About this Research Topic
In addition to prolific achievements in materials science, advances in interface chemistry have also been critical in considering the complex phenomena taking place at triple-phase boundary regions, such as mass diffusion, electron transfer, and surface reaction. Therefore, insightful principles and effective strategies for comprehensive optimization--ranging from active sites to electrochemical interface--are necessary to fully enhance electrocatalytic performance with an aim toward practical device applications.
The aim of the current Research Topic is to cover promising, recent, and novel research trends in efficient electrochemical energy conversion reactions, with multiscale principles in terms of electronic structure, surface chemistry, hierarchical morphology, and electrode interface. Insights into the design and definition of various electrocatalysts for ORR, OER, HER, NRR, CRR are welcome, as well as their practical applications in metal-air batteries, water splitting devices, fuel cells, etc.
Keywords: oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, nitrogen reduction reaction, carbon dioxide reduction reaction, water splitting, metal-air battery, fuel cell, electrocatalysis, heterogeneous catalysis
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.