spleen transcriptome-
derived coexpression modules by WGCNA (1). This analysis
provided relevant information about biological processes playing
a major role in response to virus-induced host perturbations.
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FIGURE 5 | Macrophages contribute to the induction of CD8+ T cells response during acute LCMV infection. (A) Schematic outline of clodronate liposome treatment

for depletion of macrophages. (B) Percentages of IFNÈ-producing CD8+ T cells and virus titers in spleen from acute infected mice treated (LIP-CLOD) or non-treated

(LIP-PBS) with clodronate liposomes at day 8 p.i. Significant differences were determined by one-way ANOVA. *p ≤ 0.05; ***p ≤ 0.001.

However, the gene coexpression analysis of total organ RNA did
not provide information about the cell subsets that participate
in the expression of the genes within the coexpression modules.
In order to decipher which immune cell subsets are involved
in spleen-derived gene coexpression modules, we hypothesized
that, in some circumstances, the kinetics of a set of coexpressed
genes will correlate with the kinetics of the cell subsets expressing
them. On this basis, we performed a Pearson’s correlation
analysis between WGCNA-derived module eigengenes (1) and
DCQ-inferred cell kinetics (Figure 1). We first analyzed which
DCQ-inferred immune cell subset kinetics from acute infection
correlated with the acute-brown module eigengene. This module
was previously identified as the representative of the LCMV-
specific CD8+ T cell response induced in acute infection.
Its eigengene expression kinetics highly correlated with the
LCMV-specific CD8+ T cell response and the 315 hub genes
within the module revealed an enrichment for T cell activation
genes (1). Twenty-three out of the one hundred twenty-five
immune cell subsets inferred by DCQ showed a significant
positive correlation (p < 0.05) with the acute-brown module
eigengene (Supplementary Table 2). As expected, effector CD8+

T cells (T.CD8+EFF, OT-I; monitored at days 5, 6, and 8 post-
infection with LIS or VSV) showed correlation scores above
0.9 (Figure 3A and Supplementary Table 2), thus indicating
that our approach correctly predicts the immune cell subsets
responsible for the expression of genes within the module.
Interestingly, several monocyte and macrophage cell subsets
also showed high correlation scores (Figures 3A,B). To test
whether these cells subtypes also express genes contained in the
acute-brown module, we performed RNA-Seq analyses of sorted
monocytes/macrophages and CD8+ T cells from naive mice, and

animals infected with a low dose of LCMVDoc (acute infection). A
total of 5291 genes were significantly upregulated at day 7 p.i. in
activated CD44+ CD8+ T cells compared to CD44− CD8+ T cells
from uninfected naive mice. Monocytes/macrophages showed
3,520 genes significantly upregulated at day 7 p.i. compared to
the cells from uninfected mice. To analyze whether the genes
within the acute-brown module were significantly enriched for
genes from these two cell subsets, we determined the gene
overlap between themodule hub genes and the genes upregulated
in CD8+ T cells and monocytes/macrophages by a Fisher’s
Exact Test (Figure 4A). The acute-brown module was highly
enriched for genes upregulated in both cell subsets. From the
315 hub genes within the module, 113 overlapped with genes
upregulated in activated CD8+ T cells (p < 3.6× 10−7) and were
enriched for genes involved in the processes of TCR signaling
pathway, T cell activation and IL4 production (Figure 4B
and Supplementary Table 3A). Importantly, 182 hub genes
overlapped with genes upregulated in monocytes/macrophages
(p < 1.6 × 10−16) and were enriched for genes involved
in T cell response, TGF-β signaling and leukocyte migration,
among others (Figure 4C and Supplementary Table 3B), thus
indicating that the acute-brown module represents the complex
process of induction of the adaptive T cell response that
requires the coordination of monocytes/macrophages and CD8+

T cells. To validate this hypothesis further, we analyzed CD8+

T cell response and virus loads in spleens from acutely
infected mice after depletion of macrophages (Figure 5A). Mice
treated with clodronate liposomes showed a significant decrease
in percentages of IFNÈ-producing cells and an increase of
virus loads at day 8 p.i. (Figure 5B), thus demonstrating that
macrophages contribute to the induction of the T cell response.
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FIGURE 6 | Chronic-darkturquoise module correlates with early effector CD8+ T cells. (A) Radar chart showing the correlation values of immune cell subsets with

chronic-darkturquoise module eigengene kinetics (only shown cell subsets with a correlation >0.3). Red line shows the Pearson’s correlation score with a p = 0.05.

(B) Kinetics of early effector CD8+ T cells (left axis) and chronic-darkturquoise module eigengene (right axis).

All together, these results demonstrate that the combination of
DCQ and WGCNA is a very valuable tool to better characterize
immune cell subsets that participate in a complex biological
pathway represented by a gene coexpression module.

XCL1-Producing Cells During the
Adaptation Phase to a Chronic Infection
Present an Immature Early Effector
Phenotype
Analysis of infection-fate-specific modules in Argilaguet et al. (1)
allowed to identify the biological pathways specific of chronic
infection. In particular, the chronic-darkturquoise module
contains the chemokine XCL1, showing a “two-peak” behavior
with an expression peak at day 5 and a second upregulation from
day 7 to day 9 p.i., at the time when exhaustion of CD8+ T cells
appears (Figure 6B and Supplementary Figure 1A). We showed

that XCL1 expression resulted in the recruitment of cross-
presenting dendritic cells that express the XCL1 receptor XCR1,
and that these dendritic cells contributed to the maintenance of
the antiviral cytotoxic T cell response and viral control in the
chronic infection phase. XCL1 was mainly produced by LCMV-
specific CD8+ T cells expressing CXCR5, a marker of exhausted
CD8+ T cells that retain effector functions (29, 30). However,
due to the complexity of effector and exhausted CD8+ T cell
subpopulations present during a chronic infection (4), a detailed
phenotypic characterization of XCL1-producing CD8+ T cells
was lacking.

In order to better characterize the phenotype and activation
state of XCL1-producing CD8+ T cells in chronic LCMV
infection, we used our approach to analyze which DCQ-inferred
immune cell subset kinetics from chronic infection correlated
with the chronic-darkturquoise module eigengene. Interestingly,
only CD8+ T cell subsets isolated at 12 and 24 h post-Listeria
infection (T.CD8+EFF, OT-I & LIS-12 and 24 h) showed a
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FIGURE 7 | XCL1-producing CD8+ T cells express markers characteristic of early effector CD8+ T cells. (A) Box-plot representation of Xcl1, Tnfsf8, Tlr7, Ccr9, and

Cd83 expression. Mean-normalized expression values (Log2) of selected genes in Ova-specific OT1 CD8+ T cells were obtained using “My GeneSet” tool from

ImmGen (http://www.immgen.org/). (B) Mean fluorescence intensity (MFI) of Tnfsf8, Tlr7, Ccr9, and Cd83 in XCL1− and XCL1+ CD8+ T cells in naive mice and in

chronically-infected animals at day 9 p.i. Significant differences were determined by one-way ANOVA. ns, non-significant; *p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.0001.

significant correlation (Figure 6 and Supplementary Table 2),
suggesting that XCL1-producing CD8+ T cells have an immature
early effector phenotype. Using the “Population Comparison”
tool from the Immunological Genome (ImmGen) Project, we
next analyzed which genes are upregulated in these two cell

subsets compared to late effector CD8+ T cells (T.CD8+EFF,
OT-I; monitored at days 5, 6, and 8 post-infection with LIS and
VSV; see methods). Three hundred eighty-five genes showed
expression values significantly higher in early vs. late effector
CD8+ T cells. To note, within them we found XCL1 and CXCR5,
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with a mean fold-change of 25.14 and 4.94, respectively, further
indicating that XCL1 is produced by CD8+ T cells with a
phenotype characteristic of immature early effector CD8+ T
cells. To validate this hypothesis further, we analyzed protein
expression characteristic for early effector CD8+ T cells in
chronically infected mice at day 9 by flow cytometry. Using the
“My GeneSet” tool from ImmGen, we selected four proteins with
high gene expression values in early effector T cells: TNFSF8,
a cytokine that induces proliferation of T cells and that has
been shown to be upregulated in CD8+ T cells primed during
chronic infection (31); TLR7, a receptor selectively upregulated
by exhausted CXCR5+ CD8+ T cells (29); CCR9, a chemokine
receptor that regulates early phases of inflammation (32); and
CD83, which is upregulated upon T cell stimulation during
virus infection (33) (Figure 7A). Expression of TNFSF8, TLR7
and CD83 by XCL1-negative CD8+ T cells was similar between
naive mice and infected animals at day 9 p.i. (Figure 7B). By
contrast, CCR9 showed higher expression levels in naive mice,
in concordance with data from the ImmGen dataset, in which
CCR9 showed a high gene expression value in naive OT1 cells
(Figure 7A). Importantly, TNFSF8, TLR7 and CCR9 were highly
expressed by XCL1+ CD8+ T cells at day 9 p.i., showing mean
fluorescence intensities (MFI) significantly higher than that in
XCL1− cells (Figure 7B). These results demonstrate that during
the adaptation phase to a chronic infection, XCL1 is produced by
CD8+ T cells with characteristic early effector cell marker. All
together, our results demonstrate that by combining WGCNA
with DCQ, it is possible to define cell—cell cooperativity as well
as the activation and differentiation status of cells participating in
the immune response to virus infections.

DISCUSSION

Here we describe a versatile computational approach that
combines WGCNA-derived gene coexpression networks with
DCQ-inferred immune cell kinetics. It enables to generate
hypotheses about complex immune system functioning after a
virus-induced perturbation. We show, first, the ability of DCQ
to predict changes of immune cell subsets that play major roles
during an LCMV infection. Second, we characterize immune cell
subsets involved in spleen-derived gene coexpression modules
that cooperate in complex biological pathways. Finally, we
predict and subsequently verify experimentally that virus-specific
CD8+ T cells in the chronic infection phase resemble early
effector cells.

To derive information about the immune system functioning
after a perturbation or under pathological conditions solely from
transcriptome data of whole tissue specimen is challenging.
Algorithms like DCQ (11), seq-ImmuCC (34), or CoD (35)
can predict dynamic quantities of cell subtypes, however they
fail to distinguish between immunological mechanisms like cell
migration or cell differentiation. Gene coexpression analysis like
WGCNA, on the other hand, can order the several thousand
genes from RNA-Seq runs according to common dynamic
features however cannot predict cell types. With the combination
of both, hypothesis generation becomes easier and goes beyond

what both methods can provide by their own. For example,
we could identify macrophages as an important immune cell
type that cooperates with CD8+ T cells in the induction of
an adaptive immune response (Figures 4, 5). It is known that
dendritic cells are not critical for CD8+ T cell priming in
LCMV (36). Moreover, they decline in numbers shortly after
infection (Figure 2) (22). Since other antigen presenting cells like
macrophages and B cells are also infected by LCMV (37–39),
and can efficiently present virus-derived peptide in conjunction
with MHC-I proteins on their surface, they seem to contribute
to the activation of the CTL response and thereby participate
in the control of virus expansion. Furthermore, we were able to
characterize an important immunological event during chronic
infection that appear concomitant with exhaustion. Indeed, we
demonstrate that XCL1-producing CD8+ T cells have an early
effector phenotype and differ fundamentally from the effector
cells during acute infections. This observation is a step forward
in our understanding of the immune adaptation process to a
chronic infection. However, further work is necessary to decipher
whether these cells emerge from “de novo” primed naive CD8+ T
cells or from exhausted cells that “recover” an effector functional
state. Thus, by combining WCGNA with DCQ one can identify
cell cooperativity and specify cellular phenotypes participating in
critical biological events during perturbations.

The novel combination ofWGCNA and DCQ for interpreting
time-resolved transcriptome data from acute and chronic virus
infections is a step forward for our understanding of the complex
immune responses during pathogen invasion. However, it is just
a tiny part of the overall process that needs to be complemented
with other measures like in situ imaging techniques, single cell
analyses and whole organism studies (2, 6, 40). Furthermore,
computational approaches will be necessary to integrate all
available data and generate hypotheses about the underlying
regulatory principles that make the highly complex, diverse
and dynamic immune system so functionally robust against
pathogens. While many of the required technologies are in
place, the data integration will require tight collaborations
across disciplines engaging biologists, clinicians, physicists, and
mathematical modelers. With this, one can easily envision
predictive frameworks that will help in the rational design of
therapies in infectious diseases and cancers. An exciting time
lies ahead.
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In the advanced stages of cancers like melanoma, some of the malignant cells leave

the primary tumor and infiltrate the neighboring lymph nodes (LNs). The interaction

between secondary cancer and the immune response in the lymph node represents

a complex process that needs to be fully understood in order to develop more effective

immunotherapeutic strategies. In this process, antigen-presenting cells (APCs) approach

the tumor and initiate the adaptive immune response for the corresponding antigen.

They stimulate the naive CD4+ and CD8+ T lymphocytes which subsequently generate

a population of helper and effector cells. On one hand, immune cells can eliminate tumor

cells using cell-cell contact and by secreting apoptosis inducing cytokines. They are also

able to induce their dormancy. On the other hand, the tumor cells are able to escape

the immune surveillance using their immunosuppressive abilities. To study the interplay

between tumor progression and the immune response, we develop two new models

describing the interaction between cancer and immune cells in the lymph node. The

first model consists of partial differential equations (PDEs) describing the populations

of the different types of cells. The second one is a hybrid discrete-continuous model

integrating the mechanical and biochemical mechanisms that define the tumor-immune

interplay in the lymph node. We use the continuous model to determine the conditions

of the regimes of tumor-immune interaction in the lymph node. While we use the hybrid

model to elucidate the mechanisms that contribute to the development of each regime

at the cellular and tissue levels. We study the dynamics of tumor growth in the absence

of immune cells. Then, we consider the immune response and we quantify the effects

of immunosuppression and local EGF concentration on the fate of the tumor. Numerical

simulations of the two models show the existence of three possible outcomes of the

tumor-immune interactions in the lymph node that coincide with the main phases of the

immunoediting process: tumor elimination, equilibrium, and tumor evasion. Both models

predict that the administration of EGF can promote the elimination of the secondary tumor

by PD-1/PD-L1 blockade.
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1. INTRODUCTION

Malignant cells commonly infiltrate the local, regional, and
distant lymph nodes during the advanced stages of primary
cancers (Dowlatshahi et al., 1997). The lymph node represents
a major component of the lymphatic system and the organ where
the cytotoxic T-cells (CTLs) are produced. While these cells can
leave the lymph node and eliminate the tumor cells at the site
of the primary tumor, they can directly eradicate the tumor cells
in the lymph node upon their infiltration. The immune response
begins when circulating antigen-presenting cells (APCs) capture
tumor antigens and present them to the naive CD4+ and CD8+

T-cells (cross-presentation). These two cells undergo a series of
asymmetric divisions culminating in the generation of mature
helper and cytotoxic cells (CTL) (Chang and Reiner, 2008).
The fate decision of immune cells strongly depends on the
intracellular concentrations of interleukin-2 (IL-2) (Khan et al.,
2015) and type I interferon (IFN) (Welsh et al., 2012). Mature
CD4+ T-cells produce IL-2 which upregulates the maturation of
T-cells while antigen-presenting cells (APCs) secrete type I IFN
which increases their division. CD8+ eliminate the tumor cells by
inducing their apoptosis through the secretion of cytokines such
as Fas-Ligand (FasL). They can also inject these cytokines directly
into the tumor cells during cell-cell contact.

In cancer, cells acquire mutations that affect their genetic
landscape and make them proliferate excessively. One of the
main pathways that are commonly altered in cancer is the
EGFR/ERK pathway (Sebolt-Leopold, 2008). The final product
of this pathway, the ERK protein, becomes necessary for the
proliferation of the cell upon its translocation to the nucleus. The
most commonly observed mutations in theMAPK/ERK pathway
concern the K-RAS, N-RAS, and B-RAF genes. Such alterations
can be observed especially in secondary tumors like melanoma
and lung cancer (Burotto et al., 2014).

Malignant cells can resist the immune response using different
strategies such as dormancy and immune suppression. Tumor
cells can survive longer in the LN as they become resistant
when they are in the quiescent state. There are different
mechanisms governing the dormancy of the proliferating cells.
First, tumor cells may enter the quiescent state when faced
by a lack of available growth factors or extracellular matrix
(ECM) proteins. This stress-induced dormancy is typically
observed when the ERK/p38 ratio of the cell becomes low.
The cell can become once again proliferating when the same

ratio becomes sufficiently high. The ECM proteins, such as
fibronectin and collagens, promote the activation of dormant

cells due to the cross-talk between integrins, urokinase receptor

(uPAR), and EGFR (Bragado et al., 2012). The complex formed

by α1β5 integrins and uPAR recruits the EGFR and FAK
proteins which regulates the EGFR/p38 ratio in a fibronectin-
dependent manner (Barkan and Chambers, 2011). The effect of
the ECM proteins on tumor dormancy is especially interesting
in the case of secondary tumor development in the lymph
nodes. These organs consist of distinct regions with different
densities of the ECM proteins. The outer region of the
lymph node contains follicles and the interfollicular zone. The
ECM proteins (fibronectin, collagen, laminins) are abundant

in the interfollicular area and less expressed in the follicles
(Castaños-Velez et al., 1995).

Another mechanism that can cause the quiescence of the
tumor cells is the immune-induced dormancy (Romero et al.,
2014). In this process, effector CD8+ T-cells secrete type II
IFN which induces and maintains the dormancy of tumor
cells (Farrar et al., 1999). To escape immuno-surveillance, the
malignant cells may resort to the inactivation of neighboring T-
cells using immunosuppressive mechanisms. One of these most
effective techniques used by tumor cells is the activation of the
programmed-death 1 (PD-1) receptor present on the surface of
T-cells (Zitvogel and Kroemer, 2012). After the interaction of PD-
1 with its ligand PD-L1 present on the surface of tumor cells, the
T-cells reduce its production of cytokines that induce apoptosis
and becomes incapable of division. Therefore, the inhibition of
the PD-1/PD-L1 pathway represents one of the most effective
immunotherapies (Alsaab et al., 2017). Ultimately, the balance
between these different mechanisms defines the three stages
of immunoediting: tumor elimination, equilibrium, and tumor
escape (Dunn et al., 2002).

To our knowledge, there is no mathematical model describing
the interaction between secondary tumor progression and the
adaptive immune response in the lymph node. Most of the
existing mathematical models concern the cancer-immune
dynamics at the site of the primary tumor. These models adopted
different techniques and methods depending on the question
of the study. The first type of developed models uses ordinary
differential equations (ODEs) to simulate the population of
cells over time. The simplest form of these models consists of
two equations describing the competition between tumor and
immune cells in a similar way to prey and predator models.
In these models, tumor cells represent prey while immune cells
represent predator (dOnofrio, 2005; Foryś et al., 2006). These
models can be used to describe dynamics of this interaction
under normal conditions (Michelson et al., 1987) and also
during chemotherapy (Foryś et al., 2006; dOnofrio, 2008). Other
models include more details, and therefore more equations,
such as various subpopulations of immune cells (De Pillis and
Radunskaya, 2003), diffusing cytokines (Dranoff, 2004; de Pillis
et al., 2005), or tumor dormancy (Page and Uhr, 2005; Wilkie
and Hahnfeldt, 2013). Overall, the strength of these dynamical
systems is that they can be both analyzed mathematically and
simulated numerically. Among the other non-spatial models,
stochastic ODEs are often used to study the effect of fluctuations
and noise on the interaction between tumor and immune cells
(Lefever and Horsthemke, 1979). Another class of immune-
cancer interaction models considers partial differential equations
(PDEs) to describe the spatiotemporal aspect of this interplay.
In this context, diffusion terms can be added to the previous
ODEs models to capture the mobility of cells. In these models,
the spatial densities of cells and concentrations of cytokines can
be both described by the same type of PDEs (Bellomo et al., 2004;
Matzavinos et al., 2004). To describe the interaction between
immune and tumor cells in more detail, agent-based models
are considered. The most commonly used agent-based modeling
framework to describe this specific problem is cellular automata
(CA) models (Qi et al., 1993; Mallet and De Pillis, 2006). Finally,
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it is possible to build more sophisticated models of tumor-
immune interaction by coupling agent-based and continuous
models. The resulting models allow the description of the
different mechanisms affecting the behavior of the system at
different scales (Gong et al., 2017). One of thesemodels combined
CA with PDEs to simulate different growth regimes that can
result from the cancer-immune interplay (Mallet and De Pillis,
2006). The fate of each cell is given by a probability which
depends on the local concentration of cytokines, and the number
of neighboring cells. However, this study is restricted to the
interaction between cancer and innate immunity. Furthermore,
it does not include the dormancy of tumor cells which plays
an important role in the survival and evasion of tumors. These
models are stochastic by design and can be used to study the
effects of immunotherapeutic treatments such as PD-1 and PD-
L1 inhibitors.

This study is devoted to the mathematical modeling of
the cancer-immune system interactions in the lymph node.
To perform quantitative numerical simulations and ensure an
accurate description of the system, we develop two models
complementing each other. The first model is deterministic and
uses four PDEs to describe the densities of proliferating tumor
cells, dormant tumor cells, immune cells, and the concentration
of a growth factor. The second model reported in this study
belongs to the hybrid discrete-continuous class. In this model,
cells are represented as individual objects (soft spheres) that can
move, divide, differentiate, and die by apoptosis. The fate decision
of each cell depends on the concentrations of intracellular
proteins and extracellular cytokines described, respectively, by
ODEs and PDEs. We begin with the description of tumor
growth dynamics in the absence of immune surveillance. Then,
we introduce the immune response and quantify the combined
effect of PD-1/PD-L1 inhibition and EGF concentration on the
outcome of the tumor-immune interaction in the LN. Both
models confirm the existence of the three regimes characterizing
the immunoediting process: tumor elimination, equilibrium, and
tumor evasion. Furthermore, they reveal that combined anti-
PD-1/PD-L1 therapy with growth factors can be administered in
order to eradicate the tumor.

2. MATHEMATICAL MODELING OF THE
TUMOR-IMMUNE INTERACTION IN THE
LYMPH NODE

To capture the dynamics of tumor-immune interaction, we
develop two models describing this complex process. The
first model adopts a population dynamics approach and uses
PDEs to describe the densities of different types of cells.
The model is deterministic and computationally cheap which
makes it appropriate for quantitative studies. The second
model is a hybrid-discrete continuous model where cells are
represented as individual objects. These cells can move, auto-
renew, differentiate, or die by apoptosis. Their fate is regulated
by the concentration of intracellular and extracellular proteins
described by ODEs and PDEs. This multiscale model is
complex and computationally expensive. However, it is also

more realistic as it integrates the most important mechanisms
regulating the dynamics of cells. Several assumptions were
considered during the development of the two models. First,
we consider that the dormancy of tumor cells is mediated
exclusively by the lack of EGF and the exposition to type II
IFN, which is secreted by CD8+ T-cells. Others mechanisms
that induce the dormancy of tumor cells are not included
in the present model. Second, the model is restricted to the
interplay between the tumor and the adaptive immune response
in the lymph node. Therefore, the interaction with the innate
immune response is not captured in the two models. We have
represented the main interactions characterizing the models and
provided a screenshot of the hybrid discrete-continuous one in
Figure 1.

2.1. Continuous Model of the
Spatiotemporal Dynamics of
Tumor-Immune Interaction
After their infiltration to the lymph node, tumor cells find
themselves in the direct contact with the immune cells. We
propose the following population dynamics model describing
the interaction between malignant cells and immune cells in the
lymph node. Let us consider the spatial variables x and y as
well as the temporal variable t, we simulate the evolution of the
epidermal growth factor (EGF, eg(x, y, t)) and three populations
of cells: proliferationg tumor cells (cp(x, y, t)), quiescent tumor
cells (cq(x, y, t)), and immune effector cells (i(x, y, t)). The model
is solved in a 2D computational domain representing the lymph
node. It studies the interactions that exist between secondary
cancer and immune cells in the LN without considering explicitly
the underlying biological mechanisms. We begin with the
equation describing the concentration of the epidermal growth
factor in the lymph node:

∂eg

∂t
= D11eg − k1(cp + cq)eg − k2eg , (1)

where the first term in the right-hand side of this equation
describes EGF diffusion, the second term represents EGF
consumption by tumor cells, and the third term describes
its degradation. Next, we describe the density of proliferating
tumor cells:

∂cp

∂t
= D21cp + k3(eg)cp(1− (cp + cq))

+
k4(eg)cq

1+ K4i
− k5cpi− k6cpi− k7(eg)cp − k8cp. (2)

Here, the first term in the right-hand side represents the motility
of cancer cells. The second term characterizes the logistic
growth of the tumor cell population which depends on the
local concentration of EGF. We consider that this rate correlates
linearly with the density of the growth factor and we set k3(eg) =
k∗3eg , where k

∗
3 is a positive constant. The third term represents

the activation of dormant tumor cells which is also promoted by
eg . Similarly to the k3(eg), we set k4(eg) = k∗4eg . This activation
can also be inhibited by effector immune cells whose density is
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FIGURE 1 | (A) The interaction between tumor and immune cells. Tumor cells enter dormancy when the ERK/p38 ratio is low. They become proliferating again when

the same ratio becomes high. Cytotoxic immune cells can induce the dormancy of tumor cells. They can also eliminate these cells by secreting apoptosis-inducing

cytokines. On the other hand, tumor cells can disable the CTLs using their immunosuppressive abilities. (B) A screenshot of a simulation using the hybrid model

showing the proliferating and dormant tumor cells (magenta and brown, respectively), the APCs (green), the naive T-cells (white and black), the helper CD4+ T-cells

(yellow), and the effector CD8+ T-cells (blue). The concentrations of extracellular cytokines are not shown.

denoted by i. The fourth and fifth terms describe the elimination
and the induced dormancy by the immune cells, respectively.
Here we consider that the cytotoxic cells directly induce the
dormancy of cells by secreting type II IFN (Katsoulidis et al.,
2005). The sixth term represent the natural dormancy while the
last term represents cell apoptosis. Prolfierating cells enter the
quiescent phase when there is a lack of EGF. Thus, we consider a
negative correlation between the rate of dormancy and the local
concentration of EGF k7(eg) = k∗7(1− eg). Next, we describe the
population of quisecent tumor cells (cq) as follows:

∂cq

∂t
= −

k4(eg)cq

1+ K4i
+ k6cpi+ k7(eg)cp − k9cq, (3)

where the term −
k4(eg )cq
1+K4i

describes the activation of dormant
cells. The terms k6cp and k7(eg)cp describe induced and normal
dormancies, respectively. The last term represents cell apoptosis.
We suppose that dormant cells are more resistant to elimination
by immune cells and live much longer than proliferating cells.
Therefore, the rate of apoptosis for dormant cells (k9) is taken
much lower than the one for proliferating cells k8. Finally, we
describe the population of cytotoxic T-cells in the lymph node
as follows:

∂i

∂t
= D31i+ k10(i

0 − i)(cp + cq)− k11i(cp + cq)− k12i. (4)

As before, we describe cell motion with a diffusion term. The
second term in the right-hand side of this equation represents
the activation of naive T-cell lymphocytes by tumor antigens.
The third term describes the elimination of immune cells by
immunosuppression. The rate of immunosuppression depends
on the PD-L1 expression of tumor cells. We set k11 = k∗11Ksupp

where Ksupp is the level of PD-L1 expression on the surface of
tumor cells. The last term corresponds to cell apoptosis.

We consider a square computational domain of 25 mm ×

25 mm which corresponds approximately to the maximum size

reached by enlarged lymph nodes. Proliferating cells are initially
located inside a circular domain (cp0(x, y) = 1 for

√

x2 + y2 <

75 µm) for all the simulations. We set the value of eg to be
constant as an initial condition for the concentration of EGF and
we prescribe the same value as the Dirichlet boundary condition
at all boundaries (eg = eg0). We use the zero-flux condition at all
boundaries for the populations of tumor cells and immune cells

(
∂cp
∂n = 0,

∂cq
∂n = 0, and ∂i

∂n = 0). The finite difference method was
used for the numerical implementation of the system. The values
of parameters are provided in Table A1.

2.2. A Hybrid Discrete-Continuous Model
for Multiscale Modeling of Tumor Growth
in the Lymph Node
Cancer-immune interaction is based on several mechanisms
affecting cells at different scales. Here, we formulate a discrete-
continuous multiscale model to describe the interaction between
cancer cells and immune cells in the lymph node. We have
previously used hybrid models to study various physiological
systems such as erythropoiesis (Eymard et al., 2015; Bouchnita
et al., 2016b), multiple myeloma (Bouchnita et al., 2016a,
2017a), the immune response (Bouchnita et al., 2017b), and HIV
infection (Bouchnita et al., 2017c). The hybrid model is based
on some hypotheses. The regulation of tumor cells is assumed
to depend solely on the EGFR/ERK, p38, and Fas signaling
pathways. Other pathways such as TGF-β and PI3K-Akt are not
considered in the present model. To properly present this new
model, we divide it into two submodels, one for the immune
response and the other one for the tumor development. Let
us begin with the description of the displacement of individual
cells because all cells are subject to the same mechanical laws
of motion.

2.2.1. Cell Motion
Each cell is characterized by the coordinates of its center xi as
well as by its radius. While immune cells are supposed to move
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randomly in the computational domain, tumor cells do not move
unless they are pushed by the surrounding cells. In the process of
cell division, cells increase their radius and push the surrounding
cells. Each cell consists of a compressible part corresponding to
the cytoplasm and an incopressible part corresponding to the
nucleus. We consider a repulsive force between each two cells
when the distance between their centers hij is lower than the sum
of their radii r1 + r2. The motion of each cell is described by
Newton’s second law:

mẍi + µẋi −
∑

j 6=i

fij − Fri = 0, (5)

wherem is the mass of the particle, µ is the friction factor due to
contact with the surroundingmedium. Fri denotes a random force
applied only to the immune cells. The repulsive force between
two cells is given by the formula:

fij =

{

K
h0−hij

hij−(h0−h1)
, h0 − hi < hij < h0

0 , hij ≥ h0
,

where hij is the distance between the centers of the two cells i and
j, h0 is the sum of their radii, K is a positive parameter and h1
is the sum of the incompressible parts of the two cell. The force
between the cells tends to infinity if hij decreases to h0 − h1.

2.2.2. The Immune Response
We adapt the previously developed model of adaptive immune
response (Bouchnita et al., 2017b,c) to the specific case of tumor
growth in the lymph node. The model includes different types of
immune cells such as APCs, naive and mature T lymphocytes.

Cell division and differentiation
Every 20 h of physical time, APCs and T-cells enter the
computational domain around the tumor with given proportions
when there is an available space. APCs capture tumor antigens as
they become sufficiently close to a tumor cells. Then, they begin
secreting type I IFN which promotes the differentiation of T-
cells. They also present tumor antigens to naive T-cell receptors
(TCRs) and induce the asymmetric divisions of T-cells. In this
process, the distant daughter cell remains undifferentiated, the
proximal daughter cell becomes differentiated. We consider two
levels of maturation of CD4+ T-cells and three levels for CD8+

T-cells. As they reach the last maturation stage, the CD4+ T-
cells become helper cells and start secreting IL-2. The CD8+ T-
cells develop into cytotoxic T-cells that can kill the tumor cells
either by cell-cell contact or by secreting FasL. They can also
induce the dormancy of tumor cells by secreting type II IFN.
Differentiated CD8+ and CD4+ T-cells can die by apoptosis or
by immunosuppression.

We suppose that cells start increasing their radii as they reach
half of their life cycle. If the cell divides, then two daughter cells
will appear. The direction of the axis connecting their two centers
is chosen randomly between 0 to 2π . The cell cycle duration for
each cell is considered to be 18 h with stochastic perturbation
uniformly distributed between−3 and 3 h.

Intracellular regulation
Activated CD4+ and CD8+ T-cell lymphocytes can only survive
when there is a sufficient amount of signaling via their IL-2 and
type IFN receptors. This signaling depends on the concentration
of these two cytokines in the proximity of the corresponding
receptors. To describe the intracellular dynamics of these two
molecules, we use ODEs that depend on the value of the
extracellular cytokines at the vicinity of the cell.

Let us begin with the IL-2 dependent regulatory signal
dynamics in individual cells. We can describe it by the
following equation:

dIi

dt
=

α1

nT
Ie(xi, t)− d1Ii. (6)

Here Ii is the intracellular concentration of signaling molecules
accumulated as a consequence of IL-2 signals transmitted
through transmembrane receptor IL2R downstream the signaling
pathway to control the gene expression in the ith cell. The first
term in the right-hand side of this equation shows the cumulative
effect of IL-2 signaling. The extracellular concentration Ie is taken
at the center of the cell (xi). The second term describes the
degradation of IL-2-induced signaling molecules inside the cell,
nT is the number of molecules internalized by T cell receptors.

Similarly, we describe the IFN-α dependent regulatory signal
dynamics in individual cells as follows:

dCi

dt
=

α2

nT
Ce(xi, t)− d2Ci. (7)

Here Ci is the intracellular concentration of signaling molecules
accumulated as a consequence of IFN-α signals transmitted
through transmembrane receptor IFN-αR downstream the
signaling pathway to control the gene expression in the i-th
cell. The first term in the right-hand side of this equation
shows the cumulative effect of IFN-α signaling. The extracellular
concentration Ce is taken at the center of the cell xi. The
second term describes the degradation of IFN-induced signaling
molecules inside the cell.

Finally, we describe the activation of the cell surface receptor
PD-1 as a function of the local concentration of its ligand PD-L1:

dPDi

dt
= α3PDe(xi, t)(1− PDi)− d3PDi. (8)

As before, the first term in the right-hand side of this equation
represents the cumulative effects of PD-1 activation by PD-L1,
PDe(xi, t) is the sum of PD-L1 expression by surrounding tumor
cells. The second term describes the inactivation of the PD-1
receptors at the cell surface.

Overall, the fate of each T-cell depends on the gene activation
threshold for different signaling such as TCR, IL-2, IFNa, and
PD-1 as shown in Figure 2. We consider the following decision
mechanism to describe the fate regulation of activated T-cells as
a function of the IL-2, type I IFN, and PD-1 signaling at different
stages of the cell cycle.

C1 At the beginning of cell cycle: if the concentration of
activation signals induced by type I IFN, Ci, is greater than
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FIGURE 2 | The regulation of T-cells fate in the model via TCR, IL-2, IFNa, and PD-1 mediated signaling. The balance between these signaling mechanisms provokes

different fate reactions such as the activation, proliferation, differentiation, inactivation, and apoptosis.

some critical level C∗
i and that of Ii, is smaller than the

critical level I∗i , then the cell will differentiate in a mature cell
(Bouchnita et al., 2017b).

C2 At the end of the cell cycle: if the concentration of activation
signals induced by IL-2, Ii is greater than some critical level
I∗i , then the cell will divide producing two more mature cells
(Bouchnita et al., 2017b).

C3 During cell cycle: if the level of active PD-1 receptors PDi

exceeds a certain threshold PD∗
i then the cell will be inactivated

and removed from the domain.
C4 If Ci < C∗

i at the beginning of cell cycle and Ii <

I∗i at the end of cell cycle, then the cell will die by
apoptosis and will be removed from the computational
domain (Bouchnita et al., 2017b).

Extracellular dynamics of cytokines
The concentrations of IL-2 and type I IFN determines the
differentiation and maturation of T-cells as described before.
These two cytokines are produced by mature CD4+ T cells and
active antigen-presenting cells, respectively. We use reaction-
diffusion equations to describe spatial distributions of their
concentrations:

∂Ie

∂t
= DIL1Ie +WIL − b1Ie. (9)

Here Ie denotes the extracellular concentration of IL-2 and D
is the diffusion coefficient, WIL is the rate of its production by
mature CD4+ T cells, and the last term in the right-hand side of
this equation describes its consumption and degradation.

Each mature CD4+ T-cell secretes IL-2 in the lymph node.
The production rate WIL only applies at the areas of the
computational domain occupied by these cells. The consumption
of IL-2 is considered implicitly in the degradation term.

We suppose that antigen-presenting cells secrete type I
IFN upon their activation (through direct contact with tumor

antigens). The concentration of extracellular type I IFN is
described by the same type of equation as IL-2:

∂Ce

∂t
= DIFN1Ce +WIFN − b2Ce. (10)

As before, the production rateWIFN equals ρIFN at the area filled
by APC cells and zero otherwise. The consumption of type IFN is
also considered implicitly in the degradation term.

We also consider that the cytotoxic cells (mature CD8+

T cells) secrete Fas-Ligand (Fe). It is an apoptosis inducing
cytokines that participate in the elimination of tumor cells. Fas-
Ligand activates Fas receptors in tumor cells which induces
their apoptosis. Its concentration in the extracellular matrix is
described by the following equation:

∂Fe

∂t
= DFL1Fe +WFL − b3FL. (11)

We impose initial and boundary conditions for Equations (9–11).

2.2.3. Tumor Growth
We present here the model describing secondary tumor
development in the lymph node. The model includes two
subtypes of malignant cells: proliferating and quiescent cells.
The former can proliferate while the latter are more resistant to
tumor elimination. A simplified representation of the considered
intracellular regulation of tumor cells is provided in Figure 3.
Each proliferating tumor cell can have three possible fates:
proliferation, quiescence, and apoptosis. We consider that the
tumor progression is mainly driven by the EGFR/ERK pathway
because it is one of themost altered in secondary tumors (Burotto
et al., 2014). These alterations are caused by gene mutations that
upregulate the expression of ERK and cause the proliferation
of the tumor cell. The most common mutations that affect this
pathway are acquired by the K-RAS, N-RAS, and B-RAF genes.
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FIGURE 3 | Schematic representation of the intracellular regulation of tumor cells. Cell fate depends on the concentrations of ERK, p38, type II IFN, and Fas. These

signaling mechanisms contribute to the balance between the proliferation, dormancy, and apoptosis of malignant cells.

As before for the immune cells, we describe the intracellular and
extracellular mechanisms regulating the fate of cancer cells.

Intracellular regulation
We describe the intracellular concentration of three intracellular
proteins: ERK (Ei), p38 (Pi), and Fas (Fi). ERK is the final
product of the EGFR/ERK pathway. This signaling pathway is
stimulated when the epidermal growth factor receptors present
at the cell surface are activated. Subsequently, these receptors
activate the Ras/Raf/MEK/ERK cascade which promotes cell
proliferation (Li et al., 2016). To simplify the model, we only
describe the intracellular concentration of the final product of
this pathway ERK:

dEi

dt
= β1GF(xi, t)(E

0 − Ei)− γ1PiEi − d4Ei. (12)

Here we suppose that ERK activation depends on the
extracellular concentration of the epidermal growth factor (EGF)
denoted by GF(xi, t). The second term in the right-hand side
of this equation represents the inhibition of active ERK by
the protein p38. The last term describes the degradation of
ERK. This protein is activated by the FAK protein which is
recruited during a cross-talk between EGFR signaling, uPAR,
and integrins α1β5 (Barkan and Chambers, 2011). Next, we
describe the concentration of another important protein called
p38. The ERK/p38 ratio plays an important role in regulating
the dormancy of tumor cells. We describe the intracellular
concentration of p38 as follows:

dPi

dt
= β2(G

0
F − GF(xi, t))(P

0 − Pi)− d5Pi. (13)

Here we consider that the lack of the cross-talk between EGFR,
uPAR and integrins provokes the upregulation of p38 (Gao et al.,

2012). The last term represents the degradation of p38. Another
important protein whose signaling induce the dormancy of
tumor cells is IFN-γR.We describe its intracellular concentration
as follows:

dBi

dt
= β3Be(xi, t)− d6Bi, (14)

where Be(xi, t) denotes the concentration of extracellular type II
IFN at the center of the cell and d6 is the degradation rate.

A similar equation is used for the concentration of Fas:

dFi

dt
= β4Fe(xi, t)− d7Fi, (15)

where the Fe(xi, t) represents the concentration of the
extracellular FasL at the center of the cell and d7 is the
degradation rate.

We consider the following decision mechanism for the
regulation of each tumor cell:

D1 We consider the cell variable 8i = m Pi
Ei
+ n Bi

B0
, wherem and

n are positive parameters and B0 is the average concentration
of type II IFN in malignant cells. This variable quantifies the
tendency of tumor cells to enter or to leave the quiescent state.
During the G1 phase of the cell cycle, if 8i > 1 and the cell is
proliferating then the cell enters the dormancy state. If 8i ≤ 1

and the cell is quiescent, the cell becomes proliferating.

D2 By the end of the G1 phase: if the concentration of ERK Ei
is above a certain threshold E∗i , the cell will start growing and
doubling its size. Then it will divide into two daughter cells at
the end of the cell cycle. Otherwise, if Ei ≤ E∗i , then it will die
at the end of the cell cycle.

D3 If Fi > F∗i during the cell cycle, then the cell will die
by apoptosis.
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Extracellular regulation
ERK and p38 signaling depend on the local concentration of
epidermal growth factor (EGF). We describe the normalized
concentration of this growth factor as follows:

∂GF

∂t
= DGF1GF −WGF − b3GF , (16)

where DGF is the diffusion coefficient, WGF is the consumption
rate by tumor cells, and b3 is the degradation rate. We prescribe
the Dirichlet boundary condition:

GF = GF0,

where GF0 is a positive constant.
In addition, the fate of tumor cells depends on the activation

rate of type II IFN (IFN-γ ) and Fas receptors on their surface.
These receptors are activated upon their binding with the
respective ligands. We describe the extracellular concentration of
type II IFN (Be) as follows:

∂Be

∂t
= DIFN21Be −WIFN2 − b4Be, (17)

where DIFN2 is the diffusion coefficient, WIFN2 is its production
rate, and b4 is the degradation rate. This protein is produced by
effector CD8+ T-cells and contributes to the dormancy of tumor
cells. Initial and boundary conditions are set to zero for equations
this equation.

2.2.4. Computer Implementation
The code was written under C++ in the Object Oriented
Programming style. The WxWidget library was used to visualize
the simulations in real-time. The average CPU time of a
numerical simulation of 3 weeks of tumor-immune interaction
in the lymph node is 3 h on a computer with four cores and 6
GB of RAM. The source code is available upon request to one of
the two first authors. To the opposite of the previously described
continuous model, the hybrid model contains some random
variables including the stochastic motion of immune cells and
their introduction into the computational domain, the random
direction of division, and fluctuations in the cell cycle duration.
An example of numerical simulations with the hybrid model
is shown in Figure 4. It shows a growing tumor surrounding
by immune cells in the lymph node. The distributions of
three cytokines are shown. The values of parameters are given
in Table A2.

3. RESULTS

3.1. Model Validation
We begin by comparing the output of the continuous model
with the available data. Experimental results describing the effects
of PD-L1 on tumor evasion (Juneja et al., 2017) were used to
calibrate the model. Although these experiments describe the
development of primary colorectal adenocarcinoma outside of
the lymph node, they are still useful for our study because
mutated MC38 cells commonly migrate to neighboring lymph

FIGURE 4 | An example of a numerical simulation with the hybrid model of

tumor-immune interaction in the lymph node showing the spatial distribution of

the cytokines IFN-α (red, top), IL-2 (green, middle), and Fas-Ligand (yellow,

bottom). Cells are shown with different colors depending on their type:

magenta and purple for proliferating and dormant tumor cells, respectively,

green for APCs, black and white for naive CD4+ T-cells and CD8+ T-cells,

respectively, yellow for helper CD4+ T-cells and blue for effector CD8+ T-cells.

nodes in the advanced stages of the disease. The aim of these
experiments was to elucidate the effect of PD-1 blockade on
tumor evasion. To achieve this, PD-1 and PD-L1 blocking
antibodies were administrated to mice with MC38. The study
shows that the immunosuppressive effect of the PD-1/PD-L1
pathway is sufficient to cause the evasion of the tumor.

The parameters of the model were calibrated to reproduce
the experiments presented in Figure 1B of Juneja et al. (2017).
The volume of the tumor was calculated using the formula V =
4
3πr

3, where r is the radius of the tumor. The tumor growth rate
(k∗3) was fitted to reproduce the growth of the wild-type MC38
tumor. Then, we determined the rate of immunosuppression
(k∗11) in such a way that the administration of a PD-1 inhibitor
corresponds to a reduction of the level of PD-1 by 85 % (Ksupp =

0.15). With these modifications, the model is able to accurately
reproduce the experimental data as shown in Figure 5.
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3.2. Tumor Growth Dynamics in the
Absence of Immune Response
After the calibration of the model, we proceed to study its
dynamics in the absence of immune response (i0 = 0).
Then the system can be reduced to three Equations (1–3).

FIGURE 5 | The effect of PD-1 blockade on the growth of the tumor. Results

of the numerical simulations using the continuous model are compared with

experimental data in Figure 1B of Juneja et al. (2017) (shown in dots).

We solve them numerically for different parameter values.
Since the EGFR pathway represents a possible target for cancer
treatment, we quantify the effect of the EGF concentration in the
lymph node (eg0) on the development of the tumor. Numerical
simulations show the existence of two different scenarios. When
the concentration of EGF is below the threshold value e∗g0 =

0.55, the tumor does not develop and will be eliminated within
few weeks depending on the available concentration of the
EGF (Figure 6).

When the EGF concentration in the lymph node exceeds the
threshold value e∗g0, the tumor cells increase their proliferating

rate. Tumor growth is exponential in the beginning and linear
after some time. The tumor expands in the form of a traveling
wave and invades the neighboring tissue (Figure 7). The speed
of wave propagation increases as the value of EGF in the lymph
node grows. We conclude that there exist two possible regimes
of tumor development in the absence of immune response:
elimination and evasion. It is possible to obtain these two
regimes by varying other parameters of the model, for example,
depending on the proliferation and apoptosis rates of tumor cells
determined by their phenotypes. The rate by which tumor cells
enter and leave the quiescent state also determines the regime
of tumor development and can vary depending on different
conditions such as hypoxia and TGF-β signaling.

The two regimes of tumor development in the absence of
immune response can also be obtained with the hybrid model.

FIGURE 6 | The regime of tumor elimination is observed when the value of the epidermal growth factor in the lymph node corresponds to eg0 = 0.3. (A) 2D

representation of the tumor at the beginning of day 4 (left) and day 8 (right). (B) Plots of tumor cell densities at the cross-section at different times of the simulation

(every 4 days) showing the elimination of the tumor through the apoptosis of proliferating and dormant cells.
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FIGURE 7 | The regime of tumor evasion in the case where the value of the epidermal growth factor in the lymph node corresponds to eg0 = 0.8 and in the absence

of immune response. (A) 2D representation of the tumor at the beginning of day 4 (left) and day 8 (right). (B) Plot of tumor cell densities at the cross section at different

times of the simulation (every 4 days) showing the traveling wave solution (only for the total number of cells). The plots corresponding to the populations of dormant

cells are shown in blue.

To achieve this result, we consider an initial population of 20
cells and we run numerical simulations for different values of
the EGF concentration in the LN (GF0). When this concentration
is greater than or equal to the threshold value G∗

F0 = 35 nM,
the tumor grows and expands in the form of a traveling wave.
When it becomes sufficiently large, the consumption of EGF
at the core of the tumor will induce the dormancy of cells in
this area (Figure 8A). Hence, a tumor spheroid organization
composed of proliferating cells in the outer region and dormant
cells at the core can be observed. In the regime of tumor
escape, the ratio of dormant cells to proliferating cells becomes
higher as the EGF concentration decreases (Figure 8B). When
the EGF level is below the threshold value G∗

F0, the tumor
cells will either die by apoptosis or will keep switching back
and forth between the dormant and proliferating state until
they die.

3.3. The Regimes of Tumor-Immune
Interaction in the Lymph Node in the
Continuous Model
After studying the dynamics of tumor growth in the absence
of the immune response, we now introduce the immune
cells to the model (i0 = 1), and we numerically solve the
system (1–4) for different values of the model parameters.

Immune cells affects the dynamics of tumor development
by different mechanisms. First, they can eliminate tumor
cells by secreting apoptosis-inducing cytokines such as FasL.
Second, they can induce the dormancy of proliferating tumor
cells by secreting type II interferon (IFN-γ ). Finally, they
can prevent the reactivation of dormant cells with the same
mechanism (Farrar et al., 1999). It is therefore important
to study the outcome of the tumor-immune interplay under
different conditions.

Depending on the parameters of the model, it is possible
to observe three different regimes of tumor development. In
addition to the previously described regimes that can be observed
in the absence of immune response (tumor elimination and
escape), one more regime can be obtained when the immune
response is considered. This regime corresponds to the cancer-
immune equilibrium state where the tumor and the immune cells
coexist in the lymph node. In this case, immune cells cannot
eradicate the tumor and they do not allow it to further develop
and expand. This regime can be observed only if two conditions
are fulfilled: immune cells should prevent tumor growth and the
activation of dormant tumor cells. Under these two conditions,
a pulse-shaped stationary solution is reached after several
days of the tumor progression (Figure 9). The solution can
still slowly evolve because of the low apoptosis rate of the
tumor cells.
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FIGURE 8 | Tumor growth in the absence of immune response as simulated with the hybrid model. (A) Two consecutive snapshots of a numerical simulation showing

tumor development in the absence of immune response for the value GF0 = 100 nM. (B) The populations of malignant cells (including dormant ones) in the course of

two numerical simulations corresponding to two values of GF0.

FIGURE 9 | The regime of cancer immune equilibrium. (A) A snapshot of the solution. (B) Cross section plot of the stationary solution.

In addition to the EGFR pathway, PD-1 and PD-L1 constitute
a potential target in cancer therapy. By inhibiting their
immunosuppressive abilities, tumor cells become vulnerable to
immune cells and therefore can die by apoptosis during the
early stages of tumor development. While it is possible to study
the effect of PD-1 expression on the dynamics of the cancer-
immune interaction, it is more interesting to investigate the
combined effects of PD-1 (Ksupp) and EGF (eg0) on this process
(Figure 10). Numerical simulations reveal that the equilibrium

regime can only be observed for the values of eg0 between
0.1 and 0.9. The escape scenario can be avoided if the EGF
concentration in the LN is below 0.7. The elimination of
the tumor can be obtained if the immunosuppressive abilities
of the tumor are very low. Interestingly, it is also possible
to eradicate the tumor if the value of EGF concentration
in the LN is above 0.9 and the Ksupp value is below 0.3.
Thus, the model predicts that a possible combination of PD-
1/PD-L1 inhibitors with exogenous EGF can be administrated
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FIGURE 10 | The regimes of cancer-immune interaction in the lymph node in

the parameter space (Ksupp − eg0).

in order to overcome the drug resistance provoked by
cell dormancy.

3.4. The Hybrid Model Reveals the
Mechanism Regulating the Regimes of the
Tumor-Immune Interplay in the Lymph
Node
To elucidate the mechanisms underlying the interaction between
secondary tumors and the immune response in the lymph node,
we use the hybrid model to conduct numerical simulations under
various conditions. We begin by studying the regime of tumor
escape in the case where the concentration of EGF in the LN is
equal to GF0 = 100 nM and we introduce 50 tumor cells to the
computational domain as an initial condition. At the beginning
of the simulation, the tumor expands rapidly, and the tumor cells
use their immunosuppressive abilities to escape the surveillance
of the immune cells. However, some parts of the tumor are still
eliminated due to the secretion of FasL by the surviving CD8+ T-
cells. As a result, the tumor grows faster toward the directions
where the presence of effector T-cells is low and the shape of
the tumor becomes irregular and nonspherical (Figure 11A). The
ratio of dormant to proliferating cells becomes higher in the
presence of immune cells than in their absence (Figure 11B).
This can be explained by the induced dormancy or elimination
of a part of the proliferating cells by the effector CD8+ T-cells
and released cytokines. Still, the tumor manages to dismantle the
immune response and to develop using the immunosuppressive
capacity of malignant cells. This is reflected by the low number of
effector CD8+ T-cells despite the high number of antigen-bearing
APCs as shown in Figure 11C.

Next, we study the regime of tumor elimination by the
immune response by maintaining the same settings as in the
previous simulation and reducing the expression of PD-L1
per cell by decreasing PDe/cell from 0.5 to 0.02. During the
first 4–5 days, the tumor grows and expands without being
affected by the immune response. This period corresponds to the
necessary time for the adaptive immune response to be activated
following the exposure to tumor-antigens. The inhibition of

immunosuppression prevents the tumor from evading the
surveillance of immune cells. As a result, a relatively important
number of effector CD8 T-cells will be produced and eliminate
all tumor cells within several hours (Figure 12A). Effector T-cells
eradicate the tumor by secreting apoptosis inducing cytokines
such as FasL that diffuse in the ECM. They can also directly
transfer these cytokines into tumor cells during cell-cell contact.
During the whole simulation, tumor cells will be proliferating
except for few cells that appeared at the beginning of the fourth
day. These cells quickly leave the quiescent state because they
are exposed to growth factors (Figure 12B). In the absence of
immunosuppression, the number of effector CD8+ T-cells will
become high after the first 4 days while antigen-bearing APCs
will extinct after the elimination of the tumor, as revealed in
Figure 12C. It is important to note that the low expression of PD-
L1 by malignant cells is not sufficient to observe the elimination
of the tumor. With current model settings (PDe/cell = 0.02), this
regimes can only be observed if the EGF concentration is higher
than 70 nM or lower than 10 nM. This supports the conclusion
drawn from simulations of the continuous model which implies
that the administration of EGF can result in the elimination of
the tumor by anti-PD-1/PD-L1 agents.

The regime of tumor-immune equilibrium can only be
observed when the concentration of EGF in the LN is reduced.
We set GF0 = 50 nM and we suppose that tumor cells have
a normal PD-L1 expression (PDe = 0.5). In this case, the cells
start dividing, and then they enter the quiescent state due to
the lack of EGF and the presence of type II IFN secreted by
CD8+ T-cells. They remain dormant for the rest of the simulation
time (Figure 13A). As a result, the population of tumor cells
remains constant (Figure 13B). Due to the low concentration
of EGF, the cells can be maintained in a dormant state if they
are constantly supplied by type II IFN. Figure 13C shows that
a few numbers of effector CD8+ T-cells remain in proximity of
the tumor during the simulation. However, these cells cannot
eliminate the tumor cells because of the resistance acquired due
to dormancy. Hence, they only maintain the tumor cells in a
dormant state by producing type II IFN. The role of CD8+ T-cells
in maintaining tumor cells in a dormant state was investigated in
a previous in vivo experimental study (Farrar et al., 1999).

4. DISCUSSION

This study presents twomodels of the tumor-immune interaction
inside the lymph node. The first model uses a population
dynamics approach to study the spatial dynamics of the interplay
between tumor and immune cells while the secondmodel follows
a multiscale approach for a more realistic representation of the
mechanisms involved in this process. The continuous model was
calibrated in order to reproduce the results of an experimental
study on the effects of PD-1 in tumor evasion (Juneja et al., 2017).
These experiments describe tumor-immune interaction outside
of the LN. However, they were still useful for the identification of
the model parameters for several reasons. First, the growth rates
of primary and secondary tumors are approximately the same
(Peng et al., 2018; Zhang and Niedermann, 2018). Second, the
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FIGURE 11 | A numerical simulation using the hybrid model showing the regime of tumor escape. (A) Two consecutive snapshots of a numerical simulation showing

the irregular shape of the growing tumor. (B) The populations of tumor cells in the course of the simulation. (C) The numbers of different immune cells over time during

the development of the secondary tumor.

parameters of the PDE model are kinetic constants that describe
the rates of cellular processes such as division, dormancy, and
apoptosis. These processes depend on the phenotype of the cell
and not the location of the tumor. Finally, CD8 T-cells migrate
to the site of the site of the tumor regardless if it is inside or
outside the LN (Chheda et al., 2016). The hybrid model also
qualitatively confirms the conclusions of this study by showing
that PD-1 is sufficient to cause the evasion the evasion of the
tumor. However, both models reveal that this conclusion is only

valid in tissues with very low or very high concentration of EGF
in the LN. Indeed, the higher the concentration of EGF in the
LN, the higher the number of proliferating cells in the tumor,
and therefore the more responsive the tumor will be to anti-
PD-1/PD-L1 therapy. This result represents a testable hypothesis
that can be considered in the design of future experimental
studies and clinical trials. The two models were used in parallel
to study an important question: what are the possible outcomes
of the interaction between secondary cancer and the immune
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FIGURE 12 | Results of a numerical simulation using the hybrid model of the regime of tumor elimination caused by the inhibition of immunosuppression. (A) Two

snapshots of the simulation showing the elimination of the tumor. (B) The populations of tumor cells during the simulation. (C) The populations of immune cells

including antigen-bearing APCs and effector CD8+ T-cells (left) as well as the total number of CD4+ and CD8+ T-cells (right).

system in the lymph node. To investigate this point, we began
by studying the dynamics of tumor growth in the absence of
immune cells and we have shown, using both models, that the
resulting tumor will have a spheroid shape with two layers: a
proliferating zone in the outside layer and a quiescent zone in
the inside layer. This agrees with the previous in vivo, in vitro,

and in silico studies (Weiswald et al., 2015; Sant and Johnston,
2017). This spheroid organization depends on the access of tumor
cells to growth factors. In both continuous and hybrid models,
we have demonstrated the existence of a threshold value for the
EGF concentration in the LN that separates the regimes of tumor
evasion and tumor elimination.
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FIGURE 13 | Numerical simulation of the tumor-immune equilibrium in the lymph node using the hybrid model. (A) Snapshots of a numerical simulation. (B) The

population of tumor cells. (C) The number of immune cells during the simulation.

Next, we have introduced immune cells in the model and
studied their interaction with the growing tumor. In particular,
we have studied the role of the immuno-suppressive mechanism

in the dynamics of tumor progression in tissues with different
EGF concentrations. We have shown that immunosuppression
plays an important role in the evasion of the tumor from
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immuno-surveillance. Furthermore, we observed three different
regimes of tumor growth in the lymph node using both the
continuous and hybrid models. These regimes consist of the
elimination of the tumor, the cancer-immune equilibrium, and
the evasion of the tumor. They are already reported in the
biomedical literature, and they constitute the three main phases
of the immunoediting process (Dunn et al., 2004). Therefore, the
parameters of the model can be tuned to study the interaction
between the immune response and LN metastases of other
phenotypes of malignant cells in the normal conditions or during
immunotherapy. Despite the differences between the twomodels,
the same mechanisms were considered by both of them. In the
continuous model, the kinetic rates of tumor dormancy and
activation depend on the local concentration of EGF and the
density of immune effector T-cells. In the hybrid model, these
mechanisms were introduced explicitly by considering that the
state of the cell depends on the ratio ERK/p38 as well as type II
IFN secreted by mature CD8+ T-cells. Overall, the two models
allowed us to determine the conditions of each regime of tumor-
immune interaction. This is important for the development
of personalized immunotherapeutic strategies that consider the
characteristics of individual patients and the site of metastatic
tumors. In the future, we will use these two models to study
the efficacy and safety of the treatment regimens applied to the
therapy of secondary tumors in the lymph node. We will focus
especially on the combination PD-1 and PD-L1 inhibitors with
other chemotherapeutic agents.

The synergy between the continuous and hybrid model was
essential for a proper representation of the cancer-immune
interaction in the lymph node. On one hand, the continuous
model is better suited for systemic parametric studies because
numerical simulations are computationally cheap. Mathematical
analysis of the model will be presented in a forthcoming work.
On the other hand, the hybrid model, although computationally
expensive, provides a more detailed description of the various
mechanisms involved in the cancer immune interaction problem.
Hence, it is possible to conduct more biologically accurate studies
using this model. However, this model is less robust because it
contains numerous sources of stochasticity such as low number

of cells, their random motion, and the duration of the cell cycle.
Thus, it is possible to observe two different regimes of tumor
growth when repeating the same simulation twice and with the
same parameter set.

In general, there exist few hypotheses that were considered
while formulating the model. The interpretation of the obtained
results was possible because of these considered a priori
assumptions. First, the interaction between secondary tumors
and the innate immunity in the LN was not studied in the present
work. Tumor cells can evade the surveillance of natural killer
(NK) cells by reducing the expression of major histocompatibility
complex (MHC) class I molecules. Other considered assumptions
include the simplifications that were introduced to the signaling
pathways responsible for inducing the dormancy of tumor cells
such as the PI3K-AKT cascade. In our models, we assume
that only EGFR/ERK, p38 and Fas signaling pathways that are
disturbed for tumor cells. Thus, we restrict the intracellular
regulation of tumor cells to these three pathways. Furthermore,
we do not include the other mechanisms that induce the
dormancy and reactivation of tumor cells such as stress, hypoxia,
angiogenesis, and other microenvironmental factors. Despite the
recent advances in our understanding of the factors inducing
the dormancy of cells, the decision mechanisms by which cells
enter and leave the quiescent state remain poorly understood.
Therefore, more experimental andmodeling studies should focus
on this particular area of research.
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APPENDIX

In this section, we present the numerical values that were
assigned to the parameters of the two model. The values of
the continuous model were identified by fitting the results with
experimental data Juneja et al. (2017) (Table A1). For the hybrid
model, the values of the immune response component of the
model were taken from previous works Bouchnita et al. (2017b,c).
The rest of parameters were fitted in order to obtain the desirable
behavior of the model. Their values are given in Table A2.

TABLE A1 | The values of parameters used in numerical simulations with the

continuous model.

Parameter Value Unit Description

dx 0.25 mm Spatial step

dt 0.001 d Time step

D1 0.86 mm2d−1 Diffusion coefficient of EGF

D2 0.017 mm2d−1 Diffusion coefficient of proliferative

tumor cells

D3 0.05 mm2d−1 Diffusion coefficient of CTL immune

cells

k1 0.01 d−1 EGF consumption by tumor cells

k2 0.005 d−1 EGF degradation

k3 1.1 d−1 The growth rate of proliferative tumor

cells

k4 0.1 d−1 The reactivation rate of dormant cells

K4 100 Inhibition constant of dormant cells

reactivation by CTL

k5 2 d−1 The elimination rate of proliferative

cells by CTLs

k6 0.8 d−1 The rate of immune-induced

dormancy by CTLs

k7 0.5 d−1 The dormancy rate of malignant cells

k8 0.3 d−1 The apoptosis rate of proliferative

cells

k9 0.000001 d−1 The apoptosis rate of dormant cells

k10 1 d−1 The rate of CTLs activation by tumor

cells

k11 varied d−1 The rate of immunosuppression

TABLE A2 | Values of parameters used in simulations with the hybrid model. δ is

an arbitrary length unit.

Parameter Value Unit Description

dt 0.02 min Time step

DGF 0.0011 δ2.h−1 Diffusion coefficient of EGF

DIFN2 0.0011 δ2.h−1 Diffusion coefficient of type II IFN

α3 0.6 Normalized Rate of PD-1 activation by PD-L1

β1 1.8 nM−1.h−1 ERK activation by

EGFR-uPAR-Integrins cross-talk

β2 3 nM−1.h−1 p38 activation by

EGFR-uPAR-Integrins cross-talk

β3 0.024 mol−1h−1 Type II IFN activation

β4 0.3 mol−1h−1 Fas activation rate by FasL

γ1 0.2 h−1 ERK inhibition by p38

d3 4.8 h−1 Inactivation rate of PD-1

d4 0.6 h−1 Degradation rate of intracellular ERK

d5 1 h−1 Degradation rate of intracellular p38

d6 0.0228 h−1 degradation rate of type II IFN

d7 0.3 h−1 Degradation rate of Fas

E0 1 Normalized The capcity of ERK in each cell

P0 1 Normalized The capcity of p38 in each cell

PD∗
i

1 Normalized Threshold of T-cell inactivation by

PD-1/PD-L1 stimulation

E∗
i

0.6 Normalized Threshold of ERK that induces

proliferation

F∗
i

6000 Molecules Threshold of Fas that induces cell

apoptosis

m 0.6 Normalized Natural dormancy coefficient

n 0.4 Normalized Immune-induced dormancy

coefficient

B0 1000 Molecules The average concentration of type II

IFN per cell
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The adaptive immune response is initiated in lymph nodes by contact between

antigen-bearing dendritic cells (DCs) and antigen-specific T cells. A selected number

of naïve T cells that recognize a specific antigen may proliferate into expanded

clones, differentiate, and acquire an effector phenotype. Despite growing experimental

knowledge, certain mechanistic aspects of T cell behavior in lymph nodes remain

poorly understood. Computational modeling approaches may help in addressing such

gaps. Here we introduce an agent-based model describing T cell movements and their

interactions with DCs, leading to activation and expansion of cognate T cell clones, in a

two-dimensional representation of the lymph node paracortex. The primary objective was

to test the putative role of T cell chemotaxis toward DCs, and quantitatively assess the

impact of chemotaxis with respect to T cell priming efficacy. Firstly, we evaluated whether

chemotaxis of naïve T cells toward a nearest DC may accelerate the scanning process,

by quantifying, through simulations, the number of unique T cell—DC contact events. We

demonstrate that, in the presence of naïve T cell-to-DC chemoattraction, a higher total

number of contacts occurs, as compared to a T cell random walk scenario. However,

the forming swarm of naïve T cells, as these cells get attracted to the neighborhood

of a DC, may then physically restrict access of additional T cells to the DC, leading

to an actual decrease in the cumulative number of unique contacts between naïve T

cells and DCs. Secondly, we investigated the potential role of chemotaxis in maintaining

cognate T cell clone expansion. The time course of cognate T cells number in the system

was used as a quantitative characteristic of the expansion. Model-based simulations

indicate that inclusion of chemotaxis, which is selective for already activated (but not

naïve) antigen-specific T cells, may strongly accelerate the time of immune response

occurrence, which subsequently increases the overall amplitude of the T cell clone

expansion process.

Keywords: T cells, dendritic cells, lymph node, chemotaxis, agent-based modeling
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INTRODUCTION

After maturation in the thymus, immunologically-naïve T
lymphocytes (or T cells) continuously circulate between the
blood and secondary lymphoid organs, including lymphatic
nodes (LNs) and the spleen. Each one of the millions of T
cell clones bear unique T cell receptors (TCRs), which define
their antigen specificity. In LNs, naïve T cells may encounter
dendritic cells (DCs) presenting cognate antigens asMHC-bound
peptides (pMHC) on their surface. As a result of such a specific
and durable contact T cell-to-DC contact, a naïve T cell may
become activated and subsequently proliferate and differentiate
into effector forms. This constitutes, in most simplified terms,
the essence of the immune response. The fraction of naïve
T cells that recognize a particular antigen can be as small
as 10−5-10−6 (1). Since most naïve T cells feature irrelevant
specificities, the probability of an immediate contact between a
DC bearing a particular antigen and a cognate T cell appears to
be very low. Therefore, for efficient antigen recognition, each DC
should be in a position to scan a large number of T cells with
differing specificities.

Over the past two decades, experiments using two-photon
microscopy (2PM) have been applied in the study of murine
LNs in vivo and have provided a rich set of T cell migration
characteristics, as well as information on T cell interactions with
antigen-presenting DCs (2). Fibroblastic reticular cells (FRC)
form a spatial network throughout the T zone, which is used
by DCs as an adhesion scaffold, while T cells use this network
as an overall routing system underlying their random migration
process. As elucidated from 2PM observations, naïve T cells
move with a mean free path of 20–30µm, interrupted by a
change in direction every 2–3 min—a process which, over
time, results in a migratory pattern which roughly resembles a
“random walk” process (3). During their journey through the
LN, naïve T cells are involved in short contacts with DCs, lasting
several minutes on average (4–6). DCs migrate slower than T
cells, and continuously expand and retract long thin dendrites,
thereby significantly increasing the volume of the region they
may efficiently scan (6).

Intravital LN observations have shown that cognate T cell
interactions with antigen-presenting DCs can be categorized
into several stages—with may possibly overlap over time
(5, 7): (1) within the first 6 h: transient, serial encounters lasting
10–20min and upregulation of T cell activation markers; (2)
subsequently, and within 14 h: stable binding events lasting for
hours, and initiation of cytokine production; (3) consequently,
rapid motility followed by short contacts (10–20min) with DCs,
ultimately resulting in T cell proliferation. These observations
point to processes of T cells integrating TCR signaling over serial
DC contacts, with stage transitions occurring as signal thresholds
are being reached. T cell priming in the lymph node spans over
3–4 days, a period after which clonally expanded T cells exit
the LN via medullary sinuses (MS) and efferent lymphatics to
disseminate in peripheral organs.

Despite such detailed observations, there is no comprehensive
understanding, yet, of the detailed mechanisms and dynamics
of immune cell interactions; in particular, the fate of individual

cells is difficult to track for longer periods of time in vivo. As
reviewed in (8), methods of computational biology can be used
to integrate knowledge, to then simulate cellular dynamics which
occur in the LN. In this modeling study, we explored factors
influencing specifically the efficiency of T cell repertoire scanning
and further expansion of rare cognate T cell clones in a LN.
Toward this purpose, we developed a two-dimensional (2D)
computational model of T cell–DC interactions and subsequent
activation events. In this virtual lymph node, T cell migration,
contact dynamics, signal integration and cell division were
simulated while computationally tracking the contribution of
multiple parameters influencing the properties and functional
outcome of T cells, DCs, antigens. In particular, we sought to
answer the following questions: (1) May local chemoattraction of
naïve T cells toward the nearest DC accelerate the DC scanning
process? We chose to quantify this process by modeling the
number of unique T cell—DC contact events that occur per time
unit, and tracked the evolution of that number over time; (2)
May local chemoattraction of activated cognate T cells toward
a DC influence T cell expansion efficiency? To this end, the
time course of cognate T cell numbers in the virtual LN system
was computationally tracked, as a measure of such immune
response dynamics.

MATERIALS AND METHODS

Description of the Computational
Agent-Based Model
Overall, an agent-based model (ABM) represents a system
of interest, with a definition of key players and of relevant
interactions among these players that influence the system’s
behavior. A typical ABM consists of a simulation space (world),
stand-alone objects (agents), and rules to set the behavior of
individual agents as well as interactions among them (rules).
Thus, in our 2D ABM framework, we consider T cell motility and
emerging interactions of immune cells within the LN T zone. The
T zone was modeled as a lattice of 100 × 100 patches, resulting
in an effective physical surface area of 500 × 500 µm2 (i.e., 5 ×

5 µm2 per patch). This modeling framework also considers two
types of agents: T cells and antigen-presenting DCs.

In order to reproduce interactions between agents present in
the LN T zone, 2,000 naïve T cells were randomly placed in
this square domain, along with 8 antigen-bearing DCs, randomly
placed in 8 fixed positions, as shown in Figure 1. Each 5× 5µm2

patch was set to contain, at most, one T cell. DCs are typically
larger than T cells; thus, it was assumed that a given DC occupies
5 patches, thereby forming cross patterns as shown in Figure 1.
Such an initial geometric design would allow each DC to interact
with up to 11 neighboring T cells simultaneously.

For simplification, antigen-presenting DCs were assumed to
be immobilized, given their migration speed in LNs vs. that of
T cells is relatively slow (6), also recognizing that DCs may be
more fully anchored onto the reticular network vs. T cells. Once
a naïve T cell had found itself in contact with a DC within the
neighborhood of a patch, it was allowed to remain in such a state
of contact for 3min (4, 5).
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FIGURE 1 | 2D ABM model simulation snapshots. T cells are featured as small filled circles of different colors. DCs are shown as larger black cross symbols.

“Chemokine cloud” areas are colored in gray, around DCs. Green bars on the top and bottom boundaries of the computational domain physically restrict T cell

movement (no escape), while yellow spaces, in between, represent MS structures (T cell escape allowed). (A) Snapshot at the beginning of a simulation: 2,000 naïve,

non-cognate T cells (dark gray circles) and only one naïve cognate T cell (red circle) are present. (B) Snapshot on Day 7 of that simulation: a large number of activated

cognate T cells (red circles) proliferated and differentiated into effector T cells (orange circles). The feature of local chemoattraction for activated cognate T cells was

turned on in these simulations; consequently, formations of dense swarms of such T cells appear around DCs, as illustrated here.

Definition of T Cell Motion Rules
The stochastic motion of a T cell was implemented in two ways,
depending on the particular mechanism tested in the model:

(1) T Cell Motion via a RandomWalk Process:

In the context of the present 2D ABM model, it was
not possible to take explicitly into account interactions of
T cells with the FRC network. Hence, empirical rules were
introduced to describe T cell motion in this 2D space. To
describe the random walk motion process, a T cell was
allowed to move, at every discrete time step (30 s) of the
simulation, to an unoccupied adjacent position (at a 5µm
distance). This resulted in a modeled T cell velocity of 10
µm/min, in agreement with experimental observations (5).

To capture the short-term persistence character of T
cell movement, T cell motion at each time step was set to

be dependent on its previous direction. The new direction

was thus calculated by defining a take-off angle from the

previous direction, as the sum of two random angles sampled
clockwise and counterclockwise from a uniform distribution

in the range of (0, θmax) degrees. If the resulting adjacent
lattice position happened to be already occupied (e.g., by
another T cell, or a DC, or a boundary patch on the top
or bottom side of the computational domain), then the T
cell was computed to remain in its current position, and
another direction calculation would be attempted at the next
time step.

In our simulations, we aimed at reproducing not
only realistic velocities of T cell movement, but also
a physiologically-relevant T cell motility coefficient—
realistically reflecting the short-term persistence character
of T cell movement. Motility coefficients used in such 2D
simulations were calculated from time lapse microscopy

records using the formula:

M =

〈

1r2
〉

4τ
(1)

where
〈

1r2
〉

represents the mean squared displacement of
an individual T cell from its initial position at time τ .
Preliminary simulations were thus performed using different
values for θmax. Motility coefficient estimates were averaged
over 40 T cell trajectories, in each simulation. Simulations
with an θmax of 80◦ resulted in a calculated average
motility coefficient of 66 µm2/min, which nearly matched
experimentally determined estimates of motility coefficients
around 68 µm2/min (2).

(2) T Cell Motion Toward a Neighboring DC via a

Chemoattraction Process:

Physiologically, local chemoattraction, or chemotaxis,
may be mediated by a concentration gradient of specific
chemokine molecules around DCs. In our ABM framework,
the effective radius of a “chemokine cloud” around each
DC was taken to be 5 patches (∼25µm). T cell motion
would switch from a random walk process to a more-or-
less directed movement toward the DC center, once inside
the “chemokine cloud.” A chemotaxis strength parameter
was introduced, representing the probability of performing
a directed step instead of a random step. Typically, for
simulation purposes, a probability value of 1/3 for a
directed step can be used, in agreement with experimental
estimates (9).

After some time spent in the “chemokine cloud,” a T
cell loses its sensitivity to the chemokine gradient and starts
moving randomly again. The time of T cell de-sensitization
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to chemokine(s) was taken to be 10min (10). Such de-
sensitization potentially allows a T cell to leave the DC
neighborhood. The time for a T cell to get re-sensitized to
the chemokine gradient, once outside the cloud, was also
assumed to be 10 min.

Definition of Boundary Conditions
Periodic boundary conditions were applied on the left and
right sides of the computational domain: if a T cell were to
leave the domain through one side, it would be allowed to
immediately re-appear from the other side of the domain,
moving in the same direction. In contrast, T cells were not
allowed to randomly cross top and bottom boundaries of the
computational domain. These boundaries, instead, contained
“open patches,” functionally corresponding to medullary sinuses
(MS) and efferent lymphatics in a LN. Accordingly, if a T cell were
to leave the computational domain through anMS patch at either
the top or bottom side, a new T cell would be allowed to enter
the computational domain, from a random position through
its lateral borders. These settings allowed us to keep an overall
constant T cell density in the system under study. The model was
explored using a range of numbers of patches containing suchMS
escape structures (8–120 patches).

Cognate T Cell Activation and Proliferation
Relatively rare cognate naïve T cells, capable of recognizing DC-
presented antigens, were included in the model. No difference
in movements, between cognate vs. non-cognate naïve T cells
before their first encounter with DC was assumed. After a first
encounter, a cognate T cell was set to form a stable contact
with a DC for ∼24 h; specifically, the duration of contact for
each particular cognate T cell was a random value generated
from a normal distribution with a mean of 24 h and a variance
of 2 h. Upon completion of such a contact, a T cell became
activated. The model subsequently simulated activated T cells
which randomly migrated into a virtual LN and interacted with
DCs bearing cognate antigen complexes. We also explored the
option of chemoattraction of activated (but not naïve) T cells
toward a neighboring DC.

Similarly to the models by Bogle et al. (11, 12), we assumed
that the TCR stimulation signal could be summed over time,
during the period of binding and also through sequential DC
encounters. Milestones in the activation of a T cell were thus
reached when the integrated stimulation were to exceed certain
thresholds. In the present model, upon a DC encounter, activated
T cells established a contact lasting for about 20min (a random
value generated from a log-normal distribution with a variance of
10min). T cells were programmed to collect stimulation signals
as long as the contact was maintained and to integrate, through
summation, such collected stimulation signals upon additional
DC encounters. During contact with a DC and the presenting
cognate antigen, the stimulation level S of a lymphocyte was set
to start increasing to a certain saturation level of a sigmoid curve,
according to the following logistic equation:

S (t) = S0+
α

1+ e−βt
, (2)

where S0 is the stimulation level at the beginning of the
cognate contact. Parameters α = 2.0 and β = 0.005 min−1

values were selected manually, as further detailed in the
Supplementary Materials.

For activated T cells which ended up outside a DC contact
zone, the stimulation level was set to decrease according to an
exponential law:

S (t) = S0 · e
−λ t, (3)

where λ is the exponent indicator, corresponding to a half-life
period of 24 h (12), and S0 is the stimulation level at the start of
decay. A typical trajectory of a cognate T cell stimulation signal is
shown in Supplementary Figure 2.

Thus, a T cell was set to divide when the stimulation
level S reached a defined threshold. The threshold value
of the stimulation level Sn is one critical model parameter
which ultimately affects the proliferation intensity of cognate
T cells. We therefore tested multiple threshold values, to
estimate the sensitivity of the system to this parameter
(Supplementary Figure 3). For the simulations presented here,
we selected a value of Sn = 3.5, which was close to the
average S value for all cognate T cells represented in the
computational domain.

Two factors were used in the model, to limit the proliferation
of activated T cells: (i) a minimal time of about 8 h (random
value generated from a normal distribution with a variance of 1 h
for each newly formed T cell) was set between successive T cell
divisions; (ii) a maximal number of successive proliferating T cell
divisions was set. Following the last division of an activated T cell
reaching effector status, no further division was allowed, and the
cell was eliminated from the system within 24 h. Also, to avoid a
strong increase in overall T cell density in the model (as a result
of cognate T cell expansion), the following rule was added: if an
activated T cell were to leave the computational domain via “open
patches,” no new T cell was allowed to come back in (in contrast
to a naïve T cell leaving). This rule was set to take effect only if
the overall number of T cells in the computational domain were
to exceed the pre-set “equilibrium” value of 2,000.

Quantitative Outcomes Simulated via ABM
Numerical Experiments
The following quantitative outcome measures were generated:

1. LN transit time: average time from the moment a T cell object
appears in the computational domain of the model, until it
exits that space through MS patches.

2. Total number of T cell–DC contacts: a cumulative count of
contact events between any DC-T cell pair, including possible
repeat contacts, as detected during a given simulation time.

3. Calculation of the number of unique T cell–DC contacts: only
the first contact of a given T cell with any of the DCs was
taken into account. In the model, all DCs were assumed to be
strictly identical.

4 Dynamics of cognate T cell number in the computational
domain: included naïve, activated and effector T cells, in
simulations of up to Day 28.
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5. Cumulative outflux of cognate T cells: this was taken
as the characteristic measure of the adaptive immune
response intensity.

To calculate prediction intervals (90% PI) for each of the
model outcomes, 45–100 independent ABM simulations were
performed using identical model parameter values, yet different,
randomly generated initial T cell and DC positions within the
computational domain.

Software Packages
The NetLogo 5.0.1 software (13) was used as a computational
tool for ABM. Additional details on model development
and analysis, e.g., table with parameter values, results of
sensitivity analysis and NetLogo 5.0.1 model scripts are given
in the Supplementary Material. The NetLogo 5.0.1 model
code was also uploaded to an open-source repository and is
freely available under: https://github.com/Potamophylax/ABM_
immune-response/.

RESULTS

Using the 2D ABM model of a LN as described above,
a large number of simulations were performed for various
model parameter settings. For simplification purposes in
these exploratory simulations, several model parameters were
fixed using biologically reasonable estimates. In particular, the
assignment of values to T cell and DC densities (respectively,
2,000 and 8 cells per 500× 500 µm2) and to the T cell movement
parameter reflecting short-term persistence (θmax = 80◦) allowed
us to reproduce, via simulations, a realistic motility coefficient of
T cells in LN.

Exploration of T Cell Repertoire Scanning
Efficacy (Non-cognate Naïve T Cells Only)
Our first goal was to explore the impact of chemoattraction
upon efficiency in the process of T cell repertoire scanning, as
naïve T cells moved toward a DC. The measure of such efficacy
was computed as the rate of accumulation of unique T cell—
DC contact events. The chemotaxis strength estimate (P = 1/3)
was identical to the one used by Riggs et al. (14). A value for
an effective radius of the “chemokine cloud” around each DC
was selected from the observed size of activated T cell swarms
around a DC (∼25µm) (5). Time of T cell de-sensitization and
time to T cell re-sensitization (values of 10min taken for each)
reflected characteristic times of cytokine receptor internalization
and subsequent recycling.

We specifically explored the model behavior in relationship to
the parameter reflective of the size of overall medullary sinuses
(MS) and corresponding to the number of “open patches” at the
top and bottom boundaries of the computational domain. This
parameter is critical in the model, as it regulates T cell turnover
rate and thus influences most of the quantitative outcomes. As
shown in Supplementary Figure 1, setting the overall MS size in
the range of 15–50 patches within the computational domain led
to biologically realistic T cell transit times 10–20 h (15).

As shown in Figure 2A, the total number of contacts between

T cells and DCs was only minimally affected by the overall MS
size. In a “random walk” scenario, it is obvious that the total

number of T cell-DC hits depended mainly on the density of T
cells within the computational domain, which was kept constant
and did not depend on the overall MS size. Interestingly, under a
chemoattraction scenario, a much larger total number of contacts
was obtained, as compared to a “random walk” motility process
(respectively, 130,000 and 70,000 contacts counted during 3
days of simulations). Regions of high densities of naïve T cells
(“swarms”) formed locally, around DCs, in simulations under
the chemoattraction scenario—which explains this substantial
increase in the total number of T cell-DC contacts.

As shown in Figure 2B, the number of unique contacts
sharply increased with an increase in overall MS size (which itself
is an expression of increased T cell turnover rate through the
computational domain). Hence, a higher turnover rate in T cells
(from entering to leaving the computational domain) led to a
larger number of T cells appearing de novo in the computational
domain, thereby increasing the probability of new T cells to
establish first-time unique contacts with DCs. Conversely, in
the case of a slow T cell turnover rate, a larger proportion of
T cells may have contacted single DCs multiple times, as they
remained for longer times within the computational domain.
Simulation results displayed in Figure 2B thus support the
following important interpretation: a “random walk” motion
scenario for T cells resulted in a substantially higher number
of unique contacts between T cells and DCs—a number which
is about twice higher vs. a chemoattraction scenario. These
2D ABM simulation results are in full agreement with those
presented by Riggs et al. (14).

Figure 2C further displays the time evolution of this
number of unique T cell-DC contacts, over 14 days of
simulations. To explore the influence of the overall MS
size upon unique T cell-DC contact dynamics, simulations
were performed for two overall MS size values of 32 and
40 patches. The sensitivity of this number of unique T
cell-DC contacts with respect to overall MS size, in the
considered physiologically-reasonable range, was moderate.
The resulting linear dynamics of this number, observed
after 1–2 days of simulations, indicated that the system
represented by the computational domain reached an
equilibrium state by this time. The differing slopes of the
two sets of curves on Figure 2C point to different rates of
unique T cell-DC contact accumulation; this rate is indeed
significantly higher in the case of a “random walk” scenario
vs. chemoattraction.

Exploration of Activation and Expansion of
Cognate T Cell Clones
A second goal of this study was to explore simulations of cognate
T cell priming and expansion under different model parameter
settings. Here, we used small, albeit non-zero values for cognate T
cell frequency parameters, i.e., the probability of a new incoming
T cell to be cognate, which could be activated in contact with
DCs and proliferate as described above. Also, we tested different
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FIGURE 2 | Dependence of the number of total (A) and unique (B) T cell-DC contacts on overall MS size. Different cases of motion were observed for the two T

cell-toward-DC motility scenarios: “random walk” and chemoattraction. Chemotaxis strength ranged from 0 (blue line; “random walk”) to 1/3 (red line). The plot is

based on data from 100 simulations, each run over 3 days. Lines represent median values of contact search times; shaded areas represent 90% prediction intervals

(PI). (C) Accumulation, over time, of unique T cell-DC contacts. Two motility scenarios were used, to describe T cell motion in the vicinity of DCs: “random walk” (two

upper curves) vs. chemoattraction (two lower dashed curves). Red vs. blue lines reflects different overall MS size values (40 and 32 patches, respectively) used in the

simulations.

maximal numbers of activated T cell divisions, i.e., maximal
numbers of T cell generations starting from naïve cognate T
cells to finally differentiated effector T cell. Proceeding from
the previous part, we fixed the overall MS size at 32 patches:
it ensured a transit time through the LN T zone in agreement
with experimental values. All simulations were performed under
the assumption of a constant level of antigen stimulation in the
LN: neither the number of DCs, nor their positions, nor their
properties changed during the simulations.

In preliminary simulations not shown here, we sought to
reproduce T cell immune responses using the same “random
walk” scenario for both naïve and activated lymphocytes; under
such conditions, cognate T cell expansion levels were low and
not robust. By visual inspection of such simulation trajectories,
we observed that most activated cognate T cells would leave
the computational domain prior to any cell division occurring.
To resolve this technical modeling issue, we allowed chemotaxis
toward a neighboring DC to be selective for already activated
(but not naïve) cognate T cells. As shown in Figure 3, such
an approach allowed us to reproduce realistic T cell immune
response dynamics, after varying values of key unknown model
parameters over a wide range. Videos S1, S2 (available in the on-
line Supplementary Material) illustrate the kinetics of the system
at, respectively, the start and Day 7 of representative simulations.

In particular, following days 3–5 of simulations
(Figures 3A,C,E), a fast increase in cognate T cells numbers
was computed, with distinct peak values around Day 7, in
good agreement with the experimentally observed time of
5–7 days for an immune response to occur (16). Beyond 10
days of simulations, all the different trajectories exhibited
numbers of cognate T cells which fluctuated around some
“steady-state” values, due to a constant level of antigen
stimulation which had been assumed in our model. As
shown in Figures 3B,D,F simulations, cognate T cell outflux
rates also became nearly constant, which correlated with

the “steady-state” numbers of cognate T cells within the
computational domain.

Model outcomes were highly sensitive to the activated
T cell chemotaxis strength value (Figures 3A,B): stronger
chemotaxis led to a larger cognate T cell number within the
computational domain, via a facilitation of T cell proliferation.
Taking into account activated T cell chemoattraction led to
the accumulation of T cells in forms of swarms around
DCs (Figure 1B), which further led to: (a) a longer half-life
for these T cells in the LN, slowing down their elimination
rate from MS patches; and (b) more frequent contacts with
DCs, which favored the build-up of the activation signaling
(S) to higher levels. Both factors allowed to effectively
increase the number of overall cognate T cell divisions in
the system.

Another important factor was the cognate T cell frequency,
i.e., the probability for new incoming naïve T cells to recognize
antigens presented by DCs (Figures 3C,D). In our simulation
framework, a cognate frequency of 1/500 appeared sufficient
to induce a robust outflow of cognate T cells (as a main
characteristic measure of immune response intensity), however,
this outflow rate was twice lower vs. a cognate frequency of
1/100. A further increase in the cognate frequency to up to
1/50 only slightly increased the rate of cognate T cell outflow.
Additional simulations were performed, over a wide range of
cognate frequencies; we determined a non-linear dependence,
with a saturation of cognate T cell outflow vs. cognate frequency
(see Supplementary Figure 4).

Only moderate increases in “steady-state” cognate T cell
numbers and in the corresponding outflows were observed, when
the parameter value reflecting the maximal number of T cell
divisions was increased from 10 to 20 (Figures 3E,F). However,
for a maximal number of divisions ranging from 15 and 20,
the model predicted peak values of cognate T cell numbers
(within the computational domain) which were twice as high
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FIGURE 3 | Simulations of cognate T cell numbers in the LN T-zone (A,C,E) and their cumulative outflux through efferent lymphatics (B,D,F). (A,B) Simulations under

scenarios of different chemotaxis probabilities. Multiple chemotaxis strength values were tested: 1/8 (blue line), 1/4 (green line), and 1/3 (red line). The maximal number

of divisions was set at 10, and the cognate frequency was set at 1/100. (C,D) Simulations under scenarios of different cognate clone frequencies. Multiple cognate

frequency values were tested: 1/50 (red line), 1/100 (green line), and 1/500 (blue line). The maximal number of divisions was set at 10, and chemotaxis strength was

set at 1/3. (E,F) Simulations under scenarios of different maximal numbers of divisions: 10 (blue line), 15 (green line), and 20 divisions (red line). The cognate frequency

was set at 1/100, and chemotaxis strength was set at 1/3. All plots are based on measures from 45 simulations lasting 28 days each. Lines represent median values;

shaded areas represent 90% PI.

vs. when using a maximal number of divisions 10, on Day 10
of the simulations. This complex dynamic behavior reflected in
the outcome of cognate T cell numbers was technically traced
to a negative feedback loop included in the model, as described
in the Methods section. If, during the drive of cognate T cell
expansion, the overall T cell density became higher than 2,000
(pre-set T cell “equilibrium” density), the rate of new incoming
naïve T cell inflow became smaller. The rate of cognate naïve T
cell inflow decreased as well; this, consequently, led to a decrease
in the number of cognate T cells within the system. Thus, in
the absence of such a negative feedback loop, the domain would
become over-populated with T cells, also resulting in “paralysis”
of T cell motility.

DISCUSSION

The original motivation driving this modeling study was to
enable the exploration of dynamic spatial effects, in particular
a detailed investigation of the relationship between T cell
motility behavior and the timing and intensity of an immune
response. Intravital microscopy (2PM) yields a wealth of
information within a very restricted region of the LN and
during a short period of time (hours), whereas histology provides
complementary views, yet limited to two dimensions and with no
dynamic time element. An ABM of the LN allows for integrative
simulations which may help filling the gaps between these two
experimental approaches. To explore several hypotheses on T
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cell motility and their interactions with DCs, we independently
developed a simplified, yet biologically reasonable version of
a 2D ABM of the LN T cell zone. The model was developed
and qualified using NetLogo (13), a freely available and flexible
software tool.

The 2DABMpresented here, which includes T cell movement,
activation and proliferation in a LN, allows for the integration
of a number of processes and at the scale of the LN system,
and illustrates the necessity to consider all essential processes
simultaneously, in order to generate a realistic dynamic picture
of the immune response. Because detailed experimental data
required to characterize all these processes are not available, we
made assumptions regarding several parameters embedded in
the model; nonetheless, the model developed here realistically
reproduced key temporal characteristics, such as the T cell
motility coefficient (2), LN transit times (15) and kinetics of
immune response development (16).

Operating characteristics of the model were supported by
sensitivity analyses, whereby simulations were run over ranges of
model parameter values, with model outcomes being compared
against physiological values.Model simulations indicated that the
generated T cell response was sensitive to factors, such as naïve
cognate T cell frequency and the strength of the hypothetical
chemoattraction of T cells toward neighboring DCs. Thus,
despite a simplified, semi-empirical structure of the model, we
obtained reasonable and robust simulations over a wide range of
unknown parameter values.

The ABM LN model presented here was set as a two-
dimensional (2D) model, rather than a more physiological three-
dimensional (3D) model. A 2D setting of the model allowed
us, obviously, to drastically reduce the computational cost of
ABM simulations, while carefully estimating the impact of
stochastic effects on simulation outcomes. In most of ABMs, T
cell movement is implemented as a “random walk” in a non-
guided biophysical domain; under such settings, advantages of
3D vs. 2D models may, in fact, not be obvious. The role of
the fibroblastic reticular cell (FRC) network in guiding T cell
motion in the LN has been studied over many years (17);
such a network may adequately constrain T cell movement in
a 3D domain. Thus, a realistic spatial structure of the FRC
network, together with rules describing lymphocytes and DC
interaction within the FRC network should be included in a 3D
ABM of the LN. The development of such a detailed, highly
parameterized and computationally intensive 3D model is a
complex endeavor; the works from a number of such research
groups have been reviewed (18). One of the limitations of the
present 2D modeling work is the implicit consideration of the
FRC network influence, via a short-term persistence description
of T cell motility, since there would have been no other obvious
way to take FRC network effects into account more realistically.
In such a 2D context, it should not be expected to reproduce
either realistic densities of T cells or realistic numbers of sites
of T cells on the DC surface. Thus, the outcomes of our 2D
ABM reported here, such as T cells—DC contact numbers
and cognate T cell outflux from the LN should be viewed as
qualitative measures of behavior, rather than absolute values of
cell counts.

The numerical simulations reported here were focused on
two pivotal questions. The first question focused on whether
local chemoattraction of T cells toward DCs would promote
or hamper the scanning efficiency of DCs, within a LN.
We demonstrated that, for an effective DC scanning of the
T cell repertoire, a T cell “random walk” motility scenario
appeared to be the optimal strategy (vs. chemoattraction). We
provided a physiological rationale, via simulations, as to why
a chemoattraction motility scenario may actually lead to a
non-optimal DC repertoire scanning of T cells: indeed, under
chemoattraction, dense and relatively stable swarms of T cells
may form around each DC. T cells within these swarms may
experience repeated contacts with DCs; and owing to the higher
cellular density within swarms, it may take significant time
for a T cell to leave a swarm, even if it were to become
insensitive to the local chemokine gradient. In addition, swarms
may form a barrier for T cells outside the neighborhood, to
make contact with DCs. Thus, under a chemoattraction motility
scenario, our simulations demonstrated a large number of
repeated T cell-DC contacts, while the number of unique T cell-
DC contacts, reflective of T cell repertoire scanning efficacy,
remained relatively small.

Such results are in full agreement with results from earlier 2D
ABM research, in which T cell motility was accurately captured to
help determine the impact of chemotactic attraction of T cells-to-
DC on repertoire scanning (14). Accordingly, a T cell may move
randomly, with a short-term persistence, until it encounters a
chemokine gradient around a DC, at which point probabilities
are updated so that a T cell is more likely to move toward a
DC. Chemokine gradients were captured in a simplified manner,
by assigning concentrations in the DC neighborhood (up to
20µm from the DC). Chemotaxis parameters included strength
(related to the likelihood of moving toward a DC), duration (time
before de-sensitization occurs), and recovery (time before a T
cell may again detect a chemokine gradient). As strength and
duration increased, the total number of T cells-to-DC contacts
increased, yet the number of unique T cells-to-DC contacts
decreased, suggesting that an increased competition of T cells for
a DC, resulting from chemotactic-driven movement of T cells
toward a DC, interfered with efficient repertoire scanning. In
conclusion, a better strategy for efficient scanning is to briefly
contact, then clear non-cognate T cells away from an antigen-
presenting DC, to make scanning room for different, potentially
cognate T cells.

The relevance of a chemo-attraction process on T cell
scanning efficiency by DCs was also addressed in modeling work
by Vroomans et al. (19), who developed a 2D model of the LN
T zone, based on a Cellular Potts Model (CPM) formalism. The
CPM is a grid-based spatial model, initially developed to describe
the biophysics of cell sorting, based on differential adhesion
properties (20). Within this formalism, cell motion is driven
by the overall minimization of the energy of deformation and
stretching of the cell membrane through stochastic fluctuations,
in which global and local forces upon a cell edge are resolved
(21). Extension of this CPM approach have been made to
describe cell motion under control of a chemokine gradient,
including movement under conditions of high cell density in
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clusters around a DC. In contrast to (14) and our conclusions,
model simulations by Vroomans et al. (19) demonstrated that
chemo-attraction of T cells does enhance DC scanning efficiency,
leading to a greater probability for rare antigen-specific T cells
to find DCs bearing the cognate antigen. Also, these authors
found that de-sensitization of T cells following contact with a
DC would further increase DC scanning efficiency, providing
an improvement of nearly 3-fold, vs. a “random walk”-type
migration. We here offer one interpretation for this apparent
discrepancy: the CPM approach may not adequately reproduce
T cell motility in the LN T zone (19). Indeed, in that work,
motility was based on a cell adhesion process; also, very dense
packing of T cells in the computational domain was assumed.
Based on the experimental 2PM observations, a mean free
length characteristic of T cell motility was estimated, in the
range of 30–40µm (5, 7). Such a fast, intrinsic velocity of
T cell motility would not be possible in the CPM-modeled
system (19).

The second question which we sought to address here was
about a potential role for chemotaxis in immune response
initiation. For such a purpose, we simplified the description of
cognate T cell activation, to minimize the overall number of
parameters in the model. The concept of a TCR stimulation
signal (S) accumulation and dynamics of individual cognate T
cells was based on previous modeling work (12). However, the
implementations of this concept, between the present 2D vs.
the previously published 3D models were materially different:
(a) for simplification, we considered a single cognate T cell
clone instead of multiple cognate clones with varying affinities
of their TCR to pMHC; and (b) we took into account local
chemoattraction of activated cognate T cells toward a DC, as a
factor which may accelerate, or even be critical for T cell immune
response initiation.

Using our 2D ABM approach, we determined that a

feature of selection for activated cognate T cells is required,
to reproduce their pronounced expansion upon response to

antigen stimulation. As mentioned above, activated T cell

chemoattraction lead to T cell accumulation in swarms, around
DCs. This effectively caused a longer half-life of these T cells in

the LN, slowing down their elimination from MS patches, and

also causing frequent contacts with DCs, thereby contributing to
activation signaling (S) at a higher level. Both factors effectively
increased overall numbers of cognate T cell divisions in the
LN. The relative contributions of these two factors toward T
cell immune response potentiation depended on specific model
parameters, such as the activation threshold value (Sn), the
overall MS size, the T cell motility coefficient, and the overall
T cell density. If, indeed, a prolonged half-life of activated
T cells in the LN is critical, then an explicit accounting for
the effect of sphingosine-1-phosphate receptor down-regulation
during T cell activation, leading to retention (for a number
of days) of activated T cells in the LN, may be added to the
model (22).

Similarly to previous ABM applications tailored to the
LN, we showed that such a modeling technique proves to
be a useful tool to integrate current knowledge and data
on molecular and cellular interactions between immune cells,
to then generate novel hypotheses which may guide further
experimental studies, to overall improve our mechanistic
understanding of the immune activation process that takes place
in the LN. Many questions on this dynamical process in the
LN remain open, in particular questions on the emerging role
of the FRC network in regulating immune responses. Future
developments of 3D models, with detailed stromal elements,
may play an important role in further elucidating biological
mechanisms (18).
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The surveillance of host body tissues by immune cells is central for mediating their

defense function. In vivo imaging technologies have been used to quantitatively

characterize target cell scanning and migration of lymphocytes within lymph nodes

(LNs). The translation of these quantitative insights into a predictive understanding of

immune system functioning in response to various perturbations critically depends on

computational tools linking the individual immune cell properties with the emergent

behavior of the immune system. By choosing the Newtonian second law for the governing

equations, we developed a broadly applicable mathematical model linking individual and

coordinated T-cell behaviors. The spatial cell dynamics is described by a superposition

of autonomous locomotion, intercellular interaction, and viscous damping processes.

The model is calibrated using in vivo data on T-cell motility metrics in LNs such as the

translational speeds, turning angle speeds, andmeandering indices. Themodel is applied

to predict the impact of T-cell motility on protection against HIV infection, i.e., to estimate

the threshold frequency of HIV-specific cytotoxic T cells (CTLs) that is required to detect

productively infected cells before the release of viral particles starts. With this, it provides

guidance for HIV vaccine studies allowing for the migration of cells in fibrotic LNs.

Keywords: lymphoid tissue, cell motility, HIV infection, cytotoxic T cell scanning, multicellular dynamics,

dissipative particle dynamics, stochastic differential equation

INTRODUCTION

The surveillance of host body tissues by cells of the immune system is central for mediating
defense functions against invading pathogens and tumor cells (1, 2). The initial recognition of
foreign antigens that leads to the induction of adaptive immune responses takes place in lymph
nodes (LNs), which, by virtue of their location and structure, facilitate the interactions between
immune cells (3). Themotility of pathogen spread and immune cells represents relevant parameters
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controlling the fate of the pathogen–host interaction. In vivo
imaging technologies have been used to quantitatively
characterize target cell scanning and migration dynamics
of lymphocytes within LNs (4, 5). The translation of these
quantitative insights into a predictive understanding of immune
system functioning in response to various perturbations critically
depends on the availability of computational tools linking the
individual immune cell properties with the systems response as a
whole (6).

Multiscale models of the immune system provide the in
silico tool to embed immune processes into their spatial context
(7–9). A core module of the models is the mathematical
framework used to describe individual cell migration in complex
multicellular environments. One can distinguish two general
types of modeling approaches, cellular automata-based models
(CAMs), and physical models (PMs). CAMs consider a regular
grid with cells that change their state in time and space according
to some rules (functions of the system state). The respective
computational algorithms can take the form of random walks
(10) or cellular Potts models (11). Although CAMs incorporate
experimentally defined characteristics of cell motion and, thus,
simulate cell dynamics based on actual data, they lack quantifiable
links to the underlying biophysical interactions between cells
in multicellular environments and to intrinsic cell motility
parameters (12). PMs of lymphocyte migration dynamics derived
from the Newtonian second law offer the possibility to define cell
motions in terms of the forces generated by the environment and
the cell itself. Using the experimental data on cell movement,
the potential functions underlying cell-to-cell interactions and
intrinsic cell motility can be identified and can provide a deeper
insight into the mechanical properties of cells. Thus, PMs
of individual cells and coordinated cell migration represent a
general and generic way to describe and predict the multicellular
system dynamics for a broad range of cell numbers and external
conditions (13, 14).

It is widely accepted in immunology that the physiological
function of cytotoxic T cell (CTL) motility is to search
for target cells, i.e., for virus-infected cells or cancer cells
(15). Computational modeling studies have revealed that the
search efficiency depends on the organization of the stromal
environment of a tissue (16). In addition, the spatial behavior,
for example, of HIV-infected target cells scanned for foreign
antigens by CTLs strongly impacts the elimination efficiency
of the infected targets (17, 18). Experimental investigation of
live attenuated SIV vaccines clearly suggested that a robust
protection against intravenous wild-type SIVmac239 challenge
strongly correlates with the number and function of antigen-
specific effector CTLs in LN rather than the responses of such
cells in the blood (19). However, the quantitative effects of T-
cell migration parameters in LNs on the efficiency of antiviral
immune responses in vivo remain unknown.

In the current study, we have developed a physics-based
description of spatial T-lymphocyte dynamics in themulticellular
environment of LNs. A fundamental relationship between a cell
motion and the forces acting on it is provided by Newton’s
second law. It is used to formulate, calibrate, and apply a
generic mathematical model of coordinated T-cell migration

dynamics in LNs. By choosing a first principles approach
in formulating the governing equations in conjunction with
published experimental data on T-cell motility in lymphoid
tissues, we offer a broadly applicable generic mathematical tool
linking individual and coordinated cell behaviors. The potential
of the model is illustrated by an analysis of the combined effects
of antigen-specific T-cell numbers and intrinsic T-cell motility
parameters in LNs on the time needed to locate both mobile
and non-motile HIV-infected target cells. Computed predictions
of the ratio of effector CTLs to infected T cells in the LN
paracortex needed for a timely detection of infected cells within
18 h postinfection, i.e., before the release of viral particles starts
(20), provide a novel quantitative guide for an informed design
of HIV vaccines.

MATERIALS AND METHODS

Programming Languages and
Computing Resources
All algorithms were written in C++ and compiled using G++

(version 5.4.0). Pseudorandom numbers were generated using
the PCG random library (version 0.98) and the PCG64-XSL-
RR algorithm (21). The seed was either specified manually (for
code development) or set based on the system’s random device
(for computational experiments). Simulations were run on a 2-
core Xeon E3-1220 v5 @3.0 GHz × 4 processor. The wxWidgets
library (version 2.8.12) was used for visualization purposes.
The processing of the simulation results (i.e., calculating
statistical motility profiles, comparing CDFs, and plotting) was
implemented in Python and R scripts.

Model Equations of Multicellular Dynamics
According to a basic mechanics view, a system consisting of N
cells of somemass located in a liquidmilieu, interacting with each
other and affected by some external field, is uniquely determined
by their coordinates and velocities and is governed by the classical
mechanics motion equations. In our model, each cell i, i = 1,N,
is represented as the circle with certain mass mi, radius ri, and
position of its center xi. The fundamental equation governing
locomotion of cells is Newton’s second law of motion. It can be
expressed as follows:

mi ẍ i = Fi =
∑

j 6=i

f intij + fmot
i + f disi , i = 1,N, (1)

where the first term on the right side specifies the net effect of
the pairwise interaction forces with contacting neighbor cells, the
second term stands for the cell intrinsic locomotion force, by
which the cell establishes motility within the extracellular matrix
(ECM) of the LN reticular network, and the last one takes into
account the action of a dissipative force, taken to be proportional
to the cell velocity f disi = −µẋi. We neglect the impact of gravity.

Random Motility Force Sampling
The random motility force fmot

i for the ith cell is modeled as a
stochastic vector fi sampled every 30 s from certain probability
distributions analogously to the inverse homogeneous correlated
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random walk (IHomoCRW)model (22). The motility magnitude
∣

∣fi
∣

∣ = ηi ·Ki is sampled from the following Gaussian distribution:
Ki ∈

∣

∣N
(

µ (K) , σ 2 (K)
)∣

∣. To obtain the motility magnitude
∣

∣fi
∣

∣,
the sampled value Ki is multiplied by the arresting coefficient
ηi. The arresting coefficients are increased for both T cells and
DCs if they establish a sufficiently long contact to temporarily

arrest their inner motility as follows: (1) ηi : = 10η
default
i for T

cells and DCs when the duration of an uninterrupted contact

exceeded 30 s, and (2) ηi : = 100η
default
i if the contact outlasted

20min. The cell inner motility is restored back to a default value
if the contact lasted for a time longer than the sampled value
tcontact ∈ N (2, 0.4) hours. The parameter ηi is also used to
decrease intrinsic motility when performing in silico simulations
to study the effect of decreased T-cell motility on target cell
location efficiency (see details in Supplementary Text).

The motility direction f̂i is turned from the previous direction
on the angle θi:

αi ∈ N
(

0, σ 2 (α)
)

, θi = αi ·

(

1−

(

Ki

Kmax

)β
)

,

Kmax = µ (K) + 3σ (K) . (2)

Here, N
(

0, σ 2 (·)
)

denotes a Gaussian distribution, and β

is a scalar coefficient. The angle sampled from the normal
distribution is multiplied by a factor depending on the sampled
motility magnitude to reproduce the experimentally observed
negative correlation between cell translational and turning angle
speeds. Indeed, the cells do not simultaneously perform fast
translational movements and large reorientations (22). Note
that a similar feature was named “directional propensity” and
modeled with trigonometric parameterization in a cellular Potts
model to describe the motion of T cells (11). The Gaussian
distribution for the motility magnitude is set so that the

(µ − 3σ ,µ + 3σ) range is positive. The absolute value is taken
to ensure that the magnitude is non-negative. The parameter
Kmax provides an upper boundary for sampled values Ki

(approximately 1 of 370 cases falls outside of the three-sigma
interval). The hat above the vector denotes the normalized
unit vector.

Implementation of Contact Inhibition
of Locomotion
After the stochastic vector fi is sampled, it is modified in
accordance with the contact inhibition of locomotion (CIL)
model, as described (23). The resultant vector fmot

i is then used
in the right-hand side of Equation (1). The modification consists
of shifting the direction of vector fi away from the neighboring
cells and decreasing the magnitude of vector fi proportionally to
the number of neighboring cells:

fmot
i =

∣

∣fi
∣

∣ ·
(

cinh f̂i + R̂i

)

cinh + n
, R̂i =

∑

j,hij≤ri+rj

xi − xj

hij
, (3)

in which
∣

∣fi
∣

∣ is the magnitude and f̂i is the direction of the inner
motility as it would be if unaffected by CIL, n is the number of

neighboring cells in contact (such that the distance between cell
centers hij ≤ ri + rj), and R̂i determines the net shift of the
inner motility direction away from the neighboring cells, cinhis
the weighting coefficient varying the level of CIL. The hat above
the vector indicates that it is normalized.

Numerical Integration of the Equations of
Cell Motion
To numerically integrate the equations of motion (Equation 1),
we used the first-order semi-implicit (i.e., the cell coordinate at
time tn+1 is computed using the velocity vector vn+1

i rather than
vni ) Euler method:

vn+1
i =

miv
n
i + h ·

(

Finti

(

tn, xni
)

+ fmot
i

(

tn, xni
))

mi + h · µ
(4)

xn+1
i = xni + h · vn+1

i (5)

in which xni and vni are the coordinate and velocity of cell i at the
time tn after n steps tn = t0+h ·n. We note that the second-order
generalization of this method, i.e., the Störmer–Verlet method,
could be developed. However, it will be computationally more
demanding as the cell acceleration depending on velocity due
to the presence of dissipative velocity-damping viscosity forces
needs to be reevaluated at each time step tn+1. We verified that
the time step h = 0.02 min used in the simulations is sufficient
for a stable integration of the initial value problem with the
semi-implicit Euler method. To efficiently locate the neighboring
cells (which is needed for intercellular force calculations and for
determining the effect of CIL), we use a simple uniform-grid-
based spatial neighbor search, which performs well for a densely
packed multicellular environment. Note that the convergence of
the integration scheme was verified by repeating simulations for
a smaller time step.

Boundary Conditions
During themodel calibration process, we used periodic boundary
conditions for all boundaries of a square domain. To perform in
silico simulations in a closed ellipse-shaped domain representing
a LN, we implemented a biologically based boundary condition
of cell repolarization. We do not model explicitly the interaction
forces between cells and the boundary (i.e., the subcapsular sinus
wall). At the stage of coordinate updates (in accordance with the
numerical scheme specified in the section Numerical Integration
of the Equations of Cell Motion), if the proposed coordinate of
cell xn+1

i is outside the boundary, the current coordinate of the

cell is preserved (xn+1
i = xni ), while the direction of the motility

vector Efmot
i is changed to be the opposite direction of vector vn+1

i ,
thus resulting in cell repolarization.

Generating the Initial Spatial Configuration
for Simulations Within a LN
To generate the initial spatial configuration of the immune
cells within a LN, we followed the descriptions from a LN
imaging study (24). The following cell subsets were considered:
CD4+ T cells, CD8+ T cells, and cross-presenting migratory
CD8αintCD103hi DCs. Both T-cell subsets are distributed
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uniformly through the whole LN, while migratory DCs are found
mainly deep in the paracortex area. To arrange cells in agreement
with the experimental data, we approximated the DC-rich area
as an ellipse Ωα=0.99

DC . The spatial positions for DC locations are
iteratively sampled from the 2D Gaussian distribution with a 99-
percentile ellipse Ωα=0.99

DC and accepted if the DC with sampled
coordinates lies within the LN domain ΩLN and does not overlap
with the other seeded DCs. After DCs are placed, the T cells are
positioned uniformly through the remaining non-occupied space
of ΩLN.

RESULTS

Biophysical Parametrization of the Spatial
Multicellular Dynamics
Multicellular systems dynamics can be accurately described by
biophysical models as reviewed recently (14, 25). Here, we
develop a physics-based mathematical model of coordinated
immune cell motion that belongs to the class of self-propelled
particle models (14) and, more generally, to the dissipative
particle dynamics (26, 27) framework.

Immune cells in LNs are continuously interacting with each
other and with stromal cells via forces of different origin, i.e.,
elastic (membranes), chemical (receptors), and electric. The
respective forces in combination with cell intrinsic locomotion
events act in concert to determine the basal intranodal motility
of T cells. Figure 1A presents the overall summary of physical
forces included in the model with some implementation details.
The scheme of the forces exerted on cell i interacting with cells
p and k is shown in Figure 1B. The quantitative features of
the force functions are detailed in Figure 1C. Here, f intij is the

intercellular force acting on cell i due to interaction with cell j.
The pairwise cell-to-cell interactions are assumed to have a finite
cutoff distance and are considered to be elastic acting along the
line of cell centers. The intercellular forces f intij can be considered

as the gradients of pairwise potentials, which are repulsive at
short distances and attractive at larger distances, thus accounting
for volume exclusion at the cell body and cell–cell adhesion
near membranes. We consider the following cubic polynomial
function to model the force exerted by cell j on cell i:

f intij =
xi − xj

hij
·







−a · f adh ·
rj−x

rj
+ b · f adh ·

(

rj−x

rj

)3
, hij < ri + rj,

0, hij ≥ ri + rj,
(6)

where ri is a radius of the ith cell membrane, hij is the distance
between cell centers (see Figure 1C), and x = hij − ri is the
distance between the center of cell j and the surface membrane

of cell i. The function a · f adh ·
rj−x

rj
describes the attraction force

between two cells, and the function b · f adh ·
(

rj−x

rj

)3
corresponds

to a repulsive force, both calibrated as shown in Figure 1C.
The coefficients a and b are set such that the minimum of
function f intij is equal to f adh. Thus, the only remaining free

parameter is f adh, the adhesive interaction strength. In the
case of T cell/T cell interaction, it corresponds to weak non-
specific electrical forces (electrostatic and electrodynamic) that

are expected to be present between all cells according to the
model of Bell (28). We calibrate this parameter by the typical
value of low-adhesive forces, with which integrins present on T-
cell membrane bind to their ligands present on the other cells
(29). For cognate T cell/APC interactions the attraction force
is much stronger as it is determined by a broad spectrum of
various adhesion molecules involved in T-cell activation clusters,
i.e., the immunological synapse (30). The estimated values of
the intercellular interaction forces are given in Table 1. For
details on the data-based T-cell motility model calibration, see
Supplementary Text.

The dissipative (friction) force acting on T cells describes
the effect of viscous damping, which reduces the velocity
of the cell. It is assumed to be proportional to the cell
velocity f disi = −µẋi. The dissipative force acts along the
line of the cell center and in opposite direction to the cell
displacement. Consideration of viscous damping is appropriate
for the highly viscous low-Reynolds-number environment of
LNs (40). The viscous damping parameter estimate is listed
in Table 1.

The random motility force fmot
i determines the traction of

self-propelled lymphocytes. It represents a stochastic process
of receptor-mediated cell–ECM interactions regulated by either
cytoskeletal or membrane reorganizations and governed by
biomechanical and intracellular molecular mechanisms (4, 13).
Basically, cells establish directed caterpillar-like movement
by polarizing, forming contacts between their leading edge
and collagen fibers of ECM, detaching their trailing edge
from ECM, and contracting. However, T lymphocytes and
dendritic cells (DCs) are characterized by low-adhesive integrin
interactions with the microenvironment. This allows them to
adapt their direction and morphology with no need to reorganize
microstructure while effectively sliding along the stromal
network of fibroblastic reticular cells (41, 42). As we do not
model the reticular network and the ECM microstructure in this
study explicitly, this motility behavior is considered implicitly
in the stochastic nature of fmot

i . Note that the autonomous cell
motility can also be affected by external signaling, e.g., through
chemotaxis, CIL, or immunological synapse formation. The cell
trajectory in the model is characterized by three quantifiable
values, i.e., the translational speed, the turning angle speed,
and the meandering index as explained in Figure 1D and as
described in Read et al. (22). The corresponding experimental
data are shown in Figure 1E. To capture the experimentally
observed patterns of T-lymphocytemigration in lymphoid tissues
(see Figure 1E), the T-cell motility is modeled using a random
variable fi with its magnitude and angle values updated every
1t seconds according to the IHomoCRW recently suggested
and validated (22). The IHomoCRW model was shown to
reproduce the experimentally measured statistical profiles of
T-cell locomotion (22). In the present model, the magnitude
and direction of the random vector fmot

i are sampled from
distributions provided by the experimental data (the specific rules
are defined in sectionMaterials andMethods). The key difference
from the original IHomoCRWmodel is that it is the cell motility
inducing force fmot

i rather than the cell velocity ẋi that is sampled
and then substituted into equation (Equation 1). In addition,
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FIGURE 1 | Physics-based model of multicellular system dynamics reproduces experimental data on T-cell locomotion. (A) The set of forces considered in the

model with description of their features and implementation details. (B) The fundamental equation governing locomotion of cells determined by the forces exerted on cell i,

(Continued)
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FIGURE 1 | including the repulsive–attractive interaction with neighbor cells p and k, respectively. (C) The parameterization of intercellular interaction force f intij and

formula definition. The calibrated force for non-specific interaction of two T cells with a radius of 3µm is depicted. By simulation, the parameters a and b are

calculated at each time step depending on the radii ri , rj and the distances hij , x, so that the condition fij
(

λrj
)

= fij
(

rj
)

= 0,minfij (x) = −fadh
i

is satisfied. The

parameter λ determines the relative deformation of the cells that separates the repulsive and attractive interactions between them. Parameter fadh
i

represents the

adhesive strength between the membranes of cells i and j. (D) Schematic illustration and definition of the metrics characterizing T-cell motility: translational speed,

turning angle speed, and meandering index. All metrics are measured for each cell every 1t seconds and pooled together to form statistical distributions. (E)

Statistical profiles characterizing the T-cell locomotion consists of distribution histograms of translational speeds, turning angle speeds, and meandering indices. The

histograms are derived from the corresponding empirical cumulative distribution functions (CDFs) available in Figure S17 from Read et al. (22), in which original in vivo

data are presented. (F) The details of the 2D geometric setup for simulations used in the model calibration: spatial configuration, initial and boundary conditions, and

the experimental protocol used to sample the statistical profile. (G) The statistical characteristics of T-cell motility coming from simulations of the calibrated model

plotted against the in vivo histogram data (22). The statistical distributions of each metric are depicted as CDFs. The Kolmogorov–Smirnov statistics comparing the

model and target CDFs are indicated with their respective p-values.

TABLE 1 | Set of calibrated model parameters used as a baseline for all simulations.

Parameter Description Value References

mTC T-cell mass 215 pg (31–34)†*

rTC T-cell radius 3µm (35)†

µ Viscous damping coefficient 0.2 nN·min/µm (= 12 g/s) (36, 37)*t

fadh
T−T

Adhesive strength between T cells 0.01 nN (28–30)†

λTC The normalized distance between the cell-to-cell interaction synapse and the cell

center separating repulsive and attractive modes of T-cell interaction (model

analog of nuclear-to-cytoplasmic ratio in experimental cell biology)

0.83 (with respect to r TC) (38)*t

1t Time step for inner motility mTC update 30 s (22) ‡

µ
(

mTC

)

Mean of the inner motility force magnitude distribution 3 nN (22, 39)‡*t

σ
(

mTC

)

SD of the inner motility force magnitude distribution 0.3 nN (22, 39) ‡*t

σ
(

αTC
)

SD of the inner motility turning angle distribution 60◦ (22)‡t

cinh Scalar coefficient varying the level of CIL 1.0 (23)‡t

β Scalar coefficient in parameterization of negative correlation between magnitude

and turning angle of sampled inner motility

2.0 (23)‡t

†
Parameters obtained directly from experimental measurements.

*Parameters estimated indirectly from experimental measurements.
‡Parameters derived from underlying computational models.
tParameters tuned to fit cell motility profiles within the model calibration.

the random vector fmot
i can be influenced by contact effects

from neighboring cells, resulting in (1) a shift of the vector fmot
i

away from neighboring cells and (2) a decrease of its magnitude
proportionally to their number, similar to the CIL model (23)
(see details in section Materials and Methods). By default, the
arresting coefficient for T cells is equal to one. For DCs, its value
is estimated so that the resultant DC velocities do not exceed 5
µm/min (the estimated value is specified in Table 2).

Overall, the mechanistic model of the spatial multicellular
dynamics is formulated as a system of N random ordinary
differential equations (44) represented by Equation (1) and
embedded into the 2D geometric domain as detailed in
Figure 1F. Essentially, the system is a deterministic system
of ordinary differential equations on each interval of 1t
seconds, until the force fmot

i becomes updated. The quantitative
consistency of the computational model of multicellular
dynamics with experimental data on translation speed,
turning angle speed, and the meandering index is illustrated
in Figure 1G. The relevant components of the numerical
implementation of the model (computational domain, boundary
conditions, integration algorithm) are described in Materials and
Methods. The dynamics of the net forces and their contributions

acting on a randomly selected T cell in a simulation of
multicellular dynamics are shown in Figure S1.

Calibration of T-Cell Motility
Our model mostly operates with biophysical parameters that
are either directly measurable or can be estimated indirectly
such as the mass m (wet weight) and the radius r of a cell, the
adhesive strength between T-cell membranes f adhij (measured by

single cell force spectroscopy), the viscous damping coefficient
µ, typical forces and velocities of T cells, and the location
of demarcation between repulsive and attractive areas of a
cell λ (nuclear-to-cytoplasma ratio). The other parameters that
describe the random motility force or the contact inhibition
of locomotion are derived using the information presented
in the original IHomoCRW model (22) and the CIL model
(23) with the underlying experimental data. To calibrate our
model, we evaluated admissible ranges of parameters and tuned
them manually to match the statistical characteristics of T-
cell locomotion (22). The baseline sets of the estimated model
parameters are presented in Tables 1, 2. For details of the
parameter estimation, see Supplementary Text.
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TABLE 2 | Extra parameters which are used for LN simulations.

Parameter Description Value/range References

mCD4 CD4+ T-cell mass 215 ± 28 pg (31–34)

mCD8 CD8+ T-cell mass 290 ± 28 pg (31–34)

mDC Dendritic cell mass 350 ± 28 pg (32–34)

rDC Dendritic cell radius 6.5µm (38, 43)

λDC The normalized distance between the cell-to-cell interaction synapse and the cell

center separating repulsive and attractive modes of DC interaction (model

analog of nuclear-to-cytoplasmic ratio in experimental cell biology)

0.5 (38)

fadh
DC

Adhesive strength between specific T cells and DCs 1 nN (28, 30, 36)

ηDC Default value for coefficient arresting inner motility of DCs 3 Tuned so that DC

velocities are <5

µm/min

Computational Domain, Immune Cell Subsets, and

Initial Configuration
The computational domain was implemented as an ellipse-
shaped 2D approximation of the bean-like cross section of a
murine skin-draining LN (see Figure 2A). At the beginning,
both CD4+ T cells (green) and CD8+ T cells (blue) are evenly
distributed throughout the domain. Some randomly chosen T
cells are considered to be antigen specific and marked in light
green and blue, respectively (their numbers are specified below).
The antigen-presenting cells considered in this study represent
the subset of cross-presenting migratory CD8αintCD103hi DCs,
which are mainly involved in CD8+ T-cell immune responses
and which immigrate into LNs from the periphery (24). They
are normally localized in the deep parts of the T-cell zone
and leave LNs slowly with a turnover rate of 6 days. For
initial configuration, these DCs are spatially placed according
to a Gaussian distribution with 99-percentile ellipse Ωα=0.99

DC
representing the T-cell zone (see Figure 2A and sectionMaterials
and Methods).

The numbers of antigen-specific DC and T-cell subsets
are estimated using published data (24), which were rescaled
according to the size of the computational domain. A total
population of 12,469 immune cells was considered. The total
number of non-antigen-specific T cells was estimated so that
about 80% of the computation domain was filled up. The
precursor frequency of antigen-specific T cells, that is, their
proportion in the total amount of T cells, was set to be about
1%. We consider the inflow and outflow of immune cells to
the region of interest to be negligible because of the short
simulation time of 12 h. The closed boundary conditions used in
the simulations are specified in section Materials and Methods.
The overall geometrical scheme of the computational domain
and the initial configuration of themulticellular system generated
for simulations are presented in Figure 2A.

Data Assimilation and Model Validation
To assimilate the statistical data on the three T-cell locomotion
measures (i.e., the translational speed, turning angle speed, and
meandering index), the following numerical simulation protocol
was used, which is close to the original experimental protocol
(22). First, the same 2D 412 × 412µm2 domain was used, in
which we initialized 4,489 squarely tiled T cells with 3-µm radii
and η ≈ 80% packing density. The initial direction of the intrinsic

motility force was generated randomly for all cells. The positions
of cells were saved every 30 s during 10 numerical experiments of
30-min simulation time after a 30-min pre-run to randomly mix
the cells. Cells with total displacements <27µm were excluded
as was done in the original experimental protocol. Likewise, cells
that passed through the boundary and left the imaging volume
were also excluded. The saved cell positions were post-processed
to calculate the target metrics (defined in Figure 1D), which
were pooled together to form three separate distributions. The
pooled cell motility distributions were calibrated with in vivo
data. The simultaneous adjustment of all distributions was
computationally challenging due to the different uncorrelated
aspects of cell migration captured in each of themotility metric as
previously outlined (22). Figure 1G shows the best-fit cumulative
distribution functions (CDFs) of the calibrated model with the
baseline parameter set fromTable 1 and the target experimentally
observed distributions with Kolmogorov–Smirnov statistics and
p-values describing the discrepancy between CDFs.

The evolution of the above multicellular system was
simulated over a 12-h period. The visualization of the systems
spatiotemporal dynamics is presented inMovie S1. Figures 2B,C
shows the kinetics of median velocities of antigen-specific CD4+

T and CD8+ T cells, and the median distances between the
T cells and the centroid of their cognate antigen-presenting
DCs throughout 12 h of an in silico experiment. The model
demonstrates that antigen-specific CD8+ T cells that interact
with their cognate CD8αint DCs but not the CD4+ T cells
decrease their velocities, move closer to the area of DCs in
the first 4–6 h, and remain there with low velocities afterward.
Figures 2B,C is quantitatively consistent with experimental data
shown in Figures 1E,F, and in Figure 2B from Kitano et al. (24).

Quantitation of the DC and T-Cell
Contact Interactions
The calibrated mathematical model of T-cell locomotion was
validated by confronting its predictions with data from the
intranodal spatiotemporal dynamics of different immune cell
subsets after soluble antigen immunization presented in a recent
experimental study (24). The data specify the evolution of the
distances between the centroid of the migratory DC area and
individual CD4+ T and CD8+ T cells. The model was adjusted
to the functional configuration of skin-draining LNs specified
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FIGURE 2 | Heterogeneous dynamics of T cells in LNs. (A) The scheme of a LN and illustration of the initial configuration generated for simulations. DCs, CD4+ T

cells, and CD8+ T cells are placed within a LN as described in the Supplementary Text with total cellularity of 12,469 cells, ≈80% packing density and ≈1%

precursor frequency. (B) Twelve-hour kinetics of median velocities of antigen-specific CD8+ T and CD4+ T cells, and their distributions at the start and at the end of a

12-h simulation. (C) Twelve-hour kinetics of median distances from T cells to the centroid of DCs, measured for antigen-specific CD8+ T and CD4+ T cells, and their

distributions at the start and at the end of a 12-h simulation. TC, T cell; DC, dendritic cell.

in the above study. A representative example of the numerical
simulation of individual cell trajectories is shown in Figure 3A.
An example of multicellular dynamics in a LN during 12 h is
shown in Figure 3B.

Quantitation of the Forces Determining T-Cell and DC

Motility and Their Interaction
To consider DCs in multicellular system simulations, we carried
out a parameterization of their intrinsic motility forces and
the intercellular forces for contacts between (1) two DCs, (2)

antigen-presenting DCs and antigen-specific T cells, and (3)
antigen-presenting DCs and polyclonal T cells. The values of the
corresponding parameters are presented in Table 2. The physical
forces driving the dynamics of individual cells in the LN and
the respective velocities of the cells predicted by the model are
shown in Figure 3C. We assume that the intrinsic motility of
DCs can be represented by the same type of force function as
that for T cells (Figure 1C); however, due to their much smaller
average velocity, the respective DC force function value was
of small magnitude. The adhesive force for cognate contacts
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FIGURE 3 | Quantitation of immune cell motility, driving forces, and contacts. (A) Representative example of individual cell trajectories obtained with numerical

realization of the calibrated model. The trajectories illustrate the 5-h dynamics of 15 cells randomly chosen from 4,489 cells presented in the 412 × 412 µm2 domain

with periodic boundary conditions. (B) Twelve-hour multicellular dynamics of T-cell trajectories in a lymph node obtained by numerical simulation with an initial

configuration specified in Figure 2A. Only cells with total displacement longer than 27µm are shown. (C) Values of forces and cell velocities driving the multicellular

system dynamics in a square subdomain of a LN. In a center pane, the velocity field is represented as a contour plot of the field of cell velocity magnitudes linearly

interpolated at uniform grid, as well as detected streamlines of possible cell flow patterns. (D) Kinetics of the numbers of cognate DC–T cell contacts at different

stages of the simulation and distribution of durations of all cognate contact durations occurring within a 12-h simulation. DC, dendritic cell.

(i.e., of antigen-specific T cells with antigen-presenting DC) is
around 100 times higher (∼1 nN) than the non-specific adhesion
force for T cell/T cell contacts (36). We also implemented a

computational procedure to temporarily arrest the motility for T
cells in a sufficiently long cognate contact (see section Materials
and Methods).
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Ag-Specific CD8+ T Cells Migrate Toward

Cross-Presenting DCs and Form Cognate Contacts

With Them
Figure 3D presents the model prediction for the kinetics of
the number of cognate DC–CD8+ T-cell contacts occurring
at different time intervals during the in silico simulation.
Antigen-specific CD8+ T cells robustly increase the number
of contacts with DCs over time in the process of T-cell zone
scanning for antigen-presenting target cells. Although most of
the cognate contacts are of short duration, i.e., they last for
<5min, the distribution has a heavy tail of stable more than 1-h
length contacts. These predictions are in agreement with previous
data (45).

CTL Frequency Needed to Locate
HIV-Infected Target Cells Before
Viral Release
During viral infections, the induction of cellular immune
responses takes place in secondary lymphoid organs such as
LNs and spleen. Antigen-presenting cells such as DCs take up
antigens and migrate to LNs to encounter specific lymphocytes,
e.g., CD4+ T and CD8+ T cells, to induce their activation and
differentiation into effector and memory cell subtypes (46). The
low frequency of antigen-specific T cells in unprimed hosts turns
the scanning of cognate DCs by specific T cells in a highly
crowded cellular LN environment into a “needle-in-a-haystack”
problem (47). It was revealed that optimal LN scanning depends
on a combination of intrinsic T-cell motility, the chemokine
milieu, and the microarchitecture of the LN (1). When virus-
infected DCs reach the LN, the less the time needed to locate
virus-specific T cells and to form stable DC–T cell contacts, the
more likely is that the precursor CTL activation will happen
before the viruses will be released from infected cells, therefore
making the elimination of local clusters of infection spread more
probable. This aspect of CD8+ T-cell activity is crucial for a
prompt activation of specific CTL immune responses and the
elimination of viruses. The precursor frequency in blood can be
as small as 0.0001% (48), reaching about 5–10% in the chronic
stage of an HIV infection (49). The here-developed physics-
based model of T-cell dynamics can be directly used to study
the efficiency of scanning the paracortical T-cell zone of the LN
for target cells expressing cognate antigen as a function of the
frequency of CTL and their motility.

Development of an effective AIDS vaccine remains a
global priority, and there is a need for a vaccine to induce
cellular immune responses capable of eradicating or efficiently
containing virus replication (50). Experimental studies with
attenuated SIV vaccines indicated that SIV-specific CTLs, if
present in sufficient frequencies, can completely control and even
clear an infection (19). Similar to SIV, HIV infection is sustained
by the activation of CD4+ T cells, which occurs in the form
of transient bursts in the local microenvironment of lymphoid
tissues (51, 52). The proximal activation and transmission
involving latently infected cells represent locally propagating
events (53). Therefore, we applied our calibrated model of spatial
immune cell dynamics in LNs to study the necessary conditions
for effector HIV-specific CTLs to promptly locate HIV-infected

target cells before they can release viral progeny. We consider
only one HIV-infected cell in the computational domain, which
is consistent with the frequency of productively infected CD4+ T
cells of about 0.0001–0.001 (54). Specifically, the newly infected
target cell should be located by the nearby effector cells before it
can release viral progeny, i.e., before completion of the 18–24 h
life cycle of HIV (20).

The overall simulation setup is the same as described in the
model validation subsection above. Randomly chosen cells in
the stochastically generated multicellular system configurations
representing the LN cortex zone were marked as infected in
yellow (see Figure 4A). Both the motile CD4+ T cells and
the non-motile DCs were considered as HIV-infected targets.
In simulations, we varied the frequency of HIV-specific CD8+

T cells and the intrinsic motility of T cells (searching CD8+

T cells, infected- and uninfected CD4+ T cells) (Figure 4A)
to analyze the effect of variations on the target cell detection
time. A 10-fold range of HIV-specific CD8+ T-cell frequencies
typical for HIV infection, i.e., from 0.4 to 5%, was examined.
The intrinsic motility of T cell was varied within 100 and
50% relative to the calibrated baseline parameters of average
T-cell velocity (see details in the Supplementary Text). A
decreased intranodal T-cell motility (of searching CD8+ T
cells, infected- and uninfected CD4+ T cells) is expected to
take place during the chronic stage of an HIV infection when
LN tissues become fibrotic, i.e., when collagen formation in
T-cell zones takes place (55). Then, T cells have to move
through increased collagen deposition with major consequences
for search patterns (56). In addition, CD4+ T-cell migration
is also inhibited by the HIV-1 Nef protein as shown in
chemotaxis assays (57). In our study, the motility of all
considered types of T-cell subsets, i.e., the searching CD8+ T
cells, uninfected CD4+ T cells, and infected CD4+ T cells, is
decreased uniformly.

Figures 4B,C illustrate the model predictions for the decrease
of time to locate HIV-infected target cells with the increase
of HIV-specific CD8+ T-cell frequency. The modeling results
imply that 5% is a sufficient effector CTL frequency for a
timely detection of both types of target cells within 18 h
post-infection, i.e., before the beginning of HIV release from
productively infected cells (20). A stepwise increase by five-
fold of the HIV-specific CTL frequency from 0.04 to 5%
increases the probability of detection of HIV-infected cell within
24 h from 0.07 to 0.34 to 0.84 and to 1, respectively. In
addition, the model shows that infected motile CD4+ T cells
are located faster than non-motile DCs with the probability of
detecting them within 24 h increasing from 0.35 to 0.86 and
to 1 with a CTL frequency rising from 0.04 to 0.2% and to
1%, respectively.

Figure 4D shows the increase of time to locate infected non-
motile DCs for a decrease of the T-cell motility from a basal
level by 10 and 50% considering an HIV-specific CD8+ T-cell
frequency of 1%. If the average T-cell velocity is decreased by
50%, then the probability to locate DCs within 24 h is <0.5.
Figure 4E depicts a similar dynamics for locating motile infected
CD4+ T cells. Note that the motile targets were located within
24 h even with a 50% decrease of the average CD8+ T-cell velocity
in all performed simulations.
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FIGURE 4 | Conditions to locate HIV-infected target cells within a LN before viral release. (A) General scheme of in silico simulations. Time since the HIV-infected

target cell was introduced until it was located by effector HIV-specific CTLs was measured in 24-h simulations. The infected cell was either non-motile DC (B,D) or

motile CD4+ T cell (C,E). In (B,C), the precursor frequency, i.e., the frequency of effector T cells, was varied, from 0.04 to 5%. In (D,E), the effect of decreased

intrinsic motility of T cells was studied. The average T-cell velocity was decreased up to 50%. In all plots, the fraction of cases with location time >24 h is indicated,

thus providing the estimates for probability to locate target cells within 24 h. The time range between the start and the peak HIV release from infected T cells (20) is

shown in pink. It is used to estimate the probability of a virus burst to escape effector CTLs and, thus, to contribute to the spread of HIV-infected cells within a LN. TC,

T cell; DC, dendritic cell.

DISCUSSION

We have developed a biophysics-based computational model
of T-lymphocyte motility that is calibrated using empirical
in vivo data on T-cell migration in LN tissue representing

three spatial metrics of multicellular systems behavior, i.e.,
translational speed, turning angle speeds, and meandering index.
The model provides the tool to quantify the velocity and
the driving force fields in the LN. It enabled us to predict
frequency and motility parameters that are required for a
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timely detection of productively HIV-infected cells within LNs
before they release viral progeny. As such, our study provides
a quantitative guide for an informed design of HIV vaccines.
Furthermore, as the immunological principles of antigen-specific
T-cell activation and immune surveillance imbedded in our
model also apply to other infections and cancers, our findings
may be used to define the general requirements for any efficient
immunotherapeutic intervention against pathogens or cancers
in relation to disease-specific parameters and states of lymphoid
tissue and T cells. Thus, our model has a significant potential to
guide the search for better and more efficient immunotherapies
in the near future.

Other processes, e.g., chemotaxis, haptotaxis, and others,
can influence the efficacy of target cell search by CTL. The
impact of chemotactic migration of T cells toward DCs has
been computationally analyzed using a cellular Potts Model (58),
an agent-based model (59), and a multicompartmental spatially
resolved stochastic model of T-cell circulation (60). The results
suggest that the chemoattraction toward target cells modestly
speeds up the search process for T cells that successfully find
the chemokine-producing DCs. However, a qualitative model
presented in (59) suggested that with even weak chemotaxis,
substantially lower numbers of CTL are required for sterilizing
immunity. Further data-based model-driven research is needed
to clarify the contribution of chemotaxis to T-cell migration
under normal conditions and during inflammation (61).

Phenomenological Ordinary Differential Equation (ODE)
models may also be developed to simulate the interactions
between cell populations in the LN. However, these models are
not suitable for the present study for three reasons. First, data on
T-cell motility in the LN cannot be directly used to calibrate such
models, thereby limiting the validity of their predictions. Second,
the objective of our study, which is the early detection of HIV-
infected T cells and DCs, requires the monitoring of the spatial
density of T cells in the LN rather than the total number of T cells.
Changes in the spatial distribution of T cells in the LN can be
related to spatial mechanisms such as chemotaxis and migration.
Therefore, it is crucial to consider spatial aspects in the model.
Finally, ODE models based on “mass action”- or “predator–
prey”-type parameterizations would require the parameter values
specifying a per capita killing rate of target cells. The respective
parameter can be determined by the mean time needed for a
migrating CTL to locate infected cells. A priori estimates of this
parameter are not available. It is the spatially resolved model-
based simulation that needs to be implemented in order to
quantify the killing rate coefficient of the ODE model.

Moving from phenomenological models of spatiotemporal
dynamics of immune processes (e.g., the compartmental
models, CAMs) to a physics-based description of immune cell
migration in complex multicellular tissue environments presents
a challenge to mathematical immunology. Advances in the direct
visualization of antigen-specific T-cell mobility during their
search for and their interaction with antigen-presenting cells
within LNs set the basis for diverse modeling approaches (7, 10,
11), which have been so far based on ad hoc postulated rules
of cell behaviors. Our study gives a biophysics perspective on
coordinated cell motility in lymphoid tissues, thus extending the

range of modeling tools available for implementing integrative
approaches to the exploration of the immune system.

CPMs have also been applied previously to study intranodal
T-cell migration (58). The CPM framework is a valuable tool
for a phenomenological description of multicellular patterning,
providing realistic simulations of morphological changes for
various cell types. The strength of this approach stems from
its flexible energetic formalism that allows for extensions to
incorporate various biological processes (62). Although the
CPM framework has a richer potential for describing individual
cell dynamics, including the cell shape, this comes at the
expense of (i) a higher-dimensional representation of the cell
configuration (e.g., the number of voxels or pixels), (ii) the
use of phenomenologically rather than biophysically defined
parameters, and (iii) a much higher computational cost to
perform simulations required to explore T-cell search strategies.
Besides, there is no direct correspondence of most of the CPM
parameters with biophysical properties of cells, and the meaning
of some CPM parameters is still under debate (62, 63). Moreover,
CPM temporal kinetics obtained with the modified Metropolis
algorithm does not preserve the detailed balance condition for
the underlying stochastic process. This implies that the exact
relation between forces of cell interactions and energy terms of
CPMs cannot be obtained even for the overdamped dynamics
approximation (62, 63).

Computational modeling of multicellular dynamics in
lymphoid tissues provides a theoretical tool to be used for a
better understanding of the determinants of efficient immune
responses against pathogens with a final aim of an optimal
manipulation of the immune systems performance (2, 15).
Given that the quest for an effective HIV vaccine remains
a global priority (64) and that the localization, migration,
and frequency of CTLs in LNs determine the extent of virus
elimination (17, 19, 36, 56, 65), we sought to use our modeling
approach to define threshold frequencies of CTLs in LNs for
protection against HIV. Since an HIV infection can influence
(i) CD4+ T-cell motility by a direct mechanism involving
the HIV Nef protein and (ii) CTL locomotion via an indirect
mechanism related to the induction of lymphatic tissue fibrosis,
we considered both phenomena to predict the effect of reduction
of T-cell motility. We estimated that the frequency of antigen-
specific CTL should be about 5% to timely detect and completely
eliminate productively infected DCs within 18 h. The time
reduces to 4 h for productively infected CD4+ T cells, which are
motile. For an HIV-specific T-cell frequency of 1%, we computed
that the inhibition of CTL locomotion by two-fold would
reduce the probability of detection of infected target cells within
24 h post-infection from 0.84 to 0.42. Thus, the requirements
for a prophylactic vaccine for seronegative individuals and
an immunotherapeutic intervention of already HIV-infected
individuals may differ significantly and are influenced by the
state of the lymphatic tissue structure.

Understanding the spatiotemporal dynamics of immune cells
globally in the lymphatic system and locally in LNs is considered
to be a prerequisite for the development of novel immune
interventions in the context of HIV cure strategies (15, 56). To
this end, mathematical tools are being increasingly applied to
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predict the impacts of trafficking and motility parameters on
the efficiency of immune surveillance in health and disease. For
example, an optimal surveillance strategy for T cells was analyzed
by compartmental modeling of their systemic recirculation and
LN transit times using a multicompartmental consideration
(66). The protective effect of increased CD4+ T-cell trafficking
on the dynamics of HIV infection has been recently shown
using another compartmental model (67), thus providing a basis
for considering cell trafficking as an adjunct therapy option.
A multiscale model of Mycobacterium tuberculosis infection
including an agent-based description of the cellular movement in
a two-dimensional simulation grid representing the granuloma
was developed and calibrated using non-human primates to
derive the prediction of parameters underlying granuloma
sterilization (8). However, such modeling attempts are still rare.

In conclusion, the large number of existing mathematical
models based on low-resolution descriptions of immune
functions has to be further extended and embedded into
physiologically distinct compartments and 3D morphological
constraints inherent to cells, tissues, and the whole organism.
This will then allow the research community not only to
get a better quantitative understanding of immune system
functioning in infections such as HIV but also enable to
build integrative models for antiviral and immunomodulatory
drugs of various physical and chemical nature as well as the
effects of adoptive cell transfer therapies. We believe that a
comprehensive approach to combination therapies based onART
and immunomodulatory drugs affecting a range of processes,
including LN fibrosis, the exhaustion of CTLs, and T-cell
motility, should rely on formulation and implementation of
hybrid spatially resolvedmultiscale mathematical models of virus
infections (8, 9, 68). The here-developed model offers a broadly

applicable generic mathematical tool for linking individual and
coordinated cell behaviors that can be used for in silico studies
to embed immune processes into their spatial context. The
physics-based computational model of multicellular dynamics
of the immune response in lymphoid tissues provides a solid
module that can be universally used in systems immunology
studies (2, 6) for the benefit of patients suffering from chronic
virus diseases.
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A Corrigendum on

Spatial LymphocyteDynamics in LymphNodes Predicts the Cytotoxic TCell FrequencyNeeded

for HIV Infection Control

by Grebennikov, D., Bouchnita, A., Volpert, V., Bessonov, N., Meyerhans, A., and Bocharov, G. (2019).
Front. Immunol. 10:1213. doi: 10.3389/fimmu.2019.01213

In the original article, there was a typo in Figure 2A color legend as published. The colored circles
denoting Ag-specific and non-specific T cells should be swaped. That is, the dark green color should
represent Ag-specific CD4+ TCs, the light green color—non-specific CD4+ TCs; the dark blue
color should represent Ag-specific CD8+ TCs, the light blue color—non-specific CD8+ TCs. The
corrected Figure 2 appears below.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.
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FIGURE 2 | Heterogeneous dynamics of T cells in LNs. (A) The scheme of a LN and illustration of the initial configuration generated for simulations. DCs, CD4+ T

cells, and CD8+ T cells are placed within a LN as described in the Supplementary Text with total cellularity of 12,469 cells, ≈80% packing density and ≈1% precursor

frequency. (B) Twelve-hour kinetics of median velocities of antigen-specific CD8+ T and CD4+ T cells, and their distributions at the start and at the end of a 12-h

simulation. (C) Twelve-hour kinetics of median distances from T cells to the centroid of DCs, measured for antigen-specific CD8+ T and CD4+ T cells, and their

distributions at the start and at the end of a 12-h simulation. TC, T cell; DC, dendritic cell.
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There are striking similarities between the strategies ant colonies use to forage for food

and immune systems use to search for pathogens. Searchers (ants and cells) use the

appropriate combination of random and directed motion, direct and indirect agent-agent

interactions, and traversal of physical structures to solve search problems in a variety of

environments. An effective immune response requires immune cells to search efficiently

and effectively for diverse types of pathogens in different tissues and organs, just as

different species of ants have evolved diverse search strategies to forage effectively for a

variety of resources in a variety of habitats. Successful T cell search is required to initiate

the adaptive immune response in lymph nodes and to eradicate pathogens at sites of

infection in peripheral tissue. Ant search strategies suggest novel predictions about T cell

search. In both systems, the distribution of targets in time and space determines themost

effective search strategy. We hypothesize that the ability of searchers to sense and adapt

to dynamic targets and environmental conditions enhances search effectiveness through

adjustments to movement and communication patterns. We also suggest that random

motion is a more important component of search strategies than is generally recognized.

The behavior we observe in ants reveals general design principles and constraints that

govern distributed adaptive search in a wide variety of complex systems, particularly the

immune system.

Keywords: T cells, ant foraging, adaptive search, collective search, ant inspired algorithms

INTRODUCTION

T cells are key players in adaptive immunity, required for clearance of virally infected cells and
tumor cells. Improved understanding of how T cells search may lead to more effective T cell
vaccine design and cancer immunotherapies. Many types of immune cells search for pathogens
or other targets, but T cell search is especially challenging because T cells are often responding to
novel pathogens. Ant colonies are another distributed adaptive system in which individual agents
search cooperatively, without centralized control, to find targets in unknown locations in a complex
environment. However, ant colonies are simpler and, in some ways, easier to observe than immune
systems. Here we propose new hypotheses about how T cells search suggested by successful search
strategies in ant colonies.
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T cells search for many kinds of targets, at many scales, and
in many different tissues including lymph nodes, infected tissues
and systemic infection in the whole body. Prior to infection, T
cells migrate through the lymphatic network to search within
lymph nodes for potential activating antigen presented by
dendritic cells (1, 2). If a naive T cell finds a dendritic cell bearing
its cognate antigen in the lymph node, the T cell then proliferates
and migrates out of the lymph node through the cardiovascular
network, extravasating at the site of infection in peripheral tissue,
where activated T cells conduct a second search to find and
eliminate target cells (3).

How do the interactions among T cells, host cells, target
cells, and tissue architecture generate the remarkably rapid
and effective immune response to a wide variety of pathogens
and tumors? Computational and mathematical approaches
have described aspects of immune responses (4, 5) including
the T cell repertoire (6), development of the effector and
memory responses (7–11), and T cell responses to infections
including HIV (12), influenza (13), and anti-tumor responses
(14–16) just to name a few. Mathematical models have been
developed to study how T cell movement through lymph
nodes impacts T cell activation (17–22). However, relatively
few mathematical models have connected individual T cell
movement and interactions during search to the broader
outcomes of immune response to infection, particularly in
complex tissue environments (19, 23, 24).

Foraging strategies in ants suggest a framework for
understanding how collective search strategies emerge from
the behaviors of individual agents (25–27). These questions are
difficult to answer experimentally in immunology, especially
at the scale of an entire organ or body. In ant colonies, we can
simultaneously observe the small-scale behavior of individuals
and the large-scale collective, such as shifts in the allocation
of ants to various tasks (28), territorial interactions between
different colonies, (29–31), and the recruitment of searchers to
discovered food (32–34). Thus, extrapolating understanding
about the search strategies of ants to immune responses can
suggest general design principles that can then be tested in the
immune system.

We use the understanding of ant foraging gained from
experiments and models to provide insight into T cell search
processes. We find that there are significant parallels between
how ants forage for food and how T cells search for pathogens.
First, both T cells and ants combine random movement with
directed movement to produce an effective search strategy
across a wide variety of environmental conditions. Both ants
and T cells search for targets whose positions are unknown,
dispersed, and can be both mobile and ephemeral, thus ants
and T cells need random elements in their strategies to
flexibly adapt to dynamic conditions and varied environments.
Second, ants and T cells both use communication to improve
search efficiency by following chemical signals to the locations
of their targets; additionally, direct agent-agent interaction
may provide a direct form of communication to increase
search efficiency. Third, physical structures, such as nest
and trail structure for ants and the lymphatic network and
the stromal cell network in tissues, provide spatial networks

embedded in the search space that can guide the movement
of searchers.

Studies of ant foraging reveal that effective search strategies
incorporate an appropriate balance of movement that is random,
guided by signals and agent interaction, and mediated by
traversal of physical structures. We focus on how the appropriate
balance depends on two factors. First, the best search strategy
depends on the distribution of targets in time and space. Second,
the best strategy depends on whether the objective of the search
is to be fast (finding targets as quickly as possible) or complete
(finding all available targets), or some combination of the two.
Search strategies from ant foraging suggest specific hypotheses
that can be tested to reveal novel search strategies taken by T
cells in complex tissue environments leading to more efficient
immune responses.

ANT FORAGING AS A MODEL FOR T CELL

SEARCH

Ant colonies are a canonical example of collective intelligence,
demonstrating strategies for effective distributed search in varied
ecological spaces in almost every terrestrial habitat on Earth.
Each of the 14,000 species of ants has evolved in a particular
environment, leading to diversity among species in how they
move, interact with each other and use physical structures as
they forage for food. Ecological and evolutionary studies show
a correspondence between foraging behavior and the dynamics
of the resources that a species uses (34–37). The Lanan review
thoroughly catalogs a remarkable diversity of foraging strategies,
including different forms of movement, recruitment and trail
formation, and shows that different environmental conditions
faced by different species generate predictable regularities in
these foraging strategies.

FIGURE 1 | Target distributions showing a range of clusteredness from a

single pile of 1280 targets to 1280 targets distributed at uniform random. Each

shows the number of piles and the number of targets per pile. The power law

distribution has a mix of pile sizes with the number of piles inversely related to

pile size.
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A key feature that influences search strategy is the distribution
of resources in time and space (36, 38–40). Targets can be patchy,
clustered into one location, or dispersed uniformly at random
through the entire search area. Figure 1 shows examples of spatial
distributions from highly clustered to highly dispersed, as well
as a power law distribution with both clusters and dispersed
targets. Models of ant foraging have demonstrated that the speed
of target collection changes dramatically depending on how
targets are distributed [Figure 2, discussed in section IV, (39, 41)].
For example, when resources are patchy, foragers recruit each
other to the location where resources have been found. One
mechanism for recruitment is chemical pheromone trails that, by
inducing one ant to follow another, generate information about
the location of food (34, 40, 41). By contrast, when resources are
scattered or ephemeral, pheromone recruitment is pointless, and
ants do not guide each other in any particular direction [instead
regulating whether or not to forage at all, (42)].

The objective of the search also plays a role in determining the
most effective search strategy. We highlight two such objectives.
Fast detection weights detection speed of the first targets most
heavily, while for complete detection the goal is to find all of
the targets. Some searches combine these objectives, i.e., finding
all targets as quickly as possible, but in many instances either
speed or completeness is deemphasized. Our computational
models show that the nature of the search problems matters:
successful strategies for complete detection differ from those for
fast detection (43–45).

Ant colonies provide several examples of fast detection. In
foraging by desert seed harvester ants (one of most well-studied
ant groups), the goal is to collect as many resources as possible in
a fixed time window. The foraging window is limited because ants
lose water rapidly while foraging in the hot sun (46), so the search
must be fast. However, seeds remain on the ground and in the soil
for a long time, so it is not important to collect all available seeds
immediately, as they will be available later. Ourmodels, described
below, show that ants that recruit each other to a single pile may
also achieve complete collection of that pile, but when resources
are dispersed among many piles, the ant strategies we model fail
to achieve complete collection, for example taking much longer
to find the last 10% of targets than the first 90% (43).

The stability of targets over time also influences both fast
and complete detection. For example, recruitment of agents to a
particular location is useful only if targets persist long enough in
one place for other searchers to find the targets when they arrive
(34, 40). Consequently, ants that forage for resources that are
both clustered in space and persistent in time evolve strategies
for recruitment, and ants that forage for randomly dispersed
resources do not.

T CELL SEARCH MUST BE FAST, AND

OFTEN MUST BE NEARLY COMPLETE

Our characterization of ant search suggests new ways to interpret
search behaviors of T cells. T cells in the lymph node search for
antigen presented by dendritic cells. To succeed in initiating the
adaptive immune response quickly, this searchmust be fast rather

than complete. Speed is important because pathogen replication
is an exponential process. However, because multiple antigens
can be presented tomultiple T cells, T cells do not need to interact
with every possible DC. Instead, T cell search in the lymph node
needs to detect only enough antigen to initiate activation. This
search problem resembles our models of ants conducting fast, but
not complete, searches for dispersed seeds.

In contrast, for T cell search in the periphery, thoroughness, or
complete detection, is crucial in some cases. T cells must detect
and eliminate virtually all pathogens. In influenza, for example,
successful control requires finding and eliminating all, or nearly
all, influenza virus in the lung. Similarly, in immunotherapy, the
goal is for effector CD8T cells to identify and kill all viable tumor
cells. Our ant models quantify how this complete detection task
becomes easier when targets are clustered in one or a few places
and becomes more challenging when they are dispersed broadly.

Some immunological studies have described target
distributions (10, 47, 48); however, models of the immune
response rarely consider how effective different search strategies
are at finding targets with different spatial distributions. Very
little is known about how long different targets such as pathogens
or tumor cells might persist in specific tissue locations or how
mobile pathogens might be within tissues. Our ant foraging
models suggest that understanding target distribution in tissues
may be an important determinant of effective T cell search and
immune responses.

ANT-INSPIRED HYPOTHESES ABOUT T

CELL SEARCH

Random and Directed Motion Combine to

Produce Effective Search
Ants foraging for food often use a form of random search
called a correlated random walk (CRW) (49–51). In a CRW,
the angle of each successive turn is correlated with that of
the previous one, and movement patterns are straighter and
less convoluted than in Brownian motion. CRWs are more
dispersive than Brownian motion, thus increasing the physical
extent of the search area while decreasing its thoroughness by
minimizing repeated sampling of the same area. In models
designed to maximize the speed at which seeds are detected by
foraging ants, a high degree of correlation among steps (leading
to more straight-line ballistic motion) appears optimal for fast
detection (39, 52, 53).

When the location of targets is known with sufficient
probability, ants can move directly toward the location de-
emphasizing random movements. For example, ants use a
process called site fidelity to return repeatedly to the location
of a previously found a seed (54, 55). Beverly et al. found that
when an ant finds a seed, it returns directly to that location with
over 90% probability. Other species use site fidelity to search for
resources that are clustered, even if those clusters are small or
variable in size. Recruitment through olfactory interactions based
on pheromones is a well-knownmechanism by which ants attract
other ants to locations where food is abundant or persistent.
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FIGURE 2 | The number of targets found in a 1 h simulation given different search strategies and target distributions (shown in Figure 1). For the most clustered

distribution, pheromone recruitment to piles vastly outperforms random search (a CRW). The relative performance of pheromone recruitment compared to random

search declines as targets are more dispersed. Site fidelity performs better than random search but not as well as pheromones in all of the clustered distributions. All

strategies perform approximately equally for targets dispersed uniformly at random (1280 x 1). In the full CPFA, searchers choose whether to use random search, site

fidelity or pheromone recruitment depending on the size of the piles they sense while searching. It is the most effective search strategy across all distributions, and it

most clearly outperforms other strategies given intermediate pile numbers and sizes (e.g., 80 × 16) and the power law distribution which has mixed pile sizes.

The overwhelming complexity of the immune system reflects
the different kinds of problems it is required to solve. For
example, in some cases immune cells must search broadly for
rare targets, and in other cases it must search thoroughly to
find all targets. We used models of random and directed motion
developed for ants to analyze how T cells move, building on
existing studies of T cell motion in tissues. Initial work suggested
that naive T cells in lymph nodes move randomly, and models
of T cell movement assumed Brownian motion of T cells to
estimate how many T cells are required to find DCs (8, 56).
More recently, researchers hypothesized that T cell movement
is characterized by Levy walks, another form of random motion
in which cells move in random direction for multiple time steps
drawn from a power law distribution (57). We demonstrated that
prior to infection, both CD4 and CD8T cell movement in the
lymph node is random, but does not follow idealized Brownian
or Levy movement patterns (58). Instead, our models show
that T cells can disperse more quickly compared to Brownian
motion, leading to more effective search for DC targets in lymph
nodes. Our model predicts that the particular movement pattern
we observe in T cells (a CRW with step lengths drawn from
a lognormal distribution) balances thorough search in a small
region with extensive search in a broader area. We hypothesize
that these ant-like movement types affect how quickly T cells
encounter rare vs. abundant antigen in the lymph node.

T cell motion in infected tissues varies according to the
requirements of the task being performed. It is clear that
migration of effector T cells into infected tissue is signal

dependent and directional toward areas of inflammation,
including in skin (24), brain (57), lung (59), vaginal tract, and gut
(3). However, some studies suggest that once T-cells reach skin
tissue their movement within the tissue is not highly directional
toward the foci of infection (24). Our work found that effector
T cells in inflamed lung also move in a CRW, similar to naive T
cells in lymph node, suggesting random motion. In the lung, the
T cell CRW is combined with a stop-and-gomode of intermittent
motion, which enables effector T cells to search a larger area while
also interacting with potential target cells (60). In contrast to cells
in the lung, Harris et al. found that effector T cells in the brain of
Toxoplasma infected animals move with a Generalized Levy walk
(57). And, there is no evidence in brain or lung tissue that effector
T cells move directionally toward sites of infection. Ant search
models suggest one hypothesis to explain the lack of directional
movement: if sites of infection are usually dispersed in space, for
example, in tissues, T cells may have evolved search strategies to
explore broadly for new sites of infection rather than focusing on
exploiting already detected foci of infection.

Physical Structures for Effective Search
Networks provide physical structures that can increase search
efficiency, minimizing the distance traveled to explore large
spaces. Ants use environmental structures to extend their search.
For example, turtle ants create trail networks within the network
of vines and branches in the canopy of the tropical forest (26, 27).
In some ant species, ants search along edges such as cracks in
sidewalks and search from thesemain trails (61), apparently using
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environmental structures to explore the environment but not
necessarily moving directly toward food sources. We suggest that
one role of structural networks is to enhance the scalability of
search to larger physical spaces.

Recent work imaging T cells in intact tissues suggests that
T cells may also use structural networks to mediate motion.
At the organism scale, cardiovascular and lymphatic networks
disperse immune cells throughout all tissues to enhance response
to infection anywhere in the animal. Effector cells in skin were
shown to move along collagen fibers (62), and effector T cells in
inflamed lung move along vasculature (60). Within the lymph
node, T cells use fibroblastic reticular cells (FRC) as guidance
cues (63, 64). The FRC network in the lymph node has the
topological structure of a small world network, which likely
enhances the robustness of T cell responses to damage to the
network (65, 66). Small world networks with many local and a
few long-distance connections significantly increase scalability,
cohesion, and efficiency of exploration via the network (67).

T cell movement along tissue structures resembles that of
ants traveling along branches. T cell movement along structures
such as collagen, vasculature, and FRCs does not obviously lead
to targets (64). There is also no evidence that effector T cells
in lung and skin, where directional motion is important, use
structural guidance to travel toward targets. Instead of providing
directional guidance toward targets, we suggest that movement
along networks may instead enhance scalability and maximize
exploration of large spaces.

Distributed Communication: Soluble

Signals and Direct Agent Contact
A striking similarity between ant colonies and immune systems
is the use of chemical signals for communication. It is well-
established that both systems use chemical cues to signal the
presence of danger: alarm pheromone in the case of ants,
cytokines in the case of immune systems. Both systems also
use chemical signals to recruit other agents to search more
effectively: immune cells can follow chemokine gradients to sites
of infection, much like ants can follow pheromone trails to food.

Ants use pheromones to create dynamic maps. They do so by
laying pheromone trails from locations with abundant food back
to the nest, a form of communication through the environment,
known as stigmergy (68). Such pheromone trails encourage
other ants to travel directly to the food source, reinforcing the
trail if they find food successfully. Once the food is depleted,
the ants stop reinforcing the pheromone trail, and over time
it dissipates and ceases to attract new ants to that location.
This process is well-studied both experimentally in laboratory
and field studies of various ant species, and in mathematical
and computational models [as reviewed in (69)]. It is also the
basis of a popular computational problem-solving heuristic called
Ant Colony Optimization (70). These studies reveal the benefits
and limits of pheromone communication in search problems,
providing a roadmap for immunologists to understand how
chemokines influence search.

A variety of chemical signals guide movement of immune
cells, particularly to sites of infection. For example, chemokines

provide migration and localization signals to dendritic cells,
neutrophils, monocytes, T cells, and B cells. Other chemical
cues including metabolic intermediates may also play a role.
While it is clear that chemokines lead leukocytes to sites of
infection, chemokines appear to have different effects on T cells.
For example, neutrophils use the chemokine LTB4 as a signal
to move directly toward a site of sterile injury (71). In contrast,
the effect of chemokines on T cell movement seems to be less
directional than LTB4 effects on neutrophils. In lymph nodes,
T cells respond to the chemokines CCL21 and CCL19 by high
speed random motion (chemokinesis) rather than directional
movement (chemotaxis) (21, 58, 72, 73). Within infected tissue,
chemokines appear to increase T cell speed (57, 60) but with
only a slight bias toward infection foci (24). Interestingly, we
found that the pattern of T cell movement in the lung, at least
when infection is not present, does not appear to change when
chemokine receptor signaling is inhibited (60).

In social insects, direct agent-agent interaction is an easy
and effective way to transmit information. Ants use interaction
networks to regulate behavior. Each ant can respond to the rate
at which it experiences brief antennal contacts, in which one ant
smells the other (74), and rates of brief olfactory interactions
influence ant behavior (75). For example, we showed that in an
active forager population, the rate of encounter with returning
ants determines the probability that an outgoing forager leaves
the nest to forage (76, 77). This feedback, based on direct
ant-ant interaction, matches current foraging activity to the
availability of seeds. Another example is ant-ant interaction
leading to regulation of density. It seems that an ant can adjust
its movement pattern in response to encountering another ant
(78). We found that this change in motion regulates the density
of ants in a specific area, enabling ants to spread out if they
are too crowded. Rate sensing in ants through direct ant-ant
communication provides an additional level of regulation to
enhance foraging success. Similarly, direct bee-bee interaction
has also been demonstrated to downregulate recruitment to less
preferred food locations (79, 80).

It is currently not known whether T cells searching for
pathogen infected cells use direct T cell-T cell contact as a
mechanism to detect cell density or signal target location.
Heterologous cell contacts in the immune response are clearly
important, for example, direct contact between T cells and DCs,
and T cell-B cell interactions are crucial for an immune response.
However, a potential role for homologous cell-cell contact such
as T cell-T cell interaction has not been carefully investigated.
T cell-T cell interactions have been shown to be important for
downregulation of the T cell response through fratricide: Fas-
FasL interactions between effector T cells can lead to fratricidal
T cell killing, effectively downregulating the T cell response as
antigen load decreases (81). Direct T cell-T cell interactions were
recently shown to be important in the first phases of T cell
activation (82). In the context of T cell response in tissues, little is
known about whether T cell—T cell interaction might impact T
cell movement.

Thus, although T cells are capable of generating and
responding to indirect communication via chemokines and
cytokines and direct cell-cell contact with other T cells, it is
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unclear what the role of direct and indirect communication
is in effector T cell search for infected cells (or tumors) in
peripheral tissue. Our understanding of search in ants suggests
that T cells might use both chemokine-cytokine communication
as well as direct cell-cell communication to lead T cells to
sites of infection, while also balancing this exploitation of
known infection locations with exploration to find new sites
of infection.

Effective Search in Unknown Environments

Requires Complex Search Strategies
We illustrate how ant search strategies may vary with the spatial
location of resources with a computational model, comparing
four foraging strategies in ants (Figure 2): (1) CRW alone
(CRW-pink), (2) CRW combined with pheromone recruitment
to previously found clusters (pheromone-orange), (3) CRW
combined with site fidelity (each individual forager returns
to the cluster that it previously found)(site fidelity-blue), and
(4) an adaptive strategy known as the Central Place Foraging
Algorithm, CPFA, (43) (CPFA-green). CPFA incorporates CRW,
site fidelity, pheromone recruitment and the ability to choose
among these behaviors based on the density of targets that
the searcher senses in the locations immediately adjacent to
the searcher.

The CPFA and the foragingmodel are described inmore detail
in Hecker and Moses (39). The model represents ants as points
that move through space (without collisions and able to detect
targets only in the cell in which it is located in and those directly
adjacent), and seeds are represented as as points in a grid cell.
All ants start at a central nest location, search using the specified
strategy for 1 h, and each ant returns each individual seed that
it finds directly to the nest (which is at a location known by
every ant), carrying one seed at a time. The model uses unitless
representations of velocity and length, and the size of the search
area was chosen so that complete collection of all seeds is possible
in the 1-pile case (Figure 2, column 1).

Figure 2 shows the percentage of the 1,280 seeds that are
collected for each spatial distribution. Each search strategy is
tested on each of the spatial distributions shown in Figure 1.
Figure 2 shows the search performance of simulated ants using
different strategies to search for different target distributions.
The box plots show the median and interquartile range of 100
replicates for each target distribution, with the seeds placed at
random locations drawn from the specified distribution. Where
notches in the box plot overlap, the results are statistically
indistinguishable (as is the case for pheromone and CPFA in the
1 pile case and randomly dispersed case; all other comparisons
are statistically different at the p = 0.05 level). As the spatial
distribution of targets varies from being concentrated in a single
cluster (Figure 1, 1 × 1280) to being more dispersed (Figure 1,
1280 × 1), pheromones become less valuable (compare Figure 2
“pheromone” vs. “CRW” from 1 × 1280 to 1280 × 1). When
targets are dispersed at uniform random (1280× 1), pheromones
provide no benefit to foraging at all (and are actually detrimental
as they attract ants to locations where a target once was but has
been removed). Site fidelity is consistently more effective than

random search alone unless resources are completely dispersed,
in which case random search is the best strategy.

In the CPFA, searchers decide whether to use random search,
site fidelity or pheromone recruitment to a location based on how
many targets are there. In highly clustered situations, the CPFA
and pheromone are similar in target identification efficiency (1
× 1280), because the CPFA selects a search strategy that relies
almost entirely on pheromone search (39). However, the ability
of agents to assess and adapt to the environment and choose the
appropriate foraging strategy in the CPFA is particularly effective
when resources are clustered in many intermediate size piles (16
× 80 or 80× 16) or in piles with variable sizes such as the power
law (compare pheromone and CPFA efficiency).

This searchmodel supports the hypothesis that observed types
of directed and randommotion in searchers reflect differences in
how targets are distributed in different environments. The results
in Figure 2 show how different search strategies perform in a fast
detection task when searching for static targets. The CPFA has
been shown to be effective at collecting up to ∼90% of static
targets, but ineffective at complete collection (43), particularly
when targets are dispersed. Although efficient strategies for
complete search or search for mobile or replicating targets may
be different (39, 52, 53), our model demonstrates that effective
searchers require both a variety of search behaviors and the ability
to sense the environment to determine which type of search
behavior is best to use in a given time and place.

CONCLUSIONS FOR T CELL SEARCH

Each ant species is tailored to the particular habitat in which
it evolved, but T cells search in wide variety of tissues for a
wide variety of targets. T cells demonstrate a variety of search
behaviors, including directional movement using chemokine
gradients, random motion using CRW, and movement along
physical networks. As T cells do not know a priori about
target distribution and require the capacity to counter unknown
future threats, this adaptation and scalability for search in
multiple tissues may be particularly important for maintaining
effective immunity. Very little is currently known about how
effector or memory T cell subsets move in infected tissue. Our
observations and models of ants suggest the possibility that
effector T cells move directionally toward infected areas in
some circumstances (possibly following chemokine gradients,
or more speculatively, responding to direct cell-cell contact)
and move randomly in others, e.g., to search larger areas when
infection has spread broadly or during the memory phase. We
hypothesize that different classes of T cells (e.g., central memory
cells, tissue resident memory cells and effector cells) have evolved
different patterns of movement and responses to external signals
and structures, varying with different search goals and target
distributions in space and time.

In contrast to T cells moving randomly in tissues, neutrophils
appear to move in a highly directed manner toward sites of
infection (71). Neutrophils are rapidly recruited to sites of
infection, so there is high fidelity between the actual location
of infection and the signals, such as chemokines and cytokines,
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that are produced at sites of infection. Neutrophils moving
directionally to foci of infection could be exploiting the close link
between timing and spatial distribution early in an infection. The
T cell response, on the other hand, develops over many days, with
T cells often entering sites of infection 3–5 days post infection.
Spatial distribution of the pathogen and related signals may no
longer be spatially contained, as earlier in the infection cycle.
We suggest that different immune cells (for example, T cells and
neutrophils) respond differently to chemokine signals to promote
effective immunity at different phases of the immune response
with potentially different target distributions.

Understanding the parallels between search strategies in ants
and T cells helps illuminate one of the central themes in
immunology: how the enormously complex system of trillions
of cells, signals, and structures are self-organized into a coherent
immune response. As ants and ant search strategies have been
studied in detail both experimentally and computationally, we
have identified key concepts from ant foraging that suggest new
concepts for understanding T cell search to clear infection. Like
ants, T cells incorporate many strategies, including directional
and random movement, direct agent-agent contact, and use of
physical structures. Our proposal is similar to the “No Free
Lunch” theorems (83), which posit that there is no single best
search or optimization strategy for all computational problems,
but that specific solutions can be tailored to specific types of
search problems. We posit that there is no one best search
strategy that can be used for all search problems in the immune
system; instead searchers change how they move and interact
with each other and the physical environment in response to
specific search problems in specific environments.

Ant foraging strategies have served as inspiration for search
heuristics in computer science (70) and as a model of search
in a wide variety of complex adaptive systems (39, 84, 85).
As we review here, there is increasing evidence that there is
no single effective ant search strategy, but rather a repertoire
of search behaviors that includes varied ways of moving,
communicating, and using environmental structures to form an
effective response to environmental conditions. Understanding

the multiple components of effective ant search, and how they
are combined into different strategies to respond to varied and
dynamic environments can translate to new approaches for
understanding the even more complex search processes of the
immune system.
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Experimental and computational studies have revealed that T-cell cross-reactivity is a

widespread phenomenon that can either be advantageous or detrimental to the host.

In particular, detrimental effects can occur whenever the clonal dominance of memory

cells is not justified by their infection-clearing capacity. Using an agent-based model

of the immune system, we recently predicted the “memory anti-naïve” phenomenon,

which occurs when the secondary challenge is similar but not identical to the primary

stimulation. In this case, the pre-existingmemory cells formed during the primary infection

may be rapidly deployed in spite of their low affinity and can actually prevent a potentially

higher affinity naïve response from emerging, resulting in impaired viral clearance. This

finding allowed us to propose a mechanistic explanation for the concept of “antigenic

sin” originally described in the context of the humoral response. However, the fact

that antigenic sin is a relatively rare occurrence suggests the existence of evolutionary

mechanisms that can mitigate the effect of the memory anti-naïve phenomenon. In

this study we use computer modeling to further elucidate clonal dominance and the

memory anti-naïve phenomenon, and to investigate a possible mitigating factor called

attrition. Attrition has been described in the experimental and computational literature

as a combination of competition for space and apoptosis of lymphocytes via type-I

interferon in the early stages of a viral infection. This study systematically explores

the relationship between clonal dominance and the mechanism of attrition. Our results

suggest that attrition can indeed mitigate the memory anti-naïve effect by enabling the

emergence of a diverse, higher affinity naïve response against the secondary challenge.

In conclusion, modeling attrition allows us to shed light on the nature of clonal interaction

and dominance.

Keywords: computer modeling, IMMSIM, memory-anti-naïve, attrition, CD8+ response

INTRODUCTION

Immunological memory, which appeared in the adaptive immune system roughly 600
million years ago, resulted in a substantial evolutionary advantage for vertebrates, whose
immune systems acquired the ability to “remember” infectious agents and rapidly
deploy effector cells in subsequent encounters with the same microorganisms or viruses.
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However, the tendency of many infectious agents to mutate can
reduce the efficacy of memory cells, whose affinity for mutated
antigens can drastically decrease. Therefore, between the two
extremes of the homologous challenge (with identical primary
and secondary infections) and independent primary responses
against two unrelated infectious agents, there exists a wide
range of responses where the host has partial immunity against
the new infection. Interestingly, partial immunity can exist not
only between different strains of the same microorganism or
virus, but also between apparently unrelated viruses, as shown
by the pioneering work of Selin and Welsh in the field called
heterologous immunity (1).

Cross-reactive immune responses against different viruses
are believed to be ubiquitous, and can have beneficial, neutral,
or detrimental effects for the host, in ways that are not
easy to predict. Detrimental effects of partial immunity were
described by Fazekas de St. Groth in 1966, when highest
lethality rates were found among patients with a history
of past encounters with far cross-reactive infectious agents.
This phenomenon was studied in the humoral branch of the
adaptive immune system and was labeled “original antigenic
sin” (2). When cross-reactivity is too weak to cure the
infection, the thwarting of naïve responses by memory is still
blocking the development of the primary response, adding
failure to failure: failure to cure and failing blocking the
default defense.

The patterns of viral mutations and cross-reactive
interactions are difficult to trace and define in vivo, making
computational modeling highly beneficial. In a previous study
we systematically studied the effect of a stepwise increase
of the distance between two antigens subsequently injected
in an in silico model (3). Unexpectedly, we identified an
intermediate range of priming-challenge antigenic distances
where memory is unable to mount an efficient defense, but
it still outcompetes the primary response. Further in silico
experimentation corroborated our first studies proving that
the mechanism of memory anti-naïve (MaN) is fueled by
the specific competition for antigen (4). Competition for
antigen plays a key role in allowing high affinity clones to
emerge in an immune response. However, memory has a
faster dynamic than a primary response. In the early phases
of an infection—while the primary response is still not ready
to engage—the quantity of available antigen is growing but
still limited. Thus, low affinity memory cells can potentially
outcompete naïve cells, resulting in an immune response of
lower quality.

Recently, Welsh et al. described a mitigating phenomenon
named attrition, which is triggered by competition for space
among clones of immunocytes at the time of antigen contact in
a lymph node (5). Attrition is driven by short-distance effect of
IFN-β that induces apoptosis on cytotoxic T-cells (Tc) by contact.
The net effect is to reduce the growing lymphoid Tc population,
and thus to favor the fittest cell lines in terms of affinity against
the invader. The present in silico study is focused on modeling
the mechanism of attrition and measuring its effects on the speed
and on the affinity of the secondary response while systematically
varying the degree of cross-reactivity.

BACKGROUND

Nature and Role of Computational Models
The biology of the immune response has been studied intensively
in the few decades before and after the turn of the century and we
witnessed an extraordinary growth in the number of researchers
worldwide. As a result, we witnessed an exponential increase in
the data being generated, resulting in the need for computational
models to help make sense of it.

Computational modeling of the immune system experienced
a strong burst in the 1980s, when several interdisciplinary
collaborations brought together immunologists and
mathematicians of various shades. These collaborations
were fostered by two breakthrough events in the theoretical
immunology community that had been engaged in adaptive
immunology for some decades: the first solved the genetic
problem of immune diversity (6); the second explained the
formation of synapses between lymphocytes, allowing cell
cooperation in most actions of the immune system (7). These
achievements increased the size and the complexity of the field.
At the same time, they created space for computational modeling.

Agent-based modeling is a relatively novel paradigm of
modeling that satisfies the requirements of simplicity and
parsimony in the description of a phenomenon by emphasizing
first principles. It is a general modeling paradigm for complex
systems inspired by von Neumann’s “cellular automata” (8).
Agent-based models consist of discrete dimensional space and
time scales, where agents are, in our case, the relevant cells
(or molecules) equipped with virtual receptors and capabilities,
which reflect experimental observations.

The computational model C-IMMSIM, as well as the
pioneering IMMSIM (9, 10), has been conceived to allow the
dynamic representation of hypotheses and their preliminary in
silico testing. These may further elicit ideas and new hypotheses
to be eventually tested in vivo. In several applications over recent
years, the model has generated emergent, sometimes surprising,
data that shed light on the mechanisms and interactions of
the model itself and on their counterparts in the biological
immune system. For example, during the simulation of the
affinity maturation of the humoral response, the varying density
of cells and availability of antigen were shown to cause the
shift from the bottleneck of the primary response, obtaining the
help of CD4+ cells, to the secondary bottleneck, winning the
competition for antigen (11).

The model offers the possibility to manipulate the elements
of virtual runs like experimental biologists do, by using the
computational equivalent of knock-out mice or cell transfer (4,
12). Stratagems of this kind were applied in parallel experiments
comparing the response of the humoral branch only, the cellular
branch only, and both branches, to relate the efficiency of
responses to different viral features (13). In a study about cross-
reactive memory, the silencing of one or the other of two

suspected kinds of attrition, active or passive, revealed interesting
cooperative effects of the combined mechanisms (1). In another

study, selective “freezing” of humoral cross-reactive responses

was obtained by increasing the bit distance in epitopes but not
in peptides, while the antibody lifetime was artificially shortened
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or extended over a 50-fold range in order to reveal antibody-
mediated competition against cellular responses (3).

MATERIALS AND METHODS

The Computational Model
Polyclonality
In the present computational model, the specific recognition
in adaptive immunity is simulated by borrowing ideas from
binary calculus (14). Epitopes and paratopes are represented by
strings of zeros and ones. When an epitope meets a paratope
the strings are checked for complementarity at each position
and a match (or equivalently a mismatch) is scored. Thus, the
match is a number between 0 and N where N is the length
of the binary strings representing the two binding regions. The
model is polyclonal since it equips cells and molecules (e.g.,
lymphocytes receptors, B-cell receptors, T-cell receptors, Major
Histocompatibility Complexes (MHC), antigen peptides and
epitopes, immuno-complexes, etc.) with specific bit strings to
represent the “binding site.”

This minimalistic definition allows a diversity of 2N for each
immunocyte (CD4+ or Th, CD8+ or TC, B). Such a setup
can model cross-reactivity with remarkable smoothness, and
accuracy in predicting the effect of competition among cross
reactive cells.

Binding Affinity
In vivo, the paratope-epitope attraction is the sum of weak
electrostatic and hydrophobic interactions when juxtaposed. In
the simulation, two entities interact with a probability that is a
function of the Hamming distance between the binary strings
representing the entities’ binding site. We indicate with m =
∥

∥r, p
∥

∥ ∈ {0 . . .N} the distance or the match between r, p ∈

{0 . . . 2N − 1}. A good and widely used analogy is the matching
between a lock and its key. If more than a threshold value mc

over N bits matches (i.e., 0–1 or 1–0) occur, the interaction
is allowed with a certain probability that is a function of the
number of matches between the bit-strings. This attraction force
(called affinity or affinity potential) is equal to one when all
corresponding bits are complementary. Specifically, ifm =

∥

∥r, p
∥

∥

is the Hamming distance between the two strings r and p, the
affinity potential f (m) ∈ [0, 1] defined in the range 0, ...,N is

f (m) = f
(∥

∥r, p
∥

∥

)

=

{

elog(AL)
m−N
mc−N mc ≤ m ≤ N

0 m < mc
(1)

where AL is a free parameter which determines the slope of the
function, whereas mc ∈ {N/2 . . .N} is the cut-off (or threshold)
value below which no binding is allowed.

Humoral and Cellular Responses
The model simulates a very simple form of innate immunity and
an elaborate form of adaptive immunity (including both humoral
and cytotoxic immune responses).

In the case of innate immune response by “exogenous signal”
(e.g., Pathogen-Associated Molecular Pattern, PAMP or PAMP-
agonist, used for specific adjuvants) the activation sequence

will begin with antigen presenting cells stimulation. The only
mechanisms of this kind which is embedded in the model
accounts for the presence of lipopolysaccharides in pathogens as
in Gram-negative bacteria.

Working Assumptions
In the model, a single human lymph node (or a portion of it) is
mapped onto a three-dimensional Cartesian lattice. The primary
lymphoid organs thymus and bone marrow are modeled apart:
the thymus (15, 16) is implicitly represented by the positive
and negative selection of immature thymocytes before they
enter the lymphatic system, while the bone marrow generates
already mature B lymphocytes. Hence, only immunocompetent
lymphocytes are modeled on the lattice.

The C-IMMSIM model incorporates several working
assumptions or theories, most of which are regarded as
established immunological mechanisms, including: (i) the
clonal selection theory of Burnet (17); (ii) the clonal deletion
theory (i.e., thymus education of T lymphocytes) (18); (iii) the
hypermutation of antibodies (19); (iv) the replicative senescence
of T-cells, or the Hayflick limit (i.e., a limit on the number of
cell divisions) (20); (v) T-cell anergy (21) and Ag-dose induced
tolerance in B-cells (22); (vi) the danger theory (23); (vii) the
idiotypic network theory (24). Variations on the basic model
have been used to simulate different phenomena ranging from
viral infection [e.g., Human Immunodeficiency Virus (25) or
Epstein-Barr Virus (26)] to cancer immunoprevention and type
I hypersensitivity (27, 28).

Each time step of the simulation corresponds to 8 h.
The interactions among the cells determine their functional
behavior. Interactions are coded as probabilistic rules defining
the transition of each cell entity from one state to another.
Each interaction requires cell entities to be in a specific state
choosing from a set of possible states (e.g., naïve, active, resting,
duplicating) that is dependent on the cell type. Once this
condition is fulfilled, the interaction probability is the effective
level of binding between ligand and receptor.

Unlike many other immunological models, the present
one not only simulates the cellular level of the inter-cellular
interactions but also the intra-cellular processes of antigen uptake
and presentation. Both the cytosolic and endocytic pathways are
modeled. In the model, endogenous antigen is fragmented and
combined with MHC class I molecules for presentation on the
cell surface to CTLs’ receptors, whereas the exogenous antigen
is degraded into smaller parts (i.e., peptides), which are then
bound to MHC class II molecules for presentation to the T
helpers’ receptors.

Stochasticity
The stochastic execution of the algorithmic rules, as in a Monte
Carlo method, produces a logical causal/effect sequence of
events culminating in the immune response and development
of immunological memory. The starting point of this series of
events is the injection of antigen (the priming). This may take
place any time after the simulation starts. In general, the system
is designed to maintain a steady state of the global population of
cells if no infection is applied (homeostasis). Initially the system
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is “naïve” in the sense that there are neither T and B memory
cells nor plasma cells and antibodies. The various steps of the
simulated immune response depend onwhat is injected, i.e., virus
or bacteria.

The Virus
Virus is the “foreign agent” in the model. It is constructed with
B-cell epitopes and T-cell peptides. In addition, it replicates,
simulating a living entity, and the combination of three factors
(speed of duplication, infectivity, and lethal load level) results in
its “fitness” which is independent of antigenicity. Any infection
begins with the penetration of virus into an epithelial cell, though
this could be any designated target cell. Whether the infection
is cured or becomes persistent or even kills the virtual mouse
depends on the virus dose, its fitness, and the strength of the
immune response it has elicited. All these variables determine
whether—and to what degree—the immune system’s success
requires the cooperation of both the cellular and humoral branch,
as has been shown in several simulation studies (13).

Modeling Active Attrition
Active attrition is enacted in the present version of the model by
describing the release of IFN-β by macrophages in the presence
of high concentrations of danger signals, e.g., in infection sites.
This lymphokine diffuses locally and then “causes” the death
of cytotoxic memory T-cells by contact. The locally-limited
bystander effect of this cytokine is set to be dependent on the
cell’s age but also on its affinity to the viral peptide. Specifically,
the death of cytotoxic cells is modeled as a stochastic event
whose probability is proportional to the cell’s age and inversely
proportional to the affinity between TCR and the peptide
attached to class 1 HLA (1, 5) of infected cells, i.e.,

Pr
[

die
]

=
an1

an1 + k1
×

in2

in2 + k2
×

(

1− f
)

(2)

where a is the age of the T-cell (in units of days), f the affinity
of its TCR to the viral peptide as defined in Equation (1) and i is
the local concentration of IFN-β (in pg/ml). In the experimental
setup that we are going to describe in the following section, the
parameters of Equation (2) have been chosen as follows: k1 =

106 × days−1 and k2 = 109 × (pg/ml)−1 were taken to obtain
a probability of killing which was much stronger for memory
compared to naïve cells; parameter n1 = 3 > n2 = 2 were
chosen to make age the limiting factor in the killing. The last
term in Equation (2),

(

1− f
)

∈ [0, 1], stands for a protective
factor for cells able to establish a stronger immunological synapse
during peptide recognition on themembrane of infected cells and
f therefore is the same function in Equation (1).

Experimental Setup
The model represents both paratopes and epitopes by N =

16 bit binary strings. A successful paratope-epitope interaction
is limited to a match m greater than or equal to the cut off
mc = 13 over the 16 allowed. This setup results in a diversity
of 216 for each lymphocyte and gives N − mc = 4 matching
classes thus allowing to model the immune recognition and
predicting the effect of competition among cross-reactive cells

with reasonable accuracy. In vivo, the diversity among epitopes
and that among paratope are mind boggling (conservatively, 1010

to 1012). Simulating those numbers, though theoretically possible
by enlarging the repertoires which is obtained by elongating the
strings, is practically not viable for computational reasons.

The Antigenic Distance Experiments
In studying memory, it is important to quantify the degree
of cross-reactivity between related antigens. While in vivo this
appraisal is difficult to attain, the following modeling setup
allows us to measure the effect of cross-reactivity on a secondary
immune response quite effectively.

The series of simulations we performmimic a prime/challenge
experiment in a virtual mouse (or individual) where successive
injections carry equal or different antigenic determinants (see
Supplementary Figure 2). The priming infection is performed
always with the same virus, but the challenge or secondary
infection performed later is done with a different virus whose
peptide is at a defined distance d from the priming one. We use
N/2 = 8 bits to represent a virus peptide thus we have d = 0 . . . 8
levels of cross-reaction by suitably choosing the prime/challenge
couple. Viral peptides are presented to T-cell receptors bound
to the major histocompatibility complex molecule (MHC) and
indeed in the model the match is an N-bit match. However, for
simplicity, the contribution to the affinity given by the portion of
the cell receptor binding the portion of the MHC molecule is set
to a constant value so not to influence the overall match to the
virus. In other words, the affinity between receptors and MHC-
bearing virus peptides depends only on a N/2 = 8 bit match
rather than an N bit match.

Let’s call VI the virus injected first (i.e., the primer at time tI),
VII the virus injected subsequently (the challenger at time tII) and
d the “bit distance” between VI and VII , that is, d =

∥

∥VI ,VII
∥

∥.
The experiments realize the protocol consisting in a priming
injection that is always performed with the same virus VI = V0

and a challenge injection consisting of a certain saturating dose
of one of the nine viruses reported in Table 1 which also includes
V0. Therefore VII = Vk for k = 0 . . . 8. Note that the set of
chosen viral peptides is such that d =

∥

∥Vi,Vj

∥

∥ =
∣

∣i− j
∣

∣, for
all choices of i, j ∈ {0 . . . 8}. Following this description, it is
convenient to name the experiments on the basis of the distance
between priming with V0 and challenge with Vk. For instance,
we call d = 3 the experiment in which VI = V0 and VII =

V3 because d =
∥

∥VI,VII
∥

∥ = ‖V0,V3‖ = 3. While d = 0
realizes the homologous response, and can indeed be considered
the control, d = 1 to d = 6 represent cases of cross-reactivity,
with progressively fewer matches. Finally, d = 7 and d = 8 are
heterologous responses (i.e., nomatch at all).We note that all viral
peptides are chosen to be distant with respect to self-peptides,
to avoid having to deal with autoimmune responses, which are
outside the scope of this work.

The simulated space is equivalent to a fraction of the
lymphatic system represented at once. This simulated volume
is 10 micro liters or, equivalently, 10 cubic millimeters. Both
priming and challenge consist in injecting a saturating viral
dosage of 103 viral particles per microliter. For all experiments,
the setup is identical except for the two viruses injected, VI and
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TABLE 1 | Viruses used in the experiments are numbered from zero to eight.

Vk Peptide strings(pk)

V0 0000 0000

V1 0000 0001

V2 0000 0011

V3 0000 0111

V4 0000 1111

V5 0001 1111

V6 0011 1111

V7 0111 1111

V8 1111 1111

The injection protocol comprises two viruses V I and V II presented one after the other

at time steps separated by a time sufficient to fully develop an immune response. The

Hamming distance between the two viruses injected determines the level of cross-

reactivity hence the degree of exploitation of the immune memory to V I in the response

to V II. Viruses to are equipped with a peptide string of length N such that d =
∥

∥V I,V II
∥

∥ ǫ{0 . . . 8}. In the antigenic distance experimental protocol V I is always equal to V0.

VII . Thus, the simulated space is populated with the same initial
number of cells (i.e., no variability allowed), the viruses share the
same infectivity and replication rates, etc. Moreover, since the
model is stochastic, for each setup d ∈ {0 . . . 8}, we repeat the
experiments 100 times for each protocol and calculate statistics
(averages and standard deviations) afterwards.

Useful Definitions
With the aim of defining two quantities which help in
measuring the effect of cross-reactivity, we now need to introduce
some formalism.

We call diversity D the set of possible bit strings of length N
in the base-ten system, that is, D = {0...2N/2 − 1}. We indicate
by nr(t) the number of cytotoxic T-cells with specificity r ∈ D
at time t. For each virus V the Hamming distance creates the
equivalent classes in the set of cell receptors D. In other words,
two receptors r1 and r2 are in the same matching class for V if
‖r1,V‖ = ‖r2,V‖ = m. We can therefore define qm(t) as the
total number of cells matching the virus V with m bits, that is,
∀m ∈ {0 . . . N}

qm (t) =
∑

r∈D,‖r,V‖=m

nr (t).

Then we call Am(t) the affinity of the response to the peptide
of virus V relative to the matching class m ∈ {0...N}, that
is, all the lymphocytes that are equivalent in terms of affinity.
This quantity is calculated by summing the number of cells with
receptor matching with m bits the virus peptide and multiplied
by the affinity value f (m), that is, ∀m ∈ {0 . . . N}

Am (t) = f (m) · qm(t). (3)

Finally, we define the total affinity to virus V as

TA (t) =

N
∑

m=0

Am (t). (4)

Note that since we are interested in quantifying the effects
of cross-reactivity on the secondary immune response, all the
quantities qm(t), Am(t) and TA(t) should be considered relative
to VII and be written, for instance, AII

m. However, to simplify
the representation we just avoid using the superscripts and write
Am, etc.

Furthermore, we call VII (t) the number of viral particles at
time t of the challenge virus and define

tc = min
t

{

t ≥ tII :V
II (t) = 0

}

− tII

the time-to-clear the virus VII , that is, a measure of how quickly
the response eradicates the virus injected at time tII.

We can now finally define two almost complementary
measures. The first one is the efficacy of the immune response
to the second virus injected VII. The efficacy E

(

d
)

is a function
of the distance

d =
∥

∥V0,V
II
∥

∥

to the first injected virus VI = V0 and is defined as the peak
value of TA (t) for t ≥ tII divided by the time-to-clear the virus
tc. In formula

E
(

d
)

=
1

tc
·max
t≥tII

{TA (t)} . (5)

The efficacy measures how good the immune response to VII is
in terms of how many cytotoxic T-cells are developed by clone
expansion and how quickly the virus is eliminated. Clearly the
maximum value of the efficacy is achieved for d = 0 because
of the immune memory developed to respond to VI = V0,
but decreases for increased distance d between prime V0 and
challenge injection VII .

The maximum value attained by the sum of all Tc counts qm(t)
for m = 0 . . .N averaged over a number of simulations (〈·〉

indicates averages) can be designated as

〈

M̃
〉

=

〈

max
t≥tII

{

N
∑

m=0

qm(t)

}〉

. (6)

Cell counts are calculated for each antigenic distance
experiments. We can therefore use superscripts to indicate
a specific experiment and refer to this quantity in the case d = 8

as
〈

M̃
〉d=8

. This value measures the magnitude of the cytotoxic
immune response to VII = V8. Since it corresponds to the
completely heterologous response, the effect of the MaN is zero
and the quantity in Equation (6) is maximal with respect to d.
The other extreme case is found when d = 0, corresponding to a
homologous immune response for which the immune memory
is so perfectly fit to the second injected virus VII = V0 = VI that
the latter is eliminated without the need for a clonal expansion
of cytotoxic T-cells. The measure that we call compression is then
defined as

C
(

d
)

=
〈

M̃
〉d=8

−
〈

M̃
〉d

(7)
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FIGURE 1 | T-cell counts corresponding to three different but similar simulations. In panel (A) we inject two homologous viruses (i.e., cross-reacting) in succession

(i.e., at day tI = 0 and tII = 330) namely V I = V0, V
II = V2, which are therefore at a distance of 2 bits. In panel (B) we inject two heterologous viruses, V0 and V8. In

panel (C) instead, after the usual priming with V0 we challenge the system with both the homologous V2 and the heterologous V8 viruses. Cell counts shown in all

panels are representative of the most active clones of the 2N possible. These “responding clones” are specific either to just V0 (filled triangles in all panels A–C), or

specific to both V0 and V2 (i.e., cross-reacting memory clones shown in panels A,C as empty squares), or naïve independent responses specific to V8 (panels B,C,

filled squares). In panel A the primary naïve response to V0 (filled triangles) leaves memory that is then re-stimulated by V2. In panel B instead, the same primary naïve

response to V0 (filled triangles) do not cross-react to V8 and indeed fade away upon the raising of the secondary responses. (C) shows what happen when the

system is challenged with both. It shows in particular that the heterologous response to V8 (filled squares) is independent and unaffected by the cross-reacting clones

(empty squares) operating the MaN.

and is the difference of the maximum number of cytotoxic T-cell
count attainable in the absence of memory. In other words,
this measure quantifies the degree of hindrance (or reduction,
hence the name compression) of the naïve response due to the
presence of cross-reactive memory cells against past infections.
The compression is maximal for d = 0 and diminishes for larger
d reaching its minimum for d = 8.

RESULTS

The Memory Anti-naïve (MaN)
Phenomenon
We first illustrate theMaN phenomenon by studying the primary
and memory responses against viruses with different antigenic
distance. The results of three cross-reacting viral infections are
shown in panels A, B, and C of Figure 1, where we can track
the primary and memory responses of proliferating individual T-
effector memory clones. In each panel we learn the composition
of the naïve response, represented by filled markers, and of the
memory response, represented by empty markers present only
in panels A and C. Panel A shows the case of priming with
VI = V0 and challenge VII = V2, that is, a virus with antigenic

distance d = 2 that elicits a cross-reactive memory response. The
result is a strong dominance of memory over primary clones.
In fact, no new primary clone emerges after tII . Panel B has a
priming identical to that of panel A but is challenged by a virus
with d = 8 from the priming, thus a heterologous virus. As
predicted, the secondary response does not trigger memory cells,
but elicits a naïve response specific to the challenge V8. Panel
C shows the case with all three viral infections: V0 at time tI ,
producing a primary stimulation, and both V2 and V8 at time tII .
The two latter viruses are, by virtue of their antigenic distance,
not interfering with each other. Any primary anti-V2 is silenced
by cross reacting memory previously elicited against V0, while
the naïve anti-V8 mounts, as expected, an undisturbed primary
response. Taken together, these results allow us to conclude that
the force underpinning MaN is specificity, and the mechanism is
competition for antigen. Note that both panels A and C show a
clear advantage of memory over naïve: most memory clones are
higher than naïve ones at the peak.

MaN Has Two Different Effects
Another way of showing MaN is to extend the range of distances
between the priming and the secondary infection, that is,
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FIGURE 2 | Memory response clears the virus and dominates over any

primary response by its faster action. This figure shows that the domination

remains in place also when the antigenic distance d makes any cross-reactive

memory response weak. In panel (A), we show the efficacy of the immune

response E(d) (i.e., a measure of cytotoxicity in unit of cell counts) vs. the

antigenic distance d. In panel (B), the compression C(d) (i.e., the blocking

effect of the cross-reactive memory, also in unit of cell counts). The difference

of the curves indicates that for d ∈ {2 . . .5} the blocking of the primary

response is not justified by an efficient secondary response, that is the

phenomenon that constitutes the MaN. Panel (C) presents the same data of

panels (A,B) but respectively normalized by the Min-Max method (i.e.,

y′ = (y − ymin)/(ymax − ymin)) so to fall within the same range [0, 1]. It

visualizes at once the effect of MaN as the area between the two curves

assuming the shape of an “eye”.

following the antigenic distance experiment schema described
in section The Antigenic Distance Experiments. In this set of
experiments the attrition plays no role as it has been disabled,
allowing us to study the MaN in isolation.

Figure 2 shows the efficacy E(d) and the compression C(d)
defined in section Useful Definitions [respectively in Equations
(5) and (7)] as a function of the viral distance d. The figure shows
values before and after normalization. Clearly, the efficacy of the
immune response decreases by increasing d (panel A) simply
because it is a measure of the efficiency of the cross-reactive
immune memory. We can point to d = 2 as the critical value
for the greatest reduction in efficacy. On the other hand, the
compression also decreases by increasing d for the same reason,
but changes more “slowly” compared to the efficacy: the critical
value is d = 5. Based on these results, we can say that the range d
between 2 and 5 is the domain of the MaN.

The Effect of Attrition in Alleviating the
MaN
In another set of experiments, we turned the attrition on and
studied its effect on the immune response in general and
on the MaN in particular. The attrition effect was modulated
by modifying Equation (2) by multiplying the interferon
concentration by a factor α, that is, taking α × in2 , with α equal
to 1,2, . . . 5. For formal correctness, the case of no attrition
designated as α =0 needs to be made explicit in the new

definition of Pr
[

die
]

of Equation (2) as follows

Pr
[

die
]

= P(α) =
an1

an1 + k1
×

αin2

αin2 + k2
×

(

1− f
)

(8)

All runs exhibit identical primary response to d = 0 virus (green).
Analyzing the memory responses those challenged with V0 (i.e.,
d = 0 thus homologous) are the strongest while all others are
cross-reactive and expected to turn out progressively weaker with
increasing d. For d = 7 and d = 8 the viral challenging epitope
is so different from the priming epitope that memory fails to
recognize it, thus there is no cross-reactive memory and the
response is a primary response directed against the second virus
(V7 or V8). Another point that may seems counterintuitive is
to see a very weak immune response representing the fact that
when the memory is at its strongest (e.g., d = 0 and d = 1)
the virus is eliminated very efficiently. This happens because
memory is “speedy in deployment” and eliminates the growing
population of pathogens when they are still few in numbers.
This has two important effects: (i) the lack of further stimulation
keeps the effectors low, and (ii) no stimulation of naïve response
takes place. This is the same competition for antigen already
seen in Cheng et al. (3). The results in Figure 3 quantitatively
confirm these early observations and provide further insights
into the mechanisms. Either large antigenic distances or high
levels of attrition will counter the MaN effect but, as expected
for synergistic actions, smaller antigenic distances or levels of
attrition result in a balance between memory and naïve total
affinity. This is visible in several cases of the grid in Figure 3.
To simplify the study of these “ties,” and the eventual takeover
by naïve responses, the position of the critical runs of Figure 3
are pinpointed in Figure 4. In eight cases ties between primary
and memory occur, at the point where the primary curve is about
to surpass the memory response. Since all primary responses
are identical against any virus, in these eight cases we know
that the total affinity [i.e., TA(t) of Equation (4)] of memory is
comparable to the total affinity of the primary response. Surpasses
are easy to spot in Figure 3, following the coordinate marked on
Figure 4, where distance and attrition are color coded in red and
blue, respectively.

Results for B cells approximately follow those shown for T
cells (see Supplementary Figure 1). This was expected since in
the definition of viruses V0 . . .V8 we have purposefully followed
the same logic (i.e., distance) in the definition of the viral epitopes
with the aim of not favoring the humoral response of one virus
in particular. The conclusion is that, with regards to the balance
between MaN and attrition, the humoral response is consistent
(i.e., is very similar) to the cytotoxic response and, in substance,
it does not prevent or limit the latter but adds to it instead.

Figure 5 shows the effect of attrition on the Tc total affinity
TA(t) defined in Equation (4). Panel A refers to how attrition
influences the total affinity of a homologous response, i.e., when
to VI = VII = V0 resulting in d = 0. Only three levels of
attrition are shown: α = 0 corresponding to absence of attrition,
α = 3 considered the intermediate “optimal” level and α = 5
deemed an excessive value for attrition. The highest α = 5 does
not affect the peak of memory since in the homologous response
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FIGURE 3 | Cytotoxic cell counts (percentage) vs. time. This is the result of different simulations obtained varying the level of attrition α = 0 . . .5 (α = 0 is control case

of no attrition) and the antigenic distance d between the two viral infections, for a total of 6× 9 = 54 panels, each containing average ± standard deviation results of

Tc counts in simulated primary viral infections, followed by a second challenge infection by an identical, or by a selected mutant virus. Color codes: green: response by

naïve T effector cells to primary virus V I injected at tI = 0; orange: cross-reactive memory response primed by the first virus V I and challenged by V II; blue: response

by naïve T effector cells to V II injected at tII = 1000 time steps. See text for further explanation.

the second peak is due to memory recall but trims the curve
via its effect on aged cells. As expected, attrition facilitates the
emergence of higher affinity cells thus increasing TA(t) especially
in the primary response. This is better shown in Figure 6. Panel B
unveils the heterologous response (i.e., VII= V0 thus d = 4), the
total affinity to the VI = V0 is equivalent to the one in panel A.

Panel C shows the same total affinity toVI = V0 but calculated at
the time of the challenge, namely, during the competing presence
of anti-V4 naïve cells. Here, by increasing α, the memory toVI =

V0 disappears. This effect is striking when compared to the case
α = 0 (green curve). Panel D shows the total affinity in a d = 4
experiment but this time relative to VII = V4. The comparison
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FIGURE 4 | This diagram is meant as a visual help to the analysis of Figure 3

and keeps on the same coordinates: virus distance (d = 0...8) vs. attrition level

(α = 0 . . . 5). In Figure 3 we see that memory is strong and dominant but can

be trimmed down by turning two independent knobs: the first increases d and

affects affinity, the second through attrition, thins the memory cell population,

by inducing apoptosis. If both knobs are turned up in the same run a synergic

effect is observed. The equal counts of memory and naive cells are due to the

fact that in the clearing of the virus that in the clearing of the virus the total

affinity required is contributed equally by the two populations.

of TA(t) should be made for t > 1000 in panel A. The overall
message is that attrition favors the emergence of higher affinity
clones (blue and purple curves in panel D corresponding to α = 3
and 5 respectively) with respect to the green curve (α = 0).

Figure 6 shows the peak values ofAm(t) as defined in Equation
(3) per match class, from the lowest value of match mc = 13
to the highest N = 16. As in Figure 5 we have three attrition
levels, α = 0, 3, 5 and we run the d = 4 experiment meaning that
VI = V0 and VII = V4, because this case is the one in which
the MaN and the attrition display the greatest effects. The first
observation is that the classm = 15, although not the best match,
reaches the highest affinity peak value. This is expected given the
relatively short time to develop a complete affinity maturation
during either the primary response (panel A) and the secondary
heterologous response (panel B). Another observation pertaining
to the lower panel is that the attrition helps improving the affinity

maturation in all match classes. Moreover, clearly visible in panel
B, while attrition α = 3 helps the maturation ofm = 16 thus the
high matching clones, the case α = 5 knocks them down. This
comparison of levels of attrition suggests that the α = 3 has been
correctly dubbed the moderate or optimal level.

DISCUSSION AND CONCLUSIONS

Viral infections and pandemics are prime examples of the
dynamic between evolution and mutability of viruses on one side
and cross-reactivity of antibodies and cytotoxic cells on the other.
Pandemics are often the result of recurrent infections with distant
cross-reactive agents. The “original antigenic sin” (2) hypothesis,
that is, the case of patients whose memory responds to a previous
priming and whose primary response is blocked by memory,
still lacks an explanation for why cross-reactive anti-virus cells
that unable to clear the virus, are still able to outcompete the
naïve cells. More recently, Monsalvo et al. (29) found signs
of antigenic sin in non-protecting antibodies and low affinity
immune complexes.

In this study we obtained quantitative data that enables
us to propose a plausible mechanistic explanation for this
phenomenon. We measured the ability of the immune system
to deal concurrently with two viruses, one cross-reactive that is
eliminated by memory cells that, as a side effect, block the naïve
response, and another that is not cross-reactive and is eliminated
by a naïve independent response (Figure 1). This shows that the
two processes do not interfere with each other.

It is therefore the degree of cross-reactivity that determines the
engagements of different concurrent immune responses. When
the antigenic distance between the priming and the challenging
virus is increased, memory efficacy E(d) falls immediately
while the compression of naïve response C(d) through antigen
deprivation is affected only later (see Figure 2). This result is
expressed in the combination of the two curves of C(d) and E(d)
as a function of antigenic distance, producing the iconic image of
an “eye,” a representation and measure of MaN.

The efficacy E(d) is sensitive to decreased cross-reactive
affinity, immediately from the first step and continues the descent
as a concave curve, as expected in a cellular response where each
cell’s affinity contributes individually to the final result.

The compression C(d) shows no effect whatsoever in the
first three steps decrease of affinity, while the fourth step causes
only partial block of the naïve engagement. This resistance to
severe decrease of affinity gives a measure of the dominance
exerted by memory over naïve responses by depriving them of
the antigen required for their growth. The display of strength
by memory is certainly sustained by its speed of deployment,
and this experiment detects a second concurrent mechanism
that materializes as a cooperative action. Affinity is the energy
displayed by a single paratope, but in a competition for the
antigen, the presence of many paratopes nearby may decrease
the chances of the antigen to “escape” from another memory
cell. The best example is the higher “catching” ability of
bivalent and pentavalent antibodies compared to Fabmonovalent
antibodies. To mark this difference the serologists of the last
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FIGURE 5 | Effect of attrition on the Tc total affinity TA (t). Panel (A) shows how the attrition influences the total affinity in a d = 0 experiment, i.e., the homologous

response to V I = V II= V0. Only three levels of attrition shown. The highest level of attrition (α = 5) does not affect the peak of memory (in the homologous response

the second peak is due to memory recall) but trims the curve via its effect on aged cells. In other words, as expected, the attrition facilitates the emergence of higher

affinity cells thus increasing the peak values of the total affinity especially in the primary response. This will be shown more clearly in Figure 6. Panel (B) When

simulating a heterologous response (i.e., heterologous challenge V II = V4 thus for viral distance d = 4), the total affinity to the VI = V0 is equivalent to the one in panel

(A). Panel (C) shows the same total affinity to V I = V0 but calculated at the time of the challenge that is during the competing presence of anti-V4 naïve cells. Here, by

increasing the level of attrition, the memory to V I = V0 disappears; this effect is striking when compared to the absence of attrition case of the green curve. Panel (D)

once more shows the total affinity in a d = 4 experiment but this time relative to the virus injected as challenge, i.e., V II = V4. The comparison of the total affinity

should be made with respect to the peak values for t > 1000 in panel A. Clearly, attrition has favored the emergence of higher affinity clones (blue and purple

corresponding to α = 3 and 5, respectively) with respect to the absence of affinity case (green curve).

century invented a new strength inclusive of affinity and
a “cooperation bonus” and called it avidity. Mechanistically
two Fabs will bind two monovalent epitopes, but the weak
forces will alternate periods of sticking together with period
of detachment. Chances are that the two couplets will not
stay in this conformation for long. On the other hand, the
bivalent Fab has a definitely higher chance of staying with
one epitope bound or at least, at short distance, quite stably.
Avidity enhances binding and allows low quality memory cells
to still dominate.

Any immune response, and particularly the fast, cellular
memory is always in need of space (e.g., physical space, metabolic
space, etc.), which like other resources are subject to competition.
Active attrition (5, 30) consists of timely secretion of IFN-β
operated by the same vectors that signal danger, and has the
effect of eliminating crowding of cells by allowing a selection
of more efficient young clones, at the expense of dominant
clones. In this case, the action of the attrition has the specific
connotation of helping the specific response as the thinning of
clonal population will favor clonal expansion randomly. Based

on the results shown in Figure 2, we propose that the difference
in strength between antigen biding and compressing naïve cells
depends on the advantage in favor of the latter: avidity is affinity
enhanced by intra-clone paratope synergisms.

We have shown that the memory anti-naïve effect, the
“necessary” byproduct of memory, can be mitigated by the
attrition signals produced during the early stages of an infection.
These signals kill a fraction of the population of effectors
(Figures 5, 6). While resulting in a decreased speed of the
response, this mechanism gets rid of low affinity cross-reactive
cells thus allowing naïve clones to emerge and eventually achieve
better affinity maturation.

In conclusion, the trimming effect of attrition which mitigates
the MaN effect is well-documented in the present work and
corroborates earlier studies (1, 4, 31). The present data is more
precise as it independently monitors memory and naïve cells thus
facilitating the detection of a phenomenon that affects different
cellular compartments in opposite directions.

The results of this study add new predictions on the
mechanism underpinning memory’s clonal dominance on naïve
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FIGURE 6 | This plot show the peak values of the Am(t) per match classes,

from the lowest m = mc = 13 to the highest m = N = 16. As in Figure 5, we

have three attrition levels α = 0 (corresponding to absence of attrition), α = 3

(considered the “optimal” level) and α = 5 (deemed a excessive value for

attrition) and we run the d = 4 experiment meaning that V I = V0 and V II = V4,

because this case is the one in which the MaN and the attrition display the

greatest effects. The first observation is that m = 15 is the match class which

reaches the highest peak values. This is expected given the relatively short

time to develop a complete affinity maturation during either the primary

response (panel A) and the secondary heterologous response (panel B).

Another observation pertaining the lower panel is that the attrition helps

improving the affinity maturation in all match classes. Moreover, while attrition

α = 3 helps the maturation of m = 16 high affinity clones, the case α = 5

knocks them down (panel B).

responders: the competition is based on affinity to viral antigen,
enhanced in the case of memory, by two factors, speed of action
and intra clonal cooperation, resulting in the deprivation of
antigen for naïve cells. We predict that clonal competitions are
at the core of many pathologies that will not be understood and
treated properly without explaining all causative forces.

In conclusion, results produced by computational models,
however reasonable they may look, must be confirmed by in vivo
or in vitro experiments before being considered scientific truth.
However, their value may be realistically appraised if they trigger
new hypotheses, and help guiding wet lab research. In this
regard we believe that the presented modeling study has indeed
provided a clearer picture of the complex relationship between
MaN and attrition.
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The ability of lymphocytes to recirculate between blood and secondary lymphoid tissues

such as lymph nodes (LNs) and spleen is well established. Sheep have been used as an

experimental system to study lymphocyte recirculation for decades and multiple studies

document accumulation and loss of intravenously (i.v.) transferred lymphocytes in efferent

lymph of various ovine LNs. Yet, surprisingly little work has been done to accurately

quantify the dynamics of lymphocyte exit from the LNs and to estimate the average

residence times of lymphocytes in ovine LNs. In this work we developed a series of

mathematical models based on fundamental principles of lymphocyte recirculation in

the body under non-inflammatory (resting) conditions. Our analysis suggested that in

sheep, recirculating lymphocytes spend on average 3 h in the spleen and 20 h in skin or

gut-draining LNs with a distribution of residence times in LNs following a skewed gamma

(lognormal-like) distribution. Our mathematical models also suggested an explanation for

a puzzling observation of the long-term persistence of i.v. transferred lymphocytes in the

efferent lymph of the prescapular LN (pLN); the model predicted that this is a natural

consequence of long-term persistence of the transferred lymphocytes in circulation. We

also found that lymphocytes isolated from the skin-draining pLN have a 2-fold increased

entry rate into the pLN as opposed to the mesenteric (gut-draining) LN (mLN). Likewise,

lymphocytes from mLN had a 3-fold increased entry rate into the mLN as opposed

to entry rate into pLN. In contrast, these cannulation data could not be explained by

preferential retention of cells in LNs of their origin. Taken together, our work illustrates the

power of mathematical modeling in describing the kinetics of lymphocyte migration in

sheep and provides quantitative estimates of lymphocyte residence times in ovine LNs.

Keywords: mathematical model, lymphocyte migration, lymph nodes, residence time, sheep

1. INTRODUCTION

One of the peculiar properties of the mammalian adaptive immune system is the ability of its
lymphocytes to recirculate between multiple tissues in the body; that is lymphocytes in the blood
are able to enter the tissues and after some residence times in the tissues, they return to circulation
(1). The pattern of lymphocyte recirculation in general depends on the lymphocyte type (e.g., B or
T cell), status of the lymphocyte (resting vs. activated), and perhaps tissues via which lymphocytes
aremigrating. Naive, antigen-unexperienced lymphocytes, primarily recirculate between secondary
lymphoid tissues such as lymph nodes, spleen, and Peyer’s patches (2–4). Following activation
after exposure to an antigen, naive lymphocytes become activated and differentiate into effector
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lymphocytes which are able to access non-lymphoid tissues such
as the skin and gut epithelium (2, 3, 5–7).

Why lymphocytes recirculate is not entirely clear (8, 9).
Because the frequency of lymphocytes specific to any given
antigen is in general low and the place of entry of any pathogen
is unknown by the naive host, recirculation of lymphocytes may
increase the chance to that pathogen-specific cell will encounter
its antigen (10, 11). Experimental evidence that impairing
lymphocyte recirculation influences the ability of the host to
respond to infections is very limited. For example, the use of the
drug FTY720 (fingolimod) in humans has been associated with a
higher incidence of severe infections (12, 13). FTY720 prevents
lymphocyte exit from lymph nodes, thus, reducing their ability to
recirculate (14–16). However, whether the side-effects of FTY720
is exclusively due to its impact on lymphocyte recirculation
is unknown.

The ability of lymphocytes to recirculate between blood
and lymph have been nicely demonstrated in now classical
experiments by Gowans in rats and later by Hall and Morris in
sheep (17, 18). Interestingly, subpopulations of lymphocytes can
migrate preferentially to different regions of the body, based on
their origin as well as their type (19–24). Molecular interactions
between receptors and associated ligands corresponding to the
selective entry of lymphocytes to both lymphoid and non-
lymphoid tissue have been relatively well-characterized (25–28).
However, the actual kinetics of lymphocyte recirculation have
been characterized mostly qualitatively, and we still do not fully
understand how long lymphocytes reside in the spleen, LNs,
and Peyer’s patches, and how such residence times depend on
lymphocyte type and animal species.

Understanding lymphocyte migration via lymph nodes (LNs)
may be of particular importance for larger animals, including
humans, where LNs constitute the majority of the secondary
lymphoid tissues (29, 30). Lymphocytes may enter the LNs via
two routes: from the blood via high endothelial venules (HEVs)
or from the afferent lymph draining interstitial fluids from
surrounding tissues (1). Experimental measurements suggest that
under resting, noninflammatory conditions most lymphocytes
(about 80–90%) enter the LNs via HEVs (31). Lymphocytes in
LNs exit the nodes with efferent lymphatics which either passes
to the next LN in the chain of LNs, or via right or left lymphatic
ducts return to the circulation (1, 9, 32). In contrast, cells can
only enter the spleen from the blood and cells exiting the spleen
directly return to circulation (33, 34).

In the past, to study lymphocyte recirculation via individual
LNs sheep or cattle have been used (18, 35–40). In such
experiments, lymphocytes are collected from specific tissue of
the animal, e.g., blood, a removed LN, or efferent lymph of a
LN, labeled with a radioactive or fluorescent label, and then re-
infused back into the same animal (e.g., intravenously, i.v.). The
dynamics of the labeled cells is then monitored in the blood,
or more commonly, in the efferent lymph of different LNs over
time (37, e.g., see Figure 1A). The dynamics of the labeled cells
in the efferent lymph of various LNs follow a nearly universal
pattern—the number of labeled cells increases initially, reaches
a peak and then slowly declines over time (20, 31, 42, 43, and
see Figures 2C,D). Given that in many such experiments, the

peak of labeled cells in the efferent lymph is reached in 24 h
and declines slowly (e.g., Figure 2C), it can be interpreted that
the average residence time of lymphocytes in the ovine lymph
nodes is about 48 h. To our knowledge, the actual residence time
in ovine LNs has not been regularly reported. Interestingly, with
the use of mathematical modeling an accurate quantification of
how long lymphocytes spend in LNs in sheep has been recently
performed (44).

In their pioneering study Thomas et al. (44) analyzed data on
migration of lymphocytes via individual ovine LNs. To quantify
these dynamics, the authors developed a mathematical model
which considers cell migration via a LN as a random walk
betweenmultiple sub-compartments in the LN. In themodel cells
entering the LN start in the first sub-compartment, progress via
the series of subcompartments by a random walk and eventually
exit the node by leaving the last subcompartment (44). As their
model allows for the possibility for cells to spend variable lengths
of time in the LN, it can naturally explain the long duration
of labeled lymphocytes exiting the LN. By fitting the model to
several different sets of data, the authors concluded that the
average residence time of lymphocytes in ovine LNs is about
31 h (44).

In addition to the average residence time the distribution of
residence times may be important. In particular, if lymphocytes
that just entered the LN have the same chance of exiting it as
lymphocytes that already spent some time in it (i.e., distribution
of residence times is exponential), this could suggest that exit of
lymphocytes from LN is a simple Poisson-like stochastic process.
Indeed, one recent study suggested that residency time of naive
CD4 and CD8 T cells in LNs of mice is exponentially distributed
(45). In contrast, if lymphocytes require some time to be spent in
the LN, for example, to acquire the ability to exit the node, then
the distribution of residence time cannot be exponential. Recent
work from our group suggests that residence time of thoracic
duct lymphocytes in LNs of rats is not exponential and is best
described by a gamma distribution with the shape parameter k =
2 or 3 (41). Our analysis of data on kinetics of lymphocyte exit
from inguinal LNs of photoconvertable Kaede mice did not allow
to firmly establish the shape of the residence time distribution
(9). Whether the distribution of residence time of lymphocytes in
ovine LNs is exponential or more complex is unknown.

In this paper, we formulated a series of mathematical
models aimed at describing the kinetics of recirculation of
lymphocytes in sheep. All models take into account basic
physiological constrains on lymphocyte migration, for example,
that lymphocytes enter the LNs continuously from the blood
and lymphocytes that exit LNs return back to circulation.
The models were fitted to a series of experimental data from
previously published studies on lymphocyte migration in sheep.
Our results suggest that the distribution of residence times
of lymphocytes in ovine LNs is best described by a non-
exponential distribution with estimated average residence times
being 12–22 h depending on the type of lymphocytes used in
experiments. The long-term presence of labeled lymphocytes in
efferent lymph of cannulated LNs was explained by a continuous
entry of new cells from the blood to the LN, thus, simplifying
a previous modeling result (44). Overall, our analysis provides
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a quantitative framework to estimate kinetics of lymphocyte
recirculation using measurements of lymphocyte numbers in the
blood and efferent lymph of ovine LNs. Such a framework may
be useful to understand the efficacy and potential limitations
of immunotherapies involving adoptive transfer of T cells in
humans (46–48).

2. MATERIALS AND METHODS

2.1. Experimental Data
For our analyses we digitized the data from three publications
(20, 42, 49). We describe in short design of these experiments and
how the data have been collected. For more detail the reader is
referred to the original publications.

2.1.1. Lymphocyte Dynamics in Blood and Efferent

Lymph (Dataset #1)
Experiments of Frost et al. (42) have been performed with 4–
24 month old Alpenschalf or Schwarzkopf sheep (Figure 1A).
Lymphocytes were collected from the efferent lymph of different
LNs (e.g., prescapular) then labeled with 51Cr and resuspended
in buffer. A surgical procedure to install an indwelling cannula
into the jugular vein was performed to allow for i.v. infusions
and collection of blood samples. The efferent duct of specific
lymph nodes was also cannulated to allow for collection of
lymph that passed through the node. The number of labeled
lymphocytes in efferent lymph was determined by washing cells
in a buffer and counting with a gamma scintillation counter.
Labeled lymphocytes in venous or peripheral blood were counted
similarly by a gamma scintillation counter then compared to the
activity of plasma from the same volume of blood.

Labeled lymphocytes were injected i.v. and the efferent lymph
of prescapular LN (pLN) was collected. Lymph was collected as
described above at 20-min intervals for 3 h or daily for about 2
weeks. The number of labeled lymphocytes in the lymph node
was expressed as cpm per 107 cells collected. Peripheral blood
samples were only collected for certain experiments and they
were taken at 10 min, 30 min, 1 h, and 3-h intervals thereafter.
The number of labeled lymphocytes in peripheral blood was
expressed as cpm/ml of whole blood minus the activity in the
plasma. Cells exiting the lymph node were measured for 120
h, while cells in the blood were measured for 90 h, then once
more at the 120th h. For this reason, we discuss lymphocyte
migration kinetics in terms of short- and long-term migration
experiments. The short-term experiments include the dynamics
of the labeled lymphocytes in both blood and efferent lymph for
the first 90 h, and the long-term dataset considers all available
data (measurement up to 120 h).

According to “Blood Volume of Farm Animals,” Hampshire
sheep less than a year to 3 years old have on average 6.3–5.8
ml blood per 100 g weight and an average weight of 92–156
lbs (50). This results in about 2.63 L of blood for Hampshire
sheep less than a year old and about 4.1 L for Hampshire sheep
2–3 years old. The breed of sheep used in this study weight
from 60 kg (Alpenschaf) to 100 kg (Schwarzkopf) at maturity,
so it is reasonable to assume that these total blood estimates are
less than those calculated for Hampshire sheep. We assume the

volume of blood in the sheep is an average of these given volumes,
specifically V = 3.4 L. This estimate was used to convert the
estimate of the number of labeled lymphocytes per ml of blood
to the total number of lymphocytes in the whole blood.

In one set of experiments [Figure 1 in (42)] 2.5 × 109

labeled cells (representing 12.6× 106 cpm) were injected i.v. into
sheep corresponding on average RLo = 2.5 × 109 cells/(12.6 ×

106 cpm) = 200 cells/cpm. Because in the original data, the cells
in the blood at time t (RLt) were measured in cpm/ml of blood,
the total number of cells in the blood B at time t was calculated
using the formula

B = RLo × V × RLt , (1)

where RLo = 200 cells/cpm, V = 3.4 L and RLt was digitized
from Figure 1 of Frost et al. (42). In the same experiments labeled
cells exiting the pLN were measured as cpm/107 cell with each
data point summing 3 h of cell collected every 20 min. Therefore,
the amount of labeled cells exiting the pLN per hour (Ct) is
one third of this number. The total output of the pLN is given
in Figure 3 in Frost et al. (42) and was estimated to be f =

10.85 × 107 cell/hr. We calculate total cells exiting the pLN per
hour at time t as

mLBL = RLo × f × Ct , (2)

where RLo = 200 cells/cpm. The final data (dataset1.csv,
given as Supplement to the paper) includes changes in the total
number of labeled lymphocytes in the peripheral blood and the
number of labeled lymphocytes exiting pLN per hour over time.

2.1.2. Migration of Lymphocytes From Afferent to

Efferent Lymph (Dataset #2)
To further investigate how lymphocytes migrate via ovine LNs
we digitized data shown in Figure 4 of Young et al. (49).
In these experiments different subsets of lymphocytes (CD4
T cells, CD8 T cells, γ δ T cells, and B cells) were collected
from efferent prescapular lymph and labeled with PKH-26 or
CFSE to distinguish between different cell subsets. A maximum
of 2 × 106 cells of each type were infused into two popliteal
afferent lymphatics over 1 h. Cells were collected as they exited
the cannulated efferent lymph of the popliteal LN (poLN),
and phenotyped. The final data (dataset2.csv, given as
Supplement to the paper) includes the percent of labeled cells
found in the efferent lymph of the poLN over time.

2.1.3. Migration of T Lymphocytes via Skin-Draining

and Gut-Draining Lymph Nodes (Dataset #3)
The final set of experimental data we used come from
recirculation experiments of Reynolds et al. (20) with young
sheep (Figure 6). Lymphocytes were isolated by cannulating the
skin-draining pLN or the ileal end of the gut-draining mesenteric
lymph node chain (mLN). Collected lymphocytes were enriched
for T cells and labeled with FITC or RITC based on origin.
Labeled cells were re-infused into the same animal i.v. and cell
frequency (given in labeled cells per 104 cells) was reported for
240 h [Figure 1 in (20)]. Because the authors did not report
the overall cell output in efferent lymph of pLN and mLN, we
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used the provided numbers of the frequency of labeled cells in
the lymph for fitting the models. Existing data suggest similar
output of lymphocytes from pLN (1 − 5 × 108 cells/h) or mLN
[1 − 10 × 108 cells/h, (37)] which in part justifies our approach.
The final data (dataset3.csv, given as Supplement to the
paper) includes the number of labeled cells from skin or intestinal
lymph per 104 cells found in efferent lymph of pLN or mLN over
time during cannulation.

The raw data from the cited papers were extracted using
digitizing software Engauge Digitizer (digitizer.sourceforge.net).

2.2. Mathematical Models
2.2.1. Basic Assumptions
In our models we assume that blood is the main supplier of
lymphocytes to other tissues and that when exiting these tissues,
lymphocytes return to the blood (41, 51). We also assume that
lymphocyte have the same exit kinetics for all LNs (except in
the analysis of the dataset #3), and that cell infusion does not
impact lymphocyte migration via individual LNs. There is a
disagreement whether residency time of lymphocytes depends on
the LN type which may be due to differences in animal species or
lymphocyte subsets used, or in experimental techniques (41, 45).

2.2.2. Models to Predict Lymphocyte Dynamics in

Efferent Lymph of LNs

2.2.2.1. Recirculation model
To predict the dynamics of i.v. transferred labeled lymphocytes
in the blood and efferent lymph of pLN we extended a previously
proposed compartmental model describing recirculation kinetics
of lymphocytes in the whole body (41). The model (Figure 1B)
predicts the number of i.v. transferred lymphocytes in the blood
(B), spleen (S), lymph nodes (L), and other non-lymphoid tissues
(T). In the model we ignored migration of lymphocytes via
vasculature of the lung and liver since previous work suggested
that resting lymphocytes pass via these tissues, at least in rats,
within aminute (41). This is different frommigration of activated
lymphocytes via these tissues which could take hours (9). Yet, it
should be emphasized that because in experiments that we have
analyzed migration of lymphocytes via lung and liver vasculature
has not beenmeasured, it is possible that lung/livermay represent
“spleen” or other “non-lymphoid tissues” in our model. We
explore the impact of including lung/liver in our recirculation
model on estimates of lymphocyte residency time in the LNs
in section 4.

In the model, cells in the blood can migrate to the spleen,
lymph nodes, or other tissues at rates mBi and cells can return
to circulation from these tissues at rates miB where i = S, L,T.
When exiting spleen or non-lymphoid tissues lymphocyte follow
the first order kinetics, so the decline of cells in the tissues in the
absence of any input is given by an exponential function. This
in part is based on our previous work suggesting of migration
of thoracic duct lymphocytes via spleen can be described as first
order kinetics (41). In contrast, migration of lymphocytes via LNs
may not follow the first order kinetics [e.g., (41)] and thus was
modelled by assuming k sub-compartments in the nodes with
equal transit rates mLB. Such sub-compartments may represent
different areas in the LNs, for example, paracortex and medulla.

FIGURE 1 | Experimental design and schematics of mathematical models on

lymphocyte migration in sheep. (A) Recirculating lymphocytes were obtained

from efferent lymph of various LNs, labeled, and re-injected into the same

animal. The concentration of labeled lymphocytes was monitored in the blood

and the efferent lymph of a given LN. (B) The “recirculation” model was

adopted from our previous study (41) to describe the migration kinetics of

labeled lymphocytes in the animal. Lymphocytes in the blood B may migrate to

three (n = 3) major tissue compartments: spleen S (at a rate mBS), lymph

nodes L (at a rate mBL ), or other peripheral tissues T (at a rate mBT ). A fraction

λ of cells migrating to lymph nodes migrate to the cannulated LN (Lo), thus

can be measured, while remaining cells (1− λ) migrate to other lymph nodes

(L). Exit of lymphocytes from the spleen or peripheral tissues follows first order

kinetics at ratesmSB andmTB, respectively. In contrast, residency times in LNs

are gamma distributed and are modeled by assuming k sub-compartments (in

the figure k = 3) where exit from each sub-compartment is given by the rate

mLB. (C) The alternative “blood-LN dynamics” model allows for cells in the

blood (B) to enter the cannulated LN at a rate λmBL and exit the LN by

passing via k sub-compartments at a rate mLB. Cells in the blood also leave

the blood at a rate α (in case of a single exponential decline).

Mathematically, we used the sub-compartments to model non-
exponential residency time of lymphocytes in the LNs.

To describe accumulation and loss of labeled lymphocytes
in the cannulated lymph nodes we assume that a fraction
of lymphocytes λ migrating to lymph nodes migrate to the
cannulated node Lo1 (e.g., pLN, Figure 1B) while 1 − λ cells
migrate to other LNs (L1). We assume that cells do not die but
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the process of migration to non-lymphoid tissues with no return
back to circulation is equivalent to cell death. We did consider
several alternative models in which death rate was added to the
model (see section 4). Taken together, with these assumptions the
mathematical model for the kinetics of lymphocyte recirculation
in sheep is given by equations:

dB

dt
= mSBS+mLBLk +mTBT − (mBS +mBL +mBT)B,(3)

dS

dt
= mBSB−mSBS, (4)

dL1

dt
= (1− λ)mBLB−mLBL1, (5)

dLi

dt
= mLB(Li−1 − Li), i = 2, 3, . . . k, (6)

dLo1

dt
= λmBLB−mLBLo1, (7)

dLoi

dt
= mLB(Loi−1 − Loi), i = 2, 3, . . . k, (8)

dT

dt
= mBTB−mTBT, (9)

where cells exiting the cannulated lymph node, mLBLok do not
return to the blood because they are sampled, and mLBLok is the

rate of labeled lymphocyte exit from the sampled lymph node
(which is compared to experimental data, e.g., column 2 in the
dataset #1, and see Figures 2C,D).

Our experimental data were restricted only to labeled
lymphocytes found in the blood and efferent lymph (or only
efferent lymph). It may be argued that a minimal recirculation
model to describe such data should only involve blood and LNs
(i.e., n = 1). Also, the number of sub-compartments k in LNs
is also unknown. Therefore, in our analyses we fitted a series of
models assuming different values for k and n to the data from
(42) (dataset #1) and compared the quality of the model fit to
data using AIC (see section 3).

The average residence time of lymphocytes in the spleen or
non-lymphoid tissues is 1/mSB and 1/mTB, respectively. The
residence time of lymphocytes in the LNs is given as RT =

k/mLB. The initial number of labeled cells in the blood varied
by experiment and is indicated in individual graphs. In some fits
parameter λ could not be identified from the data and thus was
fixed (indicated by absent predicted confidence intervals). The
rest of the parameters were fit.

2.2.2.2. Blood-LN dynamics model
Many studies of lymphocyte recirculation that reported kinetics
of accumulation and loss of labeled lymphocytes in efferent

FIGURE 2 | Dynamics of recirculating lymphocytes (RLs) in the blood naturally explains kinetics of accumulation and loss of RLs in pLN of sheep. (A,B) Dynamics of

RLs in the blood and (C,D) in the efferent lymph of the pLN for the first 90 h after cell transfer (short-term migration) are shown by markers. (A,C) The recirculation

model (Equations 3–9, Figure 1B) with n = 3 tissue compartments and k = 3 sub-compartments in the LNs resulted in the best fit. The average residence times (RT1
and RT2) estimated for the two first compartments are shown. (B,D) The blood-LN dynamics model (Equations 10–12, Figure 1C) with j = 2 and k = 3 resulted in the

best fit. The estimated average RT of lymphocytes in the pLN is shown. Fits of models that assume different numbers of tissue compartments, different number of

sub-compartments in LNs, or different numbers of exponential functions are shown in Table 1 and Table S1. Parameters for the best fits of these models are given

in Table 2.
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lymph of ovine LNs did not report dynamics of these cells in the
blood which is the major limitation of such studies. Therefore,
to gain insight into whether LN cannulation data alone can be
used to infer lymphocyte residence times in the LNs we propose
an alternative model which only considers lymphocyte dynamics
in the blood, one cannulated LN, and the efferent lymph of the
cannulated LN. In this “blood-LN dynamics” model (Figure 1C)
the dynamics of lymphocytes in the blood is described by a
phenomenological function B given as a sum of j declining
exponentials. The rationale to use such a model stems from the
kinetics of labeled lymphocyte dynamics in the blood observed
in (42) and other studies [Figures 2A,B and (44)] even though
actual dynamics in other experimental systems may not follow
the same pattern. The dynamics of labeled cells in the sampled
lymph node is thus driven by the continuous entry of labeled cells
from the blood into the LN. The model is then given by following
equations

B =

j
∑

i=1

Xie
−αit , (10)

dLo1

dt
= λmBLB−mLBLo1, (11)

dLoi

dt
= mLB(Loi−1 − Loi), i = 2, . . . , k, (12)

Xi and αi are the initial values and the rate of decline in
the ith exponential function, λmBL is the overall rate at which
lymphocytes from the blood enter the LN, and mLB is the rate
at which lymphocytes move between k sub-compartments in the
LN and exit the LN. The rate at which lymphocytes exit the LN
and thus are sampled in the LN efferent lymph is mLBLok. It
should be noted that parameters λ, mBL and Xi in many cases
are not identified from the data on lymphocyte dynamics in the
efferent lymph, thus, the main parameter that we are interested
in is the average residence time of lymphocytes in the LNs given
by RT = k/mLB. Because the dynamics of cells in the blood is
generally unknown when fitting the model predictions to data,
we varied the number of exponential functions j = 1, 2, 3 and
compared the quality of fits of different models using AIC.

2.2.3. Migration When Cells Are Injected Into Afferent

Lymph
In one set of experiments migration of labeled lymphocytes via
LNs was measured by directly injecting lymphocytes into the
afferent lymph of a LN and observing accumulation and loss of
these cells in the efferent lymph of the LN. To use these data
to estimate the lymphocyte residence time in the LN we assume
that cells injected into afferent lymph A migrate into the lymph
node at a rate mA, and then the cells migrate via each of k sub-
compartments in the LN at a rate mLB. With these assumptions
the dynamics of cells in the afferent lymph and the LN are given
by equations:

dA

dt
= −mAA, (13)

dLo1

dt
= mAA−mLBLo1, (14)

dLoi

dt
= mLB(Loi−1 − Loi), i = 2, 3, . . . , k, (15)

where initially all labeled cells were in the afferent lymph. As
previously stated, the rate of lymphocyte exit from the LN via
efferent lymph is given by mLBLok. The average residence time
of lymphocytes in the LN is then RT = k/mLB.

2.2.4. Homing to Different Lymph Nodes
In the final set of experiments Reynolds et al. (20) collected
lymphocytes from efferent lymph of pLN or mLN, labeled and
then re-infused the collected cells i.v. into the same animal. The
labeled cells were then collected in the efferent lymph of the pLN
and mLN. Because the authors did not report the dynamics of
labeled cells in the blood, we extended the “blood-LN dynamics”
model (see Equations 10–12) to describe cell migration from the
blood to the efferent lymph of two LNs. The number of labeled
lymphocytes found in the ith sub-compartment of the pLN and
mLN are given by Lo1,i and Lo2,i, respectively:

B =

j
∑

i=1

Xie
−αit , (16)

dLo1,1

dt
= λmBL1B−mL1BLo1,1, (17)

dLo1,i

dt
= mL1B(Lo1,i−1 − Lo1,i), i = 2, . . . , k, (18)

dLo2,1

dt
= λmBL2B−mL2BLo2,1, (19)

dLo2,i

dt
= mL2B(Lo2,i−1 − Lo2,i), i = 2, . . . , k, (20)

where mL1B and mL2B are the rate of lymphocyte exit from the
pLN and mLN, respectively, mBL1 and mBL2 are the rates of
lymphocyte entry from the blood to pLN and mLN, respectively,
and j = 1, 2 in fitting models to data. Because the data
clearly showed the difference in accumulation of lymphocytes in
different LNs, we considered two alternative explanation for this
difference. In one model we assume that the difference in kinetics
is due to differences in the rate of lymphocyte entry into specific
LNs (mBL1 6= mBL2) while residence times are identical in the
two LNs (mL1B = mL2B). In the alternative model, the rate of
entry into the LNs are the same but residence times may differ
(mBL1 = mBL2 andmL1B 6= mL2B).

2.2.5. Statistics
Themodels were fitted to data in R (version 3.1.0) using modFit
routine in FME package (version 1.3.5) by log-transforming
the data (single or two different measurements) and model
predictions and by minimizing the sum of squared residuals.
For example, when fitting the recirculation model to the data on
lymphocyte numbers in the blood and efferent lymph from Frost
et al. (42) the SSR was calculated in the following way:

SSR =

l
∑

ti=1

[

log10

(

RLo × V × RLti
B(ti)

)]2
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+

l
∑

ti=1

[

log10

(

RLo × f × Cti

mLBLok(ti)

)]2

, (21)

where experimental measurements are given in Equations (1)
and (2) and model predictions are from Equations (3) and (8),
respectively, for lmeasurements at times ti, i = 1 . . . l.

Numerical solutions of the system of equations were obtained
using ODE solver lsoda (from the deSolve package) with
default absolute and relative error tolerance. Different algorithms
such as BFGS, L-BFGS-B, or Marquart in the modFit
routine were used to find parameter estimates. Discrimination
between alternative models was done using corrected Akaike
Information Criterion, AIC (52)

AIC = N log

(

SSR

N

)

+ 2p+
2p(p+ 1)

N − p− 1
, (22)

where SSR is the sum of squared residuals, N is the number of
data points, and p is the number of model parameters fitted to
data. The model with the minimal AIC score among all tested
models was viewed as the best fit model, but a difference of
AIC score of 1–3 between best fit and second best fit models
was generally viewed as not significant (52). Predicted 95%
confidence intervals for estimated parameters were calculated as
±2σ with standard deviation σ provided for each parameter by
the modFit routine.

3. RESULTS

3.1. Estimating Lymphocyte Residency
Time in the LNs Using Lymphocyte
Dynamics in Efferent Lymph
To gain quantitative insights into the kinetics lymphocyte
migration via sheep lymph nodes we first fitted our recirculation
model (given by Equations 3–9) to the “short-term migration”
data on lymphocyte dynamics in the blood and efferent lymph of
the prescapular LN from Frost et al. (42) (see section 2 for more
detail on the data).

While the overall structure of the recirculation model was
defined by the number n of different compartments through
which lymphocytes could recirculate (Figure 1B), we first
investigated how many such compartments are in fact necessary
to describe the experimental data by varying n between 1 and
4. Additionally, we tested how many sub-compartments k in the
LNs are needed for best description of the data (see Equations 3–
9). The analysis revealed that n = 3 tissue compartments and k =
3 sub-compartments in the LNs are needed to adequately describe
the dynamics of labeled cells in the blood and efferent lymph
(Table 1). Such a model could accurately describe simultaneously
the loss of labeled cells in the blood and accumulation and
loss of labeled cells in the efferent lymph (Figures 2A,C). The
model predicted the existence of two recirculation compartments
with average residence times of 2.4 and 19.5 h, with the latter
compartment corresponding to LNs in the sheep. The nature
of the first compartment is unclear but given the estimated
residence time it is likely that it represents the spleen [e.g., see

(41)]. The final third compartment was needed to explain the
long-term loss of labeled cells from the blood at a rate of about
d = 0.02/h. The predicted rate of lymphocyte migration to
tissues (mBS + mBL + mBT ≈ 1.4 − 1.6/h ≫ d, see Table 2)
is higher than the observed rate d because of the return of
lymphocytes that had migrated to lymphoid tissues back to
circulation. The model also naturally explains the long-term
decline in the number of labeled lymphocytes found in the
efferent lymph of the cannulated pLN which is simply driven by
the decline of labeled cells in the blood. The analysis also suggests
that none of the obvious characteristics of the distribution of
the lymphocyte exit rate from the LN such as the time of
the peak or the average of the overall distribution (e.g., see
Figure 2C) accurately represent the average residence time. This
result strongly suggests that to accurately estimate lymphocyte
residence times from LN cannulation experiments it is critical to
use appropriate mathematical models.

Assuming a smaller (k = 1) or a larger (k = 4) number
of sub-compartments in the LNs resulted in poorer fits of the
data (Table 1). The intuitive reason of why the model in which
lymphocyte residence times in LNs are exponentially distributed
(k = 1) does not fit the data well follows from the rapid loss
of labeled lymphocytes in the blood within the first hours after
lymphocyte transfer (Figure 2A). Rapid decline in the number
of labeled lymphocytes in the blood reduces the rate at which
new labeled cells enter the pLN which would have resulted in
a relatively rapid exit of cells from the pLN for exponentially
distributed residence time. Similarly, the model in which there
are too many sub-compartments would force the distribution
of cells in the efferent lymph to be even broader, thus, also
resulting in poorer fit. Thus, this analysis suggests that migration
of lymphocytes via LNs is not described by a simple exponential
function and there is a requirement for lymphocytes to spend
some minimal time in LNs before exiting into circulation.

It is interesting to note how the dynamics of labeled
lymphocytes in the blood may be used to infer recirculation
kinetics of cells. Indeed, the initial rapid decline of the number
of labeled lymphocytes is explained in the model by migration
to secondary lymphoid tissues and change in the decline rate at
2–3 h after lymphocyte transfer is naturally explained by the exit
of initially migrated cells from one of the compartments (most
likely spleen) back to the blood. Thus, lymphocyte kinetics in
the blood suggests residence time in first compartment of about
2–3 h (Table 2).

The recirculation model makes a strong assumption that the
dynamics of labeled lymphocytes in the blood and efferent lymph
are due to migration of lymphocytes into and out of different
tissues (Figure 1B). When the experimental data is provided
for the dynamics of labeled cells in the blood as in dataset #1,
we are able to use Equations (3)–(9) to accurately describe the
data and estimate lymphocyte residence times in various tissues.
However, when experimental data do not contain measurements
of the dynamics of labeled cells in the blood, predictions of the
recirculation model remain speculative. Therefore, to estimate
residence times of lymphocytes in LNs in the absence of such
data, we developed an alternative mathematical model. This
model involves a smaller number of assumptions, the major of
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TABLE 1 | Comparison of different recirculation mathematical models fitted to the

data on RL dynamics in blood and prescapular LN.

Short term migration data (< 90 h)

Number of tissue compartments, n

1 2 3 4

Number of 1 SSR 6.834 3.613 3.109 3.135

AIC −177.58 −229.26 −195.25 −170.69

sub-compartments 2 SSR 8.251 1.405 0.836 0.810

AIC −212.19 −238.23 −282.84 −258.89

in LN, k 3 SSR 8.599 0.681 0.315 0.981

AIC −206.15 −252.17 −333.03 −307.16

4 SSR 8.298 0.985 0.981 0.937

AIC −187.37 −264.68 −259.10 −257.01

Mathematical models assuming recirculation of lymphocytes via n different tissue

compartments with LNs having k sub-compartments (Equations 3–9) were fitted to

experimental data (shown in Figures 2A,C). We tested n = 1…4 different tissue

compartments with k = 1…4 sub-compartments in LNs. The bold AIC value shows the

model of best fit with n = 3 and k = 3. Parameters for the best fit model are shown in

Table 2 and the best fit is shown in Figures 2A,C.

which is the physiological constraint that most lymphocytes enter
lymph nodes from blood (2). Intuitively, however, this model
allows us to estimate the time taken by cells to migrate from the
blood to the efferent lymph of a LN irrespective of the specific
route of this migration.

In the“blood-LN dynamics” model, the dynamics of labeled
lymphocytes in the blood is described phenomenologically as a
sum of several exponential functions, and by fitting a series of
such models we found that the dynamics of labeled cells in the
first 90 h after cell transfer is best described by a sum of two
exponentials (Table S1 and Figure 2B). The model predicted a
rapid initial loss of lymphocytes in the blood at a rate of 2/h (half-
life time of about 21 min) and a slower loss rate of 0.02/h after the
first 4 h (half-life time of 35 h, Figure 2B and Table 2).

By fitting a series of mathematical models in which the
number of sub-compartments in the pLN was varied, to the
data on dynamics of labeled lymphocytes in the efferent lymph
we found that k = 3 sub-compartments provided fits of the
best quality (Table S1 and Figure 2D). Importantly, the model
predicted the average residence time of lymphocytes in the pLN
of 19.6 h which is nearly identical to the value found by fitting
recirculation model to the same data (Table 2).

Both recirculation and blood-LN dynamics models were then
fitted to the long-term migration data in which the dynamics
of labeled cells in efferent lymph was measured continuously
for 120 h while in the blood there was an extra measurement
at 120 h (Figures 3A–D). The recirculation model with n = 3
tissue compartments and k = 3 sub-compartments was able to
accurately describe the data (Figures 3A,C) although the model
underestimated the number of labeled lymphocytes in the blood
at 120 h post-transfer (Figure 3A and Table S2). Interestingly,
the model required a positive rate of lymphocyte return from
the “third” tissue back to circulation (Figure 3A and Table 2). In
the absence of lymphocyte return from the tissue compartment

TABLE 2 | Parameters of the best fit recirculation model (Equations 3–9) or the

blood-LN dynamics model (Equations 10–12) fitted to either short-term migration

data (t < 90 h) or the long-term migration data of dataset #1 from Frost et al. (42).

Model/Data Residence time (h)

Recirculation model/Short-term n = 3, k = 3

mBS, 1/h 1.01 [1.00, 1.01]

mSB, 10
−1/h 4.14 [4.12, 4.15] 2.42 [2.40,2.43]

mBL, 10
−1/h 2.81 [2.73, 2.89]

mLB, 10
−1/h 1.54 [1.51,1.56] 19.48 [19.23, 19.87]

mBT , 10
−2/h 9.92 [9.70,10.14]

mTB, 1/h 0

λ, 10−3 1.96 [1.83, 2.09]

Blood-LN model/short-term j = 2, k = 3

X1, 10
9 cells 2.5

X2, 10
8 cells 4.50 [4.50, 4.50]

α1, 1/h 1.98 [1.54, 2.42]

α2, 10
−2/h 1.90 [1.79, 2.01]

mBL, 10
−2/h 3.53 [1.84, 5.22]

mLB, 10
−1/h 1.53 [1.42,1.64] 19.61 [18.29, 21.13]

λ, 10−2 1.5

Recirculation model/Long-term n = 3, k = 3

mBS, 1/h 1.38 [1.37, 1.38]

mSB, 10
−1/h 3.93 [3.91, 3.94] 2.54 [2.54, 2.56]

mBL, 10
−2/h 2.81 [2.60, 3.04]

mLB, 10
−1/h 1.57 [1.46,1.68] 19.11 [17.86, 20.55]

mBT , 10
−1/h 1.12 [1.10, 1.13]

mTB, 10
−3/h 1.82 [0.89, 2.75] 549.5 [363.6, 1123.6]

λ, 10−2 1.88 [1.79, 1.97]

Blood-LN model/Long-term j = 3, k = 3

X1, 10
9 cells 2.5

X2, 10
8 cells 4.548 [4.547,4.548]

X3, 10
7 cells 4.022 [4.021, 4.022]

α1, 1/h 2.12 [1.62, 2.61]

α2, 10
−2/h 2.54 [2.27,2.81]

α3, 10
−15/h 2.10 [±3.59×10−3]

mBL, 10
−2/h 8.61 [7.01,10.22]

mLB, 10
−1/h 1.53 [1.42,1.64] 19.61 [18.29, 21.13]

λ, 10−2 0.6

In the recirculation model the three tissue compartments are suggested to be spleen,

LNs, and other non-lymphoid tissues and the migration rates from the blood to these

compartments are denoted as mij with i, j = B,S, L,T. In the blood-LN dynamics model

it was not possible to estimate accurately the initial number of labeled lymphocytes in the

blood (X1 ), so that parameter was fixed to X1 = 2.5×109 cells. Residence times in LNs

were calculated as RT = k/mLB and as 1 miB for other compartments (i = S,T).

the model poorly matches the number of labeled cells in the
blood (results not shown). Importantly, the recirculation model
predicted similar average residence times of lymphocytes in the
first two compartments (representing spleen and LNs) to that of
the model fitted to short-term dataset (Table 2).

Perhaps unsurprisingly, to describe the dynamics of labeled
lymphocytes in the blood over 120 h the sum of three different
exponential functions was required (Table S1). Furthermore, the
model with k = 3 sub-compartments in the pLN was able
to describe the dynamics of labeled lymphocytes in efferent
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FIGURE 3 | Explaining long-term recirculation kinetics of lymphocytes in sheep requires more complex mathematical models. (A,C) The recirculation model

(Equations 3–9) or (B,D) the blood-LN dynamics model (Equations 10–12) was fit to the dataset #1 from Frost et al. (42). In these experiments, there were additional

measurements for labeled lymphocytes in the blood and efferent lymph (compare to Figure 2A). The best fit recirculation model assumed n = 3 and k = 3. The

average residency times RTi is given for each compartment. The best fit blood-LN dynamics model had j = 3 exponential decay functions and k = 3

sub-compartments for the LNs. The best fit models were determined via a series of trials (see Tables S1, S2). Parameter estimates and 95% CIs are shown in Table 2.

lymph with best quality (Table S1 and Figures 3B,D). The model
predicted the average residence time of lymphocytes in LNs to
be 19.6 h which is consistent with results from the recirculation
model fitted to the same data or the models fitted to short-term
migration data.

Taken together, analysis of data from Frost et al. (42) on
recirculation of lymphocytes via prescapular LN in sheep suggests
non-exponentially distributed residence times of lymphocytes in
the LNs with the average time being approximately 20 h. Our
mathematical models naturally explain the long-term presence
of labeled lymphocytes in efferent lymph node of a cannulated
LN by continuous input of new labeled cells from the blood to
the LN.

3.2. Migration of Lymphocytes From
Afferent to Efferent Lymph Suggests
Non-exponentially Distributed Residence
Time in LN
Analysis on the dynamics of labeled lymphocytes transferred
i.v. into sheep suggested that migration of lymphocytes via LN
follows a multi-stage process which can be described as cell
migration via identical sub-compartments (Figures 1B,C). Since
the time it takes for lymphocytes to cross the endothelial barrier
and enter LNs is very short [few minutes, (53)], the finding that
distribution of lymphocyte residence times are not exponential

could still be due to some unknown processes. Therefore, to
further investigate the issue of the distribution of residence
times of lymphocytes in ovine LNs we analyzed experimental
dataset #2 (49). In these experiments, Young et al. (49) isolated
lymphocytes from the efferent lymph of the pLN, labeled and
injected the cells into the afferent lymph of the popliteal LN
(poLN), and then measured exit of the labeled cells the efferent
lymph of the poLN (Figure 4 and see section 2 for experimental
data detail). Cells, injected into the afferent lymph, cannot move
to any other tissue but the draining LN, and thus, such data
allow to directly evaluate kinetics of lymphocyte migration via
individual LN.

To describe these data, we adapted the blood-LN dynamics
model to include migration of labeled lymphocytes from the
afferent lymph to the LN and then to the efferent lymph
(Equations 13–15). The model has 3 unknown parameters that
must be estimated from the data (A(0),mA,mLB). Unfortunately,
the original data for cell dynamics for individual animals were
not available, and the digitized data only included 3 time
points which does not allow accurate estimation of all model
parameters (results not shown). Therefore, to investigate the
dynamics of labeled cells in the efferent lymph we fitted a
series of mathematical models with a varying number of sub-
compartments k in the LN and average residence times RT =

k/mLB fixed to several different values to the experimental data
(Table S3). Analysis revealed that several sub-compartments are
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needed for accurate description of the data and the actual number
of sub-compartments varied for different cell subtypes, but was
never less than k = 3 (Table S3). The expected residence times
also varied with the cell type but overall were within 18–20 h
range which is consistent with the previous analysis of Frost et al.
(42) data (Figure 4).

By fitting the data with the model in which the number of
sub-compartments k was varied we found that the estimated
residence time of lymphocytes in the poLN was dependent on
the assumed k (Table S4). This is consistent with our recent
result on estimating residence time of T and B lymphocytes
in LNs of mice using the data from photoconvertable Kaede
mice (9). Interestingly, the model fit predicted a relatively slow
movement of lymphocytes from the afferent lymph to the LN,
which is determined by the parametermA (1/mA ≈ 5 h) and was
dependent on the number of sub-compartments. These results
also support our conclusion that residence times of lymphocytes
in ovine poLN are not exponentially distributed and the average
residence time for different lymphocyte subsets is around 20 h.

3.3. Impact of Lymphocyte Kinetics in the
Blood on Estimates of the Lymphocyte
Residency Time in the LNs
Our analysis of the Frost et al. (42) data demonstrated the
usefulness of having measurements of the dynamics of labeled
lymphocytes both in the blood and efferent lymph of a specific
cannulated LN. Unfortunately, many published studies that we
reviewed lacked measurements of lymphocyte counts in the
blood and only recorded cell numbers in the efferent lymph,
often as the percent of labeled cells in the overall population. An
important question is whether the estimates of the residency time
of lymphocytes in LNs, found by fitting mathematical models to
the data on lymphocyte counts in efferent lymph only, depend on
the assumed lymphocyte dynamics in the blood.

In several different experiments the decline of i.v. injected
labeled lymphocytes in the blood is bi-exponential with the rapid
decline in cell numbers within a few hours and slower decline
in the next days (44, see Figure 2B). By fitting the blood-LN
dynamics model (with k = 3) to the data on the dynamics of
labeled lymphocytes in efferent lymph (shown in Figure 2D) we
found that fits of similar quality could be obtained independently
whether the dynamics of labeled cells in the blood follow either
a single or bi-exponential decline (results not shown). However,
the estimates of the average residence time of lymphocytes in LNs
was dependent on the assumedmodel of lymphocyte dynamics in
the blood; namely, assuming a bi-exponential decline resulted in
longer average residence times (results not shown).

To investigate this issue further we fitted the blood-LN
dynamics model (with k = 3) assuming that the number of
labeled cells in the blood follows an exponential decline, to the
data on labeled cell dynamics in efferent lymph. In this analysis
we either fitted the rate of cell decline in the blood (α1) or
fixed it to different values (Figure 5). We found that the decline
rate of labeled cells in the blood has a dramatic impact on the
quality of the model fit of the data as well as on estimates of
the average residence times (Figure 5B). In particular, assuming

that the number of labeled cells remains constant in the blood
(α1 = 0) predicts a constant output of labeled cells in efferent
lymph, and as the result, failed to accurately describe the data
(Figure 5B). Similarly, assuming that the loss of labeled cells
occurs relatively rapidly (α1 = 0.05/h) also results in poor fits of
the data and longer average residence time of lymphocytes in the
LN (Figure 5B). However, allowing the rate of lymphocyte loss
α1 to be fitted resulted in good fits of the data further suggesting
that the long-term dynamics of labeled cells in the efferent lymph
is the consequence of cell dynamics in the blood.

3.4. Lymphocytes Migrate More Rapidly to
LNs Which the Cells Recently Exited
All data analyzed so far have been for lymphocytes isolated
from pLNs which migrate back to pLN or poLNs. An important
question is whether the average residence time of lymphocytes
varies across types of LN. Indeed, previous analysis of migration
of naive T cells in mice suggest that lymphocytes spend less time
in gut-draining mesenteric LNs (mLNs) than in skin-draining
pLNs (45). In contrast, another study suggested similar residency
times of thoracic duct lymphocytes in pLN and mLN of rats (41).
To address this issue we analyzed experimental dataset #3 (20).

In their studies, Reynolds et al. (20) isolated T lymphocytes
from efferent lymph of pLN or mLN, labeled them with different
fluorescent dyes, re-injected the cells, and measured their exit in
the efferent lymph of pLN and mLN (Figure 6 and see section
2 for experimental data detail). The data showed that T cells
isolated from pLN accumulate to higher numbers in the efferent
lymph of pLN as compared to cells from mLN and vice versa
(Figure 7). There could be at least two alternative explanations
for such differential accumulation of cells in LNs of their origin:
preferential migration or preferential retention. According to
the preferential migration hypothesis, cells from pLN have a
higher rate of entry into pLN than the rate at which cells
from mLN enter the pLN (and vice versa). In contrast, in the
preferential retention hypothesis, cells from pLN have a longer
residence time in pLN as compared to cells from mLN (and
vice versa).

To discriminate between these alternative hypotheses, we
fitted the blood-LN dynamics model to these data. The blood-
LN dynamics model was chosen because of its relative simplicity
and because Reynolds et al. (20) did not report dynamics of
transferred lymphocytes in the blood, which was needed for
accurate estimation of parameters of the recirculation model.
Specifically, we assumed that the T cell kinetics follow bi-
exponential decline (j = 2 in Equation 10) and that lymphocytes
must traverse via k = 3 sub-compartments in the LNs. In the
“preferential migration” model we fixed the average residence
times of lymphocytes in LNs for cells from pLN and mLN
(determined by the parameter mLB) but allowed different rates
of entry into the LN from the blood (determined by the
parametermBL, see Equations 16–20). This model can accurately
describe experimental data (Figures 7A,B). Interestingly, the
model predicted 2 fold higher entry rate into pLN by cells of
pLN origin as compared to cells of mLN origin, and 3 fold higher
entry rate into mLN by cells of mLN origin, as compared to
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FIGURE 4 | Mathematical modeling suggests non-exponentially distributed residency time of different subsets of lymphocytes in the LNs. (A) CD4 T cells, (B) CD8 T

cells, (C) γ δ T cells, or (D) B cells were labeled and injected into afferent lymph of ovine poLN. The percent of labeled cells was measured in efferent lymph over time

(see section 2 for experimental data detail). A series of mathematical models assuming migration of injected lymphocytes into the LN was fit with a variable number of

sub-compartments k in the LNs (Equations 13–15). The best fits of the model leading to the lowest AIC values with the noted number of sub-compartments in the LN

(k) are shown by lines and parameters of the models are given in Table S4.

FIGURE 5 | Kinetics of lymphocyte loss in the blood influences the estimate of the lymphocyte residence time in LNs. Assuming that lymphocyte dynamics in the

blood follows an exponential decay at a rate α1 (A), the blood-LN dynamics model (Equations 10–12 with k = 3, X1 = 5× 108, and λ = 0.01 being fixed) was fit to

the data on accumulation and loss of labeled lymphocytes in the efferent lymph of the pLN of sheep (panel B; see section 2 for experimental data details). In contrast

with other analyses, fits of the model to data in this case were done without log10 transformation. The decline rate α1 was either fixed to several different values

(α1 = 0, α1 = 0.01/h, or α1 = 0.05/h) or was estimated by fitting the model to data in (B) (α1 = 0.021/h). The data on labeled lymphocyte dynamics in the blood

from Frost et al. (42) was not used in model fitting and is only displayed by markers for illustrative purposes in (A). The estimated residence time (RT ) of lymphocytes in

the LN are shown in (B).

cells of pLN origin (Table S5). Importantly, assuming identical
average residence time of T cells from pLN in skin-draining or
gut-draining LNs resulted in fits of excellent quality suggesting
the average residence time of T cells from pLN does not depend
on the LN type. However, T cells from mLN migrated via LNs
nearly 2 fold faster than T cells from pLN suggesting that the
average residence time does depend on the origin of T cells.

In the alternative “preferential retention” model we fixed the
rate of lymphocyte entry from the blood to the LNs and allowed
the residence times (or more precisely, the rate of exit of T cells
from the LNs) to vary depending on the LN type. This model
failed to accurately describe the data (Figures 7C,D) suggesting
that the data cannot be explained solely by increased retention of
cells in the LN of their origin. Importantly, allowing both entry
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FIGURE 6 | Experimental design of the study to evaluate migration of

lymphocytes isolated from different LNs. Populations of lymphocytes were

isolated from efferent lymph by cannulation of either the prescapular (pLN) or

the mesenteric (mLN) lymph nodes, labeled with RITC (green) or FITC (blue),

respectively. These cells were then injected i.v. into the same animal.

Accumulation and loss of the injected lymphocytes was followed in efferent

lymph of pLN and mLN over time.

and exit rates to depend on the LN type did not improve the
model fit of the data for lymphocytes from pLN [F-test for nested
models, F(1, 24) = 0.26, p = 0.62] but marginally improved the fit
of the data for lymphocytes from mLN [F-test for nested models,
F(1, 24) = 6.3, p = 0.02].

4. DISCUSSION

It is well understood that some lymphocytes are able to
recirculate between blood and secondary lymphoid tissues such
as lymph nodes. In part, this understanding came from multiple
experiments on lymphocyte migration from the blood to efferent
lymph of various LNs in sheep. Yet, while the data on the kinetics
of lymphocyte migration via individual LNs have been published,
quantitative interpretation of these data has been lacking until
recently. In particular, the average residence time of lymphocytes
in the ovine LNs remained largely unknown and there was
incomplete understanding of why labeled lymphocytes persisted
in the efferent lymph of cannulated LNs.

The first attempt known to us to explain lymphocyte dynamics
in efferent lymph during cannulation experiments in sheep was
by Thomas et al. (44) who modeled lymphocyte migration via
the LN as a random walk. The model suggested that long-
term detection of labeled lymphocytes in efferent lymph was
due to inability of some lymphocytes to exit the LN. Here we
formulated several alternative mathematical models, based on
the basic understanding of lymphocyte recirculation in mammals
which accurately explain the cannulation data, and proposed an
alternative explanation for long term detection of labeled cells in
efferent lymph. Namely, because labeled cells persist in the blood,
continuous reentry of such cells into the LN can naturally explain
long-term persistence of labeled cells in the efferent lymph.

Our mathematical modeling approach allowed to provide
novel estimates of lymphocyte residence time in ovine lymph
nodes which vary between 12 and 20 h depending on lymphocyte
type and being approximately independent of the type of LN
(e.g., skin- or gut-draining, Figures 2, 7). Furthermore, the

combination of data and mathematical model predicted an
existence of a compartment with a shorter residence time, about
2–3 h, which we propose is likely to be the spleen. Indeed, we
recently published a similar estimate of lymphocyte residence
time in the spleen of rats (41). However, this prediction remains
to be tested experimentally, and it remains possible that the
unobserved compartment with the residency time of 2–3 h
represents vasculature of the lung or liver. We consider this
alternative to be unlikely given that we previously estimated that
resting lymphocytes spend a rather short time in the lung/liver
vasculature of rats [less than 1 min, (41)].

Parameter estimates also suggest a relatively short residence
time of lymphocytes in the blood (e.g., for long-term migration
data 1/(mBS + mBL + mBT) ≈ 1.6/h or RTB = 28 min). This is
relatively similar to previous estimates (9, 41).

While we did not specifically model lymphocyte migration via
lung or liver vasculature, it is well understood that lymphocytes
in the blood do pass via these tissues (41, 54, 55). To determine
whether inclusion of the lung/liver vasculature impacts our
estimates of the lymphocyte residence time in LNs, we extended
the recirculation model (given in Equations 3–9) by adding an
equation for lymphocytes in the lung/liver vasculature V (which
would be identical to Equation 4). The migration of lymphocytes
from the blood to the vasculature was given by rate mBV and
exit of lymphocytes from the vasculature into the circulation
was given by rate mVB. Then we varied the rates mBV = mVB

from 0/h to 30/h and fitted other parameters of the model to the
short-term recirculation data. Analysis showed that the estimate
of the lymphocyte residence time in the LNs varied relatively
little with changes in lymphocyte migration rate via the lung/liver
vasculature (from 19.5 to 17.6 h) suggesting that the estimate of
the lymphocyte residency time in LNs is robust to exclusion of
the lung/liver vasculature from themodel. Interestingly, however,
increasing the rate of lymphocyte migration via the lung/liver
vasculature reduced the quality of themodel fit to data (measured
as SSR or AIC) which is in line with our result that the models
with more than n = 3 tissue compartments describe the
cannulation data with poorer quality.

Another important conclusion from our analyses is that the
data on lymphocyte dynamics in efferent lymph is not described
well by a model in which residence times of lymphocytes in LNs
are exponentially distributed (Table 1). In part, this is because
of the wide distribution in the exit rates of labeled lymphocytes
in efferent lymph over time. However, describing cell migration
via LNs as a simple one directional process and ignoring the
ability of lymphocytes to remain in the LN for longer [e.g., by
including a “backflow” in cell movement as was done by Thomas
et al. (44)] may be an over-simplification. Yet, because the model
in which lymphocyte residence times are gamma distributed
describes the experimental data with acceptable quality (e.g., see
Figure 2), introducing additional details/parameters contradicts
the fundamental “Occam’s razor” principle.

Our analysis suggests difficulty with interpreting data from
ovine LN cannulation experiments in which the dynamics of
transferred lymphocytes is not tracked in the blood. In particular,
we found that estimates of lymphocyte residence times in LNs
do depend on the assumed model for lymphocyte dynamics
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FIGURE 7 | Lymphocytes have a higher entry rate into the LN which they recently exited. (A,B) Mathematical models (Equations 16–20) were fit to dataset #3 from

Reynolds et al. (20) assuming that difference in lymphocyte dynamics is due to differential entry of lymphocytes into pLN and mLN. (C,D) Models fit assuming that

there is differential residence time of lymphocytes in the LNs. The number of cells exiting pLN (boxes) or mLN (triangles) was recorded for lymphocytes collected

originally from pLN (A,C) or from mLN (B,D). Model parameters are shown in Table S5. The average residence times of lymphocytes in pLN (RTp) and mLN (RTm)

predicted by the best fit model are shown.

in the blood (e.g., single vs. double exponential decline and
slow or rapid decline). Therefore, future studies on lymphocyte
recirculation kinetics in sheep should always attempt to measure
and report concentration and total numbers of transferred cells
in the blood.

One of the fundamental questions of lymphocyte recirculation
is whether lymphocytes in the blood have some “memory”
of the specific LN they recently came from, and if such
memory exists, whether it comes from preferential entry into
a specific LN or from preferential retention in the LN. Several
experimental studies have addressed the question qualitatively.
For example, activated lymphocytes, or lymphoblasts, collected
from the intestinal lymph of sheep were shown to accumulate
preferentially in tissues associated with the gut (56), and a similar
finding was reported for lymphoblasts isolated from intestinal
lymph of rats (57, 58). In contrast, lymphoblasts isolated from
peripheral lymph preferentially accumulated in peripheral lymph
nodes (57). There has also been a distinction in migratory
preference based on cellular subset as it has been observed that
small lymphocytes accumulate in mucosal sites such as Peyer’s
patches (59, 60).

We used mathematical modeling to investigate whether
preferential accumulation of lymphocytes in the LN of their
origin is due to preferential entry or preferential retention for
one specific dataset (20). Our analysis showed that a model
with preferential retention was not able to accurately describe

the experimental data, while the model in which cells could
preferentially enter a LN was able to describe the data well
(Figure 7). Intuitively, this may be because the earliest increase
in the number of cells found in the efferent lymph seems to be
driven by rate of cell entry into the node and the data clearly
indicate difference in cell accumulation in the efferent lymph
depending on the cell’s origin. While we have not addressed it
formally, it is possible that the overall distribution of residence
times (determined by the parameter k) may be different in LNs of
different types.

There are a number of limitations with experimental data
and our modeling analyses that need to be highlighted. In
particular, in all of our experimental data, the dynamics of labeled
lymphocytes in the efferent lymph was reported as a frequency
of total cells, which required recalculation to determine the total
number of cells exiting a specific LN per unit of time [e.g.,
(42)]. Similarly, calculation of the total number of lymphocytes
in the blood requires the knowledge of the total blood volume of
animals which was not reported. The required recalculations may
introduce errors (e.g., due to incorrectly assumed blood volume
in the animals) and thus may influence the values for some
estimated model parameters. For example, a smaller assumed
blood volume in animals would naturally lead to a lower number
of transferred lymphocytes in Frost et al. (42) experiments
detected in the blood which should directly impact the estimate of
the rate of lymphocyte migration from the blood to the LN. Thus,
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the absolute values of estimated rates at which lymphocytes are
predicted to migrate to LNs from the blood should be treated as
approximate. However, estimates of lymphocyte residency time
in LNs should be robust to changes in the scaling of lymphocyte
numbers in the lymph.

One of the major assumptions we made in the models was
that all labeled cells have identical migratory characteristics,
e.g., all cells are capable of entering and exiting the LNs and
do so at the same rates. In many previous studies the types
of lymphocytes used in recirculation experiments (e.g., naive
or memory lymphocytes, B or T cells) were not specified,
and it is very well possible that migratory properties vary
by cell type [e.g., see (9)]. It is clear however that including
multiple cell subpopulations will increase complexity of the
models, making them unidentifiable from the data we have
available. Also, the models based on kinetically homogeneous
cell populations could describe the data reasonably well, which
suggests that there is no need to introduce a more complex
model for such data. Yet, comparison of predictions found by
the best fit models for the data did indicate some discrepancy,
for example, the best fit model was not fully capable of capturing
the peak of the exit rate of labeled lymphocytes in efferent
lymph (e.g., Figure 5B). It is possible that including slow and
fast recirculating cell sub-populations may be able to fully
capture the peak in labeled cells even though we were not able
to improve fit of these data by extending the model to two
sub-populations with different migration kinetics (results not
shown). Additional data that includes variability in lymphocyte
dynamics in efferent lymph between different animals may be
useful to further show the need for more complex models.
Another major assumption of our modeling approach is that
lymphocytes in circulation enter LNs via HEVs and not via
afferent lymph of the tissues. While there is some experimental
support for this assumption for lymphocytes migrating in non-
inflammatory conditions (2), it is clear that during inflammation
in the skin, many cells may enter the skin-draining LNs via
afferent lymph (19).

At its core, the combination of experimental data and our
models allowed us to estimate the time it takes for lymphocytes
to migrate from the blood to the efferent lymph of specific LNs—
and our results suggest that this time is gamma distributed.
For lymphocytes migrating to LNs via HEVs, this distribution
is likely to be related to lymphocyte residence time in LNs
as lymphocytes pass via HEV rather quickly (53). However, if
lymphocytes migrate from the blood to efferent lymph by first
entering non-lymphoid tissues (e.g., skin), then exiting the tissue
into afferent lymphatics, and then passing via the LN—then
our estimates of the average residence time of lymphocytes in
LNs are upper bound values. It is also possible that the rate
at which lymphocytes leave the final, kth sub-compartment in
the LN may be different from that for other sub-compartments.
However, there was no need to increase model complexity as
the model with a constant rate mLB was sufficient to accurately
describe the data.

In most of our models we ignored the possibility of
cell death. When describing labeled lymphocyte dynamics

during short-term (< 90 h) migration experiments with the
recirculation model (Figure 2) we found the need to have a tissue
compartment which acts as a sink and thus may represent a death
process (Table 2). However, there appears to be an equilibrium
reached by recirculating lymphocytes in the blood by 120 h of the
experiment (Figure 3A) suggesting a limited role of death process
in determining overall dynamics of labeled lymphocytes. Still, we
performed some additional analyses by adding death rate to all
tissue compartments and found that the best fit is found when
such death rate is small or non-existent (Table S6). It is possible,
however, that the early loss of lymphocytes in the blood as was
observed in Frost et al. (42) data (Figure 2A) may be due cell
death. It is important to highlight that high rates of cell deathmay
influence interpretation of the data and estimates of the model
parameters so future studies should attempt to quantify total cell
numbers in as many tissues as possible.

Even with all limitations in the data and assumptions
of the models, we provided a quantitative framework to
analyze data from LN cannulation experiments in sheep.
The models, developed in the paper, may need to be
tailored to explain kinetics of lymphocyte recirculation in
specific experiments. As illustrated in this work, greater
insights into mechanisms regulating lymphocyte migration
in large animals such as sheep and humans may thus be
obtained by combining the use of quantitative experiments and
mathematical modeling.
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The human innate immune response, particularly the type-I interferon (IFN) response, is

highly robust and effective first line of defense against virus invasion. IFN molecules are

produced and secreted from infected cells upon virus infection and recognition. They then

act as signaling/communicationmolecules to activate an antiviral response in neighboring

cells so that those cells become refractory to infection. Previous experimental studies

have identified the detailed molecular mechanisms for the IFN signaling and response.

However, the principles underlying how host cells use IFN to communicate with each

other to collectively and robustly halt an infection is not understood. Here we take a

multiplex network modeling approach to provide a theoretical framework to identify key

factors that determine the effectiveness of the IFN response against virus infection of a

host. In this approach, we consider the virus spread among host cells and the interferon

signaling to protect host cells as a competition process on a two-layer multiplex network.

We focused on two types of network topology, i.e., the Erdős-Rényi (ER) network and the

Geometric Random (GR) network, which represent the scenarios when infection of cells

is mostly well mixed (e.g., in the blood) and when infection is spatially segregated (e.g., in

tissues), respectively. We show that in general, the IFN response works effectively to stop

viral infection when virus infection spreads spatially (a most likely scenario for initial virus

infection of a host at the peripheral tissue). Importantly, we show that the effectiveness of

the IFN response is robust against large variations in the distance of IFN diffusion as long

as IFNs diffuse faster than viruses and they can effectively induce antiviral responses

in susceptible host cells. This suggests that the effectiveness of the IFN response is

insensitive to the specific arrangement of host cells in peripheral tissues. Thus, our work

provides a quantitative explanation of why the IFN response can serve an effective and

robust response in different tissue types to a wide range of viral infections of a host.

Keywords: immune response, interferon, viral infection, mathematical modeling, multiplex network

INTRODUCTION

Virus infections and the resulting diseases are major challenges that our society faces today (1). One
important determinant of the outcome of an infection is the innate immune response, particularly
the type-I interferon (IFN) response (“the IFN response” for short). The IFN response is a highly
optimized and general response that provides a critical first line of defense against a wide variety
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of virus infection (2). Failure to mount an effective IFN response
against virus leads to systematic infection, while excessive IFN
production leads to pathogenicity, severe symptoms or even
fatality (2–4). It has been shown that the ability to evade host
IFN response is an important determinant of viral replication
(5–7), transmission (8), and host species range of viral infection
(9). Viruses that lack the ability to evade the innate immune
response are not able to infect and replicate in a host (7, 8).
This demonstrates that the IFN response plays a crucial role in
protecting hosts from virus invasion.

IFN molecules belong to a group of signaling proteins,
known as cytokines, used by the immune system for cell-
to-cell communication and induction of protective response.
Upon infection, detection of viral RNA/DNA in the host cell
triggers a signaling cascade and gene regulation, resulting in
the production of IFNs (10). These IFNs then exit the infected
cell and act as signaling molecules to bind to surface receptors
located on the membranes of host cells (a process termed the
IFN signaling), leading to induction of antiviral genes and thus
an antiviral state in those cells (11). If an IFN molecule reaches
an uninfected cell, i.e., paracrine signaling, this anti-viral state
renders the cell refractory to viral infection. If an IFN molecule
binds to the receptor of the infected cell that produces it, i.e.,
autocrine signaling, it inhibits viral replication and decreases the
quantity of viral progeny being shed from that cell (6). Although
the molecular mechanisms of the IFN response in individual
cells have been well characterized (12), the collective dynamics
of the host cell response arising from communications through
IFN signaling and how the IFN response can effectively and
robustly stop or suppress viral infections especially during the
initial period of viral exposure in different peripheral tissues and
different types of host cells are not understood.

To address these questions, we take a mathematical modeling
approach using multiplex networks. Previous modeling works on
virus dynamics and the IFN response focused on interpreting
in vitro experiments and in vivo systematic infection dynamics
(6, 13–17). For example, several elegant studies combining both
single-cell experiments and mathematical modeling showed the
importance of the timing of the IFN response in determining
the outcome of an infection of a population of cells (6) and the
importance of the IFN signaling in regulating the population
response despite stochasticity in the single-cell level IFN response
(16, 17). Two modeling works incorporated the IFN response
into within-host viral dynamic models and showed that the IFN
response can reduce the peak viral load during an influenza
infection and explain the viral load plateau observed after
peak viremia (13, 15). In this work, we introduce a multiplex
network approach to understand virus invasion of a host and
the immediate IFN response. In this framework, we assume in
the multiplex network that virus and IFN molecules mediate
contacts between cells through the infection layer and the
protection layer, respectively. By considering different types of
network topologies, i.e., reflecting host cell contact patterns,
we show how the IFN response can effectively and robustly
respond to virus infection especially in the initial site of viral
exposure/infection where host cells are likely arranged spatially
in the peripheral tissue.

METHODS

The Multiplex Network Model Framework
In general, the multiplex network is modeled by a family

of graphs
{

Gm , (Vm, Em)

}M

m=1
where all graphs share the

same set of nodes i.e., V1 = V2 = ... = V = [n].
In our network models, we consider two layers of networks,
i.e., the infection and the protection layers, and four types of
cells, i.e., susceptible/target cells (S), infected cells (I), protected
cells (P), and recovered/dead cells (R). The two layers share
nodes (representing host cells) in the network; however, the
two layers may have different edges that represent the infection
or the protection of susceptible cells in the infection layer
and the protection layer, respectively. The nodes have average

degrees of kI and kF in the infection and the protection
layer, respectively. Viruses and IFN molecules are not explicitly
considered; instead, we assume that the contacts between infected
cells and susceptible cells are mediated by viruses and IFNs
through two layers in the network (Figure 1).

In this work, we consider two types of graphs for the two layers
of a network. The first type is a well-mixed intralayer topology
modeled by the Erdös-Rényi (ER) graph G(n, p) (18) in which a
link exists between any two nodes with a uniform probability p.

Then, the average degree of the ER graph is k = (n− 1) p ≈ np.
The second type is a spatial graph modeled by the 2-dimensional
Geometric Random (GR) graphG(n, r) (19), in which a link exists
between two nodes only when their 2-dimensional Euclidean
distance is smaller than the prefixed range r, which we term
the radius of diffusion. The radii of diffusion are rI and rF in
the infection layer and the protection layer, respectively. The
average degrees in the infection layer and the protection layer
are calculated as kI = (n− 1) πrI

2 ≈ nπrI
2 and kF =

(n− 1) πrF
2 ≈ nπrF

2, respectively. Simulation procedures of
the network models are described in Huang et al. (20).

The following ordinary differential equations (ODEs) describe
themean fieldmodel of the infection and protection processes we
consider in the networks:

dS

dt
= −βSI − ϕSI

dI

dt
= βSI − γI

dP

dt
= ϕSI

dR

dt
= γI

In this model, susceptible cells (S) are infected at rate β or
become protected at rate ϕ. Since we mainly focus on the
initial infection dynamics, generation and death of susceptible
cells are ignored. Infected cells (I) die at per capita rate γ to
become cells in the R class. We assume that protected cells
remain protected for simplicity, although anti-viral response in
protected cells can be switched off over time (2, 15). Again,
since we are mostly interested in the initial infection dynamics,
ignoring the transition from protected cells to susceptible cells
is a reasonable assumption. Here, we mainly focus on how the
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FIGURE 1 | The multiplex network framework for the dynamics of virus infection and the IFN response. In the framework, cells are represented as nodes of the

network. Two layers are considered, i.e., the infection layer and the protection layer. The nodes are shared between the two layers. Infected cells (I) produce viruses

and IFNs (not considered explicitly in the model). Viruses infect susceptible cells (S) to become infected cells (I) through the infection layer, whereas IFNs spread and

signal to susceptible cells to turn them to protected cells (P) through the protection layer. Infected cells die over time to become cells in the R class. We consider the

impact of the overlap between the two layers and the topology of the two layers on the effectiveness of the IFN response to stop viral spread on the network.

topology of a network impacts on the effectiveness of IFN to
halt an infection through protecting susceptible cells, i.e., the
paracrine IFN signaling. The impact of IFN on already-infected
cells can be considered by extending the model with another
infected class, i.e., infected cells that are at an antiviral state,
and assume that infected cells in this class have a reduced viral
production. However, this makes many analytical derivations
impossible. Note that as a common practice in the network
modeling approach, we rescale the four state variables against the
total population size, such that S+ I + P + R = 1. Then, S, I, P,
and R in our network models represent the fraction of cells that
are in their corresponding states.

Analytical Derivations
To evaluate the impact of IFN on the infection threshold in the
mean field/ODE model, we first define RI as the reproductive
number of the virus in the absence of IFN. We also refer this
quantity as a measure of virus infectivity. It can be calculated as:

RI =
β

γ

We then define a quantity RF for IFN similar as RI for virus as:

RF =
ϕ

γ

Then, RF is the average number of cells that an infected cell
protects over its life time. Note that, protected cells do not further
generate IFN and thus IFN signaling does not propagate in the
absence of further infection. Thus, RF is a single step measure of
the effectiveness of the IFN signaling for individual cell response,
and we refer this parameter as the individual-cell effectiveness of
the IFN signaling.

The infection threshold βc of the ODE model can be derived
as: βc = γ , i.e., as long as the infectivity parameter β is
greater than the rate of recovery γ , the virus can cause sustained
infection. Note the expression is independent of parameter ϕ, i.e.,
the parameter for the impact of IFN on protecting target cells.
The infection threshold βc of the network with two ER graphs

and how it depends on the similarity between the two layers are
derived previously in Huang et al. (20).

Heterogeneity in the Susceptibility of

Host Cells
To evaluate the impact of heterogeneity in the susceptibility of
host cells, e.g., due to heterogenous receptor expressions, we
assign each cell with a specific rate of infection, β , and this rate is
drawn from a gamma distribution:

P(β) =
1

Ŵ
(

k
)

θk
βk−1e−

β
θ

where k and θ are the shape and scale parameters, respectively,
and Ŵ is the gamma function. In this way, the extent of
heterogeneity is determined by the shape parameter k. The
smaller k, the more heterogenous.

We follow the derivations in Huang et al. (20) to calculate the
values of RI for the simulations with heterogenous infection rate.
First, we calculate the probability that a susceptible cell become
infected when it is connected to an infected cell in the infection
layer. Because infected cells die after a fixed period of time τ = 1
day in the simulation, this probability can be calculated as ζ =

1− e−βτ = 1− eβ , whose mean, ζ , is given by:

ζ =

∫ ∞

0
ζP(β)dβ =

∫ ∞

0

(

1− e−β
) 1

Ŵ
(

k
)

θk
βk−1e−

β
θ dβ

= 1−
1

(1+ θ)k
.

Then, the value of RI is the product of ζ and the average degree

of the infection layer: RI = kIζ .

RESULTS

A Well-Mixed Model and a Network Model

With Two Random (ER) Graphs
We first focused on multiplex networks where both layers are ER
graphs as baseline models. In this framework, contacts between
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FIGURE 2 | The effectiveness of the IFN response under different assumptions and topologies of the network. In general, protection of susceptible cells by IFN

signaling, i.e., the IFN response considered in this study, works most effectively when viruses spread in a spatial manner (i.e., in the GR network). (A) The final sizes

(fractions) of cells that are infected (and ultimately dead) at the end of the infection, R(∞), in the homogenous mixing model (blue line; partly overlaid by the red line) and

the network models (in red, yellow, and black). Results are average of 1,000 simulations. (B) The final sizes (fractions) of cells that are protected at the end of infection,

P(∞), in the homogenous mixing model (blue line) and the network models (in red, yellow and black). The individual-cell effectiveness of the IFN signaling, RF is set to

seven. The network model with two ER graphs (results of the model with two independent layers are in red; results of the model with two identical layers are in yellow),

and the network model with two GR networks (in black). Lines denote analytical results derived in Huang et al. (20), whereas dots denote simulation results.

host cells (through viruses and IFNs) are random and there
is no spatial structure in the contacts. These assumptions are
reasonable for infections where cells move and contact with other
cells (through viruses and IFNs) roughly randomly, for example,
HIV infection in the blood. In our multiplex network model,
the topologies of the graphs in the two layers, i.e., the contact
structure between cells, can be explicitly modeled, in contrast to
well-mixed models or single-layer network models. This allows
us investigate how the IFN signaling through the protection layer
competes with virus infection through the infection layer at the
level of individual infected cells.

We considered two scenarios of the relationship between the
two layers, i.e., the topologies of the two layers are independent of
or identical to each other. We simulated the model and analyzed
how the fractions of infected and then dead cells (ameasure of the
size of total infected cells) and protected cells (R(∞) and P(∞),
respectively) changes with the infectivity of the virus (measured
as RI ; see Method). When the two layers are independent of
each other, the subset of target cells that an IFN molecule can
reach is independent from the subset that a virus (produced
from the same cell as the IFN molecule) reaches, and thus there
is no direct competition for target cells between viruses and
IFNs at the individual infected cell level. We found that the
predicted infection threshold value for virus infectivity, βc, i.e.,
the threshold value that viruses can cause sustained infection
in a host, is independent of the parameter that governs the
IFN protection of target cells, i.e., ϕ. On the other hand, when
the two layers are identical (i.e., a more biologically relevant
assumption), IFN molecules will reach to the same subset of
target cells as the viruses produced from the same infected cell.

In this case, the infection threshold becomes much larger than
the threshold in the absence of IFN response, suggesting that
IFN can prevent virus infection (the green line in Figure 2A). As
we showed previously, IFNs inhibit viral spread effectively when
IFNs reach the same subset of cells as viruses and thus reduce the
number of susceptible cells that an infected cell can infect (20).
Interestingly, these conclusions are similar to those in a previous
network modeling work analyzing the impact of the spread of
epidemic awareness on the transmission of infectious diseases
(21). Further, we found that when viruses can cause infection, i.e.,
β > βc, there is a sharp increase in the number of protected cells
(Figure 2B). This increase in protected cells prevents susceptible
cells from being infected and thus the proportion of infected cells
increases slowly with increases in RI (Figure 2A).

A Network Model With Two Spatial (GR)

Graphs—IFN Can Effectively Halt Infection

When Infection Is Spatial
For most viruses, initial viral infection events at the site of viral
entry are expected to occur at the peripheral tissue where host
cells are spatially structured. Spatial infection spread has also
been shown to be a prominent infection mode of many viruses,
especially for virus infections in the tissue (22–24). To evaluate
the effectiveness of the IFN response in tissue, we constructed a
multiplex network where the two layers are assumed to be GR
graphs (seeMethods). In the GR graph, we define nodes on a two-
dimensional space and a maximal distance (i.e., radius of virus
or IFN diffusion) such that an edge exists between two nodes
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FIGURE 3 | Visualization of simulations of the multiplex networks. (A) In the network with two ER graphs, most of the nodes are either infected and then dead (red) or

protected (green) at the end of infection. (B) In the network with two GR graphs, most of the nodes are susceptible (gray) at the end of infection. Protection of host

cells by the IFN signaling leads to an outer layer of protected cells that contain the infection at the local area of the initial infected nodes, i.e., the initial site of viral entry.

only if the distance between two nodes is shorter than the radius
of diffusion.

We simulated the model and found that strikingly, over a
large parameter range of virus infectivity (measured by R-I), IFN
protection of susceptible cells works much more effectively in the
GR network than in the ER network. As shown in Figure 2A,
the IFN response halts infection such that the total number of
infected cells are kept at very low levels for a much wider range
of virus infectivity. IFN protection also leads to a much lower
total number of protected cells in the GR network than in the
ER network (Figure 2B). This conclusion holds true as long as
the individual-cell effectiveness of the IFN signaling (measured
as RF ; defined in Methods) is sufficiently high, e.g., when
RF > RI (Figure S1).

To understand why IFN protection of target cells works
well in the GR network, we show two simulation realizations
using networks assuming two ER graphs and two GR graphs in
Figures 3A,B, respectively. In the network with two ER graphs
(Figure 3A), connections/links between nodes are random. As
a result, infection can propagate until most cells are either
protected or infected/recovered. In contrast, cells in the GR
network are connected only to neighboring cells in space. If the
IFN response is strong enough, the IFN signaling can build up
an outer layer of protected cells which effectively contains the
infection near the site of initial infection. As a result, most of
the cells (outside of the area of infection) stay susceptible without
being infected (Figure 3B). Overall, the results suggest that the
IFN response, i.e., the IFN signaling to protect susceptible cells,
works extremely effectively when the virus spread spatially, a
likely scenario for infections in tissues.

Robustness of the IFN Response to Virus

Infection in Tissue
The IFN response is a general response strategy employed by
different types of host cells to prevent or suppress infections of

a variety of viruses. This suggests that the IFN response works
efficiently and robustly in a wide range of host cell or tissue
environments. Here, we evaluated the robustness of the IFN
response against variations in two assumptions in our model to
understand how this collective host cell response work effectively
despite heterogenous host environments.

We first focused on one particular parameter that relates

to the host tissue environment in our model: the diffusion

coefficient of viruses and IFNs, i.e., the radius of the cell-cell

edges (contacts) in the GR network. Due to differences in the

viscosity of the fluid in the tissue and the layout of target

cells, the ratio of the IFN diffusion over the virus diffusion
and thus the ratio of the numbers of target cells they reach
may differ in different tissue compartments. Below, we evaluate

how the effectiveness of the overall IFN response changes with

changes in these ratios. In the analysis, we varied the radius
of the IFN diffusion in the protection layer (rF ; defined in

Methods), and assumed that the individual-cell effectiveness of
the IFN signaling, RF , is constant. In this way, when the radius
of IFN diffusion increases, the average degree of nodes in the
protection layer (kF) increases; however, the protection rate per
contact decreases. We explored how the final fraction of infection
R(∞) changes with the ratio of the radius of IFN diffusion
over the radius of virus diffusion, rF/rI . We found that there
exists an optimal ratio, such that the total fraction of infection
is minimized (Figure S2). Although the exact optimal ratio is
parameter dependent, generally it occurs when the ratio is >1,
i.e., the radius of IFN diffusion is similar or larger than the radius
of virus infection. In general, when RF > RI , there exists a
wide range of ratios of IFN diffusion over virus diffusion that the
IFN can suppress the virus infection below a very small fraction
(blue areas in Figure 4). This suggests that as long as the IFN
response is effective and diffuses similarly or faster than viruses,
the IFN response is in general robust against variations in the
IFN diffusion.
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FIGURE 4 | The effectiveness of the collective host cell IFN response is robust against variations in the ratio of the IFN diffusion over the virus diffusion in networks

with two GR graphs. (A) The final sizes (fractions) of cells that are infected (and ultimately dead) at the end of the infection, R(∞) (color) for different virus infectivity

(measured by RI ) and the individual-cell effectiveness of the IFN signaling, RF . The ratio of the average degree in the protection layer over the average degree in the

infection layer, kF/kI is one. (B,C) The same plots as panel A except that kF/kI = 10 and 20, respectively. In general, across the different ratios of kF/kI, the IFN

response effectively suppresses virus spread (low R(∞) values; blue areas in the plots) as long as RF > RI.

FIGURE 5 | Heterogeneity in host cell susceptibility reduces the total size of

infected cells. (A) The final sizes (fractions) of infected cells at the end of

infection [Average R(∞)], in a model using two identical layers of ER graphs.

Results are average of 1,000 simulations. Colored lines show simulations

assuming different levels of heterogeneities in host-cell susceptibility. The

heterogeneity is characterized by a gamma distribution with the shape

parameter k and scale parameters θ . Note, the lower the value of k, the more

heterogeneous the host cell susceptibility. (B) The corresponding final sizes

(fractions) of protected cells at the end of infection, P(∞), in simulations shown

in (A). (C,D) Similar plots as in (A,B), respectively, except that the model

assumes GR graphs in the network. The individual-cell effectiveness of the IFN

signaling, RF is set to seven. The average degree of the networks is set to 40,

such that the value of RI reaches 10 in simulations assuming k = 0.1 and

θ = 20.

In the analysis above, we assumed in the model that the host
cells are a homogenous population of cells; whereas in reality,
viruses typically infect a wide range of host cells and the host cells
likely exhibit widely different levels of susceptibility to infection,
e.g., as a result of heterogenous expression of receptors for viral

infection (25–28). To evaluate the consequences of heterogenous
host cell susceptibility to infection, we modified our model
simulation to assume that each cell has a susceptibility drawn
from a gamma distribution (instead of being the same), while
keeping the rate of protection by IFNs, ϕ, constant (seeMethods).
The simulation results using ER and GR networks show that in
general, the more heterogenous the host cell susceptibility (i.e.,
lower k values), the lower the final fraction of infection R(∞)
(Figures 5A,C). This is because when host cell susceptibility is
extremely heterogenous (e.g., the shape parameter k = 0.1 in
the gamma distribution in Figure 5), the infection is driven a
small fraction of highly susceptible cells. For the remaining large
fraction of cells, they are much less likely to be infected than
protected. Overall, this leads to a small fraction of cells being
infected, yet the fraction of protected cells P(∞) remains similar
across simulations (Figure 5). Therefore, the IFN response is
effective to suppress viral infection when the susceptibility of host
cells is heterogenous.

DISCUSSIONS AND CONCLUSIONS

Here, we use a multiplex network approach to show how
the collective host cell IFN response can effectively and
robustly halt/suppress virus spread especially when viruses
spread spatially. For a wide variety of viral infections, including
influenza infection (22), HIV infection (29), mosquito borne viral
infection, such as dengue (30) and zika (31), the site of entry
is at the epithelium where target cells for infection are spatially
arranged. The spread of viruses is thus expected to be a spatial
process, i.e., infected cells only further infect a finite number
of neighboring cells. We found that in this case, IFNs diffuses
and signal to susceptible cells further away from infection,
which builds up an outer layer of protected cells to contain
infection locally. We also found that the collective IFN response
is highly effective and robust against variations in parameter
values that represent heterogenous host environments. This
we argue is a property that allows the IFN response to be a
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general response employed by different types of host cells in
peripheral tissues to respond to a wide variety of viruses to
prevent viral establishment and invasion of a host at the initial
site of the infection.

During systematic infection, viral infection process can be
spatial or non-spatial. For viruses like HIV, infection in the
blood and in the lymph nodes occurs among host cells that
move around and contact each other randomly, the infection
process may be better modeled using a random (ER) network.
We show that in this case, the critical parameter that determines
the effectiveness of IFN protection of target cells is the similarity
between the infection layer and the protection layer (20). The
higher the similarity, the more effective the IFN response. The
IFN response can halt/suppress infection by directly competing
with viruses at each individual cell level such that the number of
target cells that each infected cell can infect is reduced. For many
other viruses, e.g., influenza virus (22, 24) and HCV (23, 32),
spatial viral spread may be prevalent throughout the infection
course, if not the only infection mode.

The findings of our study, especially that IFN response
is effective when infection spreads in a spatial manner, are
consistent with a wide range of in vivo and in vitro observations.
For example, imaging of liver biopsy from patients chronically
infected with hepatitis C virus (HCV) showed that HCV infected
cells form clusters and that IFN stimulated genes are highly
expressed in infected cells as well as the surrounding susceptible
cells. This strongly suggests effective IFN response to constrain
cell-to-cell spatial spread in the liver (23). In another study (33),
to understand the evolutionary trade-off of viral suppression of
the IFN response, Domingo-Calap et al. compared the spread of a
wild-type strain of the vesicular stomatitis virus to amutant strain
that stimulates stronger IFN response than the wild-type. Real-
time fluorescence microscopy showed that in contrast to a faster
and homogenous spread of the wild-type virus in monolayer
host cells, the mutant viruses spread slower and infected cells
form clusters. This again suggests that the IFN response triggered
by the mutant acts to constrain infection. Interestingly, when
the monolayer spatial structure of host cells is disrupted, the
mutant grew faster than the wild-type in well-mixed culture.
This is consistent with the results we show in this study
that spatial structure is a key determinant of the effectiveness
of the IFN response. Overall, these experimental observations
support our model predictions, and thus, our model serves a
useful tool to understand the quantitative principles of the IFN
response. These understandings may lead to development of
effective therapies/vaccines to prevent virus transmission and
infection (5–8).

Overall, our results suggest that considering the topology
of the spreading process is critical to the understanding and
prediction of the impact of collective IFN response arising from

host cells. Therefore, experimental studies that examine the
contact structure and topology for an infection process would
help to parameterize the model to make precise predictions. Here
our work considered two distinct scenarios of the topology of
the spreading process, i.e., the random (ER) network and the
spatial (GR) network. An actual infection in vivo may involve
both spatial and non-spatial contacts. For example, it has been
shown HCVmostly spread to neighboring cells, forming clusters
of infected hepatocytes in the liver; while it is also able to
have a long-range dispersal to hepatocytes through blood flow
(23, 32). Similar patterns of foci of infection are also observed
for influenza virus (22). Further work is warranted to consider
network structures that incorporate both spatial spread and
random spread, and evaluate the effectiveness of IFN response
in those settings.

Given that the IFN response is a highly optimized and highly
effective general response against viruses (2), we argue that the
strategies employed by IFN and the results derived from this
work could shed light on or lead to solutions to problems in other
disciplines. For example, network models are frequently used in
themodeling of epidemics to understand how infection dynamics
or control strategies are impacted by network topologies (34–
36). Furthermore, we speculate that the understanding of the
population IFN response may lead to bio-inspired strategies for
controlling rumor spreading in social networks or cyberattacks
in computer networks.
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The molecular events leading to differentiation, development, and plasticity of lymphoid

cells have been subject of intense research due to their key roles in multiple pathologies,

such as lymphoproliferative disorders, tumor growth maintenance and chronic diseases.

The emergent roles of lymphoid cells and the use of high-throughput technologies have

led to an extensive accumulation of experimental data allowing the reconstruction of

gene regulatory networks (GRN) by integrating biochemical signals provided by the

microenvironment with transcriptional modules of lineage-specific genes. Computational

modeling of GRN has been useful for the identification of molecular switches involved

in lymphoid specification, prediction of microenvironment-dependent cell plasticity, and

analyses of signaling events occurring downstream the activation of antigen recognition

receptors. Among most common modeling strategies to analyze the dynamical behavior

of GRN, discrete dynamic models are widely used for their capacity to capture molecular

interactions when a limited knowledge of kinetic parameters is present. However, they

are less powerful when modeling complex systems sensitive to biochemical gradients.

To compensate it, discrete models may be transformed into regulatory networks

that includes state variables and parameters varying within a continuous range. This

approach is based on a system of differential equations dynamics with regulatory

interactions described by fuzzy logic propositions. Here, we discuss the applicability

of this method on modeling of development and plasticity processes of adaptive

lymphocytes, and its potential implications in the study of pathological landscapes

associated to chronic diseases.

Keywords: lymphocytes, chronic diseases, boolean, fuzzy logic, computational modeling

1. INTRODUCTION

The extensive accumulation of data from short and large-scale experiments involving a wide
spectrum of biological functions of B and T lymphocytes in both, normal and pathological
scenarios, has inspired an intensive research on molecular events leading to their early
development, plasticity and emergency differentiation. As a result, the construction of regulatory
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networks has become a resourceful tool for the systems-
level analyses of cell fate decisions through interconnection
of molecular elements, such as biochemical signals provided
by the microenvironment (e.g., cytokines, growth factors,
transmembrane ligands, antigens, etc.) and transcriptional
modules underlying the regulation of lineage-specific gene
expression. Getting insights into the dynamical behavior of
regulatory networks in biology requires simulation as continuous
or discrete models (1). Discrete modeling, represented by
Boolean and multi-valued network models, has been useful in
differentiation processes of adaptive B and T lymphocytes (2–
8), for molecular switching in cellular specification (9), for
the prediction of microenvironment-dependent cell plasticity
(6, 10), and for the analyses of signaling events occurring
downstream activation of antigen recognition receptors (11,
12). Moreover, Boolean algebra has been used in cytometry to
create combined gates for the identification and selection of
cellular subsets and lymphoid phenotyping (13). Nevertheless,
the utility of discrete models is limited as they cannot
predict outcomes from quantitative biological experiments when
working on phenomena sensitive to graded expression of
transcription factors or biochemical gradients. This is the case
of most diseases where lymphocytes are involved and non-
discrete fluctuations in the microenvironment may influence cell
differentiation and plasticity, affecting immune responses at the
progression of chronic pathologies, such as lymphoproliferative
disorders, tumor growth, diabetes, cardiovascular, and chronic
respiratory diseases, among others. Discrete models might be
then transformed into differential equations to allow a dynamical
analyses of regulatory networks, as transformed continuous
models, with potential implications in lymphoid cell- associated
pathologies (14–17).

Here we propose the fuzzy logic transformation of a
discrete model into a continuous model to compensate
their disadvantages and to simulate biological systems with
a well-known network architecture strongly influenced by
concentration-dependent cues (Table 1).

2. DISCRETE MODELING OF LYMPHOID
DIFFERENTIATION LANDSCAPE

2.1. Boolean Interpretation of Molecular
Data
To deeply understand the gene regulatory processes involved in
cellular development, C. H. Waddington introduced in 1957 the
metaphoric concept of epigenetic landscape (18). He proposed
a unique perspective of cellular development as a ball rolling
down within a landscape formed by peaks and valleys. Following
its trajectory, the ball may finally fall into a valley, representing
its final position that defines a steady-state -and a cellular fate-,
also known as attractor. Waddington’s epigenetic landscape was
formalized, among others, by S. A. Kauffman, who studied the
behavior of large networks of randomly interconnected binary
“genes” with a dichotomous (on-off) behavior, establishing the
principles of Booleanmodeling (19). The assumption of a discrete
transcriptional regulation was further investigated in Drosophila

embryogenesis, showing that the gradient of Bicoid morphogen
resulted from averaging binary states of transcriptional activity,
active or inactive, at individual nuclei level (20).

The general system’s behavior and the number of attractors
of a Boolean or multi-valued regulatory network depends on
topological characteristics, such as the number of components
and the degree of interconnectivity among them. It is now
recognized that biological networks are scale-free systems, which
means that the nodes have a high diversity of number of edges,
including few elements with many links and many elements
with few links (21, 22). Scale-freeness provides, among other
attributes: network robustness, better information spreading
performance, and the property that the number of attractors is
almost independent from the number of nodes (23, 24).

Mathematical modeling based on Boolean regulatory
networks (BRN) provides meaningful qualitative information
on the basic topology of relations that determine alternative
cell fates and may be used for the analysis of biological circuits
without requiring explicit values of the network parameters.
In this type of approach, the network nodes represent genes,
transcription factors, proteins mediating signaling cascades,
RNA, environmental factors, etc., and links representing positive
or negative regulation between pairs of nodes. The state variable
of each node takes a discrete value of 0 (inhibited, or inactive) or
1 (expressed or active) (1). The state of each node at time t + 1 is
specified by a dynamic mapping that depends on the state of its
regulators at a previous time t:

qk(t + 1) = Fk
(

q1(t), ..., qn(t)
)

(1)

where Fk is a discrete function representing a logical proposition,
also known as Boolean rules, constituted by elementary terms
related by the logical connectives: AND (∧), OR (∨), and
NOT (¬). Logical propositions satisfy Boolean’s axiomatics,
which complies associativity, commutativity, distributivity,
absorptivity, and identity. The discrete nature of the truth
values involved in Boolean logic propositions implies that this
approximation is not always enough to investigate the enormous
variability inherent to biological processes.

The dynamics induced by the Boolean mapping is completely
determined once a set of initial expression values of the network
components is specified. From a given initial set, the network
nodes iteratively update their value based on the Boolean transfer
rules until eventually reaching a steady-state determined by
condition qk(t + 1) = qk(t). This latter condition specifies
a fixed-point attractor. Then, the dynamics of a model is
evaluated by tracking the trajectories from all the possible initial
configurations in the states space toward the attractors. The
size of the states space of a model is given by �= 2n where n
is the number of nodes in the network. Alternatively, a cyclic
attractor associated to the condition qk(t + N) = qk(t) may also
arise after the simulation of some regulatory networks, where
the integer number N signals the period of the attractor. Cyclic
attractors are generally interpreted as oscillatory behaviors and
are sustained by at least one negative feedback circuit in the
network topology, which involves an odd number of inhibitory
interactions (25). This type of attractors can be directly associated
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TABLE 1 | Mathematical dynamic modeling subtypes: advantages and disadvantages.

Dynamic modeling Advantages Disadvantages Type of application

Discrete • Simulation of large-scale biological systems (e.g.,

hundreds of components).

• Simulation of biological systems with scarce

knowledge of kinetic parameters and mechanistic

details.

• Useful for qualitative dynamic descriptions of

system behaviors.

• Large quantities of qualitative information

available in published literature and

high-throughput experiments.

• Assumption of discretization for all components of the

system.

• Attractors are hardly comparable to experimental

information that contains graded expression or

activation of the system’s components.

• The dynamic simulations occur in terms of

“computational” time-steps.

Simulation of GRNs (e.g.,

differentiation, normal-malignant

transition).

Conventional

continuous

• Useful for modeling biochemical reaction

systems.

• Output data is comparable to experimental

quantitative information (e.g., signaling pathways

activation or proportions of cellular populations).

• Model dynamics can be simulated and

interpreted in terms of real time units.

• Demands high mathematical knowledge for the proper

construction and simulation of an equation system.

• Requires sufficient kinetic and mechanistic details

(e.g., synthesis and degradation rates).

• Computationally heavy as more features and

components are incorporated.

• The resultant models and the hypothesis derived from

them, are tightly specific to the system from which the

kinetic parameters are derived

Biochemical reaction systems.

Continuous

fuzzy logic

• Do not require profound kinetic and mechanistic

knowledge, but allows the incorporation of

quantitative information to implement a hierarchy

of characteristic expression times among the

network components.

• The components of the system can have a

continuous range of values.

• Useful to simulate large biological systems

that include signaling or regulatory sub-networks

with scarce kinetic data available.

• The value taken by each component ranges between

1 and 0, which would relate it more to a degree of

activation or expression, more than to a real

concentration.

• As with Boolean modeling, the accuracy of fuzzy logic

models is limited by the availability of kinetic and

mechanistic information.

Graded signals linked to a GRN

(e.g., cytokines influencing

cellular fates) influencing gene

regulatory networks.

to biological events, for example, in models predicting cell
cycle oscillations (26–28) or, sometimes they can be interpreted
as intermediate or oscillatory activations in multi-valued and
Boolean differentiation models, as has been reported with T cell
attractors (7, 29). Each fixed-point and cyclic attractor is reached
from a number ω of different initial conditions. The parameter ω

denotes the size of the attraction basin which may be visualized
as a ratio of areas in the epigenetic landscape. Consequently, the
probability that a steady state is expressed is given by p = ω/�.

To briefly exemplify how a Boolean model is constructed we
used the information compilated by Bhattacharya et al. (30) of
the transcriptional core orchestrating the terminal differentiation
of B cells into antibody-secreting plasma cells upon antigenic
stimulation. The transcription factors to be considered were
Pax-5, Bcl-6, and Blimp-1. Construction of the gene regulatory
network and the Boolean transfer rules are based on evidence
showing the existence of a mutual repression by Bcl-6 and
Blimp-1, as do Blimp-1 and Pax-5, establishing a system with
two double-negative feedback loops. Pax-5 and Bcl-6 are two
transcriptional factors of high expression in B cells, down-
regulated by Blimp-1 after its AP-1 mediated activation. In
turn, AP-1 is phosphorylated downstream B cell stimulation
with lipopolysaccharides. Beside the direct inhibition of Blimp-
1, Bcl-6 can also act as a passive repressor through its binding
to AP-1, blocking its transcriptional activity (Figure 1A). Such

information is sufficient to predict two fixed-point attractors
interpretable as B-cell and plasma cell configurations. The
presence of at least one positive loop containing an even number
of inhibitory regulations is necessary for the generation of
multiple steady states (25). This type of models has been useful
to merge independently published data from different molecular
circuits involved in cellular specification, to probe how these
circuits orchestrates differentiation, and to generate new testable
hypothesis on missing interactions or cellular transitions.

2.2. Genetic Regulatory Networks
Underlying Lymphoid Specification
As of the discovery of HSCs by Ernest A. McCulloch and James
E. Till in the 1960s, the hematopoietic system has served as the
most recurrent biological model for the study of stem cell biology
and differentiation. For many years, the differentiation process
was represented as a hierarchical dichotomic model of strict
myeloid/lymphoid branching. However, multiple observations
mostly based on single cell experiments have challenged this
classical view and introduced cell differentiation as a process of
continuous transitions directed by two events running in parallel:
the gradual commitment through the acquisition of lineage-
specific features and the gradual lost of potential to generate cells
of a different lineage (31–36) (Figure 1B).
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FIGURE 1 | (A) Boolean modeling of the transcriptional core regulating naive B cell to plasma cell (PC) differentiation. Inhibitory and activation interactions are

represented in the network with truncated red lines and green arrows, respectively. (B) Epigenetic landscape of hematopoietic differentiation where valleys represent

stable cellular states, however other cellular phenotypes may be represented as transitory stages. HSC, hematopoietic stem cell; MPP, multipotent progenitor; CMP,

common myeloid progenitor; LMPP, lymphoid-primed multipotent progenitor; MEP, megakaryocyte/erythroid progenitor; MegP, unipotent megakaryocyte progenitor;

GMP, granulocyte/macrophage progenitor; CLP, common lymphoid progenitor; NK/ILC, natural killer/innate lymphoid cell; ALP, all-lymphoid progenitors; BLP, biased

lymphoid progenitors; ETP, early thymic progenitor; DN, double negative; DP, double-positive.

In the metaphorical Waddington’s view, the cell type
positioned in the “summit” of the hematopoietic epigenetic
landscape is the hematopoietic stem cell (HSCs) population,
which resides in specialized niches within the bone marrow.
Early specification begins upon “ball rolling” from the HSCs to
the multipotent progenitor (MPP) attractors, either committing
to myeloid or lymphoid lineages by differentiating into
common myeloid progenitors (CMPs) or lymphoid-primed
multipotent progenitors (LMPPs), respectively (37–39). As more
is deciphered on the transcriptional network underlying the
lymphoid differentiation, more is discovered about intermediate
steps and novel transitional cell subpopulations. It is now well-
known that LMPPs contain a mixture of myeloid and lymphoid-
restricted progenitors, including early lymphoid progenitors
(ELPs), giving rise to common lymphoid progenitors (CLPs),
endowed with the ability of generating all types of adaptive
and innate lymphocytes without noticeable myeloid potential,
and some categories of dendritic cells (DCs) (40–50). The
CLP population bisects into all-lymphoid progenitors (ALPs)

and B-cell-biased lymphoid progenitors (BLPs) (44) that
predominantly generate T and B lymphocyte precursors,
respectively. From the ALP pool, some circulating progenitors
reach the thymus and differentiate into early thymic progenitors
(ETPs), progress to CD4/CD8 double-negative 2 cells (DN2)
and DN3 cells. CD4/CD8 double-positive (DP) cells are then
produced before differentiation toward CD4 or CD8 single-
positive (SP) T effector cells (51). B cells reach also a partial
maturation in the bone marrow (BM), following a series of
sequential differentiation steps from prepro-B, pro-B, early pre-B
and pre-B stages, where the rearrangement of immunoglobulin
heavy-chain (IgH) genes takes place and results in the expression
of the pre-B-cell receptor (pre-BCR). Downstream the pre-
BCR activation and the signaling cascade deriving in a clonal
expansion and the subsequent cell cycle arrest, a second
wave of recombinases Rag1 and Rag2 expression induces
the rearrangement of the immunoglobulin light-chain (IgL),
marking the transition from pre-B-cell to immature B cells (44,
52, 53). Uponmigration to the secondary lymphoid organs, T and
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FIGURE 2 | Cellular attractors and transitions from the hematopoietic landscape reproduced through discrete modeling. Each color represents an independent article

of hematopoietic discrete modeling, black arrows represent the direction of hematopoiesis toward the myeloid and lymphoid lineage. White nodes represent predicted

phenotypes that have not been associated to experimental findings.

B lymphocytes are exposed to antigens and signals provided by a
number of immune cells in the microenvironment.

Even though differentiation transitions are now recognized
as continuous processes, commitment to stable phenotypes is
dependent on molecular switches that act as lineage-determining
steps, what has made the differentiation process a target
for its simulation through discrete models. More specifically,
hematopoietic differentiation has been approached with discrete
models at many levels (Figure 2), from the top of the epigenetic
landscape hill sloping down to the final stages of mature
cells production. The main type of information provided by
the construction and simulation of BRN is obtained after the
confirmation of the functional integration of the proposed
components. This generally occurs validating the attractors and
transitions with previous experimental observations. To compare
with experimental data, Booleanmodels are subjected to different
types of perturbations including permanent mutations (e.g.,
gene knock-out or overexpression), or temporal changes in the
nodes activation value which can be understood as triggering
cues for network state transitions. An example of this type of
evaluations is the case of the hematopoietic stem/progenitor
(HSPC) network model generated by Bonzanni. The HSPC
model contains ten genes expressed in the immature stem cell
population besides GATA1, which is expressed in the early
progenitor MPP (2). The dynamic simulation of the HSPC
network generated two single state attractors, one with an
erythroid cell profile, and one with a non-hematopoietic cell
profile with all genes turned-off, as well as a periodic attractor

composed of 32 interconnected states with oscillatory activation
values for four genes (Gata2, Zfpm1, Erg, and Eto2a) compatible
with single cell gene expression data from HSPCs (54). The
activation state of one or more genes in the states comprising
the HSPC complex attractor were modified to compute the
dynamic transitions and mapping the developmental route from
HSPC toward erythrocyte, granulocyte, monocyte, natural killer
(NK), B cell, CD4, or CD8 T cells profiles (55). This type of
evaluation provided information about the stability of the HSPC
attractor, the type of genes involved in the developmental route
considering those that trigger differentiation, and the suggestion
that there were missing interactions or components that avoid
differentiation reversal.

Furthermore, the myeloid/lymphoid branching has been
addressed through the assembly of a GRN integrating 23
nodes that, when computed using a logical multi-valued
formalism, produced four stable stages corresponding to CLPs,
B-lineage cells, granulocyte-monocyte progenitors (GMPs) and
macrophages (9). As previously discussed, even the network
assembling may constitute a useful mechanism to propose
novel interactions. This was the case with this model, by
envisioning three missing regulations: negative regulation of
C/EBP(α) transcription by Foxo1, E2A activation by Ikaros,
and Gfi1 positive regulation by Pax-5. Moreover, the model
was useful to explore molecular mechanisms of transient
induction of the transcription factor C/EBP that down-regulates
the transcriptional core of B cell specification and promotes
an irreversible trans-differentiation toward macrophages. The
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theoretical findings complemented the results of a previous
experimental report where B cells were transdifferentiated into
macrophages by the enforced expression of C/EBP and C/EBP,
but without a full understanding on the molecular steps leading
to the loss of early and late lymphoid markers and acquisition of
myeloid-specific genes (56). Predictions from these models and
their perturbations might be useful to unravel the pathobiology
of diseases where neoplastic cells concomitantly express myeloid
and lymphoid markers (57–61). Also, early branching models
may help to deepen the research on plasticity-related processes,
such as those suggested to be involved on leukemia lineage
switching and relapse (62, 63). It has become of particular
interest the integration of microenvironmental cues capable
of influencing and regulating transcriptional cores, particularly
to approach the two-way feedback between cells and their
surrounding microenvironment.

2.3. Microenvironmental Modulation of
Lymphoid Differentiation and Plasticity
The applicability of discrete models seems to be simplistic
but their scopes are expanding in parallel with the knowledge
on cellular heterogeneity and plasticity. Their flexibility for
the analysis of biological systems integrated with multiple
types of molecular events makes them a useful tool for
evaluation of different microenvironments that consider the
modulation of genetic and signaling networks. Molecules,
such as integrin, cytokine, or antigen receptors, might be
included in computational models as they are involved in
maintaining particular hematopoietic compartments, enhancing
proliferation, regulating apoptosis or migration, or guiding
differentiation to either one phenotype or another. As previously
mentioned, some of these processes become discrete cellular
decisions with a bi-modal behavior as a result of the
combined effect of their connectivity in molecular networks and
noise (64–66).

Early logical mathematical approaches for modeling
lymphocyte behavior upon antigen exposure preceded the
development of networks that connected intracellular events
regulating the cellular fates of hematopoietic progenitors
and lymphocytes (67, 68). However, as the different subtypes
of lymphocytes were discovered, efforts focused on the
reconstruction of the GRN underlying the emergence of mature
phenotypes in response to variable microenvironmental factors
under normal and pathological conditions. The first model of
lymphoid differentiation branching using a discrete perspective
resulted from the transformation of a previous continuous model
based on Hill functions describing the polarization of naive Th
cells (Th0) into Th1 or Th2 cells (69). The Boolean version
proposed by Mendoza (3) integrated 17 nodes and replaced
the transcription factor Gata-3 positive self-feedback loop in
Yates’ model (70) with a more refined functional feedback circuit
engaging Gata-3 and interleukin-4 (IL-4) (71). The activation of
this functional circuit characterizes the Th2 cell subtype (72, 73).
Besides recovering the Th0 polarization into Th1 and Th2, the
model was able to describe the transition between Th1 and Th2
attractors by the stimulation with IFN, IL-4, or the combination

of IL-12 and IL-18. Later on, the model was extended to include
novel transcription factors, cytokines, and signal transduction
molecules to describe additional fates to T regulatory (Treg)
and Th17 cells (29). More refined molecular data has resulted
in the reconstruction of larger versions and their simulations,
predicting a larger repertoire of Th cell subsets including Tfh,
Th9, Treg, iTreg, Th9, Th17, Th22, and T regulatory Foxp3
independent cells (6, 7, 74).

B and NK cells have been less studied by mathematical
modeling. During terminal B cell differentiation in the germinal
centers of secondary lymphoid organs, the exposure to particular
environmental factors, including the antigen-mediated activation
of the B-cell receptor (BCR), defines the transition of the naïve
B cell to a memory cell or an antibody-producing plasma cell.
This terminal differentiation of B cells has been simulated as a
Boolean model that recovered four cellular profiles: naive B cell
before and after arriving to the germinal center (GC), memory
cell (MC) and plasma cell (PC) (8). The B cell model reproduces
not only the expected cellular attractors, but also the transitions
with biological significance. Of note, it predicts four interactions
that have not been declared experimentally but are suggested
through indirect mechanisms: two self-feedback loops involved
in Pax5 and Bcl6 activation, the positive regulation of Bcl6 by
Pax5, and the inhibition of Pax5 by Irf4.

On the other hand, NK cell biology has been recently
approached by a Boolean model providing a CLP attractor that
transits toward pro-B, early T progenitor, or three different
subtypes of NK attractors, depending on the activation pattern
of IL-7, IL-15, and Delta ligand (75). NK cell subsets are
characterized by differential expression of the transcription
factors T-bet and Eomes. The NK attractor reached after CLP
is stimulated with IL-15 activates both transcription factors
and correlates with highly cytotoxic NKs both, in humans and
mice periphery. On the other hand, perturbation of the CLP
attractor with combined activation of IL-15/IL-7 or IL-15/Delta
ligand, leads to a T-bet- Eomes+ profile correlating with BM
NKs or T-bet+ Eomes− compatible with liver NKs (76). The
incorporation of more transcriptional regulators may lead to new
hypothesis about the branching step between NK cells and the
more recently described, innate lymphoid cells (ILCs). It has
been purposed that CLPs transition to NK lineage may have
an intermediate step of a common progenitor for NKs and
ILCs with a probable expression of transcription factors shared
by both lineages, such as Nfil3 and TOX (77). In contrast to
adaptive lymphocytes, the knowledge on transcriptional circuits
controlling ILC development remains limited, although their
role in the orchestration of immune responses has become
of particular interest. ILCs are enriched in mucosal tissues
and have been correlated with the progression of allergic,
gastrointestinal, and central nervous system inflammatory
diseases, like inflammatory bowel disease (IBD) and multiple
sclerosis (78, 79). Similar to T lymphocytes, ILCs show plasticity
under microenvironmental challenges modifying their cytokine
secretion patterns and in consequence, the response exerted by
other cells of the immune and adaptive branches (80).

The continuous integration of data, an inevitable process to
improve computational modeling of biological systems, leads
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to the generation of large and complicated networks. To
facilitate their analysis, large networks can be subjected to model
reduction, a process of iterative removal of particular nodes
and redirection of the logical rules that ideally, preserve the
reachability of the attractors while keeping the main dynamical
properties (29, 81, 82). Model reduction considers that, in a
number of cases, a central core of nodes drives the dynamics of
other dependent nodes. One of the simplest methodologies to
drive model reduction (16) consists in excluding from the steady-
state computation those nodes that follow linear downstream
pathways. For example, the consecutive rules q3(t + 1) =

q2(t) and q2(t + 1) = not q1(t) may be transformed into
q3 = q2 = not q1, so that the state of q1 automatically
determines q2 and q3. A more elaborate example would be
q5(t + 1) = q4(t) and

[

q4(t) or q3(t) or not q2(t)
]

which leads to
q5 = q4 and

[

q4 or q3 or not q2
]

; using the Boolean absorption
rule a and (a or b) = a, this expression is finally transformed
to q5 = q4. In this latter case, the steady state of q5 is merely
determined by q4, independently of the state of q3 and q2 which
appear in the original rule. Furthermore, model reduction is
a useful tool to identify regulatory cores or redundant signal
transduction pathways, reduce the states space and obtain
qualitative data comparable to experimental results (83–85). An
alternative to deal with networks whose size complicates the
exhaustive analysis of their state space, consists in the evaluation
of cellular transitions assessed with a computational technique
known as model checking (6). Model checkers are based on the
transformation of states space into graphic or symbolic structures
that facilitate verification of properties and trajectories, allowing
fate mapping of all possible cell transitions and emerging as
a potent predictive tool for cellular plasticity under multiple
microenvironmental contexts.

The role of the microenvironment in lymphoid differentiation
is successfully implemented in the reviewed models by
considering the hypothesis that cytokines are either absent
or present, and do not care about graded availability. Other
models integrate assumptions to simulate signal processing and
propagation using a discrete model, such as the models of the
downstream events occurring after the activation of the T-cell
receptor (TCR) (11, 12). Saez-Rodriguez et al., based a Boolean
model in a large network of 94 nodes and considered that some
signaling events occur in a different timescale, so that logical
rules were updated in a first and second wave depending on the
molecular nature of the event. From the attractors resulting after
the simulation, the authors made predictions about the signaling
cascade activated by the receptor engagement and confirmed
them experimentally. The implementation of two updating waves
is a way to recognize that the cellular events occur in different
timescales, for example biochemical reactions occurring in the
cytoplasm (e.g., molecular inhibition by phosphorylation) are
faster than the transcriptional modulations (e.g., transcription
factor translocating to the nucleus and binding to a gene
promoter that will be activated). Even though their utility, it
is necessary to recognize that Boolean models are sometimes
insufficient, particularly when there is enough data about the
continuous concentration of a biomolecule determinant for the
process that is being modeled.

The study of chronic diseases has strongly influenced the
understanding of how slight changes derive in the complete
perturbation of complex biological systems. If it were desired
to simulate the way in which the progressive accumulation
of pro-inflammatory factors in the intestinal tract perturb the
proportions of T cell populations, the use of Boolean models
would be of very limited use to investigate the transitory stages
between the healthy attractor and a pathological attractor, like in
IBD (78).

3. MODELING OF CONTINUOUS
VARIABLES TO STUDY LYMPHOCYTE
DIVERSITY

Modeling lymphoid cells production or activation may require
the integration of molecules involved in dosage-dependent
effects, as is the case of ligand-receptor affinities, cytokine
gradients and even some transcription factors like C/EBP and
PU.1 (9, 56). As suggested by the number of publications,
continuous mathematical models are the most recurrent tool
for the study of lymphocyte development and response and
are useful tools to evaluate population dynamics and receptor
repertoire (86–89).

However, most time parameters are fitted to experimental
data without a deep understanding of molecular mechanisms,
unless enough kinetic and biochemical information is available.
Some cellular processes involving dosage variations may still be
simulated with discrete approaches using multi-valued models or
probabilistic Boolean networks, but there exist other alternatives
to integrate discrete and continuous molecular events like
the construction of hybrid and fuzzy models. On one side,
hybrid models have been applied to simulate the activation
of Th and B lymphocytes by DCs, and their subsequent
departure from the lymph node. The cellular entities and the
replication steps were modeled in terms of discrete variables,
while the migration was simulated by means of differential
equations involving continuous variables and parameters (e.g.,
chemokines concentration and diffusion, cellular velocity) (90).
On the other side, Boolean models may be transformed to
continuous systems using fuzzy logic (5, 8, 15–17, 91, 92).
These approaches may be useful to use existing GRN of
lymphoid differentiation and activation to model complex
scenarios that involve intercellular communication among
immune cells, interaction of immune cells with normal or
pathologic tissue, and immune cell population transitions in
response to microenvironment remodeling.

3.1. Dosage Variations in Multi-Valued and
Probabilistic Models
The molecular pathways participating in TCR signaling have
been successfully modeled with a set of differential equations.
The first step for T lymhpocytes activation involves a process
known as ligand discrimination that differentiates between weak
and strong binding antigens. After TCR engages with peptides
processed and expressed on the surface of antigen-presenting
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cells, a well-regulated discrimination between self and non-
self antigens is triggered. The simulation of TCR activation
as a continuous model suggested that the MAPK cascade is
the responsible for this discriminatory engagement process.
A negative feedback loop that modulates the TCR response
until an ERK activation threshold is reached may take place,
resembling a bimodal behavior (93). The model was expanded
to answer the question of how stochastic variations of protein
expressions among a clonal population of CD8 T cells could affect
their responsiveness. Variations on the expression of CD8 and
two components of the MAPK signaling pathway, ERK-1 and
SHP-1, generate dispersion in responsiveness among individual
cells, but the co-regulation of CD8 and SHP-1 restrain the
phenotypic variability (94). It was later discovered that the ligand
discrimination process influences T cell differentiation to Treg
or Th phenotypes through the downstream modulation of PTEN
and Akt/mTOR signaling pathways (95, 96). To represent a
weak or strong ligand affinity, a multi-valued model was useful
allowing three possible activation levels of TCR and PI3K nodes
(off= 0, low= 1, and high= 2). The computational simulations
of the model corroborated that low TCR signal favors Treg
differentiation, while a stronger signal result in the induction
of Th profile (97). Additionally, varying the number of rounds
or time-steps for TCR activation, as an approach for ligand
binding lifetimes, showed that the Th phenotype is more rapidly
stabilized than a Treg profile, suggesting that the transition from
naïve to Treg cells is less direct than the Th differentiation.
The generation of Treg cells goes through intermediate stages
during which the secretion of IL-12 is promoted and activates
the PTEN signaling pathway that enables Foxp3 permanent
activation (97). Under high TCR signaling, Foxp3 is transiently
activated but further turned off bymTOR pathway, while the Akt-
dependent regulation of T cell fate choice is also dependent on the
differential phosphorylation of additional proteins (98). There
are ongoing studies focused on the blockage of TCR signaling by
some pathogens like Yersinia pseudotuberculosis (99).

To deepen in the composition of the microenvironmental
patterns affecting the diversity of T lymphocytes, a probabilistic
Boolean control network (PBCN) was developed for simulation
of all possible microenvironments combining nine external
signals including TCR activation, TGF-β and IFNγ cytokines,
and six interleukines. In contrast with conventional Boolean
models, PBCNs contemplate activation probabilities as an
approach to input dosages, increasing the range of testable
microenvironments (74). Experimental research on T
lymphocytes diversity has led to the discovery of intermediate
phenotypes that co-express lineage-specific transcription factors
from more than one T cell subset, such as Th1-Th2 and
Th1-Th17 cells identified on bacterial and parasitic infection
(100–102). Through a sensitivity analysis of the PBCN the
minimummicroenvironment requirements have been identified,
on composition and dosage, for the description of each of the 10
T cell profiles. In addition, they have been used to predict the way
in which different input patterns influence the internal balance
determining the phenotype of canonical and complex cellular
profiles, such as cells with mixed phenotypes. With a continuous
model constructed to simulate iTreg-Th17 differentiation, Hong

and collaborators reported a double expressing phenotype with
either regulatory or dual (regulatory and proinflammatory)
functions in vivo. This mixed phenotype is suggested to be a
stable state reached from the transition of single-expressing
cells, iTreg and Th17. Th17 and iTreg cells are able to produce
TGF- which may either increase the percentage of both types
of cells, or induce the transition from single-expressing to
double-expressing cells. The iTreg-Th17 model was also used to
analyze how different concentrations of TGF- influence the rate
of co-existing cellular subtypes, making evident that priming
factors not only drive differentiation events, but also promote
cell heterogeneity (103).

The models presented in this section have different
limitations. Themulti-level and probabilistic models do not allow
the integration of temporal hierarchies in the events involved
in the biological system of interest, particularly important
when modeling more than one type of cellular processes. The
continuous model includes a limited number of components
depending on the availability of kinetic parameters or enough
information to establish assumptions. As an alternative, fuzzy
logic can merge large transcriptional regulatory networks
participating in cell differentiation and plasticity, with qualitative
knowledge about the kinetics of signaling pathways involved in
the transduction of microenvironmental variations, for example,
events proceeding relatively faster than others, or ligands binding
to receptor above other ligands.

3.2. Continuous Simulation of Discrete
Differentiation Networks
Extracellular signals and some intracellular components are
continuous variables and their adequate representation in
mathematical models may determine the simulation of lymphoid
cellular fates like differentiation, phenotypic transitions and
activation. The transformation of discrete models to a set of
differential equations is useful to identify additional attractors
and unstable states with biological relevance. In a comparison
between Boolean and continuous simulation of a B cell terminal
differentiation network, the continuous counterpart provided
three additional stable states with intermediate values of Bcl-
6 and/or Irf4; however, only one of them was comparable
with a previous reported phenotype that may correspond to
the centrocytes found during the germinal center selection (8,
104). This intermediate phenotype together with centroblasts,
are particularly important in the study of follicular lymphomas
characterized by an accumulation of cells unable to reach
terminal differentiation stages.

In comparison with Boolean models, the computational
simulation of continuous fuzzy models is simpler and
in consequence faster, thus allowing the integration of
independently developed BRN without caring a lot about the
number of resultant equations. An example is the T/B lymphoid
differentiation model of 81 equations representing cytokines and
transcription factors that lead to ten attractors with Th0, Th1,
Th2, Th17, Treg, cytotoxic T lymphocyte, DP T lymphocytes,
CD8 T naive, naive B cell, and PC profiles (105). The attractors
obtained by the continuous model show a higher compatibility
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with experimental data than previous discrete models. In this
case, all the attractors display intermediate values for Ikaros, Gfi1,
and PU1. For each of the three transcription factors there exists
strong evidence that associates this intermediate expression with
the delimitation toward lymphoid lineage during hematopoietic
differentiation (106–108). The intermediate modulation of PU1
and Ikaros was also reproduced with a different continuous
model of B-lymphocyte lineage commitment, evidencing
their participation in the transcriptional core that reproduces
the irreversible transition from LMPP to lineage restricted
progenitors expressing IL-7R (109).

An additional application of fuzzy logic models is
the simulation of virtual cultures where independent
GRNs, representing multiple cells, may interact with
a microenvironment expressing graded and dynamic
concentrations of cytokines. A virtual culture of T lymphocytes
was proposed by Mendoza to evaluate the evolution of 100
cells with an initial Th0 configuration after being stimulated
with IFN, I-4, TGF alone, or TGF in combination with IL-6.
The phenotype of each cell was determined by the activation
state of each of the 36 nodes integrating the internal Th
differentiation network, in turn, regulated by 11 cytokines
produced depending on each cellular profile (Th0, Treg, Th1,
Th2, and Th17). The produced cytokines involved endocrine
and paracrine signaling to evaluate the final balance of the
T lymphocyte subpopulations arising from different types of
stimulus (91). This particular implementation is computationally
expensive, but represents a more realistic approach to analyze
the interaction between heterogeneous populations of immune
cells susceptible to transit among phenotypes, including
dynamic secretion patterns that influence the composition of
the microenvironment.

3.3. From Discrete to Continuous Using
Fuzzy Logic
A more realistic approach must considerate that the expression
levels, concentrations, and parameters of biological systems
may take any value within a continuous range limited only
by functionality constraints. In this case, the discrete dynamic
mapping given by Equation (1) may be generalized by
introducing a set of ordinary differential equations (ODEs)
for the rate of change of the expression level of the network
components. For k-th node, this is written as

dqk

dt
= µ

[

wk(q1, ..., qn)
]

− αkqk. (2)

Here, µ[wk] is an input function that expresses a continuous
realization of the Boolean rule wk (see below), while αk is a
decay rate. In this scheme, the equilibrium states of the system
are defined by the steady-state condition dqk/dt = 0, which
leads to

qsk =
1

αk
µ

[

wk(q
s
1, ..., q

s
n)

]

, (3)

where the superindex s denotes the steady-state value. A
straightforward consequence of this is that the expression level of

node k is strongly dependent on its decay rate. In the case αk > 1,
a node will be under-expressed with respect to the value attained
for αk = 1; in particular, for αk ≫ 1, the expression of that node
will be completely inhibited: qs

k
→ 0. The converse also holds:

if αk < 1, a node will be relatively over-expressed [it must be
noticed that a decay rate αk < 1 may lead to a steady expression
value qk > 1. Although in fuzzy logic the values of the variables
are assumed to be constrained to the interval 0 ≤ qk ≤ 1,
values >1 are not excluded by the formalism, and it is a matter of
convenience the range in which the variables are defined (110)].
It follows that modifications of the characteristic decay rates of
network components may alter the steady expression patterns
arising from the nodes interactions. This may be interpreted as
a modulation of the metaphorical or Waddington’s epigenetic
landscape which eventually may lead to transitions between
attractors associated to different cell fates. This approach has
been formerly employed, for example, tomodel plastic phenotype
changes in T CD4+ lymphocytes (92).

The translation of the interactive Boolean rules to the
continuous domain may be accomplished by considering an
approach based on fuzzy logic. Fuzzy logic is a theory aimed
to provide formal foundation to approximate reasoning with
applications in physical, biomedical, and behavioral sciences. It is
characterized by a graded approach (110–112), so that the degree
to which an object exhibits a given property is specified by a
membership (or characteristic) function µ[wk], with truth values
ranging from total falsity, µ[wk] = 0, to totally true, µ[wk] =

1. For example, the property of “being a good person” implies
that there is a set of persons that share certain characteristics
with no definite boundary. Fuzzy logic satisfies an axiomatic
similar to the implied in Boolean logic, except for the identity
principle, meaning that the principle of no-contradiction does
not hold. Thus, although seemingly paradoxical, a proposition
w and its negation 1 − w may be simultaneously true. For
example, the assertion “he was not a good, but not bad guy”
has a meaning in language theory. In biological systems, fuzzy
propositions may describe cases in which a cell displays an
intermediate expression pattern that does not necessarily belong
to a specific phenotype. That is the case of individuals with
food allergies, in which Treg cells produce IL-4, which is a
characteristic usually ascribed to Th2 cells. Similarly, diseases like
rheumatoid arthritis or colorectal cancer are associated to the
expression of IL-17+Foxp3+ Treg cells or RORγ t + Foxp3+ Treg
cells, respectively. The absence of no-contradiction is formally
expressed by the equation w = 1 − w, with solution w = 1/2.
It follows that the value w ≡ wthr = 1/2 may be interpreted as a
threshold between falsity and truth.

Similar to the Boolean approach, in the continuous regime the
network regulatory interactions are characterized by fuzzy logic
propositions denoted here as wk[q1(t), ..., qn(t)]. They are either
inferred from experimental observations or suggested by inner
consistency requirements. In fact, a translation scheme from the
discrete to the continuous scenario may be straightforwardly
implemented translation by replacing the Boolean connectives
AND, OR, and NOT, for its fuzzy counterparts. In fact, the
definition of fuzzy connectives is not unique, and a number of
different alternatives not entirely equivalent, have been proposed.
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In the following table we present Zadeh’s original proposal (111)
and a probabilistic-like scheme (110):

Boolean Zadeh ’Probabilistic’

q AND p min [q, p] q · p
q OR p max [q, p] q+ p− q · p
NOT p 1− p 1− p

Both schemes satisfy the modified Boolean axiomatics
discussed above. However, the probabilistic-like scheme
leads to continuously differentiable expressions if q and p are
differentiable. This is a desirable condition when dealing with
ODEs systems. Furthermore, it shows the same properties as
joint probabilistic distributions for independent variables, so
that probabilistic statements may be directly translated into
fuzzy propositions.

An example of translation from the Boolean to the fuzzy
framework is

W[p, q, r] =
(

q ∨ p
)

∧ ¬ r → w[p, q, r]

=
(

q+ p− q · p
)

· (1− r) .

Continuous logical propositions can be used to construct an
explicit expression of the characteristic function µ[wk]. In the
discrete Boolean approach, this function would be equivalent to
a step 2 function:

µ[wk] → 2[wk − 1/2] =

{

0 if wk < 1/2;

1 if wk > 1/2.

In the continuous approach this behavior may be approximated
by a characteristic function with a sigmoid structure that
gradually changes from a null to a unit value. Many functions
share this property. An expression employed in a number
of applications of fuzzy logic in systems biology is the
logistic function:

µ[wk] =
1

1+ exp
[

−β
(

wk(q1, ..., qn)− wthr

)] (4)

Here, wthr is a threshold value such that if wk > wthr , then
wk tends to be true (or expressed). Usually wthr = 1/2. The
parameter β is a saturation rate that measures the pace of the
transit from an unexpressed to an expressed state, as displayed
in Figure 3. We observe in the figure that this pace is gradual
for small β , and steep for large β . In the case β ≫ 1, µ[wk] →

2 [wk − wthr]. This latter result, together with the steady-state
condition given by Equation(2), implies that in the case is another
manifestation of the robustness of the qualitative predictions
generated by the fuzzy approach. A related result is that in the
limit β ≫ 1 and αk = 1 for every network interaction, then
the steady-state condition given by Equation (7), guarantees that
the set of fixed-point attractors resulting in the Boolean and
fuzzy approaches coincide by construction. On the contrary, the
corresponding sets of periodic attractors usually differ.

It may be argued that the predictions obtained in the fuzzy
formalism may depend on the specific form of the characteristic

function µ[wk]. In fact, there are multiple expressions employed
for example, in engineering applications and control theory, such
as triangular, trapezoidal, or Gaussian functions (113). However,
the logistic structure of µ[wk] considered in this review may be
derived, rather than postulated, by introducing the concept of
Shannon’s information entropy (work in preparation). This is
related with the number of independent ways in which a logical
proposition may acquire partial values of truth for fixed values
of the parameters β and wthr . In other words, the more general
expression involving the least number of assumptions concerning
a graded approach to truthiness of a fuzzy proposition is the
logistic distribution. Interestingly, the mathematical formalism
associated to fuzzy regulatory networks including the description
of logical rules with a logistic structure is formally equivalent to
that employed in the computation of neural circuits in the theory
of neural networks (114).

Another useful (and equivalent) representation of the
characteristic function may be derived by considering that
the expression levels of biological variables, such as the
concentrations or the affinities of a given molecule, may show
variations involving several orders of magnitude. In that case, it
may be convenient to introduce in the description the logarithms
of the corresponding quantities. This is easily performed by
means of the change of variable wk = ln xk and substituting this
into Equation (8), leading to the well-known expression for the
Hill function:

µ̃[xk] =
x
β

k

x
β

thr
+ x

β

k

, (5)

where the parameter xthr represents the value at which µ̃[xk]
acquires half its maximum value. The Hill function and its
negation 1 − µ̃[xk] display both a sigmoid shape and have been
widely employed in the modeling of biochemical, physiological,
and pharmacological processes. A paradigmatic example is the
set of non-linear differential equations

dxk

dt
=

akx
β

k

x
β

thr
+ x

β

k

−
bkx

γ

thr

x
γ

thr
+ x

γ

k

, (6)

describing, for example, the simultaneous binding (unbinding)of
β (γ ) ligands to (from) a single receptor. This latter
representation has been employed in the construction of a GRN
that characterizes fate decisions and reprogramming signaling
pathways of pancreatic cells (115). Although this latter model
was not built within the fuzzy logic approach, we observe
that in this and numerous instances a formal equivalence may
be established by a convenient re-scaling of the variables and
parameters involved in the description.

3.4. Self-Organization and Time Ordering
To describe the transitions between distinct steady states, in
conjunction with fuzzy logic elements, general concepts of theory
of non-equilibrium phase transitions and self-organization are
highly relevant to consider. The adaptation of that theory to
the fuzzy logic modeling scheme allows a sound description
of the transitions between the different disease stages. In the
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FIGURE 3 | Fuzzy networks. (A) Characteristic distribution µ

[

wk −wthr
]

for a threshold value wthr = 1/2 of the logical proposition wk , and different values of the

saturation parameter β. In the case β ≫ 1, the characteristic distribution becomes a step-like distribution. (B) Fuzzy modeling of the transcriptional core regulating B

cell to plasma cell (PC) differentiation using three different saturation values (β = 8, 15, 60), wthr = 1/2 and the decay rate for each component α = 1. For the initial

state of network all nodes were considered inactive, except AP-1, the promoter of the PC differentiation. When β = 60, a full B cell attractor is reached with no final

expression of AP-1 or Blimp-1.

description the transitions between steady states it is important
to contemplate that differentiation from a multipotent stem or
progenitor state to a mature cell is an essentially irreversible
process, and that the associated changes in gene expression
patterns exhibit time-directionality. Whereas, in equilibrium
systems time-irreversibility is a direct reflection of the second
law of thermodynamics, the cell’s gene regulatory network
represents a system far from thermodynamic equilibrium.
These problems have been contemplated by the theory of
cooperative phenomena, non-equilibrium phase transition and
self-organization (116). Accordingly, cooperative phenomena
arise from non-linear interactions of a large number of
elementary subsystems (represented here by the fuzzy logic
rules), leading to the emergence of organized patterns or phases.
The theory relies upon two main concepts, the existence of
ordering and control parameters. The order parameters are
those variables that mainly drive the system organization, while
the control parameters are variables whose value determines
which of the possible organizations is actually realized. In the
case of thermodynamic systems, an order parameter would be
the density, which defines an aggregation state, such as liquid,

solid, or gas. These states may somehow “compete,” in the
sense that one or other may prevail depending on the value of
an external control parameter, such as the temperature of the
system, for fixed values of pressure and volume. In the context
of fuzzy GRNs, the order parameters are the activation patterns
that specify the different cell phenotypes, determined in turn,
by the activation state of central nodes or functional moduli
of the GRN, while the control parameters are those involved
either in the logic rules, or those characterizing the decay rates
{αk}. This latter set is of prime importance. Given that αk =

1/τk, where τk is a characteristic expression time, the set {αk}

implicates a hierarchy for the temporal expression of the GRN
components. By assuming that an ordering α1 > α2 > ... can
be constructed, this procedure induces an associated ordering
τ1 < τ2 < .... As in the thermodynamic example, the phenotypic
landscape (or state space) may be explored by varying each of
the control parameters αk, while maintaining fixed the rest. As a
consequence, transitions between different ordered phases may
be induced by modifications of the control parameters. This is
similar to the description of chemical reactions in the reaction
coordinate space, where the substrate and product states are
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separated by an activation energy barrier; when an enzyme is
added the activation barrier is lowered, and the chemical reaction
ensues. In Waddington’s landscape context, this mechanism may
be interpreted as alterations of the peaks separating the valleys,
allowing the exploration of the landscape and transit between
valleys. This kind of description has been employed in the
modeling of the long-term progression of type-2 diabetes based
on a GRN for pancreatic beta cells. In this case, the organization
patterns correspond to states identified with health, metabolic
syndrome, or manifest diabetes. The alteration of decay rates of
key cellular components involved in inflammatory andmetabolic
pathways lead the transitions between different disease stages.

An important consequence of establishing a time ordering, is
that the system dynamics may discriminate among “slow” and
“rapid” variables and it may be shown that the main dynamics
is driven by “slow” variables, while the “rapid” variables adapt
almost instantaneously to the environment defined by the “slow”
ones. It turns out that the relaxation times of the order parameters
are usually much longer than those of irrelevant variables and
thus work like control parameters of the system. Irrelevant
variables decay rapidly to a steady state, so that they may be
effectively eliminated from the overall dynamics. In this view,
the order parameters define the general features of the system,
including the final expression patterns associated to a set of initial
conditions, while less relevant variables adapt their values to the
instructions dictated by the order parameters. This property may
be relevant in the study of multifactorial diseases, since it could
help in the identification of variables that constitute a target for
the development of therapies.

Another element that may be relevant in the study of
transitions between steady states is the consideration of extrinsic
and intrinsic noise, i.e., the existence of random interactions
inherent to every biological system. Depending on its intensity,
the existence of noise may drastically alter the predictions yielded
by the deterministic formalism considered before, especially at
bifurcation points of the landscape, where noise may accelerate
a transition rate between neighbor attractors. In the chemical
reaction analogy, this is equivalent to adding heat to the process.
The action of noise may be incorporated in the fuzzy logic
approach by assuming that this is characterized by a stochastic
variable ξ (t), with zero mean

〈

ξ (t)
〉

= 0, and statistical dispersion
given by

〈

ξ (t) ξ (t′)
〉

= DG(t − t′). Here, D is a diffusion
coefficient, and G(t − t′) is a function that characterizes the
duration of the self-correlation of the variable ξ . The case in
which G is a Dirac delta, i.e., a sharply peaked distribution only
for t = t′, and null elsewhere, corresponds to a white noise with
no-memory effects.

The fuzzy stochastic dynamics (16) can be described by a
Langevin equation (116, 117):

dqk

dt
= µ

[

wk(q1, ..., qn)
]

− αkqk + ξk(t), (7)

with steady states given by the mean value
〈

qs
k

〉

=
〈

µ
[

ws
k

]〉

/αk.
In the same way as in the deterministic approach, the parameters
αk control the relative heights of peaks and valleys in the mean
epigenetic landscape. In the case of small noise (D ≪ 1) the

time-dependent solutions are composed by the mean path
〈

qs
k
(t)

〉

plus random fluctuations around this path, similarly as dust
particles driven by a gentle breeze. The Langevin formalism
was implemented by Zhou et al. (115) by means of a GRN
addressed to study the processes of differentiation and cell fate
reprogramming in pancreatic cells. They show that it is possible
to recapitulate the observed attractors of the exocrine and β , δ, α
endocrine cells and to predict which gene perturbation can result
in a desired lineage reprogramming.

A related approach rests upon a probabilistic or quasi-potential
landscape (118, 119). In this case, it is not the ensemble of
stochastic trajectories qk(t), but their probability distribution
P[qk(t)] what constitutes the central concept. One may envisage
an epigenetic landscape in which the maximal expression
probabilities lie over the deepest (or wider) attraction basins,
while the minimal probabilities lie over the hills’ tops. Thus, the
probabilistic landscape corresponds to an inverted realization of
the epigenetic landscape. It can be shown that the probability
distribution P[qk(t)] satisfies the Fokker-Planck (FP) diffusion
equation (116, 117), and that the information contained in
this formalism is equivalent to that inherent to the Langevin
approach. It has been proposed by Wang et al. that the genetic
circuitry connections in the quasi-potential landscape imposes
the arrow of time in stem cell differentiation, so that the generic
asymmetry of barrier heights indicates that the transition from
the uncommitted multipotent state to differentiated states is
inherently unidirectional.

4. LYMPHOCYTE INVOLVEMENT IN
CHRONIC DISEASES: CELLULAR
DIVERSITY AND PATHOLOGICAL
FEEDBACKS

The logical framework has also been applied to the simulation
of signaling pathways involved in lymphoid related-diseases,
like acute lymphoblastic and T cell large granular lymphocyte
(T-LGL) leukemia. In the first case, it was predicted that a
proinflammatory microenvironment may induce instability in
twomolecular axes responsible for the retention of hematopoietic
progenitor cells within regulatory bone marrow niches (120).
In the second case, the model helped to decipher some of the
molecular mechanisms that promote survival in T-LGL leukemia
cells (121). Both models integrated microenvironmental factors
with signaling pathways participating in cellular fate decisions,
and in both cases the role of the pro-inflammatory NFkB pathway
emerged as important player in the pathogenesis.

Few mathematical models have managed to simulate
the dynamic communication between lymphocytes and
microenvironment, considering that the feedback loops between
both systems are key to modulate immune responses, although
the in vivo regulation of both systems is more complex
due to influence of neighbor tissues and endocrine signals.
The perturbation or inadequate coupling of the regulatory
interactions among systems have been suggested to trigger
inflammation in multiple chronic diseases. For many years
the study of pro-inflammatory conditions was focused on the
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identification of cytokines as biomarkers or target for adjuvant
therapies. With the advances on immunotherapy, the study
of immune cells as active participants in chronic diseases
development and progression has become of great importance
because they represent therapeutic targets with less co-lateral
effects than conventional therapies.

Recently, it has been probed that epigenetic landscape
approach is useful for the in silico analysis of health to pathogenic
progression (122), such as the epithelial-mesenchymal transition
and the induction to migratory phenotype induced after chronic
pro-inflammatory conditions, offering a tool to delve deeper
into transition stages important for early diagnosis (123–126).
Computational modeling of epithelial-mesenchymal transition
induced by pro-inflammatory cues has suggested an intermediate
stage with a senescent profile (125). The process of epithelial
malignant transformation is promoted, among other factors, by
TGFβ secreted by CD8 and Treg cells, and TNFα produced
by macrophages and pro-inflammatory T cells (127, 128).
Importantly, CD8 T lymphocytes have been purposed as players
in the promotion of aggressive features in breast cancer

tumorigenesis (129); but using CD8 T cells as therapeutic targets
implicates affecting one of the most important defenses toward
infections, so research about the regulatory networks underlying
T cell polarization in dynamic feedback with epithelial cells open
new opportunities for the development of more precise therapies
by simulating multiple or all the possible perturbations in an
integral network as also suggested for breast cancer therapy (130).

The same approach is applicable for the study of emergent
attractors from many other networks associated to chronic
diseases, for example, type 2 diabetes described in terms
of beta-pancreatic cell (115) and T lymphocyte interacting
networks, based on evidence of the participation of different T
subpopulations as inductors of local and systemic inflammation
(131). A first approach targeting CD4 T cell plasticity in
metabolic diseases showed that hyperinsulinemia, a condition
associated with metabolic syndrome and early stages of type 2
diabetes, inhibits the generation of T regulatory Foxp3 cells and
stabilizes the Th17 attractor (10). Besides type 2 diabetes, the
increase of Th17 subpopulation and decrease of T regulatory
cells have been linked with the destruction of beta-pancreatic

FIGURE 4 | Fuzzy models to study signaling pathways activation. (A) NFkB network where IKK is stimulated by microenvironmental TNFα. IKK phosphorylates IkBa

unrepressing the dimer p65_RelA to allow its translocation to the nucleus. In the nucleus p65_RelA promotes the transcription of IkBA closing a negative feedback

loop of the NFkB pathway. (B) The Boolean simulation of the network generates three attractors, two of them are cyclic attractors with TNFα activation. Here, green =

1, red = 0. (C) Activation value of the node in the NFkB network obtained by fuzzy logic simulation. In this case, β = 3, and α varies depending on the type of

biochemical event in which each node is involved. Node tIkBa represents a transcriptional event, with decay rate α = 0.2. (D) Figure taken from (138) showing the

nuclear to the cytoplasmic GFP intensity (NCI) of three single GFP-p65 cells stimulated with a constant flow of 10 ng/ml of TNFα.
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cells in the pathogenesis of type 1 diabetes, an increased risk
of breast cancer recurrence in diabetic patients and increased
susceptibility to develop colitis (132–134). The modulation of
the Th17 subpopulation as a promising treatment of colitis was
predicted by computational simulations of a continuous model.
With in silico perturbations of the GRN underlying CD4 T
cell differentiation it was predicted that the increase of PPARγ

in Th17 cells derives in its transition toward an iTreg profile
characterized by the upregulation of Foxp3. The in vivo effect
of transplanting PPARγ null Th0 lymphocytes was an increased
severity and earlier development of colitis in mice. In contrast,
pharmacological activation of PPARγ resulted in the induced
shift from Th17 to iTreg phenotype that favored colonic tissue
reconstitution (135).

The use of integral models of regulatory networks can
be also applied to chronic infections. Existing models of
infectious diseases and their interconnection with lymphoid
regulatory networks are very limited. Even though, one group
has reconstructed a logical network to study the intracellular
pathways in CD4 T cells affected by the viral proteins during
HIV infection. By considering a model composed by 16 viral
and 121 CD4 T cell nodes, they predicted new viral-human
molecular interactions and obtained conclusions on the signaling
flow affecting cellular fate decisions (136).

All chronic processes mentioned above involve multiple
developmental stages where different changes in the
microenvironment and the cellular composition take place,
depending one on the other through feedback loops. With
discrete models we can clearly map the stable stages and the
transition between them in the presence or absence of particular
nodes, while in conventional continuous models it is quite
complicated to include as much as transcription regulators are
required to simulate cellular transitions of more than one type
of cell. So, the transformation of genetic Boolean models using
fuzzy logic, is a promising approach to integrate differentiation
networks of lymphoid cells and cells from other tissues to
construct more accurate models for the study of chronic diseases,
as it becomes important the consideration of temporal evolution
and graded changes in molecular compositions. Additionally,
less frequent inflammatory cells participating in chronic diseases
can be included, like in chronic allergic lung disease, where the
progressive accumulation of B cells in the lung promotes Th2
responses by the antigen presentation process (137).

Moreover, intermittent or persistent rapid perturbations in
chronic and complex diseases, but not during steady states,
provoke small and sometimes, cumulative variations within
the cells or their environment, including modifications in
cytokines secretion patterns, cellular populations proportions,
miRNAs expression, etc., that mostly become visible until there
is an abrupt transition of the whole system. Of note, fuzzy

logic continuous models permit an easy simulation of such
periodical and transient signals that are transduced by cell
signaling pathways.

The utility of fuzzy models may apply to a small network
composed by some of the main components of the NFkB
signaling pathway that behave as a damped oscillator during
activation with TNFa (Figure 4). The Boolean simulation of
the NFkB network generates two different cyclic attractors
when TNFa is activated. However, when simulating the network
as a fuzzy logic and varying the parameter of the “slow”
reaction corresponding to the genetic transcription of IkBa,
damped oscillations as observed in Zambrano et al., are recorded
(138). Without introducing any specific kinetic information
of receptor affinity, phosphorylation kinetics or translocation
velocity, the fuzzy model shows the transition from an initially
perturbed system toward a stable state with a controlled or
regulated NFkB activation. As suggested by Zambrano et al.,
these approaches may aid to understand normal cell responses
but also their behavior in diseases like cancer, where NFkB
activity is usually disregulated and out of control, driving to
multiple biological consequences including hyperproliferation,
cell survival or migration.

5. CONCLUSIONS

Lymphocytes are active participants of many biological processes
involved in homeostasis and can evolve concomitantly to
tissues transiting through a pathogenic transformation, due to
their responsiveness to a large diversity of biochemical signals
and their plasticity. In silico experimentation with regulatory
networks has shown the potential to identify the underlying
mechanisms of feedback loops that participate in the promotion
of disease progression or in the establishment of chronic
inflammation. Additionally, the adaptation of existing models
for the study of lymphocytes diversity in pathogenic contexts
using powerful tools like fuzzy logics represents an approach to
visualize the global effect of potential immunotherapeutics.
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T-cell receptors (TCR) mediate immune responses recognizing peptides in complex with

major histocompatibility complexes (pMHC) displayed on the surface of cells. Resolving

the challenge of predicting the cognate pMHC target of a TCR would benefit many

applications in the field of immunology, including vaccine design/discovery and the

development of immunotherapies. Here, we developed a model for prediction of TCR

targets based on similarity to a database of TCRs with known targets. Benchmarking the

model on a large set of TCRs with known target, we demonstrated how the predictive

performance is increased (i) by focusing on CDRs rather than the full length TCR protein

sequences, (ii) by incorporating information from paired α and β chains, and (iii) integrating

information for all 6 CDR loops rather than just CDR3. Finally, we show how integration

of the structure of CDR loops, as obtained through homology modeling, boosts the

predictive power of the model, in particular in situations where no high-similarity TCRs are

available for the query. These findings demonstrate that TCRs that bind to the same target

also share, to a very high degree, sequence, and structural features. This observation has

profound impact for future development of prediction models for TCR-pMHC interactions

and for the use of such models for the rational design of T cell based therapies.

Keywords: MHC, TCR, CDR, epitope, structure

INTRODUCTION

A central checkpoint to unleashing a cellular immune response is the recognition of peptides
presented by major histocompatibility complexes (pMHCs) by T cell receptors (TCRs). T
cells undergo thymal selection. During this selection, T cells with TCRs that either cannot
bind pMHCs (negative selection) or bind MHC molecules presenting self-peptides (positive
selection) are removed. This process results in a repertoire of T cells with highly specific
and selective TCRs, and it is estimated that each TCR can only bind a few thousand (1, 2)
distinct pMHC complexes (of a total of more than 206 possibilities, assuming up to 3 MHC
anchor positions). TCRs are composed of two subunits: α and β. Each subunit has three
loops called complementary determining regions (CDRs) that directly interact with pMHCs.
Structural studies from the last 30 years have shown that CDR3 loops usually present the
most discriminative interactions with peptides, meanwhile CDR2 loops interact mainly with the
MHC and CDR1 loops tend to present soft interactions with both peptide and MHC (3–5).
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The vast diversity of TCRs allows the recognition of an immense
number of different antigens. In the last few years, high-
throughput profiling of TCRs have become of routine use
and it has been shown that some signatures can be used to
describe in general terms the interaction between TCRs and the
cognate pMHC complex (6–11). Some studies have demonstrated
changes in T-cell populations after several stages of vaccination
or exposure to diseases using TCR sequencing (12–16). The
specificity of a TCR is most often described using only CDR3
β loop sequences. CDR1 and CDR2 β loops can be included
by sequencing TCR β V and J germline regions, thus the full β

sequence has also been used to describe the set of TCR signatures
(8, 17). Further, the pairing of β with α sequences can be used
to allow for more accurate description of the TCR binding
specificities (10, 11). This pairing can be obtained through
statistical or single cell techniques allowing the most complete
modeling of TCR:pMHC restrictions (18–22).

Knowing which pMHC a TCR would bind is a key component
toward understanding themechanisms of T cell immunity.While
this can be achieved experimentally, it is an expensive, time-
consuming, and low-throughput procedure (23–26). Given this,
it would be of great interest to develop means to predict the
cognate pMHC target(s) of a TCR based on its sequence alone.
At present, however, resolving this task remains a substantial
challenge (10, 11, 27). Recently, machine learning approaches
have been described (28, 29) that use sequence-based strategies to
infer TCR cognate target, but the performance of these methods
is severely limited by the very small volume of existing data
associating TCRs with their cognate pMHCs target.

In addition to sequence-based methodologies, approaches
based on structural information have also been suggested (30–
32). As the protein structure often is conserved despite of
sequence divergence (33), TCR structure modeling could be
helpful to compare binding specificities between TCRs with
limited sequence similarity. Some studies have shown how 3D
models of the structure of the TCR dimer can be used to
complement sequence similarity information and in this way
improve our understanding of TCR binding specificities (34–36).
Several studies have also achieved promising results in modeling
structurally TCR:pMHC complexes and using force field energy
functions to assess binding between TCRs and their cognate
pMHCs (37–41).

Here, we seek to expand these analyses to further address
the issue of TCR similarity and the potential impact on this
similarity by the different sequence and structural properties
of the TCR and CDR loops. We do this in the context of
predicting the cognate pMHC target of a TCR using a simple
inference-based approach: for a given TCR query, we search
a database of TCRs with known pMHC target(s), rank each
entry using a measure of similarity, and finally predict the TCR
target based on the most similar pMHC in the database. To
develop and benchmark this approach, we define a training set
using mouse TCRs binding peptides presented by H-2Db and
H-2Kb molecules. Next, the model is applied to an independent
evaluation dataset of TCRs that bind peptides presented by HLA-
A∗02:01. We analyze the effect of predicting TCR targets using
only CDR3 β loop sequences compared to using both CDR3s,

all CDR loops from the β chain and CDR loops from both the
α and β chains in the similarity measure. We explore the effect of
combining differentially the CDR sequence similarities to boost
the prediction performance of our method. Exploiting the fact
that full-length paired TCR sequences allow the construction
of TCR homology models, we also build TCR dimer structures
and predict TCR binding by the means of CDR loops structural
similarity. Next, we investigate how such structural information
can complement sequence information to improve TCR target
prediction, in particular when no reference sequence with high
similarity is available for the target annotation.

MATERIALS AND METHODS

Benchmarks for Mouse and Human Alleles
A data set of TCRs with known binding target and peptide MHC
restriction to HLA-A∗02:01, H-2Db, or H-2Kb was obtained
from VDJdb (42). Only entries with paired α and β CDR3
loop sequence and corresponding V and J regions annotations
were included. Next, to construct full length α and β TCR
sequences, V and J sequences were downloaded using their
accessions codes from IMGT/GENE-DB (http://www.imgt.org/
genedb/) and CDR3 segments extended by aligning the four
residues of the C-terminal end of V region to the four N-terminal
residues of CDR3 loop and aligning the four residues of the N-
terminal end of J region to the four C-terminal residues of CDR3
loop, for both α and β chains. Next, cross-reactive TCRs (the
same α and β sequences assigned to bind multiple and distinct
pMHCs) were removed. Redundant entries were removed by
clustering at threshold of 99% over the average sequence identity
between α and β subunits, and selecting the centroid of each
group. An overview of the benchmark construction is shown
in Table 1 and the number of TCRs for each pMHC is detailed
in Table S1. Starting from 3,112 entries, the final benchmark
consisted of 984 TCRs binding to H2-Db and H2-Kb, and 520
that bind HLA-A∗02:01. We used these two datasets for different
purposes. The mouse data set was used to develop the best
prediction setup, and the human data set was used to evaluate
the quality of the model.

TCR Structural Modeling and Loop

Detection
The structure of each TCR was modeled using LYRA (35). For
each TCR, templates with more than 70% average sequence

TABLE 1 | Paired TCRs benchmark statistics.

# Of paired TCRs with known pMHC target 3,112

# Of paired TCRs with known pMHC target excluding

cross-reactive TCRs

3,064

# Of paired TCRs binding HLA-A*02:01 831

# Of paired TCRs binding H2-Db 721

# Of paired TCRs binding H2-Kb 999

# Of paired TCRs binding HLA-A*02:01 excluding redundancy 520

# Of paired TCRs binding H2-Db excluding redundancy 466

# Of paired TCRs binding H2-Kb excluding redundancy 482
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identity between α and β were included in the blacklist form field
of the LYRA server to exclude them from the modeling process.
Next, the LYRA output was parsed to detect CDR1, CDR2, and
CDR3 loops for both α and β chains.

TCR Similarity Measures
Three similarity measures were used to identify the cognate
pMHC of each TCR: (i) For the global sequence similarity, the
sequence identity (SeqID) was calculated separately for the α

and β sequences using blast2seq to align the sequences, and
was defined for each chain by dividing the number of identical
residues by the minimum length between the two aligned chains.
(ii) For the CDR sequence similarity, the similarity was calculated
by comparing two TCRs using the CDR loops as defined by LYRA
annotation.We used the CDR1, CDR2, and CDR3 loops from the
α and β subunits. We calculated a similarity between CDRs using
the alignment-free Kernel function defined by Shen et al. (43),
based on the similarity between all k-mers contained within the
sequence of two loops. Briefly, this function is defined as follows:
Let B be a BLOSUM62 based similarity measure between two
amino acids, as defined by Shen et al. (43) appendix, a similarity
between two amino acid sequences u and v of the same length k
can be defined as:

K (u, v) =

k
∏

i=1

B (ui, vi)

Based on this, the sequence similarity between two CDR loops f
and g possibly with different lengths as can be defined as:

cdr
(

f , g
)

=
∑

u ⊂ f , v ⊂ g
|u| = |v| = k

k = 1, ..., min
(∣

∣f
∣

∣ ,
∣

∣g
∣

∣

)

K (u, v)

Then, we normalized this relation as follows:

CDR
(

f , g
)

=
cdr

(

f , g
)

√

cdr
(

f , f
)

cdr
(

g, g
)

This CDR similarity measure is normalized between 0 and 1
and gives higher values for similar sequences. Finally, (iii) for
similarity at structure level, we computed the Root Mean Square
Deviation (RMSD) between LYRA detected CDR loops. To do
this, Superimposer module of Biopython library was used to
structurally aligned all the α and β CDR loops simultaneously
using the LYRA numbering scheme to match alpha carbon of
the loops. After the alignment, the RMSD between pairs of CDR
loops was computed using the following procedure:

proc ComputeRMSD(cdrloop1, cdrloop2):
RMSD, N = 0, 0
for alpha_carbon1 in cdrloop1:

alpha_carbon2 =

lookup_nearest_ca(alpha_
carbon1, cdrloop2)

alpha_carbon_prime =

lookup_nearest_ca(alpha_
carbon2, cdrloop1)

if alpha_carbon1 =

alpha_carbon_prime:
d =

euclidean_distance
(alpha_carbon1,
alpha_carbon2)

RMSD + = d2

N + = 1
return (RMSD/N)1/2

TCR Target Prediction and Pipeline

Validation
As depicted in Figure 1, a TCR query is defined as a pair α and
β chains. The target of a query TCR, is predicted from the most
similar TCR in a database of TCRs with known binding targets.
Both query and database TCRs were first modeled using Lyra to
identify the CDR loops and the structure of the folded TCR. As
shown in Figure 1B, we tested the performance of the proposed
pipeline in scenarios of varying difficulty when no similar TCRs
are available to infer the target of the query. To achieve this,
before searching in the database, we removed entries havingmore
SeqID (averaged between α and β chains) with the query than a
given cutoff. In order to analyze the performance as a function
of the maximum SeqID allowed, we vary this threshold from 70
to 99%. After removal of similar entries, TCRs are ranked with
alternative loop weighting schemes with the syntax (1:1:1–1:1:1),
where the values in parentheses define the relative weight of each
loop. The first triplet identifies the three CDR alpha loops and
the second triplet the CDR beta loops. Finally, we assign a pMHC
target to the query using the top ranked TCR. We evaluated
the pipeline performance at each configuration using Adjusted
Rand Index (ARI). ARI is a corrected-by-chance generalization
of Matthew’s Correlation Coefficient for cases where the data has
more than two labels (44, 45). ARI has a value of 1 for perfect
predictions, and a value of 0 for the random model. In situations
with many labels, the ARI value will often drop substantially
below 1, even if a minor subset of predictions is misclassified.
Calculations of ARI index were performed using scikit-learn
python library.

RESULTS

In this work, we describe a framework to predict the peptide-
MHC (pMHC) binding target of a TCR query based on inference
from TCRs with known pMHC binding preference (Figure 1A).
A query TCR is scored against a database of TCRs with known
binding preference, and the pMHC target is inferred from the
top-scoring hit. In a first approach, the scoring is based on
sequence similarity over the six CDR loops (for details see
methods), and in a second model, structure similarity is added
to complement TCR linear sequence information.

To assess the impact of the different loops on the predictive
power of the model, a series of different weighting schemes were
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FIGURE 1 | TCR binding prediction and assessment. (A) TCR binding prediction pipeline using different similarities. A TCR query is searched against a database of

CDRs of different TCRs. Similarities (CDR and RMSD) are calculated as described in methods. Sequence similarity values for each CDR loop are shown in the table

above, and RMSD values for structural similarity are shown in the table below. (B) The prediction pipeline was assessed annotating each TCR removing TCRs sharing

sequence similarity above a define threshold with the query. Both CDR and RMSD similarities were tested with different weights (for details see text). Performance was

assessed using Adjusted Rand Index (ARI).

evaluated (Figure 1B). In the simplest scheme, only the CDR3 β

loop was included in the model [i.e., weighting scheme (0:0:0–
0:0:1)]. Secondly, we included the full β sequence by adding the
CDR1 and CDR2 β loops with weights (0:0:0–1:1:1). In the third
model, both α and β subunits were included using either an
equal weighting scheme (1:1:1–1:1:1), a scheme with increased
CDR3 loops relative weight [(1:1:2–1:1:2) or (1:1:4–1:1:4)], or
a scheme with differential weighting between β and α subunits
[(1:1:1–2:2:2) or (1:1:1–4:4:4)]. In the case of the global sequence
similarity (see methods), a weighting scheme combining α and
β subunits was used where SeqID(0:1) stands for using only
β subunit, SeqID(1:1) for using both α and β subunits and
SeqID(1:2) for doubling the β weight over α.

The results of benchmarking these different models on the
mouse benchmark data set are shown in Figure 2A. Here,
the performance measured in terms of the Adjusted Rand
Index (ARI) of each model is shown as a function of the
maximum sequence identity (Max SeqID) allowed between the
query TCR and TCR database (for details see methods). An

example of this is given in Figure 2B. Here, the confusion
matrix underlying the calculation of ARI is shown for the
model CDR(1:1:1–1:1:1) in the situation allowing Max SeqID
of 99% corresponding to the extreme right point in the
performance curve. The corresponding ARI value is 0.35 and the
accuracy 66%.

The performance of each model was tested for a range of
maximum sequence identity allowed between the query TCR
and TCR database (Max SeqID%) from 70 to 99%. As shown in
Figure S1, the minimum SeqID% for each TCR to other TCRs
binding the same pMHC is below 32%, which means that even
if we filter out TCRs that share more than 70% SeqID when we
search the TCR database, we will always, for each query, find
at least one other TCR sharing the given target. Predicting the
correct cognate target should therefore be possible in all cases.
Additionally, we evaluated the performance of a random model,
assigning a random TCR in the database search and obtained,
as expected, an ARI value close to zero for all Max SeqID
thresholds (Figure S2).
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FIGURE 2 | Prediction performance for H-2 (mouse) benchmark. (A) TCR binding prediction performance as a function of Max SeqID for different similarities and

weighting schemes. Increasing CDR similarities from using only CDR3 β, CDR(0:0:0–0:0:1) to all α and β CDR loops, CDR(1:1:1–1:1:1). When we use only β chain we

filter sequences using SeqID(0:1) and when we predict using both chains we filter sequences using SeqID(1:1). Error bars are estimated using bootstrap with 1,000

iterations on the final prediction outcome. (B) Confusion matrix of the prediction outcome used for ARI calculation. Predictions performed using the model with equal

weights for each CDR loop [model CDR(1:1:1–1:1:1)] using a Max SeqID TCR similarity threshold of 99% have an ARI value of 0.35. Rows and columns are labeled

with the MHC mouse allele and the first three letters of the peptide. Green circles are correctly predicted TCRs, light green circles represent correctly predicted MHC

but wrong peptide, and red circles are for wrong MHCs. Numbers <5 are omitted for clarity.

First, we investigated how the predictive performance of the
framework was improved as the sequence information included
in the model was increased. The prediction model defined by
only including the CDR3 loop of the β chain [model CDR(0:0:0–
0:0:1)] had improved performance compared to the model using
SeqID with the whole β sequence [SeqID(0:1)]. Adding the CDR1
and CDR2 loops from β subunit to the model [CDR(0:0:0–1:1:1)]
led to a general drop in performance compared to using the
CDR3 alone (Figure 2A). Only for very high similarities (Max
SeqID>97%) the performance improved when adding these
loops in addition to CDR3, suggesting that incorporation of
CDR1 and CDR2 loop similarities might be detrimental to the
model. This is further illustrated in Figure S3, where we show
the confusion matrices for the two models model CDR(0:0:0–
0:0:1) and CDR(0:0:0–1:1:1) evaluated at a Max SeqID threshold
of 92%. This figure clearly demonstrates that the fraction of cases
with wrongly predicted MHC target is increased for the model
including the CDR1 and CDR2 loop information.

Next, we added the paired α sequences to the model. Using
the complete α and β sequences [model SeqID(1:1)] led to an
improved performance compared to using only the β sequences
[model SeqID(0:1)]. Likewise, the model using the α and β

CDR3 loops together (model CDR(0:0:1–0:0:1) outperformed the
model including only CDR3 β model [CDR(0:0:0–0:0:1)]. This
model also outperformed the model including the two full length
sequences [model SeqID(1:1)]. When including the CDR1 and
CDR2 from both α and β subunits using a (1:1:1–1:1:1) weighting
scheme, we observed a general improvement of performance

compared to using only the paired CDR3 loop sequences, but
also here, we observe a small drop in performance around a Max
SeqID of 91% suggesting that a differential weighting would be
needed over the CDR3 loop similarity.

Up to this point, we have analyzed the predictive performance
as a function of maximum SeqID% allowed between the query
TCR and any entry in the TCR database. This approach could
clearly be unfair to models based on full length sequence identity
such as SeqID(1:1), since we exclude possible database entries
based on the same measure used to define the best database
target. To assess to what degree this is the case, we assessed
the prediction outcome also as a function of CDR3 similarity,
incrementally including more similar CDR3 α and β loops while
predicting using different weights (Figure S4). This benchmark
confirmed the earlier conclusions that model CDR(1:1:1–1:1:1)
outperformed all other models including SeqID(1:1).

Adjusting Weights to CDR Loop Similarity
To further investigate the relative contribution of each CDR
loop, we investigated differential weighting schemes for CDR3
over CDR1 and CDR2 loops (Figure 3). The schemes are defined
using a (1:1:X−1:1:X) scheme varying the relative weight on the
CDR3 loop or a (1:1:1–X:X:X) scheme varying the relative weight
of the β over the α chain.

We found improvements in the prediction when different
weights were applied to the CDR3 loop, and the optimal
performance was found for the model CDR(1:1:4–1:1:4). This
model outperformed both the flat model [CDR(1:1:1–1:1:1)],
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FIGURE 3 | Improving weighting schemes and adding structural similarity.

Prediction performance as a function of Max SeqID using different weights for

CDR loop similarities. Adding structural similarity CDR+RMSD with W = 0.9.

Error bars are estimated using bootstrap with 1,000 iterations on the final

prediction outcome.

the model with double relative weight on CDR [CDR(1:1:2–
1:1:2)], and demonstrated a monotonic increased in performance
from low to high sequence identities. Moreover, doubling and
quadrupling the β subunit weight over the α subunit was
investigated [models CDR(1:1:1–2:2:2) and CDR(1:1:1–4:4:4)]
but these weighting schemes consistently led to decreased
predictive power compared to the flat model [CDR(1:1:1–1:1:1)].
Other weighting schemes were investigated but did not lead
to consistent improvements in the prediction accuracy (data
not shown).

Adding Structural Modeling Improves TCR

Cognate Target Prediction
We next extended the models to also include structural
information. We constructed TCR models using LYRA with
templates sharing no more than 70% SeqID with the target to
avoid the effect of overfitting in the modeling process. Then,
we calculated CDR loops structural similarity by computing
the RMSD between two given TCRs and used these loops
similarities to predict each query (for details see Figure 1

and methods). By itself, the structure-based model performed
worse than the sequence-based approach described above
(Figure S5A). Furthermore, the flat model RMSD(1:1:1–1:1:1)
outperformed the model RMSD(1:1:4–1:1:4) with differential
CDR loop weighting (Figure S5A). This observation is most
likely due to the fact that CDR3 loops in general are modeled
with relative low accuracy, as shown previously by Gowthaman
et al. (36), limiting the predictive signal contained within the
structure of these loops. Finally, we screened relative weights

for combining structural and sequence information in a single
model. We integrated sequence and structural similarities with a
weight W in the linear model defined below:

CDR+ RMSD = W∗[1− CDR(1 : 1 : 4− 1 : 1 : 4)]

+(1−W)∗ RMSD(1 : 1 : 1− 1 : 1 : 1)/5.0

Screening different values of W, the optimal performance was
W= 0.9 (Figure S5B). The performance of this combined model
was only slightly better than the best sequence based model
CDR(1:1:4–1:1:4), with a gain more pronounced for lower values
of Max SeqID (Figure 3). We assessed the significance of this
performance gain using bootstrapping, and we found the gain to
be statistically significant only at SeqID= 70% (Figure S6).

Independent Model Evaluation on Human

TCR Targets
We now turned to the HLA-A∗02:01 data sets to validate
the prediction pipeline and the conclusions obtained from the
mouse data. As also observed in the mouse benchmark, the
performance using SeqID(1:1) was lower than using CDR
similarities (Figure 4). Consistently, the differential weighting
scheme (1:1:4–1:1:4) resulted in better predictions compared to
using the (0:0:1–0:0:1) and (1:1:1–1:1:1) schemes. We assessed
the CDR+RMSD model combining sequence and structural
information using the relative weight W = 0.9 optimized on the
mouse data, and found a significantly (p < 0.04, bootstrap test)
improved performance for Max SeqID<72% compared to the
CDR(1:1:4–1:1:4) model (Figure S6). ForMax SeqID in the range
75%<SeqID<90%, model CDR+RMSD slightly outperformed
the sequence based CDR(1:1:4–1:1:4) model, but this difference
was not statistically significant (p = 0.4, bootstrap test). As
expected, the addition of structural information at higher value of
Max SeqIDs (Max SeqID>90%), did not improve the predictive
power of the model.

As a final remark, we investigated the distribution of
prediction accuracy for each peptide at Max SeqID=70% for
the combined CDR+RMSD model (Figure 4B). It is apparent
that the prediction quality varies substantially between peptides.
This variation is, to a very high degree, related to the number
of TCRs sharing the given peptide target. For instance, the
model performs rather poorly for the peptides CVNGSCFTV
and YVLDHLIVV, both characterized by a very small number of
TCRs sharing them as target. The CINGVCWTV, ELAGIGILTV,
GLCTLVAML, and NLVPMVATV entries all share 20 or more
TCR entries and the model obtained accuracy values between 40
and 60%. Consistently, for themost populated cases GILGFVFTL
and LLWNGPMAV with more than 100 TCRs sharing each
peptide, the model obtained an accuracy of 72% (103/144) and
85% (120/142), respectively. These observations underline, as
expected, the very high dependency of the accuracy of the
proposed modeling framework to the number of TCRs in the
database known to bind a given peptide. It also suggests that
increasingly accurate predictions will be achievable as the space of
pMHC-TCR sequences becomes populated by new experimental
data documenting these interactions.
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FIGURE 4 | Validation of pipeline performance on HLA (human) benchmark. (A) Prediction performance as a function of maximum sequence identity for different

similarity models and relative weighting schemes. The combined model CDR+RMSD integrating structural similarities was made using W = 0.9 (see text). Error bars

are estimated using bootstrap with 1,000 iterations on the final prediction outcome. (B) Confusion matrix for the CDR+RMSD model at a Max SeqID threshold of 70%

(with an ARI of 0.41). Green circles are correctly predicted peptides and yellow circles represent wrong peptide predictions. Numbers lower than 5 are omitted for

clarity. In parentheses is displayed the average number of TCRs that bind the same peptide and remain after removing entries with Max SeqID > 70%.

DISCUSSION

The activation of T cells depends on specific interactions
between TCRs recognizing peptides presented by MHC. These
interactions depend almost exclusively on CDR loops. Generally,
analyses of T cell repertoires have been oriented to TCR
β chains because obtaining the paired α sequence is more
difficult and costly. Further, clonal expansion is often analyzed
by the means of sequencing only the CDR3 loop of the
TCR β sequence (11, 33). While these constrains on the TCR
sequence being generated and analyzed might be justifiable
seen from a cost perspective, it is clear that focusing only
on the TCR β chain, and in most cases only of the CDR3
β loop potentially has large and limiting implications for the
conclusions drawn and information harvested from such TCR
sequence data.

We found the predictive power of the model to improve
substantially when including the α in addition to the β chain. We
also showed that, as expected, focusing on CDR loops rather than
the full-length protein sequence led to improved performance.
Investigating the relative importance of the different CDR
loops for the predictive power of the model, we found an
increased performance for models with higher relative weight
on the CDR3 loops compared to CDR1 and CDR2. Finally, we
demonstrated that the inclusion of structural similarities in the
model improved, modestly but consistently, the accuracy of the

target prediction, in particular in situations where no sequence

with high similarity is available in the TCR database. While
being statistically significant, gain in predictive performance

obtained by including structural information was limited. We
expect this to change, as the accuracy of TCR structural modeling
tools improve (in particular for the two CDR3 loops) and the
number of available TCR structures (to be used as templates)
increases. However, as data available is limited in terms of the
diversity and the number different epitopes involved, we find
it impossible to draw conclusions about how these interactions
mediate different T cell responses. Also, we neither have enough
data to tackle the importance of each loop in the recognition
of different MHC alleles as we only have enough information
about HLA-A∗02:01 for human, and H2-Kb and H2-Db for
mouse. As well, we have only MHC class I data, and it would
be of great importance to have more MHC class II binding
TCRs to get better insights on the difference between CD4
and CD8T cell interactions with antigens. We hope some
day would be more data and more diverse in all of these
aspects in order to learn more about the regulation of the
immune response.

Predicting TCR cognate targets is a very difficult challenge
and the main limit is imposed by the lack of data availability
on this huge sequence space. This puts some barriers in our
understanding of TCR binding specificities and, the issue gets
even more complicated if we try to predict unknown binding
specificities. If this problem would be solved, our capability to
predict T cell responses would be dramatically improved, but we
are still far from achieving it. In the present work, we present
a framework to predict specificities to known cognate targets of
TCRs using an inference-based model, seeking to understand the
importance of using paired TCR sequences.
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Despite the very simple modeling approach taken here, these
findings clearly demonstrate both that paired full length sequence
information is essential for the accurate assessment of TCR
function, and that given such information, simple structural, and
sequential properties that are common between TCRs that share
cognate binding target can be identified. This observation not
only underlines the need for the generation of large TCR data sets
containing the full information about the triad involved in the
TCR:pMHC synapse, using for instance single cell basedmethods
(46), but also suggests that prediction of TCR:pMHC interactions
is feasible and thus lays the foundation for the development
and application of such models to rational design of T cell
based therapies.

It is however critical to stress that due to the availability
of data the work and results presented here are limited
to the MHC class I and CD8 TCR system. While MHC
class II and CD4 TCRs share large structural and functional
similarities to this system, several important properties sets
them apart—in particular imposed by the longer peptide
resituating in the MHC class II binding cleft. Likewise, are
the analyses presented limited to cover only three different
MHC class I molecules, and certain caution should be taken
when extrapolating the conclusions to all class I molecules.
However, as more data become available, the framework
proposed here can readily be applied to investigate if the
presented conclusions are indeed applicable to the general TCR-
pMHC system.

Finally, it is essential to reiterate that we here have
presented a framework to predict cognate targets of TCRs
using an inference-based model, seeking to understand the
importance of using paired TCR sequence and structural
information. Using an inference-based model imposes very
large limitations on the applicability of framework for the
task of general prediction of the cognate target of TCRs
since it depends on the availability of other TCRs sharing
the same target, and hence does not allow for true ab
initio predictions.

This said, our findings demonstrating an improved predictive
power when including information from the α chain in
addition to the β chain hold consistently true throughout our
benchmark calculation. This important observation not only
underlines the need for the generation of large TCR data sets
containing the full information about the triad involved in
the TCR:pMHC synapse, using for instance single cell based
methods (46), but also demonstrates that TCRs with a common
cognate target share tractable common sequence and structural
properties suggesting that prediction of TCR:pMHC interactions
is feasible and thus lays the foundation for the development
and application of such models to rational design of T cell
based therapies.
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Figure S1 | Minimum inner SeqID similarities between the TCRs that bind the

same target. (A) Mouse alleles: H-2Kb, H-2Db. (B) Human allele HLA-A∗02:01.

Figure S2 | Prediction pipeline random performance. Random prediction is

performed picking a random TCR when we search the database for the TopHit.

Error bars are estimated using bootstrap with 1,000 iterations on the final

prediction outcome.

Figure S3 | Contingency matrix for the prediction of mouse pMHC binders at a

92% Max SeqID threshold. (A) Prediction performed using only CDR3 β loop

[model CDR(0:0:0–0:0:1)] with an Adjusted Rand Index (ARI) equal to 0.14. (B)

Prediction performed using CDR1, CDR2, and CDR3 loops weighted equally

[model CDR(0:0:0–1:1:1)] with an ARI = 0.04.

Figure S4 | TCR prediction performance as a function of maximum CDR3

similarities. Using increasing CDR similarities from using only CDR3 β,

CDR(0:0:0–0:0:1) to all α and β CDR loops, CDR(1:1:1–1:1:1). When we use only

β chain we filter sequences using CDR(0:0:0–0:0:1) and when we predict using

both chains we filter sequences using CDR(0:0:1–0:0:1). Error bars are estimated

using bootstrap with 1,000 iterations on the final prediction outcome.

Figure S5 | Looking for the best weights to combine structural similarity using the

mouse benchmark. (A) RMSD prediction performance as a function of maximum

SeqID allowed in the database for different weights. (B) Grid search for

combined model weight between sequence and structural similarities different

SeqID% cutoffs.

Figure S6 | Bootstraping p-values comparing CDR+RMSD against

CDR(1:1:4–1:1:4) as a function of maximum SeqID%. Tests were performed with

1000 iterations bootstrapping on the final prediction outcome for both models and

p-value is obtained dividing by 1,000 the number of times the ARI value of

CDR(1:1:4–1:1:4) resulted better than CDR+RMSD.

Table S1 | Number of TCRs in datasets used for model discovery (mouse) and

validation (human).
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The cells of the immune system respond to a great variety of different signals that

frequently reach them simultaneously. Computational models of signaling pathways

and cellular behavior can help us explore the biochemical mechanisms at play during

such responses, in particular when those models aim at incorporating molecular

details of intracellular reaction networks. Such detailed models can encompass

hypotheses about the interactions among molecular binding domains and how these

interactions are modulated by, for instance, post-translational modifications, or steric

constraints in multi-molecular complexes. In this way, the models become formal

representations of mechanistic immunological hypotheses that can be tested through

quantitative simulations. Due to the large number of parameters (molecular abundances,

association-, dissociation-, and enzymatic transformation rates) the goal of simulating

the models can, however, in many cases no longer be the fitting of particular parameter

values. Rather, the simulations perform sweeps through parameter space to test

whether a model can account for certain experimentally observed features when

allowing the parameter values to vary within experimentally determined or physiologically

reasonable ranges. We illustrate how this approach can be used to explore possible

mechanisms of immunological pathway crosstalk. Probing the input-output behavior

of mechanistic pathway models through systematic simulated variations of receptor

stimuli will soon allow us to derive cell population behavior from single-cell models,

thereby bridging a scale gap that currently still is frequently addressed through heuristic

phenomenological multi-scale models.

Keywords: computational models, cellular signaling, cytokine crosstalk, multi-scale modeling, rule-based

modeling

INTRODUCTION

Immune cells have been found to play important roles for processes ranging from embryogenesis to
tumor clearance to host defense against pathogens (1). What allows them to perform such diverse
tasks is the ability to respond to a great variety of different signals, many of which reach them
simultaneously (2, 3), and adjust their behavior through communication with other, immune and
non-immune, cells (4–6). When their response mechanisms fail to induce the appropriate action,
clearance of pathogens or tumor rejection may fail and immune-pathologies such as autoimmune,
or inflammatory diseases may develop.
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In our efforts to understand immune cell function, the
challenge of understanding multi-signal cellular responses or
multi-cellular communication and how these integrate at the
tissue level is perhaps the most daunting since it seems to go
directly against the paradigm of reductionism that has brought
forth most of the insights science, not just immunology, is
based upon. Indeed, approaching this challenge requires more
comprehensive data than classical one-condition-one-readout
assays. In model organisms, such as mice, lack of approaches
to generate data elucidating cellular behavior under various
conditions is no longer the main problem, though. Highly
multiplexed assays can be employed and allow us to glimpse into
cellular protein expression levels including post-translational
modifications (7) and genomic states, increasingly also at the
single-cell level (8, 9). Multi-parameter in-vivomicroscopy shows
us where cells are, where they go and with whom they interact
(10–12). However, such data are dots waiting to be connected into
mechanistic hypotheses: Even though we may be able to use the
data directly to predict disease progression probabilities through
artificial intelligence based informatic approaches we need to
understand mechanisms to devise therapeutic interventions.
Moreover, the invasiveness of many assays prevents us from
generating similar data in humans, both in clinical practice or
in a research setting. Thus, we are facing the conundrum that we
are able to generate highly detailed data but cannot be certain
which of the predictions we derived from the data will translate
to humans.

Here, we will discuss how the complexity of some of these
challenges may be addressed using mechanistic computational
models using an approach that can clearly state even complex
biological hypotheses involving multiple overlapping signals and,
sometimes, may permit to test them directly through simulations.
We will first explain how such models can be concise and flexible
representations of knowledge and hypotheses and, along the way,
demonstrate that these representations can be fully accessible
to researchers without modeling experience. Then, we will use
the modeling approaches we introduced to investigate multi-
parametric manipulations of a simple example pathway (a simple
model of G-protein coupled signaling and its “pharmacological”
manipulation) before illustrating how computational models can
be used to explore possible mechanisms of crosstalk in immune
signaling pathways. Finally, we will briefly discuss how to
extrapolate from single-cell models to models of communicating
cell-populations that could serve, for instance, as a basis for
more realistic pharmacokinetics-pharmacodynamics (PK-PD)
simulations (13) to improve practical applications of basic
immunological research.

MODELING SIGNALING PATHWAYS

BASED ON MOLECULAR INTERACTIONS

Cellular responses toward stimuli they receive emerge from
interactions among proteins, lipids, and sugars mediated
through specific binding sites. Sequences of such interactions are
frequently depicted as networks or pathway diagrams linking,
for instance, phosphorylation of a given protein domain to

the recruitment of other proteins that subsequently induce
or undergo further biochemical modifications. Mathematical
and computational models translate such scenarios into
quantitative predictions by describing how the abundances of
the involved molecules or their post-translational modifications
change over time as a result of the interactions among the
network’s molecules. Depending on the modeling approach,
those predictions are generated by solving differential equations
or other, sometimes stochastic, algorithms. Many excellent
reviews have been written on computational modeling of
cellular behavior. See, for instance (14, 15), or (3, 16) for a
focus on mathematical modeling approaches in immunology.
Ideally, whatever the approach, the mathematical descriptions
should not contain more assumptions than the underlying
biological hypotheses. One way to achieve this is, perhaps
counter-intuitively, to try to model directly the components
and interactions within those biological hypotheses, rather than
use abstract elements that are introduced for simplification.
This avoids introducing properties that do not follow directly
from the modeled biology and that may be difficult to spot
for non-modelers, in particular when they are formulated
in mathematical terms. Moreover, given that cell-biological,
immunological, and biochemical research has assembled a wealth
of mechanistic insights, it would be unwise not to take as much
as possible advantage of prior knowledge about the constituents
and interactions that shape signaling pathway behavior. Finally,
building models that incorporate details considered important
by experimental biologists allows us to convert model behavior
directly into experimental assays for validation since model
components have real biological counterparts.

Yet, we are typically lacking many of the parameters required
for detailed models, such as protein abundances or kinetic
interaction rates, and more experimental data than are usually
collected would be needed to determine the values of the
unknown parameters through fitting (17). This problem is
frequently taken as a motivation to resort to models that
incorporate pathway structure but not kinetics [for instance
in Boolean models (18)] or abandon prior pathway knowledge
altogether in favor of extracting only as much information
as the data being modeled provide directly (19). Both such
approaches have their merits given the problem of “over-
fitting” in models with large numbers of parameters. But we
wish to argue that we can use detailed models in spite of
parameter uncertainty simply by asking what kinds of behaviors
the models can have when taking into account the possible
range of their parameters. Exploring crosstalk among cytokine
signaling pathways in T cells, we will show that, in contrast to
what many theorists would assume, pathway models based on
the description of molecular binding sites can have surprisingly
little flexibility in their behavior. Thus, the frequently cited
von Neumann quote about the four parameters that can fit an
elephant and five that can make him wiggle his trunk does not
always apply.

Another potential hurdle when creating detailed, mechanistic
models is that they can be rather large and assembling or
maintaining them (i.e., adapting them to new hypotheses)
can be laborious and error prone. However, the translation
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of a pathway diagram (which is, in a way, a model) into
a formal language can be done automatically nowadays and
in a manner that does not modify the biological content.
A number of tools have been developed that can perform
such automated translations into computer simulations (see,
for instance, http://sbml.org/SBML_Software_Guide). Among
them, “rule-based” approaches permit specifying details such
as the binding sites that mediate the molecular interactions
(20–22), thereby incorporating aspects that can, for instance,
help identify molecular binding motives as potential targets for
pharmacological modulation through small molecule inhibitors.
Finally, constructing models step-by-step by specifying the
interactions among its components and then letting algorithms
assemble the computational representations of the resulting
networks will allow us to consider models that would be too
complex for manual construction because of the number of
components or because they span several scales (23) or utilize
as experimental input very large data sets, for instance based on
proteomic studies (24).

A SIMPLE EXAMPLE: MODULATING A

MODEL OF G-PROTEIN COUPLED

RECEPTOR SIGNALING

Cells use G-protein coupled receptors (GPCR) for a wide
range of extracellular stimuli, among them such that guide
immune cells to and within lymphoid structures (25). While
the GPCR themselves have been a frequent target of potential
pharmacological manipulation based on molecular structural
studies (26) the downstream signaling events present many
not fully explored opportunities for modulation (27). GPCR
mediated signaling follows a simple common principle (28): A
ligand binds to the receptor’s extracellular binding site, thereby
inducing changes in the accessibility or affinity of intracellular
binding sites that can recruit heterotrimeric G-proteins. In
complex with the receptor, the α subunit (Gα) of the G-proteins
will more readily exchange a GDP (Guanine-diphosphate)
group for a GTP (Guanine-triphosphate) group, and as a
result, will lose its high affinity for the Gβγ subunit that
subsequently will be released and can activate downstream
signaling proteins such as, for instance, Ras. Avoiding the
need to write equations or computer scripts, we can use an
iconographic representation (see Figure 1A) to represent the
sequence of reactions in a “formal” way just as precisely as
differential equations would. In fact, the diagram contains
additional information about the interacting binding sites. The
modeling software Simmune (22, 29) and a recent extension
to the Virtual Cell platform (30) permit using such graphical
symbols to specify molecular interactions and illustrates how
these interactions are linked in the resulting signaling network.
These approaches expand the network beyond the manually
specified complexes by determining which complexes can form
based on the user-specified bi-molecular interactions. Then, they
generate computational representations that can be explored
through computer simulations and display time courses for the
concentrations of these complexes.

Simulating and Modulating the GPCR

Pathway
Once we have a computational representation of a signaling
pathway we can not just simulate the kinetics of the
concentrations of the involved molecular complexes and,
typically, their post-translational modifications. We can
systematically vary the parameters in the model to analyze
their influence on the behavior of the modeled system. We
might, for instance, ask how the affinity of the G-proteins for
the activated receptor or the rate at which Gα switches back
to its GDP state (the auto-GTPase activity of Gα) shape the
characteristics of the response. Experimenting with these rates
in the computational model is far easier than altering molecular
properties experimentally in the lab.

The possibility to vary reaction rates and molecular
concentrations easily in a computational model becomes
particularly interesting when starting with a well-established
model, such as the GPCR model here, and adding signaling
components to identify which combinations of such additions
can be used to achieve a desired type of response—a recurring
question for pharmacological research on “small molecule
inhibitors.” In this example, we added a receptor kinase
that phosphorylates the activated receptor and an inhibitor
that can associate with the receptor binding site used by the
kinase (“RecKin_Inhib”). Furthermore, we added a molecule
(“Gbg_Inhib”) that competes with Gα for binding to Gβγ

(and thus interferes with the reassembly of the activatable
heterotrimeric G protein complex) and a molecule that competes
with Gα for binding to the receptor (“Rec_Inhib,” Figure 1D).
Varying the concentrations of the three inhibitors, the single
response curve shown in Figure 1C turns into a series of time
courses (Figure 1F) for the concentration of free Gβγ, each
corresponding to a particular set of inhibitor concentrations.
Now, we can analyze which features of the curves are compatible
with which ranges for the inhibitor concentration parameters. In
the diagram, we selected a region (green square) that corresponds
to a strong sustained generation of free Gβγ and find that the
inhibitors interfering with the association of Gα and Gβγ need
to have a low concentration to allow for efficient activation of the
G proteins. On the other hand, the concentration of the inhibitor
interfering with the kinase phosphorylating the receptor must
be high since phosphorylation deactivates the receptor. In this
sense, the inhibitor of the receptor kinase actually strengthens
the output (see the figure legend for more details). Whereas,
these results are simply what we would have predicted intuitively,
they illustrate how features can constrain parameter ranges and
how we can map between the two.

COMPUTATIONALLY EXPLORING

CYTOKINE CROSSTALK IN T CELLS

In the previous section, we showed how the features of a
simulated model can constrain the ranges of its parameters.
In this section, we take advantage of the parameter mapping
technique to show that we can identify the limits of what the
pathway can do by varying model parameters over a broad range
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FIGURE 1 | Mechanistic models promote insight into the behavior of signal transduction networks. (A) Visualization of G-protein (Gα and Gβγ) recruitment and

activation by a ligand bound (L) receptor (R) using the Simmune iconographic notation. Colored boxes indicate required states of the interacting molecules, such as

the activation of the receptor (filled red square) or the absence of receptor phosphorylation (empty blue square). Three reaction steps are shown: (i) Gαβγ with Gα in

the (inactive) GDP state is recruited to the active receptor. (ii) Gα switches from GDP to GTP (green square on Gα becomes filled). (iii) The activated G proteins are

(Continued)
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FIGURE 1 | released from the receptor. (B) Network diagram of a simple GPCR signaling network. Lines connecting different molecules represent possible

association or dissociation events. Loops indicate possible state changes, such as the auto-GTPase activity of Gα. Partially filled boxes indicate the presence of states

in the model without specifying their values. (C) Simulated response of the signaling network shown in (B) to exposure with the Ligand. The initial increase of the free

Gβγ concentration is due to the model equilibration to a homeostatic state. After 50 s the ligand is added to the model and concentration of Gβγ increases as the

G-protein rapidly dissociates. After 120 s a virtual wash of the cell is performed, removing the ligand from the simulation. This leads to a recombination of the G protein

subunits and thus a reduction of the concentration free Gβγ. (D) Iconographic representation of an inhibitor competing with the recruitment of the G-protein complex

to the receptor. (E) Expanded network model including receptor phosphorylation by a kinase and inhibitor molecules interfering with receptor-kinase interaction (dark

green molecule), formation of the heterotrimeric G-protein (dark brown molecule) and recruitment of the G-protein to the receptor (orange molecule). (F) 500 simulated

responses of the model in (E) to varying inhibitor concentrations. Red lines indicate simulations matching the selection of high Gβγ concentration (green square in

upper panel). Empirical cumulative distributions function (Ecdf) of simulation parameters for selected simulations (red), unselected simulations (blue), and total

distribution (black). The Ecdf curves are automatically constructed based on the selected curves. The red Ecdf curve increases whenever a parameter value (x-axis) is

part of a parameter set that contributes to the selected curves in the upper panel. (G) Network representation of a JAK-STAT signaling network downstream of the

IL-4 and IL-7 receptors (IL4Rα and IL7Rα) sharing the common gamma-chain. (H) Simulated behavior of STAT6 phosphorylation of the model in (I) following different

doses of IL-7 pre-treatment. Red lines show experimentally observed values and their corresponding parameter distributions in the matching simulations. The inset

focuses on the parameter determining the rate of dissociation of the common gamma (CG) chain from the IL7-bound IL7 receptor. The selected phospho-STAT6

levels (red ranges in upper panel) impose clear constraints, ruling out parameter sets with high off rates for the binding between CG and cytokine-bound IL7Rα. (I)

Expanding the model in (G) by a JAK1 induced phosphatase acting on both STAT3 and STAT6. (J) The hypothesis of a signal induced phosphatase is inconsistent

with experiments, which observed a signal independent decay of STAT6 phosphorylation (indicated by the range between the red lines). In contrast, the simulations

predicted at least 10-fold induction of phosphatase activity, as indicated by the lines connecting low and high IL7 stimulus for pairs of simulations that match all other

experimental constraints. (K) Predicted dissociation constants for the private receptor chains with the γ-chain in the affinity conversion (light gray) and the ruled-out

phosphatase induction models (medium gray and black).

of physiologically plausible values. Exploring these possibilities
becomes useful whenwewant to test whether amodel can explain
experimentally observed features even if we have only rough
estimates for many of its biochemical parameters.

We have recently used this approach (31) to study elements
of the common gamma cytokine signaling pathways that are
highly important for many aspects of lymphocyte activation,
differentiation and survival (32). The cytokine receptors in
these pathways all require the common gamma chain (GC)
to initiate downstream signals after binding to their specific
cytokines, hence the name “common.” The fact that GC is
shared among multiple receptor systems means that, depending
on the amount of GC and the combined number of receptors
that can interact with it, the behavior of the downstream
signaling pathways that lead to activation of STATs may be
affected when several cytokine signals have to be processed
simultaneously by the responding cell. Indeed, stimulating CD4T
cells with the common gamma cytokine IL-7 reduced their
responsiveness toward IL-4 and IL-21, two other CG dependent
cytokines. Experimental determination of cell surface receptor
abundances revealed a limited abundance of CG relative to other
private receptor chains. Intuitive first explanations for this cross-
suppression would thus posit that the limited abundance of CG
leads to competition for this rate limiting signaling component.
Paradoxically, however, the observed cross suppression was
asymmetric as neither IL-4 or IL-21 were able to suppress IL-7
signaling. Further, only a few ligated IL-7 receptors were required
to cause suppression of IL-4 signaling leading us to question
whether CG was truly limiting. To explore this quantitative
riddle and determine whether CG sequestration can, nevertheless
explain the crosstalk, we simulated the model with private IL-4
and IL-7 receptor chains and a shared common gamma chain
as well as receptor-associated JAKs and STAT6 and STAT5
as downstream targets of IL-4 and IL-7 signaling, respectively
(Figure 1G). Mapping back from the various experimentally
observed suppression strengths for different IL-7 doses we found
that the private IL-7 receptor chain needs to have an order

of magnitude higher affinity for CG than the private IL-4
chain (Figure 1K). Importantly, we found that the IL-7 private
chain was required to have a high affinity for CG even before
cytokine stimulation (Figure 1K light gray bar for unligated
IL7Rα), a result which we confirmed experimentally. Previous
hypotheses alternatively suggested that CG is associated with
private receptor chains prior to cytokine binding (33, 34) or
assumed that private receptor chains gain high affinity for CG
only subsequent to cytokine binding (35, 36). Our explorations
suggested that both are probably true: CG has a substantial pre-
association with some private receptor chains that is further
increased upon cytokine binding (Figure 1K light gray bar for
ligated IL7Rα).

Competing Computational Models of CG

Pathway Crosstalk
Being able to modify models with less effort than would
be required when writing equations or scripts by hand,
we computationally explored other mechanisms that could
potentially explain IL-7 induced cross suppression. In particular,
we explored the hypothesis whether IL-7 induced phosphatases
acting on the JAKs at the receptor level or on the STATs further
downstream would be compatible with the experimental
data on cytokine induced responses and IL7 mediated
suppression. Figure 1I shows the model modification that
includes such a phosphatase acting on the STATs. Assessing
phosphatase activity prior to and after IL-7 stimulation in
quantitative experimental assays, we found a much narrower
range of activities than would be required for the degree
of suppressive crosstalk we had observed (see Figure 1J).
In summary, combining multi-dose stimulation data with
a detailed model and mapping back from simulations that
reproduced the data to parameter ranges we identified
quantitative relationships between receptor-ligand affinities
and were able to reject alternative models that relied on
IL-7-induced phosphatases.
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FIGURE 2 | Single-cell models as building blocks for multi-cellular and multi-compartmental higher scale models. (A) Experimental data inform mechanistic models of

cellular signaling pathways. Parameter scans, such as described in Figure 1 can identify the possible modes of behavior of the single cell models, which subsequently

can be used to build systems of interacting coarse-grained cell models to build the scale of interacting cell populations, as illustrated in (B). Iterating this step by

extracting the possible patterns of behavior for those cell population models one can build multi-compartment models (C) that encompass multiple cell populations

and interactions among compartments.

FROM PATHWAYS TO CELLULAR

BEHAVIOR AND CELL POPULATIONS

Here, we discussed two strategies for using parameter scans:
(i) to explore how model features depend on parameters such
as molecule concentrations (how can a model be compatible
with the data?) and (ii) to test whether a model can reproduce
data at all when allowing the model parameters to vary over
a physiologically plausible range (is the model compatible at
all with the data?). Both strategies can be used to calibrate
or select models at the single cell level (Figure 2A). Building
on such calibrated models we can sample the input-output
behavior of the single-cell models for such combinations
of inputs and cellular states (e.g., abundance of cytokine
receptors) that would occur in a multi-cellular system with

cells that exchange signaling molecules such as cytokines
(Figure 2B). Such a strategy has recently been explored (37).
These input-output patterns could then be considered as a
collection of simplified models themselves and thus could
be employed on the multi-cellular scale to allow for large
numbers of cells within a single simulation. Importantly,
however, these simplified models would be based on systematic
explorations of mechanistic detailed models as opposed to
having been designed as simplified models from the beginning.
If a combination of stimuli is outside of the range of
the previously performed detailed single cell simulations, the
collection simplified models could be extended automatically.
Using a similar sampling strategy, we will soon be able
to extrapolate toward simulations that can generate realistic
behavior of compartments comprising many cells of different
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types while exchanging cells and or molecular messengers
(Figure 2C), as is the case for the lymphatic system. This kind
of stepwise coarse-graining will be required to link behavior
of cell populations to the scale of single-cellular mechanistic
models that not only incorporate the current state of biological
knowledge but also will allow us to link pathwaymodulation (e.g.,
through small molecule inhibitors) to cell population or even
tissue behavior.
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Spatio-temporal Chemokine Gradient
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All protective and pathogenic immune and inflammatory responses rely heavily on

leukocyte migration and localization. Chemokines are secreted chemoattractants that

orchestrate the positioning and migration of leukocytes through concentration gradients.

The mechanisms underlying chemokine gradient establishment and control include

physical as well as biological phenomena. Mathematical models offer the potential to

both understand this complexity and suggest interventions tomodulate immune function.

Constructing models that have powerful predictive capability relies on experimental

data to estimate model parameters accurately, but even with a reductionist approach

most experiments include multiple cell types, competing interdependent processes and

considerable uncertainty. Therefore, we propose the use of reduced modeling and

experimental frameworks in complement, to minimize the number of parameters to be

estimated. We present a Bayesian optimization framework that accounts for advection

and diffusion of a chemokine surrogate and the chemokine CCL19, transport processes

that are known to contribute to the establishment of spatio-temporal chemokine

gradients. Three examples are provided that demonstrate the estimation of the governing

parameters as well as the underlying uncertainty. This study demonstrates how a

synergistic approach between experimental and computational modeling benefits from

the Bayesian approach to provide a robust analysis of chemokine transport. It provides

a building block for a larger research effort to gain holistic insight and generate novel and

testable hypotheses in chemokine biology and leukocyte trafficking.

Keywords: chemokine transport dynamics, microfluidic device, model validation, Bayesian parameter inference,

sequential Bayesian updating, MCMC methods, partial differential equations
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INTRODUCTION

The precisely orchestrated migration of leukocytes plays a key
role in all immune and inflammatory responses, including those
that take place in infectious diseases. Their guidance to key
destinations in tissues such as lymph nodes is coordinated by
a group of small, secreted proteins called chemokines. Despite
major recent advances in understanding chemokine functions
(1–3), it is not yet clear how chemokine gradients are formed,
maintained and regulated in tissues. A wide range of transport
and biological processes contribute to the establishment,
stabilization and regulation of chemokine gradients in interstitial
tissue. These include e.g. chemokine production by endothelial
cells in lymphatic vessels, chemokine diffusion and advection
via interstitial fluid flow, chemokine binding to the extracellular
matrix, scavenging of extracellular matrix-bound chemokine
by atypical chemokine receptors expressed by macrophages or
truncation of chemokines by dendritic cells. Dendritic cells
exhibit both chemotaxis (by migrating up gradients of soluble
chemokine) and haptotaxis (by migrating up immobilized
chemokine gradients). Chemokine truncation or scavenging
likely modifies the gradients as the leukocytes migrate, with
the potential to affect subsequent leukocyte migration. Multiple
cell types, competing interdependent processes and considerably
uncertainty in both animal and in vitro models make for a
system of such complexity that it cannot be understood using
experiments alone (4–6). Mathematical models in combination
with experiments can provide a way forward.

A full mathematical model represented by a system of partial

differential equations [based on the original models of Keller

and Segel (7)] accounting for all of the relevant processes
results in a very large number of parameters, most of which
have not been estimated from experiments. The predictive
power of such mathematical and computational models relies
critically on accurate estimates of these parameters. We have thus
formulated a strategy to systematically estimate the parameters
for the system. This requires the reduction of both mathematical
model and corresponding experimental set-up to limit the
number of parameters to be estimated at any one time. In
this paper we have chosen to focus only on the transport
processes associated with chemokine gradient formation. We
present an integrated pipeline demonstrating the use of an
advection-diffusion mathematical model in combination with
measured spatio-temporal chemokine concentration profiles
from microfluidic chambers in order to estimate the key
transport parameters underlying the formation, development
and establishment of chemokine gradients.

To provide a physiologically relevant environment for
quantifying chemokine concentration profiles, we have designed
a microfluidic chamber enabling the imaging and quantification
of the diffusion of fluorescently tagged molecules from sources
of low concentrations, similar to those measured in vivo
for chemokines of 10–100 nM (8). Microfluidic chambers
constructed of Polydimethylsiloxane (PDMS) provide a
functional framework for both experimentally forming
chemokine gradients and testing their effects on cultured
cells. The devices can be imaged microscopically in real time.

They feature a central hydrogel region lined by trapezoidal posts,
which separate it from fluid channels into which chemokines are
pumped. Previous designs have featured a space for deployment
of extracellular matrix (ECM) bounded on either side by
channels through which fluids containing cytokines can be
pumped (9). Pressure differences across the hydrogel can be
modulated to generate and control advection. The fluid velocity
field across the hydrogel and diffusivity of chemokines within it
need to be precisely known for model specification.

The purpose of this paper is to build a Bayesian framework
that enables the estimation of these model parameters
incorporating an assessment of the uncertainty in parameter
estimation. In contrast to the classical frequentist inference
approach, Bayesian methodology treats experimental data
as a fixed quantity and parameters as random variables
drawn from a probability distribution. This allows us to
determine the probability of the parameters taking certain
values given the observed data. Within this framework, we
are able to incorporate prior knowledge about the probability
distribution of the parameters which can then be updated
through experimental observations. In addition, it allows for
the assessment of the reliability of the parameter estimate
through quantification of the uncertainty. This is a robust
alternative to the traditional frequentist approach which
deals with a single “best-fit” and confidence intervals based
on potentially unrealistic assumptions in real experimental
settings. Employing the Bayesian paradigm also facilitates
the design of further experiments by demonstrating which
experimental parameters have the greatest uncertainty. The
suggested framework is validated by analyzing three datasets
(hereafter referred to as DextranI and DextranII and CCL19),
which capture the development of gradients of Dextran and
CCL19 in microfluidic chambers.

MATERIALS AND METHODS

Experimental Set-Up
The experimental data in this paper were obtained by
microscopy imaging of Dextran and CCL19 transport in a
polydimethylsiloxane (PDMS) microfluidic chip (Figure 1A).
This chip enables the observation of the transport of fluorescently
tagged solutes through a porous hydrogel (10). Here, the solutes
were 10 kDa Dextran (ThermoFisher Sci., U.K.), which is of a
similar molecular weight as the chemokines CCL19 and CCL21,
and the chemokine CCL19 (Almac, U.K.). Both were labeled with
the fluorophore Alexa R© 647 at one fluorophore per diffusing
molecule and the hydrogel is collagen type I (Corning, U.S.A.)
at 2.0 mg/mL. The fluorescent solution was supplied to an open-
ended channel on one side of the hydrogel by means of a syringe
mounted on a precision linear displacement mechanism (World
Precision Instruments, model AL4002X). It was transported
orthogonally to the supply flow direction into the hydrogel and
was washed away by phosphate-buffered saline (PBS) on the
opposite side of the hydrogel channel (Figure 1B). Dextran was
supplied at a concentration of 100 nmoles/L, which is within
the range of the concentration of bound CCL21 in lymph nodes
in vivo and CCL19 was supplied at 25 nmoles/L, which is
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also within its concentration range in lymph nodes (8). The
fluorescent intensity across the hydrogel was recorded at intervals
of 30 or 120 s from an initial state of no fluorescence and
averaged orthogonally using Fiji (11) with a custom Matlab code
(MathWorks, Inc., U.S.A.). The fluorescence was also recorded
across the source and sink fluid channels (Figure 1B) to provide
boundary conditions for the posterior analysis.

The Mathematical Advection-Diffusion
Model
In this experimental set-up, the distance between the source and
buffer (sink) of the microfluidic device (depicted in Figure 1B),
is much larger than the gap between the trapezoidal structures at
the side of each channel. Thus, wemodel the transport of Dextran
and CCL19 in a one-dimensional domain 0 < x < d denoting
the concentration of the solute by C(x, t) where x indicates the
distance between the source and buffer with time denoted by
t > 0. We assume that the supply of the solute at the source is
approximately uniform along the channel, so that longitudinal
variations are neglected. The transport of Dextran and CCL19
can, therefore, be described mathematically by the 1D unsteady
advection-diffusion equation,

∂C

∂t
= D

∂2C

∂x2
− u

∂C

∂x
, 0 < x < d, (1)

where D is the effective diffusivity (assumed uniform in the
hydrogel) and u is the uniform advection velocity in the x
direction, referred to as “advection” for the rest of the paper.
Initial conditions for the concentration are extracted from the
experimental data such that:

C (x, t0) = C0(x). (2)

We apply the following boundary conditions at the source
and buffer:

C (0, t) = Cs(t) and C
(

d, t
)

= Cb (t) , (3)

with Cs(t) and Cb (t) specifying the measured time-varying
concentration of solute (Dextran and CCL19) at the source and
buffer, respectively. We solve Equations (1 − 3) numerically
using a finite difference scheme. Central differences are used
to discretize the diffusive terms of the equations and second-
order upwinding is used for the advective terms. Time-stepping
is performed using the implicit Euler method.

Integration of Mathematical Model and
Experimental Data in a Bayesian
Framework
A key objective of this study is to quantify the parameters
of diffusivity and advection from the available concentration
profiles at each time step (Figures 2A,B). Estimation of model
parameters consists of evaluating those values of the parameters
which maximize the ability of the model (Figure 2C) to capture
the experimentally observed concentration profiles (Figure 2B).
We also aim to provide robust, quantitative information on
the uncertainty associated with the estimated parameter values
(Figure 3).

Experimentally Measured Initial and Boundary

Conditions Incorporated in the Model
The crucial first step was to extract concentration profiles at each
time point (Figure 2B) from time-lapse image data (Figure 2A)
using Fiji (11). They were averaged over 300µm orthogonal to
the main direction of diffusion and assimilated to fluorophore
concentration using an assumption of proportionality between
both values. The gray-scale profiles in the dataset at the first time
step were used to determine the initial condition (Equation 2)
for the mathematical model and the averaged gray-scale values
closest to the source and buffer (sink) were used to generate
the two boundary conditions (Equation 3) required for the
mathematical model. However, the spatial grid and numerical
time steps used to solve the discretized model equation do not
necessarily coincide with the data points extracted from the
imaging data. Therefore, it is convenient to find continuous
approximations of the initial and boundary conditions from
experimental data. We used linear interpolation for the initial
conditions and fitted polynomials for the boundary conditions.
Then, these are sampled at the relevant grid points and time
steps used in the numerical method to provide the initial and
boundary conditions for the model simulations. For each dataset,
we evaluated polynomial fits for a range of orders and in each
case we chose the lowest-order polynomial that gave a suitable
qualitative fit to the experimental data.

For DextranI and DextranII, the initial conditions are derived
from the experimental data at t0 = 120 s (Figures 4A,C); for
CCL19 they are derived from the data at t0 = 0 s (Figure 4E).
The time-varying boundary conditions are given by 5th order
polynomials for DextranI (Figure 4B) and 7th order polynomials
for DextranII and CCL19 (Figures 4D,F).

The Bayesian Paradigm
The main idea underlying the fitting of the model to data
is to identify the parameters that best describe the observed
concentration profiles (Figures 2B,C). If one were to use a
traditional frequentist approach, the best estimates for the model
parameters are those for which model and data outputs match
as closely as possible, based on some objective function such
as the sum of squared differences in the widely used “least
squares” optimization technique. The frequentist approach
asks the question—given a particular set of model parameters
how well do the model solutions fit the experimental data?
The Bayesian approach turns this question around: given the
experimental data, what are the model parameters that best
fit the observations? In addition, assessment of goodness-of-
fit using frequentist approaches relies only on considering
whether the data lie within some confidence intervals (with an
underlying assumption that the model parameter estimates have
an asymptotic Normal distribution). In contrast, the Bayesian
approach enables the assignment of a probability distribution
to the model parameters (which may or may not be a Normal
distribution) and a quantification of the uncertainty associated
with the fit (12).

We, therefore, adopt the Bayesian paradigm which enables us
to (i) directly and satisfactorily assess the estimates of the model
parameters given the observations already made in experiments

Frontiers in Immunology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 1986226

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kalogiros et al. Bayesian Inference on Chemokine Gradients

FIGURE 1 | (A) Schematic representation of the polydimethylsiloxane (PDMS) microfluidic chip used for obtaining the experimental data. (B) Enlarged representation

of the imaged hydrogel section between two open-ended channels. The Dextran diffuses from the one open-ended channel (source) to the other open-ended channel

(buffer) and the fluorescent intensity across the distance x, with 0 ≤ x ≤ d, between the source and buffer (sink) fluid channels is recorded at fixed time steps. Based

on the design of Farahat et al. (9).

FIGURE 2 | Schematic of the integrated pipeline for the estimation of transport parameters from the available experimental data. The data-based concentration

profiles (B) at different time steps are extracted from raw images (A) using the image processing package Fiji. Sets of transport parameters of diffusion and advection

enable the model simulations to generate concentration profiles at each time step (C). The Bayesian inference approach is employed in order to determine this set of

the candidate model parameters that best describes the experimental data by minimizing the discrepancy between the data-based (B) and model-based (C)

concentration profiles at each time step.

and (ii) quantify the uncertainty of our estimates in a consistent,

sound and intuitive probabilistic manner (13, 14). In order to fit

the model described in Equation (1) to the fluorescence images at

each time step, we assume additive Gaussian noise ε, independent
for the experimental observations at each time step, with mean

zero and standard deviation σ , i.e. ε ∼ N(0, σ 2), so that:

C (x, t) = C (x, t) + ε, (4)

where C (x, t) indicates the model-based concentration and
C (x, t) denotes the experimental data-based concentration at
position x and time t.

Thus, at each time step both transport parameters of
diffusivity D and advection u are considered random variables
and our prior beliefs about them are formulated into probability
distributions, referred to as prior distributions (Figure 3A).
Based on Bayes’ theorem, the experimental data are used
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FIGURE 3 | (A) Schematic of the essentials for employing a Bayesian approach in inferring transport parameters from experimental data. In the Bayesian paradigm,

both transport parameters of diffusivity D and advection u are considered random variables and our prior knowledge of them is summarized into probability

distributions, the prior distributions. The experimental data are used to update our prior beliefs about the transport parameters and lead to estimates of the transport

parameters which include our data-informed knowledge in the posterior distributions. (B) Initially, we assume no prior knowledge about the transport parameter and

thus we assign a vague (non-informative) prior distribution to it. Performing a Bayesian parameter analysis, we end up with a non-uniform posterior distribution which

not only allows for a point estimate of the parameter but also provides a quantification of the uncertainty associated with it.

to improve upon our prior belief by multiplying the prior
distribution for each of the transport parameters by the
likelihood, which describes the probability of a specific
parameter value describing the observed data (Figure 3B) (15).
After normalizing, this leads to the posterior distribution
π

(

θ
∣

∣data
)

, i.e.,

π
(

θ
∣

∣data
)

=
π(data|θ)π(θ)

∫

θ
π(data|θ)π(θ)dθ

∝π
(

data
∣

∣θ
)

π(θ) , for θ ∈{D, u} , (5)

where π(θ) signifies the prior distribution and π(data|θ)
indicates the likelihood for each of the model transport
parameters, i.e. the diffusivity D and advection u. However,
in this study the uncertainty inherent in the experimental
data, primarily caused by random error and its associated
sources, was not measured directly in the observations and
therefore the standard deviation σ of the noise ε also
had to be estimated. This leads to the updated version of
Equation (5), i.e.

π
(

θ
∣

∣data
)

=
π(data|θ)π(θ)

∫

θ
π(data|θ)π(θ)dθ

∝ π
(

data
∣

∣θ
)

π (θ) , for θ ∈ {D, u, σ } .

(6)

Sequential Bayesian Inference of the Model

Parameters
In order to accommodate the additional information provided
by concentration profiles at different time points, we employ
a sequential Bayesian approach. At the first time step, we
assume no prior knowledge for the transport parameters of
diffusivity D (mm2/s) and advection u (mm/s), while for the
fluorescence imaging experimental noise some prior knowledge
can be assumed. Specifically, at the start we assign a non-
informative uniform prior distribution to both non-negative
parameters of diffusivity D and advection u (Figure 3B) with
0 and 1 as their lower and upper bounds respectively, and a
folded Normal distribution with mean zero (Half-Normal) to
the non-negative standard deviation σ (arbitrary units based on
fluorescence intensity). Thus, for the first time step:

D ∼ π1 (D) = U (0, 1) , (7)

u ∼ π1 (u) = U (0, 1) (8)

and

σ ∼ π1 (σ ) , with σ =

∣

∣

∣
σ

′
∣

∣

∣
and σ

′

∼ N (0, 1) . (9)

By updating the prior distributions π1 (θ) through the likelihood
function, which incorporates the information from the
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FIGURE 4 | (A) The initial conditions for the model simulations extracted from DextranI (A), DextranII (C) and CCL19 (E) through piecewise linear interpolation of the

experimental concentration profile at each point along the channel of width 0.91mm at the initial time t0 = 120 s for DextranI and DextranII and along the channel of

width 0.496mm at the initial time t0 = 0 s for CCL19. The concentration at the boundaries of the channel (the source and the buffer) was derived from DextranI (B),

DextranII (D) and CCL19 (F) (data points marked with crosses) by fitting polynomials of degree 5, 7 and 7 respectively (solid lines) to experimental data before being

used as input to the model simulations.

experimental data E1 =
{

C (xi, t = t1) : 0 ≤ xi ≤ d
}

at the
discrete points xi at t = t1, Equation (6) leads to the posterior
distribution π1 (θ |E1) which summarizes the information for
each parameter θ ∈ {D, u, σ } at the first time step, i.e.

D ∼ π1 (D|E1) , (10)

u ∼ π1 (u|E1) , (11)

and

σ ∼ π1 (σ |E1) . (12)

At every subsequent time step n, with n ≥ 2, our knowledge
of the parameter of diffusivity D, which is a characteristic
quantity of the solute, is mathematically formulated in the prior
distribution πn(θ) at the current time step n but it is also included
in the posterior distribution πn−1 (θ |En−1) at the previous time

step n − 1. We also assign a uniform prior distribution to
advection u, which denotes the advection velocity, as we did for
the first time step. Therefore, with the available experimental
data En−1 =

{

C (xi, t = tn−1) : 0 ≤ xi ≤ d
}

at t = tn−1 we start
afresh and write:

D ∼ πn (D) = πn−1 (D|En−1) (13)

and

u ∼ πn (u) = U (0, 1) , (14)

so that Equation (6) yields the following posterior distributions:

D ∼ πn (D|En) , (15)

and

u ∼ πn (u|En) . (16)
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FIGURE 5 | (A) DextranI: The posterior distributions for the diffusivity D (mm2/s), the advection u (mm/s) and the standard deviation σ (arbitrary units (a.u.) based on

fluorescence intensity) shown for t = 600 s and t = 2,640 s. (B) The model-based concentration profiles C (x, t) with the median value of the resulting posterior

distribution for each of the parameters as well as the data-based concentration profiles C (x, t) plotted every 120 s from 240 s to 2,640 s; the two concentration

profiles annotated with an arrow correspond to those profiles resulting from the median values of the parameters whose posterior distributions are shown in (A).

While the above holds for the parameter analysis of DextranII
and CCL19 throughout the experiment, in the analysis of
DextranI for time step n, with 2 ≤ n ≤ 6, in order to
overcome the issue of parameter identifiability, we assign

the posterior distribution at time step n − 1 as the prior
distribution at time step n for the parameter of advection, i.e.,
u ∼ πn (u) = πn−1 (u|En−1). Then, for any subsequent time step
n, with n ≥ 7, Equations (14) and (16) hold, as explained above.
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FIGURE 6 | (A) DextranI: The estimated median values resulting from the posterior distribution for the diffusivity D (mm2/s) plotted against time every 120 s from 240

s to 2,640 s. (B) The estimated median values resulting from the posterior distribution for the advection u (mm/s) plotted against time every 120 s from 240 s to 2,640

s. (C) The estimated median values resulting from the posterior distribution for the standard deviation σ (arbitrary units (a.u.) based on fluorescence intensity) plotted

against time every 120 s from 240 s to 2,640 s.

Since the noise in the fluorescence images was not measured
directly, the prior distribution πn(σ ) at any subsequent time step
n for the standard deviation σ is given by:

σ ∼ πn (σ ), with σ =

∣

∣

∣
σ

′
∣

∣

∣
and σ

′

∼ N (0, 1) , (17)

which gives rise to the following posterior distribution:

σ ∼ πn (σ |En) , (18)

where En indicate the available experimental concentration data
at time tn. At the first time step, as described above, the initial
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FIGURE 7 | (A) The fitted gamma distributions to the posterior distributions of

diffusivity D (mm2/s) at the different time points of DextranI. (B) The fitted

gamma distributions to the posterior distributions of advection u (mm/s) at the

different time points of DextranI.

conditions are extracted from the data. For any subsequent time
step n ≥ 2, the initial conditions are updated using the values of
the model parameters estimated through the sequential Bayesian
approach which leads to a model-based concentration profile
C (x, t = tn−1) , at time t = tn− 1.

Markov Chain Monte Carlo for Deriving the Posterior

Distributions of the Model Parameters
The normalizing constant appearing in the denominator in
Equation (5) is a multidimensional integral that can be
cumbersome to determine analytically. Instead, simulation-
based methods can be used for deriving the posterior
distributions for each of the model parameters efficiently. In
this study, we use a Markov Chain Monte Carlo (MCMC)
algorithm (16) to efficiently generate samples from the posterior
distribution which is considered the target distribution in
our problem (17). We implement the widely-used random
walk Metropolis-Hastings Algorithm (18, 19). The algorithms
were implemented in the Python package PyMC which is
intended for probabilistic machine learning and Bayesian
stochastic modeling employing advanced Markov Chain Monte
Carlo and variational fitting algorithms (20) using a Dell

R720 with 2 x Intel(R) Xeon(R) E5-2665, 8-core processors
and 512 Gb RAM.

The Metropolis-Hastings algorithm draws samples from
the posterior distribution for each of the model parameters.
Thus, we are able to summarize the posterior distribution and
calculate the relevant statistical quantities of interest for each
of the inferred parameters. These statistics include the mean,
the median, the standard deviation and the Highest Posterior
Density (HPD) intervals, which are the credible intervals in our
Bayesian analysis.

At each time step n our prior knowledge for each transport
parameter was updated through the posterior distribution at
the previous time step n-1, as explained previously. However,
the probability density functions of the posterior distributions
resulting from the MCMC sampling are approximated well by
a gamma distribution Ŵ (α,β) , with the shape parameter α and
the rate parameter β evaluated as follows (21):

E (θ) =
α

β
(19)

and

Var (θ) =
α

β2
, (20)

with themean E (θ) and the varianceVar (θ) already known from
the Bayesian statistical analysis for each transport parameter θ ,
with θ ∈ {D, u} .

RESULTS

The results of the Bayesian parameter analysis provide us with
posterior distributions for each model parameter at each time
point. For DextranI, representative posterior distributions at t
= 600 s and t = 2,640 s are shown in Figure 5A, for DextranII
representative posteriors at t = 480 s and t = 1,440 s are depicted
in Figure 8A and for CCL19 representative posteriors at t =

60 s and t = 120 s are given in Figure 11A. These plots show
that the hereby presented analysis provides us not only with a
single point estimate (the median values of the distributions)
for each model parameter at each time but also enables us to
quantify the uncertainty connected with each one of them. In
fact, at a single time point these plots can interpret graphically
all the summary statistics for each one of the inferred parameters
D, u, σ contained in the Supplementary Material Tables 1–3

for DextranI, Supplementary Material Tables 4–6 for DextranII
and Supplementary Material Tables 7–9 for CCL19. These
summary statistics include measures of location (mean,
median), measures of spread (standard deviation) as well
as measures of confidence that the value of a parameter as
estimated through its posterior distribution lies within a HPD
(Highest Posterior Density) interval with 95% probability.
Supplementary Material Tables 1–9 show that the values of
median and mean for the model parameters consistently lie
within the 95% HPD intervals at every time step. The Bayesian
parameter analysis performed in this study satisfies certain
convergence criteria (see Supplementary Material for results
related to convergence, mixing and autocorrelation) thus
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FIGURE 8 | (A) DextranII: The posterior distributions for the diffusivity D (mm2/s), the advection u (mm/s) and the standard deviation σ (arbitrary units (a.u.) based on

fluorescence intensity) shown for t = 480 s and t =1,440 s. (B) The model-based concentration profiles C (x, t) with the median value of the resulting posterior

distribution for each of the parameters as well as the data-based concentration profiles C (x, t) are plotted for each time step; the two concentration profiles annotated

with an arrow correspond to those profiles resulting from the median values of the parameters whose posterior distributions are shown in (A). The concentration

profiles at t = 720 s and t = 1,200 s are also annotated.

allowing for efficient sampling of the posterior distribution for
each model parameter at each time step.

In order to evaluate the predictability of the model and its
ability to extract reliable values for the transport parameters,
we use summary statistics of the posterior distributions of the

estimated parameters as inputs into the mathematical model.
Although following the analysis of the available datasets the
median equals the mean of the posteriors for the vast majority
of the time steps, we choose the median in order to account for
the cases where the posterior distribution is skewed. The median
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FIGURE 9 | (A) DextranII: The estimated median values resulting from the

posterior distribution for the diffusivity D (mm2/s) are plotted against time

every 120 s from 240 s to 1,440 s. (B) The estimated median values resulting

from the posterior distribution for the advection u (mm/s) are plotted against

time every 120 s from 240 s to 1,440 s. (C) The estimated median values

resulting from the posterior distribution for the standard deviation σ (arbitrary

units (a.u.) based on fluorescence intensity) at each time step are plotted

against time every 120 s from 240 s to 1,440 s.

values for each of the parameter distributions are then substituted
in the mathematical model to simulate the concentration profiles
(red curves in Figure 5B for DextranI, Figure 8B for DextranII,
and Figure 11B for CCL19) corresponding to each time point
for which in vitro concentration profiles were extracted (blue
curves in Figure 5B for DextranI, Figure 8B for DextranII,
and Figure 11B for CCL19). Figures 5B, 8B, 11B show that
at each time step the inferred transport parameters lead to a
very good overall fit of the model consistently for all datasets.
While for DextranI and CCL19 the fit is excellent at all
time steps, some discrepancies between the data-based and the
model-based concentration profiles are more clearly detected
in DextranII at t = 720 s and t = 1,200 s (Figure 8B). The
difference at these time points is a result of the poor polynomial
fit to the boundary conditions at the corresponding time
points (Figure 4D).

FIGURE 10 | (A) The fitted gamma distributions to the posterior distributions

of diffusivity D (mm2/s) at the different time points of DextranII. (B) The fitted

gamma distributions to the posterior distributions of advection u (mm/s) at the

different time points of DextranII.

By fitting the model to experimental data at each time step
we are also able to estimate the variation of the transport
parameters over the course of the experiment (Figure 6
for DextranI, Figure 9 for DextranII and Figure 12 for
CCL19). The median values of diffusivity varied between
10−5mm2/s and 10−4 mm2/s (Figures 6A, 9A, 12A).
Based on the parameter estimation analysis, the advection
across hydrogel varies over time (Figures 6B, 9B, 12B)
due to limitations in the advection control in the
microfluidic chamber.

Finally, we show that the probability density functions of the
distributions are well approximated by a gamma distribution
at each time step as explained in the Markov Chain section
above. For all the datasets, Figure 7 (DextranI), Figure 10

(DextranII) and Figure 13 (CCL19) show the evolution of the
posterior distributions for the estimated transport parameters of
diffusivity and advection over the duration of the experiments.
The range of the distribution at later time steps changes, because
knowledge about the estimated parameter at the previous time
step is incorporated by informing the prior distribution for the
next time step. These figures also provide a sound argument
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FIGURE 11 | (A) CCL19: The posterior distributions for the diffusivity D (mm2/s), the advection u (mm/s) and the standard deviation σ (arbitrary units (a.u.) based on

fluorescence intensity) shown for t = 60 s and t =120 s. (B) The model-based concentration profiles C (x, t) with the median value of the resulting posterior

distribution for each of the parameters as well as the data-based concentration profiles C (x, t) are plotted for each time step; the two concentration profiles annotated

with an arrow correspond to those profiles resulting from the median values of the parameters whose posterior distributions are shown in (A).

to the above conclusion regarding the overall range of the
diffusivity and advection over time guaranteeing that they are not
distributed over multiple orders of magnitude.

DISCUSSION

This study illustrates a robust parameter estimation approach
that greatly facilitates the use of mathematical modeling in

extracting quantitative information about key mechanisms from
experimental data in chemokine biology. The inclusion of
biologically relevant parameters, including the statistically sound
evaluation of their experimental uncertainty and variability, is
crucial in modeling efforts to describe chemokine transport
phenomena. This truly enables the model equations to represent
the functional mechanisms in a manner that will appropriately
represent the in vivo reality.
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FIGURE 12 | (A) CCL19: The estimated median values resulting from the

posterior distribution for the diffusivity D (mm2/s) are plotted against time

every 30 s from 30 s to 120 s. (B) The estimated median values resulting from

the posterior distribution for the advection u (mm/s) are plotted against time

every 30 s from 30 s to 120 s. (C) The estimated median values resulting from

the posterior distribution for the standard deviation σ (arbitrary units (a.u.)

based on fluorescence intensity) at each time step are plotted against time

every 30 s from 30 s to 120 s.

The example of parameter estimation shown here
demonstrates an integrated pipeline for estimating key transport
parameters from in vitro data using a mechanistic advection-
diffusion model. The Bayesian framework not only produces
an overall good fit of the model to the experimental datasets
but it also allows for diffusivity and advection to be estimated
robustly. The resulting estimations of diffusivity for Dextran
varied between 10−5 and 10−4 mm2/s and were close to the
values of diffusivity predicted or measured in other ways. Indeed,
AL-Barati et al. (22) and Takanori et al. (23) measured the
diffusivity to range from 10−5 and 10−4 mm2/s depending
on the experimental conditions such as temperature. These
values are also close to the Stokes diffusivity. Regarding the
estimation of diffusivity of CCL19, these values are coherent
with the theoretical Stokes diffusivity of 1.3 x 10−4 mm2/s

FIGURE 13 | (A) The fitted gamma distributions to the posterior distributions

of diffusivity D (mm2/s) at the different time points of CCL19. (B) The fitted

gamma distributions to the posterior distributions of advection u (mm/s) at the

different time points of CCL19.

for A647-labeled CCL19 in water, calculated for an average
molecular weight of 11.5 kDa for the fluorescently labeled
chemokines (manufacturer batch documentation). The effective
diffusivity in porous media is expected to be up to an order
of magnitude lower than this estimated value. Similarly, the
order of magnitude of the advection velocity is 10−4 mm/s,
i.e. a Péclet number lower than 1. This corresponds to the
lower range of interstitial fluid velocities and is coherent with
the fact that these data were obtained in devices intended for
diffusive transport only. Because of the difficulty in balancing
the system pressures, there was some variability in the advection
velocity over time and this is captured by the parameter
estimation algorithm. Diffusivity should not vary with time, so
our estimates plateau out over time to the most representative
value. The observation of advection variation over time is used
in a feedback process for the refinement of the microfluidic
chamber design. Its design aim is to enable precise and constant
advection across the hydrogel, and the parameter estimations
performed here help identify sources of error in the advection
control strategy.
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Fluorescence image noise is assumed to be independent
for each time point, so it does not plateau. In addition,
there were no data available about the fluorescence imaging
experimental noise, which is quantifiable through the standard
deviation σ (arbitrary units based on fluorescence intensity)
as explained above and mathematically formulated in Equation
(4). Although experimental noise is not known a priori
(since we do not have multiple experimental repeats), our
methodology enables us to estimate it. This is because our
approach allows it to be treated as an extra parameter which
can be inferred in tandem with both transport parameters
successively throughout the duration of the experiment. The
fact that our estimate for the noise was nominally about
1% of the fluorescence signal indicates that the data are of
good quality.

This study also shows that Bayesian parameter analysis
provides accurate posterior inference for all the estimated
parameters at each time point during the course of the
experiment. The framework provides point estimates of the three
parameters of interest and assesses the uncertainty associated
with each one by quantifying the corresponding statistical
distribution. The resulting uncertainties in estimating diffusivity
and advection are most likely a result of spatial variability due to
hydrogel density variation and fluorescence imaging noise.

It is also worth noting that the initial and boundary conditions
for the model simulations are extracted from the experimental
data thus adding to the physical relevance of the estimated
parameters of mathematical models and the reliability of the
parameter inference approach itself. However, at certain time
steps in one of the datasets (DextranII) the polynomial fit to the
boundary condition fluorescence data was sufficiently poor to
create disagreement with themodel-based concentration profiles.
Spline interpolation may be used as an alternative to address
this issue.

The experimental set-up presented here is a prototype which
only accounts for transport phenomena without incorporating
binding kinetics. In future, the integrated pipeline for parameter
estimation will be expanded to more complex experiments which
also allow for binding kinetics, dynamic interactions between
physical, biological, biochemical processes and cellular uptake.
We will further perform experiments with different chemokines,
as this could provide a broader understanding of chemokine

gradient establishment and help stratify chemokines into relevant
groups with respect to their gradient forming characteristics.
This will also provide further support for the applicability
and scalability of this integrated pipeline, since a quantitative
understanding of a system with the complexity of chemokine
transport dynamics requires not only a series of reductionist
experimental approaches but also the ability to construct
mathematical models with powerful prediction capabilities. The
robust model parameter determination algorithm presented here
provides the necessary foundation for this combined approach
contributing to the emergence of a better knowledge base of
the chemokine system and leukocyte trafficking. Thus, predictive
modeling will provide invaluable insights into the potential
therapeutic benefits of modulating immune response.
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Natural killer (NK) cells belong to the first line of host defense against infection and cancer.

Cytokines, including interleukin-15 (IL-15), critically regulate NK cell activity, resulting in

recognition and direct killing of transformed and infected target cells. NK cells have

to adapt and respond in inflamed and often hypoxic areas. Cellular stabilization and

accumulation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) is a key

mechanism of the cellular hypoxia response. At the same time, HIF-1α plays a critical role

in both innate and adaptive immunity. While the HIF-1α hydroxylation and degradation

pathway has been recently described with the help of mathematical methods, less is

known concerning the mechanistic mathematical description of processes regulating

the levels of HIF-1α mRNA and protein. In this work we combine mathematical modeling

with experimental laboratory analysis and examine the dynamic relationship between

HIF-1α mRNA, HIF-1α protein, and IL-15-mediated upstream signaling events in NK

cells from human blood. We propose a system of non-linear ordinary differential

equations with positive and negative feedback loops for describing the complex

interplay of HIF-1α regulators. The experimental design is optimized with the help of

mathematical methods, and numerical optimization techniques yield reliable parameter

estimates. The mathematical model allows for the investigation and prediction of HIF-1α

stabilization under different inflammatory conditions and provides a better understanding

of mechanisms mediating cellular enrichment of HIF-1α. Thanks to the combination of

in vitro experimental data and in silico predictions we identified the mammalian target

of rapamycin (mTOR), the nuclear factor-κB (NF-κB), and the signal transducer and

activator of transcription 3 (STAT3) as central regulators of HIF-1α accumulation. We

hypothesize that the regulatory pathway proposed here for NK cells can be extended to

other types of immune cells. Understanding the molecular mechanisms involved in the

dynamic regulation of the HIF-1α pathway in immune cells is of central importance to the

immune cell function and could be a promising strategy in the design of treatments for

human inflammatory diseases and cancer.
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1. INTRODUCTION

As effector lymphocytes of innate immunity, natural killer (NK)
cells are involved in the host defense against microbial infections
and cancer (1). Sensing their environment, NK cells respond to
cellular alterations including those caused by infections, cellular
stress, and transformation (2).

Interleukin-15 (IL-15), produced by monocytes, macrophages
and dendritic cells, critically regulates NK cell survival and
activation (3, 4). While expression of IL-15 is low under
homeostatic conditions, it is upregulated in inflammation (5).
Upon receptor binding, IL-15 initiates Janus kinase/signal
transducer and activator of transcription (JAK/STAT) signaling.
This promotes growth of NK cells and enhances their ability
to respond to activation. Activated NK cells infiltrate tissues
containing pathogen-infected or malignant cells, resulting in
their recognition and direct killing (6–8).

Sites of infection or cellular transformations are often
characterized by inflammatory hypoxia. Thus, NK cells must
adapt and respond under conditions of low oxygen tension.
The critical cellular dependence of survival on oxygen led to
the early evolution of adaptive cellular responses to hypoxia.
Cellular adaptation to hypoxia is primarily orchestrated by
the hypoxia inducible factor (HIF) family of transcription
factors (9). To date, three HIF family members have been
identified (HIF-1, HIF-2, and HIF-3) of which HIF-1 is the
best characterized (10). Two subunits, HIF-1α and HIF-1β,
form the transcriptionally active HIF-1 complex. The α-subunit
is post-translationally hydroxylated by oxygen-sensitive prolyl
hydroxylases (PHDs) which mark the protein for ubiquitination
and continuous proteasomal degradation. A decrease in cellular
oxygen availability stabilizes HIF-1α allowing its dimerization
with HIF-1β. The dimer translocates to the nucleus, binds to
hypoxia-response elements in promoters of adaptive genes, and
activates their expression.

In immune cells, including T lymphocytes and myeloid cells,
cellular activation of HIF-1α has also been reported to occur in an
oxygen-independent manner during inflammation triggered by
infection and cancer, and to involve transcriptional in addition to
post-translational mechanisms (11). At sites of tissue damage and
infection, both inflammation and decreased oxygen availability
result in HIF-1α stabilization and its nuclear translocation.
Recent insights from models of solid tumors in mice with an
NK cell specific knockout of the HIF-1α gene and from chemical
inhibition of HIF-1α in human NK cells (12, 13) suggest that
HIF-1α limits NK cell anti-tumor activity.

In the past 15 years, several mathematical models for
HIF-1α regulation based on systems of ordinary differential
equations (ODEs) have been proposed (14–19). A review up
to 2013 is given in (20). Nguyen and coauthors (19) have
investigated the dynamics of the HIF-1α pathway, combining
a mathematical mechanistic model and experimental analysis
for human embryonic kidney 293 (HEK-293) cells. Their model
studies accumulation of HIF-1α in hypoxia and its degradation
in normoxia, considering hydroxylation of HIF-1α mediated
through both prolyl hydroxylases and asparaginyl hydroxylase
FIH (factor inhibiting HIF). Fábián et al. (10) have highlighted

the importance of using system biology and mathematical
modeling for understanding HIF signaling. Although lacking the
comparison with experimental data, Fábián’s models allowed to
test different hypotheses on the HIF network, concluding that
the negative feedback induced by PHDs plays a major role in
triggering oscillations in the HIF-1α dynamics.

This work combines mathematical modeling and
experimental analysis to understand processes regulating the
levels of HIF-1α mRNA and protein in NK cells. The proposed
mathematical model considers key features of HIF-1α regulation
and is formulated as a system of non-linear ODEs with positive
and negative feedbacks. In our in vitro studies, we isolated
human peripheral NK cells and studied their behavior simulating
hypoxic and inflammatory conditions, which were produced
by the hypoxia-mimicking agent dimethyl-oxalyl glycine
(DMOG) and the pro-inflammatory cytokine IL-15, respectively.
Experimental trials were designed to collect time series data of
HIF-1α protein expression and its upstream regulators in order
to calibrate the mathematical model. Parameter estimation was
performed by means of numerical methods based on a multiple
shooting approach for dynamic systems and a generalized
Gauss-Newton method for optimization. Our approach does not
only explain experimental observations on HIF-1α dynamics but
also allows to ask questions and test hypotheses with the help of
in silico experiments. For example, we investigated how HIF-1α
levels depend on the regulation of other upstream proteins, and
identified the signal transducer and activator of transcription
3 (STAT3), the mammalian target of rapamycin (mTOR) and
the nuclear factor-κB (NF-κB) as critical regulators. Further, we
studied HIF-1α stabilization in dependence of DMOG-mediated
PHD/FIH inhibition, determining a non-linear relation between
HIF-1α levels and DMOG concentration. Our model provides
new insights into the mechanisms mediating accumulation
of HIF-1α in NK cells, by (i) highlighting the synergistic
effects of IL-15 and chemical hypoxia, and (ii) suggesting that
NF-κB and STAT3 are fundamental regulators of IL-15 induced
HIF-1α enrichment.

2. MATERIALS AND METHODS

2.1. NK Cell Purification and Cell Culture
The study was reviewed and approved by the Medical Ethics
Commission II of the Medical Faculty Mannheim, Heidelberg
University (2014-500N-MA). NK cells were isolated from buffy
coats obtained through the local Red Cross Blood Donor
Service (NK-Cell Isolation Kit, Miltenyi Biotec GmbH, Bergisch
Gladbach, Germany). The purity of NK cells was determined by
flow cytometry.

Freshly isolated NK cell preparations with a phenotype of
≥95% CD56+CD3− and ≤1% each CD3+, CD14+, CD15+,
and CD19+ were judged as pure and were further cultivated as
previously described (21). In brief, cells were plated at a density
of 106 cells/mL in RPMI 1640 medium (Sigma-Aldrich Chemie
GmbH, Merck KGaA, Darmstadt, Germany) supplemented with
10% fetal bovine serum (FBS) and 2 mM L-glutamine and
maintained in a standard tissue culture incubator (37◦C, 5%CO2,
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21% O2, normoxia, standard condition). The cell permeable pan-
hydroxylase inhibitor DMOG (Selleck Chemicals, Houston, TX,
USA) was used to mimic hypoxia. The viability of the cells was
determined by tryptan blue staining and was ≥95% (Countess,
Invitrogen, ThermoFisher, Waltham, MA, USA).

2.2. In vitro Treatments
Freshly isolated NK cells were maintained overnight under
standard conditions and were stimulated with human
recombinant IL-15 (45 ng/mL, PeproTech, NJ, USA), DMOG (20
µM, Selleck Chemicals), rapamycin (25 nM, Merck Chemicals
GmbH, Darmstadt, Germany), STAT3 inhibitor (S3I-201,
200 µM, Merck Chemicals GmbH), or DMSO (Sigma-Aldrich
Chemie GmbH) as control, on the next day for the indicated time
periods. Protein concentrations in cell lysates were determined
on a Direct Detect R© infrared spectrometer (Merck Millipore)
according to the manufacturer’s instructions.

2.3. Western Blotting
Total cell extracts were prepared by resuspending 3×106 NK
cells in 100 µL NP-40 lysis buffer (50 mM Tris-HCl, pH 7.5,
120 mM NaCl, 20 mM NaF, 1 mM EDTA, 6 mM EGTA, 15
mM sodium pyrophosphate, 1 mM PMSF, 0.1% Nonident P-40).
Fifteen minutes of cell lysis on ice was followed by centrifugation
for 20 min at 14,000 × g. Cleared lysates were analyzed
directly by SDS-PAGE and Western Blotting. Briefly, equal
amounts of protein were separated by SDS-PAGE, transferred
to nitrocellulose membranes (Thermo Fisher), blocked in 5%
dry milk powder dissolved in 1×PBS-T, and then probed
with primary antibody and HRP-conjugated secondary antibody
(Santa Cruz Biotechnology, Dallas, TX, USA). Proteins were
visualized using Enhanced Chemiluminescent solution (Thermo
Fisher) and FUSION Vilber imager (Eberhardzell, Germany).
The intensity of signals was quantified by densitometric analysis
using the image analysis software ImageJ (Version 1.51j8). The
value for HIF-1α was normalized to that for β-Actin. Anti-
HIF-1α (# 2185) was obtained from Abcam (Cambridge, UK)
and Anti-Actin (8H10D10) from Cell Signaling Technology
(Frankfurt am Main, Germany). Representative experiments out
of three performed are shown.

2.4. MILLIPLEX Immunoassay
TheMILLIPLEXMAPMulti-Pathway Signaling Phosphoprotein
Kit 48-680MAG was used according to the manufacturer’s
protocol (Merck Millipore). Total NK cell extracts were diluted
with MILLIPLEX MAP Assay Buffer to reach the protein
concentration of 10 µg of total protein/well. Mixed magnetic
beads were added to each well. To appropriate wells, 25 µL of
Assay Buffer (background control), 25 µL of NK cell sample
lysates and 25 µL of control cell lysates were added in duplicates.
The plate was sealed and incubated overnight (20 h) at 4◦C
on a plate shaker (750 rpm). After incubation and washing,
25 µL of Detection Antibody were added to each well. This
incubation step was followed by addition of 25 µL Streptavidin-
Phycoerythrin and incubation on the shaker. After resuspending
the beads in 150 µL of Assay Buffer, the plate was read
on a MAGPIX system (Luminex). Signals of phosphorylation

of STAT3 and AKT were expressed as background-corrected
median fluorescence intensities.

2.5. Modeling the Regulatory Network
The mathematical approach used in this study is based on a
system of autonomous non-linear ODE, which can be in general
written as

{

y′(t) = f (y, u, p), t ∈ [t0, tf ] ⊂ R

y(t0) = y0(p).
(1)

with states y, controls u and parameters p. The vector y(t) ∈ R
ny

indicates the “state of the system,” that is, the concentration of the
considered proteins, complexes and mRNA at time t ∈ [t0, tf ] ⊂
R, and y0 ∈ R

ny is the initial state. The parameter vector p ∈

R
np contains non-negative constants describing the biochemical

reaction rates (such as production, degradation, binding, etc.) in
the system. The time-dependent experimental controls u(t) ∈

R
nu represent cell treatments, specifically with IL-15, DMOG,

or other protein inhibitors. In this work we do not discuss
basic theoretical properties of the solutions to system 1, such
as existence and uniqueness of a global solution, or invariance
of the positive cone of R

ny . All these properties can be proven
by applying elementary results and methods in ODE theory [see
e.g., (22)], and we assume them to hold true in this manuscript.
In the following we explain in detail the model assumptions
and the resulting equations. Model variables and parameters are
given in Table S1, and Tables 1, 2, respectively. A diagram of the
regulatory network is shown in Figure 1.

Recent results (24, 25) showed the connection between IL-
15 and mTOR activity in NK cells, indicating that the AKT-
mTOR pathway is indispensable for efficient cell activity and
immune functions of NK cells. We therefore focused on the
latter signaling pathway, neglecting other cascades [such as Ras-
Raf-MEK and JAK/STAT5 (26)] which are also known to be
initiated by IL-15. Further, IL-15 stimulation in neutrophils and
human peripheral blood lymphocytes has been shown to activate
NF-κB and STAT3 (27–29). All in all, we assumed that IL-15 (y1)
activates AKT (y2), NF-κB (y7), and STAT3 (y8). For a general
formulation we further assumed that IL-15 enters the system at
constant rate a1 and decays at rate d1, that is, the IL-15 dynamics
is given by

y′1(t) = a1 − d1y1. (2)

Activation of AKT is assumed to occur via IL-15 (30) (activation
rate k1), other external mediators (basal activation rate a2), and
also via STAT3 (maximal rate kS) (31). We further assumed that
AKT constantly decays at rate d2, yielding

y′2(t) = a2 + k1y1 + kS
yn28

ξ
n2
28 + yn28

− d2y2. (3)

Following the literature (32) we assumed that AKT activates
mTOR (y3) at rate k2. mTOR basal activation and decay rate
are denoted by a3 and d3, respectively. The inhibitory effect that
hypoxia has on mTOR (33) is included in the model by means of
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TABLE 1 | Parameter description and values used for the mathematical model (2)–(11).

Parameter (fixed) Description [Unit] Remark

a1 IL-15 external regulation rate [nM h−1] 0 (steady state cond.)

a2 = 0.848 AKT basal activation rate [nM h−1] Prefit + sens. anal.

a3 = 0.037 mTOR basal activation rate [nM h−1] Prefit + sens. anal.

a7 = 0 NF-κB basal activation rate [nM h−1] Biol. assumption

a8 = 0 STAT3 basal activation rate [nM h−1] Biol. assumption

a9 = 0 HIF-1α mRNA basal synthesis rate [nM h−1] Biol. assumption

a11 = 4.17 PHD equilibrium level in normoxia [nM] (10, 19)

d8 STAT3 basal decay rate [h−1] =k8 (steady state cond.)

ρ6 = 99% Efficacy (0-100%) of DMOG

as PHD/FIH inhibitor [dim-less] (19)

KO2
= 0.96 FIH/PHD oxygen-dependent binding force

in normoxia [dim-less] (19)

k1 = 2 · 10−5 AKT activation rate via IL-15 [h−1] Prefit + sens. anal.

k2 = 0.307 mTOR activation rate via AKT [h−1] Prefit + sens. anal.

k5 = 75.895 HIF-1 complex dissociation rate [h−1] Prefit + sens. anal.

k10 = 421.353 Catalytic constant rate

for PHD mediated HIF-1α hydroxylation [h−1] Prefit + sens. anal., cf. (19)

k11 = 0.211 Catalytic constant rate

for dehydroxylation of HIF-1α-aOH [nM h−1] Prefit + sens. anal.

k12 = 0.061 Catalytic constant rate

for PHD mediated HIF1α-aOH hydroxylation [h−1] Prefit + sens. anal.

k15 = 0.088 mTOR-induced NF-κB activation rate [h−1] Prefit + sens. anal.

kS = 9 · 10−4 Maximal STAT3-regulated

AKT activation rate [nM h−1] Prefit + sens. anal.

n2 = 2 Hill coefficient in

STAT3-mediated AKT regulation [dim-less] Biol. assumption, cf. (23)

ξ28 = 38.44 Threshold in STAT3-mediated

AKT regulation [nM] Prefit + sens. anal.

1 = 200 Hypoxia-regulated PHD production (10, 19)

at equilibrium [dim-less]

ξ4 = 15.018 Michaelis-Menten constant

for HIF-1α as substrate of FIH [nM] Prefit + sens. anal., cf. (19)

ξ44 = 128.022 Michaelis-Menten constant

for HIF-1α as substrate of PHD [nM] Prefit + sens. anal., cf. (19)

In the left column we report the parameter value used for the numerical simulations. In the right column we indicate whether the parameter value has been fixed because of previous

literature, or pre-fitted and then fixed because of sensitivity analysis results (cf. section 2.7).

a negative feedback regulated by the HIF-1 complex (y6). Hence,
for the mTOR dynamics we obtained

y′3(t) =
(

a3 + k2y2
) α1

α2 + y6
− d3y3. (4)

We denote phosphorylated STAT3 by y8. STAT3 basal activation
and decay rates are a8 and d8, respectively. Both IL-15 andmTOR
are known to induce phosphorylation of STAT3 (29, 34), here
assumed to occur at rate k6 and k8, respectively. All in all, the
differential equation for STAT3 reads

y′8(t) = a8 + k8y3 + k6y1 − d8y8. (5)

The last protein upstream of HIF-1α that we considered in our
model is NF-κB, for which we assumed basal activation (at rate

a7) and decay (d7). NF-κB is further activated via IL-15 (27, 28)
(activation rate k7), via mTOR (35) (k15) and via the HIF-1
complex (36, 37) (k14), yielding

y′7(t) = a7 + k7y1 + k14y6 + k15y3 − d7y7. (6)

HIF-1α mRNA basal synthesis and degradation are defined to
occur at rate a9 and d9, respectively. Further, we assumed that
HIF-1α mRNA is regulated by NF-κB (at rate k9) and STAT3 (at
rate k3),

y′9(t) = a9 + k9y7 + k3y8 − d9y9. (7)

Following previous results (19), we assumed that asparaginyl
hydroxylase FIH is at steady state (ϕ), whereas PHDs are
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TABLE 2 | Parameter description and values used for the mathematical model (2)–(11).

Parameter Description [Unit] Estimated value (s.d.)

a5 HIF-1β basal synthesis rate [nM h−1] 0.211 (0.047)

d1 IL-15 basal decay rate [h−1] 0.062 (0.006)

d2 AKT basal decay rate [h−1] 0.848 (0.080)

d3 mTOR basal decay rate [h−1] 0.919 (0.010)

d4 HIF-1α basal decay rate [h−1] 0.623 (0.052), cf. (19)

d5 HIF-1β basal decay rate [h−1] 0.196 (0.062)

d6 HIF-1 basal decay rate [h−1] 0.301 (0.043), cf. (19)

d7 NF-κB basal decay rate [h−1] 0.914 (0.030)

d9 HIF-1α mRNA basal decay rate [h−1] 0.934 (0.042)

d10 HIF-1α-aOH degradation rate [h−1] 0.935 (0.037)

ρ3 Efficacy of S3I-201 [dim-less] 100% (2.7%)

ρ4 Inhibitory effect of DMOG on

IL-15 mediated STAT3 activation [dim-less] 0.863 (0.007)

k3 STAT3-regulated HIF-1α mRNA production rate [h−1] 0.181 (0.017)

k4 Association rate of HIF-1α and HIF-1β [nM−1h−1] 76.196 (4.986)

k6 STAT3 activation rate via IL-15 [h−1] 25.001 (1.412)

k7 IL-15-regulated NF-κB activation rate [h−1] 2.903 (0.358)

k8 STAT3 activation rate via mTOR [h−1] 0.577 (0.052)

k9 NF-κB-regulated HIF-1α mRNA production rate [h−1] 0.753 (0.205)

k13 Catalytic constant rate

for PHD mediated HIF-1α hydroxylation [h−1] 12.152 (2.272)

k14 Hypoxia-induced NF-κB activation rate [h−1] 16.528 (3.824)

kα HIF-1α synthesis rate [h−1] 1.034 (0.180)

ξ10 Michaelis-Menten constant

for HIF-1α-aOH as substrate of PHD [nM] 8.127 (1.155)

ϕ FIH equilibrium level [nM] 0.829 (0.224)

α1,α2 HIF-1 mediated inhibition in mTOR regulation [nM] 1.163 (0.337),

0.386 (0.126)

In the right column we report the estimated parameter value, indicating mean and standard deviation (s.d.).

upregulated by HIF-1 complex and we approximated their
dynamics with quasi-steady state assumptions (see section S1 for
detailed explanation). Further, we assumed that HIF-1α mRNA
is translated at rate kα and HIF-1α protein decays at rate d4.
We denote by KO2 the oxygen-dependent binding force of
FIH/PHD and HIF-1α (cf. section S1). In normoxia, HIF-1α is
hydroxylated via FIH (assumed at maximal rate k10) and via
PHD (maximal rate k13). The dynamics of HIF-1α protein (y4)
is thus given by

y′4(t) = kαy9 − d4y4 − k4y4y5 + k5y6−k13KO2(1y6 + a11)
y4

ξ44 + y4

−k10KO2ϕ
y4

ξ4 + y4
+ k11y10.

(8)
In accordance with previous studies (19, 38), we assumed that
asparaginyl-hydroxylated HIF-1α (HIF-1α-aOH, here denoted
by y10) can be subsequently hydroxylated via PHD and then
degraded, whereas prolyl-hydroxylated HIF-1α (HIF-1α-pOH) is
quickly degraded.We henceforth neglected the dynamics of HIF-
1α-pOH. Further, we assumed that there is some probability for
HIF-1α-aOH dehydroxylation [cf. (19)]. The resulting dynamics

of HIF-1α-aOH is given by

y′10(t) = k10KO2ϕ
y4

ξ4 + y4
− k12KO2(1y6 + a11)

y10

ξ10 + y10

−k11y10 − d10y10. (9)

HIF-1β (y5) is constitutively expressed by the cells (synthesis
rate a5), independently of the oxygen conditions (10). In
hypoxia, HIF-1α accumulates and binds to HIF-1β (at rate k4)
forming the transcriptional complex HIF-1, which can dissociate
(rate k5). Hence, for HIF-1β and the HIF-1 complex we obtained
the equations,

y′5(t) = a5 − k4y4y5 + k5y6 − d5y5, (10)

and

y′6(t) = k4y4y5 − k5y6 − d6y6, (11)

respectively. For model calibration and comparison with
collected experimental data we extended the model (2)–(11) to
include DMOG or other protein inhibitors. Details are given in
the Supplementary Material (section S2).
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FIGURE 1 | Diagram for HIF-1α regulatory network in NK cells, corresponding to model Equations (2)–(11). We study the interplay of HIF-1α, IL-15, mTOR, NF-κB, and

STAT3 in normoxia and hypoxia. A signaling cascade starting with IL-15 activates NF-κB, STAT3, and AKT. This in turn activates mTOR, influencing HIF-1α mRNA and

HIF-1α protein levels. In normoxia, HIF-1α is hydroxylated via FIH and PHD. Here, we consider only the FIH-mediated asparaginyl-hydroxylated HIF-1α (HIF-1α-aOH)

and assume that a small fraction of HIF-1α-aOH can be dehydroxylated. In normoxia, hydroxylated HIF-1α is degraded via Von Hippel-Landau protein (not considered

in the model). In hypoxia, HIF-1α accumulates and binds to HIF-1β, building the HIF-1 complex. The latter is responsible for both a positive and a negative feedback

on HIF-1α, via activation of NF-κB and via inhibition of mTOR and upregulation of PHD. Black arrows indicate protein activation, translation or formation/dissociation of

protein complexes. For simplicity, basal degradation of molecules is not depicted here. The blind-ended arrow indicates inhibition. Blue arrows indicate external

regulation due to further stimuli not specifically considered in the mathematical model. Yellow arrows indicate HIF-1α hydroxylation via FIH or PHD.

2.6. Numerical Simulations
For the numerical integration of the non-linear ODE system (2)–
(11) and numerical simulations shown in this manuscript we
used the Runge-Kutta formula (4,5) and (3,2) in MATLAB R©

version 9.4 [routines ode45 and ode23s (39)], as well as a
multistep Backward Differentiation Formula (BDF) method with
variable step size and order control. The latter was implemented
by mean of the solver DAESOL (40, 41) in VPLAN (42), a
software for simulation, parameter estimation and optimum
experimental design for non-linear processes described by
differential equations.

We assumed that the initial load of IL-15 in primed cells
is y1(0) = 1, whereas for unstimulated cells y1(0) = 0.
Collected experimental data for HIF-1α, STAT3 and AKT were
normalized with respect to measurements in untreated cells at
the beginning of each experiment and used for model calibration.
In setting the initial conditions, we normalized AKT, mTOR,
NF-κB, STAT3, HIF-1α mRNA and HIF-1β with respect to the

concentration at the beginning of each in silico experiment,
meaning that yj(0) = 1, for j = 2, 3, 5, 7, 8, 9. The total HIF-
1α level was normalized with respect to the initial measurement,
corresponding to untreated cells in normoxia, hence we set
y4(0) + y6(0) + y10(0) = 1. As cells were pre-cultivated in
normoxia, we assumed that at the beginning of our observations
(t = 0 h) most of HIF-1α is hydroxylated, hence, we set y4(0) =
0.05, y6(0) = 0.05 and y10(0) = 0.9.

2.7. Model Calibration
2.7.1. Comparison With Experimental Data
For comparison with experimental data, the solution y(·) =

y(·|u, p) of the mathematical model (1) is associated with an
m-vector of observables,

g(t, y(t), u, p).

Typically it is not possible to observe all states, and in general
g(·) is a non-linear function de-pending on the states and
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parameters. Given an experimental setting uex(·), for each
observable gi(t

ex
j , yex(texj ), uex, p), i = 1, . . . ,m, at measurement

times texj ∈ [t0, tf ], j = 1, . . . , kex, experimental data ηexij are

collected in each experiment ex. Experimental measurements
contain additive noise

ηexij = gi(t
ex
j , yex(texj ), uex, p)+ εexij , (12)

where the errors εexij are assumed to be statistically independent

and normally distributed with zero mean value and
variances (σ ex

ij )
2.

The experimental settings considered in this study present
“perturbation” experiments, ex = 1, . . . , ne, which allow
to investigate perturbations of the cellular processes from
their equilibrium conditions. Each perturbation experiment
corresponds to a different control u = uex in the mathematical
model (1), and the same quantities are measured in each
experiment. It is biologically reasonable to assume that an
unperturbed system is at the steady state. This corresponds in
our case to unstimulated NK cells (uex = u0), hence to the initial
condition y0. The steady state can be mathematically determined
considering the dynamics of untreated cells and setting this in
equilibrium (43, 44). Hence, the initial condition of the system y0
and themodel parameters must satisfy the steady state constraint,

0 = f (y0, u
0, p). (13)

2.7.2. Parameter Estimation Problem
In general, given a mathematical model (1) and experimental
measurements, the goal of model calibration is to determine the
model parameters in (1) from the collected data. This reduces to
an optimization problem of minimizing the discrepancy between
model observables and the experimental data using a particular
metric (45). The weighted least squares functional is known
to deliver a maximum likelihood estimate for the unknown
parameters (46, 47). For the calibration of the parameters of the
regulatory network (2)–(11) we used a weighted l2-norm of the
measurement errors,

l2(y, p) : =
1

2

∑

i,j,ex

(ηexij − gi(t
ex
j , yex(texj ), uex, p))2

(σ ex
ij )

2
, (14)

and further included a priori information p0 by adding a
Tikhonov regularization term (48)

L(p, p0, λ) : =
1

2

np
∑

m̃=1

(pm̃ − p0m̃)
2

λ2m̃

,

where the vector λ ∈ R
np controls the amount of regularization

per parameter. Moreover we incorporated additional
information about parameters and states (initial conditions,
steady states, etc.) in the parameter estimation problem
by formulating equality constraints (49, 50). We estimated

parameters by solving the following multiple experiment
parameter estimation (PEP) problem

(PEP)



















min
y(·),p

1
2

∑

i,j,ex

(ηexij −gi(t
ex
j ,yex(texj ),uex ,p))2

(σ ex
ij )2

+ 1
2

∑np
m̃=1

(pm̃−p0
m̃
)2

λ2
m̃

,

s.t.
(

yex
)′
(t) = f (yex , uex , p), t ∈ [t0, tf ], yex(t0) = yex0 (p),

rex(yex(tex1 ), yex(tex2 ), ..., yex(tex
k
), p) = 0, ex = 1, ..., ne.

2.7.3. Numerical Methods for Parameter Estimation
For least squares minimization, as those in (PEP), a frequently
adopted approach is the derivative-based iterative Gauss-Newton
method (45, 51). In this work we applied an “all-at-once”
parameter estimationmethod based on a direct multiple shooting
approach for dynamic systems (51) and a generalized Gauss-
Newton method for optimization (50, 51). This is a boundary
value problem approach, in which the system of differential
Equations (1) is discretized including boundary conditions. The
discretized system is treated as a non-linear constraint of the
least squares objective function (52). For the multiple shooting
approach, a suitable grid of multiple shooting nodes was chosen
and, at each multiple shooting grid point, the values of the state
variables were included as additional optimization variables. On
each subinterval an additional initial value problem was solved.
To maintain the continuity and feasibility of the solution, we
included additional matching conditions (50, 52). The splitting of
the integration interval leads to a numerically stable system (52).
The resulting finite dimensional non-linear constrained least
squares problem can be formally written as

min
s,p

1

2
||F1(s, p)||

2
2, s.t. F2(s, p) = 0, (15)

where the constraints F2(s, p) = 0 include the multiple shooting
parameterization of the dynamical model and s denotes the
vector of states in the parametrized model. The problem (15) was
solved by a generalized Gauss-Newton method. At each iteration
of the Gauss Newton method

sk+1 = sk + tk1sk, pk+1 = pk + tk1pk, tk ∈]0, 1]

the increments 1sk,1pk solve the linearized problem







min
1s,1p

1
2 ||F1(s

k, pk)+
∂F1(s

k ,pk)
∂s 1s+

∂F1(s
k ,pk)

∂p 1p||22,

s.t. F2(s
k, pk)+

∂F2(s
k ,pk)

∂s 1s+
∂F2(s

k ,pk)
∂p 1p = 0.

(16)
For the case considered in this work, the linearized problem
(16) shows special structures due to multiple experiments and
multiple shooting approaches. These structures are efficiently
exploited in a tailored linear algebra method for the solution of
(16). A numerical analysis of the well-posedness of the problem
and an assessment of the error of the resulting parameter
estimates were performed at the solution of the problem (PEP),
based on the analysis of the corresponding sensitivity (or
Jacobian) matrix J

J = J(s, p) =

(

J1(s, p)
J2(s, p)

)

=

(

∂F1(s,p)
∂s

∂F1(s,p)
∂p

∂F2(s,p)
∂s

∂F2(s,p)
∂p

)

. (17)
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Further details can be found in (49, 50). In particular, we
computed the linear approximation of the variance-covariance
matrix for the constrained parameter estimation problem (PEP)

Cov = Cov(s, p) = J+T

(

diag{σ ex
ij }i,j,ex 0

0 0

)

J+, (18)

and the standard deviations of states and parameters as square
root of the corresponding diagonal elements of the matrix Cov.
In (18) the matrix J+ denotes the generalized inverse of the
sensitivity matrix J(s, p), that is J+JJ+ = J, and 0 denotes the zero
matrices of the corresponding dimensions.

The above sketched methods are implemented in the software
VPLAN (42), which includes the parameter estimation software
PARFIT (53, 54). VPLAN was used for parameter estimation in
this study.

2.7.4. Initial Guesses
Before starting the actual optimization procedure (PEP), we
determined initial guesses in a reasonable scale for the parameters
that needed to be estimated. Good initial guesses are important
for convergence of the parameter estimation methods used in
this work. In certain cases prior information p0 for initial guesses
is found in the literature (cf. Table 2). When results published
in previous studies did not help, we applied homotopy related
methods (55) and pre-estimated the parameters using Wolfram
Mathematica R© version 11.3 with the Ndsolve and manipulate
routines, as well as DAESOL in VPLAN.

2.7.5. Sensitivity Analysis
In a second step, before starting parameter estimation, we
performed a local sensitivity analysis at parameter values p0

and corresponding solutions yex(·|uex, p0), ex = 1, ..., ne of
ODE systems. The goal of the local sensitivity analysis is to
find those parameters, which can be estimated reliably with
the model and the given measurements. The local sensitivity
analysis is performed using the sensitivity matrix J0 =

J(s0, p0). If the sensitivity matrix J0 has almost linear dependent
columns, then it is ill-conditioned and the parameter vector
is badly identifiable (48, 56). We computed the singular value
decomposition of the sensitivity matrix J0. The reciprocal of
the minimal singular value yields the collinearity index, which,
if it is large, indicates that the sensitivity matrix has almost
linear dependent columns (48, 56, 57). In this work we set
a minimal threshold 0.1 for rejecting small singular values
and for determining the subset of parameters corresponding to
almost linear independent columns of J0. This allowed to fix
13 parameters which correspond to almost linear dependent
columns of J0. The remaining 25 parameters are reliably
identifiable and were estimated by mean of (PEP).

2.8. Model Robustness
We implemented extrinsic and intrinsic stochastic perturbations
using a Monte Carlo analysis. For extrinsic perturbations we
varied the input stimulation IL-15 (y1(t)) ±25% around its
original value. We measured the effect of these perturbations
on total HIF-1α in the model accounting for DMOG treatment
and IL-15 stimulation at the steady-state level. For intrinsic

perturbations we varied specific parameters (a2, a3) and
measured the effect of these perturbations on total HIF-1α in the
model accounting for DMOG treatment and IL-15 stimulation
at the steady state level. We implemented the intrinsic and
extrinsic stochastic perturbations by varying the specific elements
25% around their original value and sampling 1000 times
from a uniform distribution. The Monte Carlo analysis was
implemented in Wolfram Mathematica R© version 11.2.

3. RESULTS

3.1. IL-15-induced HIF-1α Protein
Accumulation in Peripheral NK Cells
In cells exposed to hypoxia, the stabilization and activation of
HIF-1α is well characterized (58). Instead of manipulating
the oxygen tension to induce HIF-1α, pharmacological
inhibitors of HIF-1α hydroxylation can be used as well. We
used a cell-permeable pan-hydroxylase inhibitor, DMOG, to
inhibit oxygen-sensitive hydroxylases that target HIF-1α for
proteasomal degradation and its transcriptional inactivation.
After preincubation under normoxia for 16 h, peripheral NK
cells were stimulated with the pro-inflammatory cytokine IL-15
in the presence of DMOG for different time periods. Whole cell
extracts were prepared and the response of NK cells to IL-15
stimulation and DMOG treatment was assessed by evaluating
the expression of HIF-1α measured by Western Blot analysis
(Figure 2). The expression of β-actin was monitored to confirm
equal loading.

HIF-1α expression was barely detectable in the first 3 h of
IL-15 and DMOG stimulation. However, after 4 h we detected
accumulation of HIF-1α protein, which further increased over 8
h and was maintained to at least 27 h, although to a lesser extent
than at 8 h (Figure 2A).

IL-15 signaling in NK cells through the kinase mTOR has
previously been reported to be essential for their expansion
in the bone marrow and sustained activation (24). Moreover,
among other signaling pathways, the PI3K/mTOR pathway has
been linked to the induction of HIF-1α protein expression
in immune cells, including T lymphocytes (59). To study the
role of mTOR in HIF-1α protein expression in NK cells, we
stimulated the cells with IL-15 and DMOG in the presence
or absence of pharmacological mTOR inhibitor rapamycin. As
shown in Figure 2B, mTOR inhibition reduced HIF-1α levels.
Nevertheless, HIF-1α signals remained detectable, pointing to
other upstream regulators of HIF-1α protein accumulation in
IL-15 stimulated NK cells.

3.2. Model Parameters
The model (2)–(11) has been calibrated on time series for
AKT, STAT3 and HIF-1α collected from NK cells under
different experimental conditions (Table S2), namely under
stimulation/treatment with: (i) IL-15; (ii) DMOG; (iii) IL-15
+ DMOG + rapamycin; (iv) DMOG + IL-15 + S3I-201. We
interpret (i)–(iv) as “perturbation experiments” from the initial
(equilibrium) condition. Biological sense and previous literature
on mathematical modeling of cellular dynamics (43, 44) suggest
that it is important to assume that untreated cells are in the steady
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FIGURE 2 | In the presence of DMOG, stimulation of NK cells with IL-15 induces the accumulation of HIF-1α protein. Whole cell extracts were used for immunoblotting

of HIF-1α. Equal gel loading was confirmed by β-actin expression. (A) After preincubation under normoxia for 16 h, NK cells were treated with IL-15 and DMOG for

indicated additional time periods. (B) In addition to IL-15 and DMOG, NK cells were treated with rapamycin (Rapa), which reduces HIF-1α protein accumulation.

state. Such an assumption yields 10 algebraic equations (steady
state constrains) on the parameter, which together with the
collected time series data of the four perturbation experiments
(39 data points, cf. Table S2) were used to calibrate the model.
Table 2 reports the 25 estimated parameters and Figure 3A

shows the model fit. Model parameters either estimated or
fixed from previous literature are reported in Tables 1, 2. With
these parameter values we ran an in-silico experiment for
NK cells stimulated with IL-15 and treated with DMOG. The
obtained numerical simulations were used to validate our model,
comparing the model predictions with collected experimental
data for AKT, STAT3 and HIF-1α time series of NK cells
stimulated with IL-15 and treated with DMOG (Figure 3B).
To depict the statistical significance of the parameter estimates,
Table 2 also reports the standard deviation for each estimated
parameter value.

3.3. The Mathematical Model Explains the
Dynamics of HIF-1α Accumulation
Besides the known hypoxia-induced HIF-1α stabilization and
AKT-mTOR-mediated increase in protein translation, HIF-1α
can also be induced through increased transcription involving
activated transcription factors, among others STAT3 as shown
in T lymphocytes (60) and B lymphocytes (61). To determine
the role of AKT, mTOR and STAT3 as mediators of HIF-1α
accumulation downstream of IL-15, we collected time series
data (Figure 3, Table S2) for the phosphorylation status of AKT
(Ser473) and STAT3 (Ser727), representing the activated forms
of the proteins (62, 63). For optimal parameter estimation, we
collected data from NK cells isolated from blood of the same
donors, cultured in normoxia, chemical hypoxia (DMOG) and
treated with a STAT3 or mTOR inhibitor.

The model is able to reproduce data collected for HIF-1α,
STAT3 and AKT in different experimental settings (Figure 3). In
particular, model predictions match time series data of HIF-1α
protein expression and indicate that simultaneous exposure of
NK cells to IL-15 and DMOG (Figure 3B) increases the levels of
total HIF-1α, compared to HIF-1α levels in cells either stimulated
with IL-15 or treated with DMOG (Figure 3A). Moreover,
inhibition ofmTOR or STAT3 leads to reduction of HIF-1α levels,

suggesting that both proteins are involved in the regulation of IL-
15 induced HIF-1α accumulation in DMOG treated cells. Model
assumptions and calibration results (cf. Tables 1, 2) indicate that
the external regulation of IL-15, NF-κB, STAT3, and HIF-1α-
mRNA is negligible in order to explain collected time series in NK
cells under the proposed experimental setting. Further, parameter
estimation and model discrimination (results not shown here)
suggest that DMOG reduces IL-15-mediated STAT3 activation
(see section S2).

The collected data (cf. Table S2) further show that IL-15,
DMOG or inhibition of either mTOR or STAT3 does not affect
the levels of phosphorylated AKT (Ser473) in human NK cells.
After preliminary steps in the parameter estimation procedure,
we obtained k1 ≈ 10−5, kS ≈ 10−4 (cf. Table 1). The sensitivity
analysis which followed indicated that the two values have small
effects on the objective function in (PEP). This suggests that,
the order of magnitude of k1 and kS being much smaller than
those of all other parameters, the two parameters could be set to
zero without much affecting the simulation results, and the AKT
dynamics in Equation (3) can be simplified and described by a
linear equation,

y′2(t) = a2 − d2y2.

With parameter values as indicated in Tables 1, 2 we ran
numerical simulations of model (2)–(11) for NK cells under
different experimental conditions. Figures 4, 5 show the
simulation results for all1 model components in normoxia
without (N, O2 = 21%) and with DMOG (20 µM, chemical
hypoxia), treated with one (A panels) or two inhibitors at
the same time (B panels). The level of total HIF-1α, which
we define as the sum of HIF-1α protein, HIF-1 complex and
HIF-1α-aOH, is significantly higher in DMOG treated cells
than in untreated cells in normoxia. The major component

1The dynamics of IL-15 is trivial and neither affected by oxygen saturation

nor other inhibitors (in the model assumptions there is no feedback on IL-15,

cf. Equation 2), hence it is equivalent in all experimental conditions and omitted

in Figures 4, 5. The same holds for the AKT dynamics in view of the results of the

sensitivity analysis.
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FIGURE 3 | The mathematical model (2)–(11) explains collected time series for HIF-1α, STAT3, and AKT. Parameters used for numerical simulations are given in

Tables 1, 2. (A) Model calibration results: comparison of numerical simulations (continuous curves) and collected experimental data (dots ± S.E.) of total HIF-1α

(y4 + y6 + y10, red curves/dots), STAT3 (blue) and AKT (black). The model is fitted to data collected in different experimental settings: (upper left) IL-15-stimulated NK

cells; (upper right) DMOG treated cells; (lower left) IL-15-stimulated NK cells treated with DMOG and STAT3 inhibitor (S3I-201); (lower right) IL-15-stimulated cells

treated with DMOG and with mTOR inhibitor rapamycin (Rapa). (B) Model validation results: comparison of numerical simulations (continuous curves) and collected

experimental data (dots ± S.E.) of total HIF-1α (y4 + y6 + y10, red curves/dots), STAT3 (blue), and AKT (black) for IL-15-stimulated cells treated with DMOG.

Experimentally collected data points are reported in Table S2.

of the sum in DMOG treated cells is HIF-1α, whereas its
hydroxylated form predominates in normoxic cells. As expected,
we observe that HIF-1β is stable in normoxia. However, in the
presence of available HIF-1α, HIF-1β is consumed for HIF-1
complex formation.

Consistent with the model assumptions, we observe mTOR
inhibition by rapamycin. Moreover, the stabilization of HIF-1α
in DMOG treated cells and the subsequent formation of HIF-1
results in a negative feedback on mTOR (Figure 5). NF-κB shows
higher activity in DMOG treated cells compared to untreated
cells and our simulations predict an essential role for NF-κB
as a regulator of HIF-1α-mRNA and protein in DMOG treated
cells. In contrast, the IL-15-induced STAT3 activity is higher
in cells without DMOG and inhibition of STAT3 results in
an important reduction of HIF-1α-mRNA and protein levels.
Combined inhibition of both transcription factors abolishes
HIF-1α enrichment in both, DMOG treated and untreated cells.

3.4. Regulators of HIF-1α Enrichment
Parameter values used for data fitting (Table 1) in Figure 3A

indicate that the external regulation rates of IL-15, mTOR, and
STAT3 are small or negligible in the considered cell cultures.
Nevertheless, such parameters could change from donor to
donor, in particular if affected by inflammatory conditions or
cancer (5, 64).

To investigate the influence of external regulators on the
behavior of the total HIF-1α stabilization, we systematically
perturbed the constant activation rate of different proteins in the
network. First we studied the effect of external regulation of IL-15
on the stabilization of total HIF-1α in normoxia in the presence
or absence of DMOG. For this we simulated ideal experiments
in which the cells are exposed to continuous stimulation. We

ran computer simulations varying the IL-15 external regulation
parameter a1 in the interval [0, 10] nM h−1 and plotted the
solution of total HIF-1α over time. All other parameter values
as well as initial conditions were fixed as indicated in Materials
and Methods. Figure 6 shows the results for IL-15 (left), and
for total HIF-1α in the absence (middle) or presence of DMOG
(right), with dark blue curves corresponding to the lowest value
(a1 = 0 nM h−1) and red curves to the highest value (a1 = 10
nM h−1). Simulations confirm the synergistic effect of IL-15 and
DMOG treatment on HIF-1α. The stronger the continuous IL-
15 stimulus, the higher are the total HIF-1α levels. Compared
with untreated cells, HIF-1α levels reach two to three times higher
steady state2 values in the presence of DMOG.

Similarly, we investigated the dependence of total HIF-1α
accumulation on the external regulation of mTOR and STAT3.
We considered cells with or without DMOG and proceeded as
above by varying the parameters a3 (for mTOR) and a8 (for
STAT3) in the interval [0, 10] nM h−1. For investigations on the
steady state of the systems (t = 100 h), it makes no difference
if cells are initially stimulated with IL-15 or not, as the effect of
initial stimulation has vanished at the steady state (cf. Figures 4,
5). The results are shown in Figure 7, where dark blue curves
correspond to the lowest value (aj = 0 nM h−1, j = 3, 8)
and red curves to the highest value (aj = 10 nM h−1, j =

3, 8). Our computer simulations confirm that higher HIF-1α

2A complete analytical study of the steady states of system (2)–(11) and their

stability was beyond the scope of this manuscript. In general, the non-linear

system (2)–(11) might have, in certain parameter ranges, multiple biologically

relevant steady states. However, the parameter values used for the numerical

simulations in this work guarantee convergence to a unique non-negative steady

state which is shifted to higher/lower values when different stimuli are considered

(cf. simulations shown in Figures 4–10).
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FIGURE 4 | Model simulation in NK cells without DMOG (N): (A) with one inhibitor and (B) with two inhibitors. Colors indicate the following experimental settings:

(blue) untreated cells; (red) cells primed with IL-15; (green) cells primed with IL-15 and treated with STAT3 inhibitor S3I-201; (yellow) cells primed with IL-15 and treated

with mTOR inhibitor rapamycin (Rapa); (magenta) cells primed with IL-15 and treated with NF-κB inhibitor (NF-κBi); (cyan) cells primed with IL-15 and treated with

STAT3 inhibitor and rapamycin; (gray) cells primed with IL-15 and treated with NF-κB inhibitor and rapamycin; (orange) cells primed with IL-15 and treated with NF-κB

and STAT3 inhibitors.

concentration in DMOG treated cells induces a negative feedback
and downregulates mTOR (Figure 7A). As Figure 7B suggests,
increasing STAT3 external regulation leads to higher HIF-1α
levels, which are amplified by DMOG treatment, although STAT3
levels in DMOG treated cells are slightly lower than in cells
without DMOG.

We further investigated the dependence of total HIF-1α
enrichment on two signals at the same time. We started by
varying the external activation rate of mTOR (a3) and STAT3
(a8) in the interval [0, 10] nM h−1, ran simulations up to t =

100 h and obtained numerical solutions of the mathematical
model at the steady state. Figure 8 shows the results for total
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FIGURE 5 | Model simulation in chemical hypoxia (20 µM DMOG): (A) with one inhibitor and (B) with two inhibitors. Colors indicate the following experimental

settings: (blue) untreated cells; (red) cells primed with IL-15; (green) cells primed with IL-15 and treated with STAT3 inhibitor S3I-201; (yellow) cells primed with IL-15

and treated with mTOR inhibitor rapamycin (Rapa); (magenta) cells primed with IL-15 and treated with NF-κB inhibitor (NF-κBi); (cyan) cells primed with IL-15 and

treated with STAT3 inhibitor and rapamycin; (gray) cells primed with IL-15 and treated with NF-κB inhibitor and rapamycin; (orange) cells primed with IL-15 and treated

with NF-κB and STAT3 inhibitors.

HIF-1α, STAT3, andmTOR inNK cells cultivated with or without
DMOG. The same figure shows also the effect of simultaneous
changes in the external activation rate of NF-κB (a7 in the interval
[0, 10] nM h−1) and STAT3 (a8 in the interval [0, 10] nM h−1).
Again, we observe a central role of STAT3 as regulator of HIF-1α

enrichment, especially in synergy with NF-κB. An increase in
STAT3 external regulation rate combined with an increase in the
external regulation rate of NF-κB leads to a higher amplification
of total HIF-1α compared to STAT3 combined with mTOR. Plots
in Figure 8 also reflect the negative feedback of induced HIF-1
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FIGURE 6 | Effects of external IL-15 regulation on total HIF-1α in NK cells cultivated in the absence (N) or presence of DMOG. External IL-15 regulation rate (a1) is

varied in [0, 10] nM h−1 with regular steps. Other parameters and initial values are fixed as in Tables 1, 2. Curves with same color correspond to the same parameter

value and follow the jet color map in MATLAB®, with dark blue corresponding to the lowest value (a1 = 0 nM h−1) and red to the highest value (a1 = 10 nM h−1). Left:

IL-15 dynamics is equal in both, NK cells cultivated without and with DMOG as there is no feedback on IL-15 in the model (cf. Equation 2); middle: Total HIF-1α in

untreated NK cells; right: Total HIF-1α in NK cells cultivated with DMOG.

FIGURE 7 | (A) Effects of external mTOR regulation on total HIF-1α in NK cells without (N) or with DMOG. External mTOR activation rate (a3) is varied in [0, 10] nM h−1

with regular steps. (B) Effects of external STAT3 regulation on total HIF-1α. External STAT3 activation rate (a8) is varied in [0, 10] nM h−1 with regular steps. All other

parameters and initial values are fixed as in Tables 1, 2. Curves with same color correspond to the same parameter value and follow the jet color map in MATLAB®,

with dark blue corresponding to the lowest value (aj = 0 nM h−1, j = 3, 8) and red to the highest value (aj = 10 nM h−1, j = 3, 8).

on mTOR: (i) in general, NK cells treated with DMOG have
lower levels of activated mTOR than untreated cells and (ii)
higher concentration of activated STAT3 (due to increasing a8
rate) induces HIF-1α, resulting in higher levels of HIF-1 complex,
which in turn is known to inhibit mTOR. Finally, Figure 8
stresses the role of HIF-1 as activator of NF-κB. In normoxic
cells, where HIF-1 levels are low, NF-κB activity is low, despite
increasing of external regulation. In contrast, in DMOG treated
cells, HIF-1 accumulation leads to upregulation of NF-κB. This is
in accordance with data obtained in neutrophils demonstrating
that NF-κB is an important downstream effector of the HIF-1α-
dependent response (37). Figure 9 shows HIF-1α steady states in
dependence on the external regulation rate of IL-15 (a1 varying

in [0, 10] nM h−1) and activation of STAT3 (a8 varying in the
interval [0, 10] nM h−1). The results confirm the synergistic effect
of IL-15, STAT3 and DMOG in increasing HIF-1α levels.

Besides the above deterministic perturbations, we tested the
network robustness with a stochastic approach. Robustness
allows a system to maintain its function, regardless of external
and internal perturbations (65). We perturbed specific elements
of the system 25% around their originally estimated value
(parameter values are otherwise fixed as in Tables 1, 2). We
applied stochastic perturbations using the Monte Carlo method
(see section 2.8) and computed how external (in IL-15) and
internal (in mTOR and AKT) changes affect the steady state
of total HIF-1α in IL-15 stimulated cells treated with DMOG.
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FIGURE 8 | Effects of external regulation of mTOR, NF-κB, and STAT3 in NK cells without (N) or with DMOG. External activation rates for mTOR (a3) and STAT3 (a8)

are varied in the interval [0, 10] nM h−1 and for NF-κB (a7) in the interval [10, 20] nM h−1. Other parameters and initial values are fixed as in Tables 1, 2. Steady states

(100 h) of the model solutions are computed for total HIF-1α (first row), STAT3 (second row), and mTOR or NF-κB (third row).

Figure 10 shows the histograms for IL-15 (A), AKT (B), and
mTOR (C) (green) and total HIF-1α (red). Our results show
that the model is robust to internal and external stochastic
perturbations, indicating that variations of ± 25% in IL-15, in
the AKT activation rate a2 ± 25% or in the mTOR activation rate
a3±25% result in minimal variations (< 10%) in the steady state
of total HIF-1α.

With the help of numerical simulations we tested how

HIF-1α stabilization is affected by increasing concentration of

DMOG. Assuming that NK cells are treated with DMOG and

stimulated with IL-15 at time t = 0 h, we changed the
DMOG concentration from 0 to 100%, with 100% corresponding
to 20 µM. Figure 11A shows the evolution of HIF-1α in
time, with HIF-1α stabilization depending on the DMOG
dosage. We computed the fold change of HIF-1α stabilization
at the equilibrium (t = 100 h) and compared control
cells (untreated) with cells treated with different DMOG
concentrations (Figure 11B). The relation between HIF-1α
stabilization and DMOG dosage is non-linear and doubling the
DMOG dose does not lead to twice as high HIF-1α levels. Our
results suggest an exponential trend in the relation between
PHD/FIH inhibitor DMOG and HIF-1α stabilization, which

is in accordance with what was previously observed for HEK
cells (19).

3.5. Which Timing for Cell Treatment?
Model (2)–(11) can be used for a number of in silico experiments
to test the validity of biological hypotheses or predict the outcome
of laboratory tests. In this study we were particularly interested
in the synergy of IL-15-stimulation and DMOG treatment in the
stabilization of HIF-1α, already observed in the results described
above. In all previous simulations, normoxic NK cells were
stimulated at the beginning of the observation with IL-15 in
the presence or absence of DMOG. To understand how the
timing of the treatments affects HIF-1α stabilization in NK cells,
we also simulated different possibilities for the timing of cell
treatment combining chemical hypoxia and stimulation with
IL-15 (Figure 12).

We compared the HIF-1α dynamics for the following in silico
experiments: (gray) untreated NK cells (N) cultivated for 30 h;
(dark blue) IL-15 stimulation at t = 0 h; (magenta) DMOG
treatment for 30 h; (green) DMOG treatment for 30 h, with IL-
15 stimulation at t = 0 h; (yellow) IL-15 stimulation at t = 6
h; (orange) DMOG treatment starting at t = 6 h; (red) IL-15
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FIGURE 9 | Effects of external regulation of IL-15 (a1) and STAT3 (a8) in NK cells without DMOG (N, left) and DMOG treated cells (right). External regulation rates are

varied in the intervals [0, 5] nM h−1 for IL-15 and [0, 10] nM h−1 for STAT3. Other parameters and initial values are fixed as in Tables 1, 2. Steady states (100 h) of the

model solutions are computed for total HIF-1α (first row) and STAT3 (second row).

FIGURE 10 | Stochastic extrinsic and intrinsic perturbations of the HIF-1α regulatory network in IL-15 stimulated cells treated with DMOG. Histograms accounting for

total HIF-1α relative steady state variations after stochastically varying (A) IL-15, (B) the AKT basal activation rate (a2), and (C) the mTOR basal activation rate (a3). The

model is robust to internal and external stochastic perturbations, indicating that variation of ± 25% in the above elements result in minimal variations (< 10%) in the

steady state of total HIF-1α.
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FIGURE 11 | Stabilization of HIF-1α in dependence on DMOG concentration after IL-15 stimulation. (A) Evolution of HIF-1α in time, depending on the DMOG dosage

with dark blue corresponding to no DMOG (N) and red corresponding to 20 µM DMOG. In these simulations cells are initially stimulated with IL-15. (B) Fold change of

HIF-1α stabilization at the equilibrium (t = 100 h). Simulation of NK cell treatment with increasing concentrations of DMOG. Parameter values for these simulations are

chosen as in Tables 1, 2, with 100% corresponding to 20 µM DMOG.

FIGURE 12 | (A) HIF-1α evolution in time and (B) fold change at t = 12 h, normalized with respect to HIF-1α levels in untreated cells. Colors correspond to the

following experimental settings: (gray) untreated cells (N) for 30 h; (dark blue) IL-15 stimulation at time t = 0 h; (magenta) cells in DMOG for 30 h; (green) cells in DMOG

for 30 h with IL-15 stimulation at t = 0 h; (yellow) IL-15 stimulation at t = 6 h; (orange) DMOG treatment at t = 6 h; (red) IL-15 stimulation and DMOG treatment at

t = 6 h; (light blue) DMOG treatment at t = 0 h and IL-15 stimulation at t = 6 h; (black) IL-15 stimulation at t = 0 h and DMOG treatment at t = 6 h.

stimulation at t = 6 h and DMOG treatment starting at t = 6
h; (light blue) DMOG treatment for 30 h with IL-15 stimulation
at t = 6 h; (black) IL-15 stimulation at t = 0 h and DMOG
treatment starting at t = 6 h.

Figure 12A shows the time evolution of HIF-1α stabilization
over 30 h. We observe the impulses at t = 6 h due to changes
in the experimental conditions. On the long term, the effect of
IL-15 stimulation vanishes and HIF-1α levels converge to those
reached in unstimulated cells. Figure 12B shows the fold change
of HIF-1α at t =12 h. Values are normalized with respect to
HIF-1α in untreated cells (N, gray bar). We observe that on
the short time scale the timing of treatments importantly affects
HIF-1α stabilization. In particular, treating the cells first with
DMOG or first stimulating them with IL-15 is not equivalent
(compare the black bar and the light blue bar). The highest
HIF-1α levels after 12 h are reached when cells are first stimulated
with IL-15 at t = 0 and treated with DMOG at t = 6 h (black
bar). Cultivating cells in normoxia and treating them with IL-15

and DMOG at time t = 6 h (red) yields lower HIF-1α values than
12 h cultivation in the presence of DMOG after initial (t = 0 h)
IL-15 stimulation (green).

4. DISCUSSION

Being an essential mediator of cellular adaptation to hypoxia (66,
67), HIF-1α plays a critical role as regulator of inflammation
and immune system response (36, 68). The understanding of its
regulation is crucial in immunology.

While HIF-1α hydroxylation and degradation pathways
have been recently described using mathematical methods (19,
20), less is known concerning the mechanistic description of
processes regulating the levels of HIF-1α mRNA and protein
(10). In this work we have presented a combined approach of
experimental and mathematical analysis to understand HIF-1α
regulation in human NK cells, in particular simulating hypoxic
(DMOG) and inflammatory (IL-15) conditions. To the best of
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our knowledge, there is no previous interdisciplinary approach
describing the interplay of hypoxia and IL-15 stimulation, and
their effects on HIF-1α dynamics in immune cells. The proposed
mathematical model (2)–(11) and the estimated parameter values
(Tables 1, 2) explain collected time series for HIF-1α, also
catching the dynamics of other regulatory proteins (Figure 3).
Our simulation results and in silico experiments highlight the
synergy of IL-15 and hypoxia in HIF-1α stabilization, suggesting
an important role for STAT3 and NF-κB as regulators of IL-15
induced HIF-1α enrichment in peripheral NK cells.

The mathematical model proposed in this work aimed at the
qualitative mechanistic description of IL-15 induced biochemical
processes regulating HIF-1α stabilization in NK cells. We made
use of collected time series (HIF-1α, AKT, and STAT3) for
quantitative investigation, data fitting and model predictions. A
limitation of our results is that model predictions for quantities
lacking experimental information (e.g., NF-κB, mTOR, and
HIF-1α-mRNA) can be made only on a relative scale (43). While
the calibration (Figure 3A) and validation results (Figure 3B)
for HIF-1α are overall very satisfactory, the quantitative match
for STAT3 in cells treated with DMOG and IL-15 (Figure 3B)
could be improved. This might be achieved by refining the fit
for STAT3 time series in IL-15-stimulated NK cells treated with
DMOG and rapamycin (Figure 3A). In this study, we performed
an all-at-once parameter estimation, applying a direct multiple
shooting approach and a gradient-based (generalized Gauss-
Newton) method (cf. section 2.7). The method is known to
perform well and converge fast [cf. (45)] but, being a local
optimization method, it might get stuck in a local optimal
minimum. A possible method to overcome local minima is
to perform many independent optimization runs starting from
randomly selected starting points (69). Alternatively, one could
adopt global optimization methods, which however can be
computationally very costly (45, 69).

Concerning the statistical significance of the parameter
estimates (Table 2) we have adopted here a first order
approximation of non-linear confidence regions. Parameter
estimation and identifiability could be further refined and
investigated, e.g., performing a second-order analysis of the non-
linear confidence regions [cf. (70)] or exploiting the profile
likelihood, as suggested by Raue et al. (69).

Our model captures essential features of HIF-1α
regulation, making a number of simplifying assumptions.
Several model extensions and refinements could be proposed.
For example, we could include further steps in the degradation
pathway of HIF-1α, as proposed by others (10, 19). Moreover,
the dynamics of IL-15 is simply given by constant production
and degradation rates [as it has previously been assumed by
other authors, e.g., for IL-21 dynamics (71)], and sensitivity
analysis indicates that the AKT dynamics is approximatively
linear in the considered experimental setting (section 3.3).
The reaction cascade downstream of IL-15 involves several
components, including the IL-15Rβγ -subunits (4), which are
known to be constitutively expressed on NK cells (72) but were
neglected in the proposed mathematical model. Further, the
IL-15-induced activation of AKT, NF-κB and STAT3 is modeled
by means of linear terms. One possible model extension would

include non-linear terms (Michaelis-Menten or higher order
Hill functions) for the activation of IL-15 regulated proteins.
Factors connected to IL-15 stimulations, such as IL-15 receptor
binding and trafficking or other IL-15 induced signaling cascades
(JAK/STAT5, Ras-Raf-MEK), might affect NK cell response
to this cytokine and could also be taken into consideration.
Further, the relation between mTOR and the HIF-1 complex
could be investigated in detail. We have assumed that hypoxia
downregulates mTOR (33) by means of a negative feedback
of HIF-1 on mTOR. Nonetheless, the regulatory mechanism
of mTOR is far more complicated, involving REDD1 and the
Tsc1/Tsc2 complex (73). Our experimental data and modeling
results show that HIF-1α accumulation in cells stimulated with
IL-15 and treated with DMOG correlates with reduction of
STAT3 activity. Our modeling approach suggests (cf. section S2)
that the known negative feedback of HIF-1 on mTOR (33)
is amplified by a direct inhibitory effect of DMOG on IL-15-
induced STAT3 activation. This means that the observed STAT3
inhibition could not only be due to chemical hypoxia, stabilizing
HIF-1α, but also due to additional effects of DMOG on NK
cells. To further explore the role of DMOG on IL-15-induced
STAT3 activation in NK cells, the experiments proposed in this
study could be performed in cells cultivated in hypoxia (1% O2)
instead of chemical hypoxia.

Spatial effects could also be taken into account for model
refinement. In contrast to previous studies (19, 74), in
our modeling approach we did not make any distinction
between proteins in the cell cytoplasm and the nucleus, but
simply consider total cellular concentrations. In general,
increased model complexity necessarily calls for more detailed
experimental data in order to achieve adequate model calibration
and trustworthy predictions.

We hypothesize that the proposed regulatory network is
appropriate for describing HIF-1α regulation not only in NK
cells but also in other types of immune cells. Moreover, the
model (2)–(11) can be applied to refine and extend mathematical
models in which HIF-1α dynamics is involved, e.g., models of
cell cycle regulation (75) or cell proliferation (76).When studying
the effects of biochemical signaling at the cellular level, it might
be convenient to adopt simpler regulatory networks than those
proposed here [see for example (77) for a model for proliferation
of IL-15 stimulated NK cells]. To this extent model reduction
could be performed by mean of biological assumptions, e.g., via
quasi-steady state approximations. Further, (global) sensitivity
analysis results could be used to rank the relative influence of the
model parameters on the model output, and could suggest how
to simplify the regulatory network, identifying parameters that
minimally impact model outputs [cf. (78, 79)].

Being involved in cytokine expression, myeloid cell migration
and effector functions, HIF-1α regulates both innate and adaptive
immunity (80). Understanding the molecular mechanisms
involved in the regulation of the HIF-1α pathway, in particular
in immune cells, is of central importance to the immune cell
function and could be a promising strategy in the design
of treatments for human inflammatory diseases and cancer.
Our results indicate that NF-κB and STAT3 are important
regulators of HIF-1α enrichment in IL-15 stimulated NK
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cells. It is tempting to speculate that a secondary effect of
pharmacological STAT3 inhibition in cancer therapy may consist
in a reduction of IL-15 dependent HIF-1α enrichment in NK
cells, which may be expected to improve NK cell anti-tumor
activity (12, 13).

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
manuscript/Supplementary Files.

ETHICS STATEMENT

The study was reviewed and approved by the Medical Ethics
Commission II of the Medical Faculty Mannheim, Heidelberg
University (2014-500N-MA).

AUTHOR CONTRIBUTIONS

MB and HL: conceptualization. AC, MB, EK, and HL:
methodology. SV: NK cell characterization. AB, MB,
and AF: software. AF: robustness analysis. AC and MB:
investigation and data curation. MB and AC: writing.
AC, MB, SV, MT, and HL: review and editing (original
manuscript). MB, AC, AB, AF, EK, and H-GB: review and
editing (revision). All authors approved the final version of
the manuscript.

FUNDING

This research work was supported by funds to H-GB, EK, HL,
and MT by the Klaus Tschira Foundation, Germany. MB was
supported by the European Social Fund and by the Ministry of
Science, Research and Arts Baden-Württemberg.

ACKNOWLEDGMENTS

We thank Jutta Schulte and Bianca S. Himmelhan (Department
of Anesthesiology and Surgical Intensive Care Medicine,
University Medical Center Mannheim, Medical Faculty
Mannheim, Heidelberg University) for technical support.
Further we acknowledge financial support by Deutsche
Forschungsgemeinschaft within the funding program
Open Access Publishing, by the Baden-Württemberg
Ministry of Science, Research and the Arts and by
Ruprecht-Karls-Universität Heidelberg.

The authors would like to thank the referees for their valuable
critical comments which helped to improve the quality of this
manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2019.02401/full#supplementary-material

REFERENCES

1. Chan C, Smyth M, Martinet L. Molecular mechanisms of natural killer

cell activation in response to cellular stress. Cell Death Differ. (2014) 21:5.

doi: 10.1038/cdd.2013.26

2. Long EO, Sik Kim H, Liu D, Peterson ME, Rajagopalan S.

Controlling natural killer cell responses: integration of signals for

activation and inhibition. Annu Rev Immunol. (2013) 31:227–58.

doi: 10.1146/annurev-immunol-020711-075005

3. Mishra A, Sullivan L, Caligiuri MA. Molecular pathways: interleukin-15

signaling in health and in cancer. Clin Cancer Res. (2014) 20:2044–50.

doi: 10.1158/1078-0432.CCR-12-3603

4. Van den Bergh JM, Van Tendeloo VF, Smits EL. Interleukin-15: new kid on the

block for antitumor combination therapy. Cytokine Growth Factor Rev. (2015)

26:15–24. doi: 10.1016/j.cytogfr.2014.09.001

5. Rautela J, Huntington ND. IL-15 signaling in NK cell cancer immunotherapy.

Curr Opin Immunol. (2017) 44:1–6. doi: 10.1016/j.coi.2016.10.004

6. Mandal A, Viswanathan C. Natural killer cells: in health and disease. Hematol

Oncol Stem Cell Ther. (2015) 8:47–55. doi: 10.1016/j.hemonc.2014.11.006

7. Fogler WE, Volker K, McCormick KL, Watanabe M, Ortaldo JR, Wiltrout

RH. NK cell infiltration into lung, liver, and subcutaneous B16 melanoma is

mediated by VCAM-1/VLA-4 interaction. J Immunol. (1996) 156:4707–14.

8. Glas R, Franksson L, Une C, Eloranta ML, Öhlén C, Örn A, et al. Recruitment

and activation of natural killer (NK) cells in vivo determined by the target

cell phenotype: an adaptive component of NK cell–mediated responses. J Exp

Med. (2000) 191:129–38. doi: 10.1084/jem.191.1.129

9. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell.

(2012) 148:399–408. doi: 10.1016/j.cell.2012.01.021

10. Fábián Z, Taylor CT, Nguyen LK. Understanding complexity in the HIF

signaling pathway using systems biology and mathematical modeling. J Mol

Med. (2016) 94:377–390. doi: 10.1007/s00109-016-1383-6

11. Palazón A, Goldrath AW, Nizet V, Johnson RS. HIF transcription

factors, inflammation, and immunity. Immunity. (2014) 41:518–28.

doi: 10.1016/j.immuni.2014.09.008

12. Krzywinska E, Kantari-Mimoun C, Kerdiles Y, Sobecki M, Isagawa T,

Gotthardt D, et al. Loss of HIF-1α in natural killer cells inhibits tumour growth

by stimulating non-productive angiogenesis. Nat Commun. (2017) 8:1597.

doi: 10.1038/s41467-017-01599-w

13. Ni J, Bühler L, Stojanovic A, Arnold A, Sexl V, Cerwenka A. Inhibition of

the HIF-1α-mediated checkpoint refuels NK activation in cancer [abstract].

In: Proceedings of the American Association for Cancer Research Annual

Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR. Cancer

Res. (2018) 78:Abstract nr 4743. doi: 10.1158/1538-7445.AM2018-4743

14. Kohn KW, Riss J, Aprelikova O, Weinstein JN, Pommier Y, Barrett JC.

Properties of switch-like bioregulatory networks studied by simulation of

the hypoxia response control system. Mol Biol Cell. (2004) 15:3042–52.

doi: 10.1091/mbc.e03-12-0897

15. Kooner P, Maini PK, Cavaghan D. Mathematical modeling of the HIF-

1 mediated hypoxic response in tumours. In: Proceedings of the 2005

International Symposium on Mathematical and Computational Biology. Rio de

Janeiro: E-papers (2006). p. 281–315.

16. Qutub AA, Popel AS. A computational model of intracellular oxygen

sensing by hypoxia-inducible factor HIF-1α. J Cell Sci. (2006) 119:3467–80.

doi: 10.1242/jcs.03087

17. Dayan F, Monticelli M, Pouysségur J, Pécou E. Gene regulation in

response to graded hypoxia: the non-redundant roles of the oxygen sensors

PHD and FIH in the HIF pathway. J Theor Biol. (2009) 259:304–16.

doi: 10.1016/j.jtbi.2009.03.009

18. Schmierer B, Novák B, Schofield CJ. Hypoxia-dependent sequestration

of an oxygen sensor by a widespread structural motif can shape the

hypoxic response–a predictive kinetic model. BMC Syst Biol. (2010) 4:139.

doi: 10.1186/1752-0509-4-139

Frontiers in Immunology | www.frontiersin.org 18 October 2019 | Volume 10 | Article 2401256

https://www.frontiersin.org/articles/10.3389/fimmu.2019.02401/full#supplementary-material
https://doi.org/10.1038/cdd.2013.26
https://doi.org/10.1146/annurev-immunol-020711-075005
https://doi.org/10.1158/1078-0432.CCR-12-3603
https://doi.org/10.1016/j.cytogfr.2014.09.001
https://doi.org/10.1016/j.coi.2016.10.004
https://doi.org/10.1016/j.hemonc.2014.11.006
https://doi.org/10.1084/jem.191.1.129
https://doi.org/10.1016/j.cell.2012.01.021
https://doi.org/10.1007/s00109-016-1383-6
https://doi.org/10.1016/j.immuni.2014.09.008
https://doi.org/10.1038/s41467-017-01599-w
https://doi.org/10.1158/1538-7445.AM2018-4743
https://doi.org/10.1091/mbc.e03-12-0897
https://doi.org/10.1242/jcs.03087
https://doi.org/10.1016/j.jtbi.2009.03.009
https://doi.org/10.1186/1752-0509-4-139
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Coulibaly et al. Modeling HIF-1α Regulation in NKs

19. Nguyen LK, Cavadas MA, Scholz CC, Fitzpatrick SF, Bruning U, Cummins EP,

et al. A dynamic model of the Hypoxia-Inducible Factor 1α (HIF-1α) network.

J Cell Sci. (2013) 126:1454–63. doi: 10.1242/jcs.119974

20. Cavadas MA, Nguyen LK, Cheong A. Hypoxia-inducible factor (HIF)

network: insights frommathematical models. Cell Comm Signal. (2013) 11:42.

doi: 10.1186/1478-811X-11-42

21. Velásquez SY, Killian D, Schulte J, Sticht C, Thiel M, Lindner HA. Short-

term hypoxia synergizes with interleukin 15 priming in driving glycolytic gene

transcription and supports human natural killer cell activities. J Biol Chem.

(2016) 291:12960–77. doi: 10.1074/jbc.M116.721753

22. Brauer F, Nohel JA. The Qualitative Theory of Ordinary Differential Equations:

An Introduction. New York, NY: Dover Publication (1989).

23. Müller J, Kuttler C. Methods and Models in Mathematical Biology. Berlin;

Heidelberg: Springer (2015).

24. Marçais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, et al. The

metabolic checkpoint kinase mTOR is essential for IL-15 signaling during

the development and activation of NK cells. Nat Immunol. (2014) 15:749.

doi: 10.1038/ni.2936

25. Nandagopal N, Alaa KA, Amandeep KK, Lee SH. The critical role of IL-15-

PI3K-mTOR pathway in natural killer cell effector functions. Front Immunol.

(2014) 5:187. doi: 10.3389/fimmu.2014.00187

26. Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong

JW, et al. CD56bright NK cells exhibit potent antitumor responses following

IL-15 priming. J Clin Invest. (2017) 127:4042–58. doi: 10.1172/JCI90387

27. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human

disease. Blood. (2001) 97:14–32. doi: 10.1182/blood.V97.1.14

28. McDonald PP, Russo MP, Ferrini S, Cassatella MA. Interleukin-15 (IL-15)

induces NF-κB activation and IL-8 production in human neutrophils. Blood.

(1998) 92:4828–35.

29. BudagianV, Bulanova E, Paus R, Bulfone-Paus S. IL-15/IL-15 receptor biology:

a guided tour through an expanding universe. Cytokine Growth Factor Rev.

(2006) 17:259–80. doi: 10.1016/j.cytogfr.2006.05.001

30. Kelly E, Won A, Refaeli Y, Parijs V. IL-2 and related cytokines can

promote T cell survival by activating AKT. J Immunol. (2002) 168:597–603.

doi: 10.4049/jimmunol.168.2.597

31. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, et al.

Targeting STAT3 blocks both HIF-1 and VEGF expression induced by

multiple oncogenic growth signaling pathways. Oncogene. (2005) 24:5552.

doi: 10.1038/sj.onc.1208719

32. Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and

approaches to enforce tumour regression. Nature. (2006) 441:437–43.

doi: 10.1038/nature04871

33. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al.

Regulation of mTOR function in response to hypoxia by REDD1 and the

TSC1/TSC2 tumor suppressor complex. Genes Dev. (2004) 18:2893–904.

doi: 10.1101/gad.1256804

34. Weichhart T, Hengstschläger M, Linke M. Regulation of innate

immune cell function by mTOR. Nat Rev Immunol. (2015) 15:599–614.

doi: 10.1038/nri3901

35. Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin

AS. Akt-dependent regulation of NF-κB is controlled by mTOR

and raptor in association with IKK. Genes Dev. (2008) 22:1490–500.

doi: 10.1101/gad.1662308

36. D’Ignazio L, Bandarra D, Rocha S. NF-κB and HIF crosstalk in immune

responses. FEBS J. (2016) 283:413–24. doi: 10.1111/febs.13578

37. Walmsley SR, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski

A, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α

dependent NF-κB activity. J Exp Med. (2005) 201:105–15. doi: 10.1084/

jem.20040624

38. Lancaster DE, McDonough MA, Schofield CJ. Factor inhibiting hypoxia-

inducible factor (FIH) and other asparaginyl hydroxylases. Biochem Soc Trans.

(2004) 32:943–5. doi: 10.1042/BST0320943

39. Shampine LF, Reichelt MW. The MATLAB ODE suite. SIAM J Scie Comp.

(1997) 18:1–22. doi: 10.1137/S1064827594276424

40. Bauer I, Bock HG, Schlöder JP. DAESOL–A BDF-Code for the Numerical

Solution of Differential Algebraic Equations (Version 3.0.1). Heidelberg: IWR

Heidelberg University (1999).

41. Bauer I, Bock HG, Körkel S, Schlöder JP. Numerical methods for initial

value problems and derivative generation for DAE models with application

to optimum experimental design of chemical processes. In: Keil F, Mackens

W, VoßH, Werther J, editors. Scientific Computing in Chemical Engineering

II. Berlin; Heidelberg: Springer (1999). p. 282–9.

42. Körkel S. Numerische Methoden für Optimale Versuchsplanungsprobleme

bei nichtlinearen DAE-Modellen (Dissertation), Universität Heidelberg,

Heidelberg, Germany (2002). Available online at: http://www.koerkel.de

43. Raue A, Schilling M, Bachmann J, Matteson A, Schelke M, Kaschek D, et al.

Lessons learned from quantitative dynamical modeling in systems biology.

PLoS ONE. (2013) 8:e74335. doi: 10.1371/journal.pone.0074335

44. Fiedler A, Raeth S, Theis FJ, Hausser A, Hasenauer J. Tailored parameter

optimization methods for ordinary differential equation models with steady-

state constraints. BMC Syst Biol. (2016) 10:80. doi: 10.1186/s12918-016-0319-7

45. Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG. Systems

biology: parameter estimation for biochemical models. FEBS J. (2009)

276:886–902. doi: 10.1111/j.1742-4658.2008.06844.x

46. Bard Y. Nonlinear Parameter Estimation. New York, NY: Academic Press

(1974).

47. Bates DM, Watts DG. Nonlinear Regression Analysis and Its Applications.

Wiley series in probability and mathematical statistics: Applied probability

and statistics. Chichester: Wiley (1988).

48. López C D, Barz T, Körkel S, Wozny G. Nonlinear ill-posed problem analysis

inmodel-based parameter estimation and experimental design.Comput Chem

Eng. (2015) 77:24–42. doi: 10.1016/j.compchemeng.2015.03.002

49. Bock HG, Körkel S, Kostina E, Schlöder JP. Robustness aspects in parameter

estimation, optimal design of experiments and optimal control. In: Jäger W,

Rannacher R, Warnatz J, editors. Reactive Flows, Diffusion and Transport.

From Experiments via Mathematical Modeling to Numerical Simulation

and Optimization: Final Report of SFB (Collaborative Research Center) 359.

Heidelberg: Springer (2007). p. 117–46.

50. Bock HG, Kostina E, Schlöder JP. Direct multiple shooting and generalized

Gauss-Newton method for parameter estimation problems in ODE models.

In: Carraro T, Geiger M, Körkel S, Rannacher R, editors. Multiple Shooting

and Time Domain Decomposition Methods. Cham: Springer International

Publishing (2015). p. 1–34.

51. Bock HG. Randwertproblemmethoden zur Parameteridentifizierung

in Systemen Nichtlinearer Differentialgleichungen. 183. Bonn: Der

Math.-Naturwiss. Fakultät der Universität Bonn (1987).

52. Bock HG, Kostina E, Schlöder JP. Numerical Methods for Parameter

Estimation in Nonlinear Differential Algebraic Equations. GAMM

Mitteilungen. 2007;30/2:376–408.

53. Bock HG. Numerical treatment of inverse problems in chemical reaction

kinetics. In: Ebert KH, Deuflhard P, Jäger W, editors. Modelling of Chemical

Reaction Systems. Vol. 18 of Springer Series in Chemical Physics. Heidelberg:

Springer (1981). p. 102–25. Available online at: https://link.springer.com/

chapter/10.1007/978-3-642-68220-9_8

54. Schlöder JP. Numerische Methoden zur Behandlung Hochdimensionaler

Aufgaben der Parameteridentifizierung. Vol. 187 of Bonner Mathematische

Schriften. Bonn: Universität Bonn (1988).

55. Allgower EL, Georg K. Numerical Continuation Methods: An Introduction.

Springer Science & Business Media (1990).

56. OlufsenMS, Ottesen JT. A practical approach to parameter estimation applied

to model predicting heart rate regulation. J Math Biol. (2013) 67:39–68.

doi: 10.1007/s00285-012-0535-8

57. Pope SR. Parameter identification in lumped compartment cardiorespiratory

models (PhD thesis). Applied Mathematics, NC State University, Raleigh, NC,

United States (2009).

58. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. (2003)

3:721. doi: 10.1038/nrc1187

59. Palazón A, Aragonés J, Morales-Kastresana A, de Landázuri MO,

Melero I. Molecular pathways: hypoxia response in immune cells

fighting or promoting cancer. Clin Cancer Res. (2012) 18:1207–13.

doi: 10.1158/1078-0432.CCR-11-1591

60. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T

H 17/T reg balance by hypoxia-inducible factor 1. Cell. (2011) 146:772–84.

doi: 10.1016/j.cell.2011.07.033

Frontiers in Immunology | www.frontiersin.org 19 October 2019 | Volume 10 | Article 2401257

https://doi.org/10.1242/jcs.119974
https://doi.org/10.1186/1478-811X-11-42
https://doi.org/10.1074/jbc.M116.721753
https://doi.org/10.1038/ni.2936
https://doi.org/10.3389/fimmu.2014.00187
https://doi.org/10.1172/JCI90387
https://doi.org/10.1182/blood.V97.1.14
https://doi.org/10.1016/j.cytogfr.2006.05.001
https://doi.org/10.4049/jimmunol.168.2.597
https://doi.org/10.1038/sj.onc.1208719
https://doi.org/10.1038/nature04871
https://doi.org/10.1101/gad.1256804
https://doi.org/10.1038/nri3901
https://doi.org/10.1101/gad.1662308
https://doi.org/10.1111/febs.13578
https://doi.org/10.1084/jem.20040624
https://doi.org/10.1042/BST0320943
https://doi.org/10.1137/S1064827594276424
http://www.koerkel.de
https://doi.org/10.1371/journal.pone.0074335
https://doi.org/10.1186/s12918-016-0319-7
https://doi.org/10.1111/j.1742-4658.2008.06844.x
https://doi.org/10.1016/j.compchemeng.2015.03.002
https://link.springer.com/chapter/10.1007/978-3-642-68220-9_8
https://link.springer.com/chapter/10.1007/978-3-642-68220-9_8
https://doi.org/10.1007/s00285-012-0535-8
https://doi.org/10.1038/nrc1187
https://doi.org/10.1158/1078-0432.CCR-11-1591
https://doi.org/10.1016/j.cell.2011.07.033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Coulibaly et al. Modeling HIF-1α Regulation in NKs

61. Meng X, Grötsch B, Luo Y, Knaup KX, Wiesener MS, Chen XX, et al.

Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-

producing B cells in autoimmune disease. Nat Commun. (2018) 9:251.

doi: 10.1038/s41467-017-02683-x

62. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al.

Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J.

(1996) 15:6541–51. doi: 10.1002/j.1460-2075.1996.tb01045.x

63. Wen Z, Zhong Z, Darnell JE Jr. Maximal activation of transcription by STATl

and STAT3 requires both tyrosine and serine phosphorylation. Cell. (1995)

82:241–50. doi: 10.1016/0092-8674(95)90311-9

64. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a

leading role for STAT3. Nat Rev Cancer. (2009) 9:798. doi: 10.1038/nrc2734

65. Kitano H. Biological robustness. Nat Rev Genet. (2004) 5:826.

doi: 10.1038/nrg1471

66. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-

inducible factor 1. Annu Rev Cell Dev Biol. (1999) 15:551–78.

doi: 10.1146/annurev.cellbio.15.1.551

67. Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen

tension: HIF-1α and adenosine receptors. Nat Rev Immunol. (2005) 5:712.

doi: 10.1038/nri1685

68. Nizet V, Johnson RS. Interdependence of hypoxic and innate immune

responses. Nat Rev Immunol. (2009) 9:609. doi: 10.1038/nri2607

69. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, et al.

Structural and practical identifiability analysis of partially observed dynamical

models by exploiting the profile likelihood. Bioinformatics. (2009) 25:1923–29.

doi: 10.1093/bioinformatics/btp358

70. Kostina E, Nattermann M. Second-order sensitivity analysis of

parameter estimation problems. Int J Uncert Quant. (2015) 5:209–331.

doi: 10.1615/Int.J.UncertaintyQuantification.2015010312

71. Cappuccio A, Elishmereni M, Agur Z. Cancer immunotherapy by

interleukin-21: potential treatment strategies evaluated in a mathematical

model. Cancer Res. (2006) 66:7293–300. doi: 10.1158/0008-5472.CAN-

06-0241

72. CarsonWE, Fehniger TA, Haldar S, Eckhert K, LindemannMJ, Lai CF, et al. A

potential role for interleukin-15 in the regulation of human natural killer cell

survival. J Clin Invest. (1997) 99:937–43. doi: 10.1172/JCI119258

73. Caron E, Ghosh S, Matsuoka Y, Ashton-Beaucage D, Therrien M, Lemieux S,

et al. A comprehensive map of the mTOR signaling network. Mol Syst Biol.

(2010) 6:453. doi: 10.1038/msb.2010.108

74. Bedessem B, Stéphanou A. Role of compartmentalization on HIF-1α

degradation dynamics during changing oxygen conditions: a computational

approach. PLoS ONE. (2014) 9:e110495. doi: 10.1371/journal.pone.0110495

75. Bedessem B, Stéphanou A. A mathematical model of HIF-1α-mediated

response to hypoxia on the G1/S transition. Math Biosci. (2014) 248:31–9.

doi: 10.1016/j.mbs.2013.11.007

76. Zhang B, Ye H, Yang A. Mathematical modelling of interacting mechanisms

for hypoxia mediated cell cycle commitment for mesenchymal stromal cells.

BMC Syst Biol. (2018) 12:35. doi: 10.1186/s12918-018-0560-3

77. Zhao YM, French AR. Two-compartment model of NK cell proliferation:

insights from population response to IL-15 stimulation. J Immunol. (2012)

188:2981–90. doi: 10.4049/jimmunol.1102989

78. van Riel NA. Dynamic modelling and analysis of biochemical networks:

mechanism-based models and model-based experiments. Briefings Bioinf.

(2006) 7:364–74. doi: 10.1093/bib/bbl040

79. Wentworth MT, Smith RC, Banks HT. Parameter selection and verification

techniques based on global sensitivity analysis illustrated for an HIV model.

SIAM/ASA J Uncert Quant. (2016) 4:266–97. doi: 10.1137/15M1008245

80. Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators

of inflammation. Curr Top Microbiol Immunol. (2010) 345:105–20.

doi: 10.1007/82_2010_74

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Coulibaly, Bettendorf, Kostina, Figueiredo, Velásquez, Bock, Thiel,

Lindner and Barbarossa. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 20 October 2019 | Volume 10 | Article 2401258

https://doi.org/10.1038/s41467-017-02683-x
https://doi.org/10.1002/j.1460-2075.1996.tb01045.x
https://doi.org/10.1016/0092-8674(95)90311-9
https://doi.org/10.1038/nrc2734
https://doi.org/10.1038/nrg1471
https://doi.org/10.1146/annurev.cellbio.15.1.551
https://doi.org/10.1038/nri1685
https://doi.org/10.1038/nri2607
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015010312
https://doi.org/10.1158/0008-5472.CAN-06-0241
https://doi.org/10.1172/JCI119258
https://doi.org/10.1038/msb.2010.108
https://doi.org/10.1371/journal.pone.0110495
https://doi.org/10.1016/j.mbs.2013.11.007
https://doi.org/10.1186/s12918-018-0560-3
https://doi.org/10.4049/jimmunol.1102989
https://doi.org/10.1093/bib/bbl040
https://doi.org/10.1137/15M1008245
https://doi.org/10.1007/82_2010_74
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


REVIEW
published: 05 November 2019

doi: 10.3389/fimmu.2019.02522

Frontiers in Immunology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 2522

Edited by:

Andreas Meyerhans,

Catalan Institute for Research and

Advance Studies (ICREA), Spain

Reviewed by:

Alfred I. Tauber,

Boston University, United States

Irun R. Cohen,

Weizmann Institute of Science, Israel

Simon Wain-Hobson,

Institut Pasteur, France

*Correspondence:

Zvi Grossman

grossmanz@niaid.nih.gov

Specialty section:

This article was submitted to

T Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 27 March 2019

Accepted: 10 October 2019

Published: 05 November 2019

Citation:

Grossman Z (2019) Immunological

Paradigms, Mechanisms, and Models:

Conceptual Understanding Is a

Prerequisite to Effective Modeling.

Front. Immunol. 10:2522.

doi: 10.3389/fimmu.2019.02522

Immunological Paradigms,
Mechanisms, and Models:
Conceptual Understanding Is a
Prerequisite to Effective Modeling

Zvi Grossman 1,2*

1 Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States, 2 Sackler

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Most mathematical models that describe the individual or collective actions of cells aim

at creating faithful representations of limited sets of data in a self-consistent manner.

Consistency with relevant physiological rules pertaining to the greater picture is rarely

imposed. By themselves, such models have limited predictive or even explanatory value,

contrary to standard claims. Here I try to show that a more critical examination of

currently held paradigms is necessary and could potentially lead to models that pass

the test of time. In considering the evolution of paradigms over the past decades I focus

on the “smart surveillance” theory of how T cells can respond differentially, individually

and collectively, to both self- and foreign antigens depending on various “contextual”

parameters. The overall perspective is that physiological messages to cells are encoded

not only in the biochemical connections of signaling molecules to the cellular machinery

but also in the magnitude, kinetics, and in the time- and space-contingencies, of sets of

stimuli. By rationalizing the feasibility of subthreshold interactions, the “dynamic tuning

hypothesis,” a central component of the theory, set the ground for further theoretical

and experimental explorations of dynamically regulated immune tolerance, homeostasis

and diversity, and of the notion that lymphocytes participate in nonclassical physiological

functions. Some of these efforts are reviewed. Another focus of this review is the

concomitant regulation of immune activation and homeostasis through the operation

of a feedback mechanism controlling the balance between renewal and differentiation of

activated cells. Different perspectives on the nature and regulation of chronic immune

activation in HIV infection have led to conflicting models of HIV pathogenesis—a major

area of research for theoretical immunologists over almost three decades—and can

have profound impact on ongoing HIV cure strategies. Altogether, this critical review is

intended to constructively influence the outlook of prospective model builders and of

interested immunologists on the state of the art and to encourage conceptual work.

Keywords: smart surveillance, change detection, autoreactivity, adaptation, tuning, feedback control, self-

renewal, homeostasis

INTRODUCTION

With some exceptions, the long-term impact of mathematical modeling on basic and clinical
immunology has been modest (1–4), and sometimes counter-productive (5), despite claims to
the contrary. The major reason is our incomplete understanding of the qualitative rules [or
core principles (6)] that govern organized immune phenomena at the cellular and multicellular
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levels. Qualitative understanding is a prerequisite to a sensible
quantitative analysis of empirical observations but rarely
“emerges” from such analysis (1, 7)—again, contrary to claims.
“Sensing which assumptions might be critical and which
irrelevant to the question at hand is the art of modeling and,
for this, there is no substitute for a deep understanding of the
biology” (8). I shall get back to this repeatedly.

This contribution highlights these issues from a rather
personal point of view. First, past and current paradigms
pertaining to immune recognition and immune response are
reviewed, focusing on a multipronged theory that I call here
“smart surveillance” and related models. Second, a selective
overview of past and present mainstream modeling efforts
demonstrates the reality that mathematical models are typically
adjusted to a change in paradigm, with a considerable delay,
rather than producing such change. In this context, it is proposed
that the omnipresent “ecological” models contributed little to
theoretical immunology because they are too flexible; they
were consistently used as data fitting tools while uncritically
accommodating preconceived interpretations and fashionable
trends. Third, I recount debates about cause-and-effect in
HIV pathogenesis, arising after rudimentary mathematical
descriptions of data coming from a handful of observations
were over-interpreted (by the modelers) and over-evaluated
(by others). These interpretations were rejected repeatedly by
invoking basic immunological knowledge and were readily
falsified when more data became available. The lesson is
that models should be evaluated not according to their
popular appeal but rather by whether the assumptions and
arguments are biologically sound or not. I discuss how
different sets of basic assumptions can lead to alternative
HIV cure strategies. Standard low-dimensional mathematical
models play a subsidiary heuristic role, at best, in making
the choice. Fourth, common epistemic fallacies associated with
mathematical modeling in immunology are briefly revisited.
Those are too often compounded by lack of full openness,
transparency, or even truthfulness in scientific reporting,
which taints the scientific dealings among researchers and
beyond. Finally, it is suggested that the advent of novel
physiological perspectives should be considered essential part
of the unavoidable iterative process that (ideally) transforms
better understanding into increasingly accurate experimental
and clinical predictions. Outstanding “big questions” need to
be defined.

THE EVOLUTION OF PARADIGMS AND

THE IDENTIFICATION OF PROTOTYPICAL

MECHANISMS

Clonal Selection and the Self-Nonself

Discrimination Paradigm
Macfarlane Burnet (9, 10) postulated that mature circulating
lymphocytes responded specifically to foreign molecules, while
those that were able to respond to the body’s own tissues
were depleted during a window of prenatal, actively acquired
tolerance. Thus, two basic interrelated assumptions were taken
for granted, then and in the following three decades. First,

a lymphocyte that recognizes (i.e., binds specifically to) a
foreign substance is normally activated, resulting in a stereotypic
clonal response; elimination of pathogens is a consequence
of their foreignness. Second, recognition of a self-antigen
normally results in the lymphocyte’s death or paralysis. (A
major exception were self-antigens called idiotypes, in Jerne’s
idiotypic network theory; see below). Several two-signal theories
were developed to provide a mechanistic explanation of
how lymphocytes implemented this self-nonself discrimination
paradigm. Depending also on the stage of development, the
signals delivered to a lymphocyte at the time of antigen
recognition served as a code, instructing a binary decision [Baxter
and Hodgkin provided an excellent review (11)].

The Pathogen-Nonpathogen

Discrimination Paradigm
In 1989, Charles Janeway rejected the self-nonself paradigm,
while retaining the two-signal concept. He contended that “the
immune system evolved specifically to recognize and respond
to infectious organisms, and that this involves recognition not
only of specific antigenic determinants, but also of certain
characteristics or patterns common on infectious organisms but
absent from the host” (12). This explained the adjuvant effect
of bacterial products that were usually added to antigens in the
lab to raise antibody responses (“the immunologists’ dirty little
secret”). The work of Janeway and Medzhitov and of others
led to the discovery of toll-like receptors on antigen-presenting
cells (APC) that can bind bacterial and viral derivatives. Such
binding often activates APC, enhancing antigen presentation (the
specific “signal 1” for responding T cells) and the expression of
other costimulatory molecules and inflammatory cytokines (the
nonspecific “signal 2”). Accordingly, the signals no longer act
as a code required for avoiding autoimmunity; rather, they act
positively to initiate immunity to pathogens, while in the absence
of pro-inflammatory signals, antigens—including self-antigens—
do not elicit a response (13).

Polly Matzinger’s “danger theory” (14) was a variation on the
theme (15, 16), postulating that pathogens are not recognized
directly as such by APC but rather, primarily, via the tissue
damage they have caused, which inevitably results in release
of highly immunogenic byproducts. It also played strongly
the self-nonself discrimination theme, however, proposing that
autoreactive T cells coming out of the thymus are inactivated and
rendered harmless as they typically first meet their cognate self-
antigens in the absence of signal 2; this feature was necessary to
prevent wide-spread autoimmunity in response to damage.

Advent of the “Smart Surveillance”

Paradigm
Some 27 years ago, my colleague William Paul and I proposed
(17) what amounted to another change of paradigm (18) as to
how the immune system, and T cells in particular, relates to
self- and nonself antigens. Paul too believed that the immune
system evolved to respond primarily to infectious agents, and that
characteristics other than “foreignness” help trigger destructive
responses. However, several observations suggested to us (a) that
additional, “contextual” attributes of infection events were also
important (1), besides the inherent proinflammatory properties
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of bacteria and viruses; and (b) that antigen-mediated signals
delivered to lymphocytes in the absence of infection were capable
of eliciting cellular responses that contributed to the lymphocytes’
own functional integrity and to that of the cells with which
they interacted.

The additional contextual attributes were not necessarily some
other biochemical signals. For example, experimental allogeneic
tumors could be immunologically rejected in the absence of
apparent inflammation, but only if the initial number of
transferred tumor cells were large enough; otherwise, the tumors
could “sneak through” and grow despite immune surveillance
(19–21). Conversely, chronic infection was often characterized
by a quasi-stationary mode in which potentially responding
lymphocytes were inactivated (22).

As for the second proposition, of important functional
consequences of antigen recognition outside the setting of
conventional immune responses—we and others had observed
that while tissue self-antigens normally lack attributes required to
trigger destructive responses, benign or controlled autoreactivity
was too common to be dismissed as an aberration or
epiphenomenon (1, 23–27). At the same time, unexpected
complexity and plasticity of signaling networks and intercellular
communication was being revealed, suggesting that cells of
the immune system were required to deal adaptively with rich
classificatory challenges in perception of their environment,
richer than previously appreciated (1). It was reasoned that such
advanced cognitive capabilities would be required in order to
optimize response to pathogens and—given the preponderance
of autoreactivity and other evidence—to perform a myriad of
body maintenance functions [highlighted by the pioneering
studies of Irun Cohen and colleague; see e.g. (28, 29)]. A
foundation for a general theory of adaptive networks was laid
down in Grossman (1) (see Supplementary S1 for relevant
extracts). In particular, it was proposed that the functional
units are heterogeneous groups of interacting cells, assembled
on ad hoc basis in response to infection or other forms of
tissue perturbation; that lymphocytes are capable of tuning their
responsiveness under the influence of recurring signals, antigenic
and others; and that through such tuning and feedback from co-
responding cells and from tissue cells, individual lymphocytes
and the group as a whole “learn” (a) to identify recurring
signal patterns as “meaningful,” thus endowing the unit with
appropriate discriminatory capacity (1); and (b) to adjust their
response for better results. As discussed below, for lymphocytes,
benign autoreactivity is key to maintaining relatively stable (but
resilient) phenotypic profiles under stationary conditions and to
selectively respond or not respond to perturbations.

Tuning, Change Detection, and

Subthreshold Interactions
Given the broad range of qualitatively different challenges and
responses, mapping a response to the challenge in each case by
deciphering putative biochemical codes would be forbiddingly
challenging. Fortunately, we identified a general organizing
principle that reconciled the different and seemingly conflicting
outcomes of immune recognition and allowed qualitative

prediction. Encapsulated in a sentence, this organizing principle
is that individual lymphocytes, as well as interacting lymphocytes
and accessory cells collectively, sharply discriminate (in a
threshold-dependent way) between small and large perturbations.
Perturbation is generally defined as deviation of a system or
process from its regular or normal state or path. The overall
perspective is that physiological messages to cells are encoded
not only in the biochemical connections of signaling molecules
to the cellular machinery but also “in the magnitude, and in the
time- and space-contingencies, of sets of stimuli” (30). Individual
T cells respond differentially (adapt or become activated) to the
rate of change in the level of stimulation, translated intracellularly
into “state perturbations.” The organization of the immune
response at the cell-population level in space and time in turn
is also conducive to discriminating “systemic perturbations,”
setting additional barriers to destructive immunity (17, 21, 30–
33). These propositions were later appropriated by others and
“proposed again” (34–38).

Thus, the immune system was “designed” to respond in
a characteristic explosive way mainly to episodes of acute or
undulating infection and not to the continuous presence, or
slow variation, of self- or foreign antigens. Inflammation is an
important promoter of cellular perturbation and activation, but
for a conventional immune response to occur, also required—and
sometimes sufficient—are both high-affinity binding of a cognate
antigen, against a background of weaker “tonic stimulation,” and
rapid convergence of the antigen/APC and the lymphocytes into
dedicated sites within an inductive lymphoid tissue (17, 30, 39).
These requirements enhance the selectivity of T-cell activation
and conventional immune responses (32), but also define a
wide range for subthreshold perturbations that can influence the
viability, functional properties, and functional organization of T
cells without overt activation [reviewed, (33)].

Autoreactivity is enforced during positive selection of T cells
in thymus.We and others proposed that lymphocytes are selected
to be moderately and variably autoreactive so that recognition
of self-antigens in peripheral tissues can be used to actively
and dynamically tune and shape their functional properties and
regulate their numbers and diversity (17, 31, 32, 40–44) or
to actually perform crucial tissue-maintenance functions (1, 7,
18, 28, 29, 31, 32, 45–53). The same subthreshold interactions
dynamically tune the activation thresholds themselves, imposing
a level of desensitization generally sufficient for preventing
chance activation due to noisy ambient stimulation, and adapting
that level to moderate variations in the local landscape. Similarly,
activation-threshold tuning may impose tolerance to persisting
foreign antigens—resident microorganism or pathogens in the
context of chronic infection—averting immune pathogenesis (17,
33). In contrast, the tuned state of pathogen-specific lymphocytes
that is associated with their physiological autoreactivity does
not prevent them from responding vigorously to strong
perturbations, which are typically associated with acute infection.
When the increase in the level of stimulation—relative to the
moving baseline—is too fast, the tuning apparatus fails to update
the activation threshold quickly enough to avoid activation.

It was postulated that other cells are also endowed with
similar adaptive properties, e.g., antigen-presenting cells, where
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bidirectional tuning of T cells and APC leads to the definition
of homeostatic set points for T-cell clones, thus maximizing
clonal diversity (32, 33). It was speculated also that two-
way tuning of tumor-infiltrating lymphocytes and tumor cells
(and/or stroma) might be involved in the induction of tumor
dormancy, inhibiting local inflammation and tumor-cell growth
(31). According to Philippe Kourilsky’s normative-self model,
which used and expanded our ideas on a self-oriented immune
system (18), tuning applies to all the cells in the body, whether
associated with immunity or not.

Subthreshold Stimuli and Smart

Surveillance
The smart surveillance paradigm combines the concepts of
dynamic tuning and adaptive networks (1) (Supplementary S1).
By rationalizing the feasibility of subthreshold interactions, the
tuning hypothesis reconciled the physiological requirement
of explosive immune responses to acute infections with the
plethora of manifestations of intricate context discrimination
and adaptive networking associated with homeostasis and
functional preparedness, and set the ground for further
theoretical and experimental explorations of generalized
immunological functions.

The largely unexplored plasticity of interconnected molecular
circuits is increasingly believed to conceal a potential for
cellular “learning from experience” in real time—an extension
of tuning—including detection of and selective response to
recurring patterns, or “features,” of external signals (1, 7,
17, 31, 49); concomitant generation of intracellular and
intercellular associations, or “conditioning” (50); and even
gradual reprogramming of the differentiation state (“adaptive
differentiation“) (17, 33). Adaptive responses of individual cells
are coupled to the nonlinear dynamics of stimulatory and
suppressive interactions operating at the cell-population level.
Together, the nonlinear nature of such multilevel interactions
provides rich opportunities for the selection of alternative forms
of coordinated cellular activities, or responses, which may be
guided by external feedback (e.g., stress signals from tissue cells).
Such “feedback-reinforced learning” would facilitate (a) “quality
control” and dynamic readjustment, including class selection, of
ongoing responses to pathogens (1, 7, 31, 48); and (b) beneficial
participation of lymphocytes and other immune cells in non-
classical immune functions such as wound healing and body
maintenance (18, 29, 52, 53), including “immune surveillance
without immunogenicity” (47), which is briefly discussed next.

While the widely accepted theory of immune surveillance
against cancer was based on the premise that the immune
system responds to antigenically modified cells in essentially the
same way as it responds to invasive microorganisms, Ronald
Herberman and I suggested that lymphoid cells also assist in
regulating the differentiation of a variety of normal cells, and
that they do so by recognizing self rather than foreign antigens.
“By forcing and steering the turnover of tissue cells, lymphoid
cells prevent the accumulation of small irregular phenotypic
and karyotypic changes in the tissue” (47). Tumor escape from
immune surveillance could accordingly be described as escape

from homeostatic, immune-mediated differentiation pressures.
Recently, some supportive evidence has been forthcoming.
Studies showed that resident T cells and innate immune cells may
indeed assist in tissue differentiation and development, and that
disruption of such activitiesmay result in tumorigenesis (54). The
authors foresaw “increasing interest in immune cell functions
that are outside themore canonical roles assigned to host defense,
and that might be targeted with an aim toward improving human
health” (54).

Irun Cohen’s “cognitive paradigm” (51, 53) shares some
elements with “smart surveillance.” Cohen and colleagues
pioneered the idea that the immune system is universally
designed to pay particular attention to a preferred subset of
tissue antigens, shared among different individuals and even
cross-species, using recognition of these antigens to initiate
and/or manage inflammatory responses that maintain or restore
tissue integrity. In a series of elegant studies, the researchers
demonstrated early selection of B and T cells recognizing
overlapping subsets of self-antigens in different individuals,
in different mice, and cross-species. Thus, healthy newborn
humans manifest IgM autoantibody repertoires, produced in
utero, that are highly correlated among unrelated babies, differ
from the repertoires of their mothers, and target particular sets
of self-antigens. A subset of T-cell receptor peptide-binding sites
are also shared by individual healthy mice and cross-species
by mice and humans. These public TCR repertoires manifest
relatively large clone size and marked convergent recombination
of different nucleic acid sequences into identical TCR amino
acid sequences—evidence for strong repertoire selection. The
public TCRs, at least in mice, are annotated for self-recognition.
Cohen and Efroni proposed that a subset of the selecting self-
antigens in the thymus collectively present a “wellness pattern,”
training the selected subset of lymphocytes to use those antigens
as reference in performing tissue and organ surveillance tasks
(53). The pattern is somehow imprinted into the phenotypic
profiles of the selected cells.When a significantly different pattern
is later encountered in a tissue, the difference is detected and
elicits a response. Mechanistic description of these cognitive
processes was not provided, but our dynamical tuning model can
be invoked. In our model, the states of thymocytes become tuned
to antigenic and other signals during thymic development; the
tuned state is continuously updated in the periphery. Sufficiently
strong perturbations of the tuned state elicit a hierarchy of
responses. The collective responses of recruited cells can then be
modified by quality-sensing feedback mechanisms (see above).

Mechanistic Model of Signal

Discrimination: Antagonistic

Excitation-Deexcitation Processes
The postulated “organizing principle” was translated into a
prototypic mechanistic model, which also became a paradigm
of sorts. In this model, signal discrimination is based on a
competition between “excitation” and “deexcitation” factors
possessing different response kinetics (17). Notably, dynamic
competition between stimulatory and regulatory forces was
similarly invoked to account for growth-rate discrimination
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at the cell-population level, as demonstrated in the “sneaking
through” studies (further discussed in the next section). The
single-cell level model was initially introduced in (17) and
then applied successfully to interpret experimental results in
T cells (32, 33, 55, 56), as briefly reviewed below. With some
idiosyncratic modifications, it also basically accounts for kinetic
discrimination and tuning in B cells and NK cells (57–59).

At various steps of the signal transduction pathway, local
intracellular decision events depend on the balance between
pertinent excitation- and deexcitation-inducing factors that are
recruited by external signals. Excitation consists of biochemical
changes that converge toward gene activation. Deexcitation
consists of changes that reverse or negate the effects of
excitation. Deexcitation arises either in response or in parallel
to excitation, forming a feedback or a feedforward loop,
respectively, in tandem with the excitation pathway. Signal-
induced perturbations of intracellular modules such as the
TCR complex translate into a kinetic competition between
excitation and deexcitation. We assumed that the intracellular
concentrations of excitation and deexcitation factors trace the
changes in external stimulation with inherently different kinetics.
A small increase in the level of external signals transiently
perturbs an existing feedback-controlled homeostatic balance
between excitation and deexcitation factors in each module.
When the level of stimulation rises abruptly in the face of a low
deexcitation factors’ baseline (low tuning level), these factors may
not be able to keep up with the rapid rise in excitation; once
such imbalance exceeds a critical value, the unit’s stability is lost,
inducing additional events downstream, and so on. As usual,
cooperativity between products of excitation is implicated in such
stability switching; the combination of self-enhancing effects and
a constitutive (homeostatic) feedback control gives rise to bi-
stability. Note that high levels of tuning can protect a cell from
potent stimulation, rendering it tolerant or “exhausted,” though
this state is reversible.

Tyrosine kinases and phosphatases were originally proposed
as opposing factors at unspecified phases of the cellular activation
pathway (17). This proposition, and the prediction that excitation
involves a self-enhancing component, gained experimental
support. Stefanova andGermain demonstrated the importance of
a rapid rise allowing excitation signals to outcompete the negative
signals (55).

In our model, the interactions initiated by TCR
ligation consisted of rapid cycles of phosphorylation and
dephosphorylation and of receptor binding and unbinding
(32). The interactions are stochastic, but their population
dynamics lead to robust outcomes. We reasoned that, when
a small population of clustered TCRs collectively interacts,
locally, with a small population of ligands, undergoing rapid
engagement and disengagement, reengagement of the same TCR
by the same ligand following disengagement is not necessary
for a TCR to become progressively excited and then activated.
Rather, we proposed that the buildup rate of excitation factors
is linked to the cumulative binding time of the ligands to the
clustered TCRs, which collectively act as the state-switching
unit (32). Indeed, such micro-clusters were later demonstrated
experimentally (60). The model explained why an increase in the

number of ligands on an APC does not significantly compensate
for weaker binding. This is due to the localized nature of the
interactions; increase in ligand number would result mainly in a
larger number of units rather than in a better signaling quality
of individual units. In other words, individual TCR complexes
gather signals from locally interacting signaling molecules and
therefore measure mainly the quality of the ligand rather than
its multiplicity.

A competing, influential model—based on McKeithan’s
kinetic proofreading hypothesis (61)—derived its appeal mainly
from a simple explanation it provided for the apparent
dominance of the TCR-ligand dissociation (off-) rate as a
determinant of activation, with apparent insensitivity to the
association rate. Our molecule-population dynamics model
required additional ad-hoc assumptions to account for this
bias (32). According to McKeithan’s hypothesis, a single long
occupancy of individual TCRs was required for activation. But
more recent studies have shown that in the two-dimensional
APC-T-cell interface, association and dissociation rates are much
faster for agonists than what is measured in three-dimensional
assays, and agonists tend to be characterized more by their high
association rates than by the rates of dissociation. A long-lasting
bond is not essential because “high bond formation frequency
also accumulates a large fraction of engagement time” (62). Not
surprisingly, the actual interplay of positive and negative factors
observed experimentally is more complex than in our schematic
models, but the concept that such an interplay plays a crucial role
in signal discrimination has been established [reviewed, (33)].

Activation is a failure to adapt. Stimulation that does not
reach the activation threshold results in “tuning,” adaptive
shifts in the size of the threshold and in that of additional
parameters. Tuning reflects variation in the molecular residues
of past subthreshold events. The traces of previous signaling
events are gradually erased, actively and/or passively, in the
absence of continued stimulation and are dynamically modified
if stimulation continues but varies. Therefore, tuning mirrors the
cell’s stimulation experience, with more weight given to more
recent signaling.

In the excitation-deexcitation model, activation-threshold
tuning adjusts the levels of deexcitation factors to counter the
ambient fluctuations in excitation. Following each relevant T-
cell-APC encounter, excitation factors may initially rise more
quickly than the associated deexcitation factors, as discussed, but
the latter must outlive the former if a tuning state representing
the cell’s recent experience is to be sustained between encounters.

Under the cover of activation-threshold tuning, subthreshold
interaction with self-antigens in the presence of other signals
effect the tuning of other cellular properties. Such tuning
can result in sensitization of signaling modules rather than
desensitization. Thus, the ongoing integration of TCR-mediated
signals and accessory signals in the interactive milieu could
prepare lymphocytes to respondmore efficiently, rather than less,
upon activation by a potential pathogen (17, 32). The prediction
that subthreshold interactions tune cellular characteristics in
multiple ways, “positive” as well as “negative,” went unnoticed at
first. It is now supported by observations. [Pre-2015 evidence was
reviewed in (33); see also references (63, 64) for recent reports.]
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At the cell-population level, diverse interactions create functional
diversity through tuning. Moreover, by specifically tuning
the viability and self-renewal of T-cell clones, subthreshold
(or “tonic”) interactions with self-antigens limit inter-clonal
competition and sustain clonal diversity.

Our model originated from the identification of a general
organizing principle linking together a range of phenomena
(see above), including abundant autoreactivity and differential
responses to perturbations. Dynamic tuning was inferred,
inspired also by cell adaptation phenomena in other systems,
especially in the nervous system. The point we wish to make
is that general principles can be a powerful tool in modeling:
Conceptual models can have considerable explanatory and
predictive power and can, in turn, guide the formulation of
quantitative mathematical models.

Related Mathematical Models
A hypothesis does not become more credible just because it
is formulated in mathematical terms. Nevertheless, hypothesis-
driven models can provide useful representations, or metaphors,
of organized biological behavior and guide further study, e.g., by
defining questions for experimentation or sensitive measures for
comparing results. “Models can [also] corroborate a hypothesis
by offering evidence to strengthen what may be already partly
established through other means. . . . Thus, the primary value of
models is heuristic” (65).

Several mathematical studies have integrated the “tunable
activation threshold” into existing phenomenological models
of immune regulation and autoimmunity [e.g., (66, 67)], or
studied its generic pattern detection and pattern discrimination
properties [e.g., (68, 69)]. Models that incorporate adaptive
excitation-deexcitation processes (“push-pull”), which are
fundamentally inherent in immunology, in mathematical
representations of actual cellular or systemic data are scarce.
Recently, Sontag and colleagues carried out an ambitious
analysis of complex interactions involved in what appeared to be
interference of the immune response to acute influenza infection
in the lung with the (partial) immunologic control of a distal skin
melanoma growth in the dermis (70). They described competing
push-pull processes that they considered to be mechanistic
instantiation of our conceptual signal discrimination model. The
different activity levels of antagonistic excitation-deexcitation
loopsmanifested themselves in phenotypically distinct outcomes.

As mentioned earlier, the immune system discriminates
perturbations kinetically also at the systemic level. The classic
example is the above-mentioned tumor escape from immune
elimination via a sneaking through mechanism. Sneaking
through was demonstrated in mice injected with different
numbers of allogeneic tumor cells. Large numbers of dividing
cells overwhelmed the host, as expected. Tumors arising from
small numbers of cells, however, also grew and eventually killed
the hosts, while intermediate numbers of cells were able to trigger
effective responses. A generic mathematical model was proposed
incorporating, for the first time, competing positive and negative
processes with different kinetics (increasing concentrations
of tumor antigens and, in parallel, of immunosuppressive
molecules), demonstrating the rate-of-change discrimination

capacity of such models (21). A rather simplistic model used
at the time did not include physiologic controls on lymphocyte
growth, for example regulatory T cells, other than the antigen
itself. In that model, cooperativity at the effector-cell level was
not required to produce sharp discrimination. When feedback
control was later added, cooperativity in T-cell-APC interactions
was also invoked (30, 33).

It was further proposed and demonstrated that acute
immunogenic challenge could induce the immune system to
eliminate the tumor completely, instead of reaching a predator-
prey type equilibrium between the two. A built-in property of
an explosive immune response to pathogens was proposed to
play a role in reducing the likelihood that such equilibrium
be established, namely, the fact that the response is not tightly
geared to antigen concentration. Rather, its regulation (by
the antigen itself and other feedback control mechanisms)
involves time delays, allowing the effector cells to overshoot.
Overshooting is a fundamental property of the immune response
to acute challenge.

Generalizing, we proposed (21) that inherently slow infectious
agents could also sneak through immune surveillance. This
was demonstrated 24 years later by Gennady Bocharov and
colleagues (71). Studying lymphocytic choriomeningitis virus
(LCMV) infection in mice, they showed that slowly replicating
viral strains induced weaker CTL responses than a more rapidly
replicating strain and could thus persist in the host.Moreover, the
clinical outcome of hepatitis C infection in humans was strongly
associated with the rate of viral replication. A mathematical
model reproduced the postulated overshooting versus adaptation
modes to rapid and slow growing viruses, respectively. The
authors invoked the analogy with “sneaking through” in the
tumor context and interpreted their observations and analytical
results in terms of our perturbation-dependency concept and
prototypical models. [A later variation on this theme should be
viewed as a “rediscovery” (34)].

It turns out that our simple mathematical statement of
the sensitivity-to-change hypothesis (17) essentially defined an
“incoherent loop,” a ubiquitous motif in biological networks
(72). Such a loop is characterized by the existence of two
partly independent antagonistic pathways, from the input to the
output, either direct or indirect (73). Sontag (73) explored the
antigen discrimination properties of such motifs mathematically.
Both his motif and our initial, simpler model possess the
properties of log sensing, defined by the output approaching
the logarithmic derivative of the stimulatory input. Such models
serve heuristic purposes in attempts to conceptualize the actual
operation of molecular circuits in cells or in tumor-host/viral-
host interactions.

ANTIGEN-DRIVEN AND

FEEDBACK-REGULATED BALANCE OF

GROWTH AND DIFFERENTIATION

Since the 1960s, mathematical models have been increasingly
used in immunology. The first models were based on the
hypothesis of a two-stage differentiation of cells participating
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in the antibody response (74), illustrated by the X –> Y –> Z
scheme. Introduced to me by the late Richard Asofsky (75), this
scheme was used by us as a starting point for a long series of
elaborations and generalizations as our thinking and knowledge
base developed. The following is a condensed summary:

(a) The sets X, Y, and Z variably represented B cells, T cells, or
hematopoietic cells in bone marrow. Interactions between
sets were also considered (as in “help” or “suppression”).

(b) The number of steps could be increased according
to the resolution required for data interpretation
and conceptualization.

(c) Time delays were associated with transitions; constitutive
divisions and other cellular processes contributed to
such delays. This facilitated the overshooting and
pathogen elimination during the immune response to
acute primary or secondary challenge (as well as other
oscillatory phenomena).

(d) We dissected each stage in the chain of differentiation states
into two states, resting and activated (76, 77). Activation is
reversible, unlike differentiation. Backward arrows were thus
added, allowing activated cells to regain quiescence and to
undergo self-renewal divisions in the process. Renewal and
differentiation of activation states were therefore regarded as
competing events.

(e) Self-renewal induced in the course of transient, burst-like,
immune responses in the mitotic compartments accounted
for the buildup of memory.

(f) Feedback connections were added (e.g., pointing from Z
to the transition-arrow between X and Y), representing
influence exerted by differentiated cells on the balance
between self-renewal and differentiation of their precursors,
in favor of differentiation. This amounted to a new view
of self-renewal as a dynamically regulated property of all
mitotic cells (76, 77). The greater renewal capacity of
tissue stem cells or “stem-cell-like” memory cells reflected
inherently stronger resistance of less differentiated cells to
the induction of differentiation as compared to their more
differentiated progeny. Beyond T-cell biology, the empirical
basis for a feedback-controlled balance between renewal and
differentiation is rich (78–80). The theory has more recently
been invigorated after its “rediscovery” (81, 82).

(g) Antigen was considered the major determinant of
activation, in a threshold-dependent way, at every stage
of differentiation, but was also allowed to enhance the
feedback-dependent differentiation rates of the activated
cells. Since differentiation ends with non-mitotic, short-
lived cells, excessive stimulation is antagonistic to growth.
Together, these assumptions could account for the non-
monotonic dependence of specific immune responses on
antigen dose, namely, for the classic observation of low-zone
and high-zone “tolerance” (23).

Various simplifications or partial representations of this general
scheme were translated into mathematical models. Such models
were parameterized to simulate data numerically, e.g., the
dependence of CD4 T-cell expansion on precursor number
in experimental mice (log-linear relation between CD4 T-cell
precursor number and factor of expansion, with a slope of ∼-0.5

over a range of 3–30,000 precursors) (83); used to qualitatively
illustrate theoretical explanations of important observations,
such as “sneaking through”; or qualitatively analyzed to
demonstrate the soundness of theoretical arguments that apply
to a broad range of observations, e.g., robustness of blood
cell production in bone-marrow and its dynamic adaptation
to external demand (76, 84). Such models were confirmed
by the demonstration of agreement between observation and
prediction, but confirmation is inherently partial.

Some of the most important consequences of the assumptions
underlying this conceptual model did not require detailed
mathematical analysis. An important corollary of these
assumptions pertained to the concomitant regulation of immune
activation and homeostasis. Thus, under recurrent clonal
(or polyclonal) T-cell activation, the activated population
must be in flux (77): extensively proliferating memory-
phenotype T cells subject to feedback-mediated differentiation
pressure are progressively pushed forward and out, along their
preprogrammed developmental pathways, being replaced by
the progeny of activated naïve cells. The number of naïve cells
in turn is maintained dynamically via dynamically regulated
incorporation of recent thymic emigrants (85, 86). Independent
of the precise mechanisms of the feedback control, there
is a sound physiologic rationale for a dynamic flux, in the
context of recurring inflammation and activation. Constant cell
replacement acts to reduce the accumulation of detrimental (e.g.,
tumorigenic) mutations associated with repeated episodes of
extensive proliferation; and it also confers “functional resilience,”
flexibility in readjusting the composition of effector cells to
varying physiologic needs (77).

Dynamic tuning of cellular properties during subthreshold
interactions, including the activation thresholds, endows the
systemwith additional levels of functional adaptability, resilience,
and signal discrimination, as discussed. Dynamic, long-term
interplay exists between the changing structure and size of
the population in response to challenges or aging on the one
hand, and adaptive changes in the function of the individual
cells, as they patrol the tissues and perform “smart surveillance”
functions, on the other hand. For recent, articulate and insightful
overviews see (18, 53).

WHILE PARADIGMS EVOLVED,

MAINSTREAM MATHEMATICAL

MODELING HAS BEEN SLOW TO

CATCH UP

The mathematical models described so far were hypothesis-
driven and heuristic in nature, supporting efforts to conceptualize
data and predict trends. Modeling-experimental collaborations
proved valuable also when using mathematics as an ancillary
analytic tool. For example, mathematical analysis can accurately
parameterize and depict complex data derived from monitoring
the kinetics of cell populations in vivo using molecular markers
and DNA-labeling agents or other reagents.

Other models, more ambitious, purportedly “captured”
fundamental features of the immune system, in health or disease,
professing an ability to explain and predict the consequences
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of experimental perturbations or clinical interventions through
accurate mathematical analysis. But “capturing” is a misnomer.
When Gunawardena writes about “accurate description of
pathetic thinking” (8), a phrase originally coined by James
Black in his 1988 Nobel Prize lecture, he refers to the fact that
the assumptions that theoretical biologists accurately develop
into mathematical models necessarily rely on phenomenology
and guesswork rather than on the fundamental laws of nature.
The higher the level of organization, the more “pathetic” (i.e.,
uncertain) are these assumptions. Indeed, many mathematical
models in immunology usefully described local molecular events
at the subcellular level, adding to our understanding of signal
processing at this level. However, this has generally not been the
case at the higher levels of organization.

The Idiotypic Network Impasse
In 1974 Jerne proposed that the immune system was regulated
by a web of lymphocyte receptor-associated molecules (87).
The receptor molecules on lymphocyte clones, created by
random genetic mechanisms, differ from each other not only
at the recognition sites, but also in related structures named
“idiotypes,” which serve as antigens for other clones. Each
clone could activate some other clones, forming a network
of interactions which encompassed the entire system. The
functional consequence of such activation could be suppression,
expansion, and/or induction of effector function in the clones
involved, depending on the functional properties of the cells and
perhaps also on the “direction” of the signal; no general rules
were proposed.

As idiotypic interactions were demonstrated, their functional
significance was under debate (1, 24, 88, 89). My own rejection
of the network theory was based on the early recognition that
self-antigens on tissue cells should be much more important
than idiotypes in the shaping of immune responses. I argued
that only pathogen-mediated activation of lymphocytes would be
“acute” enough to elicit a meaningful, suprathreshold response,
while responses further down the chain of anti-idiotypic clones
would quickly dissipate, playing no significant role. Therefore,
while a strongly coupled network would be uselessly “tied in a
Gordian knot” (89), idiotype recognitionmight at best participate
in regulation of the first line of responding lymphocytes. A
more fundamental objection had to do with the “contextualist
view” of immunity that I and several others were already
advocating (1, 7, 27, 47, 51). Physiological autoreactivity, self-
organization and integrated function of different kinds of cells are
the hallmarks of the contextualist approach. In contrast, Jerne’s
idiotypic network did not recognize “self ” in general (namely,
self-antigens); it recognized only itself and foreign antigens. The
immune system à la Jerne obeyed exclusive rules, unlike those
governing other tissues and organs, which constituted a major
obstacle to an integrative, physiologically sensible formulation of
immune functions and to a genuine analogy with our other major
cognitive system, the brain (90). In the end, the idiotypic network
idea arguably had a considerable negative impact on progress.

For almost two decades mathematical immunologists
uncritically adopted the network theory and analyzed in detail a
variety of hypothetical realizations, until the theory went out of

favor. The focus then shifted abruptly to AIDS research, where
again most theoretical immunologists adopted the prevailing
doctrines, teaming with clinical researchers and virologists
and adding a “rigorous science” semblance to unfounded and
simplistic interpretations.

Inadequacy of the Ecological Metaphor
The pioneering work of Bell, Marchuk, Bruni, Mohler and others
[reviewed, (91)] introduced population dynamics of organisms
as a convenient metaphor for the dynamics of the cells of
the immune system and the microorganisms with which they
interact. This included a direct analogy with predator-prey
interactions in ecology; comparing the spreading of pathogens in
tissues to epidemics affecting human or other populations; and
borrowing from the evolution of species to describe Darwinian-
like mutation-selection processes affecting lymphocyte clones
during development or in the course of immune responses
or facilitating escape of pathogens from immune attack. This
early work established the use of the mathematical language
in immunology. 40 years later, mainstream mathematical
immunology still adheres to the same ecological paradigm and
variations on that theme [e.g., (92, 93)].

Interestingly, Burnet was not impressed by the “character of
current research” in theoretical immunology in 1978, to which he
referred as “disappointing” (94). In his words,

“T and B lymphocytes, with their myriad subpopulations, can be

regarded almost as autonomous organisms, arising, interacting,

and dying in a Darwinian evolutionary system at the cellular

level. As in the orthodox evolutionary situation, we can identify

genetic variation, proliferation and death (including something

analogous to predation) among the lymphocytes. Intellectually,

this provides an important road to understanding but little

practical enlightenment.”

In retrospect, it did not provide a road to understanding.
The myth that mathematical models made important

conceptual contributions to basic and clinical immunology has
been perpetuated in numerous reports and reviews, mostly in
the biomathematical literature [e.g., (95)] but also in biological
and general journals [e.g., (92, 96)]. In fact, to my knowledge
no mathematical modeling-based studies in immunology at the
cellular or systemic levels to date provided groundbreaking
insights, or correct answers to key questions about causality.
The reason for this predicament is that lymphocytes do not
operate as “almost autonomous organisms.” Rather, the immune
system evolved along with other tissues and organs to operate
interactively as a multifunctional, adaptive, dynamical and
dynamically organized network (1, 18, 31, 33, 53).

Nowak and his colleagues were among the most prominent
champions of the ecological approach (97–101). They were
remarkably prolific, with mathematical models published in
major journals. The way was paved by the “diversity threshold”
model (98). The model “predicted” that, as antigenically different
HIV mutants accumulate, a threshold number of strains is
reached that the immune response can no longer contain, leading
to a breakthrough of virus resulting in AIDS. In fact, the model
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was engineered to show this immunologically highly implausible
restriction, by making the virus replication rate independent
of target cell availability, and the lymphocyte activation rate
independent of the lymphocyte concentration—implausible and
unusual assumptions that give the virus an “unfair” advantage.
Mathematically-innocent outsiders are unlikely to notice, and
frank critiques from within are rare and subdued. Indeed, the
specific predictions of the above model were disproven by data.
It should be noted in this context that the observed evolution of
viral strains under the pressure of anti-HIV immune responses
does not necessarily imply a major role for such responses in the
control of viral replication during the chronic infection phase in
untreated individuals. Rather, it may only indicate progressive
“selection of the fittest” in the presence of prolonged competition
among strains, which would occur, given sufficient time, even
if the selective pressure is modest and differences in fitness are
otherwise inconsequential.

These and subsequent publications by Nowak and colleagues
are summarized in a book where it is said that the work
provided no less than “the basic principles for a quantitative
approach to immunology, with practical implications for the
design of therapy and vaccines” (97). Most immunologists
would disagree. The central premise is that interactions among
cells of the immune system, and with infectious agents, are
conceptually very similar to classic predator–prey interactions.
If the central premise does not hold, the mathematical edifice
becomes rather irrelevant. Indeed, as Burnet seems to have
observed 22 years earlier, the similarities of host-pathogen
interactions to classic predator–prey dynamics are superficial
and therefore not particularly enlightening. The Nowak–May
model ignored crucial features of the immune response and of
HIV dynamics, including the profound difference between the
immune response to acute and to chronic infection, and the role
of chronic immune activation in HIV pathogenesis. Importantly,
“the immune system is not a well-stirred Erlenmeyer flask”
(102); rather, antigenic activation of latently HIV-infected T cells
occurs locally in lymphoid tissue, resulting in localized, transient,
and highly structured proliferation, differentiation and death
of infected cells and bystander cells and in proximal and local
virus dissemination—arguably the only mode of viral replication
that really matters (103–107). “Averaging out” such events
in mathematical models by considering uniform distributions
of T cells and virus particles, along with other “simplifying”
assumptions, did not help advance our understanding of viral
dynamics in vivo. On the contrary, the ecological paradigm,
supporting a simplistic confrontational view of the interaction
between a virus and the immune system, delayed serious
consideration of alternative views, including the presently widely
accepted view that chronic immune activation is the major force
driving the progression of HIV disease.

The ecological paradigm continues to generate mathematical
models of viral dynamics and anti-viral immunity and purports
to predict the impact of antiretroviral treatment and of
potential cure strategies; however, it is unlikely to provide novel
insights. The importance of cell-to-cell transmission of HIV
is starting to be appreciated (92) [with a 20-year delay (103,
105, 108–110)], but the “standard model of viral dynamics,”

which represented “the dominant and standard approach to
analyze and quantify the spread of a viral infection within
a host (92),” did not fundamentally change; depicting the
concentrations of target cells, infected cells, and virions as
piecewise uniform and piecewise aggregated, rather than fully
uniform did not change the model’s basic nature. Totally
ignored is rich evidence supporting the existence of structured,
proximal activation and transmission events, their transient
(“burst-like”) nature (see below), and the crucial role latently-
infected cells arguably play in sparking these local events
and in sustaining systemic infection during the chronic phase
(102, 103, 105, 107, 111, 112).

A variant of “the standard model” “predicted” potential
post-treatment control of HIV replication in patients treated
very early post-infection to reduce the latently-infected cell
reservoir (93). It was hypothesized that patients who exhibit
post-treatment control (at least temporarily) generate earlier
an adaptive immune response that is adequate to control
infection after treatment interruption if the rate of generation
of new productively infected cells is sufficiently small. The
standard model, adapted to explicitly include the relevant
entities, suggested a relationship among the latent reservoir
size, the strength of the HIV-specific adaptive immune
response, and post-treatment control, which the authors explored
mathematically in detail using standard phase-space mapping
methods. The explanatory power of the mathematical model is
small, as it adds little to the verbal explanation of the simple
hypothesis; a generic hypothesis was rephrased in mathematical
terms with the help of the generic notion of bi-stability.
In the Conway-Perelson model, the two species, CTLs and
infected cells, interact in a stereotypical way. Following initial
or recrudescent infection, infected cells grow in number rapidly
while stimulating the growth of CTLs that in turn can kill
infected cells. The predator-prey-like system is inherently bi-
stable, but the kinetic parameters and the initial conditions are
selected in such a way that chronic, full-blown infection usually
results when people become infected, as observed. Blocking
the infection process early enough through therapy can change
the outcome, post-treatment, because the initial conditions are
different—notably, the initial number of CTLs is larger. So is
also the number of cells that can spark viral replication (latently
infected cells), and therefore the outcome also depends on
reservoir size.

The model is structured to be bi-stable in terms of the
relevant variables, and therefore initial conditions that result
in post-treatment control inevitably exist, as do near-control
scenarios with delayed or slow viral rebound. The analysis and
numerical simulations just illustrate these generic properties
of the model. Whether the real host-virus system possesses
these properties is not known. Note that delayed viral rebound
is logically attributable to a small HIV reservoir independent
of the operation of anti-HIV immune responses. Whether
reducing the reservoir and concomitantly establishing strong
antiviral immunity is a feasible strategy toward a functional
cure of HIV infection remains an open question. As Burnet
might have said – the mathematical model provided little
practical enlightenment.
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CONTROVERSY OVER CAUSE AND

EFFECT IN HIV PATHOGENESIS

The correlation between two hallmarks of untreated HIV
infection, gradual CD4+ T-cell depletion and heightened
immune activation and T-cell turnover, was the subject of a long
debate. The dogma was at first that the death of infected cells
gradually depleted the pool, while chronic immune activation
was an epiphenomenon. Others reasoned that intact homeostatic
mechanisms should have easily overcome the low rate of cell loss
and invoked different mechanisms by which elevated immune
activation and inflammation could be driving progressive CD4
depletion (113–116).

In 1995, two side-by-side publications in Nature presented
results showing rapid decline in HIV concentration in blood of
patients following initiation of antiretroviral treatment. Based on
misinterpreting a parallel rapid increase in CD4 counts—which
in fact reflected lymphocyte redistribution from tissues to blood
following treatment initiation and reduced inflammation—the
so-called “tap-and-drain” model was proposed (117–119) and
received much attention. Accordingly, CD4T cells are infected
and killed by HIV at a very high rate, triggering a massive
homeostatic response. To account for the very slow progression
of CD4 T-cell depletion in most infected individuals in the
face of such rapid killing, the rate of T-cell production was
required to “almost” keep up with the rate of loss but always
remain a little short of target—a highly implausible requirement,
especially given the large inter-patient differences in viral load
and other parameters.

Disease progression is more plausibly characterized as a steady
state that is quasi-stable due to slow parametric variation. We
and others identified the relevant parameter as the renewal
capacity of uninfected CD4T cells, mainly of the central memory
subset, wearing down progressively as a result of recurrent
activation and microenvironmental damage (104, 107, 112, 115,
120–129). We invoked basic immunology considerations in
reasoning that even if productively infected cells are rapidly
infected and killed by the virus or by CTLs, these infected
cells would primarily be differentiated memory cells, which are
inherently short-lived and/or lacking renewal capacity, that arise
in the course of activation bursts and express high levels of the
HIV coreceptor, CCR5. Such cells turn over rapidly and are
physiologically “expendable,” so that their infection is unlikely
the cause of CD4 depletion (107, 112). Therefore, contradicting
the view that ongoing CD4 depletion caused immune activation,
promoted by proponents of the “tap-and-drain” model (and of
its subsequent derivatives), we proposed just the opposite. This
position prevailed and became broadly accepted.

One variant of “tap-and-drain” was the “source model,”
invoked to explain and simulate the results of in-vivo
DNA labeling of activated T cells in SIV-infected rhesus
macaques. The fraction of labeled memory cells dropped
rapidly in both CD4 and CD8T cells, with multiphasic
kinetics. It was argued that this kinetics reflected rapid virus-

induced killing of T cells and their steady-state replacement—

a homeostatic response—by uninfected cells coming from
a “source” (130, 131). Why CD8T cells, which are not

targeted by HIV, showed similar decline post labeling was
not satisfactorily explained. In our interpretation, activation
was not a homeostatic response to virus-mediated killing.
Rather, most of the labeled T cells had divided in response to
stimulation by antigens, self and foreign, in which the otherwise
weaker TCR-mediated signaling by self-peptides may have been
enhanced by inflammation (106, 112). This kind of activation
involves time-structured cell proliferation, differentiation and
death. Untreated SIV/HIV infection continuously triggers
asynchronous expansion-and-contraction episodes. When label
is given over short periods, one is mainly tracking the rapid
transient expansion (during the labeling period) and contraction
(post labeling) of recently-activated cell populations, rather
than the average turnover of the entire population. The death
of activated CD4+ and CD8+ T cells counters their earlier
accelerated proliferation, and therefore the observed decline
in labeled cells post labeling had no bearing on the issue of
CD4 depletion.

The key argument was that rapidly-dividing, short-lived
differentiated cells were selectively labeled. To prove it, better
characterization of the turnover of T cells in SIV-infected
macaques was required. Tracking BrdU labeling and Ki67
expression simultaneously provided more information than
BrdU (or deuterium) labeling alone. Picker and colleagues
used 1–4 days BrdU labeling to tag dividing T cells in SIV-
infected macaques and studied the kinetics of phenotypically-
distinct labeled cells in blood and tissues. Using the diminishing
intensity of BrdU labeling of cells as a marker of continued
division when BrdU was no-longer given, and that of Ki67
expression to estimate temporal proximity to last division (107),
it was estimated that most of the cells that have divided in the
previous day did it again once or twice during the following
day, consistent with the concept of proliferation burst. A rapid
decline of labeled effector memory T cells in blood was followed
by a wave of these cells in mucosal tissue. Thus, as normally
observed during isolated immune responses to pathogens, rapid
successive division was the source of recirculating and tissue-
seeking cells. The lesson from this story is, again, that it is
the soundness of the biological insights that matters, not the
ability to simulate a given set of data using mathematical
equations (8).

Shock and Kill, or Rinse and Replace?

Organizing Principles Matter
The ability of HIV to remain quiescent in a latent reservoir
in long-lived CD4+ memory T cells is the main barrier
to a cure. Unrealistic expectations of inducing the virus or
CTLs to kill the latently infected cells by broadly reactivating
the virus from latency (“shock and kill”) in the presence of
effective antiretroviral treatment (ART) were based in part on
simplistic mathematical models. These models did not discern
activation-associated death of infected cells from virus-mediated
killing [(117, 119), see (107)]; instead of dying, latently-infected
cells often proliferate when activated. My colleagues and I
have proposed an alternative strategy, utilizing the natural
homeostatic controls that govern the turnover and numbers of
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T cells in order to boost the replacement of infected memory T
cells with newly-generated, uninfected cells (132)1.

In essence, this strategy is aimed to imitate the one used by
the body during untreated infection. Chronic immune activation
is generally thought to result in a gradual loss of the immune
system’s regenerative capacity, but several observations show,
when carefully analyzed, that in the shorter run the homeostatic
response to immune activation delimits HIV-infected cell
frequency. Integrated viral DNA is not efficiently detected by
HIV-specific lymphocytes, but occasional activation of infected
memory-phenotype CD4+ T cells in the lymphoid tissues
generates sufficient inflammation to activate antigen-presenting
cells and trigger bursts of immune activation in various locations.
Bystander naïve and restingmemory cells are selectively recruited
into such localized bursts, based on cross-reactivity to self-
antigens (and other common antigens) co-presented on the
activated APC. Preexisting infected cells are progressively rinsed
out and diluted by the influx of (initially) uninfected cells in
the course of repeated expansion and contraction episodes, as
the total number of nominally long-lived memory cells surviving
these events is strictly controlled. This, in the absence of ART,
results in accelerated turnover and reduced quasi steady-state
level of proviral DNA, which in turn restricts viral replication and
diversification (132)1.

To boost CD4+ T-cell turnover during ART, when residual
immune activation alone can no longer drive a significant
flux, sequential waves of polyclonal T-cell proliferation and
differentiation can be deliberately triggered using a variety of
tested agents over a protracted period of time1. ART will
prevent infection of new cells. Adopting this strategy in practice
would require a shift of paradigm and method, from “shock
and kill” to “rinse and replace,” although both strategies have
provirus activation at core and latency-reversing agents could be
incorporated in protocols. For the purposes of this commentary,
we stress that our theory draws from previous observations and
theoretical considerations regarding the concomitant regulation
of immune activation and homeostasis, which suggested that
memory T cells are subject to a structured dynamic replacement
under conditions of recurrent activation (77, 85, 86). The model
also relies on conceptual work that revealed the nature of chronic
immune activation in untreated HIV infection (see above) and
on the above-mentioned model of feedback-controlled balance
of growth and differentiation (76). In the development of these
concepts, and in their application, mathematical models were
used for illustration purposes and to demonstrate consistency,
not to validate assumptions or predict numerical results.

JUDGEMENT OF FACT AND JUDGEMENT

OF VALUE

The inter-disciplinary differences—epistemic, methodological,
and cultural—among immunologists, virologists and clinicians,

1Grossman Z, Singh NJ, Simonetti FR, Kawabe T, Bocharov G, Meier-

Schellersheim M, et al. From shock and kill to rinse and replace: would boosting

T-cell turnover reduce the HIV reservoir? Submitted, 2019.

and especially the gaps between all of them and the applied
mathematicians who engage in the modeling of immune and
related physiological phenomena, have often made it hard
for the biologists to discriminate scientific progress from
noise (102). As research in mathematical immunology shifts
from low-dimensional models into more holistic, systems-
biology approaches, this problem will get worse. Theoretical
immunologists often review their (collective) work, and they
unanimously agree that the field has been coming of age
into a gratifyingly prolific adulthood—a view that I and
several colleagues do not entirely share. It is important to
recognize the limitations and inadequacies of past and current
modeling approaches and practices, because these will not
necessarily disappear spontaneously with the availability of
richer data and introduction of comprehensive mathematical
and computational modeling methodologies. Listed below
are archetypal shortcomings and fallacies—“the mathematical
immunologists’ dirty little secrets,” to paraphrase Janeway—with
occasional reference to earlier mentioned examples.

1) Uncritical adoption of dogma. The futile work on
idiotypic networks was already mentioned. One reason
why mathematical immunologists too often base their models
on unsound assumptions that render them structurally
unstable, as in the case of the tap-and-drain model of CD4
depletion, or that “subtly” contradict basic immunological
knowledge, as in the diversity threshold model of HIV
progression, is perhaps the desire to provide a metaphor that
appeals to virologists and clinicians and to be congruent with
a common view.

2) Uncritical “technology transfer.” As discussed, borrowing
concepts from population dynamics, which only partly and
superficially resemble the dynamics of the immune system
and its interaction with pathogens, facilitated the construction
of many mathematical models and the application of familiar
tools, but the explanatory and predictive value of such models
is small.

3) Blurring the difference between the model and reality.
Phenomenological models used as generic data-fitting devices
are incorrectly referred to as “mechanistic.” Too often it is
stated that a model is used to “investigate” the biological
system and “expose” its hidden properties. Strictly speaking,
investigated are the properties of the model. Explaining or
predicting the response of real entities to real perturbations
based on associating the model’s variables with these entities
is generally futile and often misleading. Related fallacies are
oversimplification and traditionalism.

4) Oversimplification—ignoring knowledge that is not
superfluous, often with a misplaced reference to the law of
parsimony as a reason, or excuse. Mainstream immunologic
modeling consistently failed to “sense which assumptions
might be critical and which irrelevant to the question at
hand” (8). Lumping together different cell lineages and
differentiation states is an example.

5) Traditionalism (what worked for us in the past is safe).
For example, as the doctrine that foreign antigens,
or just pathogens, were the only inducers of immune
responses was being replaced by a more general paradigm
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(see above), providing new insights into “bystander
activation”—mainstream mathematical immunologists
insisted, and still do, on describing increased T-cell turnover
during HIV infection simply as increased average rates of
unstructured division and death. Ignoring the compelling
evidence for the centrality of “T-cell activation bursts” and
their dynamics led to problematic models such as the “tap-
and-drain” and the “source” models, to misinterpretations of
in-vivo DNA-labeling results, and to the misconception
that infected macrophages account for the “second
phase” in viral-load decline following the initiation of
antiretroviral treatment (leading some to believe even now
that macrophages are an important reservoir for HIV,
despite the absence of supportive evidence; R. Swanstrom,
CROI 2019, Abstract 62). Sticking to obsolete or unfounded
assumptions might be attributed in part to the striking
publication success of this kind of work. Bill Paul, who knew
something about immunology, and about AIDS research,
found that success to be quite astonishing.

6) Exaggerating the value of successful data fitting. Given
the number of undetermined/uncertain parameters in a
phenomenological model, coupled to the crudeness of data,
numerical fitting poses more of a technical than a scientific
problem. Comprehensive models based on richer data should
allow more detailed description of our “pathetic thinking”;
as such models are not derived from basic principles, their
usefulness would still depend critically on the quality of the
underlying biological assumptions.

7) The delusion that new biological properties are “revealed”
through (or “emerge” from) analysis of a simple nonlinear
model. First, such models do not necessarily represent
biological reality or represent a few selected aspects [see
point (3) in this list]. Second, when a model is hypothesis
driven, the qualitative implications of making that hypothesis
have in most cases been predilected by the modeler
and are anticipated. While the model’s properties are
embedded in the model’s equations, biologists are often
led to believe that nonlinearity precludes direct inference
of these properties from the equations themselves without
analysis. The generic qualitative characteristics of a model’s
behavior (e.g., multiple locally-stable steady states, thresholds,
nonmonotonic responses to increasing input) are regularly
referred to as counter-intuitive. This is not accurate, as the
phenomenology of low-dimensional dynamical systems is
quite stereotypic. Asmost biologists are (sadly) not adequately
prepared to follow the analysis or assess its necessity, they have
disproportionally relied on “the experts” to decipher empirical
results, rather than engagingmore actively in interdisciplinary
efforts to conceptualize the growing body of data. There are
signs that this is starting to change.

8) Tacit assumptions; engineering a model to support a
preconceived hypothesis by tacitly implanting the hypothesis
into the model’s equations in disguise. In some cases,
models of HIV infection led to conclusions that did
not follow from the stated assumptions but rather from
such hidden assumptions. A conspicuous example was
given above.

9) Blurring differences between models. While the inherent
precision of the mathematical language can be used to
clearly differentiate among alternative hypotheses in terms
of their diverging assumptions and predictions, it seems
that some authors would rather blur the differences than be
proven to have been wrong (5). A conspicuous example is
(133), purporting to present a generalization of the above-
mentioned “source model” (130, 131), which had been under
debate for some years. In fact, the new model had little to do
with the original one—it was closer to the rival hypothesis—
and shed no new light on the issue stated in the paper’s title; it
was a distraction. Such ambiguity about what a mathematical
model really means and how it differs from other models
defies the idea that, to be useful, a model must be falsifiable
(8). In this and other cases, it hasmuddled the scientific debate
regarding HIV pathogenesis and confounded the discussion
of real issues (5).

10) How to jump on a bandwagon and possess it. Scientific
journals check submitted manuscripts for plagiarism and
duplication and aim to publish only original content.
Evidently, computerized screening cannot, and did not,
prevent the appropriation (“rediscovery”) of published
ideas, concepts and entire theoretical constructs and their
duplication, as remarked above in referencing. While
most scientists follow traditional academic and research
standards, conceptual work may be particularly vulnerable
to opportunists.

In view of such pitfalls and practices, mathematical modeling
results presented in biomedical and general journals must
be carefully evaluated. The above-listed problems plague the
soundness of modeling results and belie the very notion
that mainstream mathematical immunology makes substantial
contributions to the science and is heading in the right direction.

CONCLUSION

The myth that mathematical models have provided important
insights into basic immunology, HIV pathogenesis, etc., has
been consistently and successfully propagated by mainstream
theoretical immunologists but has little foundation. Given
that success, it has become fashionable for biologists to
team with biomathematicians, believing this helps to make
interpretations more “rigorous” and therefore more credible. But
the obsolete “standard” ecological view of immunity and host-
pathogen dynamics, which has subjugated the thinking of most
professional modelers for decades, is as prevailing as ever.

In the general world of immunology, new paradigms
gradually replace some of the older ones, including the classic
“self-nonself discrimination” and the more recent “pathogen-
nonpathogen discrimination” (134). Timely assimilation of these
developments could have prevented the frequent failure of
ambitious models, after they have received much attention,
to stand the test of time. In this context, certain practices
need to be avoided, e.g., grounding major propositions on
insufficient data; considering related data sets in isolation,
resulting in conflicting interpretations of the same phenomena
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by different groups; failing to acknowledge that a desired result
was tacitly incorporated into a model’s assumptions on ad-hoc
basis; allowing personal dichotomies or mere opportunism to
influence the scientific discourse (the latter is a rich topic that is
not expounded here). Such practices impede progress.

For themost basic layer of immunologic research, outstanding
“big questions” need to be defined. New challenges arise from
the recognition that, in William Paul’s words, “the behavior
of immune cells is highly colored by the cellular/molecular
environment in which they exist” (135). The new era of
better technology and new methodology might allow interesting
speculations to become subject to modeling that is falsifiable
(8) (what is commonly called “testable”). By interesting I mean
plausible enough, biologically, based on existing knowledge, to
deserve the efforts involved in testing. My personal wish list
would include, for example, the following issues:

1) The dynamics of antagonistic excitation-deexcitation loops
and tuning. The generic model provides what appears to be
a valid general rule, at least at the level of the TCR module
(see above), and it has recently been attempted to apply an
equivalent concept to different modules (70). This is just the
beginning: Several motifs incorporating “antagonistic loops”
have been postulated to exist, to interact, and to possess
self-organizing properties. We are far from understanding
the hierarchy of organization, which transforms patterned
inputs to the cell into qualitatively distinct cellular response.
“We must deal with the fact that signals that change cell
behavior are often overlapping and pleiotropic and that their
integration into cells and exchange among cells, while subject
to genetically imposed constraints, are flexible and dynamic”
(33). Hence the importance of rules intended to help us
classify patterns of inputs and predict their mapping into
distinct classes of response. As for the flexibility afforded
by tuning, it has already inspired several research groups
to explore the roles and limits of lymphocyte adaptation,
not only in the sense of not responding, but as a means
for the cells to diversify and readjust their functions in a
context-dependent way. It is necessary to learn more about
the molecular signatures of tuning.

2) Tuning of antigen-presenting cells. The concept of reciprocal
tuning of T cells and dendritic cells imparts a greater role than
presently assumed by most immunologists for these APC,
beyond their crucial role in pathogen sensing and in initiating
and driving immune responses. This area of DC tuning has
been little explored. A related modeling task is a concrete
description of how a diverse repertoire of T cell clones is

supported by a relatively small and dynamic population of
APC [an “ecological-like” phenomenon so far discussed only

in general terms (33, 77)].
3) Adaptive differentiation, reprogramming. What are the

epigenetic mechanisms that transform a reversibly tuned state

into a new differentiated state?
4) Suprathreshold activation of autoreactive cells without

autoimmunity. Why is the amplification associated with
normal recruitment of naïve cells into the memory cell
compartment not associated with significant manifestations

of autoimmunity? Similarly, chronic HIV infection is
associated with inflammation and ongoing polyclonal
proliferation-and-differentiation bursts, but autoimmunity
is not a major hallmark of the infection. Is it due to the low
affinity of most activated cells for cognate self-antigens? It has
been proposed that TCR-mediated destruction of tissue cells
has a higher threshold than activation and differentiation
(23, 24) but the issue has not been investigated. Cohen’s
rather abstract “wellness profile hypothesis” may provide
a more fundamental perspective, which for the time being
remains a “hopeful monster” (see next).

5) Lymphocyte learning and systemic learning. Over time, I
saw these concepts, which were once regarded as “hopeful
monsters” (136), turning into “interesting speculations”,
generating new metaphors and even new “theories.”
Explaining how the immune system adjusts its response to
the environment in which antigen is recognized (17) is a
challenge that theoreticians and molecular biologists should
tackle together. Detection and selective response (“context
discrimination”) to recurring patterns, or “features”, or
meaningful incorporation of signals from the neuroendocrine
system (as in “immune conditioning”), would imply the
operation of a generalized “Hebb’s rule,” which was proposed
in neuroscience to explain associative, or “unsupervised,”
learning (137). In the immune system, such capacities
would be linked to intrinsic cellular plasticity, not limited to
receptor expression (1, 7). In analogy with the BCM theory of
cortical synapse modification (138–140), I envision a sliding
“modification threshold,” adjusted by ongoing stimulatory
experience, separating signal associations that are increasingly
recognized from those that are, intracellularly, increasingly
suppressed, with convergence onto the dominant feature
(7). The proposed “quality control” of an ongoing response,
based on local feedback from stressed tissue cells (see
above), would depend also on selection and self-organization
operating at the cell-population level (7). Autoreactivity and
outward-directed immunity are regulated simultaneously
and interactively through the interplay of selection, tuning,
controlled activation and feedback (31).

6) Biomarkers of health and disease. Discriminating unhealthy
cells and tissues from healthy ones and acting upon this
information requires immune learning. Some of us have
pondered this issue for decades, but little has been done
experimentally. Above I have related tuning and smart
surveillance to training and health-non-health discrimination
à la Cohen (53). Healthy tissue provides dynamically updated
reference patterns to cells; sufficiently strong perturbations,
i.e., sharp deviations of the recognized pattern from normal,
elicit a hierarchy of responses. Questions remain: What
are the measures of a sharp deviation? Is the response
itself subject to dynamic selection/shaping by feedback
mechanisms (stress related or others), as proposed (7),
and what is the weight of genetic preprogramming? Are
signals from the neuroendocrine system involved (50)? Is
the constant exchange of bioactive molecules among cells
via extracellular vesicles (141) crucially involved in dynamic
learning by cells of each other’s condition (18) and in the
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shaping of corrective responses? How is the choice—in-situ
normalization (18) or induced turnover to rinse and replace
(77)1—being managed? The feasibility of “deep learning” has
been invoked by Cohen and Efroni (53), but it would imply
extremely large number of ad-hoc phenotypic adjustments
and unpredictable biochemical trajectory to the goal. These
questions might be approached by using bioinformatics tools,
such as co-expression network analysis and hierarchical
clustering analysis of differentially expressed genes (142, 143),
to characterize the evolution of gene-expression networks
associated with different stages of the development and
resolution of inflammatory processes. One might hope to
identify robust local tissue signatures of “health,” and of
different kinds and levels of injury or malfunction, and in
parallel features reflecting functional activity or adaptation
of effector cells, especially those belonging to the trained
subset. Once these key biomarkers are identified, control-
science tools could be utilized in adjusting therapeutic
interventions to changes in the monitored biomarkers.
“It may be more comfortable to ignore that our natural
defense system permanently prevents and/or cures many
infections, cancers, cardiovascular disorders, and so on.
Nevertheless, understanding, then mastering better, these
physiological dynamics, which maintain a stability slowly
destroyed by physiological aging, will ultimately help improve
our health” (18).

Current mathematical models of complex physio-pathological
processes are inherently limited in their ability to provide
new explanations for the observed phenomena and to predict
the future course of events. The dimensionality of such
models is necessarily limited, because the size of available
biomedical data sets tends to be too small to allow for a
reliable quantitative parameter estimation in models that involve
many variables (144); there are too many ways to fit the
data, including the (unknown) right way. The hope that a
nominally high-dimensional biological system may effectively
behave as a relatively low-dimensional dynamical system is not
farfetched; several examples support the notion that there are
simple organizing principles that allow a lower-dimensional
representation. However, the variables which effectively represent
such a minimal low-dimensional system cannot generally be
expected to be simply a subset of the natural constituents
of the biological system. Rather, they are likely to be some
multivariate functions of these constituents. Similarly, the
topological properties and the actual location of boundary
surfaces between qualitatively different classes of behavior (e.g.,
surfaces defining domains of influence of attractors in the phase
space) depend on the original parameters in an associative way.
Full identification of a minimal set of dynamical equations that
would enable robust mapping of different initial conditions
to the asymptotic solutions may be feasible, using statistical
inference and statistical pattern-recognition methods, but only if
prior knowledge about the nature of the interactions underlying
these dynamics exists (145). Conceptual understanding is
a prerequisite.

In the future, reductionist research will remain as important
as it has always been, but a systems biology outlook will
become increasingly necessary for the integration of results.
In a sense, systems biology extends the reductionist program,
looking at complex motifs and circuits instead of at small
sets of components one at a time. Even in its modern attire,
using systems biology tools, reductionist research “does
not shift our view of the immune system from a static
schematic perception to a dynamic multi-level system”
(see introductory comments to this article collection by
the editors). Dynamical systems methods in the hands of
applied mathematicians will be instrumental in proceeding
to a full integrative approach. To participate effectively in
the integration process, mathematical immunologists need
to become more intimately engaged in the quest for the
general rules—where a familiarity with the theory of dynamical
systems and with model identification theory is helpful, but
not sufficient—and to severely constrain models describing
sets of observations by requiring confluence with such
rules. The insights provided by sound hypotheses can aid
in developing comprehensive yet appropriately simplified
multiscale meta-models that circumvent “the curse of
dimensionality” (144). The increasing interest in systems
biology, and the development of powerful experimental and
analytical tools, provide conditions whereby assumptions
pertaining to cells, tissues and whole organisms can be efficiently
assessed, and predictions can be tested experimentally and
clinically. Where plenty of data and technology is available,
it is important not to allow inadequate assumptions to be the
weakest link.
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