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Python is rapidly becoming the de facto standard language for systems integration. Python 
has a large user and developer-base external to theneuroscience community, and a vast 
module library that facilitates rapid and maintainable development of complex and intricate 
systems.

In this Research Topic, we highlight recent efforts to develop Python modules for the domain 
of neuroscience software and neuroinformatics: 

- simulators and simulator interfaces
- data collection and analysis
- sharing, re-use, storage and databasing of models and data
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- stimulus generation
- parameter search and optimization
- visualization
- VLSI hardware interfacing

Moreover, we seek to provide a representative overview of existing mature Python modules 
for neuroscience and neuroinformatics, to demonstrate a critical mass and show that 
Python is an appropriate choice of interpreter interface for future neuroscience software 
development.
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This Research Topic of Frontiers in Neuroinformatics is dedicated to the memory of Rolf Kötter
(1961–2010), who was the Frontiers Associate Editor responsible for this Research Topic, and who
gave us considerable support and encouragement during the process of conceiving and launching
the Topic, and throughout the reviewing process.

Computation is becoming essential across all sciences, for data acquisition and analysis, automa-
tion, and hypothesis testing via modeling and simulation. As a consequence, software development
is becoming a critical scientific activity. Training of scientists in programming, software devel-
opment, and computational thinking (Wilson, 2006), choice of tools, community-building and
interoperability are all issues that should be addressed, if we wish to accelerate scientific progress
while maintaining standards of correctness and reproducibility.

The Python programming language in particular has seen a surge in popularity across the sci-
ences, for reasons which include its readability, modularity, and large standard library. The use of
Python as a scientific programming language began to increase with the development of numer-
ical libraries for optimized operations on large arrays in the late 1990s, in which an important
development was the merging of the competing Numeric and Numarray packages in 2006 to form
NumPy (Oliphant, 2007). As Python and NumPy have gained traction in a given scientific domain,
we have seen the emergence of domain-specific ecosystems of open-source Python software devel-
oped by scientists. It became clear to us in 2007 that we were on the cusp of an emerging Python in
neuroscience ecosystem, particularly in computational neuroscience and neuroimaging, but also in
electrophysiological data analysis and in psychophysics.

Two major strengths of Python are its modularity and ability to easily “glue” together different
programming languages, which together facilitate the interaction of modular components and their
composition into larger systems. This focus on reusable components, which has proven its value in
commercial and open-source software development (Brooks, 1987), is, we contend, essential for
scientific computing in neuroscience, if we are to cope with the increasingly large amounts of data
being produced in experimental labs, and if we wish to understand and model the brain in all its
complexity.

We therefore felt that it was timely and important to raise awareness of the emerging Python in
Neuroscience software ecosystem amongst researchers developing Python-based tools, but also in
the larger neuroscience community.

Our goals were several-fold:

- establish a critical mass for Python use and development in the eyes of the community;
- encourage interoperability and collaboration between developers;
- expose neuroscientists to the new Python-based tools now available.
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From this was born the idea for a Research Topic in Frontiers
in Neuroinformatics on “Python in Neuroscience” to showcase
those projects we were aware of, and to give exposure to projects
of which we were not aware. Although it may seem strange at
first glance to center a Research Topic around a tool, rather than
around a scientific problem, we feel it is justified by the increas-
ingly critical role of scientific programming in neuroscience
research, and by the particular strengths of the Python language
and the broader Python scientific computing ecosystem.

Collected in this Research Topic are 24 articles describing
some ways in which neuroscience researchers around the world
are turning to the Python programming language to get their job
done faster and more efficiently.

Overview of the Research Topic

We will now briefly summarize the 24 articles in the Research
Topic, drawing out common themes.

Both Southey et al. (2008) and Yanashima et al. (2009) use
Python for bioinformatics applications, but in very different
areas. Yanashima et al. have developed a Python package for
graph-theoretical analysis of biomolecular networks, BioNetpy,
and employed it to investigate protein networks associated with
Alzheimer’s disease. Southey et al.’s study demonstrates the wide
breadth of application of Python, and the large number of high
quality scientific libraries available, combining existing tools for
bioinformatics, machine learning and web development to build
an integrated pipeline for identification of prohormone precur-
sors and prediction of prohormone cleavage sites.

Jurica and van Leeuwen (2009) address the needs of sci-
entists who already have significant amounts of code written
in MATLAB R© and who wish to transfer this to Python. They
present OMPC, which uses syntax adaptation and emulation to
allow transparent import of existing MATLAB R© functions into
Python programs.

Three articles reported on new tools in the domain of neu-
roimaging. Hanke et al. (2009) report on PyMVPA, a Python
framework for machine learning-based data analysis, and its
application to analysis of fMRI, EEG, MEG, and extracellu-
lar electrophysiology recordings. Gouws et al. (2009) describe
DataViewer3D, a Python application for displaying and inte-
grating data from multiple neuroimaging modalities, showcasing
Python’s abilities to easily interface with libraries written in other
languages, such as C++, and to integrate them into user-friendly
systems. Strangman et al. (2009) emphasize the advantages of
Python for “swift prototyping followed by efficient transition to sta-
ble production systems” in their description of NinPy, a toolkit for
near-infrared neuroimaging.

Zito et al. (2009) and Ince et al. (2009) both report on the
use of Python for general purpose data analysis, with a focus
on machine learning and information theory respectively. Zito
et al. have developed MDP, the Modular toolkit for Data Pro-
cessing, a collection of computationally efficient data analysis
modules that can be combined into complex pipelines. MDP
was originally developed for theoretical research in neuroscience,
but has broad application in general scientific data analysis and
in teaching. Ince et al. (2009) describe the use of Python for

information-theoretic analysis of neuroscience data, outlining
algorithmic, statistical and numerical challenges in the appli-
cation of information theory in neuroscience, and explaining
how the use of Python has significantly improved the speed and
domain of applicability of the algorithms, allowing more ambi-
tious analyses of more complex data sets. Their code is available
as an open-source package, pyEntropy.

Three articles report on tools for visual stimulus gener-
ation, for use in visual neurophysiology and psychophysics
experiments. Straw (2008) describes VisionEgg, while Peirce
(2009) presents PsychoPy, both of which are easy-to-use and
easy-to-install applications that make use of OpenGL to gener-
ate temporally and spatially precise, arbitrarily complex visual
stimulation protocols. Python is used to provide a simple, intu-
itive interface to the underlying graphics libraries, to provide
a graphical user interface, and to interface with external hard-
ware. PsychoPy can also generate and deliver auditory stimuli.
Spacek et al. (2009) also report on a Python library for visual
stimulus generation, as part of a toolkit for the acquisition and
analysis of highly parallel electrophysiological recordings from
cat and rat visual cortex. The other two components in the
toolkit are for electrophysiological waveform visualization and
spike sorting; and for spike train and stimulus analysis. The
authors note “The requirements and solutions for these projects
differed greatly, yet we found Python to be well suited for all
three.”

Also in the domain of electrophysiology, Garcia and
Fourcaud-Trocmé (2009) describe OpenElectrophy, an applica-
tion for efficient storage and analysis of large electrophysiology
datasets, which includes a graphical user interface for interactive
visualization and exploration and a library of analysis routines,
including several spike-sorting methods.

By far the largest contribution to the Research Topic came
from the field of modeling and simulation, with 12 articles on
the topic. Nine of these articles present neuroscience simulation
environments with Python scripting interfaces. In most cases, the
Python interface was added to an existing simulator written in
a compiled language such as C++. This was the case for NEU-
RON (Hines et al., 2009), NEST (Eppler et al., 2009), PCSIM
(Pecevski et al., 2009), Nengo (Stewart et al., 2009), MOOSE
(Ray and Bhalla, 2008), STEPS (Wils and De Schutter, 2009) and
NCS (Drewes et al., 2009). However, as the articles by Goodman
and Brette (2008) on the Brian simulator and Bednar (2009) on
the Topographica simulator demonstrate, it is also possible to
develop new simulation environments purely in Python, making
use of the vectorization techniques available in the underlying
NumPy package to obtain computational efficiency. The range
of modeling domains of these simulators is wide, from stochas-
tic simulation of coupled reaction-diffusion systems (STEPS),
through simulation of morphologically detailed neurons and
networks (NEURON, MOOSE), highly-efficient large-scale net-
works of spiking point neurons (NEST, PCSIM, NCS, Brian) to
population coding or point-neuron models of large brain regions
(Nengo, Topographica). Note that although we have catego-
rized each simulator by its main area of application, most of
these tools support modeling at a range of scales and levels of
detail: Bednar (2009), for example, describes the integration of a
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spiking NEST simulation as one component in a Topographica
simulation.

The addition of Python interfaces to such a large number of
widely used simulation environments suggested a huge oppor-
tunity to enhance interoperability between different simulators,
making use of the common scripting language, which in turn has
the potential to enhance the transfer of technology, knowledge
and models between users of the different simulators, and to pro-
mote model reuse. Davison et al. (2009a) describe PyNN, a com-
mon Python interface to multiple simulators, which enables the
same modeling and simulation script to be run on any supported
simulator without modification. At the time of writing, PyNN
supports NEURON, NEST, PCSIM and Brian, with MOOSE sup-
port under development. The existence of such a common “meta-
simulator” then makes it much easier for scientists developing
new, hardware-based approaches to neural simulation to engage
with the computational neuroscience community, as evidenced
by the article by Brüderle et al. (2009) on interfacing a novel
neuromorphic hardware system with PyNN.

Finally, Fox et al. (2009) describe the possibilities when one is
not limited to a single simulator, but can use Python to integrate
multiple models into a brain-wide system. In their development
of an integrated basal ganglia-hippocampal formation model for
spatial navigation and its embodiment in a simulated robotic
environment, Fox et al. found that Python offers “a significant
reduction in development time, without a corresponding significant
increase in execution time.”

It is important to note that most or all of the Python tools
and libraries described in the Research Topic are open source and
hence free to download, use and extend.

Discussion

This editorial is being written 6 years after the first articles in
the Research Topic were published. It is with the benefit of con-
siderable hindsight, therefore, that we can confidently say that
our goals in launching this Research Topic—to establish a critical
mass for Python use and development in the eyes of the commu-
nity and to encourage interoperability and collaboration between
developers—have been met or exceeded.

The average number of citations per article for the Research
Topic as a whole is 54, or approximately 9 per year, using figures
from Google Scholar. Although citation counts from Google
Scholar tend to be higher than those from Journal Citation
Reports so the numbers are not directly comparable, this com-
pares favorably with the impact factors of well respected journals
such as Journal of Neuroscience or PLoS Computational Biology.
Some of the articles were much more highly cited, with three
of them being cited more than 20 times per year, on average,
over the period. Four of the articles were chosen to “climb the
tier” in the Frontiers system, and were followed up by Focused
Review articles in Frontiers in Neuroscience (Davison et al.,
2009b; Goodman and Brette, 2009; Hanke et al., 2010; Ince et al.,
2010), another was the subject of a commentary (Einevoll, 2009).

Concerning the goals of interoperability and collaboration,
several articles in a follow-up volume Python in Neuroscience II
attest to the degree to which the developers of different tools

have worked together, and prioritized interoperability in recent
years. For example, the developers of OpenElectrophy (Gar-
cia and Fourcaud-Trocmé, 2009) and the community around
PyNN (Davison et al., 2009a) formed the nucleus of an effort to
develop a baseline Python representation for electrophysiology
data, which resulted in the Neo project, reported in the Python
in Neuroscience II Research Topic (Garcia et al., 2014) together
with two of the several projects which build on Neo (Pröpper and
Obermayer, 2013; Sobolev et al., 2014). A new workflow system
for computational neuroscience, Mozaik (Antolík and Davison,
2013) builds on both PyNN and Topographica (Bednar, 2009).
PyNEST (Eppler et al., 2009) and PyNN developers collaborated
with the INCF to improve the interoperability between these tools
(Djurfeldt et al., 2014) when using the Connection Set Algebra
(Djurfeldt, 2012). Finally, a number of tools have been built on
the Python interface to NEURON (Hines et al., 2009), including
morphforge (Hull and Willshaw, 2014) and LFPy (Lindén et al.,
2014).

Observing the rapid growth in adoption of Python in neuro-
science over the last 6 years, which appears to continue to accel-
erate, it is clear that Python is here to stay, which augurs well for
the growth, productivity, and rigor of computational methods in
neuroscience.

References

Antolík, J., and Davison, A. P. (2013). Integrated workflows for spiking neuronal

network simulations. Front. Neuroinform. 7:34. doi: 10.3389/fninf.2013.00034

Bednar, J. A. (2009). Topographica: building and analyzing map-level simula-

tions from Python, C/C++, MATLAB, NEST, or NEURON components. Front.

Neuroinform. 3:8. doi: 10.3389/neuro.11.008.2009

Brooks, F. P. Jr. (1987). No silver bullet: essence and accidents of software

engineering. Computer 20, 10–19. doi: 10.1109/MC.1987.1663532

Brüderle, D., Müller, E., Davison, A. P., Muller, E., Schemmel, J., and Meier,

K. (2009). Establishing a novel modeling tool: a Python-based inter-

face for a neuromorphic hardware system. Front. Neuroinform. 3:17 doi:

10.3389/neuro.11.017.2009

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,

et al. (2009a). PyNN: a common interface for neuronal network simulators.

Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Davison, A. P., Hines, M., and Muller, E. (2009b). Trends in programming

languages for neuroscience simulations. Front. Neurosci. 3, 374–380. doi:

10.3389/neuro.01.036.2009

Djurfeldt, M. (2012). The connection-set algebra—a novel formalism for the rep-

resentation of connectivity structure in neuronal network models. Neuroinfor-

matics 10, 287–304. doi: 10.1007/s12021-012-9146-1

Djurfeldt, M., Davison, A. P., and Eppler, J. M. (2014). Efficient genera-

tion of connectivity in neuronal networks from simulator-independent

descriptions. Front. Neuroinform. 8:43. doi: 10.3389/fninf.2014.

00043

Drewes, R. P., Zou, Q., and Goodman, P. H. (2009). Brainlab: a Python

toolkit to aid in the design, simulation, and analysis of spiking neural

networks with the NeoCortical Simulator. Front. Neuroinform. 3:16. doi:

10.3389/neuro.11.016.2009

Einevoll, G. T. (2009). Sharing with Python. Front. Neurosci. 3, 334–335. doi:

10.3389/neuro.01.037.2009

Frontiers in Neuroinformatics | www.frontiersin.org April 2015 | Volume 9 | Article 11 8|

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muller et al. Python in Neuroscience

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. O. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Fox, C. W., Humphries, M. D., Mitchinson, B., Kiss, T., Somogyva, Z., and

Prescott, T. J. (2009). Technical integration of hippocampus, basal ganglia

and physical models for spatial navigation. Front. Neuroinform. 3:6. doi:

10.3389/neuro.11.006.2009

Garcia, S., and Fourcaud-Trocmé, N. (2009). OpenElectrophy: an electrophysio-

logical data- and analysis-sharing framework. Front. Neuroinform. 3:14. doi:

10.3389/neuro.11.014.2009

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P. L., et al.

(2014). Neo: an object model for handling electrophysiology data in multiple

formats. Front. Neuroinform. 8:10. doi: 10.3389/fninf.2014.00010

Goodman, D. F., and Brette, R. (2009). The Brian simulator. Front. Neurosci. 3,

192–197. doi: 10.3389/neuro.01.026.2009

Goodman, D. F. M., and Brette, R. (2008). Brian: a simulator for spiking neural

networks in Python. Front. Neuroinform. 2:5 doi: 10.3389/neuro.11.005.2008

Gouws, A. D., Woods, W., Millman, R. E., Morland, A. B., and Green,

G. G. R. (2009). Dataviewer3D: an open-source, cross-platform multi-

modal neuroimaging data visualization tool. Front. Neuroinform. 2:9. doi:

10.3389/neuro.11.009.2009

Hanke, M., Halchenko, Y. O., Haxby, J. V., and Pollmann, S. (2010). Statistical

learning analysis in neuroscience: aiming for transparency. Front. Neurosci. 4,

38–43. doi: 10.3389/neuro.01.007.2010

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W.,

et al. (2009). PyMVPA: a unifying approach to the analysis of neuroscientific

data. Front. Neuroinform. 3:3. doi: 10.3389/neuro.11.003.2009

Hines, M., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.

Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hull, M. J., and Willshaw, D. J. (2014). Morphforge: a toolbox for simulating small

networks of biologically detailed neurons in Python. Front. Neuroinform. 7:47.

doi: 10.3389/fninf.2013.00047

Ince, R. A. A., Mazzoni, A., Petersen, R. S., and Panzeri, S. (2010). Open source

tools for the information theoretic analysis of neural data. Front. Neurosci. 4,

62–70. doi: 10.3389/neuro,0.01.011.2010

Ince, R. A. A., Petersen, R. S., Swan, D. C., and Panzeri, S. (2009). Python for

information theoretic analysis of neural data. Front. Neuroinform. 3:4. doi:

10.3389/neuro.11.004.2009

Jurica, P., and van Leeuwen, C. (2009). OMPC: an open-source MATLAB R©-to-

Python compiler. Front. Neuroinform. 3:5. doi: 10.3389/neuro.11.005.2009
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INTRODUCTION
Computational modeling and simulation of signaling pathways has 
become a valuable and established tool for studying the molecular 
aspects of biological systems (Bhalla, 2004; Doi et al., 2005; Holmes, 
2000; Kuroda et al., 2001; Lindskog et al., 2006; Miller et al., 2005; 
Smolen et al., 2006; Stefan et al., 2008). Modeling such systems 
consists of identifying the molecular players and describing the 
stoichiometry and rate constants of their chemical interactions. 
The resulting system is then often simulated by converting it to a 
set of coupled ordinary differential equations that can be numeri-
cally integrated (Press et al., 2007).

It has long been acknowledged that the discrete nature of reac-
tion events, caused by the very low numbers of key molecules being 
present, can make biological reaction systems noisy and affect their 
behavior on a macroscopic level. This aspect can be brought into 
the simulation by adding noise terms to the differential equa-
tions (Kloeden and Platen, 1999; van Kampen, 2007), or more 
commonly, by simulating the system with Gillespie’s Stochastic 
Simulation Algorithm or SSA (Gillespie, 1977) or one of its deriva-
tions (Gillespie, 2007).

For some pathways, however, even more realism is needed. One 
such case is when the spatial organization and morphology of the 
cell is known to play an active role in controlling the pathway, e.g. 
through chemical compartmentalization, spatial gradients and by 
various transport processes and diffusion (Lemerle et al., 2005). 
Such cases are common in neurons because of their complex den-
dritic arborization (Santamaria et al., 2006), but of course are not 
limited to them.

In order to study systems at the level where stochasticity, spatial 
gradients within complex boundary conditions and diffusion all 
come into play at the same time, we have developed a simulation 
platform called STEPS (STochastic Engine for Pathway Simulation) 
that uses an extension of Gillespie’s SSA to deal with diffusion 
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of molecules in 3-dimensional reconstructions of  neuronal 
 morphology and tissue (Wils and De Schutter, 2009). STEPS com-
putes reactions occurring between diffusing molecules in volumes, 
and, in addition, also surface reactions to simulate channel fl uxes 
and ligand-receptor binding. Our algorithm differs from a similar 
approach described in Elf and Ehrenberg (2004) mainly in that it 
is based upon the use of tetrahedral meshes which are particularly 
well-suited for representing biological morphology and that we 
avoid the use of a heap structure.

In this paper, based on a presentation made at the FACETS 
CodeJam #2 workshop ‘Building the meta-simulator tool-chain: 
leveraging Python for a robust and effi cient workfl ow in compu-
tational neuroscience’, describes how Python scripting is used for 
working with models in STEPS. We also show how, in this particular 
problem domain, adding Python scripting improved the quality 
and maintainability of STEPS in a fundamental way.

SOFTWARE
BRIEF DESCRIPTION OF STEPS ALGORITHM
Stochastic simulation of reaction-diffusion processes can occur 
in a number of ways. One way is to track each reacting molecule 
as an independent particle that undergoes Brownian motion and 
occasionally collides with one of the other tracked molecules. This is 
the approach taken by such programs as M-Cell (Stiles and Bartol, 
2001) and Smoldyn (Andrews and Bray, 2004).

Another approach is voxel-based; here one keeps track of how 
much molecules are present from any given species within a set of 
small volumes. By keeping these reaction volumes or voxels small 
enough, we can state that the concentration gradients within each 
voxel are negligible: the voxel is approximately well-mixed. Then 
we can apply SSA (Gillespie, 1976) by adding an extra reaction 
rule for each type of molecule for its diffusion step from one voxel 
to a neighboring one. Thus SSA handles both diffusion processes 
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and reaction mechanisms from within one single simulation 
 framework. Though this approach is abstracted more from the 
underlying physical mechanisms than modeling Brownian motion, 
it offers a number of advantages. Because diffusion is uncoupled 
from chemical reaction, the modeler can decide for each type of 
molecule, considering the timeframe being simulated, whether it 
makes sense to implement diffusion or not. At the coding level, 
much less bookkeeping is necessary because one does not track 
individual molecules, giving rise to leaner and potentially faster 
code. It also facilitates combining SSA with approximate, faster 
methods such as tau-leaping (Gillespie, 2001).

STEPS simulates molecular reaction-diffusion in volumes 
which are bounded by membranes. These membranes can con-
tain stationary reacting molecules, including channel proteins. 
To simulate the behavior of these systems, STEPS adapts the 
Direct Reaction Method version of SSA (Gillespie, 1976) for 
large systems by storing the propensity values for each process 
in a search tree. STEPS 0.4 implements two distinct stochastic 
solvers: a spatial solver (called tetexact) and an auxiliary well-
mixed solver (called wmdirect, this does not model diffusion). 
Such well-mixed solvers are useful assistants because setting up 
a spatial model can benefi t greatly from analyzing and tuning 
parts of the biochemical model under simpler conditions (Wils 
and De Schutter, 2009). In the future additional solvers will be 
added, including a deterministic one (based on Runge-Kutta 
integration; Press et al., 2007) and an extension of tetexact that 
includes diffusion in membranes.

STEPS WORKFLOW
Figure 1 shows a typical workfl ow for developing and simulating 
a 3-dimensional reaction-diffusion system and how the different 
phases can relate to each other. The fi rst step, biochemical mod-
eling, consists of describing reaction stoichiometry and selecting 
reaction rates and diffusion constants. Since this is independent to 
a large degree of the actual algorithm that will be used for simula-
tion (i.e. numerical integration of ODE’s vs stochastic simulation; 
with or without diffusion; …), it is common practice to import and 

compose this type of information from previous modeling efforts 
through formats such as SBML (Hucka et al., 2003)1.

Mesh generation, or more generally speaking describing the geo-
metric boundaries of the problem, is another step. Since tetrahe-
dral meshes are supported both by stochastic solvers (Wils and De 
Schutter, 2009) as well as more traditional methods based on numeri-
cal integration of systems of partial differential equations (Ferziger 
and Peric, 2002), they are fairly independent of the algorithm that 
will be used at a later stage. In addition, a mesh can be reused with 
multiple modeling and simulation studies, a distinct advantage con-
sidering that their generation can be a rather elaborate task, especially 
for meshes based on imaging data (Means et al., 2006).

Because of their independence, the previous two phases can 
easily be performed in parallel, or even by separate groups. The 
only point where everything needs to come together and link up, 
is at the start of the third phase: running a simulation. This phase 
is the focus of STEPS and will be detailed below.

The fourth and fi nal phase is the most important and daunt-
ing of all: collecting the simulation results, analyzing them and, 
if necessary, readjusting the biochemical model. Even more than 
was the case with the fi rst two phases, different modelers will want 
to rely on different tools for this task. A logical option for STEPS 
modeling results are the many packages already available for Python 
(Scipy, Matplotlib, …).

In the rest of this section, we will implement the simple toy model 
in Figure 2 to examine in more detail how different STEPS packages 
support each of the fi rst three phases of our modeling cycle independ-
ently. We will show how easy it is to go from well-mixed to spatial 
simulations and back. We will then conclude our discussion of STEPS 
by looking at it from an architectural point of view and discuss the 
multiple roles that Python plays in allowing STEPS users to combine 
all the components of this cycle into a modeling pipeline.

BIOCHEMICAL MODEL DESCRIPTION
The objects that together defi ne the biochemical aspects of a STEPS 
model are written directly in Python and are grouped in pack-
age steps.model. The following snippet of Python code shows how 
to implement the simple toy model from Figure 2 using these 
objects:

from steps.model import *

# Create the model m
m = Model()

FIGURE 1 | Workfl ow for reaction-diffusion modeling with four phases.

FIGURE 2 | This simple model, which is inspired by calcium dynamics, 

will be used to explain the STEPS implementation. It consists of two 
distinct chemical environments separated by a membrane. A substance X can 
be bound to buffer molecules of type A and B or it can be transported through 
a membrane channel C from one volume to the other.

1http://www.sbml.org
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# Define all species of molecules in the model m
a = Spec('A', m)
b = Spec('B', m)
c = Spec('C', m)
x = Spec('X', m)
ax = Spec('AX', m)
bx = Spec('BX', m)

# Set up volume A of m and define all reactions in A
vs_ak = Volsys('A_kin', m)
# partners, right hand side partners and a rate
# constant.
# hand side partners and a rate constant.
ax_f = Reac('AX_f', vs_ak, lhs=[a,x], rhs=[ax],\
  kcst  =  1.0e8)
ax_b = Reac('AX_b', vs_ak, lhs=[ax], rhs=[a,x],\
  kcst  =  1.0e3)
# Set a diffusion constant for x
vs_ak_xdiff = Diff('AX_xdiff', vs_ak, x,\
  dcst = 0.065e-9)

# Set up volume B of m and define all reactions in B
vs_bk  =  Volsys('B_kin', m)
bx_f  =  Reac('BX_f', vs_bk, lhs=[b,x], rhs=[bx],\
  kcst = 2.0e8)
bx_b  =  Reac('BX_b', vs_bk, lhs=[bx], rhs=[b,x],\
  kcst = 2.0e3)
vs_bk_xdiff  =  Diff('BX_xdiff', vs_bk, x,\
  dcst = 0.065e-9)

# Set up simple membrane channel kinetics for C. With
# surface reactions, the reactants (lhs) and products
# (rhs) have to be marked as being located on the
# inside (i), outside (o) or surface (s) of the
# membrane.
ss_cchan = Surfsys('C_chan', m)
c_xflux_f = SReac('C_Xflux_f', ss_cchan, vlhs=[x],\
  slhs=[c], orhs=[x], srhs=[c])
c_xflux_f.kcst = 10.0e6
c_xflux_b = SReac('C_Xflux_b', ss_cchan, vlhs=[x],\
  slhs=[c], irhs=[x], srhs=[c])
c_xflux_b.kcst = 10.0e6

As one can see the model is created through a series of Python 
function calls that map onto STEPS code (see Figure 4). Volume 
systems (objects of class Volsys) describe the chemical properties 
of volume solutions, which comprise the stoichiometry and rate 
constants of reaction channels and the diffusion constants for all 
diffusing species in that solution. Surface systems (objects of class 
Surfsys) describe the chemical properties of membranes, such as 
ligand-receptor binding and unbinding or channel currents. Note 
that some information is given implicitly: because no diffusion 
constants are supplied for the molecular species A, B and AX, BX 
these are considered immobile.

Demonstrating the independence between the model construc-
tion phases mentioned earlier, this code shows that this level of 
description is completely separate from the geometry or the spatial 
‘location’ of these volume and surface systems, and of the initial and 
boundary conditions or simulation events. Volsys and Surfsys are 
essentially just static template objects that group together related 
reaction rules and that will, at a later point in time, be instantiated on 
the actual simulation geometry. This uncoupling, which is somewhat 

different from the approach used in SBML where the kinetic equa-
tions are usually mixed with compartment defi nitions and initial 
conditions, makes it easy for modelers to compose and recombine 
their biochemical models with different geometric descriptions. Since 
the objects themselves are in the end still just static hierarchies, a 
linking point with formats such as SBML or CellML2 remains.

3D BOUNDARIES: TETRAHEDRAL MESHES
STEPS uses unstructured, tetrahedral meshes (Ferziger and Peric, 
2002; see Figure 3A for an example) to describe the geometric 
domain in 3-dimensional detail. In these meshes, elements are not 
numbered along principal axes and do not have to be perfectly 
regular, allowing them to adapt to the local level of detail and to 
follow an arbitrary set of domain boundaries rather smoothly. We 
will not describe the Python scripting (steps.mesh) in detail, but 
instead focus on the conceptual approach.

To organize the simulation space into biological structures 
STEPS uses the notion of ‘compartment’ for volumes and ‘patches’ 
for surfaces. For example, compartments can represent physical 
regions such as the cytoplasm, ER lumen or cellular exterior. In 
order to be useful for a simulation, the tetrahedral mesh has to be 
annotated so that each tetrahedron is assigned to a ‘compartment’ 
(objects of class Comp) and each triangle is assigned to a ‘patch’ 
(objects of class Patch). When these objects are used directly, instead 
of a mesh, it is possible to describe a well-mixed geometry that can 
be used in well-mixed simulations, similar to the compartments 
found in SBML.

Eventually, Comp and Patch objects will refer to one or more vol-
ume systems or surface systems, respectively. As detailed in the next 
section, these references are resolved during the initialization phase 
of a simulation, when a model description is combined with a mesh 
object. At any point prior to simulation, however, these references 
are stored simply as string values, allowing users to manipulate 
meshes independently of any biochemical model. A mesh can be 
stored with or without such references, making it easy to reuse a 
mesh for simulating many different biochemical models.

As is the case with the objects of package steps.model, meshes are 
Python objects that can be manipulated using Python scripts or from 
the Python command line. It therefore becomes easier to automate 
many tasks and to write custom importers or exporters for various 
forms of 3D data. Currently, STEPS directly supports importing 
meshes from the freely available tetmesh generator TetGen3.

In the following snippet of code, we load a previously gener-
ated mesh (Figure 3A) stored in an archive. The mesh, which is 
used for demonstration purposes only, consists of two cylindrical 
compartments (called outer and inner) separated by a membrane 
patch called imem. This could represent, for example, a segment of 
dendrite with endoplasmic reticulum in its center. We link the mesh 
to our toy model by assigning these compartments and patches to 
volume systems and surface systems as needed.

# load the annotated mesh from a Python pickled archive
meshf = open('cyl.dat')
mesh = pickle.load(meshf)

2http://www.cellml.org
3http://tetgen.berlios.de
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meshf.close()
# assign volume and surface systems to different parts
# of the mesh
mesh.getComp('outer').addVolsys('A_kin')
mesh.getComp('inner').addVolsys('B_kin')
mesh.getPatch('imem').addSurfsys('C_chan')

Notice that we only needed three line of code to perform this 
link to a fairly complex mesh.

RUNNING A SIMULATION
The third phase in the modeling cycling is to simulate the model 
with a numerical solver. To do this in STEPS, a solver object must 
be created. This basically consists of one line of code in which 
this object is created and initialized with the biochemical model, a 

geometric description and a random number generator. It is from 
within the constructor of this solver object that all references from 
the Comp and Patch objects to the Volsys and Surfsys objects are 
resolved in order to create the appropriate data structures needed 
to represent the state of the simulation.

rng = steps.rng.create('mt19937')
rng.initialize(datetime.datetime.now().microsecond)
sim = steps.tetexact.Solver(m, mesh, rng)
# Make the simulator ready for action.
sim.reset()

The spatial solver (steps.tetexact) used in this example only 
accepts tetrahedral meshes, whereas the well-mixed solver (steps.
wmdirect) can accept both a well-mixed description or a tetmesh, 

FIGURE 3 | The mesh used in the code examples for setting up initial conditions. (A) This opaque view with a cut-out shows that 21090 tetrahedons are used to 
describe one cylinder surrounding another one. (B) Membrane channels C are distributed randomly over the inner membrane. (C) A uniform initial distribution for 
molecules A and B. (D) A Gaussian distribution in the center of the outer cylinder for X.
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from which the well-mixed features can be transparently extracted. 
Note that in the latter case the defi nition of diffusion constants in 
our toy model would be ignored automatically. The only change 
needed for setting up a well-mixed simulation would be in the 
third line of the code example, where steps.wmdirect.Solver would 
be evoked instead.

All current and future solver objects, regardless of their under-
lying algorithm or of their spatial or well-mixed nature, provide 
the same API through which the modeler can access the inter-
nal state of the simulation from within Python, in order to set 
initial conditions and to control the simulation. This internal 
state includes the local amount of molecules for different spe-
cies, but also whether these species are buffered, the reaction and 
diffusion constants and whether reaction channels are active or 
not. All of these properties can be manipulated for individual 
tetrahedrons and triangles (in mesh-based solvers), or for entire 
compartments and patches at a time (in both mesh-based and 
well-mixed solvers). In Figures 3B–D we show three possible ini-
tial conditions for the concentration of X from our toy model. 
We fi rst inject 100 channels of species C in the inner membrane 
imem (Figure 3B):

sim.setPatchCount('imem','C',100)

Next, we inject 1500 molecules of species A in the outer compart-
ment and set the concentration of species B in the inner compart-
ment to 1 µM, spread out uniformly (Figure 3C):

sim.setCompCount('outer', 'A', 1500)
sim.setCompConc('inner', 'B', 1.0e-6)

Note that in both examples the position of channels or molecules 
is automatically randomized with uniform distributions. Because 
the API also allows access to the simulation state at the level of 
individual tetrahedrons, we can program arbitrarily complex initial 
conditions and runtime events. In the next piece of code we show 
how this can be used to generate a normally distributed pulse injec-
tion of X in the outer compartment with a given peak amplitude 
and width centered in the middle (Figure 3D):

# Set the concentration of a species in a compartment
# using a 3D density function.
def setCompConcDensity(sim, mesh, compname, specname,
  conc, dens, sampling=10):
    r = steps.rng.create('mt19937')
    r.initialize(datetime.datetime.now().microsecond)
    # Loop over all tetrahedrons of the requested
    # compartment
    for t in mesh.getComp(compname).tets:
        # Generate a number of random points in the
        # current tetrahedron and use these points
        # to sample the density function.
        dens2 = dens(t.getRanPnt(r, sampling)).mean()
        # Set the concentration in the tetrahedron to
        # the product of mean density value and the
        # peak concentration.
        sim.setTetConc(t.idx, specname, conc * dens2)

# Example of a density function which generates a
# Gaussian distribution

def dGaussian(p):
    m = 0.0
    s = 1.0e-6
    m2 = (p[:,0]-m)
    return np.exp(-(m2*m2) / (2*s*s))

# use both functions to set the initial conditions
setCompConcDensity(sim, mesh, 'outer', 'X', 20.0e-6,\ 
dGaussian)

These examples show the great fl exibility that Python offers in 
setting up initial conditions for the simulation. In addition, the API 
also features the actual control functions that allow one to reset a 
simulation, to advance the simulation to some future time and to 
sample the simulation state.

WHY PYTHON?
To understand the design of the STEPS software package, a short 
history is useful. An earlier incarnation of STEPS consisted of a sin-
gle standalone C++ application. Being focused on the simulation 
algorithm itself, not much thought was given to issues related to 
model description and simulation control and these aspects were put 
together in a single custom XML-based format. We didn’t use SBML 
at the time because it lacked support for models with detailed 3D fea-
tures. Meshes had to be stored in a separate custom data format and 
were referenced by fi lename from within these XML input fi les.

The limitations of our fi rst implementation became apparent 
rather quickly. We discovered that, because of the spatial aspects, 
describing the initial state of a 3D reaction-diffusion system is more 
complicated than describing the initial state of a well-mixed simu-
lation. People might not just want to set initial values in compart-
ments as a whole, but inject molecules or manipulate rate constants 
using more sophisticated geometric patterns, for instance using 
a Gaussian distribution to mimic the result of a laser uncaging 
event (Wang and Augustine, 1995; see Figure 3D). Sometimes the 
simulation might require this release pattern to be confi ned to a 
particular compartment; other simulations might want the pattern 
to be applied globally.

Coming up with an XML-based way of describing a wide range 
of in-simulation events, a problem similar and closely related 
to the problem of setting up initial conditions, and output gen-
eration proved to be quite diffi cult. By far the most common 
use case would be to have events occur on specifi c times during 
the course of a simulation. But what if an event would have to 
depend on some condition being met, such as the concentra-
tion of some species reaching a threshold? We ended up with 
an increasingly rich fauna of trigger, action and output objects 
which covered many possibilities, but which was complicated and 
costly to maintain and in the end still left many rare but sensible 
use cases uncovered.

When at some point we also started thinking about supporting 
well-mixed solvers directly from within STEPS, we decided that 
our old approach had reached its limits and set out to redesign 
STEPS by integrating it closely with a fully-featured scripting lan-
guage. Python was chosen because it is a mature language, simple 
to learn and already had a widespread user base in the computa-
tional sciences, with a wide selection of third-party packages and 
documentation to match. As described above, its object oriented 
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features allowed us to express the relationship between well-mixed 
and spatial models in a way that facilitates switching between the 
corresponding classes of simulators. Python’s excellent XML fea-
tures will allow us to keep up with projects such as SBML when their 
support for spatial modeling matures. Finally, Python can be used 
to integrate many miscellaneous tasks related to simulation that 
would otherwise typically be done with shell scripting. Examples 
are copying fi les to their right location, cleaning up, initiating a 
data processing or compacting method directly after a simulation 
fi nishes, etc.

The redesign was a major effort. The only part that could be 
reused from the old STEPS was the core simulator code, i.e. the 
solver currently known as tetexact. Everything else had to be rewrit-
ten following the modeling workfl ow described in Figure 1. We 
designed the solver API mentioned above and implemented it for 
our two current solvers. These API implementations were then 
exposed to Python using SWIG4, where they were further wrapped 
in a Python-side Solver base class that performs argument checking 
and provides some extra higher-level functionality. Much of the 
code for setting up a solver is the same for all current and future 
solvers and was therefore put in a shared set of C++ fi les. This 
reduces the amount of ‘plumbing code’ that needs to be written for 
a new solver, while still allowing considerable freedom in choosing 
the ultimate algorithm-specifi c internal data structures.

The main fl aw of our fi rst version of Pythonizing STEPS, as 
shown in Figure 4, is the many layers that have to be passed to go 
from calling a solver object method to the actual solver code and 
back. This may become a performance bottleneck when one is 
running a simulation that is interrupted repeatedly over small time 
intervals. This problem may be resolved in several ways. We can 
recode the Python-side Solver class, which is shared by all solvers, 
in C++ and derive an actual individual solver by overriding pro-
tected virtual methods. To avoid even the cost of virtual calls in this 
scenario, we can employ the Curiously Recurring Template Pattern 
(Vandevoorde and Josuttis, 2003). Alternatively, we can switch from 
SWIG to Boost.Python5, an ingenious method of exposing C++ 

code to Python that does not result in a Python-side shadow class, 
as is the case with SWIG.

DISCUSSION
We have described how STEPS mixes C++ with Python script-
ing to give modelers greater freedom in setting up and simulat-
ing a model, while maintaining the effi ciency of compiled and 
optimized C++ code. We described how going the extra mile to 
make a scientifi c simulator fully scriptable in this way has con-
siderable advantages. Because of the many scientifi c computing 
packages already available for Python, computational scientists 
are encouraged to develop sophisticated pipelines in which mod-
eling, simulation and even post processing and visualization are 
highly automated. In addition, we fi nd that the neural simulators 
such as Neuron (Carnevale and Hines, 2006) and Moose6 have 
committed to supporting Python, leading some to forward the 
challenging but intriguing possibility of using Python to actually 
‘glue’ together simulations (Cannon et al., 2007). One should keep 
in mind, however, that naively using an interpreted language like 
Python to exchange and map state information between simula-
tors at each time step might quickly run into performance and 
numerical issues that could be avoided only by deeper integra-
tion at the algorithmic level. Alternatives like the MUSIC project 
(Ekeberg and Djurfeldt, 2008) might therefore be better suited 
for this.

Like many before us, we have successfully used SWIG to expose 
our existing C++ simulation core to Python. The main techni-
cal issue that we encountered is the many layers between the user 
script and the C++ code which, as mentioned, can be resolved by 
porting the solver interface to C++ and possibly by switching to 
Boost.Python.

In the specifi c context of modeling 3D reaction-diffusion 
simulations we found that using Python had a large advantage 
for describing a complex internal state. There are many ways in 
which a biologist might want to set up and control this state and 
sample it for output. Switching to a scripting language allowed 
us to eliminate a great deal of complexity that was ultimately 
caused by sticking to a static, purely declarative input format in 
which model and simulation were thoughtlessly mixed. Since 
maintaining a backwards compatible API of basic getter/setter 
functions is less of an effort than designing and maintaining an 
increasingly ‘baroque’ set of trigger, action and output objects, 
we expect that this investment will keep paying off as STEPS 
keeps growing by adding more solvers and more capabilities. In 
other words, our switch to Python has actually saved us quite 
some time.

Finally, we believe that our experience suggests that a language 
like Python, as was proposed earlier in Cannon et al. (2007), can 
play a positive role in supporting the development of formal stand-
ards for sharing scientifi c models. Mirroring the requirements of 
understanding biology itself, biological simulators will necessar-
ily become more complex and will be able to simulate more and 
more aspects of the living cell. Codes such as M-Cell (Stiles and 

FIGURE 4 | Layered view of STEPS code after exposing it to Python with 

SWIG.

4http://www.swig.org
5http://www.boost.org

6http://moose.sourceforge.net
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Bartol, 2001), MesoRD (Hattne et al., 2005), Smoldyn (Andrews 
and Bray, 2004) and also STEPS expand on the idea of ODE-based, 
well-mixed simulations of reaction kinetics by adding stochastic-
ity and spatial processes such as diffusion. But this is only the 
beginning. The future will see developments such as simulations 
of electrophysiological phenomena in high 3D detail or full elec-
trodiffusion (Lopreore et al., 2008), volume-occupying molecules 
(Gillespie et al., 2007; Schnell and Turner, 2004), dynamic meshes 
whose shape is controlled by simulated chemistry and, as men-
tioned earlier, possibly even the integration of simulators that work 
on different scales.

The designers of formal standards, such as SBML, can not 
be expected to keep up with these new trends as they come 
out, and still maintain a clean standard. This fact fl ows from a 
fundamental tension between on the one hand having a clean, 
 simulator-independent standard for publishing models, and on 
the other hand the turbulent, seemingly endless expansion of 
exactly what is required in a biological model to be relevant 

and how to breathe it all to life on a computer. The advan-
tages of having such standards is obviously too great to discard 
(Bergmann and Sauro, 2008), and successes have been achieved 
to where classes of modeling efforts have suffi ciently crystal-
lized, together with the methods to simulate them (Hucka et al., 
2003). The combination of Python and XML eases this tension 
by allowing projects that explore new types of simulations to 
mature independently from the standards for model sharing. It 
allows them to catch up with each other whenever and wherever 
it makes sense to do so.
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Neuromorphic hardware systems provide new possibilities for the neuroscience modeling 
community. Due to the intrinsic parallelism of the micro-electronic emulation of neural 
computation, such models are highly scalable without a loss of speed. However, the communities 
of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. 
We present a software concept that provides the possibility to establish such hardware devices 
as valuable modeling tools. It is based on the integration of the hardware interface into a 
simulator-independent language which allows for unifi ed experiment descriptions that can be 
run on various simulation platforms without modifi cation, implying experiment portability and 
a huge simplifi cation of the quantitative comparison of hardware and simulator results. We 
introduce an accelerated neuromorphic hardware device and describe the implementation of 
the proposed concept for this system. An example setup and results acquired by utilizing both 
the hardware system and a software simulator are demonstrated.

Keywords: neuromorphic, VLSI, hardware, software, modeling, computational neuroscience, Python, PyNN

followed by production and testing phases. This process normally 
takes several months. Further fundamental differences between 
hardware and software models will be discussed in the Section 
“Neuromorphic Hardware”.

Except for the system utilized in this work, all cited neuromorphic 
hardware projects currently work with circuits operating in biological 
real-time. This allows interfacing real-world devices such as sensors 
(Serrano-Gotarredona et al., 2006) or motor controls for robotics, 
as well as setting up hybrid systems with in vitro neural networks 
(Bontorin et al., 2007). The neuromorphic hardware systems we 
consider in this article, as described in Schemmel et al. (2007, 2008), 
possess a crucial feature: they operate at a highly accelerated rate. 
The device which is currently in operation (Schemmel et al., 2007) 
(see “The Accelerated Hardware System” for a detailed description) 
exhibits a speedup factor of 105 compared to the emulated biological 
real time. This opens up new prospects and possibilities, which will 
be discussed in the Section “Neuromorphic Hardware”.

This computation speed, together with an implementation path 
towards architectures with low power consumption and very large 
scale networks (Fieres et al., 2008; Schemmel et al., 2008), makes 
neuromorphic hardware systems a potentially valuable research 
tool for the modeling community, where software simulators are 
more commonplace (Brette et al., 2006; Morrison et al., 2005, 
2007). To establish neuromorphic hardware as a useful compo-
nent of the neural network modelers’ toolbox requires a proof of 
the hardware system’s biological relevance and its operability by 
non-hardware-experts.

An approach which can help to fulfi l both of these conditions is to 
interface the hardware system with the simulator-independent lan-
guage PyNN (Davison et al., 2008) (see “PyNN and NeuroTools”). 
The PyNN meta-language allows for a unifi ed description of  neural 

INTRODUCTION
Models of spiking neurons are normally formulated as sets of dif-
ferential equations for an analytical treatment or for numerical 
simulation. So-called “neuromorphic” hardware systems represent 
an alternative approach. In a physical, typically silicon, form they 
mimic the structure and emulate the function of biological neural 
networks. Neuromorphic hardware engineering has a tradition going 
back to the 1980s (Mead, 1989; Mead and Mahowald, 1988), and 
today an active community is developing analog or mixed-si gnal 
VLSI models of neural systems (Ehrlich et al., 2007; Häfl iger, 2007; 
Merolla and Boahen, 2006; Renaud et al., 2007; Schemmel et al., 2007, 
2008; Serrano-Gotarredona et al., 2006; Vogelstein et al., 2007).

The main advantage of the physical emulation of neural network 
models, compared to their numerical simulation, arises from the 
locally analog and massively parallel nature of the computations. 
This leads to neuromorphic network models being typically highly 
scalable and being able to emulate neural networks in real time or 
much faster, independent of the underlying network size. Often, the 
inter-chip event-communication bandwidth sets a practical limit 
on the scaling of network sizes by inter-connecting multiple neural 
network modules (Berge and Häfl iger, 2007; Costas-Santos et al., 
2007; Schemmel et al., 2008). Compared to numerical solvers of 
differential equations which require Von-Neumann-like computer 
environments, neuromorphic models have much more potential 
for being realized as miniature embedded systems with low power 
consumption.

A clear disadvantage is the limited fl exibility of the implemented 
models. Typically, neuron and synapse parameters and the net-
work connectivity can be programmed to a certain degree within 
limited ranges by controlling software. However, changes to the 
implemented model itself usually require a hardware re-design, 
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network experiments, which can then be run on all supported back-
ends, e.g. various software simulators or the presented hardware 
system, without modifying the description itself. Experiment port-
ability, data exchange and unifi ed analysis environments are only 
some of PyNN’s important implications. For neuromorphic devices, 
this provides the possibility to calibrate and verify the implemented 
models by comparing any emulated data with the corresponding 
results generated by established software simulators. Every scientist, 
who has already used such a simulator with scripting support or 
with an interpreter interface, will easily learn how to use PyNN. 
And every PyNN user can operate the presented hardware system 
without a deeper knowledge of technical device details.

In the Section “Simulator-like Setup, Operation and Analysis”, 
the architecture of a Python (Rossum, 2000) interface to the hard-
ware system, which is the basis for integration into PyNN, will be 
described in detail. The advantages and problems of the PyNN 
approach for the hardware system will also be discussed. In the 
Section “The Interface in Practice”, an example of PyNN code for 
the direct comparison of an experiment run on both the hard-
ware system and a software simulator, including the corresponding 
results, will be presented.

NEUROMORPHIC HARDWARE
Unlike most numerical simulations of neural network models, 
analog VLSI circuits operate in the continuous time regime. This 
avoids possible discretization artifacts, but also makes it impos-
sible to interrupt an experiment at an arbitrary point in time and 
restart from an identical, frozen network state. Furthermore, it 
is not possible to perfectly reproduce an experiment because the 
device is subject to noise, to cross-talk from internal or external 
signals, and to temperature dependencies (Dally and Poulton, 
1998). These phenomena often have a counterpart in the biologi-
cal specimen, but it is highly desirable to control them as much 
as possible.

Another major difference between software and hardware mod-
els is the fi niteness of any silicon substrate. This in principle also 
limits the software model size, as it utilizes standard computers with 
limited memory and processor resources, but for neuromorphic 
hardware the constraints are much more immediate: the number 
of available neurons and the number of synapses per neuron have 
strict upper limits; the number of manipulable parameters and the 
ranges of available values are fi xed.

Still, neuromorphic network models are highly scalable at con-
stant speed due to the intrinsic parallelism of their circuit operation. 
This scalability results in a relative speedup compared to software 
simulations, which gets more and more relevant the larger the 
simulated networks become, and provides new experimental pos-
sibilities. An experiment can be repeated many times within a short 
period, allowing the common problem of a lack of statistics, due 
to a lack of computational power, to be overcome. Large param-
eter spaces can be swept to fi nd an optimal working point for a 
specifi c network architecture, possibly narrowing the space down 
to an interesting region which can then be investigated using a 
software simulator with higher precision. One might also think 
of longer experiments than have so far been attempted, especially 
long-term learning tasks which exploit synaptic plasticity mecha-
nisms (Schemmel et al., 2007).

THE ACCELERATED HARDWARE SYSTEM
Within the FACETS research project (FACETS, 2009), an inter-
disciplinary consortium investigating novel computing paradigms 
by observing and modeling biological neural systems, an acceler-
ated neuromorphic hardware system has been developed. It will 
be described in this section.

Neuron, Synapse and Connectivity model
The FACETS neuromorphic mixed-signal VLSI system has been 
described in detail in recent publications (Schemmel et al., 2006, 
2007). Implemented is a leaky integrate-and-fi re neuron model 
with conductance-based synapses, designed to exhibit a linear cor-
respondence with existing conductance-based modeling approaches 
(Destexhe et al., 1998). The chip was built on a single 25 mm2 die 
using a standard 180 nm CMOS process. It models networks of up 
to 384 neurons and the temporal evolution of the weights of 105 
synapses. The system can be operated with an acceleration factor 
of up to 105 while recording the neural action potentials with a 
temporal resolution of approximately 0.3 nS, which corresponds 
to 30 µs in biological time.

The neuron circuits are designed such that the emulated mem-
brane potential V(t) is determined by the following differential 
equation for a conductance-based integrate-and-fi re neuron:
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where C
m

 represents the total membrane capacitance. The fi rst 
term on the right hand side, the so-called leak current, models 
the contribution of the different ion channels that determine the 
potential E

l
 the membrane will eventually reach if no other cur-

rents are present. The synapses use different reversal potentials, 
E

i
 and E

e
, to model inhibitory and excitatory ion channels. The 

index j in the fi rst sum runs over all excitatory synapses while the 
index k in the second sum covers the inhibitory ones. The activa-
tion of individual synapses is controlled by the synaptic opening 
probability p

j,k
(t) (Dayan and Abott, 2001). The synaptic conduct-

ance g
j,k

 is modeled as a product of the synaptic weight ω
j,k

(t) 
and a maximum conductance max( )j kg t, . The neuron emits a spike 
if a threshold voltage V

th
 is exceeded, after which the membrane 

potential is forced to a reset voltage V
reset

 and then released back 
into the infl uence of excitatory, inhibitory and leakage mecha-
nisms. The weights are modifi ed by a long-term plasticity algo-
rithm (Schemmel et al., 2007) and thus can vary slowly with time. 
Table 1 summarizes the most important hardware parameters, 
with their counterparts in the biological model, their available 
ranges and uncertainties.

Each chip is divided into two network blocks of 192 neurons 
each, and each block can receive 256 different input channels. Each 
input channel into a block can be confi gured to receive either a 
feedback signal from one specifi c neuron within the same block, a 
feedback signal from the opposite block, or an externally  generated 
signal, for example from some controlling software. Every neuron 
within the block can be connected to every input channel via a 
confi gurable synapse. Synaptic time constants and the values for gmax 
are shared for every input channel, while the connection weights 
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can be set between 0 nS and gmax with a four bit resolution for each 
individual connection.

Although the free parameter space is already large, the model 
fl exibility is clearly limited, especially in terms of its inter-neuron 
connectivity. Based on the experience acquired with the proto-
type chip described above, a wafer-scale integration1 system (Fieres 
et al., 2008; Schemmel et al., 2008) with up to 1.8 × 105 neurons and 
4 × 107 synapses per wafer is currently under development. It will 
be operated with a speedup factor of up to 104 and will provide a 
much more fl exible and powerful connectivity infrastructure.

Support framework
In order to give life to such a piece of manufactured neuromorphic 
silicon, an intricate framework of various pieces of custom-made 
support hardware and software layers has to be deployed, which has 
previously been reported on. The chip is mounted on a carrier board 
called Nathan (Fieres et al., 2004; Grübl, 2007, Chapter 3) which also 
holds, among other components, an FPGA for direct communication 
control and some RAM memory modules for storing input and out-
put data. Up to 16 of these carrier boards can be placed on a so-called 
backplane (Philipp et al., 2007), which itself is connected to a host 
PC via a PCI-based FPGA card (Schürmann et al., 2002).

The connection from chip to computer via the PCI card allows the 
confi guration of the hardware, the defi nition and application of spike 
stimuli and the recording of spiking activity from within the network. 
Analog sub-threshold data can only be acquired via an oscilloscope2, 
which is connected to pins that can output selectable membrane 
potentials. Via a network connection, the  information from this 
oscilloscope can be read and integrated into the software running 
on the host computer (see Figure 1 for a setup schematic).

Both an FPGA on the backplane and those on the carrier 
boards are programmed and confi gured with dedicated code. 

Communication with the PCI board utilizes a specifi c device 
driver and a custom-made protocol (Philipp, 2008, Chapter 2.2.4). 
Multi-user access is realized via userspace daemon multiplexing 
connections to different chips while encapsulating control com-
mands and data from multiple users in POSIX Message Queues 
(IEEE, 2004). Data transfer from and to the oscilloscope is based 
on TCP/IP sockets (Braden, 1989; LeCroy, 2005). Interconnecting 
multiple chips in order to set up larger networks will be possible 
soon (Philipp et al., 2007).

SIMULATOR-LIKE SETUP, OPERATION AND ANALYSIS
As proposed in the introduction, attracting neuroscience experts 
into the fi eld of neuromorphic engineering is essential for the 
establishment of hardware devices as modeling tools. Neuroscience 
expertise has to be consulted not only during the design process, 
but also, and especially, after manufacturing, when it comes to 
verifying the device’s biological relevance. This implies a whole set 
of requirements for the software which provides the user interface 
to the hardware.

If the system is to be operated by scientists from fi elds other 
than neuromorphic engineering, the software must hide as many 
hardware-specifi c details as possible. We propose that it should pro-
vide basic control mechanisms similar to typical interfaces of pure 
software simulators, i.e. an interpreter for interactive operation and 
scripting. Parameters and observables should be given in biological 
dimensions and follow a biological nomenclature. Moreover, drawing 
the attention of the neuroscience community to neuromorphic hard-
ware can be strongly facilitated by the possibility of porting existing 
software simulation setups to the hardware with little effort.

Multiple projects and initiatives provide databases and tech-
niques for sharing or unifying neuroscientifi c modeling code, see 
for example the NeuralEnsemble initiative (Neural Ensemble, 2009), 
the databases of Yale’s SenseLab (Hines et al., 2004) or the soft-
ware database of the International Neuroinformatics Coordination 
Facility (INCF Software Database, 2009). Creating a bridge from 
the hardware interface to these pools of modeling experience will 
provide the important possibility of formulating transparent tests, 

1A silicon wafer which will not be cut into single chips as is usual, but left in one 
piece. Further post-processing steps will interconnect the disjoint reticles on the 
wafer, resulting in a highly confi gurable silicon neural network model of unique 
dimensions.
2Currently: LeCroy WaveRunner 44Xi.

Table 1 | The most important hardware model parameters, the type of physical quantity used for their implementation, their confi gurability and an 

estimation of uncertainty. The fi rst four columns show their typical biological interpretation and the resulting value ranges. The translation between both 

domains depends on the chosen speedup and the desired biological parameter value ranges. The given estimations (some being educated guesses) of 

confi guration uncertainty refl ect the current state of available methods to measure, to adjust or to calibrate the values, and may not necessarily refl ect 

hardware limitations. The uncertainty of Ee is load-dependent, the relation is not yet suffi ciently analyzed.

 Biological Interpretation Hardware parameter implementation

Param Unit Min Max Physical quantity Confi gurable Estimation of uncertainty (%)

Cm nF 0.2 0.2 Capacitance No 10

Gl nS 20 40 Current Yes 10

El mV −80 −55 Voltage Yes 2

Ei mV −80 −55 Voltage Yes 2

Ee mV −80 20 Voltage Yes Unknown

Vth mV −80 −55 Voltage Yes 5

Vreset mV −80 −55 Voltage Yes 10

τsyn ms 30 50 Current Yes 25

gmax nS 1 100 Current Yes 25
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benchmarks and requests that will boost further hardware develop-
ment and its establishment as a modeling tool.

Most software simulators for spiking neuron models come with 
an interpreter interface for programming, experiment setup and 
control. For example, NEURON (Hines and Carnevale, 2006; Hines 
et al., 2009) provides an interpreter called Hoc, NEST (Diesmann 
and Gewaltig, 2002; Eppler et al., 2008; Gewaltig and Diesmann, 
2007) comes with a stack-based interface called SLI, and GENESIS 
(Bower and Beeman, 1998) has a different custom script language 
interpreter also called SLI. Both NEURON and NEST also pro-
vide Python (Rossum, 2000) interfaces, as do the PCSIM (PCSIM, 
2009; Pecevski et al., 2009), Brian (Goodman and Brette, 2008) and 
MOOSE (Ray and Bhalla, 2008) simulators. Facilitating the usage 
of neuromorphic hardware for modelers means providing them 
with an interface similar to these existing ones. But there are further 
requirements arising from hardware specifi c issues.

TECHNICAL REQUIREMENTS
As shown in the Section “Support Framework”, operating the pre-
sented neuromorphic hardware system involves multiple devices 
and mechanisms, e.g. Message Queue communication with a user-
space daemon accessing a PCI board, TCP/IP socket connection 
to an oscilloscope, software models that control the operation of 
the backplane, the carrier board and the VLSI chip itself, and high-
level software layers for experiment defi nition. On the software side, 
this multi-module system utilizes C, C++ and Python, and multiple 
developers from different institutions are involved, applying various 
development styles such as object-oriented programming, refl ec-
tive programming or sequential driver code. The software has to 
follow the ongoing system development, including changing and 
improving FPGA controller code and hardware revisions with new 
features.

This complexity and diversity argues strongly for a top-level 
software framework, which has to be capable of effi ciently gluing all 
modules together, supporting object-oriented and refl ective struc-

tures, and providing the possibility of rapid prototyping in order 
to quickly adapt to technical developments at lower levels.

One further requirement arises: the speedup of the hardware 
system can be exploited by an interactive, possibly intuition-guided 
work fl ow which allows the exploration of parameters with imme-
diate feedback of the resulting changes. This implies the wish to 
have the option of a graphical interface on top of an arbitrary 
experiment description.

EXISTING INTERFACES
Descriptions in the literature of existing software interfaces to neu-
romorphic hardware are very rare. In Merolla and Boahen (2006), 
the existence and main features of a GUI for the interactive opera-
tion of a specifi c neuromorphic hardware device are mentioned.

Much more detailed software interface reports are found in Dante 
et al. (2005). They describe a framework which allows exchange of 
AER3 data between hardware and software while experiments are 
running. The framework includes a dedicated PCI board which 
is connected to the neuromorphic hardware module and which 
can be interfaced to Linux systems by means of a device driver. 
A C-library layered on top of this driver is available. Using this, 
a client-server architecture has been implemented which allows 
the on-line operation of the hardware from within the program 
MATLAB. The use of MATLAB implies interpreter-based usage, 
scripting support, the possible integration of C and C++ code, 
optional graphical front-end programming and strong numerical 
support for data analysis. Hence, most of the requirements listed 
so far are satisfi ed. Nevertheless, the framework is somewhat stand-
alone and does not facilitate the transfer of existing software models 
to the hardware.

In Oster et al. (2005), an automatically generated graphical front-
end for the manual tuning of hardware parameters is  presented, 
including the convenient storing and loading of confi gurations. 

3Address Event Representation.

PC

digital

analog

Computer Network

Oscilloscope

Backplane

Carrier boards

Neural Network Chip

FIGURE 1 | Schematic of the accelerated FACETS hardware 

system framework. Via a digital connection, software running on the 
host computer can control the parameters of any neural network chip 
mounted on a carrier board on the communication backplane. It can 

stimulate the network with externally generated spikes and can record 
spikes generated on the chip. Analog sub-threshold information acquired with 
an oscilloscope can be integrated into the software via a network 
connection.
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Originally, a similar approach was developed for the hardware sys-
tem utilized here, too (Brüderle et al., 2007). Manually defi ning 
parts of the enormous parameter space provided by such a chip via 
sliders and check-boxes can be useful for intuition-guided hard-
ware exploration and circuit testing, but it turns out to be rather 
impractical for setting up large network experiments as usually 
performed by computational neuroscientists.

CHOOSING A PROGRAMMING LANGUAGE
Except for the convenient portability of existing experiment set-
ups, an interface to the neuromorphic hardware system based on 
the programming language Python solves all of the requirements 
stated in the Sections “Importance of the Software Interface” and 
“Technical Requirements”, especially the hardware-specifi c ones. 
Python is an interpreter-based language with scripting support, 
thus it is able to provide a software-simulator-like interface. It can 
be effi ciently connected to C and C++, for example via the pack-
age Boost.Python (Abrahams and Grosse-Kunstleve, 2003). Python 
supports sequential, object-oriented and refl ective programming 
and it is widely praised for its rapid prototyping. Due to the pos-
sibility for modular code structure and embedded documentation, 
it has a high maintainability, which is essential in the context of a 
quickly evolving project with a high number of developers.

In addition to its strengths for controlling and interconnect-
ing lower-level software layers, it can be used to write effi cient 
post-processing tools for data analysis and visualization, since a 
wide range of available third-party packages offers a strong foun-
dation for scientifi c computing (Jones et al., 2001; Langtangen, 
2008; Oliphant, 2007), plotting (Hunter, 2007) and graphics (Lutz, 
2001, Chapter 8; Summerfi eld, 2008). Hence, a Python interface 
to the hardware system would already greatly facilitate modeler 
adoption.

Still, the possibility of directly transferring existing experiments 
to the hardware is even more desirable; a unifi ed meta-language 
usable for both software simulators and the hardware could achieve 
that. Thus, the existence of the Python-based, simulator-independ-
ent modeling language PyNN (see PyNN and NeuroTools) was the 
strongest argument for utilizing Python as a hardware interface, 
because the subsequent integration of this interface into PyNN 
depended on the possibility of accessing and controlling the hard-
ware via Python.

Possible alternatives to Python as the top layer language for the 
hardware interface have been considered and dropped for different 
reasons. For example, C++ requires a good understanding of mem-
ory management, it has a complex syntax, and, compared to inter-
preted languages, has slower development cycles. Interpreter-based 
languages such as Perl or Ruby also provide plotting functionality, 
numerical packages (Berglihn, 2006; Glazebrook and Economou, 
1997) and techniques to wrap C/C++ code, but eventually Python 
was chosen because it is considered to be easy to learn and to have 
a clean syntax.

PYNN AND NEUROTOOLS
The advantages of Python as an interface and programming lan-
guage are not limited to hardware back-ends. For the software 
simulators NEURON, NEST, PCSIM, MOOSE and Brian, Python 
interfaces exist. This provides the possibility of creating a Python-

based, simulator-independent meta-language on top of all these 
back-ends. In the context of the FACETS project, the open-source 
Python module PyNN has been developed which implements such 
a unifi ed front-end (see Davison, 2009; Davison et al., 2008).

PyNN offers the possibility of porting existing experiments 
between the supported software simulators and the FACETS hardware 
and thus to benchmark and verify the hardware model. Furthermore, 
on top of PyNN, a library of analysis tools called NeuroTools (2009) 
is under development, exploiting the possibility of a unifi ed work 
fl ow within the scope of Python. Experiment description, execution, 
result storage, analysis and plotting can be all done from within the 
PyNN and NeuroTools framework. Independent of the used back-
end, all these steps have to be written only once and can then be run 
on each platform without further modifi cations.

Especially since the operation of the accelerated hardware gener-
ates large amounts of data at high iteration rates, a sophisticated 
analysis tool chain is necessary. For the authors, as well as for every 
possible PyNN user, making use of the unifi ed analysis libraries 
based on the PyNN standards (e.g. NeuroTools) avoids redun-
dant development and debugging efforts. This benefi t is further 
enhanced by other third-party Python modules, like numerical or 
visualization packages.

INTERFACE ARCHITECTURE
The complete software framework for interfacing the FACETS hard-
ware is structured as follows: Various C++ classes encapsulate the 
functionality of the neural network chip itself, of its confi guration 
parameter set, of the controller implemented on the carrier board 
FPGA, and of the communication protocol between the host soft-
ware and this controller. There is a stand-alone daemon written in 
C++ which provides the transport of data via the PCI card. It utilizes 
a device-driver which is available for Linux systems. Furthermore, 
there is a C++ class which encapsulates the TCP/IP Socket com-
munication with the oscilloscope.

The Boost.Python library (Boost.Python, 2003) is used to bind 
C++ classes and functions to Python. An instructive outline of the 
wrapping technique used can be found in Abrahams and Grosse-
Kunstleve (2003).

On top of these Python bindings, a pure Python framework 
called PyHAL4 (Brüderle et al., 2007) provides classes for neurons, 
synapses and networks. All these classes have model parameters 
in biological terminology and dimensions, and their constructors 
impose no hardware specifi c constraints.

The main functionality of PyHAL is encapsulated by a hard-
ware access class which implements the exchange layer between 
these higher-level objects and the low-level C++ classes exposed to 
Python via Boost. The hardware access layer performs the transla-
tion from biological parameters like reversal potentials, leakages, 
synaptic time constants and weights to the available set of hardware 
confi guration parameters. This set consists of discrete integers, for 
example for the synaptic weights, and of analog values for currents 
and voltages. Some of these parameters do have a direct biological 
counterpart, some do not. For example, neuron voltage param-
eters like reversal potentials are mapped linearly to the available 
 hardware membrane potential range of approximately 0.6–1.4 V, 

4Python Hardware Abstraction Layer.
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while membrane leakage conductances and synaptic time constants 
have to be translated into currents.

The translation layer also performs the transformation from 
biological to hardware time domain and back. Furthermore, all 
hardware-specifi c constraints, like the limited number of possi-
ble neurons or connections, the fi nite parameter ranges and the 
synaptic weight discretization, are incorporated in this hardware 
access class, generating instructive warnings or error messages in 
case of constraint violations.

Since the PyHAL framework is all Python code, it provides the 
desired interpreter-based interface to the hardware, correspond-
ing to comparable Python interfaces to, for example, NEST or 
PCSIM. Also, as for these software simulators, a module for the 
integration of this interface into the meta-language PyNN has been 
implemented. Figure 2 shows a schematic of the complete software 
framework with its most important components.

Thanks to this integration, all higher-level PyNN concepts like 
populations and inter-population projections plus the analysis and 
visualization tools developed on top of PyNN are now available for 
the hardware system.

Still, the integration of the hardware interface into PyNN also 
raises problems. Some of the PyNN API function arguments are 
specifi c to software simulators. In the hardware context, they have 
to be either ignored or be given a hardware-specifi c interpreta-
tion. For example, the PyNN function setup has an argument 
called timestep, which for pure software back-ends determines 
the numerical integration time step. In the PyNN module for 
the continuously operating hardware, this argument defi nes the 
temporal resolution of the oscilloscope for membrane potential 
recordings. Furthermore, the strict constraints regarding neuron 
number, connectivity and possible parameter values require an 
additional software effort, i.e. checking for violations and provid-
ing the messages mentioned above. PyNN does not yet suffi ciently 
support fast and statistics-intensive parameter space searches with 
differential formulations of the changes from step to step, which 

will be needed to optimize the exploitation of hardware specifi c 
advantages.

Without having access to the real hardware system, it is of course 
not possible to use the PyNN hardware module, hence it is not 
available for download. Still, it is planned to publicly provide a 
modifi ed module on the PyNN website (Davison, 2009) which 
allows testing of PyNN scripts intended to be run on the hardware, 
i.e. to get back all warnings or error messages which might occur 
with the real system. With such a mapping test module, scripts can 
be prepared offl ine for a later, optimized hardware run.

THE INTERFACE IN PRACTICE
To demonstrate the usage and functionality of the PyNN interface, a 
simple example setup is given in the following. Listing 1 shows the 
experiment described in PyNN, which is then executed both on the 
hardware system and using the software simulator NEST. A network 
consisting of 80 excitatory and 20 inhibitory neurons is created. The 
inhibitory sub-population is fed back into the network randomly 
with a probability of 0.5 for each possible inhibitory-to-excitatory 
connection. 160 excitatory and 40 inhibitory Poisson spike trains 
are randomly connected to the network with the same probability 
of 0.5 for each possible train-to-neuron connection.

Figure 3 shows a schematic of the implemented network 
architecture.

The maximum synaptic conductance gmax is 0.5 nS for excita-
tory and 1.6 nS for inhibitory connections. The output spikes 
of eight neurons are recorded, and the average fi ring rate of 
these eight neurons over a period of 5 s of biological time is 
determined.

In line 1, the PyNN back-end NEST is chosen. In order to utilize 
the hardware system, the only necessary change within this script 
is to replace line 1 by from pyNN.hardware.stage1 import 
*, all the rest remains the same. From lines 4 to 9, the population 
sizes, the numbers of external stimuli, and the synaptic weights 
are set. In lines 11–17, the neuron parameters are defi ned. Lines 19 

PyNN

PyNN.hardware

PyHAL

Spike Train In

Communication Spike Train Out

Chip Model

C++ (Boost.Python wrapper)

PyScope

C++

Chip Config

PyNN.neuron

HOC

NEURON

PyNN.nest

SLI

NEST

Socket Comm

Trace Manager

PyN

???

?

FIGURE 2 | Schematic of the software framework for the operation of the 

hardware system. It is integrated into the Python-based, simulator-independent 
language PyNN, which also supports back-ends like NEURON, NEST and more. 

The module for the hardware back-end consists of Python-based sub-modules 
for the digital and analog access to the chip. Each of those wrap the functionality 
of lower-level C++ layers, which are described in more detail in the text.
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type is possible. For the NEST back-end, the neuron type deter-
mines parameter values for e.g. C

m
, which are fi xed to resemble the 

hardware. Line 26 concatenates the two populations. In lines 28 
and 29, the Poisson spike sources are generated, passing the type of 
source, the previously defi ned parameters and the desired number. 
From lines 31 to 34, the neurons and spike generators are intercon-
nected. The arguments of the connect command specify fi rst a list 
of sources, then a list of targets, followed by the synaptic weights, 
the synapse types and fi nally by the probability with which each 
possible pairing of source and target objects is actually connected. 
The recording of the spikes of eight neurons and of one membrane 

and 20 determine the rate and duration of the Poisson spike train 
stimuli. In line 22, PyNN is initialized, the numerical integration 
step size of 0.1 ms is passed. If the hardware back-end is chosen, no 
discrete step size is utilized due to the time continuous dynamics in 
its analog network core, and the function argument is used instead 
to determine the time resolution of the oscilloscope, if connected. 
In lines 24 and 25, the excitatory and inhibitory neurons are cre-
ated, with the neuron parameters and the size of the populations 
as the second and the third arguments.

The fi rst argument, IF_facets_hardware1, specifi es the neu-
ron type to be created. For the hardware system, no other neuron 

from pyNN.nest2 import *
# OR: from pyNN.hardware.stage1 import *

numInhNeurons = 20
numExcNeurons = 80
numInhInputs = 40
numExcInputs = 160
w_exc = 0.0005 # uS
w_inh = 0.0016 # uS

neuronParams = { ’v_reset’ : -80.0, # mV
’e_rev_I’ : -75.0, # mV
’v_rest ’ : -70.0, # mV
’v_thresh’ : -57.0, # mV
’g_leak ’ : 20.0, # nS
’tau_syn_E’ : 30.0, # ms
’tau_syn_I’ : 30.0 } # ms

inputParameters = { ’rate’ : 5.0, # Hz
’duration’ : 5000 } # ms

setup(timestep=0.1)

n_inh = create(IF_facets_hardware1 ,neuronParams ,n=numInhNeurons)
n_exc = create(IF_facets_hardware1 ,neuronParams ,n=numExcNeurons)
net = n_exc + n_inh

i_exc = create(SpikeSourcePoisson ,inputParameters ,n=numExcInputs)
i_inh = create(SpikeSourcePoisson ,inputParameters ,n=numInhInputs)

connect(i_exc ,net ,weight=w_exc ,synapse_type=’excitatory’,p=0.5)
connect(i_inh ,net ,weight=w_inh ,synapse_type=’inhibitory’,p=0.5)

connect(n_inh ,net ,weight=w_inh ,synapse_type=’inhibitory’,p=0.5)

record(net[0:8] , ’spikes.dat’)
record_v(net[0], ’membrane.dat’)

run(5000) # duration in ms
end()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LISTING 1 | PyNN Example Script. For detailed explanation see text.
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potential is prepared in lines 36 and 37 (not all neurons, due to a 
bug in the current hardware revision). In line 39, the experiment is 
executed for a duration of 5000 ms. Line 40 defi nes the end of the 
script, and deals with writing recorded values to fi le.

The experiment was run both on the FACETS hardware sys-
tem and using the software simulator NEST. The fi ring rate of the 
stimulating Poisson spike trains was varied from 0 to 9 Hz in steps 
of 0.5 Hz, and for each rate the experiment was repeated 20 times 
with different random number generator seeds. Figure 4 shows the 
resulting average output fi ring rates.

The fi ring rates measured on both back-ends exhibit a qualitative 
and, within the observed fl uctuations, quantitative correspondence. 
For both NEST and the hardware system, the onset of fi ring activ-
ity occurs at the same level of synaptic stimulation. The small but 
seemingly systematic discrepancy for higher output rates indicates 
that for the NEST simulation the inhibitory feedback has a slightly 

stronger impact on the network activity than on the hardware 
platform. The fi ring rate does not refl ect dynamic properties like 
fi ring regularity or synchrony, which might be interesting for the 
estimation of possible differences in network dynamics due to the 
limited precision of hardware parameter determination or due to 
electronic noise. With PyNN, studies like these have now become 
possible, but go beyond the scope of this paper.

To give an impression of the inhomogeneities of a hardware 
substrate and of the noise a typical hardware membrane is exposed 
to, a second measurement is shown. A single neuron receives 80 
excitatory and 20 inhibitory Poisson spike trains with 2.5 Hz each. 
It is connected to these stimuli with the same synaptic weights 
as in the setup described above, but gets no feedback from other 
neurons. The spike sources fi re for 4 s, with a silent phase of 0.5 s 
before and after. Using a single PyNN description, the identical 
setup with identical spike times and identical connectivity can be 
deployed for both NEST and the hardware system. Figure 5 shows 
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FIGURE 5 | Membrane potentials of a neuron under Poisson stimulation. 

Input spike times are identical for all traces. The uppermost trace (red) 
represents a NEST simulation. Spike times determined by NEST are marked 
with dashed vertical lines in light gray. The lower six traces (blue) represent 
measurements from adjacent hardware neurons recorded in separate runs. 
For the hardware traces, the given time and voltage scales indicate the real 
physical dimensions of the emulation.
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the resulting membrane potential trace simulated by NEST and the 
membrane potentials acquired from six adjacent neurons on the 
neuromorphic hardware. For the hardware traces, the unprocessed 
time and voltage scales are given as measured on the chip in order to 
illustrate the accelerated and physical nature of the neuromorphic 
model. The PyHAL framework automatically performs a transla-
tion of these dimensions into their biological equivalents.

The constant noise level in the hardware traces can be best 
observed during the phases with no external stimulation. This noise 
is a superposition of the noise actually occurring within the neuron 
circuits and the noise being added by the recording devices. The 
differences from hardware neuron to hardware neuron represent 
mainly device fl uctuations on the transistor level, which strongly 
dominate time-dependent infl uences like temperature-dependent 
leakages or an unstable power supply. Counterbalancing these fi xed-
pattern effects with calibration methods is work in progress.

DISCUSSION
Today, the communities of computational neuroscientists and neu-
romorphic engineers work rather in parallel instead of benefi tting 
from each other. We believe that closing this gap will boost the 
development, the usability and the number of application fi elds of 
neuromorphic systems, including the establishment of such devices 
as valuable modeling tools that will contribute to the understand-
ing of neural information processing. Based on this motivation, 
we have described a set of requirements that a software interface 
for a neuromorphic system should fulfi ll.

Following these guidelines, we have implemented a Python-
based interface to an existing accelerated neuromorphic hardware 
system developed within the research project FACETS, and we have 
integrated it into the common neural network simulator interface 
PyNN, proving the potential of PyNN to also serve as a hardware 
interface. This approach provides the novel possibility of porting 
existing experiments from the software simulator to the hardware 
domain and vice versa with a minimum of effort. In order to illus-
trate the unifi cation and portability aspects, we have presented 
an example PyNN code sequence for a simple experiment. The 
correspondence between the results acquired with both a software 
simulator and the hardware system demonstrate the functionality 
of the framework.

With a neuromorphic device accessible and controllable via 
PyNN, its advantages can be exploited by non-hardware-experts 
from all fi elds. Hardware and software co-simulations based on 
PyNN descriptions can be used to test, to tune and to benchmark 
neuromorphic devices. Furthermore, the integration of hardware 
interfaces into the PyNN framework can avoid parts of the often 
redundant effort that has to be invested into creating a new indi-
vidual software layer stack on top of any new neuromorphic system, 
since high-level tools, e.g. for analysis and plotting, are already 
available and maintained by an active community.
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There has been substantial recent growth in the use of non-invasive optical brain imaging in 
studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one 
of the most promising of these techniques and, although NIN hardware continues to evolve at 
a rapid pace, software tools supporting optical data acquisition, image processing, statistical 
modeling, and visualization remain less refi ned. Python, a modular and computationally 
effi cient development language, can support functional neuroimaging studies of diverse design 
and implementation. In particular, Python’s easily readable syntax and modular architecture 
allow swift prototyping followed by effi cient transition to stable production systems. As an 
introduction to our ongoing efforts to develop Python software tools for structural and functional 
neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain 
function, (ii) the key computational requirements to support NIN experiments, (iii) our collection 
of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that 
will allow integration of optical with other structural and functional neuroimaging data sources. 
Source code for the software discussed here will be made available at www.nmr.mgh.harvard.
edu/Neural_SystemsGroup/software.html.

Keywords: near-infrared spectroscopy, python, NIRS, diffuse optical tomography, brain imaging

one domain for which no Python tools exist, and for which only 
two non- commercial software solutions are available (Huppert, 
2006; Ye et al., 2009). We have therefore been developing a suite 
of Python modules to support the computational aspects of NIN 
data acquisition, analysis, and display. While our particular col-
lection of tools is specialized for handling NIN data, the general 
design principles have broader application in experimental and 
theoretical neuroscience. We plan to release sub-modules under a 
BSD license, posting them at www.nmr.mgh.harvard.edu/Neural_
SystemsGroup/software.html as they reach beta level stability.

We begin with an explanation of the physical and biological 
basis for NIN, followed by a brief comparative review of its chief 
uses. To provide context for our software development efforts, 
“Computational Requirements and Software” begins by describ-
ing the logistical and computational requirements associated with 
NIN experiments. The remainder of that section then describes the 
individual acquisition, analysis and visualization modules compris-
ing the NinPy package, followed by a discussion of future software 
development directions in “Future Extensions”.

PRINCIPLES OF NEAR-INFRARED NEUROIMAGING
The physical principles underlying NIN are relatively simple, and 
similar to those encountered in pulse oximetry. The human scalp 
and skull are suffi ciently transparent to the near-infrared (NIR) 
light wavelengths between 650 and 950 nm to enable non- invasive 
optical monitoring of physiological modulations associated with 
brain function (Jobsis, 1977). The NIR wavelengths are non-
ionizing and therefore do not harm biological tissue at the low 
average power densities of 1–4 mW/cm2 customarily utilized in 
brain imaging. For comparison, the ambient NIR light level on a 

INTRODUCTION
The effi cient conduct of neuroimaging experiments requires a 
diverse and complex assortment of computational resources. It 
follows naturally that constructing complete systems for data 
acquisition, analysis and display would be facilitated by the use of 
highly versatile, modular development environments. Functional 
neuroimaging data collection requires accurate timing of both 
stimulus displays and user responses, with near real-time graph-
ics and device polling capabilities. The structural and functional 
neuroimaging datasets acquired over the course of a typical 1- to 
2-h experimental session can exceed 10 gigabytes in size. These high 
data collection rates, along with the need to monitor the data fl ow 
for quality assurance purposes, require excellent system through-
put and real-time data display capabilities to support experimental 
monitoring. Once acquired, neuroimaging datasets must undergo 
substantial preprocessing, data reduction and statistical processing 
to accurately model the many, often hierarchical, sources of vari-
ance in the raw data. These sources can include instrument noise, 
temporal autocorrelation, head motion, cardiovascular physiologi-
cal effects, within-subject task effects, within-group effects, and 
between-group treatment effects. Finally, the statistical results must 
be displayed in an intuitive and easily comprehensible form using 
publication quality graphics.

While the construction of tools for each of these steps poses 
a substantial challenge, many current Python modules provide 
an excellent foundation on which to build data acquisition and 
processing pipelines. These advantages are already evident in 
magnetic resonance imaging (MRI) and electroencephalography 
(EEG) data processing applications, as demonstrated by other 
papers this issue. However, near-infrared neuroimaging (NIN) is 
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sunny summer day in mid-latitudes is approximately 20 mW/cm2. 
By shining small spots of NIR light on the scalp and placing a 
detector a few centimeters away, the light intensity recorded by 
the detectors is modulated by the concentrations of all the absorb-
ing chromophore molecules in the underlying tissues between the 
source and the detector. While sensitive to a range of chromophores 
and physiological phenomena (Villringer and Chance, 1997), NIN 
is particularly sensitive to the tissue oxygenation changes observed 
during changes in local neuronal activity (Huppert et al., 2006; 
Strangman et al., 2002b). A single source and detector pair can 
provide information about local changes in tissue optical prop-
erties. Spatiotemporal images of these physiological variables are 
generated by collecting multiple overlapping optical measurements 
and then applying tomographic image reconstruction techniques 
(Arridge, 1999; Franceschini et al., 2006; Pogue et al., 1999a). In 
addition to these spatial sampling capabilities, NIN is capable of 
temporal sampling in excess of 500 samples/s, a rate that compares 
quite favorably even with the most recent, ultra-fast MRI functional 
imaging methods (Lin et al., 2008a,b).

ADVANTAGES AND LIMITATIONS OF NEAR-INFRARED NEUROIMAGING
Near-infrared neuroimaging has several advantages when com-
pared with other functional neuroimaging techniques, including: 
(i) comparatively low cost, (ii) sensitivity to multiple aspects of 
brain physiology, (iii) high temporal resolution, and (iv) suitability 
for portable or mobile applications. Together, these characteristics 
enable the use of non-invasive optical measurements in settings 
not normally compatible with brain imaging, including functional 
brain imaging in freely moving subjects. As with any technique, 
NIN also has limitations. Chief among these are a limited pen-
etration depth of approximately 3–4 cm from the scalp surface, 
when using refl ection geometry (Strangman et al., 2002a, 2003). 
In addition, non-invasive NIN allows only modest spatial resolu-
tion, estimated to be on the order of 0.5–1 cm in an adult human. 
Within these limits, however, NIN provides sensitive and reliable 
estimates of task-related neural activity originating in cortical 
structures comparable to results obtained using functional MRI 
(Huppert et al., 2006; Jasdzewski et al., 2003; Strangman et al., 
2002b, 2006).

WHAT ASPECTS OF BRAIN FUNCTION CAN NEAR-INFRARED 
NEUROIMAGING MEASURE?
Although the basic NIN measurement involves recording the atten-
uation of light from a particular source as seen from the viewpoint 
of a particular detector, one can use raw light attenuation measure-
ments at different wavelengths in the NIR range to obtain localized 
spectroscopic estimates of a wide range of physiological variables 
(Table 1). Some of these variables, like oxy- or deoxy-hemoglobin 
(O

2
Hb and HHb) concentrations, are relatively straightforward 

conversions from measured attenuation values (see Section 
“Spectroscopic Conversion”). Others involve estimation of the 
physiological variables of interest from combinations of estimated 
chemical concentrations, as in the case of oxygen saturation or the 
cerebral rate of oxygen metabolism (CMRO

2
). Finally, the temporal 

modulations of these variables can be used to compute indirect 
estimates of physiological phenomena like heart rate, respiration 
rate or modulation in baroreceptor activity (Mayer waves).

Near-infrared neuroimaging measurements of hemodynamic 
variables can be used to derive estimates of regional brain activ-
ity. This relationship between neural and hemodynamic activity is 
based on combined electrophysiological and fMRI results demon-
strating that local changes in neural activity, refl ecting both den-
dritic and axonal activity, are associated with focal variations in 
blood fl ow and volume (Logothetis, 2008). Because hemodynamic 
and neural activity changes often covary linearly, it is possible to 
use localized spatiotemporal recording of brain hemodynamics to 
make inferences about antecedent, and presumably causally related, 
neural activity patterns. For studying brain mechanisms underly-
ing complex behavior, NIN hemodynamic imaging has particu-
lar advantages over other imaging modalities in the non-invasive 
detection of neural activity modulations. For example, as compared 
to EEG, NIN signals are more spatially localized (Strangman et al., 
2003) and much less susceptible to the type of bioelectric interfer-
ence generated by task-related scalp and face muscle activity. NIN 
signals also do not require tasks that produce the sorts of synchro-
nous neural discharges that are needed to generate detectable event-
related electrical potentials. In addition, when directly compared 
to invasive electrical measurements, hemodynamic responses are 
just as strongly related to induced patterns of neural activity as are 
the synchronous fi eld potentials from which evoked potentials arise 
(Logothetis et al., 2001; Logothetis and Wandell, 2004).

In summary, the non-invasive character, and high sensitivity 
of NIN to a broad range of physiological phenomena refl ecting 
many different aspects of brain function, makes it a promising 
method for use in a large number of clinical and experimental 
neuroscience contexts.

COMPUTATIONAL REQUIREMENTS AND SOFTWARE
Of its many potential applications, we have been particularly inter-
ested in using NIN to study the neural mechanisms underlying com-
plex behavior. In particular, to facilitate the use of NIN in studies of 
the neural mechanisms of action and perception, we have developed 
a suite of programs, collectively called NinPy, that provide a wide 
range of integrated computational tools for use in optical functional 
neuroimaging experiments. A summary of the principal capabili-
ties and components in NinPy appears in Table 2, along with the 
main Python modules and packages upon which each component is 
based. Each of these will be elaborated in the sections that follow.

There currently are two main software packages for han-
dling NIN data: HomER (Huppert, 2006) and NIRS-SPM 

Table 1 | Physiological variables that can be estimated using NIN.

Chemical Physiological Temporal

measurements variables variables

Oxy-hemoglobin concentration Blood volume Heart rate

Deoxy-hemoglobin concentration Blood fl ow Respiration rate

Total hemoglobin concentration Oxygen saturation Mayer waves

Water concentration CMRO2 Low-frequency 

  oscillations

Cytochrome oxidase  Neural activity 

concentration   

pH
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Table 2 | NinPy components and their core supporting Python modules.

Capability NinPy Primary Python

 component modules

ACQUISITION

Stimulus display NinSTIM PsychoPy, Pyglet

User input NinSTIM PsychoPy, cgkit, Pyglet

Synchronization NinSTIM pyparallel/pyserial

NIRS data collection NinDAQ Chaco, Traits

ANALYSIS

Quality assurance NinPROC NumPy

Filtering NinPROC NumPy, SciPy

Image reconstruction NinPROC NumPy, SciPy

Parameter estimation NinSTATS SciPy, RPy

Statistical modeling NinSTATS RPy

DISPLAY

Visualization NinDISP Matplotlib

(Ye et al., 2009). Both of these packages provide excellent data 
processing capabilities for many of the analysis and display 
aspects of NIN data processing. HomER provides a wealth of 
temporal processing capabilities and image reconstruction tech-
niques, whereas NIRS-SPM provides broad statistical modeling 
and display capabilities by integrating with, and building upon, a 
well-established neuroimaging software package, SPM. However, 
neither package includes capabilities for acquisition, including 
experiment design, stimulus display, and data collection. NinPy 
seeks to provide an integrated platform combining all of these 
features, with a focus on features that complement those available 
in HomER and NIRS-SPM.

CONDUCTING NEAR-INFRARED NEUROIMAGING EXPERIMENTS
Conducting a typical NIN experiment requires two distinct software 
tools: one for experimental control and the other for data acquisi-
tion. Although these tools operate independently, their effi cient 
use together requires a high degree of functional integration at the 
design level. As described next, NinSTIM is a stimulus generation 
and display system for experimental control, and NinDAQ is a data 
acquisition and monitoring system for device control.

Stimulus generation and user input (NinSTIM)
Accurate and reliable control of stimulus presentation is a critical 
aspect of any functional neuroimaging experiment. NinSTIM is a 
high-level stimulus and experimental design toolkit, designed for 
non-programmers, that generates stimulus sequences for display 
by the Pyglet interface1 to the PsychoPy package2 (Peirce, 2008). 
NinSTIM directs PsychoPy to sequentially present an ordered col-
lection of “trials”, where a trial is a very general entity consisting 
of one or more temporal phases, each composed of one or more 
visual or auditory stimuli. For example, a trial could be: (i) a simple 
instruction screen presented while the program waits indefi nitely 
for a key press, (ii) a visual fi xation of predetermined duration, 
(iii) a stimulus followed by a mask, or (iv) any other ordered series 
of stimuli. An example complex trial with fi ve separate phases might 
be: (i) a side-by-side pair of photos, followed by (ii) a brief whole-
screen mask image, followed by (iii) a variable duration blank 
screen delay period, followed by (iv) a go cue, and fi nally (v) an 
inter-trial rest period. Each unique trial type is defi ned in a ASCII 
trial defi nition (.DEF) fi le, with required Python-style indentation, 
for editing and interactive debugging (Figure 1, left).

1www.pyglet.org
2www.psychopy.org

# trial definition .DEF file

backgroundColor (-1,-1,-1)
  Ready

-1 keyboard
allowableKeys space

          Ready …
            pos (0,0.2)
            height 0.15
  Instructions_Left_3
      3 cumulative
          Instr_left_3.jpg
Fixation

      15 cumulative
          cross.jpg
  Left.04
      1.5 exact
          L4.jpg
[etc.]

# trial order .ORD file

Ready
Instructions_Left_3
Fixation
Left0.04
Left0.03
Left0.05
Left0.01
Left0.02
Instructions_Right_1
Right1.04
Right1.01
Right 1.03
Right 1.02
Right 1.02
Fixation
Thanks

FIGURE 1 | Abridged examples of the trial defi nition (.DEF) fi le format 

and the trial order (.ORD) fi le format. Each trial named in the .ORD fi le 
must be defi ned in the .DEF fi le. For the fi rst trial (“Ready”), “timing = −1 
keyboard” means wait indefi nitely for a keypress (the spacebar is the only 
allowable key) while displaying the text “Ready …” at position (0,0.2) and 

height 0.15. The “Fixation” trial involves displaying the image fi le 
cross.jpg in the center of the screen for 15 s, with extra frames inserted or 
removed there if cumulative timing errors have accumulated. The “Left.04” 
stimulus displays the image fi le L4.jpg in the center of the screen for 
exactly 1.5 s.
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The breadth of experimental designs commonly employed in 
functional neuroimaging experiments requires sophisticated and 
fl exible procedures for trial scheduling. Possibilities for the tempo-
ral ordering of trials include: (i) block designs, in which groups of 
evenly spaced trials alternate with periods of fi xation, (ii) stochas-
tic, or “event-related”, designs, in which the individual trial times 
are varied to allow effi cient estimation of hemodynamic responses 
using deconvolution procedures (Dale, 1999), and (iii) mixed 
designs, combining aspects of both block and stochastic designs 
to achieve separation of state and task-related experimental effects. 
In the case of stochastic and mixed designs, the trial durations 
and orders that lead to maximum effi ciency in the detection of 
task-related brain activity can be computed using programs such 
as optseq3, and then entered in a trial order (.ORD) fi le. As with 
the trial defi nition fi le, the trial order input fi le is a simple, ASCII 
fi le (Figure 1, right). From these two input fi les (.DEF and .ORD), 
NinSTIM builds and then runs a PsychoPy-compatible program.

PsychoPy and Pyglet, the engines driving stimulus presentation, 
also provide facilities for logging stimulus, keyboard and mouse 
events. Through the Pyglet event loop, one can continuously moni-
tor these events and respond appropriately. For example, one can 
display different stimuli depending on user input, or compensate 
for certain timing vagaries inherent in soft real-time operating sys-
tems. In soft real-time operating systems like Microsoft Windows, 
interrupts and system processes can sometimes seriously disrupt 
the accuracy and precision of stimulus timing. This is a widely 
recognized problem that is addressed using differing mechanisms 
in the stimulus presentation packages most commonly used in 
experimental neuroimaging, including EPrime4, Presentation5, 
Psychtoolbox6, and Cogent7. To optimize timing in NINstim we: 
(i) increase the stimulus display process priority to “High” via 
Python’s win32process.SetPriorityClass(), (ii) disable Python gar-
bage collection, (iii) enable drawing synchronized to the vsync 
pulse from the monitor, and (iv) pre-draw stimuli whenever pos-
sible to maximally engage the blocking mode of calls to OpenGL 
fl ip (Straw, 2008). Stimulus onset timestamps are collected using 
Python’s time.clock() call which is executed the line after the call to 
fl ip the OpenGL graphics buffer. The timing requested by the user 
in the trial defi nition and order fi les – which we call the nominal 
timing – is also simultaneously monitored. Using the “cumula-
tive” timing type, users can identify the less critical stimulus or 
delay times, for which NinSTIM can add or subtract one or two 
frames, to preserve the experiment’s cumulative nominal timing. 
In a 12-h test using this approach, involving 15,600 trials and 
31,000 stimuli, our time.clock() timestamps occurred a maximum 
of 26 ms early to 88 ms late compared to nominal, with a mean 
and SD timing error of 1.6 ± 6 ms. Individual stimulus durations 
ranged between ±8 ms off nominal – or half a screen refresh on our 
60-Hz monitor. Note that these latencies do not represent the total 
system delay, defi ned as the interval between the time a user event 
is captured and a new image is displayed. Moreover, these  latencies 

were measured by the internal computer clock, rather than an 
external source. Hence, the above numbers may underestimate 
the exact latency to stimulus presentation (Straw, 2008). However, 
the maintenance of nominal timing within a few tens of milli-
seconds over several hours is more than adequate for functional 
neuroimaging experiments based on hemodynamic responses, 
which includes the vast majority of NIN experiments.

Using the standard Python threading and ctypes modules it is 
also possible to collect continuous data streams from other user 
input devices during stimulus display. Access to almost any device 
driver is possible through ctypes. By setting up a separate timer 
thread, densely sampled data streams from auxiliary input devices 
can include time stamps from the same master clock that marks all 
stimulus, keyboard and mouse events. This arrangement dramati-
cally reduces the timing uncertainty between stimulus presentation 
and recording devices and can provide a record of any mismatch 
between intended and actual experimental event times. This sort 
of continuous, simultaneous recording of auxiliary devices can be 
diffi cult or impossible to implement using many of the popular 
experimental control programs. In addition, the pyserial and pypar-
allel Python modules (Liechti, 2008) provide a separate means for 
acquiring event signals from, or exporting trigger signals to, the 
computer’s serial or parallel ports for synchronization with our 
NIN acquisition devices.

Because NinSTIM is based on Python, chaining multiple experi-
ments is easily achieved with successive Python calls, or a separate 
Python script that runs each experiment in succession.

Data acquisition and real-time data display system (NinDAQ)
Optical imaging devices are constructed from multiple hardware 
subsystems that require dedicated device control software. Using 
Enthought’s Chaco/Traits modules (Enthought, 2007, 2008), along 
with NumPy (Oliphant, 2006) and SciPy (Jones et al., 2001) we have 
also developed NinDAQ, a device control program customized for 
two of our NIN instruments (Figure 2). This program provides com-
plete, real-time control over the NIN device state variables, includ-
ing laser state, amplifi er gain, analog acquisition subsystem voltage 
range, and sampling rate. NinDAQ also controls the data acquisition 
process including start signals, stop signals, and data display modes. 
Important additional features include: real-time temporal display of 
relatively large amounts of data, pushbutton toggling to “zoom in 
and out” on the data stream as it is being collected, and automatic 
scaling of the signal range to the minimum and maximum values 
of each data line. Real-time control of the acquisition process is 
provided, including provisions for user-generated interrupts of data 
collection, variable temporal windows for strip-chart data views, 
and interactive laser control. The Chaco plotting package provides 
real-time plotting capabilities, while Enthought’s Traits supports 
rapid GUI development cycles. The standard Python ctypes module 
enables seamless access from Python to the commercial drivers for 
our analog-to-digital data acquisition boards.

SIGNAL PROCESSING (NINPROC)
Once complete, most neuroimaging experiments produce two fi le 
types: text fi les that log the stimulus and response events, and cus-
tom binary data fi les containing the neuroimaging data. Depending 
on the type of experiment and the specifi c neuroimaging device, 

3http://surfer.nmr.mgh.harvard.edu/optseq/
4www.pstnet.com/products/e-prime
5www.neurobs.com
6http://psychtoolbox.org/PTB-2/
7www.vislab.ucl.ac.uk/cogent.php
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raw data from a single participant in single experimental session 
can be many gigabytes in size. In experiments incorporating cardiac, 
respiratory, kinematic or other physiological data monitoring, a 
third fi le type containing records of such continuous data streams 
may also be produced. Each such data fi le has unique processing 
requirements that can be handled via Python, or using the NumPy 
and SciPy libraries.

Quality assurance and fi ltering
Quality assurance procedures for stimulus and event log fi les 
involve validating event timing by examining deviations from 
nominal event times and durations, detection of skipped stimuli 
or skipped frames, detection of device failures, and identifi cation of 
other experimental anomalies, including task performance devia-
tions. Data quality checks can be easily implemented in Python by 
opening the log fi les generated by NinSTIM and NinDAQ, reading 
in each line with the recorded actual and nominal times, and com-
puting various time differentials. NinPROC uses simple descriptive 
statistics to identify deviations from the expected experimental 
event timing, with relevant functions contained in NumPy (amin, 
amax, mean, std, or median) or scipy.stats (skew, kurtosis, or histo-
gram). There is also an option to graphically display histograms to 
visually identify anomalous timing patterns during particular runs, 
using matplotlibhist() and plot() functions. For physiological or 
NIN data time series, numpy.loadtxt() or numpy.fromfi le() can be 
used to effi ciently read in the data, which can be similarly scanned 
for timing irregularities, intermittent signal dropout or other devia-
tions from the experimental protocol. In addition, multiple time 
series can be quickly and automatically plotted with nindisp.plot() 
for visual inspection.

To identify and remove the sorts of signal artifacts specifi c to NIN 
data, we have included algorithms in NinPROC for semi- automated 

signal pruning. For a variety of reasons, not all source–detector 
pairs will provide useful information in all experiments. Data from 
some source–detector pairs not of primary interest may have been 
recorded during the experiment, some source–detector pairs may 
have been too far apart to provide reliable signals, or a detector 
may have lost contact with the head, thereby generating large sig-
nal artifacts. Within the preprocessing component NinPROC, the 
ninproc.prune() function is available to remove particular sources, 
detectors, or channels based on the known source–detector separa-
tions. In addition, low overall signal intensity can result in unreli-
able information, and high overall signal intensity can indicate light 
leakage from source to detector. Hence, facilities for displaying and 
pruning based on absolute signal intensity and signal-to-noise ratio 
(SNR) are also provided as options (Figure 3). In addition, the nin-
proc.lowpass(), ninproc.highpass(), and ninproc.notch() functions 
provide simple, zero-phase fi ltering to reduce 1/f physiological, 
instrument, or electrical interference noise components.

As with all neuroimaging data, NIN time series can contain 
physiological motion artifacts. When head motion occurs, the 
resulting signal modulations can be substantial and therefore 
must be identifi ed and either excluded or otherwise mitigated. 
Exclusion of a motion contaminated time series segment is a 
less than ideal solution, so effective mitigation is an important 
tool. One approach, which is particularly well-suited to real-time 
applications, is adaptive fi ltering. In previous work, we have 
demonstrated the effi cacy of adaptive fi ltering to identify and 
reduce global physiological interference in NIN signals, including 
signal modulations resulting from cardiac or respiratory oscil-
lations (Zhang et al., 2007a,b). We have recently added a least 
mean squares-based adaptive fi lter for motion artifact reduc-
tion to NinPy called ninproc.lms() (Figure 4). Adaptive fi lter-
ing has shown considerable promise in real-time reduction of 

Amplifier gain se�ngs

Scrolling data display panels

Laser on/off

Start/stop/display/output se�ngs

Acquisi�on board se�ngs

FIGURE 2 | Screenshot from the NinDAQ device control and data acquisition program. Inset: The NIN recording devices and head probe being controlled by 
this software.
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 physiological motion artifacts without the bandwidth loss asso-
ciated with using a low-pass fi lter with a low cutoff frequency. 
Other published approaches to dealing with NIN motion artifacts 
include the use of principle component analysis or independent 
component analysis to identify and separate signal from motion 
waveforms (Morren et al., 2004; Zhang et al., 2005), solutions that 
could be incorporated using the Python-based Modular toolkit 

for Data Processing (Berkes et al., 2008) via mdp.pca() or mdp.
fastica().

Spectroscopic conversion
Table 1 lists multiple types of optical contrast detectible with NIN 
(Villringer and Chance, 1997). Many of these contrasts are computed 
via spectroscopic conversion using the modifi ed Beer–Lambert law 

FIGURE 3 | Graphical depiction of channel by channel SNR, computed as 

mean signal intensity divided by the SD of signal intensity over time 

(S = source position, D = detector position). Source–detector pairs with 
SNR > 50 are connected with green lines, while those with lower SNRs are 

connected with progressively darker lines. Sources or detectors with few or only 
bad connections (e.g., S16, D25) could be candidates for pruning. Regions of red 
colors indicate reduced sensitivity relative to other regions, as seen in the 
vicinity of sources S4 and S6.

A

B

C

DD

E

FIGURE 4 | NIN data motion artifact reduction using NinPROC and adaptive 

fi ltering. Time courses are: (A) raw NIN data; (B) simultaneously acquired raw 
piezoelectric motion sensor data; (C) adaptively fi ltered NIN data, using (A) as the 

target and (B) as the reference signal; (D) signal in (C) plus a second-order 
Butterworth high-pass fi lter using scipy.lfi lter() (cutoff = 0.05 Hz); (E) signal in (D) 
plus a sixth-order Butterworth low-pass fi lter using scipy.lfi lter() (cutoff = 2 Hz).
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(Delpy et al., 1988). These conversions are linear algebra transfor-
mations performed on each time point of raw attenuation data and 
the resulting time series refl ect time-varying changes in chromo-
phore concentrations. To compute chromophore concentrations, 
raw measurements recorded from two or more NIR wavelengths 
are fi rst log transformed to changes in optical density, and then 
to changes in O

2
Hb, HHb, and total hemoglobin (O

2
Hb + HHb) 

concentrations:

Δ λ = − = μ λ λ

= ε λ Δ + ε λ

OD( ) log10( ) DPF( )

O Hb
2Hb 2 HHb

I I Lo aΔ

Δ

( )

( ) ( )

⋅

[ ]O HHHb DPF( )[ ]⎡⎣ ⎤⎦ ⋅L λ

where I is the raw measured intensity at a single point in time, 
I

o
 is the measured light intensity at a reference time point, ΔOD 

represents the change in optical density between I and I
o
, the ε()s 

are extinction coeffi cients for O
2
Hb and HHb at a given wave-

length (λ), L is the source–detector separation, and DPF(λ) is the 
wavelength-dependent differential pathlength factor that converts 
L to the true (scattered) optical pathlength. Recording data from 
two wavelengths (λ

1
 and λ

2
) provides two such equations with 

two unknowns: the change in O
2
Hb and HHb concentrations. The 

 ninproc.extinction_coef() function uses interpolated lookup tables 
to obtain extinction coeffi cients of the various optical chromo-
phores. With these coeffi cients, conversion to concentrations over 

all time points can generally be accomplished compactly in Python 
using NumPy arrays, broadcasting, and its linear algebra capabili-
ties, as shown in Code Fragment 1, where L is a 1D array of source–
detector separations for each channel, rawdata is a 2D array of 
raw (or pruned and fi ltered) NIN data, rawref is a 1D array of raw 
NIN data from a reference period – e.g., N.mean(rawdata[:100],0), 
A is a linear transform between optical density and concentration 
represented as a 2D matrix of extinction coeffi cients, hhb and o2hb 
are 1D arrays of HHb and O

2
Hb concentrations (in units of moles/

mm) over time. While A is normally invertible, sometimes it is not. 
For such cases, one can use numpy.linalg.pinv() in place of numpy.
linalg.inv(). The results of these steps are shown in Figure 5.

IMAGING (NINDISP)
Near-infrared measurements of brain function can be made with 
a single source–detector pair, providing information localized to 
approximately 0.5–1 cm2 of brain tissue (Strangman et al., 2003). 
A spatially-distributed collection of such measurements can be com-
bined into an image for each relevant optical contrast. In functional 
neuroimaging, task-related images of O

2
Hb, HHb and O

2
Hb + HHb 

changes are of primary interest, as these parameters have been 
shown to refl ect underlying changes in neural activity (Jasdzewski 
et al., 2003; Strangman et al., 2002b). Imaging  procedures can 
consist of topology preserving sensor space  representations, back 

ODdata = -numpy.log10(rawdata/rawref)                      # compute optical density
A = ninproc.extinction_coef(wavelengths,'Hemoglobin')      # table lookup
hhb, o2hb = numpy.dot(numpy.linalg.inv(A),ODdata)/(L*DPF)  # compute concentrations

CODE FRAGMENT 1 | Three lines to convert raw NIN data to oxygenation concentrations.

A

B

C

FIGURE 5 | Spectroscopic conversion steps of NIN data time series from one source–detector pair. (A) Raw recorded NIN light intensity data from two 
wavelengths, in arbitrary units. (B) Data from (A) after log transformation to optical density units. (C) Data from (B) after conversion to hemoglobin concentration 
units (red = oxy-Hb, blue = deoxy-Hb, yellow = period of task activity).
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propagation – also called topographic imaging – or tomographic 
reconstructions (Arridge, 1999), as discussed below.

Sensor space representations
Perhaps the simplest approach to imaging, commonly utilized in 
EEG and MEG data displays, involves plotting multiple sensor time 
series or time averages, with each sensor positioned in the display 
according to the scalp location of the measurement. An example of 
this approach from NinDISP, using the powerful matplotlib plot-
ting package (Hunter, 2007), appears in Figure 7B. The surface 
array visualization technique preserves the temporal information 
at each sampling point, and is particularly effective if the sensors 
are widely separated.

Topographic imaging
In topographic imaging, measurements obtained from different 
locations in space are linearly interpolated to a regular grid to gen-
erate 2D images of either the underlying optical signal changes 
or derived parameters. The matplotlib.mlab.griddata() function 
can be used to compute such tomographic images. For example, 
if data is an N × 3 array of [x,y,val] triples irregularly spaced 
over a 10 cm by 6 cm region, a 2D topographic projection of the 
val parameter with 1 mm pixels could be computed as follows 
(see Figure 7C):

# xi is the interpolated, regular grid x-dim
xi = numpy.linspace(0.,10.,100) 
# yi is the interpolated regular grid y-dim
yi = numpy.linspace(0.,6.,60)   
zi = matplotlib.mlab.griddata(data[:,0], 
data[:,1], data[:,2],xi,yi)

This is a simple and compact data visualization technique, 
but it also embodies many important assumptions. In particular, 
interpolation assumes that the time varying optical properties of 
brain tissue between measurement locations can be accurately 

estimated by averaging the signals derived from the neighbor-
ing actual measurements. This may or not be true depending on 
the spatial scales of the signal and the source–detector geometry. 
In the above example, it also assumes accurate prior knowledge 
of the (x,y) coordinates of the val parameter, which may be dif-
fi cult to obtain or estimate. For simple geometries, however, this 
computationally effi cient method is suitable for real-time display 
and can be quite useful for visualizing the spatiotemporal structure 
of signal modulations.

Tomographic imaging
Tomographic imaging, in contrast to topographic imaging, is more 
appropriate when multiple, spatially overlapping NIN measure-
ments are collected. In this case, tomographic image reconstruc-
tion generates a solution that best satisfi es all measurements 
simultaneously. The reconstruction is computed in two stages. 
First, one must estimate the diffusion paths of photons and cal-
culate the sensitivity profi le throughout the brain. In image recon-
struction, this step is termed the “forward problem.” For simple, 
semi-infi nite, homogeneous media, the distribution of photons 
injected into tissue can be approximated by the diffusion equation 
(Farrell et al., 1992), and solved analytically. However, for more 
complicated geometries, analytical solutions are not possible and 
hence numerical solutions are often employed, including fi nite 
difference, fi nite element and Monte Carlo approaches (Jacques 
and Wang, 1995). Here we discuss the Monte Carlo approach. 
For the particularly complex tissue geometry of the head, one 
can start with a standard high resolution, T1-weighted MRI scan 
(Figure 6A). This structural scan can then be segmented into gray 
matter, white matter, cerebrospinal fl uid, skull, and scalp tissue 
types using Python to call any of the MRI tissue segmentation 
tools contained in analysis packages such as SPM88 or FSL9. Next, 

A B C

FIGURE 6 | Simulated photon propagation through the head. (A) Typical 
anatomical MRI scan, with NIN sensor fi ducial markers visible above the 
scalp. (B) Segmentation of the MRI scan in (A) into separate tissue types 
where Python was used to chain together the MRI segmentation modules. 
(C) Example photon densities for a single source–detector pair separated 

by 4 cm, overlaid on the segmented head. The colored areas delimit 
the region to which many NIN instruments would be sensitive, with a loss of 
1 order of magnitude sensitivity per contour line. Images were generated 
using matplotlib.imshow(), NumPy masked arrays, and matplotlib.
contour().

8www.fi l.ion.ucl.ac.uk/spm
9www.fmrib.ox.ac.uk/fsl
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each tissue type in the segmented volume is assumed to be homo-
geneous and assigned optical properties based on literature values 
(Choi et al., 2004; Kohri et al., 2002; Leung et al., 2005; Okada and 
Delpy, 2003; Strangman et al., 2003).

To perform the Monte Carlo simulation process, approxi-
mately 100 million photons are injected, one at a time, into the 
segmented model (Figure 6B) at the location of a source or detec-
tor. The propagation of each photon through the tissue is deter-
mined probabilistically given the physics of light and the optical 
properties assigned to each tissue type. This process is repeated for 
each source and detector location and the result is a participant-
specifi c solution to the forward problem. Multiplying together the 
photon densities for a given source–detector pair, point by point 
throughout the brain volume, provides an estimated sensitivity 
profi le for that source–detector measurement pair (Figure 6C). As 
with the MRI segmentation routines, Monte Carlo techniques can 
be implemented with Python calls to existing toolboxes in Matlab 
(Boas, 2004) via mlabwrap (Schmolck, 2007), or by calls to binaries 
such as tMCimg (Boas, 2008) using Python’s os.popen() function. 
For NinPROC, and the steps in Figure 6, we utilized the lattermost 
approach, which allows us to gradually transition complex code 
bases to Python, as time and resources permit.

Given a stable solution to the forward problem (Figure 6C), 
the second imaging step is to generate an image of the optical con-
trast parameter. This step is called “inverse modeling”, and it can 
be accomplished using linear or non-linear methods. The linear 
approach is typically formulated as y = Ax, where y is a length-M 
vector containing the value of the parameter of interest for each 
NIN source–detector pair, x is a length-N vector of all voxels in the 
image reconstruction, and A is the sensitivity matrix (Jacobian), 
which is an M × N matrix based on the Monte Carlo simulation 
that maps the sensitivity of each point in x to each measurement 
in y (Figure 6C). To solve for x, the equation of interest becomes: 
x = A−1y, where A−1 computed using numpy.linalg.inv(A) or, more 
often, the pseudoinverse of A via numpy.linalg.pinv(A). Because 
this problem is usually ill-posed and underdetermined (N >> M), 
regularization is typically applied, often via singular value tapering 
as is used in Tikhonov regularization (Pogue et al., 1999b). NIN 
image reconstruction then essentially reduces to two python func-
tion calls: matrix multiplication via numpy.dot() and regularization 
with numpy.linalg.svd().

STATISTICAL MODELING AND VISUALIZATION
The fi nal stage of an NIR functional imaging experiment, after 
completing the data collection and the signal and image process-
ing steps, involves parameter estimation, statistical modeling, and 
visualization of the results.

Statistical modeling (NinSTAT)
Statistical modeling involves modeling experimental variance to 
derive parameter estimates pertaining to the experimental effects of 
interest. SciPy includes a number of basic statistical functions that 
are suitable for modeling experimental effects in individual subjects. 
However, data from many neuroimaging experiments, particularly 
those involving comparisons of different participant groups, have 
a complex and hierarchical variance structure that cannot be effec-
tively modeled with SciPy routines. In particular, within-subject 

designs, incorporating repeated measurements collected from each 
participant under a range of experimental  conditions are quite 
common. These designs are popular because they have relatively 
high sensitivity, and they avoid the time and expense of recruit-
ing and fully characterizing large groups of research participants. 
Within-subject variability in functional neuroimaging data, while 
substantial, tends to be smaller than between-subject variability. 
Prominent sources of between-subject variation include: (i) brain 
size and shape differences, (ii) neurovascular coupling differences, 
(iii) task performance differences in accuracy or response time, and 
(iv) variation in the specifi c strategy used to perform the task. To 
accurately model both within- and between-subject effects, there-
fore, requires mixed-effects modeling techniques (combining fi xed 
and random effects), which are not available in HomER or SciPy. In 
addition, given the great diversity in experimental designs employed 
in functional neuroimaging experiments, specifi cally coding each 
statistical model in Python would be associated with substantial 
effort. These reasons motivate integration with an external statistics 
package.

R is a widely-used, open-source, statistics package that contains 
a very comprehensive and sophisticated collection of statistical 
analysis methods (R Development Core Team, 2005), including 
tools that are able to model NIN data with complex hierarchical 
structure. One common example is with mixed effects models that 
contain variables measured at different levels in a hierarchy, as in 
the case of summary statistic models in which separate regression 
analyses are computed for each participant, with the resulting fi rst-
level regression coeffi cients being treated as random variables at 
the second level (Pinheiro and Bates, 2000). Rather than rewrit-
ing the requisite statistical procedures in Python, the RPy module 
(Moriera and Warnes, 2004) provides a lightweight yet powerful 
interface between Python and R for statistical analysis, with results 
automatically returned to Python for storage, subsequent process-
ing or display.

A particular advantage of using R is that an extremely broad 
range of models can be applied to the data, since all input vari-
ables are treated equally. In particular, the neuroimaging data can 
be used either as an outcome variable, a predictor, or a covariate. 
This assignment fl exibility is in contrast to that found in the most 
commonly used neuroimaging software packages, including SPM, 
FSL, AFNI, FSFast. These packages require the neuroimaging vari-
able to be the outcome variable, which signifi cantly restricts the 
types of scientifi c questions that can be addressed. For example, one 
question that is receiving growing interest concerns identifi cation 
of brain regions that might provide predictive information about 
treatment response. This determination requires the neuroimaging 
data to act as a predictor and the therapeutic response measure 
to serve as a dependent or outcome variable. Implementing these 
models using existing neuroimaging packages requires extracting 
the data from each potential brain region of interest, exporting the 
data series, and then performing the statistical analysis using an 
external program (Strangman et al., 2008). By directly interfacing 
with R, one can fi t predictive models as easily as those utilizing the 
image data as the dependent variable. Code Fragment 2 provides 
an example of a NinSTATS implementation of predictive modeling. 
Importantly, R includes a large, and continually growing, collection 
of heavily tested and more sophisticated models, including robust 

36



Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 | 

covariance and generalized linear models, as well as a wealth of 
post-hoc testing capabilities.

Visualization (NinDISP)
Once a neuroimaging statistical analysis is complete, visualization 
enhances both interpretation and communication of the results. 
Sensor space visualization, an approach discussed earlier, is shown 
in Figures 7A,B. However, it is common in neuroimaging experi-
ments to have even larger collections of spatially coherent univariate 
statistical results. For example, the code in Code Fragment 2 might 
produce 1,000 or more distinct model fi ts. In this case, sensor space 
visualization may be either impossible, because of too many meas-
urements, or misleading, because overlapping measurements may 
be sensitive to different depths. Imaging provides certain advantages 
in these situations, as shown in the topographic image in Figure 7C, 
generated from task-related regression parameters from the O

2
Hb 

traces in Figure 7B. Applying a statistical threshold to topographic 
images helps identify regions that are signifi cantly modulated by 
the task, as shown in Figure 7D.

In addition to statistical parametric maps (Figure 7D), and time 
series plots (Figure 7B) it is often useful to generate and examine 
scatter or bar plots from regions-of-interest, or to produce sum-
mary plots of activity levels in various brain regions, including 
histograms and box plots. The matplotlib module provides all these 
options as well as many additional plot types. Critically, matplotlib 
includes complete customization capabilities for the creation of 
publication-quality fi gures (Hunter, 2007). Math or Greek  symbols 

can be easily added to the plot or axis labels, options that are par-
ticularly important for representing physical or derived units in 
NIN data (cf. Figure 5).

FILE FORMAT INTERFACES TO EXISTING OPTICAL IMAGING TOOLS
Due to the large volume of spatial and temporal data generated by 
neuroimaging experiments, neuroimaging data have always required 
custom fi le formats, and in the 1990s image fi le formats proliferated. 
Fortunately, the NIfTI standard (Cox et al., 2004) has made major 
inroads as a standard fi le format for MRI data. An example of its use 
in NinPy is seen in Code Fragment 2. Other formats still dominate in 
EEG, MEG, PET, as well as NIN, and a number of legacy formats still 
persist with some frequency in MRI applications. Our goal has been 
to integrate NinPy programs with three key data formats: NIfTI, 
the Matlab-based format used by HomER (Huppert, 2006), and 
the broad standard HDF5. These formats enable broad interoper-
ability of the NinPy suite with existing tools for neuroimaging data 
analysis. NIfTI fi les are created, read and written through the use of 
the PyNIfTI package (Hanke, 2008), whereas the HomER fi le format 
can be read and written as a Matlab.mat fi le or HDF5 fi le (also read-
able by Matlab) containing multiple arrays with specifi c variable 
names. Reading and writing Matlab fi les is supported through scipy.
io.loadmat() and scipy.io.savemat(), and thus HomER fi les can be 
saved from appropriate variables in Python as follows:

scipy.io.savemat(‘outname.mat’,{‘d’:nindata,’t’:
timebase,’ml’:meas_list,’aux10’:auxiliary}).

import rpy2.robjects as ro

nin = nifti.NiftiImage(‘allsubj_contrast1.nii’)  # parameter file with subject by X by Y by Z dimensions

tags = numpy.loadtxt(‘allsubj_tags.txt’)         # columns: subjnum, age, pretest score, outcome score
header = [‘subj’,’age’,’pretest’,’outcome’,’nin’]
shape2D = (nin.data.shape[0],numpy.multiply.reduce(nin.data.shape[1:]))

nindata = numpy.reshape(nin.data, shape2D)       # flatten X, Y and Z dimensions (subj by voxel)

# Prepare to save 3 results (coef/sterr/T-score) for 4 terms (intercept,age,gender,nin) at each voxel
results = numpy.zeros((4,3,nindata.shape[1:]),numpy.Float)
for i in xrange(len(nindata.shape[1])):          # loop over all voxels
    # COLLECT NIN DATA FOR THIS VOXEL AND CREATE AN R DATA FRAME
    thisdata = make_RVector_list(tags)           # NINstats helper function for building data frames
    thisdata = thisdata +[ro.RVector(array.array('f',nindata[:,i]))]
    header = header +['nin']
    # CREATE THE DATA FRAME, WITH NAMES (using a dict alone segfaults rpy1.0rc1)
    tl = rlc.TaggedList(thisdata,tuple(header))
    df = ro.RDataFrame(tl)

    # FIT A MULTIPLE LINEAR REGRESSOIN MODEL WITH NIN AS A PREDICTOR
    formula = ro.r.formula(‘outcome ~ age + pretest + nin’) # use NIN data as predictor of outcome
    fittedmodel = ro.r.lm(formula,df)            # fit a linear multiple regression model

    # EXTRACT AND STORE RESULTS FORM THE MODEL FIT FOR THIS VOXEL
    summ = ro.r.summary(fittedmodel)
    ttable = summ[3] # retrieve estimated coefficients and t-table results
    for j in range(len(ttable)):
        results[j,0,i] = ttable[j][0]  # coefficient
        results[j,1,i] = ttable[j][1]  # sterr
        results[j,2,i] = ttable[j][2]  # T-value

CODE FRAGMENT 2 | NinSTATS code fragment to perform statistical analysis with functional NIN data as a predictor of outcome.
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FUTURE EXTENSIONS
MULTIMODAL INTEGRATION
While we have only briefl y discussed MRI integration with regard 
to Monte Carlo simulation, there are additional advantages asso-
ciated with integrating NIN with MRI and other neuroimaging 
modalities. For example, the segmented MRI images (Figure 6B) 
could be used to constrain the NIN image reconstruction process 
by restricting reconstructed brain activity modulations to gray 
matter, thereby not allowing the estimated signal changes to occur 
in scalp, skull, cerebrospinal, or white matter tissue compart-
ments. As another example, automatic identifi cation of optical 
sources and detectors within the MRI space (the white fi ducial 
markers above the head in Figure 6A) could be used as inputs 
to the Monte Carlo simulations or to provide more accurate 
co-registration of NIN statistical parametric maps with under-
lying brain anatomy.

While integration with EEG, MEG, and other neuroimaging 
technologies is occurring at the experimental level, integration at 
the data analysis and interpretation levels is a relatively underde-
veloped area. One interesting possibility for integration involves 
the optical “fast signal”. NIN studies from several labs have shown 
changes in non-invasive optical signals on timescales much faster 
than typical hemodynamic changes, less than 100 ms as compared 
to 2–3 s or more (Franceschini and Boas, 2004; Gratton et al., 1997; 
Morren et al., 2004). Since the nature of this fast NIN signal is an 
area of active investigation, close integration of NIN measurements 
with more direct EEG and MEG measurements of neuronal activity 
could lead to a fuller understanding of the nature of this optical 
fast signal. Integration with new, high-speed, MRI acquisition tech-
niques (Lin et al., 2008a,b) may also help shed light on the nature of 
this optical fast signal and whether or not there might be analogous 
fast hemodynamic signal modulations detectable using MRI.

BA

30 s1 
a.

u.
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FIGURE 7 | NIN data visualization. (A) Schematic of the NIN sensor 
region. (B) Sensor space display, with time series plots positioned at the 
source (Sx) and detector (Dx) locations. Individual time series plots show time 
on the x-axes and oxy-hemoglobin (red) and deoxy-hemoglobin (blue) 
concentrations on the y-axes. Yellow highlights the interval in which the 
subjects were engaged in a sequence learning task. A scale bar in the center 
indicates that the task period was 32 s in duration. Concentration is 

shown in arbitrary units (relative concentration), due to an unknown 
scattering factor. (C) Example NIN image of task-related oxy-hemoglobin 
regression parameter Z-scores from (B) corresponding to the rectangular 
area shown in (A). (D) The same data as (C), masked at a statistical threshold 
of p < 0.05 corrected for multiple comparisons. Color bar for Z-scores in both 
(C) and (D) appears in (D). Plots B–D were made with NinDISP using 
matplotlib.
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ADVANCED VOLUME VISUALIZATION
Combining structural and functional neuroimaging results requires 
advanced volume visualization tools. Thus far, we have sought to 
capitalize on the popularity of the NIfTI fi le format, as it allows 
convenient utilization of a range of existing MRI 3D visualization 
packages. However, with the development of Python neuroimag-
ing tools such as NiPy (NiPy Development Team, 2006), as well as 
the impressive capabilities afforded by Python bindings to both 
the Visualization Toolkit (via vtk’s own Python bindings, or via 
Enthought’s tvtk) and OpenGL (via PyOpenGL), adding native 
Python 3D visualization for neuroimaging is expected in the near 
future. Incorporating 3D display capabilities in NinPy would facili-
tate the sorts of fl exible and customized visualization often absent in 
existing packages. Visualization in three dimensions is often critical 
to developing better insights into the structure of high-dimensional 
datasets. The ease with which customization can be made with 
Python scripting, coupled to a high-level visualization package, is 
expected to be widely adopted in a broad array of neuroimaging 
data visualization applications.

CONCLUSION
The relatively short time needed to construct the NinPy suite of 
tools was made possible given the substantial prior efforts refl ected 
in the packages listed in Table 3. Thanks to these developments, 
we can foresee completion of an end-to-end, Python solution for 

developing, conducting, analyzing and displaying the results of NIN 
experiments. Key enabling technologies that have appeared over 
the past few years include the stabilization of numeric arrays and 
processing (NumPy), the advancement and continuing stabilization 
of a broad base of scientifi c algorithms (SciPy), the development 
of a robust interface to the R statistical modeling package (RPy), 
and substantial advances in the mechanisms for stimulus, array 
and volume visualization (e.g., PsychoPy, Matplotlib and Chaco). 
We have found that the use of Python as the core programming 
language for our NIN programs provides signifi cantly better con-
trol over most aspects of an NIN experiment than is possible with 
existing packages. Importantly, our development efforts have not 
required any time-consuming coding or debugging in C, nor do 
users need to learn multiple programming or scripting languages 
to complete a functional neuroimaging experiment. We have found 
that, particularly for complex problems including optical image 
reconstruction, hierarchical statistical analysis, or volume visualiza-
tion, Python can serve as a convenient, powerful, and maintainable 
scripting “glue”. This architecture allows us to rapidly deploy an 
operational end-to-end Python solution, allowing later conversion 
of non-Python algorithms as resources and motivation permit. 
Reducing our dependence on multiple separate software tools or 
programming languages for stimulus presentation, data acquisi-
tion, data analysis, image reconstruction, statistical modeling, and 
graphical display greatly simplifi es the experimental working envi-
ronment, and has substantially increased scientifi c productivity. In 
addition, the single-language solution facilitates the development 
and distribution of easy-to-use, self-contained packages for con-
ducting NIN experiments in mobile or remote settings where a 
dedicated experimenter may not be available. As more open-source 
tools are ported to Python, further improvements in productivity 
are envisioned.

We are releasing the source code for all of the NinPy modules 
for unrestricted use as each sub-module reaches beta level software 
quality. Completed modules will be available under BSD licensing10, 
or by contacting the authors.
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Table 3 | Versions utilized and website information for major modules 

and tools used in the NinPy tool suite.

Module Version Website

cgkit 2.0.0a7 http://cgkit.sourceforge.net

chaco/traits 2.5.2001 http://www.enthought.com/products/epd.php

matplotlib 0.98.3 http://matplotlib.sourceforge.net/

mlabwrap 1.0 http://mlabwrap.sourceforge.net/

numpy 1.0.4 http://www.numpy.org/

psychopy 0.97.0 http://www.psychopy.org

pynifti 0.20090303.1 http://niftilib.sourceforge.net/pynifti/

pyparallel 0.2 http://pyserial.wiki.sourceforge.net/pySerial

pyserial 2.2 http://pyserial.wiki.sourceforge.net/pySerial

R 2.8.0 http://www.r-project.org/

rpy 2.0.1 http://rpy.sourceforge.net/

scipy 0.6.0 http://www.scipy.org/
10www.nmr.mgh.harvard.edu/Neural_Systems_Group/software.html
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Network features and pathway analyses of a signal 
transduction cascade
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The scale-free and small-world network models refl ect the functional units of networks. However, 
when we investigated the network properties of a signaling pathway using these models, no 
signifi cant differences were found between the original undirected graphs and the graphs in 
which inactive proteins were eliminated from the gene expression data. We analyzed signaling 
networks by focusing on those pathways that best refl ected cellular function. Therefore, our 
analysis of pathways started from the ligands and progressed to transcription factors and 
cytoskeletal proteins. We employed the Python module to assess the target network. This 
involved comparing the original and restricted signaling cascades as a directed graph using 
microarray gene expression profi les of late onset Alzheimer’s disease. The most commonly used 
method of shortest-path analysis neglects to consider the infl uences of alternative pathways that 
can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced 
included k-shortest paths and k-cycles in our network analysis using the Python modules, which 
allowed us to attain a reasonable computational time and identify k-shortest paths. This technique 
refl ected results found in vivo and identifi ed pathways not found when shortest path or degree 
analysis was applied. Our module enabled us to comprehensively analyse the characteristics 
of biomolecular networks and also enabled analysis of the effects of diseases considering the 
feedback loop and feedforward loop control structures as an alternative path.

Keywords: signal transduction, Alzheimer’s disease, network analysis, k-shortest path analysis, python, network 

robustness, graph theory, hippocampal CA1

are known to be regulated by gene expression patterns, as well 
as adapting to the external environment (Luscombe et al., 2004). 
To characterize the dynamic nature of protein networks, investi-
gations into the effects of diseases on gene expression have been 
initiated for Alzheimer disease by means of diffusion kernels and 
microarray data (Ma et al., 2007) and for cancer by means of gene 
expression data and network information (Chuang et al., 2007). 
However, because networks function as multiple-complex regula-
tory structures, it is insuffi cient to study disease dynamics in protein 
networks through analysis of a single factor affecting the network 
or through analysis of structural properties.

In the present study, we investigated the protein networks associ-
ated with Alzheimer’s disease through feature analysis of regulated 
signal molecules, as well as by structural analysis of network com-
ponent. Intraneuronal amyloid β (Aβ) is reported to be a major 
important factor for Alzheimer’s disease. Aβ, which is the product 
of the protein catabolic enzyme, is normally transported out of 
cells (Iwata et al., 2000). In Alzheimer’s disease the aggregation and 
deposition of insoluble Aβ leads to nerve cell damage and is thought 
to be the pathogenic mechanism of Alzheimer’s disease (Hardy and 
Selkoe, 2002). Studies of Aβ and protein catabolic enzymes, like 
β-secretase, have focused on changes in certain proteins. Although 
a few studies have focused on the entire network, the mechanism 

INTRODUCTION
Network analysis has lead to the discovery of new components of 
the metabolic pathways in metabolic pathways and in signal trans-
duction cascades. Examples of network analysis models include 
the small-world network model (Jeong et al., 2000), in which 
the average path length is shortened, and the scale-free network 
model (Wuchty, 2001), which has a degree distribution that fol-
lows a power law. Multilayer structural and motif analyses (Milo 
et al., 2002; Shen-Orr et al., 2002) have shown that metabolic path-
ways and protein interactions have more notable cluster structures 
(Ravasz et al., 2002) than random networks, and that metabolic and 
signaling pathways behave like complex regulatory networks. In 
recent research on diseases, network analyses, like degree analysis 
of cancer-related genes using gene regulatory networks to identify 
the genes (Futreal et al., 2004) and various other analyses of dis-
ease genes, revealed structural effects of disease on biomolecular 
networks (Ideker and Sharan, 2008). Taken together, these fi ndings 
suggest that cellular functions can be modelled as network struc-
tures and that investigation of disease phenomena through network 
analysis has the potential to reveal novel properties and pathways 
in biomolecular pathways associated with disease states?

The studies mentioned above assume that proteins do not 
change in the absence of external stimulation. Proteins in networks 

Edited by:

Rolf Kötter, Radboud University 
Nijmegen, The Netherlands

Reviewed by:

Marcus Kaiser, Newcastle University, 
UK
Bruce Southey, University of Illinois, 
USA

*Correspondence:

Shinichi Kikuchi, Institute for Advanced 
Biosciences and Faculty of 
Environment and Information Studies, 
Keio University, Endo 5322, Fujisawa 
252-8520, Japan. 
e-mail: kikuchi@sfc.keio.ac.jp

1

2

3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

41



Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 | 

Yanashima et al. Network analysis of signaling pathways

underlying the accumulation of Aβ has not been discovered. Thus, 
it is still unclear if the accumulation of Aβ is the direct cause of 
Alzheimer’s disease (Heneka and O’Banion, 2007). Here, we 
aimed to use a network model to discover the characteristics of 
structures that most affect the hippocampal signal transduction 
pathway, and the regulatory mechanisms controlling gene expres-
sion in Alzheimer’s disease. We generated a network model for the 
Alzheimer’s disease patient signal transduction cascade, referred 
to as the Alzheimer’s disease network (“ADN”), from the signal 
transduction pathway in the hippocampal CA1 region (Ma’ayan 
et al., 2005) and from gene expression data derived from patients 
with late onset Alzheimer’s disease (Liang et al., 2007).

In order to understand the network form, we conducted feature 
analysis of signal molecules in the signal transduction cascade by 
measuring k-core, degree, closeness, betweenness, the change in 
the average shortest path length, and the change in the articula-
tion points, following the removal of the Alzheimer’s-related sig-
nal molecules from the network. In our structural analysis of the 
network, we considered the network density, average clustering 
index, and average shortest path length. Regulatory structures, like 
the feedback loop and the feedforward loop, are more frequent in 
hippocampal signaling pathways than in the randomly generated 
networks (Ma’ayan et al., 2005). Therefore, we analysed feedback 
loops and feedforward loops in the model network using the k-
cycle structure (Nochomovitz and Li, 2006). The k-cycle structure 
is defi ned as a network structure in which duplicating nodes are 
removed from the network when one node to the in-neighbours can 
be reached by the k-step. For analysis of pathway characteristics, the 
extracellular ligand was set as the input and cytoskeletal proteins 
and transcription factors were set as the output. Since there are 
many alternative signal transduction pathways (Coulson, 2006), 
we used the k-shortest pathway (Rahman and Schomburg, 2006) 

instead of the shortest path or path length for pathway analysis. 
With our model we were able to reproduce the Alzheimer’s disease 
shift in gene expression in the hippocampal signal transduction 
pathway and the shift in signal transduction in Alzheimer’s disease 
revealed in earlier studies.

MATERIALS AND METHODS
ANALYSIS PACKAGE FOR BIOMOLECULAR NETWORKS
In our study, we developed the network analysis module “Analysis 
Package for Biomolecular Networks (BioNetpy)” using the Python 
software program. Python is suitable as an open resource because 
it excels in readability over other program languages and has supe-
rior system execution by utilizing the just-in-time compiler, psyco1. 
The BioNetpy module was constructed using the Python network 
analysis module NetworkX-0.3.62 and igraph-0.4.53. We also used 
the numerical package Numpy-1.0.4, which is a Python numeri-
cal module4. The BioNetpy module performs the three analysis 
methods outlined in Figure 1.

BioNetpy and Supplementary Material can be downloaded 
from the following website: http://medcd.iab.keio.ac.jp/bionetpy/; 
http://www.frontiersin.org/neuroinformatics/paper/10.3389/ 
neuro.11/013.2009.

ANALYSIS OF GENE EXPRESSION DATA FOR MODEL ASSEMBLY
We used a network expressed by a directed graph of the signal trans-
duction pathway of the hippocampal CA1 region in humans (Ma’ayan 
et al., 2005). This network contains 570 nodes (signal  molecules) 

FIGURE 1 | Analysis methods of the BioNetpy module. We used the BioNetpy module to perform the following three types of analyses: (A) node feature analysis 
(centrality and changes in indicators upon removal of node), (B) structural properties, and (C) characteristics of pathways (analysis of network similarity and 
pathways analysis). BioNetpy and Supplementary Material can be downloaded from http://medcd.iab.keio.ac.jp/bionetpy/.

1http://psyco.sourceforge.net/
2https://networkx.lanl.gov/
3http://igraph.sf.net/
4http://numpy.scipy.org/
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and 1,333 edges (reactions). The edges can be categorized into three 
types of information defi ned as active, inactive, and bidirected (bidi-
rectional activation or inactivation)  information. We extracted gene 
expression data derived from GeneChip (Affymetrix) analysis of 
human hippocampal CA1 region. We applied the Bioconductor 
2.2 program to analyse gene expression data (Reimers and Carey, 
2006). Bioconductor can be applied to the Python module by using 
the Rpy program5. We used the Human Genome U133 Plus 2.0 
Array from the Bioconductor affy package (Gautier et al., 2004). We 
extracted Alzheimer’s disease-related genes by analyzing GSE5281, 
which is a set of gene expression data derived from patients with 
late-onset Alzheimer’s (n = 10) and controls (n = 13) (Liang et al., 
2007) that has been recorded on the GEO database. We normalized 
the data by the distribution-free summarization method, which 
has been tested with the Spike-ins benchmark test on the Human 
Genome U133 Plus 2.0 Array and is known for its high-resolution 
summarization of microarray data (Chen et al., 2007). After data 
normalization, we used the Bioconductor limma package (Smyth, 
2004) to defi ne genes as Alzheimer’s disease-related genes within 
the P < 0.005 threshold by employing the empirical Bayes t-statistic 
test (Jeffery et al., 2006). We matched genes and the corresponding 
signal molecules by correlating information from the NCBI Gene 
ID (Maglott et al., 2007) and Swiss-Prot ID (Bairoch et al., 2004) 
and defi ned signal molecules coded by Alzheimer’s disease-related 
genes as Alzheimer’s disease-related signal molecules. We conducted 
feature analyses by measuring k-core, betweenness centrality, close-
ness centrality, and degree centrality. We also analysed changes in the 
shortest path length, which is an indicator of a small-world network 
(Mason and Verwoerd, 2007), and changes in articulation points, 
which is an indicator of network connectivity, after removing nodes 
from the Alzheimer’s disease-related signal molecule network. The 
k-core of a graph is the maximal subgraph in which each node’s 
degree is at least k. Betweenness centrality measures the importance 
of a node within a network. Nodes that occur on many short paths 
between other nodes have higher betweenness centrality than those 
nodes that do not. Closeness centrality is defi ned as the number of 
nodes minus one divided by the sum of the lengths of all shortest 
path lengths from and to the given node. Degree centrality is the 
number of nodes that a given node is connected to. We were able 
to analyse the characteristics of signal molecules in the network on 
multiple dimensions using these indicators.

STRUCTURAL PROPERTIES OF HIPPOCAMPAL PATHWAYS OF PATIENTS 
WITH ALZHEIMER’S DISEASE
We conducted a structural index analysis by generating an ADN 
after removing Alzheimer’s disease-related signal molecules from 
the control network (“CN”). We used a k-cycle structure for the 
analysis of feedback loop in the networks. The k-cycle structure 
is defi ned as a network structure from which duplicating nodes 
are removed when one node can be reached from the in-neigh-
bors. An earlier study (Ma’ayan et al., 2005) and our pilot study 
shows that 90% of all nodes can be reached within 9 steps for 
input (n = 30). Thus, we defi ned pathways within 9 steps of each 
other to be important for intercellular signal transduction. Because 
network structure depends on the number of nodes, we generated 

a randomly removed network (“RRN”) by removing nodes from 
the CN to equal the number of nodes of the ADN. We then limited 
the network density, average clustering index, and average shortest 
pathway length change of this new CN to 5% and compared the 
results. The k-cycle data can be analysed according to Eq. 1:

C
n

n i

n

k

=
=

∑ cycle Node( )

1

 (1)

where C
k
 represents the number of k-cycle structures in the net-

work. The function cycle
n
 represents the number of cycle structures 

can be reached from the in-neighbors.

CHARACTERISTICS OF HIPPOCAMPAL SIGNAL PATHWAYS IN PATIENTS 
WITH ALZHEIMER’S DISEASE
Cellular processes are controlled by many alternate signal transduc-
tion pathways (Coulson, 2006). For this reason, we analysed the k-
shortest pathway instead of analyzing pathway length or shortest 
pathways. We also generated an RRN and compared the k-cycle of 
the RRN with that of the ADN. Through exploration of the k-shortest 
path length, the number of pathways was carried out by calculating 
the shortest pathway length between nodes and by using Depth-First 
Iterative-Deepening (Korf, 1987). We used the k-shortest pathway 
with extracellular ligands (n = 30) as input and cytoskeletal pro-
teins (n = 24) and transcription factors (n = 35) as output to defi ne 
1,770 pathways for analysis. We defi ned the input and output of 
two important functions of the neural cell, neuronal plasticity and 
neurite outgrowth, to analyse the effects of Alzheimer’s disease on 
neural functions. Neuronal plasticity is controlled by depolariza-
tion of the postsynaptic cell by binding of glutamate to its receptors. 
Consistent with the network analysis described above, activation of 
these receptors activates the cAMP response element-binding protein 
(CREB), thus increasing the level of amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor (Hayashi et al., 2000). For 
these reasons, we set glutamate as the starting point of the pathway 
and CREB as the endpoint for the neuronal plasticity pathway. The 
direction of neurite outgrowth is determined by guidance factors 
(Dickson, 2002). Therefore, we set the guidance factors acetylcho-
line (ACh), insulin-like growth factor I (IGF1), nerve growth factor 
(NGF), and Ephrin at the start of the pathway, and tubulin, a micro-
tubule protein, at the endpoint. An evaluation of robustness, defi ned 
in Eq. 2, was conducted by comparing the robustness values of all 
inputs and outputs of the ADN with that of the CN and RRN.

We also conducted a k-shortest pathway analysis of the path-
ways involved in neural cell death, the pathways that link directly 
to the amyloid β protein precursor (APP), and the pathways that 
link extracellular ligands to transcription factors or cytoskeletal 
proteins. Neuronal cells are known to enter apoptosis readily upon 
receiving signals of extracellular death ligands or DNA damage 
(Jellinger, 2006). We defi ned the starting points of the neural death 
pathway as fas ligand (FasL) and tumor necrosis factor-α (TNFα), 
which induce apoptosis, and the endpoint as the DNA fragmenta-
tion factor (ICAD), an inhibitor of caspase-activated DNase, which 
fragments DNA. In addition, we defi ned the pathways between 
all ligands and included the APP-binding family A member 1 
(MINT-1) (Yoon et al., 2007) and caspase 3 (Su et al., 2002) in 
the APP-related pathway. These pathways are shorter than that of 
neural plasticity and neurite outgrowth and can traverse from the 5http://rpy.sourceforge.net/
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input to the output through a shorter path. Therefore, we compared 
the number of pathways having the same input and output set in 
the total number of pathways and the number of pathways in the 
RRN in total number of pathways. The number of steps, k, used in 
the k-shortest pathway analysis in the k-cycle structure, was defi ned 
as 9 steps, using the following equation:

R
N

ij
ij X

X

=
− mean

SD
 (2)

where R is the robustness value (R-value) of the pathway. In the 
pathways from glutamate to CREB and ACh, NGF, IGF1 and from 
Ephrin to tubulin, R is the difference between the numbers of k-
shortest paths obtained by all inputs to outputs in all k-shortest 
path sets, which is defi ned as X. In the pathways from FasL and 
TNFα to ICAD, including all inputs to MINT-1 and caspase 3, R 
is the difference in the number of k-shortest paths between node i 
and node j obtained in the RRN sets, which is defi ned as X in this 
case. N

ij
 is the k-shortest path number from node i to node j in 

the network of interest. Mean
X
 is the mean of all k-shortest path 

sets or nodes in the RRN sets. SD
X
 is the standard deviation of all 

k-shortest path sets or nodes in the RRN sets.
Equation 3 below shows the interpretation of network similar-

ity using a single value (Barrett et al., 2006) for the vector space 
of inputs and outputs in a network using a matrix expression for 
equal-length shortest path (Borgwardt and Kriegel, 2005), which 
indicates pathways with equal steps. Our study analyzes the change 
in the entire pathway at step e.

S
c o

c o

e e

e e
= ⋅

⋅
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⎜
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⎞

⎠
⎟
⎟

arc cos  (3)

where S represents network similarity between the fi rst mode of 
singular value c (equal-length shortest-path matrix of CN) and o 
(equal-length shortest-path matrix of ADN or RRN); e represents 
the specifi c step value of the equal-length shortest-path matrix.

RESULTS
FEATURE ANALYSIS OF SIGNAL MOLECULES
Through empirical Bayes t-statistics, we extracted 76 Alzheimer’s 
disease-related genes known to downregulate actin (Harigaya et al., 
1996) and beta-catenin (Li et al., 2007), resulting in a decrease in 
the level of calcium/calmodulin-dependent protein kinase type II 
(CaMKII) (Allison et al., 2000). Please refer to the Supplemental 
Material for a list of genes aforementioned. By observing the 
pathway functions of the signal molecules encoded by these 76 
genes, we found the largest changes in the actual numbers of mol-
ecules with Kinase and Adapter functions, and the largest percent-
age change for nodes in the Receptor and Bcl2Family functional 
groups, which decreased at rates greater than the rate of change 
for the network overall (13%; Table 1). We conducted a feature 
analysis of Alzheimer’s disease-related signal molecules and other 
molecules by measuring k-core, betweenness, closeness, degree, the 
change in average shortest path length, and the change in articula-
tion points. There were no signifi cant differences in these meas-
urements between Alzheimer’s disease-related signal molecules 
and other molecules (P < 0.05, Mann–Whitney U-test; Table 2). 

When we removed these Alzheimer’s disease-related signal mol-
ecules, the ADN contained 494 nodes and 974 edges. In total, 91% 
of the input–output sets were connected in the CN (average path 
length = 5.94), and 50% of those sets were connected in the ADN 
(average path length = 6.68).

k-CYCLE ANALYSIS OF ADN
By comparing the number of k-cycle structures (k = 4, 5, …, 9) of 
RRN, CN, and ADN, we showed that the all-step k value decreased 
(Figure 2). However, the graph shape was similar for each RRN 
and for each cycle structure number corresponding to the steps 
in the random sampling network; the correlation coeffi cient 
between ADN/CN and RRN/CN was 0.99. This fi nding also dem-
onstrates that network size, not external factors, has an effect on 
cycle structure.

k-SHORTEST ANALYSIS OF ADN
The k-shortest pathway analysis (k = 9) of CN, ADN, and RRN 
showed no notable difference in distribution shape between all 
inputs and outputs. There were also no differences in the average 
network pathway between ADN (67 ± 216) and RRN (144 ± 342) 

Table 1 | Number of constituent signal molecules on CN and ADN. 

“Other” denotes small molecules or histones. The actual connection graph 

of the 570 nodes and 1,333 edges of CN and the 494 nodes and 974 edges 

of ADN is shown. We extracted 76 Alzheimer’s disease-related signal 

molecules known to decrease actin, beta-catenin, and CaMKII. This group of 

genes represents 13% of the CN. By observing the pathway functions of 

these 76 Alzheimer’s disease-related signal molecules, we discovered that 

nodes in the Bcl2Family and Receptor groups decreased at a rate greater 

than the network as a whole.

Function Number of signal molecules in networks

 ADN CN CN–ADN (%)

Adapter 89 103 14 (14)

Kinase 71 86 15 (17)

Receptor 39 51 12 (24)

Transcriptional factor 28 35 7 (20)

Ligand 30 30 0 (0)

Cytoskeletal protein 21 24 3 (13)

Vesicle 17 21 4 (19)

Ion channel 17 20 3 (15)

GEF 19 20 1 (5)

Inhibitor 17 18 1 (6)

GAP 13 13 0 (0)

GTPase 11 13 2 (15)

PDE 9 11 2 (18)

G protein 9 10 1 (10)

Ribosome 10 10 0 (0)

Activator 8 8 0 (0)

Bcl2Family 6 8 2 (25)

Protease 8 8 0 (0)

Phosphatase 15 16 1 (6)

Other 57 65 8 (12)

 494 570 76 (13)
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at k = 9. Thus, there was no difference in the effect of Alzheimer’s 
disease-related signal molecules and random signal molecule 
on any of the inputs or outputs. Next, we conducted an analysis 
of change in robustness (k = 4, 5, …, 9) for pathways associated 
with neuronal plasticity and neurite outgrowth, and for pathways 
associated with neuronal death and APP (Figure 3). The change 
in robustness was the greatest for the pathways associated with 
neuronal plasticity (Walsh et al., 2002) for ADN subtracted by CN 
and ADN subtracted by RRN, for each k value. Likewise, for the 
pathways associated with neurite outgrowth, there was a decrease 
in robustness for those involving NGF (Tuszynski et al., 2005), 

which has a maintenance function in nerve cells, and ACh (Hoshi 
et al., 1997), which decreases as Aβ accumulates. For the pathways 
associated with neuronal plasticity, the decrease in robustness for 
NGF and ACh was within the top 10% of all combinations. The 
set that showed the largest change in robustness was the pathway 
between glutamate and actin signal transduction (R-value was 
−14.9, −13.6 and −1.29 for ADN subtracted by CN, ADN sub-
tracted by RRN and RRN subtracted by CN). The same change 
in robustness for the glutamate to actin signal transduction path-
way was observed between ADN and RRN and between ADN 
and CN. This fi nding suggests that these changes in robustness 
do not depend on signal molecule number, network density, the 
average clustering index, or the average shortest path length. In the 
analysis of the pathways associated with neural cell death, there 
were no changes in robustness observed for the FasL to ICAD 
pathway; however, CN and RRN showed increases in each step of 
the TNFα to ICAD and caspase 3 pathways. TNFα and caspase 3 
correlate positively with the accumulation of Aβ (Cacquevel et al., 
2004; McCusker et al., 2001). Furthermore, these results show that 
Alzheimer’s disease-related signal molecules have more selective 
effects on neural plasticity and neurite outgrowth than random 
signal molecules.

Analysis of certain inputs to all outputs showed a large decrease 
in signal molecules associated with neuregulin (NRG), which is a 
substrate of BASE1 (Willem et al., 2006); with NGF, which is the 
drug target in Alzheimer’s disease; with reelin, which is thought to be 
related to Alzheimer’s disease (Botella-Lopez et al., 2006); and with 
dopamine, which is a neurotransmitter (Figure 4). By  comparison, 
epidermal growth factor (EGF) and the neurotrophin family, which 
includes brain-derived neurotrophic factor (BDNF) and neuro-
trophin 4 (NT4), showed an increase in associated signal molecules. 
The level of BDNF is increased in patients with Alzheimer’s disease 
and in the hippocampus of a transgenic mouse model of Alzheimer’s 
disease (Laske et al., 2006; Tang et al., 2000). However, our fi nding 
that the R-value of inputs was between 0.8 and −1.2 suggests that 
the effect of BDNF on robustness in Alzheimer’s disease is small. 
Analysis of all inputs to certain outputs revealed that the largest 

Table 2 | Network feature analysis of signal molecules. Network feature analysis of Alzheimer’s disease-related signal molecules and other signal 

molecules in the network (“Others”) performed by measuring k-core, betweenness, closeness, degree, change in average shortest path length, and change 

in articulation points (mean ± SD). There were no signifi cant differences in these measurements between Alzheimer’s disease-related signal molecules and 

other signal molecules in the network (P < 0.05, Mann–Whitney U-test). This network feature is the same as that of disease-related molecules defi ned in 

earlier studies. IN means the incoming paths OUT means the outgoing paths, and ALL means both incoming and outgoing paths.

 Centrality analysis Node removal analysis

 k-core Betweenness Closeness Degree Average path length Articulation point

AD

ALL 0.61 ± 1.24 0.006 ± 0.013 0.21 ± 0.18 0.012 ± 0.015 5.453 ± 0.024 107.78 ± 0.75

OUT 0.66 ± 1.05 0.006 ± 0.013 0.27 ± 0.30 0.012 ± 0.015  

IN 2.62 ± 1.33 0.007 ± 0.016 0.24 ± 0.04 0.009 ± 0.013  

OTHERS

ALL 0.70 ± 1.10 0.005 ± 0.011 0.21 ± 0.17 0.010 ± 0.011 5.452 ± 0.022 107.83 ± 0.64

OUT 0.76 ± 1.42 0.005 ± 0.011 0.21 ± 0.23 0.010 ± 0.011  

IN 2.59 ± 1.25 0.006 ± 0.013 0.24 ± 0.04 0.008 ± 0.009  

FIGURE 2 | Result of k-cycle structure rate of ADN/CN and RRN/CN. The 
X-axis represents step k and the Y-axis represents the rate of decrease. The 
error bar represents a top value of 95% and a bottom value of 5%. We used 
RRN with a random Alzheimer’s disease-related signal molecule set, in which 
the rate of change in the three indicators (network density, average clustering 
index, and average shortest path length) is within 5%. By comparing the 
number of k-cycle structures (k = 4, 5, …, 9) of RRN, CN, and ADN, we 
showed that the all-step k value decreased. However, the graph shape was 
similar for each cycle structure number corresponding to the steps; the 
correlation coeffi cient between ADN/CN and RRN/CN was 0.99. This fi nding 
also demonstrates that network size, not external factors, has an effect on 
cycle structure.
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decrease in associated signal molecules was for key factors in neural 
activity, including actin and tubulin, which are cytoskeletal proteins 
regulating neural plasticity and neurite outgrowth, and CREB, which 
is a transcription factor (Figure 4). By comparison, transcription 
factors, such as the nuclear factor of activated T cells (NFAT), and 
actin-binding proteins, such as α-actinin and profi lin, showed an 
increase in associated signal molecules. Because the R-value range 
was between 1.2 and −4.3, the result for the comparison of input to 
total output implies that Alzheimer’s disease affects the expression 
of output molecules more than input molecules.

The analysis of the change in similarity between the input and 
output sets of CN, ADN, and RRN, shown as a matrix, indicate that 
ADN is lower than RRN when e = 5 and 9, but higher than RRN 
when e = 6, 7 and 8 (Figure 5).

DISCUSSION
MICROARRAY AND CENTRALITY ANALYSIS OF SIGNAL MOLECULES
In our study, we conducted a feature analysis of Alzheimer’s disease-
related signal molecules in a network. We conducted the analysis on 

genes from a large sample of patients in the early stage of late-onset 
Alzheimer’s disease. It is thought that new information on a disease 
pathogenesis can be gained by observing changes in a signaling 
pathway produced by the changes in the stages of Alzheimer’s dis-
ease. Data similar to that used in the present study, namely the reg-
istered expression data derived from the hippocampal CA1 region 
of Alzheimer’s patients at different stages (Blalock et al., 2004), 
may be used for a similar analysis in the future. The data from the 
 aforementioned study covers the four categories of Alzheimer’s 
disease status termed control, incipient, moderate, and severe. 
Therefore, we believe that we will be able to conduct time-series 
network analyses of these symptoms. The present study focuses only 
on gene expression data, yet Alzheimer’s disease characteristics not 
regulated by gene expression may also be considered by using alter-
native experimental methods, for example, the large-scale databases 
from other in vivo experiments (Bertram et al., 2007) or positron-
emission tomography (PET) studies (Tuszynski et al., 2005).

In the feature analysis, we found no signifi cant difference in 
signal molecules for all indicators. By comparison the average 

FIGURE 3 | Pathway robustness: individual input–output relationships in 

ADN subtracted by CN, ADN subtracted by RRN, and RRN subtracted by 

CN (k = 4, 5, …, 9). (A) Robustness changes in the pathways associated with 
neuronal plasticity: input is glutamate and output is CREB. (B–E) 
Robustness changes in the pathways associated with neurite outgrowth: 
inputs are ACh, Ephrin, IGF1, and NGF, and output is tubulin. The decrease 

in robustness was large for the pathways involved with NGF, which has a 
maintenance function in nerve cells, and ACh, which decreases as Aβ 
accumulates. (F, G) Change in the number of pathways associated with 
neural cell death: inputs are FasL and TNFα, and output is ICAD. (H, I) 
Accumulation of APP: all inputs to MINT-1 as output (H) and to caspase 3 
as output (I).
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of indicators including degree and betweenness increased, for 
Alzheimer’s disease-related signal molecules compared to the 
other signal molecules. This trend is the same as that for charac-
teristic disease-related genes defi ned in earlier studies (Ideker and 
Sharan, 2008). Changing the threshold for defi ning Alzheimer’s 
disease-related genes has an effect on the results of gene expres-
sion data analysis In addition, it is diffi cult to analyze indicators 
like degree and betweenness, due to the method of calculating 
substances at the ends of networks. For this reason, substances 
like ACh and NGF, which are located at the ends of networks 
and are targets of drug development, require a combination of 
signal molecule analysis and pathway analysis that controls the 
input and output data. Therefore, additional fi ndings on the 

pathogenesis of Alzheimer’s disease may be discovered through 
additional feature analysis of networks for data other than gene 
expression.

NETWORK STRUCTURE
In the analysis of k-cycle structure, we discovered that k-cycle 
numbers decreased in all steps in the ADN/CN compared with 
that in RRN/CN and that the rate of decrease increased accord-
ing to the step number. We also discovered that RRN had more 
k-cycle structure than ADN. However, since the decreasing rate 
at each step was the same in ADN and CN, the change in k-cycle 
number in this study has a larger effect on the network scale than 
the Alzheimer’s disease-related signal molecules. Moreover, the 

FIGURE 4 | Robustness of inputs and outputs in ADN subtracted by CN, 

ADN subtracted by RRN, and RRN subtracted by CN (k = 9). (A) Robustness 
analysis of the pathway from certain ligands to all outputs (transcription factors 
and cytoskeletal proteins). The R-value range of inputs was between 0.8 and 
−1.2. Robustness analysis showed a large decrease in signal molecules 
associated with NRG, which a substrate of BASE1. EGF and the neurotrophin 
family, which includes BDNF and NT4, showed an increase in associated 
signal molecules. (B) Robustness analysis of the pathway from all ligands to 
certain transcription factors (R-value range, −2.1 to 1.1). (C) Robustness 

analysis of the pathway from all ligands to certain cytoskeletal proteins 
(R value range, −4.3 to 1.3). Robustness analysis of the key factors in neural 
activity in (B) and (C) revealed that the largest decrease in signal molecules 
was for those associated with actin and tubulin, the cytoskeletal proteins that 
regulate neural plasticity and neurite outgrowth, and for those associated with 
CREB, which is a transcription factor. By comparison, transcription factors, 
including the nuclear factor of activated T cells (NFAT), and actin binding 
proteins, such as α-actinin and profi lin, showed an increase in associated 
signal molecules.
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reason for the greater change in cycle structure by step number is 
believed to result from the effect of an increase in the number of 
nodes, which were randomly moved into the cycle. In future stud-
ies, it may be necessary to normalize changes in the network scale 
to conduct analyses on k-cycle structure. It must be noted that in 
this study, we focused on feedforward and feedback loops in the 
results of loop structure.

PATHWAY CHARACTERISTICS
Our k-shortest pathway analysis of pathway characteristics 
revealed no changes between the R-values of all inputs and out-
puts and the pathway average. This result suggests that the effect 
of Alzheimer’s disease on the hippocampal signal transduction 
pathway does not correspond to the number of pathways or to 
the distribution of k-shortest pathways. We also discovered that 
the ADN-CN and ADN-RRN sets of Alzheimer’s disease-related 
signal molecules affect specifi c pathways more selectively than 
the random sets. In addition, the glutamate-actin pathway plays 
an important role in the formation of mature spines in the rat 
brain (Serge et al., 2003), which showed the most signifi cant 
decrease in R-value, also showed the most signifi cant decrease 
in the RRN-CN pathway.

In the analysis of inputs, the decrease in robustness of NGF 
agreed with the decrease in robustness of Alzheimer’s disease. 
Increase in robustness was seen in both NT4 and BDNF. Earlier 
studies suggested that BDNF tends to increase in early-onset 
Alzheimer’s disease and decrease in late-onset Alzheimer’s disease. 
Also, insulin and IGF1 decreased in our study, but an increase 
in insulin and IGF1 was thought to occur as the result of an 
increase in Aβ in prior studies (Cole and Frautschy, 2007). An 
increase in the level of the EGF receptor and Aβ is reported to 
be correlated (Zhang et al., 2007), yet we found no evidence of 
this relationship in the present study. With respect to output fac-
tors, there were signifi cant decreases of R-value in cytoskeletal 
proteins, like actin and tubulin, or in CREB thus suggesting that 

Alzheimer’s disease  selectively affects the neural plasticity and 
neurite outgrowth. Moreover, increase was seen in actin bind-
ing proteins such as α-actinin and profi lin. The reason for the 
decrease in actin might be explained by the tendency of actin-
binding proteins to bind other proteins, such as cortactin, cofi lin, 
and β-catenin; thus, actin may perform other functions that are 
specifi c to Alzheimer’s disease. There was an increase in NFAT in 
ADN, which is expressed at the same time as BDNF (Groth and 
Mermelstein, 2003), and thus we believed that changes in NFAT 
synchronized with the changes in BDNF. In addition, the angle 
value in CN showed more change by step compared with RRN. 
This is because the effects of Alzheimer’s disease-related signal 
molecules are different at each step, and further interpretation 
of each step in the k-shortest pathway will be required in future 
studies. In our study, we succeeded in indicating changes caused 
by Alzheimer’s disease in signal transduction pathways through 
analysis of the features of signal molecules and of the properties 
of pathways in network structures.

CONCLUSION
We conducted a feature analysis on networks of signal molecules 
regulated by Alzheimer’s disease and analysed the properties of the 
network structure. In our analysis of signal molecules, we found no 
signifi cant difference in all indicators. Network structure analysis 
revealed that Alzheimer’s disease-related signal molecule sets have 
a specifi c effect on the average shortest path length, with effects on 
motif structures, like feedforward and feedback loops, controlling 
the functions of neuronal cells. Also, our analyses of pathway char-
acteristics extracted pathways related to neuronal plasticity, neurite 
outgrowth (including ACh and NGF), and neural death (including 
the TNFα pathway and caspase 3). In addition, similar changes in 
R-value in our study were observed for other Alzheimer’s disease 
signal transduction pathways. Similarity and k-shortest analysis 
of pathways showed that the effect of Alzheimer’s disease-related 
genes on networks depends on steps. This fi nding indicates that 
a k-shortest pathway analysis is more useful than a shortest path-
way analysis. In summary, the Python module use in the present 
study enabled us to comprehensively analyse the characteristics 
of biomolecular networks and to assess the effects of Alzheimer’s 
disease using feedforward and feedback loop control structures as 
alternative paths.
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module can be found online at http://medcd.iab.keio.ac.jp/ 
bionetpy/ and http://www.frontiersin.org/neuroinformatics/ 
paper/10.3389/neuro.11/013.2009.

FIGURE 5 | Network similarity analysis of CN, ADN, and RRN. The X-axis 
represents step e and the Y-axis represents the angle value (S). Error bars 
represent the SD. The results of the network similarity analysis for the input 
and output set are converted into a matrix and indicate that ADN is lower than 
RRN when e = 5 and 9, but is higher than RRN when e = 6, 7 and 8.
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Brainlab: a Python toolkit to aid in the design, simulation, and 
analysis of spiking neural networks with the NeoCortical 
Simulator
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Neuroscience modeling experiments often involve multiple complex neural network and cell 
model variants, complex input stimuli and input protocols, followed by complex data analysis. 
Coordinating all this complexity becomes a central diffi culty for the experimenter. The Python 
programming language, along with its extensive library packages, has emerged as a leading 
“glue” tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit 
called Brainlab, written in Python, that leverages Python’s strengths for the task of managing 
the general complexity of neuroscience modeling experiments. Brainlab was also designed to 
overcome the major diffi culties of working with the NCS (NeoCortical Simulator) environment 
in particular. Brainlab is an integrated model-building, experimentation, and data analysis 
environment for the powerful parallel spiking neural network simulator system NCS.

Keywords: python, toolkit, neuron, spiking neural network, simulator

it might as well be a modern mature programming language with a 
large scientifi c user community, rather than a custom-built, special 
purpose language. In Brainlab we selected the Python language 
for this purpose, and the rationale for our decision is given in the 
Section “Why Python?”.

Brainlab has been in use since 2003, with publications in 2005 
(Drewes, 2005a,b). In the intervening time, validation for the deci-
sions we made in the design of Brainlab seems to have come from 
several areas. Scientifi c support for Python, in the form of librar-
ies and the user community, has continued to grow and mature. 
Other projects have independently started that also use Python 
as a front-end modeling and back-end analysis tool for various 
other neural simulators. The NEST simulator3 system now offers 
a Python interface called PyNEST4. The NEURON5 simulator has 
added Python as an alternative interpreter to Hoc. PyGENESIS 
is now available for the GENESIS6 simulator. The PyNN7 system, 
part of the broader Neuralensemble initiative8, goes a step further 
and offers a common Python interface to NEURON, NEST, and 
PCSIM9 (but not NCS).

The Brian10 project differs from the systems mentioned so far, 
and also NCS, in that Brian is a self-contained Python neural simu-
lation solution, rather than a front-end to a simulation engine writ-
ten in a different programming environment. Brian still achieves 

INTRODUCTION
Spiking neural network simulator software systems continue to 
grow in speed and capacity (see Brette et al., 2007 for a recent sur-
vey). The complexity and size of the models simulated on these 
systems also continue to grow, threatening to overwhelm the ability 
of the experimenter to build the models, conduct parameterized 
experiments, and analyze the huge amounts of resulting data. The 
simulators themselves are generally extremely effi cient but mini-
malist tools written in low-level programming languages that are 
diffi cult to understand and modify by any but a few dedicated 
experts. Tools beyond the simulators themselves are needed to help 
the experimenter cope with the complexity of the experiments.

In our work with one such powerful spiking neural network sim-
ulator called NCS1 (the NeoCortical Simulator, described briefl y in 
the Section “NCS”) we encountered these general complexity bar-
riers. Our work was also hampered by problems specifi c to working 
with NCS, most notably the necessity of preparing network models 
for simulation using NCS’s restrictive neural modeling interface, 
the .in fi le format. We confronted all these problems together by 
creating a unifi ed Python toolkit called Brainlab2, which has greatly 
eased the burden of organizing and conducting our experiments 
in general, and working with NCS in particular.

The fundamental proposition of Brainlab is this: For the tasks 
of complex neuroscience model-building, experimentation, and 
analysis, nothing short of a full-fl edged programming language 
will suffi ce. No neural model fi le format or restricted special pur-
pose programming language for modeling will ultimately suffi ce 
for day to day work. And as long as a real programming language 
will be needed to hold the whole experimental enterprise together, 
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good single-processor simulation performance through the use of 
vectorized processing provided by the NumPy library, and it can 
also manage multiple jobs in parallel on a cluster computer system, 
but splitting a single large simulation onto multiple compute nodes 
is not supported. The Topographica11 project provides standalone 
Python tools intended for exploring higher-level neural abstrac-
tions like sheets and projections from neural area to area. Though 
not primarily intended for investigations that require detailed simu-
lation of individual neurons, Topographica can be interfaced to 
lower-level simulators like NEURON and GENESIS. Topographica 
is one of the older Python neuroscience tool packages, with an 
initial public release in late 2005.

Perhaps because NCS has a fraction of the number of users of 
some other simulators (e.g. NEURON and GENESIS), Brainlab 
has attracted comparatively little attention. Brainlab merited brief 
mention in a recent survey of major spiking neural net simulator 
packages (Brette et al., 2007). Brainlab was unnoticed by another 
recent survey of interoperability of neuroscience software (Cannon 
et al., 2007) though Python interfaces to other spiking neural net-
work simulators (e.g. NEURON’s and NEST’s) were described there 
in some detail.

BRAINLAB MOTIVATION, DESIGN, AND IMPLEMENTATION
In this section, we will fi rst describe enough about NCS so that a 
reader will understand the problems we faced designing a system to 
interface to and control it. Next we will describe the broad features 
we wanted to include in our toolkit, and how we wanted the fi nished 
system to appear to the user for modeling, simulation, and analysis. 
Then we will describe in detail how we actually confronted the 
problems interfacing to NCS, to implement the Brainlab system.

NCS
The development history of NCS is recounted elsewhere (Drewes, 
2005b). In its current evolution, NCS is a parallel (MPI-based) 
spiking neural network simulator written in C/C++ that can per-
form very large discrete-time simulations with a reasonably high 
degree of biological realism. Simulations with a million neurons 
and a billion synapses have been accomplished. NCS allows for 
neuron models that include detailed and customizable ion channel 
and cell membrane voltage dynamics, but for effi ciency the stere-
otypical action potential voltage and postsynaptic conductivity 
waveforms are templated rather than generated dynamically. NCS 
supports multi-compartment cells but often large scale simula-
tions are done using single compartment models. A good recent 
comparison of NCS with other spiking neural network simula-
tors, including some discussion of maximum simulation sizes, is 
Brette et al. (2007).

THE NCS INPUT FILE (THE .in FILE)
NCS reads a description of a neural network model and other simu-
lation parameters from a plain text fi le whose fi lename is supplied 
to NCS as a command line argument. For our purposes here it is 
not necessary to go into great detail about the format of this fi le, 
but we do wish to describe it generally in order to explain some of 
the shortcomings of working with it.

This input fi le, hereafter called a .in fi le after the convention of 
using .in as a fi lename extension for such fi les, contains a variable 
number of subsections. Each subsection starts with a line that con-
tains the name of the subsection (which must be one of a limited 
number of keywords permitted by the system) and ends with a 
line that contains END_ with the section name appended. The fi rst 
subsection in a .in fi le is the BRAIN section. In the BRAIN section 
of the fi le are defi ned global features that affect the entire simula-
tion. For example, a line beginning with JOB defi nes a job name for 
the simulation. Some subsections can be repeated (for example, a 
COLUMN or LAYER), and then each is assigned a unique text identi-
fi er within the fi le. The fi le format allows other portions of the fi le 
to reference these named objects, to create additional instances of 
them, but no structural or other signifi cant variation in a defi ned 
object is permitted. The .in format defi nition permits no looping 
constructs or macro substitutions. Other sections of the .in fi le 
defi ne connections between these objects, with references to the text 
names of the objects being connected. Because of these restrictions, 
NCS .in fi les tend to be quite long even for fairly simple networks, 
and they tend to be prone to syntactical error or internal referential 
inconsistency when edited manually.

Other neural simulator systems acquired programming languages 
(e.g. Hoc for NEURON) to avoid the limitations of a fl at input fi le 
format like NCS’s. NCS never went this far, though there were sev-
eral attempts to elaborate the .in fi le with macros, loops and other 
features. None of these efforts for NCS were widely used or reached 
the generality of a true programming language. Many NCS users 
eventually created custom text processing programs in other pro-
gramming languages (like MATLAB) that would emit .in fi les. But 
writing special-purpose macro processors to create .in fi les is time 
consuming work that generally cannot be reused on later projects, 
and MATLAB is not a particularly good text processing tool. The 
experimentation process was either not automated or automated 
with external custom scripts, making the whole process cumbersome 
and systematic model parameter search diffi cult. Data fi le manage-
ment was typically done manually using ftp type tools.

One other unusual aspect of NCS deserves mention: it imposes 
a notion of the cortical column and the cortical layer as structural 
elements, and this requirement is refl ected in the structure of the 
NCS input fi le. Even if an NCS user wishes to simply simulate two 
connected cells, or a homogeneous collection of cells for a study 
of, say, synfi re chains, he must defi ne those cells within an NCS 
LAYER text block, and that in turn within an NCS COLUMN text 
block. This introduces additional complication for the simplest 
simulations.

NCS USAGE
NCS is optimized for large cluster computer systems (Beowulf 
clusters). A common usage pattern is as follows: A user typically 
fi rst prepares an input fi le in the .in fi le format in a text editor, 
specifying the neuron, synapse, channel, and network model. This 
fi le is copied across a network to the cluster computer and NCS is 
invoked there with the fi le as a command line argument. Reports 
are written to the cluster computer’s disks during the simulation 
run, which can last from a few seconds to days. Data analysis is then 
performed on the cluster computer if the data set is very large, or 
the data is copied back to the user’s workstation for data analysis 11http://topographica.org/Home/index.html
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if that is feasible. The experimenter then makes some adjustments 
to the model and tries again.

BRAINLAB MOTIVATION AND DESIGN GOALS
Faced with the powerful but diffi cult to use NCS simulator, we set 
about to design a toolkit that would offer the following:

 1. An interactive shell for simple experimentation with NCS, 
making NCS a more suitable educational tool for learning the 
behavior of spiking neural networks and also a more conve-
nient platform for experienced users to explore the behavior 
of new cell or network elements.

 2. A convenient platform for parameterized control of sets of 
NCS experiments.

 3. A convenient platform for scripted regression testing of NCS 
itself, with fl exible output validation.

 4. Scripted, algorithmic generation of neural network models 
rather than NCS’s native static fi le specifi cation of networks.

 5. Convenient, integrated, graphical on-line reporting and plot-
ting of spiking, current, and voltage activity of cells, synapses, 
and channels.

 6. Convenient, integrated, on-line three-dimensional plotting 
of neural network architecture for expository and diagnostic 
purposes.

 7. Experimental support for higher-level abstractions than those 
provided natively in NCS (for example support for areas, 
composed of arrays of columns, and a variety of distinct area-
to-area synaptic connection patterns), and a fl exible environ-
ment to add new ones.

 8. Support for lower-level abstractions too unwieldy to reaso-
nably manage in native NCS (for example, columns where all 
cells are enumerated and independently, rather than just sta-
tistically, addressable).

 9. A container for a standard and extensible library of NCS 
network building blocks (for example channels, cell types, 
columns, spike templates), where all components are guaran-
teed to interoperate, utilize consistent naming conventions, 
and may be manipulated programmatically as variable objects 
rather than text chunks.

10. A more convenient, higher-level, object-oriented represen-
tation of neural networks that hides many complexities and 
inconveniences inherent in NCS’s native .in fi le format.

11. A convenient environment in which to convert a neural 
network description into a chromosomal representation sui-
table for use with a genetic algorithm.

12. A convenient environment in which to access NCS’s realtime 
stimulus input capabilities, especially for robotic interface 
applications (see Goodman et al., 2008 for more information 
on using NCS in robotics).

13. The ability to conveniently extend many of these capabilities 
without recourse to coding in NCS’s native compiled pro-
gramming environment (the C/C++ language).

WHY PYTHON?
When we selected Python as the language for Brainlab, Python was 
not yet in wide use in neuroscience, and it was also in the midst of 
a seemingly endless reorganization of its vector processing math 

support libraries. Nevertheless, there were hopeful signs of building 
momentum for Python as a scientifi c platform, and the base lan-
guage was so appealing in several respects that we selected Python 
as the language for our project.

Python is an open source, cross platform programming lan-
guage. The base Python language is constantly being extended and 
made more powerful by hundreds of developers working together 
across the world. In addition to the base language, there are dozens 
of external packages in various states of development, from pol-
ished to prototype. These packages gradually move into the base 
distribution as they mature and if they are of suffi ciently wide 
interest.

Python is ordinarily compiled into bytecode automatically and 
the bytecode is then interpreted in a runtime virtual machine. This 
is essentially the same approach used by Java, though the compi-
lation generally requires an explicit step with Java. Compilation 
to bytecode results in code execution that is generally faster than 
ordinary interpreted code. Python is dynamically typed, making 
programming extremely convenient. Built in datastructures like 
lists, dictionaries (hashes), and arrays help make Python programs 
very concise. The clean syntax makes programs easy to understand. 
Python has a well deserved reputation as an extremely clean and 
easy to read and understand language.

At the time we selected it, Python already had a growing set 
of support library packages for scientifi c computation. These 
have since matured. Some of these packages are used in Brainlab, 
including:

• Matplotlib12, a MATLAB-like plotting package
• PyOpenGL13, OpenGL bindings for Python
• NumPy14, MATLAB-style array processing
• SciPy15, a set of scientifi c tools for Python, including pseudo 

random number generators and transforms

BRAINLAB TO NCS INTERFACE FOR NETWORK MODELING
When we were designing the Python to NCS interface for the 
fi rst version of Brainlab, there were already a number of ways to 
interface Python to a C/C++ application. Of these, one approach 
we considered seriously was to create a Python module out of 
the NCS C/C++ program with fairly simple and standardized 
wrapper code using standard techniques16. The wrapped C code 
could then be included into a Python program with the import 
command. With this approach the Python program would be in 
charge from the beginning, and it could selectively make normal 
looking Python function calls into the wrapped C code to actually 
perform the NCS simulation and other functions. How would 
the network, cell, synapse, and other neural network parameters 
be communicated to NCS? A reasonable approach would be to 
defi ne a new abstract network modeling interface using high-
level Python facilities, perhaps a Python Object class for a Cell, 
a Synapse, and so on, that allows these objects to be created and 

12http://matplotlib.sourceforge.net/
13http://pyopengl.sourceforge.net/
14http://numpy.scipy.org/
15http://www.scipy.org/
16http://docs.python.org/extending/
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interconnected. This Python-based model could then be con-
verted directly to the internal in-memory representation of net-
work models of NCS, called the GCList, through a new function 
provided by the imported NCS python module. This function, 
being in the C/C++ side of things, would have full access to the 
memory structures, memory allocation, and cluster-distribution 
routines that NCS itself uses to convert the .in fi le representation 
into the GCList representation for simulation, merely bypassing 
the fi le parsing NCS normally uses to build its internal network 
representation.

However this tightly integrated approach would have a number 
of disadvantages. Such a Brainlab system would have to be at least 
recompiled with every new release of NCS. But there would be more 
complications than just that. While the NCS .in fi le representation 
is part of the NCS documentation and is fairly stable, the inter-
nal GCList representation does not have a publicly documented 
interface. The GCList interface changes over time, and when it 
changes, corresponding detailed C/C++ changes would then have 
to be made in the NCS/Python module for import. A possibly 
larger documentation burden also would be placed on Brainlab 
to describe the new model-building interface.

We opted instead to try to achieve our design goals with a much 
looser Brainlab-NCS interface for modeling and simulation. We left 
NCS as a completely separate programming project and did not 
even try to integrate more tightly with it than its existing published 
modeling (.in fi le) and invocation (command line) interface. So 

Brainlab would have to provide a convenient and powerful Pythonic 
network modeling interface to the user, since that was a primary 
design goal, but it would also have to emit a properly formatted 
.in fi le for use by NCS on the back-end. The approach we took to 
model-building in Brainlab is depicted in Figure 1.

The BRAIN, CELL, LAYER, and other sections of the NCS .in 
fi le are each implemented in Brainlab as a Python object class. 
The __repr__() method for each object is overridden so that 
printing an object results in text for that object in a format suit-
able for inclusion in the NCS .in fi le. In the case of a lower-level 
object, this method just prints out the object itself, but does not 
print any other objects that are referenced by the object being 
printed. The BRAIN object’s __repr__() method, however, fi rst 
recursively traverses the entire tree of objects referenced from the 
BRAIN object and a list is composed for each type of referenced 
object. Once all referenced objects have been collected together, 
the entire NCS .in fi le is printed, starting with the BRAIN section, 
and proceeding to all of the other sections of the .in fi le in the 
conventional order.

The lower-level classes are implemented as nested classes within 
the BRAIN class. Note that they are not derived subclasses, but 
rather nested classes. Derived subclasses are appropriate where 
the subclass has most of the aspects of the superclass but some 
additional features. In Brainlab the nested classes are not logi-
cally subclasses of the BRAIN since they do not share the same 
characteristics as the super-object but are merely contained by it. 

FIGURE 1 | Brainlab’s approach to building neural network models for NCS. 

A script using the Brainlab brain.py module allocates objects of special 
modeling object classes (BRAIN, CELL, SYNAPSE, etc.) defi ned in brain.py. These 
objects each contain a Python dictionary called parms containing (name, value) 
pairs. Each such name corresponds exactly to an NCS character string parameter 
name for that record type within the .in fi le. Each value contains either the 
literal value desired for that parameter, or a Python object that will later be 
dereferenced and substituted with an appropriate text name for the text section 

representing that object in the resulting NCS .in fi le. The lower-level objects can 
be inserted into the higher-level objects through direct manipulation of the parms 
dict, but generally they are added there implicitly through the brain.py module’s 
helper functions such as BRAIN.AddColumn(). The value of the highest level 
container object, the BRAIN object, is determined by the overridden __repr__() 
function, which converts the in-memory model representation into the text .in 
representation, in the manner described in the text. The result is a Python 
character string which is a suitable input fi le for the NCS program.
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However, the lower-level classes do need access to the component 
type libraries that are stored with the BRAIN class. If the lower-
level objects were entirely separate classes, they would not have 
convenient access to the component type libraries. By making the 
lower-level classes nested within the BRAIN class, they do have 
that access.

We chose to map many of the modeling details of Brainlab 
directly onto the underlying NCS implementation, rather than 
providing a completely new modeling interface. This primarily 
means that we preserve NCS’s text character string names for vari-
ous neural parameters of the cells, synapses, channels, and so on. 
This eases the documentation burden on Brainlab since we can refer 
directly to the NCS’s documentation on many points. Furthermore, 
it makes keeping Brainlab up to date with respect with NCS very 
easy. Whenever NCS adds support for a new parameter within an 
existing modeling object, it is usually a simple matter to add it to 
the permitted parameter list of the appropriate class in brain.py 
and that is the end of it. (When NCS adds entirely new types of 
objects, as is occasionally done, there is a bit more work, but even 
still it is usually just a matter of intelligently cloning an existing 
object to a new name and making a few changes.) The overall 
mechanism of .in fi le emission through recursive application of 
__repr__()’s to discovered objects starting at the top-level BRAIN 
extends quite easily.

The simple strategies of creating a Python object class for each 
.in fi le section, with automatic conversion from object to text 
through the __repr__() method, combined with the ability to 
reference one object from another, achieved all our design goals 
for a Pythonic modeling interface to NCS. The modeling power 
achieved by combining these few concepts in this way should not 
be underestimated.

BRAINLAB TO NCS INTERFACE FOR SIMULATION
Once the internal Pythonic neural network model is constructed 
inside the top-level BRAIN object, it can be simulated by invoking 
the BRAIN’s Run() method. Since we elected to keep an arms-
length interface between Brainlab and NCS, the invocation of NCS 
is done through the use of a popen() call, as follows. First, Brainlab 
determines through invocation options or a standard confi gura-
tion .rc fi le whether the NCS process is to be invoked locally, 
or on a remote compute server (typically a cluster). The .in fi le 
generated from the __repr__() method of the top-level BRAIN 
object is stored in a disk fi le locally, then propagated to the remote 
compute server using ssh17 (secure shell) if necessary. Other sup-
port fi les, such as input stimulus patterns, are likewise generated 
and propagated as needed. Next, the NCS invocation command 
is constructed, again with appropriate references to remote serv-
ers with ssh, and then this command is executed using popen(). 
Brainlab monitors the realtime progress of the command as NCS 
reports the progress of the run through the fi le descriptors of the 
popen(). If an error condition is detected in the output, Brainlab 
either throws a Python exception, or an error code to the caller. 
When Brainlab detects that a run has completed, it constructs 
additional commands to retrieve output fi les from the remote 
compute server, as needed.

We felt it was essential to support all three stages of operation – 
model-building, simulation, and analysis – completely within the 
control of the Python Brainlab environment. This permits self-
contained and reproducible experiments, in the form of Python 
Brainlab scripts. This also opens up the possibility of parameterized 
model search with feedback from model performance affecting 
parameters of the next iteration, or even the use of genetic pro-
gramming techniques for parameter search, all within a Brainlab 
script.

BRAINLAB’S MODULE ORGANIZATION
Brainlab itself is implemented as two main Python modules, 
brainlab.py and brain.py. The brain.py module contains 
the parts of the system concerned with building a neural model 
using Python classes supplied by the module and other normal 
Python facilities, and then automatically converting this model to 
a format understandable to NCS (a .in fi le). The brainlab.py 
module contains support functions for invoking an NCS simula-
tion on a model either locally or remotely on a remote cluster, and 
analyzing and documenting the results using plotting and other 
functions.

In addition to these two main modules, an optional module 
called netplot is available. This module can take a model built 
using the core BRAIN class of brain.py and convert it into a three-
dimensional depiction using the model’s architecture and hints 
provided during model construction. The three-dimensional depic-
tion can be examined and explored interactively on a workstation 
or saved in a number of graphics fi le formats. The PyOpenGL18 
package is used for the actual rendering.

BRAINLAB USAGE
BUILDING MODELS WITH BRAINLAB
In Brainlab, every brain model is an instance of a new Python object 
class called BRAIN. Once the brainlab library itself is brought into 
a Python program with the import command, creating a brain 
object is by the usual Python means:

import brainlab

b = brainlab.BRAIN()

The variable b then refers to the newly created, and initially 
empty, brain model. When a BRAIN object is created, it contains a 
default set of commonly used types of neural network modeling 
components. (There are initially no instances of these types in the 
brain model.) These component types can be directly instantiated 
and then used for construction of network models, or they can 
be modifi ed in place and then used in a model, or they can be 
copied to new types with different names and then the copies can 
be modifi ed and instantiated for use in a model. The component 
types are contained in Python dictionaries (hashes), and the keys 
of the dictionary are simply the text names of the components. 
These building blocks are automatically included within a Python 
dictionary called libs in each BRAIN instance. There can be mul-
tiple libraries of parts within a BRAIN. The library provided with 
the class is given the key name standard, and is itself a diction-
ary. In this dictionary are subdictionaries for the different types of 

18http://pyopengl.sourceforge.net/17http://www.openssh.org/
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neural modeling components, such as channels (accessed with the 
chantypes dictionary key), cell types (accessed with the cell-
types key), synapse facilitation and depression profi les (under the 
sfds key), and more as listed below.

The following interactive Python session shows how to view 
these different library components and shows how one could 
modify the negative Hebbian learning window duration parameter 
within the standard Hebbian learning profi le:

>>> b.libs[’standard’].keys()
[’comptypes’, ’spks’, ’chantypes’, ’spsgs’, ’cols’, 

         ’celltypes’, ’sls’, \ ’syntypes’, ’lays’, ’sfds’]

>>> blib=b.libs[’standard’]
>>> blib[’sls’].keys()
[’0Hebb’, ’-Hebb’, ’BHebb’, ‘+Hebb’]
>>> blib[’sls’][’BHebb’]
SYN_LEARNING

    TYPE                         BHebb

    LEARNING                     BOTH

    NEG_HEB_WINDOW               0.04000 0.00000

    NEG_HEB_PEAK_DELTA_USE       0.01000 0.00000

    NEG_HEB_PEAK_TIME            0.01000 0.00000

    POS_HEB_WINDOW               0.04000 0.00000

    POS_HEB_PEAK_DELTA_USE       0.00500 0.00000

    POS_HEB_PEAK_TIME            0.01000 0.00000

END_SYN_LEARNING

>>> blib[’sls’][’BHebb’].parms[’NEG_HEB_WINDOW’]=(.05,.01)
>>> blib[’sls’][’BHebb’]
SYN_LEARNING

    TYPE                         BHebb

    LEARNING                     BOTH

    NEG_HEB_WINDOW               0.05000 0.01000

    NEG_HEB_PEAK_DELTA_USE       0.01000 0.00000

    NEG_HEB_PEAK_TIME            0.01000 0.00000

    POS_HEB_WINDOW               0.04000 0.00000

    POS_HEB_PEAK_DELTA_USE       0.00500 0.00000

    POS_HEB_PEAK_TIME            0.01000 0.00000

END_SYN_LEARNING

The Section “Usage Example: RAIN Network” contains another 
example of creating components based on the included standard 
library.

An NCS .in fi le contains a number of text blocks, with each 
block consisting of a number of parameter keywords on the left 
and their values to the right. The values can be of several types. 
In the example above, the numbers for the NEG_HEB_WINDOW 
are a mean and standard deviation. During model initialization, 
NCS assigns that parameter to a random value from a normal 
distribution with the mean and standard deviation requested. 
For other parameters, such as the RSE_INIT parameter of the 
synapse object, two numeric values specify a minimum and a 
maximum of a range. In the case of the LEARNING parameter 
in the example above, the value for a parameter is a text label 
that references another block defi ned within the fi le. The NCS 
documentation details each parameter and its expected values. 
In some cases, Brainlab allows commonly used and frequently 
modifi ed parameter values to be changed in Brainlab function 
calls. For example, when specifying a synaptic connection, the 
probability of the connection and the conductance speed val-
ues can be set directly using the prob= and speed= keyword 

arguments to the Brainlab AddConnect() method. In all cases 
however, NCS parameters can be set by modifying a dictionary 
value in the appropriate parms dictionary of the object with 
the key set to the text name of the NCS parameter name. This 
approach gives convenience to the programmer while allowing 
quick access to new NCS parameters as they are added to the 
system, by simply adding a keyword to a list in the Python class 
defi nition for that object.

In NCS, cells cannot exist on their own but rather only as part 
of a higher-level structure called a column. A column is composed 
of one or more layers, which in turn is composed of one or more 
groups of cells. Brainlab has COLUMN, LAYER, and CELL objects 
that correspond to these structures. A Brainlab script can build a 
column up from cell groups and layers, or instead use a conven-
ience function that will add a pre-built column in a single step. The 
following Brainlab function adds to the model an instance of an 
ordinary column populated with a single cell:

newcol = b.Standard1CellColumn()

Additional optional parameters to the function can specify a 
cell type to use (other than the default), spatial coordinates for 
the cell, and more.

At this point the Brainlab script typically makes connec-
tions between the cells or cell groups. Brainlab functions such 
as AddConnect() are used for this. The Python variables for 
the objects are used as the point of contact for connection. An 
example of this is given in the Sections “Usage Example: Hebbian 
Learning” and “Usage Example: RAIN Network”. Report requests 
are also added to the brain at this time.

SIMULATING MODELS WITH BRAINLAB
Once the BRAIN object is created, simply printing it with the Python 
print command causes Brainlab to emit a complete, properly for-
matted .in fi le containing all the information added to the brain 
by the modeler. If desired, this fi le can be examined and manually 
submitted for simulation by NCS. This approach is occasionally 
useful for debugging purposes, but in practice it is seldom neces-
sary to view the generated .in fi le directly. Instead, the modeler 
can simply leave the underlying .in fi le mechanism hidden and 
evoke an NCS simulation directly on the model using the brainlab 
Run() function on the brain:

brainlab.Run(b, nprocs = 32)

In this example the simulation is evoked remotely on 32 proc-
essors. The .in fi le that results from the model is created by 
Brainlab behind the scenes, copied over to the compute cluster 
automatically by Brainlab, and the simulation results are fetched 
on demand as the data analysis portion of the Brainlab program 
requires them.

Brainlab is designed primarily to run on the user’s worksta-
tion, and send jobs across a network to be simulated on a different 
computer (or cluster). There are several reasons for this focus. The 
user has more control over the software installed on a personal 
workstation than on a typical group or departmental compute 
server or Beowulf cluster, where it may be more diffi cult to get 
installed the libraries necessary to run Brainlab. Often data will be 
analyzed repeatedly, displayed and analyzed in a variety of ways, 
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and that is best done on a personal workstation so that specialized 
tools are guaranteed to be available and also so that other users of 
the simulation environment will not be affected. Also typically a 
personal workstation will have high-performance display hardware 
that will work more effi ciently with extensive graphing, perhaps 
in three dimensions.

Brainlab can also be confi gured to run directly on the machine 
where NCS also does the simulation. With modern high-
 performance multi-core CPUs this is a good option for smaller 
exploratory simulations.

The encapsulation of the model construction, simulation, and 
data analysis loop within a single program, a Python Brainlab script, 
makes automatic model parameter search easier. In some of our 
work we have defi ned a mapping from artifi cial chromosome to 
neural network model, and used a standard Python genetic algo-
rithm package to do a fi tness search for the best functioning model 
(Drewes et al., 2004).

DATA ACCESS, ANALYSIS, AND PLOTTING WITH BRAINLAB
Brainlab provides a few convenience functions for loading, process-
ing, and plotting standard NCS reports. In combination with the 
SciPy and Matplotlib packages, modelers can do sophisticated 
mathematical analyses and create complex graphics for view or 
publication. Effi cient access to very large datasets is available 
to the modeler through Python’s hdf5 interface, pytables. With 
the PyOpenGL libraries, Brainlab provides some limited three-
 dimensional plotting tools for viewing network models.

We will mention a few of the more commonly used Brainlab 
data access and plotting routines here. The Brainlab LoadReport() 
function returns a NumPy array containing all the data captured 
from a requested NCS report. The data to be loaded can be limited 
by time range or by range of cells. The returned data can then be 
processed further in the Brainlab program using the wide range of 
Python or NumPy tools. The Brainlab function LoadSpikeData() 
returns a list of just the spike times for a given range of cells for a 
given time. The ReportPlot() function gives a simple visual repre-
sentation of continuous NCS report data (often voltages or currents) 
on screen or into a graphical fi le. Brainlab makes extensive use of 
the Matplotlib library for the actual generation of the plots.

Brainlab handles remotely invoking a simulation on a compute 
cluster, and it also simplifi es accessing the resulting NCS report fi les. 
The same Brainlab LoadReport() function works whether the fi le 
data was captured remotely or on the local workstation. Brainlab 
also tries to use knowledge about the simulation environment to 
be effi cient about management of report fi les. For example, rather 
than copying large report fi les across a network from the compute 
cluster to the workstation for processing, Brainlab can in some cases 
invoke itself remotely on the compute cluster for report processing, 
and then only copy back the much smaller amount of data that is 
the result of the processing. The programmer generally does not 
need to be aware, for either simulation or analysis, that the com-
putation was done remotely.

Figure 2 is a sample compound plot, generated using Brainlab 
convenience functions and the Matplotlib library, from the Hebbian 
learning simulation detailed in the Section “Usage Example: 
Hebbian Learning”. Refer to Drewes (2005b) for further 2D and 
3D Brainlab plot examples.

USAGE EXAMPLE: HEBBIAN LEARNING
Following is a complete, functional example of Brainlab usage. The 
results of this Brainlab example are shown graphically in Figure 2, 
and referring to the plot while reviewing the explanation below 
will help to make the example clear. (Note however that to reduce 
space the code below draws only one of the subgraphs shown in 
Figure 2.) This simple example demonstrates positive Hebbian 
learning: when spikes are initially applied to cell A between time 
0 s and 0.5 s, the target cell T spikes because the synaptic con-
nection from A to T is initialized to a strong value. However the 
initial spikes forced onto B by external stimulus (during time 0.5 s 
to 1.0 s) do not result in the target cell T spiking, because the B to 
T synapse is initially weak. During time 1.5 s to 2.5 s, a series of 
three spikes are forced by external stimulus onto both cell A and 
B. The spike forced on cell A is suffi cient to evoke an output spike 
on T, as we have already seen. The forced spike on B just before 
the evoked spike on T causes the B-to-T synapse to strengthen 
through positive Hebbian learning. In the fi nal phase, from time 
3.0 s to 3.5 s, we see that after the synaptic strengthening, forced 
spikes on B are now alone enough to evoke a spike on T. Here is 
the script:

import brainlab

import pylab

FIGURE 2 | Output of Hebbian learning example from the Section “Usage 

Example: Hebbian Learning”.
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brainname="HebbTest" # output files begin with this name

endsim=3.5 # seconds to simulate

FSV=10000 # simulation timesteps per second

timesteps=FSV*endsim

# set up times (in secs) for two spike inputs, a and b:

eps=.010 # a small epsilon time offset

ain=[.1,.2,.3, 1.5, 1.8, 2.1]

bin=[.6,.7,.8, 1.5-eps, 1.8-eps, 2.1-eps, 3.1, 3.2, 3.3]

# create the brain object container:

newb=brainlab.BRAIN(simsecs=endsim, jobname=brainname, 

                    fsv = FSV)

# create three cells in the brain:

A=newb.Standard1CellColumn("A")

B=newb.Standard1CellColumn("B")

T=newb.Standard1CellColumn("T")

# customize a standard synapse profile:

cs=newb.syntypes["C.strong"]

# BHebb references a standard synapse learning profile with

# both + and - Hebbian. Select that for our synapse, then 
  modify:

cs.parms["LEARN_LABEL"]=newb.sls["BHebb"]

cs.parms["MAX_CONDUCT"]=0.10

cs.parms["ABSOLUTE_USE"]=(0.5, 0.0)   # initial synaptic 

                                        efficacy parameter

# make a copy of this synapse to new name, then reduce 

  initial strength:

cw=newb.Copy(newb.syntypes, "C.strong", "C.weak")

cw.parms["ABSOLUTE_USE"]=(0.1, 0.0)

# modify a Hebbian learning parameter in standard library:

hp=newb.sls["BHebb"]

hp.parms["POS_HEB_PEAK_DELTA_USE"]=(.20, 0)

newb.AddConnect(B, T, cw, prob=1.0, speed=10.0)

newb.AddConnect(A, T, cs, prob=1.0, speed=10.0)

d=(0.0, endsim)

# tell NCS to report on some voltage values:

newb.AddSimpleReport("AReport", A, reptype="v", dur=d)

newb.AddSimpleReport("BReport", B, reptype="v", dur=d)

newb.AddSimpleReport("TReport", T, reptype="v", dur=d)

# tell NCS to report on some absolute USE (synaptic efficacy) 

  values:

newb.AddSimpleReport("BtoTUSE", T, reptype="a", 

                     dur=d, synname=cw)

newb.AddSimpleReport("AtoTUSE", T, reptype="a", 

                     dur=d, synname=cs)

# tell NCS to apply our spike inputs to A and B:

newb.AddSpikeTrainPulseStim("Astim", A, ain)

newb.AddSpikeTrainPulseStim("Bstim", B, bin)

# start the simulation:

brainlab.Run(newb, verbose=True, nprocs=1)

# load resulting NCS reports into Python variables:

adata=brainlab.LoadSpikeData(brainname, "AReport")

bdata=brainlab.LoadSpikeData(brainname, "BReport")

tdata=brainlab.LoadSpikeData(brainname, "TReport")

# create a simple plot using Brainlab’s interface to 

  matplotlib/pylab:

brainlab.ReportPlot(brainname, "BtoTUSE", plottitle="B

                    synapse on T", xlab="Timestep", 

                    ylab="USE", linelab=["B to T"])

pylab.show()        # display the plot

USAGE EXAMPLE: RAIN NETWORK
In this section, we give an example of how Brainlab is used to create a 
type of model that our lab has called RAIN (Recurrent Asynchronous 
Irregular Network). This type of asynchronous, irregularly fi ring 
network with persistent activity is similar to the models investigated 
by Vogels and Abbott (2005) and it is also a benchmark model used 
in the Brette et al. (2007) review of neural simulator systems. Our 
network has 4000 leaky integrate-and-fi re neurons, 80% excitatory 
and 20% inhibitory. Each neuron is defi ned as a single compart-
ment model with a time constant, τ = 20 μσ, g leak = 5 ns, and E

leak
 

= –60 mV. The neuron will generate an action potential and the 
membrane potential will reset to the clamped resting potential for 
5 ms whenever the membrane potential crosses the threshold at 
−50 mV. The excitatory neurons differ from the inhibitory ones 
with a depolarization-activated, noninactivating potassium channel 
(I

m
 current), which is responsible for the adaptation of fi ring rate 

of cortical pyramidal cells (Yamada et al., 1998).
Both excitatory and inhibitory type synapses are simulated as 

conductance changes with instantaneous jump at maximal value 
and exponential decays, i.e., a presynaptic event generates a synaptic 
conductance change of g , which decays according to the following 
equation:

g t g e t( ) /= × − τ

The synaptic time constants are 5 and 10 ms, and quantal con-
ductances are 5 and 50 nS for excitatory and inhibitory synapses, 
respectively. All synapses are created with synaptic delay chosen 
from a normal distribution with a mean of 1 ms and standard 
deviation of 1 ms.

Neurons were randomly connected by a probability of 2% 
by conductance-based synapses (Gupta et al., 2000). For out-
bound inhibitory connections, we incorporate the diversity of 
GABAergic interneurons. The experiment performed by Gupta 
et al. (2000) indicates that GABAergic synapses in neocortical 
layers II to IV have three statistically distinct types of synapses, 
where each type has particular temporal dynamics of synaptic 
transmission. The synapses were modeled according to the con-
cepts of the  refractoriness of the release process (Markram et al., 
1998) as shown in Table 1. The Brainlab code below demonstrates 
the creation of a new synaptic facilitation and depression profi le 
called sfd_1 by copying a standard Brainlab library profi le called 
F1. Once copied, the new profi le is modifi ed according to data 
in Table 1.

# Create SYN_FACIL_DEPRESS based on ’F1’ from sfds library

sfd_1 = b.Copy(b.sfds, ’F1’, ’sfd_1’)

sfd_1.parms[’SFD’] = ’BOTH’

sfd_1.parms[’DEPR_TAU’] = (0.376, 0.253)

sfd_1.parms[’FACIL_TAU’] = (0.045, 0.21)
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Next we create an new inhibitory synapse profi le called InhSyn1 
that is based on the Brainlab standard profi le called I. The facilita-
tion and depression profi le just created is then embedded into the 
new synapse type. Note that some extraneous parameters inherited 
from the default profi le are also deleted at this time, and note that 
the reference to the facilitation and depression profi le is made to 
the newly-created variable, rather than the text string name of the 
profi le (though Brainlab supports either, the former is generally 
easier and less error prone):

# Create SYNAPSE based on ’I’ from syntypes library

InhSyn1 = b.Copy(b.syntypes, ’I’, ’InhSyn1’)

del InhSyn1.parms[’PREV_SPIKE_RANGE’]

del InhSyn1.parms[’RSE_INIT’]

del InhSyn1.parms[’HEBB_END’]

del InhSyn1.parms[’HEBB_START’]

newparms=[(’ABSOLUTE_USE’, (0.250, 0.0)), (’SYN_REVERSAL’, 

          (-80, 0.0)), (’SFD_LABEL’, sfd_1), 

          (’DELAY’, (0.001, 0.001))]

InhSyn1.parms.update(newparms)

InhSyn1.parms[’MAX_CONDUCT’] = ((G_inh/2.0), 0.0)

We omit the section of Brainlab code that creates the cells 
themselves, but the procedure is similar: a basic cell type is copied 
from the Brainlab library and a few parameters are selectively 
modifi ed. The variables returned from the Brainlab function that 
creates the cells groups are stored in a Python list. So e[0] ref-
erences the fi rst group created, e[1] the second group created, 
and so on.

Brainlab provides a single, general AddConnect(from, to) 
method that can make connections at all three connection levels 
supported by NCS (within-layer, between-layer, and between-
 column). The modeler does not need to pay attention to NCS’s 
distinction between these three levels of connection if this is not 
desired, and this encapsulation can hide much complexity from 
the user. Furthermore, connections can conveniently be made in 
Brainlab using the Python variables assigned to the created objects, 
rather than their underlying .in fi le text names (which the mod-
eler can basically ignore). In our example of a 4000 neurons net-
work, we do divide the network into fi ve cell groups, so that it 
could be distributed to fi ve computational nodes. The three types 
of  inhibitory synapses connect to both inhibitory and excitatory 
neurons in the network:

# Connect inh RAIN network

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0), 

                           InhSyn1, prob=0.00584, speed=0)

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0), 

                           InhSyn2, prob=0.01166, speed=0)

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0), 

                           InhSyn3, prob=0.00250, speed=0)

# Connect inh-exc rain network

for j in range(0, 4):

    tgt = e[j]

    b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

                           InhSyn1, prob=0.00152, speed=0)

    b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

                           InhSyn2, prob=0.01526, speed=0)

    b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

                           InhSyn3, prob=0.00320, speed=0)

The short-term dynamics of inhibitory synapses not only maxi-
mize the synaptic diversity, but potentially constrain the functional 
impact of different interneurons on the long-term dynamics which 
exist among the excitatory neurons. To incorporate this idea into 
the model, we also include the spike timing dependent plasticity 
(STDP) within each cell group (Song et al., 2000). The Brainlab 
code for these connections is as follows:

for i in range(0, 4):

    src = e[i]

    # connect exc-inh rain network

    b.AddConnect((col_0, lay_0, src), (col_0, lay_0, i0), 

                              ExcSyn0, prob=0.02, speed=0)

    # connect exc-exc rain network

    for j in range(0, 4):

        tgt = e[j]

        if (i==j):

            b.AddConnect((col_0, lay_0, src), (col_0, lay_0, 

                          tgt), ExcSyn1, prob=0.02, speed=0)

        else:

            b.AddConnect((col_0, lay_0, src), (col_0, lay_0, 

                          tgt), ExcSyn0, prob=0.02, speed=0)

Even the fairly simple RAIN network example shown above 
results in a multi-thousand line .in fi le for NCS. The more con-
cise, programmatic representation of the model in Brainlab makes 
it easier to create and also easier for others to quickly understand 
the true structure of the model.

DISCUSSION
We have shown elements of the design, implementation, and usage 
of Brainlab, a Python toolkit that leverages the strengths of Python 
to provide a more powerful and convenient interface to the NCS 
network simulator. We integrated Brainlab to NCS loosely, in a 
way that required no source code changes to NCS whatsoever. We 
were able to design a Pythonic neural modeling interface that can 
automatically convert an object representation into NCS’s cumber-
some .in representation. For simulation, we also integrate Brainlab 
loosely with NCS, using Python’s sub-process management and 
standard operating system level tools like ssh for remove invoca-
tion as necessary.

Our approach gives us simplicity of implementation and ease of 
long-term maintainability, with no signifi cant performance penal-
ties on simulations, yet still extends to NCS all the considerable 
power and fl exibility of Python and its numerical, graphical, special 
format fi le access, and other support packages.

Table 1| Dynamic parameters of GABAergic synapses (Gupta et al., 2000).

 F1 F2 F3

INH to EXC (%) 7.6 76.3 16

INH to INH (%) 29.2 58.3 12.5

τfacil (ms) 376 21 62

τdepr (ms) 45 706 144
g  (nS) 3.24 7.76 3.44
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PCSIM: a parallel simulation environment for neural circuits 
fully integrated with Python

Dejan Pecevski1*, Thomas Natschläger 2 and Klaus Schuch1
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The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It 
is primarily designed for distributed simulation of large scale networks of spiking point neurons. 
Although its computational core is written in C++, PCSIM’s primary interface is implemented in 
the Python programming language, which is a powerful programming environment and allows 
the user to easily integrate the neural circuit simulator with data analysis and visualization 
tools to manage the full neural modeling life cycle. The main focus of this paper is to describe 
PCSIM’s full integration into Python and the benefi ts thereof. In particular we will investigate 
how the automatically generated bidirectional interface and PCSIM’s object-oriented modular 
framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM’s 
functionality either employing pure Python or C++ and thus combining the advantages of both 
worlds. Furthermore, we describe several supplementary PCSIM packages written in pure 
Python and tailored towards setting up and analyzing neural simulations.

Keywords: neural simulator, parallel simulation, spiking neurons, Python, Boost.Python, Py++, PCSIM

iNVT (iLab Neuromorphic Vision Toolkit)1 which is an example 
of a package specifi cally tailored for the domain of brain-inspired 
neuromorphic vision. All of the above simulation environments 
support parallel simulation of one model on multiple processing 
nodes by using commodity clusters and many of them can also be 
run on super-computers. The simulation tool PCSIM described 
in this paper is designed for simulating neural circuits with a sup-
port for distributed simulation of large scale neural networks. Its 
development started as an effort to redesign the previous CSIM 
simulator2 (Natschläger et al., 2003) and augment its capabilities, 
with the major extension being the implementation of a distributed 
simulation engine in C++ and a new convenient programming 
interface. The aim was to provide a general extensible framework for 
simulation of hybrid neural models that include both spiking and 
analog neural network components together with other abstract 
processing elements while making the setup and control of parallel 
simulations as convenient as possible for the user. Hence, given its 
current set of features, the PCSIM simulator is closest to the second 
group (NEST, NCS, SPLIT) of neural simulation environments 
mentioned above.

Performing a neural network simulation usually requires com-
bined usage of several additional software tools together with the 
simulator, for stimulus preparation, analysis of output data and 
visualization. Being able to steer all the necessary tools from one 
programming environment reduces the complexity of setting up 
simulation experiments since all development can be done in a 
single programming language and the burden of developing utili-
ties for conversion of data formats between heterogeneous tools is 
avoided. Given its object-oriented capabilities and its strong  support 

INTRODUCTION
Given the complex nonlinear nature of the dynamics of biological 
neural systems, many of their properties can be investigated only 
through computer simulations. The need of researchers to increase 
their productivity while implementing increasingly complex models 
without each time having to reinvent the wheel has become a driv-
ing force to develop simulators for neural systems that incorporate 
best known practices in simulation algorithms and technologies, 
and make it accessible to the user through a high-level user-friendly 
interface (Brette et al., 2007). It has also been brought to attention 
that it is of importance to use large neural networks with biologi-
cally realistic connectivity (on the order of 104 synapses per neuron) 
as simulation models of mammalian cortical networks (Morrison 
et al., 2005). Simulation of such large models can practically be 
done only by exploiting the computing power and the memory of 
multiple computers by means of a distributed simulation.

There are different neural simulation environments presently 
available and although many of them were initially envisioned for 
a specifi c purpose and domain of applicability, during continuing 
development their set of features expanded to improve general-
ity and support construction of a wide range of different neural 
models; see Brette et al. (2007) for a recent overview. The two most 
prominent tools are NEURON (Carnevale and Hines, 2006; Hines 
and Carnevale, 1997) and GENESIS (Bower and Beeman, 1998) 
which aim at simulation of detailed multi-compartmental neuron 
models and small networks of detailed neurons. Another class of 
quite general neural simulation environments which focus on the 
simulation of large-scale cortical network models and the improve-
ment of their simulation effi ciency through distributed computing 
include NEST (Gewaltig and Diesmann, 2007; Plesser et al., 2007), 
NCS (Brette et al., 2007) and SPLIT (Hammarlund and Ekeberg. 
1998). There are also more dedicated neural simulation tools like 
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for  integration with other programming languages, the Python pro-
gramming language is a very promising candidate for providing 
such a unifying software environment for simultaneous use of vari-
ous scientifi c software libraries. As Python is becoming increasingly 
popular in the scientifi c community as an interpreting language of 
choice for scientifi c applications, the developers of many neural 
simulator tools decided to provide a Python interface for their simu-
lator in addition to its legacy interface in a custom scripting language. 
Moreover, a simulation tool called Brian which uses Python as an 
implementation language was recently developed to bring to the 
user the full fl exibility of an interpreting language in specifying and 
manipulating neural models (Goodman and Brette, 2008).

In spite of the evident practical advantages in using Python as the 
single programming language for all tasks during a neural modeling 
life cycle, there is the apparent discrepancy between the need for 
computational performance of the simulation and construction 
of the model on one hand, and rapid development of the model 
on the other. Using C++ can solve the performance issue, but will 
decrease the productivity of the modeler and requires higher level 
of programming skills and experience. In contrast Python is easy 
to learn, fl exible to use and signifi cantly increases the productivity 
of the modeler, however it lags far behind C++ in performance3. 
Hence, instead of adopting a single language, an alternative is to 
enable an easy mix and match of both languages during the devel-
opment of a model, i.e. to introduce a hybrid modeling approach 
(Abrahams and Grosse-Kunstleve, 2003).

In this paper we will describe how the modular object-oriented 
framework of PCSIM in combination with an automated interface 
generation supports such a hybrid modeling approach.

In particular, we briefl y review PCSIM’s main features (see 
Overview) before we describe the automated process to generate the 
Python interface (see Python Interface Generation). In the Section 
“Network Construction” we detail PCSIM’s network construction 
application programming interface (API), which is a central part 
of PCSIM’s object-oriented modular framework. In the Section 
“Custom Network Elements” we demonstrate another advantage 
of the hybrid modeling approach: we show how PCSIM’s concept 
of a general network element can be used as an interface to another 
simulation tool. While these examples concentrate on the Python 
aspect of the hybrid modeling, we show in the Section “Extending 
PCSIM Using C++” how the user can easily extend PCSIM’s func-
tionality using C++. Additional PCSIM packages implemented in 
Python are reviewed in the Section “PCSIM Add-Ons Implemented 
in Python”. In the Section “Discussion” we discuss and summarize 
the presented concepts and approaches.

We would like to note that it is outside the scope of this article 
to describe the algorithmic aspects of PCSIM’s computational C++ 
core (this will be reported elsewhere) and all the details of the full 
object-oriented modular framework.

OVERVIEW
ARCHITECTURE
The high-level architecture of PCSIM is depicted in Figure 1. The 
PCSIM library written in C++ (libpcsim) constitutes the core 

of the simulator. The API of the PCSIM library is exposed to the 
Python programming language by means of the Python extension 
module pypcsim (see Python Interface Generation for details). The 
library is made up of three main components: the simulation engine 
with its communication system, a pool of built-in network elements 
(i.e. neuron and synapse types) and the network construction layer. 
Before presenting the network construction layer in detail in the 
Section “Network Construction” we will briefl y describe in the next 
paragraphs the main features of the underlying simulation engine 
and its communication system.

The simulation engine integrates all the network elements (typi-
cally neurons and synapses) and advances the simulation to the 
next time step, and uses its communication system to handle the 
routing and delivery of discrete and analog messages (i.e. spikes 
and e.g. fi ring rates or membrane voltages) between the connected 
network elements. PCSIM’s simulation engine is capable of running 
distributed simulations where the individual network elements 
are located at different computing nodes. Setting up a distributed 
simulation is handled easily from a users point of view: there are 
no (or very little) code changes necessary when switching from a 
non-distributed to a distributed simulation. The distributed simu-
lation mode is intended for employing a cluster of machines for 
simulation of one large network where each machine integrates 
the equations of a subset of neurons and synapses in the network. 
A distributed PCSIM simulation runs as an MPI4 based applica-
tion composed of multiple MPI processes located on different 
machines5. The implementation of the spike routing, transfer and 
delivery algorithm between the nodes in a distributed simulation is 
based on the ideas presented in Morrison et al. (2005). In addition 
PCSIM offers the possibility to run a simulation as a multi-threaded 
application, both in a non-distributed and a  distributed setup. The 
multi-threaded mode is intended for performing simulations on 
one multi-processor machine when one wants to split the com-
putational workload among multiple threads in one process, each 
running on a different processor. However, we should note that 
the multi-threaded simulation engine is still undergoing optimi-
zation, as we are working on improvement of the scaling of the 

3The simulation tool Brian mentioned above, heavily uses the numerical Python 
package numpy (Oliphant, 2007) written in C to achieve reasonable performance.

FIGURE 1 | Architecture overview of PCSIM.

4http://www-unix.mcs.anl.gov/mpi/
5To be precise, we use the C++ bindings offered by the MPICH2 library, where cur-
rently none of the advanced features of the MPI-2 standard are used.
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multi-threaded simulation to match the scaling achieved with an 
equivalent distributed simulation.

SCALABILITY AND DOMAIN OF APPLICABILITY
One of the goals of the development of PCSIM was enabling simu-
lations of large neural networks on standard computer clusters 
through distributed computing. By utilizing the parallel capabilities 
of PCSIM the simulation time for a model can be reduced by using 
more processors (on multiple machines) as computing resources.

As a test of the scalability, we performed multiple simulations 
with the PCSIM implementation of the CUBA model described 
in Brette et al. (2007), with different number of leaky integrate-
and-fi re neurons (4000, 20000, 50000 and 100000) and distributed 
over a different number of processors (each processor on a different 
machine). We changed the resting potential in the neuron equa-
tions from −49 to −60 mV such that the network does not show 
any spontaneous activity. In order to elicit a spiking activity in the 
network, an input neuron population of 1000 neurons was con-
nected randomly to it with probability 0.1, i.e. each neuron in the 
network receives inputs from on average 100 input neurons. The 
input neurons fi red homogeneous Poisson spike trains at a rate of 
5 Hz. The simulation was performed for 1 s biological time with a 
time step of 0.1 ms. We have set the connection probability within 
the network to 0.1, in order to reach realistic number of 10000 
synapses per neuron for the network size of 100000 neurons. The 
transmission delay of spikes was set to 1 ms. We scaled the weights 
of the network so that the mean fi ring rate of the neurons was 
between 2.4 and 2.7 Hz for all network sizes (more precisely 2.68, 
2.55, 2.52 and 2.45 Hz for the network with 4000, 20000, 50000 
and 10000 neurons, respectively).

The used machines had Intel® Xeon™64 bit CPUs with 2.66 GHz 
and 4 MB level-2 processor cache, and 8 GB of RAM. They were 
connected in a 1 Gbit/s Ethernet LAN.

If we assume ideal linear speed-up, then the expected simulation 
time of a model on N machines given the actual simulation time on 
K machines is equal to the simulation time on K machines times 
K divided by N. In the evaluation of the scaling, for the estimation 
of the expected simulation time (see Figure 2) we used the meas-
ured simulation time of the model on the minimum number of 
machines used for that particular network size. Namely, we used 
the actual simulation time on K = 1 machine for the network sizes 
of 4000 and 20000 neurons, and the simulation time on K = 4 
and K = 16 machines for the network sizes of 50000 and 100000 
neurons respectively.

Figure 2 shows that in the case of 4000 neurons the computa-
tional load on each node is quite low, hence the cost of the spike 
message passing dominates the simulation time which results in 
sub-linear scaling. For the networks with 20000 and 50000 neurons 
the actual simulation time is shorter than the expected simulation 
time indicating a supra-linear speed-up for up to 24 nodes. For 
more than 24 nodes the actual simulation time approaches the 
expected simulation time. The reason for the supra-linear speed-up 
is more effi cient usage of the processor cache when the network is 
distributed over larger number of nodes (Morrison et al., 2005). 
For the network with 100000 neurons the speed-up is not distin-
guishable from the expected linear speed-up (taking K = 16 nodes 
as the base measurement).

The combination of features that PCSIM supports makes it 
 suitable for various types of neural models. Its domain of appli-
cability can be considered across two complementary aspects: the 
size of networks that can be simulated, and the variety of differ-
ent models that can be constructed and simulated, determined 
by the available neuron and synapse models, plasticity mecha-
nisms, construction algorithms and similar. Concerning the size 
of models, because of its distributed capabilities PCSIM is mainly 
targeted towards large neural systems with realistic cortical con-
nectivity composed of 105 neurons and above. As the results from 
the scalability test show, a spiking network with 105 neurons and 
104 synapses per neuron can be simulated in a reasonable time on 
a commodity cluster with about 20 machines, and the speed-up 
is linear when more machines are employed for the simulation. 
Regarding the support for construction of various different models 
in PCSIM, the generality of the communication system and the 
extensibility with custom network elements enables simulation 
of hybrid models (spiking and analog networks) incorporating 
different levels of abstraction. By utilizing the construction frame-
work also structured models with diversity of neuron and synapse 
types and varying parameter values can be defi ned and simulated, 
and the built-in support for synaptic plasticity further expands 
the domain of usability towards models that investigate synaptic 
plasticity mechanisms.

PYTHON INTERFACE GENERATION
In order to enable a hybrid modeling approach we wanted to use 
a Python interface generation tool that was capable of wrapping 
PCSIM’s object-oriented and modular API such that the Python 

FIGURE 2 | Simulation times of the CUBA network distributed over 

different number of processing nodes, compared to the expected 

simulation time (dashed line) (see text for details). Four different sizes of 
networks were simulated: 4000 neurons with on average 1.6 × 106 synapses 
(squares), 20000 neurons with on average 40 × 106 synapses (circles), 50000 
neurons with on average 250 × 106 synapses (diamonds) and 100000 neurons 
with on average 1 × 109 synapses (crosses). The plotted simulation times are 
averages over 12 simulation runs. The variation of simulation time between 
different simulation runs was small, therefore we did not show it.
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API will be as close as possible to the C++ API. Our choice for this 
purpose was the Boost.Python6 library (Abrahams and Grosse-
Kunstleve, 2003). The strength of Boost.Python is that by using 
advanced C++ compile-time introspection and template meta-
programming techniques it provides comprehensive mappings 
between C++ and Python constructs and idioms. There is support, 
amongst others, for exception handling, iterators, operator over-
loading, standard template library (STL) containers and Python 
collections, smart pointers and virtual functions that can be over-
ridden in Python. The later feature makes the interface bidirec-
tional, meaning that in addition to the possibility of calling C++ 
code from Python, user extension classes implemented in Python 
can be called from within the C++ framework. This is an enabler 
for the targeted hybrid modeling approach; we will see examples 
for this later on in this article.

However, using Boost.Python without any additional tools does 
not lead to a solution where the interface can be generated in an 
automatic fashion since for each new class added to the library’s 
API one would have to write a substantial piece of Boost.Python 
code. As automatic Python wrapping of the C++ interface is one of 
the main prerequisites for leveraging a hybrid modeling approach, 
a solution is needed to automatically synchronize the Python and 
C++ API of a library like libpcsim. Fortunately, there exists the 
Py++ package7 which was developed to alleviate the repetitive proc-
ess of writing and maintaining Boost.Python code. Py++ by itself 
is an object-oriented framework for creating custom Boost.Python 
code generators for an application library written in C++. It builds 
on GCC-XML8, a C++ parser based on the GCC compiler that 
outputs an XML representation of the C++ code. Py++ uses this 
structured information together with some user input, in form of 
a Python program, and produces the necessary Boost.Python code, 
constituting the Python interface for a specifi ed set of C++ classes 
and functions (see Figure 3).

Finally the Boost.Python C++ code is compiled and linked together 
with the C++ library under consideration (libpcsim in our case) to 
produce the Python extension module containing the Python API of 
the library (pypcsim in our case). Thus, the work of the developer 
(and the user as we will see later on) reduces to a defi nition of high-
level rules to select which classes and methods should be exposed.

For the generation of the PCSIM Python interface pypcsim, we 
split the rules Py++ needs into two subsets, inclusion and exclusion 
rules (see Figure 3). The inclusion rules contain the rules that mark 
a selected set of classes to be exposed to Python. The exclusion 
rules contain the post-processing, where some of the methods of 
the classes that were included in the inclusion rules are marked to 
be excluded, and call policies are defi ned for the included methods 
that require them9. Py++ allows to specify the rules in a high-level, 
generic fashion, making them robust to changes in the interface of 
the PCSIM C++ library. Hence, in most cases changes in the PCSIM 
API did not require changes in the Python program that generates 
the wrapper code, which simplifi ed its maintenance. An example 
of such a high-level rule would be “In all classes that are derived 
from class A, do not expose the method that returns a pointer of 
type B”. Such a general rule will then be still valid if for example we 
introduce more classes derived from A, or add additional functions 
that return a pointer of type B in some of the classes.

To summarize, the Python integration of PCSIM using Boost.
Python together with the Py++ code generator allowed us to come 
up with a solution to automatically expose PCSIM’s object-oriented 
and modular API bidirectionally in Python. In the following sec-
tions we will show how such an bidirectional integration of PCSIM 
into Python can practically be used and which possibilities and 
advantages arise.

NETWORK CONSTRUCTION
A large portion of the Python PCSIM interface is devoted to the 
construction of neural circuits. At the lowest level PCSIM provides 
methods to create individual network elements (i.e. neurons and 
synapses) and to connect them together.

On top of these primitives a powerful and extensible frame-
work for circuit construction based on probabilistic rules is built. 
The source of inspiration for the interface of the framework was 
the Circuit Tool in the CSIM simulator10 and PyNN, an API for 
 simulator-independent procedural defi nition of spiking neural 
networks (Davison et al., 2008). We will use a concrete example11, 
described in more depth in the next subsection, to present the 

FIGURE 3 | The processing steps in the generation of the Python interface for PCSIM.

6http://www.boost.org/doc/libs/release/libs/python/doc/
7http://www.language-binding.net/
8http://www.gccxml.org

9Call policies defi ne the change of ownership of objects that cross the boundaries 
of the C++ library, i.e. the object passed from Python to the C++ library and from 
the C++ library to Python.
10http://www.lsm.tugraz.at/circuits
11The full source code of this example is available in the Supplementary Material.
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network construction framework and its typical use cases where 
emphasis is put on those features that were enabled by the bidi-
rectional Python interface generated by the approach described in 
the Section “Python Interface Generation”.

THE EXAMPLE MODEL
We selected the model to be simple enough for didactic reasons, but 
complete enough with all the elements necessary to explain the main 
novel concepts of the interface and its Python extensibility  features. 
The connectivity patterns are based on experimental data that we 
use in our current research work. The model consists of a spatial 
population of neurons located on a 3D grid with integer coordinates 
within a volume of 20 × 20 × 6. 80% of the neurons in the model 
are excitatory, and the rest are inhibitory. The excitatory neurons 
are modeled as regular spiking and the inhibitory neurons as fast 
spiking Izhikevich neurons (Izhikevich, 2004). The connections 
between excitatory neurons in the network are created according 
to the trivariate probabilistic model defi ned in Buzas et al. (2006). 
This connectivity model describes the distribution of the excitatory 
patchy long-range lateral connections found in the superfi cial lay-
ers of the primary visual cortex in cats that depends on the lateral 
distance of the cells and their orientation preference. Orientation 
preference is the affi nity of V1 cells to fi re more when a bar with 
a specifi c orientation angle is present in their receptive fi elds. The 
connectivity rule is defi ned by the following equations that express 
the connectivity probability between two excitatory cells.

P CG Vj i j( ) ( ) ( )l l l li j i j, , , ,φ φ φ φi = ,
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orientation preferences of the pre- and post-synaptic neurons i and j. 
The function G introduces the dependence of the connectivity prob-
ability on the lateral distance between the neurons, and V models the 
dependency on the differences in the orientation preferences of the 
neurons. C, κ and σ are scaling coeffi cients. The values for the pre-
ferred orientation angles of the neurons in the example are generated 
by evolving a self-organizing map (SOM) (Obermayer and Blasdel, 
1993). Additionally the conduction delay of a connection between 

excitatory neurons is probabilistically dependent on the distance 
between the 3D locations of its pre- and post-synaptic neurons.
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Here N(μ, σ, b
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) is a bounded normal distribution representing 

the transmission velocity of the axon. The l
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i
, y

i
, z

i
) and l
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j
, 

y
j
, z

j
) denote the 3D locations of the pre- and post-synaptic neurons 

i and j. A random value from N(μ, σ, b
l
, b

u
) is sampled as follows: 

fi rst a random number from a normal distribution with mean µ and 
standard deviation σ is drawn and if that value is not within the range 
[b

l
, b

u
], then another value is drawn from an uniform distribution with 

that range. D
0
 represents a proper scaling factor in the formula.

THE FRAMEWORK: OBJECT-ORIENTED, MODULAR AND EXTENSIBLE
Figure 4 shows the basic concepts of PCSIM’s construction frame-
work together with their interactions during the construction 
process. This framework allows model specifi cation in terms of 
populations of neurons connected by probabilistically defi ned con-
nectivity patterns called projections.

A population of network elements utilizes several object factories 
to generate the network elements. A factory encapsulates the logic for 
the neuron and synapse generation decoupled from the other parts 
of the construction process. Every time a new neuron is to be created 
in a population the factory is used to generate the neuron object. The 
object factories can use either random distribution objects or value 
generators to generate values for the parameters and attributes of the 
network element instances. When we talk about a parameter we mean 
a parameter of the differential equations used to model a neuron or 
synapse. In contrast an attribute describes any other (more abstract) 
property of a network element. In our example the orientation prefer-
ence φ will be such an attribute of an excitatory neuron.

A projection manages connections between two populations. 
During the construction phase of a projection a connection decision 
predicate is used to determine whether a connection should be cre-
ated for a pair of neurons. A connector factory is then used to create 
instances of the connector elements like synapses (this is analo-
gous to the object factory for populations). The connector factory 
also uses random distributions or connector value generators for the 
parameter values of the connector elements. In order to implement 
a specifi c construction algorithm, the user typically just needs to 
implement custom value generator and connection decision predicate 
classes, as we will demonstrate in the following subsections.

FIGURE 4 | A diagram of the most important concepts within the network construction interface. The arrows indicate a “uses” relationship between the concepts.
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FACTORIES: CREATING NETWORK ELEMENTS FROM MODELS
We will start constructing the network model by defi ning the classes 
(or families) of neuron models: inhibitory and excitatory neurons. 
This is accomplished by defi ning an element factory for each family. 
As explained in the defi nition of “The Example Model” the excita-
tory neurons have an orientation preference φ which depends on 
the location of the neuron in the population. For this reason we 
will associate the attribute phi with each excitatory neuron:

exc_factory =  Factory
(model  = IzhiNeuron ( type = "RS" ),

              Vinit   = UniformDistribution (−50e−3, −60e−3 ),
              attribs = dict( phi = OrientationPreferValGen())

The statement above creates a factory for the excitatory family of 
neurons based on a regular spiking (RS) Izhikevich neuron model 
(Izhikevich, 2004) where IzhiNeuron is a built-in network element 
class. The keyword argument Vinit = UniformDistribution(…) 
associates a uniform random number generator with the initial mem-
brane voltage Vinit. This has the effect that whenever the factory is 
used to generate an actual instance of an excitatory neuron, the param-
eter Vinit will be randomly chosen from the interval [−50, −60] mV. 
Finally the keyword argument attribs = dict( phi = ... ) 
has two effects: a) the attribute phi is attached to exc_factory and 
b) the custom value generator OrientationPreferValGen is used 
to generate a particular value for phi each time exc_factory is 
asked to generate an instance of an excitatory model neuron. The 
value of the phi attribute will be used afterwards for the creation of 
synaptic connections.

In the example we implement the custom value generator 
OrientationPreferValGen in pure Python. This is enabled by 
the particular feature of Boost.Python which allows C++ virtual 
functions to be overridden from within Python.

class OrientationPreferValGen(
PyAttributePopObjectValueGenerator):

   def __init__(self):
       PyAttributePopObjectValueGenerator.__init__(self)
       self.map = som.OrientationMapSOM([20,20])

   def generate(self, rng):
       return self.map.pref( self.loc().x(), self.loc().y() )

Value generators (in this case to be derived from 
PyAttributePopObjectValueGenerator) have a simple inter-
face composed of the constructor __init__ and the method 
 generate which have to be implemented by the user. In our par-
ticular example we create the orientation map, that maps 2D coor-
dinates to an orientation preference angle in the constructor, and 
will use it in the method generate. The map is based on the SOM 
algorithm encapsulated in the Python class OrientationMapSOM 
(details not relevant here). The generate method is called to deter-
mine the value of the orientation angle attribute phi whenever 
a neuron instance from the factory has to be created. The value 
generator inherits several convenient methods from its base class 
that one can use for accessing properties of the neuron for which 
generate is called, like self.loc to get the 3D location of the 
neuron within a population (see next section). We then pass the x 
and y coordinates to the orientation map (method pref) in order 
to calculate the value of the orientation preference angle.

For the inhibitory neuron model we create a similar factory:

inh_factory =  Factory
( model   = IzhiNeuron( type = "FS" ),

                Vinit   = UniformDistribution(−50e−3, −60e−3),
                attribs = dict( ) )

The difference to the excitatory neuron model is that a fast spiking 
(FS) Izhikevich neuron model is used and the attribute dictionary 
attribs = dict( ) is empty. This is because there is no orienta-
tion preference of the inhibitory cells in the considered model.

NEURON POPULATIONS
A population in PCSIM represents an organized set of neurons 
that can be manipulated as one structural unit in the model. In the 
AugmentedSpatialPopulation that we will use in this example, 
the neurons have associated 3D coordinates, a family identifi er, 
and an extensible set of custom attributes that the user can attach 
to each of the neurons. We already encountered this in the previ-
ous section. The family identifi er allows the defi nition of multiple 
families/classes of neurons, i.e. subsets of neurons with similar 
properties, within a single population. Our population will have 
two families of neurons, the family of excitatory and the family 
of inhibitory neurons. For each of the two families of neurons we 
have specifi ed in the previous section a factory that will be used to 
generate the neuron instances within the population.

pop = AugmentedSpatialPopulation
      ( net, [ exc_factory(), inh_factory() ],
        RatioBasedFamilies( [ 4, 1 ] ),
        CuboidIntegerGrid3D( 20, 20, 6 ) )

exc_pop, inh_pop = pop.splitFamilies()

Note that the fi rst argument (net) specifi es the overall net-
work to which this population of neurons will belong. The class 
CuboidIntegerGrid3D, which is a built-in specialization of the 
more general concept of an arbitrary set of points in 3D, defi nes 
the possible locations for the neurons (integer coordinates within 
a volume of 20 × 20 × 6). The population is to be composed of two 
families of neurons (excitatory and inhibitory), created by the two 
given factories (exc_factory and inh_factory). To accomplish 
this we use a RatioBasedFamilies object which randomly chooses 
for each 3D location from which family of neurons the particular 
instance will be created. Specifying the ratio 4:1 for excitatory to inhib-
itory neurons yields the desired 80% excitatory neurons. The class 
RatioBasedFamilies is a built-in specialization of the general con-
cept of a spatial family identifi er generator which encapsulates the logic 
for deciding which factory to use depending on the 3D location.

For the purpose of more convenient setup of connections later 
on, the created population is split into two sub-populations, one 
for each family.

PROJECTIONS: MANAGING SYNAPTIC CONNECTIONS
The synaptic connections in the network construction interface 
are created by means of projections. A projection is a construct 
that represents a set of synaptic connections originating from one 
population of neurons and terminating at another population12. 

12The source and destination populations can be the same if the goal is to create 
recurrent connections in one population.
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PCSIM has built-in construction algorithms for creating various 
types of connection projections, like constant probability random 
connectivity or random connectivity with probability dependent 
on the distance (or lateral distance) between the neurons.

However, to create a projection with a specifi c connectivity pat-
tern, one usually defi nes a custom connection decision predicate. A 
decision predicate decides for an individual pair of neurons whether 
to form a connection based on the parameters and attributes of 
those neurons. In our example we implemented the connection 
decision predicate OrientationSpecificConnPredicate in 
pure Python, encapsulating the probabilistic rule for connection 
making from Eq. 1, which states that the connection probability 
depends on the distance between, and the orientation preferences 
of the pre- and post-synaptic neurons.

class OrientationSpecificConnPredicate
  (PyAugmentedConnectionDecisionPredicate):

  def __init__(self, C):
     PyAugmentedConnectionDecisionPredicate.__init__(self)
     self.orient_conn_prob = OrientationSpecConnProbability(C)
     self.unidist = UniformDistribution(0.0, 1.0)

  def decide(self, src, dst, rnd ):
     prob = self.orient_conn_prob(self.src_attr(src, ’phi’),
                                  self.dest_attr(dst, ’phi’),
                                  self.dist_2d( src, dst ) )
     return self.unidist(rnd) < prob

The PyAugmentedConnectionDecisionPredicate base class 
is used when one has to defi ne a custom connection decision predi-
cate that uses the neuron attributes and connects neurons from popu-
lations of type AugmentedSpatialPopulation. To complete the 
implementation of the predicate, it is required to override the decide 
method and fi ll the constructor with the necessary initializations. The 
method decide is called within the connection construction process 
for each candidate pair of neurons that could be connected and is 
expected to output true (make a connection) or false (no connec-
tion). In our example, we create an instance (orient_conn_prob) 
of the OrientationSpecConnProbability class to calculate 
the probability according to the Eq. 1 (the full implementation of 
the class is available in the Supplementary Material). This instance 
is called in the decide method with the orientation preferences 
of the candidate source and destination neurons and their lateral 
distance as arguments. The orientation preferences are obtained via 
the src_attr and dest_attr methods (inherited from the base 
class), and the lateral distance via the dist_2d method. By com-
paring a uniformly distributed random number to the calculated 
probability a Bernoulli distribution with the desired probability for 
the outcome true is generated.

Before we can create the projection we have to defi ne a con-
nector factory (class ConnFactory) that will be used to generate 
the synapse objects within the projection.

ee_syn_factory = ConnFactory
                  ( model = StaticSpikingSynapse(W = 1e−4),
                   delay = DelayCond(v_mean = 2e2, v_SH = 0.2,
                               v_min = 0.1e−3, v_max = 5e−3) )

The connector factory differs from the element factory objects 
used in conjunction with neuron populations, in that the parame-
ters of the created objects (typically synapses) can depend on the 
 attributes of the source and destination network elements they are 

connecting. In our example, the connector factory for the connec-
tions between excitatory neurons is based on a current-based synapse 
model with exponentially decaying post-synaptic response (class 
StaticSpikingSynapse in PCSIM). Additionally, the DelayCond 
value generator is associated to the delay parameter of the synapse, 
which produces distance dependent delay values according to Eq. 4. 
The DelayCond is a built-in value generator in PCSIM.

Now we can create the projection that will generate all recurrent 
connections between the excitatory neurons.

ee_proj = ConnectionsProjection
          ( exc_pop, exc_pop, ee_syn_factory(),
             PredicateBasedConnections

( OrientationSpecificConnPredicate( 1.0 ) ) )

We specify in the constructor of the projection the con-
nectorfactory for generation of the synapses and the 
PredicateBasedConnections class instance that iterates over 
all candidate pre- and post-synaptic neurons and delegates the 
decision whether to make a connection to the connection deci-
sion predicate OrientationSpecificConnPredicate given as 
an argument.

A connection decision predicate is typically used when in the 
probabilistic connectivity defi nition the probability that two neurons 
are connected depends on the attributes and parameters of the two 
neurons and is independent from the other created connections. In 
the general case, with such a connectivity, a separate decision whether 
to make a connection has to be made at each candidate neuron pair, 
yielding a complexity of the wiring algorithm that is quadratic with 
respect to the number of neurons. In a distributed scenario, a speed-
up of the construction is possible by splitting the wiring workload 
among the multiple machines the model is simulated on. If the num-
ber of machines is increased with the number of neurons, keeping 
the number of neurons per node fi xed, and if we assume that the 
number of input synapses per neuron does not increase, then the 
wiring time will scale linearly with the number of neurons.

For other connectivity schemes where further optimizations 
are possible, a faster wiring algorithm can be implemented directly 
in the class that iterates over the neuron pairs. For example, for 
the case of constant probability random connections, a special 
RandomConnections class that implements faster wiring can 
be used instead of PredicateBasedConnections. When using 
the RandomConnections, the wiring time is proportional to the 
number of created connections if the network is constructed on a 
single machine, and remains constant in the distributed case with 
the assumption that the number of machines is increased propor-
tionally with the number of neurons13.

CUSTOM NETWORK ELEMENTS
The PCSIM communication system is general in a sense that it 
supports spiking and analog messages as communication between 
network elements. The network elements are not restricted to one 
type of message and can have multiple input and output ports, each 
of them capable of either receiving or sending spiking or analog 
messages (see Figures 5A,B).

13It is out of scope of this article to detail the algorithms behind the effi cient imple-
mentation of the network construction framework in the distributed simulation 
scenario; this will be reported elsewhere.
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The generality of the framework allows the user to implement 
custom processing elements that map multiple inputs to multiple 
outputs and plug them in a network model inter-connected together 
with spiking or analog neural networks. Such custom network ele-
ments can either be implemented in C++ (see Extending PCSIM 
Using C++) or in pure Python. This feature of PCSIM has various 
potential uses. For example the user can implement new neuron 
types for a preliminary experiment in Python fi rst, instead of directly 
implementing them in C++. Another possible usage is to imple-
ment more abstract or complex elements like a whole population 
of spiking neurons in Python by using vectors from the numerical 
Python package numpy14 (Oliphant, 2007) for step-by-step integra-
tion of the equations. This approach has been shown to have good 
performance, and is applicable for homogeneous neuron popula-
tions, where all neuron instances have the same neuron model (Brian 
simulator, Goodman and Brette, 2008).

We detail such an example in this section, where the Brian simu-
lator is used to implement a population of spiking neurons as a 
single network element, and then plug it into a PCSIM simulation 
together with other built-in network elements.

The spiking neural network model we will simulate with Brian 
is the modifi ed version of the CUBA benchmark model described 
in the Section “Overview”, with a network size of 4000 neurons. We 
have used the same connectivity probability of 0.02 and the same 
weights as in Brette et al. (2007), instead of the modifi ed 0.1 con-
nectivity probability and scaled weights in the Section “Overview”. 
The PCSIM network element that we will create to encapsulate 
the Brain network has 1000 spiking input ports and 4000 spiking 
output ports (see Figure 5C). Each of the output ports is associated 
to one neuron.

To implement this model as a PCSIM network element, one 
has to implement a Python class BrianCircuit derived from 
PySimObject. In the constructor of this class the Brian spiking 
network is created and initialized.

class BrianCircuit(PySimObject):

    def __init__( self ):
        PySimObject.__init__( self )

        self.registerSpikingOutputPorts(arange(4000))
        self.registerSpikingInputPorts(arange(1000))
        input = PCSIMInputNeuronGroup(1000, self)
        self.P = P = brian.NeuronGroup(4000, model = eqs,
                           threshold = −50*mV, reset = −60*mV)
        Pe = P.subgroup(3200)
        Pi = P.subgroup(800)
        Ce = brian.Connection(Pe, P, ’ge’ )
        Ci = brian.Connection(Pi, P, ’gi’ )
        Ce.connect_random( Pe, P, p = 0.02, weight = 1.62*mV )
        Ci.connect_random( Pi, P, p = 0.02, weight = −9*mV )
        Cinp = brian.Connection( input, P, ’ge’ )
        Cinp.connect_random( input, P, p = 0.1,
                             weight = 3.5*mV)
        self.brian = brian.Network(input, P, Ce, Ci, Cinp )
        self.brian.prepare()
        self.brian.clock.set_duration(2.0*second)

The mapping of the PCSIM input ports to a Brian neuron 
group is managed by the simple auxiliary neuron group named 
PCSIMInputNeuronGroup (see the Supplementary Material 
for the implementation). The reset method resets the state of 
the network to time step t = 0, which is achieved by calling the 
reinit method of the Brian network, and initializing the mem-
brane potential vector P.V to random values from an uniform 
distribution.

def reset(self, dt):
    self.brian.reinit()
    self.P.V = −60*mV + 10*mV*rand(len(self.P))
    return 0

The step-by-step iteration of the network is done in the over-
ridden advance method which performs one time-step update of 
the Brian network with the update method and the tick method 
of the associated Brian clock object. At the end of each time step 
the generated spikes of the population are gathered and delivered 
to the output ports of the PCSIM network element.

def advance(self, ai):
    self.brian.update()
    self.brian.clock.tick()
    self.setOutputSpikes( ai, self.P.get_spikes() )
    self.clearSpikeBuf()
    return 0

A C

B

FIGURE 5 | (A) Network elements of different type (with different arrangement 
of input and output ports) interconnected together in a PCSIM network. 
Different colors of ports, gray or white, mark their different types, spiking or 

analog. (B) Neurons and synapses are specifi c subtypes of the more general 
concept of an network element. (C) Schematic diagram of the embedding of a 
network simulated with the Brian simulator into a PCSIM network element.

14http://numpy.scipy.org
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Note that no Python loops are present, the setOutputSpikes 
method that transfers the spikes is implemented in C++ in the base 
class PySimObject, so there is no performance loss caused by the 
transfer of spikes from Brian to PCSIM and vice versa.

The new BrianCircuit network element class can then be 
instantiated and added to a PCSIM simulation. The following code 
segment creates an instance of the Brian spiking network, adds it 
as a network element, sets up the input and runs the simulation 
for 2.0 s [1000 neurons that emit Poisson spike trains at rate 5 Hz 
(PoissonInputNeuron) are connected to the 1000 input ports of 
the Brian network element]15.

net = SingleThreadNetwork()
inpNrnPop = SimObjectPopulation
            ( net, PoissonInputNeuron( rate = 5,
              duration = 1000 ), 1000 )

pycirc    = BrianCircuit()
pycirc_id = net.add(pycirc)

for i in range(inpNrnPop.size()):
    net.connect(inpNrnPop[i], 0, pycirc_id, i)

net.reset()
net.simulate( 2.0 )

EXTENDING PCSIM USING C++
The object-oriented framework of PCSIM can be extended by the 
user at many different levels. Typical extensions of PCSIM include 
either implementations of new neuron and synapse types, or imple-
mentations of classes encapsulating custom construction rules in 
the network construction interface, as we have illustrated in the 
previous sections. By utilizing the features of the Boost.Python 
library and Py++, the extensions can be implemented either in 
pure Python as already shown or in C++.

For creating C++ extensions, PCSIM provides a tool that com-
piles the custom C++ classes, automatically generates the Python 
wrapper interface for these and packs everything into a separate 
Python extension module. In order to simplify the procedure of 
creating a custom extension, the user starts the implementation 
from an extension template contained in the PCSIM distribution. 
Let us assume that we want to implement two classes: a new neuron 
type MyNeuron and a new synapse type MySynapse. Once the C++ 
implementation is fi nished, there are three additional steps that 
have to be done to produce the PCSIM extension module.

First, the C++ source fi les of the extension have to be enlisted 
in the fi le module_recipe.cmake. This fi le is read by PCSIM’s 
C++ build tool CMake16.

SET( MODULE_SOURCES
   src/MySynapse.cpp
   src/MyNeuron.cpp
)

As the second step, we have to specify the names of the classes 
we want to include in the Python interface in the fi le python_
interface_specification.py which holds the extension 

module interface specifi cation. For our example the inserted 
lines should look like:

def specify( M, options ):
    M.class_( ’MySynapse’ ).include()
    M.class_( ’MyNeuron’ ).include()
    return M

Note that the argument M in the code above denotes the Py++ 
representation of the C++ code of the custom PCSIM extension 
to be built, with its rather intuitive query interface.

The name of the extension module (in our example my_pcsim_
module) is specifi ed in both module_recipe.cmake and python_
interface_specification.py fi les. Finally, the compilation is 
done using the special purpose command-line compilation tool 
for PCSIM extensions:

> python pcsim_extension.py build

The compiled extension module then can be imported and used 
within Python as any other module.

import pypcsim
import my_pcsim_module

The main pypcsim module should always be imported before 
any PCSIM extension modules, because the classes in the extension 
are derived from classes in pypcsim and these classes should be 
already in the Python namespace. The user can develop multiple 
PCSIM extension modules that can be used simultaneously in one 
simulation.

The creation of a PCSIM extension as a separate Python exten-
sion module relies on the support of Boost.Python and Py++ 
for component-based development, so that C++ types from one 
Python extension module can be passed to functions from another 
extension module while still preserving the information about the 
cross-module C++ inheritance relationships. This enables object 
instances from the classes in the extension module to be used within 
the PCSIM object-oriented framework in the main pypcsim mod-
ule. The component-based development has also the advantage that 
during the development of new custom classes only the extension 
module has to be recompiled, not the whole pypcsim library.

During the compilation of the PCSIM extension module the 
same processing steps happen as for the main pypcsim module (see 
Figure 3). We use the same scripts both for generation of the Python 
interface of the main PCSIM package and for the Python integration 
of PCSIM extension modules. Since the post-processing exclusion 
rules are expressed with the Py++ query interface in a generic way, 
they are applicable also to the wrapping of the extension classes. This 
is due to the fact that extension classes are derived from base classes in 
the PCSIM object-oriented framework and as such share their com-
mon properties on which the rules are based. Hence, the interaction 
of the user with the interface generation and the module compilation 
reduces to specifying a list of the C++ source fi les, and a list of classes 
to be exposed in Python. The rest of the process is automatized and 
the details are hidden behind the command-line interface of the 
special compilation tool for PCSIM extensions.

PCSIM ADD-ONS IMPLEMENTED IN PYTHON
On top of the main PCSIM Python API (encapsulated in 
pypcsim) several additional packages have been developed. They are 

15The net.connect(src_id, src_port, dest_id, dest_port) method 
connects the port number src_port of the element with id src_id, to the port 
number dest_port of the element with id dest_id.
16http://www.cmake.org

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

798
799
800

69

http://www.cmake.org


Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 | 

implemented in pure Python and heavily rely on many third party 
scientifi c Python packages. The purpose of these packages is either 
to augment the capabilities of PCSIM, or add additional separate 
functionalities that are suitable to be used together with PCSIM.

PyNN.PCSIM
The objective of the PCSIM development to adopt ongoing initiatives 
to defi ne standards for model specifi cation of neural networks that 
would foster interoperability between different simulators is refl ected 
in the support of the PyNN project17 (Davison et al., 2008). The PyNN 
project is an effort to create a standardized, unifi ed Python-based 
API for procedural specifi cation of neural network models aiming 
at easier exchange of models between simulators. The user interface 
of PCSIM has been augmented with an additional software layer to 
support the PyNN API making it possible to use models specifi ed 
in PyNN within PCSIM. Due to the fact that PyNN was one of the 
sources for inspiration of the PCSIM interface, the concepts between 
the two interfaces match closely, so the translation of the PyNN state-
ments in corresponding PCSIM statements was straightforward and 
did not require substantial programming logic that could have hin-
dered the performance of the interface. The pyNN.pcsim package 
is an integral part of the PyNN distribution.

PYPCSIMPLUS
After we started to use PCSIM for our simulation purposes, it was 
becoming apparent that adding another layer above the interface of 
the pypcsim module can greatly simplify the routine tasks that are 
usually performed while setting up and running simulations. The 
pypcsimplus package was created with the intention to fi ll this gap. 
Note that the pypcsimplus package is dependent on PCSIM. For 
a more comprehensive, simulator independent tool-set for neural 
simulations, we refer the reader to the NeuroTools package18. In the 
following paragraphs we will describe two main components of the 
pypcsimplus package and give a demonstration of its use19.

Recordings
In PCSIM the value of a parameter or output port is recorded dur-
ing a simulation by connecting it to a proper recording network 
element. The purpose of the Recordings class is to provide simpler 
means to set up recorders and saving the recorded data during a 
PCSIM simulation. For example it allows to create a population of 
recorders that record the activity of a population of elements with 
each recorder connected to one of the elements (e.g. the spiking 
output of a population of neurons). For example

r = Recordings(net)

r.spikes  = nrn_popul.record( SpikeTimeRecorder() )
r.Vm      = net.record( my_nrn, ‘‘Vm’’, AnalogRecorder() )
r.weights = synapses.record(  AnalogRecorder

( samplingTime ), ‘‘W’’ )

schedules the recording of all spikes in the population nrn_popul, 
the membrane potential Vm of a single neuron (my_nrn), and the 
weights of a group of plastic synapses. To save that data to an HDF5 
fi le20 one would use the command

r.saveInOneH5File(f)

At any time later on, the saved data can be loaded from the fi le 
in a new Recordings object.

r = constructRecordingsFromH5File(f)
plot(r.Vm)

The members and attributes of the newly created Recordings 
object r are numpy arrays or Python lists holding the recorded 
data. For example r.Vm and r.W will be numpy arrays with the 
recorded values of the membrane potential of the neuron and with 
the evolution of the recorded synaptic weights during the simula-
tion, respectively. Note that if the user switches to a distributed 
simulation the same code, without any changes, can be used.

To summarize, the Recordings class simplifi es the specifi ca-
tion, storage and retrieval of recorded data by

• providing automatic detection of the type of the recorded data 
based on the recorder classes, and conversion of the recorded 
data to appropriate HDF5 data structures.

• implementing automatic gathering and sorting of recorded 
data from all processing nodes in a distributed simulation, and 
saving it in HDF5 in the same format as if the simulation was 
executed on a single node.

These functionalities are hidden behind a convenient user inter-
face and are manipulated in the same manner in both single-node 
and distributed simulation modes. For the implementation of the 
Recordings class, the mpi4py21 (Dalcín et al., 2008) and pytables22 
packages were used.

Experiment-model framework
Simulation, modeling and development environments in various 
fi elds (e.g. electronic circuit design, software engineering, signal 
processing, mechanical engineering) usually include a library of 
already developed reusable components that are readily available 
to the modeler. In the area of computational neuroscience, there is 
a similar effort to provide resources for easier reusability of models, 
e.g. online databases of already published models (Hines et al., 
2004), or constructs within the simulator that allow encapsulation 
of a simpler model as a well-defi ned component that can be used 
as a building block at a higher-level of abstraction. As a fi rst step 
towards a component-based modeling with PCSIM, we have set 
up a light-weight framework that could leverage and encourage 
encapsulation of some generic parts of a model as reusable com-
ponents, which can be exchanged among modelers.

The basis of the framework is composed of three classes: Model, 
Experiment and Parameters. The Model is a base class which the 
user inherits from when he wants to develop a model component. 
Several model components can be combined together to create a 17http://neuralensemble.org/trac/PyNN 

18http://neuralensemble.org/trac/NeuroTools
19There are other miscellaneous utilities present within the pypcsimplus package, 
as for example tools for easier management of IPython parallel computing cluster 
instances, routines for inspection of the structure of an already created networks in 
PCSIM and routines for processing and analysis of spike train data.

20http://www.hdfgroup.org/HDF5/
21http://mpi4py.scipy.org
22http://www.pytables.org/moin
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new model component. The Experiment class provides means to 
perform a controlled simulation with an already developed cus-
tom Model class. It encapsulates different facilities regarding saving 
output data to fi les, confi guration of models, saving the current 
version of the scripts, naming of different runs of experiments 
etc. The confi guration of the models is done with a Parameters 
class holding the model parameters in a hierarchical structure. For 
creating instances of the Experiment and Model classes remotely 
within the IPython parallel computing framework23 (Pérez and 
Granger, 2007) there are RemoteExperiment and RemoteModel 
proxy classes, which can be used to manipulate remote experiment 
and model instances in the same way as if they were local.

Pypcsimplus in action
We will demonstrate in the following paragraphs how pypcsimplus, 
together with other general scientifi c and computational neuro-
science Python packages, can be utilized to perform an analysis of 
the activity of the Brian spiking network example from the Section 
“Custom Network Elements”. In particular we will investigate what 
effect a change in the injected input in the network will have on 
the cross-correlogram of its spike response.

At the beginning we will set up the recording of the spiking out-
put of all 4000 neurons in the network. After creating a Recordings 

object, we create a population of recorders to record the spikes from 
the 4000 output ports of the BrianCircuit network element.

r = Recordings()
r.spikes = record_ports(net, pycirc_id, range(4000),
                        SpikeTimeRecorder())

net.simulate(2.0)

r.saveInOneH5File(’results.h5’)

We have accomplished this by using the record_ports func-
tion from the pypcsimplus package, used to specify recording of 
a set of output ports. After the simulation is performed, the record-
ings are saved in a HDF5 fi le for subsequent retrieval.

In another script we setup the analysis of the output data and the 
plotting. After the creation of the Recordings object by loading 
the recorded data from the saved HDF5 fi le, we plot the spiking 
activity of the network for the fi rst 0.4 s of the simulation with the 
plot_raster function in pypcsimplus (see Figure 6A).

r = constructRecordingsFromH5File(’results.h5’)

figure(1)
plot_raster(r.spikes, time_range = (0,0.4), fmt = ’,’)

plot_raster uses the plotting routines from the matplotlib24 
package (Hunter, 2007) to realize the plotting.

23http://ipython.scipy.org

A B

C D

FIGURE 6 | Plots from the output analysis example with the 

pypcsimplus package. (A) Spike response of the spiking network 
implemented in the Section “Custom Network Elements”, with input neurons 
emitting spikes generated from a homogeneous Poisson process with a rate of 
5 Hz, for the fi rst 0.4 s of the simulation. (B) Cross-correlogram of the spike 

response of the network model from (A). (C) Spike response of the spiking 
network implemented in the Section “Custom Network Elements”, when the 
input neurons emit spikes generated from an inhomogeneous Poisson process 
with a rate changing according to a sinusoidal function (see text for details). (D) 
Cross-correlogram of the spike response of the network model from (C).

24http://matplotlib.sourceforge.net
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Additionally we will calculate and plot the cross-correlogram 
of the spiking activity, defi ned as the histogram of time differences 
between the spike times from two different spike trains, calculated 
and summed over a set of randomly chosen pairs of neurons from 
the network. To achieve this, we utilize the pypcsimplus function 
avg_cross_correlate_spikes.

corr = avg_cross_correlate_spikes(r.spikes, num_pairs = 2000,
                                              binsize = 1e−3,
                                corr_range = (−200e−3,200e−3))

figure(2)
bar(arange(−200e−3,201e−3, 1e−3), corr, width  = 1e−3,
                                         color = ’k’)

In our case the cross-correlogram is calculated from the spike 
times of 2000 randomly chosen pairs of neurons from the network, 
for time lags within the range [−200 ms, 200 ms] and a bin size of 
1 ms. We then plot the cross-correlogram values with the bar func-
tion from matplotlib (the plot is shown in Figure 6B)25.

In the example in the Section “Custom Network Elements”, the 
input neurons were setup to generate a homogeneous Poisson spike 
trains with 5 Hz rate. Now we will modify the input generation so 
that the input neurons will emit inhomogeneous Poisson spike 
trains, with a fi ring rate r(t) = 5(1 + sin(2π 10t)). First we create a 
population of input neurons of type SpikingInputNeuron that 
emit an explicitly given sequence of spike times.

inpNrnPop = SimObjectPopulation
            (net, SpikingInputNeuron(), 1000)

Then we iterate through all the input neurons and set the 
spike sequence of each input neuron according to the previously 
defi ned inhomogeneous Poisson process. For the generation of 
the inhomogeneous Poisson spike time sequences we invoke the 
inh_poisson_generator method of an instance of the StGen 
(stimulus generator) class available in the NeuroTools Python 
package for computational neuroscience. The method accepts 
three parameters, a sequence specifying the time moments where 
the rate changes (parameter t), the sequence of the new fi ring rate 
values at these time moments (parameter rate) and the duration 
of the spiking process (parameter t_stop)26.

time_steps = arange(0,2000,1); stgen = StGen()
for i in range(inpNrnPop.size()):
     spikelist = stgen.inh_poisson_generator
                  (rate = 5*(1 + sin(time_steps/1000.0*20*pi)),
                  t = time_steps, t_stop = 2000.0)
     inpNrnPop.object(i).setSpikes(spikelist.spike_times/1000)

The spike raster and the cross-correlogram obtained after rerun-
ning the simulation with the newly defi ned input are shown in 
Figures 6C,D, respectively.

Through this demo we have elucidated to the reader how a 
typical PCSIM simulation run is performed in Python, and the 
benefi ts that come from the utilization of Python as a unifying 

scripting environment within which PCSIM is used together with 
its add-on pypcsimplus and other scientifi c and computational 
neuroscience Python packages. Additionally to their side-by-side 
usage with PCSIM, the Python scientifi c packages are harnessed also 
in the bundling of common recipes and reoccurring usage patterns 
in the PCSIM extra add-on packages, as in the case of pypcsimplus. 
The collection of Python scientifi c packages presently available 
cover a broad enough range of functionalities to enable, in almost 
all cases, handling all of the steps of a modeling effort in Python (e.g. 
stimulus preparation, response analysis and plotting as shown in the 
demo). The data communication between the different packages 
and PCSIM typically reduces to passing Python sequences (lists or 
numpy arrays) from one package to another.

PYLSM
The pylsm package is aimed to support the analysis of the compu-
tational properties of cortical microcircuits within the liquid state 
machine (LSM) approach (Maass et al., 2002). In this approach 
multiple simulation trials are performed where input spike trains, 
drawn from a defi ned input distribution, are injected in the cortical 
circuit, and a readout which reads the spiking activity of the circuit 
is trained by a supervised learning algorithm to approximate some 
function of these inputs.

The framework contains all the necessary machinery for per-
forming the simulations and the training of the readout27. In a 
typical task the user defi nes the neural circuit to be used as a liquid, 
chooses the desired input distribution, the input-output mapping 
function, and the learning algorithm for the readout from the ones 
available in the package, and then performs the LSM training and 
testing procedures. For example, the user can defi ne a distribution 
of inputs which consist of different time segments, and each of 
these time segments contains a jittered version of some predefi ned 
spike train template. In the available learning algorithms for the 
readout a least-square algorithm with non-negative constraints is 
also included. It can be used to train a linear readout with the 
biologically more realistic constraint that all the weights originat-
ing from excitatory (inhibitory) neurons are positive (negative) 
(Haeusler and Maass, 2007).

DISCUSSION
The application programming interface of PCSIM is an object-
oriented framework composed of many classes interacting together 
to achieve the desired operation. Within this framework we intro-
duced several novel concepts like element and connector factories, 
value generators and connection decision predicates. The user can 
customize and extend this framework by deriving from the interface 
classes of the API to implement his own specifi c network elements 
or network construction algorithms.

THE WRAPPING APPROACH
There exist several possible approaches for implementing a Python 
interface of a simulation software library implemented in C/C++. 
An extension to the NCS software called Brainlab (Drewes, 2005) 
uses generation of a fi le from Python with declarative specifi cation 

25For clarity reasons, we only give the main matplotlib plotting command in the 
example code blocks, and omit the additional formatting commands used for 
 Figure 6.
26Time in neurotoools is specifi ed in milliseconds, hence the division by 1000 when 
we need to convert the spike time sequence in seconds before inserting it in a PC-
SIM neuron.

27It has similar features as the package described in Natschläger et al. (2003), which 
was implemented in Matlab and was part of the CSIM package.
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techniques employing the highly effi cient numerical Python package 
numpy (which is implemented in C). This adds fl exibility, since the 
equations describing the element can be changed quickly without 
any necessary compilation while not sacrifi cing performance, since 
by using numpy vectors, the integration algorithm is broken down 
in elementary vector operations thus avoiding any loops within 
Python that could be detrimental for the performance.

This approach seems also to be advantageous when one wants 
to implement network elements that have some abstract processing 
logic, e.g. signal processing fi lters, machine learning algorithms or 
similar. In this case one can utilize a large set of available C++ librar-
ies that have Python bindings, for an effi cient implementation, and 
handle in Python the transfer of data from the input ports of the 
network element to the input methods of the library, and from the 
output of the library to the output ports of the network element.

The possibility to implement PCSIM network elements in pure 
Python offers a convenient way to achieve run-time interoperabil-
ity between PCSIM and other neural network simulators (Cannon 
et al., 2007), provided that the simulator has a Python interface, 
allows control of the simulation process at individual time steps, and 
has the possibility to write input and read output data during the 
simulation at each time step. As shown in the example in the Section 
“Custom Network Elements”, we have successfully implemented 
interoperability with the Brian simulator, which possesses the afore-
mentioned capabilities. One interesting further application of this 
interoperability could be a distributed simulation of a large neural 
network where the sub-networks on each node are implemented 
with the Brian simulator, and the parallel communication is handled 
by PCSIM’s communication system. Another possible approach of 
using Python as a glue language to achieve simulator interoperability 
is to setup a Python script as a top-level coordinator of a step-by-step 
simultaneous execution of two simulators, where the necessary data 
transfer between the simulators is realized through intermediate 
Python data structures (Ray and Bhalla, 2008).

HIGH-LEVEL WRAPPING SPECIFICATION AND EXTENSIBILITY
Since the interface of PCSIM has a fi ne granular structure, com-
posed of many decoupled classes (≈300) this implies that there are 
many classes to be wrapped and exposed to Python. It would simply 
be impossible to manually manage all the necessary Boost.Python 
wrapper code. Furthermore, the possibility of adding extensions to 
the interface puts additional constraints to the wrapping approach 
to be robust enough to work for the extension classes too, without 
any signifi cant intervention from the user. Nevertheless, by exploit-
ing the powerful interface generator tool Py++ the wrapping of 
such a large number of classes is rendered feasible31. We were able 
to specify high-level generic rules within Py++ for the defi nition of 
the wrapping of all the classes in the PCSIM API and their sensible 
extensions. To be precise, the Python program that specifi es the 
rules for the Python interface generation for ≈300 classes is about 
400 lines of Python code. As these rules apply for the extensions too, 
the user can easily extend the PCSIM simulator with its own cus-
tom C++ classes and compile them in a separate Python  extension 

of the model which is then loaded in the simulator. Another com-
mon method is to use interpreter-to-interpreter interaction with 
the conversion of data structures between Python and C++ handled 
by means of the Python/C API, an approach adopted by NEURON 
(Hines et al., 2009) and NEST (Eppler et al., 2008). This method is 
applicable only if the simulator already has an interpreting interface. 
For the creation of PyMoose (Ray and Bhalla, 2008), the Python 
interface of MOOSE28, the developers applied the interface genera-
tor tool SWIG29 (Beazley, 2003). Certainly, one can also implement 
a Python interface by using solely the Python/C API.

Since PCSIM’s Python interface was to be newly developed, only 
the later two options were applicable. We opted for the interface 
generator tool approach combined with automatic wrapper code 
generation, since from the available options it seemed to us the fast-
est way, in terms of the amount of development effort required, to 
achieve the desired Python wrapping of the PCSIM object-oriented 
framework. One of our goals for the integration of PCSIM with 
Python was to simplify and support a hybrid modeling approach 
by enabling the user to implement extensions of the PCSIM object-
oriented framework in Python and/or C++, while not having to 
bother with details regarding the interoperability between these 
two programming languages.

The excellent support of Boost.Python for advanced C++ con-
cepts and appropriate mapping of corresponding idioms between 
the two languages allowed us to expose the complete PCSIM API, 
currently ≈300 classes, to Python in a non-intrusive way. This means 
that the fact that the PCSIM API is to be exposed to Python does not 
impose any changes at the C++ level nor does it put any constraints 
on its design. Furthermore the compilation of the libpcsim library 
itself does not depend on any Python library or wrapping code.

BIDIRECTIONAL INTERFACE AND HYBRID MODEL DEFINITION
One of the features of Boost.Python enabling the hybrid approach is 
the ability to derive Python classes from the wrapped interface classes, 
and override the virtual functions. Hence, such custom Python class 
methods can be called from within C++ and thus allow an integration 
of Python code into the PCSIM C++ code. A similar bidirectional 
interface has been implemented between Python and NEURON 
(Hines et al., 2009), where Python can issue commands towards 
NEURON, but also Python code can be called and executed from 
within NEURON in an active Hoc session30. In PCSIM the two-way 
interaction between Python and C++ enables user customizations 
to be coded in pure Python, and then plugged into the PCSIM C++ 
framework. This brings additional fl exibility and freedom to the 
user, meaning that he can fi rst do fast implementations in Python, 
e.g. extensions to the network construction interface (see Network 
Construction), in the prototyping phase, and afterwards the imple-
mentation can be ported to C++ to gain maximum performance.

The ability to defi ne PCSIM network elements in Python opens 
a possibility for a seamless Python-C++ integration also during the 
simulation, not only in the network construction stage. The example 
described in the Section “Custom Network Elements” shows that net-
work elements can be implemented in Python, by using  vectorized 

31The only drawback we encounter is the rather long compile time when recompi-
ling the whole Python interface. This is due to the fact that Boost.Python heavily 
uses C++ templates.

28http://moose.sourceforge.net/
29http://www.swig.org
30Hoc is the native NEURON interpreting language.
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 package, which can be used together with the main pypcsim pack-
age (the tool support for this is included in PCSIM). This was made 
possible by the Boost.Python and Py++ support for cross-module 
inheritance relationships and component-based development (see 
“Extending PCSIM Using C++”).

To summarize, by the easy extensibility of its interface both 
in Python and C++, PCSIM enables the modelers to think hybrid 
when developing their models (Abrahams and Grosse-Kunstleve, 
2003).

PYTHON AS A SCRIPTING ENVIRONMENT
Providing a Python interface to a neural simulator increases its 
versatility and consequently the productivity of the modelers in 
many ways. The object oriented design of the language, its expres-
sive and clean syntax, allows the modeler to focus on the high-level 
logic of the model instead of struggling with the intricacies and the 
nuts and bolts of the programming language. Furthermore, there 
is a growing number of general scientifi c and specifi c computa-
tional neuroscience software tools available as Python packages, for 
numerical calculations, scientifi c functions, plotting, saving data to 
fi les, parallel computing etc. We have used several scientifi c Python 
packages to enhance PCSIM with useful utilities on top of its basic 
interface. As we have illustrated through a simple example in the 
Section “PCSIM Add-Ons Implemented in Python”, in combina-
tion with such Python packages PCSIM can be used as the main 
component of a Python-based neural simulation environment 
where all steps within a neural model development life-cycle, from 
the specifi cation of the model and performing the simulations, to 
storage of simulation output data, data analysis and visualization 
can be performed. Overall, the integration of PCSIM with Python 

added additional valuable facilities to the user, turning PCSIM into 
a full-fl edged neural simulation environment.

PCSIM RESOURCES
Many resources for PCSIM can be found at its web page32. The web 
page contains a user manual, examples, installation instructions, 
complete class reference documentation and the complete material 
for the tutorial that was given at the FIAS Theoretical Neuroscience 
and Complex Systems summer school held in Frankfurt, Germany 
in August, 2008. The users can discuss topics and pose questions 
concerning usage and installation of PCSIM on the pcsim-users 
mailing list on Sourceforge®33 where the PCSIM development 
project is hosted. In the future, the user manual will continuously 
undergo extensions and revisions to better organize the content 
and to include additional topics and more elaborate information 
about the PCSIM concepts and constructs. Additional examples 
covering various PCSIM features will also be made available on 
the web site.
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Progress in experimental tools and design is allowing the acquisition of increasingly large 
datasets. Storage, manipulation and effi cient analyses of such large amounts of data is now a 
primary issue. We present OpenElectrophy, an electrophysiological data- and analysis-sharing 
framework developed to fi ll this niche. It stores all experiment data and meta-data in a single 
central MySQL database, and provides a graphic user interface to visualize and explore the data, 
and a library of functions for user analysis scripting in Python. It implements multiple spike-
sorting methods, and oscillation detection based on the ridge extraction methods due to Roux 
et al. (2007). OpenElectrophy is open source and is freely available for download at http://
neuralensemble.org/trac/OpenElectrophy.

Keywords: python, electrophysiology, analysis, oscillation, spike sorting, database, SQL

how to simply and conjointly manipulate experimental data and 
meta-data.

OpenElectrophy was designed more as a framework for data 
analysis than a piece of completely frozen analysis software. For 
example, it is not specifi c to a given type of electrophysiological 
signal, and does not directly perform a specifi c type of analysis at 
the request of a researcher with a “point-and-click” scheme. Rather, 
it provides tools to facilitate data storage, exploration and analysis 
script writing. It gathers the best of the two open source approaches 
described previously, both in terms of purpose (time–frequency 
analysis and spike sorting) and in terms of user interface (GUI 
and toolboxes). In addition, it includes generic tools for conjointly 
manipulating both experimental data and meta-data. The project’s 
main philosophy has three parts: fi rst, for each experiment, the 
data and meta-data are all stored in a single central database. This 
strategy allows for fl exibility in mixing both types of data in the 
subsequent analyses. Second, it provides a GUI that is useful for 
exploring the data and detecting events of interest (oscillations or 
spikes). Third, it contains a library of “methods” (high-level func-
tions) to aid in the writing of analysis scripts, both in the interfac-
ing of these scripts with the database and in the manipulation of 
the data.

OpenElectrophy was developed through a collaboration of peo-
ple working on electrophysiological signals, such as extra- or intrac-
ellular recordings or EEG signals. In these fi elds, people are especially 
interested in detecting and analyzing transient oscillations or neu-
ronal spikes. When this project was started, the conjoint analysis 
of both spikes and oscillations could not be performed using any 
available software. Thus, one of the main goals of OpenElectrophy 
was to provide a complete and  convenient way to detect spikes and 
transient oscillations, store all of the detected events in the same 

INTRODUCTION
Recent developments in electrophysiology experimental techniques 
have lead to increases in the amount of data produced. It is now 
common to record continuous signals simultaneously from many 
electrodes with a sampling rate of 10 kHz or more. This increase 
in raw data fl ow has been accompanied by an increase in the com-
plexity of the experimental protocol and the subsequent analyses. 
Indeed, each experiment is controlled by a large number of param-
eters that are either set by the experimenter (e.g., according to the 
stimuli applied or the state of the subject) or constrained by the 
experimental setup (e.g., electrode properties). These parameters 
are the meta-data associated with the experiment. A variety of new 
software aiming to facilitate data storage, exploration and analysis 
are appearing to help scientists handle such large amounts of data 
and experimental parameters.

Several commercial software products have been developed to 
tackle the increasing data management demands of state-of-the-art 
electrophysiology. However, as such commercial software products 
have not always evolved as rapidly as the needs of the fi eld, sev-
eral open source projects have appeared which are developed by 
the researcher community. Among them are open source software 
that performs commonly used analysis methods (e.g., averaging, 
time–frequency analysis) for analyzing magnetoencephalography 
(MEG) or electroencephalography (EEG) data. These programs 
generally have a highly developed graphical user interface (GUI). 
In contrast, in the fi eld of spike sorting, various toolboxes are avail-
able, and these toolboxes usually require the researcher to write-
specifi c scripts in order to use the toolbox for a specifi c set of data. 
Thus, there are at least two different approaches with regard to 
purpose and user interface in open source software design. None 
of the  available software or toolboxes addresses the problem of 
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database as the original data, and then manipulate them conjointly. 
Subsequent analyses could then include simultaneously detected 
events, raw data and meta-data. We emphasize that OpenElectrophy 
is one of the few currently available open source tools designed to 
work simultaneously with spikes and oscillations.

This article presents the design and use of OpenElectrophy. It is 
organized into fi ve sections. We fi rst compare OpenElectrophy to sim-
ilar projects and detail the advantages, drawbacks and differences of 
purpose for each project. Second, we explain how we used the database 
manager MySQL and the scripting language Python (and its scientifi c 
module SciPy) to construct the core architecture of OpenElectrophy. 
Third, we present the OpenElectrophy work fl ow and the general 
way in which it is used. Fourth, we briefl y describe the spike and 
oscillation detection methods that are currently implemented. Last, 
we present an example of the standard usage of OpenElectrophy to 
analyze extracellular local fi eld potential (LFP) recordings and obtain 
information about action potential locking on LFP oscillation.

COMPARISONS WITH OTHER PROJECTS AND THE MAIN 
GOALS OF OpenElectrophy
Commercial products like Plexon1, Tucker Davis2 or Spike23 exist for 
the analysis of electrophysiological signals and are in wide-spread 
use. We will not go into detail about these software programs, but we 
will point out that despite their high quality GUIs, support and con-
tinuous development, they use proprietary languages, which present 
barriers for code sharing and reuse, and which have limited uptake 
of tools being developed by the scientifi c computing community 
compared to languages such as Python. Moreover, the fi le format 
specifi cations are generally not available, making long-term storage 
or sharing of data problematic since anyone who wants to access the 
data needs the right software. To deal with this issue, Neuroshare4 
was created in an attempt to provide standardized libraries that can 
access proprietary fi le formats. However, Neuroshare provides only 
reading functionality, the code is not open source, and libraries are 
available only for the Windows 32 platform.

The various open source projects belong to two families: soft-
ware and toolboxes for analyzing EEG or MEG data, and software 
for spike sorting. Few projects mix spike and spectral analyses.

In the EEG/MEG family, visible projects include EEGLab5, 
FieldTrip6 and SPM7 (EEG sub-package). These three projects 
are all written with MATLAB, have a comprehensive GUI for 
non- programmer users, use a homemade data format based on 
MATLAB structures and store data in the MATLAB fi le format. 
Their main features include analyses of event-related potentials, 
time–frequency analyses, independent component analyses (ICA) 
and 3D plotting methods. They also implement methods for source 
detection.

In the spike-sorting software family, most projects can be sepa-
rated into two classes. The fi rst class includes tools dedicated 

solely to spike sorting: WavClus8, Mclus9, Spike-O-Matic10 and 
Klustakwik11. They do not perform any data management, but can 
load one or several data formats and store the results (detected 
spikes) in custom fi le formats. They generally provide only basic 
GUIs, except for Klustakwik, which provides no GUI. WavClus 
and Mclus are written in MATLAB; Spike-O-Matic is written with 
R; Klustakwik is a C++ library. In general, these projects were 
written to introduce a new spike-sorting method: WavClus is 
based on superparamagnetic clustering (SPC) and wavelet pro-
jection, Spike-O-Matic is based on Monte Carlo Markov Chain 
methods, and Mclus and Klustakwik are based on a classifi cation 
expectation maximization algorithm. The second class of projects 
is dedicated to the analysis of spike trains: Spike Train Analysis 
Toolkit12, NeuroTools13, and Pandora14. These three projects are 
collections of scripts for analyzing spike trains after spike sorting 
has already been completed. The Spike Train Analysis Toolkit is 
based on MATLAB and provides functions related to entropy and 
information theory. NeuroTools is written in Python and provides 
functions for analyzing simulated datasets generated from mod-
els. Pandora is MATLAB-based; it is one of the few projects that 
uses the concept of a database for managing datasets, but it uses 
a custom-built database system written in MATLAB, as opposed 
to employing an established database system such as MySQL.

Finally, we must mention three projects that mix spike fi ring 
analyses and spectral analyses on an LFP signal: FIND15, MEA-tools16 
and Chronux17. These projects were all written with the same pri-
mary goal as that of OpenElectrophy: to function as a framework for 
sharing analyses. They provide most of the standard analysis tools 
and others developed more recently, all written in MATLAB, but they 
include no database framework or meta-data management.

OpenElectrophy was written for several reasons:

• To have a project that is useful for all types of electrophy-
siological signals and experiments that mix time–frequency 
studies, spike-sorting and spike train analyses, and that uses 
pre- existing scripts or toolboxes whenever possible.

• To have a project that includes various spike-sorting methods 
and allows the user to choose which one best fi ts his data.

• To have a project that directly manages data and meta-data 
through a MySQL database that allows for sustainable data 
storage. Most previously developed projects use custom-built 
and language-dependent fi le formats. MySQL is open source 
and well established; datasets can be accessed with many 
 scripting languages (Python, MATLAB, Excel, R, Statistica) 
and with most of the traditional software used in a neuro-
science laboratory.

1http://www.plexoninc.com/
2http://www.tdt.com/
3http://www.ced.co.uk/
4http://neuroshare.org/
5http://sccn.ucsd.edu/eeglab
6http://www.ru.nl/neuroimaging/fi eldtrip
7http://www.fi l.ion.ucl.ac.uk/spm/

8http://www.vis.caltech.edu/∼rodri/Wave_clus/Wave_clus_home.htm
9http://www.neuroinf.org/lists/comp-neuro/Archive/2000/0065.html
10http://www.biomedicale.univ-paris5.fr/SpikeOMatic
11http://klustakwik.sourceforge.net/
12http://neuroanalysis.org/toolkit/
13http://neuralensemble.org/trac/NeuroTools
14http://userwww.service.emory.edu/∼cgunay/pandora/
15http://fi nd.bccn.uni-freiburg.de/
16http://material.brainworks.uni-freiburg.de/research/meatools/
17http://chronux.org/
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• To have a free project that relies only on other open source 
projects. Most previously developed projects are based on 
MATLAB; it is quite contradictory to have an open source 
project that forces the community to pay a license to a third 
party (Matworks) while free alternatives exist (Python and its 
scientifi c module SciPy).

• To have the capability to quickly design a high quality GUI. 
This goal is achievable with PyQt, a Python wrapper for the 
modern graphics library Qt. This is in contrast to MATLAB, 
which possesses a less appropriate object-oriented program-
ming approach and GUI toolkit.

We must emphasize that OpenElectrophy is neither a simple 
GUI interface nor a library of functions, but rather a combina-
tion of both, depending on what needs to be done with the data. 
Hence, the GUI is used mainly for data storage, visualization, and 
exploration; it also guides the initial analysis steps, such as the 
detection of events of interest (e.g., spikes or oscillations). Script 
writing is necessary to perform the specifi c analyses that are needed 
by the researcher. In order to make analysis writing as simple and 
as fl exible as possible, OpenElectrophy provides Python methods 
to appropriately query the database and manipulate the electro-
physiological data.

Finally, we must point out that at its current development stage, 
OpenElectrophy is primarily designed for the LFP and spike com-
munity rather than the multi-channel EEG community. For exam-
ple, it does not currently include any advanced visualization tools, 
such as 3D scalp plot or source localization techniques.

TECHNICAL CHOICES
The development of OpenElectrophy is based on two technologies: 
MySQL, an open source database server, and SciPy, the Python 
scientifi c module. The GUI was implemented with PyQt4. We 
chose to rely on these open sources projects because they are widely 
used and have strong support communities that ensure free avail-
ability and reliability. Moreover, they provide effi cient interfaces 
with other scripting or compiled languages (e.g., MATLAB, R, 
C/C++, Statistica, Excel). These interfaces are important to allow 
for interaction with previously developed methods from other 
open source projects. Lastly, Python is an object-oriented lan-
guage that is well adapted to developing long-term projects with 
highly structured designs, thus facilitating collaboration between 
developers and users.

In this section, we present a summary of the core architecture of 
OpenElectrophy. In particular, we show how MySQL and Python 
are used to help fulfi ll OpenElectrophy’s goals.

MySQL
Briefl y, as a reminder, it should be stated that the intrinsic concept 
of a database system is a collection of tables. Each table has a collec-
tion of fi elds of different types. Tables are linked to one another by 
indexes or keys. Putting data into a database is equivalent to splitting 
it up in an atomic way and organizing it into different tables. The 
logical or hierarchical organization between tables is not known a 
priori, but is formed while exploring the data, as opposed to fi le sys-
tems, which are organized into directories and sub-directories with a 
fi xed organization. Thus, it is possible to have multiple views of the 

same database. This mechanism, while apparently basic, proves to be 
fl exible and effi cient. To work with this system, the user must learn 
structured query language (SQL). This language permits the user 
to reconstruct, fi lter and sort the data. The user can also add fi elds 
or tables at a later point without affecting previous work.

A crucial point is the design of the table’s schema: the list of 
tables, and their contents and links. The idea was to design a generic 
core schema that can deal as naturally as possible with any elec-
trophysiological dataset. In electrophysiology, people manipulate 
two main types of signals: continuous signals, which come from 
electrodes, and discrete or stepwise signals such as triggers or 
time events, which come from the context of the data acquisition 
(e.g., stimulus, subject states). Based on this requirement, the core 
schema that was chosen for OpenElectrophy is detailed in Figure 1. 
The three central tables are trial, epoch and electrode. The table trial 
includes a coherent recording of continuous or discrete events. The 
table electrode holds the raw continuous signals from each physical 
electrode. The table epoch manages all discrete events: trigger times, 
periods of stimulation, animal states or event markers. These three 
tables can accommodate a generic electrophysiological recording. 
The tables spike, spiketrain and cell were then added to manage 
neuron spike discharge. The table oscillation manages transient 
oscillatory events in the LFP.

This schema has already been proven to be fl exible enough to fi t 
several types of experimental setups, such as one-cell intracellular 
recordings, extracellular multi-electrode recordings, short- or long-
protocol recordings, LFP studies, multiple repetitions of stimuli, and 
animal behavior data. For each experiment, this design is at the core 
of the data management; however, each new study usually requires a 
short extension of the table schema. Extra fi elds commonly need to 
be added to the original tables, and new tables must sometimes be 
added to address new concepts such as animal position or heartbeat. 
The versatility of the database allows for this kind of customization 
without interfering with the core of OpenElectrophy.

Today, many data manipulation tools include an SQL interface; 
MySQL is a kind of “universal” data format that does not depend 
on a particular language. Another advantage of this type of data 
storage is the MySQL client/server design. Indeed, all of the data 
is collected on a single server that is simultaneously accessible by 
many users of OpenElectrophy (or other tools). This access does 
not need to be local, such that collaborations between labs working 
on the same dataset are possible. We note here that transferring 
large sets of raw data over the Internet can take a prohibitively 
long time, but it is generally not a problem to transfer only discrete 
events such as spike times (also present in the database), which 
can be done by using appropriate SQL queries. Another benefi t of 
the database scheme is that each time someone makes a new entry 
into the database (e.g., raw data or meta-data, spikes, oscillations, 
a new fi eld with a specifi c type of information), that information 
is immediately available to all of his collaborators. Lastly, MySQL 
offers many effi cient backup capabilities (from single global or 
partial transfers of the whole database to continuous incremental 
saves) to secure the data or make them portable.

PYTHON
Python is a high-level object-oriented programming language. It 
is available for a wide range of platforms and comes with a large 
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collection of libraries (modules). For scientists and engineers deal-
ing with computing, one of the most interesting Python modules 
is SciPy. This module provides N-dimensional array manipula-
tion with the NumPy module and a fast implementation of an 
extensive set of scientifi c algorithms, such as fi ltering, statistics, 
interpolation, and linear algebra. For neuroscience studies that 
generate increasingly large datasets, Python is the equivalent of a 
Swiss army knife.

Using MySQL to explore and select data is effi cient, but creating a 
table schema and inserting or modifying data is a repetitive and tedi-
ous task with pure SQL. Object-relational mapping (ORM) is a tech-
nical programming method that converts between a database and a 
Python object. Thus, OpenElectrophy incorporates a  custom-built 

ORM to simplify read/write database access (see Section “A Typical 
Use-case” for an example of its use). This SQL mapper, a Python 
class included in OpenElectrophy, allows the user to declare a table 
structure with fi eld names and types with only a few lines of code. 
Each instance of this class can directly map onto all of the fi elds of a 
table entry. Each SQL fi eld becomes a member of the class instance. 
There are two methods (load_from_db and save_to_db) for auto-
matically loading or saving all fi elds from the database without writ-
ing any SQL. The conversion from Python types to MySQL types 
is straightforward for basic types (int, fl oat, str). For numpy.array 
(the basic type for N-dimensional arrays of the SciPy module), the 
conversion is automatically done by OpenElectrophy in three fi elds: 
one blob fi eld for the buffer of the array, one fi eld for the dimensions 

FIGURE 1 | Database schema. This is a classical relational design. Each frame 
corresponds to a table that holds all of the properties of an element in its fi elds. 
For example, the table spike holds for each spike its own index (id_spike), the 
index of the spike train it belongs to (id_spiketrain), its position (pos), the 
maximum amplitude (val_max) and its raw waveform (waveform). All of the 
tables and fi elds are natively generated by OpenElectrophy; the schema is 
fl exible and extensible to accommodate specifi c needs. The core of the schema 
includes the trial, electrode and epoch tables. A trial is a combination of several 
simultaneous coherent recordings. These recordings are continuous or discrete, 

and are stored in the electrode or epoch tables, respectively. Additional tables 
are as follows. The series table, which gathers a set of trials (e.g., those 
recorded in the same location). The spike table contains all detected spikes and 
their positions and shapes. The spikes are grouped according to their spike train 
(there may be many spike trains per electrode). The cell table groups spike trains 
that were recorded from the same cell but in different trials; thus, the cell table 
groups them relationally. Finally, the oscillation table contains all of the 
information related to transient oscillatory events (see Section “Oscillation 
Extraction”).
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and one for the array element type. Thus, the user can store vectors 
or matrices in MySQL, which is normally not allowed. Each MySQL 
table corresponds to a specifi c Python class that inherits the SQL 
mapper base class and that implements methods that are specifi c 
to the table content. For example, the Electrode class can query the 
electrode table and implements different plotting methods (raw or 
fi ltered signals and time–frequency maps).

As a further example, the SpikeTrain class offers methods for recon-
structing a spike train in different ways, such as a vector of time stamps, 
as sample indexes, as intervals or in Boolean form for information 
theoretical methods. Of course, all of these methods directly query the 
spike table, collect all individual spikes that are linked with an element 
of the spiketrain table and reorganize the results into the appropriate 
format. Three plotting methods are also available: raster, large dots 
superposed on the electrode signal and cumulative waveform.

Currently, only tables and fi elds that are present in the schema 
in Figure 1 are loaded by OpenElectrophy classes. Thus, additional 
fi elds or tables that are created for specifi c experiments must be 
accessed via SQL queries directly with a Python script. Alternatively, 
existing OpenElectrophy Python classes can be manually  overloaded 
to take into account the new elements.

WORK FLOW
In this section, we describe the general workfl ow of OpenElectrophy 
as summarized as a series of steps in Figure 2. Each step of the 
workfl ow is discussed in detail in turn below.

DATA INTEGRATION
The fi rst step of OpenElectrophy workfl ow involves import-
ing data into the database. The idea is to integrate all available 

 information into the database, including data (e.g., signal, trig-
gers, events) and meta-data (e.g., protocol context, date, time). 
In so doing, during the analysis, the user no longer has to work 
with a heterogeneous collection of fi les; instead, the user works 
directly with the database system. OpenElectrophy is already 
able to integrate into the database data that is stored in different 
fi le formats, including ASCII, raw binary, Elan, TDT, Elphy, and 
Micromed. In the near future, many additional data formats will 
be incorporated. The end user can go deeper into data integration 
by writing new scripts that not only incorporate neural data but 
also setup-specifi c meta-data. For instance, stimulus generation 
software often provides lists of stimuli and context information in 
a clear fi le format. These fi les can be parsed and integrated during 
the integration of neural data. Finally, note that the database can 
also be directly accessed and fi lled or edited with a basic MySQL 
client editor.

At this stage, it is possible to explore the database using differ-
ent hierarchical tree views and to plot raw signals (bandwidth or 
fi ltered) or wavelet-based time–frequency maps.

SPIKE AND OSCILLATION DETECTION
The next major step is the extraction of the phenomena of inter-
est: spikes and transient oscillatory events. In these two cases, a 
graphical interface helps in searching for parameters that allow 
for good detection. This step is crucial for subsequent stages of 
the analysis. There are two possible methods for detection: indi-
vidual detection, which is done signal-by-signal, or bulk detection, 
which is done by applying the same parameters to an ensemble 
of signals targeted by an SQL query that is directly written in the 
OpenElectrophy GUI.

FIGURE 2 | General work fl ow. The main steps for using OpenElectrophy are: 
(A) integration of data from a heterogeneous collection of fi les into the 
database; (B) exploration and plotting of raw signals directly from the 
database; (C) extraction of spikes from the raw signals and integration of 

these spikes into the spike, spiketrain and cell tables; (D) extraction of 
oscillations and integration of these oscillations into the oscillation table; 
(E) analysis with Python scripts using OpenElectrophy-specifi c classes and 
methods.

80



Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 | 

Garcia and Fourcaud-Trocmé OpenElectrophy

With regard to spike detection, methods used in OpenElectrophy 
will be detailed in Section “Spike Extraction”. The central idea of the 
framework is to store individual spike events in the MySQL spike 
table and group them using the spiketrain and cell tables. All studies 
on spike discharge will deal directly with these three tables using 
SQL queries, but will benefi t from all of the tables when working 
with protocol information and context meta-data.

The oscillation detection method is based on a new approach 
detailed in Section “Oscillation Extraction”. The result is a list of 
oscillations for each signal. In this case, each oscillation is stored 
in the oscillation table. Thus, for studies on multi-frequency oscil-
latory regimes (e.g., theta, gamma, and beta bands), the analysis 
is computed directly in this table, although it again also benefi ts 
from the data stored in all other tables.

SQL FILTERING
The ability of SQL to dynamically provide different views of the 
database is heavily exploited during analysis. Consequently, a basic 
knowledge of this language is required. Data analysis can be sum-
marized as applying an algorithm or a statistical measure or plotting 
synthetic views of a subset of the data. The traditional method for 
analyzing data is to manipulate and aggregate the data by hand, 
creating a text list for each condition or factor or constructing many 
synthetic tables with an external knowledge of protocol factors. 
With SQL, this tedious work is done directly. With a few lines of 
code, values of interest can be rapidly and effi ciently aggregated. 
Using SQL, there is no need to store lists, sublists or sub-sublists of 
data; the user only needs to store the queries and use them for each 
analysis. Overall, the user must manage queries that are useful for 
selecting data according to context and factor fi elds; then, the user 
must write new analyses in Python that can be applied to a subset 
of the data that is extracted with these SQL queries.

ANALYSIS
Analysis is the fi nal stage of the OpenElectrophy workfl ow, which 
transforms the now pre-processed data into meaningful results. 
The OpenElectrophy framework does not provide ready-made 
“point-and-click” analyses for obtaining a given result. Rather, it 
is necessary to write scripts in Python to perform statistical tests 
or other specifi c analyses. Here, the management of the data in 
a central database simplifi es the selection of the data to analyze 
(see Section “SQL Filtering”), and the Python classes provided by 
OpenElectrophy ease the manipulation of the data to match a given 
analysis. Additionally, the Python SciPy module provides many 
standard and high-level analysis tools, and the Matplotlib module 
offers extensive 2D plotting methods.

Writing analysis scripts can seem diffi cult for researchers not 
familiar with programming, but the power and fl exibility of this 
approach is quickly preferred over the restrictive convenience of a 
GUI. For example, to our knowledge none of the available software 
for doing spike analysis provides a GUI as an alternative to analysis 
scripting. Starting with simple script examples is usually suffi cient 
to allow beginners to compose very sophisticated analyses. Thus, 
OpenElectrophy does not constrain data analysis with a fi xed GUI, 
but allows for the use of user programmable scripts.

As already mentioned, a major advantage of using the Python 
scripting language is its ability to interface with other languages. 

Packages like Mlabwrap18, rpy19, cython20 or SciPy.weave21 
enable to use pre-existent code from MATLAB, R, or C/C++. 
Employing these tools, the list of external modules that can be 
linked to OpenElectrophy to help write analysis scripts is long: 
the International Neuroinformatics Coordinating Facility provides 
a list of tools available for studying neural data22. In particular, 
OpenElectrophy, as a framework for managing data, would likely 
complement recent Python-based approaches to neural data stud-
ies, such as PyEntropy (Ince et al., 2009) for information theory 
and PyMVPA (Hanke et al., 2009) for machine learning.

Details on how to use OpenElectrophy classes for scripting are 
available on the OpenElectrophy wiki page23.

DETAILS OF EXTRACTION METHODS
SPIKE EXTRACTION
One crucial part of multi-extracellular electrophysiological record-
ings is spike detection and sorting. All subsequent interpretations rely 
on the accuracy of these steps. Many approaches to this challenge 
already exist. Some systems use in-line, real-time, and unsupervised 
spike sorting, while others, including OpenElectrophy, prefer off-line 
and semi-automatic spike sorting. There is no perfect method; a 
compromise must exist between fully automatic and fully super-
vised processing. Several numerical algorithms for spike sorting 
have been published. Processing can be separated into four steps: 
fi ltering, detection, decomposition (or projection) and clustering. 
The literature on projection and clustering is extensive (Lewicki, 
1998; Pouzat et al., 2004; Quiroga et al., 2004; Wood et al., 2006). 
Less effort has been put into fi ltering and detection. These two steps 
cannot be neglected, however, as bad fi ltering directly infl uences spike 
shape, and can thereby generate strange results even with a good 
clustering algorithm. To overcome these diffi culties, OpenElectrophy 
is designed in a modular way and offers several methods for each 
step. Thus, spike extraction can be tuned for many experimental 
setups, and new methods can be added to the framework by external 
contributors.

At the moment, the implemented algorithms are:

• Filtering: “fast Fourier transform”-based fi lter, Bessel, Butterworth, 
median sliding fi lter for removing slow components.

• Detection: threshold on maximum amplitude.
• Projection: principal component (PCA) of the spike shape, 

independent component (ICA), raw waveform shape. 
Wavelet projection will be implemented soon. PCA and 
ICA projections are done with the Modular toolkit for Data 
Processing, a machine learning package for Python (Zito 
et al., 2008).

• Clustering: “k-means” method and “SPC” (Blatt et al., 1996).

A future step for OpenElectrophy will be to incorporate addi-
tional spike-sorting methods developed in other open source 

18http://mlabwrap.sourceforge.net/
19http://rpy.sourceforge.net/
20http://www.cython.org/
21http://www.scipy.org/Weave
22http://software.incf.org
23http://neuralensemble.org/trac/OpenElectrophy/wiki/OEScriptTutorial
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projects (see Section “Comparisons with Other Projects and the 
Main Goals of OpenElectrophy”).

OSCILLATION EXTRACTION
The detection of non-stationary oscillations in LFPs by 
OpenElectrophy is based on a new method described by S. Roux 
(Roux et al., 2007). Classical studies on oscillatory phenomena have 
used time–frequency Morlet scalograms. The Roux method goes 
further to use the scalogram to extract individual oscillations with 
a ridge extraction method. This method is useful when signals 
have oscillations in different frequency bands, when oscillation 
frequencies shift as a function of time or when there is no a priori 
knowledge of the signal.

The main steps in the processing are:

• computing the Morlet scalogram
• choosing a signifi cant threshold for the detection of 

oscillations
• detecting local maxima above this threshold in the frequency 

bands of interest
• extracting ridges point by point, starting from the maximum 

and continuing until the threshold is reached.

Finally, each ridge is a time–frequency line that describes a 
trajectory in time and frequency point by point; it is a complex 
number. The complex modulus estimates the energy envelope of 
the oscillation, and the angle from the real axis estimates its instan-
taneous phase.

From each extracted line, the oscillatory epoch duration and 
onset can be estimated, as well as the frequency, phase and ampli-
tude evolution as a function of time. In short, this method allows 
for the extraction of all oscillation parameters.

This approach introduces a more intuitive and more accurate 
method to analyze non-stationary local fi elds with oscillations. 
Statistics can be applied, for example to the duration or frequency 
shift, as analyses become quantitative.

A Python class associated with a MySQL table manages all 
oscillations. All parameters are stored in the appropriate fi elds; the 
time–frequency line itself is directly stored as a “numpy.array”.

A TYPICAL USE CASE
In this section, we will present an example of how OpenElectrophy 
might typically be used and demonstrate its GUI. We consider an 
experiment in which the extracellular LFP was recorded in the 
piriform cortex of an anesthetized rat. The aim of this experiment 
was to study the relationship between local fi eld oscillatory activity 
(network level) and single unit activity (neuron level) (Litaudon 
et al., 2008).

The raw signal was fi rst saved into the database as previously 
explained. The next step was then to extract oscillatory events. Upon 
completion of the extraction, the GUI is as shown in Figure 3A. 
On the left of the screen are all of the parameters that are used for 
detection; these parameters can be modifi ed by the user and saved for 
later use. These parameters cover the time/frequency space and the 
precision used for the detection, as well as the threshold above which 
oscillations are detected (an absolute level or relative to a reference 
period in the same signal); in addition, some of these parameters 

are used to remove overlapping or unwanted short oscillations. On 
the right of the screen, the list of oscillations detected for this elec-
trode is shown. Below, their trajectories are plotted superimposed 
both on the electrode Morlet scalogram and on the electrode raw 
signal (lower right of the screen). When the user is satisfi ed with the 
results, he can save it to the database. Note that in this example, the 
detection of oscillations was done for a single electrode. Another GUI 
can be used to detect oscillations for many electrodes simultaneously. 
In this case, the GUI presents the same parameters as for the single 
electrode GUI, but with an additional window in which the user may 
provide the SQL query to select the electrodes for detection.

The next step was the detection of spikes in the same signal. 
The GUI shown in Figure 3B presents fi ve tabs corresponding to 
the four steps used in the spike detection (see Section “MySQL”) 
and a fi fth for the database options (which summarizes the results 
and, in the case of multiple detected spike trains, allows the user to 
choose which results should be saved to the database). At any step, 
the parameters can be set and saved for later use. Spike detection 
can be done in its entirety or in a step-by-step fashion, with various 
plots on each tab dedicated to the intermediate results. Again, this 
task can be performed for multiple electrodes simultaneously with 
a similar GUI that includes all tabs (without graphic feedback) and 
a window to specify the SQL query. A special case is the detection 
of spikes from the same electrode channel across all trials from 
a given series. In this case, the signals from all trials are pooled 
before spike detection, and the resulting spike trains (one for each 
trial) are linked in the database via the cell table, so that it can be 
documented that they are all associated with the same neuron.

The fi nal step was the analysis of the results, which here consisted 
of a histogram of spike phases (relative to the oscillations). This 
analysis has already been implemented in OpenElectrophy, and the 
user needs only to specify a list of oscillations and a list of spike 
trains with two SQL queries to obtain the graph in Figure 3C. To 
demonstrate how this process can be done using an external script, 
we present here the Python code that was used in this analysis:

# Initialize result array
phase_spike = empty((0))

# write a query for spike train of interest
# for example, spike trains of electrode 5
query_spiketrain = """
                   SELECT spiketrain.id_spiketrain
                   FROM spiketrain, electrode
                   WHERE electrode.id_
                   electrode = spiketrain.id_electrode
                   AND electrode.num_channel = 5
                   """

# execute query and get id list
list_id_spiketrain, = sql(query_spiketrain)
for id_spiketrain in list_id_spiketrain:
       # Python class implemented by OpenElectrophy
       # that maps one spike train
       sptr = SpikeTrain()
       # method to load spiketrain properties from the
         database
       sptr.load_from_db(id_spiketrain)
       # method to get spike positions of the spiketrain
       pos_spike = sptr.pos_spike()
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FIGURE 3 | (A) Snapshot of the oscillation detection dialog. On the left side, 
frames encapsulate different kinds of parameters: for the Morlet scalogram, the 
threshold defi nition and “cleaning” the detection. On upper right, there is a list 
of detected oscillations. On lower right, there is a zoomed picture of one time–
frequency line, which represents an oscillatory event, and the relative phase 
reconstruction superimposed on the raw signal. When the detection is done, the 
results can be stored in the MySQL database. (B) Snapshot of the spike 

detection dialog. On the left, there are different tabs corresponding to the 
different steps of spike extraction: fi ltering, detection, projection and clustering. 
The result of a particular detection that can be saved into the database is on the 
shown tab. (C) Example of how spike and oscillatory events can be mixed, 
showing how a spike train is phase locked on the LFP phase. One oscillation 
cycle is depicted in red, and a histogram of the phases of spike discharge is 
shown in blue.
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       # Select oscillations from the same trial as the 
         spike train
       # and that are in the gamma band
       query = """ SELECT oscillation.id_oscillation
                   FROM oscillation
                   WHERE oscillation.id_trial = %s
                   AND oscillation.freq_max > 35
                   AND oscillation.freq_max < 100
               """
       list_id_oscillation, = sql(query,(sptr. id_trial),
                                  Array=True)

       for id_oscillation in list_id_oscillation:
              # Python class implemented by 
                OpenElectrophy
              # that maps one oscillation
              osci = Oscillation()
              # method to load the oscillation’s 
                properties from the database
              osci.load_from_db(id_oscillation)
              # get phase of spikes that are on the
                oscillation
              phase_spike = r_[phase_spike,angle(osci. 
                               line_val[setmember1d
                               (osci.line_t,pos_spike)])]

# Plot the result…

CONCLUSION
In summary, we have presented OpenElectrophy, an open source 
project aimed at facilitating the management and manipulation of 
electrophysiological data along with experiment meta-data. The 
key contribution of OpenElectrophy is the framework architecture: 
MySQL married to Python + SciPy, all of which are reliable, widely 
used and free tools. We have shown how the use of a MySQL data-
base allows for long-term storage, easy access and sharing of data. 
In particular, all of the data and meta-data are recorded in a central 
database and can be combined for further analyses, allowing the 
user, for example, to fuse electrophysiological and behavioral data. 
We have also shown how OpenElectrophy uses the Python language 
to simplify interaction with the database and manipulation of data 
during the writing of analysis scripts. Another primary feature of 
OpenElectrophy is the integration of the detection and storage of 
spikes and transient oscillatory events found in electrophysiologi-
cal recordings. We note that the CARMEN24 project has recently 
been created and appears to pursue goals similar to ours, but it 
is now primarily a repository of diverse methods without much 
global integration.

The OpenElectrophy project is free and open source, which 
means that anyone can download, use, modify or extend it and 
then share his work with the whole user community. It is hosted in 
a forge with a Trac system25, which offers SVN as a version control 
system and a wiki for live documentation. A mailing listing for 
discussion between users and developers is available26.

Like many other free projects, the success of OpenElectrophy 
depends on the size of the community using it and developing 

it. For the moment, OpenElectrophy is a young project and the 
community is relatively small (about 20 people). Its development 
has thus mostly involved addressing the needs of this small com-
munity. Nonetheless, we hope to have designed the foundations 
of OpenElectrophy with enough care in terms of fl exibility and 
technological choices such that adapting it to a wider range of 
needs and use cases would require minimal effort.

At the moment, the OpenElectrophy GUI adequately covers 
the exploration of data, spike sorting and detection of transient 
oscillations. The analyses must be computed with Python scripts, 
which need to be provided by the user. Obviously, these scripts 
can be written from scratch, but as we already have mentioned, 
one of the advantages of Python is that it can be interfaced with 
previously developed analysis toolboxes. Thus, it will be useful 
in the future to provide, either directly in OpenElectrophy or 
as script examples (which could be available on the wiki pages 
for OpenElectrophy), simple ways to interface the data managed 
by OpenElectrophy with other open source toolboxes, such as 
the ones presented in this issue, e.g., PyMVPA, PyEntropy or 
NeuroTools. Additionally, one possible extension would be to 
write an intuitive GUI for launching some simple analyses in 
order to make OpenElectrophy more attractive to users who do 
not write scripts.

Finally, with regard to the more technical aspects of OpenElectrophy, 
we must mention two future improvements. The fi rst is the integra-
tion of a standard ORM such as SQLAlchemy for mapping data to 
OpenElectrophy objects. At the moment, the SQL mapper is home-
made, but it has the advantage of incorporating “numpy.array”. Using 
SQLAlchemy instead will allow for the direct use of database systems 
other than MySQL, such as SQLlite or PostgreeSQL. Second, use of 
the concept of BLOB streaming27 while using MySQL to read continu-
ous electrode data should be a great improvement. This technique 
consists in loading BLOB (binary) fi elds into a stream chunk by 
chunk. This is a defi nitive solution for long recordings at high sample 
rates and solves memory problems.

In the present article, it has been argued that MySQL is a good 
choice for a data storage architecture, given its powerful features 
to store, organize, and provide dynamic views of data. However, 
its socket-based architecture might raise concerns of perform-
ance over other scientifi c binary formats. A simple comparison of 
read and write performance with the widely used and performant 
hdf528 for an array of 10e7 elements shows OpenElectrophy (local 
MySQL server) has only slight penalties for read (factor of 1.4) 
and  moderate penalties for write (factor of 4). Assuming that in a 
normal study cycle, we spend more time in reading than writing, 
we believe that the architectural advantages of MySQL mentioned 
previously counterbalance the moderate performance penalty, and 
it remains an attractive alternative to hdf5.

In developing OpenElectrophy, we have endeavored to follow 
the fundamental philosophy that the integration of database stor-
age and object-oriented programming paves the way for more 
effi cient and usable data management and analysis systems. In 
this task, we have built on open source tools as other research-
ers in the growing community of neuroscientist Python users, 

27http://blobstreaming.org/
28http://www.hdfgroup.org/HDF5//

24http://www.carmen.org.uk/
25http://neuralensemble.org/trac/OpenElectrophy
26http://groups.google.fr/group/openelectrophy
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and classification of neural action 
 potentials. Network 9, R53–R78.

Li taudon, P. , Garc ia , S . , and 
Buonviso, N. (2008). Strong cou-
pling between pyramidal cell activ-
ity and network oscillations in the 
olfactory cortex. Neuroscience 156, 
781–787.

Pouzat, C., Delescluse, M., Viot, P., and 
Diebolt, J. (2004). Improved spike-
sorting by modeling fi ring statistics 
and burst-dependent spike amplitude 
attenuation: a Markov chain Monte 
Carlo approach. J. Neurophysiol. 91, 
2910–2928.

Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul, 
Y. (2004). Unsupervised spike  detection 
and sorting with  wavelets and super-
paramagnetic clustering. Neural. 
Comput. 16, 1661–1687.

represented in this special issue. Emerging from this community 
are new solutions to promote data and code sharing, and we 
encourage others to participate and join in the development of a 
new generation of software to benefi t to the whole neuroscience 
community.
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DataViewer3D: an open-source, cross-platform multi-modal 
neuroimaging data visualization tool
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Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance 
imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data 
within a common, defi ned coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging 
data visualization tool offering a cross-platform, open-source solution to simultaneous data 
overlay visualization requirements of imaging studies. While DV3D is primarily a visualization 
tool, the package allows an analysis approach where results from one imaging modality can 
guide comparative analysis of another modality in a single coordinate space. DV3D is built on 
Python, a dynamic object-oriented programming language with support for integration of modular 
toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the 
power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling 
VTK’s low level C++ functions from Python. Users interact with data via an intuitive interface 
that uses Python to bind wxWidgets, which in turn calls the user’s operating system dialogs 
and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM 
formats for MRI data display (including statistical data overlay). Formats for other data types 
are supported. The modularity of DV3D and ease of use of Python allows rapid integration of 
additional format support and user development. DV3D has been tested on Mac OSX, RedHat 
Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of 
tutorial resources and example data.

Keywords: visualization software, multi-modal neuroimaging, Python, VTK, fMRI, MEG, DTI, DV3D

and BrainVoyager4. Widely used open-source analysis toolboxes 
for MATLAB5 are exemplifi ed by Statistical Parametric Mapping 
(Frackowiak et al., 1997), Fieldtrip6, EEGLAB (Delorme and Makeig, 
2004), mrVista (Teo et al., 1997; Wandell et al., 2000) and NUTMEG7. 
Stand-alone, cross-platform analysis packages include FSL8 and 
FreeSurfer9. In addition to analysis packages, a number of stand-
alone visualization packages have been developed, some to comple-
ment particular analysis packages (e.g. FSL’s FSLView10) and others 
independently of analysis packages (MRICron11; 3D Slicer12).

Both analysis and stand-alone visualization packages are often 
customized solutions developed by a site to address their specifi c 
requirements. Many software packages are later extended to pro-
vide analysis frameworks for a more diverse range of hardware 
platforms, data types and analysis methods. Sharing and distribu-
tion of platform independent software with unifi ed data formats 
allows the neuroimaging community increased access to analysis 

INTRODUCTION
This paper describes DataViewer3D (DV3D), a software package 
built with Python1 and designed and optimized to address many of 
the issues encountered when visualizing multi-modal neuroimag-
ing data.

The combination of analyses from multiple imaging modalities is 
an important and growing trend in neuroimaging (e.g. McDonald, 
2008; Stuffl ebeam and Rosen, 2007). Researchers are conscious of 
the limitations of individual imaging techniques and their associated 
analysis methods (e.g. Coltheart, 2006). With sites having access 
to more than one data acquisition technology, the neuroimaging 
community has the opportunity to compare and contrast results 
from different modalities and analysis approaches. Multi-modal 
techniques are used to exploit differences in results obtained from 
different techniques (e.g. Liu et al., 2006) and potentially provide 
converging evidence concerning researchers’ hypotheses.

A variety of neuroimaging analysis packages are available 
to researchers, facilitating analysis of data from a complex and 
diverse range of data acquisition techniques. The Neuroimaging 
Informatics Tools and Resources Clearinghouse2 list many of these 
tools. Commercial analysis software packages include ANALYZE™3 
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methods. Researchers may have to compare the visual outputs of 
two or more different packages side by side, often comparing two-
dimensional (2D) outputs from one to 3D outputs of another. The 
lack of a like-for-like comparison of results in a uniform coordinate 
space can increase the potential for misinterpretation of results. 
Reproducibility of results and consistency in analysis, interpreta-
tion, and display of results may be compromised when compar-
ing results from different analyses and visualization software (e.g. 
Mackenzie-Graham et al., 2008).

DV3D does not attempt to compete with existing analyses pack-
ages in terms of analysis routines but rather acts as a support tool 
for neuroimaging analysis packages. DV3D allows users to integrate 
results from a number of different analysis packages, in a variety of 
formats and in an open-source, platform independent implementa-
tion. DV3D is designed to offer 2D and 3D visualization support 
for results from a number of neuroimaging acquisition modes and 
analysis techniques including magnetic resonance imaging (MRI), 
magnetoencephalography (MEG), positron emission tomography, 
computed axial tomography and diffuse optical imaging. DV3D has 
a highly modular, transparent design and is optimized for integra-
tion of additional display routines and fi le format support. DV3D 
provides export routines for high-resolution images, movies and 
objects created by the program for data sharing.

FSLView, 3D Slicer and MRICron are three of the most widely 
used stand-alone packages for visualizing neuroimaging data, and 
thus DV3D’s functionality will be most closely compared and con-
trasted to them. None of these packages (and no other single stand-
alone package to the best of our knowledge) offer support for all 
of the multiple analysis outputs of the aforementioned imaging 
technologies. DV3D is designed to fi ll this gap.

DV3D is built on Python, a cross-platform interpreted pro-
gramming language. In DV3D, Python is used to wrap famil-
iar, system-native Graphical User Interface (GUI) functionality 
using wxWidgets13 and powerful graphics rendering using the 
Visualization Toolkit14 (VTK). DV3D’s code base is completely 
platform independent allowing code to run on any system with 
Python, VTK and wxWidgets installed. This minimizes code trans-
lation time and system-dependent error handling, increasing the 
effi ciency of software development and new process integration.

First we outline the design objectives for DV3D. Following this 
we will discuss the value of using an open-source, platform inde-
pendent framework for developing such a package, focusing on 
Python as the programming language to facilitate cross-platform 
software development. We will then outline the current functional-
ity of the release package of DV3D and how it achieves our design 
objectives. We will conclude by comparing DV3D’s functionality to 
similar existing tools, highlighting how DV3D currently provides 
more comprehensive functionality in a single package, as well as an 
accessible framework for future development by the neuroimaging 
community.

SOFTWARE DESIGN AND FRAMEWORK: DESIGN OBJECTIVES
While the exact requirements of every neuroimaging research envi-
ronment are different, we note that many researchers regularly use a 

number of core functions when either exploring their data visually 
or reporting results to their peers. The key requirements that we 
have tried to address in the development of DV3D are discussed 
below. They are:

• Dealing with different data types
• A common space for data
• Co-registration with atlases
• Export routines for sharing and publication
• An effi cient working environment.
• A fl exible, scalable and accessible open-source framework

DEALING WITH DIFFERENT DATA TYPES
Considering the number of different data sources in neuroimaging, 
many different ways to display the results of neuroimaging data 
have been adopted.

Due to the nature of their individual underlying analysis meth-
ods, many existing software packages are optimized for displaying 
results in their own preferred way. Figure 1 summarizes some of 
these conventions using FSL, SPM, DTI-Studio15, FreeSurfer, mrV-
ista and EEGLab as examples. Most packages are, understandably, 
optimized for the display of imaging results from a limited number 
of technologies, protocols, analysis methods and fi le formats. DV3D 
provides a platform in which the user can display a wider range of 
data in a number of different formats, be they 2D or 3D.

When considering the data types that a multi-modal neuroim-
aging visualization tool may be required to handle, there are at 
least four levels of abstraction we need to consider. An example of 
the complexity of the data structures that require consideration 
for neuroimaging data processing streams is shown in Figure 2. 
Analyzing and presenting data from MRI protocol subtypes alone 
requires a support for a broad range of data formats. A software 
package capable of supporting multi-modal data thus needs to 
consider: (a) the technology being used to acquire the different 
data types, (b) the acquisition settings (or protocol) being used 
to acquire the data, (c) the analysis techniques used to analyze the 
acquired data, and (d) the format in which the data and results 
are stored.

The fi rst key objective of DV3D is to ensure fl exibility in design 
that will enable users to integrate neuroimaging data whether it 
comes from different technologies, from different acquisition pro-
tocols, from different analysis approaches and independently of 
which data format they are saved in.

A COMMON SPACE FOR DATA
In order to sensibly overlay data for visualization of multi-modal 
analyses, we need to display the data in a common reference frame. 
An MEG data set, for example, will typically have a coordinate 
space defi ning the sensor positions, the participant’s head shape 
and head position relative to the sensors. To overlay this data onto, 
for example, a surface extracted from an MRI scan, we need to 
align the coordinate space of the MRI scanner to that of the MEG 
scanner. Many analysis packages already have algorithms and proc-
esses for computing these alignments. Affi ne 3D transformation 
matrices are used to describe linear transformations as in FLIRT 

13http://www.wxwidgets.org/
14http://www.vtk.org/ 15https://www.mristudio.org/
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FIGURE 1 | Some common display conventions for neuroimaging data. 

Examples of some of the methods commonly used to display neuroimaging 
data. (A) FSL’s FSLView is used in this example to show the overlay of fMRI data 
onto three orthogonal planes generated for a 3D MRI volume. (B) DTIStudio can 
display DTI-fi ber paths as streamlines mapped onto orthogonal planes 
generated from 3D MRI Volumes. (C) FreeSurfer can be used to display surfaces 
extracted from MRI data. In this example the grey matter to white matter 

boundary is displayed in 3D, with separate surfaces for the left (red) and right 
(yellow) hemispheres of the brain. (D) SPM can be used to output 2D 
projections of regions of statistical signifi cance to a ‘glass brain’ view. 
(E) EEGLab can be used to show iso-contour patterns of changing 
electrical fi elds over the scalp in 2D. (F) mrVista can be used to map scalar 
values (here different visual areas are represented by different colors) to a 
cortical surface.

FIGURE 2 | Data handling complexity in MRI analysis streams. A schematic 
representation of the some of the levels of abstraction considered when 
preparing software capable of handling multi-modal neuroimaging data. (A) The 
technology type used: Here we use MRI as an example. (B) Some MRI 
acquisition protocols or sub-types: a researcher using a combination of protocols 
may, for example, be looking for changes in blood oxygenation using functional 
MRI, localizing the regions of activation to specifi c brain regions using structural 
MRI, and then looking for anatomical connections between these regions 
using Diffusion weighted MRI. They may then wish to overlay the results from 
each modality to explore spatial relationships. (C) Examples of the types of 
different analysis algorithms and routines for any given protocol. (D) Examples 

of data formats: although researchers may use the same technology, the 
same protocol, and even the same analysis technique/algorithm, they may 
save their results in different fi le formats not immediately accessible to 
software utilized at other sites. *In the case of Fiber tract fi les, few standard 
fi le formats have been developed specifi cally for DTI data, and even fewer 
for saving the results of fi ber tracking algorithm output. The.nrrd fi le format 
(http://www.na-mic.org/Wiki/index.php/NAMIC_Wiki:DTI:Nrrd_format) is used 
by 3D Slicer to load DTI values and parameters into memory. Fibers are 
subsequently calculated and can be saved to a vtk fi le format, unspecifi c for DTI 
fi bers but useful for import and conversion by any VTK based programs, 
including DV3D.
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(Jenkinson et al., 2002). Non-linear coregistration routines, as used 
in SPM (Ashburner et al., 1999) and FNIRT16, provide nonlinear, 
one-to-one coordinate mapping between data sets.

Data overlay in some existing packages is also limited by the 
resolution of the inputs. In FSL’s current FSLView, for example, MRI 
data with a voxel resolution of 2 × 2 × 2 mm3 cannot be overlaid 
onto a data set with a 1 × 1 × 1 mm3 resolution, even if the data 
sets are defi ned in the same coordinate space.

The second key objective of DV3D is to enable users to align 
different data sets into a common reference space. As DV3D is not 
an analytical tool, we will refrain from calculating alignments on 
the fl y. The alternative is to facilitate alignment by providing tools 
to load previously calculated transformations from other software 
packages. Additionally, once data sets are aligned, the resolution of 
the data sets should already have been interpreted and processed 
accordingly to allow sensible overlay and corresponding scaling.

CO-REGISTRATION WITH ATLASES
Neuroimaging analysis results often describe spatial distributions 
of signifi cant activity in the brain. These maps are typically overlaid 
in 2D onto an individual or group brain data, as in Figure 1A, so 
that this spatial distribution can be seen.

In addition to viewing data in an individual or across a group, 
it is common practice in many neuroimaging data modalities to 
compare these spatial distributions to equivalent positions, and 
thus brain structures, in some reference brain space. These reference 
brains, or atlases, include the MNI brain (Mazziotta et al., 2001), 
the Talairach brain (Talairach and Tournoux, 1988), the Harvard-
Oxford cortical and sub-cortical structural atlases17 and the ICBM-
DTI-81 white-matter labels atlas (Wakana et al., 2004). At the time 
of this submission, the current version of FSLView cross-references 
and reports information for the equivalent structures in all of the 
above atlases if the data set loaded has been transformed into the 
MNI coordinate space. An alternative for users not using FSLView 
would be to transform their data into the MNI coordinate space 
and then use the online MNI-Talairach daemon18 to manually check 
every point of interest – a more time-consuming process.

Incorporation of functionality to allow cross-referencing with 
other standardized brain volume data is thus the third key objective 
of DV3D. The ability to do this in real-time, without any additional 
software dependencies is also preferable.

EXPORT ROUTINES FOR SHARING AND PUBLICATION
The production of informative, high-resolution images for com-
munication of results in publications, presentations and educa-
tional material is a fundamental requirement in neuroimaging. 
Many neuroimaging data analysis packages have export routines to 
capture screen contents to static reports, individual frames to high-
resolution images and even short movies of rotating 3D objects 
or time-series data. Researchers using a specifi c analysis package 
can also share data sets with each other. By providing another user 
with a data set and a set of instructions, the secondary user can 
reproduce the same analysis or visualization result.

As a fourth objective, DV3D should facilitate the export of data 
from the visualization screen to a number of formats with options 
for control of resolution. Movie export options should allow users 
more freedom in terms of temporal and spatial interaction with 
data visible on the screen. DV3D should also provide a functionality 
for users to share results, even without having to provide raw data 
sets from which the results have been produced.

AN EFFICIENT WORKING ENVIRONMENT
Analysis of neuroimaging data can be a very labor-intensive proc-
ess. Visualization and interpretation of obtained results adds sig-
nifi cantly to this workload. Any functionality that saves the user a 
signifi cant amount of time and effort is valuable. Many approaches 
can be taken to increase the effi ciency of processing pipelines in 
software. Perhaps the most obvious is to ensure that, at the design 
stage, the processing pipeline for a software package is optimized 
for the hardware and software framework it is built on.

Current computing gives researchers access to multiple proces-
sors that can handle computations independently or in parallel. 
Many computing facilities extend this model to computing clusters 
with multiple nodes across which processes can be distributed or 
parallelized. Access to parallel processing is already a feature of a 
few of the existing neuroimaging software packages. FSL’s Bayesian 
Estimation of Diffusion Parameters Obtained using Sampling 
Techniques (BEDPOST) toolbox19, for example, can be easily con-
fi gured to run over Sun Grid Engine20, or even simply distributed 
across any additional local processors.

While parallel processing in the context of BEDPOST is uti-
lized to reduce the amount of processing time required to generate 
results, the principle can be applied to computationally expen-
sive visualization routines when viewing results. Loading surfaces 
with millions of vertices and rendering them is an example; a user 
wanting to load multiple surfaces into memory may still have to 
wait in the order of minutes for them to load and render. While 
computers have increasingly large amounts of memory, allocation 
and management of memory is still a problem that any software 
designer needs to take into account. This is especially poignant 
when handling neuroimaging data where data sets can be very large. 
It is common for MEG data sets acquired at high sampling rates to 
exceed 1 GB in size. Memory allocation errors are often terminal, 
causing a computer program to crash if allocation fails. This can 
be both frustrating and ineffi cient.

Many of the analysis routines applied to neuroimaging data are 
repetitive; analysis of data from each individual in a group is an 
example. Automation of processing streams for similar data sets 
is an increasing feature in neuroimaging data analysis. Users often 
use scripts to pass list of arguments and settings into a program 
that can be accessed via a command line. This can help to reduce 
the overheads associated with repetitive GUI interaction. In this 
way, a researcher can apply the same processing, thresholding, and 
result export routines for each individual in a large group with a 
single fi le and a single button press, even if they then do have to 
wait several hours for the process to complete. This principle can 
be a useful feature for the visualization of results. A user may want 

16http://www.fmrib.ox.ac.uk/fsl/fnirt/
17http://www.cma.mgh.harvard.edu/
18http://www.talairach.org/applet/

19http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_bedpostx.html
20http://gridengine.sunsource.net/
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to, for example, provide an instruction list to a program to load 
a particular surface, overlay a statistical result fi le, threshold to a 
specifi ed value, export a high-resolution image from a top-down 
view and save a movie. The user would then have a template to 
process different statistical results, different thresholds, or simply 
different participants without having to manually run each indi-
vidual through a GUI.

Some software packages help to increase user productivity by 
saving metadata fi les that describe the current status of the work-
space the user is working in. The MATLAB toolbox, mrVista, is a 
good example. In this package users have a session fi le for each 
individual. Many settings, fi le paths, and associated analysis out-
puts are automatically loaded for the user the next time they load 
a previously processed participant’s data. Evidently, a metadata 
fi le describing the processes applied to a data set, its overlays, and 
dependent thresholds is potentially time-saving when dealing with 
the visualization of neuroimaging data sets. Furthermore, such a fi le 
could easily be shared with another researcher to ensure a consistent 
result when viewing the same input data.

Saving of processing metadata and automated processing scripts 
both provide a reference which describes the processes and routines 
used to produce a set of results. The use of scripts to drive analysis 
and visualization routines decreases the chances of inconsisten-
cies due to user error. Provenance, the description of the history 
of a set of data, is important with the recent increases in cross-
site collaboration and data sharing (e.g. Mackenzie-Graham et al., 
2008). The LONI Inspector21, an application for examining medical 
image fi les, is an example of a tool developed for the compari-
son of the metadata stored with and between different fi le types. 
Metadata is particularly informative when fi les are converted from 
one format to another. Assumptions about default orientations, 
for example, can cause left-right fl ipping of the data during the 
conversion process and can cause errors in subsequent visualiza-
tion and interpretation.

Access to parallel processing, command line scripting, session or 
workspace metadata and effi cient memory management are all ways 
in which a neuroimaging visualization tool can increase user pro-
ductivity. As such, the fi fth objective in the development of DV3D 
is to utilize a software and hardware framework that encompasses 
as many of these features as possible.

A FLEXIBLE, SCALABLE AND ACCESSIBLE OPEN-SOURCE FRAMEWORK
An open-source software package with a self-supporting user com-
munity can be a viable solution for scientifi c software develop-
ment. With a community contributing to code development and 
maintenance, costs can be minimized. Other factors need to be 
considered when developing useful, sustainable open-source soft-
ware packages.

Transparency is a factor that concerns many researchers, although 
this is more often related to the implementation of analysis algo-
rithms. While there is very little analysis per se in stand-alone visu-
alization packages, researchers should have access to processing 
routines that generate the visual output (e.g. the color lookup tables 
applied to thresholded statistical overlay data and interpolation 
routines applied to loaded data).

Accessibility of the code base can be an issue that restricts 
 interested users from understanding and developing programs. 
At least three factors can be considered to affect the accessibility 
of software:

• Educational resources are crucial to aid users in learning how to 
use a package. Documentation and tutorial routines are often 
lacking in software packages restricting the range of potential 
users.

• Platform independence is an increasingly common feature in 
neuroimaging software packages. Software that runs on any 
hardware platform is not only more accessible to any indi-
vidual site, but aids collaboration across different sites with 
potentially different hardware infrastructures.

• Coding language. Some coding languages are more complex 
and / or less intuitive than others. While it is impossible to pro-
vide a coding language that every programmer would like, it 
may be sensible to settle for a compromise between a language 
that is simple to read and use, and one that is very powerful 
and effi cient.

Extendibility and fl exibility of software is a measure of how easily 
the software can be expanded to incorporate additional process-
ing routines. Since the authors have not set out to predict every 
possible permutation of input-to-output requirement of poten-
tial users, it is crucial that the software framework is designed to 
facilitate incorporation of additional routines with minimal effort. 
A modular software framework not only facilitates such independ-
ent development, but allows for incorporation of appropriate tools 
and routines often developed for completely different purposes. We 
could, for example, choose to incorporate an implementation of 
an algorithm for decimating surfaces, borrowing the code from an 
external mathematics toolbox. Once imported into the package as 
an independent module one could simply pass a brain surface to 
this module as a set of vertices and run the module to down-sample 
the number of vertices for increased rendering speed.

DV3D has been designed with an open-source, user commu-
nity developed model in mind. As such it is imperative that the 
package is built on a software framework that is accessible to a 
wide variety of users on a wide range of hardware platforms, 
extendible by non-specialist developers, intuitive to use, and well 
documented.

METHODS: IMPLEMENTING A Python FRAMEWORK
Having outlined the key objectives for a new multi-modal neu-
roimaging data visualization tool, we can now consider the imple-
mentation of the project. The software package can be considered 
to consist of three main components:

1. The visualization engine: this is the lowest level of the pro-
gram, i.e., the functions that actually do the rendering of the 
images to the screen.

2. A user interaction interface: this is the component of the pro-
gram that allows users to control the rendering routines of the 
visualization engine in an interactive and intuitive manner.

3. A master control program: the component of the program 
that binds or wraps the functionality of the underlying com-
ponents and allows them to run on the operating system.21http://www.loni.ucla.edu/Software/
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We will discuss each of these components in turn, highlighting 
the requirements and implemented solution for each.

THE VISUALIZATION ENGINE: VTK
The Visualization ToolKit (VTK) is a widely used, free, open-source 
software package for data visualization and image processing, with 
support for 2D and 3D graphics rendering. With an active and vast 
international development community, VTK is a model for open-
source software development.

VTK has an extensive set of implemented visualization algo-
rithms. Routines for processing scalar, vector, tensor, texture, and 
volumetric methods exist. VTK offers a large variety of complex 
algorithms as part of the standard toolkit, many of which are 
directly useful for visualizing neuroimaging data. Contouring, 
surface decimation and triangulation, re-sampling, cutting, and 
interception detection are just a few examples. Many of these 
algorithms are directly integrated into widgets allowing users to 
interactively interrogate combinations of 2D and 3D data in real 
time. VTK is licensed under the BSD license. VTK is reported to 
have been installed and tested on nearly every Unix-based platform, 
Windows PC, and Mac OSX Jaguar or later. VTK is an effi cient and 
fast toolkit consisting of an extensive C++ class library, access to 
which is available via several interpreted interface layers including 
Tcl/Tk, Java, and Python.

USER INTERFACE: WXWIDGETS
Learning to use a new software package can be challenging. In a 
program with a number of complicated functions, the provision 
of a highly interactive GUI and familiar workspace environment 
should benefi t the user. wxWidgets is a free, open-source toolkit 
that provides developers with an API (application programming 
interface) for writing GUI applications on multiple platforms. 
wxWidgets is licensed under the wxWindows license, essentially 
the L-GPL (Library General Public License), with an exception 
stating that derived works in binary form may be distributed on 
the user’s own terms. By using each platform’s own native controls 
rather than emulating them, wxWidgets applications look and feel 
familiar to the operating system’s, and should thus be immediately 
more familiar to the user. The list of widgets and features offered 
is extensive and the code base is very mature. wxWidgets can be 
called via interface layers for a variety of languages including C++, 
Python, and Perl.

Either C++ code or Python could be used to produce a program 
with a GUI in wxWidgets containing a VTK window for rendering. 
The relative ease of use of Python over C++, combined with the 
large array of readily accessible functionality offered by Python, 
makes this the preferred choice for our application.

THE MASTER ENVIRONMENT: Python
Python is a dynamic, object-oriented programming language 
that is reported to run successfully on Linux, Windows, FreeBSD, 
Macintosh, Solaris, and other operating systems. Since Python is 
an interpreted language, it internally converts and translates source 
code into the native language of the computer and then runs it. 
Once Python has been installed on a system, users do not have to 
compile a Python program or worry about library linkage and load-
ing. Python programs are portable: copying the source code from 

one operating system onto another (which has Python installed) 
will allow the software to run.

The Python-specifi c Python license is compatible with GPL 
licensing. Python is distributed with extensive standard libraries. 
The list of functions implemented in Python is extensive. Additional 
modules for Python include a number of mathematical, numerical 
methods and plotting toolboxes that are useful for manipulating 
numerical lists and arrays, before passing data into VTK for render-
ing. Some Python modules support parallel processing and thread-
ing often with as few as three lines of additional code (an example 
is provided in Figure 10). Modules allowing access to system com-
mand calls and environmental variables are abundant, allowing the 
user to spawn and even control external processes and applications 
from within the Python environment application. Python supports 
integration with other languages and tools (including wxWidgets 
and VTK), which are often loaded by nothing more than using the 
import command.

Python and individually distributed toolboxes can be built from 
source and installed independently. At the time of this submission 
an increasing number of developers are producing binary installers 
for entire Python distributions with many core modules includ-
ing VTK. Using the academic download of the Enthought Python 
Distribution22, users on Windows, Mac OSX, or RedHat Linux have 
access to a ‘one click installation’ of the Python framework required 
to run DV3D.

In short Python was chosen over C++ for the development of 
DV3D because of its relative ease of use, the vast array of addi-
tional functionality available, and because it allows access to the 
core underlying components (wxWidgets and VTK) in a single 
programming language.

DEPENDENCIES AND INSTALLATION
Dependencies
For the reasons we have already discussed in detail above, DV3D is 
designed to be as platform independent as possible.

DV3D has few software or hardware dependencies and requires 
only the following to run:

• Python 2.4.1 or later
• wxPython 2.6 or later
• VTK 5.0.3 or later
• The Numpy module for the appropriate version of Python 

installed
• A Windows, Mac OSX, or Linux platform.

Installation
We have already outlined that Enthought provide a binary installer 
for Microsoft Windows, Mac OSX, and RedHat Linux. Use of 
these installers provides a comprehensive build of the core com-
ponents and additional modules required to run DV3D. Use of the 
Enthought installers is currently free for academic use. Users with 
platforms not supported by these installers can often fi nd binary 
installers for the individual components on operating specifi c sup-
port sites. All modules can be built from source on platforms by 
users wanting additional installation options and control.

22http://www.enthought.com/products/epd.php
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DATA IMPORT
Supported formats
DV3D currently supports the following formats:

• DICOM. Digital Imaging and Communications in Medicine 
is a standard for handling, storing, printing, and transmitting 
information in medical imaging23. Many MRI scanners now 
export their data directly to this format. The DICOM format 
provides private header fi elds that can be utilized to store 
additional scan information. Unfortunately many sites now 
use these fi elds in a non-uniform manner (according to the 
DICOM standard). Different DICOM readers do not always 
correctly interpret metadata describing data acquisition and 
storage protocols in the fi le. DV3D addresses inconsistencies 
in DICOM headers by adjusting the DICOM reading routi-
nes provided by Python to specifi c scan protocols and scanner 
types.

• ANALYZE™ (.hdr and.img) is an image processing program 
developed by The Biomedical Imaging Resource at the Mayo 
Foundation. This program uses the ANALYZE™ format 
(www.mayo.edu/bir/PDF/ANALYZE75.pdf) which is curren-
tly widely used in neuroimaging. Many programs (including 
FSL, SPM, AFNI, Cox, 1996, FreeSurfer and MRICron) are able 
to read and write the format. The fi les typically store voxel-
based volumes in two fi les: the binary data itself is stored with 
a fi lename extension.img; another fi le acts as a header (.hdr) 
describing information about the data such as voxel size, slice 
numbers and data origin. As with DICOM, some software 
packages use the ANALYZE™ format header in different ways. 
Some software packages interpret ANALYZE™ volumes diffe-
rently due to differences in header writing conventions across 
sites. DV3D addresses inconsistencies in ANALYZE™ headers 
by adjusting the reading routines to detect which program was 
used to produce the fi le (where possible).

• NIfTI-1 (.nii or.nii.gz) is an adaptation of the ANALYZE™ 7.5 
fi le format24. NIfTI-1 uses unassigned spaces in the ANALYZE 
7.5 header to add several new features. Since it is possible to 
compress data stored in NIfTI-1 fi les the nii.gz fi le format is 
often utilized. DV3D supports the.nii or.nii.gz fi le formats.

• GIfTI (.gii). Support for the unifi ed XML-based GIfTI fi le for-
mat25 is provided.

• VTK polydata fi les(.vtk). VTK provides routines for expor-
ting objects in memory to its own native polygon data fi les. 
Additional routines allow these objects to be read into VTK 
applications at a later date. This offers an incredibly useful 
tool for users wanting to save objects created in a VTK session 
for sharing or later access without the need for regeneration. 
DV3D offers visualization routines for.vtk fi les in binary or 
ascii format.

• OFF (.off). The Object File Format is described by the Geomview 
package26. It is used to represent collections of planar polygons 
with possibly shared vertices. This is a useful  format used to 

describe surfaces by programs including SurfRelax (Larsson, 
2001). DV3D offers visualization routines for.off fi les in binary 
or ascii format.

• FREESURFER surfaces (lh.* and rh.* are examples). Surfaces 
generated by typical default processing in FreeSurfer include 
left and right hemisphere cortices representing the white mat-
ter and grey matter surfaces, with anatomically correct and 
infl ated versions. DV3D offers support for these standard 
surfaces and additional surfaces generated by post-processing 
routines (an extracted scalp for example). DV3D is also capa-
ble of handling additional scalar descriptors for these fi les, 
including curvature values. DV3D offers visualization routines 
for FreeSurfer fi les in binary or ascii format.

• 4-D Neuroimaging (4DNI) MEG data (.m4d). Creation of  
a.m4d fi le using the pdf2set program allows direct reading of 
4DNI MEG data. DV3D currently supports the 4DNI output 
format, but could easily be extended to support other MEG 
and EEG time-series formats.

Although many of the formats discussed above have a standard 
description, i.e., a set of instructions for fi le creation designed to 
maintain conformity across sites, not all packages use these formats 
to read and write fi les in the standardized way. There will always be 
corner-cases where the readers used to import data into DV3D may 
fail. Fortunately, the previously discussed power of Python allows 
developers to easily amend existing readers or write new ones to 
handle these inconsistencies. Users are actively invited to submit 
failing data sets with descriptions of acquisition parameters and 
header formats so that current readers can be amended or new 
readers developed.

Supported software packages
Since DV3D currently supports all the data formats outlined above, 
it should, in theory, support at least some of the formats from a 
wide range of existing neuroimaging analysis packages. Any package 
capable of writing these formats could be used. This is not so simple 
in practice, as we have alluded to in the Section ‘Supported Formats’ 
of this paper. There are complications when different sites and pack-
ages adopt varying standards for data export to specifi c formats. We 
look forward to collaborating with sites with additional data sets in 
order to resolve as many of these disparities as possible.

Program processing pipeline
On startup, the user can choose to launch DV3D in one of two 
modes.

• MRI-overlay mode. This mode is traditionally used where a ‘base’ 
MRI volume is initially loaded. Other objects aligned to the 
coordinate space of this volume can then be loaded and overlaid 
onto the base volume. The ‘base’ MRI volume thus defi nes the 
coordinate space into which additional objects are loaded.

• Non-overlay mode. The user can choose to not load a base 
volume. In this case the program will launch with an empty 
renderer and pre-created 2D or 3D objects can be loaded by 
the user.

A graphical representation outlining DV3D’s processing pipeline 
is shown in Figure 3.

23http://medical.nema.org/
24http://nif.ti.nimh.nih.gov
25http://www.nitrc.org/projects/gifti/
26http://www.geomview.org/docs/html/OFF.html#OFF
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RESULTS
DV3D is accompanied by user documentation, example data sets 
and tutorial videos. Links to this information are provided in 
the Supplementary Material section of this paper. The fi ne detail 
describing interaction with the application is described in these 
documents and tutorials. Here instead we will discuss the broad 
concepts and functions of the program, and how they satisfy our 
design objectives.

DESIGN OBJECTIVE: A COMMON SPACE FOR MULTIPLE DATA TYPES
DV3D’s workspace
DV3D provides a single, common workspace for viewing neuroim-
aging data, simultaneously in 2D and 3D. The main workspace 
environment of DV3D consists of two windows:

Main application window (Figure 4). This window is divided 
into quadrants:

• VTK window. The bottom-right quadrant holds the 
wxVTKRenderWindowInteractor, the VTK class that allows a 
functional VTK session to be embedded in a wxPython pro-
gram. We will refer to this as the VTK window. When data 
objects are loaded into or created by DV3D they are added to 

this window. The VTK window is the core tool allowing us to 
provide a common space for simultaneous multi-modal data 
overlay.

• Button Panel. The top-right quadrant is constructed from a 
wxNotebook object that we will refer to as the Button Panel. It 
consists of a number of pages which each contain a panel of 
buttons and widgets which allow the user to interact with the 
VTK window. A tab labeled with the title of the panel denotes 
each page. Each page is brought to the front by clicking on its 
tab. Pages group functions of similar types together for ease of 
navigation. The Button Panel can be extended to have many 
more pages, allowing for a multitude of additional functions 
to be added to DV3D at a later date without excessively clutte-
ring an individual button page. Potential developers will also 
be interested to note that each page here is derived from a sepa-
rate class allowing easy parallel development and integration.

• Object List. The bottom-left panel holds a wxTreeCtrl that we 
will refer to as the Object List. It displays its items in a tree 
like structure similar to many operating systems’ fi le browsing 
dialogs. An item may be either collapsed (meaning that its chi-
ldren are not visible) or expanded (meaning that its children 
are shown). Whenever a new object is loaded into the program 

FIGURE 3 | DV3D processing pipeline. A schematic representation of the processing pipeline of program startup, data loading and export user events in DV3D.
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or generated by one of DV3D’s routines, a tree item is added to 
this list. In addition to this, a property panel is created for each 
new object. This panel has a number of different buttons and 
tools used to manipulate the display properties of the objects 
in the VTK window. Since a unique item identifi er identifi es 
each item in the tree, it can be linked to the object in the VTK 
window. This allows us to manipulate some of the properties 
of the object in the VTK window associated with a specifi c item 
in the Object List simply by clicking on the object in the list. 
Each item has its own (optional) icon and a label. Users can 
simply rename the item in the tree to a more meaningful string 
without losing the interaction with the associated object in the 
VTK window. The Object List offers an intuitive and effi cient 
tool for managing the content of the VTK window.

• Message Dialog. The top-left quadrant, which we will refer to 
as the Message Dialog, holds a wxTextCtrl. This object is effec-
tively a text box that is updated with information for the user 
as the program is used. Interaction coordinates from the VTK 

window (bottom right quadrant) are displayed in the Message 
Dialog if a base MRI volume is loaded.

• Sizers. A vertical and horizontal sizer bar defi ne the bounda-
ries of the quadrants. Clicking and dragging these sizers allows 
the user to alter the relative sizes of the quadrants of the Main 
application window.

The Main application window’s VTK window allows us to display 
multi-modal data, whilst the Button Panel, Object List and object 
associated Property Panels allow us to manipulate the properties 
of the displayed objects.

In addition to the 3D viewing capabilities of the VTK window, 
DV3D provides traditional 2D orthogonal views of the 3D window 
via the Orthogonal view window. This window consists of three 
orthogonal projections of the VTK window’s content. The options 
panel in this window allows the user to set the refresh frequency of 
the viewports, increasing program performance. Plane orientation 
and placement of the viewpoints is also fully customizable.

FIGURE 4 | DV3D’s main application window. The main window for data 
interaction in DV3D. The bottom-right quadrant holds the VTK window where all 
3D rendering takes place. The top-right holds the Button Panel, which consists 
of multiple sub-pages allowing a large array of user interaction functions. The 
top-left quadrant holds the Message dialog which displays the current 

coordinates of the interaction cross hair in the VTK window. The bottom-left 
quadrant holds the Objects List: a list of all objects loaded in the the VTK 
window. Panels can be resized by clicking and dragging the vertical and 
horizontal dividers between each panel. Views in the VTK window are 
neurological by convention.
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Viewing conventions
It is important to make the default visualization conventions of 
DV3D clear at this stage.

Radiological vs. neurological. Data viewed in the 3D VTK window 
of the Main application window is rendered according the neuro-
logical convention as described by FSL27. Data viewed in the 2D 
Orthogonal view window also conforms to the neurological conven-
tion, but can be switched to the radiological convention.

Perspective vs. parallel projection. To make 3D visualization more 
natural, the VTK window utilizes a perspective projection algorithm 
during rendering to infer depth in the scene. Since the planes in 
the Orthogonal view window are effectively 2D we refrain from 
using this algorithm (since it carries some processing overhead) 
and revert to parallel projection.

Aligning different data sets
Transformations. DV3D allows the user to add different data sets of 
different types into the same coordinate space (the VTK window). 
Data is loaded into a millimeter coordinate frame defi ned by the 
data set’s header description (e.g. the sform or qform matrices held 
in the header of NIfTI-1 fi les). By using header transformation 
matrices, DV3D can automatically align data. Alternatively, the 
user can provide additional affi ne transformations (4 × 4 matri-
ces) to apply previously calculated alignment parameters (typical 
examples include affi ne transformations provided by FSL’s FLIRT 
when coregistering an individual MRI to the MNI brain). This 
principle applies to any volumes or surfaces loaded. DV3D does 
not currently calculate new transformations, but rather handles 
those pre-calculated in external analysis packages.

Resolution and scaling. Unlike many other visualization pack-
ages (e.g. FSLView), DV3D does not require MRI data to be at 
the same resolution. DV3D uses a millimeter coordinate space. 
All data loaded into the VTK window are scaled according to the 
header information (e.g. the pixdim values in ANALYZE™ and 
NIfTI headers describe the voxel dimensions).

DESIGN OBJECTIVE: DEALING WITH DIFFERENT DATA TYPES
Viewing volume data in 2D and 3D
The vtkImagePlaneWidget is the core tool utilized by DV3D to dis-
play and interact with volumetric MRI data and associated overlay 
volumes. This widget works by creating a plane that can be interac-
tively placed in an image volume. Readers may ask why a 2D tool is 
incorporated in a 3D data viewer. VTK allows the user to manipulate 
this plane in real time, using the third dimension to tilt, rotate, or 
translate the plane in virtually any orientation. Thus a 2D plane 
becomes a diverse data exploration tool. Figure 5A shows a set of 
planes created for an MRI data set. The functionality of the vtkIm-
agePlaneWidget is described in detail in the tutorial examples and 
documentation. In short, it offers the following functionality:

• Coordinate lookup. DV3D captures the slice number data 
displayed by the vtkImagePlaneWidget and uses it to calculate 

the equivalent millimeter coordinates in the underlying data 
set. The slice number and calculated millimeter coordinates 
are then displayed in the Message Dialog of the Main applica-
tion window. Figure 5B shows the lookup cross-hair activated 
in the plane.

• Interactive volume re-slicing. The core functionality of the wid-
get relies on the vtkImageReslice class that takes the image 
volume data as an input, re-slices (or ‘reformats’) it as required 
and then passes the output to the texture mapping pipeline. 
This tool allows real time slicing through volumetric data at 
virtually any angle. Figures 5C–E show this functionality in 
action.

• Brightness and contrast. In addition to rotation and translation 
of the planes, it is also possible to change the windowing and 
level of the data. This effectively adjusts the brightness and 
contrast of the data displayed in the window. Slider style con-
trols are provided to control the absolute values of the win-
dow width and level for more precise user control. The default 
behavior allowing the mouse to control window width and 
level can be re-enabled in User Preferences.

Using multiple vtkImagePlaneWidgets, DV3D allows simultane-
ous overlaying of statistical data in 2D. Once a base volume has been 
loaded and its planes have been created, additional volumes can be 
loaded and overlaid onto this volume. The overlay load routine is 
accessed via the Functional tab on the Button Panel. Overlay vol-
umes currently have to be transformed into the coordinate space 
of the base volume but do not need to be at the same resolution. 
For every overlay volume loaded, an additional set of planes is cre-
ated; one for each axis in the VTK window and one for each axis in 
the Orthogonal view window. The overlay data is initially assigned 
a yellow (for its minimum value) to red (for its maximum) color 
lookup table before it is rendered. As with the base image planes, 
two additional objects are created: an Object List label and a Property 
Panel. Sliders control the window width and window level of the 
overlay layer only, i.e. the effective scalar range for the data that 
are visible in the overlay layer. This acts as a real time 2D and 3D 
statistical thresholding tool. The color map currently in use can 
also be altered using the color map selection dialog.

Viewing 3D surfaces
DV3D provides methods for loading and generating surfaces for 
display in the VTK window. Surfaces are created in memory as 
vtkPolyData objects, which have a number of native properties 
that the program is able to manipulate to increase user interactiv-
ity. Examples include access to the global transparency and color 
properties of the object. These properties can then be altered using 
the property panel automatically created for any surface loaded 
or generated.

Loading surfaces. Surface load routines are accessed via the Surfaces 
tab on the Button Panel. Clicking the Load button opens a fi le dialog 
offering the import of a number of different fi le formats. Surface 
inputs currently supported by DV3D include:

• FreeSurfer output surfaces (including infl ated surfaces).
• SurfRelax output surfaces in the Geomview binary.off fi le 

format.27http://www.fmrib.ox.ac.uk/fslfaq/#general_radiologicaldef
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• mrVista.mrm outputs.
• vtkPolyDataWriter output fi les (.vtk).
• Any surface exported to the GIfTI format.

Once the surface load dialog completes the object is loaded and 
automatically added to the VTK window and the Orthogonal view 
window. The automatically generated property panel will also be 
displayed.

Generating surfaces. VTK provides techniques for dynamically 
generating surfaces from volume data in memory. DV3D uses the 
vtkContourFilter to calculate and extract surfaces from underlying 
MRI data volumes. The vtkContourFilter interrogates the volume 
data set, fi nding points in the volume where the scalar value cor-
responds to a value stipulated by the user. It then scans through 
the data volume, connecting points of the same value and creating 
isocontour lines (in 2D) or isosurfaces (in 3D). Since the stipulated 
search value may occur several times in the data volume, multi-
ple isolines or isocontours can be returned by the algorithm. An 
additional option offered by the algorithm is to retain only the 
largest connected surface, i.e., the surface with the largest number 
of vertices.

It may be interesting to generate surfaces from underlying data 
for a number of reasons. In Figure 6 we show an example of a 
rough estimate of a scalp (Figure 6A) and rough cortical sur-
face (Figure 6B) representative of the white-matter/gray-matter 

 boundary, extracted from the same individual’s data. Isosurfaces 
extraction is highly sensitive to homogeneity inconsistencies in 
the MRI image volume and produces better results with inten-
sity normalized volumes. In Figure 6C we show the same routine 
applied to the skull-stripped 1 × 1 × 1 mm3 MNI brain distributed 
with FSL 4.0. It should be evident that this result is less noisy than 
that shown in Figure 6B, a result of the intensity normalization 
of the MNI brain. Surface generation for cortical surfaces using 
DV3D is meant to aid quick data exploration and is not nearly 
as informative or accurate as the algorithms utilized by programs 
like FreeSurfer, FSL’s FAST28 or SurfRelax. The speed with which 
an individual can extract a rough representation of this surface 
is however very useful. DV3D can give a user a quick insight into 
the cortical shape in just 30 s, where other packages take between 
15 min and several hours to run.

Activation color mapping. In addition to offering access to the 
global transparency and color properties of the object, vtkPolyData 
objects allow access to the properties of individual vertices that 
defi ne the shape of the surface. Each vertex can have a scalar value 
associated with it. VTK allows the user to create a color lookup table 
covering the range of all scalar values associated with the vertices 
of a surface. The color presented at each vertex on the surface can 

FIGURE 5 | The use of plane widgets to show 3D volume data. (A) A set of 
three orthogonal planes, each intersecting a single 3D MRI volume. (B) Left 
clicking on any one plane with a mouse will make a cross-hair visible (in red) 
allowing data from a specifi c coordinate in the data set to be displayed. Real-
time reformatting of data (re-slicing it in any plane direction) is possible by tilting 

the planes around their current origin. (C) The axial plane is rotated around the 
y-axis by clicking on the edge of the plane (show in red) and moving the mouse. 
(D) The axial plane is rotated around the x-axis by clicking on another plane edge 
(shown in red). (E) The axial plane is rotated around the z-axis by clicking in the 
corner of the plane (shown in red).

28http://www.fmrib.ox.ac.uk/fsl/fast4/
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then be directly mapped through this lookup table to the scalar 
value at that point. This offers an easy way to map patterns of 
activation to a surface.

Viewing time-series data
Interactive time-series data visualization is another data exploration 
technique supported by DV3D. The ability to follow real time changes 
in signal amplitude at specifi ed locations in data sets relies on VTK’s 
aforementioned ability to map scalar data to individual vertices of 
loaded surfaces. DV3D extends the ability of VTK to map scalar data 
by allowing users to pass new values into surface objects’ scalar arrays. 
By allowing users to update the scalar values mapped to surfaces with 
data from any time point in a time-series, DV3D allows dynamic 
viewing of time-series data in 2D and 3D by stepping through succes-
sive time points. DV3D also supports extraction of sensor time-series 
data for MEG and EEG data (e.g. Butterfl y plots).

Numpy29 is a mathematical methods module for Python that 
allows, amongst many other mathematical functions, the use 
and manipulation of arrays and matrix mathematics in Python. 
Python’s automatic memory management, coupled with the power 
of Numpy matrix manipulations means that DV3D has access to 
effi cient temporary data storage of large data arrays. VTK also offers 
techniques for data arrays to be passed directly into VTKArray 
classes, further increasing processing effi ciency.

Two time-series objects are shown in Figure 7. A 3D contour plot 
and a minimum norm solution (techniques used for visualizing and 
analyzing MEG and EEG data) for two MEG data sets are shown in 
Figures 7A,B, respectively. The user fi rst provides a coordinate fi le 
that describes the surface that is to be added to the VTK window. 
This fi le provides the coordinates for the vertices and edges of the 
surface to be generated. The user then provides a time-data fi le that 
holds an array of scalar values. This fi le holds multiple values for 
each vertex, arranged chronologically to represent the time-series at 

each location or vertex in the coordinate fi le. Independently of the 
exact fi le formats, DV3D generates a surface from the coordinate 
fi le, and then loads the time-data fi le into memory, constructing a 
Numpy array to hold the time-series data. As the user interacts with 
the object, stepping to subsequent or previous time points, DV3D 
simply steps to the appropriate point in the array and extracts the 
relevant values. These values are then converted to a VTKArray 
and passed directly to the scalar value representation of the object. 
Although this process may seem rather complex, it is an extremely 
effi cient technique for managing large data arrays without restrict-
ing rendering speed when visualizing time-series data.

Advanced interaction techniques
We have shown the way in which DV3D can load surfaces or gener-
ate them from underlying data, or re-slice volume data in real time 
using image planes. We will now briefl y describe three of the more 
advanced features demonstrated in the user documentation and 
tutorials to show the data exploration potential of DV3D.

3D overlay data. This visualization technique relies on the pre-
viously described method for extracting isosurfaces from MRI 
volumes using the vtkContourFilter. We previously described 
extracting a rough representation of the cortex by passing a base 
sMRI volume to the vtkContourFilter. Following the same princi-
ple, we can pass an overlay volume to the vtkContourFilter in the 
place of the structural volume. This volume could, for example, be 
a statistical z-score map of the activation resulting from a contrast 
analysis of fMRI data. This is illustrated with a visual motion fMRI 
data set in Figure 8. The 2D overlay data is shown in Figure 8A.

Isocontouring with depth-dependent transparency mapping is 
a technique that can be applied to a variety of neuroimaging data 
types or result fi les. Figure 8E shows how this technique can be 
applied to probabilistic DTI visualization (e.g. FSL’s Probtrack30 

FIGURE 6 | Viewing 3D Surfaces in DV3D. (A) Example of a rough estimate of a scalp using the surface extraction technique. (B) Example of a rough estimate of a 
cortex using the same technique. Here the data set has been skull stripped fi rst using FSL’s Brain Extraction Tool. (C) A rough cortical extraction of the 1 × 1 × 1 mm3 
MNI brain distributed with FSL 4.0.

29http://numpy.scipy.org/ 30http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_probtrackx.html
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output) to give a clear representation of the entire extent of prob-
able connectivity between regions. In addition to being a tool for 
producing interesting 3D images of the connectivity probability 
distribution of the DTI data set, this technique has another poten-
tial benefi t for DTI. Standard DTI fi ber tracking techniques tend 
to represent 3D results at streamlines or stream-tubes in 3D space. 
With this technique, the colors mapped to each surface have actual 

probabilistic value and can be mapped along the length of the tract 
or network path with a visible color bar.

Surface interrogation of overlay volume data. The vtkContourFil-
ter interrogates data volumes, fi nding specifi c scalar values and then 
extracting the 3D coordinates with corresponding scalar values, 
constructing isolines or isosurfaces by effectively ‘connecting the 

FIGURE 7 | Viewing time-series data in DV3D. (A) Evolution of an MEG fi eld displayed via 3D-contour plot. (B) Evolution of a minimum norm projection via surface 
scalar lookup table. In both instances frames can be automatically generated by cycling data and exported for movie creation.

FIGURE 8 | 3D overlay data using isosurface transparency. (A) 2D overlay 
data from an fMRI experiment overlaid onto a structural MRI volume. (B) The 
vtkContourFilter can be applied to create an isosurface through the data at a 
specifi c threshold value, say z = 2.3. The returned 3D surfaces will encompass 
all areas in the data set that have a z-score of z = 2.3 or above. We could 
repeat the process, asking the vtkContourFilter to return smaller surfaces as 
we increase the threshold. (C) A 2D representation (using isocontours shown 
in blue) of 2 separate isovalues used to extract surfaces. (D) If we 
simultaneously render fi ve sets of surfaces, at z-scores of z = 2.3, 3.3, 4.3, 5.3, 
and 6.3, for example, the only set of surfaces visible would be that at z = 2.3, 
since all other surfaces are inside this surface. We can manipulate the 
transparency and color of the vtkPolyData class to make the distribution of 

activation visible and overcome this problem. By making the outermost 
surface (at the lowest threshold value) 80% transparent, the second 
outermost 60% transparent, the third 40% transparent, the fourth 20% 
transparent, and the highest threshold surface completely opaque, we make 
all surfaces simultaneously visible. To emphasize this effect, we can also apply 
a color gradient (yellow to red) across the surface threshold range. 
Interacting with this mode of visualization in 3D gives an instantaneous 
percept of the entire distribution of the activation in 3D. (E) This image shows a 
number of tracts output from FSL’s Probtrack toolbox rendered using the 
3D overlay technique. The tracts are seen as yellow to red isosurfaces. The 
green spheres indicate the positions of seed and target points as defi ned in 
Probtrack.

98



Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 | 

Gouws et al. DV3D in multi-modal neuroimaging

dots’. VTK also offers techniques to do the reverse: having a surface 
in the same coordinate space as a data volume, we can fi nd where 
each vertex of the surface intercepts with the data volume and 
extract the volume’s scalar value at this point. We have already 
shown (in Figure 7) that when a scalar values are provided for 
each vertex of a surface, we can use a color lookup table to over-
lay a color map of the distribution of the scalar value amplitudes 
across the surface.

Figure 9 demonstrates the usefulness of this technique. An 
overlay volume can be loaded into sMRI space (Figure 9A). The 
user can then create or load a surface (Figure 9B) into the same 
space. From the property panel of this surface the user can choose 
to map statistical data to the surface (at the current threshold and 
color map defi ned by the overlay plane’s property set). This gives 
the user a very quick way to visualize activation distributions in 
3D (Figure 9C).

DESIGN OBJECTIVE: COREGISTRATION TO ATLASES
Automatic atlas lookup
DV3D provides methods for real-time cross referencing with brain 
atlases. Atlas lookups are currently only possible on MRI-overlay 
mode. Once the user has loaded a base MRI volume, they can load 
a second volume into memory. On the Reference tab of the Button 
Panel, the user can select a fi le to load as the reference volume to 
compare to the base volume. Once the user selects a volume, they 
are prompted to supply a transformation matrix describing the 
mapping of the base volume (e.g. an individual’s brain) to the ref-
erence volume (e.g. the MNI brain). DV3D is currently optimized 
for use with FSL output data, allowing referencing with the MNI 
and Talairach brains. If a user supplies the MNI brain as a refer-
ence, the user can select to automatically lookup the equivalent 
Talairach coordinates and brain label. DV3D uses the MTT-pooled 
transform for the MNI brain to the Talairach brain (Lancaster et al., 
2007). Coordinates and slice numbers of the current and reference 
data set are displayed in the Message Dialog of the Main applica-
tion window. The Talairach label, slice number and coordinate is 
displayed in the Message dialog if the supplied reference volume is 
the MNI brain and the user has checked the Ref is MNI and Show 

Talairach Transform check boxes on the Button Panel. Interaction 
with a base MRI volume, with cross referencing to the MNI and 
Talairach atlas is demonstrated in Figure 4.

DESIGN OBJECTIVE: EXPORT ROUTINES FOR SHARING AND 
PUBLICATION
Surfaces
Any surface currently displayed in DV3D’s VTK window can be 
written out to a fi le for sharing or reloading at a later time. Export 
routines for surfaces can be called by selecting the required surface’s 
label in the Object List, clicking on the list item with the right mouse 
button and selecting the Export surface option. This will launch 
the operating system’s native ‘Save fi le as’ dialog. The fi le can then 
simply be saved and re-loaded where required.

Images
DV3D offers a number of different options for saving out images, 
capturing the content of the VTK window and the Orthogonal view 
window as required. The user has full control over the resolution of 
the image output and is given the option of multiple output formats 
(including JPEG, TIFF, BMP and PNG). Controls enable the user 
to export the current view to single image, or export a sequence 
of views as separate frames (e.g. 360° rotation of the viewport to 
multiple, sequential images).

Movies
DV3D offers options for saving and creating movies from of the 
VTK window. The user has full control over the resolution of the 
image output since the frames of the movie are simply captured 
at the dimensions of the VTK window as it is displayed on the 
computer monitor. On the Export tab of the Button Panel the user 
can select:

• Export 360° directly to.AVI movie. VTK provides a vtkAVIWri-
ter class that is capable of writing renderer contents directly to 
AVI format video fi les. Currently this export routine does the 
same as the Export 360° to multiple images routine, rotating 
the camera through 360° around the object over 180 frames 

FIGURE 9 | A demonstration of surface interrogation of overlay volume data. (A) Structural MRI space with fMRI data overlay. (B) Rough cortical extraction from 
underlying structural MRI data. (C) Rough cortex with overlay intersection data rendered onto the surface at the user defi ned thresholds.
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and creating the output as a movie. Depending on the build 
options used at VTK installation time or the installer that the 
user has chosen to use, the vtkAVIWriter class is not always 
automatically compiled. The Enthought Python distribution, 
for example, builds this class on Windows by default, but not 
on OSX. Users wanting access to this functionality should con-
sider manual installation of the VTK modules, or see the more 
advanced functionality of the streaming routine described in 
Start interactive streaming.

• Start interactive streaming. This is the most advanced interac-
tion capture technique currently available with DV3D. It has 
the capability to capture user interactions in real time, periodi-
cally capturing frames from the VTK window as the user chan-
ges objects in it. Clicking the start interactive streaming button 
launches the operating system’s ‘Choose folder dialog’, allowing 
the user to specify a folder for the output to be saved in. With 
this routine, frames are saved to memory as they are captu-
red rather than being written out immediately. The user will 
notice very little jittering during interaction due to the decrea-
sed processing load. The individual frames are then written 
out when the Stop stream button in pressed. Individual frames 
can then be combined into a move format by external software 
programs such as Apple’s QuickTime Pro.

Examples of all export routines are provided at the software 
website references in the Supplementary Material section of this 
paper.

DESIGN OBJECTIVE: AN EFFICIENT WORKING ENVIRONMENT
A number of features of DV3D are designed to aid users to optimize 
the working environment of the package.

User preferences
A user preferences fi le can be accessed via the Preferences panel. 
This allows users access to environmental variables including:

• Automatic property panel display: users can choose whether 
the property panels generated for each loaded object are auto-
matically displayed or not.

• Orthogonal window orientations: these settings allow the 
user fi ner control over the layout of the orientations of the 
Orthogonal view window panels.

• Automatically render orthogonal window: this setting tog-
gles whether the program default is to automatically render 
the Orthogonal window when the VTK window changes, or 
whether the user calls this manually.

Parallel processing
Python offers access to parallel processing via a number of differ-
ent modules. While there is little need for this at present, we have 
included a sample of how Python can manage separate threads with 
this release as a demonstration of how easy it is to implement, and 
how much potential there is for speeding up user interaction. The 
demonstration can be run from the Threading tab on the Button 
Panel. This function runs the load routine for a surface fi le with over 
one million vertices. The routine is run in the background while 
the user continues to interact with the program. Loading the same 
surface without threading requires the user to wait between 20 and 

45 s for the process to complete. An example of the simplicity of the 
code required to access this functionality is shown in Figure 10.

Workspace saving
At any point during use of DV3D, users can choose to save the 
current status of the workspace to a fi le. This fi le holds metadata 
that an be loaded at the start of a later session to load the current 
working environment, with many of the current settings in use 
by the user, including all loaded objects and color / transparency 
settings. This fi le hard-codes the paths of input fi les and will fail if 
fi les are moved between sessions.

Surface decimation
Upon loading surfaces into memory, DV3D can be set to run a 
decimation routine to down-sample the number of vertices of each 
surface by between 10 and 90%. This surface is not shown automati-
cally (the high-resolution surface is visible by default), but the user 
can choose to toggle between the decimated and original surface 
during interaction to help increase the speed of rendering.

Command line access for scripting
In addition to handling workspace fi les, DV3D offers the ability 
to handle explicit arguments passed to the program on the com-
mand line. This allows users access to advanced scripting options 
for automation of processing streams.

FIGURE 10 | A demonstration of code simplicity in Python: enabling 

threading. (A) This code example demonstrates how a function may be linked 
to a button press in a standard Python script using the thread running the main 
program. On the button click, the program asks the user to choose a fi le to 
load. The program then passes the fi le to the subroutine (Load_surface_fi le) 
and runs the subroutine. While the subroutine is running the user has to wait 
for the object to be loaded and returned to the main program before 
continuing. (B) This second code example shows that we can produce the 
same result using Python’s threading module. First the threading module is 
imported. The functionality of code example in (A) is then added as a function 
(RunFunctionInThread). The button click in this instance calls a thread (my_
thread.start) and runs the load routine will run in the background allowing the 
user to continue working while it is prepared. Note that threading only 
requires a few extra lines of simple code.
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DESIGN OBJECTIVE: A FLEXIBLE, SCALABLE AND ACCESSIBLE 
OPEN-SOURCE FRAMEWORK
Our implementation of a fl exible, scalable and accessible open-
source framework is described largely in the Section ‘Methods: 
Implementing a Python Framework’ of this paper. We show that 
the combination of Python, wxWidgets and VTK gives us the ability 
to produce a code base that is freely distributable and platform inde-
pendent. This implementation has all the functionality required 
to process a number of different fi le types and formats, is highly 
modularized for ease of understanding and promotes future user 
development due to the relative simplicity of Python as a program-
ming language (for an example, see Figure 10).

DISCUSSION
The ‘Results’ Section of this paper shows that DV3D satisfi es each 
of the key design objectives identifi ed as important for a multi-
modal neuroimaging data visualization package. In summary, 

DV3D allows users to view data from many different imaging 
modalities and analysis streams in a single coordinate space. Data 
can be cross-referenced with standard spaces in real-time, from 
2D or 3D objects. DV3D supports the display of a large number of 
input data formats, and allows the user to export data in a number 
of different formats. The user workspace can be customized to 
allow optimum productivity and allows access for both casual and 
power users (command line scripting and parallelization). DV3D’s 
platform independence (due to Python) makes it fl exible, and the 
modularity and simplicity of the code base makes it both acces-
sible and scalable.

Readers may ask about the novelty of DV3D. While we (to the 
best of our knowledge) are unaware of any other software pack-
age that utilizes isocontouring with depth-dependent transparency 
mapping to display 3D statistical overlays (see Advanced Interaction 
Techniques), we do not claim that any other techniques utilized 
by DV3D are novel. Table 1 summarizes the features of DV3D, 

Table 1 | Feature summary and comparison of imaging data visualization packages. This table summarizes some of DV3D’s key features and compares 

DV3D’s functionality with three commonly used imaging data visualization tools, FSLView, MriCron and 3D Slicer. Features are accurate as at the time of initial 

development of DV3D.

Software feature FSLView  MRICron  3D Slicer  DV3D 

NEUROIMAGING DATA SUPPORT

Optimised for neuroimaging   – 

Structural MRI    

Functional MRI    

DTI – probabilistic  – – 

DTI – tractography – – Calculated online Loaded from memory

DTI – 2d vectors  – – 

DTI – 3d vectors – –  

MEG/EEG contour plots (2D and/or 3D) – – – 

MEG/EEG 3d time-series on surface – Single instant – Full dynamic

MEG/EEG dipoles – – – 

MEG/EEG butterfl y plots – – – 

DATA EXPLORATION

2D statistical map overlay    

3D statistical map overlay  – – 

Interactive surface extraction – – Complex watershed  Simple isosurfaces

Real-time atlas cross-referencing If data in MNI space – – 4 × 4 Transform required

COMPLEX VISUALIZATION FUNCTIONS

Real-time reformatting – – Single plane Multiple planes

Interactive data intersection – – – 

Interactive time-series interrogation 2d fMRI only – – 2D and 3D fMRI, EEG and MEG

Batch processing from command line  – – 

EXPORT

Static images –   

Movies – –  

Real-time streaming – – – 

TECHNICAL

Main code base language C,C++,Tcl/Tk Pascal C++,Tcl/Tk Python

Platform independent code base – – – 

Access to parallel processing – – – 
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 comparing the resulting functionality achieved by DV3D with simi-
lar packages already available. We show that, while DV3D is not an 
entirely comprehensive solution for visualizing neuroimaging data, 
it does represent a utility that can offer a single solution to users 
of a variety of neuroimaging analysis packages. Being optimized 
for neuroimaging data, this single package offers more options to 
researchers interested in multi-modal neuroimaging data analysis 
than any alternative stand-alone visualization package.

While visualization packages are primarily used to display the 
results output by analysis packages, many visualization tools have 
developed to include techniques to physically manipulate loaded 
results fi les with complex analytical algorithms. 3D Slicer, for 
example, utilizes complex segmentation algorithms to allow tis-
sue segmentation from any MRI volume acquired at any part of 
the body. This allows 3D Slicer to be regarded as a tool that is suited 
to generalized medical imaging analysis and visualization rather 
than being neuroscience specifi c. When handling neuroimaging 
data, 3D Slicer is also more analytically driven than MRICron or 
DV3D. 3D Slicer does not load fi ber-tracking results from exter-
nal analysis packages. Rather it analyzes diffusion-weighted MRI 
data to calculate fi ber tracts31. This move away from being a pure 
visualization tool, specifi c for neuroimaging data, does mean that 
3D Slicer has more demanding development and maintenance 
overhead and can take longer to become familiar with, compared 
to MRICron or DV3D.

DV3D was designed to be a tool optimized for the visualization 
of neuroimaging data and not an analysis tool per se. Although 
many algorithms and calculations underlie the functionality of 
DV3D, they are primarily image processing functions allowing VTK 
to display results of analyses conducted in other software pack-
ages. If DV3D were solely a data visualization tool, it would simply 
take user input and display it in its raw format. We have shown 
however that DV3D offers routines for manipulating loaded data 
to add value to the visualization environment: DV3D can average 
raw MEG time series data by epoch and display this average as a 
contour plot; DV3D can manipulate volume grid data and extract 
and interpolate 3D surfaces from this data to display isosurfaces 
and isovolumes; DV3D offers the ability to decimate large surface 
data sets to increase rendering speed. DV3D has thus already began 
to evolve from a pure visualization tool to a tool that allows users 
to interact with their data. DV3D does not, however, lose focus of 
its optimization for neuroimaging data processing.

Since DV3D has the potential to be more than a visualization 
tool, we have considered extending its functionality. Including more 
functions in DV3D will allow a more extensive range of tools for 
users to interrogate data. The modularity of the framework and 
platform independence of the code base allows access for rapid 
development and extension to include additional fi le format sup-
port and processing routine extension. Many functions have already 
been requested by interested parties and are under current consid-
eration for inclusion in subsequent releases. Python offers modules 
for handling pipes on operating systems, allowing the potential 
for system calls and data exchange between system processes. We 
are currently exploring the capability to include calls to DV3D 

to/from a number of packages. Other examples of user requests 
currently under development include the ability to align volumes 
and/or surfaces manually or with automated error-minimization 
routines, and functions to measure distances, areas, and volume 
size between/on displayed objects. Future development of DV3D 
will focus on support for additional formats, increased automa-
tion of processing streams, extended local settings customization, 
and more extensive data sharing options. We will also consider 
including the GIfTI format as a surface export option due to the 
signifi cant increases in performance reported when handling these 
fi les relative to the.vtk format (Harwell et al., 2008).

Python has a large and diverse international user base, and pro-
motes the development of increasingly accessible and comprehen-
sive solutions for current computing and analysis requirements. The 
use of Python as the base for DV3D allows a cross-platform, trans-
parent, and extendible code base for user development. By using 
Python to wrap existing toolkits, including tools for visualization, 
rendering, parallelization and GUI generation, DV3D development 
has required minimal new code to be written to solve complex com-
putations. In addition to the functionality DV3D currently offers, 
DV3D can also be easily expanded to meet users’ changing needs 
because of its modular, open-source design. DV3D’s framework is 
intentionally modularized to provide concise working examples, 
illustrating the power of VTK and how easily this power can be har-
nessed by Python. While the authors are keen to extend the package, 
provision of an open-source package is intended to stimulate and 
facilitate further development of the software by the user commu-
nity. Example code illustrating the extension of the functionality of 
the package is provided for users interested in contributing code or 
developing the package for their own purposes. DV3D’s code base 
currently consists of circa 12,000 lines of Python code. 3D Slicer 
has over 550,000 lines of C++ code, although this includes a large 
amount of additional analytical functionality that DV3D does not 
have. We suggest that the simplicity of Python relative to C++, and 
the vastly smaller code base, make DV3D more accessible in terms 
of community extension and development prospects.

DV3D’s primary function is to allow easy, interactive display 
of multi-modal neuroimaging data. DV3D has been successfully 
implemented on many platforms and is currently used by local 
users from a variety of disciplines. DV3D is provided as a free, open-
source package built on Python’s platform independent model. 
DV3D can thus be used and, more importantly, developed by the 
wider neuroimaging community.
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SUPPLEMENTARY MATERIAL
DOWNLOADING THE SOFTWARE, EXAMPLES AND EDUCATIONAL 
RESOURCES
DV3D, examples output and input fi les and interactive user 
tutorials can be freely downloaded from http://www.ynic.york.
ac.uk/software/dv3d.31http://www.slicer.org/slicerWiki/index.php/Slicer3:DTMRI
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Topographica: building and analyzing map-level simulations 
from Python, C/C++, MATLAB, NEST, or NEURON components

James A. Bednar*

Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK

Many neural regions are arranged into two-dimensional topographic maps, such as the 
retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable 
insights about how cortical topography develops and functions, but further progress has been 
hindered by the lack of appropriate tools. It has been particularly diffi cult to bridge across levels 
of detail, because simulators are typically geared to a specifi c level, while interfacing between 
simulators has been a major technical challenge. In this paper, we show that the Python-based 
Topographica simulator makes it straightforward to build systems that cross levels of analysis, 
as well as providing a common framework for evaluating and comparing models implemented 
in other simulators. These results rely on the general-purpose abstractions around which 
Topographica is designed, along with the Python interfaces becoming available for many 
simulators. In particular, we present a detailed, general-purpose example of how to wrap an 
external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines 
of Python code, making it possible to use any of the extensive input presentation, analysis, and 
plotting tools of Topographica. Additional examples show how to interface easily with models in 
other types of simulators. Researchers simulating topographic maps externally should consider 
using Topographica’s analysis tools (such as preference map, receptive fi eld, or tuning curve 
measurement) to compare results consistently, and for connecting models at different levels. 
This seamless interoperability will help neuroscientists and computational scientists to work 
together to understand how neurons in topographic maps organize and operate.

Keywords: Python, simulators, interoperability, interfacing, topographic maps, large-scale, cortex, visual

spiking neurons, while NEST provides only limited support for 
fi ring-rate neurons (necessary for the largest scale models) or for 
more detailed individual neuron models, and does not provide a 
GUI for large-scale visualizations. Combining multiple simulators 
to bridge between these levels of analysis could provide a complete, 
biologically grounded explanation of how single-neuron properties 
lead to large-scale topographic maps. Even for models at the same 
level, interfacing multiple simulators into a coherent framework can 
also help provide a uniform means for comparing and evaluating 
them. However, interconnecting simulators has previously been a 
signifi cant technical challenge (Cannon et al., 2007; Djurfeldt and 
Lansner, 2007).

This paper describes how the Topographica map-level simu-
lator can be used to achieve important types of interoperability 
between a very wide range of simulators with surprisingly little 
coding or development effort. One reason that interoperability is 
practical in Topographica is that Topographica is implemented in 
the Python scripting language, and many neural simulators now 
include Python interfaces. Another reason is that Python is a very 
high level language, known as a glue language (Ousterhout, 1998), 
that makes it easy to connect different interfaces for rapid software 
development. Even more important, however, is that Topographica 
is built around a high-level abstraction of the properties of topo-
graphic maps, which is relatively simple to adapt to components 
implemented in any particular simulator yet provides access to a 

INTRODUCTION
In mammals, much of the cortical surface (and many subcorti-
cal structures) can be partitioned into topographic maps (Kaas, 
1997; Van Essen et al., 2001). These maps contain systematic two-
dimensional representations of features relevant to sensory and 
motor processing, such as retinal position, sound frequency, line 
orientation, and motion direction (Blasdel, 1992; Merzenich et 
al., 1975; Ohki et al., 2005; Weliky et al., 1996; Xu et al., 2007). 
Figure 1 shows an example retinotopic and orientation map from 
the primary visual cortex (V1). Understanding the development 
and function of topographic maps is crucial for understanding 
brain function, and will require integrating large-scale experimental 
imaging results with single-unit studies of the individual neurons 
and their connections that make up these maps. In principle, com-
putational modeling can help make these links explicit, in order 
to explain how topographic maps can emerge from the behavior 
of single neurons.

However, existing simulators typically address only a small range 
of levels of analysis. For instance, NEURON (Hines and Carnevale, 
1997) and GENESIS (Bower and Beeman, 1998) primarily focus 
on detailed studies of individual neurons or very small networks 
of them, rather than enough neurons to form a meaningful topo-
graphic map. Topographica (Bednar, 2008) and NEST (Diesmann 
and Gewaltig, 2002) allow much larger scale simulations of sim-
pler neurons, but Topographica provides only limited support for 
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large range of useful tools. Simply put, if a simulation in any other 
simulator or language contains a large number of neurons (at any 
level of complexity) arranged into a two-dimensional sheet or array 
(or a three-dimensional stack of such two-dimensional arrays), 
then it will be practical to use that simulation or parts of it within 
Topographica.

In turn, integrating such a simulation into Topographica will be 
useful if it can make use of analyses that rely primarily on an average 
(fi ring rate) activation level for each neuron, particularly if they 
are based on measuring responses to an input pattern. Many such 
routines are already implemented in Topographica, such as meas-
uring receptive fi elds, tuning curves, or feature preference maps of 
any type, decoding activity values, and 1D, 2D, or 3D plotting of 
these and other measurements. Other simulators implement some 
of these functions, but rarely in a fully general form that can be 
applied to any neural area and any type of input feature. To make 
the most use of these components, it is helpful if each sheet of 
neurons in the underlying model can be separated from the others 
with well-defi ned interfaces, but even relatively monolithic models 
can be analyzed if they include at least one sheet of neurons that can 
accept an external input, and at least one neuron or set of neurons 
whose fi ring-rate activity patterns are of interest. Any such model 
can then be compared and tested against any similar model, using a 
consistent analysis and visualization framework. Similar considera-
tions apply to using small parts of external models, such as a model 
retinal or cortical area, as part of a larger hierarchical or network 
model of a neural system connected in Topographica.

These features make it surprisingly straightforward to use 
Topographica for simulating and analyzing large-scale, detailed 
 models of topographic maps, using either native or externally imple-
mented components. Topographica is an open source project, and 
binaries and source code are freely available through the internet 
at topographica.org for interfacing to external code on Linux, 
Microsoft Windows, and Macintosh OS X platforms. In the sections 
below, we describe the main assumptions and abstractions used by 
Topographica, provide a detailed example of interfacing to an external 
spiking simulator, show how to interface to a wide variety of other 
external systems and simulators, and discuss in more detail which types 
of models are most suitable for interfacing with Topographica.

SOFTWARE DESCRIPTION AND METHODS
Models supported natively by Topographica typically consist of a 
collection of topographic maps in cortical or subcortical regions, 
such as an auditory or visual processing pathway. Figure 2 shows 
an example simulation along with various types of analysis and 
plotting. This simple model consists of four separate populations 
of neurons, called Sheets: one sheet of retinal photoreceptors 
(labeled Retina), a sheet of ON retinal ganglion cell (RGC)/lat-
eral geniculate nucleus (LGN) cells labeled LGNON, a sheet of OFF 
cells labeled LGNOFF, and a sheet of V1 pyramidal cells labeled V1. 
Neurons in each sheet are arranged topographically, with similar 
properties but at different spatial locations.

Topographica is a general-purpose discrete-event simulator, 
simulating a set of EventProcessors (any object in a Simulation 

FIGURE 1 | Retinotopic and orientation map in V1. Given a particular fi xation 
point (marked with a red + symbol above), the visual fi eld seen by an animal can 
be divided into a regular grid, with each square representing a 1° × 1° area of 
visual space. In cortical area V1 of mammals, neurons are arranged into a 
retinotopic map, with nearby neurons responding to nearby areas of the retina. 
As an example, the image on the right shows the retinotopic map on the surface 
of V1 of a tree shrew for an 8° × 7° area of visual space (adapted from 
Bosking et al., 2002 with permission; scale bar is 1 mm). A stimulus presented 
in a particular location in visual space (such as the thick black bar shown) evokes 
a response centered around the corresponding grid square in V1 (6°, 2°). Which 

specifi c neurons respond within that general area, however, depends on the 
orientation of the stimulus. The V1 map is color coded with the preferred 
orientation of neurons in each location; e.g. the black bar shown at left will 
primarily activate neurons colored in purple in the corresponding V1 grid 
squares. Similar maps could be plotted for this same area showing preference 
for other visual features, such as motion direction, spatial frequency, color, 
disparity, and eye preference (depending on species). Other cortical areas are 
arranged into topographic maps for other sensory modalities, such as touch and 
audition, and for motor outputs. Topographica is designed to simulate any of 
these cortical or subcortical areas.
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capable of receiving and sending Events) connected into a graph 
by EPConnections. An EPConnection ensures that Events are 
delivered to the appropriate target after a specifi ed delay. The pat-
tern of connections and delays in a certain network determines 
how a simulation will progress, with events being generated at a 
certain EventProcessor, processed by the target EventProcessor, 
and potentially leading to additional Events delivered to other 
EventProcessors. Of course, any pattern of connection is allowed, 
including lateral and feedback connections. This approach is gen-
eral enough to simulate any physical system as a collection of inter-
connected entities that can interact and change over time.

To make it practical to model large-scale topographic maps, the 
most common type of EventProcessor in Topographica is a two-
dimensional Sheet of neurons as in the example above, rather than 
a neuron or a part of a neuron. Each Sheet is typically a population 
of similar neurons, and multiple Sheets can be used for each neural 
area, e.g. to represent different laminae or qualitatively different cell 

classes. Conceptually, a sheet is a continuous, two-dimensional area 
(as in Amari, 1980; Roque Da Silva Filho, 1992), which is typically 
approximated by a fi nite array of neurons. This approach is crucial 
to the simulator design, because it allows user parameters, model 
specifi cations, and interfaces to be independent of the details of 
how each Sheet is implemented.

Apart from accepting and generating Events, all a Sheet is required 
to do is to have a fi xed area and density of neurons, and to be able 
to generate a fl oating-point array of the appropriate size when 
asked for its current pattern of activity. Once this activity matrix 
is available for a new Sheet type, then nearly all of Topographica’s 
analysis and plotting code can be used with the new Sheet type, 
e.g. to decode neural responses from the fi ring rate, or to measure 
a topographic map. This general-purpose interface is what makes it 
practical to wrap around a wide variety of external simulations, as 
long as they can be interpreted as a two-dimensional array whose 
elements can have some average fi ring-rate activity value.

FIGURE 2 | Topographica software screenshot. This image shows a sample 
session from Topographica version 0.9.3, available freely at topographica.
org. Here the user is studying the behavior of an orientation map in the primary 
visual cortex (V1), using a model of photoreceptors as the input to the Retina, 
ON and OFF RGC/LGN cells, and a simple V1 model. The window at the left 
labeled “Orientation Preference” shows a self-organized orientation map in V1. 
The window labeled “Activity” shows (from left to right) a sample visual image 
input to the retina, the ON and OFF channel responses to that input, and (on the 
right) an orientation-color-coded representation of activity in the V1 Sheet of 
neurons. The input patterns were generated using the Test Pattern “Preview” 

dialog at the right. The window labeled “Connection Fields” shows the 
strengths of the connections to one neuron in V1. The lateral weights for a 9 × 9 
sampling of the V1 neurons are shown in the “Weights Array” window in the 
center; neurons tend to connect to their immediate neighbors and to distant 
neurons of the same orientation. The “Topographic Mapping” window shows 
how retinotopy has been distorted by the orientation map, and the “FFT Plot” 
shows that the orientation map repeats regularly in all dimensions, as in animals. 
This type of large-scale analysis is diffi cult with other simulators, but typically 
requires no new coding or software development once a network simulation has 
a basic connection to Topographica.
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Topographica comes with a variety of Sheet types, plus a 
large library of other simulation objects, such as projections 
(EPConnections between Sheets), activation functions, learning 
rules, analysis routines, and visualizations. The most extensive sup-
port is for models of the visual system, and Topographica includes 
fl exible components for generating visual inputs (based on geomet-
ric patterns, mathematical functions, and photographic images), 
plus general-purpose mechanisms for measuring maps of visual 
stimulus preference, such as orientation, ocular dominance, motion 
direction, and spatial frequency maps. But many of the primitives 
are usable for any topographically organized system, and there are 
already Topographica models of somatosensory areas (e.g. monkey 
skin and rat whisker barrel areas), auditory inputs, and motor areas 
(e.g. for driving visual saccades). Moreover, additional components 
can be added easily to make external simulations visible from within 
Topographica, or to implement new functionality in general.

INTEROPERABILITY
To demonstrate concretely the procedure for connecting external 
simulations to Topographica, in this section we present a detailed 
example of wrapping an external NEST simulation using the 
Topographica Sheet interface. Shorter examples of how to interface 
with a variety of other simulators follow.

INTERFACING TO PERRINET RETINAL MODEL IN PyNN
For this example, we wrapped a spiking retinal ganglion cell model 
that is being developed by Laurent Perrinet (INCM/CNRS) as part 
of the FACETS project1 and being used in a large-scale spiking 
model of cortical columns in V1 (Kremkow et al., 2007). Writing 
this interface was surprisingly simple, taking about 2 h to adapt 
one of the example Topographica simulations to send output to 
an external simulator and retrieve input from it, and we expect 
interfacing to other models to be similarly straightforward if they 
meet the assumptions laid out in the “Discussion” section.

The Perrinet retina model is specifi ed in PyNN (Davison et al., 
2007)2, a Python wrapper that sets up and runs simulations of 
neural models relatively independently of the underlying simula-
tion engine. This particular script calls the NEST simulator, which 
is well adapted for large-scale spiking neural networks (Diesmann 
and Gewaltig, 2002), but it could also be run under NEURON by 
changing one line of declaration.

The model contains two populations of spiking retinal ganglion 
cells, a 32 × 32 array of ON cells and a 32 × 32 array of OFF cells, 
receiving input from a 32 × 32 array of photoreceptors whose acti-
vation level can be controlled externally. The code can be obtained 
and run by downloading Topographica release 0.9.6 (or SVN ver-
sion 9857 or later) of Topographica, and installing PyNN, NEST, 
and PyNEST using Topographica’s copy of Python (as described 
in examples/perrinet_retina.ty in the distribution).

Figure 3 shows the Python code for wrapping this network as a 
Photoreceptor Sheet (Photoreceptors), a connection to PyNN 
(PyNNR), and two ganglion cell Sheets (ON_RGC and OFF_RGC), and 
Figure 4 shows the resulting simulation running in Topographica. 
The example code would be nearly the same for interfacing to any 

other external simulation that consists of two-dimensional arrays 
of neurons, and so we will step through each part of this code to 
show how the interface is achieved. In each case, the relevant line of 
code is marked with a circled number, which can be found on the 
code listing. Note that this code constitutes the complete, runnable 
model specifi cation for Topographica; it is not a code excerpt or a 
high-level interface to some underlying, complicated interfacing 
code, but instead it is all that was required to connect to and run 
the external simulation within Topographica.

1 First, the external simulation is imported, making anything 
available to Python from that simulation also available to 
Topographica. For this import to succeed, PyNN, NEST, and 
PyNEST need to be installed, and each need to have been 
given Topographica’s copy of Python during installation so 
that they will be available to Topographica.

2 Next, we defi ne a new type of Topographica EventProcessor 
PyNNRetina to handle communication between Topographica 
and the external simulator. This class simply accepts an inco-
ming event from Topographica that contains a matrix of pho-
toreceptor activity, passes the matrix to the external spiking 
simulator, collects the fi ring-rate-averaged results, and sends 
them out to any Topographica sheets that may be connected.

3 More specifi cally, the class fi rst declares that it can accept an 
incoming event on a port labeled Activity, and that it will 
generate two separate types of output data to be made avai-
lable on the ONActivity and OFFActivity dest_ports. 
It also declares that it has two user-controlled parameters, N 
(size of array of neurons) and simtime (duration to run the 
simulation for each input). (Additional parameters from the 
underlying simulator can be declared similarly, or all of the 
underlying parameters could be exposed as a batch using sui-
table gluing code.)

4 The constructor (__init__) does any initialization that 
should be done once per run, here consisting only of defi ning 
some parameters, but potentially including launching an 
external simulator, making a connection to a remote simula-
tor already running, etc.

5 The input_event method is called by Topographica whe-
never an Event delivers data to this object’s src_port 
(Activity). In this case, the method adds the incoming acti-
vity matrix into its parameters data structure (ps), and then 
calls the external function run_retina to run the underlying 
simulation. When the external simulator completes, two lists 
of spikes are returned, one for ON and one for OFF, and these 
are processed using the helper function process_spike-
list. For each list, process_spikelist computes the 
fi ring rate of each neuron and sends the resulting fl oating-
point arrays out the appropriate port.

6 The remainder of the code instantiates a model network to 
display the results from this class, defi ning one PyNNR object, 
a Photoreceptors Sheet to generate input patterns, two 
RGC Sheets to display the resulting activity patterns, and con-
nections between them.

Running this model (or other Python-based simulations) within 
Topographica adds only a tiny amount of computational cost. 
For this example running on a 3GHz Intel Core 2 Duo machine, 

1http://facets.kip.uni-heidelberg.de.
2http://neuralensemble.org/trac/PyNN.
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 simulating in batch mode with N=8 and simtime=4 s takes 16.07 s 
in Topographica, versus 15.88 s using the native PyNN version 
(averages of 5 trials; variance negligible). This 0.2-s time  difference 

consists mainly of libraries that Topographica imports when it starts 
up, and the ongoing cost is normally negligible for a non-trivial 
external Python model.

FIGURE 3 | Sample Topographica interface code. This Python code shows a 
complete, runnable Topographica 0.9.6 simulation interfacing with an external 
PyNN/PyNEST spiking simulation of ON and OFF retinal ganglion cells. The text 
in bold starts the PyNN simulation and retrieves the results, and would need to 

be changed for interfacing to a new external simulation. The other text sets up 
an appropriate Topographica simulation framework, and only needs changing to 
e.g. match the number and type of sheets that you want to expose from the 
underlying external simulation.

    import numpy
    from topo import sheet, numbergen, pattern, param, projection 
    from topo.base.simulation import EventProcessor 
1  import perrinet_retina_pynest as pynr

2   class PyNNRetina(EventProcessor):
3       dest_ports=["Activity"]
         src_ports=["ONActivity","OFFActivity"]
         N = param.Number(default=8,bounds=(0,None), doc="Network width")
         simtime = param.Number(default=4000*0.1,bounds=(0,None),
             doc="Duration to simulate for each input")

         def__init__(self,**params):
             super(PyNNRetina,self).__init__(**params)
4           self.ps=pynr.retina_default()
             self.ps.update("N":self.N)
           self.dt=self.ps["dt"]

5       def input_event(self, conn, data):
             self.ps.update("simtime":self.simtime
           self.ps.update("amplitude":.10*data)
           on_list,off_list=pynr.run_retina(self.ps)
           self.process_spikelist(on_list,"ONActivity")
           self.process_spikelist(off_list,"OFFActivity")

         def process_spikelist(self,spikelist,port):
             spikes=numpy.array(spikelist)
           spike_time=numpy.cumsum(spikes[:,0]) * self.dt
           spike_out=pynr.spikelist2spikematrix(
               spikes,self.N,self.simtime/self.dt,self.dt)
             self.send_output(src_port=port,data=spike_out)

6   N=32
    topo.sim["PyNNR"]=PyNNRetina(N=N)

    topo.sim["Photoreceptors"]=sheet.GeneratorSheet(
         nominal_density=N, period=1.0, phase=0.05,
         input_generator=pattern.Gaussian(
             orientation=numbergen.UniformRandom(lbound=-pi,ubound=pi,seed=l)))

    topo.sim["ON_RGC"] =sheet.ActivityCopy(nominal_density=N, precedence=0.7)
    topo.sim["OFF_RGC"]=sheet.ActivityCopy(nominal_density=N, precedence=0.7)

    topo.sim.connect("Photoreceptors","PyNNR",name='.',
        delay=0.05,src_port="Activity",dest_port="Activity")
    topo.sim.connect("PyNNR","ON_RGC",name='..',
        delay=0.05,src_port="ONActivity",dest_port="Activity")
    topo.sim.connect("PyNNR","OFF_RGC",name='...',
        delay=0.05,src_port="OFFActivity",dest_port="Activity")
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With this interface in place, the external simulation can be used 
with nearly all of Topographica’s features. For instance, Figure 4 
shows one example input pattern and the resulting pattern of ON 
and OFF RGC activity. For this example, the main benefi t to having 
the Topographica wrapper is to be able to present any of the types 
of input patterns in Topographica’s large library of input patterns, 
using either the GUI so that the results can be seen interactively, or 
systematically using Python code. For other simulations, e.g. those 
including cortical areas such as V1, Topographica can compute tun-
ing curves, receptive fi elds, many types of preference maps, and other 
analyses and plots for any of the neurons and Sheets available to 
Topographica, with no coding required. As long as the computa-
tion only requires average fi ring rates, no special-purpose code or 
additional interface will be needed beyond what is shown in this 
example. Thus Topographica can be used to provide a consistent set 
of analyses and plots for a wide variety of underlying simulations.

INTERFACING TO OTHER PYTHON CODE (E.G., PyNEST, NEURON)
The general approach outlined in the section “Interfacing to Perrinet 
Retinal Model in PyNN” can be used for any other model running in 
an external simulator that has a Python interface or is written directly 
in Python. In each case, a new Topographica EventProcessor class can 
be created to accept incoming events, process them somehow, and 
generate appropriate output. For instance, similar steps would have 
been used if the retina model had been written in PyNEST directly 
rather than PyNN, or in NEURON’s own Python interface. As long 
as the external simulator can be told to use Topographica’s copy 
of Python, then Topographica can import the required functions, 
execute them as part of such a class, and thus control its input and 
output. As a result, the main issues with interfacing to other Python-
based simulators are not so much technical as conceptual; these 
conceptual issues will be reviewed in the “Discussion” section.

INTERFACING TO MATLAB
Topographica can also connect easily to external simulations 
 running in Matlab, using the Python ↔ Matlab interface package 
mlabwrap3 that is supplied with Topographica.

For instance, the following complete, runnable Topographica 
script defi nes a Python/numpy array a and then calls a Matlab 
function “nestedsum” on it:

     from mlabwrap import mlab
     import numpy
     len=100000
     a=numpy.array(range(len))
     print mlab.nestedsum(a, len)

Here nestedsum.m is an arbitrary example of a Matlab function 
placed somewhere in Matlab’s path, containing:

     function s = nestedsum(a,len)
     s=0.0;
     for i=1:len
       s=s+sum(a);
     end

(This code prints 5.0000e+14 when run from Matlab, and 
4.99995000e+14 when run from Topographica/Python.) Any 
built-in or user-supplied Matlab function can be called similarly 
(including plotting code like mlab.plot(a)), with nearly seam-
less interchange of scalar and array data between the two systems. 
This capability makes it simple to develop interfaces like that in 
the section “Interfacing to Perrinet Retinal Model in PyNN”, 
or just to use small bits of Matlab code or visualizations when 
appropriate.

The mlabwrap package performs some data conversion behind 
the scenes, but the overhead is still usually negligible. The exam-
ple above run on the same machine as for PyNN takes 12.27 s in 
Topographica, versus 11.57 s for a pure Matlab version. Again, this 
0.7 s difference includes the entire startup time, and increases little 
with simulation size (e.g. 0.8 s out of 44 for len=200000).

The main technical limitation of the mlabwrap Matlab 
 interface is that at present it only supports 1D and 2D arrays, 
because the mlabwrap author has not yet added n-dimensional 
array  support. More importantly, interfacing to external Matlab 
models can be diffi cult because of the monolithic (as opposed to 
object-oriented) programming style typically used for Matlab pro-
gramming. For instance, the Olshausen and Field (1996) model 

FIGURE 4 | Example architecture. This fi gure shows the simulation from 
Figure 3 running in Topographica. On the input sheet is a 2D Gaussian pattern 
generated by Topographica and presented to the underlying spiking network, 

with the resulting spike count responses shown on the ON and OFF RGC 
sheets. The type of input pattern and its parameters can be manipulated as 
shown.

3http://mlabwrap.sourceforge.net.
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available from4 is a good match to Topographica conceptually, but 
running it within Topographica in a useful way requires splitting 
up the Matlab code into three components to handle the input 
pattern generation, response to the input, and the weights update 
separately. These functions were originally controlled by a single 
Matlab script. Thus in practice how diffi cult it would be to interface 
to Matlab code depends on the programming style and complexity, 
with simple functions being simple to access but complicated mod-
els potentially requiring prior reorganization on the Matlab side.

INTERFACING TO C/C++
Python offers a wide variety of methods for interfacing to C or C++ 
code, any of which could be used with Topographica. The specifi c 
interface currently used for the performance-critical portions of 
Topographica is Weave5, which allows snippets of C or C++ code 
to be called easily from within Python code. A sample complete, 
runnable Topographica/Python script with C code is:

     import weave,numpy
      len=100000
      sum=0.0
      a=numpy.array(range(len))
      code = """
          int i,j;
          for (i=0; i<len; i++)
            for (j=0; j<len; j++)
              sum+=a[i];
          return_val=sum;
      """
      print weave.inline(code,["a","len","sum"])

Here the C code in the string named code is computing the same 
function as the Matlab code above; it will print 4.99995e+14 when 
run. The fi rst time it is run the C compiler will be called automati-
cally to compile that code fragment, and then the saved object fi le 
will be reused in subsequent calls and on subsequent runs, unless 
the C code string is changed. This approach makes it simple to 
include bits of existing C code to optimize specifi c functions, or 
to make calls to C libraries.

The C interface adds very little overhead, in part because it 
uses numpy arrays in place. The example above takes 10.34 s in 
Topographica, versus 10.07 for a pure C equivalent. This 0.3-s dif-
ference is primarily due to the Topographica startup time, because 
it does not increase with simulation size or length. Also note that 
the full C version must be recompiled for any change, even trivial 
ones, while the Topographica/Python version only recompiles when 
the code string changes (which is typically rare if C is used only for 
performance-critical sections; recompilation adds about 1 s to the 
runtime in this example).

Using weave in this way makes it simple to add small bits 
of C code, but other approaches such as ctypes (included in 
Python 2.5) can be more suitable for interfacing to large external 
C packages. Again, how diffi cult the interface will be depends 
on whether the external code is arranged into entities that 
can be called directly from Topographica; as discussed below, 

 reorganizing the code in this way is usually straightforward but 
can take some effort.

DISCUSSION
As the examples above show, very little coding is required to wrap 
even complex simulations into the basic Sheet and EventProcessor 
components used in Topographica. A large class of models across 
different modelling and analysis levels (e.g., fi ring-rate, integrate-
and-fi re, and compartmental neuron models) can fi t into this struc-
ture, allowing all of them to be analyzed and compared consistently, 
interconnected where appropriate, and explored visually even if 
the underlying simulator has no graphical interface (as for NEST). 
Although the general problem of simulator interoperatibility is 
diffi cult to address, in this specifi c case it is relatively easy to get 
practical benefi ts from combining simulators.

Although the approach outlined above is general purpose, it 
does require coding a new Topographica component to match each 
specifi c model implemented externally. A useful but more complex 
alternative would be to provide a detailed mapping between object 
types in an external simulator. For instance, one could provide 
a Topographica Sheet object that instantiates a corresponding 
NEST layer object, and similarly for a Topographica Projection 
object and a NEST connection object. In this way NEST or other 
simulators could be used to provide specifi c functionality missing 
from Topographica, rather than to implement complete models. 
However, developing such interfaces is much more involved than 
the simple wrapping described here.

Even though the Topographica Sheet interface is general enough 
to fi t a wide range of current models, there are some models that do 
not fi t within its assumptions. In particular, a Sheet usually needs to 
have an underlying grid shape to the population of neurons, though 
individual neurons can be absent or at jittered spatial locations, as 
long as no more than one neuron is present in any grid cell. (Strictly 
speaking, it need only be possible to visualize the model in this 
way; the actual organization is arbitrary.) Also, only Cartesian grids 
are currently supported, though hexagonal grids could be added 
in the future. Arbitrary 3D locations will be diffi cult to support, 
except by imposing a 3D grid. Note that nonlinear spacings are 
supported, using arbitrary coordinate mapping between Sheets, 
e.g. for foveated retinotopic mappings, as long as there is still an 
underlying grid of neurons.

Apart from operating loosely on a grid, Topographica assumes 
that models will have regions that are separable from each other, 
communicating only over well defi ned channels, and usually incre-
mentally processing some sort of external stimuli that change over 
time. Although these assumptions are extremely general, and can 
apply to any physical system, many models do not satisfy them 
fully. For instance, models that represent inputs not as individual 
patterns but as correlation functions (e.g. Miller, 1994) are diffi cult 
to connect to Topographica, because most of the functionality of 
Topographica requires testing the response to specifi c external stim-
uli (e.g. for measuring maps, tuning curves, and receptive fi elds). 
Other types of models that operate in a “batch” mode rather than 
one pattern at a time (e.g. Olshausen and Field, 1996) can usually be 
adapted to work in incremental mode as required by Topographica, 
but they may then run much more slowly.4https://redwood.berkeley.edu/bruno/sparsenet/

5www.scipy.org/Weave.
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Given the ease with which many models can be wrapped, an 
intermediate-term goal will be to provide example code for wrap-
ping as many current V1 models as possible into Topographica, 
to establish for the fi rst time a platform for evaluating their 
behavior and functionality consistently. At present, each model 
is implemented independently, with different analysis routines 
and types of visualization, and thus it is extremely diffi cult to 
determine if apparent differences in behavior are signifi cant. As 
long as runnable code is available for each model, wrapping it 
into Topographica should be straightforward and should provide 
immediate benefi ts.

In addition to interfacing with external model components, any 
of the mechanisms outlined above can be used to call externally 
defi ned general-purpose analysis or visualization functions. For 
instance, the NeuroTools package6 defi nes an object-based Python 
representation of spike trains, such as those used in the spiking 
retina model above. A native spiking Topographica model can 
then use these functions rather than reimplementing them within 
Topographica.

This paper focuses on making external simulations available 
within Topographica, to allow simulations at the topographic map 
level or at lower levels to be brought into a common analysis and 
testing framework. It is also straightforward to interface in the 
opposite direction, running a Topographica simulation from 
within an external system or simulators. The Topographica User 
Guide7 provides detailed examples of running models from the 
Python command line or Python scripts, and the same interface 
can be used from within any simulator that has Python bind-
ings. Moreover, Topographica has a highly modular design with 
few dependencies between components, and there are many 
Topographica objects that are useful on their own and can be 

used just as any other Python object from within an external 
program.

At present, Topographica is primarily useful for doing analy-
ses based on fi ring rates, because of its extensive fi ring-rate based 
libraries. Spiking simulations are also possible in Topographica, 
but they are currently quite limited, and will require additional 
work to establish general-purpose abstractions that can be used 
to integrate data across models and simulators. In the long run, 
we intend Topographica to be useful as a high-level platform for 
analyzing spiking output as well as fi ring-rate output, and would 
welcome collaborations with people interested in that topic or in 
other aspects of Topographica or interoperability development.

In summary, working at the topographic map level makes it 
practical to provide interconnections between models and simula-
tors working at the same or different levels of detail. As long as the 
neurons are grouped into two-dimensional sheets of related units, 
they will be able to interface easily with Topographica’s tools and 
components. The result provides a shared platform for evaluating 
models from different sources, allowing consistent analysis and 
testing even for very different implementations. We believe this 
shared, extensible tool will be highly useful for the community of 
researchers working to understand the large-scale structure and 
function of the nervous system.
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Python scripting in the Nengo simulator

Terrence C. Stewart*, Bryan Tripp and Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada

Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by 
the recent addition of a Python script interface. Nengo provides a wide range of features that 
are useful for physiological simulations, including unique features that facilitate development 
of population-coding models using the neural engineering framework (NEF). This framework 
uses information theory, signal processing, and control theory to formalize the development 
of large-scale neural circuit models. Notably, it can also be used to determine the synaptic 
weights that underlie observed network dynamics and transformations of represented variables. 
Nengo provides rich NEF support, and includes customizable models of spike generation, 
muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical 
user interface. All aspects of Nengo models are accessible via the Python interface, allowing 
for programmatic creation of models, inspection and modifi cation of neural parameters, and 
automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated 
with any existing Java or 100% Python code libraries. Current work includes connecting neural 
models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine 
detailed neural models of specifi c brain regions with higher-level models of remaining brain 
areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural 
components, and (2) more realistic sub-components for the larger cognitive models.

Keywords: Python, neural models, neural engineering framework, theoretical neuroscience, neural dynamics, control 

theory, representation, hybrid models

NENGO
Nengo is an open-source cross-platform software package for mod-
eling neuronal circuits1, and tested on Macintosh OS X, Linux, and 
Microsoft Windows. It is implemented in Java, and provides both a 
detailed Application Programming Interface and a Graphical User 
Interface (Figure 1), so that it is suitable for both novice and expert 
modelers. As will be discussed, the Python scripting system forms 
a bridge between the easy-to-use graphical environment and the 
full power of the underlying programmatic interface. This ensures 
a smooth transition from novice to expert, as all aspects of the 
simulation are accessible at all times.

A variety of spiking point-neuron models are provided with 
Nengo. This includes the standard LIF neuron and the Hodgkin-
Huxley model, as well as an adapting LIF (La Camera et al., 2004) 
and the Izhikevich model (Izhikevich, 2003). Integration is per-
formed with a variable-timestep integrator, using the Dormand-
Prince 4th and 5th order Runge-Kutta formulae (Dormand and 
Prince, 1980). At the network level, interaction between neurons 
treats spikes as discrete events; Nengo is not meant for neural mod-
els where the detailed voltage profi le of a specifi c spike affects the 
post-synaptic neurons.

These neuron models can be connected directly to form simple 
networks, and input can consist of current injection or voltage 
clamp. Spike times, membrane voltages, and current can be recorded 
from the neurons. This approach is suitable for situations where 
connectivity information is known, or where the dynamics of a 

INTRODUCTION
Large-scale neural modeling requires software tools that not only 
support effi cient simulation of hundreds of thousands of neurons, 
but also provide researchers with high-level organizational tools. 
Such neural models involve heterogeneous components with com-
plex interconnections that may be either speculative in nature or 
constrained by existing neurobiological evidence. To effectively 
construct, modify, and investigate the behaviour of these mod-
els, researchers need to be able to specify the collective behavior 
of large groups of neurons as well as the low-level physiological 
details.

In order to support this style of research, we have developed 
a neural simulator package called Nengo. For high-level organi-
zation, Nengo makes use of the neural engineering framework 
(NEF; Eliasmith and Anderson, 2003), which provides methods 
for abstractly describing the representations and transforma-
tions involved in a neural model and how they relate to spiking 
behavior. To provide access to the broad range of functionality 
we require (from neural groups to individual synapses), we inte-
grated a Python language scripting system into the simulator. This 
enables a variety of novel features, including the inspection and 
modifi cation of running models, the ability to script common 
experimental tasks, and the integration of non-neural cognitive 
models. In this paper, we describe this system (see Introduction), 
discuss the features related to its use of Python (see Python and 
Nengo), and provide an extended example of ongoing research 
that has directly benefi ted from these abilities (see Integration 
with Other Libraries).
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i has an associated preferred direction vector � (the stimulus for 
which it most strongly fi res), bias current Jbias, and scaling factor α. 
For a given neuron, α and Jbias can be experimentally determined 
from its maximum fi ring rate and the minimum value of x for 
which it responds. If the nonlinearities of any given neural model 
(LIF, ALIF, etc.) are written as G[⋅] and the neural noise of variance 

particular confi guration are being investigated. However,  modeling 
of more sophisticated population-coding networks is greatly facili-
tated by using the NEF-related features of the simulator.

NEURAL ENGINEERING FRAMEWORK
For complex neural models, it is often useful to describe the system 
of interest at a higher level of abstraction, such as that shown in 
Figure 2. For this reason, we defi ne heterogeneous groups of neu-
rons (where individual neurons vary in terms of their neural prop-
erties such as bias current and gain) and projections between these 
groups. We can then use the NEF (Eliasmith and Anderson, 2003) 
as a method for realizing this high-level description using neural 
models with adjustable degrees of accuracy. The NEF provides not 
only a method for encoding and decoding time-varying represen-
tations using spike trains, but also a method for deriving linearly 
optimal synaptic connection weights to transform and combine 
these representations. This approach combines work from a variety 
of researchers, most notably Georgopoulos et al. (1986), Rieke et al. 
(1999), Salinas and Abbott (1994), and Seung (1996).

The NEF has been used to model the barn owl auditory system 
(Fischer, 2005), rodent navigation (Conklin and Eliasmith, 2005), 
escape and swimming control in zebrafi sh (Kuo and Eliasmith, 
2005), working memory systems (Singh and Eliasmith, 2006), the 
translational vestibular ocular refl ex in monkeys (Eliasmith et al., 
2002), and the manipulation of symbolic representations to support 
high-level cognitive systems (Stewart and Eliasmith, 2009).

Within the NEF, a neural group forms a distributed representa-
tion of a time-varying vector x(t) of arbitrary length. Each neuron 

FIGURE 1 | A neural model of the basal ganglia developed in Nengo.

FIGURE 2 | A neural model of the mammalian vestibular system using 

the NEF. Boxes represent distinct neural populations and arrows represent 
projections between them. Inputs to the system are linear acceleration 
sensed by the left and right otoliths (AL, AR) and the angular velocity from the 
canals (ΩL and ΩR). From these, the system calculates inertial acceleration 
(I) using the formula developed by Angelaki et al. (1999). (For further details, 
see Eliasmith et al., 2002).
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σ2 is η(σ), then the encoding of any given x(t) as the temporal spike 
pattern across the neural group is given as Eq. 1.

δ α η( ) ( ) ( )t t G t Ji i i i
n

− = ⋅ + +⎡⎣ ⎤⎦∑ in � x bias σ
 

(1)

Given this spiking pattern, we can in turn estimate the original 
vector as ˆ( ).x t  In some approaches (e.g. Georgopoulos et al., 1986), 
this is done by weighting each encoding vector � by the average 
fi ring rate of the corresponding neuron. In the NEF, however, we 
derive the linearly optimal decoding vectors � for each neuron 
(see Eliasmith and Anderson, 2003 for details). This method has 
been shown to uniquely combine accuracy and neurobiological 
plausibility (e.g. Salinas and Abbott, 1994).

� =

=

=

−

∫
∫
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Since x(t) varies over time, we do not weight these decoding 
vectors by the average fi ring rate. Instead, we weight them with the 
post-synaptic current h(t) induced by each spike. The shape and 
time-constant of this current are determined from the physiological 
properties of the neural group:

ˆ( ) ( ) ( ) ( )x t t t h t h t ti i i= − ∗ = −∑∑δ in in
inin

� �
 

(3)

The representational error between x(t) and ˆ( )x t  is dependent 
on the particular neural parameters and encoding vectors, but in 
general is inversely proportional to the number of neurons in the 
group. Given a suffi cient number of neurons, an arbitrary level of 
accuracy can be reached. For a known number of neurons with 
known physiological properties, we can determine how well the 
values can be represented.

The derivation of the optimal decoding vector also allows us to 
determine the optimal connection weights to perform arbitrary 
transformations of these representations. For linear functions, 
consider two neural populations, X representing x(t) and Y repre-
senting y(t). If we want y(t) = M x(t), we can derive the following 
for the neurons in population Y:
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(4)

This manipulation converts weighted post-synaptic currents 
caused by the spikes in neural group X into a spiking pattern for 
group Y that would cause Y to represent the value in X transformed 
by the linear operation M. Crucially, if we set the synaptic connec-
tion weights between the ith neuron in X and the jth neuron in 
Y to be ω αij j j i= � M� , then the post-synaptic neurons will encode 
M x(t). This allows us to develop a model by defi ning the hypoth-
esized computations and directly solving for the corresponding 

connection weights, rather than relying on a learning rule or manu-
ally setting the weights.

For nonlinear transformations, we can generalize the derivation of 
the decoding vector to estimate the desired function f(x). This pro-
vides a new set of decoding vectors �f(x) which can be used in place of 
the previous � to provide an optimal linear estimate of this function. 
This allows arbitrary nonlinear functions to be computed, although 
more complex nonlinearities across multiple dimensions of x will 
require more neurons with � values that lie in those dimensions.

� f x f x
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Treating neural groups as representing time-varying vectors and 
synaptic connections as performing arbitrary transformations allows 
us to organize a neural system using the powerful framework of 
control theory. Eliasmith and Anderson (2003) have shown how to 
translate any state-space model from modern control theory into an 
equivalent neural circuit. For example, an ideal integrator is shown 
in Figure 3A, and its NEF counterpart, a neural integrator imple-
mented with 300 LIF neurons, is shown in Figure 3B. Importantly, 
the idealized version can be seen as an approximation of the actual 
neural behaviour. As is discussed in the next section, this feature can 
be used to create large-scale models where every component can 
potentially be simulated at the level of neurons, even though it may 
be too computationally expensive to do so for the whole system.

The NEF provides a generic method for modeling any neural 
system where groups of neurons are taken to represent scalars, 
vectors, and functions, and where synaptic connections implement 
transformations on these representations. The system generalizes 
to higher dimensional vectors and has also been used as the basis 
of models of path integration (Conklin and Eliasmith, 2005) and 
working memory (Singh and Eliasmith, 2006). Arbitrary nonlinear 
encodings are supported by adjusting G to be the output of any 
neural model. While the above derivation assumes linear dendrites, 
the approach generalizes to nonlinear dendritic behavior as well 
(see Eliasmith and Anderson, 2003).

PROGRAMMING INTERFACE
Nengo is a highly modular object-oriented Java program, making 
the underlying simulation system extensible and adaptable to novel 
modeling situations. The following features are directly exposed to 
the developer by the architecture:

Neuron models
Specialized neuron models can be written in Python or Java. These 
can extend existing models and/or use generic components, such as 
the built-in dynamical system solver. For example, a Nengo imple-
mentation of a dopamine-sensitive bistable striatal neuron (Gruber 
et al., 2003) was recently developed. The core of its implementation 
is shown later in this paper.

Neural plasticity
Arbitrary functions can be added for adjusting synaptic weights 
based on spike timing and modulatory signals.
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Muscle models
For any neural models involving motor neurons, the dynamic 
behavior of the muscles form an important part of the model as 
well. Nengo supports multiple approaches to muscle modeling 
(e.g. Keener and Sneyd, 1998; Winter, 1990).

All of these components, along with other useful tools for 
modeling such as external inputs and probability distribution 
functions for various neural properties, can be implemented in 
either Java or Python. As discussed in further detail below, all of 
the features of Nengo are exposed in both languages, allowing 
developers the fl exibility to choose the approach which is most 
suitable to them.

Since the software was developed for large-scale modeling, each 
component within a Nengo model has an adjustable simulation 
mode. For neural groups defi ned using the NEF approach, three 
modes are provided: spiking neurons, rate neurons, and a direct 
high-level abstraction of the overall neural behavior. This direct 
mode allows for fast approximate simulations where the individual 
neurons within the group are not simulated; instead the behavior 
is approximated in terms of the underlying represented values x(t). 
When neural groups simulated at a low level connect with groups 
simulated at a high level, Eqs 1 and 3 (above) are used to determine 
the corresponding spike trains and ˆ( )x t  values. If suffi cient time and 
computational resources are available, all parts of the model can 
be simulated in terms of spiking neurons. However, this capability 
of mixing levels of simulation means that a detailed neural model 
involving tens of thousands of neurons can be embedded within 
a high-level approximation of the millions of other neurons with 
which this system must interact. By switching modes of particular 
neural groups, the effect of different degrees of accuracy can be 
easily determined. Changing simulation models is also a useful 
exploratory tool, since approximate behavior can be determined 
quickly.

USER INTERFACE
Nengo also provides a graphical user interface for constructing and 
simulating models. Neural groups can be created and confi gured, 
projections and synaptic connection weights can be defi ned, and 
simulations can be run and analyzed, all through a point-and-
click interface. This provides a direct method for visualizing the 
overall organization of a complex neural circuit at multiple levels 
of abstraction.

This interface is intended to be equally suitable for novice and 
expert users. In particular, we wanted to ensure that while com-
mon tasks are made easier by the interface, more experienced users 
have simultaneous access to the full capabilities of the programmatic 
interface. To achieve this, a Python scripting interface is embedded in 
the graphical user interface, complete with a full history and object-
inspection based code completion tools. Usage examples of this com-
bined graphical and scripting system are given in the next section.

Python AND NENGO
To blend the graphical interface with the full power of the under-
lying programmatic interface, we embedded a Python scripting 
engine. This allows Python code and scripts to run in concert 
with the user interface. In this way, users can follow a graphical 
point-and-click approach for common modeling tasks, and turn 
to Python scripting for more complex or specialized tasks.

Since Nengo is implemented in Java, the scripting interface 
was implemented with Jython2. This is a Java implementation of 
Python, which allows Python code to be compiled to the Java Virtual 
Machine, and provides seamless interaction between languages, 
including inheritance between languages and full access to the 
Java API using Python syntax. Importantly, no extra development 
effort (beyond embedding Jython within the Nengo graphical user 

2http://www.jython.org

FIGURE 3 | A classic control-theory integrator (A) and an NEF integrator 

(B). Both integrators are provided with the same sine wave input x(t). The NEF 
integrator uses 300 LIF neurons with maximum fi ring rates distributed 
uniformly between 100 and 200 Hz, post-synaptic current time constants of 

20 ms, and refractory periods of 2 ms. The output value for the NEF integrator 
is determined from the individual spike times of each neuron using Eq. 3. 
Neuron spikes are shown as dots in panel (B), with neurons arranged along 
the y-axis.
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interface) was required to allow Python access to the Nengo code; 
Jython automatically provides the Python syntax and interactive 
capabilities described here.

As an example, Figure 4 shows the Python scripting interface 
being used to duplicate an existing group of neurons (groupA, 
created using the point-and-click interface). This duplication is 
performed using the standard Java clone() method. The name of 
this new neural group is then changed to groupB and it is added 
to the existing network. These tasks can also be performed via 
the graphical interface; this example is meant to show the direct 
relationship between the underlying Java entities, the graphically 
displayed objects, and the Python scripting.

RUN-TIME INSPECTION AND MODIFICATION
The simplest use of the scripting system is to display and edit the 
values of variables within the simulation. The most recent object 
selected in the graphical display is always bound to the variable 
that in the scripting system. This allows us to quickly inspect and 
change objects. For example, to display the bias current (Jbias in 
Eq. 1) of a given neuron, we can click on it in the interface and type 
the following, with the output from Nengo shown in bold:

print that.bias
1.9371659755706787

The command that.bias is automatically converted by Jython 
into the Java method invocation getBias() on the currently 

selected object, and the result is printed to the screen. This con-
venience functionality is built in to Jython and works with any Java 
code that conforms to the JavaBean properties standards.

For more complex situations, we use Python to extract relevant 
information and analyze and record it in the desired manner. For 
example, we can display all of the Jbias values across a group of neu-
rons, fi nd their average, and save the values in a comma-separated 
values (CSV) fi le.

bias=[n.bias for n in groupA.nodes]
print bias
[1.9371659755706787, 0.5016773343086243, 
0.40018099546432495, 2.8485255241394043,…
print sum(bias)/len(bias)
-17.20441970984141
import csv
csv.writer(file('output.csv','w')).writerow(bias)

This approach can also be used to set values within the simula-
tion; the command that.bias = 0.3 is converted into the Java 
method setBias(0.3) by Jython. This allows model parameters 
to be set in a fl exible manner. For example, to cause the RC time 
constant for a group of neurons that use an LIF spike generator 
to be uniformly distributed between 200 and 300 ms, we can do 
the following:

for n in groupA.nodes: n.generator.tauRC=random.
uniform(0.2,0.3)

FIGURE 4 | Basic usage of the Python scripting interface to interact programmatically with a neural model.
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PROGRAMMATIC MODEL CREATION
Python can also be used to directly create models. This involves 
defi ning the various neural groups and specifying the projections 
between them. As this is done, Nengo automatically solves for the 
required synaptic weight matrices, based on the neural properties, 
preferred direction vectors, and the desired transformation.

To confi gure a NEF neural group, we defi ne the various param-
eters based on the neurobiological properties of the particular types 
of neurons being modeled. This can include specifying probability 
distributions for those aspects that are heterogenous across the 
group.

ef=ca.nengo.model.nef.impl.NEFEnsembleFactoryImpl()
ef.nodeFactory.tauRC=0.02
ef.nodeFactory.tauRef=0.002
ef.nodeFactory.maxRate=GaussianPDF(200,50)
ef.nodeFactory.intercept=IndicatorPDF(-1,1)

Given this defi nition, we can now create neural groups of the 
desired size, encoding vectors of a given length. Terminations 
are defi ned by providing the linear transformation matrix (M in 
Eq. 4) and the post-synaptic time constant. Nonlinear functions are 
computed by creating a separate origin and providing the desired 
function. This separate origin does not imply a separate source of 
action potentials; it is implemented internally using the same spike 
timing as the standard projection origin (i.e. the neural group’s 
axons), but with a different set of decoding vectors, as per Eq. 5. 
For example, the following script will create a neural group which 
accepts fi ve inputs and outputs the maximum value encoded by 
those fi ve inputs, using the neural properties defi ned above.

group=ef.make('group',neurons=1000,dimensions=5)
for i in range(5):
    M=[0,0,0,0,0]
    M[i]=1
    group.addDecodedTermination('in'+i,[M],tauPSC=0.007
                                .modulatory=False)
group.addDecodedOrigin('max',[PostfixFunction
                              ('max(x)',5)],'AXON')

We have found this approach to be fl exible and highly useful for 
our ongoing research. In particular, this has allowed us to quickly 
explore the behaviors of complex cognitive models, including our 
ongoing work on neural implementation of Kalman fi lters for sen-
sorimotor integration, language based reasoning, the role of basal 
ganglia in motor control, and other projects. While much of Nengo 
is devoted to supporting NEF-style models, similar commands are 
used for models that directly specify neural connections and plas-
ticity, or that merge the two approaches.

SCRIPTING OF COMMON TASKS
Besides directly creating or modifying models, Python is also use-
ful for defi ning stimuli, controlling simulations, and analyzing or 
recording results. Inputs to neural groups can be defi ned using 
arbitary Python code, allowing for anything from simply adding 
white noise to a baseline input value to providing dynamic inputs 
based on the current motor outputs of the model.

More generally, we can use the scripting system to evaluate neu-
ral models. That is, we can easily run multiple simulations, adjusting 
parameters, and recording the data. For example, the following code 

runs an existing simulation 10 times, adjusts the refractory period 
each time, and records the model output to a MATLAB® fi le. This 
allows us to quickly explore the behavioral effects of physiological 
parameters.

result=ca.nengo.io.MatlabExporter()
for i in range(10):
    for n in groupA.nodes: n.generator.tauRef=0.001*i
    simulator.run(start=0,end=1)
    result.add('data'+i,probe.data)
result.write(file('result.m','w'))

DEFINING NEURON TYPES
Given the wide range of existing neuron models, and the continual 
development of new ones, Nengo needs to allow the user to easily 
defi ne and use new neuron models throughout the system. This 
is facilitated by a general-purpose dynamical system solver which 
creates spiking neuron models based on their dynamical descrip-
tion. Given the simplicity of the Python syntax, existing published 
neural models can be easily translated from their mathematical 
description into code.

For example, the following Python code defi nes the membrane 
dynamics for a dopamine-sensitive bistable striatal neuron devel-
oped by Gruber et al. (2003). This model’s behaviour is affected by 
levels of dopamine, which are set using a separate modulatory input 
within Nengo, allowing it to be controlled by other neural groups.

Cm=1; E_K=-90; g_L=.008; VKir2_h=-111; VKir2_c=-11; 
gbar_Kir2=1.2
VKsi_h=-13.5; VKsi_c=11.8; gbar_Ksi=.45; R=8.315; 
F=96480; T=293
VLCa_h=-35; VLCa_c=6.1; Pbar_LCa=4.2; Ca_o=.002; 
Ca_i=0.0000001

class GruberDynamics(ca.nengo.dynamics.
AbstractDynamicalSystem):
    def f(self,time,input):
    I_s,mu=input
    Vm=self.state[0]

    L_Kir2=1.0/(1+exp(-(Vm-VKir2_h)/VKir2_c))
    L_Ksi=1.0/(1+exp(-(Vm-VKsi_h)/VKsi_c))
    L_LCa=1.0/(1+exp(-(Vm-VLCa_h)/VLCa_c))
    P_LCa=Pbar_LCa*L_LCa

    x=exp(-2*Vm/1000*F/(R*T))
    I_Kir2=gbar_Kir2*L_Kir2*(Vm-E_K)
    I_Ksi=gbar_Ksi*L_Ksi*(Vm-E_K)
    I_LCa=P_LCa*(4*Vm/1000*F*F/(R*T))*
      ((Ca_i-Ca_o*x)/(1-x))
    I_L = g_L*(Vm-E_K)

    return [-1000/Cm*(mu*(I_Kir2+I_LCa)+I_Ksi+I_L-I_s)]

Using this approach, any component of a neural system expressed 
in terms of its internal dynamics can be integrated into a Nengo 
model.

INTEGRATION WITH OTHER LIBRARIES
Since Nengo integrates a Python scripting system via Jython, Nengo 
models can also make use of other code libraries. This not only 
includes the standard built-in Python libraries for string processing, 
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random number generation, asynchronous communication, and 
other common tasks, but also any other library written in Java or 
100% Python. Unfortunately, Jython currently does not support 
direct integration with Python extension modules, such as NumPy 
or SciPy. To make use of such tools for data analysis, the output from 
Nengo can be exported to a fi le. However, for modules which can 
be directly integrated, Nengo allows for seamless communication 
between systems from within the graphical user interface.

ACT-R
As an example of this model integration, we have combined Nengo 
with a Python implementation of ACT-R, a high-level model of 
human cognition (Anderson and Lebiere, 1998). ACT-R divides 
human cognitive function into a variety of separate modules, which 
map on to particular brain areas (Anderson et al., 2008). Although 
no neural implementation of these modules exists as of yet, the 
underlying theory provides millisecond-level timing information for 
the behaviour of these modules which accords well with timing of 
overt behavior and of fMRI BOLD responses. ACT-R distills decades 
of cognitive science research into a form that provides a high-level 
model of many brain regions that can, in theory, interact with a 
lower-level neural model. In order to bring about this possibility, we 
connected the Python implementation of ACT-R (Stewart and West, 
2007) to Nengo. This is freely available as part of CCMSuite3.

The modules in ACT-R (see Figure 5) were developed to explain 
human cognitive performance across a wide variety of tasks, includ-
ing serial recall, visual search, mental arithmetic, task switching, and 
the use of graphical interfaces. Each cortical module maintains a 
buffer which contains one chunk of information. This chunk is a 
symbolic representation of the current working memory associated 
with that module. For example, the declarative memory module may 
retrieve the fact that two plus two is four, storing that in its buffer as 
the chunk 'value1:two value2:two operation:plus result:
four'. The symbolic values within a chunk are organized into slots, 
and a chunk of a given type always has the same set of slots.

Communication between modules is controlled by a general-
ized action selection system associated with the basal ganglia. This 
contains a set of production rules: IF-THEN statements which iden-
tify which values should be placed in which buffers based on the 
current values in other buffers. To fi t a wide range of behavioral 
data, a cycle of determining which productions match the current 
situation, selecting one of them, and sending its associated values 
is assumed to take the brain approximately 50 ms.

REPRESENTATION MAPPING
To integrate ACT-R and Nengo, we need to defi ne a system of 
communication between them. That is, if we construct a neural 
model of a given brain region, we need to remove the corresponding 
component from the ACT-R model and connect the Nengo model 
in its place. This connection requires translating the symbolic 

FIGURE 5 | The basic modules of ACT-R and their corresponding brain 

regions. The buffers are small-capacity working memories and represent the 
current cognitive state. The basal ganglia match this state against learned 

production rules, resulting in and output which can change the values stored in 
the different buffers. These changes in turn can cause other modules to perform 
various actions, including memory recall, motor commands, and visual search.

3http://ccmlab.ca/ccmsuite.html
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 representations used in ACT-R into spiking patterns and vice-versa, 
since communication in ACT-R is via chunks and communication 
in Nengo is via spikes.

Since Nengo provides access to the NEF, this mapping from 
symbols to population spike trains is facilitated by Eqs 1 and 3 
described above for mapping vectors to population spike trains. 
We simply need to map the symbolic representation of a chunk 
into a vector and back again. In theory, this could be as simple 
as having a separate dimension in the vector for every possible 
chunk, or as sophisticated as using Vector Symbolic Architectures 
(Gayler, 2006). For example, the following code maps the chunk 
'state:A' to [1,0,0], 'state:B' to [0,1,0], and 'state:C' 
to [0,0,1] and vice-versa. Note that the mapping from vector to 
chunk must take into account the representational noise introduced 
by the spiking neurons.

class Translator:
    def convertToVector(self,model):
        chunk=str(model.input)
        if chunk=='state:A': return [1,0,0]
        elif chunk=='state:B': return [0,1,0]
        elif chunk=='state:C': return [0,0,1]
        else: return [0,0,0]
    def applyVector(self,model,vector):
        mx=max(vector)
        if mx<0.3: model.output=None
        elif mx==vector[0]: model.output=Chunk('state:A')
        elif mx==vector[1]: model.output=Chunk('state:B')
        elif mx==vector[2]: model.output=Chunk('state:C')

INTEGRATED SIMULATION
To demonstrate this integration, we can create a Nengo implemen-
tation of an ACT-R buffer and connect it to an ACT-R model. For 
simplicity, the ACT-R model is of a set of three production rules 
which causes the goal buffer to cycle through three possible values 
(from state:A to state:B to state:C and back to state:A and 
so on). This simplistic model is suffi cient to demonstrate com-
munication from the ACT-R portion of the model to the Nengo 
portion and back again.

from ccm.lib.actr import *
class Model(ACTR):
    goal=Buffer()

    def production1(goal='state:A'):
        goal.set('state:B')
    def production2(goal='state:B'):
        goal.set('state:C')
    def production3(goal='state:C'):
        goal.set('state:A')

Once this model is defi ned, it can be created within Nengo. 
This involves the helper function nengo.create which is pro-
vided by CCMSuite and ensures that time in the ACT-R model is 
synchronized with time in the Nengo simulation. Once the model 
is created, a Nengo origin and termination are defi ned that use the 
defi ned mapping between ACT-R symbols and Nengo spike trains 
given above. Once these origins and terminations are defi ned, they 
are treated exactly as any other in Nengo, allowing neural models 
to be built and connected to them via either the Nengo graphical 
user interface or through the scripting system.

import ccm
model = ccm.nengo.create(Model)
goal = model.getNode('goal')
goal.createOrigin('output',Translator())
goal.createTermination('input',Translator())

For this case, we implement the buffer using a three-dimen-
sional integrator of the same type as that shown in Figure 3. This 
consists of 300 LIF neurons in a single neural group which inte-
grates the value provided by ACT-R and outputs the current stored 
value back to ACT-R. These neurons are confi gured as per section 
“Programmatic Model Creation”

goalBuffer=ef.make("GoalBuffer",neurons=300,
                    dimensions=3)

M=[[1,0,0],[0,1,0],[0,0,1]]
goalBuffer.addDecodedTermination("input",M,tauPSC=0.007,
                                  modulatory=False)
goalBuffer.addDecodedTermination("feedback",
                                  M,tauPSC=0.007,
                                  modulator=False)

model.addProjection(goalBuffer.getOrigin('X'),
  goalMemory.getTermination('feedback'))
model.addProjection(goalBuffer.getOrigin('X'),
  goal.getTermination('input'))
model.addProjection(goal.getOrigin('output'),
  goalMemory.getTermination('input'))

The behavior of this model is shown in Figure 6. The neural 
group maintains the stored value over time, and then quickly 
changes this value when requested by the ACT-R production sys-
tem. Importantly, the behavior of the model is robust over the time 
frame expected by ACT-R.

DISCUSSION
Nengo greatly facilitates the creation of complex neural circuits. 
The use of the NEF provides a general-purpose framework for 
representing information in spiking neurons that is fl exible enough 
to support a wide variety of neuron models. The way in which 
the NEF systematically relates high-level information processing 

FIGURE 6 | Spike pattern and vector decoding of a neural population 

implementing an ACT-R goal buffer. Dots indicate spike times for each 
neuron in the goal buffer, arranged along the y-axis. The three lines show the 
three-dimensional value decoded from the spikes using Eq. 3. The three 
dimensions correspond to the three possible values for the buffer, showing 
that the represented value cycles through the three states.
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to electro-physiology facilitates modeling of complex circuits and 
validation against both behavioral and electro-physiological data. 
Finally, the integrated Python scripting language, with its emphasis 
on readability and rapid development, makes it ideal for quickly 
creating models and exploring model variations.

This system is also supported by a rich graphical user interface 
suitable for introducing new users in, for example, classroom situ-
ations. Common tasks are supported directly by the user interface, 
and Python scripting offers a highly readable syntax for more com-
plex situations without extensive language-specifi c training. Nengo 
is currently being used in a graduate-level course on the NEF, and 
students without previous Python exposure are able to make use 
of it and the user interface to create complex models, including 
modeling sensorimotor control using Kalman fi lters and sequence 
recognition in birdsong. Importantly, having the Python scripting 
available means that both experienced researchers and new students 
can use Nengo effectively.

Nengo’s ability to integrate with other software libraries written in 
either Java or Python opens up many new research possibilities. For 
example, there are two key research benefi ts from integrating Nengo 
neural models with higher-level behavioral models such as ACT-R. 
First, it is of benefi t to cognitive scientists, since the neural models pro-
vide a more detailed implementation of the components postulated 
by the overall cognitive theory. This may lead to more detailed and 
more accurate predictions, as well as a strong neurological ground-
ing for these components. Second, it is of benefi t to neuroscientists, 
since the cognitive theory provides realistic boundary conditions for 
the neural components. That is, the inputs to a neural model can be 
derived from a dynamic cognitive model, and the outputs from the 
neurons in turn affect the behaviour of that model. This provides a 
more realistic environment for simulating neural models.
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Computational neuroscience is increasingly moving beyond modeling individual neurons or neural 
systems to consider the integration of multiple models, often constructed by different research 
groups. We report on our preliminary technical integration of recent hippocampal formation, 
basal ganglia and physical environment models, together with visualisation tools, as a case study 
in the use of Python across the modelling tool-chain. We do not present new modeling results 
here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment 
with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a 
fl exible platform, offering a signifi cant reduction in development time, without a corresponding 
signifi cant increase in execution time. We illustrate this by implementing a part of the model in 
various alternative languages and coding styles, and comparing their execution times. For very 
large-scale system integration, communication with other languages and parallel execution may 
be required, which we demonstrate using the BRAHMS framework’s Python bindings.

Keywords: hippocampus, basal ganglia, spatial navigation, place cells, plus-maze, BRAHMS, Python

CA1/CA3 encode position in space (O’Keefe and Conway, 1978; 
Wiener, 1996); “grid”-cells in entorhinal cortex (EC) provide met-
ric information for path-integration via a tessellating rhomboid 
pattern (Hafting et al., 2005; McNaughton et al., 2006); and hip-
pocampal lesions impair (but not necessarily abolish) rats’ abili-
ties to navigate in open environments (Whishaw, 1998). The basal 
ganglia’s main input nucleus – the striatum – is a major target of 
hippocampal formation output, and also appears necessary for 
unimpaired spatial navigation: lesioning the connecting fi bres 
impairs accurate navigation in open environments (see e.g. Devan 
et al., 1996; Gorny et al., 2002; Whishaw et al., 1995), and block-
ing plasticity in the region of striatum targeted by hippocampal 
fi bres prevents acquisition of paths to targets (Sargolini et al., 2003; 
Smith-Roe et al., 1999).

A recurring theme in the basal ganglia literature is that they form 
a selection mechanism for motor programs (Hikosaka et al., 2000; 
Mink and Thach, 1993) or, more generally, for “actions” (Redgrave 
et al., 1999). Thus, the specifi c hypothesis underlying our integrated 
model is that the basal ganglia select movement direction based on 
current spatial position provided by the hippocampal formation 
input.

The system described below is a preliminary technical integration 
of the action-selecting basal ganglia model of Gurney et al. (2001a,b) 
with the hippocampal navigation model of Ujfalussy et al. (2008). 
The basal ganglia model may be used to select between any types 
of action, but simple predefi ned saliencies between two target loca-
tions are currently used. The hippocampus model may run using 
any form of sensory input: at present we use visual input, but report 
on the implementation of physical simulation of tactile whisker-like 
sensors as an example of developing advanced sensors in Python, 
which could form a further input in future. Neither the inputs to the 
models or the placeholder function connecting them are intended 

INTRODUCTION
As computational resources inexorably grow, computational neuro-
science is increasingly moving beyond modeling individual neurons 
or neural systems to consider the integration of multiple models, 
often constructed by different research groups. At the software level 
there is a drive towards interoperability of simulators at both model 
specifi cation (Goddard et al., 2001) and run-time stages (Cannon 
et al., 2007). However, these efforts have concentrated on creating 
small networks of different multi-compartment models (Gleeson 
et al., 2007), or large networks of different single-compartment 
spiking neuron models (Cannon et al., 2007).

Our focus here is on a third strand that can take advantage of 
growth in computing power: the integration of multiple neural 
models that form components of a brain-wide system, and the 
testing of that integrated model in an embodied form. Embodiment 
often takes the form of a robot and a test environment, whether 
simulated or real. Requiring the neural models to generate appro-
priate behavioural output using only inputs available in the envi-
ronment is a strong test of the proposed computations of that 
neural system (Humphries et al., 2005; Prescott et al., 2006). In 
such large simulations, development time is as much an issue as 
computation time – to implement and test the models, construct 
simulated environments, implement realistic sensors, and so on. 
This paper shows how Python provides an excellent solution to 
both development and computation time problems; we also discuss 
how Python can work with platforms designed for such large-scale 
integration (Mitchinson et al., 2008).

As a case study, we report on our preliminary integration of 
recent hippocampal formation and basal ganglia models, both 
proposed components of the neural system for spatial naviga-
tion (Redish and Touretzky, 1997). The hippocampal formation’s 
role in spatial navigation is not controversial: “place” cells within 
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to be biologically realistic at this stage. The neural models control 
a mobile rat-like robot in a standard plus-maze environment with 
external landmarks, all implemented in a 3D simulator built using 
existing Python modules. The purpose of this paper is to illustrate 
a complete neural and physical simulation system, detailing the spe-
cifi c libraries and packages in the tool-chain that were found useful, 
and not to make any new claims about the biological models. We 
hope that it will provide a guide for others who wish to implement 
similar systems, as it can be diffi cult for newcomers to select the best 
tools from the plethora of open-source Python extensions.

COMPUTATIONAL MODELS
We are updating prior models of hippocampal formation-basal 
ganglia interactions (Arleo and Gerstner, 2000; Chavarriaga et al., 
2005) by including the entire basal ganglia circuit and by using a 
grid-cell driven model of hippocampus. In addition, prior models 
assumed a direct, modifi able, projection from place cells to the stria-
tum (Arleo and Gerstner, 2000; Chavarriaga et al., 2005). However, 
such a projection, if it exists, is minor compared to input from other 
regions of the hippocampal formation, particularly the subicu-
lum, suggesting further stages of processing between the basic 

 representation of position and the striatum (see e.g. Groenewegen 
et al., 1999; van Groen and Wyss, 1990). In the current integrated 
system, we provide a simple spatial decoding scheme as a proxy for 
detailed models of the intervening structures to follow. We do not 
here present new results from the individual models (Gurney et al., 
2001a,b; Ujfalussy et al., 2008), but report on systems integration 
at a technical level using Python and BRAHMS.

BASAL GANGLIA
The basal ganglia are a group of inter-connected subcortical nuclei, 
which receive massive convergent input from most regions of cor-
tex, and output to targets in the thalamus and brainstem (Bolam 
et al., 2000). We have previously shown how this combination of 
inputs, outputs, and internal circuitry implements a neural sub-
strate for a selection mechanism (Gurney et al., 2001a,b, 2004; 
Humphries and Gurney, 2002; Humphries et al., 2006; Prescott 
et al., 2006). Figure 1 illustrates the macro- and micro-architec-
ture of the basal ganglia, highlighting three key ideas underlying 
the selection hypothesis: that the projections between the neural 
populations form a series of parallel loops – channels – running 
through the basal ganglia from input to output stages (Alexander 

FIGURE 1 | Architecture of the basal ganglia model. The main circuit (centre) 
can be decomposed into two copies of an off-centre, on-surround network: a 
selection pathway (right) and a control pathway (left). Three parallel loops – 
channels – are shown in both pathways, with example activity levels in the bar 
charts to illustrate the relative contributions of the nuclei (the three channels are 
colour-coded black/grey/white, corresponding to the example bar charts). Note 
that, for clarity, full connectivity is only shown for the second channel. Briefl y, the 
selection mechanism works as follows. Constant inhibitory output from substantia 
nigra pars reticulata (SNr) provides an “off” signal to its widespread targets in the 
thalamus and brainstem. Cortical inputs representing competing saliences are 

organised in separate channels (groups of co-active cortical neurons), which 
project to corresponding populations in striatum and STN. In the selection circuit, 
the balance of focussed (one-to-one) inhibition from striatum and diffuse (one-to-
many) excitation from STN results in the most salient input suppressing the 
inhibitory output from SNr on that channel, signalling “on” to that SNr channel’s 
targets. In the control circuit, a similar overlap of projections to GP exists, but the 
feedback from GP to the STN acts as a self-regulating mechanism for the activity 
in STN, which ensures that overall basal ganglia activity remains within operational 
limits as more and more channels become active. For quantitative demonstrations 
of this model, see Gurney et al. (2001b, 2004) and Humphries et al. (2006).
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and Crutcher, 1990); that the total activity from cortical sources 
converging at each channel of the striatum encodes the salience of 
the action represented by that channel; and that the selection of 
an action is signalled by a process of disinhibition – the selective 
removal of tonic inhibition from cells in the basal ganglia’s target 
regions that encode the action (Chevalier and Deniau, 1990).

We use here the population-level implementation of this model 
from Gurney et al. (2001b). The average activity of all neurons 
comprising a channel in a population is represented by a single 
unit that changes according to

τa a u= − +  (1)

where τ is a time constant and u is summed, weighted input. We 
use τ = 40 ms. The normalised fi ring rate y of the unit is given by 
a piecewise linear output function
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The following describes net input u
i
 and output y

i
 for the ith 

channel of each structure, with n channels in total. Net input is 
computed from the outputs of the other structures, except cortical 
input c

i
 to channel i of striatum and subthalamic nucleus (STN). 

The striatum is divided into two populations, one of cells with the 
D1-type dopamine receptor, and one of cells with the D2-type 
dopamine receptor. Many converging lines of evidence from elec-
trophysiology, mRNA transcription, and lesion studies suggest a 
functional split between D1- and D2-dominant projection neurons 
and, further, that the D1-dominant neurons project to SNr, and 
the D2-dominant neurons project to globus pallidus (GP; Gerfen 
and Wilson, 1996; Surmeier et al., 2007).

Activation of these receptors has opposite effects on striatal 
input: D1 activation increases the effi cacy of the input; D2 activa-
tion decreases the effi cacy of the input (see Gurney et al., 2001b, 
for full details). Let the level of tonic dopamine be λ: then the 
increase in synaptic effi cacy due to D1 receptor activation is given 
by (1 + λ); the decrease in synaptic effi cacy due to D2 receptor acti-
vation is given by (1 − λ). Normal dopamine levels were indicated 
by λ = 0.2, and dopamine-depletion by λ = 0, following previous 
work (Gurney et al., 2001b; Humphries and Gurney, 2002). The 
full model is thus given by:
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Full details for the chosen constants can be found in (Gurney 
et al., 2001a), and are summarised here. Thresholds for striatal out-
put were set ε > 0 so that a large positive input would be required for 
any output from these neurons, modelling the large input required 
to push the striatal projection neuron into its fi ring-ready “up-state” 
(Gerfen and Wilson, 1996). The STN, SNr, and GP all had ε < 0, as 
each of these has tonic output at rest (Bolam et al., 2000). Non-unity 
weights (0.3,0.9) on inputs were set to be within analytically-derived 
bounds for stable operation of the model (Gurney et al., 2001a).

We used forward Euler to simulate this system for a two-channel 
model, with the same time-step of 10 ms as was used for the discrete 
equations of the hippocampus model (see below).

The model was implemented in Python using an object-oriented 
hierarchy. Neuron objects contain Dendrite objects, which store 
modulated and unmodulated weights, and references to parent 
neurons. Neurons also store their parameters (ε,τ,s) (where s is 
the sign of dopamine action) and state (u,a,y). The neuron class 
contains methods to apply dopamine modulation and determine 
the unit’s output. A Population class groups units together, and con-
tains methods to instantiate sets of one-to-one (e.g. GP→SNr) or 
diffuse (e.g. STN→SNr) links to other Populations. These methods 
automatically construct Dendrite objects and update references.

We have found Python’s default and named arguments to be 
especially useful in this type of modeling. Neurons may be given 
many default parameter values which remain invisible in the user-
level code unless specifi cally overridden. For example, the sign s of 
dopamine action is assumed to be zero (meaning no effect) unless 
an easy-to-read named parameter is passed:

STN = Population(n, epsilon = −0.25)
STN.addParPopOneToOne(Cx, w_Cx_STN)
D2 = Population(n,dopamineAction = −1, epsilon = 0.2)
D2.addParDopamine(SNc)
D2.addParPopOneToOne(Cx, w_Cx_D2)

HIPPOCAMPAL FORMATION MODEL
The hippocampal formation comprises the EC, dentate gyrus (DG), 
fi elds CA3 and CA1 of the hippocampus proper, and the subiculum. 
These form a feed-forward loop of connections that starts and 
ends in the EC. Though all structures are thought to contribute, 
the hippocampal model of Ujfalussy et al. (2008) instantiates just 
the minimum putatively required for the hippocampal formation 
to act as a memory store (following Treeves and Rolls, 1994); for 
spatial navigation, the memory formed is considered the place code 
created by the place cells. Figure 2 shows the basic structure, formed 
by just the EC, DG, and CA3.

Following previous models (e.g. Treeves and Rolls, 1994), the 
model of Ujfalussy et al. (2008) makes three key assumptions. 
First, the DG region is a preprocessing stage for CA3, acting as a 
competitive network that creates a sparse and clustered code of 
the pre-synaptic EC input, which – similarly to other neocortical 
regions – realises a denser representation. This sparse, orthogonal 
code is in turn used as a teaching signal for the CA3 region. Second, 
the CA3 region acts as an auto-association memory, which stores 
memory traces in its extensive recurrent local collaterals for later 
retrieval. Third, many previous hippocampal models (Arleo and 
Gerstner, 2000; Rolls, 1995; Treeves and Rolls, 1994) assume that 
the hippocampus operates in two distinct modes during learning 

124



Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 

Fox et al. Hippocampus, basal ganglia and physics integration

and retrieval, which are also incorporated into the present model. 
As in these models, switching between the two modes is performed 
manually (contrary to models such as Hasselmo et al. (1995, 1996) 
which explicitly address the separation between learning and recall). 
Figure 2 shows the connections that change between the modes.

Entorhinal cortex
Grid cells in EC are modeled as having fi ring rates that are functions 
of the agent’s actual physical position r = (x,y) in the simulated 
environment. Grid cells each have two parameters, determining 
the phase and scale of their receptive fi elds. The output of the i,jth 
grid cell is

g si j k i j
k

( ) cos ( )r w r, = ⋅ −⎡⎣ ⎤⎦∑1

3
2 θ

 

(13)

where s
i
 and θ

j
 are the ith scale factor and jth phase shift respectively, 

and { }wk k= :1 3 are unit vectors at 60° from each other. We used an 
ordered set of scale factors from 0.5 to 2.5 in steps of 0.5, and an 
ordered set of phases from 0 to π in steps of π/5; i and j are indices 
into these sets. Figure 3 shows that Eq. 13 produces receptive fi elds 
with the characteristic rhomboid or “double triangle” tesselation 
of grid cells (Hafting et al., 2005).

The EC relays input from several cortical areas (Marr, 1971) to 
the hippocampal formation, and is thus often treated (e.g. Rolls, 
1995; Rolls et al., 2006), as in the present model, as the input source 
for all sensory information. Thus, as well as comprising a large 
population of grid cells, EC is modelled with an additional popula-
tion of sensory cells. We use 100 visual cells, whose activations are 
set by 10 × 10 grayscale images.

Dentate gyrus
The DG is thought to perform a principal-components-like dimen-
sionality reduction of input from the EC (Lorincz, 1998). Writing 
w

ij
 for weights on inputs y

i
, the jth DG unit’s neural activation is 

given by

a w yj ij i
i

= ∑
 

(14)

where the sum is taken over all EC inputs. Output fi ring rates {y
j
} 

are given by a m-best function {y
j
} = F{a

j
} which preserves the m 

largest activations, linearly re-maps them to the interval [0,1], and 
sets the others to zero.

During the training phase only, every EC → DG weight is 
updated at each time-step using the standard Hebbian learning 
rule,

Δ = −w y y wij j i ijα ( )
 

(15)

where α is the learning rate, and again j represents the DG cell 
population and i represents the afferent EC population.

CA3 place cells
CA3 functions differently during training and recall. During train-
ing, CA3 is driven only by input from DG; hence unit activity 
is updated according to Eq. 14 with j representing the CA3 cell 
population and i representing the afferent DG population. CA3 
output is computed from these activations with the same m-best 
function used for the DG output.

Despite being driven by DG only, no learning is performed on 
this connection. Instead, learning is performed on the otherwise 
dormant EC→CA3 and CA3→CA3 pathways. EC→CA3 weights 
are altered by Eq. 15, where y

i
 is EC output, and y

j
 is CA3 output. 

Following Rolls (1995), each recurrent CA3→CA3 weight is altered 
by the gated Hebbian rule,

Δ = − −w y y w wij i j ij ijα β( )1
 

(16)

where β sets the “forgetting rate”, and i and j now both refer to cells 
within the CA3 population.

During the recall phase, the EC input is used to initiate retrieval 
of a stored memory pattern. First, the activation of CA3 units is 
computed from the EC inputs only, using Eq. 14 with j representing 
the CA3 cell population and i representing the afferent EC popu-
lation; their output is then computed using the m-best function. 
Second, this initial output vector was used as the cue to retrieve 
the memory trace in the CA3 autoassociative network. The activity 

EC

DG CA3

EC

DG CA3

Training Recall

* * *

FIGURE 2 | Basic structure of the hippocampal model. Different 
connections are active during learning and recall modes. Learning is 
performed on the asterisked connections only. Thin lines indicate connections 
which do not drive their targets, but perform learning only.

FIGURE 3 | Grid cell receptive fi elds from the model, over physical 2D 

space. These are plotted with Pylab’s Matlab-style imagesc command.
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of the kth CA3 unit is then the weighted sum of total output from 
the EC and the recurrent connections

a w y w yk ik i
i

jk j
j

= +
∈ ∈
∑ ∑

EC CA3  

(17)

with CA3 output y
k
 again computed by applying the m-best func-

tion. Activation (Eq. 17) and output calculations of the CA3 units 
were iterated I times to bring the CA3 close to an attractor state as 
in Hopfi eld-style networks (Hopfi eld, 1984).

We used eight DG cells and 30 CA3 cells with: learning rate 
α = 0.05, forgetting rate β = 0.00002, sparsity m = 20 and I = 5 
recurrent iterations.

Implementation in Python
The hippocampal model uses simple rate-coded units and linear 
weights, in contrast to the basal ganglia’s leaky integrators. For this 
reason the population activations and fi ring rates are amenable to 
fast implementation as vectors rather than as attributes of individual 
objects. Multiplication of population fi ring rates by weight matrices 
may then be performed by matrix algebra. This style of programming 
is common in Matlab, and may be performed in Python using the 
Numpy library1. Numpy emulates much of Matlab’s matrix syntax, 
including notation for slicing matrices (e.g. A = M[:,1:5]), address-
ing (M[2,3] = 4) and performing operations such as element-wise 
addition (B = A + 1) as well as matrix algebra (C = dot(A,B)).

We have also made use of two further libraries: SciPy2 provides 
a library of higher-level mathematical functions similar to Matlab’s 
toolboxes; and Pylab3 provides interactive plotting commands. For 
example, Figures 3 and 4 were plotted using Pylab. Pylab emulates 
many of Matlab’s graphics commands including 2D and 3D graphs, 
and image viewers. The Matlab application programmer interfaces 
(APIs) are replicated almost literally, using the same function names 
and argument conventions where possible, such as clf, plot and 
imagesc.

Training
Training of the EC→DG, EC→CA3 and CA3→CA3 weights was 
performed over fi ve epochs. Weights were initialised to random real 
values from a uniform distribution ranging from 0 to 1. Grid and 
visual cell input data was collected from a simulated robot moving 
to a sequence of pre-determined points in a plus-maze environ-
ment (see “Building and Using the 3D Simulator” for simulator 
details). The robot enters the maze from the open arm, then visits 
each of the other arms in turn and comes to rest at the center. 
About 1,500 data points were sampled during this motion. After 
training, Python’s standard cPickle library provided a simple way 
to serialise and save the trained Hippocampus object, using only 
the following code:

file = open("myfile", "r")
cPickle.dump(myObject, file)
file.close()

The effect of training the hippocampus model with the grid cell 
and visual input was to generate place fi elds in CA3, such as those 

shown in Figure 4, which shows the locations of strongest fi ring 
for nine of the 30 CA3 cells, superimposed on the robot’s path. Of 
the 30 cells simulated, 11 responded to single places, 13 to two or 
more places, and 6 were silent at all places (where a “single” place 
is defi ned as a contiguous series of strong activations).

DECODING PLACE
We used a placeholder function for decoding hippocampal place 
representations into striatal input, as a proxy for detailed models of 
the intervening structures (e.g. CA1, subiculum) to follow. A simple 
linear regression was used to fi nd a linear mapping from the vec-
tor of place cell activations to the Cartesian (x,y) spatial positions. 
SciPy provides such regression in its linear algebra sub-package 
(function linalg.lstsq).

BUILDING AND USING THE 3D SIMULATOR
THE PLUS-MAZE ENVIRONMENT
We used Python to construct a plus-maze environment in which to 
test our current and future forms of the integrated basal ganglia-
hippocampus model. The plus-maze environment was chosen as 
it is widely used for neural recording studies that probe the roles 
of striatum, hippocampus, and their interactions in spatial tasks 
(Albertin et al., 2000; Khamassi, 2007; Mulder et al., 2004; Tabuchi 
et al., 2000, 2003). Following these studies, the simulated plus-maze 
comprised a symmetric arrangement of walled arms, and two extra-
mazecues (Figure 5).

The neural model was used to control the “ICEAsim” simu-
lated robot, a differential wheels robot in a rat-like form, created 
by Cyberbotics (Lausanne) for the ICEA project4. ICEAsim was 

FIGURE 4 | Receptive fi elds for nine CA3 place cells, superimposed on the 

robot’s path around the plus maze. Crosses show locations where cells 
fi ring rates are in the top 5% of their activity throughout the path. Plotting was 
performed with Pylab’s plot command, which has similar syntax to Matlab.

1www.numpy.scipy.org
2www.scipy.org
3www.matplotlib.sourceforge.net 4www.iceaproject.eu
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initially created under Cyberbotics’ Webots simulator (Michel, 
2004), but was readily imported into a Python simulation via the 
standard VRML format. Wheel commands are sent via a higher-
level (and non-biological) function which takes as input a requested 
target location to which to move. Our implementation of ICEAsim 
added two whisker sensors, which output the angle and curvature 
at their bases for use in tactile perception algorithms (see “Python 
Physics Implementation” and “Comparison to PyRobotics”). We 
added realistic whisker-like sensors as the basis for future studies: 
while rats can successfully navigate in the dark, and correspond-
ing place fi elds are formed in the hippocampal formation, this has 
been attributed entirely to idiothetic (self-motion) cues (Quirk 
et al., 1990; Rossier et al., 2000); surprisingly little attention has 
been paid to the potential role of rats’ whiskers in constructing 
spatial maps in the dark.

For the purposes of this paper, we used a simple task and a place-
holder function to test that the models were correctly implemented 
and technically integrated. After hippocampal training (a separate 
task, not involving basal ganglia), the robot was simply required to 
successfully navigate to the end of a maze arm, starting from the 
entrance of the maze. The basal ganglia model received input sali-
ences {c

1
,c

2
} on two channels, corresponding to two actions (“go to 

left arm” and “go to right arm”), and which – in this preliminary 
system – were assigned predefi ned time series. The placeholder 
function monitored the hippocampal position estimate, and when 
this estimate was close to the center of the maze, the action cor-
responding to the basal ganglia output channel (in SNr) with 
minimum value was selected and executed to completion. A “go 
to left arm” or “go to right arm” routine is called, which uses hip-
pocampal output to estimate the required path to follow and sets 

the robot’s differential wheel speeds accordingly. Figure 5 illustrates 
the simulated robot’s behaviour: video of the robot’s movement, 
and corresponding activity in the integrated neural models, are 
available as Supplementary Material. Future biological models of 
basal ganglia-hippocampus interactions may of course replace the 
predefi ned time series and placeholder function with more complex 
and ongoing interactions between the models, using the technical 
integration framework presented here.

PYTHON PHYSICS IMPLEMENTATION
To simulate tactile whisker sensors requires realistic physics mod-
eling, as the precise bending (Birdwell et al., 2007), vibration 
(Ueno and Kaneko, 1994) and other dynamics (Ritt et al., 2006) 
of whiskers are crucial in making inferences from touch. The Open 
Dynamics Engine (ODE) is an excellent open-source (BSD license) 
physics engine, and we use the PyODE wrapper (pyode.source-
forge.net) to use it from Python. ODE provides primitive objects 
such as cubes, spheres and cylinders, which may be combined and 
transformed to produce objects such as the walls of the plus-maze 
and the parts of the robot. PyODE wraps all the major ODE func-
tions for shapes, kinematics and collision handling, and provides 
access to ODE’s standard set of fl exible joints. We use the latter to 
construct rotating wheels, and whiskers. The whiskers are modelled 
as a series of spherical or cylindrical segments, connected by joints 
with rotational Hooke’s law springs. ODE handles the constraint 
forces required to keep joints together automatically; however very 
small time steps (and hence long simulation times) are needed 
when the number of segments is above three. For example with 
three segments per whisker the simulation requires about 3 min to 
run stably on a 1.6-GHz machine; with four segments it requires 
about 10 min.

VISUALISATION
3D visualisation is important in robotics simulation, both to ensure 
that the simulation is behaving as intended, and also to provide 
realistic visual input to robot sensors, for processing by neural 
models.

OpenGL is a standard 3D graphics API5, and is implemented 
by the free software Mesa and by many hardware-specifi c graphics 
drivers. OpenGL provides low-level graphics commands to draw 
lines, triangles and polygons, and position lights and cameras. 
The OpenGL API is wrapped in Python by pyOpenGL (pyopengl.
sourceforge.net).

Higher-level graphics commands – such as drawing cubes, 
cylinders and cones using scene graphs – are provided by the 
OpenInventor API, implemented by the free software Coin6. Coin 
has been wrapped for Python by the Pivy binding7 (Fahmy, 2006) 
which we use here. Pivy allows raw pyOpenGL commands to be 
mixed into its higher-level structures where necessary.

To simulate vision (for input to the hippocampus model) we 
read back images from simulated cameras attached to the robot. 
Pivy wraps Coin’s SoOffScreenRenderer function to perform 
this task. (Modelers are advised that use of this function may be 

FIGURE 5 | The simulated plus-maze environment. The hippocampus 
reports the current estimated location, shown by the cross on the fl oor. When 
this estimate is close to the center of the plus-maze, the basal ganglia is 
consulted for an action to turn. 3D physical simulation and visualisation uses 
PyODE and Pivy.

5www.OpenGL.org
6www.coin3d.org
7www.pivy.coin3d.org
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incompatible with the use of direct rendering on some graph-
ics hardware. Disabling direct rendering solves this problem but 
reduces execution speed.) If graphical output is required in video 
form only – such as for presentation but not as data for neural 
 models – the free program Yukon8 is able to export OpenGL graph-
ics to .avi movies, whose frame-rate and resolution may be edited 
with the free Avifi x program9.

In addition to the main 3D representation of the physical world, 
it is often useful to attach additional graphical monitors to show the 
internal state of the neural models in real-time. Pivy – like Coin – 
takes control of program fl ow, calling back user functions to draw 
and update the world. When multiple displays are required – or 
when handing over control is too intrusive – it is useful to instan-
tiate several processes running Pivy. We use the Python Remote 
Objects package (PyRo10) to handle communication between such 
processes. PyRo allows an object from one process to appear on 
another as if it was resident there, allowing function to be called and 
data to be passed easily. PyRo processes communicate via TCP/IP 
so the monitors may run on different machines to the main simula-
tion. Figure 6 shows a screen-shot of the state visualisation tool we 
built for the integrated basal ganglia-hippocampus model.

COMPARISON TO PYROBOTICS
Our simulation is constructed using Python wrappers for ODE and 
OpenGL. An alternative approach to simulation would be to use 
the higher-level Player interface and Gazebo simulator11 which are 
available though the PyRobotics12 integrated robotics simulator. 
PyRobotics allows worlds and robots to be built from standard com-
ponents using XML specifi cation, and controllers written in Python. 
This approach is recommended for simulations requiring standard 
physics, but our use of the lower-level APIs was determined by the 
need to write custom physics code for the whisker sensors. Whiskers 
are diffi cult to model and coding with ODE directly allows fi ner 

control over the contacts and forces that are simulated than would 
be available in a  higher-level  simulator. Our custom simulations are 
not intended to be an  integrated robotics simulator, but they serve 
as an example of lower-level PyODE and Pivy simulation.

SPEED COMPARISONS
Python is often thought of as being a “slow language” and if this is 
the case then it would be a barrier to its use in large scale, compu-
tationally-intensive neural simulations. However, various libraries 
and programming styles exist that can improve performance. We 
investigated a variety of these to evaluate Python’s suitability for 
large simulations. We chose execution of the previous basal ganglia 
model alone as a benchmark representative of many neural simula-
tion tasks, and used a model with 100 channels running over 1,000 
time steps to provide a sizable task requiring time of the order of 
seconds. Neural models are commonly implemented in high-level 
Matlab code (and its open-source equivalent, Octave), or in low-level 
C code. C code allows and requires the user to perform their own 
memory management, leading to greater development time but often 
faster running times. We re-implemented the basal ganglia model in 
these languages, writing the fastest code our skills allowed.

In addition to the object-oriented Python model described 
earlier, we also re-implemented Python models using the Numpy, 
Pyrex and Weave libraries. As described above, Numpy provides 
Matlab-like data structures, operations and syntax, to the extent 
that the Matlab program can be ported to Numpy with only minor 
syntactic modifi cations. Pyrex13 is a Python-like language for writ-
ing Python extension modules, which provides C-like manual typ-
ing and data structures. As with C, Pyrex increases development 
time by adding work to the programmer’s load, but may increase 
execution time as a result. Programming Pyrex is conceptually simi-
lar to writing C programs, but using a Python-like syntax and allow-
ing very simple integration into pure Python code. Weave (part of 
SciPy) allows inline C code to be embedded directly into Python 
fi les, and its “converters” library automates data type conversion 
between languages. We implemented inline Weave code within the 
body of the main Numpy simulation loop.

Another way to improve Python speed is to use more advanced 
compilers and virtual machines. There is much current research 
into such tools but a popular system is Psyco14. We used Psyco to 
run the pure Python, object-oriented model (it has negligible effect 
on Numpy code, in which most of the computation is performed 
by external numerical C libraries).

Table 1 shows the average execution times for the above imple-
mentations (and a BRAHMS version discussed below). Execution was 
performed on a 1.6 GHz, 1.5 GB Ubuntu system and time averages 
were taken over fi ve runs. No calls were made to platform-specifi c 
BLAS or random-number generator libraries within the simulation 
loops (such calls are not required or useful in implementing the 
basal ganglia model’s equations). It can be seen that for the Matlab 
and C-like programming styles (i.e. Numpy and Pyrex respectively) 
Python is about four times slower than the non-Python alternative. 
Weave is only a fraction slower than raw C, the overhead being due 

FIGURE 6 | Real-time graphical neuron monitor, showing basal ganglia 

and hippocampus model populations. The monitor runs remotely from the 
simulation over TCP/IP using Pyro, and displays graphics using Pivy.

8www.dbservice.com/projects/yukon
9www.transcoding.org
10www.pyro.sourceforge.net
11www.playerstage.sourceforge.net
12www.pyrobotics.org

13www.cosc.canterbury.ac.nz/greg.ewing/
14www.psyco.sourceforge.net
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to type conversions. The object-oriented version has a much larger 
run-time – as expected of this style of programming – and the time 
is reduced by about 25% using Psyco.

These results suggest that Python is not inherently “slow” – a 
factor of four is not large in such comparisons – though it can be 
used to write slow but conceptually meaningful, human-readable, 
object-oriented code if desired. Alternatively, if human comprehen-
sion is less important, then Matlab-like and C-like programming 
styles can be used to regain speed. In most cases it is desirable to 
work on an easily comprehendible “reference implementation” of 
a model at fi rst, then develop a faster implementation once the 
research is complete. Python eases this often diffi cult transition as 
Numpy, Weave and Pyrex commands may be gradually mixed into 
and replace the research code: the more traditional replacement of 
Matlab by C programs requires a complete rewrite from scratch.

SUBJECTIVE EXPERIENCES WITH Python
The above has considered architectural and computational features 
of Python and its associated libraries that are useful in embodied 
neural modeling. However these are not the only criteria for choos-
ing a language for development: at least as important are the more 
subjective aspects of the system during development and debug-
ging. Here we offer our experiences of hands-on development of 
the neural and physical models.

We have found that Python supports a wide range of coding 
styles. In particular, it is possible to code almost literal line-by-
line translations of Matlab programs by making heavy use of 
Numpy’s matrices and Pylab’s plotting facilities. A key feature 
is the ability to use interpreted Python from a command line, 
enabling Matlab-like exploitation of data, testing of functions, 
and calculator-style calculations. There is typically a little more 
keyboard typing than when using Matlab. Throughout we have 
drawn explicit parallels between using Python and Matlab, as 
Matlab (or Octave) is often the preferred choice for rapid model 
development and analysis.

Python’s class system allows Java-like object-oriented construc-
tion of dendrites, neurons and populations. Stylistically its use is 
similar to Java, or C++ with passing by reference. We have found 
it a natural but relatively slow-execution way to model neural 
systems.

The physical and neural simulation, with OpenGL interface, 
runs at comparable speed to commercial robotics simulators such 

as Webots (Cyberbotics, Lausanne). We have found development 
time to be much improved over C++, and comparable with Matlab. 
However Python gives more versatility than Matlab, allowing easy 
integration with many open-source libraries and the underlying 
operating system. Our development has used Emacs with its Python 
mode. In particular, this integrates with the Python debugger, pdb, 
to allow visual stepping through code and command-line interac-
tion as in Matlab. This type of interaction can be especially impor-
tant in neural and AI programs, whose states and interactions can 
become very complex in unpredicted ways.

LARGE-SCALE INTEGRATION WITH BRAHMS
All of the components discussed above (basal ganglia, hippoc-
ampus, 3D simulator) were implemented as stateful functions 
in Python. Thus, integrating them into a computational system 
was straightforward, by writing a simple Python “main” func-
tion that called these objects in turn to progress them through 
time. Such an approach to integration is effective, so long as 
there is no requirement for integration across more complex 
boundaries. One example of a more complex boundary is cross-
language: integrating between functions written in Python, C, 
Java, or Matlab, for instance, is not generally straightforward. 
Whilst Python might be a suitable language for large portions of 
a development, bottleneck computations may benefi t from being 
recoded in a lower-level language such as C. Besides, contribut-
ing authors may not all share competence and/or enthusiasm 
for Python development.

Other obstacles to integration include different component 
authors, particularly in different groups. This can be problem-
atic since different authors tend to design different interfaces 
for their components and, in the world of research, rarely have 
time to  properly document these interfaces. Integrating through 
time – that is, using code written some years ago with code writ-
ten today – can throw up the same problems as integrating across 
authors, particularly if documentation is lacking. Cross-platform 
integration is sometimes necessary, particularly as emphasis shifts 
to high-performance or embedded computing, and this is far from 
trivial.

As such multi-module eclectic models become prevalent, and 
with growing interest in widely varying use cases (high-performance, 
desktop, embedded), a general solution to the integration problem 
is urgently required. One such solution is the BRAHMS Modular 
Execution Framework (brahms.sourceforge.net; Mitchinson et al., 
2008). BRAHMS consists of a supervisor, which is analogous to the 
simple Python “main” function mentioned above, a fi xed supervi-
sor interface against which software components can be devel-
oped (currently available in C, C++, Matlab and Python), and a 
user-extensible set of data types for passing data between software 
components (forming the inter-process interface). Components 
need not agree between themselves on implementation: they need 
only conform to these two interfaces provided and made public by 
the framework. A BRAHMS system, constructed from processes 
authored as described below, can be parallelised across compu-
ter cores sharing memory or connected by an MPI layer or LAN; 
alternatively, it can be run on an embedded system, since BRAHMS 
is lightweight. Here we describe the BRAMHS Python language 
binding.

Table 1 | Computation times for the basal ganglia model implemented 

in different languages and programming formats.

Language/format Time (s) 

Object-oriented Python 66.1

As above, with Psyco 48.6

Octave 1.31

Numpy Python + BRAHMS 0.89

Numpy Python 0.82

Pyrex 0.22

Matlab 0.21

Scipy.weave.inline 0.05

Raw C 0.04
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A BRAHMS PROCESS IN Python
The current BRAHMS Python binding (called “1262”) requires that 
the process be implemented as a function; this function is rendered 
stateful by passing in and out a reference to a dictionary object, 
called persist. The function is a handler for framework events, 
so its body consists of a switch block on the event type. The 1262 
template provided with BRAHMS handles four events.

The fi rst, (EVENT_MODULE_INIT), returns information about the 
process to the framework, and is already implemented completely in 
the template. The developer can update the author information as 
appropriate and familiarise themself with the two possible process 
fl ags (discussed below). The second, (EVENT_STATE_SET), passes 
the component its state, which is obtained by the framework from 
the system document. This “state” typically consists only of proc-
ess parameters for initialisation. The third event, (EVENT_INIT_
CONNECT), requires that the process validate its inputs and create 
its outputs (discussed below). The fourth, (EVENT_RUN_SERVICE), 
requires that the process service its inputs and outputs (read input 
data, write output data) at some time, t. This implies that the proc-
ess must complete its computations at least up to time t (a process 
is free to progress its state beyond t for any reason). This last event 
(discussed below) is received multiple times during execution and 
is, effectively, the process step function.

Connectivity
In general, a system to be computed may include any number of 
processes, each of which has each of its outputs dependent on 
some subset of its inputs. A valid (fully specifi ed) system may 
have arbitrary (including recursive) output structure dependen-
cies. Since processes are responsible for instantiating their own 
outputs this requires, in general, multiple calls from the framework 
to each process in the system to request that it create outputs. The 
BRAHMS supervisor takes care of making these calls (by sending 
event EVENT_INIT_CONNECT), guarantees that more inputs will 
be available on each subsequent call (with zero to N available on 
the fi rst call, and exactly N available on the last), and requires that 
each process follow a simple algorithm on receiving each call. The 
algorithm is: (a) observe (and validate, if necessary) the structure 
of any newly presented inputs; (b) create as many outputs as pos-
sible. This algorithm will successfully instantiate any valid system. 
When required dependencies are not met, the framework will raise 
a “deadlock” error.

EXAMPLE
We have constructed and executed successfully a second version of 
the integrated basal ganglia, hippocampus and physical world simu-
lation in which these three components are implemented as sepa-
rate BRAHMS modules. Such conversion is straightforward, with 
each module being pasted into the template and modifi ed such that 
it expresses the interface described above. Wrapper code linking a 
Hippocampus Python object to BRAHMS is given in the Appendix. 
We tested the overhead introduced by the BRAHMS framework by 
running a BRAHMS-wrapped version of the Numpy basal ganglia 
model used in the previous speed comparisons. Table 1 shows that 
the overhead of using BRAHMS is very small; yet using it will now 
allow extensions to the basic integrated model in any (currently 
supported) language or level of modelling detail.

CONCLUSIONS
For large-scale integration and testing of neural models, Python can 
achieve an excellent balance between development time and com-
putational run-time. The fl exibility offered by its modules allows 
programmers to adopt the style most comfortable to them, without 
a strong penalty in computation time. We have shown here how 
all these aspects have contributed to the construction of both an 
integrated basal ganglia-hippocampal formation model for spatial 
navigation and its embodiment. Moreover, Python either forms the 
basis for (PyNN; neuralensemble.org/trac/PyNN), or is compatible 
with (BRAHMS; Mitchinson et al., 2008), platforms that address 
larger-scale integration across modelling levels and hardware. Thus, 
Python is a crucial part of the neuroinformaticstoolbox: fl exible, 
usable, readable, and scalable.

APPENDIX
The following shows the code used to link the Hippocampus model 
to the BRAHMS framework. The code implements four BRAHMS 
events. The persistent state consists of an instance of a pre-trained 
Hippocampus object, created in EVENT_STATE_SET. Servicing 
(EVENT_RUN_SERVICE) consists of reading the BRAHMS inputs, 
passing them in an appropriate format to the Hippocampus object, 
and passing its output back to BRAHMS. The other events are 
described in the Section “A BRAHMS Process in Python”.

import brahms
from hc import *
def brahms_process(persist, input):
 output = {’info’:{},’operations’:[],’event’:
 {’response’: 0}}

if input[’event’][’type’] == EVENT_MODULE_INIT:
 #these flags inform BRAHMS that this process
 #needs all inputs to be available before it can 

initalise,
 #and that the process does not change the sample rate.
output[’info’][’flags’] = F_NEEDS_ALL_INPUTS + F_NOT_

RATE_CHANGER
 output[’info’][’component’] = (0, 1)
 output[’info’][’additional’] = "
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_STATE_SET:
 #create an instance of the Python Hippocampus object
 pars = persist[’state’]
 persist[’ptHC’] = loadHippocampus()
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_INIT_CONNECT:
 #check the data types of the BRAHMS inputs
 p = input[’iif’][’default’][’ports’]
 if len(p) ! = 1:
  output[’error’] = ’expects one input’
  return (persist, output)
 if p[0][’class’] ! = ’dev/std/data/numeric’:
  output[’error’] = ’expects data/numeric INPUT’
  return (persist, output)
if p[0][’structure’] ! = ’DOUBLE/REAL/102’:
  output[’error’] = ’expects real double 2x1 input’
  return (persist, output)
 #create a BRAHMS output
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 persist[’hOut’] = brahms.operation(
 persist[’self’],OPERATION_ADD_PORT,
 ",’dev/std/data/numeric’,
 DOUBLE/REAL/’ + str(persist[’state’][’n_out’]),
 out’)
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_RUN_SERVICE:
 ptHC = persist[’ptHC’] #retreive my persistent state
 #retreive my current inputs from BRAHMS
 ins = input[’iif’][’default’][’ports’][0][’data’]
 x = ins[0]
 z = ins[1]
 img = ins[2:102]
 img = array(img.ravel())
 img.shape = (100,1)
 #call to the Python Hippocampus object
 x_hat, z_hat = ptHC.step(x,z,img)
 #create output and send it to BRAHMS
 myOutput = numpy.array([x, z, x_hat, z_hat], numpy.
double)

 brahms.operation(persist[’self’], OPERATION_SET_CONTENT,
persist[’hOut’], myOutput)

 output[’event’][’response’] = C_OK

#return the output and the modified persistent state
return (persist, output)

ACKNOWLEDGEMENTS
This work was supported by the European Union Framework 6 
IST project 027819 (ICEA project: www.iceaproject.eu) and the 
European Union Framework 7 ICT project 215910 (BIOTACT 
project: www.biotact.org).

SUPPLEMENTARY MATERIAL
Videos and source code from the simulation and speed 
 comparisons are presented in the Supplementary Material. The 
Supplemental Material for this article can be found online at 
http://www.frontiersin.org/neuroinformatics/paper/10.3389/
neuro.11.006.2009

REFERENCES
Albertin, S. V., Mulder, A. B., Tabuchi, E., 

Zugaro, M. B., and Wiener, S. I. 
(2000). Lesions of the medial shell of 
the nucleus accumbens impair rats 
in fi nding larger rewards, but spare 
reward-seeking behavior. Behav. Brain 
Res. 117, 173–183.

Alexander, G. E., and Crutcher, M. D. 
(1990). Functional architecture of 
basal ganglia circuits: neural substrates 
of parallel processing. Trends Neurosci. 
13, 266–272.

Arleo, A., and Gerstner, W. (2000). 
Spatial cognition and neuro-mimetic 
navigation: a model of hippocampal 
place cell activity. Biol. Cybern. 83, 
287–299.

B i r d w e l l ,  J . ,  S o l o m o n ,  J . , 
Thajchayapong, M., Taylor, M., 
Cheely, M., Towal, R., Conradt, J., and 
Hartmann, M. (2007). Biomechanical 
models for radial distance determi-
nation by the rat vibrissal system. 
J. Neurophysiol. 98, 2439–2455.

Bolam, J. P., Hanley, J. J., Booth, P. A., and 
Bevan, M. D. (2000). Synaptic organ-
isation of the basal ganglia. J. Anat. 
196(Pt 4), 527–542.

Cannon, R. C., Gewaltig, M.-O., 
Gleeson, P., Bhalla, U. S., Cornelis, H., 
Hines, M. L., Howell, F. W., Muller, E., 
Stiles, J. R., Wils, S., and Schutter, E. D. 
(2007). Interoperability of neuro-
science modeling software: cur-
rent status and future directions. 
Neuroinformatics 5, 127–138.

Chavarr iaga, R. , Ströss l in, T. , 
Sheynikhovich, D., and Gerstner, W. 
(2005). A computational model of 
parallel navigation systems in rodents. 
Neuroinformatics 3, 223–241.

Chevalier, G., and Deniau, J. M. (1990). 
Disinhibition as a basic process in the 

expression of striatal function. Trends 
Neurosci. 13, 277–280.

Devan, B. D., Goad, E. H., and Petri, H. L. 
(1996). Dissociation of hippocam-
pal and striatal contributions to 
spatial navigation in the water maze. 
Neurobiol. Learn Mem. 66, 305–323.

Fahmy, T. (2006). Pivy – Embedding a 
Dynamic Scripting Language into 
a Scene Graph Library. Master’s 
Thesis, Vienna, Vienna University of 
Technology.

Gerfen, C., and Wilson, C. (1996). 
The basal ganglia. In Handbook of 
Chemical Neuroanatomy, Vol 12, 
Integrated Systems of the CNS, 
Part III, L. Swanson, A. Bjorklund, and 
T. Hokfelt, eds (Amsterdam, Elsevier), 
pp. 371–468.

Gleeson, P., Steuber, V., and Silver, R. A. 
(2007). neuroConstruct: a tool for 
modeling networks of neurons in 3D 
space. Neuron 54, 219–235.

Goddard, N. H., Hucka, M., Howell, F., 
Cornelis, H., Shankar, K., and 
Beeman, D. (2001). Towards NeuroML: 
model description methods for col-
laborative modelling in neuroscience. 
Philos. Trans. R Soc. Lond., B, Biol. Sci. 
356, 1209–1228.

Gorny, J. H., Gorny, B., Wallace, D. G., and 
Whishaw, I. Q. (2002). Fimbria-for-
nix lesions disrupt the dead reckoning 
(homing) component of exploratory 
behavior in mice. Learn Mem. 9, 
387–394.

Groenewegen, H. J., Mulder, A. B., 
Beijer, A. V. J., Wright, C. I., Lopes Da 
Silva, F. H., and Pennartz, C. M. A. 
(1999). Hippocampal and amygdaloid 
interactions in the nucleus accumbens. 
Psychobiology 27, 149–164.

Gurney, K., Prescott, T. J., and Redgrave, P. 
(2001a). A computational model of 

action selection in the basal ganglia I: a 
new functional anatomy. Biol. Cybern. 
85, 401–410.

Gurney, K., Prescott, T. J., and Redgrave, P. 
(2001b). A computational model of 
action selection in the basal ganglia II: 
analysis and simulation of behaviour. 
Biol. Cybern. 85, 411–423.

Gurney, K. N., Humphries, M., Wood, R., 
Prescott, T. J., and Redgrave, P. (2004). 
Testing computational hypotheses of 
brain systems function using high level 
models: a case study with the basal 
ganglia. Network 15, 263–290.

Hafting, T., Fyhn, M., Molden, S., 
Moser, M.-B., and Moser, E. I. (2005). 
Microstructure of a spatial map in 
the entorhinal cortex. Nature 436, 
801–806.

Hasselmo, M., Schnell, E., and Barkai, E. 
(1995). Dynamics of learning and 
recall at excitatory recurrent synapses 
and cholinergic modulation in rat hip-
pocampal region ca3. J. Neurosci. 15, 
5249–5262.

Hasselmo, M., Wyble, B. , and 
Wallenstein, G. V. (1996). Encoding 
and retrieval of episodic memories: 
role of cholinergic and gabaergic 
modulation in the hippocampus. 
Hippocampus 6, 693–708.

Hikosaka, O., Takikawa, Y., and Kawagoe, R. 
(2000). Role of the basal ganglia in 
the control of purposive saccadic eye 
movements. Physiol. Rev. 80, 953–978.

Hopfi eld, J. J. (1984). Neurons with graded 
response have collective computa-
tional properties like those of two-
state neurons. Proc. Natl. Acad. Sci. 
U.S.A. 81, 3088–3092.

Humphries, M. D., Gurney, K., and 
Prescott, T. J. (2005). Is there an inte-
grative center in the vertebrate brain-
stem? A robotic evaluation of a model 

of the reticular formation viewed as an 
action selection device. Adapt. Behav. 
13, 97–113.

Humphries, M. D., and Gurney, K. N. 
(2002). The role of intra-thalamic 
and thalamocortical circuits in action 
selection. Network 13, 131–156.

Humphries, M. D., Stewart, R. D., and 
Gurney, K. N. (2006). A physiologically 
plausible model of action selection and 
oscillatory activity in the basal ganglia. 
J. Neurosci. 26, 12921–12942.

Khamassi, M. (2007). Complementary 
Roles of the Rat Prefrontal Cortex and 
Striatum in Reward-Based Learning 
and Shifting Navigation Strategies. 
Ph.D. Thesis, Paris, University Paris 6.

Lorincz, A. (1998). Forming independent 
components via temporal locking of 
reconstruction architectures: a func-
tional model of the hippocampus. 
Biol. Cybern. 79, 263–275.

Marr, D. (1971). Simple memory: a theory 
for archicortex. Philos. Trans. R. Soc. 
Lond., B, Bio. Sci. 262, 23–81.

McNaughton, B. L., Battaglia, F. P., 
Jensen, O., Moser, E. I. , and 
Moser, M.-B. (2006). Path integration 
and the neural basis of the ‘cognitive 
map’. Nat. Rev. Neurosci. 7, 663–678.

Michel, O. (2004). Webots(tm): profes-
sional mobile robot simulation. Int. J. 
Adv. Robotic Syst. 1, 39–42.

Mink, J. W., and Thach, W. T. (1993). Basal 
ganglia intrinsic circuits and their role 
in behavior. Curr. Opin. Neurobiol. 3, 
950–957.

Mitchinson, B., Chan, T., Humphries, M., 
Chambers, J., Fox, C., and Prescott, T.  
(2008). BRAHMS: Novel middleware 
for integrated systems computation. 
Proceedings of the IEEE International 
Conference on Intelligent Robots and 
Systems. Nice, France.

131

www.iceaproject.eu
www.biotact.org
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11.006.2009


Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 | 

Fox et al. Hippocampus, basal ganglia and physics integration

Mulder, A. B., Tabuchi, E., and Wiener, S. I. 
(2004). Neurons in hippocampal affer-
ent zones of rat striatum parse routes 
into multi-pace segments during 
maze navigation. Eur. J. Neurosci. 19, 
1923–1932.

O’Keefe, J., and Conway, D. H. (1978). 
Hippocampal place units in the freely 
moving rat: why they fi re where they 
fi re. Exp. Brain Res. 31, 573–590.

Prescott, T. J., Montes Gonzalez, F. M., 
Gurney, K., Humphries, M. D., and 
Redgrave, P. (2006). A robot model of 
the basal ganglia: behavior and intrinsic 
processing. Neural Netw. 19, 31–61.

Quirk, G. J., Muller, R. U., and Kubie, J. L. 
(1990). The firing of hippocampal 
place cells in the dark depends on the 
rat’s recent experience. J. Neurosci. 10, 
2008–2017.

Redgrave, P., Prescott, T. J., and Gurney, K. 
(1999). The basal ganglia: a vertebrate 
solution to the selection problem? 
Neuroscience 89, 1009–1023.

Redish, A. D., and Touretzky, D. S. (1997). 
Cognitive maps beyond the hippoc-
ampus. Hippocampus 7, 15–35.

Ritt, J., Andermann, M., Skowronski-
Lutz, E., and Moore, C. (2006). 
Characterization of Vibrissa Motion 
During Volitional Active Touch. 
Atlanta, Barrels XIX.

Rolls, E. (1995). A model of the opera-
tion of the hippocampus and cortex 
in memory. Int. J. Neural Syst. 6, 
51–71.

Rolls, E., Stringer, S., and Elliot, T. (2006). 
Entorhinal cortex grid cells can map to 
hippocampal place cells by competi-
tive learning. Network 17, 447–465.

Rossier, J., Kaminsky, Y., Schenk, F., and 
Bures, J. (2000). The place preference 
task: a new tool for studying the relation 
between behavior and place cell activity 
in rats. Behav. Neurosci. 114, 273–284.

Sargolini, F., Florian, C., Oliverio, A., 
Mele, A., and Roullet, P. (2003). 
Differential involvement of NMDA 
and AMPA receptors within the 
nucleus accumbens in consolidation 
of information necessary for place 
navigation and guidance strategy of 
mice. Learn Mem. 10, 285–292.

Smith-Roe, S. L., Sadeghian, K., and 
Kelley, A. E. (1999). Spatial learning 
and performance in the radial arm 
maze is impaired after n-methyl-d-
aspartate (NMDA) receptor blockade 
in striatal subregions. Behav. Neurosci. 
113, 703–717.

Surmeier, D. J., Ding, J., Day, M., Wang, Z., 
and Shen, W. (2007). D1 and D2 
dopamine-receptor modulation of 
striatal glutamatergic signaling in 
striatal medium spiny neurons. Trends 
Neurosci. 30, 228–235.

Tabuchi, E., Mulder, A. B., and Wiener, S. I. 
(2003). Reward value invariant place 
responses and reward site associated 
activity in hippocampal neurons 
of behaving rats. Hippocampus 13, 
117–132.

Tabuchi, E. T., Mulder, A. B., and 
Wiener, S. I. (2000). Position and 
behavioral modulation of syn-
chronization of hippocampal and 
accumbens neuronal discharges in 
freely moving rats. Hippocampus 10, 
717–728.

Treeves, A., and Rolls, E. (1994). 
Computational analysis of the role 
of the hippocampus in memory. 
Hippocampus 4, 374–391.

Ueno, N., and Kaneko, M. (1994). 
Dynamic Active Antenna – A Principle 
of Dynamic Sensing. IEEE ICRA,  San 
Diego, CA, USA, pp. 1784–1790. 

Ujfalussy, B., Eros, P., Somogyvari, Z., and 
Kiss, T. (2008). Episodes in space: a 
modelling study of hippocampal 
place representation. In From Animals 
to Animats 10, Vol. 5040 of LNAI, M. 
Asada, J. Hallam, J.-A. Meyer, and 
J. Tani, eds (Berlin, Springer-Verlag), 
pp. 123–136.

van Groen, T., and Wyss, J. M. (1990). 
Extrinsic projections from area CA1 
of the rat hippocampus: olfactory, 
cortical, subcortical, and bilateral 
hippocampal formation projections. 
J. Comp. Neurol. 302, 515–528.

Whishaw, I. Q. (1998). Place learning in 
hippocampal rats and the path inte-
gration hypothesis. Neurosci. Biobehav. 
Rev. 22, 209–220.

Whishaw, I. Q., Cassel, J. C., and 
Jarrad, L. E. (1995). Rats with fi mbria-
fornix lesions display a place response 

in a swimming pool: a dissociation 
between getting there and knowing 
where. J. Neurosci. 15, 5779–5788.

Wiener, S. I. (1996). Spatial, behavioral 
and sensory correlates of hippocam-
pal CA1 complex spike cell activity: 
implications for information process-
ing functions. Prog. Neurobiol. 49, 
335–361.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential confl ict 
of interest.

Received: 10 September 2008; paper pend-
ing published: 21 October 2008; accepted: 
20 February 2009; published online: 09 
March 2009.
Citation: Fox C, Humphries M, Mitchinson 
B, Kiss T, Somogyvari Z and Prescott T (2009) 
Technical integration of hippocampus, basal 
ganglia and physical models for spatial nav-
igation. Front. Neuroinform. (2009) 3:6. 
doi: 10.3389/neuro.11.006.2009
Copyright © 2009 Fox, Humphries, 
Mitchinson, Kiss, Somogyvari and Prescott. 
This is an open-access article subject to 
an exclusive license agreement between 
the authors and the Frontiers Research 
Foundation, which permits unrestricted 
use, distribution, and reproduction in any 
medium, provided the original authors and 
source are credited.

132



Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 | 

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 11 February 2009
doi: 10.3389/neuro.11.004.2009

Python for information theoretic analysis of neural data
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Information theory, the mathematical theory of communication in the presence of noise, is 
playing an increasingly important role in modern quantitative neuroscience. It makes it possible 
to treat neural systems as stochastic communication channels and gain valuable, quantitative 
insights into their sensory coding function. These techniques provide results on how neurons 
encode stimuli in a way which is independent of any specifi c assumptions on which part of the 
neuronal response is signal and which is noise, and they can be usefully applied even to highly 
non-linear systems where traditional techniques fail. In this article, we describe our work and 
experiences using Python for information theoretic analysis. We outline some of the algorithmic, 
statistical and numerical challenges in the computation of information theoretic quantities from 
neural data. In particular, we consider the problems arising from limited sampling bias and from 
calculation of maximum entropy distributions in the presence of constraints representing the 
effects of different orders of interaction in the system. We explain how and why using Python 
has allowed us to signifi cantly improve the speed and domain of applicability of the information 
theoretic algorithms, allowing analysis of data sets characterized by larger numbers of variables. 
We also discuss how our use of Python is facilitating integration with collaborative databases 
and centralised computational resources.

Keywords: Python, information theory, neural coding, entropy, maximum entropy, bias, e-science

CPU and memory requirements of information  calculations for 
neural data has signifi cantly increased. This is due to a number of 
reasons. First, the improvement of the techniques to correct for 
the sampling bias problem (Panzeri et al., 2007) has allowed the 
information theoretic analysis of larger populations. Second, some 
of these bias corrections techniques are computationally intensive. 
Third, in the context of understanding whether the correlation 
structure of neural activity can be described by simple low order 
models, it has become important to compute distributions with 
maximum entropy in the presence of various sets of constraints 
(Schneidman et al., 2006; Shlens et al., 2006; Tang et al., 2008). 
These calculations are particularly demanding in terms of proces-
sor and memory resources. Fourth, while most information analysis 
has been applied to spike trains, in the context of the development 
of brain machine interfaces it has become important to evaluate the 
information content of other types of brain signals, such as local 
fi eld potentials (LFPs) or Electroencephalograms (EEGs) which 
are analog in nature and must be represented at each time step 
(Belitski et al., 2008; Montemurro et al., 2008; Rubino et al., 2006; 
Waldert et al., 2008). The manipulation of these signals stretches 
computational requirements much more than using spikes, which 
due to their sparse binary nature can be represented compactly, for 
example by storing only the spike arrival times.

The increased demand on the information theoretic routines 
raises the question of whether it may be advantageous for the sci-
entifi c community to implement information theoretic algorithms 
for the analysis of neural data using platforms other than MATLAB. 
In the continuing development of these methods, we have recently 
started using Python, together with the numerical libraries NumPy 

INTRODUCTION
Information theory (Cover and Thomas, 2006; Shannon, 1948), 
the mathematical theory of communication in the presence of 
noise, is playing an increasingly important role in modern quan-
titative neuroscience, because it makes it possible to treat neural 
systems as stochastic communication channels and gain valuable, 
quantitative insights into their sensory coding function (Borst and 
Theunissen, 1999; Rieke et al., 1999; Victor, 2006). Information 
theory provides a set of fundamental mathematical quantities, such 
as entropy and mutual information, that quantify with meaningful 
numbers the reduction of uncertainty about stimuli gained from 
neural responses, without the need to make any specifi c assumption 
of what is signal and what is noise in the neuronal response.

Most laboratories (including ours) have so far implemented 
information theoretic analyses using MATLAB®1. MATLAB is a 
numerical computing environment and programming language 
which is used by most neurophysiosiological laboratories to store, 
preprocess and plot experimental data. In our view, the reason for 
the choice of MATLAB for the implementation of such routines 
is that it allows interactive and rapid development of algorithms, 
though at the cost of some performance overhead. Traditionally, 
information calculations have not been demanding in terms of 
memory usage or CPU time because the information calculations 
were restricted to relatively small neural populations as a conse-
quence of the limited sampling bias problem. Therefore, it has been 
convenient to perform the analysis with the tools used to obtain, 
preprocess and store the data. However, over the last few years, the 
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and SciPy. We have found several key advantages to this change 
that make it more suitable for the analysis of the datasets we are 
currently studying and for future challenges such as implementing 
these methods into computational grids and clusters.

In this article, we fi rst briefl y present the principles of informa-
tion theory and its importance to neuroscience. We then review 
some features of Python that are particularly useful for information 
theoretic analysis and consider in detail the implementation of the 
mathematical algorithms that are crucial for obtaining accurate and 
unbiased estimates of information from neural data. We also detail 
a method to compute the entropy of neural data given a number of 
plausible constraints, and we put particular emphasis on the specifi c 
advantages of Python in addressing these algorithmic challenges. 
We fi nally apply the methodology to real data recorded from the 
rat somatosensory cortex, and discuss the potential implications 
of wider use of Python in information theoretic analysis of the 
neural code.

INFORMATION THEORY FOR ANALYSIS OF NEURAL DATA
Information theory is a “mathematical theory of communication” 
developed in the 1940’s by Claude Shannon at Bell Labs (Cover and 
Thomas, 2006; Shannon, 1948). It formalises, in a mathematically 
rigorous way, a measure of “information” in a system with appli-
cations to coding and transmission of that information. While it 
was originally developed for analysis of artifi cial systems, such as 
transmission of signals along a telegraph wire, the generality of 
the formulation means it can be usefully applied to a wide range 
of problems.

Consider an experiment in which an animal is presented with a 
stimulus s selected with probability P(s) from a stimulus set S con-
sisting of S elements, and the consequent response (either of a single 
neuron or an ensemble of neurons) is recorded and quantifi ed in a 
certain post-stimulus time window. The aim of information theo-
retic analysis is to gain insight into how the neurons represent the 
stimuli. In most applications this is done by examining the informa-
tion content of different candidate neural codes. To carry out such 
an analysis, the fi rst step is to choose the neural code. In practice 
this means choosing a way to quantify the neuronal response that 
refl ects our assumption of what is most salient in it. For example, 
if we think that only spike counts (not the precise temporal pattern 
of spikes) are important, we choose a spike-count code: we defi ne 
a post-stimulus response interval and count the number of spikes 
it contains on each repetition (trial) of a stimulus. In most cases, 
the neural response is quantifi ed as a discrete, multi-dimensional 
array r = {r

1
,…, r

L
} of dimension L. For example, to quantify the 

spike count response of a population of L cells, r
i
 would be the 

number of spikes emitted by cell i on a given trial in the response 
window. Alternatively, to quantify the spike timing response of a 
single neuron, the response window is divided into L bins of width 
Δt, so that r

i
 is the number of spikes fi red in the i-th time bin (Strong 

et al., 1998). Here Δt is the assumed time precision of the code and 
can be varied parametrically to characterize the temporal precision 
of the neural code. We denote by R the set of possible values taken 
by the response array.

Having quantifi ed the response, the second step is to com-
pute how much information can be extracted from the chosen 
response quantifi cation. This allows an assessment of how good the 

 candidate neural code is. The more the response of a neuron varies 
across a set of stimuli, the greater its ability to transmit informa-
tion about those stimuli (de Ruyter van Steveninck et al., 1997). 
The fi rst step in measuring information is thus to measure the 
response variability. The most general way to do this is through 
the concept of Shannon entropy, referred to hereafter as entropy, 
which is a measure of the uncertainty associated with a random 
variable. Intuitively one can posit some desirable properties of any 
uncertainty measure. It should be continuous; that is small changes 
in the underlying probabilities should result in small changes in the 
uncertainty. It should be symmetric; that is the measure should not 
depend on the labelling or ordering of the variables and outcomes. 
The measure should take its maximum value when all outcomes 
are equally likely and for systems with uniform probabilities, the 
measure should increase with the number of outcomes. Finally, 
the measure should be additive; that is it should be independent of 
how the system is grouped or divided into parts. It can be shown 
(Cover and Thomas, 2006) that any measure of uncertainty about 
the neural responses satisfying these properties has the form

H P P( ) ( )log ( )R r r
r R

= −
∈
∑ 2

 
(1)

where P(r) is the probability of observing response r across all 
trials to all stimuli. The response entropy quantifi es how neuronal 
responses vary with the stimulus and thus sets the capacity of 
the spike train to convey information. In Eqs 1 and 2 the sum-
mation over r is over all possible neuronal responses. However, 
neurons are typically noisy; their responses to repetitions of an 
identical stimulus differ from trial to trial. H(R) refl ects both 
variation of responses to different stimuli and variation due 
to trial-to-trial noise. Thus H(R) is not a pure measure of the 
stimulus information actually transmitted by the neuron. We can 
quantify the variability specifi cally due to noise, by measuring 
the so-called noise entropy, which is the entropy conditional on 
stimulus presentation:

H P s P s P s
s

( | ) ( ) ( | ) log ( | )R S r r
S r R

= −
∈ ∈
∑ ∑ 2

 
(2)

The summation over s is over all possible stimuli. P(r|s) is the 
probability of observing a particular response r given that stimulus s 
is presented. Experimentally, P(r|s) is determined by repeating each 
stimulus on many trials, while recording the neuronal responses. 
The probability P(s) is usually chosen by the experimenter. The 
noise entropy quantifi es the irreproducibility of the neuronal 
responses at fi xed stimulus. The noisier is a neuron, the greater 
is H(R|S). The information that the neuronal response transmits 
about the stimulus is the difference between the response entropy 
and the noise entropy. This is known as the mutual information 
I(S; R) between stimuli and responses (in the following abbrevi-
ated to information).

I(S; R) = H(R) − H(R|S) (3)

Mutual information quantifi es how much of the information 
capacity provided by stimulus-evoked differences in neural activ-
ity is robust to the presence of trial-by-trial response variability 
(de Ruyter van Steveninck et al., 1997). Alternatively, it quantifi es 
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the reduction of uncertainty about the stimulus that can be gained 
from observation of a single trial of the neural response.

The mutual information has a number of important qualities 
that make it well suited to characterizing how a response is modu-
lated by the stimulus (Borst and Theunissen, 1999; Fuhrmann 
Alpert et al., 2007; Panzeri et al., 2008; Rieke et al., 1999). First, 
as outlined above, it quantifi es the stimulus discriminability 
achieved from a single observation of the response, rather than 
from averaging responses over many observations. Second, I(S; R) 
is the most general measure of correlation between the stimuli 
and the neural responses, because it automatically takes into 
account contributions of correlations at all orders. Third, comput-
ing information does not require specifying a stimulus–response 
model; it only requires computing the response probabilities in 
response to each stimulus condition. Therefore, the calculation 
of information does not require spelling out which stimulus fea-
tures (e.g., contrast, orientation, etc.) are encoded. Fourth, I(S; R) 
takes into account the full stimulus–response probabilities, which 
include all possible effects of stimulus-induced responses and 
noise. Thus, it does not require the signal to be modeled as a set 
of response functions plus noise and is applicable even to situ-
ations when such decompositions are diffi cult or dubious. The 
last three points show that information theory can, in principle, 
be applied to any type of neural signal, including responses such 
as LFPs or spikes that are clearly nonlinear and diffi cult to model 
by a set of standard functions. Fifth, it is possible to analyze and 
combine the information given by different measures of neural 
activity e.g. spike trains and LFPs. These two signals have a very 
different nature and signal to noise ratios. Therefore, a certain 
increase of the peak height of an LFP cannot be compared to a 
certain change in the spike train to understand how well LFPs or 
spikes encode stimuli. In contrast, with information theory the 
LFPs and spikes can be directly compared because information 
theory projects both signals onto a common scale that is mean-
ingful in terms of stimulus knowledge.

Information theoretic techniques have been successfully used to 
address a number of questions about sensory coding. For example, 
they have been used to address the question of whether neurons 
convey information by millisecond precision spike timing or sim-
ply by the total number of emitted spikes (the spike count). The 
application of information theory to spike train analysis has showed 
that the ms-precise timing of spikes provides important informa-
tion that cannot be extracted from spike counts (Panzeri et al., 
2001; Victor, 1999, 2006). Information theory has also been used 
to characterize the functional role of correlations in population 
activity, by investigating in which conditions correlations play a 
quantitatively important role in transmitting information about the 
stimulus (Averbeck et al., 2006; Dan et al., 1998; Hatsopoulos et al., 
1998; Latham and Nirenberg, 2005; Panzeri, 1999; Petersen et al., 
2001; Pola et al., 2003) or in constraining the dynamic range of net-
work responses (Schneidman et al., 2006). Information theory has 
also been used to characterize the amount of interactions between 
neural populations (Honey et al., 2007).

WHY PYTHON?
For many years, the de facto standard for many groups working in 
the area of neurophysiological data analysis has been MATLAB®. 

However, the Python programming language (van Rossum, 1995) 
combined with the numerical and scientifi c libraries NumPy and 
SciPy (Jones et al., 2001) provide a compelling alternative for sci-
entifi c programming. Python is a modern, fully object-oriented 
programming language that is powerful, fl exible and easy to learn. 
The NumPy library provides a multi-dimensional array object and 
associated vectorised operations, and SciPy enhances this with a 
range of scientifi c functions using the NumPy array object. The 
syntax is familiar to anyone coming from a background with 
MATLAB or another C derivative language and there are a com-
prehensive set of tools for plotting and interactive use (IPython and 
Matplotlib). Assignments are by reference rather than by copying, 
which allows fi ner grained control of memory usage, and there 
are several ways to rapidly extend the system with external code 
written in FORTRAN and C. The fl exibility and good design of 
the Python language make large projects much more manageable 
than with MATLAB, where each function must reside in a separate 
fi le and refactoring to reduce code repetition grows increasingly 
diffi cult with project size. Python is a well developed language, 
with libraries available for almost any conceivable task, such as 
GUI development, network communication, support for different 
fi le formats, etc. It is possible to read and write MATLAB binary 
fi les, and even call MATLAB commands from within the Python 
environment, which allows for a smooth transition and means 
that time invested in an existing MATLAB code base is not wasted. 
Finally, the Python tool set is open source2, rather than a propri-
etary product, which has several obvious advantages for scientifi c 
work. Its free availability allows better reproducibility of the results, 
since all interested parties are free to run the software without an 
expensive license. It is also inherently future-proof, since it will 
always be possible to obtain and use the version for which the code 
was written, whereas a commercial product may be withdrawn at 
some point in the future.

THE LIMITED SAMPLING BIAS PROBLEM
A major diffi culty when applying techniques involving information 
theoretic quantities to experimental systems, is that they require 
measurement of the full probability distributions of the variables 
involved. If we had an infi nite amount of data, we could measure 
the true stimulus-response probabilities precisely. However, any 
real experiment only yields a fi nite number of trials from which 
these probabilities must be estimated. The estimated probabilities 
are subject to statistical error and necessarily fl uctuate around their 
true values. The signifi cance of these fi nite sampling fl uctuations 
is that they lead to both statistical error (variance) and systematic 
error (called limited sampling bias) in estimates of entropies and 
information. This bias is the difference between the expected value 
of the quantity considered, computed from probability distribu-
tions estimated with N trials or samples, and its value computed 
from the true probability distribution. The bias constitutes a sig-
nifi cant practical problem, because its magnitude is often of the 
order of the information values to be evaluated, and because it 

2“Open source is a development method for software that harnesses the power of 
distributed peer review and transparency of process. The promise of open source is 
better quality, higher reliability, more fl exibility, lower cost, and an end to predatory 
vendor lock-in.” http://www.opensource.org/
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cannot be alleviated simply by averaging over many neurons with 
similar characteristics.

ORIGINS OF THE BIAS
The most direct way to compute information and entropies is to esti-
mate the response probabilities as the histogram of the experimen-
tal frequency of each response across the available trials. Plugging 
in these empirical probability estimates into Eqs 1–3 results in a 
direct estimate that we refer to as the “plug-in” method.

In general, both the full output entropy H(R) and the noise 
entropy H(R|S) are biased downwards. That is, the estimated 
value is less than the true value, and the estimated value increases 
with the number of trials used, asymptotically approaching the 
true value. Intuitively, this is because fi nite sampling means it is 
less likely that the full range of responses will be included and so 
the measured responses seem less variable than they really are. In 
addition, estimates of H(R|S) are signifi cantly more biased than 
those of H(R), since the latter depends on P(r) which is calculated 
with data gathered across all stimuli and is better sampled than the 
conditional distributions, which are each sampled with data from 
a single stimulus only. The bias in the mutual information is then 
the difference between the bias of H(R) and that of H(R|S). This 
results in an upward bias in the information, since the magnitude 
of the bias of H(R|S) is greater, and its sign is reversed in Eq. 3. 
Again, this makes sense intuitively, since the fi nite sampling can 
introduce spurious stimulus-dependent differences in the response 
probabilities, which make the stimuli seem more discernible and 
hence the neuron more informative than it really is.

BIAS CORRECTION METHODS
Fortunately a number of techniques have been developed to address 
the issue of bias, and allow much more accurate estimates of infor-
mation theoretic quantities than the “plug-in” method described 
above. Panzeri et al. (2007) provide a review of such methods, a 
selection of which are briefl y outlined here. For other methods and 
approaches please see Panzeri et al. (2007) and Victor (2006).

Panzeri–Treves (PT)
In the so-called asymptotic sampling regime, when the number of 
trials is large enough that every possible response occurs many 
times, an analytical approximation for the bias (i.e. the difference 
between the true value and the plug-in estimate) of entropies and 
information can be obtained (Miller, 1955; Panzeri and Treves, 
1996).
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The value of the bias computed from the above expressions 
is then subtracted from the plug-in estimate to obtain the cor-
rected values. This requires an estimate of the number of relevant 
responses Rs. The simplest approach is to approximate Rs by the 

count of responses that are observed at least once – this is the “naive” 
count. However due to fi nite sampling this will be an underestimate 
of the true value. A Bayesian procedure (Panzeri and Treves, 1996) 
can be used to obtain a more accurate value.

Quadratic Extrapolation (QE)
In the asymptotic sampling regime, the bias of entropies and infor-
mation can be approximated as second order expansions in 1/N, 
where N is the number of trials (Strong et al., 1998; Treves and 
Panzeri, 1995). For example, for the information:

I I
a

N

b

Nplugin true( ; ) ( ; )S R S R= + +
2

 
(5)

This property can be exploited by calculating the estimates with 
subsets of the original data, with N/2 and N/4 trials and fi tting the 
resulting values to the polynomial expression above. This allows an 
estimate of the parameters a and b and hence I

true
(S; R). To use all 

available data, estimates of two subsets of size N/2 and four subsets 
of size N/4 are averaged to obtain the values for the extrapolation. 
Together with the full length data calculation, this requires seven 
different evaluations of the quantity being estimated.

Nemenman–Shafee–Bialek (NSB)
The NSB method (Nemenman et al., 2002, 2004) utilises a Bayesian 
inference approach and does not rely on the assumption of the 
asymptotic sampling regime. It is based on the principle that when 
estimating a quantity, the least bias will be achieved when assuming 
an a priori uniform distribution over the quantity. This method is 
more challenging to implement than the other methods, involving 
a large amount of function inversion and numerical integration. 
However, it often gives a signifi cant improvement in the accuracy 
of the bias correction (Montemurro et al., 2007b; Nemenman et al., 
2002, 2004).

Shuffl ed Information Estimator (Ish)
Recently, an alternative method of estimating the mutual informa-
tion has been proposed (Montemurro et al., 2007b; Panzeri et al., 
2007). Unlike the methods above, this is a method for calculating 
the information only, and is not a general entropy bias correction. 
However, it can be used with the entropy corrections described 
above to obtain more accurate results. For this method, two new 
quantities are defi ned. H

ind
(R|S) is the noise entropy that would be 

obtained if each individual component r
i
 of the response array r were 

independent of any other component r
j
 (i ≠ j) at fi xed stimulus; that 

is the entropy calculated from the distribution P
ind

(r|s) = Π
i
 P(r

i
|s). 

Since this value depends only on the fi rst order marginal values of 
the response, it has a small bias. H

sh
(R|S) is the entropy that results 

when stimulus conditional response correlations are removed by 
“shuffl ing” the data. That is, for each stimulus s, the individual 
response components r

i
 are shuffl ed independently across trials, to 

obtain a new set of vector responses r. Both of these values provide 
estimates of the entropy of the system if correlations were removed 
and become equal for an infi nite number of trials. However, with 
fi nite trials, H

ind
(R|S) shows a small bias, while H

sh
(R|S) shows 

a much larger bias, which is of the same order of magnitude as 
that of H(R|S), but typically slightly more negative. Using these 
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properties, a so-called shuffl ed information estimator, I
sh

, can be 
computed as

I
sh

(S; R) = H(R) − H
ind

(R|S) + H
sh

(R|S) − H(R|S) (6)

In the limit of a large number of trials I
sh

(S; R) = I(S; R) since 
H

sh
(R|S) = H

ind
(R|S). For small numbers of trials, the biases of 

H
sh

(R|S) and H(R|S) approximately cancel out, leaving the bias 
of I

sh
(S; R) dominated by that of H(R) − H

ind
(R|S) which is much 

smaller than that of the normal information estimate I(S; R). Using 
this shuffl ing technique, combined with entropy bias correction 
methods as described above, can reduce the number of trials needed 
for a reliable estimate by a factor of four (Montemurro et al., 2007b; 
Panzeri et al., 2007).

James–Stein Shrinkage (“Shrink”) Estimator
Another recently proposed technique to compute entropies from 
limited samples is the so-called “James–Stein shrinkage” technique 
(Hausser and Strimmer, 2008), which works by improving the 
estimate of the underlying probabilities, rather than the entropy 
specifi cally. The James–Stein shrinkage technique is based on aver-
aging two models with different properties; a high dimensional 
model with low bias and high variance and a lower dimensional 
one with larger bias but smaller variance. The probabilities p

r
 of 

each response r are determined by

p t pr r r
Shrink ML= + −λ λ( )1  (7)

where λ ∈ [0, 1] is the shrinkage intensity, pr
ML is the normal 

maximum likelihood estimate from frequency counts and t
r
 is the 

shrinkage target. The maximum entropy uniform distribution is 
suggested as a convenient target in Hausser and Strimmer (2008). 
The shrinkage intensity λ is then given by the following

λ*
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=
− ( )

− −( )
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(8)

This is repeated for all the stimulus conditional distributions, 
and the entropy is calculated from the corrected probability values 
using the plug-in method.

Comparative performance of different estimators
Figure 1 reports the results of the performance of bias correction 
procedures on a set of simulated spike trains from eight simulated 
neurons. Each of these neurons could emit a spike or not with a 
probability obtained from a Bernoulli process. The spiking prob-
abilities were exactly equal to those measured, in the 10–15 ms 
post-stimulus interval, from eight neurons in rat somatosensory 
cortex responding to 13 stimuli consisting of whisker vibrations 
of different amplitude and frequency (Arabzadeh et al., 2004). 
The 10–15 ms interval was chosen since it was found to be the 
interval containing highest information values. Figure 1A shows 
that (with the exception of the James–Stein shrinkage) all bias 
correction procedures generally improve the estimate of I(S; R) 
with respect to the plug-in estimator, and the NSB correction is 
especially effective. For the James–Stein shrinkage estimator, a 
uniform target distribution was used, and this may account for 
the relatively poor performance of that method outside of the 

 asymptotic regime. Figure 1B shows that the bias-corrected esti-
mation of information is much improved by using I

sh
(S; R) rather 

than I(S; R). The use of I
sh

(S; R) makes the residual errors in the 
estimation of information much smaller and almost independent 
from the bias correction method used. Taking into account both 
bias correction performance and computation time, for this simu-
lated system the best method to use is the shuffl ed information 
estimator combined with the Panzeri–Treves analytical correction. 
Using this, an accurate estimate of the information is possible 
even when the number of samples per stimulus is R

4
 where R is the 

dimension of the response space.
While the basic plug-in entropy calculation is a straightforward 

sum of logarithms, the correction methods described above add sig-
nifi cant complexity to the required calculations. In QE, the under-
lying entropy calculations have to be run many times, for PT the 
Bayesian estimate of the number of stimulus responses involves 
additional calculations and NSB involves a complicated procedure 
of many numerical integrations. For large data sets, with the large 
probability spaces that can often arise from modern physiological 
techniques, performance can be an issue as these computational 
methods become increasingly CPU and memory intensive. Since 
the performance of bias correction procedures depends on the 
statistics of data under analysis, in each data analysis task it is also 
important to test the accuracy of information estimation methods 
on simulated data with statistical properties similar to the actual 
experimental data of interest (Panzeri et al., 2007). It is therefore 
crucial that these methods be implemented as effi ciently as pos-
sible. An advantage of Python is that one can benefi t both from the 
improved development time due to the simple syntax and interac-
tive environment, as well as a number of well developed methods 
for optimising the performance critical portions of the code when 
necessary. There are tools for automatically converting Python to C 
inline, inserting your own C code within a Python program, writing 
full C and FORTRAN extension  modules or using Cython, which 

A B

FIGURE 1 | Comparison of the performance of different bias correction 

methods. The methods were applied to spike trains of eight simulated 
somatosensory cortical neurons (see text). The information estimates I(S; R) 
and Ish(S; R) are plotted as a function of the available number of trials per 
stimulus. (A) Mean ± SD/2 (over 50 simulations) of I(S; R). (B) Mean ± SD/2 
(over 50 simulations) of Ish(S; R). This calculation is very similar to that in 
Panzeri et al. (2007, Figure 3), which also used realistic simulations of cortical 
spike trains (the only difference was that for this fi gure, the simulated 
population did not contain any correlations). This fi gure was produced using 
the Python library for bias corrections described in Section “A Python Library 
for Information Theoretic Estimates”, and the code to produce it is available at 
http://code.google.com/p/pyentropy/.

137

http://code.google.com/p/pyentropy/


Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 | 

is a variant of the Python language with a similar syntax but that 
compiles straight to C code.

A PYTHON LIBRARY FOR INFORMATION THEORETIC ESTIMATES
The study and development of techniques for estimation of infor-
mation theoretic quantities and associated bias corrections has 
developed into a fi eld of its own. In order for the results of this work 
to be useful outside of this small community it must be possible 
for non-specialists to easily apply these techniques to their data. 
We have therefore developed a library of tools with the dual pur-
pose of allowing easy application of the most suitable cutting edge 
bias corrections, while also providing a framework for continued 
enhancement of existing methods as well as development of new 
techniques. Although this has been developed for application to 
investigations of neural coding, the library has been designed to be 
as general as possible, in the hope that it might also be of use in other 
areas, and it is publicly available under an open source license3. 
There are similar packages available in other languages, such as the 
R entropy library4 and the MATLAB Spike Train Analysis Toolbox5, 
but the authors are not aware of any similar Python package.

At the core of the library are two classes, DiscreteSystem and 
SortedDiscreteSystem which sample and store the probability 
distributions associated with a system and contain methods to 
compute different entropy quantities. DiscreteSystem is the 
most general and can take arbitrarily ordered input. The class 
is initialised as s=DiscreteSystem(X, X_dims, Y, Y_dims) 
where X_dims=(Xn,Xm) and Y_dims=(Yn,Ym) are tuples of val-
ues describing the parameters of the X and Y spaces respectively. Xn 
and Yn are the number of variables in the space, each of which is 
quantised to take one of Xm or Ym possible values, respectively. In 
total therefore there are XmXn possible values in the X space and YmYn 
in the Y space for each trial. X and Y are provided as integer arrays 
with values in [0, Xm − 1] and [0, Ym − 1] respectively with 
Xn, Yn rows representing the constituent variables and a column 
for each trial. It is important the columns match, that is the value 
of X in a given column corresponds to the same trial as the value 
of Y in the same column, but there are no further requirements 
on the format of the input. SortedDiscreteSystem requires the 
input trials to be grouped in values of the variable Y. This allows 
much more effi cient sampling of the required probability distri-
butions, since the trials for a given Y value can be easily isolated 
without having to search through the whole data set. This requires 
the space Y to be a single fi nite alphabet variable, so it should 
be decimalised beforehand if necessary. The class is initialised as 
s = SortedDiscreteSystem(X, X_dims, Ym, Ny) where X, 
X_dims are as above and Ym is the number of possible values for 
the single variable Y space. Ny is an array containing the number of 
trials available for each Y value. For example, Ny[0\] is the number 
of trials available with Y = 0\, and the corresponding X values 
are found at X[0\ : Ny[0\]]. Both of these classes inherit from a 
base class BaseSystem which contains the common entropy and 
information calculations, reducing code duplication and increas-
ing maintainability.

In neural coding applications such as those described previously, 
Y would be the stimulus space S, while X would be the response 
space R. Since the stimuli are usually controlled by the experi-
menter, the results are often available already sorted by stimulus, 
allowing use of the more effi cient SortedDiscreteSystem class. 
Mutual information is symmetric, I(X; Y) = I(Y; X), so in fact 
the stimulus and response spaces can be provided in any order, 
but due to the way the conditional probabilities are sampled it is 
strongly suggested that the smaller of the two spaces be provided 
as the Y parameter.

Once initialised as above, entropy quantities can be calculated 
using the method s.calculate_entropies(method, sam-
pling, calc) where method is one of [‘plugin’,‘pt’,‘qe’,
‘nsb’] and selects the bias correction technique to use, sam-
pling is one of [‘naive’,‘beta:x’,’shrink’] which selects 
the method for estimating the probability distributions and calc 
is a list containing a number of entropies to calculate. The entropies 
available are [‘HX’,‘HY’,‘HXY’,‘SiHXi’,‘HiX’,‘HiXY’,
‘HshXY’,‘ChiX’], which in the case where, as described above, 
the space X corresponds to the response space R and Y to the stimu-
lus space S, denote respectively H(R), H(S), H(R|S), ∑ =i

Rn H1 ( )Ri , 
H

ind
(R), H

ind
(R|S), H

sh
(R|S) and χ(R). χ(R) is a quantity needed for 

the information breakdown of (Pola et al., 2003) and is reported 
in Eq. 25 therein. This function will fi rst decimalise the X and Y 
spaces, if required (if n > 1) which involves converting the length-n 
base-m words representing the values for each space to a single deci-
mal integer value in [0, mn − 1]. The probabilities required for the 
requested output entropies are then computed using the sampling 
method specifi ed. “naive” represents the standard histogram bin 
counting method which is usually used. The add-constant estimator 
(Schürmann and Grassberger, 1996) is implemented through the 
“beta:x” method. The β parameter is provided after the colon in 
the option, so “beta:0\.0\1” would use the add-constant estima-
tor with β = 0.01. The “shrink” option selects the James–Stein 
shrinkage estimator (Hausser and Strimmer, 2008). All the entropy 
estimates are currently implemented in pure Python, except for 
the NSB estimator. This is implemented using existing publicly 
available optimised codes6. We have not yet implemented a direct 
link to the NSB codes, but instead write the data for analysis to 
a fi le, for processing by the standalone external program before 
reading back results from a fi le. Python’s heritage as a scripting 
language makes this process of reading and writing formatted 
fi les and programmatically calling an external program from the 
code very easy. The functions s.I() and s.Ish() can be used 
to obtain the mutual information estimate and shuffl ed mutual 
information estimate respectively, provided the required entropies 
have been computed. Similarly s.pola_decomp() will return the 
computed values for the decomposition of the mutual informa-
tion presented in Pola et al. (2003), again provided the required 
entropies were computed.

The module has been designed to be as fl exible as possible, allow-
ing comparison of the different methods at every stage. For example, 
the DiscreteSystem instance contains the sampled probability 
distributions, so it is possible to compare the different probability 
estimation methods directly. It is easy to add additional entropic 3See http://code.google.com/p/pyentropy/

4See http://www.strimmerlab.org/software/entropy/index.html
5See http://neuroanalysis.org/toolkit/ 6From http://nsb-entropy.sourceforge.net/
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quantities or new functions of them to the class. The code is docu-
mented through use of Python docstrings, which are  embedded in 
the source and accessible through the interactive interpreter. Having 
the code documented in this way makes it easier for others to under-
stand and contribute to.

There are several properties of Python that make it well suited to 
this application. Many loops can be vectorised into a single opera-
tion acting on arrays which is implemented through the NumPy 
interface to a highly effi cient linear algebra library (ATLAS). When 
taking slices (extracting a single row or column) of a NumPy array, 
for example when determining the independent probabilities of the 
X variables, a new view is created, but points to the same original 
data. In contrast, in MATLAB, taking such a slice always results in 
the extracted row being copied in memory to a new array object. As 
discussed, the object-oriented nature of Python allows code reuse 
through inheritance. To give an example of the performance of the 
Pyentropy library, for the preparation of the data for the Plugin, PT 
and QE methods in Figure 1, the time taken using the Pyentropy 
library on a 2.4GHz Core 2 Duo laptop was 439 s. This includes 
data simulation for 50 trials at each sample size. The same task, 
using similar MATLAB code on an equivalent laptop was 987 s. 
There is also work in progress to extend the Pyentropy code with a 
more direct calculation of the core estimates in Cython. Cython is 
a language for writing C extensions to Python, and it shares a very 
similar syntax. This provides an easy way to quickly develop fast C 
modules to speed up the execution of Python code.

FINITE ALPHABET MAXIMUM ENTROPY SOLUTIONS
CORRELATIONS AND MAXIMUM ENTROPY MODELS
Simultaneous recordings of the activity of individual neurons 
placed within local networks in the central nervous system show 
that most pairs of neurons are weakly correlated: the probabil-
ity of observing simultaneous spiking is typically sightly – but 
 signifi cantly –  different to the product of the probability of observ-
ing the individual spikes (Averbeck et al., 2006; Mastronarde, 1983). 
These correlations are hypothesized by many investigators to be a 
fundamental part of the neural population code; they may con-
tribute, for example, by tagging the occurrence of particular salient 
stimulus combinations (Gray et al., 1989), or by constraining the 
number of possible network states so that the network may per-
form error corrections (Schneidman et al., 2006). Whatever the 
role of correlated fi ring, an observer of neural activity (either a data 
analyst or a downstream neural system) trying to assess the impor-
tance of correlated activity has to face a hard problem: correlations 
are diffi cult to sample because they are described by a number of 
parameters that increases exponentially with the number of cells 
considered. Therefore, it is important to establish whether it is 
possible to describe all correlations between neurons with a small 
number of parameters that preserve all the relevant features of 
the joint distribution of simultaneous responses. One way to fi nd 
compact representations of the correlation structure of response 
probability can be obtained by using the technique of maximum 
entropy (Montemurro et al., 2007b; Schneidman et al., 2003; Tang 
et al., 2008; Victor, 2006), as follows.

The question addressed by maximum entropy models is how 
well we can describe all interactions between all variables in terms 
of subsets of interactions between up to K variables only, or whether 

and to what degree higher order interactions are present and impor-
tant. The maximum entropy technique compares the measured 
response probability to one that takes into account all the observed 
interactions of up to K elements but does not impose any additional 
structure on the data. Measuring all interactions of up to K variables 
means measuring all the marginal response probabilities involving 
up to K variables. Therefore any probability matching the observed 
interactions of up to K elements must obey (apart from the usual 
non negativity and normalization constraints) the following lin-
ear constraints. Here we consider a response vector r = {r

1
,…, r

L
} 

of dimension L, with each variable r
i
 taking values from a fi nite 

alphabet A containing m elements.

P r P r
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(9)

Each line above denotes a family of constraints on a model 
distribution P

K
(r) enforcing equality of the marginal values of a 

given order to those of the true distribution P(r). These marginals 
are denoted by η with subscript indices representing the variables 
involved in the marginal and superscript indices the corresponding 
values. The ath order constraint applies for all unique combina-
tions of a variables, and every permutation of possible values that 
those variables can take. Thus the ath line above represents ma L

a( ) 
constraints, the product of permutations of a values with choices 
of a variables.

The probability distribution P
K
(r) with maximum entropy 

among those satisfying the above constraints is the one that does 
not impose the presence of any additional higher order correla-
tions or interactions between the variables. To choose a distribution 
with lower entropy would correspond to the assumption of some 
additional structure that we do not know; to choose one with a 
higher entropy would necessarily violate the constraints that we 
wish to enforce.

Following Amari (2001); Cover and Thomas (2006) it can be 
shown that there is a unique solution to the constrained maximum 
entropy problem, which can be written in the following exponential 
form:

PK i i

r r
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(10)

The set of indices i
1
,…,i

a
 label the subsets of a variables among 

the total L considered. The set of indices r ri ia1
, ,…  labels a specifi c 

set of values of these variables. The fi rst term in the sum is a fi nite 
alphabet Kronecker delta function which takes the value 1 when 
the variables of the argument specifi ed by the subscript indices take 
the values specifi ed by the superscript indices, and 0 otherwise. As 
with the marginal constraints, the second sum for each order is over 
all unique combinations of a variables and all permutations of a 
values that those variables can take; there are ma L

a( ) summands, and 
the same number of distinct θ coeffi cients of that order.
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In order to compute the maximum entropy distribution 
P

K
(r; θ) compatible with all the known interactions up to K-th 

order, we need to fi nd the θ coeffi cients with up to K indices to 
construct the solution above. These can be determined from the 
knowledge of the experimental η marginal probabilities of up to 
K elements through a set of algebraic equations, as detailed in 
the following section.

Previous applications of the maximum entropy approach have 
included temporal sequences of spiking activity, or multi-unit spik-
ing activity across a population, both of which are binary. This 
simplifi es the calculation of the maximum entropy solutions. The 
extension to a fi nite alphabet probability space is a signifi cant one, 
since it greatly increases the scope of possible applications for the 
method. For example, if larger time bins are used, there will some-
times be more than one spike occurring in each bin. At the moment 
these values are generally binarized, but using the fi nite alphabet 
method allows use of extended time bins, while keeping the effect 
of all spikes. It can therefore be used to investigate the effect of 
bursting. Similarly, the fi nite alphabet extension means the method 
can be applied to other data, such as LFPs (Belitski et al., 2008) 
or fMRI, which are inherently continuous but may be meaning-
fully quantised into a fi nite alphabet. It also allows investigation 
of the reverse problem, neural encoding, where one studies the 
properties of the stimulus, given that a response (such as a spike) 
as occurred.

In the following, we describe an implementation of the fi nite-
alphabet maximum entropy computation using Python. In analogy 
to Schneidman et al. (2003), we apply the maximum entropy calcu-
lation to P(r). However, the same procedure could be in principle 
applied to P(r|s).

AN ALGORITHM FOR FINITE-ALPHABET MAXIMUM 
ENTROPY SOLUTIONS
The key concept in the algorithm we use to obtain the maximum 
entropy solution is the idea of identifying a specifi c probability 
distribution using different coordinate systems. The most obvious 
way of characterising a discrete probability distribution is by speci-
fying the full list of probabilities for each element of the space. For 
example, if we have a fi nite alphabet response vector r = {r

1
,…,r

L
} 

as above, then there are mL possible values for r and so the prob-
ability distribution P(r) can be characterised by mL − 1 probability 
values, since one degree of freedom is removed by the normalisation 
constraint. These are called the p-coordinates. An alternative way 
of uniquely determining a probability distribution is by listing the 
marginal probability values. As mentioned in the previous  section, 
there are mk L

k( ) marginals containing of order k, so the collection of 
all marginals has ∑ = −=k

L k Lm mL
k1 1( )  elements. This way of describ-

ing the probability is called the η-coordinates. For the fi nal char-
acterisation of a probability distribution, we consider the form 
suggested by Eq. 10. Taking K = L, P

K
(r) = P(r) and Eq. 10 shows 

that any probability can be computed from the set of coeffi cients, θ. 
Again there are mk L

k( ) coeffi cients of each order k. θ
0
 is fi xed by the 

normalisation condition, so again we have mL − 1 numbers that 
uniquely identify the probability distribution. Expressing a prob-
ability distribution in this way is also known as the log-linear form, 
and the coeffi cients, θ are called the log-linear effects. Here we refer 
to them as the θ-coordinates.

A given probability distribution is represented in any of 
these coordinate systems by a vector of values. In the following 
p denotes a vector describing a probability distribution in the 
p-coordinates, η denotes a vector of η-coordinate values and θ 
a vector of θ-coordinates. The p vector is ordered so that the 
value of the vector at a given index represents the probability of 
the underlying state which, when interpreted as a length L base 
m word, has the decimal value of the index. This ordering was 
chosen since it is easy to convert between state values and vec-
tor indices using existing change of basis functions. The vector 
η = (η

1
, η

2
,…,η

L
) where η

i
 is the set of all marginals of order i and 

similarly θ = (θ
1
, θ

2
,…,θ

L
). The ordering of the vector within the 

subsets of different orders is arbitrary, however it is important that 
the subsets θ

i
 and η

i
 share the same ordering for each i.

These notions are rigorously developed in Amari (2001) using 
the framework of information geometry, in which the set of prob-
ability distributions on a given vector space are treated as a mani-
fold, and the properties of the coordinate systems described above 
are formalised.

Coordinate Transformations
An important step in the numerical method for obtaining the maxi-
mum entropy solution is the implementation of the transforma-
tions between the different coordinate systems described above for 
representing a probability distribution.

η–p transforms. The key transformation is that from p-coordinates 
to η-coordinates. This is a linear transformation which performs the 
summation of relevant probabilities for calculating the marginal. 
With the coordinates arranged in vectors, as described above, it can 
be expressed as

η = Ap (11)

where A is a square matrix containing binary values. Each row of A 
contains a 1 in the column for each p coordinate that contributes 
to that marginal. The inverse transformation, p coordinates from 
η coordinates is simply

p = A−1η (12)

The matrix A is invertible since it is square and all its constituent 
rows are linearly independent.

θ–p transforms. For the θ–p transformations, fi rst notice from 
Eq. 10 that in vector form p = +e ATθ θ

0 . This is because, for a given 
probability, the θ terms required are those corresponding to the 
non-zero elements of that specifi c state vector. Similarly, for a given 
probability, that probability will appear in the sum for the mar-
ginals corresponding to the same non-zero elements of the state 
vector. The marginals that a given probability appears in are given 
by the columns of the matrix A, so provided the θ vector is ordered 
in the same way as the η vector, the sum of θ terms required in 
the exponential of Eq. 10 for each probability is given by ATθ. By 
evaluating Eq. 10 for the zero state vector p P ri i

L
0 10= =( )={ }  we see 

that the constant factor in the log-linear model, eθ0, is in fact p
0
. 

From p = p e AT

0

θ
, it is trivial to obtain the following transformation 

from p coordinates to θ coordinates.
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θ = A−T [ln p − ln p
0
] (13)

The other direction is slightly more complicated, since for a 
closed expression for p we must compute p

0
 from the theta vector. 

The normalisation condition requires that ∑ + =p p0 1, since the 
vector p does not include the p

0
 value. Substituting the expression 

above gives p e p p eA AT T

0 0 0

1

1 1∑ + = ⇒ = + ∑( )−θ θ
, yielding

p =
+ ∑

e

e

A

A

T

T

θ

θ
1  

(14)

Numerical Optimisation
The advantages of the different coordinate systems described above 
are that they allow us to easily represent our constraints on the max-
imum entropy solution. From Eq. 9 fi xing interactions up to order 
K to those of the measured distribution corresponds to setting the 
low order η-coordinates of the maximum entropy solution equal 
to those of the measured distribution. From Eq. 10 the maximum 
entropy constraint is enforced by setting the high order compo-
nents of the θ-coordinates to zero. By enforcing these constraints 
simultaneously, we obtain a set of N simultaneous equations in N 
unknowns, where N mj

k j L
j= ∑ =1 ( ) is the number of coordinates up 

to order k. Again m is the size of the fi nite alphabet.
In the following η

k
 represents the N low order (up to order k) 

marginals of the sampled distribution. θ θk k
, + represent the low and 

high order theta coordinates of the maximum entropy distribution. 
p̌(·) denotes the coordinate transformation from θ to p coordinates 
from Eq. 14 and η̌

k
(·) denotes the coordinate transformation in 

Eq. 11 but with only the low order marginals returned. Setting the 
high order theta’s, θ

k+ , to zero ensures that there are no higher order 
interactions. It is then possible to fi nd the low order theta’s that pro-
duce the same low order marginals as the sampled distribution, η

k
. 

These low order theta’s, θk , completely characterise the maximum 
entropy distribution. In vector form the equations are:

η
k
 − η̌

k
[p̌ ( , )]θ θk k+ = =0 0 (15)

Once the θk are determined by numerically solving the equa-
tion above, one can convert back to p-coordinates to obtain the 
corresponding maximum entropy distribution and calculate its 
entropy.

PYTHON IMPLEMENTATION
Initially the method described above was implemented in 
MATLAB. Later, the same algorithm was converted to Python 
with NumPy and SciPy. This was both because we were having 
performance issues with MATLAB in the fi nite alphabet case, 
and partly as a way to evaluate Python as a platform for our 
work. This gives the opportunity to make comparisons between 
the two systems. However, as well as moving the code to Python, 
we continued to develop and improve the algorithms, making it 
diffi cult to provide rigorous performance comparisons between 
the two systems. Instead we hope to provide an overview of our 
experiences and impressions of using Python in an ongoing 
research project.

A major difference in the code between the two systems is 
the structure of the program. In MATLAB the notion of the 

global workspace was exploited. Here a setup script is used to 
defi ne the coordinate transformation functions in the global 
workspace, from where they can be easily called by other scripts 
or used to interactively investigate data. In Python, an object-
oriented approach was taken featuring two main classes. The 
fi rst of these, AmariSolve, contains the parameters related to 
the underlying probability distribution, the required coordinate 
transformations and the code for performing the numerical 
solution. This is initialised with two parameters, the number 
of variables and the fi nite alphabet of each variable, since this is 
the only information required to implement the solution. The 
second class, AmariSystem, contains the data related to a spe-
cifi c system being studied, and contains the sampled probability 
distributions, calculated maximum entropy distributions and 
associated entropies. In this way the data independent analysis 
code is separated from the system specifi c code and data – the 
idea being that a single AmariSolve instance can be used on 
different data sets, providing the dimensions of the probability 
space are the same. It was found this approach gave much more 
fl exibility than the global workspace, which could be confusing 
to manage during development, for example by requiring a full 
copy of the setup script to be maintained for every change to the 
algorithm investigated.

A key step in the implementation of the algorithm is the genera-
tion of the matrix A which provides the transformation between 
probabilities (p-coordinates) and marginals (η-coordinates). A 
recursive function is used in a loop over each order, to compute 
the elements of A row by row. The code implements the long-
hand approach used for manual calculation of smaller matrices. 
The idea is that each marginal is the sum over all variables not 
fi xed by the specifi cation of the marginal. For each order a vec-
tor called terms is created which contains all base m words of 
length L − o, where o is the order being considered. Then for each 
marginal, if columns of the appropriate value are inserted into 
the appropriate position in the terms array, the result contains 
a row for each probability state included in that marginal. These 
are converted to decimal, which directly gives the index in the 
probability vector, and the corresponding columns in A are set 
to 1. To cover the different marginals, fi rst the alphabet value and 
then the position is looped over. For orders higher than one, this 
process is recursive, so the fi rst alphabet value is looped over, then 
within that the fi rst position, then within that the second alphabet, 
then the second position and so on. This transformation matrix 
can be very large since its dimensions are the dimensions of the 
full probability space. However, it is highly sparse in structure, 
so in both implementations the provided sparse array construct 
was used to reduce the amount of memory required. In SciPy, 
the sparse array module is very fl exible, providing a number of 
formats and datatypes. The advantage of this was that the binary 
matrix A could be stored as a sparse array of 8-bit integers in SciPy, 
which provided a factor of eight memory saving over the 64-bit 
double which is the only type the MATLAB sparse matrix supports. 
Equations 12 and 13 show that some coordinate transformations 
require inversion of the matrix A. Although this is not required 
directly for the computation of the maximum entropies, it was 
frequently useful while investigating properties of the system and 
of the different maximum entropy solutions. SciPy offers a very 
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fl exible direct interface to the UMFPACK7 library of sparse solv-
ers (Davis, 2004), that allowed us to easily pre-factor the matrix 
and store the results allowing rapid calculation of the coordinate 
transforms when needed.

The numerical optimisation step is very similar in both imple-
mentations, using the fsolve function of the respective system. 
In MATLAB a Gauss–Newton method was used, while in SciPy 
fsolve is a wrapper around the MINPACK (Moré et al., 1999) 
hybrd algorithm which implements a modifi cation of the Powell 
hybrid method. Both of these methods performed similarly. The 
function that the optimiser runs is the same in both implemen-
tations and this is a direct implementation of the left hand side 
of Eq. 15; the Python version is shown below. Here Asmall is a 
subset of the transformation matrix A containing only the rows 
required and Bsmall is the transpose of this. Asmall is extracted 
from A using the slice operator, for example in Python, Asmall = 
A[:l, :]. Python again provides a signifi cant advantage here in 
terms of memory used. In MATLAB, any such slice results in a 
copy of the data. However, with NumPy, the slice results in a view 
of the original data. Similarly, in NumPy the transpose is also a 
view, with a different starting point and striding, but the same data 
buffer as the original array. In MATLAB the transpose operation 
also produces a copy.

defdef solvefunc(self, theta_un, Asmall, Bsmall, eta_sampled):
   b = np.exp(Bsmall.matvec(theta_un))
   y = eta_sampled( Asmall.matvec(b)/(b.sum() + 1) )
   return   return y

As the method was developed and applied to increasing large 
probability spaces, it became clear that the limiting factor for these 
more challenging parameter sets was the memory usage rather than 
the computation time. The Python implementation was therefore 
optimised to reduce the memory usage.

This enhancement was simplifi ed by using the object-oriented 
features of Python. New classes were created which inherited from 
AmariSolve and AmariSystem described above. It was then pos-
sible to change only the required functions, for example the matrix 
generation routine, to stop at the required row. This minimised 
the other changes and duplication of code. Also, developing in this 
way meant very few changes were required to the analysis scripts to 
take advantage of this change – in most cases a simple substitution 
of the class name at the top of the script was enough to use the 
new method. One of the memory optimisations was to produce 
the matrix A in smaller blocks, writing the rows and columns of 
the non-zero elements directly to fi les on disk to reduce memory 
overhead. Once this procedure was completed a sparse matrix in 
coordinate (COO) format could be generated directly from these 
fi les, and then converted to compressed sparse column (CSC) 
format for effi cient matrix-vector multiplication. This is another 
example of where good results were obtained by using low level 
features that would not have been available in MATLAB.

As an example of the relative performance of Python and 
MATLAB, maximum entropy solutions of up to second order were 
computed for a system with n = 4, m = 9 (four variables each taking 
1 of 9 values). The MATLAB code took 17 s with a peak resident 

memory usage of 340 MB and the Python code took 12 s with a 
peak resident memory usage of 110 MB. These results are typical of 
our experience across a range of parameter values. The numerical 
optimisation routine took almost exactly the same time in both 
systems, with the difference being due to the improved performance 
of the sampling of the probability distributions in Python. This is 
likely to be due to the reduced amount of data copying needed with 
NumPy when using slicing and other array operations.

In conclusion, for the development of this technique the use 
of Python with NumPy and SciPy libraries as an alternative to 
MATLAB was highly successful. The computational speed was very 
similar, but using NumPy allowed us to reduce the memory require-
ment by around two-thirds. This is important, because as described 
above, memory usage was the limiting factor restricting the size of 
the probability space over which the analysis could be performed. As 
well as the vectors representing the actual probability distribution, 
the sparse matrix A must be calculated and held in memory. The 
ability to use an 8-bit integer for this binary matrix with Python 
provided a factor of 8 memory saving over the MATLAB equiva-
lent. More signifi cantly, the algorithm requires extraction of the 
submatrix of up to the relevant order, and the transpose of that, 
which in MATLAB consists of copies (meaning for each order the 
data is copied in memory three times, once for the full matrix A, 
once for the extracted Asmall for the given order, and once for 
the transpose thereof, Bsmall). As an example, this meant that 
on a workstation with 2 GB of RAM the largest binary probability 
space that could be analysed up to order 3 was 12 variables for the 
MATLAB implementation, but 18 variables for the Python version. 
It is also worth noting that, while being similar to MATLAB, the 
Python language is a great pleasure to work with.

Example of application to thalamic neural recordings
To illustrate the application of maximum entropy techniques, 
here we compute maximum entropy models from a neuron in 
the ventro posterior medial nucleus (VPm), which is the principal 
whisker-related relay nucleus in the rat thalamus. Using extracellu-
lar microelectrodes, we recorded the responses of single VPm units 
in anaesthetised rats whose whiskers were mechanically stimulated 
with a piezoelectric wafer driven by a low-pass fi ltered white noise 
(see Montemurro et al., 2007a, for details). We used two types of 
white noise stimulation. The fi rst sequence was identical on every 
trial (repeated stimulus); the second was independently gener-
ated on every trial (non-repeated stimulus). Figure 2B shows a 
raster plot of the spikes fi red by a single neuron in response to 
70 repetitions of the stimulus in Figure 2A. As previously reported 
(Montemurro et al., 2007a; Petersen et al., 2008), VPm responses to 
white noise were highly repeatable and temporally precise. An infor-
mation theoretic analysis of these data revealed that these neurons 
convey information at sub-ms temporal precision (Montemurro 
et al., 2007a) and that there are correlations between the times of 
individual spikes. One source of correlation came from the refrac-
toriness of neurons, and another source of correlation came from 
their tendency to fi re spikes in bursts (Montemurro et al., 2007a). 
An important question is whether these correlations between the 
times of spikes emitted by the same neuron have a signifi cant impact 
on the information and entropy of the neural spike train, and if 
these correlations can be described by simple pairwise models or if 7http://www.cise.ufl .edu/research/sparse/umfpack/
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they rather need a complex, high order characterization. Here we 
will address these questions by using maximum entropy models 
which, as explained above, provide a natural framework to study the 
impact of different orders of correlation to spike train entropy and 
information. Previous studies employing maximum entropy have 
focussed mainly on correlations across a population of neurons 
(Schneidman et al., 2006; Shlens et al., 2006). Here, we extend this 
study to focus on correlations in time between spikes of a single 
neuron. This is interesting because fi nding a compact maximum 

entropy representation of within cell correlations is an important 
step towards understanding spike timing codes and representing 
them effi ciently (Nirenberg and Victor, 2007; Tang et al., 2008).

We discretized the time into small bins of size Δt = 4 ms and 
quantifi ed the response of the considered VPm neuron as a binary 
sequence of 1’s and 0’s (spikes or silence in that bin respectively), 
characterising the neural response r as non-overlapping binary 
words of length L extracted from this signal. We then consid-
ered the probability of response P(r) in response to all patterns of 
whisker stimulation obtained from the non-repeated white noise 
sequences, and we compared its entropy to that of the maximum 
entropy probability P

K
(r) at level K (K = 1,…,3) and to the entropy 

of the true distribution. Results are reported in Figure 3. We found 
that the lowest order model (K = 1, which considers spikes in each 
bin as independent from each other) provides an entropy very 
close to that carried by higher order probability models. The dif-
ference between lower and higher order entropies becomes pro-
portionally larger as the length L of the binary word increases. 
However, differences remain small: for L = 14, the difference 
between the independent-model, K = 1 entropy and the true one 
remain within 3%. This suggests that the spike train could be 
quantitatively well described even by a simple model that ignores 
correlations between spikes at different time bins. It should be 
noted that in the Python implementation of this calculation, the 
limit on the maximum number of time bins L and the order K that 
could be analysed was set by the number of trials available and 
the effectiveness of the sampling bias corrections implemented, 
whereas in the corresponding MATLAB implementation the limit 
was reached when the available memory was consumed. For a 
binary system as described here that limit was L = 12, K = 2 on 
our workstation. This highlights the advantages of Python for 
these implementations.

It should be noted that while we are applying the analysis here to 
data from a single cell, the computational challenge is determined 
solely by the dimension of the underlying probability space. In 
this case, the largest underlying probability space considered has a 
dimension of 214 which is computationally equivalent to the case of 
the binary response of 14 simultaneously recorded neurons.

A

B

FIGURE 2 | Responses of a VPm neuron to white noise vibrissa 

stimulation. (A) Vibrissa position as a function of time in units of stimulus SD 
(1 SD = 70 µm). (B) Spikes fi red by the neuron in response to 70 repetitions of 
the stimulus shown in (A).

A B C

FIGURE 3 | Response entropy of a VPm neuron to white noise vibrassa 

stimulation. The full response entropy [H(R) denoted H in the fi gure] is shown 
together with that of maximum entropy models preserving fi rst [H(1)], fi rst and 

second [H (2)] and up to third order [H (3)] marginal densities. The response is 
treated as non-overlapping words of length 6 (panel A), 10 (panel B) and 14 
(panel C) bins, with each bin of 4 ms duration.
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COLLABORATIVE COMPUTING
There is a growing trend in neuroscience towards the development 
and use of collaborative computing services. These are multi-user 
systems, accessed over the internet which provide computational 
resources while facilitating interaction between users. This is a 
natural evolution for the fi eld, as rapid advances in physiologi-
cal techniques of many kinds result in data sets of increasing size 
and with an associated proliferation of analysis tools of increasing 
complexity. The idea is to provide an environment to foster collabo-
ration, especially between experimentalists and theoreticians, by 
providing databases of experimental results, and online analytical 
tools for application to those data.

The fi eld of bioinformatics has pioneered the development of 
such systems, which are now well established and playing an impor-
tant role. However, implementing such systems for neuroscience 
presents some challenges not faced by the bioinformatics commu-
nity. The greatest of these is the volume and variety of experimental 
data. While traditional bioinformatics services tend to process data 
as strings – which is partly why the Perl programming language 
still underpins much bioinformatics analysis – in neuroscience we 
deal with large sets of binary data in a variety of different formats. 
This presents diffi culties for the decentralised model of separately 
provided and hosted services that has become popular in the bio-
informatics community. This data requires signifi cant contextual 
detail, or metadata, to be useful and is large enough to make the 
sharing of terabytes of data between labs a signifi cant issue. It there-
fore seems that neuroscience requires a stronger organisational 
structure for these systems, to facilitate easier interoperability of 
data and provide security and access control.

The adoption of Python is highly advantageous in this context. 
The Python language is fl exible, extensible and runs on a wide range 
of platforms. It also has the fast array mathematics crucial for neuro-
science work, which are not available in languages such as Perl, which 
have been traditionally used for bioinformatics services. Like Perl 
though, it is a dynamic interpreted language, which simplifi es the 
deployment of code on distributed systems. It has a similar syntax to 
MATLAB, the established standard in the fi eld, and although there 
are no automated tools, translating code and algorithms from one 
to the other is relatively straightforward. Unfortunately it is diffi cult 
to use MATLAB to provide these kinds of multi-user services due to 
licensing restrictions. We are working on adapting our information 
theoretic techniques for use in systems of this type, and this was one 
of the factors that infl uenced our decision to investigate Python.

The Code, Analysis, Repository and Modelling for e-Neuroscience 
(CARMEN)8 project is a consortium effort to create a virtual 
laboratory for neurophysiology (Gibson et al., 2008), and is one 
example of project attempting to provide a centralised organisa-
tional structure for collaborative computing in neuroscience, as 
discussed above. CARMEN is an e-Science Pilot Project funded 
by the Engineering and Physical Sciences Research Council (UK) 
and involves investigators from 11 UK universities.

The goals of the CARMEN project are to create a decentralised 
computing resource used by experimentalists and theoreticians 
alike; a repository for both experimental data and analysis code that 

can be made available to all users of the system. We are working 
to provide our Python-based information theoretic algorithms as 
“services” on the CARMEN system. Providing such packaged serv-
ices as modules that can be used in easy to construct “workfl ows” 
has many advantages. It allows easy comparison of different analyti-
cal techniques on the same dataset, as well as allowing application 
of a given technique to a number of different datasets that might 
otherwise be hard to obtain or convert to a suitable format. It allows 
application of the techniques of information theory by experi-
mentalists and others who may otherwise lack the mathematical 
background, programming skills or inclination to implement such 
techniques by hand from the literature. It should also allow better 
reproducibility of published results, as well as providing a substan-
tial computational resource allowing calculations that could be too 
time consuming for a user to perform on a desktop computer.

PYTHON WEB SERVICES
A “web service” is “a software system designed to support inter-
operable machine-to-machine interaction over a network”9. Web 
services are well suited to collaborative computing services, and 
they have been proven as a successful model for e-Science through 
their use in the bioinformatics community. They are also used as the 
foundation of the analysis code in the CARMEN project described 
above. Web services are operating system, location and language 
neutral. This is exploited in CARMEN to allow dynamic deploy-
ment of services to different computational nodes, and also sim-
plifi es the use and integration of analysis code written in a range 
of languages.

There are a number of standards governing the behaviour of 
web services, largely provided by the World Wide Web Consortium 
(W3C), which are required to allow them to interact. The fact that 
these standards are vendor neutral has enabled them to gain trac-
tion where previous attempts to provide interoperable services has 
failed. Simple Object Access Protocol (SOAP)10 is a standard XML 
based messaging format used to pass data and parameters to an 
analysis service, and then receive the results back. All clients and 
web services are capable of passing and decoding SOAP messages. 
The other pivotal standard is that of the Web Services Description 
Language (WSDL)11, an XML document for the description of a 
web service; that is the method calls it provides, the arguments they 
require and the results they return. The WSDL that represents a web 
service is suffi ciently informative to allow automatic generation of 
clients capable of binding to the service.

As part of our work we are making the information theoretic 
techniques that we are developing available as web services, for 
use in CARMEN and similar systems. Python greatly eases this 
process. We can create a Python-based service for a specifi c informa-
tion theoretic task simply by importing our information theoretic 
library and calling the appropriate function with the appropri-
ate arguments. This reduces code repetition, and the fl exibility 
and simplicity of the Python module system makes the process 
easy to manage. For example, if the algorithmic code was actually 

9http://www.w3.org/TR/ws-gloss/
10http://www.w3.org/TR/soap/
11http://www.w3.org/TR/wsdl8http://www.carmen.org.uk/
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included in the service programs, this would exist in every service 
performing an information theoretic calculation with a copy on 
every node to which the service had been deployed. By having a 
library with a consistent API, this can be updated in a single place 
on each computational node without having to change any of the 
existing services.

Once there is a Python script to perform the required task, it is 
necessary to “wrap” it to create a web service. There are a number 
of toolkits to do this including the Python native Zolera SOAP 
Infrastructure (ZSI) and SOAPpy. However, the method we have 
been using is InstantSOAP12 a generic toolkit capable of expos-
ing legacy applications as web services. Initially, we have created 
Python scripts that run as command line applications. This is 
straightforward since Python includes an excellent tool for easily 
parsing command line options. InstantSOAP provides a native 
command line processor to wrap any command line application 
into a web service through the creation of a single XML fi le. 
Work is currently in progress to extend InstantSOAP to natively 
support Python services, allowing direct deployment of a Python 
function as a web service, without requiring the developer to 
understand the web services stack, a signifi cant barrier to entry 
in developing web services in any language. Python’s licensing 
model is also important in the deployment of distributed serv-
ices; MATLAB suffers from licensing restrictions for collaborative 
deployment. This makes it harder both to provide open services 
to a large number of users and to employ the dynamic deploy-
ment architecture through which code may run on a number of 
computational nodes. For example, whilst CARMEN is capable of 
providing MATLAB web services, it is through compiled MATLAB 
scripts, supported by the MATLAB runtime environment, and has 
no native interface to MATLAB per se, adding additional complex-
ity to the procedure of creating, deploying and managing web 
services. There are also a number of ongoing technical challenges 
related to running the compiled MATLAB binaries within the web 
service environment.

DISCUSSION
In modern neuroscience a growing challenge is handling and inter-
preting increasingly large volumes of physiological data of many 
different types. To face this challenge computational techniques are 
becoming more and more important. We have described informa-
tion theory, which is one such technique that is particularly suited 
to the challenges posed by neurophysiological datasets, and can 
provide valuable insights into neural coding and the function of 
the nervous system.

Information theory provides a natural framework to study 
communication in most systems, and the brain is no exception. An 
obstacle to a wider spread of its use among sensory neurophysi-
ology laboratories has been the technical diffi culties associated 
with its calculation (mostly the problem of bias corrections) and 
the lack of well defi ned, cross-platform packages that can handle 
generic datasets. The work presented in this paper is an attempt 
to address this limitation and provide the neuroscience commu-
nity with open source packages that allow unbiased  calculation 

of information from various types of neural data, from spikes to 
fi eld potentials. The use of Python helps to develop fl exible tools 
that can easily be applied or extended (because of the fl exibility 
of the Python language) to handle different types of neurophysi-
ological signals (because of the ability to manage memory effi -
ciently) and to different data formats (because of the ability of 
Python to easily read a variety of data formats commonly used 
in neuroscience).

We have also described a current area of intensive research on 
neural coding; namely a new implementation for computing solu-
tions of maximum entropy given marginal constraints. Although 
the example presented in Figure 3 was on a binary data space, the 
ability of the code to support fi nite alphabet probability spaces is 
signifi cant and allows the application of the maximum entropy 
technique to a wide range of new areas. In our own experience 
with simulated data (results not shown here, but partly reported in 
Lüdtke et al., 2009), using the Python implementation described 
here we were able to solve maximum entropy solutions of order 
2 on spaces of up to 7 variables quantised to 9 levels (a probability 
space with dimension ∼4.7 m) on a well-equipped workstation 
in a reasonable amount of time (∼1 day). This was a dramatic 
improvement over what we were initially able to achieve with the 
MATLAB version of code; indeed the MATLAB version would 
have been unable to solve for a system of that size due to memory 
limitations. Other potential fi nite alphabet applications include 
analysis of quantised naturally continuous signals, such as LFP or 
fMRI as well as opening the possibility of studying the interactions 
between the stimulus features encoded by spiking responses, where 
instead of response given stimulus we consider the properties of 
the stimulus given a response.

Looking to the future of inter-disciplinary science, we have con-
sidered the possibilities offered by collaborative computing services 
based on grid or cloud architectures. While such systems have been 
developed for use in other areas, neuroscience poses some unique 
challenges. We have outlined our work as part of the CARMEN 
project, which hopes to address these challenges and provide a 
valuable service for storage, processing and analysis of electrophysi-
ological data. We are developing information theoretic analysis 
tools as web services, which will make them available to greater 
range of practitioners, and hopefully increase their use within the 
neuroscience community.

The development of analysis tools like the ones discussed 
here has potentially signifi cant implications for the refi nement, 
reduction and replacement (3R) of animals in research. In our 
specifi c case, the opportunity to easily run information analysis 
on a number of different existing datasets (which as discussed, 
is facilitated by Python) maximizes the probability of obtaining 
new insights into neural codes without the need to sacrifi ce new 
animals. The free availability of advanced routines for calculation 
of bias-corrected information estimates offers neurophysiologi-
cal laboratories the possibility of reliably computing informa-
tion from a smaller number of trials, thereby maximizing the 
potential to record from multiple sites in the same animal and 
thus reducing the total number of animals needed for statisti-
cal signifi cance. The ability of the code to adapt to the different 
types of neural signals that can simultaneously be extracted from 12http://instantsoap.sourceforge.net/
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the extracellular signal also increases the amount of information 
that can be obtained without increasing the invasiveness of the 
recording procedures.

We have found signifi cant advantages to using Python for all 
of the work described above. As discussed, we have found it well 
suited both to reimplementing existing techniques for exposure to a 
wider audience, as open-source packages and hosted computational 
services, and to the research and development of new techniques 
and algorithms. Together with the excellent interactive environ-
ment IPython13, it provides much of the power available from low 
level C coding with a numerical library, but with greatly reduced 
complexity and development time. For example, a major advantage 
for our maximum entropy application was the way we were able to 
fi ne tune the use of the sparse matrix structures. The interactive 
nature, familiar to users of MATLAB, is crucial to aid research, 
both in terms of investigation of data as well as development of 
algorithms. Compared to MATLAB, we have seen performance 
increases in moving our code to Python, particularly related to 
memory management in the case of our more demanding algo-
rithms. In addition, increased productivity and code manageability, 
for example from the ability to use object-oriented programming 
techniques, speed development and ease collaboration with other 
researchers.

We have experienced few problems with migrating our code 
from MATLAB. We have been able to easily access existing data 
stored in .MAT fi les and also to smoothly translate code. It is 
even possible to call MATLAB from Python, through the mla-
bwrap module14, which we have used to run existing MATLAB 
code provided by colleagues for preprocessing data. Initially the 
required packages were diffi cult to install, requiring compilation 
from source of a range of packages with complicated depend-
encies. Actually getting the software installed was therefore the 
greatest challenge when we began using Python. However, since 
then, the community has done a lot of work in improving this 
process, and there are now regular binary releases of all the impor-
tant components, as well as a number of projects that distribute 
a complete scientifi c tool chain with all required components 
through a common installer15. Another challenge was adapting 
to the pass by reference semantics of Python rather than the pass 
by value style of MATLAB, as well as adapting to 0 based index-
ing. However, once these mental adjustments had been made we 
found ourselves more productive with Python than we were with 
MATLAB. Other disadvantages of Python are that the documenta-
tion of the included functions, while still available interactively, 
is not as comprehensive as that provided with MATLAB and the 
plotting functionality provided by matplotlib, is not quite as 
easy to use or well developed as the MATLAB version, especially 
with regard to 3D plotting.

We have been able to easily provide our Python code as web serv-
ices, for integration into collaborative systems such as CARMEN, 
without requiring a signifi cant time investment to adjust or tune 

the code for this purpose. In fact, Python is an excellent fi t for 
projects such as CARMEN. It provides the fl exibility of dynamic 
interpreted languages such as Perl, that have traditionally been 
used to provide services in systems of this type, while includ-
ing the fast array mathematics that are crucial for the effi cient 
analysis of neurophysiological data. It is diffi cult to use MATLAB 
in systems such as this, due to licensing restrictions which pose 
problems, both for allowing multiple users to access the service, 
and for running the service on different nodes in a grid infrastruc-
ture. Obviously, with Python being open source, there are no such 
issues. The benefi ts of open source extend beyond collaborative 
computing projects however; there is a compelling open-access 
argument for avoiding expensive proprietary software in published 
scientifi c work.

So far we have only scratched the surface in terms of what is 
available in the Python ecosystem that could be of benefi t for our 
work. The extensive collection of modules available for Python allow 
great fl exibility, for example making it much easier to develop GUI 
interfaces and handle a wide variety of data formats. There are also 
several methods to easily extend Python code with natively com-
piled C extensions, to increase the performance of critical sections 
of code, while still allowing the interactive use and rapid devel-
opment of Python. We are currently focussed on optimising our 
information theoretic codes through the use of Cython16, which 
we are fi nding signifi cantly easier to use and less error prone than 
the MATLAB equivalent (the MEX interface). Another area we are 
actively investigating in the use of parallelism. In many cases our 
problems are embarrassingly parallel, for example calculating infor-
mation theoretic bias-corrected quantities over a number of data 
sets or computing maximum entropy solutions of different orders 
and conditional distributions. A number of open source solutions 
exist for parallel computing with Python, and we are investigating 
using these features of IPython to easily distribute these types of 
jobs to available machines.

SUPPLEMENTARY MATERIAL
The Python library for information theoretic estimates described 
in Section “A Python Library for Information Theoretic Estimates”, 
including code for producing Figure 1, can be found at http://code.
google.com/p/pyentropy/. The code for obtaining the fi nite alpha-
bet maximum entropy solutions can also be found on that page. 
This code is provided as Supplementary Material on the condi-
tions that (1) the authorship of the software shall be acknowledged, 
(2) the present article shall be correctly cited in any publication that 
uses results generated by the software, (3) any publication that uses 
results generated by our software shall correctly cite the original 
articles (cited in this paper) which developed any bias correction 
methods used.
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13“An enhanced interactive Python shell and architecture for interactive parallel 
computing”, http://ipython.scipy.org/ (Perez and Granger, 2007)
14“A high-level Python to MATLAB bridge”, http://mlabwrap.sourceforge.net/
15See for example http://www.pythonxy.com/ and http://www.enthought.com/pro-
ducts/epd.php 16The Cython language, “C extensions for Python”, http://cython.org/

146

http://code.google.com/p/pyentropy/
http://ipython.scipy.org/
http://mlabwrap.sourceforge.net/
http://www.pythonxy.com/
http://www.enthought.com/products/epd.php
http://cython.org/


Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 | 

REFERENCES
Amari, S. I. (2001). Information geom-

etry on hierarchy of probability 
 distributions. IEEE Trans. Inf. Theory 
47, 1701–1711.

Arabzadeh, E., Panzeri, S., and 
Diamond, M. E. (2004). Whisker 
vibration information carried by rat 
barrel cortex neurons. J. Neurosci. 24, 
6011–6020.

Averbeck, B. B., Latham, P. E., and 
Pouget, A. (2006). Neural correlations, 
population coding and computation. 
Nat. Rev. Neurosci. 7, 358–367.

Belitski, A., Gretton, A., Magri, C., 
Marayama, Y., Montemurro, M. A., 
Logothetis, N. K., and Panzeri, S. 
(2008). Low-frequency local field 
potentials and spikes in primary 
visual cortex convey independent 
visual information. J. Neurosci. 28, 
5696–5709.

Borst, A., and Theunissen, F. E. (1999). 
Information theory and neural cod-
ing. Nat. Neurosci. 2, 947–957.

Cover, T. M., and Thomas, J. A. (2006). 
Elements of Information Theory, 
2nd Edn. Hoboken, NJ, John Wiley 
& Sons.

Dan, Y., Alonso, J. M., Usrey, W. M., and 
Reid, R. C. (1998). Coding of visual 
information by precisely correlated 
spikes in the lateral geniculate nucleus. 
Nat. Neurosci. 1, 501–507.

Davis, T. A. (2004). Algorithm 832: 
UMFPACK V4. 3 – An unsymmet-
ric-pattern multifrontal method. ACM 
Trans. Math. Soft. 30, 196–199.

de Ruyter van Steveninck, R., Lewen, G., 
Strong, S., Koberle, R., and Bialek, W. 
(1997). Reproducibility and variabil-
ity in neural spike trains. Science 21, 
1805–1808.

Fuhrmann Alpert, G., Sun, F. , 
Handwerker, D., D’Esposito, M., and 
Knight, R. (2007). Spatio-temporal 
information analysis of event-related 
BOLD responses. Neuroimage 34, 
1545–1561.

Gibson, F., Austin, J., Ingram, C., 
Fletcher, M., Jackson, T., Jessop, M., 
Knowles, A., Liang, B., Lord, P., 
Pitsilis, G., Periorellis, P., Simonotto, J., 
Watson, P., and Smith, L. (2008). The 
CARMEN Virtual Laboratory: Web-
Based Paradigms for Collaboration 
in Neuroscience. 6th International 
Meeting on Substrate-Integrated 
Microelectrodes. Reutl ingen, 
Germany.

Gray, C. M., Konig, P., Engel, A. K., 
and Singer, W. (1989). Oscillatory 
responses in cat visual cortex exhibit 
inter-columnar synchronization 
which refl ects global stimulus prop-
erties. Nature 338, 334–337.

Hatsopoulos, N. G., Ojakangas, C. L., 
Paninski, L., and Donoghue, J. P. 

(1998). Information about  movement 
direction obtained from synchro-
nous activity of motor cortical 
neurons. Proc. Natl. Acad. Sci. 95, 
15706–15711.

Hausser, J., and Strimmer, K. (2008). 
Entropy  inference  and the 
James–Stein estimator. Preprint, 
arXiv:0811.3579v1.

Honey, C. J., Kotter, R., Breakspear, M., 
and Sporns, O. (2007). Network 
structure of cerebral cortex shapes 
functional connectivity on multiple 
time scales. Proc. Natl. Acad. Sci. 104, 
10240–10245.

Jones, E., Oliphant, T., Peterson, P., et al. 
(2001). SciPy: Open Source Scientifi c 
Tools for Python. URL http://www.
scipy.org/

Latham, P. E., and Nirenberg, S. (2005). 
Synergy, redundancy, and independ-
ence in population codes, revisited. 
J. Neurosci. 25, 5195–5206.

Lüdtke, N., Ince, R. A. A., Brown, M., 
Kell, D. B., and Panzeri, S. (2009). A 
comparative evaluation of entropy 
and variance based methods for sen-
sitivity analysis. In Preparation.

Mastronarde, D. N. (1983). Correlated 
fi ring of cat retinal ganglion cells. I. 
Spontaneously active inputs to X- and 
Y-cells. J. Neurophysiol. 49, 303–324.

Miller, G. A. (1955). Note on the bias of 
information estimates. In Information 
Theory in Psychology: Problems and 
Methods, H. Quastler, ed. (Glencoe, 
Ill, Free Press), pp. 95–100.

Montemurro, M. A., Panzeri, S., 
Maravall, M., Alenda, A., Bale, M. R., 
Brambilla, M., and Petersen, R. S. 
(2007a). Role of precise spike tim-
ing in coding of dynamic vibrissa 
stimuli in somatosensory thalamus. 
J. Neurophysiol. 98, 1871–1882.

Montemurro, M. A., Senatore, R., and 
Panzeri, S. (2007b). Tight data-robust 
bounds to mutual information com-
bining shuffling and model selec-
tion techniques. Neural Comput. 19, 
2913–2957.

Montemurro, M. A., Rasch, M. J., 
Murayama, Y., Logothetis, N. K., and 
Panzeri, S. (2008). Phase-of-firing 
coding of natural visual stimuli in 
primary visual cortex. Curr. Biol. 18, 
375–380.

Moré, J., Garbow, B., and Hillstrom, K. 
(1999). Minpack. URL http://www.
netlib.org/minpack

Nemenman, I., Bialek, W., and de Ruyter 
van Steveninck, R. (2004). Entropy 
and information in neural spike trains: 
progress on the sampling problem. 
Phys. Rev. E 69, 56111.

Nemenman, I., Shafee, F., and Bialek, W. 
(2002). Entropy and inference, revis-
ited. Adv. Neural. Inf. Process. Syst. 14, 
95–100.

Nirenberg, S., and Victor, J. (2007). 
Analyzing the activity of large 
 populations of neurons: how tractable 
is the problem? Curr. Opin. Neurobiol. 
17, 397–400.

Panzeri, S. (1999). Correlations and 
the encoding of information in the 
nervous system. Proc. R. Soc. B 266, 
1001–1012.

Panzeri, S., Magri, C., and Logothetis, N. 
(2008). On the use of information 
theory for the analysis of the rela-
tionship between neural and imag-
ing signals. Magn. Reson. Imaging 26, 
1015–1025.

Panzeri, S., Petersen, R., Schultz, S., 
Lebedev, M., and Diamond, M. (2001). 
The role of spike timing in the coding 
of stimulus location in rat somatosen-
sory cortex. Neuron 29, 769–777.

Panzeri, S., Senatore, R., Montemurro, M., 
and Petersen, R. (2007). Correcting 
for the sampling bias problem in 
spike train information measures. 
J. Neurophysiol. 98, 1064–1072.

Panzeri, S., and Treves, A. (1996). 
Analytical estimates of limited sam-
pling biases in different information 
measures. Netw. Comput. Neural Syst. 
7, 87–107.

Perez, F., and Granger, B. (2007). Ipython: 
a system for interactive scientifi c com-
puting. Comput. Sci. Eng. 9, 21–29.

Pe te r s e n ,  R . ,  B r a m b i l l a ,  M . , 
Bale, M., Alenda, A., Panzeri, S., 
Montemurro, M., and Maravall, M. 
(2008). Diverse and temporally pre-
cise kinetic feature selectivity in the 
VPm thalamic nucleus. Neuron 60, 
890–903.

Petersen, R., Panzeri, S., and Diamond, M. 
(2001). Population coding of stimulus 
location in rat somatosensory cortex. 
Neuron 32, 503–514.

Pola, G., Thiele, A., Hoffmann, K., and 
Panzeri, S. (2003). An exact method 
to quantify the information transmit-
ted by different mechanisms of corre-
lational coding. Netw. Comput. Neural 
Syst. 14, 35–60.

Rieke, F., Bialek, W., Warland, D., and 
Van Steveninck, R. (1999). Spikes: 
Exploring the Neural Code. Bradford 
Book. Cambridge, MA, MIT Press.

Rubino, D. , Robbins, K. , and 
Hatsopoulos, N. (2006). Propagating 
waves mediate information transfer 
in the motor cortex. Nat. Neurosci. 9, 
1549–1557.

Schneidman, E., Berry, M., II, Segev, R., 
and Bialek, W. (2006). Weak pairwise 
correlations imply strongly correlated 
network states in a neural population. 
Nature 440, 1007–1012.

Schneidman, E., Still, S., Berry, M., and 
Bialek, W. (2003). Network informa-
tion and connected correlations. Phys. 
Rev. Lett. 91, 238701.

Schürmann, T., and Grassberger, P. 
(1996). Entropy estimation of symbol 
sequences. Chaos. 6, 414–427.

Shannon, C. (1948). A mathematical 
theory of communication. Bell Syst. 
Tech. J. 27, 379–423.

Shlens, J., Field, G., Gauthier, J., 
Grivich, M., Petrusca, D., Sher, A., 
Litke, A., and Chichilnisky, E. (2006). 
The structure of multi-neuron fi ring 
patterns in primate retina. J. Neurosci. 
26, 8254.

Strong, S., Koberle, R., de Ruyter van 
Steveninck, R., and Bialek, W. (1998). 
Entropy and information in neu-
ral spike trains. Phys. Rev. Lett. 80, 
197–200.

Tang, A., Jackson, D., Hobbs, J., Chen, W., 
Smith, J. L., Patel, H., Prieto, A., Petrusca, 
D., Grivich, M. I., Sher, A., Hottowy, P., 
Dabrowski, W., Litke, A. M., and Beggs, 
J. M. (2008). A maximum entropy 
model applied to spatial and temporal 
correlations from cortical networks in 
vitro. J. Neurosci. 28, 505–518.

Treves, A., and Panzeri, S. (1995). The 
upward bias in measures of informa-
tion derived from limited data sam-
ples. Neural Comput. 7, 399–407.

van Rossum, G. (1995). Python Reference 
Manual. CWI Reports CS-R 9525.

Victor, J. (1999). Temporal aspects of 
neural coding in the retina and lateral 
geniculate. Netw. Comput. Neural Syst. 
10, 1–66.

Victor, J. (2006). Approaches to 
 information-theoretic analysis of neu-
ral activity. Biol. Theory 1, 302–316.

Waldert, S., Preissl, H., Demandt, E., 
Braun, C., Birbaumer, N., Aertsen, A., 
and Mehring, C. (2008). Hand move-
ment direction decoded from MEG 
and EEG. J. Neurosci. 28, 1000–1008.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential confl ict 
of interest.

Received: 21 September 2008; paper pend-
ing published: 20 November 2008; accepted: 
27 January 2009; published online: 11 
February 2009.
Citation: Ince RAA, Petersen RS, Swan 
DC and Panzeri S (2009) Python for 
information theoretic analysis of neural 
data. Front. Neuroinform. (2009) 3:4. doi: 
10.3389/neuro.11.004.2009
Copyright © 2009 Ince, Petersen, Swan and 
Panzeri. This is an open-access article subject 
to an exclusive license agreement between 
the authors and the Frontiers Research 
Foundation, which permits unrestricted 
use, distribution, and reproduction in any 
medium, provided the original authors and 
source are credited.

147

http://www.scipy.org/
http://www.netlib.org/minpack


Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 | 

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 10 February 2009
doi: 10.3389/neuro.11.005.2009

OMPC: an open-source MATLAB®-to-Python compiler
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Free access to scientifi c information facilitates scientifi c progress. Open-access scientifi c 
journals are a fi rst step in this direction; a further step is to make auxiliary and supplementary 
materials that accompany scientifi c publications, such as methodological procedures and data-
analysis tools, open and accessible to the scientifi c community. To this purpose it is instrumental 
to establish a software base, which will grow toward a comprehensive free and open-source 
language of technical and scientifi c computing. Endeavors in this direction are met with an 
important obstacle. MATLAB®, the predominant computation tool in many fi elds of research, is 
a closed-source commercial product. To facilitate the transition to an open computation platform, 
we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax 
adaptation and emulation to allow transparent import of existing MATLAB® functions into 
Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying 
on Python’s numerical and scientifi c libraries. Python offers a stable and mature open source 
platform that, in many respects, surpasses commonly used, expensive commercial closed source 
packages. The proposed software will therefore facilitate the transparent transition towards a 
free and general open-source lingua franca for scientifi c computation, while enabling access 
to the existing methods and algorithms of technical computing already available in MATLAB®. 
OMPC is available at http://ompc.juricap.com.

Keywords: technical computation, Python, Matlab, compiler

products are Octave and Scilab. None of these packages ever reached 
100% compatibility and failed to meet the challenge of catching up 
with a platform with substantial fi nancial support.

We propose OMPC as a possible alternative strategy to facilitate 
transition to an open-source platform. OMPC aims to offer a bridge 
between MATLAB® and Python. Development of the Python pro-
gramming language project was started in late 1980s (http://www.
artima.com/intv/python.html) at the National Research Institute 
for Mathematics and Computer Science in the Netherlands as 
an open-source scripting language for gluing components of an 
operating system. Today, powerful hardware allows Python to be 
used as a general purpose programming language. Over the years, 
the community contributing to the development of the Python 
language has grown considerably. Programmers and scientists 
alike are attracted by the simplicity of its syntax and its powerful 
set of features. Python is a good bet for a future free and open-
source product that will develop far and fast enough to become 
the new lingua franca of technical computing (Fangohr, 2004; 
Langtangen, 2006).

Since the early stages there have been attempts to develop a 
Python package that offers certain features available in MATLAB®-
compatible languages (http://matpy.sourceforge.net/). Scientifi c 
computation libraries were developed in the 1990s (Oliphant, 2006) 
and have been updated several times (Ascher et al., 2001; Oliphant, 
2007), gaining in reliability, stability and versatility over years of 
development and use. The most important ones, especially in the 
context of our project, are numpy, scipy and matplotlib (http://
numpy.scipy.org/, http://www.scipy.org/ and http://matplotlib.
sourceforge.net/ respectively). The fi rst two provide functions 

INTRODUCTION
Scientifi c progress is optimally served when everyone has access 
to the relevant information. No matter how effective commercial 
organizations, such as publishers or software houses, are in distrib-
uting information; their copyright and proper use requirements are 
often an impediment to information sharing. Open-access scientifi c 
journals attempt to remedy this problem; but this is only a fi rst step, 
involving the free distribution of scientifi c results. The next step 
is to make auxiliary and supplementary materials that accompany 
scientifi c publications, such as methodological and data-analysis 
procedures, open and accessible to the scientifi c community in the 
form of freely downloadable software.

Sharing software tools requires a common platform. Currently 
one platform dominates the sciences: MATLAB®. As a commercial 
product, this language has successfully conquered the market for 
scientifi c communication (Moler, 2004, 2006) because it is easy 
to adopt for beginners as well as professionals, and because of its 
policy to offer licenses at reduced rates to educational institutions. 
However, it does not meet our criteria to be used as a common 
standard for free sharing of software tools. Using a method imple-
mented in MATLAB® requires a full MATLAB® license. Moreover, 
its core software is closed source, preventing users from verifying, 
updating, and improving it.

While some MATLAB® users fi nd the features of the language 
suffi cient and see no reason to switch to an alternative, those who 
want to move to another platform feel the weight of code already 
written in MATLAB® impeding on their decision. Developers who 
have tried to offer an open-source alternative have made efforts to 
offer a level of compatibility with MATLAB®. Examples of such 
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largely equivalent to those of MATLAB®, while matplotlib is pro-
viding plotting functionality. Within the controlled development 
of Python, a proposal was made in 2000 to enhance Python with 
a feature that has been one of the major assets of MATLAB®: the 
availability of both matrix and element-wise operators (Zhu and 
Lielens, 2000). Another proposal has been to include a numerical 
array package numpy into the standard Python library, resulting 
in a revision of the buffer interface for the Python 3.0 (Oliphant 
and Banks, 2006). The new buffer interface facilitates the sharing 
of multi-dimensional data between different Python extension 
modules. All these developments point to an expanding role for 
Python in scientifi c computation.

The main problem with these packages is that each offers only 
a subset of MATLAB® features, but they lack a common, standard-
ized interface. Our fi rst aim, therefore, is to organize the available 
numerical libraries and provide them with a common interface. 
Our second aim is to provide 100% compatibility with MATLAB® 
syntax and with its dynamic interpreter (the MATLAB® engine). 
One advantage is that users will be able to download MATLAB® 
applications and run them for free. For programmers, OMPC offers 
the advantage of a free and open collaboration platform allowing 
reuse of code developed for the commercial MATLAB® platform 
without laborious rewriting.

OMPC is basically a translator of MATLAB® code to Python-
compatible syntax. This paper discusses the compiler and the fun-
damental concepts that allow it to generate interpretable code; in 
particular code that will handle certain dynamic MATLAB® features 
not present in Python. For the generated code to work, OMPC 
needs to be complemented by a library that will ensure the proper 
interpretation of the translated code. We refer to this library as 
OMPClib. OMPClib contains, in particular, numerical objects 
that emulate the dynamical behavior of their MATLAB® counter-
parts. Proof-of-concept implementations of OMPClib that possess 
additional functionality just suffi cient to reproduce the results of 
a spiking neural-network simulation (from Izhikevich, 2003) are 
presented in the Supplementary Material. OMPClib is a work in 
progress. A regularly updated version is found at the project’s web-
site (http://ompc.juricap.com). The current implementation of the 
OMPClib is an integral component of the OMPC package and is 
based on the extension modules numpy, scipy and matplotlib.

PROBLEM STATEMENT
In part, the translation of MATLAB® into Python code is a straight-
forward, technical problem. We need a compiler to generate Python 
compatible code from MATLAB® code (see The Compiler). In addi-
tion, there are four MATLAB® types (string, cell array, array, and 
slice) that have features not available in the corresponding Python 
objects. For these, we introduce Python objects that act as proxies 
for their MATLAB® equivalents (see Numerical Library).

The central, unique feature of the present translation problem 
is that both languages are interpreted languages, but have different 
dynamic features. Usually “dynamic” refers to a property of vari-
able types and means that variables do not have to have a declared 
purpose or type – we refer to an object by its name and the inter-
preter decides at run-time if an operation on the variable is allowed. 
However, MATLAB® also adds dynamics to a number of other 
aspects of the language. The dynamic features of the MATLAB® 

engine differ from those of Python as well as most other general-
purpose interpreters, because of the specifi c purpose for which 
MATLAB® was designed. These issues include: array slicing, on-
demand updating of the variable namespace and populating it with 
implied variables such as nargin/nargout, element-wise operations, 
and implied returns. The dynamic feature of MATLAB® that is 
the most diffi cult to implement in languages other than Python is 
the nargin/nargout implied variable. The slicing syntax, although 
available in Python, differs in syntax. In subsequent Sections 
“Array Slicing, Index Base 1”, “Dynamic Update of the Variable 
Name Space, Emulation of nargin/nargout”, “Assignments to Novel 
Variables, Assignments to Slices”, “Element-wise Operations” and 
“Implied Returns”, we show how each of these particular problems 
can be solved. In Section “The mfunction Decorator” we mention 
how OMPC allows integration of these solutions with a mini-
mum impact on the structure of the original MATLAB® code. Our 
approach illustrates that it is possible, given enough knowledge of 
the compiler of a particular language, to interpret code written in 
an arbitrary programming language, provided that the emulated 
language has a subset of the features of the emulating one. This 
translation maxim may apply universally between any pair of lan-
guages. However, as we argue, Python in addition is syntactically 
close, suffi ciently dynamic, and has a large enough library to enable 
translation that leaves the original structure intact.

Any platform for technical and scientifi c computation should 
keep up to the standards of speed and quality of MATLAB®. This 
is only possible if such a platform is built on the base of standard 
numerical packages. Indeed at the base of all of currently compet-
ing scientifi c packages we fi nd ATLAS (Automatically Tuned Linear 
Algebra Software). This is the reason why results of operations on 
matrices are bit-by-bit equivalent in MATLAB®, Python, Octave 
and many other tools. Also the speed of execution of operations 
defi ned in this library does not change signifi cantly between differ-
ent engines. There is no essential difference in speed of execution 
compared to compiled languages like C/C+++; C/C++ code written 
by the average user can even be slower compared to implemen-
tations available from the ATLAS BLAS/LAPACK libraries used 
by numpy/scipy. This is because optimization of the elementary 
operations is done automatically at the time of compilation of 
the library and the speed of the result in not affected by the pro-
gramming language from which this library is initiated (except for 
translation of parameters). The functionality of many toolboxes of 
MATLAB® is dependent on a number of other open-source pack-
ages as well. These are all available to Python users and probably 
have already been wrapped into a Python package. For custom 
made, non-standard packages (MEX extensions), we still need a 
way to allow OMPC to use them. This issue is discussed in Section 
“OMPC Extensions”.

PROPOSED SOLUTION
An underappreciated aspect of Python, especially in scientifi c com-
puting, is a feature known as introspection. Python offers built-
in modules that allow run-time inspection of its own bytecode. 
Bytecode is the equivalent of the machine language in interpreted 
and just-in-time compiled languages. Introspection makes possible 
the run-time modifi cation of the bytecode of a program, provided 
that the engine allows this. Python offers this facility. Where the 
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specifi c dynamic features of the MATLAB® engine have made it 
impossible for Python to interpret MATLAB® code directly, we 
show that with the help of introspection it is possible to emulate the 
remaining features. The following section presents specifi c features 
that together implement the proposed solution. Supplementary 
Material fi les on the project site include Python scripts that dem-
onstrate the features presented in this section.

OMPC – A MATLAB®-TO-PYTHON COMPILER
OMPC is a compiler that translates MATLAB® code to function-
ally equivalent Python code. The design philosophy of OMPC is to 
enable seamless integration of existing MATLAB® code in Python 
programs. As a feature of convenience, OMPC allows automatic 
loading and translation of .m fi les using the Python import state-
ment. Thus, assuming there is an m-function called add imple-
mented in a fi le called add.m, an example Python session using 
this fi le would look as follows1:

>>> import ompc
>>> import add
>>> add(1,2)
ans = 3

The steps taken during execution are schematically illustrated 
in Figure 1. They are:

1. import ompc – OMPC installs a so-called import hook into 
the current instance of the interpreter. This allows OMPC to 
act at every import statement and compile m-fi les to Python 
code on demand. From this point on it is possible to import .m 
fi les.

2. import add – the OMPC import hook is called and searches 
for add.m on the current path (an equivalent to MATLAB®’s 

path variable). OMPC compiles add.m to a .pym fi le and sub-
mits this fi le to Python’s built-in __import__ function that will 
compile this fi le as any other regular Python fi le.

3. add(1, 2) – is a Python function call. It is running in the 
current Python instance as a Python function working with 
Python variables. In other words, MATLAB® is not involved at 
any stage of this process.

OMPC is complemented by the module OMPClib. This module 
provides implementations of objects that act as proxies of dynamic 
features specifi c to MATLAB®.

Note that the mentioned enhancement of functionality is 
realized without any change to the Python language itself. It is 
absolutely important not to change the Python language in favor 
of a single package. Changes to the interpreter should only be 
made if they are met with general acceptance among the users 
of the language. Otherwise it would lead to the opposite of the 
unifi cation aimed for. Moreover, a program translated by OMPC 
preserves the structure of the original MATLAB® program. The 
resulting program, in all but three cases (function declaration, 
switch statement, multiple statements on a single line), corre-
sponds line by line to its MATLAB® source code. An example of 
equivalent MATLAB® and Python compatible codes can be found 
in the “Results” section.

THE COMPILER
To use MATLAB® code in Python, an intermediate step of 
MATLAB®-to-Python syntax adaptation is needed. The MATLAB® 
code must be parsed and translated into Python code that is func-
tionally equivalent to its original. To parse MATLAB® source code 
we used a free 100% Python implementation of lex and yacc pars-
ing tools called PLY (http://www.dabeaz.com/ply/). The compiler is 
implemented in a single Python fi le (examples/ompc/ompcply.py). 
This fi le is a collection of grammar defi nitions. Each defi nition 
is associated with a processing function for a specifi c language 
construct (keyword, number, assignment, index access and oth-
ers). The grammatical rule for each construct is specifi ed in the 

1The following sections contain listings of code in both programming languages. 
We adhere to the following convention: The mark >> at the beginning of a state-
ment signifi es a MATLAB® program, while the mark >>> signifi es Python code. 
Each of the concepts introduced in the following subsections has a corresponding 
executable script that is part of the Supplementary Material.

FIGURE 1 | OMPC structure. Each .m fi le has to be translated to Python compatible syntax. Statements for an .m fi le are replaced by their Python equivalents with 
minimal structural changes that allow emulation. This translated code relies on features implemented in a numerical object similar to ndarray of the numpy module.
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documentation string of its processing function. The  functions are 
designed to cover every syntactically correct MATLAB®  language 
statement. The PLY module uses the grammar fi le to generate a 
parser, which searches a source text for language constructs 
and passes these to their corresponding processing functions. 
The parser produces the translated Python-compatible code. In 
the case of strings, the syntactical rule is the regular expression 
STRING = r�((?:�|[^\n�])*)� and the processing function looks 
as follows:

def p_expression_string(p):
    "expression : STRING"
    p[0] = "mstring(%s)"%p[1]

Every MATLAB® string that passes through this function will be 
enclosed in the expression mstring(.). Such a string can have all the 
features of a MATLAB® string. If this is not required, it is possible 
to replace the last line with p[0] = p[1]. As a result the strings from 
the original will stay intact.

The important advantage of using Python for the translation is 
that its code is easy to read and can be easily modifi ed. Modifying 
a Python program does not require installation of a large compli-
cated development system, common for low level languages like 
C++ or Java. The development advantages outweigh the negligible 
differences in processing speed.

NUMERICAL LIBRARY
Here we present the additional objects necessary for full compat-
ibility with MATLAB®. The following MATLAB® example illus-
trates the impossibility of differentiating between variables and 
functions at translation.

>> add = @(a,b) a+b;
>> add(1,2)                  % Python -> add(1,2)
ans = 3
>> add = 1:10;
>> add(1,2)
ans = 2                      % Python -> add[0,1]

MATLAB® uses the same syntax for calling a function and 
retrieving elements from an array. This makes it impossible to 
determine if an identifi er add in the above listing is a variable or 
a function. Therefore it is not possible to correctly translate the 
statement >> add(1,2) at compilation time. Our solution is based 
on the fact that object-oriented programming allows overloading 
of operators. We therefore have the option to overload the object’s 
__call__ function. Thus the OMPC code can be executed in Python, 
behaving equivalently to its MATLAB® original, independently of 
whether add is a function or a variable. Note that this added feature 
enhances the original numerical array (numpy in our examples) 
without altering its original function. The new object marray inher-
its all functionality from the original numerical array. This object 
enhanced by an overloaded __call__ operator allows the following 
example to run in Python:

>>> add = lambda a,b: a+b;
>>> add(1,2)
3
>>> add = mslice[1:10];
>>> add(1,2)
ans = 2.0

The supplementary OMPC numerical object is currently 
based on numpy’s array object. This is however not the only 
option. It is possible to use base objects from another pack-
age like Numarray, CVXOPT (http://abel.ee.ucla.edu/cvxopt) 
or  others. For non-numerical objects we can enhance Python 
built-in types. For example the OMPC string is based on the 
Python string implementation. The OMPC’s cell array object is 
based on the Python built-in list object, which is equivalent in 
features to the cell array but, as is obvious from the following 
example, the performance boost achieved by using the Python 
list object is considerable.

>> m = {}; tic, for i=1:100000, m{i} = 12; end, toc
Elapsed time is 9.637410 seconds.

Python does not allow on-demand growing of lists, but this 
feature can easily be emulated:

>>> class mcellarray(list):
    def __setitem__(self,i,v):
        if i >= len(self):
            self.extend([None]*(i-len(self)) + [v])

>>> m = mcellarray()
>>> tic()
>>> for i in xrange(100000): m[i] = 12
>>> toc()
Elapsed time is 0.372690 seconds.

The above example is not the optimal way of using the cell array. 
Such incorrect use of MATLAB®’s benevolent interpreter is, how-
ever, very common. As the last example shows, Python can help to 
greatly enhance the usability of such sub-optimal code.

ARRAY SLICING, INDEX BASE 1
The fi rst element of a Python sequence type is 0, while MATLAB® 
uses 1 as the base for indexing, for instance a[0] in Python is 
equivalent to a(1) in MATLAB®. OMPC solves this incompat-
ibility by overloading the numerical object’s __call__ method. 
The same technique of overloading the __call__ function also 
makes it possible to use MATLAB® style array slicing. Consider 
again:

>>> b = a(1:10);

it is unclear until run-time if a is a function accepting a vector or a 
vector from which we are retrieving the fi rst 10 elements. Python 
does not allow using a slice object outside of the index [] operator. 
By translating this statement into Python acceptable syntax

>>> b = a(mslice[1:10]);

and making a an object with overloaded __call__ operation, 
this code can be executed in Python, behaving equivalently to its 
MATLAB® original independently of whether a is a function or 
a variable.

The mslice proxy object does two things. First it allows a slice 
object to be used as a parameter to a function call. Secondly it 
adapts MATLAB® index-base-1 slices from the syntax start:step:
stop to Python’s start:stop:step. Python’s slice object returns slices 
up to the stop element, while MATLAB®’s slices range up to the 
stop element including it.
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DYNAMIC UPDATE OF THE VARIABLE NAME SPACE, EMULATION OF 
NARGIN/NARGOUT
Python comes with a built-in module called inspect. Using this 
module it is possible to look into the execution stack to see in what 
context a function is being executed. This means that at any time 
a function is called we can look a couple of steps back in history 
and ask the interpreter about the code from which our function 
has been called. Consider the following statement:

>>> [a, b] = sort(rand(10,1))

Python accepts both a, b, and [a, b] (the correct syntax in 
MATLAB®) as left-value for an assignment. The inspect module 
makes it possible to ask the interpreter for the number of argu-
ments on the left side of the assignment at the moment just before 
a function was called. The OMPClib module contains a function 
_getnargout that does exactly this. The following Python statement 
that leaves nargout undefi ned:

def f(x):
    if nargout == 2:
        return 1, 2
    else:
        return 1

can thus be rewritten to:

def f(x):
    nargout = _getnargout()
    if nargout == 2:
        return 1, 2
    else:
        return 1

The mfuction decorator, which will be discussed in detail in 
Section “The mfunction Decorator”, makes sure that a call to the 
_getnargout function is inserted in the preamble of all functions 
translated by OMPC. This means that the original MATLAB® func-
tion body again can stay intact; we only need to apply the mfunction 
decorator that inserts nargout and, similarly, nargin into the variable 
namespace of the function during runtime.

ASSIGNMENTS TO NOVEL VARIABLES, ASSIGNMENTS TO SLICES
We explained that it is possible to use the __call__ function to allow 
MATLAB®-style array slicing. There is one exception, however: 
Python does not allow function calls to be used for assignment. We 
circumvent this restriction by assigning to a property of the slice. 
The property mediates the assignment operation and makes the 
syntax acceptable to the Python parser. For instance,

>>> a(1) = 1          # Syntax error

is not allowed, but the following is:

>>> a(1).lvalue = 1

MATLAB® allows assignment to slices of variables that were 
not previously initialized. The module inspect allows us to detect 
assignment to non-existent variables. In the translated code, the 
variables are initialized during runtime by the mfunction decorator 
(see The mfunction Decorator).

ELEMENT-WISE OPERATIONS
MATLAB® offers a convenient way of differentiating between oper-
ations for matrices and their element-wise equivalents. Although 
such a differentiation was repeatedly proposed for Python (Zhu and 
Lielens, 2000) it never gained enough support from the broader 
Python community. In numpy, all numerical operations on arrays 
are element-wise by default. In principle, it would not have been 
a problem to use function calls to differentiate between these and 
matrix operations, for instance:

a .* b => multiply(a, b)    and    a * b => dot(a, b)

However in accordance with our principle to preserve as much 
as possible the original structure of the MATLAB® code, we sug-
gest another solution. This solution is inspired by a recipe from 
the community-driven Python cookbook (http://code.activestate.
com/recipes/384122/). Python allows overriding of operators on 
either side of an operand. This feature is commonly used to enable 
automatic coercion of types. For example, it allows the user to 
apply an arithmetic operation between a numpy array and any-
thing else. So, for adding to array x a list [1,2], instead of having 
to convert it to an array: x + array([1,2]), we can simply write: 
x + [1,2]. Therefore it is possible to change the above translation 
rule as follows:

a .* b => a *elmul* b       and        a * b => a * b

The elmul is an instance of an object that has overloaded the * 
operator (the __mul__ and __rmul__ function). Independently of 
the execution order of the operations in the statement, the elmul 
object remembers the operand from the fi rst multiplication and 
instructs the second operand to perform element-wise multiplica-
tion (a*elmul -> elmul.left = a, elmul*b -> elmul.left*b).

IMPLIED RETURNS
MATLAB® uses implied returns; the “return” statement without 
parameters serves only for breaking the execution of a function. 
The return parameters of a function are specifi ed in the function 
declaration. Python requires specifi cation of these variables at each 
point of exit from the function. Python’s return statement consists 
of a list of variables to be returned from a function call. Absence of 
the list means the empty object None is returned.

function [mi,ma] = minmax(a)
mi = min(a);
if nargout > 1, ma = max(a); end

@mfunction("mi, ma")
def minmax(a=None)
    mi = min(a)
    if nargout > 1: ma = max(a)

In the above example it is not possible to simply append a 
return statement return mi, ma. Because its value is being assigned 
to a single object (mi), the minmax function is expecting to return 
a single value. Python would therefore automatically assign a 
sequence, or tuple, containing both return values to the single 
variable at the output of the function call. This is illustrated in 
the following:

>>> mi = minmax(rand(1,10));
ans = (0.0574, None)
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It would, in principle, be possible to add a statement return (mi, 
ma)[:nargout] in all locations where function exit could occur. This 
strategy would already rely on the introspection function to determine 
the value of nargout. However, adding such statements is cumber-
some and destroys the structure of the original syntax. Introspection 
allows us to preserve the structure by automatically modifying the 
bytecode of translated functions, inserting the equivalent code wher-
ever needed. This and other previously mentioned modifi cations to 
the bytecode are handled by the mfunction decorator.

THE MFUNCTION DECORATOR
Python offers the feature of decorators since version 2.4. Simply put, 
decorators are function factories. They allow us to turn a regular 
Python function into one that behaves like a MATLAB® function. 
A Python decorator receives a function just before it is loaded into 
the current workspace. The decorator can manipulate the function 
in arbitrary ways. The mfunction decorator modifi es each function 
translated by OMPC. We use the decorator to emulate the existence 
of the variables nargin/nargout, to allow assignments to novel vari-
ables, and to implement implied returns (Figure 2).

This modifi cation of byte-code happens at run-time. It happens 
only once when the interpreter loads a function, not every time the 
function is called. The performance of the decorated function does 
not differ from the performance of a function where modifi cations 
are stated explicitly in the source code.

OMPC EXTENSIONS
Here we deal with the issue of how OMPC handles C/C++ and 
FORTRAN (MEX) extensions for MATLAB®. Both MATLAB® 
and Python allow extensions and both have an offi cial protocol 
for writing them. However, the interface between platform and 
extension differs considerably between the two respective lan-
guages. Extensions written for MATLAB®, therefore, do not work 
in Python. We can solve this problem by implementing a C sup-
port library that allows compilation of extensions independently 
of MATLAB. Compilation turns these routines into dynamic-link 
libraries that can be called by any language, including Python. The 
Supplementary Material has an example that shows how the mxCre-
ateDoubleMatrix function can be implemented for example, using 
the Standard Template Library of C++.

In general it is very easy in Python to wrap external libraries 
by using the open-source application GCCXML (http://www.
gccxml.org/). The Python community extensively uses this 
application for automatically generating Python extensions for 
libraries with complex structure and large numbers of exported 
symbols. The advantage of GCCXML over tools like Cython or 
Pyrex (http://cython.org/) and the multipurpose Swig (http://
www.swig.org/) is that it is based on a production-stable GCC 
compiler. This means that any large project that relies on the lat-
est features of C++, including the use of templates, can be auto-
matically correctly parsed and analyzed to be further processed to 

FIGURE 2 | Code injection by the mfunction decorator. Top-left panel: 
original MATLAB® code; Bottom-left panel (A): translation with added code 
necessary for execution in Python without mfunction; Right panel 
(B): illustration of how mfunction inserts byte-code into automatically 

translated functions at runtime. This is done only the fi rst time 
each mfunction is loaded into the Python interpreter. Because these 
additions are invisible to the user, the structure of the original code 
remains intact.
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generate extensions (www.boost.org/doc/libs/release/libs/python/
doc/, http://pypi.python.org/pypi/ctypeslib/ and many others).

RESULTS
A website has been created for the project, http://ompc.juricap.
com/. The compiler is also available on-line at http://ompclib.
appspot.com/. This site will serve as a bug-tracking utility that 
will allow users to submit fi les that are not correctly processed 
by OMPC.

Because the formal specifi cation of the MATLAB® syntax is not 
publicly available, it is diffi cult to properly test the OMPC compiler. 
However, we have successfully translated m-fi les that are part of the 
standard MATLAB® distribution. In addition, the compiler was 
tested successfully using source code collected from a number of 
users within the RIKEN Brain Science Institute and outside collabo-
rators. The styling of MATLAB® source code varied signifi cantly 
from person to person.

The following example consists of original source code, 
contained in online Supplementary Material to a neuroscience 
publication (Izhikevich, 2003). The example shows the origi-
nal MATLAB® m-file and its fully automatic translation by 
OMPC.

% Created by Eugene M. Izhikevich, February 25, 2003
% Excitatory neurons   Inhibitory neurons
Ne=800;                Ni=200;
re=rand(Ne,1);         ri=rand(Ni,1); 
a=[0.02*ones(Ne,1);    0.02+0.08*ri];
b=[0.2*ones(Ne,1);     0.25−0.05*ri];
c=[−65+15*re.ˆ2;      −65*ones(Ni,1)];
d=[8−6*re.ˆ2;          2*ones(Ni,1)];
S=[0.5*rand(Ne+Ni,Ne),−rand(Ne+Ni,Ni)]; 

v=−65*ones(Ne+Ni,1);  % Initial values of v
u=b.*v;               % Initial values of u
firings=[];           % spike timings

for t=1:1000          % simulation of 1000 ms 
   I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input 
   fired=find(v>=30); % indices of spikes
   if ∼isempty(fired)
      firings=[firings; t+0*fired, fired];     
      v(fired)=c(fired);  
      u(fired)=u(fired)+d(fired);
      I=I+sum(S(:,fired),2);
   end;
   v=v+0.5*(0.04*v.ˆ2+5*v+140−u+I);
   v=v+0.5*(0.04*v.ˆ2+5*v+140−u+I);
   u=u+a.*(b.*v−u);
end;
plot(firings(:,1),firings(:,2),’.’);

The OMPC equivalent is:

# Created by Eugene M. Izhikevich, February 25, 2003
# Excitatory neurons   Inhibitory neurons
Ne = 800
Ni = 200;

re = rand(Ne, 1)
ri = rand(Ni, 1);

a = mcat([0.02 * ones(Ne, 1), 
  OMPCSEMI, 0.02 + 0.08 * ri])
b = mcat([0.2 * ones(Ne, 1), 
  OMPCSEMI, 0.25 − 0.05 * ri])
c = mcat([−65 + 15 * re **elpow** 2, 
  OMPCSEMI, −65 * ones(Ni, 1)])
d = mcat([8 − 6 * re **elpow** 2, 
  OMPCSEMI, 2 * ones(Ni, 1)])
S = mcat([0.5 * rand(Ne + Ni, Ne), −rand(Ne + Ni, Ni)])

v = −65 * ones(Ne + Ni, 1)      # Initial values of v
u = b *elmul* v                 # Initial values of u
firings = mcat([])              # spike timings

for t in mslice[1:1000]:        # simulation of 1000 ms 
    I = mcat([5 * randn(Ne, 1), OMPCSEMI, 
      2 * randn(Ni, 1)]) # thalamic input 
    fired = find(v >= 30)       # indices of spikes
    if not isempty(fired):
        firings = mcat([firings, OMPCSEMI, 
                       t + 0 * fired, fired])
        v(fired).lvalue = c(fired)
        u(fired).lvalue = u(fired) + d(fired)
        I = I + sum(S(mslice[:], fired), 2)
    end
    v = v + 0.5 * (0.04 * v **elpow** 2 + 5 * 
                   v + 140 − u + I)
    v = v + 0.5 * (0.04 * v **elpow** 2 + 5 * 
                   v + 140 − u + I)
    u = u + a *elmul* (b *elmul* v − u)
end
plot(firings(mslice[:], 1), firings(mslice[:], 2), 
     mstring('.'))

In this example we observe how well the translation preserves 
the structure of the original MATLAB® program. The above 
OMPC code is generated using rules that result in maximum 
compatibility. For example the last line contains the Python 
object mstring(‘.’) that emulates the MATLAB® string object. As 
a consequence, the string is modifi able, as in the original. Since 
this is not necessary in the context of this program, a simple 
Python string could be used instead, as explained in Section 
“The Compiler”. It is possible to further simplify the syntax by 
syntactical shortcuts, so called index tricks (r_, c_, mgrid), that 
are already part of the numpy library (Oliphant, 2006). The plot 
statement of the last program could therefore be simplifi ed to, 
for example:

plot(firings(m_[:], 1), firings(m_[:], 2), ‘.’)

The structural equivalence of both programs was made pos-
sible by using the introspection functionality of Python. Some 
of the dynamical features, however, can equally well be resolved 
by the OMPC compiler, provided that we are willing to compro-
mise on structural equivalence. This would enhance the clarity of 
code for Python developers not familiar with implied variables of 
MATLAB®. Only adopting and testing OMPC will allow the users 
to make the correct decision. The fi nal form of code generated by 
OMPC has still to be agreed upon. Future developments of the 
compiler will enable such options through switches.

In the Supplementary Material to this paper, we provide OMPC 
executables of the spiking neuron model described in (Izhikevich, 
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2003). At the moment of writing, two versions are available. One is 
based on the ndarray numerical array of the numpy library. However, 
optimized numerical packages such as numpy are not available yet 
for the newest Python interpreters. The other version, therefore, 
shows a pure Python implementation of an n-dimensional numeri-
cal array. This version is signifi cantly slower for operations on large 
arrays but, because it runs on a clean Python installation, can be 
run on other realizations of Python as well; we have successfully 
tested this for Jython2.5a1, Python 2.6 and 3.0. The standard Python 
modules array, random and math are at the core of this second 
version; any Python interpreter suffi ciently developed to contain 
these modules will execute the model. Maintaining a pure Python 
version of OMPC could enable acceleration of OMPC modules 
using PyPy (http://codespeak.net/pypy/, Rigo and Pedroni, 2006) 
or Shedskin (An Optimizing Python-to-C++ compiler, http://shed-
skin.blogspot.com/).

DISCUSSION
A number of different implementations of Python are currently 
available. We choose CPython because it is the primary Python 
engine; the most mature and stable implementation. All numeri-
cal extensions were originally developed for CPython. CPython, 
moreover, offers by default the ctypes module, which is of cru-
cial importance as a support library for OMPC. CPython allows 
easy and effi cient access to extension modules written in C/C++, 
FORTRAN and many other languages that allow us to create 
dynamic-link libraries.

Amongst forthcoming Python implementations that may infl u-
ence the future development of OMPC, the most interesting one 
is PyPy. PyPy is an implementation of Python in Python itself 
and supports compilation of a restricted subset called RPython 
(Restricted Python, http://codespeak.net/pypy/dist/pypy/doc/
coding-guide.html#rpython, Section 1.4) into the C language and 
from there on into native binary executables. Although this pos-
sibility has not been tested, if PyPy will support specifi c CPython 
features it should be possible to compile OMPC generated fi les to 
native executables.

OMPC aims ultimately to offer full compatibility with the syntax 
and the engine of MATLAB®. A number of its features, however, 
have not yet been addressed in this article. The most sought after 
ones relate to its GUI components. Implementing these is practica-
ble, based on the fact that the MATLAB® application GUI-designer 
stores its information in “.fi g” fi les, which are actually .mat data 
fi les. This means that they can be loaded into Python using OMPC, 
enabled through the scipy.io module. These fi les hold enough infor-
mation to identify and reconstruct the GUI components within a 
fi gure.

There is currently no plan to implement embedded Java, 
because we consider it not to be a crucial part of MATLAB®. 
While Java can be useful in MATLAB®, for example, for net-
working applications, the verbosity and complexity of Java are 
a great obstacle to use for anybody without a professional soft-
ware engineering background. Moreover, all features that Java 
offers as an enhancement of MATLAB® are, most likely, present 
in Python as well. For networking purposes, therefore, Python is a 
much more suitable extension than Java for a high level language 
such as MATLAB®. Python includes support for networking by 

default. It contains modules with ready-to-use implementations 
of  client-server  applications. A good example is the OMPC on-line 
compiler currently hosted as a Python service at http://ompclib.
appspot.com/.

In a broader scope, one of the great advantages of being able to 
parse source code is that it allows analysis and possible optimiza-
tion of the code that will be executed. This is the approach taken 
by platforms based on virtual machines like.NET, Java and LLVM. 
Source code that can be parsed and translated into an intermediate 
format (CIL, formerly known as MSIL, Java Bytecode, or LLVM IR) 
can be run or translated to another low-level language including 
machine code. PyPy uses this technique to translate a suffi ciently 
static subset of Python into C (Rigo and Pedroni, 2006). OMPC 
is an example of how to use Python byte-code as an intermediate 
representation.

Choosing Python as a platform for technical computation offers 
a number of additional benefi ts. As a popular general-purpose 
language, Python offers up-to-date facilities for online sharing, 
and enhancing the visibility of projects, in which computational 
methods are naturally embedded. The online OMPC compiler 
included in the Supplementary Material is one example of such 
an application. Python is currently one of the most popular tools 
in server-side Web 2.0 development.

The introduction mentions a number of attempts to provide 
MATLAB® functionality in Python. Currently there is only one 
actively developed project MlabWrap (http://mlabwrap.source-
forge.net/) that allows the use of MATLAB® functions along with 
the numerical extensions of Python. This project embeds the 
MATLAB® engine in a Python extension. This extension however 
requires a licensed copy of MATLAB®. A similar approach could 
be taken with the open-source library liboctave that is at the core 
of the GNU Octave (http://www.gnu.org/software/octave/). The 
design of OMPC allows any implementation of OMPClib to be used 
for execution of the OMPC generated Python code. An OMPClib 
could be built with liboctave’s Array class as its base numerical 
object. The advantage of wrapping a library instead of embedding 
an interpreter is the great simplifi cation of memory management. 
Embedding a interpreter in an extension is very similar to running 
a second process of which the data in memory are not directly 
accessible to Python and another extensions.

The interest of the scientifi c community in the Python language 
is growing (Langtangen, 2006, http://www.scipy.org/, http://www.
neuralensemble.org/), making it ever more likely that it will become 
the main open-source language of scientifi c computation. One 
of the important obstacles in this transition is the large amount 
of legacy code written in MATLAB®. A fully automatic transla-
tion system could enable the reuse of large projects, the size of 
which makes human translation infeasible. By presenting OMPC, 
we demonstrated that Python could adopt MATLAB® code for 
reuse; without human intervention this code can be translated into 
Python. OMPC does this in a manner that, whenever possible, 
preserves the structure of the original. The syntax and design of 
MATLAB® language proved to be easy for beginners. In MATLAB® 
every object is also a multi-dimensional array, even a number is a 
1 × 1 matrix. Python users however face the challenge of under-
standing concepts such as different types (numbers and arrays) and 
others common in programming, for example object reference. A 
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number of MATLAB® inspired  features could help removing many 
obstacles for a user introduced to Python’s numerical facilities. 
We discussed such features and their implementation in OMPC. 
By providing automatic translation of MATLAB® code to Python 
and the enhanced ease of use, OMPC will promote Python as the 
open-source alternative for scientifi c computation. To the Python 
community, OMPC offers this bridge as an incentive towards the 
further enhancement of numerical computation capabilities.
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The Python programming language is steadily increasing in popularity as the language of 
choice for scientifi c computing. The ability of this scripting environment to access a huge code 
base in various languages, combined with its syntactical simplicity, make it the ideal tool for 
implementing and sharing ideas among scientists from numerous fi elds and with heterogeneous 
methodological backgrounds. The recent rise of reciprocal interest between the machine learning 
(ML) and neuroscience communities is an example of the desire for an inter-disciplinary transfer 
of computational methods that can benefi t from a Python-based framework. For many years, a 
large fraction of both research communities have addressed, almost independently, very high-
dimensional problems with almost completely non-overlapping methods. However, a number 
of recently published studies that applied ML methods to neuroscience research questions 
attracted a lot of attention from researchers from both fi elds, as well as the general public, and 
showed that this approach can provide novel and fruitful insights into the functioning of the brain. 
In this article we show how PyMVPA, a specialized Python framework for machine learning 
based data analysis, can help to facilitate this inter-disciplinary technology transfer by providing a 
single interface to a wide array of machine learning libraries and neural data-processing methods. 
We demonstrate the general applicability and power of PyMVPA via analyses of a number of 
neural data modalities, including fMRI, EEG, MEG, and extracellular recordings.

Keywords: functional magnetic resonance imaging, electroencephalography, magnetoencephalography, extracellular 

recordings, machine learning, Python

applicability to humans, and the corresponding neural correlates 
that result from the measurement process.

Neuroscientists often focus on only one or a smaller subset of 
these neural modalities partly due to the kinds of questions investi-
gated and partly due to the cost of learning to analyze data from 
these different modalities. The diverse measurement approaches 
to brain function can heavily infl uence the selection of a research 
question and, in turn, the development of specifi c software pack-
ages to answer them. Consequently, the peculiarities of each data 
acquisition modality and the lack of strong interaction between 
the neuroscience communities employing them have produced 
distinct software packages specialized for the conventional analy-
ses within a particular modality. Some analysis techniques have 

INTRODUCTION
Understanding how the brain is able to give rise to complex 
 behavior has stimulated a plethora of brain measures such as non-
invasive EEG1, MEG2, MRI3, PET4, optical imaging, and invasive 
extracellular and intracellular recordings, often in conjunction 
with new methods, models, and techniques. Each data acquisi-
tion method has offered a unique set of properties in terms of 
spatio-temporal resolution, signal to noise, data acquisition cost, 
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to have in-depth knowledge about both data modality peculiarities 
and software implementation details.

At the same time, Python has become the open-source scripting 
language of choice in the research community to prototype and 
carry out scientifi c data analyses or to develop complete software 
solutions quickly. It has attracted attention due to its openness, 
fl exibility, and the availability of a constantly evolving set of tools 
for the analysis of many types of data. Python’s automatic mem-
ory management, in conjunction with its powerful libraries for 
effi cient computation (NumPy8 and SciPy9) abstracts users from 
low-level “software engineering” tasks and allows them to fully 
concentrate their attention on the development of computational 
methods.

As an interpreted, high-level scripting language with a simple 
and consistent syntax, a plethora of available modules, easy ways 
to interface to low-level libraries written in other languages10 and 
high-level computing environments11, Python is the language of 
choice for solving many scientifi c computing problems. Table 1 
lists a number of Python modules which might be of interest in the 
neuroscientifi c context, and is meant to complement the material 
presented in the other articles in this special issue.

Despite the fact that it is possible to perform complex data analy-
ses solely within Python, it once again often requires in-depth knowl-
edge of numerous Python modules, as well as the development of a 
large amount of code to lay the foundation for one’s work. Therefore, 
it would be of great value to have a framework that helps to abstract 
from both data modality specifi cs and the implementation details of 
a particular analysis method. Ideally, such a framework should help 
to expose any form of data in an optimal format applicable to a broad 
range of machine learning methods, and on the other hand provide 
a versatile, yet simple, interface to plug in additional algorithms 
operating on the data. In the neuroscience context it would also be 
useful to bridge between well-established neuroimaging tools and 
ML software packages by providing cross library integration and 
transparent data handling for typical containers of neuroimaging 
data (e.g., NIfTI in fMRI research).

As an attempt to provide such a framework we have implemented 
PyMVPA12 (MultiVariate Pattern Analysis in Python) – a free and 
open-source Python framework to facilitate uniform analysis of 
the neural information obtained from different neural modalities. 
PyMVPA heavily utilizes Python’s ability to access libraries written 
in a large variety of programming languages and computing envi-
ronments to interface with the wealth of existing machine learning 
packages developed outside the neuroscience community. Although 
the framework is eminently suited for neuroscientifi c datasets, it is 
by no means limited to this fi eld. However, the neuroscience tuning 
is a unique aspect of PyMVPA in comparison to other Python-based 
ML or computing toolboxes, such as MDP13 or scipy-cluster14 which 
are developed as domain-neutral packages.

become, due to normative concerns, de facto standards despite 
their limitations and inappropriate assumptions for the given 
data type. For instance, the general linear model (GLM) is the 
prevalent approach used in fMRI data analysis, despite being a 
restrictive mass-univariate method (Kriegeskorte and Bandettini, 
2007; O’Toole et al., 2007).

While specialized software packages are useful when dealing 
with the specifi c properties of a single data modality, they limit the 
fl exibility to transfer newly developed analysis techniques to other 
fi elds of neuroscience. This issue is compounded by the closed-
source, or restrictive licensing of many software packages, which 
further limits software fl exibility and extensibility.

However, outside the neuroscience community, machine learn-
ing (ML) research has spawned a set of analysis techniques that are 
typically generic, fl exible (e.g., classifi cation, regression,  clustering), 
powerful (e.g., multivariate, linear and non-linear) and often appli-
cable to various data modalities with minor modality-specifi c pre-
processing (see Pereira et al., in press, for a tutorial on application 
of ML methods to the analysis of fMRI data). Moreover, large parts 
of this community favor the open-source software development 
model (Sonnenburg et al., 2007, see also MLOSS5 project website), 
which leads to an increase in scientifi c progress due to the supe-
rior accessibility of information and reproducibility of scientifi c 
results. These advantages have recently attracted considerable inter-
est throughout the neuroscience community (see Haynes and Rees, 
2006; Norman et al., 2006, for reviews).

Nevertheless, various factors have delayed the adoption of these 
newer methods for the analysis of neural information. First and 
foremost, existing conventional techniques are well-tested and often 
perfectly suitable for the standard analysis of data from the modal-
ity for which they were designed. Most importantly, however, a 
set of sophisticated software packages has evolved over time that 
allow researchers to apply these conventional and modality- specifi c 
methods without requiring in-depth knowledge about low-level 
programming languages or underlying numerical methods. In fact, 
most of these packages come with convenient graphical and com-
mand line interfaces that abstract the peculiarities of the methods 
and allow researchers to focus on designing experiments and to 
address actual research questions without having to develop spe-
cialized analyses for each study.

However, only a few software packages exist that are specifi -
cally tailored towards straightforward and interactive exploration 
of neuroscientifi c data using a broad range of ML techniques, such 
as the Matlab®6 MVPA toolbox for fMRI data7 (Detre et al., 2006). 
At present only independent component analysis (ICA), an unsu-
pervised method, seems to be supported by numerous software 
packages (see Beckmann and Smith, 2005, for fMRI, and Makeig 
et al., 2004, for EEG data analysis). Therefore, the application of 
machine learning analyses, referred to in the literature as decoding 
(Haynes et al., 2007; Kamitani and Tong, 2005), information-based 
analysis (Kriegeskorte et al., 2006) or multi-voxel pattern analysis 
(Norman et al., 2006), usually involves the development of a sig-
nifi cant amount of custom code. Hence, users are typically required 

5http://www.mloss.org.
6Closed source commercial product of MathWorks®.
7It is possible to use the low-level functions of this toolbox for other modalities.

8http://numpy.scipy.org.
9http://www.scipy.org.
10e.g., ctypes, SWIG, SIP, Cython.
11e.g., mlabwrap and RPy.
12http://www.pymvpa.org.
13http://mdp-toolkit.sourceforge.net.
14http://code.google.com/p/scipy-cluster/.
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The following section provides a short summary of the princi-
pal design concepts, and the basic building blocks of the PyMVPA 
framework. The main focus of this article is, however, a demon-
stration of PyMVPA’s fl exibility by applying various ML tech-
niques to typical EEG, MEG, fMRI and extracellular recordings 
datasets.

PyMVPA
One of the main goals of PyMVPA is to reduce the gap between the 
neuroscience and ML communities. To reach this goal, we designed 
PyMVPA to provide a convenient, easy to use, community devel-
oped (free and open source15), and extensible framework to facili-
tate the use of ML techniques on neural information. PyMVPA 
combines Python data processing, visualization, and basic I/O 
facilities together with I/O code and examples tailored for neu-
roscience. For an easy start into PyMVPA a fMRI example dataset 
(a single subject from the study by Haxby et al., 2001) is available 
for download from the PyMVPA website.

As Table 1 highlighted, PyMVPA is not the only ML framework 
available for scripting and interactive data exploration in Python. 
In contrast to some of the primarily GUI-based ML toolboxes 
(e.g., Orange, Elephant), PyMVPA is designed to provide not just 
a toolbox, but a framework for concise, yet intuitive, scripting of 
possibly complex analysis pipelines. To achieve this goal, PyMVPA 
provides a number of building blocks that can be combined in a 
very fl exible way. Figure 1 shows a schematic representation of 
the framework design, its building blocks and how they can be 
combined into complete analysis pipelines.

This article does not aim to provide a detailed description of the 
PyMVPA framework, and therefore only a rough overview about 
the most important technical aspects is presented here. However, 
a comprehensive introduction is available in Hanke et al. (2009) 
and the PyMVPA manual (Hanke et al., 2008).

In PyMVPA, each building block (e.g., all classifi ers) follows a 
simple, standardized, interface. This allows one to use various 
types of classifi ers interchangeably, without additional changes 
in the source code, and makes it easy to test the performance of 
newly developed algorithms on one of the many didactical neuro-
science-related examples and datasets that are included in PyMVPA. 

Table 1 | Various free and open-source projects, either written in Python or providing Python bindings, which are germane to acquiring or 

processing neural information datasets using machine learning (ML) methods. The last column indicates whether PyMVPA internally uses a particular 

project or provides public interfaces to it.

Name Description URL PyMVPA

MACHINE LEARNING

Elephant Multi-purpose library for ML http://elefant.developer.nicta.com.au 

Shogun Comprehensive ML toolbox http://www.shogun-toolbox.org 

Orange General-purpose data mining http://www.ailab.si/orange 

PyML ML in Python http://pyml.sourceforge.net 

MDP Modular data processing http://mdp-toolkit.sourceforge.net 

hcluster Agglomerative clustering http://code.google.com/p/scipy-cluster 

– Other Python modules http://www.mloss.org/software/language/python 

NEUROSCIENCE RELATED

NiPy Neuroimaging data analysis http://neuroimaging.scipy.org 

PyMGH Access FreeSurfers.mghfi les http://code.google.com/p/pyfsio 

PyNIfTI Access NIfTI/Analyzefi les http://niftilib.sourceforge.net/pynifti 

OpenMEEG EEG/MEG inverse problems http://www-sop.inria.fr/odyssee/software/OpenMEEG 

STIMULI AND EXPERIMENT DESIGN

PyEPL Create complete experiments http://pyepl.sourceforge.net 

VisionEgg Visual stimuli generation http://www.visionegg.org 

PsychoPy Create psychophysical stimuli http://www.psychopy.org 

PIL Python Imaging Library http://www.pythonware.com/products/pil 

INTERFACES TO OTHER COMPUTING ENVIRONMENTS

RPy Interface to R http://rpy.sourceforge.net 

mlabwrap Interface to Matlab http://mlabwrap.sourceforge.net 

GENERIC

Matplotlib 2D Plotting http://matplotlib.sourceforge.net 

Mayavi2 Interactive 3D visualization http://code.enthought.com/projects/mayavi 

PyExcelerator Access MS Excel fi les http://sourceforge.net/projects/pyexcelerator 

pywavelets Discrete wavelet transforms http://www.pybytes.com/pywavelets 

15PyMVPA is distributed under an MIT license, which complies with both Free 
 Software and Open Source defi nitions.

159

http://elefant.developer.nicta.com.au
http://www.shogun-toolbox.org
http://www.ailab.si/orange
http://pyml.sourceforge.net
http://mdp-toolkit.sourceforge.net
http://code.google.com/p/scipy-cluster
http://www.mloss.org/software/language/python
http://neuroimaging.scipy.org
http://code.google.com/p/pyfsio
http://niftilib.sourceforge.net/pynifti
http://www-sop.inria.fr/odyssee/software/OpenMEEG
http://pyepl.sourceforge.net
http://www.visionegg.org
http://www.psychopy.org
http://www.pythonware.com/products/pil
http://rpy.sourceforge.net
http://mlabwrap.sourceforge.net
http://matplotlib.sourceforge.net
http://code.enthought.com/projects/mayavi
http://sourceforge.net/projects/pyexcelerator
http://www.pybytes.com/pywavelets


Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 | 

Hanke et al. The PyMVPA framework

In addition, any implementation of an analysis method/algorithm 
benefi ts from the basic house-keeping functionality done by the base 
classes, reducing the necessary amount of code needed to contrib-
ute a new fully-functional algorithm. PyMVPA takes care of hid-
ing implementation-specifi c details, such as a classifi er algorithm 
provided by an external C++ library. At the same time it tries to 
expose all available information (e.g., classifi er training perform-
ance) through a consistent interface (for reference, this interface 
is called states in PyMVPA).

PyMVPA makes use of a number of external software pack-
ages, including other Python modules and low-level libraries 
(e.g.,  LIBSVM16) and computing environments (e.g., R17). Using 

externally developed software instead of reimplementing algo-
rithms has the advantage of a larger developer and user base and 
makes it more likely to fi nd and fi x bugs in a software package to 
ensure a high level of quality. However, using external software 
also carries the risk of breaking functionality when any of the 
external dependencies break. To address this problem PyMVPA 
utilizes an automatic testing framework performing various types 
of tests ranging from unittests (currently covering 84% of all lines 
of code) to sample code snippet tests in the manual and the source 
code documentation itself to more evolved “real-life” examples. 
This facility allows one to test the framework within a variety of 
specifi c settings, such as the unique combination of program and 
library versions found on a particular user machine.

At the same time, the testing framework also signifi cantly eases 
the inclusion of code by a novel contributor by catching errors that 

FIGURE 1 | PyMVPA workfl ow and design. PyMVPA is a modular 
framework. It consists of several components (gray boxes) such as ML 
algorithms or dataset storage facilities. Each component contains one or more 
modules (white boxes) providing a certain functionality, e.g., classifi ers, but 
also feature-wise measures (e.g., I-RELIEF; Sun, 2007), and feature selection 
methods (recursive feature elimination, RFE; Guyon and Elisseeff, 2003; 
Guyon et al., 2002). Typically, all implementations within a module are 
accessible through a uniform interface and can therefore be used 
interchangeably, i.e., any algorithm using a classifi er can be used with any 
available classifi er implementation, such as support vector machine (SVM; 
Vapnik, 1995), or sparse multinomial logistic regression (SMLR; Krishnapuram 
et al., 2005). Some ML modules provide generic meta algorithms that can be 
combined with the basic implementations of ML algorithms. For example, a 
Multi-Class meta classifi er provides support for multi-class problems, even if 
an underlying classifi er is only capable to deal with binary problems. 
Additionally, most of the components in PyMVPA make use of some 

functionality provided by external software packages (black boxes). In the case 
of SVM, classifi ers are interfaced to the implementations in Shogun or 
LIBSVM. PyMVPA only provides a convenience wrapper to expose them 
through a uniform interface. By providing simple, yet fl exible interfaces, 
PyMVPA is specifi cally designed to connect to and use externally developed 
software. Any analysis built from those basic elements can be cross-validated 
by running them on multiple dataset splits that can be generated with a variety 
of data resampling procedures (e.g., bootstrapping, Efron and Tibshirani, 
1993). Detailed information about analysis results can be queried from any 
building block and can be visualized with various plotting functions that are part 
of PyMVPA, or can be mapped back into the original data space and format to 
be further processed by specialized tools (i.e., to create an overlay volume 
analogous to a statistical parametric mapping). The solid arrows represent a 
typical connection pattern between the modules. Dashed arrows refer to 
additional compatible interfaces which, although potentially useful, are not 
necessarily used in a standard processing chain.

16http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
17http://www.r-project.org.
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would potentially break the project’s functionality. Being open-
source does not always mean easy to contribute due to various 
factors such as a complicated application programming interface 
(API) coupled with undocumented source code and unpredict-
able outcomes from any code modifi cations (bug fi xes, optimiza-
tions, improvements). PyMVPA welcomes contributions, and thus, 
addresses all the previously mentioned points:

Accessibility of source code and documentation: All the source 
code (including website and examples) together with the full devel-
opment history is publicly available via a distributed version control 
system18 which makes it very easy to track the development of the 
project, as well as to develop independently and to submit back 
into the project.

Inplace code documentation: Large parts of the source code are 
well documented using reStructuredText19, a lightweight markup 
language that is highly readable in source format as well as being 
suitable for automatic conversion into HTML or PDF reference 
documentation. In fact, Ohloh.net20 source code analysis judges 
PyMVPA as having “extremely well-commented source code.”

Developer guidelines: A brief summary defi nes a set of coding 
conventions to facilitate uniform code and documentation look and 
feel. Automatic checking of compliance to a subset of the coding 
standards is provided through a custom PyLint21 confi guration, 
allowing early stage minor bug catching.

Moreover, PyMVPA does not raise barriers by being limited to 
specifi c platforms. It could fully or partially be used on any platform 
supported by Python (depending on the availability of external 
dependencies). However, to improve the accessibility, we provide 
binary installers for Windows, and MacOS X, as well as binary 
packages for Debian GNU/Linux (included in the offi cial reposi-
tory), Ubuntu, and a large number of RPM-based GNU/Linux 
distributions, such as OpenSUSE, RedHat, CentOS, Mandriva, 
and Fedora. Additionally, the available documentation provides 
detailed instructions on how to build the packages from source 
on many platforms.

A fi nal important feature of PyMVPA is that it allows, by design, 
researchers to compress complex analyses into a small amount of 
code. This makes it possible to complement publications with the 
source code actually used to perform the analysis as Supplementary 
Material. Making this critical piece of information publicly available 
allows for in-depth reviews of the applied methods on a level well 
beyond what is possible with verbal descriptions. To demonstrate 
this feature, this paper is accompanied by the full source code to 
perform all analyses shown in the following sections.

ILLUSTRATIVE EXAMPLES: PyMVPA ON 
DIFFERENT MODALITIES
In this section we provide example analyses of four datasets, each 
from a different modality (EEG, MEG, fMRI, and extracellular 
recordings). All examples follow the same basic analysis pipeline: 
initial modality-specifi c preprocessing, application of ML meth-
ods, and visualization of the results. For the modality-independent 

machine learning stage, all four examples employ the same analysis 
with exactly the same source code. Specifi cally, we fi rst perform 
cross-validation with one or more classifi ers on each dataset then 
compute feature-wise sensitivity measures. These measures can 
then be examined to reveal their implications in terms of the under-
lying research question.

These examples do not aim to provide an overview of the full 
functionality available within PyMVPA, but rather to show that ML 
methods can be easily applied to various types of data to provide 
meaningful and even thought-provoking results.

EEG
The dataset used for the EEG example consists of a single par-
ticipant from a previously published study on object recognition 
(Fründ et al., 2008). In the experiment, participants indicated, for a 
sequence of images, whether they considered each particular image 
a meaningful object or just object-like with a meaningless confi gu-
ration. This task was performed for two sets of stimuli with different 
statistical properties and under two different speed constraints. 
EEG was recorded from 31 electrodes at a sampling rate of 500 Hz 
using standard recording techniques. Details of the recording pro-
cedure can be found in Fründ et al. (2008). A detailed description 
of the stimuli can be found in Busch et al. (2006, colored images) 
and in Herrmann et al. (2004, line-art pictures).

Fründ et al. (2008) performed a wavelet-based time-frequency 
analyses of channels from a posterior region of interest (ROI) 
(i.e., no multivariate methods were employed). Here, we apply 
multivariate methods to differentiate between two conditions: trials 
with colored stimuli (broad spectrum of spatial frequencies and a 
high level of detail) and trials with black and white line-art stimuli 
(Figure 2A), collapsing the data across all other conditions. This 
discrimination is orthogonal to the participants task of indicating 
object vs. non-object stimuli.

The data for this analysis were 700 ms EEG segments start-
ing 200 ms prior to the stimulus onset of each trial, to which we 
applied the following preprocessing procedure. We only included 
trials that passed the semi-automatic artifact rejection procedure 
performed in the original study, yielding 852 trials (422 color and 
430 line-art). Each trial timeseries was downsampled to 200 Hz, 
leaving 140 sample points per trial and electrode. We then defi ned 
each trial, including the EEG signal of all sample points from all 
channels, as a sample to be classifi ed (4340 features total). Finally, 
all features for each sample were normalized to zero mean and unit 
variance (z-scored).

As the main analysis we applied a standard sixfold cross-
 validation22 procedure with linear support vector machine (linC-
SVM; Vapnik, 1995), sparse multinomial logistic regression (SMLR; 
Krishnapuram et al., 2005) and Gaussian process regression with 
linear kernel (linGPR; Rasmussen and Williams, 2006) classifi ers. 
Additionally, we computed the multivariate I-RELIEF (Sun, 2007) 
feature sensitivity measures, and, for comparison, a univariate anal-
ysis of variance (ANOVA) F-score on the same cross- validation 
dataset splits.

All three classifi ers performed with high accuracy on the inde-
pendent test datasets, achieving 86.2% (linCSVM), 91.8% (SMLR), 

18http://en.wikipedia.org/wiki/Version_control_system.
19http://en.wikipedia.org/wiki/ReStructuredText.
20http://www.ohloh.net/projects/pymvpa/factoids.
21http://www.logilab.org/projects/pylint. 22http://en.wikipedia.org/wiki/Cross-validation#K-fold_cross-validation.
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and 89.6% (linGPR) correct single trial predictions, respectively. 
However, more interesting than the plain accuracy are the features 
each classifi er relied upon to perform its predictions. PyMVPA 
makes it very easy to extract feature sensitivity information from 
all its classifi ers using a uniform interface. Figure 2B shows the 
computed sensitivities from all classifi ers and measures. There is a 
striking similarity between the shape of the classifi er sensitivities 
plotted over time and the corresponding event-related potential 
(ERP) difference wave between the two experimental conditions 
(Figure 2A; example shown for electrode Pz, Fründ et al., 2008). 
The head topography plot of the sensitivities reveals a high variabil-
ity with respect to the specifi city among the multivariate measures. 
SVM, GPR and SMLR weights congruently identify three posterior 
electrodes as being most informative (SMLR weights provide the 
highest contrast of all measures). The I-RELIEF topography is much 

less specifi c and more similar to the ANOVA topography in its 
global spatial structure than to the other multivariate measures. It 
should be noted, however, that these topographies aggregate infor-
mation over all timepoints and, therefore, do not provide informa-
tion about specifi c temporal EEG components.

One particularly interesting result is the difference between 
the multivariate sensitivities and the univariate ANOVA F-scores 
from 300 to 400 ms following stimulus onset. Only the multivari-
ate methods (especially SMLR, linCSVM and linGPR) detected a 
relevant contribution to the classifi cation task of the signal in this 
time window. This late signal may be related to the intracranial 
EEG gamma-band responses that Lachaux et al. (2005) observed 
at around the same time range when participants viewed complex 
stimuli. Given that the present data also seem to show a similar 
evoked gamma-band response (Fründ et al., 2008), it is possible 

FIGURE 2 | Sensitivities for the classifi cation of color and line-art 

conditions. Panel (A) shows ERPs of each condition for electrode Pz. The light 
shaded area shows the standard deviation, the darker shade the 95% 
confi dence interval around the mean ERP of each condition. The black curve is 
the difference wave of both ERPs. The stimulus example images are from Fründ 
et al. (2008). Panel (B) shows feature sensitivity measures for the different 
methods. Sensitivities were normalized by scaling the vector norm of each 
sensitivity vector (covering all timepoints from all electrodes) to unit length. This 
allows for comparison of the relative weight each classifi er puts on each feature. 

The head topography plots in the lower panel show the channel-wise sum over 
time of the absolute scaled sensitivities. The upper panel shows the same 
scaled sensitivities plotted over time for the Pz electrode (indicated as the dark 
dot on the head topographies). This electrode was chosen as Fründ et al. (2008) 
made it the subject of most visualizations. The shape of the sensitivity curves 
nicely resemble the ERP difference wave. Interestingly, for a time window 
around 350 ms after stimulus onset (indicated by the gray bar), all multivariate 
sensitivity measures assign a considerable amount of weight on the respective 
timepoints, whereas the univariate ANOVA is completely fl at at zero.
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that the multivariate methods are sensitive to the gamma-band 
activity in the data. Still, further work would be required to prove 
this correlation.

MEG
The example MEG dataset was collected with the aim to test whether 
it is possible to predict the recognition of briefl y presented natural 
scenes from single trial MEG-recordings of brain activity (Rieger 
et al., 2008) and to use ML methods to investigate the properties 
of the brain activity that is predictive of later recognition. On each 
trial participants saw a briefl y presented photograph (37 ms) of 
a natural scene that was immediately followed by a pattern mask 
(1000–1400 ms). The short masked presentation effectively limits the 
processing interval of the scene in the brain (Rieger et al., 2005) and, 
therefore, participants will later recognize only some of the scenes. 
After the mask was turned off, participants indicated via button 
presses whether they would subsequently recognize the photograph, 
or if they would fail. Immediately after this judgement, four natural 
scene photographs were presented and participants had to indicate 
which of the four scenes had been previously  presented (i.e., a four-
alternative forced-choice delayed match to sample task).

The MEG was recorded with a 151 channel CTF Omega MEG 
system from the whole head (sampling rate 625 Hz and a 120 Hz 
analogue low pass fi lter) while participants performed this task. 
The 600 ms interval of the MEG time series data that was used for 
the analysis started at the onset of the briefl y presented scene and 
ended before the mask was turned off. As in the original study, we 
analyzed only those trials in which participants both judged they 
would be correct and also correctly recognized the scene (RECOG) 
and the trials in which participants both predicted they would fail 
and gave an incorrect response (NRECOG). For details about the 
rationale of this selection, the stimulus presentation information, 
and the recording procedure see Rieger et al. (2008). In this example 
analysis we have used data from a single participant (labeled P1 in 
the original publication).

The MEG timeseries were fi rst downsampled to 80 Hz and then 
all trial segments were channel-wise normalized by subtracting their 
mean baseline signal (determined from a 200 ms window prior to 
scene onset). Only timepoints within the fi rst 600 ms after stimulus 
onset were considered for further analysis. The resulting dataset con-
sisted of 151 channels with 48 timepoints each (7248 features), and 
a total of 294 samples (233 RECOG trials and 61 NRECOG trials).

The original study contained analyses based upon SVM classi-
fi ers, which revealed, by means of the spatio-temporal distribution 
of the sensitivities, that the theta band alone provides the most dis-
criminative signal. The authors also addressed the topic of how to 
interpret heavily unbalanced datasets23. Given this comprehensive 
analysis, we aimed here to replicate their basic analysis strategy with 
PyMVPA and were able to achieve almost identical results.

As with the EEG data, we applied a standard cross-validation 
procedure, this time eightfold, using linear SVM and SMLR classi-
fi ers. Additionally, we again computed univariate ANOVA F-scores 

on the same cross-validation dataset splits. The SVM classifi er was 
confi gured to use different per-class C-values24, scaled with respect 
to the number of samples in each class to address the unbalanced 
number of samples. Similar to Rieger et al. (2008), we also ran 
a second cross-validation on balanced datasets (by performing 
multiple selections of a random subset of samples from the larger 
RECOG category).

Both, classifi ers performed almost identically on the full, unbal-
anced dataset, achieving 84.69% (SMLR) and 82.31% (linCSVM) 
correct single trial predictions (83.0% in the original study). 
Figure 3 shows sample timeseries of the classifi er sensitivities and 
the ANOVA F-score of two posterior channels. Due to the sig-
nifi cant difference in the number of samples of each category, it is 
important to additionally report mean true positive rate (TPR)25, 
that amounted to 72% (SMLR), and 76% (linCSVM) respectively. 
The second SVM classifi er trained on the balanced dataset achieved 
a comparable accuracy of 76.07% correct predictions (mean across 
100 subsampled datasets), which is a slightly larger drop in accuracy 
when compared to the 80.8% achieved in the original study (see 
Table 3 in Rieger et al., 2008).

Importantly, these results show that PyMVPA produces repro-
ducible results that depend on the ML methods employed, but not 
on a particular implementation. However, the integrated frame-
work of PyMVPA allowed us to achieve these results with much 
less effort than what was necessary in the original study.

fMRI
A single participant (participant 1) from a study published by 
Haxby et al. (2001), which has been repeatedly reanalyzed since the 
original publication (Hanson and Halchenko, 2008; Hanson et al., 
2004; O’Toole et al., 2007), served as the example fMRI dataset. The 
dataset itself consists of 12 runs. In each run, the participant pas-
sively viewed greyscale images of eight object categories, grouped 
in 24 s blocks separated by rest periods. Each image was shown 
for 500 ms and was followed by a 1500 ms inter-stimulus interval. 
Full-brain fMRI data were recorded with a volume repetition time 
of 2500 ms, thus, a stimulus block was covered by roughly nine 
volumes. For a complete description of the experimental design 
and fMRI acquisition parameters see Haxby et al. (2001).

First, the raw fMRI data were motion corrected using FLIRT26 
from FSL27 (Jenkinson et al., 2002). All subsequent data processing 
was done with PyMVPA. After motion correction, linear detrending 
was performed for each run individually. No additional spatial or 
temporal fi ltering was applied.

For the sake of simplicity, we reduced the dataset to a four-class 
problem (faces, houses, cats, and shoes). All volumes recorded during 
any of these blocks were extracted and voxel-wise z-scored. This 
normalization was performed individually for each run to prevent 
any kind of information transfer across runs.

23Unbalanced datasets have a dominant category which has considerably more 
 samples than any other category. That potentially leads to the problem when a clas-
sifi er prefers to assign the label of that category to all samples to minimize total 
prediction error.

24Parameter C in soft-margin SVM controls a trade-off between width of the SVM 
margin and number of support vectors (see Veropoulos et al., 1999, for an  evaluation 
of this approach).
25Mean TPR is equivalent to accuracy in balanced sets, and is 50% at chance per-
formance even with unbalanced set sizes (see Rieger et al., 2008, for a discussion 
of this point).
26FMRIB’s Linear Image Registration Tool.
27http://www.fmrib.ox.ac.uk/fsl.
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After preprocessing, we applied the same sensitivity analysis 
performed for all other data modalities to this dataset. Here, only 
a SMLR classifi er was used (sixfold cross-validation, with 2 of the 
12 experimental runs grouped into one chunk, and trained on 
single fMRI volumes that covered the full brain). For  comparison, 
a univariate ANOVA was again computed for the same cross-
 validation dataset splits.

The SMLR classifi er performed very well on the independent 
test datasets, correctly predicting the category for 94.7% of all single 
volume samples in the test datasets. To examine what informa-
tion was used by the classifi er to reach this performance level, we 
computed ROI-based sensitivity scores for 48 non-overlapping 
structures defi ned by the probabilistic Harvard-Oxford cortical 
atlas (Flitney et al., 2007), as shipped with FSL (Smith et al., 2004). 
To create the ROIs, we thresholded the probability maps of all 
structures at 25% and assigned ambiguous voxels to the structure 
with the higher probability. The resulting map was projected into 
the space of the functional dataset using an affi ne transformation 
and nearest neighbor interpolation.

In order to determine the contribution of each ROI, the sensitiv-
ity vector was fi rst normalized (across all ROIs), so that all absolute 
sensitivities summed up to 1 (L1-normed). Afterwards ROI-wise 
scores were computed by taking the sum of all sensitivities in a 
particular ROI. The upper part of Figure 4 shows these scores for 
the 20 highest-scoring and the three lowest-scoring ROIs.

The lower part of the fi gure shows dendrograms from a hierar-
chical cluster analysis28 on relevant voxels from a block-averaged 
variant of the dataset (but otherwise identical to the classifi er train-
ing data). For SMLR, only voxels with a non-zero sensitivity were 
considered in each particular ROI. For ANOVA, only the voxels with 

the highest F-scores (limited to the same number as for the SMLR 
case) were considered. For visualization purposes the dendrograms 
show the distances and clusters computed from the average samples 
of each condition in each dataset chunk (i.e., two experimental 
blocks), yielding six samples per condition.

The four chosen ROIs clearly show four different cluster pat-
terns. The 92 selected voxels in temporal occipital fusiform cortex 
(TOFC) show a clear clustering of the experimental categories, with 
relatively large sample distances between categories. The pattern 
of the 36 voxels in angular gyrus reveals an animate/inanimate 
clustering, although with much smaller distances. The largest group 
of 148 voxels in the frontal pole ROI seems to have no obvious 
structure in their samples. Despite that, both sensitivity measures 
assign substantial importance to this region. This might be due to 
the large inter-sample distances visualized in the corresponding 
dendrogram in Figure 4. Each leaf node (in this case an average 
volume of two stimulation blocks) is approximately as distinct from 
any other leaf node, in terms of the employed distance measure, as 
the semantic clusters identifi ed in the TOFC ROI. Finally, the ROI 
covering the anterior division of the superior temporal gyrus shows 
no clustering at all, and, consequently, is among the lowest-scoring 
ROIs of both measures. On the whole, the cluster patterns from 
voxels selected by SMLR weights and F-scores are very similar in 
terms of inter-cluster distances.

Given that these results only include the data of a single par-
ticipant, no far-reaching implications can be drawn from them. 
However, the distinct cluster patterns might provide indications for 
different levels of information encoding that could be addressed 
in future studies. Although voxels selected in both angular gyrus 
and the frontal pole ROIs do not provide a discriminative signal 
for all four stimulus categories, they nevertheless provide some dis-
ambiguating information and, thus, are picked up by the classifi er. 

FIGURE 3 | Event-related magnetic fi elds (EMF) and classifi er sensitivities. 

The upper part shows EMFs for two exemplary MEG channels. On the left 
sensor MRO22 (right occipital), and on the right sensor MZO01 (central 

occipital). The lower part shows classifi er sensitivities and ANOVA F-scores 
plotted over time for both sensors. Both classifi ers showed equivalent 
generalization performance of approximately 82% correct single trial predictions.

28PyMVPA provides hierarchical clustering facilities through hcluster (Eads, 2008).
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In angular gyrus, this seems to be an animate/inanimate pattern 
that additionally also differentiates between the two categories of 
animate stimuli. Finally, in the frontal pole ROI the pattern remains 
unclear, but the relatively large inter-sample distances indicate a 
differential code of some form that is not closely related to the 
semantic stimulus category.

EXTRACELLULAR RECORDINGS
The extracellular dataset analyzed in this section is previously 
unpublished, thus, we fi rst briefl y describe the experimental 
and acquisition setup. Animal experiments were carried out in 
accordance with the National Institute of Health Guide for the 
Care and Use of Laboratory Animals and approved by Rutgers 
University. Sprague-Dawley rats (300–500 g) were anaesthetized 
with urethane (1.5 g/kg) and held with a custom naso-orbital 
restraint. After preparing a 3 mm square window in the skull over 
auditory cortex, the dura was removed and a silicon microelec-
trode consisting of eight four-site recording shanks (NeuroNexus 
Technologies, Ann Arbor, MI, USA) was inserted. The recording 
sites were in the primary auditory cortex, estimated by stere-
otaxic coordinates, vascular structure (Sally and Kelly, 1988) and 

tonotopic variation of frequency tuning across recording shanks, 
and located within layer V, determined by electrode depth and 
fi ring patterns.

Five pure tones (3, 7, 12, 20, 30 kHz at 60 dB) and fi ve different 
natural sounds (extracted from the CD “Voices of the Swamp”, 
Naturesound Studio, Ithaca, NY, USA) were used as stimuli. Each 
stimulus had a duration of 500 ms followed by 1500 ms of silence. 
All stimuli were tapered at beginning and end with a 5 ms cosine 
window. The data acquisition took place in a single-walled sound 
isolation chamber (IAC, Bronx, NY, USA) with sounds presented 
free fi eld (RP2/ES1, Tucker-Davis, Alachua, FL, USA).

Individual units29 were isolated by a semi-automatic algorithm 
(KlustaKwik30) followed by manual clustering (Klusters31). Post-
stimulus time histograms (PSTH) of spike counts per each unit 
for all 1734 stimulation onsets were estimated using a bin size of 
3.2 ms. To ensure an accurate estimation of PSTHs only units with a 

FIGURE 4 | Sensitivity analysis of the four-category fMRI dataset. The upper 
part shows the ROI-wise scores computed from SMLR classifi er weights and 
ANOVA F-scores (limited to the 20 highest and the three lowest-scoring ROIs). 

The lower part shows dendrograms with clusters of average category samples 
(computed using squared Euclidean distances) for voxels with non-zero SMLR-
weights and a matching number of voxels with the highest F-scores in each ROI.

29The term “unit” in the text refers to a single entity, which was segregated from the 
recorded data, and is expected to represent a single neuron.
30http://klustakwik.sourceforge.net.
31http://klusters.sourceforge.net.
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mean fi ring rate higher than 2 Hz were selected for further analysis, 
leaving us with a total of 105 units.

Since the segregation of individual units out of the extra-
cellular recordings is carried out without taking the respective 
stimulus condition into account, i.e., in unsupervised fashion 
(in ML terminology), it does not guarantee that the activity of 
any particular unit can be easily attributed to some set of stimulus 
conditions. From the stimulus-wise descriptive statistics of the 
units presented in the top plots of Figure 5 it is diffi cult to state 
that the activity of any particular unit at some moment in time is 
specifi c for a given stimulus. Furthermore, due to the inter-trial 
variance in the spike counts, it is even more diffi cult to reliably 
assess what stimulus condition any particular trial belongs to. 
Hence, the purpose of the PyMVPA analysis was to complement 
the results of the unsupervised clustering with a characterization 
of all extracted units in terms of their specifi city to any given 
stimulus at any given time.

The analysis pipeline was similar to the one used for EEG, 
MEG, and fMRI data. We ran a standard eightfold cross- validation 
procedure for an SMLR classifi er, which achieved a mean of 
77.57% accuracy estimate across all 10 types of stimuli. This gen-
eralization accuracy is well above chance (10%) for all stimulus 
categories and allows one to conclude that the neuronal popula-
tion activity pattern at the recording site carries a differential 
signal across all 10 stimuli. Misclassifi cations mostly occurred for 
low-frequency stimuli. Pure tones with 3 and 7 kHz were more 
often confused with each other than tones with a larger frequency 

difference (see Figure 6), which suggests a high similarity in the 
spiking patterns for these stimuli. We could further speculate that 
this neuronal population is more tuned towards the processing 
of higher frequency tones.

Besides being able to label yet unseen trials with high accuracy, 
the trained classifi er can readily provide its sensitivity estimates 
for each unit, time bin, and stimulus condition (see bottom plots 
of Figure 5). Temporal sensitivity profi les of any particular unit 
(see unit #42 profi les in lower left plot of Figure 5) can reveal that 
the stimulus specifi c information is contained in spike times rela-
tive to stimulus onset or can be represented as slowly modulated 
pattern of spike counts (see 3 kHz stimuli). An aggregate sensitivity 
(in this case the sum of absolute sensitivities) across all time-bins 
provides a summary statistic of any unit’s sensitivity to a given 
stimulus condition (see lower right plot of Figure 5). In contrast 
to a simple variance measure, it provides an easier way to associate 
any given unit to a set of stimulus conditions. Additionally, it can 
identify units which might lack a substantial amount of variance, 
but nevertheless carry a stimulius-specifi c signal (e.g. unit #28 and 
30 kHz stimulus).

CONCLUSIONS
In this article we presented PyMVPA, a data analysis framework 
especially tailored to neural data from a wide range of acquisition 
modalities. PyMVPA provides ML techniques as core functional-
ity, addressing recent trends in neuroscience research. To illustrate 
the generalizability of the PyMVPA analysis pipeline we provided 

FIGURE 5 | Statistics of multiple single unit extracellular simultaneous 

recordings and corresponding classifi er sensitivities. All plots sweep through 
different stimuli along vertical axis, with stimuli labels presented in the middle of 
the plots. The upper part shows basic descriptive statistics of spike counts for 
each stimulus per each time bin (on the left) and per each unit (on the right). 
Such statistics seem to lack stimulus specifi city for any given category at a given 
time point or unit. The lower part on the left shows the temporal sensitivity 
profi le of a representative unit for each stimulus. It shows that stimulus specifi c 

information in the response can be coded primarily temporally (few specifi c 
offsets with maximal sensitivity like for song2 stimulus) or in a slowly modulated 
pattern of spikes counts (see 3 kHz stimulus). Associated aggregate sensitivities 
of all units for all stimuli in the lower right fi gure indicate each unit’s specifi city to 
any given stimulus. It provides better specifi city than simple statistics like 
variance, e.g., unit 19 is active in all stimulation conditions according to its high 
variance, but according to its classifi er sensitivity it carries little, if any, stimuli-
specifi c information for natural songs 1–3.
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example analyses of data from EEG, MEG, fMRI and extracellular 
recordings.

The framework presented here is Python-based, sophisticated, 
free and open-source software. Its intended audience is threefold. 
First, there are neuroscience researchers interested in testing ML 
algorithms on neural data, e.g., people working on brain- computer 
interfaces (BCI, see Birbaumer and Cohen, 2007; Lebedev and 
Nicolelis, 2006). PyMVPA provides researchers with the ability 
to execute complex analysis tasks in very concise code. Second, it 
is also designed for ML researchers interested in testing new ML 
algorithms on neural data. PyMVPA offers a highly-modularized 
architecture designed to minimize the effort of adding new algo-
rithms. Moreover, the availability of neuroscience-related code-
examples (like the ones presented in this article) and datasets greatly 
reduces the time to get actual results. Finally, PyMVPA is welcoming 
code contributors from both neuroscience and ML communities 
interested in improving or adding modality-specifi c functions or 
new algorithms. PyMVPA offers a community-based development 
model together with a distributed version control system and exten-
sive reference documentation.

FUTURE WORK
PyMVPA does not aim to provide all possible ML analysis algorithms, 
and it will likely not come close, even in the future. Given that PyMVPA 
is tailored towards the high-dimensional problems found in neuro-
science, it currently provides many of the most common algorithms 
tuned for this target. Still, as the neuroscience and ML communities 
unite, new and promising algorithms are constantly emerging and 
being added to PyMVPA. Beyond the inclusion of new ML algorithms, 
there are numerous plans for future enhancements to PyMVPA.

Because the current use of ML techniques in neuroscience is 
mainly limited to the application of only basic algorithms to neural 
data, one of the next, most intriguing, new directions of PyMVPA 
will be to provide custom workfl ows designed for specifi c neuroscience 
modalities. An example of such a custom workfl ow is the analysis 
of fMRI data from experiments with event-related designs, where 
multiple fMRI volumes after the onset of the event compose a single 
sample within a dataset provided to the ML methods for processing. 
Combining multiple volumes into a single sample obviates the need 
to provide a hemodynamic response function because the important 
features can be extracted independently for each voxel.

FIGURE 6 | Confusion matrix of SMLR classifi er predictions of stimulus 

conditions from of multiple unit recordings. The classifi er was trained to 
discriminate between stimuli of fi ve pure tones and fi ve natural sounds. 
Elements of the matrix (numeric values and color-mapped visualization) show 
the number of trials which were correctly (diagonal) or incorrectly 

(off-diagonal) classifi ed by a SMLR classifi er during an eightfold cross-validation 
procedure. The results suggest a high similarity in the spiking patterns for stimuli 
of low-frequency pure tones, which lead the classifi er to confuse them more 
often, whenever responses to natural sound stimuli and high-frequency tones 
were hardly ever confused with each other.
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In addition, PyMVPA has yet to confront the problem of model 
selection. Currently, only Gaussian process regression has the 
ability to select hyper-parameters of the model. Uniform model 
selection for ML methods within PyMVPA is planned for the 
next major release of the project. It will provide the facility to 
automatically search for the best set of parameters for each clas-
sifi er without sacrifi cing unbiased estimates of the generalization 
performance.

SUPPLEMENTAL MATERIAL
The Supplemental Materials (e.g., source code) for this article can 
be found online at http://www.frontiersin.org/neuroinformatics/ 
paper/10.3389/neuro.11/003.2009.
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The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for 
heterogeneous networks of point neurons or neurons with a small number of compartments. 
It aims at simulations of large neural systems with more than 104 neurons and 107 to 109 
synapses. NEST is implemented in C++ and can be used on a large range of architectures from 
single-core laptops over multi-core desktop computers to super-computers with thousands of 
processor cores. Python (http://www.python.org) is a modern programming language that 
has recently received considerable attention in Computational Neuroscience. Python is easy to 
learn and has many extension modules for scientifi c computing (e.g. http://www.scipy.org). 
In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines 
NEST’s effi cient simulation kernel with the simplicity and fl exibility of Python. Compared to 
NEST’s native simulation language SLI, PyNEST makes it easier to set up simulations, generate 
stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python 
and how it is implemented. With a number of examples, we illustrate how it is used.

Keywords: Python, modeling, integrate-and-fi re neuron, large-scale simulation, scientifi c computing, networks, 

programming

(van Rossum, 2008). To do so, it is common to map the application’s 
functions and data structures to Python classes and functions. This 
approach has the advantage that the coupling between the applica-
tion and Python is as tight as possible. But there is also a drawback: 
Whenever a new feature is implemented in the application, the 
interface to Python must be changed as well.

On many high-performance computers Python is not available 
and we have to preserve NEST’s native simulation language SLI. 
In order to avoid two different interfaces, one to Python and one 
to SLI, we decided to deviate from the standard way of coupling 
applications to Python. Rather than using NEST’s classes, we use 
NEST’s simulation language as the interface: Python sends data 
and SLI commands to NEST and NEST responds with Python 
data structures.

Exchanging data between Python and NEST is easy since 
all important data types in NEST have equivalents in Python. 
Executing NEST commands from Python is also straightfor-
ward: Python only needs to send a string with commands to 
NEST, and NEST will execute them. With this approach, we only 
need to maintain one binary interface to the simulation kernel 
instead of two: Each new feature of the simulation kernel only 
needs to be mapped to SLI and immediately becomes accessible 
in PyNEST without changing its binary interface. This generic 
interpreter interface allows us to program PyNEST’s high-level 
API in Python. This is an advantage, because programming in 
Python is more productive than programming in C++ (Prechelt, 
2000). Python is also more expressive: A given number of lines of 
Python code achieve much more than the same number of lines 
in C++ (McConnell, 2004).

INTRODUCTION
The fi rst user interface for NEST (Gewaltig and Diesmann, 2007; 
Plesser et al., 2007) was the simulation language SLI, a stack-based 
language derived from PostScript (Adobe Systems Inc., 1999). 
However, programming in SLI turned out to be diffi cult to learn 
and users asked for a more convenient programming language for 
NEST.

When we decided to use Python as the new simulation language, 
it was almost unknown in Computational Neuroscience. In fact, 
Matlab (MathWorks, 2002) was far more common, both for simula-
tions and for analysis. Other simulators, like e.g. CSIM (Natschläger, 
2003), already used Matlab as their interface language. Thus, Matlab 
would have been a natural choice for NEST as well.

Python has a number of advantages over commercial soft-
ware like Matlab and other free scripting languages like Tcl/Tk 
(Ousterhout, 1994). First, Python is installed by default on all Linux 
and Mac-OS based computers. Second, Python is stable, portable, 
and supported by a large and active developer community, and has 
a long history in scientifi c fi elds outside the neurosciences (Dubois, 
2007). Third, Python is a powerful interactive programming lan-
guage with a surprisingly concise and readable syntax. It supports 
many programming paradigms such as object-oriented and func-
tional programming. Through packages like NumPy (http://
www.numpy.org) and SciPy (http://www.scipy.org), Python 
supports scientifi c computing and visualization à la Matlab. Finally, 
a number of neuroscience laboratories meanwhile use Python for 
simulation and analysis, which further supports our choice.

Python is powerful at steering other applications and provides 
a well documented interface (API) to link applications to Python 
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NEST users benefi t from the increased productivity. They can 
now take advantage of the large number of extension modules for 
Python. NumPy is the Python interface to the BLAS libraries, the same 
libraries which power Matlab. Matplotlib (http://matplotlib.
sourceforge.net) provides many routines to plot scientifi c data in 
publication quality. Many other packages exist to analyze and visualize 
data. Thus, PyNEST allows users to combine simulation, data analysis, 
and visualization in a single programming language.

In the Section “Using PyNEST”, we introduce the basic modeling 
concepts of NEST. With a number of PyNEST code examples, we 
illustrate how simulations are defi ned and how the results are ana-
lyzed and plotted. In the Section “The Interface Between Python 
and NEST”, we describe in detail how we bind NEST to the Python 
interpreter. In the Section “Discussion”, we discuss our implementa-
tion and analyze its performance. The complete API reference for 
PyNEST is contained in Appendix A. In Appendix B we illustrate 
advanced PyNEST features, using a large scale model.

USING PyNEST
A neural network in NEST consists of two basic element types: Nodes 
and connections. Nodes are either neurons, devices or subnetworks. 
Devices are used to stimulate neurons or to record from them. Nodes 
can be arranged in subnetworks to build hierarchical networks like 
layers, columns, and areas. After starting NEST, there is one empty 
subnetwork, the so-called root node. New nodes are created with the 
command Create(), which takes the model name and optionally the 
number of nodes as arguments and returns a list of handles to the new 
nodes. These handles are integer numbers, called ids. Most PyNEST 
functions expect or return a list of ids (see Appendix A). Thus it is easy 
to apply functions to large sets of nodes with a single function call.

Nodes are connected using Connect(). Connections have a 
confi gurable delay and weight. The weight can be static or dynamic, 
as for example in the case of spike timing dependent plasticity 
(STDP; Morrison et al., 2008). Different types of nodes and con-
nections have different parameters and state variables. To avoid 
the problem of fat interfaces (Stroustrup, 1997), we use dictionar-
ies with the functions GetStatus() and SetStatus() for the 
inspection and manipulation of an element’s confi guration. The 
properties of the simulation kernel are controlled through the com-
mands GetKernelStatus() and SetKernelStatus(). PyNEST 
contains the submodules raster_plot and voltage_trace to visualize 
spike activity and membrane potential traces. They use Matplotlib 
internally and are good templates for new visualization functions. 
However, it is not our intention to develop PyNEST into a toolbox 
for the analysis of neuroscience data; we follow the modularity 
concept of Python and leave this task to others (e.g. NeuroTools, 
http://www.neuralensemble.org/NeuroTools).

EXAMPLE
We illustrate the key features of PyNEST with a simulation of a 
neuron receiving input from an excitatory and an inhibitory popu-
lation of neurons (modifi ed from Gewaltig and Diesmann, 2007). 
Each presynaptic population is modeled by a Poisson generator, 
which generates a unique Poisson spike train for each target. The 
simulation adjusts the fi ring rate of the inhibitory input population 
such that the neurons of the excitatory population and the target 
neuron fi re at the same rate.

First, we import all necessary modules for simulation, analysis 
and plotting.

 1 from nest import *
 2 from scipy.optimize import bisect
 3 import nest.voltage_trace as plot

Second, the parameters for the simulation are set.

 4 t_sim = 100000.0  #[ms] simulation time
 5 n_ex  =  16000    #size of exc. population
 6 n_in  =   4000    #size of inh. population
 7 r_ex  =      5.0  #[Hz] rate of exc. neurons
 8 epsc  =     45.0  #[pA] amplitude of exc.
 9                   #synaptic currents
10 ipsc  =    −45.0  #[pA] amplitude of inh.
11                   #synaptic currents
12 d     =      1.0  #[ms] synaptic delay
13 lower =      5.0  #[Hz] lower bound of the
14                   #search interval
15 upper =     25.0  #[Hz] upper bound of the
16                   #search interval
17 prec  =      0.05 #accuracy goal (in percent 
18                   #of inhibitory rate)

Third, the nodes are created using Create(). Its arguments 
are the name of the neuron or device model and optionally the 
number of nodes to create. If the number is not specifi ed, a single 
node is created. Create() returns a list of ids for the new nodes, 
which we store in variables for later reference.

19 neuron        = Create("iaf_neuron")
20 noise         = Create("poisson_generator", 2)
21 voltmeter     = Create("voltmeter")
22 spikedetector = Create("spike_detector")

Fourth, the excitatory Poisson generator (noise[0]) and the 
voltmeter are confi gured using SetStatus(), which expects a list 
of node handles and a list of parameter dictionaries. The rate of 
the inhibitory Poisson generator is set in line 32. For the neuron 
and the spike detector we use the default parameters.

23 SetStatus([ noise [0]], [{ "rate" : n_ex*r_ex }])
24 SetStatus(voltmeter, [{ "interval" : 1000.0,
25                         "withgid" : True}])

Fifth, the neuron is connected to the spike detector and the 
voltmeter, as are the two Poisson generators to the neuron:

26 Connect(neuron, spikedetector)
27 Connect(voltmeter, neuron)
28 ConvergentConnect(noise, neuron, 
29                   [epsc, ipsc], [d, d])

The command Connect() has different variants. Plain 
Connect() (line 26 and 27) just takes the handles of pre- and 
 postsynaptic nodes and uses the default values for weight and delay. 
ConvergentConnect() (line 28) takes four arguments: A list of 
presynaptic nodes, a list of postsynaptic nodes, and lists of weights 
and delays. It connects all presynaptic nodes to each postsynaptic 
node. All variants of the Connect() command refl ect the direc-
tion of signal fl ow in the simulation kernel rather than the physi-
cal process of inserting an electrode into a neuron. For example, 
neurons send their spikes to a spike detector, thus the neuron is the 
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fi rst argument to Connect() in line 26. By contrast, a voltmeter 
polls the membrane potential of a neuron in regular intervals, thus 
the voltmeter is the fi rst argument of Connect() in line 27. The 
documentation of each model explains the types of events it can 
send and receive.

To determine the optimal rate of the neurons in the inhibitory 
population, the network is simulated several times for different 
values of the inhibitory rate while measuring the rate of the target 
neuron. This is done until the rate of the inhibitory neurons is 
determined up to a given relative precision (prec), such that the 
target neuron fi res at the same rate as the neurons in the excitatory 
population. The algorithm is implemented in two steps:

First, the function output_rate() is defi ned to measure the 
fi ring rate of the target neuron for a given rate of the inhibitory 
neurons.

30 def output_rate(guess):
31     rate = float(abs(n_in*guess))
32     SetStatus([ noise [1]], [{"rate": rate}])
33     SetStatus(spikedetector, [{"n_events": 0}])
34     Simulate(t_sim)
35     n_events = GetStatus(spikedetector, 
36                          "n_events")[0]
37     r_target = n_events*1000.0/t_sim
38     print "r_in = %.4f Hz," % guess, 
39     print "r_target = %.3f Hz" % r_target
40     return r_target

The function takes the fi ring rate of the inhibitory neurons as 
an argument. It scales the rate with the size of the inhibitory popu-
lation (line 31) and confi gures the inhibitory Poisson generator 
(noise[1]) accordingly (line 32). In line 33, the spike-counter of 
the spike detector is reset to zero. Line 34 simulates the network 
using Simulate(), which takes the desired simulation time in mil-
liseconds and advances the network state by this amount of time. 
During the simulation, the spike detector counts the spikes of the 
target neuron and the total number is read out at the end of the 
simulation period (line 35). The return value of output_rate() 
is an estimate of the fi ring rate of the target neuron in Hz.

Second, we determine the optimal fi ring rate of the neurons of 
the inhibitory population using the bisection method.

41 print "Desired target rate: %.2f Hz" % r_ex
42 r = bisect(lambda x: output_rate(x)-r_ex, 
43            lower, upper, rtol=prec)
44 print "Resulting inhibitory rate: %.4f" % r

The SciPy function bisect() takes four arguments: First a 
function whose zero crossing is to be determined. Here, the fi ring 
rate of the target neuron should equal the fi ring rate of the neurons 
of the excitatory population. Thus we defi ne an anonymous func-
tion (using lambda) that returns the difference between the actual 
rate of the target neuron and the rate of the excitatory Poisson 
generator, given a rate for the inhibitory neurons. The next two 
arguments are the lower and upper bound of the interval in which 
to search for the zero crossing. The fourth argument of bisect() 
is the desired relative precision of the zero crossing.

Finally, we plot the target neuron’s membrane potential as a 
function of time.

45 plot.from_device(voltmeter, timeunit="s")

A transcript of the simulation session and the resulting plot are 
shown in Figure 1.

PyNEST ON MULTI-CORE PROCESSORS AND CLUSTERS
NEST has built-in support for parallel and distributed computing 
(Morrison et al., 2005; Plesser et al., 2007): On multi-core proces-
sors, NEST uses POSIX threads (Lewis and Berg, 1997), on computer 
clusters, NEST uses the Message Passing Interface (MPI; Message 
Passing Interface Forum, 1994). Nodes and connections are assigned 
automatically to threads and processes, i.e. the same script can be 
executed single-threaded, multi-threaded, distributed over multiple 
processes, or using a combination of both methods. This naturally 
carries over to PyNEST: To use multiple threads for the simulation, 
the desired number has to be set prior to the creation of nodes and 
connections. Note that the network setup is carried out by a single 
thread, as only a single instance of the Python interpreter exists 

A

jochen@winston:˜$ python balancedneuron.py
NEST 1.9.7865 (C) 2008 The NEST Initiative
Desired target rate: 5.00 Hz

r in=5.0000 Hz, r target=434.580 Hz
r in=25.0000 Hz, r target=0.020 Hz
r in=15.0000 Hz, r target=347.410 Hz
r in=20.0000 Hz, r target=34.350 Hz
r in=22.5000 Hz, r target=0.000 Hz
r in=21.2500 Hz, r target=0.680 Hz
r in=20.6250 Hz, r target=7.160 Hz

...
r in=20.7837 Hz, r target=4.640 Hz
r in=20.7825 Hz, r target=5.000 Hz

Resulting inhibitory rate: 20.7825 Hz

B

FIGURE 1 | Results of the example simulation. (A) The transcript of the 
simulation session shows the intermediate results of r_target as bisect() 
searches for the optimal rate. (B) The membrane potential of the target neuron 

as a function of time. Repeated adjustment of the spike rate of the inhibitory 
population by bisect() results in a convergence of the mean membrane 
potential to −112 mV, corresponding to an output spike rate of 5.0 Hz.
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in each process. Only the simulation takes advantage of multiple 
threads. Distributed simulations can be run via the mpirun com-
mand of the respective MPI implementation. Where, for SLI, one 
would execute mpirun -np n nest simulation.sli to distrib-
ute a simulation onto n processes, one has to call mpirun -np n 
python simulation.py to get the same result with PyNEST. In 
the distributed case, n Python interpreters run in parallel and execute 
the same simulation script. This means that both network setup 
and simulation are parallelized. With third-party tools like IPython 
(http://ipython.scipy.org) or MPI for Python (http://
mpi4py.scipy.org), it is possible to use PyNEST interactively 
even in distributed scenarios. For a more elaborate documentation 
of parallel and distributed simulations with NEST, see the NEST 
user manual (http://www.nest-initiative.org).

THE INTERFACE BETWEEN PYTHON AND NEST
NEST’s built-in simulation language (SLI) is a stack-based language 
in which functions expect their arguments on an operand stack 
to which they also return their results. This means that in every 
expression, the arguments must be entered before the command 
that uses them (reverse polish notation). For many new users, SLI is 
diffi cult to learn and hard to read. This is especially true for math: 
The simple expression α = t · e−t/τ has to be written as /alpha t 
t neg tau div exp mul def in SLI. But SLI is also a high-level 
language where functions can be assembled at run time, stored in 
variables and passed as arguments to other functions (functional 
programming; Finkel, 1996). Powerful indexing operators like 
Part and functional operators like Map, together with data types 
like heterogeneous arrays and dictionaries, allow a compact and 
expressive formulation of algorithms.

Stack-based languages are often used as intermediate languages 
in compilers and interpreters (Aho et al., 1988). This inspired 
us to couple NEST and Python using SLI as an intermediate 
language.

THE PyNEST LOW-LEVEL INTERFACE
The low-level API of PyNEST is implemented in C/C++ using the 
Python C-API (van Rossum, 2008). It exposes only three func-
tions to Python, and has private routines for converting between 
SLI data types and their Python equivalents. The exposed func-
tions are:

1. sli_push(py_object), which converts the Python object 
py_object to the corresponding SLI data type and pushes it 
onto SLI’s operand stack.

2. sli_pop(), which removes the top element from SLI’s ope-
rand stack and returns it as a Python object.

3. sli_run(slicommand), which uses NEST’s simulation lan-
guage interpreter to execute the string slicommand. If the 
command requires arguments, they have to be present on SLI’s 
operand stack or must be part of slicommand. After the com-
mand is executed, its return values will be on the interpreter’s 
operand stack.

Since these functions provide full access to the simulation lan-
guage interpreter, we can now control NEST’s simulation kernel 
without explicit Python bindings for all NEST functions. This 
interface also provides a natural way to execute legacy SLI code 

from within a PyNEST script by just using the command sli_
run("(legacy.sli) run"). However, it does not provide any 
benefi ts over plain SLI from a syntactic point of view: All simulation 
specifi c code still has to be written in SLI. This problem is solved 
by a set of high-level functions.

THE PyNEST HIGH-LEVEL INTERFACE
To allow the researcher to defi ne, run and evaluate NEST simula-
tions using only Python, PyNEST offers convenient wrappers for 
the most important functions of NEST. These wrappers are imple-
mented on top of the low-level API and execute appropriate SLI 
expressions. Thus, at the level of PyNEST, SLI is invisible to the user. 
Each high-level function consists essentially of three parts:

1. The arguments of the function are put on SLI’s operand 
stack.

2. One or more SLI commands are executed to perform the desi-
red action in NEST.

3. The results (if any) are fetched from the operand stack and 
returned as Python objects.

A concrete example of the procedure is given in the following 
listing, which shows the implementation of Create():

1 def Create(model, n=1):
2 sli_run("/%s" % model)
3 sli_push(n)
4 sli_run("CreateMany")
5 lastid = sli_pop()
6 return range(lastid - n + 1, lastid + 1)

In line 2, we fi rst transfer the model name to NEST. Model names 
in NEST have to be of type literal, a special symbol type that is not 
available in Python. Because of this, we cannot use sli_push() for 
the data transfer, but have to use sli_run(), which executes a given 
command string instead of just pushing it onto SLI’s stack. The 
command string consists of a slash followed by the model name, 
which is interpreded as a literal by SLI. Line 3 uses sli_push() 
to transmit the number of nodes (n) to SLI. The nodes are then 
created by CreateMany in line 4, which expects the model name 
and number of nodes on SLI’s operand stack and puts the id of 
the last created node back onto the stack. The id is retrieved in 
line 5 via sli_pop(). To be consistent with the convention that 
all PyNEST functions work with lists of nodes, we build a list of 
all created nodes’ ids, which is returned in line 6.

A sequence diagram of the interaction between the different 
software layers of PyNEST is shown in Figure 2 for a call to the 
Create() function.

DATA CONVERSION
From Python to SLI
The data conversion between Python and SLI exploits the fact that 
most data types in SLI have an equivalent type in Python. The func-
tion sli_push() calls PyObjectToDatum() to convert a Python 
object py_object to the corresponding SLI data type (see  in 
Figure 2). PyObjectToDatum() determines the type of py_object 
in a cascade of type checks (e.g. PyInt_Check(), PyString_
Check(), PyFloatCheck()) as described by van Rossum (2008). 
If a type check succeeds, the Python object is used to create a new 
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SLI Datum of the respective type. PyObjectToDatum() is called 
recursively on the elements of lists and dictionaries. The listing 
below shows how this technique is used for the conversion of the 
Python type float and for NumPy arrays of doubles:

 1 Datum* PyObjectToDatum(PyObject *py_object)
 2 {
 3    if (PyFloat_Check(py_object)) //float?
 4    {
 5     return new DoubleDatum(PyFloat_AsDouble(
 6                                 py_object));
 7    }
 8
 9    if (PyArray_Check(py_object)) //NumPy array?
10    {
11     int size = PyArray_Size(py_object);
12     PyArrayObject *array;
13     array = (PyArrayObject*) py_object;
14     assert(array != 0);
15     switch (array->descr->type_num)
16     {
17      case PyArray_DOUBLE:
18      {
19        double *begin = (double*) array->data;
20        return new DoubleVectorDatum(
21            new std::vector<double>(
22                  begin, begin+size));
23       }
24      //cases for NumPy arrays of other types
25     }

26    }
27    //checks for other supported Python types
28 }

From SLI to Python
To convert a SLI data type to the corresponding Python type, we can 
avoid the cascade of type checks, since all SLI data types are derived 
from a common base class, called Datum. The C++  textbook solution 
would add a pure virtual conversion function  convert() to the class 
Datum. Each derived class (e.g. DoubleDatum, DoubleVectorDatum) 
then overloads this function to implement its own conversion to the 
corresponding Python type. This approach is shown for the SLI 
type DoubleDatum in the following listing. The function get() is 
implemented in each Datum and returns its data member.

1 PyObject*
2 DoubleDatum::convert()
3 {
4   return PyFloat_FromDouble(get());
5 }

However, this solution would make SLI’s type hierarchy (and 
thus NEST) depend on Python. To keep NEST independent of 
Python, we split the implementation in two parts: The fi rst is 
Python-unspecifi c and resides in the NEST source code (Figure 3, 
left rectangle), the second is Python-specifi c and defi ned in the 
PyNEST source code (Figure 3, right rectangle).

We move the Python-specifi c conversion code from convert() 
to a new function convert_me(), which is then called by the 

FIGURE 2 | Sequence diagram showing the interaction between Python 

and SLI. A call to the PyNEST high-level function Create() fi rst transmits 
the model name to SLI using sli_run(). It is converted to the SLI type 
literal by the interpreter ( ). Next, it pushes the number of nodes (10) to 
SLI using sli_push(). The PyNEST low-level API converts the argument 
to a SLI datum ( ) and pushes it onto SLI’s operand stack. Next, it 

executes appropriate SLI code to create the nodes of type iaf_neuron in 
the simulation kernel. Finally it retrieves the results of the NEST 
operations using sli_pop(), which converts the data back to a Python 
object ( ). The result of the operation in SLI (the id of the last node created) 
is used to create a list with the ids of all new nodes, which is returned to 
Python.
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interface function use_converter(). This function is now inde-
pendent of Python:

1 void
2 Datum::use_converter(DatumConverter& converter)
3 {
4   converter.convert_me(* this);
5 }

The function use_converter() is defi ned in the base class 
Datum and inherited by all derived classes. It calls the convert_
me() function of converter that matches the type of the derived 
Datum. NEST’s class DatumConverter is an abstract class that 
defi nes a pure virtual function convert_me(T&) for each SLI 
type T:

1 class DatumConverter
2 {
3  public:
4   virtual void convert_me(Datum&);
5   virtual void convert_me(DoubleDatum&)=0;
6   virtual void convert_me(DoubleVectorDatum&)=0;
7   //convert_me() function for other Datums
8 };

The Python-specifi c part of the conversion is encapsu-
lated in the class DatumToPythonConverter, which derives 
from DatumConverter and implements the convert_me() 
functions to actually convert the SLI types to Python objects. 
DatumToPythonConverter::convert_me() takes a reference 
to the Datum as an argument and is overloaded for each SLI type. It 
stores the result of the conversion in the class variable py_object. 
An example for the conversion of DoubleDatum is given in the 
following listing:

1 void
2 DatumToPythonConverter::convert_me(
3     DoubleDatum& dd)
4 {
5   py_object = PyFloat_FromDouble(dd.get());
6 }

DatumToPythonConverter also provides the function con-
vert(), which converts a given Datum d to a Python object by 
calling d.use_converter() with itself as an argument. It is used 
in the implementation of sli_pop() (see  in Figure 2). After the 
call to use_converter(), the result of the conversion is available 
in the member variable py_object, and is returned to the caller:

1 PyObject*
2 DatumToPythonConverter::convert(Datum& d)
3 {
4   d.use_converter(*this);
5   return py_object;
6 }

In the Computer Science literature, this method of decoupling 
different parts of program code is called the acyclic visitor pattern 
(Martin et al., 1998). Our implementation is based on Alexandrescu 
(2001).

As an example, the diagram in Figure 4 illustrates the 
sequence of events in sli_pop(): First, sli_pop() retrieves 
a SLI Datum d from the operand stack (not shown). Second, it 
creates an instance of DatumToPythonConverter and calls its 
convert() function, which then passes itself as visitor to the 
use_ converter() function of d. Datum::use_converter() 
calls the DatumToPythonConverter’s convert_me() function 
that matches the type of d. The function convert_me() then cre-
ates a new Python object from the data in d and stores it in the 
DatumToPythonConverter’s member variable py_object, 
which is returned to sli_pop().

NumPy support
To make PyNEST depend on NumPy only if it is available, we 
use conditional compilation based on the preprocessor macro 
HAVE_NUMPY, which is determined during the confi guration of 
PyNEST prior to compilation. For example, the following listing 
shows the implementation of the DatumToPythonConverter:: 
convert_me() function to convert homogeneous arrays of  doubles 
from SLI to Python. If NumPy is available during compilation, its 

FIGURE 3 | Class diagram for the acyclic visitor pattern used to convert SLI 

types to Python types. The left rectangle contains classes belonging 
to NEST, the right rectangle contains classes that are part of PyNEST. All 
SLI data types are derived from the base class Datum and inherit its function 

use_converter(). The class DatumConverter is the base class of 
DatumToPythonConverter. The actual data conversion is carried out in 
one of DatumToPythonConverter’s convert_me() functions. Virtual 
functions are typeset in italics.

175



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 

Eppler et al. PyNEST: A convenient interface to NEST

 homogeneous array type is used to store the data. Without NumPy, 
a Python list is used instead.

 1 void
 2 DatumToPythonConverter::convert_me(
 3     DoubleVectorDatum& d)
 4 {
 5   int dims = d->size();
 6 #ifdef HAVE_NUMPY
 7     PyArrayObject* array;
 8     array = (PyArrayObject*)
 9       PyArray_FromDims(1, &dims, PyArray_DOUBLE);
10     std::copy(d->begin(), d->end(),
11             (double*) array->data);
12     py_object = (PyObject*) array;
13 #else
14     py_object = PyList_New(dims);
15     for(int i=0; i<dims; i++)
16     PyList_SetItem(py_object, i, 
17                    PyFloat_FromDouble((*d)[i]));
18 #endif
19 }

ERROR HANDLING
Error handling in NEST is implemented using C++ exceptions 
that are propagated up the calling hierarchy until a suitable error 
handler catches them. In this section, we describe how we extend 
this strategy to PyNEST.

PyNEST executes SLI code using sli_run() as described in the 
Section “The PyNEST High-Level Interface”. However, the high-
level API does not call sli_run() directly, but rather through the 
wrapper function catching_sr():

1 def catching_sr(cmd):
2     sli_run("{" + cmd + "} runprotected")
3     if not sli_pop():   #cmd caused an error

4        errorname = sli_pop()
5        commandname = sli_pop()
6        raise NESTError("NEST error: " + 
7                        errorname + " in " + 
8                        commandname)

In line 2, catching_sr() converts the command string cmd to 
a SLI procedure by adding braces. It then calls the SLI command 
runprotected (see listing below), which executes the procedure 
in a stopped context (PostScript; Adobe Systems Inc., 1999). If an 
error occurs, stopped leaves the name of the failed command on 
the stack and returns true. In this case, runprotected extracts the 
name of the error from SLI’s error dictionary, converts it to a string, 
and puts it back on the operand stack, followed by false to indicate 
the error condition to the caller. Otherwise, true is put on the stack. 
In case of an error, catching_sr() uses both the name of the 
command and the error to raise a Python exception (NESTError), 
which can be handled by the user’s simulation code. The following 
listing shows the implementation of runprotected:

 1 /runprotected
 2 {
 3   stopped dup
 4   {
 5     errordict /commandname get cvs
 6     % tell NEST that the error was handled
 7     errordict /newerror false put
 8   } if
 9   not
10 } def

Forwarding the original NEST errors to Python has the advan-
tage that PyNEST functions do not have to check their arguments, 
because the underlying NEST functions already do. This makes the 
code of the high-level API more readable, while at the same time, 
errors are raised as Python exceptions without requiring additional 

FIGURE 4 | Sequence diagram of the acyclic visitor pattern for data 

conversion from SLI to Python. For the conversion of a SLI datum d, sli_
pop() creates an instance of DatumToPythonConverter. It then calls the 
DatumToPythonConverter’s convert() function, which passes itself as a 

visitor to the use_converter() function of d. Datum::use_converter() 
calls the DatumToPythonConverter’s convert_me() function that matches 
d’s type. convert_me() creates a new Python object from the data contained 
in d. The new Python object is returned to sli_pop().
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code. Moreover, this results in consistent error messages in NEST 
and PyNEST.

DISCUSSION
The previous sections describe the usage and implementation of 
PyNEST. Here we discuss consequences and limitations of the 
PyNEST implementation.

PERFORMANCE
The use of PyNEST entails a certain computational overhead over 
pure SLI-operated NEST. This overhead can be split into two main 
components:

1. Call overhead because of using SLI over direct access to the 
NEST kernel.

2. Data exchange between Python and NEST.

For most real-world simulations, the fi rst is negligible, since 
the number of additional function calls is small. In practice, most 
overhead is caused by the second component, which we can reduce 
by minimizing the number of data conversions. For an illustration 
of the technique, see the following two listings that both add up 
a sequence of numbers in SLI. The fi rst creates the sequence of 
numbers in Python, pushes them to SLI one after the other and 
lets SLI add them. Executing it takes approx. 15 s on a laptop with 
an Intel Core Duo processor at 1.83 GHz.

1 sli_push(0)
2 for i in range(1, 100001):
3     sli_push(i)
4     sli_run("add")

The second version computes the same result, but instead of 
creating the sequence in Python, it is created in SLI:

1 sli_run("0 1 1 100000 { add } for")

Although Python loops are about twice as fast as SLI loops, 
this version takes only 0.6 s, because of the reduced number of 
data conversions and, to a minor extent, the repeated parsing of 
the command string and the larger number of function calls in 
the fi rst version.

The above technique is used in the implementation of the 
PyNEST high-level API wherever possible. The same technique is 
also applied for other loop-like commands (e.g. Map) that exist in 
both interpreters. However, it is important to note that the total run 
time of the simulation is often dominated by the actual creation and 
update of nodes and synapses, and by event delivery. These tasks 
take place inside of the optimized C++ code of NEST’s simulation 
kernel, hence the choice between SLI or Python has no impact on 
performance.

INDEPENDENCE
One of the design decisions for PyNEST was to keep NEST inde-
pendent of third-party software. This is important because NEST is 
used on architectures, where Python is not available or only avail-
able as a minimal installation. Moreover, since NEST is a long term 
project that has already seen several scripting languages and graph-
ics libraries coming and going, we do not want to introduce a hard 
dependency on one or the other. The stand-alone version of NEST 

can be compiled without any third-party libraries. Likewise, the 
implementation of PyNEST does not depend on anything except 
Python itself. The use of NumPy is recommended, but optional. 
The binary part of the interface is written by hand and does not 
depend on interface generators like SWIG (http://www.swig.
org) or third-party libraries like Boost.Python (http://www.
boost.org). In our opinion, this strategy is important for the 
long-term sustainability of our scientifi c software.

EXTENSIBILITY
NEST can never provide all models and functions needed by every 
researcher. Extensibility is hence important.

Due to the asymmetry of the PyNEST interface (see “Assymmetry 
of the Interface”), neuron models, devices and synapse models 
have to be implemented in C++, the language of the simulation 
kernel. However, new analysis functions and connection routines 
can be implemented in either Python, SLI or C++, depending on the 
performance required and the skills of the user. The implementa-
tion in Python is easy, but performance may be limited. However, 
this approach is safe, as the real functionality is performed by SLI 
code, which is often well tested. To improve the performance, the 
implementation can be translated to SLI. This requires knowledge 
of SLI in addition to Python. Migrating the function down to the 
C++ level yields the highest performance gain, but requires knowl-
edge of C++ and the internals of the simulation kernel.

Since the user can choose between three languages, it is easy to 
extend PyNEST, while at the same time, it is possible to achieve 
high performance if necessary. The hierarchy of languages also 
provides abstraction layers, which make it possible to migrate 
the implementation of a function between the different lan-
guages, without affecting user code. The intermediate layer of 
SLI allows the decoupling of the development of the simula-
tion kernel from the development of the PyNEST API. This is 
also helpful for developers of abstraction libraries like PyNN 
(Davison et al., 2008), who only need limited knowledge of the 
simulation kernel.

ASSYMMETRY OF THE INTERFACE
Our implementation of PyNEST is asymmetric in that SLI code 
can be executed from Python, but NEST cannot respond, except for 
error handling and data exchange. Although this is suffi cient to run 
NEST simulations from within a Python session, it could be ben-
efi cial to allow NEST to execute Python code: The user of PyNEST 
already knows the Python programming language, hence it might 
be easier to extend NEST in Python rather than to modify the C++ 
code of the simulation kernel. SciPy, NumPy and other packages 
provide well tested implementations of mathematical functions 
and numerical algorithms. Together with callback functions, these 
libraries would allow rapid prototyping of neuron and synapse 
models or to initialize parameters of neuron models or synapses 
according to complicated probability distributions: Python could 
be the middleware between NEST’s simulation kernel and the 
numerical package. Using online feedback from the simulation, 
callback functions could also control simulations. Moreover, with a 
symmetric interface and appropriate Python modules it would be 
easier to add graphical user interfaces to NEST, along with online 
display of observables, and experiment management.

177



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 

Eppler et al. PyNEST: A convenient interface to NEST

Different implementations of the symmetric interface are pos-
sible: One option is to pass callback functions from Python to NEST. 
Another option is to further exploit the idea that the “language is 
the protocol”. In the same way as PyNEST generates SLI code, NEST 
would emit code for Python. Already Harrison and McLennan 
(1998) mention this technique, and in experimental implementa-
tions it was used successfully to symmetrically couple NEST with 
Tcl/Tk (Diesmann and Gewaltig, 2002), Mathematica, Matlab and 
IDL. The fact that none of these interfaces is still maintained con-
fi rms the conclusions of the Section “Independence”.

LANGUAGE CONSIDERATIONS
At present, PyNEST maps NEST’s capabilities to Python. Further 
advances in the expressiveness of the language may be easier to 
achieve at the level of Python or above (e.g. PyNN; Davison et al., 
2008) without a counterpart in SLI. An example for this is the sup-
port of units for physical quantities as available in SBML (Hucka 
et al., 2002) or Brian (Goodman and Brette, 2008).

More generally, the development of simulation tools has not kept 
up with the increasing complexity of network models. As a conse-
quence the reliable documentation of simulation studies is chal-
lenging and laboratories notoriously have diffi culties in reproducing 
published results (Djurfeldt and Lansner, 2007). One component of 
a solution is the ability to concisely formulate simulations in terms 
of the neuroscientifi c problem domain like connection topologies 
and probability distributions. At present little research has been car-
ried out on the particular design of such a language (Davison et al., 
2008; Nordlie et al., 2008), but a general purpose high-level language 
interface to the simulation engine is a fi rst step towards this goal.

APPENDIX
A. PyNEST API REFERENCE
Models
Models(mtype="all", sel=None): Return a list of all available 

models (nodes and synapses). Use mtype="nodes" to only see 
node models, mtype="synapses" to only see synapse models. 
sel can be a string, used to fi lter the result list and only return 
models containing it.

GetDefaults(model): Return a dictionary with the default 
parameters of the given model, specifi ed by a string.

SetDefaults(model, params): Set the default parameters of the 
given model to the values specifi ed in the params dictionary.

GetStatus(model, keys=None): Return a dictionary with sta-
tus information for the given model. If keys is given, a value 
is returned instead. keys may also be a list, in which case a list 
of values is returned.

CopyModel(existing, new, params=None): Create a new 
model by copying an existing one. Default parameters can be 
given as params, or else are taken from existing.

Nodes
Create(model, n=1, params=None): Create n instances of type 

model in the current subnetwork. Parameters for the new nodes 
can be given as params (a single dictionary, or a list of dictionar-
ies with size n). If omitted, the model’s defaults are used.

GetStatus(nodes, keys=None): Return a list of parameter 
dictionaries for the given list of nodes. If keys is given, a list 

of values is returned instead. keys may also be a list, in which 
case the returned list contains lists of values.

SetStatus(nodes, params, val=None): Set the parameters 
of the given nodes to params, which may be a single diction-
ary, or a list of dictionaries of the same size as nodes. If val 
is given, params has to be the name of a property, which is set 
to val on the nodes. val can be a single value, or a list of the 
same size as nodes.

Connections
Connect(pre, post, params=None, delay=None, model=

"static_synapse"): Make one-to-one connections of type 
model between the nodes in pre and the nodes in post. pre 
and post have to be lists of the same length. If params is given 
(as a dictionary or as a list of dictionaries with the same size as 
pre and post), they are used as parameters for the connections. 
If params is given as a single fl oat, or as a list of fl oats of the 
same size as pre and post, it is interpreted as weight. In this 
case, delay also has to be given (as a fl oat, or as a list of fl oats 
with the same size as pre and post).

ConvergentConnect(pre, post, weight=None, delay=None, 
model="static_synapse"): Connect all nodes in pre to each 
node in post with connections of type model. If weight is 
given, delay also has to be given. Both can be specifi ed as a 
fl oat, or as a list of fl oats with the same size as pre.

RandomConvergentConnect(pre, post, n, weight=None, 
delay=None, model="static_synapse"): Connect n ran-
domly selected nodes from pre to each node in post with connec-
tions of type model. Presynaptic nodes are drawn independently 
for each postsynaptic node. If weight is given, delay also has 
to be given. Both can be specifi ed as a fl oat, or as a list of fl oats 
of size n.

DivergentConnect(pre, post, weight=None, delay=None, 
model="static_synapse"): Connect each node in pre to all 
nodes in post with connections of type model. If weight is 
given, delay also has to be given. Both can be specifi ed as a fl oat, 
or as a list of fl oats with the same size as post.

RandomDivergentConnect(pre, post, n, weight=None, 
delay=None, model="static_synapse"): Connect each 
node in pre to n randomly selected nodes from post with con-
nections of type model. If weight is given, delay also has to 
be given. Both can be specifi ed as a fl oat, or as a list of fl oats 
of size n.

Structured networks
CurrentSubnet(): Return the id of the current subnetwork.
ChangeSubnet(subnet): Make subnet the current subnetwork.
GetLeaves(subnet): Return the ids of all nodes under subnet 

that are not subnetworks.
GetNodes(subnet): Return the complete list of subnet’s children 

(including subnetworks).
GetNetwork(subnet, depth): Return a nested list of subnet’s 

children up to depth (including subnetworks).
LayoutNetwork(model, shape, label=None, customdict=

None): Create a subnetwork of shape shape that contains 
nodes of type model. label is an optional name for the sub-
network. If present, customdict is set as custom dictionary of 
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the subnetwork, which can be used by the user to store custom 
information.

BeginSubnet(label=None, customdict=None): Create a new 
subnetwork and change into it. label is an optional name for 
the subnetwork. If present, customdict is set as custom diction-
ary of the subnetwork, which can be used by the user to store 
custom information.

EndSubnet(): Change to the parent subnetwork and return the 
id of the subnetwork just left.

Simulation control
Simulate(t): Simulate the network for t milliseconds.
ResetKernel(): Reset the simulation kernel. This will destroy the 

network as well as all custom models created with CopyModel(). 
The parameters of built-in models are reset to their defaults. 
Calling this function is equivalent to restarting NEST.

ResetNetwork(): Reset all nodes and connections to the defaults 
of their respective model.

SetKernelStatus(params): Set the parameters of the simula-
tion kernel to the ones given in params.

GetKernelStatus(): Return a dictionary with the parameters 
of the simulation kernel.

PrintNetwork(depth=1, subnet=None): Print the network 
tree up to depth, starting at subnet. If subnet is omitted, the 
current subnetwork is used instead.

B. ADVANCED EXAMPLE
In the Section “Using PyNEST”, we introduced the main features 
of PyNEST with a short example. This section contains a simula-
tion of a balanced random network of 10,000 excitatory and 2,500 
inhibitory integrate-and-fi re neurons as described in Brunel (2000). 
We start with importing the required modules.

1 from nest import *
2 import nest.raster_plot as plot
3 import time

We store the current time at the start of the simulation.

4 startbuild = time.time()

Next, we use SetKernelStatus() to set the temporal resolu-
tion for the simulation to 0.1 ms.

5 SetKernelStatus({"resolution": 0.1})

We defi ne variables for the simulation duration, the network 
size and the number of neurons to be recorded.

6 simtime =   500.0 #[ms] Simulation time
7 NE      = 10000   #number of exc. neurons
8 NI      =  2500   #number of inh. neurons
9 N_rec   =    50   #record from 50 neurons

The following are the parameters of the integrate-and-fi re neu-
ron that deviate from the defaults.

10 tauMem = 20.0 #[ms] membrane time constant
11 theta  = 20.0 #[mV] threshold for firing
12 t_ref  =  2.0 #[ms] refractory period
13 E_L    =  0.0 #[mV] resting potential

The synaptic delay and weights and the number of afferent syn-
apses per neuron are assigned to variables. By choosing the relative 

strength of inhibitory connections to be | J
in

 | / | J
ex

 | = g = 5.0, the 
network is in the inhibition-dominated regime.

14 delay   = 1.5             #[ms] synaptic delay
15 J_ex    = 0.1             #[mV] exc. synaptic strength
16 g       = 5.0             #ratio between inh. and exc.
17 J_in    = −g*J_ex         #[mV] inh. synaptic strength
18 epsilon = 0.1             #connection probability
19 CE      = int(epsilon*NE) #exc. synapses/neuron
20 CI      = int(epsilon*NI) #inh. synapses/neuron

To reproduce Figure 8C from Brunel (2000), we choose param-
eters for asynchronous, irregular fi ring: νθ denotes the external 
Poisson rate which results in a mean free membrane potential equal 
to the threshold. We set the rate of the external Poisson input to 
ν

ext
 = ηνθ = 2νθ.

21 eta    = 2.0                 #fraction of ext. input
22 nu_th  = theta/(J_ex*tauMem) #[kHz] ext. rate
23 nu_ext = eta*nu_th           #[kHz] exc. ext. rate
24 p_rate = 1000.0*nu_ext       #[Hz] ext. Poisson rate

In the next step we set up the populations of excitatory 
(nodes_ex) and inhibitory (nodes_in) neurons. The neurons 
of both pools have identical parameters, which are confi gured 
for the model with SetDefaults(), before creating instances 
with Create().

25 print "Creating network nodes …"
26 SetDefaults("iaf_psc_delta", {"C_m"  : tauMem,
27                               "tau_m": tauMem,
28                               "t_ref": t_ref,
29                               "E_L"  : E_L,
30                               "V_th" : theta})
31 nodes_ex = Create("iaf_psc_delta", NE)
32 nodes_in = Create("iaf_psc_delta", NI)
33 nodes = nodes_ex+nodes_in

Next, a Poisson spike generator (noise) is created and its 
rate is set. We use it to provide external excitatory input to the 
network.

34 noise = Create("poisson_generator", 
35                 params={"rate": p_rate})

The next paragraph creates the devices for recording spikes from 
the excitatory and inhibitory population. The spike detectors are 
confi gured to record the spike times and the id of the sending 
neuron to a fi le.

36 SetDefaults("spike_detector", {"withtime": True,
37                                "withgid" : True,
38                                "to_file" : True})
39 espikes = Create("spike_detector")
40 ispikes = Create("spike_detector")

Next, we use CopyModel() to create copies of the synapse model 
"static_synapse", which are used for the excitatory and inhibi-
tory connections.

41 SetDefaults("static_synapse", {"delay": delay})
42 CopyModel("static_synapse", "excitatory",
43           {"weight": J_ex})
44 CopyModel("static_synapse", "inhibitory", 
45           {"weight": J_in})
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The following code connects neurons and devices. 
DivergentConnect() connects one source node with each of 
the given target nodes and is used to connect the Poisson genera-
tor (noise) to the excitatory and the inhibitory neurons (nodes). 
ConvergentConnect() is used to connect the fi rst N_rec excita-
tory and inhibitory neurons to the corresponding spike detectors.

46 print "Connecting network …"
47 DivergentConnect(noise, nodes, 
48                  model="excitatory")
49 ConvergentConnect(nodes_ex[:N_rec], espikes, 
50                   model="excitatory")
51 ConvergentConnect(nodes_in[:N_rec], ispikes, 
52                   model="excitatory")

The following lines connect the neurons with each other. The 
function RandomConvergentConnect() draws CE presynaptic 
neurons randomly from the given list (fi rst argument) and con-
nects them to each postsynaptic neuron (second argument). The 
presynaptic neurons are drawn repeatedly and independent for 
each postsynaptic neuron.

53 RandomConvergentConnect(nodes_ex, nodes, CE, 
54                         model="excitatory")
55 RandomConvergentConnect(nodes_in, nodes, CI, 
56                         model="inhibitory")

To calculate the duration of the network setup later, we again 
store the current time.

57 endbuild = time.time()

We use Simulate() to run the simulation.

58 print "Simulating", simtime, "ms …"
59 Simulate(simtime)

Again, we store the time to calculate the runtime of the simula-
tion later.

60 endsimulate = time.time()

The following code calculates the mean fi ring rate of the excita-
tory and the inhibitory neurons, determines the total number of 

synapses, and the time needed to set up the network and to simulate 
it. The fi ring rates are calculated from the total number of events 
received by the spike detectors. The total number of synapses is avail-
able from the status dictionary of the respective synapse models.

61 events_ex   = GetStatus(espikes, "n_events")[0]
62 rate_ex     = event_ex/simtime*1000.0/N_rec
63 events_in   = GetStatus(ispikes, "n_events")[0]
64 rate_in     = events_in/simtime*1000.0/N_rec
65 synapses_ex = GetStatus("excitatory", 
66                         "num_connections")
67 synapses_in = GetStatus("inhibitory", 
68                         "num_connections")
69 synapses    = synapses_ex+synapses_in
70 build_time  = endbuild−startbuild
71 sim_time    = endsimulate−endbuild

The next lines print a summary with network and runtime 
statistics.

72 print "Brunel network simulation using PyNEST:"
73 print "Number of neurons :", len(nodes)
74 print "Number of synapses:", synapses
75 print "       Exitatory  :", synapses_ex
76 print "       Inhibitory :", synapses_in
77 print "Excitatory rate   : %.2f Hz" % rate_ex
78 print "Inhibitory rate   : %.2f Hz" % rate_in
79 print "Building time     : %.2f s" % build_time
80 print "Simulation time   : %.2f s" % sim_time

Finally, nest.raster_plot is used to visualize the spikes of the 
N_rec selected excitatory neurons, similar to Figure 8C of Brunel 
(2000).

81 plot.from_device(espikes, hist=True)

The resulting plot is shown in Figure 5 together with a transcript 
of the simulation session. The simulation was run on a laptop with 
an Intel Core Duo processor at 1.83 GHz and 1.5 GB of RAM.
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A

jochen@winston:˜$ python brunel.py
NEST 1.9.7753 (C) 2008 The NEST Initiative
Creating network nodes ...
Connecting network ...
Simulating 500.0 ms ...
Brunel network simulation using PyNEST:
Number of neurons : 12500
Number of synapses: 15637600

Excitatory : 12512600
Inhibitory : 3125000

Excitatory rate : 31.52 Hz
Inhibitory rate : 31.96 Hz
Building time : 34.06 s

Simulation time : 78.88 s

B

FIGURE 5 | Results of the balanced random network simulation. (A) The 
transcript of the simulation session shows the output during network setup and 

the summary printed at the end of the simulation. (B) Spike raster (top) and 
spike time histogram (bottom) of the N_rec recorded excitatory neurons.
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The NEURON simulation program now allows Python to be used, alone or in combination with 
NEURON’s traditional Hoc interpreter. Adding Python to NEURON has the immediate benefi t 
of making available a very extensive suite of analysis tools written for engineering and science. 
It also catalyzes NEURON software development by offering users a modern programming 
tool that is recognized for its fl exibility and power to create and maintain complex programs. At 
the same time, nothing is lost because all existing models written in Hoc, including graphical 
user interface tools, continue to work without change and are also available within the Python 
context. An example of the benefi ts of Python availability is the use of the xml module in 
implementing NEURON’s Import3D and CellBuild tools to read MorphML and NeuroML model 
specifi cations.

Keywords: Python, simulation environment, computational neuroscience

for the purely numerical issue of how many compartments are 
used to represent each of the cable sections. In the early 90’s, Hoc 
syntax was again extended to provide some limited support for 
classes and objects, that is, data encapsulation and polymorphism, 
but not inheritance.

Though Hoc has served well, continuing development and 
maintenance of a general programming language steals signifi cant 
time and effort from neurobiology domain-specifi c improvements. 
Furthermore, Hoc has turned out to be an orphan language limited 
to NEURON users. What is desirable is a modern programming 
language such as Python, which provides expressive syntax, pow-
erful debugging capabilities, and support for modularity, facili-
tating the construction and maintenance of complex programs. 
Python has proved its utility by giving rise to a large and diverse 
community of software developers who are making reusable tools 
that are easy to plug-in to the user’s code, the so-called “batteries 
included” (Dubois, 2007). In the domain of scientifi c computing, 
some examples include Numpy (Oliphant, 2007) and Scipy (Jones 
et al., 2001) for core scientifi c functionality, Matplotlib (Hunter, 
2007) for 2-D plotting, and IPython (Prez and Granger, 2007) for 
a convenient interactive environment.

There are three distinct ways to use NEURON with Python. One 
is to run the NEURON program with Python as the interpreter 
accepting interactive commands in the terminal window. Another 
is to run NEURON with Hoc as the interactive interpreter and 
access Python functionality through Hoc objects and function calls. 
These fi rst two cases we will refer to as embedded Python. The third 
way is to dynamically import NEURON in a running Python or 
IPython instance, which we will refer to as using NEURON as an 
extension module for Python.

In the sections to follow, we describe the steps required to use 
NEURON with Python, from a user’s point of view, and the tech-
niques employed to enable NEURON and Python to work together, 
from a developer’s point of view. We begin in Section “Getting 

INTRODUCTION
The NEURON simulation environment has become widely used 
in the fi eld of computational neuroscience, with more than 700 
papers reporting work employing it as of April, 2008. In large part 
this is because of its fl exibility and the fact that it is continually 
being extended to meet the evolving research needs of its user 
community. Experience shows that most of these needs have a 
software solution that has already been implemented elsewhere in 
the domain of scientifi c computing. The problem is one of interfac-
ing an existing package with NEURON’s interpreter. Some cases 
demand intimate knowledge of NEURON’s internals and consider-
able effort; examples include network parallelization with MPI, and 
adoption of Sundials for adaptive integration. There are many more 
cases in which existing packages could potentially be employed by 
NEURON users. Few people, however, have the specialized exper-
tise required to manually interface an existing software package 
and the creation of such interfaces is tedious. Instead of laborious 
piecemeal adoption of individual packages that requires interven-
tion by a handful of experts, a better approach is to offer Python 
as an alternative interpreter so that a huge number of resources 
becomes available at the cost of only minimal interface code that 
most users can write for themselves.

Since 1984, the NEURON simulation environment has used the 
Hoc interpreter (Kernighan and Pike, 1984) for setup and control 
of neural simulations. Hoc has a syntax for expressions and con-
trol fl ow vaguely similar to the C language. Hoc is not exactly an 
interpreted language since, analogous to Pascal, Java, or Python, 
Hoc statements are fi rst dynamically compiled to an internal stack 
machine representation using a yacc parser and then the stack 
machine statements are executed. A fundamental extension to Hoc 
syntax was made in the late 80’s in order to represent the notion of 
continuous cables, called sections. Sections are connected to form 
a tree shaped structure and their principle purpose is to allow the 
user to specify the physical properties of a neuron without regard 
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Started Using NEURON with Python” by describing how to install 
and run NEURON with Python. We then demonstrate how model-
ling is carried out using Python by comparing it side-by-side with 
Hoc syntax in Section “Writing NEURON Models in Python”. In 
Section “Using Python Code from Hoc”, we describe how Python 
can be accessed from the Hoc interpreter. In Section “Technical 
Aspects”, we discuss some technical aspects of the implementation 
of the Python-NEURON interaction. Finally, in Section “Importing 
MorphML Files — A Practical Example” we give a detailed, practical 
example, from the current NEURON distribution, of combining 
Python and Hoc.

The code listings in Figures 1–3 are available for public down-
load from the ModelDB model repository of the Senselab database, 
http://senselab.med.yale.edu (accession number 116491).

GETTING STARTED USING NEURON WITH PYTHON
INSTALLATION
NEURON works with Python on Windows, Mac OS X, Linux, and-
many other platforms such as the IBM Blue Gene/L/P and Cray XT3 
supercomputers. Detailed installation information can be found 
at http://www.neuron. yale.edu by following the “Download 
and Install” link.

Binary installers are available for Windows, OS X and RPM-based 
Linux systems. The Windows installer contains a large portion of 
Cygwin Python 2.5. On OS X and Linux, the latest version of Python 
2.3–2.5 previously or subsequently installed is dynamically loaded 
when NEURON is launched. The binary installers provide Python 
embedded in NEURON, but do not support using NEURON as an 
extension module for Python or IPython.

If you would like to use NEURON as an extension module 
for Python or IPython, if no installer for your platform exists, 
or if you need to customize the installation (e.g. enable parallel/
MPI support, or change the location of binaries), you should 
instead get the source code for the standard distribution, also 
available from the above “Download and Install” link, and com-
pile it for your machine. Further instructions for this are given 
in the Appendix.

BASIC USE
NEURON may be started without the graphical user interface 
(GUI) using nrniv or with the GUI using nrngui. To use Python 
as the interpreter, rather than Hoc, use the -python option:

$ nrniv -python
NEURON -- VERSION 7.0 (228: fbb244f333a9)
    2008-11-25
Duke, Yale, and the BlueBrain Project -- 
    Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

>>> from neuron import h

If there are any NEURON NMODL extension mechanisms (Hines 
and Carnevale, 2000) in the working directory, and they have been 
compiled with nrnivmodl, they will be loaded automatically.

Alternatively, you may wish to use NEURON as an exten-
sion to the normal Python interpreter, or to IPython (Prez and 

Granger, 2007), a more interactive variant. To do so, you must build 
NEURON from source and install the NEURON shared library 
for Python, as described in the Appendix. In Python (or IPython) 
then, NEURON is started (and any NMODL mechanisms loaded) 
when you import neuron:

$ ipython
[…]

In [1]: from neuron import h
NEURON -- VERSION 7.0 (228: fbb244f333a9) 
    2008-11-25
Duke, Yale, and the BlueBrain Project -- 
    Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

and the NEURON GUI is started by importing the neuron.gui 
module:

In [2]: from neuron import gui

The h object that we import from the neuron module is the 
principal interface to NEURON’s functionality. h is a HocObject 
instance, and has two main functions. First, it gives access to the 
top-level of the Hoc interpreter, e.g.:

>>> h('create soma')
>>> h.soma
< nrn.Section object at 0x8194080>

Second, it makes any of the classes defi ned in Hoc available to 
Python:

>>> stim = h.IClamp(0.5, sec=h.soma)

Note that the soma section created through the Hoc inter-
preter appears in Python as a Section object. We can also create 
Sections directly in Python, e.g.

>>> dend = h.Section()

These two section objects are entirely equivalent, the only 
difference being that the name “dend” is not accessible within 
the Hoc interpreter. In addition to the HocObject class (and 
through it, any class defi ned in Hoc) and the Section class, the 
Python neuron module also provides the Segment, Mechanism 
and RangeVariable classes. More in-depth examples of using 
NEURON from Python are given in Section “Writing NEURON 
Models in Python”, while using Python code from Hoc is introduced 
in Section “Using Python Code from Hoc”.

STARTING PARALLEL NEURON
Assuming NEURON was built with parallel support as discussed 
in the Appendix, suitably parallelized Hoc scripts are started using 
the MPI job execution command, typically mpiexec (Hines and 
Carnevale, 2008) or the equivalent for your MPI implementation. 
When Python is used rather than Hoc, the same parallelism features 
are supported, with only slight changes in the execution model. 
Both embedded Python (nrniv -python) and NEURON as an 
extension module to Python are supported. MPI job execution for 
embedded Python is the same as standard NEURON/Hoc, except 
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from itertools import chain
from neuron import h
Section = h.Section

# --------------------- Model specification ---------------------

# topology
noxa,ralisab,lacipa,amosetaerc#)(noitceS=amos

apical = Section()
basilar = Section()
axon = Section()

apical.connect(soma , 1, 0) # connect apical(0), soma(1)
basilar.connect(soma , 0, 0) # connect basilar(0), soma(0)
axon.connect(soma , 0, 0) # connect axon(0), soma(0)

# geometry
# soma {

03=L#03=L.amos
1=gesn#1=gesn.amos
03=maid#03=maid.amos

# }
# apical {

006=L#006=L.lacipa
32=gesn#32=gesn.lacipa

1=maid#1=maid.lacipa
# }
# basilar {

002=L#002=L.ralisab
5=gesn#5=gesn.ralisab
2=maid#2=maid.ralisab

# }
# axon {

0001=L#0001=L.noxa
73=gesn#73=gesn.noxa

1=maid#1=maid.noxa
# }

# biophysics
for sec in h.allsec(): # forall {

001=aR#001=aR.ces
1=mc#1=mc.ces

# }

{amos#)'hh'(tresni.amos
# insert hh
# }

apical.insert('pas ')  # apical {
# insert pas

basilar.insert('pas ')  # g_pas = 0.0002
# e_pas = -65

for seg in chain(apical , basilar): # }
seg.pas.g = 0.0002 # basilar {

saptresni#56-=e.sap.ges
# g_pas = 0.0002
# e_pas = -65
# }

{noxa#)'hh'(tresni.noxa
# insert hh
# }

FIGURE 1 | Code listing for a simple model neuron: building the neuron. The Python code is on the left and the equivalent Hoc code on the right.
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# --------------------- Instrumentation ---------------------

nysferjbo#tupnicitpanys#
syn = h.AlphaSynapse(0.5, sec=soma) # soma syn = new AlphaSynapse (0.5)

5.0=tesno.nys#5.0=tesno.nys
50.0=xamg.nys#50.0=xamg.nys

0=e.nys#0=e.nys

# objref g
)(hparGwen=g#)(hparG.h=g

g.size(0, 5, -80, 40) # g.size(0, 5, -80, 40)
g.addvar('v(0.5)', sec=soma) # g.addvar("soma.v(0.5)")

# --------------------- Simulation control ---------------------

520.0=td#520.0=td.h
5=potst#5=potst

56-=tini_v#56-=tini_v

{)(ezilaitinicorp#:)(ezilaitinifed
h.finitialize(v_init) # finitialize(v_init)

)(tnerrucf#)(tnerrucf.h
# }

{)(etargetnicorp#:)(etargetnifed
)(nigeb.g#)(nigeb.g

while h.t < tstop: # while (t < tstop) {
h.fadvance() # fadvance()

)t(tolp.g#)t.h(tolp.g
# }

)(hsulf.g#
# }

)(hsulf.g

{)(ogcorp#:)(ogfed
)(ezilaitini#)(ezilaitini

)(etargetni#)(etargetni
# }

)(og#)(og

FIGURE 2 | Code listing for a simple model neuron (continued from Figure 1): instrumenting and running the model. The Python code is on the left and the 
equivalent Hoc code on the right.

that an extra -python command line option must be passed to 
nrniv:

$ mpiexec -np 4 nrniv -python -mpi nrn-7.0/\
src/nrnpython/examples/test1.py

numprocs=4
NEURON -- VERSION 7.0 (228: fbb244f333a9) 
    2008-11-25

Duke, Yale, and the BlueBrain Project -- 
    Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html
NEURON thinks I am 0 of 4
NEURON thinks I am 2 of 4
NEURON thinks I am 3 of 4
NEURON thinks I am 1 of 4

For users who prefer to use NEURON as an extension module 
to Python or IPython, execution is as follows:

$ mpiexec -np 4 python nrn-7.0/src/nrnpython/\
examples/test0.py

MPI_Initialized==true, enabling MPI 
    functionality.
numprocs=4
NEURON -- VERSION 7.0 (228: fbb244f333a9) 
    2008-11-25
Duke, Yale, and the BlueBrain Project -- 
    Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

mpi4py thinks I am 2 of 4, NEURON thinks I am 
    2 of 4
mpi4py thinks I am 1 of 4, NEURON thinks I am 
    1 of 4
mpi4py thinks I am 3 of 4, NEURON thinks I am
    3 of 4
mpi4py thinks I am 0 of 4, NEURON thinks I am
    0 of 4

However, there is one important caveat: The NEURON exten-
sion module does not initialize MPI itself, but rather delegates 
this job to Python. To initialize MPI in Python, one must import a 
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Python MPI module, such as “MPI for Python” (mpi4py) (Dalcín 
et al., 2008), prior to importing neuron:

from mpi4py import MPI
from neuron import h

pc = h.ParallelContext()

s = "mpi4py thinks I am %d of %d,\
 NEURON thinks I am %d of %d\n"

cw = MPI.COMM_WORLD
print s % (cw.rank, cw.size, \
           pc.id(),pc.nhost())

pc.done()

The module mpi4py is available from the Python Package 
Index (http://pypi.python.org).

ONLINE HELP
For new users of NEURON with Python, a convenient starting 
place for help is Python online help, provided through the global 
function help, which takes one argument, the object on which 
you would like help:

>>> import neuron
>>> help(neuron)
Help on package neuron:

NAME
     neuron

FILE
     /usr/lib/python2.5/site-packages/neuron/
         __init__.py

DESCRIPTION
    neuron
    ======

    For empirically-based simulations of 
        neurons and networks of neurons in 
        Python.

    This is the top-level module of the official 
        python interface to the NEURON simulation 
        environment (http://www.neuron.yale.
        edu/neuron/).

    For a list of available names, try 
        dir(neuron).

[…]

For commonly used Hoc classes, such as Vector, APCount, 
NetCon, etc., helpful reminders of constructor arguments, attributes 
and units with Python syntax examples are available at the Python 
prompt:

>>> from neuron import h
>>> help(h.APCount)
NEURON+Python Online Help System
================================

class APCount

pointprocess

apc = APCount(segment)
apc.thresh --- mV
apc.n --
apc.time --- ms
apc.record(vector)

Description:

Counts the number of times the voltage at its 
location crosses a threshold voltage in the 
positive direction. n contains the count and time 
contains the time of last crossing.

[…]

from neuron import h

# create pre- and post -synaptic sections
pre = h.Section()
post = h.Section()

for sec in pre, post:
sec.insert('hh')

# inject current in the pre-synaptic section
stim = h.IClamp(0.5, sec=pre)
stim.amp = 10.0
stim.delay = 5.0
stim.dur = 5.0

# create a synapse in the pre-synaptic section
syn = h.ExpSyn(0.5, sec=post)

# connect the pre-synaptic section to the
# synapse object
nc = h.NetCon(pre(0.5)._ref_v , syn)
nc.weight[0] = 2.0

vec = {}
for var in 'v_pre ', 'v_post ', 'i_syn ', 't':

vec[var] = h.Vector()

# record the membrane potentials and
# synaptic currents
vec['v_pre '].record(pre(0.5)._ref_v)
vec['v_post '].record(post(0.5)._ref_v)
vec['i_syn '].record(syn._ref_i)
vec['t'].record(h._ref_t)

# run the simulation
h.load_file("stdrun.hoc")
h.init()
h.tstop = 20.0
h.run()

# plot the results
import pylab
pylab.subplot(2,1,1)
pylab.plot(vec['t'], vec['v_pre '],

vec['t'], vec['v_post '])
pylab.subplot(2,1,2)
pylab.plot(vec['t'], vec['i_syn '])

FIGURE 3 | Code listing demonstrating the use of ref and plotting.
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In IPython, the ? symbol is a quick shorthand roughly equivalent 
to online help:

In [3]: ? h.APCount

Type:            HocObject
Base Class:      <type 'hoc.HocObject'>
String Form:     <hoc.HocObject object at 0
    xb79022f0>
Namespace:       Interactive
Length:          0
Docstring:
    class APCount

    pointprocess

[…]

WRITING NEURON MODELS IN PYTHON
To show how a model neuron is implemented using Python, we 
repeat the example described in Chapter 6 of the NEURON Book 
(Carnevale and Hines, 2006), but using Python rather than Hoc. 
The code listing is given in Figures 1 and 2, and has Python code 
on the left and the equivalent Hoc code on the right.

There are only a few syntax and conceptual differences between 
the Python and Hoc versions, and we expect that Hoc users will have 
little diffi culty transitioning to Python, should they wish to do so 
(Hoc will continue to be supported, of course). We now comment 
on the most signifi cant differences.

First are the import statements, absent from the Hoc listing, 
although Hoc does have the xopen() function that has similar 
functionality. Since NEURON is now only one of potentially many 
modules living within the Python interpreter, it must live in its own 
namespace, so that the names of NEURON-specifi c classes and var-
iables do not interfere with those from other modules. Of particular 
importance is the object h, which is the top-level Hoc interpreter, 
and gives access to Hoc classes, functions and variables.

While sections are created using the create keyword in Hoc, in 
Python we instantiate a Section object. Hence the important dis-
tinction in Hoc between sections and objects is removed: Everything 
in Python is an object. Similarly, the connect keyword in Hoc is 
replaced by a method call of the child section object in Python.

In NEURON, each cable section is made up one or more segments, 
and the diameter is a property of each segment. Hoc’s shorthand, 
allowing the diam attribute to be set on all segments by setting it on 
the section is also available in Python. Inhomogeneous values for 
range variables such as diam can also be set on the specifi c Segment 
object, returned by calling the Section object as a function.

The forall keyword in Hoc, which iterates over all sections, is 
replaced by the allsec() method of the top-level Hoc interpreter 
object h. Here again we see, in setting the membrane capacitance 
cm, the Hoc and Python shorthands to set the value for all segments 
at once, without having to explicitly iterate over all Segments.

In instrumenting the model, we see that Python and Hoc objects 
have very similar behaviours. In general, all Hoc classes (Vector, 
List, NetCon, etc) are accessible within Python via the h object. 
Hoc object references must be declared using the objref keyword, 
and objects created using new, but once created, attribute access 
and method calls have near-identical syntax in Python and Hoc. 

There are three major exceptions to this rule. First, many func-
tions and methods act in the context of the ‘currently-accessed 
section’. To support this in Python, these functions take a keyword 
argument sec. Second, certain method calls take Hoc expressions 
as arguments, so, for example, in adding the membrane potential 
of the soma section to the list of variables to plot, in Hoc we use 
g.addvar(“soma.v(0.5)”), but in the Python version the vari-
able soma does not exist on the Hoc side, and so we have to pass 
the soma Section object as the sec keyword argument so that the 
Hoc expression is evaluated in the context of that section. Third, a 
number of functions/methods take Hoc variable references (indi-
cated by preceding the variable name with the ‘&’ character) as 
arguments, the most important being Vector.record(&var) 
and NetCon(&var, target). The equivalent syntax in Python 
is to precede the variable name with _ref_, e.g.: Vector.record
(_ref_var). For example, given ‘pre’ and ‘post’ Section objects and 
a dictionary of Hoc Vector objects addressed by a mnemonic string, 
recording the voltage at the centres of those sections is activated 
by the statements:

# record the membrane potentials and
# synaptic currents
vec['v_pre'].record(pre(0.5)._ref_v)
vec['v_post'].record(post(0.5)._ref_v)
vec['i_syn'].record(syn._ref_i)
vec['t'].record(h._ref_t)

Figure 3 shows the complete listing with the above fragment 
in context and also illustrates the ease with which NEURON 
code can be mixed with third-party code such as the power-
ful Pylab/Matplotlib plotting package (http://matplotlib.
sourceforge.net/): NEURON Vector objects work just as well 
as Python lists or arrays as arguments to the plot() function.

USING USER-DEFINED MECHANISMS
One of NEURON’s most powerful features is the ability to write new 
mechanisms using the NMODL language, and then compile these 
mechanisms into the executable or into dynamic libraries (DLLs). 
The standard behaviour of NEURON is to load any mechanisms 
that have been compiled in the working directory. It is also pos-
sible to load DLLs from elsewhere in the fi lesystem using the Hoc 
function nrn_load_dll(). This has the disadvantage that the full 
path to the shared library fi le must be provided, which can be hard 
to determine, since the fi le is within a hidden folder which itself is 
within a folder with a platform- specifi c name. To simplify this, the 
neuron Python module adds a function load_mechanisms(), 
which takes as an argument the path to the directory containing the 
NMODL source fi les, and searches for shared library fi les below this 
directory. Furthermore, in analogy to the PYTHONPATH environ-
ment variable which contains a list of paths to search for importable 
Python modules, if you have defi ned a NRN_NMODL_PATH environ-
ment variable, NEURON will search these paths for shared libraries 
and load them at import time.

USING USER-DEFINED CLASSES
One of the principal advantages of writing NEURON programs in 
Python rather than Hoc, especially for large, complex programs, 
is that Python is a fully object-oriented language, supporting 
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 encapsulation, polymorphism and inheritance, whereas Hoc sup-
ports only encapsulation and a limited form of polymorphism.

Just as with built-in Hoc classes, access to attributes and meth-
ods of user-defi ned Hoc classes (using the begintemplate/
endtemplate keywords) uses the same syntax in Python as in 
Hoc. For example, if we have the following user-defi ned Hoc class 
in the fi le string.hoc:

begintemplate String
  public s
  strdef s
  proc init() {
     s = $s1
  }
endtemplate String

then we can use it as follows:

>>> from neuron import h
>>> h.xopen("string.hoc")
>>> my_string = h.String("Hello")
>>> my_string.s
'Hello'

It is also possible to subclass both built-in and user-defi ned 
Hoc classes in Python, although with the restriction that multiple 
inheritance from Hoc-derived classes is not possible. Subclassing 
requires the use of the hclass class factory:

>>> from neuron import h, hclass
>>> class MyNetStim(hclass(h.NetStim)):
…      """NetStim that allows setting
…         parameters on creation."""
…
…      def __init__(self, start=50, noise=0,
…                   interval=10, number=10):
…          self.start = start
…          self.interval = interval
…          self.noise = noise
…          self.number = number
…
>>> stim = MyNetStim(start=0, noise=1)
>>> stim.noise
1.0
>>> class MyString(hclass(h.String)):
…     def repeat(self, n):
…       return self.s*n
…
>>> my_string = MyString("Hello")
>>> my_string.repeat(3)
'HelloHelloHello'

NUMERICAL DATA TRANSFER BETWEEN HOC AND PYTHON
The Hoc Vector object provides NEURON with a convenient 
and effi cient container for storing and manipulating collec-
tions of numerical values, such as membrane potential traces or 
spike-times.

In Python, Hoc Vector objects expose iterator and indexing 
methods, such that they can be used in most cases where Numpy 

(Oliphant, 2007), Scipy (Jones et al., 2001), and Matplotlib 
(Hunter, 2007), the most important scientifi c modules, accept 
lists.

To benefi t from the elegant and expressive notation of Numpy 
for N-dimensional array manipulation, and from results computed 
using the large and growing repertoire of scientifi c packages avail-
able for Python, which largely return Numpy arrays, several opti-
mized methods are available for the conversion of Hoc Vectors 
to and from Numpy arrays.

Transferring one-dimensional Numpy arrays and non-nested 
lists with fl oat or integer items to Hoc Vectors is straightfor-
ward, as the Hoc Vector constructor accepts an array or list as 
an argument:

>>> v1 = h.Vector(a)
>>> v2 = h.Vector(l)

Transferring a Hoc Vector to an array or list is equally straight 
forward:

>>> a = array(v1)
>>> print a
[ 3. 2. 3. 2.]
>>> l = list(v2)
>>> print l
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

If you would like to transfer between an existing Numpy array 
and a Hoc Vector, there are the Hoc Vector “in-place” member 
functions to_python and from_python:

>>> v3 = h.Vector(len(a))
>>> v3.from_python(a)
>>> print list(v3)
[3.0, 2.0, 3.0, 2.0]
>>> b = zeros_like(a)
>>> v3.to_python(b)
>>> print b
[ 3. 2. 3. 2.]

USING PYTHON CODE FROM HOC
For interacting with Python, Hoc provides the nrnpython() func-
tion and the PythonObject class. nrnpython() takes as its one 
argument a string that can be any Python statement, e.g.:

oc> nrnpython("a = 3.14159")
oc> nrnpython("print a")
3.14159

PythonObject has two main uses. Creating an instance using 
new returns an object that encapsulates the top-level Python inter-
preter, e.g.

oc> objref py
oc> py = new PythonObject()
oc> py.b = "hello"
oc> nrnpython("print b")
hello

Strings and fl oat/double values move back and forth between 
Python and Hoc (although Python integers become double values in 
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Hoc and remain doubles if they are passed back to Python). All other 
Python objects become instances of the PythonObject class:

oc> objref dict
oc> nrnpython("d = {'a':1, 'b':2, 'c':3}")
oc> dict = py.d
oc> print dict
PythonObject [12]
oc> print dict.__getitem__("c")
3.0

For objects (such as lists and tuples) that take integer indices 
or are callable as functions, there is a special method named ‘_’ 
(underscore):

oc> objref lst
oc> nrnpython("c = [7, 8.0, 'nine']")
oc> lst = py.c
oc> for i = 0, lst.__len__() -1 { print lst._[i] }
7.0
8.0
nine

The only other trap for the unwary is that both single and double 
quotes are valid for string defi nitions in Python, but only double 
quotes are accepted by Hoc!

A detailed example of using Python from Hoc, and of the value 
of being able to access its large standard library, is given in Section 
“Importing MorphML Files — A Practical Example” for the case 
of importing 3D morphology from a MorphML fi le.

TECHNICAL ASPECTS
Tools for building Python extensions, such as BOOST.Python 
(Abrahams and Grosse-Kunstleve, 2003) or SWIG (Beazley, 1996) 
might have been useful in more expert hands. However, the ability 
of users to declare variables, objects, and classes in Hoc, the fact 
that many existing C++ classes and class methods were not gen-
erally meant to be directly visible to the user except through the 
intermediation of Hoc syntax, and the fact that the Hoc connection 
to the internal NEURON code was already reasonably uniform, 
of reasonable size, and understood by us in depth, suggested to us 
that a Python interface written using the Python C-API (http://
docs.python.org/c-api/) that reused as much as possible the 
existing Hoc connection to internal data and functions would 
give us the general control we needed, and allow us to accomplish 
the project in reasonable time. It should be emphasized that this 
design decision to reuse a few of the C functions that manipulate 
the Hoc runtime stack neither hinders nor assists any future work 
on development of APIs for major NEURON components, such 
as the numerical solvers, which may be useful to other simulators. 
However, our interface implementation does provide a compact 
example of how an application can communicate with NEURON 
within a shared address space and therefore makes the the process 
of dynamically linking NEURON into a user application much 
simpler.

Since double precision variables, arrays, constant strings, 
functions, and objects have very similar syntax and semantics 
in Hoc and Python, a single PyTypeObject structure called 
HocObjectType associated with a PyHocObject structure for 

a Python object instance containing Hoc Symbol and Object 
fi elds was suffi cient to allow Python access to all these Hoc 
data-types. When a name is given to an attribute method of the 
HocObjectType (the refl exive self PyHocObject is also an argu-
ment to the method), the name is looked up in Hoc’s symbol table 
for the PyHocObject Hoc Object fi eld, and the symbol along with 
the Hoc object calls the same function that the Hoc interpreter 
would call to resolve the attribute at runtime. The attribute, which 
is typically a number, string, or HocObject, is then wrapped in 
a Python object of the proper type and returned. Function calls 
from Python into Hoc consist of pushing the function arguments 
onto the Hoc runtime stack and, again, calling the same function 
the Hoc interpreter would call at runtime. Thus, Python state-
ments involving PyHocObject objects end up generating and 
executing the same Hoc stack machine code at runtime that would 
be accomplished by the corresponding Hoc statement. It should 
be noted that a great deal of interpreter effi ciency can be gained 
in loop body statements by factoring out as much as possible the 
precursor objects. For example:

from neuron import h
vec = h.Vector (1000000)
a = 0
for i in xrange (1000000):
    a += vec.x[i]

can be optimized by avoiding the repeated search for the 
attribute x:

vx = vec.x
for i in xrange (1000000):
    a += vx[i]

The former takes 1.3 s on a 3 GHz machine, while the latter 
takes 1.0 s.

A critical requirement was to have as natural a correspondence 
as possible in Python for the special Hoc syntax for Sections, posi-
tion along a Section, membrane mechanisms, and Range Variables. 
This was achieved through the C++ defi nition of corresponding 
types in Python to create instances for: NPySecObj, NPySegObj, 
NPyMechObj, and NPyRangeVar. For example, the NPySegObj 
segment (compartment) object points to the NPySecObj of which 
it is a part, specifi es its location, x, and also contains a fi eld to 
help in iterating over the mechanisms that exist at that location. 
An NPyRangeVar has, in practice, required only a pointer to the 
compartment (NPySegObj) where it exists and a pointer to its Hoc 
Symbol. A Section represents a continuous cable and evaluation of 
or assignment to a variable associated with a particular location 
always involves specifying both which Section and the relative arc 
length location (0 ≤ x ≤1) along the Section. Internally, NEURON 
employs a Section stack to determine the working Section and 
Hoc syntax provided three ways to specify the top of the Section 
stack. The Hoc Section.variable(x) syntax has a direct cor-
respondence to the Python Section(x).variable syntax and 
the latter perhaps has more clarity. The Hoc Section { Hoc 
statements } syntax is unique to NEURON and for the Python 
side we were reduced to explicit management of the Section stack 
with Section.push() with an explicit h.pop_section() as the 
fi nal statement. This gets tedious for single function calls and so in 
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Python we allow the keyword argument, sec=Section, to push 
and pop the Section during the scope of the Hoc function call. 
The Hoc access Section statement does not require a Python 
counterpart. However, the Python statement, sec = h.cas(), 
returns the top of the Section stack.

There were several cases of syntax mismatch which could only be 
overcome by the addition of new idioms. Hoc syntax does not allow 
an object to be treated as a function, so in Hoc we use po._( …). 
Python does not allow call by reference arguments. Therefore, when 
a Hoc function called from Python requires a reference argument, 
the variable name must be prefi xed by ‘_ref_’. Of course, such 
variables can only be Hoc variables but that is not a diffi culty in 
practice since either the need is to pass a Hoc RangeVariable or 
the Python program can construct a Hoc variable for use in these 
cases. Since all numbers in Hoc are double precision, type errors 
are raised when Python expects an integer. For the case of array 
arguments, the Hoc-to-Python interface converts the doubles 
to integers automatically. Unfortunately, one cannot in general 
call the __getitem__(int) method explicitly but must use the 
[expr] Hoc syntax. If this becomes a problem in practice, it will 
be necessary to supply a set of cast functions that can be explicitly 
invoked by the user.

We have encountered only one problem with freeing object 
memory that has proved resistant to a solution. In some cases there 
is an ambiguity in regard to whether the Hoc or the Python side 
owns a reference to an object. When this situation occurs, a refer-
ence to the object is kept in a list for a deferred call to Py_DECREF 
when it is guaranteed that it is safe to do so.

Assignment of a constant value to a range variable in a Section 
is far more common than assignment of different values within the 
segments of a Section and Hoc provides a simple syntax for that 
case which avoids writing an explicit loop. The latest extension of 
the NEURON Python interface mimics that behavior in Python by 
interpreting Section.RangeVariableName in that fashion instead of 
raising an “AttributeError”. We are also considering extending the 
implicit iteration idea to SectionLists and Cells to allow not only 
assignment of constants but also application of inhomogeneous 
functions.

A list of the principal differences in syntax between Hoc and 
Python is given in Table 1.

IMPORTING MORPHML FILES — A PRACTICAL EXAMPLE
Our fi rst serious use of the NEURON Python interface was to 
extend the Import3D GUI tool to read MorphML specifi ca-
tion fi les. Import3D is structured around a graphical view of 
a list of Import3d_Section objects defi ned in Hoc. Among 
many method and fi eld attributes, the principle data fi eld of the 
Import3d_Section object is the raw x, y, z, diam information 
along an unbranched cable and a list index indicating the parent 
Import3d_Section. The list of Import3d_Section objects 
is constructed by various fi le reader objects that understand a 
specifi c fi le format such as Eutectic, SWC, or NeuroLucida ver-
sions 1 or 3. Since MorphML is an XML format, it was oppor-
tune to employ the XML reader module in the standard Python 
distribution.

The problem of parsing and analyzing the MorphML format is 
similar in diffi culty to that for NeuroLucida V3 fi les. We divided 

the problem into Hoc and Python code portions. In contrast to 
a fi le size of 1180 lines for the NeuroLucida V3 fi le reader, the 
read_morphml.hoc fi le size is 78 lines and the Python portion 
of the problem is carried out by rdxml.py with a fi le size of 370 
lines. Since these fi les are located in the NEURON package default 
search path – …/nrn/lib/hoc for the read_morphml.hoc fi le 
and …/nrn/lib/python for the rdxml.py fi le – the MorphML 
reader extension works wherever the NEURON Python interface 
is installed.

The read_morphml.hoc fi le defi nes an Import3d_MorphML 
Hoc template (class) which interacts with Import3d_GUI in exactly 
the same manner as the other format readers.

When an Import3d_MorphML instance is created, the Python 
helper module we wrote to parse the input fi le is imported with 
nrnpython(“import rdxml”) and p = new PythonObject() 
is defi ned in order to allow access to Python functions.

The proc input() {…} procedure defi nes a sections list 
and populates it with Import3dSection objects indirectly via 
p.rdxml.rdxml($s1, this) which passes the fi lename selected 
earlier by the user along with a reference to the Import3dMorphML 
instance to allow callback from the Python code.

The

def rdxml(fname, ho) :
  xml.sax.parse(fname, MyContentHandler(ho))

module function calls the xml parser with the fi lename and a new 
instance of

class MyContentHandler(xml.sax.ContentHandler):
  def __init__(self, ho):
    self.i3d = ho
    ...

The reference to the Import3d_MorphML instance is stored by 
the initializer for later use at the end of parsing. During fi le reading 
there is no interaction between Hoc and Python, so let it suffi ce 
that the xml parsing style is, at the beginning and end of every xml 
element, to call the MyContentHandler methods

def startElement(self, name, attrs):
  if self.elements.has_key(name):
    if debug: print "startElement:", name
    self.elements[name](self, attrs)
  else :
    if debug:
      print "startElement unknown", name

  def endElement(self, name):
    if self.elements.has_key('end'+name):
      self.elements['end' +name](self)

where the elements literal map associates all possible element 
names with a MyContentHandler method. E.g.

elements = {
  'neuroml':nothing,
  'morphml':nothing,
  ...
  'segments':segments,
  'endsegments':endsegments,
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  'segment':segment,
  'proximal':proximal,
  ...

  }

The methods construct Python lists of Point, Cable, etc, as 
well as maps associating identifi ers with list indices. At the end of 
parsing, the MyContentHandler method

def endDocument(self):
  self.i3d.parsed(self)

is called by the xml parser.
At this point we fi nd ourselves back in the Hoc world with an 

argument that references the MyContentHandler. Through that 
we can obtain the information saved by the MyContentHandler 
in various maps and lists and copy it into new Import3d_Section 
instances.

proc parsed() {…
  cables = $o1.cables_
  points = $o1.points_
  cableid2index = $o1.cableid2index_
  for i=0, cables.__len__() - 1 {

    cab = cables._[i]
    sec = new Import3d_Section(cab.first_,\
       cab.pcnt_)
    sections.append(sec)
    if (cab.parent_cable_id_ >= 0) {
      ip = cableid2index_[cab.parent_cable_id_]
      sec.parentsec = sections.object(ip)
      sec.parentx = cab.px_
    }
    ...

Note the ‘._’ idiom for accessing a Python list element since, 
in Hoc, cables[i] is syntax implying an object reference array 
 created with objref cables[n]. Also, cableid2index is a 
Python map which associates the cable identifi er read from the 
xml input fi le, with the proper element in the Python cables 
list.

DISCUSSION
Python makes available within NEURON a very extensive suite of 
analysis tools written for the general science and engineering com-
munities. All existing models written in Hoc,  including GUI tools, 
continue to work without change. All NEURON objects are acces-
sible to Python via an instance of the HocObject. Within the Hoc 

Table 1 | The principal differences in syntax between Hoc and Python.

Python Hoc Notes

obj() obj._() 

obj[int] obj._[int] 

obj[double] obj.__getitem__(double) or __setitem__

obj['string'] obj.__getitem__("string") or __setitem__

f(_ref_var) f(&var) when storing a persistent pointer

f(h.ref(strvar)) f(strvar) when f changes the string

f(h.ref(obj)) f(obj) when f changes the reference

f(h.ref(var)) f(&var) when f changes var (via $ &1)

sec = Section() create sec 

sec.push() stmt h.pop_section() sec { stmt } 

f(..., sec = section) section { f(...) } 

child.connect(parent, px, cx) connect child(cx), parent(px) 

sec.insert('mechname') sec { insert mechname } 

sec(x).rangevar sec.rangevar(x) 

for sec in h.allsec(): forall { } includes sec.push() and h.pop_section() of 

  currently accessed section.

for sec in h.seclist: forsec seclist { } 

for seg in sec: for (x, 0) the value of x is seg.x

for seg in sec.allseg(): for (x) 

seg.hh.gnabar or seg.gnabar_hh gnabar_hh(x) 

pp = PointProcess(x, sec=section) sec { pp = new PointProcess(x) }

for mech in seg: No direct equivalent. Use

 MechanismType

iteration for iterator Python supplies several styles of iteration and Hoc 

  supplies an iterator idiom. Conversion from one to the 

  other is done via explicit programming but Python cannot 

  use a Hoc iterator directly. Nor can Hoc use generators 

  except by calling the underlying __next__() method.
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interpreter, all Python objects are accessible via the PythonObject. 
Binary installation remains straightforward for the usage case of 
launching NEURON with Python embedded: The MS Windows 
installer contains a large subset of the 2.5 version of Python, and 
the Linux RPM and Mac OS X dmg installations will use the latest 
version of Python, if any, that is already present or subsequently 
installed. The usage case of launching Python, e.g. using IPython, 
and dynamically importing NEURON also works but presently 
requires the extra installation steps described in the Appendix. 
Numpy is not a prerequisite but, if present, copying of vectors 
between Numpy and NEURON is very effi cient. The Python xml 
module is used in the present standard distribution to extend 
NEURON’s Import3D and CellBuild tools to allow reading of 
MorphML (Crook et al., 2007) and NeuroML (Goddard et al., 
2001) model specifi cations. The Hoc portion of the xml readers 
makes heavy use of Python maps and lists.

With the release of NEURON version 7.0, the Python interface 
has largely stabilized, and is ready for general use. We recommend 
that new users of NEURON and those already familiar with Python 
should use Python rather than Hoc to develop new models. Those 
with considerable expertise in Hoc but without Python knowledge 
are likely to be more productive by continuing to develop models 
with Hoc, but accessing Python’s powerful data structures, large 
standard library and external numerical/plotting packages through 
nrnpython() and the PythonObject class. There is no need to 
rewrite legacy code in Python, as it will continue to work using the 
Hoc interpreter or mixed in with new Python code and accessed 
via the h object.

Users are encouraged to submit bug reports and feature requests 
at the NEURON forum (http://www.neuron.yale.edu/
phpBB) in the “NEURON+Python” sub-section, so that we can 
continue to improve the Python interface in response to users’ 
experiences.

APPENDIX
Here we give detailed instructions for building and installing 
NEURON as a Python extension. Note that, as mentioned earlier, 
to use NEURON with Python embedded you can use one of the 
binary installers.

The following assumes a standard GNU build environment, 
and a bash shell. You will need both NEURON (nrn-VERSION.
tar.gz) and InterViews (iv-VERSION.tar.gz) sources, avail-
able through the “Download and Install” link at http://www.
neuron.yale.edu.

First, build and install Interviews:

$ N=  'pwd  '
$ tar xzf iv-17.tar.gz
$ cd iv-17

$ ./configure --prefix=  'pwd  '
$ make
$ make install

Then build and install NEURON:

$ cd..
$ tar xzf nrn-7.0.tar.gz
$ cd nrn-7.0
$ ./configure --prefix=  'pwd  '\
 --with-iv=$N/iv-17 --with-nrnpython
$ make
$ make install

Here, the  “\” at the end of the fourth line, indicates it is con-
tinued on the fi fth. If you want to run parallel NEURON (Hines 
et al., 2008; Migliore et al., 2006), add --with-paranrn to the 
configure options. This requires a version of MPI to be installed, 
for example MPICH2 (Gropp, 2002) or openMPI (Gabriel et al., 
2004).

Now add the NEURON bin directory to your PATH:

$ export PATH=$N/nrn-7.0/i686/bin:$PATH

(Here i686 will be different for different CPU architectures).
Now build and install the NEURON shared library for 

Python:

$ cd src/nrnpython
# python setup.py install

This command installs the neuron package to the Python site-
packages directory, which usually requires root access. If you don’t 
have root access, you can install it locally using --prefix to specify 
a location under your home directory:

$ python setup.py install\
 --prefix=$HOME/local

This will install the neuron package to $HOME/local/lib/
python/site-packages under your home directory. You will 
then have to add this directory to the PYTHONPATH environ-
ment variable:

$ export PYTHONPATH=$PYTHONPATH:\
$HOME/local/lib/python/site-packages
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encouraged us to standardize on Python for the spike sorting and 
spike train analysis projects to follow. For one of us (M. Spacek), the 
switch to Python has made programming a much more enjoyable 
and productive experience, and has resulted in greatly improved 
programming skills.

The benefi ts of Python have been extolled at length elsewhere 
(Hetland, 2005; Langtangen, 2008; Lutz, 2006). Briefl y, Python is 
a powerful, dynamically typed, interpreted language that “fi ts your 
brain”, with syntax akin to “executable pseudocode”. Python’s clear, 
simple syntax is perhaps its biggest selling point. Some of its clarity 
stems from a philosophy to provide “one – and preferably only 
one – obvious way” to do a given task (Peters, 2004), making fea-
tures easy to remember. Its clarity is also due to a strong adherence 
to object-oriented programming principles [Chapter 7 of Hetland 
(2005) is an excellent introduction]. In Python, nearly everything is 
an object, even numbers and functions. This means that everything 
has attributes and methods (methods are functions that are bound 
to and act on objects), and can thus be treated in a similar way. An 
object is an instance of a class. A class can inherit attributes and 
methods from other classes hierarchically, allowing for substantial 
code reuse, and therefore less code to maintain. Python code is 
succinct compared to most other languages: a lot can be accom-
plished in only a few lines. Finally, Python is free and open source, 
and encourages open source software development. This is partly 
due to its interpreted nature: the source code and executable are 
typically one and the same.

Python has a stable and feature-rich numeric library called 
NumPy1 which provides an N-dimensional array object. NumPy 
arrays can be subjected to vectorized operations, most of which call 
static C functions, allowing them to run almost as fast as pure C 
code. Yet, these operations remain accessible from within succinct 
Python code. NumPy turns Python into an effective replacement 

Python for large-scale electrophysiology
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Electrophysiology is increasingly moving towards highly parallel recording techniques which 
generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 
54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal 
populations within a cortical column. To help deal with the complexity of generating and analysing 
these data, we used the Python programming language to develop three software projects: 
one for temporally precise visual stimulus generation (“dimstim”); one for electrophysiological 
waveform visualization and spike sorting (“spyke”); and one for spike train and stimulus analysis 
(“neuropy”). All three are open source and available for download (http://swindale.ecc.
ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we 
found Python to be well suited for all three. Here we present our software as a showcase of 
the extensive capabilities of Python in neuroscience.

Keywords: Python, silicon polytrodes, primary visual cortex, in-vivo

INTRODUCTION
As systems neuroscience moves increasingly towards highly paral-
lel physiological recording techniques, generation, management, 
and analysis of large complex data sets is becoming the norm. We 
are interested in the function of localized neuronal populations 
in visual cortex. The goal is to understand how neurons in visual 
cortex respond to visual stimuli, to the extent that the responses to 
arbitrary stimuli can be predicted. Accurate prediction will require 
an understanding of how these neurons interact with each other. 
Neurons in close proximity are more likely to show functionally 
interesting interactions, and insights into how such localized popu-
lations work may help guide understanding of other parts of cortex, 
or even the brain as a whole. To this end we need to record and 
analyse the simultaneous spiking behaviour of many neurons in 
response to a wide variety of visual stimuli.

We use 54-channel silicon polytrodes, in both rat and cat pri-
mary visual cortex, to extracellularly sample spiking activity con-
strained to roughly a cortical column (Figure 1A) (Blanche et al., 
2005). Time-locked visual stimuli are presented to the animal while 
simultaneously recording from dozens of neurons (Figure 1B). 
Waveforms are recorded continuously at a rate of 2.7 MB/s for up 
to 90 min (∼15 GB) at a time. A single animal experiment can last 
up to 3 days and generate hundreds of GB of data. Setting up our 
electrophysiology rig, with custom acquisition software written in 
Delphi (Blanche, 2005), was the fi rst step. Although we had existing 
solutions in place for visual stimulation, waveform visualization 
and spike sorting, and spike train analysis, all three had limitations 
which were addressed by rewriting our software in Python.

The fi rst of those tackled was visual stimulation. After an exten-
sive search for existing software, we discovered the “Vision Egg” 
(Straw, 2008), a Python library for generating stimuli. We chose 
the Vision Egg partly because of the language it was written in and 
written for: Python. We were thus introduced to Python via one 
of its many packages, and the experience was so positive that it 
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for MatLab (The MathWorks, Natick, MA, USA), and is used exten-
sively by dimstim, spyke, and neuropy.

While all three projects presented here were written in Python, 
their use and implementation are very different. Dimstim is script 
based and is run from the system’s command line. Spyke has a 
graphical user interface (GUI) and looks like a native application, 
while neuropy is typically accessed from the Python command 
line as a library. Here, we explore some of the features and benefi ts 
of Python and its many add-on packages for the electrophysiolo-
gist, by introducing our own three packages as detailed working 
examples.

DIMSTIM: VISUAL STIMULUS GENERATION
In our experiments, we needed a way to display and control a wide 
variety of stimuli with many different parameters, often shuffl ed 
with respect to each other in various ways. Since spike times are 
acquired at sub-millisecond temporal resolution, and since pre-
cise spike timing may play a role in neural coding (Mainen and 
Sejnowski, 1995; VanRullen and Thorpe, 2002), we also wanted high 
temporal precision in the stimulus. Our prior stimulus software was 
written in Fortran and ran under DOS with a 32-bit extender. It was 
written for the 8514/A graphics standard which has now lapsed. The 
last graphics cards to support it were limited in the size and speed 
of movie frames they could draw to screen. Moreover, these cards 
were limited to a screen refresh rate of 100 Hz at our desired resolu-
tion. We found signifi cant artefactual phase-locking of responses 
in visual cortex at this frequency (Blanche, 2005), which has been 
a concern reported elsewhere (Williams et al., 2004; Wollman and 
Palmer, 1995). For these reasons, we needed a better solution.

Dimstim displays full-screen stimuli at a refresh rate of 200 Hz, 
providing precise control of the display at 5 ms intervals with-
out frame drops. Stimuli include manually controlled, drifting, 
and fl ashed bars and gratings, sparse noise, and m-sequence noise 
(Golomb, 1967) and natural scene movies. Stimulus parameters 
can be shuffl ed with or without replacement, independently or in 
covariation with each other. Parameters include spatial location and 
phase, orientation, speed, duration, size, mask, contrast, brightness, 

and spatial and temporal frequencies. Each stimulus session is fully 
specifi ed by its own user-editable script. A copy of the script, and 
an index of the contents of the screen on each screen refresh, are 
sent to the acquisition computer, for simultaneous recording of 
stimulus and neuronal responses.

Dimstim relies heavily on the Vision Egg2 library (Straw, 2008) 
to generate stimuli. The Vision Egg uses the well-established 
OpenGL3 graphics language, which thanks to the demands of video 
games, is now supported by all modern video cards on all major 
platforms. We currently use an Nvidia GeForce 7600 graphics card 
running under Windows XP. Stimuli are displayed on a 19'' Iiyama 
HM903DTB and a 22'' HM204DTA CRT monitor, two of only 
a handful of consumer monitors that are capable of 800 × 600 
resolution at 200 Hz. Unfortunately, like most other CRTs, these 
particular models have now been discontinued, but used ones 
may still be available. Hopefully the timing of LCD monitors will 
improve such that they can replace CRTs for temporally precise 
stimulus control.

Multitasking operating systems (OSes) present a challenge for 
real-time control of the screen. Often, the OS will decide to delay 
an operation to maintain responsiveness in other areas. This can 
lead to frame drops, but can be mitigated by increasing the prior-
ity of the Python process. Setting the process and thread priorities 
to their maximum levels in the Vision Egg completely eliminated 
frame drops in Windows XP, but with the unfortunate loss of mouse 
and keyboard polling. In dimstim, this meant that the user had no 
way of interrupting the stimulus script, other than by resetting the 
computer. Moving to a computer with a dual core CPU alleviated 
this problem, as the maximum priority Python process was del-
egated to one core without interruption, while other OS tasks such 
as keyboard polling ran normally on the second core.

Dimstim communicates stimulus parameters on a frame-by-
frame basis to the acquisition computer via a PCI digital out-
put board (DT340, Data Translations, Marlboro, MA, USA), for 
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FIGURE 1 | (A) One of several 54-channel silicon polytrode designs used. Recording sites are closely spaced, such that a spike will typically appear on several sites at 
the same time (see Figure 3). (B) Experimental setup. Stimuli are presented to the animal while stimulus information and extracellular voltage waveforms are 
acquired and saved to disk.

2http://visionegg.org
3http://opengl.org
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 simultaneous recording of stimulus timing alongside neuronal 
responses. Parameters are described by sending the row index of 
a large lookup table (“sweep table”) on every screen refresh. The 
sweep table contains all the combinations of the dynamic param-
eters, i.e. those stimulus parameters that can vary from one screen 
refresh to the next.

The digital output board is controlled by its driver’s C library. 
Because Python is written in C (other implementations also exist), 
it has a C application programming interface (API), and exten-
sions to Python can be written in C. We wrote such an extension to 
interact with the board’s C library, but today this is no longer nec-
essary. A new built-in Python module called “ctypes” now allows 
interaction with a C library on any platform directly from within 
Python code. This is much simpler, as it removes the need to both 
write and compile C extension code using Python’s somewhat 
tedious C API. If dimstim were rewritten today, ctypes would be 
the method of choice. Dimstim includes a demo (olda_demo.py) 
of how to use ctypes to directly interact with Data Translations’ 
Open Layers data acquisition library. Libraries for cards from 
other vendors (such as National Instruments’ NI-DAQmx) can 
be similarly accessed.

Frame timing was tested with a photodiode placed on the moni-
tor. The photodiode signal, along with the raster signal from the 
video card and the digital outputs from the stimulus computer, 
were all recorded simultaneously. We discovered that the contents 
of the screen always lagged by one screen refresh, due to OpenGL’s 
buffer swapping behaviour (Straw, 2008). This was corrected for 
by adding one frame time (5 ms) to the timestamp of the digitized 
raster signal in the acquisition system.

Gamma correction was used to ensure linear control of screen 
luminance. Several levels of uncorrected luminance were measured 
with a light meter (Minolta LS-100) and fi t to a power law expres-
sion to determine the exponent corresponding to the gamma value 
of the screen (Blanche, 2005; Straw, 2008). Gamma correction can 
be set independently for each script, or globally across all scripts 
in dimstim’s confi g fi le.

Natural scene movies used by dimstim were fi lmed outdoors with 
an ordinary compact digital camera (Canon PowerShot SD200) with 
320 × 240 resolution at 60 frames per second (fps). Unfortunately, 
this camera could record no more than 1 min of video at a time. 
To generate longer movies, multiple clips were fi lmed in succes-
sion, while keeping the camera as motionless as possible between 
the end of one clip and the start of the next. Concatenation of and 
conversion from multiple colour .avi fi les to a single uncompressed 
greyscale movie fi le was done using David McNab’s y4m4 package. 
Processed movies were displayed in dimstim with the same visual 
angle subtended by the camera, at 67 fps (three 5 ms screen refreshes 
per movie frame).

USAGE
Dimstim’s confi g fi le stores default values for a variety of generic 
parameters that apply to most stimuli. These parameters include 
spatial location, size, orientation offset, and temporal and spatial 
frequencies. For simplicity, all spatial parameters are specifi ed in 
degrees of visual angle. The confi g fi le can be edited by hand, but 

the typical procedure when optimizing parameters for the current 
neural population is to run a manually controlled bar or grating 
stimulus. For user convenience, the stimulus is shown simultane-
ously on two displays driven by two video outputs from the graphics 
card: one for the animal, and one for the user. The parameters of 
the manual stimulus are controlled in real-time with the mouse 
and keyboard. Once the user is satisfi ed, the parameters are saved 
to the confi g fi le. These can later be retrieved by an experiment 
script for use as default values.

An example script for a drifting sinusoidal grating experiment 
is shown in Figure 2. The script works in a bottom-up fashion. 
First, objects for storage of static and dynamic parameters are 
instantiated (“s” and “d” respectively, lines 5–6). To these are bound 
various different parameters as attributes (denoted by a “ . ”). In 
this example, most values are declared directly by the script, but 
two static parameters, grating orientation offset and gamma cor-
rection, are retrieved from their defaults in the confi g fi le, using 
the dimstim confi g parser object named “dc” (lines 15 and 23). 
Dynamic parameters, if assigned a list of multiple values, will iter-
ate over those values over the course of the experiment. In this 
case, grating orientation, spatial frequency, and temporal frequency 
are all assigned multiple values (lines 28, 36, 38). The rest remain 
constant for the duration of the experiment. In order to describe 
their interdependence and shuffl ing, each multiple-value dynamic 
parameter must be declared as a “Variable” (lines 53–55). Variables 
with the same dimension value (“dim” keyword argument) covary 
with each other, and must therefore all have the same number of 
values and the same shuffl e fl ag. Variables with different dimension 
values vary independently in a combinatorial fashion, with the low-
est numbered dimension varying slowest, and the highest varying 
fastest. This is implemented by dynamically generating a string 
object containing Python code with the correct number of nested 
for loops (equalling the number of independent variables specifi ed 
in the script), and then executing the contents of the string with 
Python’s exec() function (see the dimstim.Core.SweepTable 
class). Next, the number of times to cycle through all combinations, 
and the frequency at which to insert a blank screen sweep (for 
determining baseline fi ring rates) are specifi ed in their own objects 
(lines 57–58). Finally, all these objects are passed together to the 
Grating class (which like all other dimstim stimuli, inherits from 
the Experiment class) to instantiate a Grating experiment object, 
and the experiment is run (lines 62–65). With 12 orientations, 
6 spatial frequencies, and 4 temporal frequencies, this experiment 
has 288 unique parameter combinations, presented in shuffl ed 
order. Each is presented four times for a total of 1152 stimulus 
sweeps, lasting 4 s each, for a total experiment time of about 77 min 
(not including blank sweeps).

Before running, various checks are done to alert for any obvious 
errors in the user edited script. Then, a copy of the entire script 
is sent to the acquisition computer. This makes it possible to later 
reconstruct the sweep table for analysis, and even replay the entire 
experiment exactly, without the need for access to the original script 
on the stimulus computer. To ensure accurate timing, stimuli run 
only on the animal display, while the user display shows the system 
command line. In between experiments when no stimuli are run-
ning, a blank grey desktop is shown on the animal display. Scripts 
can be paused or cancelled using the keyboard.4http://freenet.org.nz/y4m
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FIGURE 2 | A dimstim script describing a drifting sinusoidal grating. Such 
scripts may be edited at will, and are the primary way the user interacts with 
dimstim. After some error checking, the script executes from the system’s 

command line, to which status messages are printed. Comments, denoted by # 
and """ in Python, are highlighted in red. Line numbers have been added for 
reference. See text for more details.
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SPYKE: WAVEFORM VISUALIZATION AND SPIKE SORTING
Once neural waveform and stimulus data were saved to disk by 
our acquisition system (written in Delphi), we needed a way to 
retrieve the data for visualization and spike sorting. Our existing 
program for this, also written in Delphi, had some bugs and miss-
ing features. However, the Delphi environment required a license, 
the program would only run in Windows, and the code was more 
procedural than object-oriented. In particular, some of the code had 
blocks (if statements, for/while statements) that were nested many 

 layers deep, making it diffi cult to follow. “Flat is better than nested” 
(Peters, 2004) is another Python philosophy. Several short, shallow 
blocks of code are easier to understand and manage than one long 
deep block. We decided to start from scratch in Python.

Spyke has a cross-platform GUI with native widgets for data 
visualization and navigation, and spike sorting (Figure 3). Spike 
waveforms are displayed in two ways: spatially according to the 
polytrode channel layout (spike window), and vertically in chart 
form (chart window). Local fi eld potential (LFP) waveforms are 

FIGURE 3 | Main spyke window (top), with data windows (bottom) 

showing high-pass waveforms in polytrode layout (left ) and chart layout 

(middle). A third data window shows the low-pass LFP waveforms (right ) 

concurrently recorded from a subset of channels (colour coded). All data are 
centred on the same timepoint. The shaded region in the middle of both the chart 
and LFP windows represents the time range spanned by the window to its left.

198



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 

Spacek et al. Python for large-scale electrophysiology

also displayed vertically in chart form (LFP window). Polytrode 
channels are closely spaced (43–75 µm) over two or three columns 
(Figure 1A). A single spike can generate a signal on multiple chan-
nels, hence the need to visualize waveforms according to their poly-
trode channel layout. Channels are colour-coded to make them easy 
to distinguish and align across windows. Spyke looks and behaves 
like a native GUI application, with menus, buttons, and resizable 
windows. Navigation is mouse and keyboard based. A horizontal 
slider and combo box at the top of the main spyke window control 
fi le position in time. Left and right arrow keys, and page up and 
page down keys step through the data with single timepoint or 
1 ms resolution respectively. Clicking on any data window (spike, 
chart, or LFP) centres all three windows on that timepoint. Holding 
CTRL and scrolling the mouse wheel over a data window zooms it 
in or out in time. Holding CTRL and clicking on a channel enables 
or disables it. Hovering the mouse over a data window displays a 
tooltip with the timestamp, channel, and voltage currently under 
the mouse cursor.

Spyke uses the wxPython5 library for its GUI. This is a Python 
interface to the wxWidgets C++ GUI library which generates widg-
ets on Windows, Linux, and OSX. Now well over a decade old 
(Rappin and Dunn, 2006), wxPython is a stable library that has 
adapted to changing OSes. Widgets include everything from win-
dows, menus, and buttons, to more complex list and tree controls. 
WxPython has a big advantage over other GUI libraries in its use of 
widgets that are native to the OS the program is running on, such 
that they look and behave identically to normally created widgets 
in that OS. WxGlade6 was used to visually lay out the GUI. Itself a 
wxPython based GUI application, wxGlade takes the programmer’s 
visual layout and automatically generates the corresponding layout 
code in Python. This code can then be included in the programmer’s 
own code base, typically by defi ning a class that inherits from the 
automatically generated code. Although wxGlade is not necessary 
for writing a GUI with wxPython, we found it much faster and 
easier than writing all of the layout code by hand.

Unfortunately, some widgets are inherently different on differ-
ent OSes. Writing and testing a wxPython GUI on only one OS will 
therefore not guarantee perfect functionality on another. To do so 
would require checking for the current OS, and implementing certain 
things differently depending on the OS. Spyke does not currently do 
this, and has so far only been thoroughly tested in Windows. A cross-
platform GUI library faces many challenges. Although wxPython is 
one of the best (Rappin and Dunn, 2006), it has bugs7 – some of them 
longstanding – that had to be worked around in spyke.

Although the widgets are handled by wxPython, waveforms are 
plotted using matplotlib8. Matplotlib is a 2D plotting library for 
Python that generates publication quality fi gures. It has two inter-
faces: one that mimics the familiar plotting commands of MatLab, 
and another that is much more object- oriented. Spyke embeds mat-
plotlib fi gures within wxPython windows. Scaling of plots is handled 
automatically by matplotlib, such that when the wxPython window 
is resized by dragging its corner or edge, the plotted traces inside 

resize accordingly. Another benefi t of matplotlib is its antialiasing 
abilities, providing beautiful output with subpixel resolution. There 
is some performance penalty for using such a high level drawing 
library, but performance is fast enough on fairly ordinary hard-
ware (Pentium M 1.6 GHz notebook), even when scrolling through 
54 channels of data with thousands of data points on screen at a time. 
More importantly, matplotlib makes plotting very easy to do.

The data acquisition fi les are complex, with different types of 
data multiplexed throughout the fi le. On opening, the fi le must be 
parsed to determine the number and offset values of hundreds of 
thousands of records in the fi le. For multi GB fi les, this can take 
up to a few minutes. To deal with this, the parsing information 
is saved to disk for quicker future retrieval. This is done using 
Python’s pickle module, which can take a snapshot of almost any 
Python object in memory, serialize it, and save it to disk as a “pickle”. 
A pickle can then later be restored (unpickled) to memory as a live 
Python object, even on a different platform. In this case, a custom 
written File object containing all of the parse information is saved 
to disk as a .parse fi le of only a few MB in size. Restoring from the 
.parse fi le is about an order of magnitude faster than reparsing the 
entire acquisition fi le.

Segments of waveform data are loaded from the acquisition fi le, 
Nyquist interpolated, and sample-and-hold delay (SHD) corrected 
on the fl y as needed (Blanche and Swindale, 2006). Interpolation is 
performed to improve spike detection, and Nyquist interpolation 
is the optimum method of reconstructing a bandwidth-limited 
signal at arbitrary resolution. To do so, a set of sinc function kernels 
is generated (one kernel per interpolated data point, each kernel 
with a different phase offset) and convolved with the data. For SHD 
correction, a different set of kernels is generated for each channel. 
Correcting for each channel’s SHD requires appropriate modifi ca-
tion of the phase offset of each kernel for that channel. For example, 
interpolating from 25 to 50 kHz with SHD correction requires two 
appropriately phase corrected kernels per channel. Each kernel is 
separately convolved with the data (using numpy.convolve()), 
and the resulting data points are interleaved to return the fi nal 
interpolated waveform.

SPIKE SORTING
Spike sorting is done by template matching (Blanche, 2005). Event 
detection is the fi rst step in generating the required multichan-
nel spike templates. Two event detection methods are currently 
implemented. The “bipolar amplitude” method looks for simple 
threshold crossings of either polarity. The “dynamic multiphasic” 
method searches for two consecutive threshold crossings of oppo-
site polarity within a defi ned period of time. The second crossing’s 
threshold is dynamically set according to the amplitude of the fi rst 
phase of the spike. For both methods, primary thresholds are cal-
culated separately for each channel, based on the standard devia-
tion or median noise level of either the entire recording or of a 
narrow sliding window thereof. Spatiotemporal detection lockouts 
prevent double triggering off of the same spike, while minimizing 
the chance of missed spikes.

Some algorithms, such as these event detection methods, cannot 
be easily vectorized and require a custom loop. Due to its dynamic 
typing and interpreted nature, long loops are slow to execute in 
Python. For the majority of software development, this is not an 

5http://wxpython.org
6http://wxglade.sf.net
7See bugs #626 and #2307 at http://trac.wxwidgets.org
8http://matplotlib.sf.net
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issue. Developer time is usually much more valuable than CPU time 
(Hetland, 2005), but numerically intensive software is the exception. 
Writing fast Python extensions in C has always been possible, but 
the C interface code required by Python’s API is tedious to write, 
and writing in C eliminates the convenience of working in Python 
syntax. To get around this, the Cython9 package (a fork of the Pyrex 
package) specifi es a sublanguage almost identical to Python, with 
some extra keywords to declare loop variables as static C types. After 
issuing the standard python setup.py build command, such 
code is automatically translated into an intermediary C fi le includ-
ing all of the tedious interface code. This is subsequently compiled 
into object code and is accessible as a standard C extension module 
from within Python, just as a handwritten C extension would be. 
This yields the computational speed of C loops when needed, with 
the developmental speed, convenience and familiarity of Python 
syntax to implement them. Cython was used to write the custom 
loop that iterates over timepoints and channels for each of the 
event detection methods. For 25 kHz sampled waveform data on 
54 channels, this amounts to 1.35 million iterations per second of 
data. On an average single-core notebook computer (Pentium M 
1.6 GHz), this loop runs at about 5× real time.

The data is partitioned into blocks (typically 1 s long), and 
each is searched independently, allowing multiple core CPUs to 
be exploited. Search speed scales roughly proportionally with the 
number of cores available. Due to the “global interpreter lock” 
(GIL) in the C implementation of Python, multiple processes must 
typically be used instead of multiple threads to take advantage of 
 multiple cores. Unfortunately, a process can require signifi cantly 
more memory and more time to create than a thread. There are 
ways around the GIL, but the best solution for spyke is not yet 
clear.

Search options are controlled in the “detect” tab in spyke’s main 
window (Figure 3). Searches can be limited to specifi c time ranges 
in the fi le, in the number of events detected, and whether to search 
linearly or randomly. Random sampling is important to build up 
a temporally unbiased collection of detected events with which to 
build templates. Searching for the next or previous spike relative 
to the current timestamp can be done quickly using the keyboard. 
Searches are restricted to enabled channels, allowing for a targeted 
increase in the number of events belonging to a spatially localized 
template. This is useful for building up templates of neurons that 
rarely fi re.

When a search completes, the sort window (Figure 4A) opens 
and is populated with any newly detected events. The user then visu-
ally sorts the detected events (typically only a fraction of all spikes 
in the recording) into templates corresponding to isolated neurons. 
This is accomplished by plotting spikes over top of each other. Any 
number of event or template mean waveforms can be overplot-
ted with each other. Although the mouse may be used, keyboard 
commands are more effi cient for toggling the display of events and 
templates, and moving events and keyboard focus around between 
the sorted template tree (left column) and unsorted event list (right 
column). The event list has sortable columns for event ID, maxi-
mum channel, timestamp, and match error. All the events in the 
list can be matched against the currently selected template, and 

those match errors populate the error column. Sorting the event 
list by maximum channel or match error makes manual template 
generation much easier, because it clusters similar events close to 
each other in the unsorted event list.

Once templates have been generated, a full event detection is 
run across the whole recording, and the templates are matched 
against each detected event. Or, each template can be slid across 
the recording and matched against every timepoint in the record-
ing (Blanche et al., 2005). Either way, matching to target and non-
target spikes or noise generally yields a non-overlapping bimodal 
error distribution. For each template, a threshold is manually set 
at the trough between the two peaks in the distribution, and events 
whose match errors fall below this threshold are classifi ed as spikes 
of that template.

At any point in the sorting process, the entire “Sort” session 
object, which among other information includes detected events, 
generated templates, and sorted spikes, can be saved to disk as a 
.sort fi le, again using Python’s pickle module. Sort sessions can 
then be restored from disk and sorting can resume in spyke, or 
their sorted spike times can be used for spike train analysis (see 
neuropy section). Waveform data for detected events and sorted 
spikes is saved within the .sort fi le. This increases the fi le size, but 
allows for review of detected and sorted spikes without the need to 
access the original multi GB continuous data acquisition fi le.

Integrated into spyke is Patrick O’Brien’s PyShell (Figure 4B), 
an enhanced Python command line that is part of the wxPython 
package. This permits live command line inspection and modifi ca-
tion of all objects comprising spyke. This was, and continues to be, 
a very useful tool for testing existing features and for developing 
new ones. Neuropy (or almost any other Python package) can be 
imported and used directly from this command line. For example, 
spike sorting validation is not yet implemented in spyke’s GUI, but 
all of neuropy’s functionality including autocorrelograms (to check 
refractory periods) can be accessed by typing import neuropy 
in spyke’s PyShell.

NEUROPY: SPIKE TRAIN ANALYSIS
After spike sorting, we needed a way to analyse spike trains and 
their relation to stimuli. Our initial decision was to use MatLab for 
spike train analysis, and we soon developed a collection of MatLab 
scripts for the job, with one function per .m fi le. For example, one 
.m fi le would load each neuron’s data from disk and return all 
of them in a cell array of structures. This was highly procedural 
instead of object-oriented. Furthermore, the code became diffi cult 
to manage as each additional function required an additional .m 
fi le. We were also faced with out of memory errors, limited GUI 
capabilities, and a high licensing cost.

Although MatLab’s toolboxes are a major benefi t, SciPy10 (Jones 
et al., 2001), an extensive Python library of scientifi c routines, 
provides most of the equivalent functionality. Much of SciPy is 
a wrapper for decades-old, highly tested and optimized Fortran 
code. Another package, mlabwrap11, allows a licensed MatLab user 
to access all of MatLab’s functionality, including all of its toolboxes, 
directly from within Python. Although in the end we did not need 

9http://cython.org

10http://scipy.org
11http://mlabwrap.sf.net
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to use mlabwrap, its existence erased any remaining hesitations 
about switching to Python for analysis.

A data-centric object hierarchy (Figure 5A) quickly emerged 
as a natural way to organize neuropy. Each object in the hierarchy 
has an attribute that references its parent object, as well as all of its 
child objects. Specifi cally, “Data” is an abstract object from which all 
“Animals” are accessible. Each Animal has polytrode “Tracks”, each 
Track has “Recordings”, and each Recording has both “Sorts” (spike 
sorting sessions) and “Experiments” (which describe  stimuli). 

Finally, each Sort contains a number of “Neurons”, one of whose 
attributes is a NumPy array of spike times.

Neuropy relies on a hierarchy of data folders on the disk with 
a fairly rigid naming scheme, such that animal, track, recording, 
experiment, and sort IDs can be extracted from fi le and folder 
names. This forces the user to keep sorted data organized. All 
objects have a unique ID under the scope of their parent, but not 
necessarily under the scope of their grandparent. All data can be 
loaded in at once by creating an instance of the Data class and then 

FIGURE 4 | (A) An example of spyke’s sort window. Templates and their 
member spikes are represented in the tree (left ), and unsorted detected 
events in the list (middle). Selecting a template or event in either the tree or 
the list plots its waveform (right ). The tree currently has keyboard focus, 
making its selections more distinctly coloured than those of the list. Unsorted 
events have colour coded channels, while each template (and its member 
spikes) has a single identifying colour. Here, template 0 (red), a putative 
neuron near the top of the polytrode, has 6 member spikes, and its mean 
waveform is being overplotted with an unsorted event (#1260, multicoloured), 

which fi ts quite well. Template 1 (orange) and all of its member spikes are 
plotted near the middle of the polytrode. Also plotted further down is another 
unsorted event (#1150, multicoloured), which obviously does not fi t either 
template. The error values listed are from a match against template 0. 
(B) The integrated PyShell window exposes all of spyke’s objects and 
functionality at the Python command line. Template 0’s dictionary (a mapping 
from names to values) of its 6 member events is referenced and returned on 
lines 1–2. The “Sort” object’s attributes and methods are displayed in a 
popup on line 3.
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calling its .load() method. However, most often only a subset of 
data is needed, such as only the data from a given animal, track, or 
recording. For example, an object representing recording 92 from 
the default track of the default animal can be instantiated by typ-
ing Recording(92) at the command line. This recording’s data 
can then be loaded from disk into the object by calling its .load() 
method. Default animal and track IDs can be modifi ed from the 
command line. A recording loads the neurons from its default sort, 
which can also be modifi ed.

Some analyses are written as simple methods of one of the data 
objects, but most have their own separate class which is instantiated 
by a data object’s method call. Many analyses  generate plots, some 
of them interactive (such as the population spike raster plot), again 
using matplotlib and wxPython. Currently  implemented analyses 
include interspike interval histograms, instantaneous fi ring rates 
and their distributions, cross- correlograms and autocorrelograms, 
and spike-triggered averages (STAs) (Dayan and Abbott, 2001). 
More specialized analyses include binary codes of population spike 
trains, their correlation coeffi cient distributions, maximum entropy 
Ising modelling of such codes (using scipy.maxent), and several 
other related analyses (Schneidman et al., 2006; Shlens et al., 2006; 
Spacek et al., 2007). Because of the data-centric organization, new 
analyses are easy to add.

Neuropy is used interactively as a library from the Python 
command prompt, usually in an enhanced shell such as PyShell 
(Figure 4B) or the more widely used IPython12. An example of 
neuropy use is shown in Figure 5B, which calculates and plots the 
STA of neurons 2 and 5 of the default animal and track. The STA 
estimates a neuron’s spatiotemporal receptive fi eld by averaging the 
stimulus (in this case, an m-sequence noise movie) at fi xed time 
intervals preceding each spike. Recording 92 was recorded during 
m-sequence noise movie playback, and is used in this example. 

Line 1 imports all of neuropy’s functionality into the local name-
space. Next, an object representing recording 92 is instantiated and 
bound to the name r92 for convenience, and its data is loaded from 
disk (lines 2–3). Its dictionary of available experiments is requested 
and printed out (lines 4–5); only one experiment is available, with 
ID 0. STAs are calculated with respect to this experiment by calling 
its .sta() method and passing the IDs of the desired neurons (line 6). 
The calculated STAs are returned in an “STAs” object, which upon 
further inspection contains two “STA” objects, one per requested 
neuron (lines 7–10). Finally, the STAs object’s .plot() method is 
called with default options, displaying the result for both neurons 
(Figure 5C).

Python’s object orientation has benefi ts even at the command line. 
It allows the user to quickly discover what methods and attributes 
are available for any given object, eliminating the need to recall them 
from memory (Figure 4B). Instead of immediately returning the 
raw result or plotting it, most analyses in neuropy return an analysis 
object, which usually has .calc() and .plot() methods. The .calc() 
method is run automatically on instantiation, and the results are 
stored as attributes of the analysis object. Settings used to do the 
calculation are also stored as attributes. These can be modifi ed, and 
.calc() can be called again to update the result attributes. Once satis-
fi ed with the calculation, the user can call the .plot() method. This 
can be done several times to generate different plots with different 
plot settings. Each time a new plot is generated, it does so from the 
existing results, saving on unnecessary recalculation time.

CONCLUSION
We have described Python packages for three tasks pertinent to 
systems neuroscience: visual stimulus generation, waveform visu-
alization and spike sorting, and spike train analysis. Python allowed 
us to meet these software challenges with a level of performance 
not normally associated with a dynamically typed interpreted lan-
guage. Performance challenges included time-critical display and 

FIGURE 5 | (A) Neuropy’s object hierarchy. (B) Example code using neuropy to 
plot the spike-triggered average (STA) of two neurons in response to an 
m-sequence noise movie (see text for details). (C) The resulting plot window. 

Each row corresponds to a neuron, and each column corresponds to the 
STA within a fi xed time range following the m-sequence white noise stimulus. 
ON responses are red, OFF responses are blue.

12http://ipython.scipy.org
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communication of visual stimuli, parsing and streaming of mul-
tiplexed data from GB sized fi les, on the fl y Nyquist interpolation 
and SHD correction, fast execution of non-vectorizable algorithms, 
and parallelization. Other challenges, whose solutions were simpler 
than in a statically compiled language, included a cross-platform 
native GUI, the storage and retrieval of relatively complex data 
structures to and from fi le (.parse and .sort fi les), and a command 
line environment for interactive data analysis.

Dimstim is the oldest of the three packages, and the most 
stable. Spyke is the most recent and remains under heavy devel-
opment, while new analyses are added to neuropy as needed. As 
with most other Python packages, all three can be used alone or 
from within another Python module. All three depend on each 
other to a limited extent. Neuropy relies on the stimulus descrip-
tion and timing signals generated by dimstim, and on the spike 
sorting results from spyke. Spyke can use parts of neuropy for 
spike sorting validation. These three packages depend on many 
other open source packages, which themselves rely on yet other 
packages (e.g. the Vision Egg currently depends on PyOpenGL and 
PyGame). Modularity and code reuse is thus maximized across 
the community.

Because it greatly encourages object-oriented programming, 
Python code is easier to organize and reuse than MatLab code. This 
is important for scientifi c code which tends to continually evolve as 
new avenues are explored. Often, scientifi c code is quickly written 

and bug-tested, used once or twice, and then forgotten about, with 
little chance of re-use outside of copying and pasting. Python has 
reduced this tendency for us. Its object orientation and excellent 
error handling have also helped to reduce bugs.

Finally, Python was chosen for these projects for its clear, suc-
cinct syntax. Dimstim, spyke, and neuropy have roughly 3000, 5000, 
and 4000 lines of code respectively (excluding comments and blank 
lines). Fewer lines make code maintenance easier, not just because 
there is less code to maintain, but also because each line is closer 
to all other lines, making it easier to navigate. Concise syntax also 
makes collaboration easier.

We encourage others in neuroscience to consider Python for 
their programming needs, and hope that our three examples (avail-
able at http://swindale.ecc.ubc.ca/code) may be of use 
to others, whether directly or otherwise. Rallying around a common 
open-source language may help foster efforts to increase sharing 
of data and code, efforts deemed necessary (Teeters et al., 2008) to 
push forward progress in systems neuroscience.
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Computational neuroscience has produced a diversity of software for simulations of networks of 
spiking neurons, with both negative and positive consequences. On the one hand, each simulator 
uses its own programming or confi guration language, leading to considerable diffi culty in porting 
models from one simulator to another. This impedes communication between investigators and 
makes it harder to reproduce and build on the work of others. On the other hand, simulation 
results can be cross-checked between different simulators, giving greater confi dence in their 
correctness, and each simulator has different optimizations, so the most appropriate simulator 
can be chosen for a given modelling task. A common programming interface to multiple 
simulators would reduce or eliminate the problems of simulator diversity while retaining the 
benefi ts. PyNN is such an interface, making it possible to write a simulation script once, using 
the Python programming language, and run it without modifi cation on any supported simulator 
(currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN 
increases the productivity of neuronal network modelling by providing high-level abstraction, 
by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic 
analysis, visualization and data-management tools. PyNN increases the reliability of modelling 
studies by making it much easier to check results on multiple simulators. PyNN is open-source 
software and is available from http://neuralensemble.org/PyNN.

Keywords: Python, interoperability, large-scale models, simulation, parallel computing, reproducibility, computational 

neuroscience, translation

compiler standards and simulators develop. Another is that model 
source code is often not written with reuse and extension in mind, 
and so considerable rewriting to modularize the code is necessary. 
Probably the most important barrier is that code written for one 
simulator is not compatible with any other simulator.

Although many computational models in neuroscience are writ-
ten from the ground up in a general purpose programming lan-
guage such as C++ or Fortran, probably the majority use a special 
purpose simulator that allows models to be expressed in terms 
of neuroscience-specifi c concepts such as neurons, ion channels, 
synapses; the simulator takes care of translating these concepts 
into a system of equations and of numerically solving the equa-
tions. A large number of such simulators are available (reviewed in 
Brette et al., 2007), mostly as open-source software, and each has its 
own programming language, confi guration syntax and/or graphi-
cal interface, which creates considerable diffi culty in translating 
models from one simulator to another, or even in understanding 
someone else’s code, with obvious negative consequences for com-
munication between investigators, reproducibility of others’ models 
and building on existing models.

However, the diversity of simulators also has a number of positive 
consequences: (i) it allows cross-checking – the probability of two 

INTRODUCTION
Science rests upon the three pillars of open communication, repro-
ducibility of results and building upon what has gone before. In 
these respects, computational neuroscience ought to be in a good 
position, since computers by design excel at repeating the same 
task without variation, as many times as desired: reproducibility 
of computational results ought, then, to be a trivial task. Similarly, 
the Internet enables almost instantaneous transmission of research 
materials, i.e. source code, between labs.

However, in practice this theoretical ease of reproducibility and 
communication is seldom achieved outside of a single lab and a 
time frame of a few months or years. While a given scientist may 
easily be able to reproduce a result obtained a few months ago, 
precisely reproducing a result obtained several years ago is likely to 
be rather more diffi cult, and the general experience seems to be that 
reproducing the results of others is both diffi cult and time consum-
ing: very many published papers lack suffi cient detail to rebuild a 
model from scratch, and typographic errors are common.

Having available the source code of the model greatly improves 
the situation, but here still there are numerous barriers to reproduc-
ibility and to building upon previously published models. One is that 
source code can rapidly go out of date as computer  architectures, 
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different simulators having the same bugs or hidden assumptions 
is very small; (ii) each simulator has a different balance between 
effi ciency (how fast the simulations run), fl exibility (how easy it is 
to add new functionality; the range of models that can be simu-
lated), scalability (for parallel, distributed computation on clusters 
or supercomputers), and ease of use, so the most appropriate can 
be chosen for a given task.

Addressing the problems associated with an ecosystem of mul-
tiple simulators while retaining the benefi ts would greatly increase 
the ease of reproducibility of computational models in neuroscience 
and hence make it easier to verify the validity of published models 
and to build upon previous work.

There are at least two possible (and complementary) approaches 
to this. One is to enable direct, effi cient communication between 
different simulators at run-time, allowing different components 
of a model to be simulated on different simulators (Ekeberg and 
Djurfeldt, 2008). This approach addresses the problem of building a 
model from diverse components, but still leaves the problem of hav-
ing to use different programming languages, and does not enable 
straightforward cross-checking. The other approach is to develop 
a system for model specifi cation that is simulator-independent. 
Translation then only has to be done once for each simulator and 
not once for each model.

Here we can take advantage of the recent, rapid emergence of 
the Python programming language as an alternative interface to 
several of the more widely-used simulators. Thus, for example, both 
NEURON and NEST may be controlled either via their original, 
native interpreter (Hoc and SLI, respectively) or via Python. More 
recent simulators (e.g. PCSIM, Brian) have Python as the only avail-
able scripting language. This widespread adoption of Python is 
probably due to a number of factors, including the powerful data 
structures, clean and expressive syntax, extensive library, maturity 
of tools for numerical analysis and visualization (allowing use of a 
single language for the entire modelling workfl ow from simulation 
to analysis to graphing), and the ease-of-use of Python as a glue 
language which allows computation-intensive code written in a 
low-level language such as C to be transparently accessed within 
high-level Python code.

Python alone does not address the translation problem (although 
it does make the translation process easier, since at least simple data 
structures such as lists and arrays are the same for each simulator), 
since neuroscience-specifi c concepts are still expressed differently. 
However, it is now possible to defi ne a simulator-independent 
Python interface for neuronal network simulators and to implement 
automatic translation to any Python-enabled simulator. We have 
designed and implemented such an interface, PyNN (pronounced 
“pine”). In this paper we describe its design, concepts, implemen-
tation and use. We do not attempt here to provide a complete 
user guide – this may be found online at http:// neuralensemble.
org/PyNN.

DESIGN GOALS
When designing and implementing a common simulator interface, 
the following goals should be taken into account. These are the 
goals we have kept in mind when designing and implementing 
the PyNN interface, but they are equally applicable to any other 
such interface.

Write the code for a model once, run it on any supported simu-
lator or hardware device without modifi cation. This is the primary 
design goal for PyNN.

Support a high-level of abstraction. For example, it is often 
preferable to deal with a single object representing a population of 
neurons than to deal with all the individual neurons directly. Each 
single neuron can be accessed when necessary, but in many cases 
the population is the more useful abstraction. The advantages of 
this approach are that (i) it is easier to maintain a conceptual idea 
of the model, without being distracted by implementation details, 
and (ii) the internal implementation of an object can be optimized 
for speed, parallelization or memory requirements without chang-
ing the interface presented to the user.

Support any feature provided by at least two supported simula-
tors. The aim is to strike a balance between supporting all features 
of all simulators (unfeasible) and supporting only the subset of 
features common to all simulators (overly restrictive).

Allow mixing of PyNN and native simulator code. PyNN should 
not limit the range of models that can be implemented. Following 
the two-simulator rule, above, there will be things that are possible 
in one simulator and not in any other. Although a model imple-
mentation consisting of 100% PyNN is the best scenario for run-
ning on multiple simulators, an implementation with 50% PyNN 
code will be easier to convert between simulators than one with 
no PyNN code.

Facilitate porting of models between simulators. PyNN changes 
the process of porting a model between simulators from all-or-
 nothing, in which the validity of the translated model cannot be 
tested until the entire translation is complete, to an incremen-
tal approach, in which the native code is gradually replaced by 
 simulator-independent code. At each stage, the hybrid code remains 
runnable, and so it is straightforward to verify that the model 
behaviour has not been changed.

Minimize dependencies, to make installation as simple as pos-
sible and maximize fl exibility. There are no visualization and few 
data analysis tools built-in to PyNN, which means the user can use 
any such tools they wish.

Present a consistent interface on output as well as on input. 
The formats used for simulation outputs are consistent across 
simulator back-ends, making it a stable base upon which to build 
more complex systems of simulation control, data-analysis and 
visualization.

Prioritize compatibility over optimizations, but allow 
 compatibility-breaking optimizations to be selected by a deliber-
ate choice of the user (e.g. the compatible_output fl ag of the 
various print() methods is True by default, but can be set to 
False to get potentially-faster writing of data to fi le).

API Versioning. The PyNN API will inevitably evolve over time, 
as more simulators are supported and to take account of the pref-
erences of the community of users. To ensure backwards compat-
ibility, the API should be versioned so that the user can indicate 
which version was used for a particular implementation. Note that 
the examples given in this paper use version 0.4 of the API.

Transparent parallelization. Code that runs on a single processor 
should run on multiple processors (using MPI) without changes.

Some of these goals are somewhat contradictory: for exam-
ple, having a high level of abstraction and making porting easy. 
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Reconciling this particular pair of goals has led to the presence in 
PyNN of both a high-level, object-oriented interface and a low-
level, procedural interface that is more similar to the interface of 
many existing simulators. These will be discussed further below.

USAGE EXAMPLES
Before describing in detail the concepts underlying the PyNN 
interface, we will work through some examples of how it is used 
in practice: fi rst a simple example using the low-level, procedural 
interface and then a more complex example using the high-level, 
object-oriented interface.

For the simple example, we will build a network consisting of 
a single integrate-and-fi re (IF) cell receiving spiking input from a 
Poisson process.

First, we choose which simulator to use by importing the rel-
evant module from PyNN:

>>> from pyNN.neuron import *

If we wanted to use PCSIM, we would just import pyNN.pcsim, 
etc. Whichever simulator back-end we use, none of the code below 
would change.

Next we set global parameters of the simulator:

>>> setup(timestep=0.1, min_delay=2.0)

Now we create two cells: an IF neuron with synapses that respond 
to a spike with a step increase in synaptic conductance, which then 
decays exponentially, and a “spike source”, a simple cell that emits 
spikes at predetermined times but cannot receive input spikes.

>>> ifcell = create(IF_cond_exp,
…                  {'i_offset': 0.11,
…                   'tau_refrac': 3.0,
…                   'v_thresh' : -51.0})
>>> times = map(float, range(5,105,10))
>>> source = create(SpikeSourceArray,
…                  {'spike_times': times})

Behind the scenes, the create() function translates the stand-
ard PyNN model name, IF_cond_exp in this case, into the model 
name used by the simulator, Standard_IF for NEURON, iaf_
cond_exp for NEST, for example and also translates parameter 
names and units into simulator-specifi c names and units. To take 
one example, the i_offset parameter represents the amplitude of 
a constant current injected into the cell, and is given in nanoamps. 
The equivalent parameter of the NEST iaf_cond_exp model has 
the name I_e and units of picoamps, so PyNN both converts the 
name and multiplies the numerical value by 1000 when running 
with NEST. Standard cell models and automatic translation are 
discussed in more detail in the next section.

The create() function returns an ID object, which provides 
access to the parameters of the cell models, e.g.:

>>> ifcell.tau_refrac
3.0
>>> ifcell.tau_m = 12.5
>>> ifcell.get_parameters()
{'tau_refrac': 3.0, 'tau_m': 12.5,
 'e_rev_E': 0.0, 'i_offset': 0.11,

 'cm': 1.0, 'e_rev_I': -70.0,
 'v_init': -65.0, 'v_thresh': -51.0,
 'tau_syn_E': 5.0, 'v_rest': -65.0,
 'tau_syn_I': 5.0, 'v_reset': -65.0}

Having created the cells, we connect them with the connect() 
function:

>>> connect(source, ifcell, weight=0.006,
…          synapse_type='excitatory', delay=2.0)

Now we tell the system what variable or variables to record, run 
the simulation and fi nish.

>>> record_v(ifcell, 'ifcell.dat')
>>> run(200.0)
>>> end()

The result of running the above model is shown in Figure 1, 
which also shows the degree of reproducibility obtainable between 
different simulators for such a simple network.

The low-level, procedural interface, using the create(), 
 connect() and record() functions, is useful for simple models 
or when porting an existing model written in a different language 
that uses the create/connect idiom. For larger, more complex net-
works we have found that an object-oriented approach, with a 
higher-level of abstraction, is more effective, since it both clarifi es 
the conceptual structure of the model, by hiding implementation 
details, and allows behind-the-scenes optimizations.
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FIGURE 1 | Results of running fi rst example given in the text, with 

NEURON, NEST and PCSIM as back-end simulators. (A) Entire membrane 
potential trace with integration time-step 0.1 ms. (B) Zoom into a smaller 
region of the trace, showing small numerical differences between the results 
of the different simulators. (C) Results of a simulation with integration 
time-step 0.01 ms, showing greatly reduced numerical differences.
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To illustrate the high-level, object-oriented interface we turn 
now from the simple example of a few neurons to a more complex 
example: a network of several thousand excitatory and inhibitory 
neurons that displays self-sustained activity (based on the “CUBA” 
model of Vogels and Abbott (2005), and reproducing the bench-
mark model used in Brette et al. (2007)). This still is not a par-
ticularly complicated network, since it has only two cell types, no 
spatial structure and no heterogeneity of neuronal or connection 
properties, but in demonstrating how building such a network 
becomes trivial using PyNN we hope to convince the reader that 
building genuinely complex, structured and heterogeneous net-
works becomes manageable.

Again, we begin by choosing which simulator to use. We also 
import some classes from PyNN’s random module.

>>> from pyNN.nest2 import *
>>> from pyNN.random import (NumpyRNG,
…                           RandomDistribution)

We next specify the parameters of the neuron model (the same 
model and same parameters are used for both excitatory and inhibi-
tory neurons).

>>> cell_params = {
…     'tau_m':     20.0,  'tau_syn_E':   5.0,
…     'cm':         0.2,  'tau_syn_I':  10.0,
…     'v_rest':   -49.0,  'v_reset':   -60.0,
…     'v_thresh': -50.0,  'tau_refrac':  5.0
…     }

Parameters with dimensions of voltage are in millivolts, time in 
milliseconds and capacitance in nanofarads. The units convention 
is discussed further in the next section.

We now initialize the simulation, this time accepting the default 
values for the global parameters.

>>> setup()

Now, rather than creating each cell separately, we just create a 
Population object for each different type of cell:

>>> pE = Population(4000, IF_cond_exp,
…                  cell_params,
…                  label="Excitatory")
>>> pI = Population(1000, IF_cond_exp,
…                  cell_params,
…                  label="Inhibitory")

By default, all cells of a given Population are created with identi-
cal parameters, but these can be changed afterwards. Here we wish 
to randomize the value of the membrane potential at the start of 
the simulation to values between −50 and −70 mV.

>>> unif_distr = RandomDistribution('uniform',
…                                  [-50,-70])
>>> pE.randomInit(unif_distr)
>>> pI.randomInit(unif_distr)

randomInit() is a convenience method for randomizing the ini-
tial membrane potential. For the more general case of randomizing 
any cell parameter use rset().

Just as individual neurons are encapsulated within Populations, 
connections between neurons are encapsulated within Projections. 
To create a Projection object, we need to specify how the neurons will 
be connected, either via an algorithm or via an explicit list. Different 
algorithms are encapsulated in different Connector classes, e.g. 
FixedProbabilityConnector, AllToAllConnector. An explicit 
list of connections can be provided via a FromListConnector or a 
FromFileConnector.

>>> FPC = FixedProbabilityConnector
>>> exc_conn = FPC(0.02, weights=0.004,
…                 delays=0.1)
>>> inh_conn = FPC(0.02, weights=0.051,
…                 delays=0.1)

Note that weights are in microsiemens and delays in millisec-
onds. Where the delay is not specifi ed, the global minimum delay 
specifi ed in the setup() function is used. Here we set all weights 
and delays of a Projection to the same value, but it is equally 
possible to pass the constructor a RandomDistribution object, 
as we did above for the initial membrane potential, or an explicit 
list of values.

To create a Projection, we need to specify the pre- and post-
synaptic Populations, a Connector object, and a synapse type. 
The standard IF cells each have two synapse types, “excitatory” 
and “inhibitory”. User-defi ned models can use arbitrary names, 
e.g. “AMPA”, “NMDA”.

>>> e2e = Projection(pE, pE, exc_conn,
…                   target='excitatory')
>>> e2i = Projection(pE, pI, exc_conn,
…                   target='excitatory')
>>> i2e = Projection(pI, pE, inh_conn,
…                   target='inhibitory')
>>> i2i = Projection(pI, pI, inh_conn,
…                   target='inhibitory')

Having constructed the network, we now need to instrument 
it, using the record() (for recording spikes) and record_v() 
(membrane potential) methods of the Population objects. Here 
we choose to record spikes from 1000 of the excitatory neurons 
(chosen at random) and all of the inhibitory neurons, and to record 
the membrane potential of two specifi c excitatory neurons. We then 
run the simulation for 1000 ms.

>>> pE.record(1000)
>>> pI.record()
>>> pE.record_v([pE[0], pE[1]])
>>> run(1000.0)

After running the simulation, we can access the results or write 
them to fi le.

>>> pI.getSpikes()[:5]
array([[ 715. ,     1.5],
       [ 609. ,     1.6],
       [ 708. ,     1.7],
       [ 796. ,     1.7],
       [  34. ,     1.8]])
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>>> pE.get_v()[:5]
array([[  0.   ,     0.1  ,  -55.073],
       [  1.   ,     0.1  ,  -50.163],
       [  0.   ,     0.2  ,  -55.098],
       [  1.   ,     0.2  ,  -50.212],
       [  0.   ,     0.3  ,  -55.122]])
>>> end()

The results of running simulations of the above network with 
two different simulator back-ends are shown in Figure 2.

PRINCIPAL CONCEPTS
To achieve the goal of “write the code for a model once, run it 
on any supported simulator without modifi cation” requires (i) a 
 common interface, (ii) neuron and synapse models that are stand-
ardized across simulators, (iii) consistent handling of physical 
units, (iv) consistent handling of (pseudo-)random numbers. To 
achieve the twin goals of supporting a high-level of abstraction 

and  facilitating porting of models between simulators requires 
both an object- oriented and a procedural interface. The imple-
mentation of all these requirements is described in more depth in 
the following. We also illustrate the mixing of PyNN and native 
simulator code, and how PyNN can support features that are found 
in only a single simulator back-end, by describing support for 
multi- compartmental models.

STANDARD CELL MODELS
A fundamental concept in PyNN is the cell type – a given model 
of a neuron, representable by a set of equations, and comprising 
sub-threshold behaviour, spiking mechanism and post-synaptic 
response. The public interface of a cell type is mainly defi ned by its 
parameters. Different neurons of the same cell type may have very 
different behaviour if they have different values of the parameters. 
For example, the Izhikevich model (Izhikevich, 2003), can repro-
duce a wide range of spiking patterns, from fast-spiking through 
regular spiking to multiple types of bursting, depending on the 
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FIGURE 2 | Results of running the second example given in the text, 

with NEURON and NEST as back-end simulators. Note that the network 
connectivity and initial conditions were identical in the two cases. 
(A) Membrane potential traces for two excitatory neurons. Note that the 
NEST and NEURON traces are very similar for the fi rst 50 ms, but after that 
diverge rapidly due to the effects of network activity, which amplifi es the 

small numerical integration differences. (B) Spiking activity of excitatory (black) 
and inhibitory (green) neurons. Each dot represents a spike and each row of 
dots a different neuron. All 5000 neurons are shown. (C) Distribution of 
pooled inter-spike intervals (ISIs) for excitatory and inhibitory neurons. 
(D) Distribution over neurons of the coeffi cient of variation of 
the ISI [CV(ISI)].
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parameter values chosen. A cell type is therefore a model type rather 
than a biologically defi ned cell type (such as “Layer V pyramidal 
neuron”, for example).

When using a given simulator back-end, PyNN can work with 
any cell type that is supported by that simulator. In this case, the cell 
type is generally represented by a string, holding a model name that 
is meaningful for that simulator, e.g. “iaf_neuron” in NEST.

Of course, such a cell type will only work with one simulator. To 
create a model that will run on different simulators requires you to 
use one of PyNN’s built-in, standard cell models, each represented 
by a sub-class of the StandardCell class. The models provided 
by PyNN include various simple IF models, the Izhikevich-like 
adaptive exponential IF model (Brette and Gerstner, 2005), a single-
compartment neuron with Hodgkin–Huxley sodium and potas-
sium channels, and various models that emit spikes (e.g. according 
to a Poisson process) but cannot receive them.

The StandardCell class contains machinery for translating 
model names, parameter names and parameter units between 
PyNN standardized values and simulator-specifi c values. This is 
particularly useful when the underlying simulators use different 
unit systems or different parameterizations of the same set of equa-
tions, e.g. when one simulator expects the membrane time constant 
and another the membrane leak conductance. An example of the 
translations performed by PyNN is given in Table 1.

Currently, all the standard cell types are single-compartment 
or point neuron models, since PyNN currently supports only one 
simulator for multi-compartmental models (NEURON). Further 
details on using multi-compartmental models with PyNN’s 
NEURON back-end are given below. We plan in future to allow 
specifying multi-compartmental cell types using a NeuroML 
description (Crook et al., 2005).

UNITS
As is clear from the previous section, each simulator back-end has 
its own convention for which units to use for which physical quanti-
ties. The exception to this is Brian, which has a system for explicitly 
specifying units and for checking that equations are dimensionally 
consistent. In the future, we plan to adopt Brian’s system for PyNN, 
but for now we have chosen to use a convention, which is similar to 

that of NEURON and NEST in that the units are those that tend to 
be used by experimental physiologists. An alternative would have 
been the convention used by PCSIM (and also by the GENESIS 
simulator) of using pure SI units with no prefi xes. The advantage of 
the latter convention is that there is no need for checking equations 
for dimensional consistency. The disadvantage is that numerical 
values in such a system are often very large or very small, and hence 
the human intuition for reasonable and unreasonable parameter 
values is mostly lost.

Irrespective of the relative merits of different conventions, the 
most important thing is that PyNN now provides a single conven-
tion which is valid across simulators. In detail, the convention is as 
follows: voltage – mV, current – nA, conductance – µS, time – ms, 
capacitance – nF.

STANDARD SYNAPSE MODELS
In PyNN, the shape and time-course of the elementary post- synaptic 
current or conductance change in response to a pre-synaptic spike 
are considered to be a part of the post-synaptic neuron model, while 
all other properties of a synaptic connection, notably its weight (the 
peak current or conductance of the synaptic response), delay (for 
point models, this implicitly includes axonal propagation, chemical 
transmission and dendritic propagation; more morphologically 
and/or biophysically detailed models may model explicitly some 
or all of these sources of delay), and short- and long-term plas-
ticity, are considered to depend on both pre- and post-synaptic 
neurons, and so are encapsulated in the concept of “synapse type” 
that  mirrors the “cell type” discussed above.

The default type of synaptic connection in PyNN is static, with 
fi xed synaptic weights. To model dynamic synapses, for which the 
synaptic weight (and possibly other properties, such as rise-time) 
varies depending on the recent history of post- and/or pre- synaptic 
activity, we use the same idea as for neurons, of standardized, 
named models that have the same interface and behaviour across 
simulators, even if the underlying implementation may be very 
different.

Where the approach for dynamic synapses differs from that 
for neurons is that we attempt a greater degree of compositional-
ity, i.e. we decompose models into a number of components, for 

Table 1 | Comparison of parameter names and units for different implementations of a leaky integrate-and-fi re model with a fi xed fi ring threshold 

and current-based, alpha-function synapses. This model is called IF_curr_alpha in PyNN, iaf_psc_alpha in NEST, LIFCurrAlphaNeuron in PCSIM 

and StandardIF in NEURON (this is a model template distributed with PyNN and is not in the standard NEURON distribution). Manual conversion of names 

and units is straightforward but error-prone and time-consuming. PyNN takes care of such conversions transparently.

Parameter PyNN NEST NEURON PCSIM

Resting membrane potential v_rest mV E_L mV v_rest mV Vresting V

Reset membrane potential v_reset mV V_reset mV v_reset mV Vreset V

Membrane capacitance cm nF C_m pF CM nF Cm F

Membrane time constant tau_m ms tau_m ms tau_m ms taum s

Refractory period tau_refrac ms t_ref ms t_refrac ms Trefrac s

Excitatory synaptic time constant tau_syn_E ms tau_syn_ex ms tau_e ms TauSynExc s

Inhibitory synaptic time constant tau_syn_I ms tau_syn_in ms tau_i ms TauSynInh s

Spike threshold v_thresh mV V_th mV v_thresh mV Vthresh V

Injected current amplitude i_offset nA I_e pA i_offset nA Iinject A
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example for short-term and long-term dynamics, or for the  timing-
dependence and the weight-dependence of STDP rules, that can 
then be composed in different ways.

The advantage of this is that if we have n different models for 
component A and m models for component B, then we require only 
n + m models rather than n × m, which had advantages in terms 
of code-simplicity and in shorter model names. The disadvantage 
is that not all combinations may exist, if the underlying simula-
tor implements composite models rather than using components 
itself: in this situation, PyNN checks whether a given composite 
model AB exists for a given simulator and raises an Exception if 
it does not. The composite approach may be extended to neuron 
models in future versions of the PyNN interface depending on the 
experience with composite synapse models.

Currently only a single model exists in PyNN for the short-term 
plasticity component, the Tsodyks–Markram model (Markram et al., 
1998). For long-term plasticity there is a spike-timing-dependent 
plasticity STDP component, which itself is composed of separate 
timing-dependence and weight-dependence components.

LOW-LEVEL, PROCEDURAL INTERFACE
We refer to the procedural interface as “low-level” because it deals 
with a lower level of abstraction – individual neurons and indi-
vidual synapses – than the object-oriented interface. The procedural 
interface consists of the functions create(), connect(), set(), 
record() (for recording spikes) and record_v() (for record-
ing membrane potential). Each of these functions operates on, or 
returns, either individual cell ID objects or lists of such objects. As 
was described in the Usage Examples section, as well as being passed 
around as arguments, the ID object may be used for accessing/
modifying the parameters of individual neurons, and takes care 
of parameter translation using the StandardCell mechanisms 
described above.

It is possible to some extent to mix the low-level and high-level 
interfaces. For example, it is possible to access individual neurons 
within a Population as ID objects and then use the connect() 
function to connect them, instead of using a Projection object.

Why have both a low-level and high-level interface? Having 
both is a potential source of confusion for users and is defi nitely a 
maintenance burden for developers. The main reason is to support 
the use of PyNN as a porting tool. The majority of neuronal net-
work models using existing simulators use a procedural approach, 
and so conversion to PyNN is easier if PyNN supports the same 
approach. In addition, when developing a PyNN interface for a 
simulator, or for neuromorphic hardware, that deals primarily with 
individual cells and synaptic connections, it is easier to implement 
only the low-level interface, since the high-level interface can be 
built upon it.

HIGH-LEVEL, OBJECT-ORIENTED INTERFACE
Object-oriented programming has been used for many years in 
computer science as a method for reducing program complexity. As 
the ambition and scope of large-scale, biologically detailed neuronal 
network modelling increases, reducing program complexity will 
become more and more critical, as the limiting factor in computa-
tional neuroscience becomes the productivity of the programmer 
and not the capacity of the computer (Wilson, 2006). It is for this 

reason that the preferred interface in PyNN for developing new 
models is an object-oriented one.

The object-oriented interface is built around three main 
classes:

Population – a group of cells all with the same cell type (model 
type). It is generally considered that the cells in a Population 
should all represent the same biological cell type, i.e. although 
parameter values may vary between cells in the group, all cells 
should have qualitatively the same fi ring response. This is not 
enforced, but is a good guideline to follow for producing under-
standable code. The Population class eliminates tedious itera-
tion over lists of neurons and enables more effi cient, array-based 
management of neuron properties.

Projection – the set of connections of a given synapse type 
between two Populations. Creating a Projection requires speci-
fying the pre- and post-synaptic Populations, the synapse type, 
and the algorithm used to determine which neurons connect to 
which.

Connector – an encapsulation of the connection algorithm 
used in creating a Projection. Simple examples of such algorithms 
are “all-to-all”, “one-to-one” and “connect-each-pre-and-post-
 synaptic-cell-with-a-fi xed-probability”. It is also possible to provide 
an explicit list of which cells are to be connected to which others. 
Each algorithm is defi ned within a subclass of the Connector class. 
PyNN contains a number of such classes, but it is fairly straight-
forward for a user to defi ne their own algorithms.

In future development of PyNN, we plan to extend the interface 
to still higher-level abstractions, such as layers, cortical columns, 
brain areas and inter-areal projections. We also aim to use the high-
level interface as a link between spiking network models and more 
abstract models that do not represent individual neurons, such as 
mean-fi eld models.

RANDOM NUMBERS
The central nervous system contains many sources of noise, and 
activity patterns are often suffi ciently complex, and possibly cha-
otic, to make a stochastic representation a reasonable model.

This can become a problem when comparing the behaviour of a 
given model run on different simulators, since random differences 
might obscure real inconsistencies between implementations of the 
model. Similarly, when performing distributed computations on 
parallel machines, the model behaviour should not depend on the 
number of processors used (Morrison et al., 2005), and random 
differences can conceal real differences between the parallel and 
serial implementations.

For these reasons, it is important to be able to use identical 
sequences of random numbers in different simulators, and to have 
the random number used at a particular point in the program 
execution be independent of which processor it is running on.

Another consideration is that simulations in most cases use only 
pseudo-random sequences, and low-quality random number gen-
erators (RNGs) may have correlations between different elements of 
the sequence that can signifi cantly affect the qualitative behaviour 
of a network. Hence it is necessary to be able to test the simulation 
with different RNGs.

PyNN supports simulator-independent RNGs and use of dif-
ferent generators – currently any of the generators provided by 
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the numpy package or by the GNU Scientifi c Library (GSL) can 
be used.

This is done by wrapping the numpy and GSL RNGs in classes 
with a common interface. PyNN’s random module contains the 
classes NumpyRNG and GSLRNG, which both have a single method, 
next(n, distribution, parameters), which returns n ran-
dom numbers from a distribution of type distribution with 
parameters parameters, e.g.

>>> from pyNN.random import NumpyRNG, GSLRNG
>>> rngN = NumpyRNG(seed=76847376)
>>> rngG = GSLRNG(seed=87548753)
>>> rngN.next()
0.91457981651574294
>>> rngG.next(5)
array([ 0.02518011, 0.79118205, 0.16679516, 
…      0.1902914, 0.66204769])
>>> rngN.next(3, 'gamma', [2.0, 0.5])
array([ 0.48903019, 0.63129009, 0.70428452])
>>> rngG.next(distribution='uniform')
0.93618978746235371

Since all PyNN code that uses random numbers accesses the 
RNG classes only through this next() method, a user can substi-
tute their own RNG simply by defi ning a wrapper class with such 
a method.

Since very often one wishes to use the same random distribution 
repeatedly, rather than changing distribution each time, the random 
module also provides the RandomDistribution class, which is 
initialized with the distribution name and parameters, and there-
after the next() method is simplifi ed to take a single argument, 
the number of values to draw from the distribution, e.g.

>>> from pyNN.random import (NumpyRNG,
…                           RandomDistribution)
>>> rng = NumpyRNG(seed=8745753)
>>> gamma_distr = RandomDistribution('gamma',
…                                   [2.0, 0.5],
…                                   rng=rng)
>>> gamma_distr.next(3)
array([ 0.72682412, 0.82490159, 1.03882654])

Note that NumpyRNG and GSLRNG distributions may not 
have the same names, e.g. “normal” for NumpyRNG and “gaussian” 
for GSLRNG, and the arguments may also differ. One of our future 
plans is to extend the random module in order to harmonize names 
across RNGs.

MULTI-COMPARTMENTAL MODELS
PyNN currently supports only a single simulator, NEURON, that 
is suitable for many-compartment models. Given the principle 
of supporting simulator-independence only for features that are 
shared by at least two of the supported simulators, and given 
PyNN’s focus on network modelling, PyNN does not provide an 
API for specifying simulator-independent multi-compartmental 
models. This is a possible future development – preliminary work 
has been done on a PyNN interface to the MOOSE simulator (Ray 
and Bhalla, 2008) – but a more likely path would be to make use 

of the NeuroML standards for specifying multi-compartmental 
 models. In this scenario, the fi lename of a NeuroML level 2 fi le, 
specifying a single cell type, would be passed as the cellclass 
argument to the PyNN create() function or Population 
constructor.

However, since native and PyNN code can be mixed, the 
pyNN.neuron module already supports simulations with multi-
 compartmental models. The pre-synaptic compartment whose 
voltage is watched to trigger synaptic transmission (e.g. axon 
terminal) can be specifi ed using the source argument to the 
Projection constructor, and the post-synaptic mechanism speci-
fi ed with the target argument.

DEBUGGING
Should an error occur in a PyNN simulation, a good fi rst step is to 
re-run it on another simulator back-end and so narrow down the 
source of the problem to one back-end in particular. Nevertheless, 
it has proven to be the case that the additional layers of abstrac-
tion provided by PyNN sometimes make it harder to track down 
sources of errors. To counterbalance this, PyNN traps errors coming 
from the simulator core and employs Python’s introspection capa-
bilities to provide additional information about the error context. 
For example, if an invalid parameter name is provided to a neu-
ron model, the error message lists all the valid parameter names 
for that model. Furthermore, logging can be switched on via the 
init_logging() function in the pyNN.utility module, causing 
detailed information about what the system is doing to be written 
to fi le, a valuable resource for tracking down bugs.

IMPLEMENTATION
PyNN is both a defi nition of a common simulator interface and 
an implementation of this interface for each supported simulator. 
PyNN is implemented as a Python package containing a common 
module, which defi nes the API and contains functionality common 
to all simulator back-ends, a random module (described above), 
and a module for each simulator back-end, as shown in Figure 3. 
Each simulator module separately implements the API, although 
it can make use of much shared code in common. In most cases, 
the simulator modules have been implemented by, or in close col-
laboration with, the simulator developers.

PyNN currently fully supports the following simulators: 
NEURON (Carnevale and Hines, 2006; Hines and Carnevale, 
1997; Hines et al., 2008), NEST (Eppler et al., 2008; Gewaltig and 
Diesmann, 2007), PCSIM (http://www.lsm.tugraz.at/pcsim/) and 
Brian (Goodman and Brette, 2008). Support for MOOSE (Ray 
and Bhalla, 2008) and for export in NeuroML format (Crook et al., 
2005) is under development.

PyNN also supports the Heidelberg neuromorphic hardware 
system (Schemmel et al., 2007). This illustrates a major benefi t of 
the existence of a common neuronal simulation interface: novel 
simulation or emulation systems do not need to develop their own 
programming interface, but can benefi t from an existing one that 
guarantees interoperability with existing tools. Using PyNN as the 
interface to neuromorphic hardware systems provides the possi-
bility of closing the gap between the two domains of numerical 
simulation and physical emulation, which have so far coexisted 
rather separately.
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LIMITATIONS ON REPRODUCIBILITY
For a given model with a given parameter set run on a given version 
of a given simulator, it should be possible to exactly reproduce a 
simulation result, independent of computer architecture (except 
where this affects the precision of the fl oating-point representa-
tion) or operating system. For parallel systems, results should also 
be independent of how many threads or processes are used in the 
computation, although here exact quantitative reproduction is 
harder to achieve. Reproducibility across different versions of a 
given simulator is not essential provided the precise version used 
to generate a given result is specifi ed, but it is of course highly 
desirable. When running a model on different simulators, exact 
reproduction is impossible to achieve, except in simple cases, due 
to round-off errors in fl oating point calculations. When validating 
a model implementation by running it on two or more simulators, 
therefore, what level of reproducibility is achievable, and how can 
we tell whether any differences are due to round-off error or to 
implementation errors?

To get a preliminary handle on this problem, we have com-
pared the difference in model activity between two simulators to 
the difference due to two different initial conditions with the same 
simulator.

Our test case is the balanced random network, based on Vogels 
and Abbott (2005), whose implementation was shown above. The 
activity pattern of this network is very sensitive to initial condi-
tions (chaotic or near-chaotic), and so we cannot use differences in 
the precise spike pattern to measure reproducibility: we are more 
interested in the statistical properties of the activity, and so we 
have chosen to take the distribution of inter-spike intervals (ISIs) 
of excitatory neurons (see Figure 2C) as a measure of network 
activity.

To measure the difference between the distributions from two 
different runs we use the Kolmogorov–Smirnov two-sample test. 
We ran the simulation ten times, each time with a different seed 
for the RNG used to generate the initial membrane potential 
distribution, with both NEURON and NEST back-ends. This gave 
values for the Kolmogorov–Smirnov D-statistic between 0.008 
and 0.026 (n � 19000) with a mean of 0.015, with associated 

p-values (probability that the two distributions are the same) 
between 6.3 × 10−5 and 0.68 with mean 0.15.

We then ran the simulation twenty times just on NEURON, each 
time with a different RNG seed, to give 10 pairs of distributions. In 
this case the D-values were in the range 0.007–0.026, mean 0.015, 
and the p-values in the range 2.8 × 10−5 to 0.77, mean 0.20.

In summary, the differences due to different simulators are in 
almost exactly the same range as those due to different initial con-
ditions, suggesting that the differences between the simulators are 
indeed due to round-off errors and that there are not, therefore, 
any implementation errors in this case.

It is also interesting to note that in most cases the null hypothesis 
is supported, i.e. the distributions are the same, but that for some 
initial conditions there are highly signifi cant differences between 
the ISI distributions. The ISI distribution may not therefore be the 
best measure for reproducibility in this case.

DISCUSSION
In this article we have presented PyNN, a Python-based common 
simulator interface, which allows simulator-independent model 
specifi cation. PyNN is already in use in a number of research groups, 
and has been a key technology enabling improved communication 
between labs in a pan-European collaborative project with a major 
component of modelling and of neuromorphic hardware develop-
ment (the FACETS project: http://www.facets-project.org).

By providing a standard simulation platform, PyNN also has 
the potential to act as the foundation for other, simulator agnostic 
but neuroscience-specifi c, tools such as analysis, visualization and 
data-management software.

PyNN is not the only project to address simulator- independent 
model specifi cation and simulator interoperability (review in 
Cannon et al., 2007). neuroConstruct (Gleeson et al., 2007) is a 
tool to develop networks of morphologically-detailed neurons 
using a graphical user interface (GUI), that can generate code 
for both the NEURON and GENESIS simulators. A limitation 
with respect to PyNN is that since it uses code generation rather 
than a direct interface, neuroConstruct cannot receive informa-
tion back from the simulator except by reading the data fi les it 

sli

GENESIS 2 MOOSE

NeuroML

PCSIMNEST NEURONSimulator kernel

Native interpreter

Python interpreter

Simulator-specific
PyNN module

hoc

FACETS
hardware

nrnpy

SLI

PyMOOSEPyPCSIM PyHALPyNEST

pynn.neuronpynn.nest pynn.pcsim pynn.
facetshardware1

pynn.neuroml pynn.moose
pynn.

genesis2

PyNN

Direct communication Code generation Implemented Planned

Brian

pynn.brian

FIGURE 3 | The architecture of PyNN.
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generates. A second limitation is that features that are not avail-
able through the GUI cannot be incorporated in a model. The 
NeuroML standards (Crook et al., 2005, http://www.neuroml.org) 
are intended to provide an infrastructure for exchanging model 
specifi cations between groups in a simulator-independent way. 
Their scope includes much more detailed levels of modelling, e.g. 
membrane ion channels and detailed dendritic morphology, than 
are supported by PyNN. They have the advantage over PyNN of 
being language-independent, since specifi cations are written in 
XML, for which tools exist in all major programming languages. 
The major disadvantage of purely declarative specifi cations is lack 
of fl exibility: if a concept or entity is not defi ned in the standard, 
it is not possible to specify models that use it, whereas with a 
procedural/imperative or mixed declarative-procedural specifi -
cation such as is achievable with PyNN, arbitrary specifi cations 
are possible.

Although we emphasize here the differences between the 
GUI, pure-declarative, and programming-interface approaches 
to  simulator-independent model specifi cation, in fact they are 
highly complementary. Graphical interfaces are particularly 
good for beginners, for teaching, for giving high-level overviews 
of a system, and for integrating analysis and visualization tools. 
It would be very useful for neuroConstruct to be able to gener-
ate PyNN code, for example, in addition to code for NEURON 
and GENESIS. Declarative specifi cations reach the highest levels 

of system- independence, for the range of concepts that are sup-
ported. They are also particularly suitable for transformation into 
human-readable formats and for automated GUI generation. As 
such, they seem to be best suited for domains in which the model-
ling approach is fairly stable, e.g. for describing neuron morpholo-
gies or non- stochastic ion channel models. In PyNN, we plan to 
support  simulator-independent multi-compartmental models 
using NeuroML: in this scenario cell models would be specifi ed in 
NeuroML while PyNN would be used for network specifi cation 
and for simulation setup and control.

Our main priorities for future development of PyNN are to 
increase the number of supported simulators (simulator  developers 
who are interested in PyNN support for their simulator are encour-
aged to contact us), improve the support for multi-compartmental 
modelling, and extend the interface towards higher-level abstrac-
tions, such as cortical columns and more abstract modelling 
approaches. PyNN is open source software (CeCILL licence, http://
www.cecill.info) and has an open development model: anyone who 
wishes to contribute is welcome and invited to do so.
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PsychoPy is a software library written in Python, using OpenGL to generate very precise visual 
stimuli on standard personal computers. It is designed to allow the construction of as wide 
a variety of neuroscience experiments as possible, with the least effort. By writing scripts in 
standard Python syntax users can generate an enormous variety of visual and auditory stimuli 
and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG 
etc.). The structure of scripts is simple and intuitive. As a result, new experiments can be written 
very quickly, and trying to understand a previously written script is easy, even with minimal code 
comments. PsychoPy can also generate movies and image sequences to be used in demos or 
simulated neuroscience experiments. This paper describes the range of tools and stimuli that 
it provides and the environment in which experiments are conducted.
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largely stable (it is largely backward-compatible between versions) 
and is suffi ciently complete and bug-free that it is used as the 
standard means of conducting psychophysical and/or neuroim-
aging experiments in a number of labs worldwide. The software 
is still very much under development however; stimuli are still 
being added, code is still being optimised and the user interface 
is being refi ned constantly. There is a mailing list where users 
can report bugs,  discuss improvements and get help in general 
use of the software.

PYTHON
One of the strengths of PsychoPy is its use of Python. The high-level 
functions and libraries available in Python make it an ideal language 
in which to develop such software. The platform independence that 
PsychoPy enjoys is based very much on the fact that it is based on 
pure Python code, using libraries such as wxPython, pyglet and numpy 
that have been written to be as platform independent as is technically 
possible. The fact that Python now has such a large user base means 
that there is a large community of excellent programmers developing 
libraries that PsychoPy can make use of. The fact that Python can 
be used in such a wide variety of ways (for example, in the author’s 
own lab Python is used not only for stimulus presentation but also 
for data analysis, for the generation of publication-quality fi gures, 
for computational modelling and for various general purpose scripts 
to manipulate fi les) means that in many cases this is likely to be the 
only programming language that a scientist need learn, with the 
obvious benefi ts in time that result. By nature of its clean, readable, 
and powerful syntax combined with its free and open-source release 
model Python is clearly a very popular language that is continu-
ously growing and developing further. Where Matlab has, in the past, 
benefi ted from its large user base and wide variety of applications to 
science, Python stands to benefi t even more.

HARDWARE ACCELERATED GRAPHICS
One of the goals of PsychoPy was to generate stimuli in real-time, that 
is to update the character of a stimulus on a frame-by-frame basis as 
needed without losing temporal precision. For static stimuli this is an 

INTRODUCTION
The majority of experiments in modern neuroscience require the 
presentation of auditory or visual stimuli to subjects while a meas-
ure is taken of their ability to see, remember or interact with that 
stimulus, or of the brain activity that results from its presentation. 
As a result, neuroscience needs for tools that allow the accurate 
presentation of stimuli and collection of participant responses. 
Those tools should be as easy to use as possible to reduce the 
time spent constructing experiments, while being able to deliver 
as wide a variety of stimuli and experimental designs as possible 
to reduce the variety of software that a single scientist needs to 
learn to use. Additionally the ideal software package should be 
open-source, such that scientists can fully examine the code and 
know exactly what is being done “under the hood”, it should be 
platform independent and it should, of course, be free.

This article describes PsychoPy, an open-source software library 
that allows a very wide range of visual and auditory stimuli and 
a great variety of experimental designs to be generated within a 
very powerful script-driven framework based on Python. It is built 
entirely on open-source libraries and technologies, such that the 
user can, if they desire, examine all of the code that contributes 
to the stimuli they present. By leveraging the power of Python, 
and several existing cross-platform Python libraries, the software 
is fully platform independent and is being used in a number of labs 
worldwide on Windows, Mac OS X and Linux.

A previous publication (Peirce, 2007) describes the design phi-
losophy and underlying mechanisms of PsychoPy and its relation-
ship to other software packages, such as Vision Egg (Straw, 2008) 
and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). This paper 
focuses on its use, describing more of the variety of stimuli that 
the library can generate and present (images, dot arrays, text and 
movies), the environment in which experiments are developed and 
the latest developments and additions to the software.

MATERIALS AND METHODS
PsychoPy has been under active development since 2003 and, 
at time of writing, had reached version 0.95.2. The code is now 
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unnecessary benefi t, but for moving stimuli, where the alternative is 
to pre-compute a movie sequence it makes for much cleaner experi-
mental code, with fewer delays (some experiments would previously 
require several seconds or even minutes before running where they 
computed the stimulus movies). The possibility of real-time stimulus 
manipulations also allows experiments to alter based on input form 
the participant such that, for example, a stimulus might be moved 
fl uidly under mouse (or even eye- movement) control, or the next 
stimulus can be generated based on the previous response.

In order to achieve good temporal precision, while updating stim-
uli in real-time from an interpreted language like Python or Matlab, 
it has been essential to make good use of the hardware accelerated 
graphics capabilities of modern computers. Most modern machines 
have very powerful graphics processing units that can perform a lot 
of the calculations necessary to present stimuli at a precise point in 
space and time and to update that stimulus frequently. The OpenGL 
specifi cation determines, fairly precisely, what a graphics card should 
do given various  commands, such that platform independence is 
largely maintained (there are certain aspects, such as the synchroni-
sation of drawing with the screen vertical refresh that are graphics 
card and/or platform dependent). PsychoPy 0.95 is fully compatible 
with the OpenGL 1.5 specifi cation but makes use of further facilities 
that were added to OpenGL 2.0 on graphics cards and drivers where 
these are available. Nearly all modern graphics cards are capable of 
using OpenGL (although they may need updated drivers) and per-
fectly adequate cards from nVidia or ATI, that support the OpenGL 
2.0 extensions, can be currently purchased and added to a desktop 
computer of any platform for roughly £30.

PLATFORM INDEPENDENCE
Platform independence is a particular goal of PsychoPy. Computer 
technologies change rapidly and the relative advantages of differ-
ent platforms can vary equally quickly. Scientists should not need 
to learn a whole new set of tools just because they have decided 
to switch their main computer platform, and should be able to 
share code and experiments with colleagues using other platforms. 
Perfect independence is never possible because of hardware differ-
ences between computers. Some such differences are obvious; for 
example, Apple Macs have not supported parallel ports directly 
for several years so scripts using parallel port communication 
cannot work on those platforms. Other differences are subtle and 
unnoticed by most users. An example of this is that the OpenGL 
specifi cation allows for the frame not to be cleared after a swap of 
the “front” and “back” buffers during a screen refresh, but does 
not specify whether the new back buffer is maintained from the 
previous back buffer (most useful for the continuity of drawing 
frames) or retrieved from the previous front buffer (as implied by 
the term “swapping” buffers). As a result, the behaviour is free to, 
and does, vary between manufacturers.

In the vast majority of cases, however, thanks to the hard work 
of the developers of libraries such as pyglet, numpy and wxPython, 
a PsychoPy script will run identically on all platforms.

RESULTS
INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)
PsychoPy was developed as a Python package that could be imported 
from scripts needing to present stimuli. For new users of Python 

that has certain disadvantages; users need to install Python and 
other dependent libraries separately, they need some form of text 
editor to write the scripts and they need to know where to fi nd the 
text, including error messages, that scripts might output. Although 
none of these are diffi cult (and may seem obvious to an experienced 
programmer or user of command-line operating systems), they 
were impediments to new users, particularly from Windows and 
“traditional” Mac platforms. PsychoPy now comes with a built-in 
code editor (PsychoPyIDE), complete with code auto-completion, 
code folding and help tips. Scripts can be run directly from the 
editor and code output is directed to another window in the appli-
cation (see Figure 1). When this output includes error messages 
these show up as URL-style links that take the user directly to the 
line on which the error occurred.

On Windows, installation is very straightforward using simple 
double-clickable installers. On Intel-based Apple Macintosh com-
puters running OS X an application bundle is provided that con-
tains its own copy of Python and all the dependent libraries. This 
has a number of advantages. The fi rst is that it installs simply as a 
single application that can be dragged into the Applications folder 
(or other location) and can be removed equally easily by simply 
sending to the trash. As well as being easy to install by this method, 
distributing PsychoPy with its own copy of Python has two major 
advantages: PsychoPy’s developers know what libraries have been 
installed and that they are compatible and the user knows that it 
won’t interfere with any existing Python installation that they have 
(such as previous installs, or the Apple system Python). For more 
experienced Python users, who may wish to install to their own 
customised set of libraries, the standard Python-style methods of 
installing from source distributions are also available.

On Linux the dependencies can be installed simply from simple 
apt-get commands and PsychoPy is then easily installed from its 
source distribution.

MODULE STRUCTURE
As with most Python packages, PsychoPy contains a number of sub-
modules, which can be imported relatively independently (some 
depend on each other) depending on the task at hand. This is useful 
in keeping related functions and classes together in meaningful 
units. For instance, the following will import modules useful in 
presenting visual and auditory stimuli and collecting responses 
(events) from the subject:

from psychopy import visual, core, event

The main modules that can be imported from PsychoPy, and the 
main libraries that they depend upon are shown in Figure 2.

PRESENTING STIMULI
A subset of the available visual stimuli is shown as a screenshot 
in Figure 3.

Windows
Most experiments begin with creating a window into which visual 
stimuli or instructions can be presented. In PsychoPy this can be 
achieved in a full screen mode or in a normal window, with the 
mouse either shown or hidden. Furthermore, multiple windows can 
be created at one time and these may be presented on any physical 
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screen if more than one is connected. This makes the presentation 
of binocular stimuli straightforward.

PsychoPy windows can also be given information about the 
monitor that they are being presented in, such as its physical size 
and distance from the participant (this information can be provided 
as part of the script or from a dialogue box as part of the develop-
ment environment). Once provided with the necessary information 
PsychoPy will then allow the user to specify their stimulus attributes 
such as size and location in any of a variety of meaningful units, 
such as cm or degrees of visual angle. If the monitor has been colour 
calibrated with a spectro-radiometer, a process which can also be 
automated from within PsychoPy, then the colour of stimuli can 
also be specifi ed in a biologically relevant colour space. For exam-
ple, using the MB-DKL cone-opponent space (Derrington et al., 
1984; MacLeod and Boynton, 1979) allows isoluminant stimuli to 
be generated trivially from within scripts.

Windows are double-buffered, meaning that any drawing com-
mands are initially executed to a hidden window (the back buffer) 
and are only translated to the screen on the next vertical blank 
(VBL) period after the Window.flip() command has been called. 
On most systems (a very small number of graphics card do not 
support the feature) this will then pause the running of the thread, 
such that no further commands are executed until the frame has 
been refreshed. This feature of synchronising to the VBL can be used 
as a mechanism to control timing during an experiment, since the 
period between VBLs is extremely consistent and precise.

PatchStim
The most widely-used stimulus in PsychoPy is the PatchStim, used 
to control a visual patch on the screen. Patches can contain any 
bitmap-style data, including periodic textures (such as sinusoi-
dal gratings or repetitive lines) or photographic images. These 

FIGURE 1 | The integrated development environment (IDE) running 

one of the demo scripts. Multiple scripts can be opened at once in 
the editor, appearing as tabs. There is a menu from which demos can be 
easily loaded for a quick view of how to use various aspects of the program. 

Output from the running script is displayed in the panel at the bottom of the 
window and scripts can be started and forced to quit directly from 
the editor. Although the OS X version is shown here, the editor 
runs on all platforms.
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also support alpha masks, which defi ne the transparency of the 
stimulus across the patch and can therefore determine the shape, 
or “envelope” of the stimulus. These stimuli can be manipulated 

in real-time in a wide variety of useful ways; the bitmaps can be 
rotated, have their phase shifted, change the number of cycles in 
either dimension etc.

FIGURE 2 | The structure of PsychoPy. PsychoPy comprises a number of sub-modules for controlling different aspects of an experimental setup, from stimulus 
presentation to analysis of data. In turn these use a number of dependent libraries, that typically have a very good degree of platform-independence.

FIGURE 3 | A sample of PsychoPy components. Within the Window is a 
coloured Gabor from PatchStim, some rotated Unicode text from the 
TextStim and 500-dot DotStim. The central image is actually a MovieStim. 

All the stimuli are dynamic and being updated simultaneously at 60Hz, without 
any dropped frames. Also shown is a dialog (gui.DlgFromDict) to receive 
information about the current experiment.
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As a result, PatchStim stimuli can be used to present a wide 
variety of image-based objects, either those used typically in visual 
psychophysics (gratings, Gabors etc…) or those in higher-level psy-
chology and cognitive neuroscience studies (such as photographic 
images) or to create simple geometric shapes such as fi xation points 
and arrows.

TextStim
Another common experimental requirement is the presentation of 
text to subjects, either as instructions or as actual stimuli. PsychoPy 
has a stimulus that provides simple access to clear, anti-aliased text 
in any true-type font available on the host system (obviously more 
can be installed). These stimuli are fully compatible with Unicode, 
so that symbols and non-English characters can be included. Text 
objects can be coloured in any of the colour spaces and referred to by 
any coordinate system for which the window has been calibrated (see 
Windows). They can also be rotated arbitrarily and in real-time.

Sound
PsychoPy also provides direct and simple access to methods for 
presenting auditory stimuli. Sound objects can be created from fi les 
(wav, mpg), from pure tones (the user specifi es the duration and 
either frequency or the name of the note and octave on a standard 
scale) or can be generated from arbitrary waveforms using the 
standard numpy library in Python. Sound objects can be played in 
full stereo in asynchronous threads, so as to overlap as necessary 
with each other and with visual presentations.

The ability to play arbitrary stereo waveforms as sounds makes 
PsychoPy perfectly capable of running full auditory psychophysi-
cal experiments, but the sounds can equally easily be used just to 
present feedback tones to subjects carrying out basic experimental 
tasks.

DotStim
A common stimulus in visual neuroscience is the random dot pat-
tern (e.g. see Scase et al., 1996), also known as the Random Dot 
Kinematogram and this is provided in PsychoPy by the DotStim 
object. This allows either an array of dots, or an array of other 
PsychoPy stimuli (e.g. PatchStims) to be drawn as a fi eld. The posi-
tion of the dot elements can then be automatically updated by a 
variety of rules, for instance where a number of target dots move 
in a given direction while the remaining (distracter) dots move 
in random directions. This type of stimulus makes heavy use of 
OpenGL optimisations and allows a large number of dot elements 
(several hundred) to be drawn and updated in realtime without 
dropping frames.

MovieStim
PsychoPy can present movies in a variety of formats including 
mpeg, DivX, avi and Quicktime, allowing studies using natural 
scene stimuli or biological motion displays. As with most other 
stimulus types, these can also be transformed in a variety of ways 
(e.g. rotated, fl ipped, stretched) in real-time.

COLLECTING RESPONSES
Most experiments also need to receive and store information about 
responses from subjects. For PsychoPy, this can be achieved via a 

number of simple means; keyboards, mice, joysticks and specialised 
hardware such as button boxes. The simplest possible input method 
is to examine recent events from the keyboard using the event.
getKeys() and event.waitKeys() functions. These allow the 
user to see what keys have been pressed since the last call or to wait 
until one has been pressed (and may be restricted to a small number 
of allowed keys). The event.Mouse object allows PsychoPy users 
to determine where the mouse is at any given moment or whether 
a mouse button has been pressed with simple methods such as 
getPos(), getWheelRel() (to retrieve the relative movement 
of the mouse scroll wheel) and getPressed(). Code Snippet 1 
demonstrates how to use these mouse and keyboard facilities to 
control a drifting Gabor patch (a sinusoidal grating in a Gaussian-
shaped envelope) in real-time within a PsychoPy window.

INTEGRATING WITH HARDWARE
Many input/output devices can be accessed directly from within 
PsychoPy by emulating keyboards or rodents. For example, the fORP 
MR-compatible button boxes (Current Designs, Philadelphia, USA) 
are capable of outputting signals that emulate key presses on a stand-
ard keyboard (e.g. keys 1–4 can represent buttons with key 5 repre-
senting a trigger pulse from an MRI scanner). Many touch- sensitive 
screens simply emulate a mouse press at the location where the screen 
was touched, and can therefore be used within PsychoPy as if a mouse 
event had occurred. These often provide the simplest methods of 
input to an experimental program. On other occasions these are 
unsuitable, either because the nature of the information being trans-
mitted does not easily emulate such devices or because those devices 
are already in use. For example, what happens if you need button-box 
input as well as, and separate from, keyboard input?

PsychoPy also provides simple and complete access to input 
and output via serial and parallel ports (or via USB serial/parallel 
emulators, on systems where direct hardware ports are unavailable). 
An example of the use of serial and parallel port communications 
is shown in Code Snippet 2. Typically the parallel port is used to 
control and receive simple triggers in switching a current from high 
(+5 V) to low (0 V) or vice-versa and particularly useful in inform-
ing other hardware (such as an Electroencephalography device) of 
the precise onset of an event in PsychoPy. Serial ports can be used 
to pass more complex information, such as text characters or data 
in bytes at a fi xed rate and are still heavily used by a large number 
of scientifi c devices because of their relative simplicity. For exam-
ple, PsychoPy uses the serial port protocol to communicate with a 
PR650 spectrophotometer (Photo Research Inc, Chatsworth, USA) 
sending commands to begin measurements and receiving data back 
from the device such as the full power spectrum of the currently 
presented screen.

Some devices may also make use of calls from binary-compiled 
dynamically-loaded libraries (dlls on the Windows platform, dylibs 
on OS X). In particular most devices connecting via USB, Firewire 
or PCI cards will come with drivers that fall into this category. 
Python provides a module called ctypes (as of version 2.5), which 
allows seamless calls to any such drivers and dynamic libraries 
directly from Python itself.

Through one of these methods, any hardware that can com-
municate with your computer, can also communicate with Python 
and PsychoPy.
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from psychopy import visual, core, event # import the PsychoPy libraries

#create a window to draw in
myWin = visual.Window((600.0,600.0), allowGUI=True)

#initialise some stimuli
fixSpot = visual.PatchStim(myWin,
        tex="none", mask="gauss", #no texture and a Gaussian shape
        pos=(0,0), size=(0.05,0.05), #size and location as fraction of window
        rgb=[-1.0,-1.0,-1.0]) #the colour of the fixation (black)
grating = visual.PatchStim(myWin,pos=(0.5,0),
        tex="sin",mask="gauss", #grating texture and a Gaussian shape
        rgb=[1.0,0.5,-1.0], #
        size=(1.0,1.0), sf=(3,0)) #set the size and the grating cycles
myMouse = event.Mouse(win=myWin) #a mouse object related to our window
message = visual.TextStim(myWin,pos=(-0.95,-0.9), #a TextStim to provide info
        alignHoriz='left', height=0.08,#specifying the size of the font
        text='left-drag=SF, right-drag=pos, scroll=ori') #and the actual text

for frameN in range(2000): #for 2000 frames
    #handle key presses each frame
    for key in event.getKeys(): #returns keys pressed this frame
        if key in ['escape','q']:
            core.quit()

    #get mouse events
    mouse_dX,mouse_dY = myMouse.getRel() #get position relative to previous
    mouse1, mouse2, mouse3 = myMouse.getPressed()
    #based on the mouse button and change in position, change the stimulus
    if (mouse1): #if button 1 is down (ie left-click)
        grating.setSF(mouse_dX/200.0, '+')
    elif (mouse3): #else if button 3 is down (ie right-click)
        grating.setPos([mouse_dX/400.0, -mouse_dY/400.0], '+')

    #Handle the mouse wheel(s)
    wheel_dX, wheel_dY = myMouse.getWheelRel()
    #change the grating orientation according to the wheel
    grating.setOri(wheel_dY*5, '+') #2 clicks will give 10deg rotation
    event.clearEvents() #get rid of other, unprocessed events

    #draw our stimuli (every frame)
    fixSpot.draw() #visual stimuli have a simple ‘draw’ function
    grating.setPhase(0.05, '+') #advance grating by 0.05 cycles per frame
    grating.draw()
    message.draw()
    myWin.flip() #update the window

core.quit() #when we’re done (Python loops finish when code indentation ends)

CODE SNIPPET 1 | Presenting stimuli under real-time control. This demo script controls a drifting grating in real-time according to input from the mouse. It 
demonstrates the use of the Window, PatchStim, TextStim and Mouse objects and how to get keyboard input from the participant. These objects have associated 
methods that allow them to have their attributes changed.

TIMING
Timing is a critical issue for many experiments in neuroscience and 
psychology. Many studies require a temporal precision to within a 
few milliseconds, or even in the sub-millisecond range. PsychoPy 
provides various methods to achieve very precise timing of events 
and to synchronise with other devices. This is achieved by means 

of synchronising drawing to the VBL of the monitor, by the use of 
very precise clocks on the host CPU and by access to rapid com-
munication ports such as the serial and parallel ports.

PsychoPy (like most such software) uses a double-buffered 
method of rendering, whereby stimuli are initially drawn into a 
back buffer, a virtual screen in the memory of the graphics card. 
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At the point when the VBL occurs (signifying the end of one frame 
and the beginning of the next) the contents of this back buffer are 
fl ipped with the actual screen buffer. When the command Window.
flip() is sent, PsychoPy will halt all processing (or processing just 
in this thread if multiple threads are being used) until the graphics 
card signals that a frame fl ip has occurred. Since these frame fl ips 
occur at a very precise interval they can be used as a very precise 
timing mechanism and by executing a command immediately after 
the fl ip one can be certain that it is time-locked to the presentation 
of that stimulus frame.

The precision of this system can break down when frames are 
dropped – if too many commands are attempted (e.g. too many 
stimuli are drawn) between frames then the VBL may occur before 
the request to fl ip the buffers occurred, in which case the frame will 
remain unchanged for twice the normal period. In some cases this 
will be unimportant (e.g. if it occurs during an inter-trial interval 
it is likely to be irrelevant). At other times it could cause a slip in 
the timing of the study, causing a stimulus to be presented longer 
than intended. For dynamic stimuli it may change the perceptual 
appearance of the stimulus, causing a smoothly-moving stimulus 
to stutter in its motion, for instance.

PsychoPy alleviates this hazard by using the graphics card proces-
sor as much as possible for calculations involved in drawing, such as 
the transformations needed in rotating, scaling and blending multiple 
stimuli. For simple experiments, using just a few standard stimuli, 
almost any modern computer is likely to have the processing power to 
draw multiple stimuli without dropping frames. For studies needing 
large numbers of stimuli updating every frame, the need for faster 
computers and graphics cards exerts itself. In particular, the use of 
computers with “onboard” graphics processors (such as the GMA 
950 graphics processor that comes on many Intel processors) is not 
recommended – even the cheapest nVidia and ATI graphics cards 
will easily outperform these chips. Also, as complexity increases, so 
does the need to write more effi cient experiment scripts. Often this 
is simply a case of fi nding ways to reduce the number of commands 

executed, for example by manipulating large lists of numbers as 
numpy arrays rather than iterating operations in for-loops. Sometimes 
it may mean having a better understanding of the speed of opera-
tions that will result from the command – giving a PatchStim a new 
texture is time-consuming if the texture is large, whereas changing its 
orientation or colour has a relatively small overhead, so preloading 
textures into stimuli is a good idea whenever possible.

Although PsychoPy and Python are potentially (subject to a 
well-written script) very precise in their reporting and generation of 
stimuli, there are a number of hardware limitations in most experi-
mental setups that limit the absolute temporal accuracy of studies. 
The most obvious is the temporal resolution of the presentation 
device (typically a monitor or projector) but many experiment-
ers are also unaware of the inherent latencies of other hardware 
components in their system. In general, these limit the accuracy 
rather than precision of the studies, since the latencies are relatively 
constant, but are nevertheless worthy of exploration.

Frame rates and monitor technology
The most fundamental limitation to the temporal precision of most 
studies is the frame rate of the monitor, and this varies dependent 
on the particular monitor technology. Cathode ray tube screens 
typically operate at refresh rates ranging 60–200 Hz, dependent 
on the monitor and the resolution of the display. For the majority 
of the frame period (say 12 ms for an 85-Hz refresh rate) pixels 
are being drawn sequentially in lines progressing from the top of 
the screen to the bottom. When the beam illuminating the pixels 
reaches the bottom of the screen there is a pause of around 1.5 ms 
while it returns to top, ready to draw the next frame (this is the VBL 
period). The obvious result is that visual stimuli cannot be changed 
at a rate greater than the frame rate – when a stimulus is scheduled 
for drawing, for example following some user response, it cannot 
be drawn until the next refresh of the screen. A less obvious result 
is that stimuli are drawn as much as 10 ms apart, even on the same 
frame, depending on their screen position.

from psychopy import core, parallel, serial

#initialise ports
serialPort = serial.Serial("COM1", baudrate=115200, bytesize=8, parity='N',
      stopbits=1, timeout=0.0001)
parallel.setPortAddress(0x378) #need to know your parallel port address

#set pin 2 to high and send a command to Cedrus RB730
parallel.setPin(pinNumber=2, state=1) #set pin 2 to high
serialPort.writelines("_d1") #send a command to the serial port

core.wait(0.5)

#set pin 2 to low and read response from Cedrus RB730
parallel.setPin(pinNumber=2, state=0) #set pin 2 to low
nCharsToGet = serialPort.inWaiting()
message = serialPort.read(nCharsToGet)#read the current characters
print message

CODE SNIPPET 2 | The use of serial and parallel ports to control hardware and synchronisation. The demo sends a command to the serial port (in this case 
the command would request information from a Cedrus box about its type and version) and reads the response after a 0.5-s pause. During this period pin 2 on 
the parallel port is set to high.
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LCD panel displays (either projectors or monitors) are typically 
limited to a screen refresh rate of 60 Hz and therefore share the 
problem of having a limited rate at which stimuli can be changed. 
They do not, however, draw the lines to the screen sequentially 
and so do not suffer from the problem that parts of the screen 
are drawn before others. On the other hand, the response time 
of these displays is considerably slower – an LCD switching from 
black to white changes rather gradually, over a period of around 
20 ms. In cases where the screen is changed very rapidly this can 
have profound effects. For instance, if a stimulus is intended to 
fl ash black and white on alternating screens, it is unlikely on these 
monitors to reach full black and full white and a lower contrast 
stimulus will result.

The use of USB devices
Commonly the need for timing accuracy comes from the need to 
know how long a participant took to respond to the presentation 
of a stimulus, where their response is measured by pressing a but-
ton on a keyboard or response box. Unfortunately these devices 
are often USB-based and this introduces another temporal lag of, 
typically, 10–20 ms. Again, for a given device and computer system 
it is likely to be relatively constant, affecting the absolute accuracy 
of the response time measurement more than the precision.

DISCUSSION
PsychoPy is already a very useful tool for running experiments 
that require visual and auditory stimuli in a wide variety of envi-
ronments. It is platform-independent, entirely free, simple to use 
and extremely versatile. It is also continuously improving in the 
variety of stimuli it can present, the accuracy and speed with 
which it can present them and in its ease of installation and use. 

As an open-source project its continued development benefi ts 
from its increasing user base, and that of the wider Python com-
munity. Python is also a language suitable for a wide variety of 
other tasks, including complex data analysis and computational 
modelling. Data can be shared easily between PsychoPy and other 
Python-based packages (e.g. using stored numpy arrays), or can 
be exported to other programs using comma-separated or tab-
delimited text fi les.

The variety of stimuli that PsychoPy can produce and its tem-
poral precision in generating these in real-time make it an ideal 
environment for many neuroscience endeavours. It was originally 
designed for psychophysical studies in vision, but is also an ideal 
package for presenting stimuli in more traditional cognitive psy-
chology experiments, including the ability to interface with touch-
screens and, by virtue of its simple interface to parallel and serial 
ports, it is already being used by a number of labs for fMRI, MEG, 
EEG. PsychoPy is relatively young. Although it has been used as 
standard in the author’s lab since 2004 it has been used in other labs 
only since 2006. The community around it is growing however; at 
the time of writing the package had been downloaded 5000 times 
and has an active mailing list with 50 members.

A great deal more information is available from the project’s 
website (http://www.psychopy.org), including tutorials, demon-
stration code and reference material for the writing of scripts.
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Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. 
From the user’s perspective, MDP is a collection of supervised and unsupervised learning 
algorithms and other data processing units that can be combined into data processing 
sequences and more complex feed-forward network architectures. Computations are 
performed effi ciently in terms of speed and memory requirements. From the scientifi c 
developer’s perspective, MDP is a modular framework, which can easily be expanded. The 
implementation of new algorithms is easy and intuitive. The new implemented units are then 
automatically integrated with the rest of the library. MDP has been written in the context of 
theoretical research in neuroscience, but it has been designed to be helpful in any context 
where trainable data processing algorithms are used. Its simplicity on the user’s side, the 
variety of readily available algorithms, and the reusability of the implemented units make it 
also a useful educational tool.
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and NIPALS), several Independent Component Analysis algorithms 
(CuBICA, FastICA, TDSEP, and JADE), Locally Linear Embedding, 
Slow Feature Analysis, Gaussian Classifi ers, Fisher Discriminant 
Analysis, Factor Analysis, and Restricted Boltzmann Machine (see 
Table 1 for a more exhaustive list and references). Particular care has 
been taken to make computations effi cient in terms of speed and 
memory. To reduce memory requirements, it is possible to perform 
learning using batches of data, and to defi ne the internal parameters 
of the nodes to be single precision, which makes the usage of very 
large data sets possible. Moreover, an MDP subpackage in its fi nal 
stages of development offers a parallel implementation of the basic 
nodes and fl ows.

From the developer’s perspective, MDP is a framework that makes 
the implementation of new supervised and unsupervised learning 
algorithms easy and straightforward. The basic class, Node, takes care 
of tedious tasks like numerical type and dimensionality checking, 
leaving the developer free to concentrate on the implementation of 
the learning and execution phases. Because of the common interface, 
the node then automatically integrates with the rest of the library 
and can be used in a network together with other nodes. A node can 
have multiple training phases and even an undetermined number 
of phases. This allows the implementation of algorithms that need 
to collect some statistics on the whole input before proceeding with 
the actual training, and others that need to iterate over a training 
phase until a convergence criterion is satisfi ed. 

MDP is distributed under the open source LGPL license. It has 
been written in the context of theoretical research in neuroscience, 
but was designed to be helpful in any context where trainable data 
processing algorithms are used. Its simplicity on the user’s side 
together with the reusability of the implemented nodes make it 
also a useful educational tool.

INTRODUCTION
The use of the Python programming language in computational 
neuroscience has been growing steadily during the past few years. 
The maturation of two important open source projects, the sci-
entifi c libraries NumPy1 and SciPy2, gives access to a large col-
lection of scientifi c functions that rivals in size and speed well 
known commercial alternatives like The MathWorks™ Matlab®3. 
Furthermore, the fl exible and dynamic nature of Python offers the 
scientifi c programmer the opportunity to quickly develop effi cient 
and structured software while maximizing prototyping and reus-
ability capabilities. The Modular toolkit for Data Processing (MDP) 
package4 contributes to this growing community a library of widely 
used data processing algorithms, and the possibility to combine 
them according to a pipeline analogy to build more complex data 
processing software.

MDP has been designed to be used as-is and as a framework for 
scientifi c data processing development. From the user’s perspec-
tive, MDP consists of a collection of supervised and unsupervised 
learning algorithms, and other data processing units (nodes) that 
can be combined into data processing sequences (fl ows) and more 
complex feedforward network architectures. Given a set of input 
data, MDP takes care of successively training or executing all nodes 
in the network. This allows the user to specify complex algorithms 
as a series of simpler data processing steps in a natural way. The 
base of available algorithms is steadily increasing and includes, to 
name but the most common, Principal Component Analysis (PCA 
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THE PACKAGE STRUCTURE
The MDP framework consists of a library of data processing nodes 
with a common Application Programming Interface (API) and a 
collection of objects which are used to connect nodes together 
to implement complex data processing workfl ows. In the follow-
ing sections the framework structure is outlined followed by an 
example application. The full API together with an extensive tuto-
rial covering both usage and instruction for writing extensions are 
available at the MDP homepage.

NODES
A node is the basic building block of an MDP application. It represents 
a data processing element, like for example a learning algorithm, a 
data fi lter, or a visualization step (see Table 1 for a list of some of 
the available algorithms). Each node is characterized by an input 
dimension (i.e., the dimensionality of the input vectors), an output 
dimension, and a dtype, which determines the numerical type of 
the internal structures and of the output signal. By default, these 
attributes are inherited from the input data. 

Nodes can have a training phase, where training data is analyzed 
in order to adapt the internal variables, and an execution phase, 
where new data can be processed using the learned parameters. 
For example, the Principal Component Analysis (PCA) algorithm 
(Jolliffe, 1986) requires the computation of the mean and cov-
ariance matrix of a set of training data from which the principal 
eigenvectors of the data distribution are estimated. MDP offers 
an implementation of this algorithm in the class PCANode. The 
node can be trained on the data using the interface common to all 
nodes: PCANode.train(x) analyzes a new batch of data x, and 
updates the estimation of mean and covariance matrix; PCANode.
stop_training() fi nalizes the algorithm by computing and 
selecting the principal eigenvectors. Once the training is fi nished, 

new data can be projected on the principal components calling the 
PCANode.execute(y) method. If the transformation specifi ed by 
the underlying algorithm is invertible, the node can also be executed 
“backwards” using the PCANode.inverse(z) method. In the case 
of PCA, for example, this corresponds to projecting a vector in the 
principal components space back to the original data space.

Node was designed to be applied to arbitrarily long sets of data: 
if the underlying algorithms support it, the internal structures can 
be updated incrementally by sending multiple batches of data. It 
is thus possible to perform computations on amounts of data that 
would not fi t into memory or to generate data on-the-fl y. The 
general form of the training phase thus is:

# create an instance of the desired node
node_instance = mdp.nodes.XXXNode()

for data_batch in data_source:
 node_instance.train(data_batch)

node_instance.stop_training()

In the code, data_source can be any Python iterator5 (e.g. a 
list, an iterator object, or a generator function) that returns an array 
with a batch of training data. The last line fi nalizes the training 
phase. It is shown here for completeness, but can replaced by a call 
to the execute or inverse methods. Nodes also defi ne some util-
ity methods, like for example copy and save, that return an exact 
copy of a node and save it in a fi le, respectively. Additional methods 
may be present, depending on the algorithm. The PCANode.get_
projmatrix method, for example, returns the matrix projecting 
input data into the principal components’ space. For a toy signal-
denoising application that makes use of the basic Node features 
just described in Figure 1.

Table 1 | Some of the nodes available in MDP.

Node class name Algorithm and Reference

PCANode Principal Component Analysis (Jolliffe, 1986)

NIPALSNode Nonlinear Iterative Partial Least Squares PCA (NIPALS) (Fritzke, 1995)

CuBICANode Cumulant-based Independent Component Analysis (CuBICA) (Blaschke and Wiskott, 2004)

FastICANode Independent Component Analysis (FastICA) (Hyvärinen, 1999)

JADENode Cumulant-based Independent Component Analysis (JADE) (Cardoso, 1999)

TDSEPNode Temporal blind-source separation algorithm (TDSEP) (Ziehe and Müller, 1998)

LLENode Locally Linear Embedding Analysis (Roweis and Saul, 2000)

HLLENode Hessian Locally Linear Embedding Analysis (Donoho and Grimes, 2003)

FDANode Fisher Discriminant Analysis (Bishop, 1995)

SFANode Slow Feature Analysis (Wiskott and Sejnowski, 2002)

ISFANode Independent Slow Feature Analysis (Blaschke et al., 2007)

RBMNode Restricted Boltzmann Machine (Hinton et al., 2006)

GrowingNeuralGasNode Growing Neural Gas (learn a graph structure of the data) (Fritzke, 1995)

FANode Factor Analysis (Bishop, 2007)

GaussianClassifierNode Supervised gaussian classifi er

PolynomialExpansionNode Expand the signal in a polynomial space

TimeFramesNode Expand the signal using a sliding temporal window (temporal embedding)

HitParadeNode Record local minima and maxima in the signal

NoiseNode Additive and multiplicative noise injection

5http://docs.python.org/lib/typeiter.html
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Some nodes, namely the one corresponding to supervised 
algorithms, e.g. Fisher Discriminant Analysis (Bishop, 1995), may 
need some labels or other supervised signals to be passed during 
training:

input = {’a’: data_a, ’b’:data_b, ’c’:data_c}
fdanode = mdp.nodes.FDANode()
for label in [’a’, ’b’, ’c’]:
 fdanode.train(input[label], label)

A node could also require multiple training phases. For example, 
the training of fdanode is not complete yet, since it has two training 
phases: The fi rst one computing the mean of the data conditioned 
on the labels, and the second one computing the overall and within-
class covariance matrices and solving the FDA problem. The fi rst 
phase must be stopped and the second one trained:

fdanode.stop_training()
for label in [’a’, ’b’, ’c’]:
 fdanode.train(input[label], label)

The easiest way to train multiple phase nodes is using fl ows, 
which automatically handle multiple phases (see Flows).

MDP makes it easy to write new nodes that interface with the 
existing data processing elements. The Node class is designed to 
make the implementation of new algorithms easy and intuitive. 
This base class takes care of setting input and output dimension 
and casting the data to match the numerical type (e.g. fl oat or 
double) of the internal variables, and offers utility methods that 
can be used by the developer. To expand the MDP library of imple-
mented nodes with user-made nodes, it is suffi cient to subclass 
Node, overriding some of the methods according to the algorithm 
one wants to implement, typically the _train, _stop_train-
ing, and _execute methods. Figure 2 shows an example of a 
simple node that removes the mean of the signal. A more detailed 

introduction to writing new nodes in MDP can be found in the 
online tutorial6.

It is also possible to specify multiple training phases by defi ning 
additional training methods and overwriting the _get_train_seq 
method. For example

class MultiplePhaseNode(mdp.Node):
 def _get_train_seq(self):
  return [(self._train_A, self._stop_A),
   (self._train_B, self._stop_B)]
 [...]

defi nes a new node with two training phases, one updated by the 
method _train_A and fi nalized using _stop_A, and analogously 
the second is defi ned by the methods _train_B and _stop_B. 
The fi nal user will still perform the training phase by calling the 
usual methods train and stop_training (although multiple 
times), and need not know about the specifi c implementation of 
the algorithm.

FLOWS
A fl ow is a sequence of nodes that are trained and executed together 
to form a more complex algorithm. Input data is sent to the fi rst 
node and is successively processed by the subsequent nodes along 
the sequence. Using a fl ow as opposed to handling manually a set 
of nodes has a clear advantage: The general fl ow implementation 
automates the training (including supervised training and multiple 
training phases), execution, and inverse execution (if defi ned) of 
the whole sequence. For example, suppose we need to analyze a 
very high-dimensional input signal using Independent Component 
Analysis (ICA). To reduce the computational load, we would like to 
reduce the input dimensionality of the data using PCA. Moreover, 

# Simple denoising algorithm
# Given is a set of multidimensional signals, for example
# EEG waves, from which normal statistics are learned,
# and a set of noisy signals to be denoised.

# 1 - Create an instance of the PCA algorithm
# The argument output_dim = 0.9 tells the node to retain
# a number of principal components such that the
# explained variance is at least 90%
# A fixed number of output components can be specified
# for example by output_dim=10
pcanode = mdp.nodes.PCANode(output_dim = 0.9)

# 2 - Perform PCA on the set of training signals
pcanode.train(signals)

# 3 - Stop learning and estimate the principal components
pcanode.stop_training()

# 4 - Project noisy signals in the principal component space
proj_signals = pcanode.execute(noisy_signals)

# 5 - Project the data back to the input space for visualization
# and comparison with original data
denoised_signals = pcanode.inverse(proj_signals)

FIGURE 1 | A simple denoising application.

6http://mdp-toolkit.sourceforge.net/tutorial.html
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we would like to fi nd the data that produces local maxima in the 
output of the ICA components on a new test set (this information 
could be used for instance to characterize the ICA fi lters). To imple-
ment this algorithm using MDP, we need to generate an instance 
of Flow using the appropriate nodes:

# Define a data processing sequence.
# - PCANode(output_dim=5) performs PCA and keeps
# the first 5 principal
# components only
# - CuBICANode() is a cumulant-based ICA algorithm
# - HitParadeNode(3) records the 3 largest local
# maxima from the output of
# the previous node
flow = mdp.Flow([mdp.nodes.PCANode(output_dim=5),
 mdp.nodes.CuBICANode(),
 mdp.nodes.HitParadeNode(3)])

The training and execution are performed as for the Node 
class:

# Train all the nodes using the data array ‘x’
flow.train(x)
# Compute the output of the node sequence
# when presented with array ‘x_test’
output = flow.execute(x_test)

A single call to the fl ow’s train method will automatically take 
care of training nodes with multiple training phases, if such nodes 
are present.

Flow objects are defi ned as Python containers, and thus are 
endowed with most of the methods of Python lists: one can 
obtain slices, append new nodes, pop or insert nodes, and con-
catenate fl ows. For example, to get the maxima computed by the 

class MeanFreeNode(mdp.Node):
 def �init�(self, input_dim=None, dtype=None):
  super(MeanFreeNode, self).�init�(input_dim=input_dim, dtype=dtype)
  self.avg = None
  self.tlen = 0

 def _train(self, x):
  # Initialize the mean vector with the right
  # size and dtype if necessary:
  if self.avg is None:
   self.avg = mdp.numx.zeros(self.input_dim, dtype=self.dtype)
  # Update the average
  self.avg += mdp.numx.sum(x, axis=0)
  # Update the number of data points examined
  self.tlen += x.shape[0]

 def _stop_training(self):
  # Compute the average signal
  self.avg /= self.tlen

 def _execute(self, x):
  return x - self.avg

 def _inverse(self, y):
  return y + self.avg

FIGURE 2 | Defi nition of a new node that removes the mean of the signal.

HitParadeNode, one can refer to the last node using the list 
 construct flow[-1]:

maxima, indices = flow[-1].get_maxima()

The Flow class defi nes a number of utility methods, includ-
ing save and copy methods. It also implements a crash recovery 
mechanism that can be activated by setting a fl ag: in case an excep-
tion is thrown during training, the current state of the fl ow is saved 
for later inspection.

HIERARCHICAL NETWORKS
In case the desired data processing application cannot be defi ned 
as a sequence of nodes, the hinet subpackage makes it possible 
to construct arbitrary feed-forward architectures, and in par-
ticular hierarchical networks. It contains three basic building 
blocks (which are all nodes themselves): Layer, FlowNode, and 
Switchboard.

The fi rst building block, Layer, works like a horizontal version 
of fl ow. It acts as a wrapper for a set of nodes that are trained and 
executed in parallel. For example, we can combine two nodes with 
100-dimensional input to construct a layer with a 200-dimensional 
input:

node1 = mdp.nodes.PCANode(input_dim=100,
 output_dim=10)
node2 = mdp.nodes.SFANode(input_dim=100,
 output_dim=20)
layer = mdp.hinet.Layer([node1, node2])

The fi rst half of the 200-dimensional input data is then auto-
matically assigned to node1 and the second half to node2. We 
can train and execute a layer just like any other node. In order to 
be able to build arbitrary feed-forward node structures, hinet 
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provides a wrapper class for fl ows (i.e., vertical stacks of nodes) 
called FlowNode. For example, we can replace node1 in the above 
example with a FlowNode:

node1_1 = mdp.nodes.PCANode(input_dim=100, 
 output_dim=50)
node1_2 = mdp.nodes.SFANode(input_dim=50,
 output_dim=10)
node1_flow = mdp.Flow([node1_1, node1_2])
node1 = mdp.hinet.FlowNode(node1_flow)
node2 = mdp.nodes.SFANode(input_dim=100,
 output_dim=20)
layer = mdp.hinet.Layer([node1, node2])

node1 has two training phases in this example, one for each 
internal node. Therefore layer now has two training phases as 
well and behaves like any other node with two training phases. By 
combining and nesting FlowNode and Layer, it is thus possible 
to build complex node structures.

When implementing networks one might have to route different 
parts of the data to different nodes in a layer in complex ways. This 
is done by the Switchboard node, which can handle such routing. 
A Switchboard is initialized with a 1-dimensional array with one 
entry for each output connection, containing the corresponding 
index of the input connection that it receives its input from, e.g.:

switchboard = mdp.hinet.Switchboard(
 input_dim=6,
 connections=[0,1,2,3,4,3,4,5])
print switchboard
# should print: Switchboard(input_dim=6, 
#  output_dim=8, 
#  dtype=None)
x = mdp.numx.array([[2,4,6,8,10,12]])
print switchboard.execute(x)
# should print: 
# array([[ 2, 4, 6, 8, 10, 8, 10, 12]])

The switchboard can then be followed by a layer that splits the 
routed input to the appropriate nodes, as illustrated in Figure 3.

Since hierarchical networks can become quite complicated to 
build and debug, hinet includes the class HiNetHTML that translates 
an MDP fl ow into a graphical visualization in an HTML fi le.

A COMPLETE APPLICATION
In this section we show a complete example of MDP usage in a 
machine learning application, and use non-linear Slow Feature 
Analysis for processing of non-stationary time series. We consider a 
chaotic time series derived by a logistic map (a demographic model 
of the population biomass of species in the presence of limiting 
factors such as food supply or disease) that is non- stationary in 
the sense that the underlying parameter is not fi xed but is vary-
ing smoothly in time. The goal is to extract the slowly varying 
parameter that is hidden in the observed time series. This example 
reproduces some of the results reported in Wiskott (2003). The 
complete code is shown in Figure 4.

We fi rst generate the slowly varying driving force parameter r
t
 

as a combination of three sine waves r
t
 = sin(10πt) + sin(22πt) + 

sin(26πt). We then generate the time series using the logistic 

 equation x
t +1

 = (3.6 + 0.13r
t
)x

t
 (1 − x

t
). The resulting time series x 

is shown in Figure 5.
To reconstruct the underlying parameter, we defi ne a Flow 

to perform SFA in the space of polynomials of degree 3. We 
fi rst use a node that embeds the 1-dimensional time series in a 
10-dimensional space using a sliding temporal window of size 10 
(TimeFramesNode). Second, we expand the signal in the space of 
polynomials of degree 3 using a PolynomialExpansionNode. 
Finally, we perform SFA on the expanded signal and keep the slowest 
feature using the SFANode. In order to measure the slowness of the 
input time series before and after processing, we put at the begin-
ning and at the end of the node sequence a node that computes the 
η-value (a measure of slowness, see Wiskott and Sejnowski, 2002) 
of its input (EtaComputerNode). The slow feature should match 
the driving force up to a scaling factor, a constant offset and the 
sign. To allow a direct comparison we rescale the driving force to 
have zero mean and unit variance. The real driving force is plotted 
together with the driving force estimated by SFA in Figure 6.

FUTURE DEVELOPMENT
MDP is currently maintained by a core team of three developers, 
but it is open to user contributions. Users have already contributed 
some of the nodes, and more contributions are currently being 
reviewed for inclusion in future releases of the package. The pack-
age development can be followed on the public subversion code 
repository7. Questions, bug reports, and feature requests are typi-
cally handled by the user mailing list8.

Development of the core functionality of MDP continues and 
the next release of MDP is going to include a new package for 
parallelization, designed for nodes in which a large part of the com-
putation is embarrassingly parallel 9 (e.g. calculating the  covariance 

FIGURE 3 | Example of feed-forward network topology.

7http://mdp-toolkit.svn.sourceforge.net
8http://sourceforge.net/mail/?group_id = 116959
9In the jargon of parallel computing, an embarrassingly parallel problem is one 
for which no particular effort is needed to segment the problem into a very large 
number of parallel tasks, that can be executed more or less independently, without 
communication among tasks (Foster, 1995, Section 1.4.4.).
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import mdp
N = mdp.numx

def logistic_map(x,r):
 return r*x*(1-x)

# time axis is 1 second sampled at 10KHz
t = N.linspace(0,1,10000,endpoint=0)
# driving force
dforce = N.sin(10*N.pi*t) + N.sin(22*N.pi*t) + N.sin(26*N.pi*t)

# resulting time series
series = N.zeros((10000,1),’d’)
series[0] = 0.6 # initial condition
for i in range(1,10000):
 series[i] = logistic_map(series[i-1],3.6+0.13*dforce[i])

# define the flow
sequence = [mdp.nodes.EtaComputerNode(), mdp.nodes.TimeFramesNode(10),
 mdp.nodes.PolynomialExpansionNode(3), mdp.nodes.SFANode(output_dim=1),
 mdp.nodes.EtaComputerNode()]

flow = mdp.Flow(sequence, verbose=1)
# train the flow
flow.train(series)

# execute the flow to get the SFA estimate of the driving force
slow = flow.execute(series)

# rescale driving force to compare with SFA estimate
resc_dforce = (dforce - N.mean(dforce,0))/N.std(dforce,0)

# verify that the results are correct
# result should be > 0.99
print mdp.utils.cov2(resc_dforce[:-9],slow)
# result should be ˜= 3000
print ’Eta value (time-series): ’, flow[0].get_eta(t=10000)
# result should be ˜= 10
print ’Eta value (slow feature): ’, flow[-1].get_eta(t=9996)

FIGURE 4 | Python code to reproduce the results in Wiskott (2003).
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FIGURE 6 | The real driving force and the driving force as estimated by SFA.
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FIGURE 5 | Chaotic time series generated by the logistic equation.

matrix to perform PCA). The new parallel package will consist of 
two parts: The fi rst part introduces parallel versions of the familiar 
MDP structures (nodes and fl ows, including hinet) that are able 
to split the computations for some of the algorithms (e.g. PCA and 

SFA). The second part of the package consists of schedulers that 
take individual jobs and execute them in a parallel way. Currently 
a scheduler for parallelization across multiple processors (or cores) 
is provided. Since the scheduler code is largely independent of 
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MDP, one can write simple adapters for other schedulers like for 
example Parallel Python10. The new parallel subpackage can be 
tested already and it is available on the public code repository.

Another new, large MDP package is currently under develop-
ment that will extend MDP with more complex data fl ows, includ-
ing back-propagation and loops. This framework will be integrated 
with both the parallel and the hinet package to allow for large and 
complex data processing networks.

MDP could also act effi ciently as a wrapper for the plethora of 
statistical data analysis algorithms already available in other libraries 
and languages. A prominent example is the R Project for Statistical 
Computing11 with the Python wrappers RPy12 and R/S Plus13.

CONCLUSIONS
With over 10,000 downloads since its fi rst public release in 2004, 
MDP has become one of Python’s major scientifi c packages. The 
package has minimal dependencies, requiring only the NumPy 
numerical extension, is completely platform-independent, and is 
available in the Linux Debian distribution and the Python(x,y)14 
scientifi c Python distribution.

MDP has been used to implement a model of the visual system 
of a virtual rat moving around in a virtual environment (Franzius 
et al., 2007), to perform pattern recognition (Franzius et al., 2008) 
and handwritten digit recognition (Berkes, 2006), to analyze 

 intra-cerebral array-recorded neurophysiological data in the audi-
tory forebrain of song birds15, and to perform PCA and spike-sorting 
of electrophysiological data (Wiltschko et al., 2008), to name a few 
of the applications in computational neuroscience. MDP has also 
been used embedded in the X-ray fl uorescence mapping package 
PyMCA (Solé et al., 2007), to implement auto tagging capabilities 
into the personal organizer application Chandler16 by OSAF17, and as 
a framework for the implementation of data processing algorithms 
in the context of an advanced course in scientifi c computing (Zito 
and Wilson, 2008) aimed at graduate students.

As the number of its users and contributors is increasing, MDP 
appears to be a good candidate for becoming a community-driven 
common repository of user-supplied, freely available, Python 
implemented data processing algorithms.
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PyMOOSE: interoperable scripting in Python for MOOSE

Subhasis Ray and Upinder S. Bhalla*

National Centre for Biological Sciences, Bangalore, India

Python is emerging as a common scripting language for simulators. This opens up many 
possibilities for interoperability in the form of analysis, interfaces, and communications 
between simulators. We report the integration of Python scripting with the Multi-scale Object 
Oriented Simulation Environment (MOOSE). MOOSE is a general-purpose simulation system 
for compartmental neuronal models and for models of signaling pathways based on chemical 
kinetics. We show how the Python-scripting version of MOOSE, PyMOOSE, combines the 
power of a compiled simulator with the versatility and ease of use of Python. We illustrate this 
by using Python numerical libraries to analyze MOOSE output online, and by developing a GUI 
in Python/Qt for a MOOSE simulation. Finally, we build and run a composite neuronal/signaling 
model that uses both the NEURON and MOOSE numerical engines, and Python as a bridge 
between the two. Thus PyMOOSE has a high degree of interoperability with analysis routines, 
with graphical toolkits, and with other simulators.

Keywords: simulators, compartmental models, systems biology, NEURON, GENESIS, multi-scale models, Python, 

MOOSE

Beeman, 1998; Carnevale and Hines, 2006; Hines, 1993) included 
optimized custom code that would allow the simulation to be run 
in affordable time and memory. This process of building domain-
specifi c general simulators has continued with several simulators 
devoted to different aspects of computational and systems biology 
(e.g., VCell, Smoldyn, COPASI). This proliferation of simulators 
brings back the problems of model exchange and interoperability, 
albeit at a higher-level than raw Fortran or C code. While these 
simulators now have a common set of shared higher-level concepts 
(e.g., compartments, channels, synapses), they use entirely different 
vocabularies and languages for set up and control.

MOOSE is a new simulator project that supports simulations 
across a wide range of scales in computational biology, includ-
ing computational neuroscience and systems biology. In order to 
improve interoperability, MOOSE uses two existing languages: 
the GENESIS scripting language, and Python. The Neurospaces 
(Cornelis and De Schutter, 2003; http://neurospaces.sourceforge.
net/) project takes a distinct approach to supporting some GENESIS 
capabilities using backward-compatible scripting, and it too can 
utilize Python.

Most established simulators have their own scripting languages. 
For example, NEURON uses hoc along with modl fi les to set up 
simulations. GENESIS has its own custom scripting language. 
MOOSE avoids introducing a new language, and instead inherits 
the GENESIS parser. To increase compatibility, MOOSE has equiva-
lents for most objects in GENESIS, and many old scripts can be 
run on MOOSE with little or no modifi cation. Given these existing 
capabilities, why add Python scripting? Despite its fl exibility, the 
GENESIS scripting language has several limitations:

1. Domain specifi city: It is not used outside GENESIS. This forces 
the user to learn a special-purpose scripting language.

2. Problem with extensibility: While it is easy to write a script to 
defi ne functions that can be included in other scripts, these 

INTRODUCTION
In computational biology there are two approaches to developing 
a simulation. First, write your custom program to do a specifi c 
simulation, and second, write a model and run it in a general-
purpose simulator. While the fi rst approach is very common, it 
requires the scientist to be a good programmer (or have one at 
her/his disposal) and moves the focus towards programming rather 
than science. Furthermore, it is very diffi cult for others to read such 
a program and understand how it relates to the targeted biological 
system. In this context, a model is a well-defi ned set of equations 
and parameters that is meant to represent and predict the behavior 
of a biological system. Ideally, a general-purpose simulator allows 
the model to be separated from the low-level data-structures and 
control. The scientist is no longer concerned with minutiae of soft-
ware engineering and can concentrate on the biological system of 
interest. The model can be shared by other people and understood 
relatively easily using intermediate-level descriptions of the model 
with a more obvious mapping to the real biological system. General 
simulators also lend themselves to declarative, high-level model 
descriptions that have now become important part of scientifi c 
interchange in the computational neuroscience and systems biol-
ogy communities (Beeman and Bower, 2004; Cannon et al., 2007; 
Goddard et al., 2001; Hucka et al., 2002; http://www.morphml.org/; 
http://neuroml.org, http://sbml.org). The goal of this paper is to 
show how the simulator Multi-scale Object Oriented Simulation 
Environment (MOOSE; http://moose.ncbs.res.in/, mirrored at 
http://moose.sourceforge.net/) uses Python to address these issues 
of interoperability with analysis software, graphical interfaces, and 
other simulators.

General-purpose simulators have been in use since the venerable 
circuit simulator SPICE was utilized to solve compartmental mod-
els (Bunow et al., 1985; Segev et al., 1985). While this level of gen-
erality ran into limitations of computing power, more specialized 
neuronal simulators such as GENESIS and NEURON (Bower and 
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interpreted functions are much slower than compiled code. The 
GENESIS scripting language itself provides for some degree of 
extensibility, but this is diffi cult to implement. Adding a sin-
gle command requires implementation in C, as well as defi -
nition of the command in a confi guration fi le that must be 
pre- processed to include into the interpreter. The addition of a 
new class is still more involved.

3. Lack of existing libraries: The GENESIS scripting language is a 
special-purpose language and has no additional features other 
than those written into the language.

4. Syntax: The syntax is complex and inconsistent as a result 
of accretion of features by many developers and users. For 
 example, arrays are implemented in three inconsistent ways in 
the GENESIS scripting language: as arrays of elements, entries 
within tables and extended fi elds.

To harness the capabilities provided by a modern widely used 
scripting language, we chose a Python interface. Among the plethora 
of programming languages, Python has some special advantages:

1. Interactive: We need a scripting language that comes with a 
command line interpreter. Python is suited for this. User 
interaction is as important as running standalone scripts. 
Simulations are built incrementally, and it is important that 
users can try out bits and pieces of code and get quick feedback 
from the system. Moreover, this practice helps in identifying 
errors early in the development process, which saves conside-
rable time and computational resources.

2. It is easy to interface with other programming languages: 
Python itself is written in C. It has a standard developers’ API 
for creating extension libraries. This simplifi es creating Python 
interface for C/C++ code. Moreover, tools like Simplifi ed 
Wrapper and Interface Generator (SWIG), Qt sip, boost-
Python can automate the task of creating a Python interface 
from existing C/C++ code.

3. It is portable: Python runs on Linux, Solaris, Macintosh and 
Windows operating systems and many other platforms (http://
www.python.org/about/).

4. Free: Python is free and open-source.
5. Widely used: Python is widely used in scientifi c community. 

There is a large repertoire of third-party libraries for Python. 
Many of these libraries are free, open source and mature.

In this study we show how PyMOOSE harnesses each of these 
capabilities.

MATERIALS AND METHODS
There are two common approaches to create a Python interface to 
a C/C++ library: (1) statically link it with the Python  interpreter – 
which involves compiling the Python interpreter source-code, 
(2) create a dynamic link library and provide it as a Python mod-
ule. We took the second approach as it provides more fl exibility 
on the choice of the Python interpreter and reduces the burden 
on the maintainer.

MAPPING MOOSE CLASSES INTO PYTHON
MOOSE has a set of built-in classes for representing simulation 
entities. These classes provide a mapping from the concept space 

to the computational space. Physical or chemical properties and 
other relevant parameters are accessible as member fi elds of the 
classes and the time-evolution of these parameters is calculated by 
a special process method of each class. These classes add another 
layer over ordinary C++ classes to provide messaging and sched-
uling as well as customized access to the member fi elds. MOOSE 
provides introspection (Maes, 1987; Smith, 1982), so that full fi eld 
information for each class is accessible to the programmer. This 
class information is statically initialized for each class at startup 
time. We utilized this class information and SWIG (Beazley, 1996; 
http://www.swig.org) to build the Python interface.

SWIG is a mature software with good support for Python and 
C/C++ interfacing as well as many other languages. While it is rather 
simple to create an interface for ordinary C++ class using SWIG, our 
task was complicated because MOOSE classes have another layer 
over ordinary C++ classes. For this reason we created a framework 
for Python interface with additional C++ classes to wrap MOOSE 
classes and a few classes to manage the system.

SIMULATOR CONTROL THROUGH PYTHON
All operations on MOOSE objects are carried out via a special 
class, Shell, of which there is a single instance on each processor 
node that is running MOOSE. In PyMOOSE we implemented 
a singleton context object to communicate with the Shell. The 
context object provides a set of functions that can be called to 
pass appropriate messages to the Shell. The user can call global 
MOOSE functions by calling the corresponding methods of the 
context object. Operations like creation of objects, setting integra-
tion time step, running the simulation are all done through the 
context object.

We created a one-to-one mapping of MOOSE classes to Python 
classes by means of light-weight C++ wrapper classes. All the wrap-
per classes were derived from one common base class. Each MOOSE 
object is identifi ed by an Identifi er (ID) fi eld. The main data content 
of a wrapper class instance is the ID of the corresponding object in 
MOOSE. Additionally, the wrapper classes have a static pointer to 
the single instance of the context object. Wrapper classes provide 
accessor methods that can be used to access the fi elds in the cor-
responding MOOSE object.

These C++ wrapper classes were input to SWIG to create the 
Python module. After translation to Python, the user sees the mem-
ber fi elds in the Python classes in place of the accessor methods in 
the C++ wrapper classes. Behind the scene the Python interpreter 
calls these accessor methods whenever the user script tries to access 
MOOSE object fi elds (Figure 1A).

Manually developing C++ wrapper classes for all MOOSE classes 
was a tedious but repetitive task. We therefore embedded stub code 
in the MOOSE initialization code to generate most of the wrap-
per code programmatically using Run-Time Type Information 
in C++. This auto-generated code was used with a few modifi ca-
tions to generate a Python module using SWIG. SWIG takes an 
interface fi le with SWIG-specifi c directives and generates a single 
C++ fi le for the library and a Python source-code fi le that contains 
support code. We completed the PyMOOSE code generation by 
compiling and linking the SWIG-generated C++ source-code as 
a dynamic library. This dynamic library can be imported in any 
Python program.
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LEGACY MODELS AND PyMOOSE
The PyMOOSE context object keeps a single instance of the 
GenesisParser class in order to run legacy GENESIS scripts. 
Whenever the user asks for executing a GENESIS statement, the 
context object disconnects itself from the Shell and connects the 
GenesisParser object instead. The GENESIS statement string is 
passed to the GenesisParser object, which executes it as if the user 
typed it in at the MOOSE command prompt. After execution of the 
statement (or script) the GenesisParser object is disconnected from 
the Shell and the context object is reconnected (Figure 1B).

While it is valuable to run GENESIS scripts within PyMOOSE, 
this feature is intended only to support legacy code and is better 
avoided in new model development. The use of GENESIS scripting 
language inside Python defeats the whole purpose of moving to 
a general-purpose programming language. It reduces readability 
and the user needs to know both languages in order to understand 
the code.

RESULTS
We used the Python interface of MOOSE to achieve three key tar-
gets: (1) Interfacing with standard libraries in a mature scientifi c 
computing language, (2) giving access to a portable GUI library 
for developing user interface and (3) enabling MOOSE to work 
together with other simulators.

INTERFACING SIMULATIONS WITH PYTHON LIBRARIES
We used Python scientifi c and graphing libraries to analyze and 
display the output of a PyMOOSE simulation. The interface with 
Python gives the user freedom to choose from a wide variety of 
scientifi c and numerical libraries available from third parties. We 
demonstrate the use of two libraries along with PyMOOSE for 
developing simulations with plotting and data analysis within 
Python. The fi rst of these, NumPy, is a library that provides data 
structures and algorithms for fast matrix manipulation (http://
numpy.scipy.org/). Even though Python is interpreted, with attend-
ant slow execution, NumPy library provides access to compiled code 
and hence the functions from the library are as fast as compiled 
code. The second library, matplotlib, provides a rich set of func-
tions for plotting 2D data both in hardcopy formats and interac-
tively (http://matplotlib.sourceforge.net/). It can use NumPy for 

fast matrix operations in Python and several portable GUI toolkits 
(GTK/Qt/Tk/wxWidgets) as graphical back-end.

We implemented a simulation of the squid giant axon using 
Hodgkin–Huxley Na+ and K+ channels and parameters (script 
attached in Appendix). We applied an injection current with 
random amplitude uniformly distributed between 0 and 100 nA. 
We recorded the time-series for the membrane potential during 
the simulation in a MOOSE table object, which can accumulate 
a time-series of simulation output (Figure 2A). The interface 
to Python was done using the MOOSE table class. This class is 
exposed to Python with methods to emulate iterable type (Martelli 
et al., 2005). The array constructor in NumPy accepts an iter-
able object and creates a NumPy array with a copy of the con-
tents of the object. Thus the user is relieved of explicitly iterating 
over the table entries and copying them to a NumPy array. This 
completes the interface from the MOOSE simulation output to 
NumPy (Figure 2B). We used the fast Fourier transform operation 
available in NumPy to compute the discrete Fourier transform of 
the time-series of the simulated membrane potential. We used 
matplotlib to plot the original time-series, as well as the output 
of the FFT (Figure 2C).

Overall, this example simulation illustrates how PyMOOSE 
facilitates interoperability of Python numerical and graphing 
libraries with MOOSE.

PORTABLE GUI THROUGH PYTHON
The use of Python separates the problem of GUI development 
from simulator development. Moreover, it gives one the freedom 
to choose from a number of free GUI toolkits. The major platform 
independent GUI toolkits with Python interfaces are Qt(TM) avail-
able as PyQt, wxWidgets (wxPython), Tk and GTK (http://wiki.
python.org/moin/GuiProgramming; http://www.python.org/doc/
faq/gui/). We used PyQt4 to develop a simple user interface for a 
clone of the GENESIS squid tutorial in MOOSE. We selected Qt4 
as it is a mature and clean toolkit that is freely distributed and runs 
well on all the major operating systems.

The program was divided into three modules – (1) the squid 
axon compartment with Hodgkin–Huxley channels, (2) a model 
object which combined a few tables with the squid compartment to 
record various parameters through the time of the simulation, and 
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FIGURE 1 | PyMOOSE interface. (A) Communication between 
Python and MOOSE. MOOSE represents concepts through objects and 
manipulates them using the singleton Shell object. PyMOOSE provides a 
light-weight mirror representation of each MOOSE object. Operations on 
PyMOOSE objects are communicated to MOOSE via the context and 

the Shell object. (B) Accessing legacy scripts through PyMOOSE. 
The Shell object is usually controlled through the PyMooseContext. When 
loading a GENESIS script, control is temporarily passed to the legacy 
GENESIS script language parser, and then returned to the 
PyMooseContext.
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(3) the GUI to take user inputs and to plot data. We implemented 
the squid axon model as described in the previous section, using 
PyMOOSE to set up and parameterize the model. As before, the 
model was interfaced with table objects to monitor time-series out-
put of the simulation. Finally, we implemented the GUI by loading 
in the PyQt4 libraries, and using Python calls to set up the inter-
face (Figure 3). While there are Qt IDEs available (http://trolltech.
com/products/qt/), we constructed the interface through explicit 
Python calls to create widgets, assign actions, and manage output 
data. Qt uses a signal-slot mechanism for passing event informa-
tion. PyQt allows the use of arbitrary Python methods to be used 
as slots. Hence we could connect the GUI widgets to methods in 
the PyMOOSE model class and thus provided simulation control 
through the GUI in a clean manner. We used PyQwt, a Python 
interface of the Qt-based plotting library Qwt, for creating output 
graphs. Since PyQwt can take NumPy arrays as data, we converted 
the tables in MOOSE to NumPy arrays and used PyQwt plotting 
widgets to display them.

We based the layout of the simulation on the widely used GENESIS 
Squid tutorial program. To confi rm portability of the system, we ran 
the model on Linux as well as the Windows operating system.

This exercise demonstrated the capability of PyMOOSE to draw 
upon existing graphical libraries for its graphical requirements. This 
is an important departure from GENESIS. The GENESIS graphical 
libraries (XODUS) were an integral part of the C code-base and 
XODUS objects were visible as, and manipulated in the same way 
as other GENESIS objects. In contrast, PyMOOSE did not need to 
implement any graphical objects within the MOOSE C++ code, 
but instead reused extant third-party graphical libraries available 
for Python. Furthermore the existing libraries are professionally 
designed and have a much more consistent look-and-feel than did 
the original GENESIS graphical library, XODUS (Bhalla, 1998).

SIMULATOR INTEROPERABILITY
With Python becoming a popular language for developing platform 
independent scripts, several neuronal simulators have implemented 
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FIGURE 2 | Analysis and graphing of a PyMOOSE simulation. (A) Simulation 
input (random input current) and output (membrane potential). (B) Data fl ow. The 
simulation time-series is recorded in the MOOSE table object, which is visible to 

Python as a sequence object. This is accessed as an array in NumPy. The fast 
Fourier transform is applied to this array, and the result plotted in Matplotlib. 
(C) Output of FFT analysis (with the fundamental frequency removed).
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Python interfaces. This raises the possibility of using Python as a 
glue language to run simulations that span different simulators. 
As a fi nal demonstration of interoperability, we used PyMOOSE 
with PyNEURON to build a multi-scale, multi-simulator model 
that incorporates neuronal electrical activity as well as biochemical 
signaling (Figure 4A).

We used NEURON to model a multicompartmental electri-
cal model of a Type A neuron from the CA3b region of the rat 
hippocampus (Migliore et al., 1995; http://senselab.med.yale.
edu/ModelDB/ShowModel.asp?model=3263). This is a morpho-
logically detailed model with experimentally constrained distri-
bution of membrane ion channels. It reproduces experimental 
observations of fi ring behavior and intracellular Ca2+ dynamics. 
We modifi ed the hoc script for the model, to run it for arbitrary 
time intervals. We directed the output data to Vector objects in 
NEURON. The Python wrapper class for this model provided 
a handle for the simulation parameters and functions defi ned 
in the hoc script. As described in the PyNEURON documen-
tation (http://www.neuron.yale.edu/neuron/docs/help/neuron/
neuron/classes/python.html), Python commands were directed 
to the NEURON engine by constructing hoc statement strings 
and executing them through the hoc interpreter instance pro-
vided by the neuron module. Moreover, hoc object references are 
directly available in Python as attributes of the hoc interpreter 
object. Thus accessing hoc objects was quite clean in Python 
(Figure 4A).

We used MOOSE to model calcium-triggered biochemical 
signaling events at the synapse. We used a model of a bistable 
MAPK-PKC-PLA2 feedback loop that was originally implemented 
in GENESIS/Kinetikit (Ajay and Bhalla, 2004; Bhalla and Iyengar, 
1999; Bhalla et al., 2002) and uploaded to the DOQCS database 
(http://doqcs.ncbs.res.in/template.php?&y=accessiondetails&an=
79). The model was defi ned in the GENESIS scripting language. We 
used the legacy scripting mode of PyMOOSE to load the GENESIS/
kinetikit model. The simulation objects thus instantiated were 
standard MOOSE objects, and were accessible using Unix-like path 
strings. The PyMOOSE interface exposed these objects as regular 
Python objects. Thus access to the MOOSE objects, represent-
ing GENESIS data concepts, was also straightforward in Python 
(Figure 4A).

We used the Python interface to accomplish three critical opera-
tions to combine the two simulations: (1) Initialization, (2) run-
time control and synchronization, and (3) variable communication 
and rescaling.

1. To initialize the models, we used PyNEURON command load_
fi le to load the hoc script. Once the script is loaded, variables 
and functions defi ned in the script become available as mem-
bers of the hoc interpreter instance inside Python. In this case 
we defi ned a setup function to initialize the NEURON simula-
tion. This function is called in the constructor (__init__) of the 
Python wrapper class over the NEURON simulation. At this 

FIGURE 3 | Screen shot of PyMOOSE/Qt interface for the Hodgkin–Huxley model. The layout is closely modeled on the Squid demo from GENESIS.
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stage we applied a test pulse of 1 nA for 250 ms to measure the 
fi ring properties of the neuron before potentiation. We then 
ran the NEURON model for 1 s to allow the model to settle. 
Similarly we loaded the GENESIS/Kinetikit model using the 
loadG command, and ran this simulation for 1800 s to settle.

2. In the Python wrapper class for each model, we defi ned a 
run method to advance the simulation in time. That for the 
NEURON model uses a run function we defi ned in the custom 

hoc script. This run function calls NEURON’s fadvance com-
mand to advance the simulation. In the wrapper class for the 
GENESIS/Kinetikit model the run method calls the step com-
mand to advance the simulation (Figure 4B).

3. We used the Python interface to read out somatic calcium 
levels from the NEURON model and insert them into the 
MOOSE model, and to feed back MAPK activity changes from 
the MOOSE model to modulate KCa conductances.
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FIGURE 4 | A combined, multi-scale NEURON and GENESIS model. (A) Setup 
of combined model, using NEURON and GENESIS model defi nition fi les. 
(B) Information fl ow during simulation. The two models were run independently 
for an initial settling period and for the test pulse to the NEURON model. During 
the combined simulation phase, each model was advanced for 1 s and then data 
was transferred via Python to the other model. Finally a second test pulse was 
delivered. (C) Response of NEURON model to fi rst test pulse. (D) Calcium and 

MAPK levels in the signaling model. (E) Voltage responses from the NEURON 
model. (F) Experiment design and input to NEURON model. A test current pulse 
of 0.15 nA was delivered for 0.25 s to the NEURON model in the initialization 
phase. At the start of the combined simulation, a stimulus of 10 nA was 
delivered for 7 s. After 180 s of combined simulation a second test pulse 
(0.15 nA, 0.25 s) was applied. (G) Response of NEURON model to second test 
pulse. The difference is due to modulation of KCa by the elevated MAPK activity.
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We wrote another higher-level function run to advance the 
 coupled simulations using the two wrapper classes (not to be con-
fused with the member method run of these classes). This function 
(1) creates instances of both wrappers, which involves initializing 
the models, (2) runs the NEURON simulation for 1 s, (3) reads 
out the calcium level, performs rescaling and updates the kinetic 
model with this value, (4) advances the kinetic simulation for 1 s 
to catch up with the electrical model, (5) reads out the activity 
level of MAPK from the GENESIS/Kinetikit model and modifi es 
the [Ca2+] dependent K+ channel conductances in the NEURON 
model in inverse proportion to this (Figures 4E,F).

Our simulated experiment is illustrated in Figure 4F. We loaded 
the models and allowed them to settle. We measured baseline 
neuronal responses at this stage using a 250-ms, 0.15 nA current 
pulse. Following this we used the run function for the further time-
 evolution of the system. We applied a strong LTP-inducing stimulus 
to the neuronal model for 7 s, and then allowed the simulation to 
continue for 183 s. Finally we repeated the 250 ms, 0.15 nA test for 
neuronal responses.

The time-evolution of membrane potential, Ca2+ levels, and 
MAPK activity are shown in Figures 4D,E. The initial and fi nal 
burst waveforms of the neuron are shown in Figures 4C,G. We 
observe that the coupled model shows how electrical stimulation 
can lead to signaling events, with feedback effects on the electri-
cal properties of the neuron. We should point out that this simu-
lation is only a demonstration and the relationship between the 
chemical system and the biophysical properties of the neuron is 
over- simplifi ed, although the two component models we used are 
realistic within their respective domains.

This example also illustrates the effi ciency of using Python 
for data transfer when traffi c volumes are small compared to the 
computational times. The neuronal calculations in NEURON took 
about 91% of the simulation run-time, the signaling calculations 
in MOOSE took ∼8.5%, and the data transfer through Python 
accounted for only around 0.5%. As we discuss below, there may 
be other interface contexts where more effi cient, low-level data 
transfer protocols may be needed, and the relatively facile Python 
interface may not be appropriate.

DISCUSSION
We have used PyMOOSE, the Python interface to MOOSE, to 
achieve interoperability at three levels. First, we used standard 
mathematical packages in Python to analyze MOOSE output. 
Second, we used the QT graphical toolkit from within Python to 
build a GUI for a MOOSE simulation. Third, we used Python as a 
glue language to run a cross-simulator model combining an elec-
trophysiological model set up in NEURON with a biochemical 
signaling model set up in GENESIS/Kinetikit.

ISSUES WITH PYTHON INTEROPERABILITY
The strengths of the Python language make it perhaps too easy to 
repeat well-known mistakes in simulation development. We con-
sider two such issues. First, Python is an interpreted language in 
most implementations. In the context of simulations, it is not meant 
for number crunching. Well-designed libraries like NumPy can 
hide some of these limitations from the user, and fast hardware can 
conceal other ineffi ciencies. However, given the same specialized 

algorithms, a compiled language will perform better than an inter-
preted one. Therefore, for large simulations, we need to combine the 
best possible algorithms with optimized and compiled languages. 
MOOSE has as one of its goals the capability of managing the 
low-level, high-traffi c fl ow of data between different numerical 
engines incorporated into MOOSE. We do not consider Python 
appropriate for such operations. Second, many aspects of model 
specifi cation should be done using declarative rather than proce-
dural approaches (Cannon et al., 2007; Crook et al., 2005, 2007). 
However, Python makes procedural model defi nition very easy, and 
may even provide a certain level of interoperability if several simu-
lators provide equivalent calls for model setup. For example, there 
are some impressive recent efforts to develop a standard vocabulary 
for network defi nitions across simulators (http://neuralensemble.
org/trac/PyNN/; this issue). While the presence of Python as a 
common link language may temporarily address the interoper-
ability issues of this approach, we feel that it would be a cleaner 
design to use a separate, declarative defi nition for networks such as 
NeuroML (http://neuroml.org). Nevertheless, we completely agree 
that a standard vocabulary for model defi nitions is an important 
fi rst step toward this goal.

MODEL SPECIFICATION VS. SIMULATOR CONTROL
Model specifi cation and exchange issues have been ably addressed 
by the communities developing model specifi cation languages 
(Le Novère et al., 2005; Qi and Crook, 2004; http://neuroml.org; 
http://sbml.org). The current paper focuses on the second prob-
lem, that of making it easier for researchers to control and set up 
these diverse simulation tools. We have shown how this can be 
done with the simulator MOOSE, using Python as a glue language. 
Run-time communication between simulators has previously been 
achieved using the NEOSIM framework, which uses Java (Goddard 
et al., 2001; Howell et al., 2002). More recently, the MUSIC frame-
work specifi es an API for simulators to use to communicate with 
each other (Ekeberg and Djurfeldt, 2008). Our study is novel in 
two respects. First, we use the built-in Python capabilities of two 
simulators to achieve run-time communication, without the need 
to modify either simulator or to build an additional framework 
for communication. Second, we carry out bidirectional commu-
nications across scales (biophysical to biochemical models) and 
involving continuous data types (channel conductance and calcium 
concentrations) rather than spike events.

The evolution of neuronal simulator technology has seen a grad-
ual separation of different aspects of modeling, with a correspond-
ing improvement in interoperability. The fi rst step was to develop 
higher-level simulation tools (e.g., NEURON and GENESIS) to 
separate the numerical and housekeeping code from the model-
specifi c code. This let people share models, provided they were 
written for the same simulator. The second was the development 
of declarative model specifi cations that were separate from the 
simulator. This initially took the form of semi-declarative cell 
morphology fi les (NEURON ‘.geom’ fi les and GENESIS ‘.p’ fi les), 
which required additional fi les for channel specifi cation. This proc-
ess of separation of model defi nition from simulator control has 
continued. The Neuroconstruct suite refi nes the declarative defi -
nition of models, with NeuroML and ChannelML as declarative 
defi nitions suffi cient for most single-neuron models. Importantly, 
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at this level quite  different simulators can use the same original 
model  defi nition to run simulations. A third stage is the conver-
gence of different simulators to use the same link language, in this 
case Python. This makes it possible to explicitly separate model 
defi nition from simulator control. In the current paper, we have 
illustrated this with a composite signaling-neuronal model drawing 
on NEURON and MOOSE. We have utilized two legacy models, 
one written for NEURON, and one written for GENESIS. Even 
though the legacy models themselves were not entirely set up in a 
declarative manner, we used the original model defi nitions only to 
load in the model specifi cations. We used Python as the procedural 
language to control these operations, and to mediate communica-
tion between the models at run-time.

SUSTAINABILITY OF PYTHON INTEROPERABILITY
Simulator interoperability has long been regarded as important 
(Crook et al., 2005, 2007; Goddard et al., 2001). Such projects have 
been diffi cult to execute, and still harder to maintain, because they 

depend on multiple underlying simulator projects, each with differ-
ent APIs, directions and life-cycles. Python is a potential way out of 
this problem. First, Python itself is a well-established language with 
a strong community and support. Second, the issues of interfacing 
to Python are now being undertaken by individual simulator devel-
opment teams. Interoperability emerges from these independent 
efforts rather than requiring a separate project to achieve coordina-
tion. Third, PyMOOSE itself will be maintained for the long-term, 
since Python will be the default scripting language for MOOSE. 
We suggest that long-term improvements in interoperability will 
be driven both by widespread simulator support for declarative 
model specifi cations, and by a richer ecosystem of simulators fl u-
ent in Python.

APPENDIX
Program listing: ca3_db.hoc provides the functions to load and 
initialize the NEURON CA3 cell model as well as for advancing the 
simulation for a specifi ed interval and for updating parameters.

/******************************************************************************

 * Derived from Hippocampal CA3 pyramidal neuron model from the paper 

 * M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer

 * simulations of morphologically reconstructed CA3 hippocampal neurons, J.

 * Neurophysiol. 73, 1157-1168 (1995). 

 * The original model is available in modeldb: accession no: 3263

 * http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=3263

 *

 * Modifi ed by: Subhasis Ray , 2008 

 ******************************************************************************/

objref cvode, vecCai, vecT, vecV, outFile, stim1, stim2, stim3, fi h

vecV = new Vector()

vecCai = new Vector()

vecT = new Vector()

outFile = new File()

cvode = new CVode(0)

cvode.active(1)

cvode.atol(1e-3)

START = 2

AMP = 1.0

// ************* NEURON A **********

FARADAY=96520

PI=3.14159

secondorder=2

dt=0.025

celsius=30

fl agl=0

xopen("ca3a.geo")

proc conductances() {

    forall {

        insert pas e_pas=-65 g_pas=1/60000 Ra=200

        insert cadifus

        insert cal  gcalbar_cal=0.0025

        insert can  gcanbar_can=0.0025
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        insert cat  gcatbar_cat=0.00025

        insert kahp gkahpbar_kahp=0.0004

        insert cagk gkbar_cagk=0.00055

    }

    soma {

        insert nahh    gnabar_nahh=gna

        insert borgkdr gkdrbar_borgkdr=gkdr

        insert borgka  gkabar_borgka=gka

        insert borgkm  gkmbar_borgkm=gkm

    }

    for i=0,1 dend2[i] {

        insert nahh    gnabar_nahh=gna

        insert borgkdr gkdrbar_borgkdr=gkdr

        insert borgka  gkabar_borgka=gka

        insert borgkm  gkmbar_borgkm=gkm

    }

    for i=0,2 dend3[i] {

        insert nahh    gnabar_nahh=gna   

        insert borgkdr gkdrbar_borgkdr=gkdr

        insert borgka  gkabar_borgka=gka

        insert borgkm  gkmbar_borgkm=gkm

    }

    for i=37,38 dend3[i] {

        insert nahh    gnabar_nahh=gna   

        insert borgkdr gkdrbar_borgkdr=gkdr

        insert borgka  gkabar_borgka=gka

        insert borgkm  gkmbar_borgkm=gkm

    }

}

proc init() {

    t=0

    coord_cadifus()

    forall {

        cao=2

        cai=50.e-6

        ek=-91

        v=-65

        if (ismembrane("nahh")) {ena=50}

    }

    vecV.record(&soma.v(0.5))

    vecCai.record(&soma.cai(0.5))

    vecT.record(&t)

    fi nitialize(v)

    fcurrent()

    forall {

 if (ismembrane("nahh")) {e_pas=v+(ina+ik+ica)/g_pas} else {e_pas=v+(ik+ica)/g_pas}

    }

    cvode.re_init()

}
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proc setup(){

    strength = 1.0 /*namps*/

    tstim = 50

    tstop=500

    gna=0.015

    gkdr=0.03

    gka=0.001

    gkm=0.0001

    conductances()

    /* The schedule of experiment is as follows:

    

10nA

0.15nA 0.15nA

1s 0.25s 7s 183s 0.25s 0.05s

     The 1800 s runs with 1 s intervals interspersed with 1 s of

     kinetic simulation and update of gkbar for all ca dependent k

     channels.

     The genesis model needs over 1 uM [Ca2+] for 10 s.

    */

    soma {

 // fi rst test pulse

 stim1 = new IClamp(0.5)

 stim1.amp = 0.15

 stim1.del = 1000.0

 stim1.dur = 250

 // tetanus pulse

 stim2 = new IClamp(0.5)

 stim2.amp = 1.0

 stim2.del = 2250

 stim2.dur = 7e3

 // fi nal test pulse

 stim3 = new IClamp(0.5)

 stim3.amp = 0.15

 stim3.del = 192.25e3

 stim3.dur = 250

    }

    init()

}

proc update_gkbar(){/* multiply all Ca2+ dependent K+ conductance by $1 */

  forall {

       gkahpbar_kahp = gkahpbar_kahp * $1

   }

   soma {

       print "soma gkdrbar before:", gkdrbar_borgkdr

       gkdrbar_borgkdr = gkdrbar_borgkdr * $1

       gkmbar_borgkm = gkmbar_borgkm * $1

       print "soma gkdrbar after", gkdrbar_borgkdr   

   }

   for i=0,1 dend2[i] {

       gkdrbar_borgkdr = gkdrbar_borgkdr * $1
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       gkmbar_borgkm = gkmbar_borgkm * $1

   }

   for i=0,2 dend3[i] {

       gkdrbar_borgkdr = gkdrbar_borgkdr * $1

       gkmbar_borgkm = gkmbar_borgkm * $1

   }

   for i=37,38 dend3[i] {

       gkdrbar_borgkdr = gkdrbar_borgkdr * $1

       gkmbar_borgkm = gkmbar_borgkm * $1

   }

   fcurrent()

}

access soma

distance()

/* run for interval specifi ed as argument# 1 */

proc run(){ 

    t_start = t

    while (t < (t_start + $1)){ 

//  print "run() - @t=", t

 fadvance() 

    }

//     print "run(): t_start =", t_start, " current time =", t, "run interval =", $1

}

proc do_run(){

    setup()

    print "setup done. running 7.25s"

    run(12250)

    print "t = ", t, "ms. done running. dumping data in test_neuron1.dat"

    outFile.wopen("test_neuron1.dat")

    for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %g\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6, 

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute 

value - unit is nM*2

    }

    outFile.close()

    print "done dumping. running for 5s with 0.5nA"

    run(5000)

    print "t =", t, "ms. soma.Cai = ", soma.cai(0.5), ". now updating gkbar"

    update_gkbar(10.0)

    print "done updating. writing to fi le"

    outFile.wopen("test_neuron2.dat")

    for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %g\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6, 

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute 

value - unit is nM*2

    }

    outFile.close()

    print "done dumping. now running the rest"

    run(1800300)

    print "t = ", t, "ms. done running. writing to fi le"

    outFile.wopen("test_neuron3.dat")

    for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6, 
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vecV.x(ii)) // the original GUI plots this function of cai instead of absolute 

value - unit is nM*2

    }

    outFile.close()

}

Program listing 2: moosenrn.py – this program wraps the GENESIS model and the NEURON model and provides simulation control and data exchange 

between the two simulators.

#!/usr/bin/env python

# Author: Subhasis Ray

import sys

sys.path.append("/home/subha/lib/python2.5/site-packages")

sys.path.append("/home/subha/lib/python2.5/site-packages/neuron")

import pylab

import numpy

import neuron

import moose

class NeuronSim:

    """Wrapper class for the neuron simulation"""

    def __init__(self, fi leName="ca3_db.hoc"):

        """Load the fi le specifi ed by fi leName"""

        self.hoc = neuron.h

        self.hoc.load_fi le(fi leName)

        self.hoc.setup()

    def run(self, interval):

        """Simulate for interval time in second"""

        self.hoc.run(interval * 1e3) # neuron keeps time in milli second

    def cai(self):

        """Returns cai of in nM"""

        return self.hoc.soma(0.5).cai

    def cai_record(self):

        """Returns a tuple containing the array of time points and the array

of cai values at the corresponding points"""

        timeVec = numpy.array(neuron.h.vecT)

        caiVec = numpy.array(neuron.h.vecCai)

        return (timeVec, caiVec)

    def v_record(self):

        """Returns a tuple containing the array of time points and the array

of membrane potential values at the corresponding points"""

        timeVec = numpy.array(neuron.h.vecT)

        vmVec = numpy.array(neuron.h.vecV)

        return (timeVec, vmVec)

    def update_kconductance(self, factor):

        """Modify the k hcannel conductances in inverse proportion of mapk_star_conc"""

        self.hoc.update_gkbar(factor)

        self.hoc.fcurrent()
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    def saveplots(self, suffi x):

        cai = "nrn_cai_" + str(suffi x) + ".plot"

        vm = "nrn_vm_" + str(suffi x) + ".plot"

        t_series, vm_series, = self.v_record()

        t_series, cai_series, = self.cai_record()

        numpy.savetxt(cai, cai_series)

        numpy.savetxt(vm, vm_series)

        numpy.savetxt("nrn_t_" + str(suffi x) + ".plot", t_series)

class MooseSim:

    """Wrapper class for moose simulation"""

    volume_scale = 6e20 * 1.257e-16

    def __init__(self, fi leName="acc79.g"):

        self._settle_time = 1800.0

        self._ctx = moose.PyMooseBase.getContext()

        self._t_table = []

        self._t = 0.0

        self._ctx.loadG(fi leName)

        self.ca_input = moose.Molecule("/kinetics/Ca_input")

        self.mapk_star = moose.Molecule("/kinetics/MAPK*")

        self.pkc_active = moose.Molecule("/kinetics/PKC-active")

        self.pkc_active_table = moose.Table("/graphs/conc2/PKC-active.Co")

        self.pkc_ca_table = moose.Table("/graphs/conc1/PKC-Ca.Co")

        self.mapk_star_table = moose.Table("/moregraphs/conc3/MAPK*.Co")

        self.mapk_star_table.stepMode = 3

        self.mapk_star_table.connect("inputRequest", self.mapk_star, "conc")

        self.mapk_star_table.useClock(2)

        self.ca_input_table = moose.Table("/moregraphs/conc4/Ca_input.Co")

        self.ca_input_table.stepMode = 3

        self.ca_input_table.connect("inputRequest", self.ca_input, "conc")

        self.ca_input_table.useClock(2)

        self._ctx.reset()

        self._ctx.reset()

    def set_ca_input(self, ca_input):

        """Sets the conc. of Ca_input molecule"""

        print "set_ca_input: BEFORE: nInit =", self.ca_input.nInit, ", n =", 

self.ca_input.n, ", setting to: ", ca_input* MooseSim.volume_scale

        self.ca_input.nInit = ca_input * MooseSim.volume_scale

        self.ca_input.n = ca_input * MooseSim.volume_scale

        print "set_ca_input: AFTER: nInit =", self.ca_input.nInit, ", n =", 

self.ca_input.n

    def ca_input(self):

        """Returns scaled value of Ca_input conc."""

        return self.ca_input.conc

    def run(self, interval):

        """Run the simulation for interval time."""

        self._ctx.step(fl oat(interval))

        # Now expand the list of time points to be plotted

        points = len(self.pkc_ca_table) - len(self._t_table)

        delta = interval * 1.0 / points

        for ii in range(points):

            self._t_table.append(self._t)

            self._t += delta
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    def pkc_ca_record(self):

        """Returns the time series for pkc_ca conc."""

        return (self._t_table, self.pkc_ca_table)

    def pkc_active_record(self):

        """Returns time series for pkc_active conc."""

        return (self._t_table, self.pkc_active_table)

    def mapk_star_conc(self):

        """Returns MAPK* conc. in uM"""

        return self.mapk_star.n / MooseSim.volume_scale

    def mapk_star_record(self):

        """Returns time series for [MAPK*]"""

        return (self._t_table, self.mapk_star_table)

    def saveplots(self, suffi x):

        pkc_a = "mus_pkc_act_" + str(suffi x) + ".plot"

        pkc_ca = "mus_pkc_ca_" + str(suffi x) + ".plot"

        mapk_star = "mus_mapk_star_" + str(suffi x) + ".plot"

        ca_input = "mus_ca_input_" + str(suffi x) + ".plot"

        numpy.savetxt("mus_t_" + str(suffi x) + ".plot", self._t_table)

        self.mapk_star_table.dumpFile(mapk_star)

        self.pkc_ca_table.dumpFile(pkc_ca)

        self.pkc_active_table.dumpFile(pkc_a)

        self.ca_input_table.dumpFile(ca_input)

    def test_run(self):

        self.run(500)

        print "After 500 steps of uninited run: [MAPK*] =", self.mapk_star_conc()

        self.ca_input.nInit = 10 * MooseSim.volume_scale

        self.ca_input.n = 10 * MooseSim.volume_scale

        self.run(5)

        print "After another 5 s with 10uM ca input: [MAPK*] =", self.mapk_star_conc()

        self.ca_input.nInit = 0.08 * MooseSim.volume_scale

        self.ca_input.n = 0.08 * MooseSim.volume_scale

        self.run(500)

        print "fi nished run. going to plot" 

        print "After another 500 s with 0.08 uM ca input: [MAPK*] =", 

self.mapk_star_conc()

        pylab.plot(pylab.array(self._t_table),

                   pylab.array(self.pkc_active_table),

                   pylab.array(self._t_table),

                   pylab.array(self.pkc_ca_table))

 pylab.show()

if __name__ == "__main__":

    mus = MooseSim()

    mus.set_ca_input(0.08)

    mus.run(1800.0)

    mus.saveplots("1")

    start_mapk = mus.mapk_star_conc()

    nrn = NeuronSim()

    nrn.run(2.25)

    nrn.saveplots("1")

    fi le_ = open("cai_setings.txt", "w")
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    # Interleaved execution of MOOSE and NEURON model

    # Synchronizing after every 1 s of simulation

    while nrn.hoc.t < 192.25e3

        scaled_cai = scale_nrncai(nrn.cai())

        mus.set_ca_input(scaled_cai)

        print "scaled_cai =",scaled_cai

        fi le_.write(str(nrn.cai()) + " " + str(scaled_cai)+"\n")

        mus.run(1.0)

        gkbar_scale = start_mapk / mus.mapk_star_conc()

        start_mapk = mus.mapk_star_conc()

        print "[mapk*] = ", start_mapk

        nrn.update_kconductance(gkbar_scale)

        nrn.run(1.0)

        print "time is ", nrn.hoc.t * le-3, "s"

    fi le_.close()

    nrn.saveplots("2")

    mus.saveplots("2")

    # fi nal test pulse run

    nrn.run(0.3)

    nrn.saveplots("3")

    t_series, vm_series, = nrn.v_record()

    t_series, cai_series, = nrn.cai_record()

    pylab.subplot(121)

    pylab.plot(t_series, numpy.array(vm_series), t_series, numpy.array(cai_series) 

* 1e6)

    t_series, pkc_act, = mus.pkc_active_record()

    t_series, pkc_ca, = mus.pkc_ca_record()

    t_series, mapk_star, = mus.mapk_star_record()

    pylab.subplot(122)

    pylab.plot(numpy.array(t_series), numpy.array(pkc_act), numpy.array(t_series), numpy.array(pkc_

ca), numpy.array(t_series), numpy.array(mapk_star))

    pylab.show()
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A Python analytical pipeline to identify prohormone 
precursors and predict prohormone cleavage sites

Bruce R. Southey1,2*, Jonathan V. Sweedler1 and Sandra L. Rodriguez-Zas2
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Neuropeptides and hormones are signaling molecules that support cell–cell communication in 
the central nervous system. Experimentally characterizing neuropeptides requires signifi cant 
efforts because of the complex and variable processing of prohormone precursor proteins 
into neuropeptides and hormones. We demonstrate the power and fl exibility of the Python 
language to develop components of an bioinformatic analytical pipeline to identify precursors 
from genomic data and to predict cleavage as these precursors are en route to the fi nal bioactive 
peptides. We identifi ed 75 precursors in the rhesus genome, predicted cleavage sites using 
support vector machines and compared the rhesus predictions to putative assignments based 
on homology to human sequences. The correct classifi cation rate of cleavage using the support 
vector machines was over 97% for both human and rhesus data sets. The functionality of 
Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.
uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community 
that provides cleavage site prediction from a wide range of models, precision and accuracy 
statistics, post-translational modifi cations, and the molecular mass of potential peptides. 
The combined results illustrate the suitability of the Python language to implement an all-
inclusive bioinformatics approach to predict neuropeptides that encompasses a large number 
of interdependent steps, from scanning genomes for precursor genes to identifi cation of 
potential bioactive neuropeptides.

Keywords: Python, bioinformatics, neuropeptides, machine learning, support vector machine, precursor cleavage, 

rhesus monkey

Analysis Consortium, 2007), only four rhesus prohormone genes 
have been reported compared to over 90 human prohormone genes. 
Consequently, accurate bioinformatic identifi cation of neuropep-
tide genes and characterization of precursors is essential in rhesus 
neuroscience research.

Several factors make annotating prohormones and their associ-
ated peptides diffi cult. First, neuropeptides result from a complex 
series of post-translational modifi cations (PTMs) of precursor 
proteins. Second, the conserved “bioactive” peptide sequence that 
interacts with its cognate receptor can be short, only a few amino 
acids long, with large sections of diverse sequences in the prohor-
mone. Thus, homology to well-studied species is not enough to 
offer accurate neuropeptide predictions across species.

The typical structure of neuropeptide precursor after translation 
includes a signal peptide region and a region that contains one or 
more neuropeptides (Fricker, 2005; Hook et al., 2008). After trans-
lation, the signal peptide is removed by signal peptidases and the 
remaining peptide is cleaved by other proteases (notably proprotein 
or prohormone proteases) that cleave the sequence at basic (Arg 
or Lys) sites (Fricker, 2005; Hook, 2006; Hook et al., 2008). After 
cleavage, the N- terminal basic amino acids are typically removed by 
carboxylases and various additional PTMs such as amidation and 
glycosylation can occur (Fricker, 2005; Hook et al., 2008).

We address these points here with a bioinformatics toolkit to 
discover and characterize neuropeptides. Essential components 

INTRODUCTION
Neuropeptides are a class of cell–cell peptides that can act as neu-
rotransmitters and hormones and have various paracrine, endo-
crine, and autocrine effects (Boutrel, 2008; Heinrichs and Domes, 
2008). Neuropeptides directly infl uence a diverse set of biological 
processes from growth and development to learning. For example, 
oxytocin is known as a mammalian hormone associated with repro-
duction but also is a neurotransmitter that has been associated with 
social behavior traits including trust, autism, inhibition of tolerance 
to additive drugs and impaired learning and memory functions. 
Furthermore, oxytocin and arginine vasopressin are intermediar-
ies of social behaviors, including attachment, social cognition and 
stress, anxiety, and aggression (Heinrichs and Domes, 2008).

Experimental detection of neuropeptides in mammals has been 
limited to a few species (primarily human, mouse and rat) or the 
characterization of selected peptide families (such as insulin) across 
greater numbers of species. This lack of experimental characteri-
zation is predominantly because such experimental procedures 
are resource intense and the presence of neuropeptides varies 
with species, tissue, developmental stage and even organism state. 
Genomic sequencing provides the opportunity to discover neu-
ropeptides in other species with limited or no experimental studies 
on neuropeptides. For example, while the rhesus macaque monkey 
(Macaca mulatta) is widely used as model organism and its genome 
has been sequenced (Rhesus Macaque Genome Sequencing and 
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of this analytical pipeline are the computational identifi cation of 
precursor genes in nucleic databases and model-based prediction 
of cleavage and other PTMs of the precursors. Python is an ideal 
language to develop this analytical pipeline for the discovery and 
characterization neuropeptides. The core language has easy to use 
functions that facilitate complex manipulation of information and 
integration of results from the multistep analytical pathway. The 
suitability of Python is further strengthened by third-party modules 
such as BioPython (http://biopython.org) for bioinformatics (Bassi, 
2007) and Numerical and Scientifi c Python (http://www.scipy.org) 
for numerical computation (Oliphant, 2007). The combination of 
all these features in a single language makes Python an ideal choice 
for bioinformatic applications (Bassi, 2007; Kinser, 2008). In terms 
of a pipeline, the power and fl exibility of Python can be used for the 
full pipeline or to integrate different components of the pipeline 
together. We illustrate the use of Python to implement an analytical 
pipeline that integrates vastly different components necessary to 
identify rhesus neuropeptides and associated precursors.

PRECURSOR IDENTIFICATION USING BIOINFORMATICS 
RESOURCES
An exhaustive survey of neuropeptide precursors in a genome is 
the fi rst step in the complete characterization of the neuropepti-
dome of a species. The development of bioinformatics analytical 
pipeline to discover neuropeptide precursors requires the integra-
tion of multiple steps involving multiple tools. Bioinformatic tools 
including sequence homology search using BLAST (Altschul et al., 
1997) and multiple sequence alignment using T-Coffee (Notredame 
et al., 2000) are available as standalone packages or via a web inter-
face. BioPython provides an integrated environment that supports 
different aspects of bioinformatics including parsing results from 
bioinformatics tools. For example, Bassi (2007) illustrates the use 
of BLAST with BioPython.

In the fi rst step of the prohormone analytical pipeline, rhesus 
precursors were identifi ed based on precursor information from 
other mammalian species with extensive neuropeptide research. In 
particular, a list of human precursors and neuropeptide sequences 
was collected from the UniProt Knowledgebase database (The 
UniProt Consortium, 2008) and literature review (Amare et al., 
2006; Tegge et al., 2008). The set of human precursors was queried 
against the database of predicted proteins derived from the rhesus 
genome (http://www.ncbi.nlm.nih.gov/projects/genome/guide/
rhesus_macaque/) using a standalone version of BLAST (version 
2.2.18) using the default parameter settings (e.g., expectation value 
of 10 and Blosum62 scoring matrix) except for disabling the fi l-
ter option. Queries were conducted using the complete precursor 
sequence that included the regions that contain the signal peptide 
and neuropeptides to maximize the detection of the rhesus pre-
cursor. Human precursors were used because of the evolutionary 
relationships between the rhesus and human species and the com-
pleteness of the list in humans. Information from other species (e.g. 
mouse and rat) can also be used to evaluate the accuracy of the 
search process. The repetitive process of searching for each human 
precursor on the rhesus database was implemented by exploiting 
the ability of BLAST to handle multiple sequences and using Python 
to parse results. The query input fi le containing all human precur-
sors was submitted to BLAST and the output was saved in an XML 

formatted fi le. An XML format provides structured information in 
a machine readable format that permits repeated access.

The XML fi le of BLAST results can be also be parsed directly 
using standard Python libraries such as the elementtree library to 
extract the results for each of the human precursors. The script in 
Listing 1 opens the specifi ed XML fi le and recursively stores the 
contents in a Python class that contains the attributes and values 
specifi ed by the XML docment type defi nitions used by BLAST. 
After parsing the BLAST XML fi le, the script loops across the query 
sequences and displays the match and the score and e-value of the 
best match to the query sequence. Using a Python script allows 
greater control of the output including extracting precursors with 
the highest scoring BLAST hits, precursors with no hits, all hits that 
exceed a threshold determined by the user, or all hits. Furthermore, 
Python provides suffi cient fl exibility to identify the common sce-
narios with comparative genome analyses where multiple precur-
sors match the same target or the same precursor matches different 
targets with similar scores.

The complete identifi cation of precursors can require different 
levels of user input especially related to species divergence. The dif-
fi culties imposed by species divergence and available resources can 
be investigated by evaluating different BLAST specifi cations (e.g. 
selection of database, scoring matrices, E-value threshold), different 
genomic resources (e.g. unassembled sequences) and information 
from species when this is available. Due to the repetitive nature of 
these investigations, Python can be used to facilitate the rapid evalu-
ation of the different specifi cations and combining the information 
for user assessment.

Although low E-values constitute statistical evidence that sup-
ports the detection of homologous sequences between species, false 
matches and partial matches are possible. The accuracy of the iden-
tifi cation of predicted rhesus precursors was accessed by aligning 
the sequence to corresponding sequences from multiple other spe-
cies using multiple sequence alignment tools such as T-Coffee. Most 
multiple sequence alignment tools only perform a single alignment 
so that it is necessary to perform one alignment for every precur-
sor. Simple Python scripts can be used for the repetitive creation 
of sequence fi les including multiple sequences across species for 
each precursor and subsequent alignment for each precursor. The 
resulting alignments were then viewed to identify which rhesus 
precursor predictions are reliable or contain the prediction but are 
too long (the result of automated predictions and sequencing or 
assembly errors) or incomplete (due to incomplete coverage of the 
particular genomic region, sequencing or assembly errors). Based 
on the fi nal alignments, 67 rhesus neuropeptides precursors were 
identifi ed solely in the rhesus database of predicted proteins.

Identifi cation of precursors using protein predictions and auto-
mated tools is fast and effective. However, this approach misses 
precursors that are partially predicted or not predicted due to 
sequencing or assembly issues. In order to identify if a human 
precursor is present in the genome of the rhesus monkey, the pro-
tein sequences of the precursors are queried against the nucleotide 
sequences from the genome assembly. The result of the BLAST 
query only provides the locations that suffi ciently match the protein 
sequence and consequently ignore low scoring and intronic regions. 
The full precursor sequence can be extracted using Wise2 (http://
www.ebi.ac.uk/Tools/Wise2/index.html; Birney et al., 2004). Wise2 
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predicts the gene structure by comparing a protein sequence to a 
genomic DNA sequence and using a gene prediction model that 
allows for introns and frameshift errors. The genomic sequence 
required by Wise2 was obtained by using Python to read the 
genomic DNA sequence of the assembled rhesus genome, iden-
tify and extract the relevant chromosomal region and perform the 
reverse transcription into the complementary strand if necessary. If 
the extracted region is insuffi cient to accurately identify the main 
gene structure components, the genomic region can be expanded 
and resubmitted to Wise2. An additional advantage of combining 
the BLAST and Wise2 tools is that the protein sequence, mRNA 
sequence and the location of the exons are simultaneously available 
and can be used to confi rm the accuracy of the predictions.

The combined strategy of using BLAST and Wise2 directly 
identifi ed eight additional precursors that were not been previ-
ously predicted and provide valuable information for the manual 
annotation of rhesus precursors. For example, the rhesus CCKN 
precursor was identifi ed on chromosome 2 but lacked a match to 
last 28 amino acids of the human CCKN sequence. Examination 
the genomic sequence showed that a region of 91 unknown bases 
occurred immediately after the last residue of the mRNA sequence 
predicted using Wise2. This nucleotide segment most likely codes 
the missing precursor sequence that corresponded to the last exon 
of the human precursor gene and was missed in the assembly. The 
search for the missing region among the rhesus trace archives (a 
collection of raw sequence traces, http://www.ncbi.nlm.nih.gov/
projects/genome/guide/rhesus_macaque/), uncovered a hit to a 
contig that contained the missing segment and resulted in the 

prediction of a complete CCKN precursor. A different scenario 
was encountered with the NPS precursor because the Wise2 predic-
tion missed the start of the NPS precursor. This failure was most 
likely due to the structure of the human gene where the fi rst exon 
only codes for two amino acids. Consequently, the corresponding 
rhesus exon was identifi ed by a query using the complete human 
NPS nucleotide and combined with the Wise2 prediction to obtain 
the complete rhesus NPS precursor.

There were also 17 precursors that could not be recovered solely 
based on the assembly alone without further examining the trace 
archives for unassembled or incorrectly assembled contigs. For 
example, the related crab-eating macaque (M. fascicularis) insulin 
(INS) precursor has been reported (Wetekam et al., 1982) and, thus, 
is expected to be found in the rhesus genome. Queries of the human 
and M. fascicularis INS sequence on the M. mulatta genome did not 
permit full recovery of the rhesus INS precursor due to gaps and 
a stop codon in the genomic assembly. The results from a search 
of the trace achives indicated that the inclusion of different contig 
(ti|523766964) would most likely result in the identifi cation of the 
complete rhesus INS precursor.

The individual precursors undergo a number of additional 
processing steps before the fi nal bioactive peptides are created. Thus, 
once the list of precursor protein sequences has been compiled, 
expected prohormone structural features such as a signal peptide 
and prohormone cleavage sites are identifi ed for each individual 
precursor. The signal peptide was predicted using SignalP (Bendtsen 
et al., 2004) and the length of the signal peptide was recorded with 
the sequence. The rhesus precursors lack  experimental cleavage 

LISTING 1 | Parsing an BLAST XML fi le in Python.
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information so cleavage sites must be assigned based on homology 
to other animals or cleavage models. The reliability of the homol-
ogy-based prediction of cleavage relies on the degree of conserva-
tion of the precursor between species available.

Human data were expected to provide the most accurate assign-
ment of cleavage data due to the close evolutionary relationship 
between the human and rhesus species. Python scripts were devel-
oped to assign precursor cleavage information based on homology 
to human sequences. The human and rhesus sequences of each 
precursor were fi rst aligned using T-Coffee. The locations of the 
human cleavage sites were then found in the corresponding aligned 
rhesus sequence. Finally the rhesus sequence and cleavage data 
was obtained after removing any gaps that had been entered dur-
ing the sequence alignment. Assuming that the precursor cleav-
age assignment based on human information provides a perfect 
characterization of precursor processing in the rhesus, then the 
comparison of model-based cleavage predictions and confi rmed 
or homology-based cleavage information will provide the number 
of true and false positives (cleavage sites) and true and false nega-
tives (non-cleavage sites). These results can be used to construct 
further indicators of cleavage model performance including cor-
rect classifi cation rate (ratio of true versus true and false results), 
sensitivity (ratio of true positives versus all positives), specifi city 
(ratio of true negatives versus all negatives), positive and negative 
precision (Southey et al., 2006a).

CLEAVAGE PREDICTION USING MACHINE LEARNING 
TECHNIQUES
Prediction of the cleavage sites within the precursor is essential 
for identifi cation of the fi nal peptides produced by the prohor-
mones, including the neuropeptides. Previously we have shown 
that machine learning techniques including logistic regression, 
artifi cial neural networks and memory-based reasoning are suc-
cessful in predicting cleavage sites in neuropeptide precursors in 
diverse sets of species (Amare et al., 2006; Hummon et al., 2003; 
Southey et al., 2008; Tegge et al., 2008). An analytical pipeline to 
predict cleavage using machine learning involves preparing and 
processing the sequence and cleavage data, training and testing of 
prediction models using machine learning techniques to identify 
the most appropriate model, predict the possible peptides using 
the most appropriate model and any PTMs present in the predicted 
peptides.

Python can be used to process the sequence and cleavage data 
into a generic fi le that can be used by a single application as well 
by different applications following the steps outlined by Southey 
et al. (2008). Generally these steps involve: (1) reading the sequence 
and cleavage data, (2) removing the signal peptide, (3) splitting 
the remaining sequence into overlapping windows, (4) assigning 
cleavage status to the window and (5) recoding the amino acids 
as binary indicators with respect to the actual location within the 
window. The script in Listing 2 demonstrates how a single neu-
ropeptides sequence with length of signal peptide and cleavage site 
is processed. First the signal peptide is removed and the resulting 
sequence is padded to permit windows that may extend past the 
ends of the sequence. The sequence is then split into overlapping 
windows and windows with basic amino acids (Lys and Arg) are 
kept. The amino acids within each window are then recoded with 

dummy values and cleavage status is assigned. The resulting loca-
tion within the complete precursor sequence, the window of the 
sequence, cleavage status of the window and coding of the amino 
acids is then displayed.

The resulting generic fi le can be used as input to a stand-alone 
machine learning package or tool (e.g. R http://www.r-project.
org), or by a tool directly implemented in Python (e.g. the SciKit 
learn http://www.scipy.org/scipy/scikits/wiki/MachineLearning), 
or automatically passed to a stand-alone tool using a Python inter-
face and language bindings. This latter strategy will be illustrated 
using the Python bindings provided with the LibSVM package 
(Chang and Lin, 2001) that implement training and cross-valida-
tion of support vector machines in Python. The general use of 
LibSVM involves the input of data, selection of a support vector 
machine and associated parameter, training of the support vector 
machine given the data and parameters and evaluation of trained 
support vector machine. Following Salzberg (1997), the optimal 
parameters for the support vector machine were identifi ed using 
cross- validation and a grid search across the parameters of the sup-
port vector machine. Preliminary results indicated that the default 
support vector machine with a radial basis function provided the 
same performance as other types and had the advantage of only 
requiring two parameters. The LibSVM also provides k-fold cross-
validation where the training data was split into k components of 
which k − 1 components was used to train a model and the last 
component was used for testing. The cross-validation approach 
was repeated such that all data components were used as testing 
and the overall cleavage miss-classifi cation rate across complete 
data is obtained.

A Python script was used process generic fi le previously obtained 
from the human and rhesus sequence and cleavage data into human 
and rhesus data sets in the format required by the LibSVM. Part of 
the script (Listing 3) loops across the two parameters of a support 
vector machine with a radial basis function (gamma and C) and 
within the loop calls the LibSVM cross-validation routine with the 
parameters of the support vector machine and supplied degree of 
cross-validation. This script also trains the support vector machine 
for the supplied parameters on the full training data set and com-
putes the accuracy of this support vector machine on the test and 
training data sets. This script can be easily extended to evaluate 
multiple support vector machine specifi cations including linear 
and polynomial. In addition to the cross-validation, the script also 
trained a support vector machine on the full test data set for the 
supplied parameter values and tested the resulting support vector 
machine on the full test data and the training data. For data sets 
where the cross-validation and full data set support vector machine 
analyses for each combination of parameters becomes prohibitive, 
the script can be modifi ed such that the support vector machine 
analysis of the full data set is only executed after the parameter 
values that provide the lowest miss-classifi cation rate have been 
identifi ed in a prior cross-validation step.

The parsing of the results from the Python script that trained 
and tested the support vector machine models offered insights into 
the similarities between the human and rhesus cleavage patterns. 
The rhesus and human cleavage prediction models selected had 
the highest 5-fold cross-validation accuracy and the fewest predic-
tion errors in the training data. The evaluation of the parameters 
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on the full data sets was also important because support vector 
machines with similar cross-validation correct classifi cation rates 
had lower performance on the full and test data sets. For example, 
in the human support vector machine, the two highest scoring 
human support vector machines had correct classifi cation rates 
of 91.0% and 90.6% after cross-validation. However, the highest 
scoring human support vector machine had correct classifi cation 
rates of 99.9% and 99.6% in the human full data set and rhesus full 
data set, respectively. Whereas the second scoring human support 
vector machine had an approximately 3% lower correct classifi ca-
tion rate in human full data set, and rhesus full data set (97.3% 
and 96.4%, respectively).

The performance of the support vector machine models was 
compared to the mammalian logistic regression model (Amare 
et al., 2006), the human logistic regression and human artifi cial 
neural models (Tegge et al., 2008) and the empirical Known Motif 
model Southey et al. (2006b). On the human data set, the human 
support vector machine had the highest correct classifi cation 
rate (99.9%), as expected, followed by the rhesus support vector 
machine (97.9%), human artifi cial neural model (92.2%), human 
logistic regression (90.2%), mammalian logistic regression (82.5%) 

and fi nally the Known Motif model (76.6%). The rhesus support 
vector machine provided perfect classifi cation on the rhesus data 
set followed by the human support vector machine (99.6%), human 
artifi cial neural model (91.3%), human logistic regression (89.6%), 
mammalian logistic regression (82.4%) and fi nally the Known 
Motif model (76.7%). Models trained on human data had better 
prediction than general mammalian model or empirical known 
motif model. This result was expected independently of evolution-
ary relationships because the human cleavage data was used to 
assign cleavage in the rhesus.

The main reason for the different model performance was the 
lower number of false positive predictions by the support vector 
machines relative to the other methodologies. The rhesus support 
vector machine had slightly lower number of false negative predic-
tions in the human data set than the human artifi cial neural net-
work. The differences between the different prediction approaches 
are due to differences in the data sets used to train and test the 
models and the ability of the methodologies to accommodate lin-
ear and non-linear relationships between the input variables and 
cleavage patterns. Tegge et al. (2008) used 62 human precursors 
to train artifi cial neural network and logistic regression models, 

LISTING 2 | Python script to recode an amino acid sequence into generic format for machine learning applications.
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LISTING 3 | Python script for training and testing a support vector machine.

Amare et al. (2006) used 39 mammalian precursors to train logistic 
models and the human support vector machine model developed 
in this study were trained on 93 human precursors. The artifi cial 
neural network had perfect (100%) classifi cation on the human 
data set reported in Tegge et al. (2008).The lower correct classifi -
cation rate result by including more human precursors indicating 
that the human data set used by Tegge et al. (2008) likely does not 
contain complete information on cleavage that was used in training 
the support vector machines.

Across species, the impact of the precursor sequences used to 
train and test in the model performance can be assessed by compar-
ing the performance of the same model across species. Comparison 
of the data used to train the support vector machines showed that 
all rhesus precursors had homologous in the human data set but 
20 human precursors were not present on the rhesus data set. Of 
the 37 sites that received different cleavage classifi cation by the 
two support vector machines, only 10 sites corresponded to pre-
cursors that were present in both species data sets; meanwhile the 
remaining sites were only present in the human precursor data 
set. Among the sites with differential cleavage prediction between 
species, four sites pertained to rhesus sequences that have differ-
ent amino acids than the human sequence and these amino acids 

have a strong association with cleavage patterns. For example, the 
INSL4 precursor in the rhesus includes a window with the amino 
acid sequence ‘GCGPRFGKR↓MLSYCPMPE’ where ↓ denoted 
the predicted cleavage site. However, this site was assigned a non-
cleavage observed value because the homologous human win-
dow, ‘GCGPRFGKHLLSYCPMPE’, has not reported to be cleaved. 
Similarly, Southey et al. (2006b) reported a single amino acid dif-
ference between human and chimpanzee RFRP precursor that 
resulted in a false positive prediction in the chimpanzee sequence. 
These results demonstrate the value of bioinformatic prediction of 
precursor cleavage, especially in species with limited experimental 
confi rmation. One important use of across species predictions is 
to eliminate false positive results from experimental consideration. 
As another use, this same information can also identify potentially 
 species-specifi c cleavage sites to explain peptides that are unex-
pected based on homology alone.

APPLICATION/TOOL TO ASSIST IN THE IDENTIFICATION OF 
NEUROPEPTIDES
The prediction of cleavage sites in a protein sequence requires 
that the sequence must be processed into a usable format, then 
the prediction model is applied and fi nally the actual prediction 
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are returned. Each of these steps requires specialized knowledge 
ranging from processing the sequence to technical knowledge 
of applying the models derived from machine learning models. 
Developing a web application is one approach to remove spe-
cialized knowledge because a web form can be provided where 
the underlying script is responsible to convert the input into 
required format, apply the prediction models and display result-
ing predictions.

We developed NeuroPred (http:// neuroproteomics.scs.uiuc.
edu/neuropred.html), a web application in Python, to supports 
the detection and characterization of the neuropeptidome (Southey 
et al., 2006a). The user requires only a sequence basic knowledge of 
neuropepeptides and there is no requirement for specialized knowl-
edge of areas such as Python or machine learning. Using a simple 
form, users can enter one or more protein sequences and then select 
one or more prediction models and different options that control 
the subsequent processing of the resulting peptides and output. A 
user can select either simple options where most options have been 
preselected for the user a more advanced options that provide all 
possible models and control of the input and output. NeuroPred 
validates all the inputs, predict cleavage sites for all sequences 
entered and models selected. Under the default options, NeuroPred 

will display a cleavage prediction diagram indicating the predicted 
cleavage locations and optionally the probabilities of cleavage for 
the sequences entered and model selected (Figure 1).

To assist in the experimental studies using mass spectrometry 
(e.g., Hummon et al., 2005; Li and Sweedler, 2008), NeuroPred 
also computes the predicted mass of peptides including most of 
the known neuropeptide PTMs. The computation of the mass of 
the predicted peptides that can be used in high throughput mass 
spectrometry studies to assist in the identifi cation of peptides. 
Depending on the options selected, NeuroPred will list the differ-
ent peptides possible, the source for cleavage for the peptide (such 
as signal peptidase or prediction from one or more models), PTMs 
applied to the resulting peptides, predicted mass and full peptide 
sequence. NeuroPred also joins adjacent peptides to account for 
false positive cleavages and the presence of intermediate peptides 
that are eventually cleaved.

NeuroPred provides cleavage predictions using model devel-
oped from a vast range of species (including mollusk, insects and 
mammals) used in neuroscience research. Generally it is expected 
that the most appropriate model will be trained on the same or 
closely related species. However, it is expected that there are situa-
tions where there is no obvious appropriate model or that there is 

FIGURE 1 | Predicted cleavage sites of the rhesus cocaine- and amphetamine-regulated gene using different models in NeuroPred.
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a requirement for a greater understanding cleavage prediction at 
different sites. For these types of situations, NeuroPred can compute 
different model accuracy statistics when cleavage information is 
uploaded together with sequence. The resulting output enables 
the comparison of the selected models for individual precursors 
and for all precursors.

One valuable aspect of using Python was that much of the code 
developed for the analytical pipeline was reused in NeuroPred 
and can also be easily packaged into a stand-alone application. 
For example, the processing of sequence information and appli-
cation of different cleavage prediction models requires the same 
code across the different applications. This feature allows the 
main coding to be focused on integrating components rather than 
developing a completely new application. Furthermore, additional 
or more effi cient Python code developed for a new application 
can be reused by previous application. For example, the original 
prediction equations from different models were implemented 
using scalar computations. However, faster code was generated by 
implementing the prediction equations as a series of vector-matrix 
multiplications in Numerical Python. Improvements in compu-
tational speed were benefi cial for all applications and particularly 
for NeuroPred because of the volume of requests handled by this 
public web service.

The text processing capabilities in Python were important 
to enable the integration of the NeuroPred application with the 
visual appearance of the main web site. The main site provides 
static information that does not change in response to the user. 
In contrast, the output from NeuroPred is dynamic because the 
output depends on user interaction. If the html coding recoding 
is directly used within the script, the script must be changed when 
the main web site changes. However, the string processing abil-
ity of Python permits Python scripts to easily search and replace 
portions of text. In particular, the template of the main web site 
or an existing web page in the required format can be directly 
parsed by Python and the necessary portions replaced such that 
the web application will provide the same visual appearance as 
the main web site. Alternatively, Python web frameworks such as 
Django (http://www.djangoproject.com/) can be used to develop 
and maintain extensive web sites.

CONCLUSION
The Python language is well-suited to implement a bioinformat-
ics approach that encompasses a large number of interdependent 
steps, from scanning genomes for precursor genes to identifi cation 
of neuropeptides. We did not encounter any shortcomings with 
Python that were specifi c to our application or that hampered our 
efforts to obtain results. The series of steps encompassed in the 
analytical pipeline implemented in Python refl ect the fl exibility 
of this language to support diverse applications. The versatility of 
Python across all steps, identifi cation of neuropeptide precursors 
from genomic sequences, generation and training of cleavage pre-
diction models, and development of a web application to predict 
cleavage sites, PTMs, and resulting peptides was illustrated.

The components of an neuropeptide analytical pipeline devel-
oped using Python supports the examination and annotation of 
genomes, prediction of cleavage sites, and characterization of 
resulting peptides, irrespectively of the extent of experimental 
neuropeptide evidence. The successful application of the discov-
ery aspect of this pipeline led to the identifi cation of 78 rhesus 
neuropeptide precursors, including 11 precursors that had not 
been predicted during the automated annotation of the genome. 
The training and evaluation of models to predict cleavage sites in 
rhesus precursors resulted in models that had correct classifi ca-
tion rate of over 80% based on homologous cleavage assignments 
from human precursors indicating successful application of the 
cleavage prediction component of the pipeline. NeuroPred is a 
direct application of the neuropeptide analytical pipeline to pro-
vide an all-inclusive Python web application that allows users to 
predict precursor cleavage and subsequent PTMs of the resulting 
peptides. This application supports targeted experimental search 
for likely predicted peptides and greatly facilitates the laborious 
search for neuropeptides in mass spectra from high throughput 
proteomic studies.

The level of user input required to comprehensively identify 
the precursor complement depends on the available resources 
and on the divergence of the species under study with respect to 
other species with known precursor information. In this study we 
demonstrated how Python routines can aid with many tedious 
components of genome-wide precursor identifi cation and  cleavage 
prediction such as the processes that must be repeated for each 
precursor. Our routines help to address the challenges associated 
with species divergence and in-progress sequencing and assembly 
processes (e.g. coverage, accuracy) by facilitating the evaluation of 
different specifi cations (e.g. databases, scoring matrices, E-value 
thresholds) and of models from species with different level of 
divergence.

Results from characterization of the rhesus neuropeptidome 
using an analytical pipeline and implementation of the pipeline as 
a public web application that serves the neuroscience community 
demonstrate the suitability of the Python language for multiplexed 
and high throughput bioinformatics applications. The object-
 orientated nature of the Python language enabled considerable 
reuse of code at the different stages of development. A completely 
integrated approach can also be achieved by combining the bioin-
formatics tools in BioPython and the numerical tools in Numerical 
and Scientifi c Python.
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“Brian” is a new simulator for spiking neural networks, written in Python (http://brian. 
di.ens.fr). It is an intuitive and highly fl exible tool for rapidly developing new models, 
especially networks of single-compartment neurons. In addition to using standard types of 
neuron models, users can defi ne models by writing arbitrary differential equations in ordinary 
mathematical notation. Python scientifi c libraries can also be used for defi ning models and 
analysing data. Vectorisation techniques allow effi cient simulations despite the overheads of 
an interpreted language. Brian will be especially valuable for working on non-standard neuron 
models not easily covered by existing software, and as an alternative to using Matlab or C 
for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching 
computational neuroscience.
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shows a more complicated example, illustrating many of the fea-
tures of Brian.

BACKGROUND
One of the diffi culties with current software for neural network simu-
lation is the necessity to learn and use custom scripting languages 
for each tool: for example Neuron’s Hoc and NMODL (Carnevale 
and Hines, 2006), NEST’s SLI (Gewaltig and Diesmann, 2007), and 
Genesis’ SLI (Bower and Beeman, 1998), the last two being different 
languages with the same name. This increases the learning curve and 
is less fl exible than using an established language with strong support 
and development tools such as integrated development environments 
(IDEs), debuggers and profi lers. Data analysis is either limited to 
those functions provided by the tool, or has to be carried out in 
another application such as Matlab, which can slow down the process 
of prototyping and refi ning models. Writing extensions to these tools 
can be rather diffi cult or somewhat infl exible, depending on whether 
extensions are written in the same language as the simulator itself.

To address this problem, there are projects in various stages of 
completion to provide Python interfaces for each of the tools men-
tioned above (see other chapters in this special issue). Because it is 
both easy and powerful, Python is rapidly becoming a standard tool 
in the fi eld and in scientifi c computing more generally. In addition, 
the PyNN project is working to provide a unifi ed Python interface 
to each simulator. These projects have considerable benefi ts. Users 
will only need to learn a single programming language rather than 
one or more for each tool, and that language is easy to learn, highly 
developed, very powerful, and has a large user base which provides 
excellent support and tools. A great deal of time can be saved work-
ing in just one environment, rather than having to switch back 
and forth between different applications and GUIs for developing 
models, running simulations and analysing data.

Brian complements these projects and has some additional benefi ts 
unique to it. Firstly, equations – differential equations in particular 
– can be defi ned at the highest level using standard mathematical nota-
tion (see Figures 1 and 2). Brian does not restrict you to using standard 
models of neurons and synapses (although many are provided in the 

INTRODUCTION
A reasonable question to ask is whether there is any need for another 
neural network simulator. There are now several mature simulators, 
which can simulate sophisticated neuron models and take advan-
tage of distributed architectures with effi cient algorithms (Brette 
et al., 2007). Yet, many researchers in the fi eld still prefer to use their 
own Matlab or C code for their everyday modelling work. It might 
be that currently available simulators do not fulfi ll the expectations 
of those users. Generally, what we expect from simulation software 
is that it should be able to run our specifi c model (fl exibility) in a 
reasonable amount of time (effi ciency). However effi ciency is not 
only about the speed of simulations. The time it takes the user to 
implement the model is at least as important in many situations. 
For example, if it takes only 1 s to simulate a model with a given 
tool but 30 min to write the simulation script, one might prefer 
to use a tool which simulates the model in 10 s but for which the 
script can be written in 3 min. For those modelling situations, we 
only want the simulation software to be “reasonably fast”.

Brian is a new project (http://brian.di.ens.fr) to create 
a clock driven spiking neural network simulator with the goals of 
being easy to learn and use, highly fl exible, and “reasonably fast”. It 
is ideally suited to rapid prototyping and refi nement of networks of 
single compartment model neurons. Brian is written entirely in the 
Python programming language and will run on any platform that 
supports Python (i.e. almost all platforms). Users with a C compiler 
on their system can take advantage of a slight speed increase by 
opting to use certain core routines written in optimised C code, 
but these are strictly optional. Everything works the same without 
them. The way Brian works is that it is a Python package providing 
functions, classes and objects. It can be used either interactively 
using a Python shell, or as part of a Python program (module). 
Figure 1 shows a very simple Brian script. This script defi nes a ran-
domly connected network of 4000 leaky integrate-and-fi re neurons 
with exponential synaptic currents. This is Brian’s implementation 
of the current-based (CUBA) model network used as one of the 
benchmarks in Brette et al. (2007). The simulation takes 3–4 s on 
a typical PC, for 1 s of biological time (with dt = 0.1 ms). Figure 2 
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library), and neuron models based on new differential equations can 
be used without writing or compiling any code. Secondly, as Brian 
is written entirely in Python itself, it has all the advantages of the 
projects above and some additional ones. Integration with Python 
is tighter because the implementation is not in a separate language 
to the interface. This means that Brian can be used more fl exibly, for 
example to write code which reads and modifi es the variables of the 
simulation as it runs. Additionally, extensions to Brian are easy to 
write because everything is written in the same language.

TEACHING
Brian was originally designed for research, but it would also make 
an ideal tool for teaching purposes. First of all, the Python language 
is extremely quick and easy to learn and the syntax allows code to be 
written very compactly, saving time and making it easier to present 
examples. Secondly, since Brian is written in pure Python, it works 
on almost every platform, so there are less compatibility issues 
for students with different hardware or operating systems. Finally, 
using Brian itself is very easy, and the core concepts and syntax of 
Brian code correspond very straightforwardly to neuroscientifi c 
concepts (see Figure 1). Equations are specifi ed using a familiar 
mathematical syntax, for example eqs='dV/dt=-V/tau:volt', 
where the only unfamiliar part of the syntax is the :volt term, 
which specifi es that V has units of volts. Figure 1 shows that defi ning 
thresholds and resets is typically just a single keyword term such as 

threshold=−70*mV or reset=−55*mV, and creating groups of 
neurons is as simple as writing G=NeuronGroup(N,model).

FEATURES
Brian is a clock driven simulator, that is, all events take place on a 
fi xed time grid t = 0, dt, 2dt, 3dt,…. Neuron models are normally 
defi ned by differential equations which can be arbitrary linear, 
nonlinear or stochastic, specifi ed either by directly writing the 
equations in a string, by using standard equations such as leaky 
integrate-and-fi re, or by building more complicated sets of equa-
tions using standard components such as K+ and Na+ currents. Both 
integrate-and-fi re and Hodgkin–Huxley type models can be used. 
Multiple compartment models are possible, but at the moment 
they are neither particularly convenient nor effi cient for more than 
a few compartments. For linear differential equations, Brian uses 
exact updates. For nonlinear differential equations, Euler (explicit) 
and exponential Euler (semi-implicit) methods are available (and 
more are planned).

Network connectivity can be built either directly by specifying 
connectivity per pair of neurons (i, j), or more effi ciently with all-
to-all or random connectivity, where the synaptic weights can be 
either single values or specifi ed by a weight function f(i, j). Synaptic 
connections can include delays.

Network activity can be controlled in various ways. For spik-
ing behaviour there are various standard models such as Poisson 

from brian import *
eqs =
dV/dt = (ge+gi-(V+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt

P = NeuronGroup(4000, model=eqs,
threshold=-50*mV, reset=-60*mV)

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ge )
Ci = Connection(Pi, P, gi )
Ce.connect_random(Pe, P, p=0.02,

weight=1.62*mV)
Ci.connect_random(Pi, P, p=0.02,

weight=-9*mV)
M = SpikeMonitor(P)
P.V = -60*mV+10*mV*rand(len(P))
run(.5*second)
raster_plot(M)
show()

τm
dV

dt
= −(V − EL) + ge + gi

τe
dge

dt
= −ge

τi
dgi

dt
= −gi

FIGURE 1 | The CUBA network in Brian, with code on the left, neuron 

model equations at the top right and output raster plot at the bottom 

right. This script defi nes a randomly connected network of 4000 leaky integrate-
and-fi re neurons with exponential synaptic currents, partitioned into a group of 
3200 excitatory neurons and 800 inhibitory neurons. The subgroup() method 
keeps track of which neurons have been allocated to subgroups and allocates 
the next available neurons. The process starts from neuron 0, so Pe has neurons 
0 through 3199 and Pi has neurons 3200 through 3999. The script outputs a 

raster plot showing the spiking activity of the network for a few hundred ms. 
This is Brian’s implementation of the current-based (CUBA) network model used 
as one of the benchmarks in Brette et al. (2007), based on the network studied 
in Vogels and Abbott (2005). The simulation takes 3–4 s on a typical PC (1.8 GHz 
Pentium), for 1 s of biological time (with dt = 0.1 ms). The variables ge and gi are 
not conductances, we follow the variable names used in Brette et al. (2007). The 
code :volt in the equations means that the unit of the variable being defi ned 
(V, ge and gi) has units of volts.
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spiking neurons, and more direct control mechanisms can be used 
to specify spike times for a neuron with a list or Python function. 
While the simulation is running, all the variables of the simulator 
are directly accessible and this can be used for controlling almost 
any aspect of the simulation. The emphasis is on fl exibility, and 
most aspects of the way Brian works can be overridden.

Basic support for short term plasticity and spike timing depend-
ent plasticity is included. This will be standardised and made easier 
to use in later releases.

Brian also has a system for specifying quantities with physical 
dimensions, which makes things easier because variables can be 
entered without having to look up the scale defi ned for that variable 

CBA

FED

from brian import *
w = .5*mV
def adaptive_threshold_reset(P, spikes):

P.V[spikes] = 0*mV
P.Vt[spikes] = clip(P.Vt[spikes]+2*mV, 10*mV, 15*mV)

eqs = dV/dt = (5*mV-V)/(10*ms) + 4*mV*xi/(10*ms)**.5 : volt
tlov:)sm*03(/)tV-Vm*01(=td/tVd

group=NeuronGroup(100, model=eqs,
threshold=lambda V,Vt:V>=Vt,
reset=adaptive_threshold_reset)

C = Connection(group, group, V , delay=2*ms)
S = SpikeMonitor(group)
C.connect_full(group, group, weight=lambda i,j:w*cos(2.*pi*(i-j)*1./100))
group.V = rand(100)*5*mV+5*mV
group.Vt = 10*mV
run(2.5*second)
raster_plot(S)
show()

FIGURE 2 | An example showing many of the features of Brian in action. The 
neuron model in this code follows a stochastic differential equation 
d d ( ) ( )V T V E tl/ = − − / /τ σξ τ+ , dVt /dt = −(Vt − Vt0 )/τt. Here all the undefi ned 
symbols are constants except for ξ(t) which corresponds to the term xi in the 
code, and represents a white noise term ξ ξ δ( ) ( ) ( )t t t t′ = − ′( ). The rest of the 
neuron model is defi ned by a custom reset function adaptive_threshold_
reset which increases the value of Vt by a constant each time a neuron spikes 
(but never takes it above a fi xed ceiling), and a custom threshold function lambda 
V,Vt:V>=Vt which defi nes the condition for a spike. The arguments to the 
custom reset function are a NeuronGroup object P (a population of neurons), 

and an array spikes containing the indices of the neurons in P that have spiked. 
Together these two custom functions defi ne an adaptive threshold model. The 
option to specify custom functions makes Brian’s reset and threshold mechanism 
very fl exible. The code also shows synaptic delays, and setting the synaptic 
weights with a custom function of (i, j ), w*cos(2.*pi*(i-j)*1./100)). The 
output of the code shown is the raster plot in (B), with the value w=.5*mV. 
(A) shows w=.1*mV and (C) shows w=.65*mV. (D) shows the synaptic weight 
matrix for the w=.65*mV case. (E) and (F) show the values of V (solid blue) and 
Vt (dashed green) for the neuron with index 50 for the raster plots immediately 
above them ((B) and (C)) with w=.5*mV and w=.65*mV respectively.
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by the simulator package, and is useful because it helps to catch 
hard to debug problems stemming from parameters or equations 
having inconsistent units (see Physical Units).

Finally, Brian is fairly effi cient. Although Python is an inter-
preted language, it can still achieve speeds comparable to that of 
code written directly in C, and typically better than code written 
in Matlab. See the section “Simulation Speed” for a discussion of 
performance issues.

HOW IT WORKS
Brian is designed to be easy to use, fl exible and reasonably fast. To 
achieve the fi rst goal, Brian uses features of the Python program-
ming language, in particular its extremely dynamic typing which 
allows code to be much simpler and more expressive. Flexibility in 
Brian stems from using a single high-level language for user code 
and the library itself, and from making differential equations a 
fundamental high-level data structure (see Background). For the 
third goal, Brian uses the strategy of vectorised code.

Brian makes considerable use of Python’s dynamic typing to 
make writing models easier, and to make the syntax concise and 
readable. So for example, in specifying a neuron model a thresh-
olding procedure is required for producing spikes. This can be 
done by specifying a single number, a function, or a threshold 
object. In the fi rst case, with the threshold specifi ed by a single 
number V

t
 say, Brian infers the thresholding condition V ≥ V

t
. In 

the second case, Brian examines the function provided. Consider 
a neuron model with variables V and Vt, and the threshold speci-
fi ed as the function lambda V, Vt: V>=Vt (which is the Python 
expression for a function of two variables V and Vt which returns 
the value V>=Vt). In this case Brian examines the names of the 
arguments to the function and passes the appropriate values so 
that the code behaves as expected. This would be one way of 
providing a variable threshold condition (because Vt is a variable 
of the neuron model, and could evolve according to a differential 
equation or function of other variables for example). Another way 
is to provide a threshold object, either one of the standard types 
in the library, or a user-defi ned one by writing a class that derives 
from the Threshold class. The variable threshold condition above 
corresponds to the standard object VariableThreshold('Vt') 
for example.

Vectorising code is the strategy, familiar to users of Matlab, to 
minimise the amount of time spent in interpreted code compared 
to highly optimised array functions. This typically means trying to 
minimise the number of for loops in code, and using data struc-
tures and algorithms that make this easier. Brian uses the NumPy 
package (see below) which has an array data type that makes, for 
example, the expression V [spikes]=Vr equivalent to but much 
faster than for i in spikes: V[i]=Vr. In Matlab this would be V 
(spikes)=Vr, and in many cases the NumPy syntax is very similar 
to the Matlab syntax making the transition between the two very 
easy. The issue of Brian’s speed and effi ciency is covered in more 
detail in the section “Simulation Speed”.

Brian uses the following standard Python packages: Numerical 
Python, which is designed for providing effi cient array data struc-
tures and operations (NumPy, http://www.scipy.org/NumPy, 
Scientifi c Python, which extends NumPy to include more  general 
algorithms for scientifi c work (SciPy, http://www.scipy.org), 

and PyLab/Matplotlib for plotting (http://matplotlib.
sourceforge. net/).

WORKED EXAMPLE
Figure 3 shows a slightly simplifi ed version of the code in Figure 1 
with diagrams showing schematically the meaning or function of 
each group of lines of code. Panels A through F illustrate lines 
of code, and Panel F, which corresponds to actually running the 
simulation, is composed of four sub-panels a through d which 
illustrate the four steps involved in each timestep dt of the simula-
tion. We proceed to explain how this example works with reference 
to the fi gure.

A Firstly, the differential equations for the model are defi ned. 
This is illustrated in Panel A which shows the code which 
defi nes the equations and the equations in a more standard 
mathematical form. These equations will be used to defi ne 
an integrate-and-fi re neuron with exponential inhibitory and 
excitatory synapses with different time constants. The diffe-
rential equation for V defi nes a leaky integrator with currents 
g

e
 and g

i
. The variable g

e
 is used for excitatory currents. When 

an excitatory spike arrives, the value of g
e
 is increased instan-

taneously by a fi xed amount. The inhibitory variable g
i
 works 

similarly. Technically then, the full mathematical differential 
equations for the model would be:
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 where the superscripts indicate neuron indices, W kj
*  are the 

excitatory and inhibitory weight matrices, N = 4000 is the 
number of neurons, and t l

k is the time of the lth spike fi red 
by neuron k. The spike propagation behaviour is defi ned in 
Panels C and D, see the description below.

B Having defi ned the differential equations, a group P of 
4000 neurons is created with these equations, a threshold 
mechanism set to fi re spikes if V ≥ V

t
 = −50 mV, and a reset 

V ← V
r
 = − 60 mV. The diagram in Panel B shows Brian’s 

internal data structure for this group. It is a two-dimensional 
array or matrix S. At a given time the ith column of S holds the 
state variables for the ith neuron. Each row of the matrix is a 
vector of length 4000 of the values of a particular variable for 
all the neurons in the group.

C The next step is to create the network structure. We create two 
subgroups Pe and Pi of 3200 and 800 neurons respectively. 
The subgroup() method of the NeuronGroup object keeps 
track of which neurons have been allocated to subgroups and 
when called allocates the next available neurons. The process 
starts from neuron 0, so Pe has neurons 0 through 3199 and 
Pi has neurons 3200 through 3999. These two subgroups will 
be the excitatory and inhibitory neurons. In the diagram in 
Panel C, we have separated the columns of the state matrix S 
corresponding to each neuron. The excitatory and inhibitory 
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from brian import *

eqs = '''
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
'''

P = NeuronGroup(4000 , model=eqs,
threshold=-50*mV, reset=-60*mV)

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, 'ge' )
Ci = Connection(Pi, P, 'gi' )

Ce.connect_random(Pe, P, 0.02

1.62 *mV)

Ci.connect_random(Pi, P, 0.02

9*mV)

P.V = -60*mV+ 10*mV*rand(len (P))

run(1*second)

Pe Pi

P

Ci
Ce

A

B

C

D

E

F

0 1 2 3 4 5 6 7

spikes = [ 2, 5, 6 ]

b. Thresholda. State update

c. Propagate d. Reset

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

exc.

inh.

+

=

FIGURE 3 | The code from Figure 1 expanded to show how Brian works 

internally. In (A), the equations for the model are defi ned. In (B), a group of 
4000 neurons is created with these equations. In (C), the logical structure of 
the network is defi ned, partitioning the 4000 neurons into excitatory and 
inhibitory subgroups with corresponding connections to the whole group. 
In (D), the weight matrices for the excitatory and inhibitory connections 

are defi ned. In (E), the membrane potential is initialised uniformly randomly 
between reset and threshold values. In (F), the simulation is running, 
consisting of repeated applications of four operations each time step; 
(a) shows the update of the state matrix; (b) shows the thresholding 
operation; (c) shows the propagation of spikes; and (d) shows the reset 
operation.
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subgroups are boxed and labelled Pe and Pi respectively. Next, 
excitatory and inhibitory connections Ce and Ci are created. 
The declaration of Ce specifi es that the group Pe (the exci-
tatory subgroup) should be connected to the variable g

e
 (the 

excitatory current) of the group P (the whole group), and 
similarly for Ci. This means that when a neuron in Pe fi res a 
spike, the variable g

e
 will be increased for those neurons in P 

which the neuron in Pe synapses onto.
D Having defi ned the logical network structure, we create the 

weight matrix itself. Each pair of neurons (i, j) are connected 
independently at random with probability 0.02. The excitatory 
synapses have weight 1.62 mV and the inhibitory ones have 
weight −9 mV (negative to make it inhibitory, and larger than 
the excitatory synapses as there are less inhibitory neurons). 
For effi ciency, the random connectivity function constructs 
the sparse matrix row by row. For each row it generates a 
binomial random number k from B(N, p) which is the num-
ber of synapses in that row, and then randomly allocates those 
k synapses amongst the N possible target neurons, assigning 
them with equal fi xed weight values. This process is illustrated 
in the diagram in Panel D.

E Now we prepare to actually run the simulation. The fi rst step 
is to initialise the variables. At the start, all variables have the 
value zero. In Panel E, on the left hand side of the diagram, this 
is indicated by the V row being white (as 0 is much bigger than 
the threshold value which is negative), and the g

e
 and g

i
 rows 

being almost black. We leave the values of g
e
 and g

i
 as 0, and set 

V to be uniformly distributed between the reset and threshold 
values. The notation P.V refers to the fi rst row, the V row, of 
the state matrix S.

F Finally, we run the simulation. Panel F shows the four ope-
rations executed each time step dt of the simulation: state 
update, threshold, spike propagation, and reset. In the state 
update phase (sub-panel a), the state matrix S is updated from 
t → t + dt, which as the differential equations are linear is just 
multiplication of S by a fi xed matrix and addition of a fi xed 
vector to each column of S. In the thresholding stage (sub-
panel b), each value of V is simply compared to V

t
 and a list 

spikes of the indices of each of the neurons satisfying the 
condition is returned. In the propagation phase (sub-panel c), 
which is carried out separately for the excitatory and inhibi-
tory connections, for each index i ∈ spikes the ith row of 
W

*
, W [i,:], is added to the row vector corresponding to the 

variable g
*
. Finally, in the reset phase (sub-panel d), for each 

index i in spikes, V is reset to V
r
.

This worked example shows the general anatomy of a Brian 
script: import the Brian package and defi ne neuron models 
(Panel A); create groups of neurons (Panel B); create synaptic con-
nections (Panels C and D); create monitors and other operations for 
recording data and controlling variables as a simulation runs (not 
shown in fi gure); initialise variables (Panel E); run the simulation 
(Panel F); and fi nally analyse and plot the data using any Python 
package (not shown in fi gure). Creating monitors and plotting out-
put is not shown in Figure 3 but can be seen in Figure 1. The lines 
M=SpikeMonitor(P) and raster_plot(M) record and plot the 
spikes produced by the neurons in P. The raster_plot function 

is part of Brian, but there are many Python packages which can be 
used for analysing and plotting data, including the ones used by 
Brian itself, NumPy, SciPy and Pylab/Matplotlib.

PHYSICAL UNITS
Brian also features a system for specifying physical quanti-
ties with units. This is an independent package originally writ-
ten for Brian but now available as a standalone package called 
Piquant (http://piquant.sourceforge.net/). It builds on 
the NumPy and SciPy packages, adding support for physical quan-
tities. This has various benefi ts. It makes it possible to write code 
which syntactically and semantically expresses both the physical 
dimensions and scale of numbers. So for example, something like 
conductance=36*mS rather than conductance=36. In the latter 
case, the code alone does not express the value without knowing 
the standard scale for the software, and this often leads to errors 
which can be very hard to debug. In addition, because units retain 
their physical dimensions as well as their scale, accidentally writing 
something using the wrong units will cause an error (for example 
in Brian, differential equation with inhomogeneous units will raise 
an error).

A quantity with physical units is a standard fl oat value with an 
additional array of the indices of the seven fundamental SI units 
distance, mass, time, etc. The fl oat value expresses the quantity 
at the standard SI scale, so that for example the fl oat value of 1 
*mV is 0.001. Operating on quantities with physical units is clearly 
more computationally demanding than operating on quantities 
without. To ameliorate this problem, Brian does two things. First 
of all, internal calculations done by Brian during a simulation only 
use the underlying fl oat values, so that only initialisation code and 
custom functions use the units system. Secondly, Brian includes 
an option for switching the units system off globally. This only 
requires the addition of a single line of code to the top of a Brian 
program, and simply converts all the objects with units to their 
underlying fl oat values. So for example with units turned off the 
symbol mS becomes the fl oat value 0.001. The recommended usage 
is to leave the units system on when developing a model or when 
adding new code, and turning it off for longer and larger runs once 
the code is stable.

TECHNICAL DETAILS
The user specifi es a model by providing the mathematical equa-
tions which defi ne it. This can either be done directly by writing 
out the differential equations in full, or by building a set of equa-
tions using objects from the library (for things like ion channels or 
synapses). The former is useful in situations where there are not too 
many equations and where they are constantly being changed in the 
process of developing the model. The latter is useful in situations 
where the model is built from standard components and produces 
an unwieldy number of equations.

Given a fi nal set of equations, Brian produces a StateUpdater 
object. In general, this is an object that updates the state variables 
of a group of neurons in any way. For differential equations, it per-
forms the integration step updating the state variables from times 
t to t + dt. Brian automatically inspects the equations to choose the 
most appropriate type of StateUpdater. For linear differential 
equations for example, updates are exact. More precisely, if the 
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 equations are X M X B= −( ) then the exact solution for the update 
step is X(t + dt) = eMdt(X(t) − B) + B, where eMdt is a constant matrix 
and B is a constant vector evaluated (numerically) at initialisation 
time (see Morrison et al., 2007 for a closed form method). Nonlinear 
equations are integrated by default with Euler updates, and the 
exponential Euler method (a semi-implicit method, MacGregor, 
1987) is also implemented for Hodgkin–Huxley  models. The 
 second-order Runge-Kutta method is also implemented. Stochastic 
differential equations are integrated with Euler updates (i.e., adding 
normally distributed random numbers every time step). Nonlinear 
equations given as text are compiled to Python functions at initiali-
sation time, then used directly during the update phase with vector 
arguments [for example, x ← x + f(x)dt for a single state variable x 
and equation dx/dt = f(x)].

A NeuronGroup object is created by specifying the number 
of neurons in the group and a model. A model requires a set of 
differential equations or a StateUpdater object, and can have 
optional thresholding and reset mechanisms. A Connection object 
is a mechanism for propagating spikes from one NeuronGroup to 
another. It is specifi ed by an input group, an output group (which 
can be the same) and a target state variable. When a neuron in the 
input group fi res a spike, the target state variable is increased for all 
the neurons in the output group to which that neuron is connected. 
This mechanism is very general and allows for all the standard 
types of synapses. Once a Connection object has been created, 
the actual connectivity of neurons can be specifi ed in various ways. 
The main four ways are full connectivity, random connectivity, 
functionally specifi ed connectivity (e.g. for spatial distributions) 
or by providing a connectivity matrix directly. The Connection 
methods connect_random and connect_full, for random and 
full connectivity respectively, take as their fi rst two arguments the 
source and target neuron groups. This seems redundant because 
the Connection object knows the source and target groups, but 
the weight matrix can be constructed in blocks and the fi rst two 
arguments to these methods can be subgroups of the groups speci-
fi ed in defi ning the Connection. In the present version, homo-
geneous synaptic delays can also be specifi ed. Each neuron group 
stores a circular list of the last spikes over the required delay, each 
element of that list being an array of the indexes of neurons that 
spiked during one timestep. Spikes are then delivered in the same 
way as explained in the section “Worked Example” (Panel F).

SIMULATION SPEED
Python is an interpreted language, and although it is very fast there 
is an overhead for every Python operation. Brian can achieve very 
good performances by using the technique of vectorisation, similar 
to the same technique familiar to Matlab users. The idea is to replace 
loops by operations on large vectors, so that the interpretation 
overhead becomes negligible. Brian uses vectorisation for both the 
simulation and the construction of the model (e.g., initialisation 
of synaptic weights).

For example, for a single neuron i with state vector x
i
, the update 

step from x
i
(t) to x

i
(t + dt) might be x

i
(t + dt) = Mx

i
(t) + b for a 

matrix M and vector b. This operation is the same for every i so 
rather than looping through all the neurons carrying out the same 
operation, we write a state matrix S whose columns are the state 
vectors of each neuron. Now the loop carrying out the operation for 

each neuron i can be written in one operation, S(t + dt) = MS(t) + B 
(where B is a matrix with every column equal to b). The number of 
mathematical operations is the same, but the interpretation over-
head is reduced from N interpretation operations for N neurons 
to 1 interpretation operation. Brian uses the NumPy package for 
these vectorised operations. NumPy is written in optimised C code, 
and for linear algebraic operations uses the Basic Linear Algebra 
Subprograms (BLAS) application programming interface (API). 
This means that NumPy can be combined with an implementa-
tion of the BLAS API that is optimised for the specifi c details of 
the processor it is running on. For large networks, the time spent 
on mathematical operations is much larger than the time spent on 
interpretation operations and so Brian is very effi cient. For smaller 
networks, the interpretation overhead is much larger in proportion 
but in many situations it is not critical because the simulation time 
is shorter too. The least favourable scenario for Brian is the simula-
tion of a small network for a long biological time.

PERFORMANCE OF VECTORISED SIMULATIONS
In this section, we outline an analysis of Brian’s performance. A 
formula for the simulation time of a network with a clock-driven 
algorithm is given in Brette et al. (2007):

Update Propagation+

× + × × ×c
N

t
c F N pU Pd

where c
U
 is the cost of one update and c

P
 is the cost of one spike 

propagation, N is the number of neurons, p is the number of syn-
apses per neuron, F is the average fi ring rate and dt is the time 
step (the cost is for 1 s of biological time). If the simulation is fully 
vectorised, then interpretation can be included in this formula as 
a constant overhead c

I
 per time step:

Update Propagation Interpretation+ +

× + × × × +c
N

t
c F N p

c

tU P
I

d d

and the interpretation overhead becomes negligible when the net-
work is large. In more detail, the update constant c

I
 grows with the 

complexity of the model (in particular the number of variables) 
and the interpretation constant c

I
 grows with the number of objects 

created, such as groups of neurons. Therefore, the strategy for run-
ning effi cient simulations with Brian is to collect all neurons sharing 
the same differential equations in the same group. It is still possible 
to have heterogeneous groups in this way, for example the follow-
ing code defi nes a group of 100 integrate-and-fi re neurons with 
membrane time constants between 5 and 30 ms:

eqs='''
dv/dt=-v/tau : volt 
tau : second
'''
G=NeuronGroup(100,model=eqs,threshold=15*mV,
reset=0*mV) G.tau=linspace(5*ms,30*ms,100)

Here tau becomes a state variable instead of a parameter. The 
same method can be used to obtain the results of a simulation for 
different parameter values. Note that with this change the  differential 
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equation becomes nonlinear with respect to the two variables; equa-
tions are then integrated with an approximation scheme (Euler by 
default). A mechanism for declaring state variables to be constant so 
that the above equation would be considered linear and integrated 
with exact matrix updates (one matrix for each parameter value) 
is in preparation for a future release of Brian.

In many cases, the initialisation can also be vectorised. For exam-
ple, the following instruction connects all pairs of neurons of a 
group with a distance-dependent weight (the topology is a ring):

C.connect_full(group,group,weight=lambda i,j:
cos((2.*pi/N)*(i-j)))

The program builds the weight matrix row by row by calling the 
weight function with arguments (i, j) where i is the row number 
and j is the vector (0, 1,…, N − 1). Thus, the matrix is constructed 
with N vector-based operations, in a way that is transparent to the 
user. This is made possible by the fact that Python is a dynamically 
typed language (functions do not need to specify the type of their 
arguments in their defi nition).

COMPARISON WITH C AND MATLAB
In this section, we compare the empirical performance of Brian 
with that of C and Matlab. We compare absolute performance and, 
since it was always the fastest, times relative to C. The C code was 
always compiled with the heaviest optimisations possible, the -O3 
switch with the gcc compiler. Brian was always run with the 
optional compilation switch on, and unit checking turned off. 
This means that certain key routines (the thresholding operation 
and the spike propagation phase) were written in C to avoid the 
Python overheads. These key operations are very generic, and so 
having them written in C rather than pure Python does not affect 
the fl exibility of Brian as a whole. Note that this compilation switch 
is optional, and on a system without a C compiler installed Brian 
will use alternative versions of these core routines which are slightly 
slower but still very usable. Typically, running Brian with pure 
Python only takes about 25–50% longer than with the C routines. 
In the following benchmarks, times were computed by running each 
set of parameters 10 times and taking only the 7 best times, which 

helps to remove outliers where performance is degraded due to 
the operation of an unrelated process running on the system. The 
comparisons shown were obtained using a 2.33 GHz Intel Xeon 
processor with 2 GB RAM running on Windows XP. The version of 
NumPy used was 1.1.1 with the default BLAS linear algebra package. 
Using a custom build of NumPy with a BLAS package tuned for the 
particular CPU architecture would give better performance. The 
source code for the comparisons is available on request.

The fi rst benchmark we consider is a modifi ed version of the 
CUBA network presented above in Figures 1 and 3. This is a net-
work of linear differential equations, and Brian does exact updates 
for the state matrix for t �→ t + dt which amounts to a matrix mul-
tiplication. We used the same mechanism exactly for the C and 
Matlab code. In all cases, the connection matrix uses a sparse matrix 
data structure implemented in effectively the same way.

We fi rst modify the network so that instead of random con-
nectivity with each pair of neurons connected with probability 
0.02, the probability is p/N, where N is the number of neurons, 
making an average of p synapses per neuron independent of N. This 
 guarantees that the fi ring rate of an individual neuron is independ-
ent of N. According to the calculations in the section “Performance 
of Vectorised Simulations” then, the computation time as a function 
of N should be proportional to N. Figure 4 shows the times for this 
network. You can see that the performance of Brian is better than 
Matlab, but not as good as C. You can also see that as N increases, 
the relative performance of Brian compared to C improves. This is 
because the Python overheads are a fi xed cost independent of N. At 
N = 32,000, Brian takes approximately 2.4 times as long as C, and 
we would expect that this ratio would improve further for larger N. 
For this N, Matlab takes approximately seven times as long as C.

The next benchmark is the same CUBA network, but this time 
with all synapses removed. Performance in general is largely domi-
nated by two factors: the state update phase, and the spike propaga-
tion phase. This benchmark gives an idea of how performance for 
the state update phase alone scales. Figure 5 shows the comparison. 
For large N, Brian takes around twice as long as C, and Matlab about 
four times as long. The jump in the times for Brian going from 
N = 16,000 to N = 32,000 may be due to CPU cache behaviour.

FIGURE 4 | Computation time for the CUBA network using Brian, C and 

Matlab. This version of the CUBA network uses a fi xed 80 synapses per 
neuron, and a varying number of neurons N. The fi gure on the left shows the 

absolute time on the test machine. The fi gure on the right shows the time 
compared to the C code. Theoretically, we would expect O(N ) computation time 
(see Performance of Vectorised Simulations).
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The next benchmark uses a fi xed N, but varies the parameter w
e
, 

the excitatory synaptic weight. Increasing this increases the fi ring 
rate. Figure 6 shows the comparison. For the range of w

e
 shown, 

leading to a range of fi ring rates from about 5 Hz to about 25 Hz, 
the times appear to grow at a similar rate for each of C, Matlab 
and Brian.

In conclusion, Brian is mostly around two to four times slower 
than C code for the typical network considered, and Matlab is 
around seven times slower. For smaller networks, Brian is slower 
than this, and for larger networks, we expect Brian to be faster 
than this. This seems like a reasonable trade off, given that smaller 
networks tend to take less time to run in absolute terms than larger 
networks.

DISCUSSION AND FUTURE WORK
Brian has been developed for quickly coding models of spiking 
neural networks in everyday situations. It is easy to learn, intuitive 
and fl exible, which also makes it ideal for teaching. Although it 
is written in an interpreted language, it remains computationally 

effi cient in many situations thanks to vectorised algorithms. It is 
however not currently designed for very large scale simulations 
which require clusters of computers, or for detailed biophysical 
models with complex morphologies.

COMMUNITY
Brian is open source, and we are following the open source strategies 
of code reuse and interoperability. To make the development effort 
lighter and support easier, we chose to use existing packages and 
components as much as possible, and only write what is necessary 
on top of that. In writing Brian, we have used the NumPy, SciPy 
and PyLab/Matplotlib packages. There is a PyNN module for Brian 
currently in development, through which Brian will support open 
standards such as NeuroML (Goddard et al., 2001) and other XML 
description standards (Cannon et al., 2007).

We would also encourage others to make their code written 
with Brian accessible to others. Complete models can be posted 
to ModelDB (Hines et al., 2004), and in addition there is the new 
“Computational Neuroscience Cookbook” project hosted on the 

FIGURE 5 | Computation time for the CUBA network if all synapses are removed. This largely demonstrates the performance for the state update step, which in 
this case is a matrix multiplication.

FIGURE 6 | Computation time for the CUBA network with on average 

p = 500 synapes per neuron and N = 4000 at different fi ring rates. The 
parameter we, the excitatory weight, was varied between 1.62 and 4.8 mV 
which had the effect of varying the fi ring rate between about 5 Hz and about 

25 Hz. This shows how performance scales with the number of spikes. Here the 
fi ring rates as well as the times are averaged over the seven fastest trials, as 
fi ring rates vary from trial to trial. Note that times due to spiking depend on both 
the fi ring rate and the number of synapses per neuron.
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NeuralEnsemble website (http://neuralensemble. org/cook-
book). The idea of the cookbook is for submission of fragments 
of code which can be cut and pasted into others’ code. Finally, we 
encourage others to contribute to the Brian project itself (http://
brian.di.ens.fr/contribute.html).

FUTURE WORK
In the near future, our priorities for improving Brian are increasing the 
effi ciency of Brian simulations and adding more modelling features. 
Specifi cally, we have started using the parallel processors present in 
modern graphics cards (GPU, Graphics Processing Unit) to improve 
the speed of Brian simulations with no additional work from the user 
(Luebke et al., 2004). These can be used as parallel coprocessors for 
vectorised calculations (Cummins et al., 2008). On the modelling side, 

we are focusing our efforts on synaptic plasticity. It is already possible 
to simulate spike timing dependent plasticity (STDP, as in e.g. Song 
et al., 2000) and short term plasticity (STP; Tsodyks and Markram, 
1997) with the current mechanisms implemented in Brian (since these 
are defi ned as differential equations with resets in those references, 
see Morrison et al., 2008 for a review of plasticity rules), and we are 
working on making it as fl exible and simple to use as possible.
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Modern computer hardware makes it possible to produce visual stimuli in ways not previously possible. Arbitrary scenes, from traditional 
sinusoidal gratings to naturalistic 3D scenes can now be specifi ed on a frame-by-frame basis in realtime. A programming library called 
the Vision Egg that aims to make it easy to take advantage of these innovations. The Vision Egg is a free, open-source library making use 
of OpenGL and written in the high-level language Python with extensions in C. Careful attention has been paid to the issues of luminance 
and temporal calibration, and several interfacing techniques to input devices such as mice, movement tracking systems, and digital 
triggers are discussed. Together, these make the Vision Egg suitable for many psychophysical, electrophysiological, and behavioral 
experiments. This software is available for free download at visionegg.org.

Keywords: visual stimulus generation, open source, Python

INTRODUCTION
A neuroscientist may need precisely defi ned spatial, temporal, 
spectral, and polarization properties of light to perform a par-
ticular visual experiment. Standard computer monitors and 
projectors are capable of producing a wide range of stimuli suf-
fi cient for many experiments, and special purpose displays may 
be built or purchased with a standard interface. A tool which 
produces precisely controlled signals from a video port (such as 
VGA) is therefore of great utility. This paper outlines the Vision 
Egg, a programming library developed to serve as such a tool 
in combination with a standard computer and other software 
libraries.

HISTORICAL CONTEXT
A brief outline of the display systems with the most impact on 
the design of the Vision Egg follows.

In the 1980s and 1990s, vision scientists frequently displayed 
their stimuli on a Tec-tronix 608 display, a small (∼12 cm diago-
nal) cathode ray tube with independent X,Y and luminance 
inputs originally intended for use in a high-bandwidth analog 
oscilloscope. However, instead of using it as an oscilloscope dis-
play, vision scientists often controlled the 608 with an Innisfree 
Picasso device, a specialized function generator that creates 

a raster scan of X,Y positions and modulates luminance to 
 produce a variety of simple stimuli such as sinusoidal gratings 
and rectangles. Many scientists found the Picasso wonderfully 
easy to use, as its intuitive interface with a myriad of switches 
and potentiometers allowed rapid experimentation until a suit-
able stimulus was found. Furthermore, by providing BNC con-
nections for voltage inputs, time-varying stimuli could be driven 
via analog outputs from the same data acquisition system being 
used to record responses, simplifying experimental design. The 
main limitations of the Picasso are essential to its design as a 
specialized function generator – namely that it is tied to a spe-
cifi c (and now rare) display device, and that the range of stimuli 
it could produce were limited.

Computers provide the ability to produce arbitrary visual 
stimuli, but with a new set of limitations. Early systems devel-
oped in the 1990s required no specialized hardware but could 
only draw pre-rendered stimuli and movies (e.g., early releases 
of the PsychToolbox: Brainard, 1997; Pelli, 1997) or were lim-
ited to simple stimuli and required extensive programming and 
debugging in low-level C (e.g., John Maunsell’s custom LabLib). 
These systems achieved frame-by-frame temporal precision by 
operating within a cooperative multitasking operating system 
such as Mac OS (prior to Mac OS X) and running at interrupt 
time. Under such conditions, the underlying OS would not 
preempt a program’s use of the CPU or other resources. With 
the rise of pre-emptive multitasking operating systems such as 
Windows 95, GNU/Linux, and Mac OS X, such an approach to 
precise timing was no longer guaranteed. Another issue, which 
persists today, is that the general-purpose nature of display 
hardware meant that producing stimuli with a large dynamic 
range of contrast can be diffi cult.

Custom hardware solutions, such as the Cambridge Research 
Systems’ VSG 2/3F, addressed the issues of precise timing and 
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dynamic range through the use of special purpose processing 
units and digital to analog converters isolated from the main 
computer system on a PCI card. Programs would execute 
onboard these cards independently from the host operating 
system, bypassing the issues outlined above. Such cards were 
expensive, however, often costing fi ve or more times the price 
of the host computer itself, with additional RAM costing still 
more. Additionally, programming the VSG 2/3F involved either 
using a script language with limited performance or a low-level, 
assembly-like language specifi c to the processing unit onboard 
the card.

By the year 2000, OpenGL, a library to abstract standard 
graphics hardware, was being used for realtime generation of 
3D graphics on broadcast television without skipping frames. 
I was encouraged to try a similar approach for my own experi-
ments on the visual system of fl ies, where the ability to use 3D 
video acceleration hardware was appealing because it meant that 
wide-fi eld stimuli could be accurate across displays subtending 
very large angles. Such graphics hardware was appealing more 
generally for vision research because this hardware was very fast 
at mathematical operations involved in drawing scenes while 
the open nature of the OpenGL specifi cation meant that solu-
tions would be portable to future hardware. The high speed 
allowed new possibilities for the display of visual stimuli that 
change over time. Dynamic scenes of high complexity, includ-
ing in 3D, could be rendered in realtime, only an instant before 
display. This could be done at high update rates without skip-
ping frames, and these video cards could display anything from 
simple shapes to naturalistic 3D scenes. The immediate benefi t 
for my research was to enable drawing at 200 Hz of perspective-
corrected Gabor wavelets (Straw et al., 2006) and temporally 
anti-aliased (so called motion blurred) moving natural images 
(Straw et al., 2008). Both of these types of stimuli had been very 
diffi cult to implement with the other systems.

OPEN SOURCE SOFTWARE AND PYTHON
Fundamental to the scientifi c process is the repeatability of 
measurements. For this reason, open source software should be 
preferred in scientifi c applications – this prevents software mis-
takes from becoming hidden in proprietary code, allows others 
to learn from and independently reproduce work, and allows a 
community approach to solve problems together. As illustrated 
by the articles in this issue, Python is becoming a standard high-
level, open source language in neuroscience. Perhaps the most 
exciting aspect of the confl uence of tools available in Python is 
the possibility of software that incorporates components from 
various sources into software with new capabilities. The suit-
ability of Python for drawing visual stimuli is well described in 
Peirce (2007), and additional notes are in Section “Timing of 
Visual Stimuli: Speed and Latency.” The Vision Egg also makes 
use of software for which no Python interface previously existed. 
These function calls are written as C extension modules to 
Python included with the Vision Egg.

VISION EGG
The aim of this paper is to describe the Vision Egg, an open source 
(LPGL license) computer programming library which makes 
use of modern hardware accelerated graphics using OpenGL to 
generate visual stimuli. One important goal for the project is 
to allow non-experts to use modern computer hardware to its 
maximum capability for common vision science tasks. A screen-
shot of an included demonstration script showing several of the 
visual stimulus possibilities is shown in Figure 1, and source 
code to a moving sinusoidal grating is shown in Figure 2.

At the initial development and release of the Vision Egg in 
2001–2002, existing software for vision scientists was not able 
to take advantage of the capabilities present in the emerging 
hardware standards. Now, almost every personal computer 
being sold is equipped with graphics hardware suitable for many 

Sin Grating 2D (color) Spinning Drum

Vison Egg multi stimulus demo - Press any key to quit

A B C

D E F

put_pixels()

Dot Area 2D Sin Grating 2D (gabor) put_new_framebuffer()

Figure 1 | Screenshot of Vision Egg multi_stim.py demonstration script showing several included visual stimulus types. The dynamic stimuli are 
updated in realtime without skipping frames at rates up to the fastest vertical refresh rate of the display tested (200 Hz). Stimuli, are: (A) A circularly windowed 
color grating changing in space and color over time. (B) A rotating, perspective distorted drum with a natural panorama used as a texture image. (C) Arbitrary 
arrays of RGB data updated on each frame generated from a uniform random distribution. (D) Random dot stimuli with 100 independently moving dots. 
(E) A drifting Gaussian windowed sinusoidal grating. (F) A copy of the framebuffer recursively redrawn at smaller scale. 
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 experiments. Although more expensive hardware, often designed 
with computer games in mind, continues to push the limits of 
performance, the modest graphics systems now found in laptops 
and some motherboards perform fi ne for many experimental 
purposes. Even the creation of artifi cially closed-loop “virtual-
reality” experiments with the Vision Egg is possible with rela-
tively inexpensive hardware (e.g., Fry et al., 2004, 2008) but the 
library is also useful for a variety of simpler tasks.

The biggest challenge with such an approach is addressing 
potential problems when attempting to produce precisely control-
led stimuli for visual science on hardware which was not explicitly 
designed for the task. The remainder of this paper describes the 
implementation of the Vision Egg, some experiments to charac-
terize its performance, a discussion of it in relation to other visual 
stimulus technologies, and some potential future directions.

LOW-LEVEL HARDWARE AND SOFTWARE OVERVIEW
HARDWARE
This section presents a brief review of modern computer archi-
tecture from a hardware perspective for drawing visual stimuli. 
Applications run on the CPU of the host computer, though which 
they manipulate the memory, video system, and other devices 
of the computer. Video cards have onboard graphics processors 
(GPUs) that are faster than CPUs at pushing pixels. By shifting 
the majority of the drawing work onto the video card, the role 
of the CPU can be limited to directing the powerful GPU. To 
render a complicated 3D scene, for example, the CPU computes 
a wireframe model that is transmitted, along with rasterization 
instructions such as texture images and coordinates, to the video 
card. This communication is specifi ed by OpenGL, which hides 
the hardware level details such as transmission of data across the 
computer bus. The GPU renders this image to a framebuffer, 
which is then read out either by a high-speed digital to analog 
converter (RAMDAC) or a digital transmitter (e.g., DVI, HDMI, 
and Display Port). Luminance and color information is limited in 
typical framebuffers because they store 8 bits per color per pixel, 
or 2563 values of red, green, and blue each for a total of 2563 (16.6 

million) possible colors. The RAMDAC converts these digital val-
ues to an analog voltage after passing them through a color lookup 
table, which can be used to correct non-linearities the display 
process such as gamma (see Section “Precise Control of Color and 
Luminance: Results of Luminance Calibration”). Recently, manu-
facturers have been increasing the precision of the lookup tables 
in the RAMDAC, and although many 8 bit per color RAMDACs 
are still available, 10 bit cards are becoming more common. 
Furthermore, some higher-end cards have 10 bit framebuffers.

DRAWING IN OpenGL
The Vision Egg scripts enter a loop which draws a new frame 
on each cycle. Often each frame can be drawn completely from 
scratch, allowing realtime control of stimuli or simply to elimi-
nate a common brute force approach of pre-rendering several 
frames and then displaying them sequentially. Furthermore, 
the frame skips do not lead to cumulative error if each frame is 
drawn in realtime based on an accurate clock time. In an OpenGL 
system, a double buffering technique is used, meaning that new 
frames are rendered to the back framebuffer while the RAMDAC 
draws the contents of the front buffer to the display. Due to this 
double buffering, partially completed frames are not drawn to 
the screen. When fi nished rendering to the back framebuffer, the 
application informs the graphics system to use the back buffer 
as the source of data for the RAMDAC. Thus, the front and back 
buffers are swapped (with an OpenGL flip() or Vision Egg 
swap_buffers() function call) and drawing continues on the 
new back buffer. In the so-called vsync (vertical sync) mode, the 
buffer swap is synchronized to occur only between frame draws 
by the display, and thus no “tearing” artifacts are present. With 
small displacements between individual frames, however, tearing 
is minimal without using vertical sync. Regardless of vsync mode, 
the main loop OpenGL delays execution of the program until the 
buffer swap command is sent to the video hardware.

A member of the Vision Egg community has performed exten-
sive testing on the latencies associated with drawing in OpenGL 
(Sol Simpson, SR Research, personal communication), which are 

A B

Figure 2 | Source code of simple Vision Egg program to draw a moving sinusoidal grating illustrating a simple but complete program. Two means of 
controlling the fl ow of execution are available, as described in Section “Mid-level Software Overview: Controlling Program Flow.” (A) Program fl ow is controlled 
by the Vision Egg’s Presentation class. (B) Program fl ow is explicitly specifi ed within the script.
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in agreement with my personal observations and more limited 
testing. His tests show that even with vsync on, the actual call 
to swap_buffers() acts in an asynchronous manner when no 
buffer swaps are pending, but begins blocking when another swap 
is scheduled. In other words, the fi rst call to swap_buffers() 
will return immediately and the graphics card is instructed to 
swap buffers during the next vertical retrace. However, if another 
call to swap_buffers() is issued before the retrace occurs, this 
call is blocked (does not return) until the fi rst scheduled buffer 
swap happens. Thus, a program which paces itself via returning 
from blocked calls to swap_buffers() will always be drawing 
frames which will be drawn not on the next buffer swap, but on 
the second buffer swap.

Thus, if a program calls swap_buffers() less than once per 
retrace interval, then the swap_buffers() call is not blocked 
and returns right away and not necessarily at the start of a 
retrace. In this case, one does not see a constant 1 retrace inter-
val delay. Instead, one will see a variable delay (the time between 
when swap_buffers() returns and when the display is actu-
ally updated), with a duration up to the retrace interval depend-
ing on when swap_buffers() was called.

This suggests that one cannot not rely on when  swap_
 buffers() returns to determine when the fl ip actually occurs and 
instead should use a combination of swap_buffers() followed 
by some code that actually waits until, or determines, the start of 
the next retrace. The Vision Egg currently provides such a func-
tion for Windows (see Section “Low-level Hardware and Software 
Overview: Detecting Retrace Events and Refresh Rates”). The same 
results are found with the Vision Egg, pure C OpenGL and with 
SDL when using the DirectX backend on ATI and nVIDIA graph-
ics cards (Sol Simpson, SR Research, personal communication).

Due to the intricacies of the above latency issue when vsync is 
on and the lack of a way to detect retrace events on all supported 
platforms, the Vision Egg currently (up to and including 1.1.1) 
simply assumes that frames are drawn when swap_buffers() 
returns. This gives an accurate estimate of whether refresh inter-
vals were skipped and consequently a frame was not updated, but 
results in latency increased by one refresh interval.

Recent video cards (e.g., nVIDIA GeForce 8500 GT with 
the Forceware version 163.71 driver on Windows XP) support 
“triple buffering.” In this mode, there are two back buffers that 
are alternately drawn upon, and the most recently completed 
buffer is used at the start of display of a new frame to the screen. 
Although I have not tested this technique, it theoretically allows 
near-minimal latencies without tearing artifacts or diffi cult pro-
gramming involving refresh detection.

OPERATING SYSTEMS
The Vision Egg runs on any platform which supports Python 
and OpenGL. It is known to run on Microsoft Windows (95, 
2000, and XP), GNU/Linux with kernels 2.4 and 2.6 (Ubuntu, 
Redhat, Debian), Mac OS X and SGI IRIX. All of these are pre-
emptive multitasking operating systems, with important rami-
fi cations described in section “Timing of Visual Stimuli: Speed 
and Latency.”

DETECTING RETRACE EVENTS AND REFRESH RATES
The Vision Egg offers some platform-dependent features. One 
of these is the ability to detect or wait for a vertical retrace event. 
This is implemented according to the method of Riemersma 
(2000) and implemented in the Win32_vretrace.pyx fi le. 
Furthermore, the refresh rate can be detected on Windows and 

Mac OS X as implemented in the win32_getrefresh.c and 
darwin_getrefresh.m fi les. Unfortunately, the Vision Egg 
does not currently allow the user to set the refresh rate.

MAXIMUM PRIORITY MODE
Operating systems typically have means to boost the priority 
of some processes above that of other processes. The details are 
specifi c to each platform, but the Vision Egg includes support for 
raising priority on Windows via the SetPriorityClass() and 
SetThreadPriority() functions, on POSIX systems (such 
as Linux) via the sched_setscheduler() and mlockall() 
functions, and on Mac OS X via the thread_policy_set(), 
setpriority() and pthread_setschedparam() functions. 
On Mac OS X, these function calls tell the kernel’s realtime 
scheduler to grant programs a periodic time slice from the CPU, 
which theoretically might give hard realtime performance (guar-
anteed latency), but practically is limited by the issues described 
in Section “Timing of Visual Stimuli: Speed and Latency.”

MID-LEVEL SOFTWARE OVERVIEW
DISPLAY OF STIMULI
The Vision Egg has methods to draw a wide variety of stimulus 
types. These stimuli operate within defi ned guidelines so that 
they only modify certain values of the OpenGL state machine, 
but leave all other values unchanged. In this way, multiple stim-
uli can be combined simultaneously, as in Figure 1. Both 2D and 
3D stimuli are available. 2D stimuli commonly use an ortho-
graphic projection such that coordinates are specifi ed in pixel 
units. Perspective projections can be used for 3D stimuli such 
that a calibrated projection will provide an accurate representa-
tion of object shapes when viewed on a fl at display (e.g., Kern 
et al., 2001; Straw et al., 2006). Included with the Vision Egg are 
routines for drawing luminance sinusoidal gratings (2D or 3D, 
with or without contrast windows, which can be circular or ani-
sotropic Gaussian in shape), color sinusoidal gratings, random 
dot stimuli, arbitrary image fi les, arbitrary numeric array data, 
QuickTime movies, MPEG movies, a spinning 3D drum with a 
textured image, rectangles and fi xation points.

Many features of OpenGL are supported, including realtime 
resampling of the texture image data using linear interpolation 
and use of mipmapped textures generated with bicubic interpo-
lation (or other means). These features allow display of slowly 
moving images without quantization of other systems where 
pixel-by-pixel steps must be made in integer multiples of the 
inter-frame interval. Other features, such as realtime lighting 
and shadows, are not currently implemented.

USER INTERACTION AND ALTERNATIVE SOURCES OF INPUT
User interaction, such as handling of keystrokes, mouse clicks, 
and joysticks can occur within the main loop of a Vision Egg 
program by using the pygame library. Additionally, because 
the Vision Egg is written in Python and can be easily extended 
with C, there are many potential sources of external input. For 
example, the UDP network protocol is frequently used in online 
computer games for low latency network communication and 
can be used for realtime control of visual stimuli from an exter-
nal program. In this manner, a Vision Egg script may be written 
which is controlled from a data acquisition environment written 
in Python, Lab View, or MATLAB. The TCP network protocol, 
although slower than UDP, offers built-in error checking and 
correction, and has been used to provide realtime input for the 
Vision Egg (Fry et al., 2004, 2008).
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CONTROLLING PROGRAM FLOW
The Vision Egg offers two ways of program fl ow control. The 
most conceptually simple of these is to let the programmer spec-
ify what happens on every frame, as illustrated in Figure 2B.

Because the Vision Egg was originally developed for stud-
ies in which controlling motion adaptation was critical, I paid 
careful attention to issues such as allowing a stimulus to con-
tinue moving while not in an experimental trial. The result is the 
programmer relinquishes control by entering the go() method 
of the Presentation class, as defi ned in the VisionEgg.
FlowControl module, as in Figure 2A. This is the concept of a 
go loop, which usually corresponds to the experimental trial, and 
the concept of refreshing stimuli between go loops. Any function 
calls or stimulus updates not automatically performed by the 
Vision Egg must be implemented by means of Controllers, 
which are implementations of callback functions. Such a main-
loop-and-callback style of programming is common in GUI pro-
gramming. For example, the WX Widgets toolkit and the Mac 
OS X Cocoa libraries operate this way.

HIGH-LEVEL SOFTWARE OVERVIEW
SPECIFYING GRAPHICS STATE
A confi guration GUI (Figure 3) can optionally be called at the 
beginning of any Vision Egg script. Although all options are 
available from the programmatic interface, it is often conven-
ient to see and edit these parameters through this interface. 
Particularly important are the options for loading the color 

lookup tables to perform gamma correction as illustrated in 
Section “Precise Control of Color and Luminance: Results of 
Luminance Calibration.”

AN APPLICATION FOR ELECTROPHYSIOLOGY
The Vision Egg includes two applications for integration within 
an electrophysiology environment (see Figure 4). The fi rst is 
ephys_server.py, which draws stimuli on its video hardware. 
To minimize the possibility of frame skipping, this program may 
run as the sole application on a dedicated stimulus computer. 
This server program listens on a network port for a connection 
from the ephys_gui.pyw program, which offers a GUI for the 
experimenter to control.

THE QUEST ALGORITHM
A pure Python implementation of Watson and Pelli’s (1983) 
QUEST algorithm is available from the Vision Egg website. This 
well-known Bayesian adaptive method allows estimating psycho-
metric thresholds, and was translated directly from the MATLAB 
code of Denis G. Pelli, who graciously allowed redistribution of 
the Python version under an open-source BSD license.

QuickTime AND MPEG MOVIES
The Vision Egg includes support to decode movies and send 
them to OpenGL by using Apple’s QuickTime API on Windows 
and Mac OS X and py game/SDL’s Movie objects on all sup-
ported operating systems.

Figure 3 | Screenshot of the standard Vision Egg confi guration GUI. Numerous options for confi guration are available, including framebuffer size and bit 
depth, color lookup tables for gamma correction and platform-dependent realtime priority, as described in Section “High-level Software Overview: Specifying 
Graphics State.”
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TIMING OF VISUAL STIMULI
METHODS TO MEASURE LATENCY
This section contains the results of experiments in which the 
total latency of the system, from input to output, was measured. 
Because it is diffi cult to measure the precise time of events hap-
pening inside and outside a computer on the same clock (or syn-
chronized clocks), a task was chosen in which only a single time 
reference was necessary. The task was to measure the duration 
for a USB mouse movement to be translated into the movement 
of a rectangle drawn on the screen, both of which were fi lmed 
with a high speed video camera and later analyzed. The latencies 
measured in this task should be comparable to the latencies of 
other input–output tasks.

An LED was rigidly fi xed to each computer mouse (Logitech 
MX-300 USB and Dell DEL1 Optical USB). The mouse was 
connected to a USB port on the motherboard of the compu-
ter (Acer Aspire T690 with Intel ICH7 chipset including USB2 
EHCI and USB UHCI controllers). A PCI-Express xl6 video card 
(nVIDIA GeForce 8500 GT) was connected to a CRT monitor 
(Iiyama Vision Master 450) using a VGA cable. The display was 
set to a resolution of 800 × 600 at 140 Hz update rate using the 
nVIDIA control panel (Forceware version 163.71) on Windows 
XP Service Pack 2 and confi rmed by using the monitor’s on 
screen display.

The Vision Egg version 1.1.1 was used to draw a 3 × 3 pixel 
white square using the Target2D class on a Screen with a 
black background color in a way that it acted as a mouse cursor. 
The position of the mouse controlled the position of this small 
square using a version of the mouseTarget.py demo program 
that was simplifi ed to remove the code that set the orientation 
of the target.

A high speed digital video camera (Photron Fastcam APX 
120) was placed to record the LED and target location on the 
screen in the same image frame. Images were acquired at 2000 
frames per second while the mouse was rapidly moved back and 
forth by hand in a roughly sinusoidal manner (e.g., Figure 5). 

Digital images were analyzed to identify the “center of mass” of 
the bright areas using the center_of_mass() function of the 
scipy.ndimage module. For the on-screen target, this only 
occurred approximately every 14th frame due to the discrete 
nature of raster scan CRT displays.

SPEED AND LATENCY
Because Python is an interpreted language, programs written in 
it will run more slowly than a well-written C program. However, 
Python is fast enough for two primary reasons. First, the most 
computation-intensive task, manipulation of large data arrays 
is performed with high-performance C and FORTRAN code 
via the numpy module of Python. Thus, Python code directs 
computationally intensive tasks without performing them in 
the slower interpreted environment. Second, computer displays 
cannot be refreshed beyond their maximum vertical frequency, 
which typically ranges up to 200 Hz. This therefore represents 
an upper bound on the amount of computation required for 
realtime rendering tasks.

In fact, the biggest timing-related concern is unrelated to the 
programming language used. A pre-emptive multitasking operat-
ing system may take control of the CPU from the stimulus gen-
erating program for periods longer than an inter-frame interval, 
thus leading to skipped frames. Even if the OS takes control of the 
CPU from an application for much less than an inter-frame inter-
val, frames may still be skipped if the stimulus generation program 
uses a strategy of waiting until the last instant to render a frame 
and CPU control is taken at this critical instant. Operating systems 
may have some means addressing this issue such as a realtime 
scheduler that guarantees uninterrupted CPU time at specifi ed 
intervals. The Vision Egg makes use of such facilities where avail-
able (see Section “Low-level Hardware and Software Overview: 
Maximum Priority Mode”). Although they can certainly help 
eliminate timing issues, such priority- boosting solutions can-
not provide absolute guarantees about timing because OpenGL 
implementations themselves may be subject to unpredictable 

A B

Figure 4 | Screenshot of electrophysiology-oriented GUI application included with the Vision Egg called ephys.gui.pyw and described in Section 
“High-level Software Overview: An Application for Electrophysiology.” (A) Main window shows parameters for repeated presentations of a stimulus with 
the possibility of automatically sequencing over variables. All settings can be saved and loaded from disk. (B) The loop parameters window allows control of 
experiments.
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behavior and generally are not written to operate in a hard realtime 
(in other words, with deterministic latency) manner. For example, 
drawing a single additional object may cause the hardware to pass 
a critical threshold for memory use and force a slow operation. 
A low-level solution which operated in hard realtime would have 
to bypass complex OpenGL libraries and implement routines to 
draw directly to the framebuffer to guarantee performance.

It is worth noting that because of this unavoidable variable 
latency listed above (pre-emptive multitasking operating sys-
tems and OpenGL implementations), the variable latency intro-
duced by use of an interpreted language with garbage collection, 
such as Python, does not fundamentally worsen the situation. 
In other words, use of Python introduces no fundamental prob-
lem other than that of an additional potential source of variable 
latency to that already imposed by the OS and OpenGL.

MEASUREMENTS OF LATENCY
A high speed video camera was used to measure the absolute total 
latency between input (a standard USB computer mouse) and 
output (the position of a rectangle on the screen), as described 
in the methods Section “Timing of Visual Stimuli: Methods to 
Measure Latency.” Figure 5 shows that latency can be reduced 
to around 15 ms, but that the vsync state plays a very signifi cant 
role in total latency (Table 1). On a 140-Hz display (7.1 ms inter-
frame interval), latency jumped by 17 ms or more when vsync was 
enabled. This is presumably due to the latency imposed by draw-
ing in the middle of a refresh interval and waiting for that inter-
val to be done combined with the additional latency described in 
Section “Low-level Hardware and Software Overview: Drawing in 
OpenGL.” Although the results would be interesting, these experi-
ments were not repeated in triple buffering mode.

ONLINE DETECTION OF FRAME SKIPPING
Frame skipping is determined by measuring the interval between 
successive buffer swap commands using standard system calls to 

query the computers clock. If this value exceeds the known  monitor 
inter-frame interval, a frame has been skipped. Stimuli generated 
by the Vision Egg are routinely presented for hours without skip-
ping a frame when measured this way. The most likely occurrence 
of a skipped frame is at the immediate beginning of drawing a 
stimulus – presumably when some initialization occurs with the 
video system. Often this can be dealt with by initializing the video 
system in a non-critical task, such as drawing a black rectangle.

TRIGGER OUTPUT AND INPUT
It is often useful to trigger external hardware when a stimulus 
presentation begins. There are several ways to achieve this on typi-
cal personal computers. The parallel port can be used so that a pin 
goes from low to high voltage when the fi rst frame of a stimulus is 
drawn. The Vision Egg has support for reading and writing to the 
parallel port, but because OpenGL operates in an asynchronous 
manner (see Section “Low-level Hardware and Software Overview: 
Drawing in OpenGL”), the parallel port cannot be updated at the 
exact instant the display begins a new frame. Instead, the parallel 
port can only be updated before the swap_buffers() command 
is given or after it returns. Better accuracy could be obtained by 
“arming” the trigger of a data acquisition device immediately 
before stimulus onset and triggering from the vertical sync pulse 
of a video cable. Ultimate verifi cation can be done with a pho-
todetector on a patch of screen that changes luminance at the 
onset of the experiment. This patch-of-screen is implemented in 
the ephys_gui.pyw application described in Section “High-level 
Software Overview: An Application for Electrophysiology.”

Some hardware used in experiments, such as fMRI machines, 
has intrinsic timing requirements and thus it is advantageous for 
the Vision Egg to act as a slave and to begin a stimulus upon receiv-
ing a digital pulse. Because of its realtime nature, it is straight-
forward to achieve temporal precision equivalent to the latencies 
described in Section “Timing of Visual Stimuli: Measurements of 
Latency,” although there might be slight differences in timing due 
to use of a parallel port for input rather than a USB mouse.

PRECISE CONTROL OF COLOR AND LUMINANCE
METHODS TO MEASURE LUMINANCE
For the measurements described below, the Vision Egg version 
1.0 was running on a dual Athlon 1400 Windows 2000 sys-
tem with an nVIDIA GeForce 4 Ti 4200 graphics card and an 

1

1.0

0.5
–20 0 20 40

p
os

iti
on

 (n
or

m
al

iz
ed

)

co
rr

el
at

io
n

0

0

display

sample & hold
interpolate
mouse

100 200

time (msec)

time (msec)

300 400
–1

Figure 5 | Total latency of system, including input from an optical USB 
mouse and display on 140 Hz CRT display, can be reduced to about 
15 ms, as described in Section “Timing of Visual Stimuli: Measurements 
of Latency.” The main panel shows representative data gathered from a high 
speed camera of an LED fi xed to a mouse (green line) and a bright spot on 
the screen controlled by the mouse (blue dots). Display positions could rea-
sonably be interpolated using a sample-and-hold function (blue solid line) or 
linear interpolation (blue dashed line). Inset panel shows cross correlation of 
2 s of such data when interpolated. These data were gathered with vsync off 
and a Logitech MX-300 USB mouse.

Table 1 | Latency as estimated by the peak of the cross correlation 
 between mouse location and displayed point location. Optimistic laten-
cies were estimated using the cross correlation with the linearly interpolated 
display positions as plotted in Figure 5 and described in Section “Timing of 
Visual Stimuli:  Measurements of Latency.” Pessimistic latencies were also 
estimated with a cross correlation, but used a sample-and-hold function rather 
than linear interpolation to estimate display position.

Vsync Mouse Optimistic latency Pessimistic latency
  (ms) (ms)

Off Logitech MX-300 12.0 16.0
 Optical USB  
On Logitech MX-300 35.0 38.5
 Optical USB  
Off Dell DEL1 19.5 24.5
 Optical USB  
On Dell DEL1 38.0 41.5
 Optical USB  
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LG Electronics Flatron 915 FT + CRT monitor at a resolution 
of 640 × 200 at 200 Hz. Luminance measurements were made 
with a silicon photometer (OptiCal with LightScan software by 
Cambridge Research Systems, Ltd).

RESULTS OF LUMINANCE CALIBRATION
An 8-bit per color framebuffer allows specifi cation of 256 lumi-
nance levels for each of the three color channels (see Section 
“Low-level Hardware and Software Overview: Hardware”). Each 
red, green, and blue value is used as an index into the appro-
priate color lookup table, which is used by the RAMDAC to 
produce an analog signal. Low contrasts or other effects may 
be achieved, even with an 8-bit per color framebuffer, by use of 
a 10-bit lookup table. Non-linearities of CRT displays are well 
understood (for review, see Brainard et al., 2002) with the most 
famous non-linearity being display luminance gamma. The 
lookup tables can compensate for this gamma property such 
that color specifi ed is linearly proportional to the luminance 
produced on the display, and the Vision Egg includes the ability 
to calibrate and compensate automatically for this gamma prop-
erty. Finally, some computers have framebuffers with >8 bits per 
color. In OpenGL and the Vision Egg, colors are specifi ed as a 
fl oating point value between 0.0 and 1.0 so the same program 
benefi ts immediately from the improved hardware.

Photometric luminance measurements of the display made 
with full screen color values are shown in Figure 6. The most 
well known of the non-linearities of video displays is character-
ized by the gamma function

L = kpγ, (1)

with L being luminance (in cd/m2), k being a scaling constant, 
p being the color value specifi ed to OpenGL for each of the red, 

green, and blue components of the screen, and gamma γ. In the 
example shown, the uncalibrated display system had γ = 2.1. By 
loading the appropriate values in the color lookup tables, a lin-
ear relation between specifi ed color value and luminance output 
was achieved, with γ = 1.0.

DISCUSSION
IMPACT OF THE VISION EGG
Although usage for open source software is notoriously diffi cult 
to estimate, the number of downloads of the Vision Egg from 
SourceForge.net since the fi rst release (November 2001) totals 
over 15,000. Another estimate is the number of papers citing use 
of the Vision Egg. To date, the total listed at the website is 14. The 
University of Bielefeld, Germany and the University of Adelaide, 
Australia have used the Vision Egg in undergraduate courses 
(Bart Geurten and David O’Carroll, personal communication).

Other software uses or incorporates the Vision Egg. For 
example, in this issue, (Spacek and Swindale, 2008), describe use 
of the Vision Egg as part of a system for high-throughput elec-
trophysiology. Python based extensions called BCPy2000 to the 
large project BCI2000, a general-purpose system for brain–com-
puter interface (BCI) research, allow customizable experiment 
design using the Python scripting language (Schreiner, 2008; 
Jeremy Hill, personal communication). SR Research developed 
Pylink to interface their eye tracker to Python-based software, 
such as the Vision Egg, and they ship a Vision Egg based example 
to demonstrate gaze contingent control of a moving gradient.

Finally, perhaps the greatest impact of software packages 
such as the Vision Egg has simply been as a proof of concept that 
using OpenGL and Python for creating visual stimuli is possi-
ble. Several people have told me that they looked at the Vision 
Egg to see how something was done and then re-implemented it 
themselves. Such a spread of ideas is one of the benefi ts of open 
source, although the diversity of similar but different solutions 
can also be a challenge, particularly for those attempting to pick 
a solution without investing too much in an evaluation process.

COMPARISON TO SIMILAR OPEN SOURCE SOFTWARE
PsychoPy is another Python-based open source visual stimulus 
system (BSD license). The author, Peirce (2007) says, “For a good 
programmer, Vision Egg achieves its goals very well, provid-
ing a powerful and highly optimized system for visual stimulus 
presentation and interactions with hardware (including the abil-
ity to run experiments remotely across a network). Straw does, 
however, adhere very strongly to an object-oriented model of 
programming which can be harder for relatively inexperienced 
programmers, like most scientists, to understand. For instance, 
the temporal control of experiments in Vision Egg is predomi-
nantly though the use of presentation loops, whereby the user 
sets an object to run for a given length of time, attaches stimuli 
to it, attaches it to a screen and then tells it to go.” I believe the 
criticism is directed not so much toward object oriented pro-
gramming (which is also employed at a fundamental level within 
PsychoPy) but rather Peirce’s concern is with the mainloop-
and-callback mechanism of fl ow control described in Section 
“Mid-level Software Overview: Controlling Program Flow.” As 
mentioned in that section, and demonstrated in Figure 2, this 
is only optional, and the user may also maintain full control of 
program execution. Nevertheless, in the early development of the 
Vision Egg, this mainloop-and-callback style was present in all the 
demonstration scripts, and was intrinsic to the  electrophysiology 
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With the continued increase in power of conventional con-
sumer graphics hardware, the use of such systems for vision 
science experiments will continue to become more common. 
This paper described a visual stimulus generation system that 
utilizes such hardware and addresses critical calibration issues 
in the luminance and time domains. Of course, such calibration 
also depends on the display device, which also has temporal, 
spatial, spectral, and polarization properties that need to be 
accounted for.

With powerful stimulus generation software and video cards 
now available, the greatest challenge of producing visual stim-
uli may now be fi nding an appropriate physical display device. 
CRTs are well understood (Bach et al., 1997; Brainard et al., 2002; 
Cowan, 1995) and would remain a popular stimulus presentation 
device, but are becoming increasingly more diffi cult to acquire as 
their production stops. LCD and DLP based devices are useful 
for many experiments (Packer et al., 2001). Finally, custom built 
LED devices may be constructed to address many issues faced 
with standard commercial technology (Lindemann et al., 2003; 
Reiser and Dickinson, 2008). Regardless of display technology, if 
the display device accepts standard inputs (e.g., VGA or DVI), a 
modular approach to stimulus generation may be used, and stim-
ulus generation software such as the Vision Egg may be used.
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applications envisioned, like that of Section “High-level Software 
View: An Application for Electrophysiology.” Indeed, it was a 
response to my own diffi culties implementing psychophysics 
experiments with this style that I wrote demo scripts with their 
own fl ow control and began documenting the possibility.

Apart from the differences mentioned above in the style of 
programming, the most substantive differences today between 
the Vision Egg and PsychoPy are that the Vision Egg offers 
relatively simple perspective corrected stimuli utilizing the 3D 
nature of OpenGL, while PsychoPy has an automated luminance 
calibration utility and interfaces with Bits++ from Cambridge 
Research Systems, Ltd. Furthermore, the primary development 
platform of the Vision Egg is GNU/Linux, while it appears to be 
Windows for PsychoPy.

The Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) 
has evolved greatly since the situation described in Section 
“Introduction: Historical Context.” There is a large overlap 
between the possibilities offered by the PsychToolbox and the 
Vision Egg. Although the PsychToolbox is now offi cially open 
source (GNU GPL license), the main language of implementa-
tion is MATLAB, a proprietary application. Thus, its appeal as 
an open source solution is limited. Nevertheless, a core devel-
oper, Mario Kleiner, tests PsychToolbox functions with Octave, 
an open-source MATLAB clone, and many useful functions are 
implemented in C and could be used from environments other 
than MATLAB. Due to its heritage, most of the demonstration 
scripts for the PsychToolbox use pre-rendered stimuli, but it is 
now capable of using OpenGL and generating complex stimuli 
in realtime.

For another comparison between Vision Egg, PsychoPy, and 
the PsychToolbox, see Peirce (2007).

TOWARD A DATABASE OF VISUAL STIMULI
An online database of scripts to generate stimuli used in vis-
ual neuroscience would be useful for realizing the benefi ts of 
open-source software described in Section “Introduction: Open 
Source Software and Python.” Other databases, such as of neu-
ronal models (e.g., ModelDB and NeuronDB), biochemical 
reaction networks (e.g., SBML), and so on are proving useful in 
their fi elds. For visual neuroscience, Viperlib, an online visual 
perception library, might be a natural host for such a database 
of stimulus scripts for experiments. First, however, some serious 
technical issues must be solved. Although libraries like the Vision 
Egg and PsychoPy make it relatively easy to generate visual stim-
uli in a free way that is theoretically hardware independent, the 
issues of framerate, display luminance and position calibration, 
and synchronization with data acquisition and other hardware 
would all need to be addressed. Nevertheless, the availability of 
open source libraries and a number of publications based on 
them means that such endeavor could already be started.

CONCLUSION
The Vision Egg is a free and open-source programming library 
that allows scientists to produce arbitrary visual stimuli. Such 
stimuli can be specifi ed in realtime without skipping frames, 
may involve traditional stimuli such as sinusoidal gratings, or 
may be more complex, 3D, and naturalistic scenes. Features 
such as perspective correction and realtime interpolation of 
image data for sub-pixel movement are part of OpenGL and 
thus occur in realtime at little or no extra programming or 
computational cost.
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