
PYTHON IN
NEUROSCIENCE
EDITED BY : Eilif Muller, James A. Bednar, Markus Diesmann,

Marc-Oliver Gewaltig, Michael Hines and Andrew P. Davison
PUBLISHED IN : Frontiers in Neuroinformatics

http://journal.frontiersin.org/researchtopic/8/python-in-neuroscience
http://journal.frontiersin.org/researchtopic/8/python-in-neuroscience
http://journal.frontiersin.org/journal/neuroinformatics
http://journal.frontiersin.org/researchtopic/8/python-in-neuroscience

1 July 2015 | Python in NeuroscienceFrontiers in Neuroinformatics

Frontiers Copyright Statement

© Copyright 2007-2015 Frontiers
Media SA. All rights reserved.

All content included on this site,
such as text, graphics, logos, button

icons, images, video/audio clips,
downloads, data compilations and

software, is the property of or is
licensed to Frontiers Media SA

(“Frontiers”) or its licensees and/or
subcontractors. The copyright in the

text of individual articles is the property
of their respective authors, subject to

a license granted to Frontiers.

The compilation of articles constituting
this e-book, wherever published,

as well as the compilation of all other
content on this site, is the exclusive

property of Frontiers. For the
conditions for downloading and

copying of e-books from Frontiers’
website, please see the Terms for

Website Use. If purchasing Frontiers
e-books from other websites

or sources, the conditions of the
website concerned apply.

Images and graphics not forming part
of user-contributed materials may

not be downloaded or copied
without permission.

Individual articles may be downloaded
and reproduced in accordance

with the principles of the CC-BY
licence subject to any copyright or

other notices. They may not be
re-sold as an e-book.

As author or other contributor you
grant a CC-BY licence to others to

reproduce your articles, including any
graphics and third-party materials

supplied by you, in accordance with
the Conditions for Website Use and

subject to any copyright notices which
you include in connection with your

articles and materials.

All copyright, and all rights therein,
are protected by national and

international copyright laws.

The above represents a summary
only. For the full conditions see the

Conditions for Authors and the
Conditions for Website Use.

ISSN 1664-8714
ISBN 978-2-88919-608-1

DOI 10.3389/978-2-88919-608-1

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering
approach to the world of academia, radically improving the way scholarly research
is managed. The grand vision of Frontiers is a world where all people have an equal
opportunity to seek, share and generate knowledge. Frontiers provides immediate and
permanent online open access to all its publications, but this alone is not enough to
realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online
journals, promising a paradigm shift from the current review, selection and dissemination
processes in academic publishing. All Frontiers journals are driven by researchers for
researchers; therefore, they constitute a service to the scholarly community. At the same
time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing
system, initially addressing specific communities of scholars, and gradually climbing up to
broader public understanding, thus serving the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative
interactions between authors and review editors, who include some of the world’s best
academicians. Research must be certified by peers before entering a stream of knowledge
that may eventually reach the public - and shape society; therefore, Frontiers only applies
the most rigorous and unbiased reviews.
Frontiers revolutionizes research publishing by freely delivering the most outstanding
research, evaluated with no bias from both the academic and social point of view.
By applying the most advanced information technologies, Frontiers is catapulting scholarly
publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series:
they are collections of at least ten articles, all centered on a particular subject. With their
unique mix of varied contributions from Original Research to Review Articles, Frontiers
Research Topics unify the most influential researchers, the latest key findings and historical
advances in a hot research area! Find out more on how to host your own Frontiers
Research Topic or contribute to one as an author by contacting the Frontiers Editorial
Office: researchtopics@frontiersin.org

http://journal.frontiersin.org/researchtopic/8/python-in-neuroscience
http://journal.frontiersin.org/journal/neuroinformatics
http://www.frontiersin.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org

2 July 2015 | Python in NeuroscienceFrontiers in Neuroinformatics

Python is rapidly becoming the de facto standard language for systems integration. Python
has a large user and developer-base external to theneuroscience community, and a vast
module library that facilitates rapid and maintainable development of complex and intricate
systems.

In this Research Topic, we highlight recent efforts to develop Python modules for the domain
of neuroscience software and neuroinformatics:

- simulators and simulator interfaces
- data collection and analysis
- sharing, re-use, storage and databasing of models and data

PYTHON IN NEUROSCIENCE

“Python action potential” by Yaroslav Halchenko and Andrew P. Davison. Licenced under the Creative
Commons Attribution-Share Alike (CC BY-SA) 3.0 licence. Partially based on “Snake Brain” by Arno
Klein and Michael Hanke.

Topic Editors:
Eilif Muller, Ecole Polytechnique Fédérale de Lausanne, Switzerland
James A. Bednar, University of Edinburgh, UK
Markus Diesmann, Jülich Research Center and Jülich Aachen Research Alliance, Institute of
Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich,
Germany; RWTH Aachen University, Germany
Marc-Oliver Gewaltig, Ecole Polytechnique Fédérale de Lausanne, Switzerland
Michael Hines, Yale University, USA
Andrew P. Davison, Centre National de la Recherche Scientifique, Gif sur Yvette, France

http://journal.frontiersin.org/researchtopic/8/python-in-neuroscience
http://journal.frontiersin.org/journal/neuroinformatics

3 July 2015 | Python in NeuroscienceFrontiers in Neuroinformatics

- stimulus generation
- parameter search and optimization
- visualization
- VLSI hardware interfacing

Moreover, we seek to provide a representative overview of existing mature Python modules
for neuroscience and neuroinformatics, to demonstrate a critical mass and show that
Python is an appropriate choice of interpreter interface for future neuroscience software
development.

Citation: Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M.,
Davison, A. P., eds. (2015). Python in Neuroscience. Lausanne: Frontiers Media.
doi: 10.3389/978-2-88919-608-1

http://journal.frontiersin.org/researchtopic/8/python-in-neuroscience
http://journal.frontiersin.org/journal/neuroinformatics

4 July 2015 | Python in NeuroscienceFrontiers in Neuroinformatics

Table of Contents

06 Python in neuroscience
Eilif Muller, James A. Bednar, Markus Diesmann, Marc-Oliver Gewaltig, Michael Hines
and Andrew P. Davison

10 STEPS: modeling and simulating complex reaction-diffusion systems with
Python
Stefan Wils and Erik De Schutter

18 Establishing a novel modeling tool: a python-based interface for a neuromorphic
hardware system
Daniel Brüderle, Eric Müller, Andrew Davison, Eilif Muller, Johannes Schemmel and
Karlheinz Meier

28 Near-infrared neuroimaging with NinPy
Gary E. Strangman, Quan Zhang and Thomas Zeffiro

41 Network features and pathway analyses of a signal transduction cascade
Ryoji Yanashima, Noriyuki Kitagawa, Yoshiya Matsubara, Robert Weatheritt, Kotaro
Oka, Shinichi Kikuchi, Masaru Tomita and Shun Ishizaki

51 Brainlab: a Python toolkit to aid in the design, simulation, and analysis of
spiking neural networks with the NeoCortical Simulator
Rich Drewes, Quan Zou and Philip H. Goodman

61 PCSIM: a parallel simulation environment for neural circuits fully integrated
with Python
Dejan Pecevski, Thomas Natschläger and Klaus Schuch

76 OpenElectrophy: an electrophysiological data- and analysis-sharing framework
Samuel Garcia and Nicolas Fourcaud-Trocmé

86 DataViewer3D: an open-source, cross-platform multi-modal neuroimaging data
visualization tool
André Gouws, Will Woods, Rebecca Millman, Antony Morland and Gary Green

104 Topographica: building and analyzing map-level simulations from Python,
C/C++, MATLAB, NEST, or NEURON components
James A. Bednar

113 Python scripting in the Nengo simulator
Terrence C. Stewart, Bryan Tripp and Chris Eliasmith

122 Technical integration of hippocampus, basal ganglia and physical models for
spatial navigation
Charles Fox, Mark Humphries, Ben Mitchinson, Tamas Kiss, Zoltan Somogyvari and
Tony Prescott

http://journal.frontiersin.org/researchtopic/8/python-in-neuroscience
http://journal.frontiersin.org/journal/neuroinformatics

5 July 2015 | Python in NeuroscienceFrontiers in Neuroinformatics

133 Python for information theoretic analysis of neural data
Robin A. A. Ince, Rasmus S. Petersen, Daniel C. Swan and Stefano Panzeri

148 OMPC: an open-source MATLAB®-to-Python compiler
Peter Jurica and Cees van Leeuwen

157 PyMVPA: a unifying approach to the analysis of neuroscientific data
Michael Hanke, Yaroslav O. Halchenko, Per B. Sederberg, Emanuele Olivetti, Ingo
Fründ, Jochem W. Rieger, Christoph S. Herrmann, James V. Haxby, Stephen José
Hanson and Stefan Pollmann

170 PyNEST: A convenient interface to the NEST simulator
Jochen Martin Eppler, Moritz Helias, Eilif Muller, Markus Diesmann and Marc-Oliver
Gewaltig

182 NEURON and Python
Michael L. Hines, Andrew P. Davison and Eilif Muller

194 Python for large-scale electrophysiology
Martin Spacek, Tim Blanche and Nicholas Swindale

204 PyNN: a common interface for neuronal network simulators
Andrew P. Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller,
Dejan Pecevski, Laurent Perrinet and Pierre Yger

214 Generating stimuli for neuroscience using PsychoPy
Jonathan W. Peirce

222 Modular toolkit for Data Processing (MDP): a Python data processing
framework
Tiziano Zito, Niko Wilbert, Laurenz Wiskott and Pietro Berkes

229 PyMOOSE: interoperable scripting in Python for MOOSE
Subhasis Ray and Upinder S. Bhalla

245 A Python analytical pipeline to identify prohormone precursors and predict
prohormone cleavage sites
Bruce R. Southey, Jonathan V. Sweedler and Sandra L. Rodriguez-Zas

254 Brian: a simulator for spiking neural networks in Python
Dan Goodman and Romain Brette

264 Vision Egg: an open-source library for realtime visual stimulus generation
Andrew D. Straw

http://journal.frontiersin.org/researchtopic/8/python-in-neuroscience
http://journal.frontiersin.org/journal/neuroinformatics

EDITORIAL
published: 14 April 2015

doi: 10.3389/fninf.2015.00011

Frontiers in Neuroinformatics | www.frontiersin.org April 2015 | Volume 9 | Article 11

Edited and reviewed by:

Sean L. Hill,

International Neuroinformatics

Coordinating Facility, Sweden

*Correspondence:

Andrew P. Davison,

andrew.davison@unic.cnrs-gif.fr

Received: 20 March 2015

Accepted: 28 March 2015

Published: 14 April 2015

Citation:

Muller E, Bednar JA, Diesmann M,

Gewaltig M-O, Hines M and Davison

AP (2015) Python in neuroscience.

Front. Neuroinform. 9:11.

doi: 10.3389/fninf.2015.00011

Python in neuroscience

Eilif Muller 1, James A. Bednar 2, Markus Diesmann 3, 4, 5, Marc-Oliver Gewaltig 1,

Michael Hines 6 and Andrew P. Davison 7*

1Center for Brain Simulation, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland, 2 Institute for Adaptive and

Neural Computation, University of Edinburgh, Edinburgh, UK, 3 Jülich Research Center and Jülich Aachen Research Alliance,

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich, Germany, 4Department

of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany,
5Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany, 6Department of Neurobiology, Yale

University, New Haven, CT, USA, 7Neuroinformatics group Unité de Neurosciences, Information et Complexité, Centre

National de la Recherche Scientifique, Gif sur Yvette, France

Keywords: python language, software development, scientific computing, interoperability, collaboration

This Research Topic of Frontiers in Neuroinformatics is dedicated to the memory of Rolf Kötter
(1961–2010), who was the Frontiers Associate Editor responsible for this Research Topic, and who
gave us considerable support and encouragement during the process of conceiving and launching
the Topic, and throughout the reviewing process.

Computation is becoming essential across all sciences, for data acquisition and analysis, automa-
tion, and hypothesis testing via modeling and simulation. As a consequence, software development
is becoming a critical scientific activity. Training of scientists in programming, software devel-
opment, and computational thinking (Wilson, 2006), choice of tools, community-building and
interoperability are all issues that should be addressed, if we wish to accelerate scientific progress
while maintaining standards of correctness and reproducibility.

The Python programming language in particular has seen a surge in popularity across the sci-
ences, for reasons which include its readability, modularity, and large standard library. The use of
Python as a scientific programming language began to increase with the development of numer-
ical libraries for optimized operations on large arrays in the late 1990s, in which an important
development was the merging of the competing Numeric and Numarray packages in 2006 to form
NumPy (Oliphant, 2007). As Python and NumPy have gained traction in a given scientific domain,
we have seen the emergence of domain-specific ecosystems of open-source Python software devel-
oped by scientists. It became clear to us in 2007 that we were on the cusp of an emerging Python in
neuroscience ecosystem, particularly in computational neuroscience and neuroimaging, but also in
electrophysiological data analysis and in psychophysics.

Two major strengths of Python are its modularity and ability to easily “glue” together different
programming languages, which together facilitate the interaction of modular components and their
composition into larger systems. This focus on reusable components, which has proven its value in
commercial and open-source software development (Brooks, 1987), is, we contend, essential for
scientific computing in neuroscience, if we are to cope with the increasingly large amounts of data
being produced in experimental labs, and if we wish to understand and model the brain in all its
complexity.

We therefore felt that it was timely and important to raise awareness of the emerging Python in
Neuroscience software ecosystem amongst researchers developing Python-based tools, but also in
the larger neuroscience community.

Our goals were several-fold:

- establish a critical mass for Python use and development in the eyes of the community;
- encourage interoperability and collaboration between developers;
- expose neuroscientists to the new Python-based tools now available.

6 April 2015 | Volume 9 | Article 11| April 2015 | Volume 9 | Article 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2015.00011
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:andrew.davison@unic.cnrs-gif.fr
http://dx.doi.org/10.3389/fninf.2015.00011
http://www.frontiersin.org/journal/10.3389/fninf.2015.00011/full
http://community.frontiersin.org/people/u/1458
http://community.frontiersin.org/people/u/2481
http://community.frontiersin.org/people/u/630
http://community.frontiersin.org/people/u/393
http://community.frontiersin.org/people/u/396
http://community.frontiersin.org/people/u/937

Muller et al. Python in Neuroscience

From this was born the idea for a Research Topic in Frontiers
in Neuroinformatics on “Python in Neuroscience” to showcase
those projects we were aware of, and to give exposure to projects
of which we were not aware. Although it may seem strange at
first glance to center a Research Topic around a tool, rather than
around a scientific problem, we feel it is justified by the increas-
ingly critical role of scientific programming in neuroscience
research, and by the particular strengths of the Python language
and the broader Python scientific computing ecosystem.

Collected in this Research Topic are 24 articles describing
some ways in which neuroscience researchers around the world
are turning to the Python programming language to get their job
done faster and more efficiently.

Overview of the Research Topic

We will now briefly summarize the 24 articles in the Research
Topic, drawing out common themes.

Both Southey et al. (2008) and Yanashima et al. (2009) use
Python for bioinformatics applications, but in very different
areas. Yanashima et al. have developed a Python package for
graph-theoretical analysis of biomolecular networks, BioNetpy,
and employed it to investigate protein networks associated with
Alzheimer’s disease. Southey et al.’s study demonstrates the wide
breadth of application of Python, and the large number of high
quality scientific libraries available, combining existing tools for
bioinformatics, machine learning and web development to build
an integrated pipeline for identification of prohormone precur-
sors and prediction of prohormone cleavage sites.

Jurica and van Leeuwen (2009) address the needs of sci-
entists who already have significant amounts of code written
in MATLAB R© and who wish to transfer this to Python. They
present OMPC, which uses syntax adaptation and emulation to
allow transparent import of existing MATLAB R© functions into
Python programs.

Three articles reported on new tools in the domain of neu-
roimaging. Hanke et al. (2009) report on PyMVPA, a Python
framework for machine learning-based data analysis, and its
application to analysis of fMRI, EEG, MEG, and extracellu-
lar electrophysiology recordings. Gouws et al. (2009) describe
DataViewer3D, a Python application for displaying and inte-
grating data from multiple neuroimaging modalities, showcasing
Python’s abilities to easily interface with libraries written in other
languages, such as C++, and to integrate them into user-friendly
systems. Strangman et al. (2009) emphasize the advantages of
Python for “swift prototyping followed by efficient transition to sta-
ble production systems” in their description of NinPy, a toolkit for
near-infrared neuroimaging.

Zito et al. (2009) and Ince et al. (2009) both report on the
use of Python for general purpose data analysis, with a focus
on machine learning and information theory respectively. Zito
et al. have developed MDP, the Modular toolkit for Data Pro-
cessing, a collection of computationally efficient data analysis
modules that can be combined into complex pipelines. MDP
was originally developed for theoretical research in neuroscience,
but has broad application in general scientific data analysis and
in teaching. Ince et al. (2009) describe the use of Python for

information-theoretic analysis of neuroscience data, outlining
algorithmic, statistical and numerical challenges in the appli-
cation of information theory in neuroscience, and explaining
how the use of Python has significantly improved the speed and
domain of applicability of the algorithms, allowing more ambi-
tious analyses of more complex data sets. Their code is available
as an open-source package, pyEntropy.

Three articles report on tools for visual stimulus gener-
ation, for use in visual neurophysiology and psychophysics
experiments. Straw (2008) describes VisionEgg, while Peirce
(2009) presents PsychoPy, both of which are easy-to-use and
easy-to-install applications that make use of OpenGL to gener-
ate temporally and spatially precise, arbitrarily complex visual
stimulation protocols. Python is used to provide a simple, intu-
itive interface to the underlying graphics libraries, to provide
a graphical user interface, and to interface with external hard-
ware. PsychoPy can also generate and deliver auditory stimuli.
Spacek et al. (2009) also report on a Python library for visual
stimulus generation, as part of a toolkit for the acquisition and
analysis of highly parallel electrophysiological recordings from
cat and rat visual cortex. The other two components in the
toolkit are for electrophysiological waveform visualization and
spike sorting; and for spike train and stimulus analysis. The
authors note “The requirements and solutions for these projects
differed greatly, yet we found Python to be well suited for all
three.”

Also in the domain of electrophysiology, Garcia and
Fourcaud-Trocmé (2009) describe OpenElectrophy, an applica-
tion for efficient storage and analysis of large electrophysiology
datasets, which includes a graphical user interface for interactive
visualization and exploration and a library of analysis routines,
including several spike-sorting methods.

By far the largest contribution to the Research Topic came
from the field of modeling and simulation, with 12 articles on
the topic. Nine of these articles present neuroscience simulation
environments with Python scripting interfaces. In most cases, the
Python interface was added to an existing simulator written in
a compiled language such as C++. This was the case for NEU-
RON (Hines et al., 2009), NEST (Eppler et al., 2009), PCSIM
(Pecevski et al., 2009), Nengo (Stewart et al., 2009), MOOSE
(Ray and Bhalla, 2008), STEPS (Wils and De Schutter, 2009) and
NCS (Drewes et al., 2009). However, as the articles by Goodman
and Brette (2008) on the Brian simulator and Bednar (2009) on
the Topographica simulator demonstrate, it is also possible to
develop new simulation environments purely in Python, making
use of the vectorization techniques available in the underlying
NumPy package to obtain computational efficiency. The range
of modeling domains of these simulators is wide, from stochas-
tic simulation of coupled reaction-diffusion systems (STEPS),
through simulation of morphologically detailed neurons and
networks (NEURON, MOOSE), highly-efficient large-scale net-
works of spiking point neurons (NEST, PCSIM, NCS, Brian) to
population coding or point-neuron models of large brain regions
(Nengo, Topographica). Note that although we have catego-
rized each simulator by its main area of application, most of
these tools support modeling at a range of scales and levels of
detail: Bednar (2009), for example, describes the integration of a

Frontiers in Neuroinformatics | www.frontiersin.org April 2015 | Volume 9 | Article 11 7|

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Muller et al. Python in Neuroscience

spiking NEST simulation as one component in a Topographica
simulation.

The addition of Python interfaces to such a large number of
widely used simulation environments suggested a huge oppor-
tunity to enhance interoperability between different simulators,
making use of the common scripting language, which in turn has
the potential to enhance the transfer of technology, knowledge
and models between users of the different simulators, and to pro-
mote model reuse. Davison et al. (2009a) describe PyNN, a com-
mon Python interface to multiple simulators, which enables the
same modeling and simulation script to be run on any supported
simulator without modification. At the time of writing, PyNN
supports NEURON, NEST, PCSIM and Brian, with MOOSE sup-
port under development. The existence of such a common “meta-
simulator” then makes it much easier for scientists developing
new, hardware-based approaches to neural simulation to engage
with the computational neuroscience community, as evidenced
by the article by Brüderle et al. (2009) on interfacing a novel
neuromorphic hardware system with PyNN.

Finally, Fox et al. (2009) describe the possibilities when one is
not limited to a single simulator, but can use Python to integrate
multiple models into a brain-wide system. In their development
of an integrated basal ganglia-hippocampal formation model for
spatial navigation and its embodiment in a simulated robotic
environment, Fox et al. found that Python offers “a significant
reduction in development time, without a corresponding significant
increase in execution time.”

It is important to note that most or all of the Python tools
and libraries described in the Research Topic are open source and
hence free to download, use and extend.

Discussion

This editorial is being written 6 years after the first articles in
the Research Topic were published. It is with the benefit of con-
siderable hindsight, therefore, that we can confidently say that
our goals in launching this Research Topic—to establish a critical
mass for Python use and development in the eyes of the commu-
nity and to encourage interoperability and collaboration between
developers—have been met or exceeded.

The average number of citations per article for the Research
Topic as a whole is 54, or approximately 9 per year, using figures
from Google Scholar. Although citation counts from Google
Scholar tend to be higher than those from Journal Citation
Reports so the numbers are not directly comparable, this com-
pares favorably with the impact factors of well respected journals
such as Journal of Neuroscience or PLoS Computational Biology.
Some of the articles were much more highly cited, with three
of them being cited more than 20 times per year, on average,
over the period. Four of the articles were chosen to “climb the
tier” in the Frontiers system, and were followed up by Focused
Review articles in Frontiers in Neuroscience (Davison et al.,
2009b; Goodman and Brette, 2009; Hanke et al., 2010; Ince et al.,
2010), another was the subject of a commentary (Einevoll, 2009).

Concerning the goals of interoperability and collaboration,
several articles in a follow-up volume Python in Neuroscience II
attest to the degree to which the developers of different tools

have worked together, and prioritized interoperability in recent
years. For example, the developers of OpenElectrophy (Gar-
cia and Fourcaud-Trocmé, 2009) and the community around
PyNN (Davison et al., 2009a) formed the nucleus of an effort to
develop a baseline Python representation for electrophysiology
data, which resulted in the Neo project, reported in the Python
in Neuroscience II Research Topic (Garcia et al., 2014) together
with two of the several projects which build on Neo (Pröpper and
Obermayer, 2013; Sobolev et al., 2014). A new workflow system
for computational neuroscience, Mozaik (Antolík and Davison,
2013) builds on both PyNN and Topographica (Bednar, 2009).
PyNEST (Eppler et al., 2009) and PyNN developers collaborated
with the INCF to improve the interoperability between these tools
(Djurfeldt et al., 2014) when using the Connection Set Algebra
(Djurfeldt, 2012). Finally, a number of tools have been built on
the Python interface to NEURON (Hines et al., 2009), including
morphforge (Hull and Willshaw, 2014) and LFPy (Lindén et al.,
2014).

Observing the rapid growth in adoption of Python in neuro-
science over the last 6 years, which appears to continue to accel-
erate, it is clear that Python is here to stay, which augurs well for
the growth, productivity, and rigor of computational methods in
neuroscience.

References

Antolík, J., and Davison, A. P. (2013). Integrated workflows for spiking neuronal

network simulations. Front. Neuroinform. 7:34. doi: 10.3389/fninf.2013.00034

Bednar, J. A. (2009). Topographica: building and analyzing map-level simula-

tions from Python, C/C++, MATLAB, NEST, or NEURON components. Front.

Neuroinform. 3:8. doi: 10.3389/neuro.11.008.2009

Brooks, F. P. Jr. (1987). No silver bullet: essence and accidents of software

engineering. Computer 20, 10–19. doi: 10.1109/MC.1987.1663532

Brüderle, D., Müller, E., Davison, A. P., Muller, E., Schemmel, J., and Meier,

K. (2009). Establishing a novel modeling tool: a Python-based inter-

face for a neuromorphic hardware system. Front. Neuroinform. 3:17 doi:

10.3389/neuro.11.017.2009

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,

et al. (2009a). PyNN: a common interface for neuronal network simulators.

Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Davison, A. P., Hines, M., and Muller, E. (2009b). Trends in programming

languages for neuroscience simulations. Front. Neurosci. 3, 374–380. doi:

10.3389/neuro.01.036.2009

Djurfeldt, M. (2012). The connection-set algebra—a novel formalism for the rep-

resentation of connectivity structure in neuronal network models. Neuroinfor-

matics 10, 287–304. doi: 10.1007/s12021-012-9146-1

Djurfeldt, M., Davison, A. P., and Eppler, J. M. (2014). Efficient genera-

tion of connectivity in neuronal networks from simulator-independent

descriptions. Front. Neuroinform. 8:43. doi: 10.3389/fninf.2014.

00043

Drewes, R. P., Zou, Q., and Goodman, P. H. (2009). Brainlab: a Python

toolkit to aid in the design, simulation, and analysis of spiking neural

networks with the NeoCortical Simulator. Front. Neuroinform. 3:16. doi:

10.3389/neuro.11.016.2009

Einevoll, G. T. (2009). Sharing with Python. Front. Neurosci. 3, 334–335. doi:

10.3389/neuro.01.037.2009

Frontiers in Neuroinformatics | www.frontiersin.org April 2015 | Volume 9 | Article 11 8|

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Muller et al. Python in Neuroscience

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. O. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008

Fox, C. W., Humphries, M. D., Mitchinson, B., Kiss, T., Somogyva, Z., and

Prescott, T. J. (2009). Technical integration of hippocampus, basal ganglia

and physical models for spatial navigation. Front. Neuroinform. 3:6. doi:

10.3389/neuro.11.006.2009

Garcia, S., and Fourcaud-Trocmé, N. (2009). OpenElectrophy: an electrophysio-

logical data- and analysis-sharing framework. Front. Neuroinform. 3:14. doi:

10.3389/neuro.11.014.2009

Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P. L., et al.

(2014). Neo: an object model for handling electrophysiology data in multiple

formats. Front. Neuroinform. 8:10. doi: 10.3389/fninf.2014.00010

Goodman, D. F., and Brette, R. (2009). The Brian simulator. Front. Neurosci. 3,

192–197. doi: 10.3389/neuro.01.026.2009

Goodman, D. F. M., and Brette, R. (2008). Brian: a simulator for spiking neural

networks in Python. Front. Neuroinform. 2:5 doi: 10.3389/neuro.11.005.2008

Gouws, A. D., Woods, W., Millman, R. E., Morland, A. B., and Green,

G. G. R. (2009). Dataviewer3D: an open-source, cross-platform multi-

modal neuroimaging data visualization tool. Front. Neuroinform. 2:9. doi:

10.3389/neuro.11.009.2009

Hanke, M., Halchenko, Y. O., Haxby, J. V., and Pollmann, S. (2010). Statistical

learning analysis in neuroscience: aiming for transparency. Front. Neurosci. 4,

38–43. doi: 10.3389/neuro.01.007.2010

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W.,

et al. (2009). PyMVPA: a unifying approach to the analysis of neuroscientific

data. Front. Neuroinform. 3:3. doi: 10.3389/neuro.11.003.2009

Hines, M., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.

Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hull, M. J., and Willshaw, D. J. (2014). Morphforge: a toolbox for simulating small

networks of biologically detailed neurons in Python. Front. Neuroinform. 7:47.

doi: 10.3389/fninf.2013.00047

Ince, R. A. A., Mazzoni, A., Petersen, R. S., and Panzeri, S. (2010). Open source

tools for the information theoretic analysis of neural data. Front. Neurosci. 4,

62–70. doi: 10.3389/neuro,0.01.011.2010

Ince, R. A. A., Petersen, R. S., Swan, D. C., and Panzeri, S. (2009). Python for

information theoretic analysis of neural data. Front. Neuroinform. 3:4. doi:

10.3389/neuro.11.004.2009

Jurica, P., and van Leeuwen, C. (2009). OMPC: an open-source MATLAB R©-to-

Python compiler. Front. Neuroinform. 3:5. doi: 10.3389/neuro.11.005.2009

Lindén, H., Hagen, E., Łęski, S., Norheim, E. S., Pettersen, K. H., and Einevoll,

G. T. (2014). LFPy: a tool for biophysical simulation of extracellular poten-

tials generated by detailed model neurons. Front. Neuroinform. 7:41. doi:

10.3389/fninf.2013.00041

Oliphant, T. E. (2007). Python for scientific computing.Comput. Sci. Eng. 9, 10–20.

doi: 10.1109/MCSE.2007.58

Pecevski, D., Natschläger, T., and Schuch, K. (2009). PCSIM: a parallel simu-

lation environment for neural circuits fully integrated with Python. Front.

Neuroinform. 3:11. doi: 10.3389/neuro.11.011.2009

Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Front.

Neuroinform. 2:10. doi: 10.3389/neuro.11.010.2008

Pröpper, R., and Obermayer, K. (2013). Spyke Viewer: a flexible and extensible

platform for electrophysiological data analysis. Front. Neuroinform. 7:26. doi:

10.3389/fninf.2013.00026

Ray, S., and Bhalla, U. S. (2008). PyMOOSE: interoperable scripting in Python for

MOOSE. Front. Neuroinform. 2:6. doi: 10.3389/neuro.11.006.2008

Sobolev, A., Stoewer, A., Pereira, M., Kellner, C. J., Garbers, C., Rautenberg

P. L., et al. (2014). Data management routines for reproducible research

using the G-Node Python Client library. Front. Neuroinform. 8:15. doi:

10.3389/fninf.2014.00015

Southey, B., Sweedler, J., and Rodriguez-Zas, S. (2008). A Python ana-

lytical pipeline to identify prohormone precursors and predict pro-

hormone cleavage sites. Front. Neuroinform. 2:7. doi: 10.3389/neuro.11.

007.2008

Spacek, M. A., Blanche, T., and Swindale, N. (2009). Python for large-

scale electrophysiology. Front. Neuroinform. 2:9. doi: 10.3389/neuro.11.

009.2008

Stewart, C., Tripp, B., and Eliasmith, C. (2009). Python scripting in the Nengo

simulator. Front. Neuroinform. 2:7. doi: 10.3389/neuro.11.007.2009

Strangman, G. E., Zhang, Q., and Zeffiro, T. (2009). Near-infrared neu-

roimaging with NinPy. Front. Neuroinform. 2:12. doi: 10.3389/neuro.11.

012.2009

Straw, A. D. (2008). Vision egg: an open-source library for realtime visual stimulus

generation. Front. Neuroinform. 2:4. doi: 10.3389/neuro.11.004.2008

Wilson, G. (2006). Software carpentry: getting scientists to write better code

by making them more productive. Comput. Sci. Eng. 8, 66–69. doi:

10.1109/MCSE.2006.122

Wils, S., and De Schutter, E. (2009). STEPS: modeling and simulating com-

plex reaction-diffusion systems with Python. Front. Neuroinform. 3:15. doi:

10.3389/neuro.11.015.2009

Yanashima, R., Kitagawa, N., Matsubara, Y., Weatheritt, R., Oka, K., Kikuchi, S.,

et al. (2009). Network features and pathway analyses of a signal transduction

cascade. Front. Neuroinform. 2:13. doi: 10.3389/neuro.11.013.2009

Zito, T., Wilbert, N., Wiskott, L., and Berkes, P. (2009). Modular toolkit for data

processing (MDP): a Python data processing framework. Front. Neuroinform.

2:8. doi: 10.3389/neuro.11.008.2008

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Muller, Bednar, Diesmann, Gewaltig, Hines and Davison. This is

an open-access article distributed under the terms of the Creative Commons Attribu-

tion License (CC BY). The use, distribution or reproduction in other forums is per-

mitted, provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org April 2015 | Volume 9 | Article 11 9|

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 29 June 2009
doi: 10.3389/neuro.11.015.2009

INTRODUCTION
Computational modeling and simulation of signaling pathways has
become a valuable and established tool for studying the molecular
aspects of biological systems (Bhalla, 2004; Doi et al., 2005; Holmes,
2000; Kuroda et al., 2001; Lindskog et al., 2006; Miller et al., 2005;
Smolen et al., 2006; Stefan et al., 2008). Modeling such systems
consists of identifying the molecular players and describing the
stoichiometry and rate constants of their chemical interactions.
The resulting system is then often simulated by converting it to a
set of coupled ordinary differential equations that can be numeri-
cally integrated (Press et al., 2007).

It has long been acknowledged that the discrete nature of reac-
tion events, caused by the very low numbers of key molecules being
present, can make biological reaction systems noisy and affect their
behavior on a macroscopic level. This aspect can be brought into
the simulation by adding noise terms to the differential equa-
tions (Kloeden and Platen, 1999; van Kampen, 2007), or more
commonly, by simulating the system with Gillespie’s Stochastic
Simulation Algorithm or SSA (Gillespie, 1977) or one of its deriva-
tions (Gillespie, 2007).

For some pathways, however, even more realism is needed. One
such case is when the spatial organization and morphology of the
cell is known to play an active role in controlling the pathway, e.g.
through chemical compartmentalization, spatial gradients and by
various transport processes and diffusion (Lemerle et al., 2005).
Such cases are common in neurons because of their complex den-
dritic arborization (Santamaria et al., 2006), but of course are not
limited to them.

In order to study systems at the level where stochasticity, spatial
gradients within complex boundary conditions and diffusion all
come into play at the same time, we have developed a simulation
platform called STEPS (STochastic Engine for Pathway Simulation)
that uses an extension of Gillespie’s SSA to deal with diffusion

STEPS: modeling and simulating complex reaction-diffusion
systems with Python

Stefan Wils1,2 and Erik De Schutter1,2*

1 Theoretical Neurobiology, University of Antwerp, Belgium
2 Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan

We describe how the use of the Python language improved the user interface of the program
STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled
reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such
models is a complicated process that consists of many phases. Initial versions of STEPS relied
on a static input format that did not cleanly separate these phases, limiting modelers in how
they could control the simulation and becoming increasingly complex as new features and
new simulation algorithms were added. We solved all of these problems by tightly integrating
STEPS with Python, using SWIG to expose our existing simulation code.

Keywords: Python, software, simulator, reaction kinetics, 3D diffusion, signaling pathway, scripting

of molecules in 3-dimensional reconstructions of neuronal
 morphology and tissue (Wils and De Schutter, 2009). STEPS com-
putes reactions occurring between diffusing molecules in volumes,
and, in addition, also surface reactions to simulate channel fl uxes
and ligand-receptor binding. Our algorithm differs from a similar
approach described in Elf and Ehrenberg (2004) mainly in that it
is based upon the use of tetrahedral meshes which are particularly
well-suited for representing biological morphology and that we
avoid the use of a heap structure.

In this paper, based on a presentation made at the FACETS
CodeJam #2 workshop ‘Building the meta-simulator tool-chain:
leveraging Python for a robust and effi cient workfl ow in compu-
tational neuroscience’, describes how Python scripting is used for
working with models in STEPS. We also show how, in this particular
problem domain, adding Python scripting improved the quality
and maintainability of STEPS in a fundamental way.

SOFTWARE
BRIEF DESCRIPTION OF STEPS ALGORITHM
Stochastic simulation of reaction-diffusion processes can occur
in a number of ways. One way is to track each reacting molecule
as an independent particle that undergoes Brownian motion and
occasionally collides with one of the other tracked molecules. This is
the approach taken by such programs as M-Cell (Stiles and Bartol,
2001) and Smoldyn (Andrews and Bray, 2004).

Another approach is voxel-based; here one keeps track of how
much molecules are present from any given species within a set of
small volumes. By keeping these reaction volumes or voxels small
enough, we can state that the concentration gradients within each
voxel are negligible: the voxel is approximately well-mixed. Then
we can apply SSA (Gillespie, 1976) by adding an extra reaction
rule for each type of molecule for its diffusion step from one voxel
to a neighboring one. Thus SSA handles both diffusion processes

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Jeanette Kotaleski, Karolinska Institute,
Sweden
Kim Avrama Blackwell, George Mason
University, Krasnow Institute, USA

*Correspondence:

Erik De Schutter, Theoretical
Neurobiology, Biomedical Sciences
Department, University of Antwerp,
Universiteitsplein 1, 2610 Wilrijk,
Belgium.
e-mail: erik@tnb.ua.ac.be

10

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 |

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

and reaction mechanisms from within one single simulation
 framework. Though this approach is abstracted more from the
underlying physical mechanisms than modeling Brownian motion,
it offers a number of advantages. Because diffusion is uncoupled
from chemical reaction, the modeler can decide for each type of
molecule, considering the timeframe being simulated, whether it
makes sense to implement diffusion or not. At the coding level,
much less bookkeeping is necessary because one does not track
individual molecules, giving rise to leaner and potentially faster
code. It also facilitates combining SSA with approximate, faster
methods such as tau-leaping (Gillespie, 2001).

STEPS simulates molecular reaction-diffusion in volumes
which are bounded by membranes. These membranes can con-
tain stationary reacting molecules, including channel proteins.
To simulate the behavior of these systems, STEPS adapts the
Direct Reaction Method version of SSA (Gillespie, 1976) for
large systems by storing the propensity values for each process
in a search tree. STEPS 0.4 implements two distinct stochastic
solvers: a spatial solver (called tetexact) and an auxiliary well-
mixed solver (called wmdirect, this does not model diffusion).
Such well-mixed solvers are useful assistants because setting up
a spatial model can benefi t greatly from analyzing and tuning
parts of the biochemical model under simpler conditions (Wils
and De Schutter, 2009). In the future additional solvers will be
added, including a deterministic one (based on Runge-Kutta
integration; Press et al., 2007) and an extension of tetexact that
includes diffusion in membranes.

STEPS WORKFLOW
Figure 1 shows a typical workfl ow for developing and simulating
a 3-dimensional reaction-diffusion system and how the different
phases can relate to each other. The fi rst step, biochemical mod-
eling, consists of describing reaction stoichiometry and selecting
reaction rates and diffusion constants. Since this is independent to
a large degree of the actual algorithm that will be used for simula-
tion (i.e. numerical integration of ODE’s vs stochastic simulation;
with or without diffusion; …), it is common practice to import and

compose this type of information from previous modeling efforts
through formats such as SBML (Hucka et al., 2003)1.

Mesh generation, or more generally speaking describing the geo-
metric boundaries of the problem, is another step. Since tetrahe-
dral meshes are supported both by stochastic solvers (Wils and De
Schutter, 2009) as well as more traditional methods based on numeri-
cal integration of systems of partial differential equations (Ferziger
and Peric, 2002), they are fairly independent of the algorithm that
will be used at a later stage. In addition, a mesh can be reused with
multiple modeling and simulation studies, a distinct advantage con-
sidering that their generation can be a rather elaborate task, especially
for meshes based on imaging data (Means et al., 2006).

Because of their independence, the previous two phases can
easily be performed in parallel, or even by separate groups. The
only point where everything needs to come together and link up,
is at the start of the third phase: running a simulation. This phase
is the focus of STEPS and will be detailed below.

The fourth and fi nal phase is the most important and daunt-
ing of all: collecting the simulation results, analyzing them and,
if necessary, readjusting the biochemical model. Even more than
was the case with the fi rst two phases, different modelers will want
to rely on different tools for this task. A logical option for STEPS
modeling results are the many packages already available for Python
(Scipy, Matplotlib, …).

In the rest of this section, we will implement the simple toy model
in Figure 2 to examine in more detail how different STEPS packages
support each of the fi rst three phases of our modeling cycle independ-
ently. We will show how easy it is to go from well-mixed to spatial
simulations and back. We will then conclude our discussion of STEPS
by looking at it from an architectural point of view and discuss the
multiple roles that Python plays in allowing STEPS users to combine
all the components of this cycle into a modeling pipeline.

BIOCHEMICAL MODEL DESCRIPTION
The objects that together defi ne the biochemical aspects of a STEPS
model are written directly in Python and are grouped in pack-
age steps.model. The following snippet of Python code shows how
to implement the simple toy model from Figure 2 using these
objects:

from steps.model import *

Create the model m
m = Model()

FIGURE 1 | Workfl ow for reaction-diffusion modeling with four phases.

FIGURE 2 | This simple model, which is inspired by calcium dynamics,

will be used to explain the STEPS implementation. It consists of two
distinct chemical environments separated by a membrane. A substance X can
be bound to buffer molecules of type A and B or it can be transported through
a membrane channel C from one volume to the other.

1http://www.sbml.org

11

http://www.sbml.org

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 |

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

Define all species of molecules in the model m
a = Spec('A', m)
b = Spec('B', m)
c = Spec('C', m)
x = Spec('X', m)
ax = Spec('AX', m)
bx = Spec('BX', m)

Set up volume A of m and define all reactions in A
vs_ak = Volsys('A_kin', m)
partners, right hand side partners and a rate
constant.
hand side partners and a rate constant.
ax_f = Reac('AX_f', vs_ak, lhs=[a,x], rhs=[ax],\
 kcst = 1.0e8)
ax_b = Reac('AX_b', vs_ak, lhs=[ax], rhs=[a,x],\
 kcst = 1.0e3)
Set a diffusion constant for x
vs_ak_xdiff = Diff('AX_xdiff', vs_ak, x,\
 dcst = 0.065e-9)

Set up volume B of m and define all reactions in B
vs_bk = Volsys('B_kin', m)
bx_f = Reac('BX_f', vs_bk, lhs=[b,x], rhs=[bx],\
 kcst = 2.0e8)
bx_b = Reac('BX_b', vs_bk, lhs=[bx], rhs=[b,x],\
 kcst = 2.0e3)
vs_bk_xdiff = Diff('BX_xdiff', vs_bk, x,\
 dcst = 0.065e-9)

Set up simple membrane channel kinetics for C. With
surface reactions, the reactants (lhs) and products
(rhs) have to be marked as being located on the
inside (i), outside (o) or surface (s) of the
membrane.
ss_cchan = Surfsys('C_chan', m)
c_xflux_f = SReac('C_Xflux_f', ss_cchan, vlhs=[x],\
 slhs=[c], orhs=[x], srhs=[c])
c_xflux_f.kcst = 10.0e6
c_xflux_b = SReac('C_Xflux_b', ss_cchan, vlhs=[x],\
 slhs=[c], irhs=[x], srhs=[c])
c_xflux_b.kcst = 10.0e6

As one can see the model is created through a series of Python
function calls that map onto STEPS code (see Figure 4). Volume
systems (objects of class Volsys) describe the chemical properties
of volume solutions, which comprise the stoichiometry and rate
constants of reaction channels and the diffusion constants for all
diffusing species in that solution. Surface systems (objects of class
Surfsys) describe the chemical properties of membranes, such as
ligand-receptor binding and unbinding or channel currents. Note
that some information is given implicitly: because no diffusion
constants are supplied for the molecular species A, B and AX, BX
these are considered immobile.

Demonstrating the independence between the model construc-
tion phases mentioned earlier, this code shows that this level of
description is completely separate from the geometry or the spatial
‘location’ of these volume and surface systems, and of the initial and
boundary conditions or simulation events. Volsys and Surfsys are
essentially just static template objects that group together related
reaction rules and that will, at a later point in time, be instantiated on
the actual simulation geometry. This uncoupling, which is somewhat

different from the approach used in SBML where the kinetic equa-
tions are usually mixed with compartment defi nitions and initial
conditions, makes it easy for modelers to compose and recombine
their biochemical models with different geometric descriptions. Since
the objects themselves are in the end still just static hierarchies, a
linking point with formats such as SBML or CellML2 remains.

3D BOUNDARIES: TETRAHEDRAL MESHES
STEPS uses unstructured, tetrahedral meshes (Ferziger and Peric,
2002; see Figure 3A for an example) to describe the geometric
domain in 3-dimensional detail. In these meshes, elements are not
numbered along principal axes and do not have to be perfectly
regular, allowing them to adapt to the local level of detail and to
follow an arbitrary set of domain boundaries rather smoothly. We
will not describe the Python scripting (steps.mesh) in detail, but
instead focus on the conceptual approach.

To organize the simulation space into biological structures
STEPS uses the notion of ‘compartment’ for volumes and ‘patches’
for surfaces. For example, compartments can represent physical
regions such as the cytoplasm, ER lumen or cellular exterior. In
order to be useful for a simulation, the tetrahedral mesh has to be
annotated so that each tetrahedron is assigned to a ‘compartment’
(objects of class Comp) and each triangle is assigned to a ‘patch’
(objects of class Patch). When these objects are used directly, instead
of a mesh, it is possible to describe a well-mixed geometry that can
be used in well-mixed simulations, similar to the compartments
found in SBML.

Eventually, Comp and Patch objects will refer to one or more vol-
ume systems or surface systems, respectively. As detailed in the next
section, these references are resolved during the initialization phase
of a simulation, when a model description is combined with a mesh
object. At any point prior to simulation, however, these references
are stored simply as string values, allowing users to manipulate
meshes independently of any biochemical model. A mesh can be
stored with or without such references, making it easy to reuse a
mesh for simulating many different biochemical models.

As is the case with the objects of package steps.model, meshes are
Python objects that can be manipulated using Python scripts or from
the Python command line. It therefore becomes easier to automate
many tasks and to write custom importers or exporters for various
forms of 3D data. Currently, STEPS directly supports importing
meshes from the freely available tetmesh generator TetGen3.

In the following snippet of code, we load a previously gener-
ated mesh (Figure 3A) stored in an archive. The mesh, which is
used for demonstration purposes only, consists of two cylindrical
compartments (called outer and inner) separated by a membrane
patch called imem. This could represent, for example, a segment of
dendrite with endoplasmic reticulum in its center. We link the mesh
to our toy model by assigning these compartments and patches to
volume systems and surface systems as needed.

load the annotated mesh from a Python pickled archive
meshf = open('cyl.dat')
mesh = pickle.load(meshf)

2http://www.cellml.org
3http://tetgen.berlios.de

12

http://www.cellml.org
http://tetgen.berlios.de

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 |

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

meshf.close()
assign volume and surface systems to different parts
of the mesh
mesh.getComp('outer').addVolsys('A_kin')
mesh.getComp('inner').addVolsys('B_kin')
mesh.getPatch('imem').addSurfsys('C_chan')

Notice that we only needed three line of code to perform this
link to a fairly complex mesh.

RUNNING A SIMULATION
The third phase in the modeling cycling is to simulate the model
with a numerical solver. To do this in STEPS, a solver object must
be created. This basically consists of one line of code in which
this object is created and initialized with the biochemical model, a

geometric description and a random number generator. It is from
within the constructor of this solver object that all references from
the Comp and Patch objects to the Volsys and Surfsys objects are
resolved in order to create the appropriate data structures needed
to represent the state of the simulation.

rng = steps.rng.create('mt19937')
rng.initialize(datetime.datetime.now().microsecond)
sim = steps.tetexact.Solver(m, mesh, rng)
Make the simulator ready for action.
sim.reset()

The spatial solver (steps.tetexact) used in this example only
accepts tetrahedral meshes, whereas the well-mixed solver (steps.
wmdirect) can accept both a well-mixed description or a tetmesh,

FIGURE 3 | The mesh used in the code examples for setting up initial conditions. (A) This opaque view with a cut-out shows that 21090 tetrahedons are used to
describe one cylinder surrounding another one. (B) Membrane channels C are distributed randomly over the inner membrane. (C) A uniform initial distribution for
molecules A and B. (D) A Gaussian distribution in the center of the outer cylinder for X.

13

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 |

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

from which the well-mixed features can be transparently extracted.
Note that in the latter case the defi nition of diffusion constants in
our toy model would be ignored automatically. The only change
needed for setting up a well-mixed simulation would be in the
third line of the code example, where steps.wmdirect.Solver would
be evoked instead.

All current and future solver objects, regardless of their under-
lying algorithm or of their spatial or well-mixed nature, provide
the same API through which the modeler can access the inter-
nal state of the simulation from within Python, in order to set
initial conditions and to control the simulation. This internal
state includes the local amount of molecules for different spe-
cies, but also whether these species are buffered, the reaction and
diffusion constants and whether reaction channels are active or
not. All of these properties can be manipulated for individual
tetrahedrons and triangles (in mesh-based solvers), or for entire
compartments and patches at a time (in both mesh-based and
well-mixed solvers). In Figures 3B–D we show three possible ini-
tial conditions for the concentration of X from our toy model.
We fi rst inject 100 channels of species C in the inner membrane
imem (Figure 3B):

sim.setPatchCount('imem','C',100)

Next, we inject 1500 molecules of species A in the outer compart-
ment and set the concentration of species B in the inner compart-
ment to 1 µM, spread out uniformly (Figure 3C):

sim.setCompCount('outer', 'A', 1500)
sim.setCompConc('inner', 'B', 1.0e-6)

Note that in both examples the position of channels or molecules
is automatically randomized with uniform distributions. Because
the API also allows access to the simulation state at the level of
individual tetrahedrons, we can program arbitrarily complex initial
conditions and runtime events. In the next piece of code we show
how this can be used to generate a normally distributed pulse injec-
tion of X in the outer compartment with a given peak amplitude
and width centered in the middle (Figure 3D):

Set the concentration of a species in a compartment
using a 3D density function.
def setCompConcDensity(sim, mesh, compname, specname,
 conc, dens, sampling=10):
 r = steps.rng.create('mt19937')
 r.initialize(datetime.datetime.now().microsecond)
 # Loop over all tetrahedrons of the requested
 # compartment
 for t in mesh.getComp(compname).tets:
 # Generate a number of random points in the
 # current tetrahedron and use these points
 # to sample the density function.
 dens2 = dens(t.getRanPnt(r, sampling)).mean()
 # Set the concentration in the tetrahedron to
 # the product of mean density value and the
 # peak concentration.
 sim.setTetConc(t.idx, specname, conc * dens2)

Example of a density function which generates a
Gaussian distribution

def dGaussian(p):
 m = 0.0
 s = 1.0e-6
 m2 = (p[:,0]-m)
 return np.exp(-(m2*m2) / (2*s*s))

use both functions to set the initial conditions
setCompConcDensity(sim, mesh, 'outer', 'X', 20.0e-6,\
dGaussian)

These examples show the great fl exibility that Python offers in
setting up initial conditions for the simulation. In addition, the API
also features the actual control functions that allow one to reset a
simulation, to advance the simulation to some future time and to
sample the simulation state.

WHY PYTHON?
To understand the design of the STEPS software package, a short
history is useful. An earlier incarnation of STEPS consisted of a sin-
gle standalone C++ application. Being focused on the simulation
algorithm itself, not much thought was given to issues related to
model description and simulation control and these aspects were put
together in a single custom XML-based format. We didn’t use SBML
at the time because it lacked support for models with detailed 3D fea-
tures. Meshes had to be stored in a separate custom data format and
were referenced by fi lename from within these XML input fi les.

The limitations of our fi rst implementation became apparent
rather quickly. We discovered that, because of the spatial aspects,
describing the initial state of a 3D reaction-diffusion system is more
complicated than describing the initial state of a well-mixed simu-
lation. People might not just want to set initial values in compart-
ments as a whole, but inject molecules or manipulate rate constants
using more sophisticated geometric patterns, for instance using
a Gaussian distribution to mimic the result of a laser uncaging
event (Wang and Augustine, 1995; see Figure 3D). Sometimes the
simulation might require this release pattern to be confi ned to a
particular compartment; other simulations might want the pattern
to be applied globally.

Coming up with an XML-based way of describing a wide range
of in-simulation events, a problem similar and closely related
to the problem of setting up initial conditions, and output gen-
eration proved to be quite diffi cult. By far the most common
use case would be to have events occur on specifi c times during
the course of a simulation. But what if an event would have to
depend on some condition being met, such as the concentra-
tion of some species reaching a threshold? We ended up with
an increasingly rich fauna of trigger, action and output objects
which covered many possibilities, but which was complicated and
costly to maintain and in the end still left many rare but sensible
use cases uncovered.

When at some point we also started thinking about supporting
well-mixed solvers directly from within STEPS, we decided that
our old approach had reached its limits and set out to redesign
STEPS by integrating it closely with a fully-featured scripting lan-
guage. Python was chosen because it is a mature language, simple
to learn and already had a widespread user base in the computa-
tional sciences, with a wide selection of third-party packages and
documentation to match. As described above, its object oriented

14

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 |

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

features allowed us to express the relationship between well-mixed
and spatial models in a way that facilitates switching between the
corresponding classes of simulators. Python’s excellent XML fea-
tures will allow us to keep up with projects such as SBML when their
support for spatial modeling matures. Finally, Python can be used
to integrate many miscellaneous tasks related to simulation that
would otherwise typically be done with shell scripting. Examples
are copying fi les to their right location, cleaning up, initiating a
data processing or compacting method directly after a simulation
fi nishes, etc.

The redesign was a major effort. The only part that could be
reused from the old STEPS was the core simulator code, i.e. the
solver currently known as tetexact. Everything else had to be rewrit-
ten following the modeling workfl ow described in Figure 1. We
designed the solver API mentioned above and implemented it for
our two current solvers. These API implementations were then
exposed to Python using SWIG4, where they were further wrapped
in a Python-side Solver base class that performs argument checking
and provides some extra higher-level functionality. Much of the
code for setting up a solver is the same for all current and future
solvers and was therefore put in a shared set of C++ fi les. This
reduces the amount of ‘plumbing code’ that needs to be written for
a new solver, while still allowing considerable freedom in choosing
the ultimate algorithm-specifi c internal data structures.

The main fl aw of our fi rst version of Pythonizing STEPS, as
shown in Figure 4, is the many layers that have to be passed to go
from calling a solver object method to the actual solver code and
back. This may become a performance bottleneck when one is
running a simulation that is interrupted repeatedly over small time
intervals. This problem may be resolved in several ways. We can
recode the Python-side Solver class, which is shared by all solvers,
in C++ and derive an actual individual solver by overriding pro-
tected virtual methods. To avoid even the cost of virtual calls in this
scenario, we can employ the Curiously Recurring Template Pattern
(Vandevoorde and Josuttis, 2003). Alternatively, we can switch from
SWIG to Boost.Python5, an ingenious method of exposing C++

code to Python that does not result in a Python-side shadow class,
as is the case with SWIG.

DISCUSSION
We have described how STEPS mixes C++ with Python script-
ing to give modelers greater freedom in setting up and simulat-
ing a model, while maintaining the effi ciency of compiled and
optimized C++ code. We described how going the extra mile to
make a scientifi c simulator fully scriptable in this way has con-
siderable advantages. Because of the many scientifi c computing
packages already available for Python, computational scientists
are encouraged to develop sophisticated pipelines in which mod-
eling, simulation and even post processing and visualization are
highly automated. In addition, we fi nd that the neural simulators
such as Neuron (Carnevale and Hines, 2006) and Moose6 have
committed to supporting Python, leading some to forward the
challenging but intriguing possibility of using Python to actually
‘glue’ together simulations (Cannon et al., 2007). One should keep
in mind, however, that naively using an interpreted language like
Python to exchange and map state information between simula-
tors at each time step might quickly run into performance and
numerical issues that could be avoided only by deeper integra-
tion at the algorithmic level. Alternatives like the MUSIC project
(Ekeberg and Djurfeldt, 2008) might therefore be better suited
for this.

Like many before us, we have successfully used SWIG to expose
our existing C++ simulation core to Python. The main techni-
cal issue that we encountered is the many layers between the user
script and the C++ code which, as mentioned, can be resolved by
porting the solver interface to C++ and possibly by switching to
Boost.Python.

In the specifi c context of modeling 3D reaction-diffusion
simulations we found that using Python had a large advantage
for describing a complex internal state. There are many ways in
which a biologist might want to set up and control this state and
sample it for output. Switching to a scripting language allowed
us to eliminate a great deal of complexity that was ultimately
caused by sticking to a static, purely declarative input format in
which model and simulation were thoughtlessly mixed. Since
maintaining a backwards compatible API of basic getter/setter
functions is less of an effort than designing and maintaining an
increasingly ‘baroque’ set of trigger, action and output objects,
we expect that this investment will keep paying off as STEPS
keeps growing by adding more solvers and more capabilities. In
other words, our switch to Python has actually saved us quite
some time.

Finally, we believe that our experience suggests that a language
like Python, as was proposed earlier in Cannon et al. (2007), can
play a positive role in supporting the development of formal stand-
ards for sharing scientifi c models. Mirroring the requirements of
understanding biology itself, biological simulators will necessar-
ily become more complex and will be able to simulate more and
more aspects of the living cell. Codes such as M-Cell (Stiles and

FIGURE 4 | Layered view of STEPS code after exposing it to Python with

SWIG.

4http://www.swig.org
5http://www.boost.org

6http://moose.sourceforge.net

15

http://www.swig.org
http://www.boost.org
http://moose.sourceforge.net

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 |

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

Bartol, 2001), MesoRD (Hattne et al., 2005), Smoldyn (Andrews
and Bray, 2004) and also STEPS expand on the idea of ODE-based,
well-mixed simulations of reaction kinetics by adding stochastic-
ity and spatial processes such as diffusion. But this is only the
beginning. The future will see developments such as simulations
of electrophysiological phenomena in high 3D detail or full elec-
trodiffusion (Lopreore et al., 2008), volume-occupying molecules
(Gillespie et al., 2007; Schnell and Turner, 2004), dynamic meshes
whose shape is controlled by simulated chemistry and, as men-
tioned earlier, possibly even the integration of simulators that work
on different scales.

The designers of formal standards, such as SBML, can not
be expected to keep up with these new trends as they come
out, and still maintain a clean standard. This fact fl ows from a
fundamental tension between on the one hand having a clean,
 simulator-independent standard for publishing models, and on
the other hand the turbulent, seemingly endless expansion of
exactly what is required in a biological model to be relevant

and how to breathe it all to life on a computer. The advan-
tages of having such standards is obviously too great to discard
(Bergmann and Sauro, 2008), and successes have been achieved
to where classes of modeling efforts have suffi ciently crystal-
lized, together with the methods to simulate them (Hucka et al.,
2003). The combination of Python and XML eases this tension
by allowing projects that explore new types of simulations to
mature independently from the standards for model sharing. It
allows them to catch up with each other whenever and wherever
it makes sense to do so.

ACKNOWLEDGEMENTS
This work was supported by grants from GOA (UA, Belgium),
HFSP and OIST (Japan).

SUPPLEMENTARY MATERIAL
Our software is released under the GNU public license and can be
downloaded from http://sourceforge.net/projects/steps.

REFERENCES
Andrews, S. S., and Bray, D. (2004).

Stochastic simulation of chemical reac-
tions with spatial resolution and single
molecule detail. Phys. Biol. 1, 137–151.

Bergmann, F. T., and Sauro, H. M. (2008).
Comparing simulation results of SBML
capable simulators. Bioinformatics 24,
1963–1965.

Bhalla, U. S. (2004). Models of cell signal-
ing pathways. Curr. Opin. Genet. Dev.
14, 375–381.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P.,
Bhalla, U. S., Cornelis, H., Hines, M. L.,
Howell, F. W., Muller, E., Stiles, J. R.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Carnevale, T. C., and Hines, M. L. (2006).
The NEURON Book. Cambridge,
Cambridge University Press.

Doi, T., Kuroda, S., Michikawa, T., and
Kawato, M. (2005). Spike-timing
detection by calcium signaling path-
ways of cerebellar Purkinje cells in dif-
ferent forms of long-term depression.
J. Neurosci. 25, 950–961.

Ekeberg, Ö., and Djurfeldt, M.
(2008). MUSIC – Multisimulation
C o o r d i n a t o r : Re q u e s t Fo r
Comments. Nature Precedings.
Ava i lab le a t : h t tp : / /dx .doi .
org/10.1038/npre.2008.1830.1.

Elf, J., and Ehrenberg, M. (2004).
Spontaneous separation of bi-sta-
ble biochemical systems into spatial
domains of opposite phases. Syst. Biol.
1, 230–236.

Ferziger, J. H., and Peric, M. (2002).
Computational Methods for
Fluid Dynamics, 3rd Edn. Berlin,
Springer-Verlag.

Gillespie, D. T. (1976). A general method
for numerically simulating the sto-
chastic time evolution of coupled
chemical species. J. Comput. Phys. 22,
403–434.

Gillespie, D. T. (1977). Exact stochas-
tic simulation of coupled chemi-
cal reactions. J. Phys. Chem. 81,
2340–2361.

Gillespie, D. T. (2001). Approximate accel-
erated stochastic simulation of chemi-
cally reacting systems. J. Chem. Phys.
115, 1716–1733.

Gillespie, D. T. (2007). Stochastic simula-
tion of chemical kinetics. Annu. Rev.
Phys. Chem. 58, 35–55.

Gillespie, D. T., Lampoudi, S., and
Petzold, L. R. (2007). Effect of reactant
size on discrete stochastic chemical
kinetics. J. Chem. Phys. 126, 034302.

Hattne, J., Fange, D., and Elf, J. (2005).
Stochastic reaction-diffusion simula-
tion with MesoRD. Bioinformatics 21,
2923–2924.

Holmes, W. R. (2000). Models of cal-
modulin trapping and CaM kinase
II activation in a dendritic spine. J.
Comput. Neurosci. 8, 65–68.

Hucka, M., Finney, A., Sauro, H. M.,
Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B. J., Bray, D.,
Cornish-Bowden, A., Cuellar, A. A.,
Dronov, S., Gilles, E. D., Ginkel, M.,
Gor, V., Gorvanin, I. I., Hedley, W. J.,
Hodgman, T. C., Hofmeyr, J. H.,
Hunter, P. J., Juty, N. S., Kasberger, J. L.,
Kremling, A., Kummer, U., Le
Novère, N., Loew, L. M., Lucio, D.,
Mendes, P., Minch, E., Mjolness, E. D.,
Nakayama, Y. , Nelson, M. R.,
Ni e l s e n , P. F. , S a k u r a d a , T. ,
S c h a f f , J . C . , S h a p i r o , B . E . ,
Shimizu, T. S . , Spence, H. D. ,
Stelling, J., Takahashi, K., Tomita, M.,

Wagner, J., and Wang, J. (2003). The
systems biology markup language
(SBML): a medium for representa-
tion and exchange of biochemical
network models. Bioinformatics 19,
524–531.

Kloeden, P. E., and Platen, E. (1999).
Numerical Solution of Stochastic
Differential Equations, 3rd Edn.
Berlin, Springer-Verlag.

Kuroda, S., Schweighofer, N., and
Kawato, M. (2001). Exploration of
signal transduction pathways in
cerebellar long-term depression by
kinetic simulation. J. Neurosci. 21,
5693–5702.

Lemerle, C., Di Ventura, B., and
Serrano, L. (2005). Space as the fi nal
frontier in stochastic simulations of
biological systems. FEBS Lett. 579,
1789–1794.

Lindskog, M., Kim, M., Wikström, M. A.,
Blackwell, K. T., and Kotaleski, J. H.
(2006). Transient calcium and
dopamine increase PKA activity and
DARPP-32 phosphorylation. PLoS
Comput. Biol. 2, e119.

Lopreore, C. L., Bartol, T. M., Coggan, J. S.,
Keller, D. X., Sosinsky, G. E.,
Ellisman, M. H., and Sejnowski, T. J.
(2008). Computational modeling of
three-dimensional electrodiffusion
in biological systems: applications to
the node of Ranvier. Biophys. J. 95,
2624–2635.

Means, S., Smith, A. J., Shepherd, J.,
S h a d i d , J . , F o w l e r , J . ,
Wojcikiewicz, R. J. H., Mazel, T.,
Smith, G. D., and Wilson, B. S.
(2006). Reaction diffusion modeling
of calcium dynamics with realistic ER
geometry. Biophys. J. 91, 537–557.

Miller, P., Zhabotinsky, A. M., Lisman, J. E.,
and Wang, X. J. (2005). The stability

of a stochastic CaMKII switch:
 dependence on the number of enzyme
molecules and protein turnover. PLoS
Biol. 3, e107.

Press, W. H., Teukolsky, S. A., Vetterling, W. T.,
and Flannery, B. P. (2007). Numerical
Recipes in C: The Art of Scientific
Computing, 3rd Edn. Cambridge,
Cambridge University Press.

Santamaria, F., Wils, S., De Schutter, E.,
and Augustine, G. J. (2006).
Anomalous diffusion in Purkinje cell
dendrites caused by spines. Neuron
52, 635–648.

Schnell, S., and Turner, T. E. (2004).
Reaction kinetics in intracellular
environments with macromolecular
crowding: simulations and rate laws.
Prog. Biophys. Mol. Biol. 85, 235–260.

Smolen, P., Baxter, D. A., and Byrne, J. H.
(2006). A model of the roles of essential
kinases in the induction and expres-
sion of late long-term potentiation.
Biophys. J. 90, 2760–2775.

Stefan, M. I., Edelstein, S. J., and Le
Novère, N. (2008). An allosteric
model of calmodulin explains dif-
ferential activation of PP2B and
CaMKII. Proc. Natl. Acad. Sci. U.S.A.
105, 10768–10773.

Stiles, J. R., and Bartol, T. M. (2001).
Monte Carlo methods for simulat-
ing realistic synaptic microphysiol-
ogy using MCell. In Computational
Neuroscience: Realistic Modeling for
Experimentalists, E. De Schutter, ed.
(Boca Raton, CRC Press).

van Kampen, N. G. (2007). Stochastic
Processes in Physics and Chemistry,
3rd Edn. Amsterdam, Elsevier.

Vandevoorde, D., and Josuttis, N. M.
(2003). C++ Templates: The
Complete Guide. Reading, MA,
Addison-Wesley.

16

http://sourceforge.net/projects/steps
http://dx.doi.org/10.1038/npre.2008.1830.1

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 15 |

Wils and De Schutter STEPS: simulating reaction-diffusion with Python

Wang, S. S., and Augustine, G. J. (1995).
Confocal imaging and local photoly-
sis of caged compounds: dual probes
of synaptic function. Neuron 15,
755–760.

Wils, S., and De Schutter, E. (2009).
STEPS: an algorithm for stochastic
simulation of reaction-diffusion

systems using tetrahedral meshes. In
preparation.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict or interest.

Received: 17 September 2008; paper pending
published: 11 November 2008; accepted: 09
May 2009; published online: 29 June 2009.
Citation: Wils S and De Schutter E
(2009) STEPS: modeling and simulating
complex reaction-diffusion systems with
Python. Front. Neuroinform. (2009) 3:15.
doi:10.3389/neuro.11.015.2009

Copyright © 2009 Wils and De Schutter.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

17

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 05 June 2009
doi: 10.3389/neuro.11.017.2009

Establishing a novel modeling tool: a python-based interface
for a neuromorphic hardware system

Daniel Brüderle1*†, Eric Müller1†, Andrew Davison2, Eilif Muller3, Johannes Schemmel1 and Karlheinz Meier1

1 Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
2 Unité de Neurosciences Intégratives et Computationnelles, CNRS, Gif sur Yvette, France
3 Laboratory of Computational Neuroscience, EPFL, Lausanne, Switzerland

Neuromorphic hardware systems provide new possibilities for the neuroscience modeling
community. Due to the intrinsic parallelism of the micro-electronic emulation of neural
computation, such models are highly scalable without a loss of speed. However, the communities
of software simulator users and neuromorphic engineering in neuroscience are rather disjoint.
We present a software concept that provides the possibility to establish such hardware devices
as valuable modeling tools. It is based on the integration of the hardware interface into a
simulator-independent language which allows for unifi ed experiment descriptions that can be
run on various simulation platforms without modifi cation, implying experiment portability and
a huge simplifi cation of the quantitative comparison of hardware and simulator results. We
introduce an accelerated neuromorphic hardware device and describe the implementation of
the proposed concept for this system. An example setup and results acquired by utilizing both
the hardware system and a software simulator are demonstrated.

Keywords: neuromorphic, VLSI, hardware, software, modeling, computational neuroscience, Python, PyNN

followed by production and testing phases. This process normally
takes several months. Further fundamental differences between
hardware and software models will be discussed in the Section
“Neuromorphic Hardware”.

Except for the system utilized in this work, all cited neuromorphic
hardware projects currently work with circuits operating in biological
real-time. This allows interfacing real-world devices such as sensors
(Serrano-Gotarredona et al., 2006) or motor controls for robotics,
as well as setting up hybrid systems with in vitro neural networks
(Bontorin et al., 2007). The neuromorphic hardware systems we
consider in this article, as described in Schemmel et al. (2007, 2008),
possess a crucial feature: they operate at a highly accelerated rate.
The device which is currently in operation (Schemmel et al., 2007)
(see “The Accelerated Hardware System” for a detailed description)
exhibits a speedup factor of 105 compared to the emulated biological
real time. This opens up new prospects and possibilities, which will
be discussed in the Section “Neuromorphic Hardware”.

This computation speed, together with an implementation path
towards architectures with low power consumption and very large
scale networks (Fieres et al., 2008; Schemmel et al., 2008), makes
neuromorphic hardware systems a potentially valuable research
tool for the modeling community, where software simulators are
more commonplace (Brette et al., 2006; Morrison et al., 2005,
2007). To establish neuromorphic hardware as a useful compo-
nent of the neural network modelers’ toolbox requires a proof of
the hardware system’s biological relevance and its operability by
non-hardware-experts.

An approach which can help to fulfi l both of these conditions is to
interface the hardware system with the simulator-independent lan-
guage PyNN (Davison et al., 2008) (see “PyNN and NeuroTools”).
The PyNN meta-language allows for a unifi ed description of neural

INTRODUCTION
Models of spiking neurons are normally formulated as sets of dif-
ferential equations for an analytical treatment or for numerical
simulation. So-called “neuromorphic” hardware systems represent
an alternative approach. In a physical, typically silicon, form they
mimic the structure and emulate the function of biological neural
networks. Neuromorphic hardware engineering has a tradition going
back to the 1980s (Mead, 1989; Mead and Mahowald, 1988), and
today an active community is developing analog or mixed-si gnal
VLSI models of neural systems (Ehrlich et al., 2007; Häfl iger, 2007;
Merolla and Boahen, 2006; Renaud et al., 2007; Schemmel et al., 2007,
2008; Serrano-Gotarredona et al., 2006; Vogelstein et al., 2007).

The main advantage of the physical emulation of neural network
models, compared to their numerical simulation, arises from the
locally analog and massively parallel nature of the computations.
This leads to neuromorphic network models being typically highly
scalable and being able to emulate neural networks in real time or
much faster, independent of the underlying network size. Often, the
inter-chip event-communication bandwidth sets a practical limit
on the scaling of network sizes by inter-connecting multiple neural
network modules (Berge and Häfl iger, 2007; Costas-Santos et al.,
2007; Schemmel et al., 2008). Compared to numerical solvers of
differential equations which require Von-Neumann-like computer
environments, neuromorphic models have much more potential
for being realized as miniature embedded systems with low power
consumption.

A clear disadvantage is the limited fl exibility of the implemented
models. Typically, neuron and synapse parameters and the net-
work connectivity can be programmed to a certain degree within
limited ranges by controlling software. However, changes to the
implemented model itself usually require a hardware re-design,

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Bernabe Linares-Barranco, Instituto de
Microelectrónica de Sevilla, Spain
Adrian Whatley, University of Zurich,
Switzerland

*Correspondence:

Daniel Brüderle, Kirchhoff Institute for
Physics, Im Neuenheimer Feld 227,
69120 Heidelberg, Germany.
e-mail: bruederle@kip.uni-heidelberg.de
†Daniel Brüderle and Eric Müller have
contributed equally to this work.

18

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

network experiments, which can then be run on all supported back-
ends, e.g. various software simulators or the presented hardware
system, without modifying the description itself. Experiment port-
ability, data exchange and unifi ed analysis environments are only
some of PyNN’s important implications. For neuromorphic devices,
this provides the possibility to calibrate and verify the implemented
models by comparing any emulated data with the corresponding
results generated by established software simulators. Every scientist,
who has already used such a simulator with scripting support or
with an interpreter interface, will easily learn how to use PyNN.
And every PyNN user can operate the presented hardware system
without a deeper knowledge of technical device details.

In the Section “Simulator-like Setup, Operation and Analysis”,
the architecture of a Python (Rossum, 2000) interface to the hard-
ware system, which is the basis for integration into PyNN, will be
described in detail. The advantages and problems of the PyNN
approach for the hardware system will also be discussed. In the
Section “The Interface in Practice”, an example of PyNN code for
the direct comparison of an experiment run on both the hard-
ware system and a software simulator, including the corresponding
results, will be presented.

NEUROMORPHIC HARDWARE
Unlike most numerical simulations of neural network models,
analog VLSI circuits operate in the continuous time regime. This
avoids possible discretization artifacts, but also makes it impos-
sible to interrupt an experiment at an arbitrary point in time and
restart from an identical, frozen network state. Furthermore, it
is not possible to perfectly reproduce an experiment because the
device is subject to noise, to cross-talk from internal or external
signals, and to temperature dependencies (Dally and Poulton,
1998). These phenomena often have a counterpart in the biologi-
cal specimen, but it is highly desirable to control them as much
as possible.

Another major difference between software and hardware mod-
els is the fi niteness of any silicon substrate. This in principle also
limits the software model size, as it utilizes standard computers with
limited memory and processor resources, but for neuromorphic
hardware the constraints are much more immediate: the number
of available neurons and the number of synapses per neuron have
strict upper limits; the number of manipulable parameters and the
ranges of available values are fi xed.

Still, neuromorphic network models are highly scalable at con-
stant speed due to the intrinsic parallelism of their circuit operation.
This scalability results in a relative speedup compared to software
simulations, which gets more and more relevant the larger the
simulated networks become, and provides new experimental pos-
sibilities. An experiment can be repeated many times within a short
period, allowing the common problem of a lack of statistics, due
to a lack of computational power, to be overcome. Large param-
eter spaces can be swept to fi nd an optimal working point for a
specifi c network architecture, possibly narrowing the space down
to an interesting region which can then be investigated using a
software simulator with higher precision. One might also think
of longer experiments than have so far been attempted, especially
long-term learning tasks which exploit synaptic plasticity mecha-
nisms (Schemmel et al., 2007).

THE ACCELERATED HARDWARE SYSTEM
Within the FACETS research project (FACETS, 2009), an inter-
disciplinary consortium investigating novel computing paradigms
by observing and modeling biological neural systems, an acceler-
ated neuromorphic hardware system has been developed. It will
be described in this section.

Neuron, Synapse and Connectivity model
The FACETS neuromorphic mixed-signal VLSI system has been
described in detail in recent publications (Schemmel et al., 2006,
2007). Implemented is a leaky integrate-and-fi re neuron model
with conductance-based synapses, designed to exhibit a linear cor-
respondence with existing conductance-based modeling approaches
(Destexhe et al., 1998). The chip was built on a single 25 mm2 die
using a standard 180 nm CMOS process. It models networks of up
to 384 neurons and the temporal evolution of the weights of 105
synapses. The system can be operated with an acceleration factor
of up to 105 while recording the neural action potentials with a
temporal resolution of approximately 0.3 nS, which corresponds
to 30 µs in biological time.

The neuron circuits are designed such that the emulated mem-
brane potential V(t) is determined by the following differential
equation for a conductance-based integrate-and-fi re neuron:

− = − + −

+ −

∑

∑

C
V

t
g V E p t g t V E

p t g t V E

j
j j

k
k k

m m l e

i

d

d
() () ()()

() ()()

(1)

where C
m

 represents the total membrane capacitance. The fi rst
term on the right hand side, the so-called leak current, models
the contribution of the different ion channels that determine the
potential E

l
 the membrane will eventually reach if no other cur-

rents are present. The synapses use different reversal potentials,
E

i
 and E

e
, to model inhibitory and excitatory ion channels. The

index j in the fi rst sum runs over all excitatory synapses while the
index k in the second sum covers the inhibitory ones. The activa-
tion of individual synapses is controlled by the synaptic opening
probability p

j,k
(t) (Dayan and Abott, 2001). The synaptic conduct-

ance g
j,k

 is modeled as a product of the synaptic weight ω
j,k

(t)
and a maximum conductance max()j kg t, . The neuron emits a spike
if a threshold voltage V

th
 is exceeded, after which the membrane

potential is forced to a reset voltage V
reset

 and then released back
into the infl uence of excitatory, inhibitory and leakage mecha-
nisms. The weights are modifi ed by a long-term plasticity algo-
rithm (Schemmel et al., 2007) and thus can vary slowly with time.
Table 1 summarizes the most important hardware parameters,
with their counterparts in the biological model, their available
ranges and uncertainties.

Each chip is divided into two network blocks of 192 neurons
each, and each block can receive 256 different input channels. Each
input channel into a block can be confi gured to receive either a
feedback signal from one specifi c neuron within the same block, a
feedback signal from the opposite block, or an externally generated
signal, for example from some controlling software. Every neuron
within the block can be connected to every input channel via a
confi gurable synapse. Synaptic time constants and the values for gmax
are shared for every input channel, while the connection weights

19

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

can be set between 0 nS and gmax with a four bit resolution for each
individual connection.

Although the free parameter space is already large, the model
fl exibility is clearly limited, especially in terms of its inter-neuron
connectivity. Based on the experience acquired with the proto-
type chip described above, a wafer-scale integration1 system (Fieres
et al., 2008; Schemmel et al., 2008) with up to 1.8 × 105 neurons and
4 × 107 synapses per wafer is currently under development. It will
be operated with a speedup factor of up to 104 and will provide a
much more fl exible and powerful connectivity infrastructure.

Support framework
In order to give life to such a piece of manufactured neuromorphic
silicon, an intricate framework of various pieces of custom-made
support hardware and software layers has to be deployed, which has
previously been reported on. The chip is mounted on a carrier board
called Nathan (Fieres et al., 2004; Grübl, 2007, Chapter 3) which also
holds, among other components, an FPGA for direct communication
control and some RAM memory modules for storing input and out-
put data. Up to 16 of these carrier boards can be placed on a so-called
backplane (Philipp et al., 2007), which itself is connected to a host
PC via a PCI-based FPGA card (Schürmann et al., 2002).

The connection from chip to computer via the PCI card allows the
confi guration of the hardware, the defi nition and application of spike
stimuli and the recording of spiking activity from within the network.
Analog sub-threshold data can only be acquired via an oscilloscope2,
which is connected to pins that can output selectable membrane
potentials. Via a network connection, the information from this
oscilloscope can be read and integrated into the software running
on the host computer (see Figure 1 for a setup schematic).

Both an FPGA on the backplane and those on the carrier
boards are programmed and confi gured with dedicated code.

Communication with the PCI board utilizes a specifi c device
driver and a custom-made protocol (Philipp, 2008, Chapter 2.2.4).
Multi-user access is realized via userspace daemon multiplexing
connections to different chips while encapsulating control com-
mands and data from multiple users in POSIX Message Queues
(IEEE, 2004). Data transfer from and to the oscilloscope is based
on TCP/IP sockets (Braden, 1989; LeCroy, 2005). Interconnecting
multiple chips in order to set up larger networks will be possible
soon (Philipp et al., 2007).

SIMULATOR-LIKE SETUP, OPERATION AND ANALYSIS
As proposed in the introduction, attracting neuroscience experts
into the fi eld of neuromorphic engineering is essential for the
establishment of hardware devices as modeling tools. Neuroscience
expertise has to be consulted not only during the design process,
but also, and especially, after manufacturing, when it comes to
verifying the device’s biological relevance. This implies a whole set
of requirements for the software which provides the user interface
to the hardware.

If the system is to be operated by scientists from fi elds other
than neuromorphic engineering, the software must hide as many
hardware-specifi c details as possible. We propose that it should pro-
vide basic control mechanisms similar to typical interfaces of pure
software simulators, i.e. an interpreter for interactive operation and
scripting. Parameters and observables should be given in biological
dimensions and follow a biological nomenclature. Moreover, drawing
the attention of the neuroscience community to neuromorphic hard-
ware can be strongly facilitated by the possibility of porting existing
software simulation setups to the hardware with little effort.

Multiple projects and initiatives provide databases and tech-
niques for sharing or unifying neuroscientifi c modeling code, see
for example the NeuralEnsemble initiative (Neural Ensemble, 2009),
the databases of Yale’s SenseLab (Hines et al., 2004) or the soft-
ware database of the International Neuroinformatics Coordination
Facility (INCF Software Database, 2009). Creating a bridge from
the hardware interface to these pools of modeling experience will
provide the important possibility of formulating transparent tests,

1A silicon wafer which will not be cut into single chips as is usual, but left in one
piece. Further post-processing steps will interconnect the disjoint reticles on the
wafer, resulting in a highly confi gurable silicon neural network model of unique
dimensions.
2Currently: LeCroy WaveRunner 44Xi.

Table 1 | The most important hardware model parameters, the type of physical quantity used for their implementation, their confi gurability and an

estimation of uncertainty. The fi rst four columns show their typical biological interpretation and the resulting value ranges. The translation between both

domains depends on the chosen speedup and the desired biological parameter value ranges. The given estimations (some being educated guesses) of

confi guration uncertainty refl ect the current state of available methods to measure, to adjust or to calibrate the values, and may not necessarily refl ect

hardware limitations. The uncertainty of Ee is load-dependent, the relation is not yet suffi ciently analyzed.

 Biological Interpretation Hardware parameter implementation

Param Unit Min Max Physical quantity Confi gurable Estimation of uncertainty (%)

Cm nF 0.2 0.2 Capacitance No 10

Gl nS 20 40 Current Yes 10

El mV −80 −55 Voltage Yes 2

Ei mV −80 −55 Voltage Yes 2

Ee mV −80 20 Voltage Yes Unknown

Vth mV −80 −55 Voltage Yes 5

Vreset mV −80 −55 Voltage Yes 10

τsyn ms 30 50 Current Yes 25

gmax nS 1 100 Current Yes 25

20

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

benchmarks and requests that will boost further hardware develop-
ment and its establishment as a modeling tool.

Most software simulators for spiking neuron models come with
an interpreter interface for programming, experiment setup and
control. For example, NEURON (Hines and Carnevale, 2006; Hines
et al., 2009) provides an interpreter called Hoc, NEST (Diesmann
and Gewaltig, 2002; Eppler et al., 2008; Gewaltig and Diesmann,
2007) comes with a stack-based interface called SLI, and GENESIS
(Bower and Beeman, 1998) has a different custom script language
interpreter also called SLI. Both NEURON and NEST also pro-
vide Python (Rossum, 2000) interfaces, as do the PCSIM (PCSIM,
2009; Pecevski et al., 2009), Brian (Goodman and Brette, 2008) and
MOOSE (Ray and Bhalla, 2008) simulators. Facilitating the usage
of neuromorphic hardware for modelers means providing them
with an interface similar to these existing ones. But there are further
requirements arising from hardware specifi c issues.

TECHNICAL REQUIREMENTS
As shown in the Section “Support Framework”, operating the pre-
sented neuromorphic hardware system involves multiple devices
and mechanisms, e.g. Message Queue communication with a user-
space daemon accessing a PCI board, TCP/IP socket connection
to an oscilloscope, software models that control the operation of
the backplane, the carrier board and the VLSI chip itself, and high-
level software layers for experiment defi nition. On the software side,
this multi-module system utilizes C, C++ and Python, and multiple
developers from different institutions are involved, applying various
development styles such as object-oriented programming, refl ec-
tive programming or sequential driver code. The software has to
follow the ongoing system development, including changing and
improving FPGA controller code and hardware revisions with new
features.

This complexity and diversity argues strongly for a top-level
software framework, which has to be capable of effi ciently gluing all
modules together, supporting object-oriented and refl ective struc-

tures, and providing the possibility of rapid prototyping in order
to quickly adapt to technical developments at lower levels.

One further requirement arises: the speedup of the hardware
system can be exploited by an interactive, possibly intuition-guided
work fl ow which allows the exploration of parameters with imme-
diate feedback of the resulting changes. This implies the wish to
have the option of a graphical interface on top of an arbitrary
experiment description.

EXISTING INTERFACES
Descriptions in the literature of existing software interfaces to neu-
romorphic hardware are very rare. In Merolla and Boahen (2006),
the existence and main features of a GUI for the interactive opera-
tion of a specifi c neuromorphic hardware device are mentioned.

Much more detailed software interface reports are found in Dante
et al. (2005). They describe a framework which allows exchange of
AER3 data between hardware and software while experiments are
running. The framework includes a dedicated PCI board which
is connected to the neuromorphic hardware module and which
can be interfaced to Linux systems by means of a device driver.
A C-library layered on top of this driver is available. Using this,
a client-server architecture has been implemented which allows
the on-line operation of the hardware from within the program
MATLAB. The use of MATLAB implies interpreter-based usage,
scripting support, the possible integration of C and C++ code,
optional graphical front-end programming and strong numerical
support for data analysis. Hence, most of the requirements listed
so far are satisfi ed. Nevertheless, the framework is somewhat stand-
alone and does not facilitate the transfer of existing software models
to the hardware.

In Oster et al. (2005), an automatically generated graphical front-
end for the manual tuning of hardware parameters is presented,
including the convenient storing and loading of confi gurations.

3Address Event Representation.

PC

digital

analog

Computer Network

Oscilloscope

Backplane

Carrier boards

Neural Network Chip

FIGURE 1 | Schematic of the accelerated FACETS hardware

system framework. Via a digital connection, software running on the
host computer can control the parameters of any neural network chip
mounted on a carrier board on the communication backplane. It can

stimulate the network with externally generated spikes and can record
spikes generated on the chip. Analog sub-threshold information acquired with
an oscilloscope can be integrated into the software via a network
connection.

21

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

Originally, a similar approach was developed for the hardware sys-
tem utilized here, too (Brüderle et al., 2007). Manually defi ning
parts of the enormous parameter space provided by such a chip via
sliders and check-boxes can be useful for intuition-guided hard-
ware exploration and circuit testing, but it turns out to be rather
impractical for setting up large network experiments as usually
performed by computational neuroscientists.

CHOOSING A PROGRAMMING LANGUAGE
Except for the convenient portability of existing experiment set-
ups, an interface to the neuromorphic hardware system based on
the programming language Python solves all of the requirements
stated in the Sections “Importance of the Software Interface” and
“Technical Requirements”, especially the hardware-specifi c ones.
Python is an interpreter-based language with scripting support,
thus it is able to provide a software-simulator-like interface. It can
be effi ciently connected to C and C++, for example via the pack-
age Boost.Python (Abrahams and Grosse-Kunstleve, 2003). Python
supports sequential, object-oriented and refl ective programming
and it is widely praised for its rapid prototyping. Due to the pos-
sibility for modular code structure and embedded documentation,
it has a high maintainability, which is essential in the context of a
quickly evolving project with a high number of developers.

In addition to its strengths for controlling and interconnect-
ing lower-level software layers, it can be used to write effi cient
post-processing tools for data analysis and visualization, since a
wide range of available third-party packages offers a strong foun-
dation for scientifi c computing (Jones et al., 2001; Langtangen,
2008; Oliphant, 2007), plotting (Hunter, 2007) and graphics (Lutz,
2001, Chapter 8; Summerfi eld, 2008). Hence, a Python interface
to the hardware system would already greatly facilitate modeler
adoption.

Still, the possibility of directly transferring existing experiments
to the hardware is even more desirable; a unifi ed meta-language
usable for both software simulators and the hardware could achieve
that. Thus, the existence of the Python-based, simulator-independ-
ent modeling language PyNN (see PyNN and NeuroTools) was the
strongest argument for utilizing Python as a hardware interface,
because the subsequent integration of this interface into PyNN
depended on the possibility of accessing and controlling the hard-
ware via Python.

Possible alternatives to Python as the top layer language for the
hardware interface have been considered and dropped for different
reasons. For example, C++ requires a good understanding of mem-
ory management, it has a complex syntax, and, compared to inter-
preted languages, has slower development cycles. Interpreter-based
languages such as Perl or Ruby also provide plotting functionality,
numerical packages (Berglihn, 2006; Glazebrook and Economou,
1997) and techniques to wrap C/C++ code, but eventually Python
was chosen because it is considered to be easy to learn and to have
a clean syntax.

PYNN AND NEUROTOOLS
The advantages of Python as an interface and programming lan-
guage are not limited to hardware back-ends. For the software
simulators NEURON, NEST, PCSIM, MOOSE and Brian, Python
interfaces exist. This provides the possibility of creating a Python-

based, simulator-independent meta-language on top of all these
back-ends. In the context of the FACETS project, the open-source
Python module PyNN has been developed which implements such
a unifi ed front-end (see Davison, 2009; Davison et al., 2008).

PyNN offers the possibility of porting existing experiments
between the supported software simulators and the FACETS hardware
and thus to benchmark and verify the hardware model. Furthermore,
on top of PyNN, a library of analysis tools called NeuroTools (2009)
is under development, exploiting the possibility of a unifi ed work
fl ow within the scope of Python. Experiment description, execution,
result storage, analysis and plotting can be all done from within the
PyNN and NeuroTools framework. Independent of the used back-
end, all these steps have to be written only once and can then be run
on each platform without further modifi cations.

Especially since the operation of the accelerated hardware gener-
ates large amounts of data at high iteration rates, a sophisticated
analysis tool chain is necessary. For the authors, as well as for every
possible PyNN user, making use of the unifi ed analysis libraries
based on the PyNN standards (e.g. NeuroTools) avoids redun-
dant development and debugging efforts. This benefi t is further
enhanced by other third-party Python modules, like numerical or
visualization packages.

INTERFACE ARCHITECTURE
The complete software framework for interfacing the FACETS hard-
ware is structured as follows: Various C++ classes encapsulate the
functionality of the neural network chip itself, of its confi guration
parameter set, of the controller implemented on the carrier board
FPGA, and of the communication protocol between the host soft-
ware and this controller. There is a stand-alone daemon written in
C++ which provides the transport of data via the PCI card. It utilizes
a device-driver which is available for Linux systems. Furthermore,
there is a C++ class which encapsulates the TCP/IP Socket com-
munication with the oscilloscope.

The Boost.Python library (Boost.Python, 2003) is used to bind
C++ classes and functions to Python. An instructive outline of the
wrapping technique used can be found in Abrahams and Grosse-
Kunstleve (2003).

On top of these Python bindings, a pure Python framework
called PyHAL4 (Brüderle et al., 2007) provides classes for neurons,
synapses and networks. All these classes have model parameters
in biological terminology and dimensions, and their constructors
impose no hardware specifi c constraints.

The main functionality of PyHAL is encapsulated by a hard-
ware access class which implements the exchange layer between
these higher-level objects and the low-level C++ classes exposed to
Python via Boost. The hardware access layer performs the transla-
tion from biological parameters like reversal potentials, leakages,
synaptic time constants and weights to the available set of hardware
confi guration parameters. This set consists of discrete integers, for
example for the synaptic weights, and of analog values for currents
and voltages. Some of these parameters do have a direct biological
counterpart, some do not. For example, neuron voltage param-
eters like reversal potentials are mapped linearly to the available
 hardware membrane potential range of approximately 0.6–1.4 V,

4Python Hardware Abstraction Layer.

22

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

while membrane leakage conductances and synaptic time constants
have to be translated into currents.

The translation layer also performs the transformation from
biological to hardware time domain and back. Furthermore, all
hardware-specifi c constraints, like the limited number of possi-
ble neurons or connections, the fi nite parameter ranges and the
synaptic weight discretization, are incorporated in this hardware
access class, generating instructive warnings or error messages in
case of constraint violations.

Since the PyHAL framework is all Python code, it provides the
desired interpreter-based interface to the hardware, correspond-
ing to comparable Python interfaces to, for example, NEST or
PCSIM. Also, as for these software simulators, a module for the
integration of this interface into the meta-language PyNN has been
implemented. Figure 2 shows a schematic of the complete software
framework with its most important components.

Thanks to this integration, all higher-level PyNN concepts like
populations and inter-population projections plus the analysis and
visualization tools developed on top of PyNN are now available for
the hardware system.

Still, the integration of the hardware interface into PyNN also
raises problems. Some of the PyNN API function arguments are
specifi c to software simulators. In the hardware context, they have
to be either ignored or be given a hardware-specifi c interpreta-
tion. For example, the PyNN function setup has an argument
called timestep, which for pure software back-ends determines
the numerical integration time step. In the PyNN module for
the continuously operating hardware, this argument defi nes the
temporal resolution of the oscilloscope for membrane potential
recordings. Furthermore, the strict constraints regarding neuron
number, connectivity and possible parameter values require an
additional software effort, i.e. checking for violations and provid-
ing the messages mentioned above. PyNN does not yet suffi ciently
support fast and statistics-intensive parameter space searches with
differential formulations of the changes from step to step, which

will be needed to optimize the exploitation of hardware specifi c
advantages.

Without having access to the real hardware system, it is of course
not possible to use the PyNN hardware module, hence it is not
available for download. Still, it is planned to publicly provide a
modifi ed module on the PyNN website (Davison, 2009) which
allows testing of PyNN scripts intended to be run on the hardware,
i.e. to get back all warnings or error messages which might occur
with the real system. With such a mapping test module, scripts can
be prepared offl ine for a later, optimized hardware run.

THE INTERFACE IN PRACTICE
To demonstrate the usage and functionality of the PyNN interface, a
simple example setup is given in the following. Listing 1 shows the
experiment described in PyNN, which is then executed both on the
hardware system and using the software simulator NEST. A network
consisting of 80 excitatory and 20 inhibitory neurons is created. The
inhibitory sub-population is fed back into the network randomly
with a probability of 0.5 for each possible inhibitory-to-excitatory
connection. 160 excitatory and 40 inhibitory Poisson spike trains
are randomly connected to the network with the same probability
of 0.5 for each possible train-to-neuron connection.

Figure 3 shows a schematic of the implemented network
architecture.

The maximum synaptic conductance gmax is 0.5 nS for excita-
tory and 1.6 nS for inhibitory connections. The output spikes
of eight neurons are recorded, and the average fi ring rate of
these eight neurons over a period of 5 s of biological time is
determined.

In line 1, the PyNN back-end NEST is chosen. In order to utilize
the hardware system, the only necessary change within this script
is to replace line 1 by from pyNN.hardware.stage1 import
*, all the rest remains the same. From lines 4 to 9, the population
sizes, the numbers of external stimuli, and the synaptic weights
are set. In lines 11–17, the neuron parameters are defi ned. Lines 19

PyNN

PyNN.hardware

PyHAL

Spike Train In

Communication Spike Train Out

Chip Model

C++ (Boost.Python wrapper)

PyScope

C++

Chip Config

PyNN.neuron

HOC

NEURON

PyNN.nest

SLI

NEST

Socket Comm

Trace Manager

PyN

???

?

FIGURE 2 | Schematic of the software framework for the operation of the

hardware system. It is integrated into the Python-based, simulator-independent
language PyNN, which also supports back-ends like NEURON, NEST and more.

The module for the hardware back-end consists of Python-based sub-modules
for the digital and analog access to the chip. Each of those wrap the functionality
of lower-level C++ layers, which are described in more detail in the text.

23

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

type is possible. For the NEST back-end, the neuron type deter-
mines parameter values for e.g. C

m
, which are fi xed to resemble the

hardware. Line 26 concatenates the two populations. In lines 28
and 29, the Poisson spike sources are generated, passing the type of
source, the previously defi ned parameters and the desired number.
From lines 31 to 34, the neurons and spike generators are intercon-
nected. The arguments of the connect command specify fi rst a list
of sources, then a list of targets, followed by the synaptic weights,
the synapse types and fi nally by the probability with which each
possible pairing of source and target objects is actually connected.
The recording of the spikes of eight neurons and of one membrane

and 20 determine the rate and duration of the Poisson spike train
stimuli. In line 22, PyNN is initialized, the numerical integration
step size of 0.1 ms is passed. If the hardware back-end is chosen, no
discrete step size is utilized due to the time continuous dynamics in
its analog network core, and the function argument is used instead
to determine the time resolution of the oscilloscope, if connected.
In lines 24 and 25, the excitatory and inhibitory neurons are cre-
ated, with the neuron parameters and the size of the populations
as the second and the third arguments.

The fi rst argument, IF_facets_hardware1, specifi es the neu-
ron type to be created. For the hardware system, no other neuron

from pyNN.nest2 import *
OR: from pyNN.hardware.stage1 import *

numInhNeurons = 20
numExcNeurons = 80
numInhInputs = 40
numExcInputs = 160
w_exc = 0.0005 # uS
w_inh = 0.0016 # uS

neuronParams = { ’v_reset’ : -80.0, # mV
’e_rev_I’ : -75.0, # mV
’v_rest ’ : -70.0, # mV
’v_thresh’ : -57.0, # mV
’g_leak ’ : 20.0, # nS
’tau_syn_E’ : 30.0, # ms
’tau_syn_I’ : 30.0 } # ms

inputParameters = { ’rate’ : 5.0, # Hz
’duration’ : 5000 } # ms

setup(timestep=0.1)

n_inh = create(IF_facets_hardware1 ,neuronParams ,n=numInhNeurons)
n_exc = create(IF_facets_hardware1 ,neuronParams ,n=numExcNeurons)
net = n_exc + n_inh

i_exc = create(SpikeSourcePoisson ,inputParameters ,n=numExcInputs)
i_inh = create(SpikeSourcePoisson ,inputParameters ,n=numInhInputs)

connect(i_exc ,net ,weight=w_exc ,synapse_type=’excitatory’,p=0.5)
connect(i_inh ,net ,weight=w_inh ,synapse_type=’inhibitory’,p=0.5)

connect(n_inh ,net ,weight=w_inh ,synapse_type=’inhibitory’,p=0.5)

record(net[0:8] , ’spikes.dat’)
record_v(net[0], ’membrane.dat’)

run(5000) # duration in ms
end()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

LISTING 1 | PyNN Example Script. For detailed explanation see text.

24

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

potential is prepared in lines 36 and 37 (not all neurons, due to a
bug in the current hardware revision). In line 39, the experiment is
executed for a duration of 5000 ms. Line 40 defi nes the end of the
script, and deals with writing recorded values to fi le.

The experiment was run both on the FACETS hardware sys-
tem and using the software simulator NEST. The fi ring rate of the
stimulating Poisson spike trains was varied from 0 to 9 Hz in steps
of 0.5 Hz, and for each rate the experiment was repeated 20 times
with different random number generator seeds. Figure 4 shows the
resulting average output fi ring rates.

The fi ring rates measured on both back-ends exhibit a qualitative
and, within the observed fl uctuations, quantitative correspondence.
For both NEST and the hardware system, the onset of fi ring activ-
ity occurs at the same level of synaptic stimulation. The small but
seemingly systematic discrepancy for higher output rates indicates
that for the NEST simulation the inhibitory feedback has a slightly

stronger impact on the network activity than on the hardware
platform. The fi ring rate does not refl ect dynamic properties like
fi ring regularity or synchrony, which might be interesting for the
estimation of possible differences in network dynamics due to the
limited precision of hardware parameter determination or due to
electronic noise. With PyNN, studies like these have now become
possible, but go beyond the scope of this paper.

To give an impression of the inhomogeneities of a hardware
substrate and of the noise a typical hardware membrane is exposed
to, a second measurement is shown. A single neuron receives 80
excitatory and 20 inhibitory Poisson spike trains with 2.5 Hz each.
It is connected to these stimuli with the same synaptic weights
as in the setup described above, but gets no feedback from other
neurons. The spike sources fi re for 4 s, with a silent phase of 0.5 s
before and after. Using a single PyNN description, the identical
setup with identical spike times and identical connectivity can be
deployed for both NEST and the hardware system. Figure 5 shows

NEST Simulation

Hardware Neurons

20
m

V
20

0
m

V

10 µs

1 s

FIGURE 5 | Membrane potentials of a neuron under Poisson stimulation.

Input spike times are identical for all traces. The uppermost trace (red)
represents a NEST simulation. Spike times determined by NEST are marked
with dashed vertical lines in light gray. The lower six traces (blue) represent
measurements from adjacent hardware neurons recorded in separate runs.
For the hardware traces, the given time and voltage scales indicate the real
physical dimensions of the emulation.

P=0.5

P=0.5

P=0.5

P=0.5

P=0.5

P=0.5

160 80

40 20

Excitatory Excitatory

Inhibitory Inhibitory
Inputs

Inputs

Neurons

Neurons

FIGURE 3 | Connectivity schematic of the implemented network. An
excitatory and an inhibitory population of Poisson spike train generators
stimulate an excitatory and an inhibitory population of neurons. The inhibitory
population is fed back into itself and into the excitatory one. All inter-population
projections have a unit-to-unit connection probability of 0.5.

1 2 3 4 5 6 7 8 9

5

10

15

20

25

30

35

40

Input Rate [Hz]

A
ve

ra
ge

O
ut

pu
t

R
at

e
[H

z] Hardware
NEST

FIGURE 4 | Average output fi ring rate of the example network neurons as

a function of input rate. The script shown in Listing 1 has been executed with
various stimulation rates on both the hardware system (blue circles) and the
software simulator NEST (red squares). Each data point represents the mean
over 20 runs, the error bars denote the corresponding standard deviations.

25

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

the resulting membrane potential trace simulated by NEST and the
membrane potentials acquired from six adjacent neurons on the
neuromorphic hardware. For the hardware traces, the unprocessed
time and voltage scales are given as measured on the chip in order to
illustrate the accelerated and physical nature of the neuromorphic
model. The PyHAL framework automatically performs a transla-
tion of these dimensions into their biological equivalents.

The constant noise level in the hardware traces can be best
observed during the phases with no external stimulation. This noise
is a superposition of the noise actually occurring within the neuron
circuits and the noise being added by the recording devices. The
differences from hardware neuron to hardware neuron represent
mainly device fl uctuations on the transistor level, which strongly
dominate time-dependent infl uences like temperature-dependent
leakages or an unstable power supply. Counterbalancing these fi xed-
pattern effects with calibration methods is work in progress.

DISCUSSION
Today, the communities of computational neuroscientists and neu-
romorphic engineers work rather in parallel instead of benefi tting
from each other. We believe that closing this gap will boost the
development, the usability and the number of application fi elds of
neuromorphic systems, including the establishment of such devices
as valuable modeling tools that will contribute to the understand-
ing of neural information processing. Based on this motivation,
we have described a set of requirements that a software interface
for a neuromorphic system should fulfi ll.

Following these guidelines, we have implemented a Python-
based interface to an existing accelerated neuromorphic hardware
system developed within the research project FACETS, and we have
integrated it into the common neural network simulator interface
PyNN, proving the potential of PyNN to also serve as a hardware
interface. This approach provides the novel possibility of porting
existing experiments from the software simulator to the hardware
domain and vice versa with a minimum of effort. In order to illus-
trate the unifi cation and portability aspects, we have presented
an example PyNN code sequence for a simple experiment. The
correspondence between the results acquired with both a software
simulator and the hardware system demonstrate the functionality
of the framework.

With a neuromorphic device accessible and controllable via
PyNN, its advantages can be exploited by non-hardware-experts
from all fi elds. Hardware and software co-simulations based on
PyNN descriptions can be used to test, to tune and to benchmark
neuromorphic devices. Furthermore, the integration of hardware
interfaces into the PyNN framework can avoid parts of the often
redundant effort that has to be invested into creating a new indi-
vidual software layer stack on top of any new neuromorphic system,
since high-level tools, e.g. for analysis and plotting, are already
available and maintained by an active community.

ACKNOWLEDGMENTS
This work is supported by the European Union under grant no.
IST-2005-15879 (FACETS).

REFERENCES
Abrahams, D., and Grosse-Kunstleve, R. W.

(2003). Building Hybrid Systems with
Boost.Python. Available at: http://
www.boostpro.com/writing/bpl.pdf.

Berge, H. K. O., and Häfl iger, P. (2007).
High-speed serial AER on FPGA. In
ISCAS (IEEE), pp. 857–860.

Berglihn, O. T. (2006). RNUM Website.
Available at: http://rnum.rubyforge.
org.

Bontorin, G., Renaud S., Garenne, A.,
Alvado, L., Le Masson, G., and
Tomas, J. (2007). A real-time closed-
loop setup for hybrid neural networks.
In Proceedings of the 29th Annual
International Conference of the IEEE
Engineering in Medicine and Biology
Society (EMBS2007).

Boost.Python. (2003). Version 1.34.1
Website. Available at: http://www.boost.
org/doc/libs/1_34_1/libs/python.

Bower, J. M., and Beeman D. (1998).
The Book of GENESIS: Exploring
Realistic Neural Models with the
GEneral NEural SImulation System,
2nd Edn. New York, Springer-Verlag.
ISBN 0387949380.

Braden, R. T. (1989). RFC 1122:
Requirements for Internet Hosts–
Communication Layers. Available at:
ftp://ftp.internic.net/rfc/rfc1122.txt.

Brette, R., Rudolph, M., Carnevale, T.,
Hines, M., Beeman, D., Bower, J. M.,

Diesmann, M., Morrison, A.,
Goodman, P. H., Harris, F. C., Jr.,
Zirpe, M., Natschlager, T., Pecevski, D.,
Ermentrout, B., Djurfeldt, M.,
Lansner, A., Rochel, O., Vieville, T.,
Muller, E., Davison, A. P., El
Boustani, S., and Destexhe, A. (2006).
Simulation of Networks of Spiking
Neurons: A Review of Tools and
Strategies. Available at: http://arxiv.
org/abs/q-bio.NC/0611089.

Brüderle, D., Grübl, A., Meier, K.,
Mueller, E., and Schemmel, J. (2007).
A software framework for tuning the
dynamics of neuromorphic silicon
towards biology. In Proceedings of the
2007 International Work-Conference
on Artificial Neural Networks, Vol.
LNCS 4507 (Berlin, Springer Verlag),
pp. 479–486.

Costas-Santos, J., Serrano-Gotarredona, T.,
Serrano-Gotarredona, R., and Linares-
Barranco, B. (2007). A spatial con-
trast retina with on-chip calibration
for neuromorphic spike-based AER
vision systems. IEEE Trans. Circuits
Syst. 54, 1444–1458.

Dally, W. J., and Poulton, J. W. (1998).
Digital Systems Engineering.
Cambridge, Cambridge University
Press. ISBN 0-521-59292-5.

Dante, V., Del Giudice, P., and
Whatley, A. M. (2005). Hardware
and software for interfacing to

address-event based neuromorphic
systems. Neuromorphic Eng. 2, 5–6.

Davison, A. (2009). PyNN – A Python
Package for Simulator-Independent
Specifi cation of Neuronal Network
Models. Available at: http://www.
neuralensemble.org/PyNN.

Davison, A. P., Brüderle, D., Eppler, J.,
Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2008).
PyNN: a common interface for
neuronal network simulators.
Front. Neuroinform. 2, 11. doi:
10.3389/neuro.11.011.2008.

Dayan, P., and Abott, L. F. (2001). Theoretical
Neuroscience: Computational and
Mathematical Modeling of Neural
Systems. Cambridge, The MIT Press.
ISBN 0-262-04199-5.

Destexhe, A., Contreras, D., and
Steriade, M. (1998). Mechanisms
underlying the synchronizing action
of corticothalamic feedback through
inhibition of thalamic relay cells. J.
Neurophysiol. 79, 999–1016.

Diesmann, M., and Gewaltig, M.-O.
(2002). NEST: an environment
for neural systems simulations. In
Forschung und wisschenschaftliches
Rechnen, Beiträge zum Heinz-Billing-
Preis 2001, Vol. 58, GWDG-Bericht,
Theo Plesser and Volker Macho,
eds (Göttingen, Ges. für Wiss.
Datenverarbeitung), pp. 43–70.

Ehrlich, M., Mayr, C., Eisenreich, H.,
Henker, S., Srowig, A., Grübl, A.,
Schemmel, J., and Schüffny, R. (2007).
Wafer-scale VLSI implementations
of pulse coupled neural networks.
In Proceedings of the International
Conference on Sensors, Circuits and
Instrumentation Systems.

Eppler, J. M., Helias, M., Muller, E.,
Diesmann, M., and Gewaltig, M.-
O. (2008). PyNEST: a convenient
interface to the NEST simula-
tor. Front. Neuroinform. 2, 12. doi:
10.3389/neuro.11.012.2008.

FACETS (2009). Fast Analog Computing
with Emergent Transient States, Project
Homepage. Available at: http://www.
facets-project.org.

Fieres, J., Grübl, A., Philipp, S., Meier, K.,
Schemmel, J., and Schürmann, F.
(2004). A platform for parallel opera-
tion of VLSI neural networks. In
Proceedings of the 2004 Brain Inspired
Cognitive Systems Conference,
University of Stirling, Scotland.

Fieres, J., Schemmel, J., and Meier, K. (2008).
Realizing biological spiking network
models in a confi gurable wafer-scale
hardware system. In Proceedings of the
2008 International Joint Conference
on Neural Networks.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (NEural Simulation
Tool). Scholarpedia 2, 1430.

26

Frontiers in Neuroinformatics www.frontiersin.org June 2009 | Volume 3 | Article 17 |

Brüderle et al. Python interface for neuromorphic hardware

(Los Alamitos, CA, IEEE Computer
Society), pp. 266–273.

Serrano-Gotarredona, R., Oster, M.,
Lichtsteiner, P., Linares-Barranco, A.,
Paz-Vicente, R., Gómez-Rodríguez, F.,
Riis, H. K., Delbrück, T., Liu, S. C.,
Zahnd, S. , Whatley, A. M.,
Douglas, R. J., Häfl iger, P., Jimenez-
Moreno, G., Civit, A., Serrano-
Gotarredona, T., Acosta-Jiménez, A.,
and Linares-Barranco, B. (2006). AER
building blocks for multi-layer multi-
chip neuromorphic vision systems.
In Advances in Neural Information
Processing Systems 18, Y. Weiss, B.
Schölkopf, and J. Platt, eds (Cambridge,
MIT Press), pp. 1217–1224.

Summerfield, M. (2008). Rapid GUI
Programming with Python and Qt.
Prentice Hall, Upper Saddle River,
NJ, ISBN 0132354187.

Vogelstein, R. J., Mallik, U., Vogelstein, J. T.,
and Cauwenberghs, G. (2007).
Dynamically reconfigurable silicon
array of spiking neuron with con-
ductance-based synapses. IEEE Trans.
Neural Netw. 18, 253–265.

Conflict of Interest Statement: The
authors declare that the research pre-
sented in this paper was conducted in the
absence of any commercial or fi nancial
relationships that could be construed as
a potential confl ict of interest.

Received: 14 September 2008; paper pend-
ing published: 23 December 2008; accepted:
09 May 2009; published online: 05 June
2009.
Citation: Brüderle D, Müller E, Davison A,
Muller E, Schemmel J and Meier K (2009)
Establishing a novel modeling tool: a python-
based interface for a neuromorphic hard-
ware system. Front. Neuroinform. (2009)
3:17. doi:10.3389/neuro.11.017.2009
Copyright © 2009 Brüderle, Müller, Davison,
Muller, Schemmel and Meier. This is an
open-access article subject to an exclusive
license agreement between the authors and
the Frontiers Research Foundation, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

Glazebrook, K., and Economou, F.
(1997). PDL: The Perl Data Language.
Dr. Dobb’s Journal. Available at: http://
www.ddj.com/184410442.

Goodman, D., and Brette, R. (2008). Brian:
a simulator for spiking neural net-
works in Python. Front. Neuroinform.
2, 5. doi: 10.3389/neuro.11.005.2008.

Grübl, A. (2007). VLSI Implementation
of a Spiking Neural Network. PhD
Thesis, Heidelberg, Ruprecht-
Karls-University. Available at:
http://www.kip.uni-heidelberg.
de/Veroeffentlichungen/details.
php?id = 1788. Document No. HD-
KIP 07-10.

Häfl iger, P. (2007). Adaptive WTA with
an analog VLSI neuromorphic learn-
ing chip. IEEE Trans. Neural Netw. 18,
551–572.

Hines, M. L., and Carnevale, N. T. (2006).
The NEURON Book. Cambridge,
Cambridge University Press. ISBN
978-0521843218.

Hines, M. L., Davison, A. P., and
Muller, E. (2009). NEURON and
Python. Front. Neuroinform. 3, 1. doi:
10.3389/neuro.11.001.2009.

Hines, M. L., Morse, T., Migliore, M.,
Carnevale, N. T., and Shepherd, G. M.
(2004). ModelDB: a database to sup-
port computational neuroscience. J.
Comput. Neurosci. 17, 7–11.

Hunter, J. D. (2007). Matplotlib: a 2D
graphics environment. IEEE Comput.
Sci. Eng. 9, 90–95.

IEEE (2004). Standard for Information
Technology – Portable Operating
System Interface (POSIX). Shell
and Utilities. Technical Report,
IEEE. Available at: http://iee-
explore. ieee .org/xpls/abs_al l .
jsp?arnumber = 1309816.

INCF Software Database (2009). Website.
Available at: http://software.incf.net.

Jones, E., Oliphant, T., Peterson, P. et al.
(2001). SciPy: Open Source Scientifi c
Tools for Python. Available at: http://
www.scipy.org/.

Langtangen, H. P. (2008). Python
Scripting for Computational Science,
3rd Edn. (Berlin, Springer). ISBN
978-3-540-73915-9.

LeCroy (2005). X-Stream Oscilloscopes–
Remote Control Manual. Technical
Report Revision D, New York, LeCroy
Corporation. Available at: http://
lecroygmbh.com.

Lutz, M. (2001). Programming Python:
Object-Oriented Scripting. Sebastopol,
O’Reilly & Associates, Inc. ISBN
0596000855.

Mead, C. A. (1989). Analog VLSI and
Neural Systems. Reading, Addison
Wesley.

Mead, C. A., and Mahowald, M. A. (1988).
A silicon model of early visual process-
ing. Neural Netw. 1, 91–97.

Merolla, P. A., and Boahen, K. (2006).
Dynamic computation in a recurrent
network of heterogeneous silicon neu-
rons. In Proceedings of the 2006 IEEE
International Symposium on Circuits
and Systems.

Morrison, A., Aertsen, A., and Diesmann, M.
(2007). Spike-timing-dependent plas-
ticity in balanced random networks.
Neural Comput. 19, 1437–1467.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of
high connectivity network simulation
with distributed computing. Neural
Comput. 17, 1776–1801.

Neural Ensemble (2009). Website. Available
at: http://neuralensemble.org.

NeuroTools (2009). Website. Available
a t : h t t p : / / n e u r a l e n s e m b l e .
org/trac/NeuroTools.

Oliphant, T. E. (2007). Python for scien-
tific computing. IEEE Comput. Sci.
Eng. 9, 10–20.

Oster, M., Whatley, A. M. Liu, S.-C., and
Douglas, R. J. (2005). A hardware/soft-
ware framework for real-time spiking
systems. In Proceedings of the 2005
International Conference on Artifi cial
Neural Networks.

PCSIM (2009). Website. Available at:
http://www.lsm.tugraz.at/pcsim/.

Pecevski, D. A., Natschläger, T., and
Schuch, K. N. (2009). PCSIM: a
parallel simulation environment for
neural circuits fully integrated with
python. Front. Neuroinform. 3, 11. doi:
10.3389/neuro.11.011.2009.

Philipp, S. (2008). Design and
Implementation of a Multi-
Class Network Architecture for
Hardware Neural Networks. PhD
Thesis, Heidelberg, Ruprecht-Karls
Universität.

Philipp, S., Grübl, A., Meier, K., and
Schemmel, J. (2007). Interconnecting
VLSI Spiking Neural Networks
Using Isochronous Connections. In
Proceedings of the 9th International
Work-Conference on Artifi cial Neural
Networks, Vol. LNCS 4507 (Berlin,
Springer Verlag), pp. 471–478.

Ray, S., and Bhalla, U. S. (2008). PyMOOSE:
interoperable scripting in Python for
MOOSE. Front. Neuroinform. 2, 6. doi:
10.3389/neuro.11.006.2008.

Renaud, S., Tomas, J., Bornat, Y., Daouzli, A.,
and Saighi, S. (2007). Neuromimetic
ICs with analog cores: an alternative
for simulating spiking neural net-
works. In Proceedings of the 2007 IEEE
Symposium on Circuits and Systems.

Rossum, G. V. (2000). Python Reference
Manual: February 19, 1999, Release
1.5.2. iUniverse, Incorporated. ISBN
1583483748.

Schemmel, J., Brüderle, D., Meier, K.,
and Ostendorf, B. (2007). Modeling
synaptic plasticity within networks
of highly accelerated I&F neurons.
In Proceedings of the 2007 IEEE
International Symposium on Circuits
and Systems, IEEE Press.

Schemmel, J., Fieres, J., and Meier, K.
(2008). Wafer-scale integration of ana-
log neural networks. In Proceedings
of the 2008 International Joint
Conference on Neural Networks.

Schemmel, J., Grübl, A., Meier, K., and
Mueller, E. (2006). Implementing syn-
aptic plasticity in a VLSI spiking neural
network model. In Proceedings of the
2006 International Joint Conference
on Neural Networks. IEEE Press.

Schürmann, F. , Hohmann, S . ,
Schemmel, J., and Meier, K. (2002).
Towards an artifi cial neural network
framework. In Proceedings of the 2002
NASA/DoD Conference on Evolvable
Hardware, A. Stoica, J. Lohn, R. Katz, D.
Keymeulen, and R.S. Zebulum, eds

27

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 29 May 2009
doi: 10.3389/neuro.11.012.2009

Near-infrared neuroimaging with NinPy

Gary E. Strangman1,2*, Quan Zhang1,2 and Thomas Zeffi ro2

1 Department of Psychiatry, Harvard Medical School, Charlestown, MA, USA
2 Neural Systems Group, Massachusetts General Hospital, Charlestown, MA, USA

There has been substantial recent growth in the use of non-invasive optical brain imaging in
studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one
of the most promising of these techniques and, although NIN hardware continues to evolve at
a rapid pace, software tools supporting optical data acquisition, image processing, statistical
modeling, and visualization remain less refi ned. Python, a modular and computationally
effi cient development language, can support functional neuroimaging studies of diverse design
and implementation. In particular, Python’s easily readable syntax and modular architecture
allow swift prototyping followed by effi cient transition to stable production systems. As an
introduction to our ongoing efforts to develop Python software tools for structural and functional
neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain
function, (ii) the key computational requirements to support NIN experiments, (iii) our collection
of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that
will allow integration of optical with other structural and functional neuroimaging data sources.
Source code for the software discussed here will be made available at www.nmr.mgh.harvard.
edu/Neural_SystemsGroup/software.html.

Keywords: near-infrared spectroscopy, python, NIRS, diffuse optical tomography, brain imaging

one domain for which no Python tools exist, and for which only
two non- commercial software solutions are available (Huppert,
2006; Ye et al., 2009). We have therefore been developing a suite
of Python modules to support the computational aspects of NIN
data acquisition, analysis, and display. While our particular col-
lection of tools is specialized for handling NIN data, the general
design principles have broader application in experimental and
theoretical neuroscience. We plan to release sub-modules under a
BSD license, posting them at www.nmr.mgh.harvard.edu/Neural_
SystemsGroup/software.html as they reach beta level stability.

We begin with an explanation of the physical and biological
basis for NIN, followed by a brief comparative review of its chief
uses. To provide context for our software development efforts,
“Computational Requirements and Software” begins by describ-
ing the logistical and computational requirements associated with
NIN experiments. The remainder of that section then describes the
individual acquisition, analysis and visualization modules compris-
ing the NinPy package, followed by a discussion of future software
development directions in “Future Extensions”.

PRINCIPLES OF NEAR-INFRARED NEUROIMAGING
The physical principles underlying NIN are relatively simple, and
similar to those encountered in pulse oximetry. The human scalp
and skull are suffi ciently transparent to the near-infrared (NIR)
light wavelengths between 650 and 950 nm to enable non- invasive
optical monitoring of physiological modulations associated with
brain function (Jobsis, 1977). The NIR wavelengths are non-
ionizing and therefore do not harm biological tissue at the low
average power densities of 1–4 mW/cm2 customarily utilized in
brain imaging. For comparison, the ambient NIR light level on a

INTRODUCTION
The effi cient conduct of neuroimaging experiments requires a
diverse and complex assortment of computational resources. It
follows naturally that constructing complete systems for data
acquisition, analysis and display would be facilitated by the use of
highly versatile, modular development environments. Functional
neuroimaging data collection requires accurate timing of both
stimulus displays and user responses, with near real-time graph-
ics and device polling capabilities. The structural and functional
neuroimaging datasets acquired over the course of a typical 1- to
2-h experimental session can exceed 10 gigabytes in size. These high
data collection rates, along with the need to monitor the data fl ow
for quality assurance purposes, require excellent system through-
put and real-time data display capabilities to support experimental
monitoring. Once acquired, neuroimaging datasets must undergo
substantial preprocessing, data reduction and statistical processing
to accurately model the many, often hierarchical, sources of vari-
ance in the raw data. These sources can include instrument noise,
temporal autocorrelation, head motion, cardiovascular physiologi-
cal effects, within-subject task effects, within-group effects, and
between-group treatment effects. Finally, the statistical results must
be displayed in an intuitive and easily comprehensible form using
publication quality graphics.

While the construction of tools for each of these steps poses
a substantial challenge, many current Python modules provide
an excellent foundation on which to build data acquisition and
processing pipelines. These advantages are already evident in
magnetic resonance imaging (MRI) and electroencephalography
(EEG) data processing applications, as demonstrated by other
papers this issue. However, near-infrared neuroimaging (NIN) is

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Andrew D. Straw, California Institute of
Technology, USA
Matthew Brett, University of
Cambridge, UK

*Correspondence:

Gary E. Strangman, Neural Systems
Group, Massachusetts General
Hospital, 149 13th St – Psychiatry – Ste
2651, Charlestown, MA 02129, USA.
e-mail: strang@nmr.mgh.harvard.edu

28

www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.
www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

sunny summer day in mid-latitudes is approximately 20 mW/cm2.
By shining small spots of NIR light on the scalp and placing a
detector a few centimeters away, the light intensity recorded by
the detectors is modulated by the concentrations of all the absorb-
ing chromophore molecules in the underlying tissues between the
source and the detector. While sensitive to a range of chromophores
and physiological phenomena (Villringer and Chance, 1997), NIN
is particularly sensitive to the tissue oxygenation changes observed
during changes in local neuronal activity (Huppert et al., 2006;
Strangman et al., 2002b). A single source and detector pair can
provide information about local changes in tissue optical prop-
erties. Spatiotemporal images of these physiological variables are
generated by collecting multiple overlapping optical measurements
and then applying tomographic image reconstruction techniques
(Arridge, 1999; Franceschini et al., 2006; Pogue et al., 1999a). In
addition to these spatial sampling capabilities, NIN is capable of
temporal sampling in excess of 500 samples/s, a rate that compares
quite favorably even with the most recent, ultra-fast MRI functional
imaging methods (Lin et al., 2008a,b).

ADVANTAGES AND LIMITATIONS OF NEAR-INFRARED NEUROIMAGING
Near-infrared neuroimaging has several advantages when com-
pared with other functional neuroimaging techniques, including:
(i) comparatively low cost, (ii) sensitivity to multiple aspects of
brain physiology, (iii) high temporal resolution, and (iv) suitability
for portable or mobile applications. Together, these characteristics
enable the use of non-invasive optical measurements in settings
not normally compatible with brain imaging, including functional
brain imaging in freely moving subjects. As with any technique,
NIN also has limitations. Chief among these are a limited pen-
etration depth of approximately 3–4 cm from the scalp surface,
when using refl ection geometry (Strangman et al., 2002a, 2003).
In addition, non-invasive NIN allows only modest spatial resolu-
tion, estimated to be on the order of 0.5–1 cm in an adult human.
Within these limits, however, NIN provides sensitive and reliable
estimates of task-related neural activity originating in cortical
structures comparable to results obtained using functional MRI
(Huppert et al., 2006; Jasdzewski et al., 2003; Strangman et al.,
2002b, 2006).

WHAT ASPECTS OF BRAIN FUNCTION CAN NEAR-INFRARED
NEUROIMAGING MEASURE?
Although the basic NIN measurement involves recording the atten-
uation of light from a particular source as seen from the viewpoint
of a particular detector, one can use raw light attenuation measure-
ments at different wavelengths in the NIR range to obtain localized
spectroscopic estimates of a wide range of physiological variables
(Table 1). Some of these variables, like oxy- or deoxy-hemoglobin
(O

2
Hb and HHb) concentrations, are relatively straightforward

conversions from measured attenuation values (see Section
“Spectroscopic Conversion”). Others involve estimation of the
physiological variables of interest from combinations of estimated
chemical concentrations, as in the case of oxygen saturation or the
cerebral rate of oxygen metabolism (CMRO

2
). Finally, the temporal

modulations of these variables can be used to compute indirect
estimates of physiological phenomena like heart rate, respiration
rate or modulation in baroreceptor activity (Mayer waves).

Near-infrared neuroimaging measurements of hemodynamic
variables can be used to derive estimates of regional brain activ-
ity. This relationship between neural and hemodynamic activity is
based on combined electrophysiological and fMRI results demon-
strating that local changes in neural activity, refl ecting both den-
dritic and axonal activity, are associated with focal variations in
blood fl ow and volume (Logothetis, 2008). Because hemodynamic
and neural activity changes often covary linearly, it is possible to
use localized spatiotemporal recording of brain hemodynamics to
make inferences about antecedent, and presumably causally related,
neural activity patterns. For studying brain mechanisms underly-
ing complex behavior, NIN hemodynamic imaging has particu-
lar advantages over other imaging modalities in the non-invasive
detection of neural activity modulations. For example, as compared
to EEG, NIN signals are more spatially localized (Strangman et al.,
2003) and much less susceptible to the type of bioelectric interfer-
ence generated by task-related scalp and face muscle activity. NIN
signals also do not require tasks that produce the sorts of synchro-
nous neural discharges that are needed to generate detectable event-
related electrical potentials. In addition, when directly compared
to invasive electrical measurements, hemodynamic responses are
just as strongly related to induced patterns of neural activity as are
the synchronous fi eld potentials from which evoked potentials arise
(Logothetis et al., 2001; Logothetis and Wandell, 2004).

In summary, the non-invasive character, and high sensitivity
of NIN to a broad range of physiological phenomena refl ecting
many different aspects of brain function, makes it a promising
method for use in a large number of clinical and experimental
neuroscience contexts.

COMPUTATIONAL REQUIREMENTS AND SOFTWARE
Of its many potential applications, we have been particularly inter-
ested in using NIN to study the neural mechanisms underlying com-
plex behavior. In particular, to facilitate the use of NIN in studies of
the neural mechanisms of action and perception, we have developed
a suite of programs, collectively called NinPy, that provide a wide
range of integrated computational tools for use in optical functional
neuroimaging experiments. A summary of the principal capabili-
ties and components in NinPy appears in Table 2, along with the
main Python modules and packages upon which each component is
based. Each of these will be elaborated in the sections that follow.

There currently are two main software packages for han-
dling NIN data: HomER (Huppert, 2006) and NIRS-SPM

Table 1 | Physiological variables that can be estimated using NIN.

Chemical Physiological Temporal

measurements variables variables

Oxy-hemoglobin concentration Blood volume Heart rate

Deoxy-hemoglobin concentration Blood fl ow Respiration rate

Total hemoglobin concentration Oxygen saturation Mayer waves

Water concentration CMRO2 Low-frequency

 oscillations

Cytochrome oxidase Neural activity

concentration

pH

29

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

Table 2 | NinPy components and their core supporting Python modules.

Capability NinPy Primary Python

 component modules

ACQUISITION

Stimulus display NinSTIM PsychoPy, Pyglet

User input NinSTIM PsychoPy, cgkit, Pyglet

Synchronization NinSTIM pyparallel/pyserial

NIRS data collection NinDAQ Chaco, Traits

ANALYSIS

Quality assurance NinPROC NumPy

Filtering NinPROC NumPy, SciPy

Image reconstruction NinPROC NumPy, SciPy

Parameter estimation NinSTATS SciPy, RPy

Statistical modeling NinSTATS RPy

DISPLAY

Visualization NinDISP Matplotlib

(Ye et al., 2009). Both of these packages provide excellent data
processing capabilities for many of the analysis and display
aspects of NIN data processing. HomER provides a wealth of
temporal processing capabilities and image reconstruction tech-
niques, whereas NIRS-SPM provides broad statistical modeling
and display capabilities by integrating with, and building upon, a
well-established neuroimaging software package, SPM. However,
neither package includes capabilities for acquisition, including
experiment design, stimulus display, and data collection. NinPy
seeks to provide an integrated platform combining all of these
features, with a focus on features that complement those available
in HomER and NIRS-SPM.

CONDUCTING NEAR-INFRARED NEUROIMAGING EXPERIMENTS
Conducting a typical NIN experiment requires two distinct software
tools: one for experimental control and the other for data acquisi-
tion. Although these tools operate independently, their effi cient
use together requires a high degree of functional integration at the
design level. As described next, NinSTIM is a stimulus generation
and display system for experimental control, and NinDAQ is a data
acquisition and monitoring system for device control.

Stimulus generation and user input (NinSTIM)
Accurate and reliable control of stimulus presentation is a critical
aspect of any functional neuroimaging experiment. NinSTIM is a
high-level stimulus and experimental design toolkit, designed for
non-programmers, that generates stimulus sequences for display
by the Pyglet interface1 to the PsychoPy package2 (Peirce, 2008).
NinSTIM directs PsychoPy to sequentially present an ordered col-
lection of “trials”, where a trial is a very general entity consisting
of one or more temporal phases, each composed of one or more
visual or auditory stimuli. For example, a trial could be: (i) a simple
instruction screen presented while the program waits indefi nitely
for a key press, (ii) a visual fi xation of predetermined duration,
(iii) a stimulus followed by a mask, or (iv) any other ordered series
of stimuli. An example complex trial with fi ve separate phases might
be: (i) a side-by-side pair of photos, followed by (ii) a brief whole-
screen mask image, followed by (iii) a variable duration blank
screen delay period, followed by (iv) a go cue, and fi nally (v) an
inter-trial rest period. Each unique trial type is defi ned in a ASCII
trial defi nition (.DEF) fi le, with required Python-style indentation,
for editing and interactive debugging (Figure 1, left).

1www.pyglet.org
2www.psychopy.org

trial definition .DEF file

backgroundColor (-1,-1,-1)
 Ready

-1 keyboard
allowableKeys space

 Ready …
 pos (0,0.2)
 height 0.15
 Instructions_Left_3
 3 cumulative
 Instr_left_3.jpg
Fixation

 15 cumulative
 cross.jpg
 Left.04
 1.5 exact
 L4.jpg
[etc.]

trial order .ORD file

Ready
Instructions_Left_3
Fixation
Left0.04
Left0.03
Left0.05
Left0.01
Left0.02
Instructions_Right_1
Right1.04
Right1.01
Right 1.03
Right 1.02
Right 1.02
Fixation
Thanks

FIGURE 1 | Abridged examples of the trial defi nition (.DEF) fi le format

and the trial order (.ORD) fi le format. Each trial named in the .ORD fi le
must be defi ned in the .DEF fi le. For the fi rst trial (“Ready”), “timing = −1
keyboard” means wait indefi nitely for a keypress (the spacebar is the only
allowable key) while displaying the text “Ready …” at position (0,0.2) and

height 0.15. The “Fixation” trial involves displaying the image fi le
cross.jpg in the center of the screen for 15 s, with extra frames inserted or
removed there if cumulative timing errors have accumulated. The “Left.04”
stimulus displays the image fi le L4.jpg in the center of the screen for
exactly 1.5 s.

30

www.pyglet.org
www.psychopy.org

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

The breadth of experimental designs commonly employed in
functional neuroimaging experiments requires sophisticated and
fl exible procedures for trial scheduling. Possibilities for the tempo-
ral ordering of trials include: (i) block designs, in which groups of
evenly spaced trials alternate with periods of fi xation, (ii) stochas-
tic, or “event-related”, designs, in which the individual trial times
are varied to allow effi cient estimation of hemodynamic responses
using deconvolution procedures (Dale, 1999), and (iii) mixed
designs, combining aspects of both block and stochastic designs
to achieve separation of state and task-related experimental effects.
In the case of stochastic and mixed designs, the trial durations
and orders that lead to maximum effi ciency in the detection of
task-related brain activity can be computed using programs such
as optseq3, and then entered in a trial order (.ORD) fi le. As with
the trial defi nition fi le, the trial order input fi le is a simple, ASCII
fi le (Figure 1, right). From these two input fi les (.DEF and .ORD),
NinSTIM builds and then runs a PsychoPy-compatible program.

PsychoPy and Pyglet, the engines driving stimulus presentation,
also provide facilities for logging stimulus, keyboard and mouse
events. Through the Pyglet event loop, one can continuously moni-
tor these events and respond appropriately. For example, one can
display different stimuli depending on user input, or compensate
for certain timing vagaries inherent in soft real-time operating sys-
tems. In soft real-time operating systems like Microsoft Windows,
interrupts and system processes can sometimes seriously disrupt
the accuracy and precision of stimulus timing. This is a widely
recognized problem that is addressed using differing mechanisms
in the stimulus presentation packages most commonly used in
experimental neuroimaging, including EPrime4, Presentation5,
Psychtoolbox6, and Cogent7. To optimize timing in NINstim we:
(i) increase the stimulus display process priority to “High” via
Python’s win32process.SetPriorityClass(), (ii) disable Python gar-
bage collection, (iii) enable drawing synchronized to the vsync
pulse from the monitor, and (iv) pre-draw stimuli whenever pos-
sible to maximally engage the blocking mode of calls to OpenGL
fl ip (Straw, 2008). Stimulus onset timestamps are collected using
Python’s time.clock() call which is executed the line after the call to
fl ip the OpenGL graphics buffer. The timing requested by the user
in the trial defi nition and order fi les – which we call the nominal
timing – is also simultaneously monitored. Using the “cumula-
tive” timing type, users can identify the less critical stimulus or
delay times, for which NinSTIM can add or subtract one or two
frames, to preserve the experiment’s cumulative nominal timing.
In a 12-h test using this approach, involving 15,600 trials and
31,000 stimuli, our time.clock() timestamps occurred a maximum
of 26 ms early to 88 ms late compared to nominal, with a mean
and SD timing error of 1.6 ± 6 ms. Individual stimulus durations
ranged between ±8 ms off nominal – or half a screen refresh on our
60-Hz monitor. Note that these latencies do not represent the total
system delay, defi ned as the interval between the time a user event
is captured and a new image is displayed. Moreover, these latencies

were measured by the internal computer clock, rather than an
external source. Hence, the above numbers may underestimate
the exact latency to stimulus presentation (Straw, 2008). However,
the maintenance of nominal timing within a few tens of milli-
seconds over several hours is more than adequate for functional
neuroimaging experiments based on hemodynamic responses,
which includes the vast majority of NIN experiments.

Using the standard Python threading and ctypes modules it is
also possible to collect continuous data streams from other user
input devices during stimulus display. Access to almost any device
driver is possible through ctypes. By setting up a separate timer
thread, densely sampled data streams from auxiliary input devices
can include time stamps from the same master clock that marks all
stimulus, keyboard and mouse events. This arrangement dramati-
cally reduces the timing uncertainty between stimulus presentation
and recording devices and can provide a record of any mismatch
between intended and actual experimental event times. This sort
of continuous, simultaneous recording of auxiliary devices can be
diffi cult or impossible to implement using many of the popular
experimental control programs. In addition, the pyserial and pypar-
allel Python modules (Liechti, 2008) provide a separate means for
acquiring event signals from, or exporting trigger signals to, the
computer’s serial or parallel ports for synchronization with our
NIN acquisition devices.

Because NinSTIM is based on Python, chaining multiple experi-
ments is easily achieved with successive Python calls, or a separate
Python script that runs each experiment in succession.

Data acquisition and real-time data display system (NinDAQ)
Optical imaging devices are constructed from multiple hardware
subsystems that require dedicated device control software. Using
Enthought’s Chaco/Traits modules (Enthought, 2007, 2008), along
with NumPy (Oliphant, 2006) and SciPy (Jones et al., 2001) we have
also developed NinDAQ, a device control program customized for
two of our NIN instruments (Figure 2). This program provides com-
plete, real-time control over the NIN device state variables, includ-
ing laser state, amplifi er gain, analog acquisition subsystem voltage
range, and sampling rate. NinDAQ also controls the data acquisition
process including start signals, stop signals, and data display modes.
Important additional features include: real-time temporal display of
relatively large amounts of data, pushbutton toggling to “zoom in
and out” on the data stream as it is being collected, and automatic
scaling of the signal range to the minimum and maximum values
of each data line. Real-time control of the acquisition process is
provided, including provisions for user-generated interrupts of data
collection, variable temporal windows for strip-chart data views,
and interactive laser control. The Chaco plotting package provides
real-time plotting capabilities, while Enthought’s Traits supports
rapid GUI development cycles. The standard Python ctypes module
enables seamless access from Python to the commercial drivers for
our analog-to-digital data acquisition boards.

SIGNAL PROCESSING (NINPROC)
Once complete, most neuroimaging experiments produce two fi le
types: text fi les that log the stimulus and response events, and cus-
tom binary data fi les containing the neuroimaging data. Depending
on the type of experiment and the specifi c neuroimaging device,

3http://surfer.nmr.mgh.harvard.edu/optseq/
4www.pstnet.com/products/e-prime
5www.neurobs.com
6http://psychtoolbox.org/PTB-2/
7www.vislab.ucl.ac.uk/cogent.php

31

http://surfer.nmr.mgh.harvard.edu/optseq/
www.pstnet.com/products/e-prime
www.neurobs.com
http://psychtoolbox.org/PTB-2/
www.vislab.ucl.ac.uk/cogent.php

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

raw data from a single participant in single experimental session
can be many gigabytes in size. In experiments incorporating cardiac,
respiratory, kinematic or other physiological data monitoring, a
third fi le type containing records of such continuous data streams
may also be produced. Each such data fi le has unique processing
requirements that can be handled via Python, or using the NumPy
and SciPy libraries.

Quality assurance and fi ltering
Quality assurance procedures for stimulus and event log fi les
involve validating event timing by examining deviations from
nominal event times and durations, detection of skipped stimuli
or skipped frames, detection of device failures, and identifi cation of
other experimental anomalies, including task performance devia-
tions. Data quality checks can be easily implemented in Python by
opening the log fi les generated by NinSTIM and NinDAQ, reading
in each line with the recorded actual and nominal times, and com-
puting various time differentials. NinPROC uses simple descriptive
statistics to identify deviations from the expected experimental
event timing, with relevant functions contained in NumPy (amin,
amax, mean, std, or median) or scipy.stats (skew, kurtosis, or histo-
gram). There is also an option to graphically display histograms to
visually identify anomalous timing patterns during particular runs,
using matplotlibhist() and plot() functions. For physiological or
NIN data time series, numpy.loadtxt() or numpy.fromfi le() can be
used to effi ciently read in the data, which can be similarly scanned
for timing irregularities, intermittent signal dropout or other devia-
tions from the experimental protocol. In addition, multiple time
series can be quickly and automatically plotted with nindisp.plot()
for visual inspection.

To identify and remove the sorts of signal artifacts specifi c to NIN
data, we have included algorithms in NinPROC for semi- automated

signal pruning. For a variety of reasons, not all source–detector
pairs will provide useful information in all experiments. Data from
some source–detector pairs not of primary interest may have been
recorded during the experiment, some source–detector pairs may
have been too far apart to provide reliable signals, or a detector
may have lost contact with the head, thereby generating large sig-
nal artifacts. Within the preprocessing component NinPROC, the
ninproc.prune() function is available to remove particular sources,
detectors, or channels based on the known source–detector separa-
tions. In addition, low overall signal intensity can result in unreli-
able information, and high overall signal intensity can indicate light
leakage from source to detector. Hence, facilities for displaying and
pruning based on absolute signal intensity and signal-to-noise ratio
(SNR) are also provided as options (Figure 3). In addition, the nin-
proc.lowpass(), ninproc.highpass(), and ninproc.notch() functions
provide simple, zero-phase fi ltering to reduce 1/f physiological,
instrument, or electrical interference noise components.

As with all neuroimaging data, NIN time series can contain
physiological motion artifacts. When head motion occurs, the
resulting signal modulations can be substantial and therefore
must be identifi ed and either excluded or otherwise mitigated.
Exclusion of a motion contaminated time series segment is a
less than ideal solution, so effective mitigation is an important
tool. One approach, which is particularly well-suited to real-time
applications, is adaptive fi ltering. In previous work, we have
demonstrated the effi cacy of adaptive fi ltering to identify and
reduce global physiological interference in NIN signals, including
signal modulations resulting from cardiac or respiratory oscil-
lations (Zhang et al., 2007a,b). We have recently added a least
mean squares-based adaptive fi lter for motion artifact reduc-
tion to NinPy called ninproc.lms() (Figure 4). Adaptive fi lter-
ing has shown considerable promise in real-time reduction of

Amplifier gain se�ngs

Scrolling data display panels

Laser on/off

Start/stop/display/output se�ngs

Acquisi�on board se�ngs

FIGURE 2 | Screenshot from the NinDAQ device control and data acquisition program. Inset: The NIN recording devices and head probe being controlled by
this software.

32

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

 physiological motion artifacts without the bandwidth loss asso-
ciated with using a low-pass fi lter with a low cutoff frequency.
Other published approaches to dealing with NIN motion artifacts
include the use of principle component analysis or independent
component analysis to identify and separate signal from motion
waveforms (Morren et al., 2004; Zhang et al., 2005), solutions that
could be incorporated using the Python-based Modular toolkit

for Data Processing (Berkes et al., 2008) via mdp.pca() or mdp.
fastica().

Spectroscopic conversion
Table 1 lists multiple types of optical contrast detectible with NIN
(Villringer and Chance, 1997). Many of these contrasts are computed
via spectroscopic conversion using the modifi ed Beer–Lambert law

FIGURE 3 | Graphical depiction of channel by channel SNR, computed as

mean signal intensity divided by the SD of signal intensity over time

(S = source position, D = detector position). Source–detector pairs with
SNR > 50 are connected with green lines, while those with lower SNRs are

connected with progressively darker lines. Sources or detectors with few or only
bad connections (e.g., S16, D25) could be candidates for pruning. Regions of red
colors indicate reduced sensitivity relative to other regions, as seen in the
vicinity of sources S4 and S6.

A

B

C

DD

E

FIGURE 4 | NIN data motion artifact reduction using NinPROC and adaptive

fi ltering. Time courses are: (A) raw NIN data; (B) simultaneously acquired raw
piezoelectric motion sensor data; (C) adaptively fi ltered NIN data, using (A) as the

target and (B) as the reference signal; (D) signal in (C) plus a second-order
Butterworth high-pass fi lter using scipy.lfi lter() (cutoff = 0.05 Hz); (E) signal in (D)
plus a sixth-order Butterworth low-pass fi lter using scipy.lfi lter() (cutoff = 2 Hz).

33

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

(Delpy et al., 1988). These conversions are linear algebra transfor-
mations performed on each time point of raw attenuation data and
the resulting time series refl ect time-varying changes in chromo-
phore concentrations. To compute chromophore concentrations,
raw measurements recorded from two or more NIR wavelengths
are fi rst log transformed to changes in optical density, and then
to changes in O

2
Hb, HHb, and total hemoglobin (O

2
Hb + HHb)

concentrations:

Δ λ = − = μ λ λ

= ε λ Δ + ε λ

OD() log10() DPF()

O Hb
2Hb 2 HHb

I I Lo aΔ

Δ

()

() ()

⋅

[]O HHHb DPF()[]⎡⎣ ⎤⎦ ⋅L λ

where I is the raw measured intensity at a single point in time,
I

o
 is the measured light intensity at a reference time point, ΔOD

represents the change in optical density between I and I
o
, the ε()s

are extinction coeffi cients for O
2
Hb and HHb at a given wave-

length (λ), L is the source–detector separation, and DPF(λ) is the
wavelength-dependent differential pathlength factor that converts
L to the true (scattered) optical pathlength. Recording data from
two wavelengths (λ

1
 and λ

2
) provides two such equations with

two unknowns: the change in O
2
Hb and HHb concentrations. The

 ninproc.extinction_coef() function uses interpolated lookup tables
to obtain extinction coeffi cients of the various optical chromo-
phores. With these coeffi cients, conversion to concentrations over

all time points can generally be accomplished compactly in Python
using NumPy arrays, broadcasting, and its linear algebra capabili-
ties, as shown in Code Fragment 1, where L is a 1D array of source–
detector separations for each channel, rawdata is a 2D array of
raw (or pruned and fi ltered) NIN data, rawref is a 1D array of raw
NIN data from a reference period – e.g., N.mean(rawdata[:100],0),
A is a linear transform between optical density and concentration
represented as a 2D matrix of extinction coeffi cients, hhb and o2hb
are 1D arrays of HHb and O

2
Hb concentrations (in units of moles/

mm) over time. While A is normally invertible, sometimes it is not.
For such cases, one can use numpy.linalg.pinv() in place of numpy.
linalg.inv(). The results of these steps are shown in Figure 5.

IMAGING (NINDISP)
Near-infrared measurements of brain function can be made with
a single source–detector pair, providing information localized to
approximately 0.5–1 cm2 of brain tissue (Strangman et al., 2003).
A spatially-distributed collection of such measurements can be com-
bined into an image for each relevant optical contrast. In functional
neuroimaging, task-related images of O

2
Hb, HHb and O

2
Hb + HHb

changes are of primary interest, as these parameters have been
shown to refl ect underlying changes in neural activity (Jasdzewski
et al., 2003; Strangman et al., 2002b). Imaging procedures can
consist of topology preserving sensor space representations, back

ODdata = -numpy.log10(rawdata/rawref) # compute optical density
A = ninproc.extinction_coef(wavelengths,'Hemoglobin') # table lookup
hhb, o2hb = numpy.dot(numpy.linalg.inv(A),ODdata)/(L*DPF) # compute concentrations

CODE FRAGMENT 1 | Three lines to convert raw NIN data to oxygenation concentrations.

A

B

C

FIGURE 5 | Spectroscopic conversion steps of NIN data time series from one source–detector pair. (A) Raw recorded NIN light intensity data from two
wavelengths, in arbitrary units. (B) Data from (A) after log transformation to optical density units. (C) Data from (B) after conversion to hemoglobin concentration
units (red = oxy-Hb, blue = deoxy-Hb, yellow = period of task activity).

34

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

propagation – also called topographic imaging – or tomographic
reconstructions (Arridge, 1999), as discussed below.

Sensor space representations
Perhaps the simplest approach to imaging, commonly utilized in
EEG and MEG data displays, involves plotting multiple sensor time
series or time averages, with each sensor positioned in the display
according to the scalp location of the measurement. An example of
this approach from NinDISP, using the powerful matplotlib plot-
ting package (Hunter, 2007), appears in Figure 7B. The surface
array visualization technique preserves the temporal information
at each sampling point, and is particularly effective if the sensors
are widely separated.

Topographic imaging
In topographic imaging, measurements obtained from different
locations in space are linearly interpolated to a regular grid to gen-
erate 2D images of either the underlying optical signal changes
or derived parameters. The matplotlib.mlab.griddata() function
can be used to compute such tomographic images. For example,
if data is an N × 3 array of [x,y,val] triples irregularly spaced
over a 10 cm by 6 cm region, a 2D topographic projection of the
val parameter with 1 mm pixels could be computed as follows
(see Figure 7C):

xi is the interpolated, regular grid x-dim
xi = numpy.linspace(0.,10.,100)
yi is the interpolated regular grid y-dim
yi = numpy.linspace(0.,6.,60)
zi = matplotlib.mlab.griddata(data[:,0],
data[:,1], data[:,2],xi,yi)

This is a simple and compact data visualization technique,
but it also embodies many important assumptions. In particular,
interpolation assumes that the time varying optical properties of
brain tissue between measurement locations can be accurately

estimated by averaging the signals derived from the neighbor-
ing actual measurements. This may or not be true depending on
the spatial scales of the signal and the source–detector geometry.
In the above example, it also assumes accurate prior knowledge
of the (x,y) coordinates of the val parameter, which may be dif-
fi cult to obtain or estimate. For simple geometries, however, this
computationally effi cient method is suitable for real-time display
and can be quite useful for visualizing the spatiotemporal structure
of signal modulations.

Tomographic imaging
Tomographic imaging, in contrast to topographic imaging, is more
appropriate when multiple, spatially overlapping NIN measure-
ments are collected. In this case, tomographic image reconstruc-
tion generates a solution that best satisfi es all measurements
simultaneously. The reconstruction is computed in two stages.
First, one must estimate the diffusion paths of photons and cal-
culate the sensitivity profi le throughout the brain. In image recon-
struction, this step is termed the “forward problem.” For simple,
semi-infi nite, homogeneous media, the distribution of photons
injected into tissue can be approximated by the diffusion equation
(Farrell et al., 1992), and solved analytically. However, for more
complicated geometries, analytical solutions are not possible and
hence numerical solutions are often employed, including fi nite
difference, fi nite element and Monte Carlo approaches (Jacques
and Wang, 1995). Here we discuss the Monte Carlo approach.
For the particularly complex tissue geometry of the head, one
can start with a standard high resolution, T1-weighted MRI scan
(Figure 6A). This structural scan can then be segmented into gray
matter, white matter, cerebrospinal fl uid, skull, and scalp tissue
types using Python to call any of the MRI tissue segmentation
tools contained in analysis packages such as SPM88 or FSL9. Next,

A B C

FIGURE 6 | Simulated photon propagation through the head. (A) Typical
anatomical MRI scan, with NIN sensor fi ducial markers visible above the
scalp. (B) Segmentation of the MRI scan in (A) into separate tissue types
where Python was used to chain together the MRI segmentation modules.
(C) Example photon densities for a single source–detector pair separated

by 4 cm, overlaid on the segmented head. The colored areas delimit
the region to which many NIN instruments would be sensitive, with a loss of
1 order of magnitude sensitivity per contour line. Images were generated
using matplotlib.imshow(), NumPy masked arrays, and matplotlib.
contour().

8www.fi l.ion.ucl.ac.uk/spm
9www.fmrib.ox.ac.uk/fsl

35

www.fil.ion.ucl.ac.uk/spm
www.fmrib.ox.ac.uk/fsl

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

each tissue type in the segmented volume is assumed to be homo-
geneous and assigned optical properties based on literature values
(Choi et al., 2004; Kohri et al., 2002; Leung et al., 2005; Okada and
Delpy, 2003; Strangman et al., 2003).

To perform the Monte Carlo simulation process, approxi-
mately 100 million photons are injected, one at a time, into the
segmented model (Figure 6B) at the location of a source or detec-
tor. The propagation of each photon through the tissue is deter-
mined probabilistically given the physics of light and the optical
properties assigned to each tissue type. This process is repeated for
each source and detector location and the result is a participant-
specifi c solution to the forward problem. Multiplying together the
photon densities for a given source–detector pair, point by point
throughout the brain volume, provides an estimated sensitivity
profi le for that source–detector measurement pair (Figure 6C). As
with the MRI segmentation routines, Monte Carlo techniques can
be implemented with Python calls to existing toolboxes in Matlab
(Boas, 2004) via mlabwrap (Schmolck, 2007), or by calls to binaries
such as tMCimg (Boas, 2008) using Python’s os.popen() function.
For NinPROC, and the steps in Figure 6, we utilized the lattermost
approach, which allows us to gradually transition complex code
bases to Python, as time and resources permit.

Given a stable solution to the forward problem (Figure 6C),
the second imaging step is to generate an image of the optical con-
trast parameter. This step is called “inverse modeling”, and it can
be accomplished using linear or non-linear methods. The linear
approach is typically formulated as y = Ax, where y is a length-M
vector containing the value of the parameter of interest for each
NIN source–detector pair, x is a length-N vector of all voxels in the
image reconstruction, and A is the sensitivity matrix (Jacobian),
which is an M × N matrix based on the Monte Carlo simulation
that maps the sensitivity of each point in x to each measurement
in y (Figure 6C). To solve for x, the equation of interest becomes:
x = A−1y, where A−1 computed using numpy.linalg.inv(A) or, more
often, the pseudoinverse of A via numpy.linalg.pinv(A). Because
this problem is usually ill-posed and underdetermined (N >> M),
regularization is typically applied, often via singular value tapering
as is used in Tikhonov regularization (Pogue et al., 1999b). NIN
image reconstruction then essentially reduces to two python func-
tion calls: matrix multiplication via numpy.dot() and regularization
with numpy.linalg.svd().

STATISTICAL MODELING AND VISUALIZATION
The fi nal stage of an NIR functional imaging experiment, after
completing the data collection and the signal and image process-
ing steps, involves parameter estimation, statistical modeling, and
visualization of the results.

Statistical modeling (NinSTAT)
Statistical modeling involves modeling experimental variance to
derive parameter estimates pertaining to the experimental effects of
interest. SciPy includes a number of basic statistical functions that
are suitable for modeling experimental effects in individual subjects.
However, data from many neuroimaging experiments, particularly
those involving comparisons of different participant groups, have
a complex and hierarchical variance structure that cannot be effec-
tively modeled with SciPy routines. In particular, within-subject

designs, incorporating repeated measurements collected from each
participant under a range of experimental conditions are quite
common. These designs are popular because they have relatively
high sensitivity, and they avoid the time and expense of recruit-
ing and fully characterizing large groups of research participants.
Within-subject variability in functional neuroimaging data, while
substantial, tends to be smaller than between-subject variability.
Prominent sources of between-subject variation include: (i) brain
size and shape differences, (ii) neurovascular coupling differences,
(iii) task performance differences in accuracy or response time, and
(iv) variation in the specifi c strategy used to perform the task. To
accurately model both within- and between-subject effects, there-
fore, requires mixed-effects modeling techniques (combining fi xed
and random effects), which are not available in HomER or SciPy. In
addition, given the great diversity in experimental designs employed
in functional neuroimaging experiments, specifi cally coding each
statistical model in Python would be associated with substantial
effort. These reasons motivate integration with an external statistics
package.

R is a widely-used, open-source, statistics package that contains
a very comprehensive and sophisticated collection of statistical
analysis methods (R Development Core Team, 2005), including
tools that are able to model NIN data with complex hierarchical
structure. One common example is with mixed effects models that
contain variables measured at different levels in a hierarchy, as in
the case of summary statistic models in which separate regression
analyses are computed for each participant, with the resulting fi rst-
level regression coeffi cients being treated as random variables at
the second level (Pinheiro and Bates, 2000). Rather than rewrit-
ing the requisite statistical procedures in Python, the RPy module
(Moriera and Warnes, 2004) provides a lightweight yet powerful
interface between Python and R for statistical analysis, with results
automatically returned to Python for storage, subsequent process-
ing or display.

A particular advantage of using R is that an extremely broad
range of models can be applied to the data, since all input vari-
ables are treated equally. In particular, the neuroimaging data can
be used either as an outcome variable, a predictor, or a covariate.
This assignment fl exibility is in contrast to that found in the most
commonly used neuroimaging software packages, including SPM,
FSL, AFNI, FSFast. These packages require the neuroimaging vari-
able to be the outcome variable, which signifi cantly restricts the
types of scientifi c questions that can be addressed. For example, one
question that is receiving growing interest concerns identifi cation
of brain regions that might provide predictive information about
treatment response. This determination requires the neuroimaging
data to act as a predictor and the therapeutic response measure
to serve as a dependent or outcome variable. Implementing these
models using existing neuroimaging packages requires extracting
the data from each potential brain region of interest, exporting the
data series, and then performing the statistical analysis using an
external program (Strangman et al., 2008). By directly interfacing
with R, one can fi t predictive models as easily as those utilizing the
image data as the dependent variable. Code Fragment 2 provides
an example of a NinSTATS implementation of predictive modeling.
Importantly, R includes a large, and continually growing, collection
of heavily tested and more sophisticated models, including robust

36

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

covariance and generalized linear models, as well as a wealth of
post-hoc testing capabilities.

Visualization (NinDISP)
Once a neuroimaging statistical analysis is complete, visualization
enhances both interpretation and communication of the results.
Sensor space visualization, an approach discussed earlier, is shown
in Figures 7A,B. However, it is common in neuroimaging experi-
ments to have even larger collections of spatially coherent univariate
statistical results. For example, the code in Code Fragment 2 might
produce 1,000 or more distinct model fi ts. In this case, sensor space
visualization may be either impossible, because of too many meas-
urements, or misleading, because overlapping measurements may
be sensitive to different depths. Imaging provides certain advantages
in these situations, as shown in the topographic image in Figure 7C,
generated from task-related regression parameters from the O

2
Hb

traces in Figure 7B. Applying a statistical threshold to topographic
images helps identify regions that are signifi cantly modulated by
the task, as shown in Figure 7D.

In addition to statistical parametric maps (Figure 7D), and time
series plots (Figure 7B) it is often useful to generate and examine
scatter or bar plots from regions-of-interest, or to produce sum-
mary plots of activity levels in various brain regions, including
histograms and box plots. The matplotlib module provides all these
options as well as many additional plot types. Critically, matplotlib
includes complete customization capabilities for the creation of
publication-quality fi gures (Hunter, 2007). Math or Greek symbols

can be easily added to the plot or axis labels, options that are par-
ticularly important for representing physical or derived units in
NIN data (cf. Figure 5).

FILE FORMAT INTERFACES TO EXISTING OPTICAL IMAGING TOOLS
Due to the large volume of spatial and temporal data generated by
neuroimaging experiments, neuroimaging data have always required
custom fi le formats, and in the 1990s image fi le formats proliferated.
Fortunately, the NIfTI standard (Cox et al., 2004) has made major
inroads as a standard fi le format for MRI data. An example of its use
in NinPy is seen in Code Fragment 2. Other formats still dominate in
EEG, MEG, PET, as well as NIN, and a number of legacy formats still
persist with some frequency in MRI applications. Our goal has been
to integrate NinPy programs with three key data formats: NIfTI,
the Matlab-based format used by HomER (Huppert, 2006), and
the broad standard HDF5. These formats enable broad interoper-
ability of the NinPy suite with existing tools for neuroimaging data
analysis. NIfTI fi les are created, read and written through the use of
the PyNIfTI package (Hanke, 2008), whereas the HomER fi le format
can be read and written as a Matlab.mat fi le or HDF5 fi le (also read-
able by Matlab) containing multiple arrays with specifi c variable
names. Reading and writing Matlab fi les is supported through scipy.
io.loadmat() and scipy.io.savemat(), and thus HomER fi les can be
saved from appropriate variables in Python as follows:

scipy.io.savemat(‘outname.mat’,{‘d’:nindata,’t’:
timebase,’ml’:meas_list,’aux10’:auxiliary}).

import rpy2.robjects as ro

nin = nifti.NiftiImage(‘allsubj_contrast1.nii’) # parameter file with subject by X by Y by Z dimensions

tags = numpy.loadtxt(‘allsubj_tags.txt’) # columns: subjnum, age, pretest score, outcome score
header = [‘subj’,’age’,’pretest’,’outcome’,’nin’]
shape2D = (nin.data.shape[0],numpy.multiply.reduce(nin.data.shape[1:]))

nindata = numpy.reshape(nin.data, shape2D) # flatten X, Y and Z dimensions (subj by voxel)

Prepare to save 3 results (coef/sterr/T-score) for 4 terms (intercept,age,gender,nin) at each voxel
results = numpy.zeros((4,3,nindata.shape[1:]),numpy.Float)
for i in xrange(len(nindata.shape[1])): # loop over all voxels
 # COLLECT NIN DATA FOR THIS VOXEL AND CREATE AN R DATA FRAME
 thisdata = make_RVector_list(tags) # NINstats helper function for building data frames
 thisdata = thisdata +[ro.RVector(array.array('f',nindata[:,i]))]
 header = header +['nin']
 # CREATE THE DATA FRAME, WITH NAMES (using a dict alone segfaults rpy1.0rc1)
 tl = rlc.TaggedList(thisdata,tuple(header))
 df = ro.RDataFrame(tl)

 # FIT A MULTIPLE LINEAR REGRESSOIN MODEL WITH NIN AS A PREDICTOR
 formula = ro.r.formula(‘outcome ~ age + pretest + nin’) # use NIN data as predictor of outcome
 fittedmodel = ro.r.lm(formula,df) # fit a linear multiple regression model

 # EXTRACT AND STORE RESULTS FORM THE MODEL FIT FOR THIS VOXEL
 summ = ro.r.summary(fittedmodel)
 ttable = summ[3] # retrieve estimated coefficients and t-table results
 for j in range(len(ttable)):
 results[j,0,i] = ttable[j][0] # coefficient
 results[j,1,i] = ttable[j][1] # sterr
 results[j,2,i] = ttable[j][2] # T-value

CODE FRAGMENT 2 | NinSTATS code fragment to perform statistical analysis with functional NIN data as a predictor of outcome.

37

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

FUTURE EXTENSIONS
MULTIMODAL INTEGRATION
While we have only briefl y discussed MRI integration with regard
to Monte Carlo simulation, there are additional advantages asso-
ciated with integrating NIN with MRI and other neuroimaging
modalities. For example, the segmented MRI images (Figure 6B)
could be used to constrain the NIN image reconstruction process
by restricting reconstructed brain activity modulations to gray
matter, thereby not allowing the estimated signal changes to occur
in scalp, skull, cerebrospinal, or white matter tissue compart-
ments. As another example, automatic identifi cation of optical
sources and detectors within the MRI space (the white fi ducial
markers above the head in Figure 6A) could be used as inputs
to the Monte Carlo simulations or to provide more accurate
co-registration of NIN statistical parametric maps with under-
lying brain anatomy.

While integration with EEG, MEG, and other neuroimaging
technologies is occurring at the experimental level, integration at
the data analysis and interpretation levels is a relatively underde-
veloped area. One interesting possibility for integration involves
the optical “fast signal”. NIN studies from several labs have shown
changes in non-invasive optical signals on timescales much faster
than typical hemodynamic changes, less than 100 ms as compared
to 2–3 s or more (Franceschini and Boas, 2004; Gratton et al., 1997;
Morren et al., 2004). Since the nature of this fast NIN signal is an
area of active investigation, close integration of NIN measurements
with more direct EEG and MEG measurements of neuronal activity
could lead to a fuller understanding of the nature of this optical
fast signal. Integration with new, high-speed, MRI acquisition tech-
niques (Lin et al., 2008a,b) may also help shed light on the nature of
this optical fast signal and whether or not there might be analogous
fast hemodynamic signal modulations detectable using MRI.

BA

30 s1
a.

u.

DC

FIGURE 7 | NIN data visualization. (A) Schematic of the NIN sensor
region. (B) Sensor space display, with time series plots positioned at the
source (Sx) and detector (Dx) locations. Individual time series plots show time
on the x-axes and oxy-hemoglobin (red) and deoxy-hemoglobin (blue)
concentrations on the y-axes. Yellow highlights the interval in which the
subjects were engaged in a sequence learning task. A scale bar in the center
indicates that the task period was 32 s in duration. Concentration is

shown in arbitrary units (relative concentration), due to an unknown
scattering factor. (C) Example NIN image of task-related oxy-hemoglobin
regression parameter Z-scores from (B) corresponding to the rectangular
area shown in (A). (D) The same data as (C), masked at a statistical threshold
of p < 0.05 corrected for multiple comparisons. Color bar for Z-scores in both
(C) and (D) appears in (D). Plots B–D were made with NinDISP using
matplotlib.

38

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

ADVANCED VOLUME VISUALIZATION
Combining structural and functional neuroimaging results requires
advanced volume visualization tools. Thus far, we have sought to
capitalize on the popularity of the NIfTI fi le format, as it allows
convenient utilization of a range of existing MRI 3D visualization
packages. However, with the development of Python neuroimag-
ing tools such as NiPy (NiPy Development Team, 2006), as well as
the impressive capabilities afforded by Python bindings to both
the Visualization Toolkit (via vtk’s own Python bindings, or via
Enthought’s tvtk) and OpenGL (via PyOpenGL), adding native
Python 3D visualization for neuroimaging is expected in the near
future. Incorporating 3D display capabilities in NinPy would facili-
tate the sorts of fl exible and customized visualization often absent in
existing packages. Visualization in three dimensions is often critical
to developing better insights into the structure of high-dimensional
datasets. The ease with which customization can be made with
Python scripting, coupled to a high-level visualization package, is
expected to be widely adopted in a broad array of neuroimaging
data visualization applications.

CONCLUSION
The relatively short time needed to construct the NinPy suite of
tools was made possible given the substantial prior efforts refl ected
in the packages listed in Table 3. Thanks to these developments,
we can foresee completion of an end-to-end, Python solution for

developing, conducting, analyzing and displaying the results of NIN
experiments. Key enabling technologies that have appeared over
the past few years include the stabilization of numeric arrays and
processing (NumPy), the advancement and continuing stabilization
of a broad base of scientifi c algorithms (SciPy), the development
of a robust interface to the R statistical modeling package (RPy),
and substantial advances in the mechanisms for stimulus, array
and volume visualization (e.g., PsychoPy, Matplotlib and Chaco).
We have found that the use of Python as the core programming
language for our NIN programs provides signifi cantly better con-
trol over most aspects of an NIN experiment than is possible with
existing packages. Importantly, our development efforts have not
required any time-consuming coding or debugging in C, nor do
users need to learn multiple programming or scripting languages
to complete a functional neuroimaging experiment. We have found
that, particularly for complex problems including optical image
reconstruction, hierarchical statistical analysis, or volume visualiza-
tion, Python can serve as a convenient, powerful, and maintainable
scripting “glue”. This architecture allows us to rapidly deploy an
operational end-to-end Python solution, allowing later conversion
of non-Python algorithms as resources and motivation permit.
Reducing our dependence on multiple separate software tools or
programming languages for stimulus presentation, data acquisi-
tion, data analysis, image reconstruction, statistical modeling, and
graphical display greatly simplifi es the experimental working envi-
ronment, and has substantially increased scientifi c productivity. In
addition, the single-language solution facilitates the development
and distribution of easy-to-use, self-contained packages for con-
ducting NIN experiments in mobile or remote settings where a
dedicated experimenter may not be available. As more open-source
tools are ported to Python, further improvements in productivity
are envisioned.

We are releasing the source code for all of the NinPy modules
for unrestricted use as each sub-module reaches beta level software
quality. Completed modules will be available under BSD licensing10,
or by contacting the authors.

ACKNOWLEDGMENTS
We would like to acknowledge support from the National Space
Biomedical Research Institute through NASA Cooperative
Agreement NCC 9-58.

Table 3 | Versions utilized and website information for major modules

and tools used in the NinPy tool suite.

Module Version Website

cgkit 2.0.0a7 http://cgkit.sourceforge.net

chaco/traits 2.5.2001 http://www.enthought.com/products/epd.php

matplotlib 0.98.3 http://matplotlib.sourceforge.net/

mlabwrap 1.0 http://mlabwrap.sourceforge.net/

numpy 1.0.4 http://www.numpy.org/

psychopy 0.97.0 http://www.psychopy.org

pynifti 0.20090303.1 http://niftilib.sourceforge.net/pynifti/

pyparallel 0.2 http://pyserial.wiki.sourceforge.net/pySerial

pyserial 2.2 http://pyserial.wiki.sourceforge.net/pySerial

R 2.8.0 http://www.r-project.org/

rpy 2.0.1 http://rpy.sourceforge.net/

scipy 0.6.0 http://www.scipy.org/
10www.nmr.mgh.harvard.edu/Neural_Systems_Group/software.html

REFERENCES
Arridge, S. R. (1999). Optical tomography

in medical imaging. Inverse Probl. 15,
R41–R93.

Berkes, P., Wilbert, N., and Zito, T. (2008).
Modular toolkit for data processing
(version 2.3). Available at: http://mdp-
toolkit.sourceforge.net (Retrieved
September 2, 2008).

Boas, D. A. (2004). Photon migra-
tion imaging toolbox. Available at:
http://www.nmr.mgh.harvard.edu/
PMI/resources/tmcimg/index.htm
(Retrieved August 25, 2008).

Boas, D. A. (2008). Monte Carlo pho-
ton transport. Available at: http://
www.nmr.mgh.harvard.edu/PMI/
resources / t mcimg/ index .ht m
(Retrieved August 25, 2008).

Choi, J., Wolf, M., Toronov, V.,
Wolf, U., Polzonetti, C., Hueber, D.,
S a f o n o v a , L . P. , Gu p t a , R . ,
Michalos, A., Mantulin, W., and
Gratton, E. (2004). Noninvasive
determination of the optical prop-
erties of adult brain: near-infrared
spectroscopy approach. J. Biomed.
Opt. 9, 221–229.

Cox, R. W., Ashburner, J., Breman, H.,
Fissell, K., Haselgrove, C., Holmes, C. J.,
Lancaster, J. L., Rex, D. E., Smith, S. M.,
Woodward, J. B., and Strother, S. C.
(2004). A (sort of) new image data
format standard: NIfTI-1. 10th
Annual Meeting of the Organization
for Human Brain Mapping, Budapest,
Hungary.

Dale, A. M. (1999). Optimal experimental
design for event-related fMRI. Hum.
Brain Mapp. 8, 109–114.

Delpy, D. T., Cope, M., van der Zee, P.,
Arridge, S., Wray, S., and Wyatt, J.

(1988). Estimation of optical path-
length through tissue from direct time
of fl ight measurement. Phys. Med. Biol.
33, 1433–1442.

Enthought (2007). Chaco. Available at:
http://code.enthought.com/chaco/
(Retrieved August 25, 2008).

Enthought (2008). Traits. Available at:
http://code.enthought.com/projects/
traits/ (Retrieved August 25, 2008).

Farrell, T. J., Patterson, M. S., and
Wilson, B. (1992). A diffusion
theory model of spatially resolved,
steady-state diffuse refl ectance for the

39

http://cgkit.sourceforge.net
http://www.enthought.com/products/epd.php
http://matplotlib.sourceforge.net/
http://mlabwrap.sourceforge.net/
http://www.numpy.org/
http://www.psychopy.org
http://niftilib.sourceforge.net/pynifti/
http://pyserial.wiki.sourceforge.net/pySerial
http://pyserial.wiki.sourceforge.net/pySerial
http://www.r-project.org/
http://rpy.sourceforge.net/
http://www.scipy.org/
www.nmr.mgh.harvard.edu/Neural_Systems_Group/software.html

Strangman et al. Near-infrared neuroimaging with NinPy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 12 |

noninvasive determination of tissue
optical properties in vivo. Med. Phys.
19, 879–888.

Franceschini, M. A., and Boas, D. A.
(2004). Noninvasive measurement of
neuronal activity with near- infrared
optical imaging. Neuroimage 21,
372–386.

Franceschini, M. A., Joseph, D. K.,
Huppert, T. J., Diamond, S. G., and
Boas, D. A. (2006). Diffuse optical
imaging of the whole head. J. Biomed.
Opt. 11, 054007.

Gratton, G., Fabiani, M., Corballis, P. M.,
Hood, D. C., Goodman-Wood, M. R.,
Hirsch, J., Kim, K., Friedman, D., and
Gratton, E. (1997). Fast and localized
event-related optical signals (EROS) in
the human occipital cortex: compari-
sons with the visual evoked potential
and fMRI. Neuroimage 6, 168–180.

Hanke, M. (2008). PyNifti – Python-style
access to NIfTI and ANALYZE fi les.
Available at: http://niftilib.source-
forge.net/pynifti/ (Retrieved August
25, 2008).

Hunter, J. D. (2007). Matplotlib: a 2D
graphics environment. Comput. Sci.
Eng. 9, 90–95.

Huppert, T. J. (2006). HomER. Available
at: http://www.nmr.mgh.harvard.edu/
DOT/resources/homer/home.htm
(Retrieved September 2, 2008).

Huppert, T. J., Hoge, R. D., Diamond, S. G.,
Franceschini, M. A., and Boas, D. A.
(2006). A temporal comparison of
BOLD, ASL, and NIRS hemodynamic
responses to motor stimuli in adult
humans. Neuroimage 29, 368–382.

Jacques, S. L., and Wang, L. (1995). Monte
Carlo modeling of light transport in
tissues. In Optical-Response of Laser-
Irradiated Tissue, A. J. Welch and
J. C. van Gemert, eds (New York, NY,
Plenum), pp. 73–100.

Jasdzewski, G., Strangman, G., Wagner, J.,
Kwong, K. K., Poldrack, R. A., and
Boas, D. A. (2003). Differences in the
hemodynamic response to event-
related motor and visual paradigms
as measured by near-infrared spec-
troscopy. Neuroimage 20, 479–488.

Jobsis, F. F. (1977). Non-invasive, infra-red
monitoring of cerebral O

2
 suffi ciency,

blood volume, HbO
2
-Hb shifts and

blood fl ow. Acta Neurol. Scand. Suppl.
64, 452–453.

Jones, E., Oliphant, T., Peterson, P., et al.
(2001). SciPy: open source scientifi c
tools for python. Available at: http://

www.scipy.org (Retrieved August 25,
2008).

Kohri, S., Hoshi, Y., Tamura, M., Kato, C.,
Kuge, Y., and Tamaki, N. (2002).
Quantitative evaluation of the rela-
tive contribution ratio of cerebral
tissue to near-infrared signals in the
adult human head: a preliminary
study. Physiol. Meas. 23, 301–312.

Leung, T. S., Elwell, C. E., and Delpy, D. T.
(2005). Estimation of cerebral oxy- and
deoxy-haemoglobin concentration
changes in a layered adult head model
using near-infrared spectroscopy and
multivariate statistical analysis. Phys.
Med. Biol. 50, 5783–5798.

Liechti, C. (2008). pySerial/ pyParallel.
Available at: http://pyserial.wiki.
sourceforge.net/pySerial (Retrieved
August 25, 2008).

Lin, F., Witzel, T., Mandeville, J.,
Polimeni, J., Zeffiro, T., Greve, D.,
Wiggins, G., Wald, L., and Belliveau, J.
(2008a). Event-related single-shot
volumetric functional magnetic
resonance inverse imaging of visual
processing. Neuroimage 42, 230–247.

Lin, F. H., Witzel, T., Zeffi ro, T. A., and
Belliveau, J. W. (2008b). Linear con-
straint minimum variance beam-
former functional magnetic resonance
inverse imaging. Neuroimage 43,
297–311.

Logothetis, N. K. (2008). What we can do
and what we cannot do with fMRI.
Nature 453, 869–878.

Logothetis, N. K., Pauls, J., Augath, M.,
Trinath, T., and Oeltermann, A. (2001).
Neurophysiological investigation of
the basis of the fMRI signal. Nature
412, 150–157.

Logothetis, N. K., and Wandell, B. A.
(2004). Interpreting the BOLD signal.
Annu. Rev. Physiol. 66, 735–769.

Moriera, W., and Warnes, G. R. (2004).
Rpy, a robust Python interface to the R
Programming Language. Available at:
http://rpy.sourceforge.net/ (Retrieved
September 2, 2008).

Morren, G., Wolf, U., Lemmerling, P.,
Wolf, M., Choi, J. H., Gratton, E.,
De Lathauwer, L., and Van Huffel, S.
(2004). Detection of fast neuronal
signals in the motor cortex from
functional near infrared spectroscopy
measurements using independent
component analysis. Med. Biol. Eng.
Comput. 42, 92–99.

NiPy Development Team (2006). NiPy:
neuroimaging tools for python.

Available at: http://neuroimaging.
scipy.org (Retrieved September 2,
2008).

Okada, E., and Delpy, D. T. (2003). Near-
infrared light propagation in an adult
head model. I. Modeling of low-level
scattering in the cerebrospinal fl uid
layer. Appl. Opt. 42, 2906–2914.

Oliphant, T. E. (2006). Guide to
NumPy. Spanish Fork, UT, Trelgol
Publishing.

Peirce, J. W. (2008). Generating stimuli for
neuroscience using PsychoPy. Front.
Neuroinformatics 2, 10.

Pinheiro, J. C., and Bates, D. M. (2000).
Mixed-effects models in S and S-Plus.
New York, NY, Springer.

Pogue, B. W., McBride, T. O., Osterberg, U. L.,
and Paulsen, K. D. (1999a). Comparison
of imaging geometries for diffuse opti-
cal tomography of tissue. Opt. Express
4, 270–286.

Pogue, B. W., McBride, T. O., Prewitt, J.,
Osterberg, U. L., and Paulsen, K. D.
(1999b). Spatially variant regulariza-
tion improves diffuse optical tomogra-
phy. App. Opt. 38, 2950–2961.

R Development Core Team (2005). R: a
language and environment for statis-
tical computing. Available at: http://
www.R-project.org (Retrieved August
25, 2008).

Schmolck, A. (2007). Mlabwrap v1.0.
Available at: http://mlabwrap.source-
forge.net/ (Retrieved August 25,
2008).

Strangman, G., Boas, D. A., and Sutton, J. P.
(2002a). Noninvasive brain imag-
ing using near infrared light. Biol.
Psychiatry 52, 679–693.

St rang man, G. , Culver, J. P. ,
Thompson, J. H., and Boas, D. A.
(2002b). A quantitative comparison of
simultaneous BOLD fMRI and NIRS
recordings during functional brain
activation. Neuroimage 17, 719–731.

Strangman, G., Franceschini, M. A., and
Boas, D. A. (2003). Factors affecting
the accuracy of near-infrared spectros-
copy concentration calculations for
focal changes in oxygenation param-
eters. Neuroimage 18, 865–879.

Strangman, G., Goldstein, R., Rauch, S. L.,
and Stein, J. (2006). Near-infrared
spectroscopy and imaging for investi-
gating stroke rehabilitation: test-retest
reliability and review of the literature.
Arch. Phys. Med. Rehabil. 87, 12–19.

Strangman, G. E., O’Neil-Pirozzi, T. M.,
Goldstein, R., Kelkar, K., Katz, D. I.,

Burke, D., Rauch, S. L., Savage, C. R.,
and Glenn, M. B. (2008). Prediction
of memory rehabilitation outcomes
in traumatic brain injury by using
functional magnetic resonance
imaging. Arch. Phys. Med. Rehabil.
89, 974–981.

Straw, A. D. (2008). Vision egg: an
open-source library for realtime
visual stimulus generation. Front.
Neuroinformatics 2, 4.

Villringer, A., and Chance, B. (1997).
Non-invasive optical spectroscopy
and imaging of human brain function.
Trends Neurosci. 20, 435–442.

Ye, J. C., Tak, S., Jang, K. E., Jung, J., and
Jang, J. (2009). NIRS-SPM: statisti-
cal parametric mapping for near-
 infrared spectroscopy. Neuroimage
44, 428–447.

Zhang, Q., Brown, E. N., and
Strangman, G. E. (2007a). Adaptive
fi ltering for global interference cancel-
lation and real-time recovery of evoked
brain activity: a Monte Carlo simula-
tion study. J. Biomed. Opt. 12, 044014.

Zhang, Q., Brown, E. N., and
Strangman, G. E. (2007b). Adaptive
fi ltering to reduce global interference
in evoked brain activity detection: a
human subject case study. J. Biomed.
Opt. 12, 064009.

Z h a n g , Y. , B r o o k s , D. H . ,
Franceschini, M. A., and Boas, D. A.
(2005). Eigenvector-based spatial fi l-
tering for reduction of physiological
interference in diffuse optical imaging.
J. Biomed. Opt. 10, 11014.

Conflict of Interest Statement: Quan
Zhang and Gary E. Strangman have a
patent pending on technologies related
to mobile neuroimaging.

Received: 11 September 2008; paper pend-
ing published: 11 February 2009; accepted:
30 April 2009; published online: 29 May
2009.
Citation: Strangman GE, Zhang Q and
Zeffi ro T (2009) Near-infrared neuroimag-
ing with NinPy. Front. Neuroinform. (2009)
3:12. doi: 10.3389/neuro.11.012.2009
Copyright © 2009 Strangman, Zhang and
Zeffi ro. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

40

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 29 May 2009
doi: 10.3389/neuro.11.013.2009

Network features and pathway analyses of a signal
transduction cascade

Ryoji Yanashima1,2, Noriyuki Kitagawa1,2, Yoshiya Matsubara1,2, Robert Weatheritt3, Kotaro Oka4,

Shinichi Kikuchi1,5*, Masaru Tomita1,5 and Shun Ishizaki5

1 Institute for Advanced Biosciences, Keio University, Japan
2 Graduate School of Media and Governance, Keio University, Japan
3 Department of Biology, Chemistry and Computer Science, University of York, UK
4 Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan
5 Faculty of Environment and Information Studies, Keio University, Japan

The scale-free and small-world network models refl ect the functional units of networks. However,
when we investigated the network properties of a signaling pathway using these models, no
signifi cant differences were found between the original undirected graphs and the graphs in
which inactive proteins were eliminated from the gene expression data. We analyzed signaling
networks by focusing on those pathways that best refl ected cellular function. Therefore, our
analysis of pathways started from the ligands and progressed to transcription factors and
cytoskeletal proteins. We employed the Python module to assess the target network. This
involved comparing the original and restricted signaling cascades as a directed graph using
microarray gene expression profi les of late onset Alzheimer’s disease. The most commonly used
method of shortest-path analysis neglects to consider the infl uences of alternative pathways that
can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced
included k-shortest paths and k-cycles in our network analysis using the Python modules, which
allowed us to attain a reasonable computational time and identify k-shortest paths. This technique
refl ected results found in vivo and identifi ed pathways not found when shortest path or degree
analysis was applied. Our module enabled us to comprehensively analyse the characteristics
of biomolecular networks and also enabled analysis of the effects of diseases considering the
feedback loop and feedforward loop control structures as an alternative path.

Keywords: signal transduction, Alzheimer’s disease, network analysis, k-shortest path analysis, python, network

robustness, graph theory, hippocampal CA1

are known to be regulated by gene expression patterns, as well
as adapting to the external environment (Luscombe et al., 2004).
To characterize the dynamic nature of protein networks, investi-
gations into the effects of diseases on gene expression have been
initiated for Alzheimer disease by means of diffusion kernels and
microarray data (Ma et al., 2007) and for cancer by means of gene
expression data and network information (Chuang et al., 2007).
However, because networks function as multiple-complex regula-
tory structures, it is insuffi cient to study disease dynamics in protein
networks through analysis of a single factor affecting the network
or through analysis of structural properties.

In the present study, we investigated the protein networks associ-
ated with Alzheimer’s disease through feature analysis of regulated
signal molecules, as well as by structural analysis of network com-
ponent. Intraneuronal amyloid β (Aβ) is reported to be a major
important factor for Alzheimer’s disease. Aβ, which is the product
of the protein catabolic enzyme, is normally transported out of
cells (Iwata et al., 2000). In Alzheimer’s disease the aggregation and
deposition of insoluble Aβ leads to nerve cell damage and is thought
to be the pathogenic mechanism of Alzheimer’s disease (Hardy and
Selkoe, 2002). Studies of Aβ and protein catabolic enzymes, like
β-secretase, have focused on changes in certain proteins. Although
a few studies have focused on the entire network, the mechanism

INTRODUCTION
Network analysis has lead to the discovery of new components of
the metabolic pathways in metabolic pathways and in signal trans-
duction cascades. Examples of network analysis models include
the small-world network model (Jeong et al., 2000), in which
the average path length is shortened, and the scale-free network
model (Wuchty, 2001), which has a degree distribution that fol-
lows a power law. Multilayer structural and motif analyses (Milo
et al., 2002; Shen-Orr et al., 2002) have shown that metabolic path-
ways and protein interactions have more notable cluster structures
(Ravasz et al., 2002) than random networks, and that metabolic and
signaling pathways behave like complex regulatory networks. In
recent research on diseases, network analyses, like degree analysis
of cancer-related genes using gene regulatory networks to identify
the genes (Futreal et al., 2004) and various other analyses of dis-
ease genes, revealed structural effects of disease on biomolecular
networks (Ideker and Sharan, 2008). Taken together, these fi ndings
suggest that cellular functions can be modelled as network struc-
tures and that investigation of disease phenomena through network
analysis has the potential to reveal novel properties and pathways
in biomolecular pathways associated with disease states?

The studies mentioned above assume that proteins do not
change in the absence of external stimulation. Proteins in networks

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Marcus Kaiser, Newcastle University,
UK
Bruce Southey, University of Illinois,
USA

*Correspondence:

Shinichi Kikuchi, Institute for Advanced
Biosciences and Faculty of
Environment and Information Studies,
Keio University, Endo 5322, Fujisawa
252-8520, Japan.
e-mail: kikuchi@sfc.keio.ac.jp

1

2

3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

41

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

underlying the accumulation of Aβ has not been discovered. Thus,
it is still unclear if the accumulation of Aβ is the direct cause of
Alzheimer’s disease (Heneka and O’Banion, 2007). Here, we
aimed to use a network model to discover the characteristics of
structures that most affect the hippocampal signal transduction
pathway, and the regulatory mechanisms controlling gene expres-
sion in Alzheimer’s disease. We generated a network model for the
Alzheimer’s disease patient signal transduction cascade, referred
to as the Alzheimer’s disease network (“ADN”), from the signal
transduction pathway in the hippocampal CA1 region (Ma’ayan
et al., 2005) and from gene expression data derived from patients
with late onset Alzheimer’s disease (Liang et al., 2007).

In order to understand the network form, we conducted feature
analysis of signal molecules in the signal transduction cascade by
measuring k-core, degree, closeness, betweenness, the change in
the average shortest path length, and the change in the articula-
tion points, following the removal of the Alzheimer’s-related sig-
nal molecules from the network. In our structural analysis of the
network, we considered the network density, average clustering
index, and average shortest path length. Regulatory structures, like
the feedback loop and the feedforward loop, are more frequent in
hippocampal signaling pathways than in the randomly generated
networks (Ma’ayan et al., 2005). Therefore, we analysed feedback
loops and feedforward loops in the model network using the k-
cycle structure (Nochomovitz and Li, 2006). The k-cycle structure
is defi ned as a network structure in which duplicating nodes are
removed from the network when one node to the in-neighbours can
be reached by the k-step. For analysis of pathway characteristics, the
extracellular ligand was set as the input and cytoskeletal proteins
and transcription factors were set as the output. Since there are
many alternative signal transduction pathways (Coulson, 2006),
we used the k-shortest pathway (Rahman and Schomburg, 2006)

instead of the shortest path or path length for pathway analysis.
With our model we were able to reproduce the Alzheimer’s disease
shift in gene expression in the hippocampal signal transduction
pathway and the shift in signal transduction in Alzheimer’s disease
revealed in earlier studies.

MATERIALS AND METHODS
ANALYSIS PACKAGE FOR BIOMOLECULAR NETWORKS
In our study, we developed the network analysis module “Analysis
Package for Biomolecular Networks (BioNetpy)” using the Python
software program. Python is suitable as an open resource because
it excels in readability over other program languages and has supe-
rior system execution by utilizing the just-in-time compiler, psyco1.
The BioNetpy module was constructed using the Python network
analysis module NetworkX-0.3.62 and igraph-0.4.53. We also used
the numerical package Numpy-1.0.4, which is a Python numeri-
cal module4. The BioNetpy module performs the three analysis
methods outlined in Figure 1.

BioNetpy and Supplementary Material can be downloaded
from the following website: http://medcd.iab.keio.ac.jp/bionetpy/;
http://www.frontiersin.org/neuroinformatics/paper/10.3389/
neuro.11/013.2009.

ANALYSIS OF GENE EXPRESSION DATA FOR MODEL ASSEMBLY
We used a network expressed by a directed graph of the signal trans-
duction pathway of the hippocampal CA1 region in humans (Ma’ayan
et al., 2005). This network contains 570 nodes (signal molecules)

FIGURE 1 | Analysis methods of the BioNetpy module. We used the BioNetpy module to perform the following three types of analyses: (A) node feature analysis
(centrality and changes in indicators upon removal of node), (B) structural properties, and (C) characteristics of pathways (analysis of network similarity and
pathways analysis). BioNetpy and Supplementary Material can be downloaded from http://medcd.iab.keio.ac.jp/bionetpy/.

1http://psyco.sourceforge.net/
2https://networkx.lanl.gov/
3http://igraph.sf.net/
4http://numpy.scipy.org/

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131

42

http://medcd.iab.keio.ac.jp/bionetpy/
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/013.2009
http://psyco.sourceforge.net/
https://networkx.lanl.gov/
http://igraph.sf.net/
http://numpy.scipy.org/
http://medcd.iab.keio.ac.jp/bionetpy/

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

and 1,333 edges (reactions). The edges can be categorized into three
types of information defi ned as active, inactive, and bidirected (bidi-
rectional activation or inactivation) information. We extracted gene
expression data derived from GeneChip (Affymetrix) analysis of
human hippocampal CA1 region. We applied the Bioconductor
2.2 program to analyse gene expression data (Reimers and Carey,
2006). Bioconductor can be applied to the Python module by using
the Rpy program5. We used the Human Genome U133 Plus 2.0
Array from the Bioconductor affy package (Gautier et al., 2004). We
extracted Alzheimer’s disease-related genes by analyzing GSE5281,
which is a set of gene expression data derived from patients with
late-onset Alzheimer’s (n = 10) and controls (n = 13) (Liang et al.,
2007) that has been recorded on the GEO database. We normalized
the data by the distribution-free summarization method, which
has been tested with the Spike-ins benchmark test on the Human
Genome U133 Plus 2.0 Array and is known for its high-resolution
summarization of microarray data (Chen et al., 2007). After data
normalization, we used the Bioconductor limma package (Smyth,
2004) to defi ne genes as Alzheimer’s disease-related genes within
the P < 0.005 threshold by employing the empirical Bayes t-statistic
test (Jeffery et al., 2006). We matched genes and the corresponding
signal molecules by correlating information from the NCBI Gene
ID (Maglott et al., 2007) and Swiss-Prot ID (Bairoch et al., 2004)
and defi ned signal molecules coded by Alzheimer’s disease-related
genes as Alzheimer’s disease-related signal molecules. We conducted
feature analyses by measuring k-core, betweenness centrality, close-
ness centrality, and degree centrality. We also analysed changes in the
shortest path length, which is an indicator of a small-world network
(Mason and Verwoerd, 2007), and changes in articulation points,
which is an indicator of network connectivity, after removing nodes
from the Alzheimer’s disease-related signal molecule network. The
k-core of a graph is the maximal subgraph in which each node’s
degree is at least k. Betweenness centrality measures the importance
of a node within a network. Nodes that occur on many short paths
between other nodes have higher betweenness centrality than those
nodes that do not. Closeness centrality is defi ned as the number of
nodes minus one divided by the sum of the lengths of all shortest
path lengths from and to the given node. Degree centrality is the
number of nodes that a given node is connected to. We were able
to analyse the characteristics of signal molecules in the network on
multiple dimensions using these indicators.

STRUCTURAL PROPERTIES OF HIPPOCAMPAL PATHWAYS OF PATIENTS
WITH ALZHEIMER’S DISEASE
We conducted a structural index analysis by generating an ADN
after removing Alzheimer’s disease-related signal molecules from
the control network (“CN”). We used a k-cycle structure for the
analysis of feedback loop in the networks. The k-cycle structure
is defi ned as a network structure from which duplicating nodes
are removed when one node can be reached from the in-neigh-
bors. An earlier study (Ma’ayan et al., 2005) and our pilot study
shows that 90% of all nodes can be reached within 9 steps for
input (n = 30). Thus, we defi ned pathways within 9 steps of each
other to be important for intercellular signal transduction. Because
network structure depends on the number of nodes, we generated

a randomly removed network (“RRN”) by removing nodes from
the CN to equal the number of nodes of the ADN. We then limited
the network density, average clustering index, and average shortest
pathway length change of this new CN to 5% and compared the
results. The k-cycle data can be analysed according to Eq. 1:

C
n

n i

n

k

=
=

∑ cycle Node()

1

 (1)

where C
k
 represents the number of k-cycle structures in the net-

work. The function cycle
n
 represents the number of cycle structures

can be reached from the in-neighbors.

CHARACTERISTICS OF HIPPOCAMPAL SIGNAL PATHWAYS IN PATIENTS
WITH ALZHEIMER’S DISEASE
Cellular processes are controlled by many alternate signal transduc-
tion pathways (Coulson, 2006). For this reason, we analysed the k-
shortest pathway instead of analyzing pathway length or shortest
pathways. We also generated an RRN and compared the k-cycle of
the RRN with that of the ADN. Through exploration of the k-shortest
path length, the number of pathways was carried out by calculating
the shortest pathway length between nodes and by using Depth-First
Iterative-Deepening (Korf, 1987). We used the k-shortest pathway
with extracellular ligands (n = 30) as input and cytoskeletal pro-
teins (n = 24) and transcription factors (n = 35) as output to defi ne
1,770 pathways for analysis. We defi ned the input and output of
two important functions of the neural cell, neuronal plasticity and
neurite outgrowth, to analyse the effects of Alzheimer’s disease on
neural functions. Neuronal plasticity is controlled by depolariza-
tion of the postsynaptic cell by binding of glutamate to its receptors.
Consistent with the network analysis described above, activation of
these receptors activates the cAMP response element-binding protein
(CREB), thus increasing the level of amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor (Hayashi et al., 2000). For
these reasons, we set glutamate as the starting point of the pathway
and CREB as the endpoint for the neuronal plasticity pathway. The
direction of neurite outgrowth is determined by guidance factors
(Dickson, 2002). Therefore, we set the guidance factors acetylcho-
line (ACh), insulin-like growth factor I (IGF1), nerve growth factor
(NGF), and Ephrin at the start of the pathway, and tubulin, a micro-
tubule protein, at the endpoint. An evaluation of robustness, defi ned
in Eq. 2, was conducted by comparing the robustness values of all
inputs and outputs of the ADN with that of the CN and RRN.

We also conducted a k-shortest pathway analysis of the path-
ways involved in neural cell death, the pathways that link directly
to the amyloid β protein precursor (APP), and the pathways that
link extracellular ligands to transcription factors or cytoskeletal
proteins. Neuronal cells are known to enter apoptosis readily upon
receiving signals of extracellular death ligands or DNA damage
(Jellinger, 2006). We defi ned the starting points of the neural death
pathway as fas ligand (FasL) and tumor necrosis factor-α (TNFα),
which induce apoptosis, and the endpoint as the DNA fragmenta-
tion factor (ICAD), an inhibitor of caspase-activated DNase, which
fragments DNA. In addition, we defi ned the pathways between
all ligands and included the APP-binding family A member 1
(MINT-1) (Yoon et al., 2007) and caspase 3 (Su et al., 2002) in
the APP-related pathway. These pathways are shorter than that of
neural plasticity and neurite outgrowth and can traverse from the 5http://rpy.sourceforge.net/

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185

186
187
188
189
190

191

192
193
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

43

http://rpy.sourceforge.net/

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

input to the output through a shorter path. Therefore, we compared
the number of pathways having the same input and output set in
the total number of pathways and the number of pathways in the
RRN in total number of pathways. The number of steps, k, used in
the k-shortest pathway analysis in the k-cycle structure, was defi ned
as 9 steps, using the following equation:

R
N

ij
ij X

X

=
− mean

SD
 (2)

where R is the robustness value (R-value) of the pathway. In the
pathways from glutamate to CREB and ACh, NGF, IGF1 and from
Ephrin to tubulin, R is the difference between the numbers of k-
shortest paths obtained by all inputs to outputs in all k-shortest
path sets, which is defi ned as X. In the pathways from FasL and
TNFα to ICAD, including all inputs to MINT-1 and caspase 3, R
is the difference in the number of k-shortest paths between node i
and node j obtained in the RRN sets, which is defi ned as X in this
case. N

ij
 is the k-shortest path number from node i to node j in

the network of interest. Mean
X
 is the mean of all k-shortest path

sets or nodes in the RRN sets. SD
X
 is the standard deviation of all

k-shortest path sets or nodes in the RRN sets.
Equation 3 below shows the interpretation of network similar-

ity using a single value (Barrett et al., 2006) for the vector space
of inputs and outputs in a network using a matrix expression for
equal-length shortest path (Borgwardt and Kriegel, 2005), which
indicates pathways with equal steps. Our study analyzes the change
in the entire pathway at step e.

S
c o

c o

e e

e e
= ⋅

⋅

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

arc cos (3)

where S represents network similarity between the fi rst mode of
singular value c (equal-length shortest-path matrix of CN) and o
(equal-length shortest-path matrix of ADN or RRN); e represents
the specifi c step value of the equal-length shortest-path matrix.

RESULTS
FEATURE ANALYSIS OF SIGNAL MOLECULES
Through empirical Bayes t-statistics, we extracted 76 Alzheimer’s
disease-related genes known to downregulate actin (Harigaya et al.,
1996) and beta-catenin (Li et al., 2007), resulting in a decrease in
the level of calcium/calmodulin-dependent protein kinase type II
(CaMKII) (Allison et al., 2000). Please refer to the Supplemental
Material for a list of genes aforementioned. By observing the
pathway functions of the signal molecules encoded by these 76
genes, we found the largest changes in the actual numbers of mol-
ecules with Kinase and Adapter functions, and the largest percent-
age change for nodes in the Receptor and Bcl2Family functional
groups, which decreased at rates greater than the rate of change
for the network overall (13%; Table 1). We conducted a feature
analysis of Alzheimer’s disease-related signal molecules and other
molecules by measuring k-core, betweenness, closeness, degree, the
change in average shortest path length, and the change in articula-
tion points. There were no signifi cant differences in these meas-
urements between Alzheimer’s disease-related signal molecules
and other molecules (P < 0.05, Mann–Whitney U-test; Table 2).

When we removed these Alzheimer’s disease-related signal mol-
ecules, the ADN contained 494 nodes and 974 edges. In total, 91%
of the input–output sets were connected in the CN (average path
length = 5.94), and 50% of those sets were connected in the ADN
(average path length = 6.68).

k-CYCLE ANALYSIS OF ADN
By comparing the number of k-cycle structures (k = 4, 5, …, 9) of
RRN, CN, and ADN, we showed that the all-step k value decreased
(Figure 2). However, the graph shape was similar for each RRN
and for each cycle structure number corresponding to the steps
in the random sampling network; the correlation coeffi cient
between ADN/CN and RRN/CN was 0.99. This fi nding also dem-
onstrates that network size, not external factors, has an effect on
cycle structure.

k-SHORTEST ANALYSIS OF ADN
The k-shortest pathway analysis (k = 9) of CN, ADN, and RRN
showed no notable difference in distribution shape between all
inputs and outputs. There were also no differences in the average
network pathway between ADN (67 ± 216) and RRN (144 ± 342)

Table 1 | Number of constituent signal molecules on CN and ADN.

“Other” denotes small molecules or histones. The actual connection graph

of the 570 nodes and 1,333 edges of CN and the 494 nodes and 974 edges

of ADN is shown. We extracted 76 Alzheimer’s disease-related signal

molecules known to decrease actin, beta-catenin, and CaMKII. This group of

genes represents 13% of the CN. By observing the pathway functions of

these 76 Alzheimer’s disease-related signal molecules, we discovered that

nodes in the Bcl2Family and Receptor groups decreased at a rate greater

than the network as a whole.

Function Number of signal molecules in networks

 ADN CN CN–ADN (%)

Adapter 89 103 14 (14)

Kinase 71 86 15 (17)

Receptor 39 51 12 (24)

Transcriptional factor 28 35 7 (20)

Ligand 30 30 0 (0)

Cytoskeletal protein 21 24 3 (13)

Vesicle 17 21 4 (19)

Ion channel 17 20 3 (15)

GEF 19 20 1 (5)

Inhibitor 17 18 1 (6)

GAP 13 13 0 (0)

GTPase 11 13 2 (15)

PDE 9 11 2 (18)

G protein 9 10 1 (10)

Ribosome 10 10 0 (0)

Activator 8 8 0 (0)

Bcl2Family 6 8 2 (25)

Protease 8 8 0 (0)

Phosphatase 15 16 1 (6)

Other 57 65 8 (12)

 494 570 76 (13)

240
241
242
243
244
245

246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

265

266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290
291
292
293
294

295
296
297
298
299
300
301
302
303

304
305
306
307
308

44

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

at k = 9. Thus, there was no difference in the effect of Alzheimer’s
disease-related signal molecules and random signal molecule
on any of the inputs or outputs. Next, we conducted an analysis
of change in robustness (k = 4, 5, …, 9) for pathways associated
with neuronal plasticity and neurite outgrowth, and for pathways
associated with neuronal death and APP (Figure 3). The change
in robustness was the greatest for the pathways associated with
neuronal plasticity (Walsh et al., 2002) for ADN subtracted by CN
and ADN subtracted by RRN, for each k value. Likewise, for the
pathways associated with neurite outgrowth, there was a decrease
in robustness for those involving NGF (Tuszynski et al., 2005),

which has a maintenance function in nerve cells, and ACh (Hoshi
et al., 1997), which decreases as Aβ accumulates. For the pathways
associated with neuronal plasticity, the decrease in robustness for
NGF and ACh was within the top 10% of all combinations. The
set that showed the largest change in robustness was the pathway
between glutamate and actin signal transduction (R-value was
−14.9, −13.6 and −1.29 for ADN subtracted by CN, ADN sub-
tracted by RRN and RRN subtracted by CN). The same change
in robustness for the glutamate to actin signal transduction path-
way was observed between ADN and RRN and between ADN
and CN. This fi nding suggests that these changes in robustness
do not depend on signal molecule number, network density, the
average clustering index, or the average shortest path length. In the
analysis of the pathways associated with neural cell death, there
were no changes in robustness observed for the FasL to ICAD
pathway; however, CN and RRN showed increases in each step of
the TNFα to ICAD and caspase 3 pathways. TNFα and caspase 3
correlate positively with the accumulation of Aβ (Cacquevel et al.,
2004; McCusker et al., 2001). Furthermore, these results show that
Alzheimer’s disease-related signal molecules have more selective
effects on neural plasticity and neurite outgrowth than random
signal molecules.

Analysis of certain inputs to all outputs showed a large decrease
in signal molecules associated with neuregulin (NRG), which is a
substrate of BASE1 (Willem et al., 2006); with NGF, which is the
drug target in Alzheimer’s disease; with reelin, which is thought to be
related to Alzheimer’s disease (Botella-Lopez et al., 2006); and with
dopamine, which is a neurotransmitter (Figure 4). By comparison,
epidermal growth factor (EGF) and the neurotrophin family, which
includes brain-derived neurotrophic factor (BDNF) and neuro-
trophin 4 (NT4), showed an increase in associated signal molecules.
The level of BDNF is increased in patients with Alzheimer’s disease
and in the hippocampus of a transgenic mouse model of Alzheimer’s
disease (Laske et al., 2006; Tang et al., 2000). However, our fi nding
that the R-value of inputs was between 0.8 and −1.2 suggests that
the effect of BDNF on robustness in Alzheimer’s disease is small.
Analysis of all inputs to certain outputs revealed that the largest

Table 2 | Network feature analysis of signal molecules. Network feature analysis of Alzheimer’s disease-related signal molecules and other signal

molecules in the network (“Others”) performed by measuring k-core, betweenness, closeness, degree, change in average shortest path length, and change

in articulation points (mean ± SD). There were no signifi cant differences in these measurements between Alzheimer’s disease-related signal molecules and

other signal molecules in the network (P < 0.05, Mann–Whitney U-test). This network feature is the same as that of disease-related molecules defi ned in

earlier studies. IN means the incoming paths OUT means the outgoing paths, and ALL means both incoming and outgoing paths.

 Centrality analysis Node removal analysis

 k-core Betweenness Closeness Degree Average path length Articulation point

AD

ALL 0.61 ± 1.24 0.006 ± 0.013 0.21 ± 0.18 0.012 ± 0.015 5.453 ± 0.024 107.78 ± 0.75

OUT 0.66 ± 1.05 0.006 ± 0.013 0.27 ± 0.30 0.012 ± 0.015

IN 2.62 ± 1.33 0.007 ± 0.016 0.24 ± 0.04 0.009 ± 0.013

OTHERS

ALL 0.70 ± 1.10 0.005 ± 0.011 0.21 ± 0.17 0.010 ± 0.011 5.452 ± 0.022 107.83 ± 0.64

OUT 0.76 ± 1.42 0.005 ± 0.011 0.21 ± 0.23 0.010 ± 0.011

IN 2.59 ± 1.25 0.006 ± 0.013 0.24 ± 0.04 0.008 ± 0.009

FIGURE 2 | Result of k-cycle structure rate of ADN/CN and RRN/CN. The
X-axis represents step k and the Y-axis represents the rate of decrease. The
error bar represents a top value of 95% and a bottom value of 5%. We used
RRN with a random Alzheimer’s disease-related signal molecule set, in which
the rate of change in the three indicators (network density, average clustering
index, and average shortest path length) is within 5%. By comparing the
number of k-cycle structures (k = 4, 5, …, 9) of RRN, CN, and ADN, we
showed that the all-step k value decreased. However, the graph shape was
similar for each cycle structure number corresponding to the steps; the
correlation coeffi cient between ADN/CN and RRN/CN was 0.99. This fi nding
also demonstrates that network size, not external factors, has an effect on
cycle structure.

309
310
311
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

45

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

decrease in associated signal molecules was for key factors in neural
activity, including actin and tubulin, which are cytoskeletal proteins
regulating neural plasticity and neurite outgrowth, and CREB, which
is a transcription factor (Figure 4). By comparison, transcription
factors, such as the nuclear factor of activated T cells (NFAT), and
actin-binding proteins, such as α-actinin and profi lin, showed an
increase in associated signal molecules. Because the R-value range
was between 1.2 and −4.3, the result for the comparison of input to
total output implies that Alzheimer’s disease affects the expression
of output molecules more than input molecules.

The analysis of the change in similarity between the input and
output sets of CN, ADN, and RRN, shown as a matrix, indicate that
ADN is lower than RRN when e = 5 and 9, but higher than RRN
when e = 6, 7 and 8 (Figure 5).

DISCUSSION
MICROARRAY AND CENTRALITY ANALYSIS OF SIGNAL MOLECULES
In our study, we conducted a feature analysis of Alzheimer’s disease-
related signal molecules in a network. We conducted the analysis on

genes from a large sample of patients in the early stage of late-onset
Alzheimer’s disease. It is thought that new information on a disease
pathogenesis can be gained by observing changes in a signaling
pathway produced by the changes in the stages of Alzheimer’s dis-
ease. Data similar to that used in the present study, namely the reg-
istered expression data derived from the hippocampal CA1 region
of Alzheimer’s patients at different stages (Blalock et al., 2004),
may be used for a similar analysis in the future. The data from the
 aforementioned study covers the four categories of Alzheimer’s
disease status termed control, incipient, moderate, and severe.
Therefore, we believe that we will be able to conduct time-series
network analyses of these symptoms. The present study focuses only
on gene expression data, yet Alzheimer’s disease characteristics not
regulated by gene expression may also be considered by using alter-
native experimental methods, for example, the large-scale databases
from other in vivo experiments (Bertram et al., 2007) or positron-
emission tomography (PET) studies (Tuszynski et al., 2005).

In the feature analysis, we found no signifi cant difference in
signal molecules for all indicators. By comparison the average

FIGURE 3 | Pathway robustness: individual input–output relationships in

ADN subtracted by CN, ADN subtracted by RRN, and RRN subtracted by

CN (k = 4, 5, …, 9). (A) Robustness changes in the pathways associated with
neuronal plasticity: input is glutamate and output is CREB. (B–E)
Robustness changes in the pathways associated with neurite outgrowth:
inputs are ACh, Ephrin, IGF1, and NGF, and output is tubulin. The decrease

in robustness was large for the pathways involved with NGF, which has a
maintenance function in nerve cells, and ACh, which decreases as Aβ
accumulates. (F, G) Change in the number of pathways associated with
neural cell death: inputs are FasL and TNFα, and output is ICAD. (H, I)
Accumulation of APP: all inputs to MINT-1 as output (H) and to caspase 3
as output (I).

357
358
359
360
361
362
363
364
365
366
367
368
369
370

371
372
373
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

46

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

of indicators including degree and betweenness increased, for
Alzheimer’s disease-related signal molecules compared to the
other signal molecules. This trend is the same as that for charac-
teristic disease-related genes defi ned in earlier studies (Ideker and
Sharan, 2008). Changing the threshold for defi ning Alzheimer’s
disease-related genes has an effect on the results of gene expres-
sion data analysis In addition, it is diffi cult to analyze indicators
like degree and betweenness, due to the method of calculating
substances at the ends of networks. For this reason, substances
like ACh and NGF, which are located at the ends of networks
and are targets of drug development, require a combination of
signal molecule analysis and pathway analysis that controls the
input and output data. Therefore, additional fi ndings on the

pathogenesis of Alzheimer’s disease may be discovered through
additional feature analysis of networks for data other than gene
expression.

NETWORK STRUCTURE
In the analysis of k-cycle structure, we discovered that k-cycle
numbers decreased in all steps in the ADN/CN compared with
that in RRN/CN and that the rate of decrease increased accord-
ing to the step number. We also discovered that RRN had more
k-cycle structure than ADN. However, since the decreasing rate
at each step was the same in ADN and CN, the change in k-cycle
number in this study has a larger effect on the network scale than
the Alzheimer’s disease-related signal molecules. Moreover, the

FIGURE 4 | Robustness of inputs and outputs in ADN subtracted by CN,

ADN subtracted by RRN, and RRN subtracted by CN (k = 9). (A) Robustness
analysis of the pathway from certain ligands to all outputs (transcription factors
and cytoskeletal proteins). The R-value range of inputs was between 0.8 and
−1.2. Robustness analysis showed a large decrease in signal molecules
associated with NRG, which a substrate of BASE1. EGF and the neurotrophin
family, which includes BDNF and NT4, showed an increase in associated
signal molecules. (B) Robustness analysis of the pathway from all ligands to
certain transcription factors (R-value range, −2.1 to 1.1). (C) Robustness

analysis of the pathway from all ligands to certain cytoskeletal proteins
(R value range, −4.3 to 1.3). Robustness analysis of the key factors in neural
activity in (B) and (C) revealed that the largest decrease in signal molecules
was for those associated with actin and tubulin, the cytoskeletal proteins that
regulate neural plasticity and neurite outgrowth, and for those associated with
CREB, which is a transcription factor. By comparison, transcription factors,
including the nuclear factor of activated T cells (NFAT), and actin binding
proteins, such as α-actinin and profi lin, showed an increase in associated
signal molecules.

394
395
396
397
398
399
400
401
402
403
404
405
406

407
408
409

410
411
412
413
414
415
416
417
418

47

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

reason for the greater change in cycle structure by step number is
believed to result from the effect of an increase in the number of
nodes, which were randomly moved into the cycle. In future stud-
ies, it may be necessary to normalize changes in the network scale
to conduct analyses on k-cycle structure. It must be noted that in
this study, we focused on feedforward and feedback loops in the
results of loop structure.

PATHWAY CHARACTERISTICS
Our k-shortest pathway analysis of pathway characteristics
revealed no changes between the R-values of all inputs and out-
puts and the pathway average. This result suggests that the effect
of Alzheimer’s disease on the hippocampal signal transduction
pathway does not correspond to the number of pathways or to
the distribution of k-shortest pathways. We also discovered that
the ADN-CN and ADN-RRN sets of Alzheimer’s disease-related
signal molecules affect specifi c pathways more selectively than
the random sets. In addition, the glutamate-actin pathway plays
an important role in the formation of mature spines in the rat
brain (Serge et al., 2003), which showed the most signifi cant
decrease in R-value, also showed the most signifi cant decrease
in the RRN-CN pathway.

In the analysis of inputs, the decrease in robustness of NGF
agreed with the decrease in robustness of Alzheimer’s disease.
Increase in robustness was seen in both NT4 and BDNF. Earlier
studies suggested that BDNF tends to increase in early-onset
Alzheimer’s disease and decrease in late-onset Alzheimer’s disease.
Also, insulin and IGF1 decreased in our study, but an increase
in insulin and IGF1 was thought to occur as the result of an
increase in Aβ in prior studies (Cole and Frautschy, 2007). An
increase in the level of the EGF receptor and Aβ is reported to
be correlated (Zhang et al., 2007), yet we found no evidence of
this relationship in the present study. With respect to output fac-
tors, there were signifi cant decreases of R-value in cytoskeletal
proteins, like actin and tubulin, or in CREB thus suggesting that

Alzheimer’s disease selectively affects the neural plasticity and
neurite outgrowth. Moreover, increase was seen in actin bind-
ing proteins such as α-actinin and profi lin. The reason for the
decrease in actin might be explained by the tendency of actin-
binding proteins to bind other proteins, such as cortactin, cofi lin,
and β-catenin; thus, actin may perform other functions that are
specifi c to Alzheimer’s disease. There was an increase in NFAT in
ADN, which is expressed at the same time as BDNF (Groth and
Mermelstein, 2003), and thus we believed that changes in NFAT
synchronized with the changes in BDNF. In addition, the angle
value in CN showed more change by step compared with RRN.
This is because the effects of Alzheimer’s disease-related signal
molecules are different at each step, and further interpretation
of each step in the k-shortest pathway will be required in future
studies. In our study, we succeeded in indicating changes caused
by Alzheimer’s disease in signal transduction pathways through
analysis of the features of signal molecules and of the properties
of pathways in network structures.

CONCLUSION
We conducted a feature analysis on networks of signal molecules
regulated by Alzheimer’s disease and analysed the properties of the
network structure. In our analysis of signal molecules, we found no
signifi cant difference in all indicators. Network structure analysis
revealed that Alzheimer’s disease-related signal molecule sets have
a specifi c effect on the average shortest path length, with effects on
motif structures, like feedforward and feedback loops, controlling
the functions of neuronal cells. Also, our analyses of pathway char-
acteristics extracted pathways related to neuronal plasticity, neurite
outgrowth (including ACh and NGF), and neural death (including
the TNFα pathway and caspase 3). In addition, similar changes in
R-value in our study were observed for other Alzheimer’s disease
signal transduction pathways. Similarity and k-shortest analysis
of pathways showed that the effect of Alzheimer’s disease-related
genes on networks depends on steps. This fi nding indicates that
a k-shortest pathway analysis is more useful than a shortest path-
way analysis. In summary, the Python module use in the present
study enabled us to comprehensively analyse the characteristics
of biomolecular networks and to assess the effects of Alzheimer’s
disease using feedforward and feedback loop control structures as
alternative paths.

ACKNOWLEDGEMENTS
We thank Y. Imanishi for initial help with the paper and N. Yachie
and H. Nakamura for help on the website. This research was par-
tially supported by Grant-in-Aid for Scientifi c Research from the
Ministry of Education, Science, Culture, and Sport. This research
was also supported by JGC-S Scholarship Foundation.

SUPPLEMENTARY MATERIAL
The Supplementary Material for the network edgelist, the table
for mapping the network nodes and Swiss-Prot ID and Python
module can be found online at http://medcd.iab.keio.ac.jp/
bionetpy/ and http://www.frontiersin.org/neuroinformatics/
paper/10.3389/neuro.11/013.2009.

FIGURE 5 | Network similarity analysis of CN, ADN, and RRN. The X-axis
represents step e and the Y-axis represents the angle value (S). Error bars
represent the SD. The results of the network similarity analysis for the input
and output set are converted into a matrix and indicate that ADN is lower than
RRN when e = 5 and 9, but is higher than RRN when e = 6, 7 and 8.

419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

493
494
495
496
497

498
499
500
501
502
503

48

http://medcd.iab.keio.ac.jp/bionetpy/
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/013.2009

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

REFERENCES
Allison, D. W., Chervin, A. S., Gelfand, V. I.,

and Craig, A. M. (2000). Postsynaptic
scaffolds of excitatory and inhibitory
synapses in hippocampal neurons:
maintenance of core components
independent of actin filaments
and microtubules. J. Neurosci. 20,
4545–4554.

Bairoch, A., Boeckmann, B., Ferro, S., and
Gasteiger, E. (2004). Swiss-Prot: jug-
gling between evolution and stability.
Brief. Bioinform. 5, 39–55.

Barrett, C. L., Price, N. D., and Palsson, B. O.
(2006). Network-level analysis of
metabolic regulation in the human red
blood cell using random sampling and
singular value decomposition. BMC
Bioinformatics 7, 132.

Bertram, L., McQueen, M. B., Mullin, K.,
Blacker, D., and Tanzi, R. E. (2007).
Systematic meta-analyses of Alzheimer
disease genetic association studies:
the AlzGene database. Nat. Genet. 39,
17–23.

Blalock, E. M., Geddes, J. W., Chen, K. C.,
Porter, N. M., Markesbery, W. R., and
Landfield, P. W. (2004). Incipient
Alzheimer’s disease: microarray cor-
relation analyses reveal major tran-
scriptional and tumor suppressor
responses. Proc. Natl. Acad. Sci. U.S.A.
101, 2173–2178.

Borgwardt, K., and Kriegel, H. (2005).
Shortest-Path Kernels on Graphs. Data
mining. IEEE Int. Conf. Data Mining
50, 74–81.

Botella-Lopez, A., Burgaya, F., Gavin, R.,
Garcia-Ayllon, M. S., Gomez-
Tortosa, E., Pena-Casanova, J.,
Urena, J. M., Del Rio, J. A., Blesa, R.,
Soriano, E., and Saez-Valero, J. (2006).
Reelin expression and glycosylation
patterns are altered in Alzheimer’s
disease. Proc. Natl. Acad. Sci. U.S.A.
103, 5573–5578.

Cacquevel, M., Lebeurrier, N., Cheenne, S.,
and Vivien, D. (2004). Cytokines in
neuroinfl ammation and Alzheimer’s
disease. Curr. Drug Targets. 5,
529–534.

Chen, Z., McGee, M., Liu, Q., and
Scheuermann, R. H. (2007). A distri-
bution free summarization method
for Affymetrix GeneChip arrays.
Bioinformatics 23, 321–327.

Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D.,
and Ideker, T. (2007). Network-based
classifi cation of breast cancer metas-
tasis. Mol. Syst. Biol. 3, 140.

Cole, G. M., and Frautschy, S. A. (2007).
The role of insulin and neurotrophic
factor signaling in brain aging and
Alzheimer’s Disease. Exp. Gerontol.
42, 10–21.

Coulson, E. J. (2006). Does the p75 neu-
rotrophin receptor mediate Abeta-

induced toxicity in Alzheimer’s dis-
ease? J. Neurochem. 98, 654–660.

Dickson, B. J. (2002). Molecular mecha-
nisms of axon guidance. Science 298,
1959–1964.

Futreal, P. A., Coin, L., Marshall, M.,
Down, T., Hubbard, T., Wooster, R.,
Rahman, N., and Stratton, M. R.
(2004). A census of human cancer
genes. Nat. Rev. Cancer 4, 177–183.

Gautier, L., Cope, L., Bolstad, B. M.,
Irizarry, R. A. (2004). affy – Analysis of
Affymetrix GeneChip data at the probe
level. Bioinformatics 20, 307–315.

Groth, R. D., and Mermelstein, P. G.
(2003). Brain-derived neurotrophic
factor activation of NFAT (nuclear
factor of activated T-cells)-dependent
transcription: a role for the transcrip-
tion factor NFATc4 in neurotrophin-
mediated gene expression. J. Neurosci.
23, 8125–8134.

Hardy, J., and Selkoe, D. J. (2002). The
amyloid hypothesis of Alzheimer’s
disease: progress and problems on
the road to therapeutics. Science 297,
353–356.

Harigaya, Y., Shoji, M., Shirao, T., and
Hirai, S. (1996). Disappearance of
actin-binding protein, drebrin, from
hippocampal synapses in Alzheimer’s
disease. J. Neurosci. Res. 43, 87–92.

Hayashi, Y., Shi, S. H., Esteban, J. A.,
Piccini, A., Poncer, J. C., and
Malinow, R. (2000). Driving AMPA
receptors into synapses by LTP and
CaMKII: requirement for GluR1 and
PDZ domain interaction. Science 287,
2262–2267.

Heneka, M. T., and O’Banion, M. K.
(2007). Inflammatory processes in
Alzheimer’s disease. J. Neuroimmunol.
184, 69–91.

Hoshi, M., Takashima, A., Murayama, M.,
Yasutake, K., Yoshida, N., Ishiguro, K.,
Hoshino, and T., Imahori, K. (1997).
Nontoxic amyloid beta peptide 1–42
suppresses acetylcholine synthesis.
Possible role in cholinergic dysfunc-
tion in Alzheimer’s disease. J. Biol.
Chem. 272, 2038–2041.

Ideker, T., and Sharan, R. (2008). Protein
networks in disease. Genome Res. 18,
644–652.

Iwata, N., Tsubuki, S., Takaki, Y.,
Watanabe, K. , Sekiguchi , M. ,
H o s o k i , E . , K a w a s h i m a -
Morishima, M., Lee, H. J., Hama, E.,
Sekine-Aizawa, Y., Saido, T. C. (2000).
Identifi cation of the major Abeta1-42-
degrading catabolic pathway in brain
parenchyma: suppression leads to bio-
chemical and pathological deposition.
Nat. Med. 6, 143–150.

Jeffery, I. B., Higgins, D. G., and
Culhane, A. C. (2006). Comparison
and evaluation of methods for gen-

erating differentially expressed gene
lists from microarray data. BMC
Bioinformatics 7, 359.

Jellinger, K. A. (2006). Challenges in neu-
ronal apoptosis. Curr. Alzheimer Res.
3, 377–391.

Jeong, H., Tombor, B., Albert, R.,
Oltvai, Z. N., and Barabasi, A. L.
(2000). The large-scale organization
of metabolic networks. Nature 407,
651–654.

Korf, R. E. (1987). Depth-fi rst iterative-
deepening. Artif. Intell. 27, 97–109.

Laske, C., Stransky, E., Leyhe, T.,
Eschweiler, G. W., Wittorf, A.,
R i c h a r t z , E . , B a r t e l s , M . ,
Buchkremer, G., and Schott, K.
(2006). Stage-dependent BDNF
serum concentrations in Alzheimer’s
disease. J. Neural Transm. 113,
1217–1224.

Li, H. L., Wang, H. H., Liu, S. J., Deng, Y. Q.,
Zhang, Y. J., Tian, Q., Wang, X. C.,
Chen, X. Q., Yang, Y., Zhang, J. Y.,
Wang, Q., Xu, H., Liao, F. F., and
Wang, J. Z. (2007). Phosphorylation
of tau antagonizes apoptosis by sta-
bilizing beta-catenin, a mechanism
involved in Alzheimer’s neurodegen-
eration. Proc. Natl. Acad. Sci. U.S.A.
104, 3591–3596.

Liang, W. S., Dunckley, T., Beach, T. G.,
Grover, A., Mastroeni, D., Walker, D. G.,
Caselli, R. J., Kukull, W. A., McKeel, D.,
Morris, J. C., Hulette, C., Schmechel, D.,
Alexander, G. E., Reiman, E. M.,
Rogers, J., and Stephan, D. A. (2007).
Gene expression profi les in anatomi-
cally and functionally distinct regions
of the normal aged human brain.
Physiol. Genomics 28, 311–322.

Luscombe, N. M., Babu, M. M., Yu, H.,
Snyder, M., Teichmann, S. A.,
Gerstein, M. (2004). Genomic analy-
sis of regulatory network dynamics
reveals large topological changes.
Nature 431, 308–312.

Ma, X., Lee, H., Wang, L., and Sun, F.
(2007). CGI: a new approach for
prioritizing genes by combining
gene expression and protein-protein
interaction data. Bioinformatics 23,
215–221.

Ma’ayan, A., Jenkins, S. L., Neves, S.,
Hasseldine, A., Grace, E., Dubin-
Thaler, B., Eungdamrong, N. J.,
Weng, G., Ram, P. T., Rice, J. J.,
Kershenbaum, A., Stolovitzky, G. A.,
Blitzer, R. D., and Iyengar, R. (2005).
Formation of regulatory patterns
during signal propagation in a mam-
malian cellular network. Science 309,
1078–1083.

Maglott, D., Ostell, J., Pruitt, K. D., and
Tatusova, T. (2007). Entrez Gene:
gene-centered information at NCBI.
Nucleic Acids Res. 35, D26–D31.

Mason, O., Verwoerd, M. (2007). Graph
theory and networks in Biology. IET.
Syst. Biol. 1, 89–119.

McCusker, S. M., Curran, M. D.,
Dynan, K. B., McCullagh, C. D.,
Urquhart, D. D., Middleton, D.,
Patterson, C. C., McIlroy, S. P., and
Passmore, A. P. (2001). Association
between polymorphism in regula-
tory region of gene encoding tumour
necrosis factor alpha and risk of
Alzheimer’s disease and vascular
dementia: a case-control study. Lancet
357, 436–439.

Milo, R., Shen-Orr, S., Itzkovitz, S.,
Kashtan, N., Chklovskii, D., and
Alon, U. (2002). Network motifs:
simple building blocks of complex
networks. Science 298, 824–827.

Nochomovitz, Y. D., and Li, H. (2006).
Highly designable phenotypes and
mutational buffers emerge from a
systematic mapping between net-
work topology and dynamic output.
Proc. Natl. Acad. Sci. U.S.A. 103,
4180–4185.

Rahman, S. A., and Schomburg, D. (2006).
Observing local and global properties
of metabolic pathways: ‘load points’
and ‘choke points’ in the metabolic net-
works. Bioinformatics 22, 1767–1774.

Ravasz, E., Somera, A. L., Mongru, D. A.,
Oltvai, Z. N., and Barabasi, A. L.
(2002). Hierarchical organization of
modularity in metabolic networks.
Science 297, 1551–1555.

Reimers, M., and Carey, V. J. (2006).
Bioconductor: an open source frame-
work for bioinformatics and computa-
tional biology. Methods Enzymol. 411,
119–134.

Serge, A., Fourgeaud, L., Hemar, A., and
Choquet, D. (2003). Active surface
transport of metabotropic glutamate
receptors through binding to micro-
tubules and actin fl ow. J. Cell Sci. 116,
5015–5022.

Shen-Orr, S. S., Milo, R., Mangan, S., and
Alon, U. (2002). Network motifs in
the transcriptional regulation net-
work of Escherichia coli. Nat. Genet.
31, 64–68.

Smyth, G. K. (2004). Linear models and
empirical bayes methods for assessing
differential expression in microarray
experiments. Stat. Appl. Genet. Mol.
Biol. 3, 1027–1053.

Su, J. H., Kesslak, J. P., Head, E., and
Cotman, C. W. (2002). Caspase-
cleaved amyloid precursor protein and
activated caspase-3 are co-localized
in the granules of granulovacuolar
degeneration in Alzheimer’s disease
and Down’s syndrome brain. Acta
Neuropathol. 104, 1–6.

Tang, Y., Yamada, K., Kanou, Y.,
Miyazaki, T., Xiong, X., Kambe, F.,

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

49

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 13 |

Yanashima et al. Network analysis of signaling pathways

Rowan, M. J., and Selkoe, D. J. (2002).
Naturally secreted oligomers of amy-
loid beta protein potently inhibit
hippocampal long-term potentiation
in vivo. Nature 416, 535–539.

Willem, M., Garratt, A. N., Novak, B.,
Ci t ron, M. , Kaufmann, S . ,
Rittger, A., DeStrooper, B., Saftig, P.,
Birchmeier, C., and Haass, C. (2006).
Control of peripheral nerve myelina-
tion by the beta-secretase BACE1.
Science 314, 664–666.

Wuchty, S. (2001). Scale-free behavior in
protein domain networks. Mol. Biol.
Evol. 18, 1694–1702.

Yoon, S., Choi, J., Haam, J., Choe, H., and
Kim, D. (2007). Reduction of mint-
1, mint-2, and APP overexpression

in okadaic acid-treated neurons.
Neuroreport 18, 1879–1883.

Zhang, Y. W., Wang, R., Liu, Q., Zhang, H.,
Liao, F. F., and Xu, H. (2007).
Presenilin/gamma-secretase-depend-
ent processing of beta-amyloid pre-
cursor protein regulates EGF receptor
expression. Proc. Natl. Acad. Sci. U.S.A.
104, 10613–10618.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 14 September 2008; paper pend-
ing published: 30 September 2008; accepted:

30 April 2009; published online: 29 May
2009.
Citation: Yanashima R, Kitagawa N,
Matsubara Y, Weatheritt R, Oka K,
Kikuchi S, Tomita M and Ishizaki S
(2009) Network features and pathway
analyses of a signal transduction cas-
cade. Front. Neuroinform. (2009) 3:13.
doi:10.3389/neuro.11.013.2009
Copyright © 2009 Yanashima, Kitagawa,
Matsubara, Weatheritt, Oka, Kikuchi,
Tomita and Ishizaki. This is an open-access
article subject to an exclusive license agree-
ment between the authors and the Frontiers
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original
authors and source are credited.

Murata, Y., Seo, H., and Nabeshima, T.
(2000). Spatiotemporal expression of
BDNF in the hippocampus induced
by the continuous intracerebroven-
tricular infusion of beta-amyloid in
rats. Brain Res. Mol. Brain Res. 80,
188–197.

Tuszynski, M. H., Thal, L., Pay, M.,
Salmon, D. P., U, H. S., Bakay, R.,
Patel, P., Blesch, A., Vahlsing, H. L.,
Ho, G., Tong, G., Potkin, S. G., Fallon, J.,
Hansen, L., Mufson, E. J., Kordower, J. H.,
Gall, C., and Conner, J. (2005). A phase 1
clinical trial of nerve growth factor gene
therapy for Alzheimer disease. Nat. Med.
11, 551–555.

Walsh, D. M., Klyubin, I., Fadeeva, J. V.,
Cullen, W. K., Anwyl, R., Wolfe, M. S.,

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

50

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 27 May 2009
doi: 10.3389/neuro.11.016.2009

Brainlab: a Python toolkit to aid in the design, simulation, and
analysis of spiking neural networks with the NeoCortical
Simulator

Rich Drewes1,2*, Quan Zou1 and Philip H. Goodman1,3

1 Brain Computation Laboratory, University of Nevada, Reno, USA
2 Program in Biomedical Engineering, University of Nevada, Reno, USA
3 Department of Medicine and Program in Biomedical Engineering, University of Nevada, Reno, USA

Neuroscience modeling experiments often involve multiple complex neural network and cell
model variants, complex input stimuli and input protocols, followed by complex data analysis.
Coordinating all this complexity becomes a central diffi culty for the experimenter. The Python
programming language, along with its extensive library packages, has emerged as a leading
“glue” tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit
called Brainlab, written in Python, that leverages Python’s strengths for the task of managing
the general complexity of neuroscience modeling experiments. Brainlab was also designed to
overcome the major diffi culties of working with the NCS (NeoCortical Simulator) environment
in particular. Brainlab is an integrated model-building, experimentation, and data analysis
environment for the powerful parallel spiking neural network simulator system NCS.

Keywords: python, toolkit, neuron, spiking neural network, simulator

it might as well be a modern mature programming language with a
large scientifi c user community, rather than a custom-built, special
purpose language. In Brainlab we selected the Python language
for this purpose, and the rationale for our decision is given in the
Section “Why Python?”.

Brainlab has been in use since 2003, with publications in 2005
(Drewes, 2005a,b). In the intervening time, validation for the deci-
sions we made in the design of Brainlab seems to have come from
several areas. Scientifi c support for Python, in the form of librar-
ies and the user community, has continued to grow and mature.
Other projects have independently started that also use Python
as a front-end modeling and back-end analysis tool for various
other neural simulators. The NEST simulator3 system now offers
a Python interface called PyNEST4. The NEURON5 simulator has
added Python as an alternative interpreter to Hoc. PyGENESIS
is now available for the GENESIS6 simulator. The PyNN7 system,
part of the broader Neuralensemble initiative8, goes a step further
and offers a common Python interface to NEURON, NEST, and
PCSIM9 (but not NCS).

The Brian10 project differs from the systems mentioned so far,
and also NCS, in that Brian is a self-contained Python neural simu-
lation solution, rather than a front-end to a simulation engine writ-
ten in a different programming environment. Brian still achieves

INTRODUCTION
Spiking neural network simulator software systems continue to
grow in speed and capacity (see Brette et al., 2007 for a recent sur-
vey). The complexity and size of the models simulated on these
systems also continue to grow, threatening to overwhelm the ability
of the experimenter to build the models, conduct parameterized
experiments, and analyze the huge amounts of resulting data. The
simulators themselves are generally extremely effi cient but mini-
malist tools written in low-level programming languages that are
diffi cult to understand and modify by any but a few dedicated
experts. Tools beyond the simulators themselves are needed to help
the experimenter cope with the complexity of the experiments.

In our work with one such powerful spiking neural network sim-
ulator called NCS1 (the NeoCortical Simulator, described briefl y in
the Section “NCS”) we encountered these general complexity bar-
riers. Our work was also hampered by problems specifi c to working
with NCS, most notably the necessity of preparing network models
for simulation using NCS’s restrictive neural modeling interface,
the .in fi le format. We confronted all these problems together by
creating a unifi ed Python toolkit called Brainlab2, which has greatly
eased the burden of organizing and conducting our experiments
in general, and working with NCS in particular.

The fundamental proposition of Brainlab is this: For the tasks
of complex neuroscience model-building, experimentation, and
analysis, nothing short of a full-fl edged programming language
will suffi ce. No neural model fi le format or restricted special pur-
pose programming language for modeling will ultimately suffi ce
for day to day work. And as long as a real programming language
will be needed to hold the whole experimental enterprise together,

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Marc-Oliver Gewaltig, Honda Research
Institute Europe GmbH, Germany
Tim Masquelier, Centre de Recherche
Cerveau & Cognition, France

*Correspondence:

Rich Drewes, Program in Biomedical
Engineering, University of Nevada,
Reno, USA.
e-mail: drewes@interstice.com

1http://brain.cse.unr.edu/
2http://brainlab.sourceforge.net/

3http://www.nest-initiative.org/index.php/Main_Page
4http://www.nest-initiative.org/index.php/PyNEST
5http://www.neuron.yale.edu/neuron/
6http://www.genesis-sim.org/GENESIS/
7http://neuralensemble.org/trac/PyNN/
8http://www.neuralensemble.org/
9http://www.lsm.tugraz.at/pcsim/
10http://brian.di.ens.fr/

51

http://brain.cse.unr.edu/
ttp://brainlab.sourceforge.net/
http://www.nest-initiative.org/index.php/Main_Page
http://www.nest-initiative.org/index.php/PyNEST
http://www.neuron.yale.edu/neuron/
http://www.genesis-sim.org/GENESIS/
http://neuralensemble.org/trac/PyNN/
http://www.neuralensemble.org/
http://www.lsm.tugraz.at/pcsim/
http://brian.di.ens.fr/

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

good single-processor simulation performance through the use of
vectorized processing provided by the NumPy library, and it can
also manage multiple jobs in parallel on a cluster computer system,
but splitting a single large simulation onto multiple compute nodes
is not supported. The Topographica11 project provides standalone
Python tools intended for exploring higher-level neural abstrac-
tions like sheets and projections from neural area to area. Though
not primarily intended for investigations that require detailed simu-
lation of individual neurons, Topographica can be interfaced to
lower-level simulators like NEURON and GENESIS. Topographica
is one of the older Python neuroscience tool packages, with an
initial public release in late 2005.

Perhaps because NCS has a fraction of the number of users of
some other simulators (e.g. NEURON and GENESIS), Brainlab
has attracted comparatively little attention. Brainlab merited brief
mention in a recent survey of major spiking neural net simulator
packages (Brette et al., 2007). Brainlab was unnoticed by another
recent survey of interoperability of neuroscience software (Cannon
et al., 2007) though Python interfaces to other spiking neural net-
work simulators (e.g. NEURON’s and NEST’s) were described there
in some detail.

BRAINLAB MOTIVATION, DESIGN, AND IMPLEMENTATION
In this section, we will fi rst describe enough about NCS so that a
reader will understand the problems we faced designing a system to
interface to and control it. Next we will describe the broad features
we wanted to include in our toolkit, and how we wanted the fi nished
system to appear to the user for modeling, simulation, and analysis.
Then we will describe in detail how we actually confronted the
problems interfacing to NCS, to implement the Brainlab system.

NCS
The development history of NCS is recounted elsewhere (Drewes,
2005b). In its current evolution, NCS is a parallel (MPI-based)
spiking neural network simulator written in C/C++ that can per-
form very large discrete-time simulations with a reasonably high
degree of biological realism. Simulations with a million neurons
and a billion synapses have been accomplished. NCS allows for
neuron models that include detailed and customizable ion channel
and cell membrane voltage dynamics, but for effi ciency the stere-
otypical action potential voltage and postsynaptic conductivity
waveforms are templated rather than generated dynamically. NCS
supports multi-compartment cells but often large scale simula-
tions are done using single compartment models. A good recent
comparison of NCS with other spiking neural network simula-
tors, including some discussion of maximum simulation sizes, is
Brette et al. (2007).

THE NCS INPUT FILE (THE .in FILE)
NCS reads a description of a neural network model and other simu-
lation parameters from a plain text fi le whose fi lename is supplied
to NCS as a command line argument. For our purposes here it is
not necessary to go into great detail about the format of this fi le,
but we do wish to describe it generally in order to explain some of
the shortcomings of working with it.

This input fi le, hereafter called a .in fi le after the convention of
using .in as a fi lename extension for such fi les, contains a variable
number of subsections. Each subsection starts with a line that con-
tains the name of the subsection (which must be one of a limited
number of keywords permitted by the system) and ends with a
line that contains END_ with the section name appended. The fi rst
subsection in a .in fi le is the BRAIN section. In the BRAIN section
of the fi le are defi ned global features that affect the entire simula-
tion. For example, a line beginning with JOB defi nes a job name for
the simulation. Some subsections can be repeated (for example, a
COLUMN or LAYER), and then each is assigned a unique text identi-
fi er within the fi le. The fi le format allows other portions of the fi le
to reference these named objects, to create additional instances of
them, but no structural or other signifi cant variation in a defi ned
object is permitted. The .in format defi nition permits no looping
constructs or macro substitutions. Other sections of the .in fi le
defi ne connections between these objects, with references to the text
names of the objects being connected. Because of these restrictions,
NCS .in fi les tend to be quite long even for fairly simple networks,
and they tend to be prone to syntactical error or internal referential
inconsistency when edited manually.

Other neural simulator systems acquired programming languages
(e.g. Hoc for NEURON) to avoid the limitations of a fl at input fi le
format like NCS’s. NCS never went this far, though there were sev-
eral attempts to elaborate the .in fi le with macros, loops and other
features. None of these efforts for NCS were widely used or reached
the generality of a true programming language. Many NCS users
eventually created custom text processing programs in other pro-
gramming languages (like MATLAB) that would emit .in fi les. But
writing special-purpose macro processors to create .in fi les is time
consuming work that generally cannot be reused on later projects,
and MATLAB is not a particularly good text processing tool. The
experimentation process was either not automated or automated
with external custom scripts, making the whole process cumbersome
and systematic model parameter search diffi cult. Data fi le manage-
ment was typically done manually using ftp type tools.

One other unusual aspect of NCS deserves mention: it imposes
a notion of the cortical column and the cortical layer as structural
elements, and this requirement is refl ected in the structure of the
NCS input fi le. Even if an NCS user wishes to simply simulate two
connected cells, or a homogeneous collection of cells for a study
of, say, synfi re chains, he must defi ne those cells within an NCS
LAYER text block, and that in turn within an NCS COLUMN text
block. This introduces additional complication for the simplest
simulations.

NCS USAGE
NCS is optimized for large cluster computer systems (Beowulf
clusters). A common usage pattern is as follows: A user typically
fi rst prepares an input fi le in the .in fi le format in a text editor,
specifying the neuron, synapse, channel, and network model. This
fi le is copied across a network to the cluster computer and NCS is
invoked there with the fi le as a command line argument. Reports
are written to the cluster computer’s disks during the simulation
run, which can last from a few seconds to days. Data analysis is then
performed on the cluster computer if the data set is very large, or
the data is copied back to the user’s workstation for data analysis 11http://topographica.org/Home/index.html

52

http://topographica.org/Home/index.html

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

if that is feasible. The experimenter then makes some adjustments
to the model and tries again.

BRAINLAB MOTIVATION AND DESIGN GOALS
Faced with the powerful but diffi cult to use NCS simulator, we set
about to design a toolkit that would offer the following:

 1. An interactive shell for simple experimentation with NCS,
making NCS a more suitable educational tool for learning the
behavior of spiking neural networks and also a more conve-
nient platform for experienced users to explore the behavior
of new cell or network elements.

 2. A convenient platform for parameterized control of sets of
NCS experiments.

 3. A convenient platform for scripted regression testing of NCS
itself, with fl exible output validation.

 4. Scripted, algorithmic generation of neural network models
rather than NCS’s native static fi le specifi cation of networks.

 5. Convenient, integrated, graphical on-line reporting and plot-
ting of spiking, current, and voltage activity of cells, synapses,
and channels.

 6. Convenient, integrated, on-line three-dimensional plotting
of neural network architecture for expository and diagnostic
purposes.

 7. Experimental support for higher-level abstractions than those
provided natively in NCS (for example support for areas,
composed of arrays of columns, and a variety of distinct area-
to-area synaptic connection patterns), and a fl exible environ-
ment to add new ones.

 8. Support for lower-level abstractions too unwieldy to reaso-
nably manage in native NCS (for example, columns where all
cells are enumerated and independently, rather than just sta-
tistically, addressable).

 9. A container for a standard and extensible library of NCS
network building blocks (for example channels, cell types,
columns, spike templates), where all components are guaran-
teed to interoperate, utilize consistent naming conventions,
and may be manipulated programmatically as variable objects
rather than text chunks.

10. A more convenient, higher-level, object-oriented represen-
tation of neural networks that hides many complexities and
inconveniences inherent in NCS’s native .in fi le format.

11. A convenient environment in which to convert a neural
network description into a chromosomal representation sui-
table for use with a genetic algorithm.

12. A convenient environment in which to access NCS’s realtime
stimulus input capabilities, especially for robotic interface
applications (see Goodman et al., 2008 for more information
on using NCS in robotics).

13. The ability to conveniently extend many of these capabilities
without recourse to coding in NCS’s native compiled pro-
gramming environment (the C/C++ language).

WHY PYTHON?
When we selected Python as the language for Brainlab, Python was
not yet in wide use in neuroscience, and it was also in the midst of
a seemingly endless reorganization of its vector processing math

support libraries. Nevertheless, there were hopeful signs of building
momentum for Python as a scientifi c platform, and the base lan-
guage was so appealing in several respects that we selected Python
as the language for our project.

Python is an open source, cross platform programming lan-
guage. The base Python language is constantly being extended and
made more powerful by hundreds of developers working together
across the world. In addition to the base language, there are dozens
of external packages in various states of development, from pol-
ished to prototype. These packages gradually move into the base
distribution as they mature and if they are of suffi ciently wide
interest.

Python is ordinarily compiled into bytecode automatically and
the bytecode is then interpreted in a runtime virtual machine. This
is essentially the same approach used by Java, though the compi-
lation generally requires an explicit step with Java. Compilation
to bytecode results in code execution that is generally faster than
ordinary interpreted code. Python is dynamically typed, making
programming extremely convenient. Built in datastructures like
lists, dictionaries (hashes), and arrays help make Python programs
very concise. The clean syntax makes programs easy to understand.
Python has a well deserved reputation as an extremely clean and
easy to read and understand language.

At the time we selected it, Python already had a growing set
of support library packages for scientifi c computation. These
have since matured. Some of these packages are used in Brainlab,
including:

• Matplotlib12, a MATLAB-like plotting package
• PyOpenGL13, OpenGL bindings for Python
• NumPy14, MATLAB-style array processing
• SciPy15, a set of scientifi c tools for Python, including pseudo

random number generators and transforms

BRAINLAB TO NCS INTERFACE FOR NETWORK MODELING
When we were designing the Python to NCS interface for the
fi rst version of Brainlab, there were already a number of ways to
interface Python to a C/C++ application. Of these, one approach
we considered seriously was to create a Python module out of
the NCS C/C++ program with fairly simple and standardized
wrapper code using standard techniques16. The wrapped C code
could then be included into a Python program with the import
command. With this approach the Python program would be in
charge from the beginning, and it could selectively make normal
looking Python function calls into the wrapped C code to actually
perform the NCS simulation and other functions. How would
the network, cell, synapse, and other neural network parameters
be communicated to NCS? A reasonable approach would be to
defi ne a new abstract network modeling interface using high-
level Python facilities, perhaps a Python Object class for a Cell,
a Synapse, and so on, that allows these objects to be created and

12http://matplotlib.sourceforge.net/
13http://pyopengl.sourceforge.net/
14http://numpy.scipy.org/
15http://www.scipy.org/
16http://docs.python.org/extending/

53

http://matplotlib.sourceforge.net/
http://pyopengl.sourceforge.net/
http://numpy.scipy.org/
http://www.scipy.org/
http://docs.python.org/extending/

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

interconnected. This Python-based model could then be con-
verted directly to the internal in-memory representation of net-
work models of NCS, called the GCList, through a new function
provided by the imported NCS python module. This function,
being in the C/C++ side of things, would have full access to the
memory structures, memory allocation, and cluster-distribution
routines that NCS itself uses to convert the .in fi le representation
into the GCList representation for simulation, merely bypassing
the fi le parsing NCS normally uses to build its internal network
representation.

However this tightly integrated approach would have a number
of disadvantages. Such a Brainlab system would have to be at least
recompiled with every new release of NCS. But there would be more
complications than just that. While the NCS .in fi le representation
is part of the NCS documentation and is fairly stable, the inter-
nal GCList representation does not have a publicly documented
interface. The GCList interface changes over time, and when it
changes, corresponding detailed C/C++ changes would then have
to be made in the NCS/Python module for import. A possibly
larger documentation burden also would be placed on Brainlab
to describe the new model-building interface.

We opted instead to try to achieve our design goals with a much
looser Brainlab-NCS interface for modeling and simulation. We left
NCS as a completely separate programming project and did not
even try to integrate more tightly with it than its existing published
modeling (.in fi le) and invocation (command line) interface. So

Brainlab would have to provide a convenient and powerful Pythonic
network modeling interface to the user, since that was a primary
design goal, but it would also have to emit a properly formatted
.in fi le for use by NCS on the back-end. The approach we took to
model-building in Brainlab is depicted in Figure 1.

The BRAIN, CELL, LAYER, and other sections of the NCS .in
fi le are each implemented in Brainlab as a Python object class.
The __repr__() method for each object is overridden so that
printing an object results in text for that object in a format suit-
able for inclusion in the NCS .in fi le. In the case of a lower-level
object, this method just prints out the object itself, but does not
print any other objects that are referenced by the object being
printed. The BRAIN object’s __repr__() method, however, fi rst
recursively traverses the entire tree of objects referenced from the
BRAIN object and a list is composed for each type of referenced
object. Once all referenced objects have been collected together,
the entire NCS .in fi le is printed, starting with the BRAIN section,
and proceeding to all of the other sections of the .in fi le in the
conventional order.

The lower-level classes are implemented as nested classes within
the BRAIN class. Note that they are not derived subclasses, but
rather nested classes. Derived subclasses are appropriate where
the subclass has most of the aspects of the superclass but some
additional features. In Brainlab the nested classes are not logi-
cally subclasses of the BRAIN since they do not share the same
characteristics as the super-object but are merely contained by it.

FIGURE 1 | Brainlab’s approach to building neural network models for NCS.

A script using the Brainlab brain.py module allocates objects of special
modeling object classes (BRAIN, CELL, SYNAPSE, etc.) defi ned in brain.py. These
objects each contain a Python dictionary called parms containing (name, value)
pairs. Each such name corresponds exactly to an NCS character string parameter
name for that record type within the .in fi le. Each value contains either the
literal value desired for that parameter, or a Python object that will later be
dereferenced and substituted with an appropriate text name for the text section

representing that object in the resulting NCS .in fi le. The lower-level objects can
be inserted into the higher-level objects through direct manipulation of the parms
dict, but generally they are added there implicitly through the brain.py module’s
helper functions such as BRAIN.AddColumn(). The value of the highest level
container object, the BRAIN object, is determined by the overridden __repr__()
function, which converts the in-memory model representation into the text .in
representation, in the manner described in the text. The result is a Python
character string which is a suitable input fi le for the NCS program.

54

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

However, the lower-level classes do need access to the component
type libraries that are stored with the BRAIN class. If the lower-
level objects were entirely separate classes, they would not have
convenient access to the component type libraries. By making the
lower-level classes nested within the BRAIN class, they do have
that access.

We chose to map many of the modeling details of Brainlab
directly onto the underlying NCS implementation, rather than
providing a completely new modeling interface. This primarily
means that we preserve NCS’s text character string names for vari-
ous neural parameters of the cells, synapses, channels, and so on.
This eases the documentation burden on Brainlab since we can refer
directly to the NCS’s documentation on many points. Furthermore,
it makes keeping Brainlab up to date with respect with NCS very
easy. Whenever NCS adds support for a new parameter within an
existing modeling object, it is usually a simple matter to add it to
the permitted parameter list of the appropriate class in brain.py
and that is the end of it. (When NCS adds entirely new types of
objects, as is occasionally done, there is a bit more work, but even
still it is usually just a matter of intelligently cloning an existing
object to a new name and making a few changes.) The overall
mechanism of .in fi le emission through recursive application of
__repr__()’s to discovered objects starting at the top-level BRAIN
extends quite easily.

The simple strategies of creating a Python object class for each
.in fi le section, with automatic conversion from object to text
through the __repr__() method, combined with the ability to
reference one object from another, achieved all our design goals
for a Pythonic modeling interface to NCS. The modeling power
achieved by combining these few concepts in this way should not
be underestimated.

BRAINLAB TO NCS INTERFACE FOR SIMULATION
Once the internal Pythonic neural network model is constructed
inside the top-level BRAIN object, it can be simulated by invoking
the BRAIN’s Run() method. Since we elected to keep an arms-
length interface between Brainlab and NCS, the invocation of NCS
is done through the use of a popen() call, as follows. First, Brainlab
determines through invocation options or a standard confi gura-
tion .rc fi le whether the NCS process is to be invoked locally,
or on a remote compute server (typically a cluster). The .in fi le
generated from the __repr__() method of the top-level BRAIN
object is stored in a disk fi le locally, then propagated to the remote
compute server using ssh17 (secure shell) if necessary. Other sup-
port fi les, such as input stimulus patterns, are likewise generated
and propagated as needed. Next, the NCS invocation command
is constructed, again with appropriate references to remote serv-
ers with ssh, and then this command is executed using popen().
Brainlab monitors the realtime progress of the command as NCS
reports the progress of the run through the fi le descriptors of the
popen(). If an error condition is detected in the output, Brainlab
either throws a Python exception, or an error code to the caller.
When Brainlab detects that a run has completed, it constructs
additional commands to retrieve output fi les from the remote
compute server, as needed.

We felt it was essential to support all three stages of operation –
model-building, simulation, and analysis – completely within the
control of the Python Brainlab environment. This permits self-
contained and reproducible experiments, in the form of Python
Brainlab scripts. This also opens up the possibility of parameterized
model search with feedback from model performance affecting
parameters of the next iteration, or even the use of genetic pro-
gramming techniques for parameter search, all within a Brainlab
script.

BRAINLAB’S MODULE ORGANIZATION
Brainlab itself is implemented as two main Python modules,
brainlab.py and brain.py. The brain.py module contains
the parts of the system concerned with building a neural model
using Python classes supplied by the module and other normal
Python facilities, and then automatically converting this model to
a format understandable to NCS (a .in fi le). The brainlab.py
module contains support functions for invoking an NCS simula-
tion on a model either locally or remotely on a remote cluster, and
analyzing and documenting the results using plotting and other
functions.

In addition to these two main modules, an optional module
called netplot is available. This module can take a model built
using the core BRAIN class of brain.py and convert it into a three-
dimensional depiction using the model’s architecture and hints
provided during model construction. The three-dimensional depic-
tion can be examined and explored interactively on a workstation
or saved in a number of graphics fi le formats. The PyOpenGL18
package is used for the actual rendering.

BRAINLAB USAGE
BUILDING MODELS WITH BRAINLAB
In Brainlab, every brain model is an instance of a new Python object
class called BRAIN. Once the brainlab library itself is brought into
a Python program with the import command, creating a brain
object is by the usual Python means:

import brainlab

b = brainlab.BRAIN()

The variable b then refers to the newly created, and initially
empty, brain model. When a BRAIN object is created, it contains a
default set of commonly used types of neural network modeling
components. (There are initially no instances of these types in the
brain model.) These component types can be directly instantiated
and then used for construction of network models, or they can
be modifi ed in place and then used in a model, or they can be
copied to new types with different names and then the copies can
be modifi ed and instantiated for use in a model. The component
types are contained in Python dictionaries (hashes), and the keys
of the dictionary are simply the text names of the components.
These building blocks are automatically included within a Python
dictionary called libs in each BRAIN instance. There can be mul-
tiple libraries of parts within a BRAIN. The library provided with
the class is given the key name standard, and is itself a diction-
ary. In this dictionary are subdictionaries for the different types of

18http://pyopengl.sourceforge.net/17http://www.openssh.org/

55

http://www.openssh.org/
http://www.openssh.org/
http://pyopengl.sourceforge.net/

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

neural modeling components, such as channels (accessed with the
chantypes dictionary key), cell types (accessed with the cell-
types key), synapse facilitation and depression profi les (under the
sfds key), and more as listed below.

The following interactive Python session shows how to view
these different library components and shows how one could
modify the negative Hebbian learning window duration parameter
within the standard Hebbian learning profi le:

>>> b.libs[’standard’].keys()
[’comptypes’, ’spks’, ’chantypes’, ’spsgs’, ’cols’,

 ’celltypes’, ’sls’, \ ’syntypes’, ’lays’, ’sfds’]

>>> blib=b.libs[’standard’]
>>> blib[’sls’].keys()
[’0Hebb’, ’-Hebb’, ’BHebb’, ‘+Hebb’]
>>> blib[’sls’][’BHebb’]
SYN_LEARNING

 TYPE BHebb

 LEARNING BOTH

 NEG_HEB_WINDOW 0.04000 0.00000

 NEG_HEB_PEAK_DELTA_USE 0.01000 0.00000

 NEG_HEB_PEAK_TIME 0.01000 0.00000

 POS_HEB_WINDOW 0.04000 0.00000

 POS_HEB_PEAK_DELTA_USE 0.00500 0.00000

 POS_HEB_PEAK_TIME 0.01000 0.00000

END_SYN_LEARNING

>>> blib[’sls’][’BHebb’].parms[’NEG_HEB_WINDOW’]=(.05,.01)
>>> blib[’sls’][’BHebb’]
SYN_LEARNING

 TYPE BHebb

 LEARNING BOTH

 NEG_HEB_WINDOW 0.05000 0.01000

 NEG_HEB_PEAK_DELTA_USE 0.01000 0.00000

 NEG_HEB_PEAK_TIME 0.01000 0.00000

 POS_HEB_WINDOW 0.04000 0.00000

 POS_HEB_PEAK_DELTA_USE 0.00500 0.00000

 POS_HEB_PEAK_TIME 0.01000 0.00000

END_SYN_LEARNING

The Section “Usage Example: RAIN Network” contains another
example of creating components based on the included standard
library.

An NCS .in fi le contains a number of text blocks, with each
block consisting of a number of parameter keywords on the left
and their values to the right. The values can be of several types.
In the example above, the numbers for the NEG_HEB_WINDOW
are a mean and standard deviation. During model initialization,
NCS assigns that parameter to a random value from a normal
distribution with the mean and standard deviation requested.
For other parameters, such as the RSE_INIT parameter of the
synapse object, two numeric values specify a minimum and a
maximum of a range. In the case of the LEARNING parameter
in the example above, the value for a parameter is a text label
that references another block defi ned within the fi le. The NCS
documentation details each parameter and its expected values.
In some cases, Brainlab allows commonly used and frequently
modifi ed parameter values to be changed in Brainlab function
calls. For example, when specifying a synaptic connection, the
probability of the connection and the conductance speed val-
ues can be set directly using the prob= and speed= keyword

arguments to the Brainlab AddConnect() method. In all cases
however, NCS parameters can be set by modifying a dictionary
value in the appropriate parms dictionary of the object with
the key set to the text name of the NCS parameter name. This
approach gives convenience to the programmer while allowing
quick access to new NCS parameters as they are added to the
system, by simply adding a keyword to a list in the Python class
defi nition for that object.

In NCS, cells cannot exist on their own but rather only as part
of a higher-level structure called a column. A column is composed
of one or more layers, which in turn is composed of one or more
groups of cells. Brainlab has COLUMN, LAYER, and CELL objects
that correspond to these structures. A Brainlab script can build a
column up from cell groups and layers, or instead use a conven-
ience function that will add a pre-built column in a single step. The
following Brainlab function adds to the model an instance of an
ordinary column populated with a single cell:

newcol = b.Standard1CellColumn()

Additional optional parameters to the function can specify a
cell type to use (other than the default), spatial coordinates for
the cell, and more.

At this point the Brainlab script typically makes connec-
tions between the cells or cell groups. Brainlab functions such
as AddConnect() are used for this. The Python variables for
the objects are used as the point of contact for connection. An
example of this is given in the Sections “Usage Example: Hebbian
Learning” and “Usage Example: RAIN Network”. Report requests
are also added to the brain at this time.

SIMULATING MODELS WITH BRAINLAB
Once the BRAIN object is created, simply printing it with the Python
print command causes Brainlab to emit a complete, properly for-
matted .in fi le containing all the information added to the brain
by the modeler. If desired, this fi le can be examined and manually
submitted for simulation by NCS. This approach is occasionally
useful for debugging purposes, but in practice it is seldom neces-
sary to view the generated .in fi le directly. Instead, the modeler
can simply leave the underlying .in fi le mechanism hidden and
evoke an NCS simulation directly on the model using the brainlab
Run() function on the brain:

brainlab.Run(b, nprocs = 32)

In this example the simulation is evoked remotely on 32 proc-
essors. The .in fi le that results from the model is created by
Brainlab behind the scenes, copied over to the compute cluster
automatically by Brainlab, and the simulation results are fetched
on demand as the data analysis portion of the Brainlab program
requires them.

Brainlab is designed primarily to run on the user’s worksta-
tion, and send jobs across a network to be simulated on a different
computer (or cluster). There are several reasons for this focus. The
user has more control over the software installed on a personal
workstation than on a typical group or departmental compute
server or Beowulf cluster, where it may be more diffi cult to get
installed the libraries necessary to run Brainlab. Often data will be
analyzed repeatedly, displayed and analyzed in a variety of ways,

56

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

and that is best done on a personal workstation so that specialized
tools are guaranteed to be available and also so that other users of
the simulation environment will not be affected. Also typically a
personal workstation will have high-performance display hardware
that will work more effi ciently with extensive graphing, perhaps
in three dimensions.

Brainlab can also be confi gured to run directly on the machine
where NCS also does the simulation. With modern high-
 performance multi-core CPUs this is a good option for smaller
exploratory simulations.

The encapsulation of the model construction, simulation, and
data analysis loop within a single program, a Python Brainlab script,
makes automatic model parameter search easier. In some of our
work we have defi ned a mapping from artifi cial chromosome to
neural network model, and used a standard Python genetic algo-
rithm package to do a fi tness search for the best functioning model
(Drewes et al., 2004).

DATA ACCESS, ANALYSIS, AND PLOTTING WITH BRAINLAB
Brainlab provides a few convenience functions for loading, process-
ing, and plotting standard NCS reports. In combination with the
SciPy and Matplotlib packages, modelers can do sophisticated
mathematical analyses and create complex graphics for view or
publication. Effi cient access to very large datasets is available
to the modeler through Python’s hdf5 interface, pytables. With
the PyOpenGL libraries, Brainlab provides some limited three-
 dimensional plotting tools for viewing network models.

We will mention a few of the more commonly used Brainlab
data access and plotting routines here. The Brainlab LoadReport()
function returns a NumPy array containing all the data captured
from a requested NCS report. The data to be loaded can be limited
by time range or by range of cells. The returned data can then be
processed further in the Brainlab program using the wide range of
Python or NumPy tools. The Brainlab function LoadSpikeData()
returns a list of just the spike times for a given range of cells for a
given time. The ReportPlot() function gives a simple visual repre-
sentation of continuous NCS report data (often voltages or currents)
on screen or into a graphical fi le. Brainlab makes extensive use of
the Matplotlib library for the actual generation of the plots.

Brainlab handles remotely invoking a simulation on a compute
cluster, and it also simplifi es accessing the resulting NCS report fi les.
The same Brainlab LoadReport() function works whether the fi le
data was captured remotely or on the local workstation. Brainlab
also tries to use knowledge about the simulation environment to
be effi cient about management of report fi les. For example, rather
than copying large report fi les across a network from the compute
cluster to the workstation for processing, Brainlab can in some cases
invoke itself remotely on the compute cluster for report processing,
and then only copy back the much smaller amount of data that is
the result of the processing. The programmer generally does not
need to be aware, for either simulation or analysis, that the com-
putation was done remotely.

Figure 2 is a sample compound plot, generated using Brainlab
convenience functions and the Matplotlib library, from the Hebbian
learning simulation detailed in the Section “Usage Example:
Hebbian Learning”. Refer to Drewes (2005b) for further 2D and
3D Brainlab plot examples.

USAGE EXAMPLE: HEBBIAN LEARNING
Following is a complete, functional example of Brainlab usage. The
results of this Brainlab example are shown graphically in Figure 2,
and referring to the plot while reviewing the explanation below
will help to make the example clear. (Note however that to reduce
space the code below draws only one of the subgraphs shown in
Figure 2.) This simple example demonstrates positive Hebbian
learning: when spikes are initially applied to cell A between time
0 s and 0.5 s, the target cell T spikes because the synaptic con-
nection from A to T is initialized to a strong value. However the
initial spikes forced onto B by external stimulus (during time 0.5 s
to 1.0 s) do not result in the target cell T spiking, because the B to
T synapse is initially weak. During time 1.5 s to 2.5 s, a series of
three spikes are forced by external stimulus onto both cell A and
B. The spike forced on cell A is suffi cient to evoke an output spike
on T, as we have already seen. The forced spike on B just before
the evoked spike on T causes the B-to-T synapse to strengthen
through positive Hebbian learning. In the fi nal phase, from time
3.0 s to 3.5 s, we see that after the synaptic strengthening, forced
spikes on B are now alone enough to evoke a spike on T. Here is
the script:

import brainlab

import pylab

FIGURE 2 | Output of Hebbian learning example from the Section “Usage

Example: Hebbian Learning”.

Spikes

0.0

Cell A

Cell B

Cell T

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

U
S

E

Utilization of Synaptic Efficacy

Timestep
0 5000 10000 15000 20000 25000 30000 35000

B to T

A to T

40
20

–20
–40
–60
–80

0

m
V

0 5000 10000 15000 20000 25000 30000 35000
Timestep

T voltage

57

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

brainname="HebbTest" # output files begin with this name

endsim=3.5 # seconds to simulate

FSV=10000 # simulation timesteps per second

timesteps=FSV*endsim

set up times (in secs) for two spike inputs, a and b:

eps=.010 # a small epsilon time offset

ain=[.1,.2,.3, 1.5, 1.8, 2.1]

bin=[.6,.7,.8, 1.5-eps, 1.8-eps, 2.1-eps, 3.1, 3.2, 3.3]

create the brain object container:

newb=brainlab.BRAIN(simsecs=endsim, jobname=brainname,

 fsv = FSV)

create three cells in the brain:

A=newb.Standard1CellColumn("A")

B=newb.Standard1CellColumn("B")

T=newb.Standard1CellColumn("T")

customize a standard synapse profile:

cs=newb.syntypes["C.strong"]

BHebb references a standard synapse learning profile with

both + and - Hebbian. Select that for our synapse, then
 modify:

cs.parms["LEARN_LABEL"]=newb.sls["BHebb"]

cs.parms["MAX_CONDUCT"]=0.10

cs.parms["ABSOLUTE_USE"]=(0.5, 0.0) # initial synaptic

 efficacy parameter

make a copy of this synapse to new name, then reduce

 initial strength:

cw=newb.Copy(newb.syntypes, "C.strong", "C.weak")

cw.parms["ABSOLUTE_USE"]=(0.1, 0.0)

modify a Hebbian learning parameter in standard library:

hp=newb.sls["BHebb"]

hp.parms["POS_HEB_PEAK_DELTA_USE"]=(.20, 0)

newb.AddConnect(B, T, cw, prob=1.0, speed=10.0)

newb.AddConnect(A, T, cs, prob=1.0, speed=10.0)

d=(0.0, endsim)

tell NCS to report on some voltage values:

newb.AddSimpleReport("AReport", A, reptype="v", dur=d)

newb.AddSimpleReport("BReport", B, reptype="v", dur=d)

newb.AddSimpleReport("TReport", T, reptype="v", dur=d)

tell NCS to report on some absolute USE (synaptic efficacy)

 values:

newb.AddSimpleReport("BtoTUSE", T, reptype="a",

 dur=d, synname=cw)

newb.AddSimpleReport("AtoTUSE", T, reptype="a",

 dur=d, synname=cs)

tell NCS to apply our spike inputs to A and B:

newb.AddSpikeTrainPulseStim("Astim", A, ain)

newb.AddSpikeTrainPulseStim("Bstim", B, bin)

start the simulation:

brainlab.Run(newb, verbose=True, nprocs=1)

load resulting NCS reports into Python variables:

adata=brainlab.LoadSpikeData(brainname, "AReport")

bdata=brainlab.LoadSpikeData(brainname, "BReport")

tdata=brainlab.LoadSpikeData(brainname, "TReport")

create a simple plot using Brainlab’s interface to

 matplotlib/pylab:

brainlab.ReportPlot(brainname, "BtoTUSE", plottitle="B

 synapse on T", xlab="Timestep",

 ylab="USE", linelab=["B to T"])

pylab.show() # display the plot

USAGE EXAMPLE: RAIN NETWORK
In this section, we give an example of how Brainlab is used to create a
type of model that our lab has called RAIN (Recurrent Asynchronous
Irregular Network). This type of asynchronous, irregularly fi ring
network with persistent activity is similar to the models investigated
by Vogels and Abbott (2005) and it is also a benchmark model used
in the Brette et al. (2007) review of neural simulator systems. Our
network has 4000 leaky integrate-and-fi re neurons, 80% excitatory
and 20% inhibitory. Each neuron is defi ned as a single compart-
ment model with a time constant, τ = 20 μσ, g leak = 5 ns, and E

leak

= –60 mV. The neuron will generate an action potential and the
membrane potential will reset to the clamped resting potential for
5 ms whenever the membrane potential crosses the threshold at
−50 mV. The excitatory neurons differ from the inhibitory ones
with a depolarization-activated, noninactivating potassium channel
(I

m
 current), which is responsible for the adaptation of fi ring rate

of cortical pyramidal cells (Yamada et al., 1998).
Both excitatory and inhibitory type synapses are simulated as

conductance changes with instantaneous jump at maximal value
and exponential decays, i.e., a presynaptic event generates a synaptic
conductance change of g , which decays according to the following
equation:

g t g e t() /= × − τ

The synaptic time constants are 5 and 10 ms, and quantal con-
ductances are 5 and 50 nS for excitatory and inhibitory synapses,
respectively. All synapses are created with synaptic delay chosen
from a normal distribution with a mean of 1 ms and standard
deviation of 1 ms.

Neurons were randomly connected by a probability of 2%
by conductance-based synapses (Gupta et al., 2000). For out-
bound inhibitory connections, we incorporate the diversity of
GABAergic interneurons. The experiment performed by Gupta
et al. (2000) indicates that GABAergic synapses in neocortical
layers II to IV have three statistically distinct types of synapses,
where each type has particular temporal dynamics of synaptic
transmission. The synapses were modeled according to the con-
cepts of the refractoriness of the release process (Markram et al.,
1998) as shown in Table 1. The Brainlab code below demonstrates
the creation of a new synaptic facilitation and depression profi le
called sfd_1 by copying a standard Brainlab library profi le called
F1. Once copied, the new profi le is modifi ed according to data
in Table 1.

Create SYN_FACIL_DEPRESS based on ’F1’ from sfds library

sfd_1 = b.Copy(b.sfds, ’F1’, ’sfd_1’)

sfd_1.parms[’SFD’] = ’BOTH’

sfd_1.parms[’DEPR_TAU’] = (0.376, 0.253)

sfd_1.parms[’FACIL_TAU’] = (0.045, 0.21)

58

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

Next we create an new inhibitory synapse profi le called InhSyn1
that is based on the Brainlab standard profi le called I. The facilita-
tion and depression profi le just created is then embedded into the
new synapse type. Note that some extraneous parameters inherited
from the default profi le are also deleted at this time, and note that
the reference to the facilitation and depression profi le is made to
the newly-created variable, rather than the text string name of the
profi le (though Brainlab supports either, the former is generally
easier and less error prone):

Create SYNAPSE based on ’I’ from syntypes library

InhSyn1 = b.Copy(b.syntypes, ’I’, ’InhSyn1’)

del InhSyn1.parms[’PREV_SPIKE_RANGE’]

del InhSyn1.parms[’RSE_INIT’]

del InhSyn1.parms[’HEBB_END’]

del InhSyn1.parms[’HEBB_START’]

newparms=[(’ABSOLUTE_USE’, (0.250, 0.0)), (’SYN_REVERSAL’,

 (-80, 0.0)), (’SFD_LABEL’, sfd_1),

 (’DELAY’, (0.001, 0.001))]

InhSyn1.parms.update(newparms)

InhSyn1.parms[’MAX_CONDUCT’] = ((G_inh/2.0), 0.0)

We omit the section of Brainlab code that creates the cells
themselves, but the procedure is similar: a basic cell type is copied
from the Brainlab library and a few parameters are selectively
modifi ed. The variables returned from the Brainlab function that
creates the cells groups are stored in a Python list. So e[0] ref-
erences the fi rst group created, e[1] the second group created,
and so on.

Brainlab provides a single, general AddConnect(from, to)
method that can make connections at all three connection levels
supported by NCS (within-layer, between-layer, and between-
 column). The modeler does not need to pay attention to NCS’s
distinction between these three levels of connection if this is not
desired, and this encapsulation can hide much complexity from
the user. Furthermore, connections can conveniently be made in
Brainlab using the Python variables assigned to the created objects,
rather than their underlying .in fi le text names (which the mod-
eler can basically ignore). In our example of a 4000 neurons net-
work, we do divide the network into fi ve cell groups, so that it
could be distributed to fi ve computational nodes. The three types
of inhibitory synapses connect to both inhibitory and excitatory
neurons in the network:

Connect inh RAIN network

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0),

 InhSyn1, prob=0.00584, speed=0)

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0),

 InhSyn2, prob=0.01166, speed=0)

b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, i0),

 InhSyn3, prob=0.00250, speed=0)

Connect inh-exc rain network

for j in range(0, 4):

 tgt = e[j]

 b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

 InhSyn1, prob=0.00152, speed=0)

 b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

 InhSyn2, prob=0.01526, speed=0)

 b.AddConnect((col_0, lay_0, i0), (col_0, lay_0, tgt),

 InhSyn3, prob=0.00320, speed=0)

The short-term dynamics of inhibitory synapses not only maxi-
mize the synaptic diversity, but potentially constrain the functional
impact of different interneurons on the long-term dynamics which
exist among the excitatory neurons. To incorporate this idea into
the model, we also include the spike timing dependent plasticity
(STDP) within each cell group (Song et al., 2000). The Brainlab
code for these connections is as follows:

for i in range(0, 4):

 src = e[i]

 # connect exc-inh rain network

 b.AddConnect((col_0, lay_0, src), (col_0, lay_0, i0),

 ExcSyn0, prob=0.02, speed=0)

 # connect exc-exc rain network

 for j in range(0, 4):

 tgt = e[j]

 if (i==j):

 b.AddConnect((col_0, lay_0, src), (col_0, lay_0,

 tgt), ExcSyn1, prob=0.02, speed=0)

 else:

 b.AddConnect((col_0, lay_0, src), (col_0, lay_0,

 tgt), ExcSyn0, prob=0.02, speed=0)

Even the fairly simple RAIN network example shown above
results in a multi-thousand line .in fi le for NCS. The more con-
cise, programmatic representation of the model in Brainlab makes
it easier to create and also easier for others to quickly understand
the true structure of the model.

DISCUSSION
We have shown elements of the design, implementation, and usage
of Brainlab, a Python toolkit that leverages the strengths of Python
to provide a more powerful and convenient interface to the NCS
network simulator. We integrated Brainlab to NCS loosely, in a
way that required no source code changes to NCS whatsoever. We
were able to design a Pythonic neural modeling interface that can
automatically convert an object representation into NCS’s cumber-
some .in representation. For simulation, we also integrate Brainlab
loosely with NCS, using Python’s sub-process management and
standard operating system level tools like ssh for remove invoca-
tion as necessary.

Our approach gives us simplicity of implementation and ease of
long-term maintainability, with no signifi cant performance penal-
ties on simulations, yet still extends to NCS all the considerable
power and fl exibility of Python and its numerical, graphical, special
format fi le access, and other support packages.

Table 1| Dynamic parameters of GABAergic synapses (Gupta et al., 2000).

 F1 F2 F3

INH to EXC (%) 7.6 76.3 16

INH to INH (%) 29.2 58.3 12.5

τfacil (ms) 376 21 62

τdepr (ms) 45 706 144
g (nS) 3.24 7.76 3.44

59

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 16 |

Drewes et al. Brainlab Python toolkit

ACKNOWLEDGEMENTS
Portions of this work were supported by grants from the
U.S. Offi ce of Naval Research (grants N000140010420 and
N000140510525).

Brainlab will likely remain the Python toolkit for NCS, and will
see use for those applications where NCS’s own strengths make it
the tool of choice: large scale simulations with a medium degree
of biological realism.

REFERENCES
Brette, R., Rudolph, M., Carnevale, T.,

Hines, M., Beeman, D., Bower, J. M.,
Diesmann, M., Morrison, A.,
Goodman, P. H., Harris, F. C.,
Zirpe, M., Natschläger, T., Pecevski, D.,
Ermentrout, B., Djurfeldt, M.,
Lansner, A., Rochel, O., Vieville, T.,
Muller, E., Davison, A. P., El
Boustani, S., and Destexhe, A. (2007).
Simulation of networks of spiking neu-
rons: a review of tools and strategies. J.
Comput. Neurosci. 23, 349–398.

Cannon, R., Gewaltig, M., Gleeson, P.,
Bhalla, U., Cornelis, H., Hines, M.,
Howell, F., Muller, E., Stiles, J.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Drewes, R. (2005a). Brainlab: A Toolkit
to Aid in the Design, Simulation, and

Analysis of Spiking Neural Networks
with the NCS Environment. Master’s
Thesis, Reno, University of Nevada.
Available at: http://www.interstice.
com/drewes/brain/thesis.pdf

Drewes, R. (2005b). Modeling the Brain
with NCS and Brainlab. Linux Journal,
pp. 58–61. Available at: http://www.
linuxjournal.com/article/8038

Drewes, R., Maciokas, J., Louis, S. J., and
Goodman, P. (2004). An evolutionary
autonomous agent with visual cortex
and recurrent spiking columnar neural
network. In Proceedings of the 2004
Genetic and Evolutionary Computing
Conference (GECCO 2004), Vol. 3,
Springer-Verlag, pp. 257–258.

Goodman, P., Zou, Q., and Dascalu, S.
(2008). Framework and implica-
tions of virtual neurorobotics. Front.
Neurosci. 2, 123–129.

Gupta, A., Wang, Y., and Markram, H.
(2000). Organizing principles for a

diversity of gabaergic interneurons
and synapses in the neocortex. Science
287, 273–278.

Markram, H., Wang, Y., and Tsodyks, M.
(1998). Differential signaling via the
same axon of neocortical pyramidal
neurons. Proc. Natl. Acad. Sci. U.S.A.
95, 5323–5328.

Song, S., Miller, K. D., and Abbott, L. F.
(2000). Competitive Hebbian learn-
ing through spike-timing dependent
synaptic plasticity. Nat. Neurosci. 3,
919–926.

Vogels, T., and Abbott, L. (2005). Signal
propagation and logic gating in net-
works of integrate-and-fi re neurons.
J. Neurosci. 25, 10768–10795.

Yamada, W.M., Koch, C., and Adams, P.
(1998). Multiple channels and
calcium dynamics, Chapter 4. In
Methods in Neuronal Modeling, 2nd
Edn. (Cambridge, MIT Press), pp.
97–133.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 17 September 2008; paper pend-
ing published: 21 October 2008; accepted: 09
May 2009; published online: 27 May 2009.
Citation: Drewes R, Zou Q and Goodman
PH (2009) Brainlab: a Python toolkit to aid
in the design, simulation, and analysis of
spiking neural networks with the NeoCortical
Simulator. Front. Neuroinform. (2009)
3:16. doi:10.3389/neuro.11.016.2009
Copyright © 2009 Drewes, Zou and
Goodman. This is an open-access article
subject to an exclusive license agreement
between the authors and the Frontiers
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original
authors and source are credited.

60

http://www.interstice.com/drewes/brain/thesis.pdf
http://www.linuxjournal.com/article/8038

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 27 May 2009
doi: 10.3389/neuro.11.011.2009

PCSIM: a parallel simulation environment for neural circuits
fully integrated with Python

Dejan Pecevski1*, Thomas Natschläger 2 and Klaus Schuch1

1 Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria
2 Software Competence Center Hagenberg, Hagenberg, Austria

The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It
is primarily designed for distributed simulation of large scale networks of spiking point neurons.
Although its computational core is written in C++, PCSIM’s primary interface is implemented in
the Python programming language, which is a powerful programming environment and allows
the user to easily integrate the neural circuit simulator with data analysis and visualization
tools to manage the full neural modeling life cycle. The main focus of this paper is to describe
PCSIM’s full integration into Python and the benefi ts thereof. In particular we will investigate
how the automatically generated bidirectional interface and PCSIM’s object-oriented modular
framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM’s
functionality either employing pure Python or C++ and thus combining the advantages of both
worlds. Furthermore, we describe several supplementary PCSIM packages written in pure
Python and tailored towards setting up and analyzing neural simulations.

Keywords: neural simulator, parallel simulation, spiking neurons, Python, Boost.Python, Py++, PCSIM

iNVT (iLab Neuromorphic Vision Toolkit)1 which is an example
of a package specifi cally tailored for the domain of brain-inspired
neuromorphic vision. All of the above simulation environments
support parallel simulation of one model on multiple processing
nodes by using commodity clusters and many of them can also be
run on super-computers. The simulation tool PCSIM described
in this paper is designed for simulating neural circuits with a sup-
port for distributed simulation of large scale neural networks. Its
development started as an effort to redesign the previous CSIM
simulator2 (Natschläger et al., 2003) and augment its capabilities,
with the major extension being the implementation of a distributed
simulation engine in C++ and a new convenient programming
interface. The aim was to provide a general extensible framework for
simulation of hybrid neural models that include both spiking and
analog neural network components together with other abstract
processing elements while making the setup and control of parallel
simulations as convenient as possible for the user. Hence, given its
current set of features, the PCSIM simulator is closest to the second
group (NEST, NCS, SPLIT) of neural simulation environments
mentioned above.

Performing a neural network simulation usually requires com-
bined usage of several additional software tools together with the
simulator, for stimulus preparation, analysis of output data and
visualization. Being able to steer all the necessary tools from one
programming environment reduces the complexity of setting up
simulation experiments since all development can be done in a
single programming language and the burden of developing utili-
ties for conversion of data formats between heterogeneous tools is
avoided. Given its object-oriented capabilities and its strong support

INTRODUCTION
Given the complex nonlinear nature of the dynamics of biological
neural systems, many of their properties can be investigated only
through computer simulations. The need of researchers to increase
their productivity while implementing increasingly complex models
without each time having to reinvent the wheel has become a driv-
ing force to develop simulators for neural systems that incorporate
best known practices in simulation algorithms and technologies,
and make it accessible to the user through a high-level user-friendly
interface (Brette et al., 2007). It has also been brought to attention
that it is of importance to use large neural networks with biologi-
cally realistic connectivity (on the order of 104 synapses per neuron)
as simulation models of mammalian cortical networks (Morrison
et al., 2005). Simulation of such large models can practically be
done only by exploiting the computing power and the memory of
multiple computers by means of a distributed simulation.

There are different neural simulation environments presently
available and although many of them were initially envisioned for
a specifi c purpose and domain of applicability, during continuing
development their set of features expanded to improve general-
ity and support construction of a wide range of different neural
models; see Brette et al. (2007) for a recent overview. The two most
prominent tools are NEURON (Carnevale and Hines, 2006; Hines
and Carnevale, 1997) and GENESIS (Bower and Beeman, 1998)
which aim at simulation of detailed multi-compartmental neuron
models and small networks of detailed neurons. Another class of
quite general neural simulation environments which focus on the
simulation of large-scale cortical network models and the improve-
ment of their simulation effi ciency through distributed computing
include NEST (Gewaltig and Diesmann, 2007; Plesser et al., 2007),
NCS (Brette et al., 2007) and SPLIT (Hammarlund and Ekeberg.
1998). There are also more dedicated neural simulation tools like

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Ingo Bojak, Radboud University
Nijmegen, The Netherlands
Abigail Morrison, RIKEN, Japan

*Correspondence:

Dejan Pecevski, Institute for Theoretical
Computer Science, Graz University of
Technology, Inffeldgasse 16b/1, A-8010
Graz, Austria.
e-mail: dejan@igi.tugraz.at

1http://ilab.usc.edu/toolkit/home.shtml
2http://www.lsm.tugraz.at/csim

1

2

3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

61

http://ilab.usc.edu/toolkit/home.shtml
http://www.lsm.tugraz.at/csim

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

for integration with other programming languages, the Python pro-
gramming language is a very promising candidate for providing
such a unifying software environment for simultaneous use of vari-
ous scientifi c software libraries. As Python is becoming increasingly
popular in the scientifi c community as an interpreting language of
choice for scientifi c applications, the developers of many neural
simulator tools decided to provide a Python interface for their simu-
lator in addition to its legacy interface in a custom scripting language.
Moreover, a simulation tool called Brian which uses Python as an
implementation language was recently developed to bring to the
user the full fl exibility of an interpreting language in specifying and
manipulating neural models (Goodman and Brette, 2008).

In spite of the evident practical advantages in using Python as the
single programming language for all tasks during a neural modeling
life cycle, there is the apparent discrepancy between the need for
computational performance of the simulation and construction
of the model on one hand, and rapid development of the model
on the other. Using C++ can solve the performance issue, but will
decrease the productivity of the modeler and requires higher level
of programming skills and experience. In contrast Python is easy
to learn, fl exible to use and signifi cantly increases the productivity
of the modeler, however it lags far behind C++ in performance3.
Hence, instead of adopting a single language, an alternative is to
enable an easy mix and match of both languages during the devel-
opment of a model, i.e. to introduce a hybrid modeling approach
(Abrahams and Grosse-Kunstleve, 2003).

In this paper we will describe how the modular object-oriented
framework of PCSIM in combination with an automated interface
generation supports such a hybrid modeling approach.

In particular, we briefl y review PCSIM’s main features (see
Overview) before we describe the automated process to generate the
Python interface (see Python Interface Generation). In the Section
“Network Construction” we detail PCSIM’s network construction
application programming interface (API), which is a central part
of PCSIM’s object-oriented modular framework. In the Section
“Custom Network Elements” we demonstrate another advantage
of the hybrid modeling approach: we show how PCSIM’s concept
of a general network element can be used as an interface to another
simulation tool. While these examples concentrate on the Python
aspect of the hybrid modeling, we show in the Section “Extending
PCSIM Using C++” how the user can easily extend PCSIM’s func-
tionality using C++. Additional PCSIM packages implemented in
Python are reviewed in the Section “PCSIM Add-Ons Implemented
in Python”. In the Section “Discussion” we discuss and summarize
the presented concepts and approaches.

We would like to note that it is outside the scope of this article
to describe the algorithmic aspects of PCSIM’s computational C++
core (this will be reported elsewhere) and all the details of the full
object-oriented modular framework.

OVERVIEW
ARCHITECTURE
The high-level architecture of PCSIM is depicted in Figure 1. The
PCSIM library written in C++ (libpcsim) constitutes the core

of the simulator. The API of the PCSIM library is exposed to the
Python programming language by means of the Python extension
module pypcsim (see Python Interface Generation for details). The
library is made up of three main components: the simulation engine
with its communication system, a pool of built-in network elements
(i.e. neuron and synapse types) and the network construction layer.
Before presenting the network construction layer in detail in the
Section “Network Construction” we will briefl y describe in the next
paragraphs the main features of the underlying simulation engine
and its communication system.

The simulation engine integrates all the network elements (typi-
cally neurons and synapses) and advances the simulation to the
next time step, and uses its communication system to handle the
routing and delivery of discrete and analog messages (i.e. spikes
and e.g. fi ring rates or membrane voltages) between the connected
network elements. PCSIM’s simulation engine is capable of running
distributed simulations where the individual network elements
are located at different computing nodes. Setting up a distributed
simulation is handled easily from a users point of view: there are
no (or very little) code changes necessary when switching from a
non-distributed to a distributed simulation. The distributed simu-
lation mode is intended for employing a cluster of machines for
simulation of one large network where each machine integrates
the equations of a subset of neurons and synapses in the network.
A distributed PCSIM simulation runs as an MPI4 based applica-
tion composed of multiple MPI processes located on different
machines5. The implementation of the spike routing, transfer and
delivery algorithm between the nodes in a distributed simulation is
based on the ideas presented in Morrison et al. (2005). In addition
PCSIM offers the possibility to run a simulation as a multi-threaded
application, both in a non-distributed and a distributed setup. The
multi-threaded mode is intended for performing simulations on
one multi-processor machine when one wants to split the com-
putational workload among multiple threads in one process, each
running on a different processor. However, we should note that
the multi-threaded simulation engine is still undergoing optimi-
zation, as we are working on improvement of the scaling of the

3The simulation tool Brian mentioned above, heavily uses the numerical Python
package numpy (Oliphant, 2007) written in C to achieve reasonable performance.

FIGURE 1 | Architecture overview of PCSIM.

4http://www-unix.mcs.anl.gov/mpi/
5To be precise, we use the C++ bindings offered by the MPICH2 library, where cur-
rently none of the advanced features of the MPI-2 standard are used.

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

62

http://www-unix.mcs.anl.gov/mpi/

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

multi-threaded simulation to match the scaling achieved with an
equivalent distributed simulation.

SCALABILITY AND DOMAIN OF APPLICABILITY
One of the goals of the development of PCSIM was enabling simu-
lations of large neural networks on standard computer clusters
through distributed computing. By utilizing the parallel capabilities
of PCSIM the simulation time for a model can be reduced by using
more processors (on multiple machines) as computing resources.

As a test of the scalability, we performed multiple simulations
with the PCSIM implementation of the CUBA model described
in Brette et al. (2007), with different number of leaky integrate-
and-fi re neurons (4000, 20000, 50000 and 100000) and distributed
over a different number of processors (each processor on a different
machine). We changed the resting potential in the neuron equa-
tions from −49 to −60 mV such that the network does not show
any spontaneous activity. In order to elicit a spiking activity in the
network, an input neuron population of 1000 neurons was con-
nected randomly to it with probability 0.1, i.e. each neuron in the
network receives inputs from on average 100 input neurons. The
input neurons fi red homogeneous Poisson spike trains at a rate of
5 Hz. The simulation was performed for 1 s biological time with a
time step of 0.1 ms. We have set the connection probability within
the network to 0.1, in order to reach realistic number of 10000
synapses per neuron for the network size of 100000 neurons. The
transmission delay of spikes was set to 1 ms. We scaled the weights
of the network so that the mean fi ring rate of the neurons was
between 2.4 and 2.7 Hz for all network sizes (more precisely 2.68,
2.55, 2.52 and 2.45 Hz for the network with 4000, 20000, 50000
and 10000 neurons, respectively).

The used machines had Intel® Xeon™64 bit CPUs with 2.66 GHz
and 4 MB level-2 processor cache, and 8 GB of RAM. They were
connected in a 1 Gbit/s Ethernet LAN.

If we assume ideal linear speed-up, then the expected simulation
time of a model on N machines given the actual simulation time on
K machines is equal to the simulation time on K machines times
K divided by N. In the evaluation of the scaling, for the estimation
of the expected simulation time (see Figure 2) we used the meas-
ured simulation time of the model on the minimum number of
machines used for that particular network size. Namely, we used
the actual simulation time on K = 1 machine for the network sizes
of 4000 and 20000 neurons, and the simulation time on K = 4
and K = 16 machines for the network sizes of 50000 and 100000
neurons respectively.

Figure 2 shows that in the case of 4000 neurons the computa-
tional load on each node is quite low, hence the cost of the spike
message passing dominates the simulation time which results in
sub-linear scaling. For the networks with 20000 and 50000 neurons
the actual simulation time is shorter than the expected simulation
time indicating a supra-linear speed-up for up to 24 nodes. For
more than 24 nodes the actual simulation time approaches the
expected simulation time. The reason for the supra-linear speed-up
is more effi cient usage of the processor cache when the network is
distributed over larger number of nodes (Morrison et al., 2005).
For the network with 100000 neurons the speed-up is not distin-
guishable from the expected linear speed-up (taking K = 16 nodes
as the base measurement).

The combination of features that PCSIM supports makes it
 suitable for various types of neural models. Its domain of appli-
cability can be considered across two complementary aspects: the
size of networks that can be simulated, and the variety of differ-
ent models that can be constructed and simulated, determined
by the available neuron and synapse models, plasticity mecha-
nisms, construction algorithms and similar. Concerning the size
of models, because of its distributed capabilities PCSIM is mainly
targeted towards large neural systems with realistic cortical con-
nectivity composed of 105 neurons and above. As the results from
the scalability test show, a spiking network with 105 neurons and
104 synapses per neuron can be simulated in a reasonable time on
a commodity cluster with about 20 machines, and the speed-up
is linear when more machines are employed for the simulation.
Regarding the support for construction of various different models
in PCSIM, the generality of the communication system and the
extensibility with custom network elements enables simulation
of hybrid models (spiking and analog networks) incorporating
different levels of abstraction. By utilizing the construction frame-
work also structured models with diversity of neuron and synapse
types and varying parameter values can be defi ned and simulated,
and the built-in support for synaptic plasticity further expands
the domain of usability towards models that investigate synaptic
plasticity mechanisms.

PYTHON INTERFACE GENERATION
In order to enable a hybrid modeling approach we wanted to use
a Python interface generation tool that was capable of wrapping
PCSIM’s object-oriented and modular API such that the Python

FIGURE 2 | Simulation times of the CUBA network distributed over

different number of processing nodes, compared to the expected

simulation time (dashed line) (see text for details). Four different sizes of
networks were simulated: 4000 neurons with on average 1.6 × 106 synapses
(squares), 20000 neurons with on average 40 × 106 synapses (circles), 50000
neurons with on average 250 × 106 synapses (diamonds) and 100000 neurons
with on average 1 × 109 synapses (crosses). The plotted simulation times are
averages over 12 simulation runs. The variation of simulation time between
different simulation runs was small, therefore we did not show it.

170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253

63

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

API will be as close as possible to the C++ API. Our choice for this
purpose was the Boost.Python6 library (Abrahams and Grosse-
Kunstleve, 2003). The strength of Boost.Python is that by using
advanced C++ compile-time introspection and template meta-
programming techniques it provides comprehensive mappings
between C++ and Python constructs and idioms. There is support,
amongst others, for exception handling, iterators, operator over-
loading, standard template library (STL) containers and Python
collections, smart pointers and virtual functions that can be over-
ridden in Python. The later feature makes the interface bidirec-
tional, meaning that in addition to the possibility of calling C++
code from Python, user extension classes implemented in Python
can be called from within the C++ framework. This is an enabler
for the targeted hybrid modeling approach; we will see examples
for this later on in this article.

However, using Boost.Python without any additional tools does
not lead to a solution where the interface can be generated in an
automatic fashion since for each new class added to the library’s
API one would have to write a substantial piece of Boost.Python
code. As automatic Python wrapping of the C++ interface is one of
the main prerequisites for leveraging a hybrid modeling approach,
a solution is needed to automatically synchronize the Python and
C++ API of a library like libpcsim. Fortunately, there exists the
Py++ package7 which was developed to alleviate the repetitive proc-
ess of writing and maintaining Boost.Python code. Py++ by itself
is an object-oriented framework for creating custom Boost.Python
code generators for an application library written in C++. It builds
on GCC-XML8, a C++ parser based on the GCC compiler that
outputs an XML representation of the C++ code. Py++ uses this
structured information together with some user input, in form of
a Python program, and produces the necessary Boost.Python code,
constituting the Python interface for a specifi ed set of C++ classes
and functions (see Figure 3).

Finally the Boost.Python C++ code is compiled and linked together
with the C++ library under consideration (libpcsim in our case) to
produce the Python extension module containing the Python API of
the library (pypcsim in our case). Thus, the work of the developer
(and the user as we will see later on) reduces to a defi nition of high-
level rules to select which classes and methods should be exposed.

For the generation of the PCSIM Python interface pypcsim, we
split the rules Py++ needs into two subsets, inclusion and exclusion
rules (see Figure 3). The inclusion rules contain the rules that mark
a selected set of classes to be exposed to Python. The exclusion
rules contain the post-processing, where some of the methods of
the classes that were included in the inclusion rules are marked to
be excluded, and call policies are defi ned for the included methods
that require them9. Py++ allows to specify the rules in a high-level,
generic fashion, making them robust to changes in the interface of
the PCSIM C++ library. Hence, in most cases changes in the PCSIM
API did not require changes in the Python program that generates
the wrapper code, which simplifi ed its maintenance. An example
of such a high-level rule would be “In all classes that are derived
from class A, do not expose the method that returns a pointer of
type B”. Such a general rule will then be still valid if for example we
introduce more classes derived from A, or add additional functions
that return a pointer of type B in some of the classes.

To summarize, the Python integration of PCSIM using Boost.
Python together with the Py++ code generator allowed us to come
up with a solution to automatically expose PCSIM’s object-oriented
and modular API bidirectionally in Python. In the following sec-
tions we will show how such an bidirectional integration of PCSIM
into Python can practically be used and which possibilities and
advantages arise.

NETWORK CONSTRUCTION
A large portion of the Python PCSIM interface is devoted to the
construction of neural circuits. At the lowest level PCSIM provides
methods to create individual network elements (i.e. neurons and
synapses) and to connect them together.

On top of these primitives a powerful and extensible frame-
work for circuit construction based on probabilistic rules is built.
The source of inspiration for the interface of the framework was
the Circuit Tool in the CSIM simulator10 and PyNN, an API for
 simulator-independent procedural defi nition of spiking neural
networks (Davison et al., 2008). We will use a concrete example11,
described in more depth in the next subsection, to present the

FIGURE 3 | The processing steps in the generation of the Python interface for PCSIM.

6http://www.boost.org/doc/libs/release/libs/python/doc/
7http://www.language-binding.net/
8http://www.gccxml.org

9Call policies defi ne the change of ownership of objects that cross the boundaries
of the C++ library, i.e. the object passed from Python to the C++ library and from
the C++ library to Python.
10http://www.lsm.tugraz.at/circuits
11The full source code of this example is available in the Supplementary Material.

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

317
318
319
320
321
322
323
324
325
326
327
328

64

http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.language-binding.net/
http://www.gccxml.org
http://www.lsm.tugraz.at/circuits

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

network construction framework and its typical use cases where
emphasis is put on those features that were enabled by the bidi-
rectional Python interface generated by the approach described in
the Section “Python Interface Generation”.

THE EXAMPLE MODEL
We selected the model to be simple enough for didactic reasons, but
complete enough with all the elements necessary to explain the main
novel concepts of the interface and its Python extensibility features.
The connectivity patterns are based on experimental data that we
use in our current research work. The model consists of a spatial
population of neurons located on a 3D grid with integer coordinates
within a volume of 20 × 20 × 6. 80% of the neurons in the model
are excitatory, and the rest are inhibitory. The excitatory neurons
are modeled as regular spiking and the inhibitory neurons as fast
spiking Izhikevich neurons (Izhikevich, 2004). The connections
between excitatory neurons in the network are created according
to the trivariate probabilistic model defi ned in Buzas et al. (2006).
This connectivity model describes the distribution of the excitatory
patchy long-range lateral connections found in the superfi cial lay-
ers of the primary visual cortex in cats that depends on the lateral
distance of the cells and their orientation preference. Orientation
preference is the affi nity of V1 cells to fi re more when a bar with
a specifi c orientation angle is present in their receptive fi elds. The
connectivity rule is defi ned by the following equations that express
the connectivity probability between two excitatory cells.

P CG Vj i j() () ()l l l li j i j, , , ,φ φ φ φi = ,

(1)

G e()l li j

li lj

, =
−

| − |2

2 2σ

(2)

V ei j
i j()

cos ()φ φ φ φ, = −κ 2

(3)

l
i
 = (x

i
, y

i
) and l

j
 = (x

j
, y

j
) are the 2D locations and φ

i
 and φ

j
 are the

orientation preferences of the pre- and post-synaptic neurons i and j.
The function G introduces the dependence of the connectivity prob-
ability on the lateral distance between the neurons, and V models the
dependency on the differences in the orientation preferences of the
neurons. C, κ and σ are scaling coeffi cients. The values for the pre-
ferred orientation angles of the neurons in the example are generated
by evolving a self-organizing map (SOM) (Obermayer and Blasdel,
1993). Additionally the conduction delay of a connection between

excitatory neurons is probabilistically dependent on the distance
between the 3D locations of its pre- and post-synaptic neurons.

D D
N b bl u

()
()

l l
l l

i j
i j, =

μ σ0

| − |
, , ,

(4)

Here N(μ, σ, b
l
, b

u
) is a bounded normal distribution representing

the transmission velocity of the axon. The l
i
 = (x

i
, y

i
, z

i
) and l

j
 = (x

j
,

y
j
, z

j
) denote the 3D locations of the pre- and post-synaptic neurons

i and j. A random value from N(μ, σ, b
l
, b

u
) is sampled as follows:

fi rst a random number from a normal distribution with mean µ and
standard deviation σ is drawn and if that value is not within the range
[b

l
, b

u
], then another value is drawn from an uniform distribution with

that range. D
0
 represents a proper scaling factor in the formula.

THE FRAMEWORK: OBJECT-ORIENTED, MODULAR AND EXTENSIBLE
Figure 4 shows the basic concepts of PCSIM’s construction frame-
work together with their interactions during the construction
process. This framework allows model specifi cation in terms of
populations of neurons connected by probabilistically defi ned con-
nectivity patterns called projections.

A population of network elements utilizes several object factories
to generate the network elements. A factory encapsulates the logic for
the neuron and synapse generation decoupled from the other parts
of the construction process. Every time a new neuron is to be created
in a population the factory is used to generate the neuron object. The
object factories can use either random distribution objects or value
generators to generate values for the parameters and attributes of the
network element instances. When we talk about a parameter we mean
a parameter of the differential equations used to model a neuron or
synapse. In contrast an attribute describes any other (more abstract)
property of a network element. In our example the orientation prefer-
ence φ will be such an attribute of an excitatory neuron.

A projection manages connections between two populations.
During the construction phase of a projection a connection decision
predicate is used to determine whether a connection should be cre-
ated for a pair of neurons. A connector factory is then used to create
instances of the connector elements like synapses (this is analo-
gous to the object factory for populations). The connector factory
also uses random distributions or connector value generators for the
parameter values of the connector elements. In order to implement
a specifi c construction algorithm, the user typically just needs to
implement custom value generator and connection decision predicate
classes, as we will demonstrate in the following subsections.

FIGURE 4 | A diagram of the most important concepts within the network construction interface. The arrows indicate a “uses” relationship between the concepts.

329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

354

355

356

357
358
359
360
361
362
363
364
365

366
367

368

369
370
371
372
373
374
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

65

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

FACTORIES: CREATING NETWORK ELEMENTS FROM MODELS
We will start constructing the network model by defi ning the classes
(or families) of neuron models: inhibitory and excitatory neurons.
This is accomplished by defi ning an element factory for each family.
As explained in the defi nition of “The Example Model” the excita-
tory neurons have an orientation preference φ which depends on
the location of the neuron in the population. For this reason we
will associate the attribute phi with each excitatory neuron:

exc_factory = Factory
(model = IzhiNeuron (type = "RS"),

 Vinit = UniformDistribution (−50e−3, −60e−3),
 attribs = dict(phi = OrientationPreferValGen())

The statement above creates a factory for the excitatory family of
neurons based on a regular spiking (RS) Izhikevich neuron model
(Izhikevich, 2004) where IzhiNeuron is a built-in network element
class. The keyword argument Vinit = UniformDistribution(…)
associates a uniform random number generator with the initial mem-
brane voltage Vinit. This has the effect that whenever the factory is
used to generate an actual instance of an excitatory neuron, the param-
eter Vinit will be randomly chosen from the interval [−50, −60] mV.
Finally the keyword argument attribs = dict(phi = ...)
has two effects: a) the attribute phi is attached to exc_factory and
b) the custom value generator OrientationPreferValGen is used
to generate a particular value for phi each time exc_factory is
asked to generate an instance of an excitatory model neuron. The
value of the phi attribute will be used afterwards for the creation of
synaptic connections.

In the example we implement the custom value generator
OrientationPreferValGen in pure Python. This is enabled by
the particular feature of Boost.Python which allows C++ virtual
functions to be overridden from within Python.

class OrientationPreferValGen(
PyAttributePopObjectValueGenerator):

 def __init__(self):
 PyAttributePopObjectValueGenerator.__init__(self)
 self.map = som.OrientationMapSOM([20,20])

 def generate(self, rng):
 return self.map.pref(self.loc().x(), self.loc().y())

Value generators (in this case to be derived from
PyAttributePopObjectValueGenerator) have a simple inter-
face composed of the constructor __init__ and the method
 generate which have to be implemented by the user. In our par-
ticular example we create the orientation map, that maps 2D coor-
dinates to an orientation preference angle in the constructor, and
will use it in the method generate. The map is based on the SOM
algorithm encapsulated in the Python class OrientationMapSOM
(details not relevant here). The generate method is called to deter-
mine the value of the orientation angle attribute phi whenever
a neuron instance from the factory has to be created. The value
generator inherits several convenient methods from its base class
that one can use for accessing properties of the neuron for which
generate is called, like self.loc to get the 3D location of the
neuron within a population (see next section). We then pass the x
and y coordinates to the orientation map (method pref) in order
to calculate the value of the orientation preference angle.

For the inhibitory neuron model we create a similar factory:

inh_factory = Factory
(model = IzhiNeuron(type = "FS"),

 Vinit = UniformDistribution(−50e−3, −60e−3),
 attribs = dict())

The difference to the excitatory neuron model is that a fast spiking
(FS) Izhikevich neuron model is used and the attribute dictionary
attribs = dict() is empty. This is because there is no orienta-
tion preference of the inhibitory cells in the considered model.

NEURON POPULATIONS
A population in PCSIM represents an organized set of neurons
that can be manipulated as one structural unit in the model. In the
AugmentedSpatialPopulation that we will use in this example,
the neurons have associated 3D coordinates, a family identifi er,
and an extensible set of custom attributes that the user can attach
to each of the neurons. We already encountered this in the previ-
ous section. The family identifi er allows the defi nition of multiple
families/classes of neurons, i.e. subsets of neurons with similar
properties, within a single population. Our population will have
two families of neurons, the family of excitatory and the family
of inhibitory neurons. For each of the two families of neurons we
have specifi ed in the previous section a factory that will be used to
generate the neuron instances within the population.

pop = AugmentedSpatialPopulation
 (net, [exc_factory(), inh_factory()],
 RatioBasedFamilies([4, 1]),
 CuboidIntegerGrid3D(20, 20, 6))

exc_pop, inh_pop = pop.splitFamilies()

Note that the fi rst argument (net) specifi es the overall net-
work to which this population of neurons will belong. The class
CuboidIntegerGrid3D, which is a built-in specialization of the
more general concept of an arbitrary set of points in 3D, defi nes
the possible locations for the neurons (integer coordinates within
a volume of 20 × 20 × 6). The population is to be composed of two
families of neurons (excitatory and inhibitory), created by the two
given factories (exc_factory and inh_factory). To accomplish
this we use a RatioBasedFamilies object which randomly chooses
for each 3D location from which family of neurons the particular
instance will be created. Specifying the ratio 4:1 for excitatory to inhib-
itory neurons yields the desired 80% excitatory neurons. The class
RatioBasedFamilies is a built-in specialization of the general con-
cept of a spatial family identifi er generator which encapsulates the logic
for deciding which factory to use depending on the 3D location.

For the purpose of more convenient setup of connections later
on, the created population is split into two sub-populations, one
for each family.

PROJECTIONS: MANAGING SYNAPTIC CONNECTIONS
The synaptic connections in the network construction interface
are created by means of projections. A projection is a construct
that represents a set of synaptic connections originating from one
population of neurons and terminating at another population12.

12The source and destination populations can be the same if the goal is to create
recurrent connections in one population.

405
406
407
408
409
410
411
412
413
414
415
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

438
439
440
441
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

460
461
462
463
464

465
466
467
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

506
507
508
509
510

66

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

PCSIM has built-in construction algorithms for creating various
types of connection projections, like constant probability random
connectivity or random connectivity with probability dependent
on the distance (or lateral distance) between the neurons.

However, to create a projection with a specifi c connectivity pat-
tern, one usually defi nes a custom connection decision predicate. A
decision predicate decides for an individual pair of neurons whether
to form a connection based on the parameters and attributes of
those neurons. In our example we implemented the connection
decision predicate OrientationSpecificConnPredicate in
pure Python, encapsulating the probabilistic rule for connection
making from Eq. 1, which states that the connection probability
depends on the distance between, and the orientation preferences
of the pre- and post-synaptic neurons.

class OrientationSpecificConnPredicate
 (PyAugmentedConnectionDecisionPredicate):

 def __init__(self, C):
 PyAugmentedConnectionDecisionPredicate.__init__(self)
 self.orient_conn_prob = OrientationSpecConnProbability(C)
 self.unidist = UniformDistribution(0.0, 1.0)

 def decide(self, src, dst, rnd):
 prob = self.orient_conn_prob(self.src_attr(src, ’phi’),
 self.dest_attr(dst, ’phi’),
 self.dist_2d(src, dst))
 return self.unidist(rnd) < prob

The PyAugmentedConnectionDecisionPredicate base class
is used when one has to defi ne a custom connection decision predi-
cate that uses the neuron attributes and connects neurons from popu-
lations of type AugmentedSpatialPopulation. To complete the
implementation of the predicate, it is required to override the decide
method and fi ll the constructor with the necessary initializations. The
method decide is called within the connection construction process
for each candidate pair of neurons that could be connected and is
expected to output true (make a connection) or false (no connec-
tion). In our example, we create an instance (orient_conn_prob)
of the OrientationSpecConnProbability class to calculate
the probability according to the Eq. 1 (the full implementation of
the class is available in the Supplementary Material). This instance
is called in the decide method with the orientation preferences
of the candidate source and destination neurons and their lateral
distance as arguments. The orientation preferences are obtained via
the src_attr and dest_attr methods (inherited from the base
class), and the lateral distance via the dist_2d method. By com-
paring a uniformly distributed random number to the calculated
probability a Bernoulli distribution with the desired probability for
the outcome true is generated.

Before we can create the projection we have to defi ne a con-
nector factory (class ConnFactory) that will be used to generate
the synapse objects within the projection.

ee_syn_factory = ConnFactory
 (model = StaticSpikingSynapse(W = 1e−4),
 delay = DelayCond(v_mean = 2e2, v_SH = 0.2,
 v_min = 0.1e−3, v_max = 5e−3))

The connector factory differs from the element factory objects
used in conjunction with neuron populations, in that the parame-
ters of the created objects (typically synapses) can depend on the
 attributes of the source and destination network elements they are

connecting. In our example, the connector factory for the connec-
tions between excitatory neurons is based on a current-based synapse
model with exponentially decaying post-synaptic response (class
StaticSpikingSynapse in PCSIM). Additionally, the DelayCond
value generator is associated to the delay parameter of the synapse,
which produces distance dependent delay values according to Eq. 4.
The DelayCond is a built-in value generator in PCSIM.

Now we can create the projection that will generate all recurrent
connections between the excitatory neurons.

ee_proj = ConnectionsProjection
 (exc_pop, exc_pop, ee_syn_factory(),
 PredicateBasedConnections

(OrientationSpecificConnPredicate(1.0)))

We specify in the constructor of the projection the con-
nectorfactory for generation of the synapses and the
PredicateBasedConnections class instance that iterates over
all candidate pre- and post-synaptic neurons and delegates the
decision whether to make a connection to the connection deci-
sion predicate OrientationSpecificConnPredicate given as
an argument.

A connection decision predicate is typically used when in the
probabilistic connectivity defi nition the probability that two neurons
are connected depends on the attributes and parameters of the two
neurons and is independent from the other created connections. In
the general case, with such a connectivity, a separate decision whether
to make a connection has to be made at each candidate neuron pair,
yielding a complexity of the wiring algorithm that is quadratic with
respect to the number of neurons. In a distributed scenario, a speed-
up of the construction is possible by splitting the wiring workload
among the multiple machines the model is simulated on. If the num-
ber of machines is increased with the number of neurons, keeping
the number of neurons per node fi xed, and if we assume that the
number of input synapses per neuron does not increase, then the
wiring time will scale linearly with the number of neurons.

For other connectivity schemes where further optimizations
are possible, a faster wiring algorithm can be implemented directly
in the class that iterates over the neuron pairs. For example, for
the case of constant probability random connections, a special
RandomConnections class that implements faster wiring can
be used instead of PredicateBasedConnections. When using
the RandomConnections, the wiring time is proportional to the
number of created connections if the network is constructed on a
single machine, and remains constant in the distributed case with
the assumption that the number of machines is increased propor-
tionally with the number of neurons13.

CUSTOM NETWORK ELEMENTS
The PCSIM communication system is general in a sense that it
supports spiking and analog messages as communication between
network elements. The network elements are not restricted to one
type of message and can have multiple input and output ports, each
of them capable of either receiving or sending spiking or analog
messages (see Figures 5A,B).

13It is out of scope of this article to detail the algorithms behind the effi cient imple-
mentation of the network construction framework in the distributed simulation
scenario; this will be reported elsewhere.

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

531
532
533
534
535

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

564
565
566

567
568
569
570
571
572
573
574
575
576
577
578
579
580

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618

67

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

The generality of the framework allows the user to implement
custom processing elements that map multiple inputs to multiple
outputs and plug them in a network model inter-connected together
with spiking or analog neural networks. Such custom network ele-
ments can either be implemented in C++ (see Extending PCSIM
Using C++) or in pure Python. This feature of PCSIM has various
potential uses. For example the user can implement new neuron
types for a preliminary experiment in Python fi rst, instead of directly
implementing them in C++. Another possible usage is to imple-
ment more abstract or complex elements like a whole population
of spiking neurons in Python by using vectors from the numerical
Python package numpy14 (Oliphant, 2007) for step-by-step integra-
tion of the equations. This approach has been shown to have good
performance, and is applicable for homogeneous neuron popula-
tions, where all neuron instances have the same neuron model (Brian
simulator, Goodman and Brette, 2008).

We detail such an example in this section, where the Brian simu-
lator is used to implement a population of spiking neurons as a
single network element, and then plug it into a PCSIM simulation
together with other built-in network elements.

The spiking neural network model we will simulate with Brian
is the modifi ed version of the CUBA benchmark model described
in the Section “Overview”, with a network size of 4000 neurons. We
have used the same connectivity probability of 0.02 and the same
weights as in Brette et al. (2007), instead of the modifi ed 0.1 con-
nectivity probability and scaled weights in the Section “Overview”.
The PCSIM network element that we will create to encapsulate
the Brain network has 1000 spiking input ports and 4000 spiking
output ports (see Figure 5C). Each of the output ports is associated
to one neuron.

To implement this model as a PCSIM network element, one
has to implement a Python class BrianCircuit derived from
PySimObject. In the constructor of this class the Brian spiking
network is created and initialized.

class BrianCircuit(PySimObject):

 def __init__(self):
 PySimObject.__init__(self)

 self.registerSpikingOutputPorts(arange(4000))
 self.registerSpikingInputPorts(arange(1000))
 input = PCSIMInputNeuronGroup(1000, self)
 self.P = P = brian.NeuronGroup(4000, model = eqs,
 threshold = −50*mV, reset = −60*mV)
 Pe = P.subgroup(3200)
 Pi = P.subgroup(800)
 Ce = brian.Connection(Pe, P, ’ge’)
 Ci = brian.Connection(Pi, P, ’gi’)
 Ce.connect_random(Pe, P, p = 0.02, weight = 1.62*mV)
 Ci.connect_random(Pi, P, p = 0.02, weight = −9*mV)
 Cinp = brian.Connection(input, P, ’ge’)
 Cinp.connect_random(input, P, p = 0.1,
 weight = 3.5*mV)
 self.brian = brian.Network(input, P, Ce, Ci, Cinp)
 self.brian.prepare()
 self.brian.clock.set_duration(2.0*second)

The mapping of the PCSIM input ports to a Brian neuron
group is managed by the simple auxiliary neuron group named
PCSIMInputNeuronGroup (see the Supplementary Material
for the implementation). The reset method resets the state of
the network to time step t = 0, which is achieved by calling the
reinit method of the Brian network, and initializing the mem-
brane potential vector P.V to random values from an uniform
distribution.

def reset(self, dt):
 self.brian.reinit()
 self.P.V = −60*mV + 10*mV*rand(len(self.P))
 return 0

The step-by-step iteration of the network is done in the over-
ridden advance method which performs one time-step update of
the Brian network with the update method and the tick method
of the associated Brian clock object. At the end of each time step
the generated spikes of the population are gathered and delivered
to the output ports of the PCSIM network element.

def advance(self, ai):
 self.brian.update()
 self.brian.clock.tick()
 self.setOutputSpikes(ai, self.P.get_spikes())
 self.clearSpikeBuf()
 return 0

A C

B

FIGURE 5 | (A) Network elements of different type (with different arrangement
of input and output ports) interconnected together in a PCSIM network.
Different colors of ports, gray or white, mark their different types, spiking or

analog. (B) Neurons and synapses are specifi c subtypes of the more general
concept of an network element. (C) Schematic diagram of the embedding of a
network simulated with the Brian simulator into a PCSIM network element.

14http://numpy.scipy.org

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

673
674
675
676
677
678
679
680
681
682
683
684

685
686
687
688
689
690
691
692
693
694
695
696

68

http://numpy.scipy.org

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

Note that no Python loops are present, the setOutputSpikes
method that transfers the spikes is implemented in C++ in the base
class PySimObject, so there is no performance loss caused by the
transfer of spikes from Brian to PCSIM and vice versa.

The new BrianCircuit network element class can then be
instantiated and added to a PCSIM simulation. The following code
segment creates an instance of the Brian spiking network, adds it
as a network element, sets up the input and runs the simulation
for 2.0 s [1000 neurons that emit Poisson spike trains at rate 5 Hz
(PoissonInputNeuron) are connected to the 1000 input ports of
the Brian network element]15.

net = SingleThreadNetwork()
inpNrnPop = SimObjectPopulation
 (net, PoissonInputNeuron(rate = 5,
 duration = 1000), 1000)

pycirc = BrianCircuit()
pycirc_id = net.add(pycirc)

for i in range(inpNrnPop.size()):
 net.connect(inpNrnPop[i], 0, pycirc_id, i)

net.reset()
net.simulate(2.0)

EXTENDING PCSIM USING C++
The object-oriented framework of PCSIM can be extended by the
user at many different levels. Typical extensions of PCSIM include
either implementations of new neuron and synapse types, or imple-
mentations of classes encapsulating custom construction rules in
the network construction interface, as we have illustrated in the
previous sections. By utilizing the features of the Boost.Python
library and Py++, the extensions can be implemented either in
pure Python as already shown or in C++.

For creating C++ extensions, PCSIM provides a tool that com-
piles the custom C++ classes, automatically generates the Python
wrapper interface for these and packs everything into a separate
Python extension module. In order to simplify the procedure of
creating a custom extension, the user starts the implementation
from an extension template contained in the PCSIM distribution.
Let us assume that we want to implement two classes: a new neuron
type MyNeuron and a new synapse type MySynapse. Once the C++
implementation is fi nished, there are three additional steps that
have to be done to produce the PCSIM extension module.

First, the C++ source fi les of the extension have to be enlisted
in the fi le module_recipe.cmake. This fi le is read by PCSIM’s
C++ build tool CMake16.

SET(MODULE_SOURCES
 src/MySynapse.cpp
 src/MyNeuron.cpp
)

As the second step, we have to specify the names of the classes
we want to include in the Python interface in the fi le python_
interface_specification.py which holds the extension

module interface specifi cation. For our example the inserted
lines should look like:

def specify(M, options):
 M.class_(’MySynapse’).include()
 M.class_(’MyNeuron’).include()
 return M

Note that the argument M in the code above denotes the Py++
representation of the C++ code of the custom PCSIM extension
to be built, with its rather intuitive query interface.

The name of the extension module (in our example my_pcsim_
module) is specifi ed in both module_recipe.cmake and python_
interface_specification.py fi les. Finally, the compilation is
done using the special purpose command-line compilation tool
for PCSIM extensions:

> python pcsim_extension.py build

The compiled extension module then can be imported and used
within Python as any other module.

import pypcsim
import my_pcsim_module

The main pypcsim module should always be imported before
any PCSIM extension modules, because the classes in the extension
are derived from classes in pypcsim and these classes should be
already in the Python namespace. The user can develop multiple
PCSIM extension modules that can be used simultaneously in one
simulation.

The creation of a PCSIM extension as a separate Python exten-
sion module relies on the support of Boost.Python and Py++
for component-based development, so that C++ types from one
Python extension module can be passed to functions from another
extension module while still preserving the information about the
cross-module C++ inheritance relationships. This enables object
instances from the classes in the extension module to be used within
the PCSIM object-oriented framework in the main pypcsim mod-
ule. The component-based development has also the advantage that
during the development of new custom classes only the extension
module has to be recompiled, not the whole pypcsim library.

During the compilation of the PCSIM extension module the
same processing steps happen as for the main pypcsim module (see
Figure 3). We use the same scripts both for generation of the Python
interface of the main PCSIM package and for the Python integration
of PCSIM extension modules. Since the post-processing exclusion
rules are expressed with the Py++ query interface in a generic way,
they are applicable also to the wrapping of the extension classes. This
is due to the fact that extension classes are derived from base classes in
the PCSIM object-oriented framework and as such share their com-
mon properties on which the rules are based. Hence, the interaction
of the user with the interface generation and the module compilation
reduces to specifying a list of the C++ source fi les, and a list of classes
to be exposed in Python. The rest of the process is automatized and
the details are hidden behind the command-line interface of the
special compilation tool for PCSIM extensions.

PCSIM ADD-ONS IMPLEMENTED IN PYTHON
On top of the main PCSIM Python API (encapsulated in
pypcsim) several additional packages have been developed. They are

15The net.connect(src_id, src_port, dest_id, dest_port) method
connects the port number src_port of the element with id src_id, to the port
number dest_port of the element with id dest_id.
16http://www.cmake.org

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

798
799
800

69

http://www.cmake.org

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

implemented in pure Python and heavily rely on many third party
scientifi c Python packages. The purpose of these packages is either
to augment the capabilities of PCSIM, or add additional separate
functionalities that are suitable to be used together with PCSIM.

PyNN.PCSIM
The objective of the PCSIM development to adopt ongoing initiatives
to defi ne standards for model specifi cation of neural networks that
would foster interoperability between different simulators is refl ected
in the support of the PyNN project17 (Davison et al., 2008). The PyNN
project is an effort to create a standardized, unifi ed Python-based
API for procedural specifi cation of neural network models aiming
at easier exchange of models between simulators. The user interface
of PCSIM has been augmented with an additional software layer to
support the PyNN API making it possible to use models specifi ed
in PyNN within PCSIM. Due to the fact that PyNN was one of the
sources for inspiration of the PCSIM interface, the concepts between
the two interfaces match closely, so the translation of the PyNN state-
ments in corresponding PCSIM statements was straightforward and
did not require substantial programming logic that could have hin-
dered the performance of the interface. The pyNN.pcsim package
is an integral part of the PyNN distribution.

PYPCSIMPLUS
After we started to use PCSIM for our simulation purposes, it was
becoming apparent that adding another layer above the interface of
the pypcsim module can greatly simplify the routine tasks that are
usually performed while setting up and running simulations. The
pypcsimplus package was created with the intention to fi ll this gap.
Note that the pypcsimplus package is dependent on PCSIM. For
a more comprehensive, simulator independent tool-set for neural
simulations, we refer the reader to the NeuroTools package18. In the
following paragraphs we will describe two main components of the
pypcsimplus package and give a demonstration of its use19.

Recordings
In PCSIM the value of a parameter or output port is recorded dur-
ing a simulation by connecting it to a proper recording network
element. The purpose of the Recordings class is to provide simpler
means to set up recorders and saving the recorded data during a
PCSIM simulation. For example it allows to create a population of
recorders that record the activity of a population of elements with
each recorder connected to one of the elements (e.g. the spiking
output of a population of neurons). For example

r = Recordings(net)

r.spikes = nrn_popul.record(SpikeTimeRecorder())
r.Vm = net.record(my_nrn, ‘‘Vm’’, AnalogRecorder())
r.weights = synapses.record(AnalogRecorder

(samplingTime), ‘‘W’’)

schedules the recording of all spikes in the population nrn_popul,
the membrane potential Vm of a single neuron (my_nrn), and the
weights of a group of plastic synapses. To save that data to an HDF5
fi le20 one would use the command

r.saveInOneH5File(f)

At any time later on, the saved data can be loaded from the fi le
in a new Recordings object.

r = constructRecordingsFromH5File(f)
plot(r.Vm)

The members and attributes of the newly created Recordings
object r are numpy arrays or Python lists holding the recorded
data. For example r.Vm and r.W will be numpy arrays with the
recorded values of the membrane potential of the neuron and with
the evolution of the recorded synaptic weights during the simula-
tion, respectively. Note that if the user switches to a distributed
simulation the same code, without any changes, can be used.

To summarize, the Recordings class simplifi es the specifi ca-
tion, storage and retrieval of recorded data by

• providing automatic detection of the type of the recorded data
based on the recorder classes, and conversion of the recorded
data to appropriate HDF5 data structures.

• implementing automatic gathering and sorting of recorded
data from all processing nodes in a distributed simulation, and
saving it in HDF5 in the same format as if the simulation was
executed on a single node.

These functionalities are hidden behind a convenient user inter-
face and are manipulated in the same manner in both single-node
and distributed simulation modes. For the implementation of the
Recordings class, the mpi4py21 (Dalcín et al., 2008) and pytables22
packages were used.

Experiment-model framework
Simulation, modeling and development environments in various
fi elds (e.g. electronic circuit design, software engineering, signal
processing, mechanical engineering) usually include a library of
already developed reusable components that are readily available
to the modeler. In the area of computational neuroscience, there is
a similar effort to provide resources for easier reusability of models,
e.g. online databases of already published models (Hines et al.,
2004), or constructs within the simulator that allow encapsulation
of a simpler model as a well-defi ned component that can be used
as a building block at a higher-level of abstraction. As a fi rst step
towards a component-based modeling with PCSIM, we have set
up a light-weight framework that could leverage and encourage
encapsulation of some generic parts of a model as reusable com-
ponents, which can be exchanged among modelers.

The basis of the framework is composed of three classes: Model,
Experiment and Parameters. The Model is a base class which the
user inherits from when he wants to develop a model component.
Several model components can be combined together to create a 17http://neuralensemble.org/trac/PyNN

18http://neuralensemble.org/trac/NeuroTools
19There are other miscellaneous utilities present within the pypcsimplus package,
as for example tools for easier management of IPython parallel computing cluster
instances, routines for inspection of the structure of an already created networks in
PCSIM and routines for processing and analysis of spike train data.

20http://www.hdfgroup.org/HDF5/
21http://mpi4py.scipy.org
22http://www.pytables.org/moin

801
802
803
804

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

822
823
824
825
826
827
828
829
830
831
832

833
834
835
836
837
838
839
840
841
842
843
844
845
846

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

70

http://neuralensemble.org/trac/PyNN
http://neuralensemble.org/trac/NeuroTools
http://www.hdfgroup.org/HDF5/
http://mpi4py.scipy.org
http://www.pytables.org/moin

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

new model component. The Experiment class provides means to
perform a controlled simulation with an already developed cus-
tom Model class. It encapsulates different facilities regarding saving
output data to fi les, confi guration of models, saving the current
version of the scripts, naming of different runs of experiments
etc. The confi guration of the models is done with a Parameters
class holding the model parameters in a hierarchical structure. For
creating instances of the Experiment and Model classes remotely
within the IPython parallel computing framework23 (Pérez and
Granger, 2007) there are RemoteExperiment and RemoteModel
proxy classes, which can be used to manipulate remote experiment
and model instances in the same way as if they were local.

Pypcsimplus in action
We will demonstrate in the following paragraphs how pypcsimplus,
together with other general scientifi c and computational neuro-
science Python packages, can be utilized to perform an analysis of
the activity of the Brian spiking network example from the Section
“Custom Network Elements”. In particular we will investigate what
effect a change in the injected input in the network will have on
the cross-correlogram of its spike response.

At the beginning we will set up the recording of the spiking out-
put of all 4000 neurons in the network. After creating a Recordings

object, we create a population of recorders to record the spikes from
the 4000 output ports of the BrianCircuit network element.

r = Recordings()
r.spikes = record_ports(net, pycirc_id, range(4000),
 SpikeTimeRecorder())

net.simulate(2.0)

r.saveInOneH5File(’results.h5’)

We have accomplished this by using the record_ports func-
tion from the pypcsimplus package, used to specify recording of
a set of output ports. After the simulation is performed, the record-
ings are saved in a HDF5 fi le for subsequent retrieval.

In another script we setup the analysis of the output data and the
plotting. After the creation of the Recordings object by loading
the recorded data from the saved HDF5 fi le, we plot the spiking
activity of the network for the fi rst 0.4 s of the simulation with the
plot_raster function in pypcsimplus (see Figure 6A).

r = constructRecordingsFromH5File(’results.h5’)

figure(1)
plot_raster(r.spikes, time_range = (0,0.4), fmt = ’,’)

plot_raster uses the plotting routines from the matplotlib24
package (Hunter, 2007) to realize the plotting.

23http://ipython.scipy.org

A B

C D

FIGURE 6 | Plots from the output analysis example with the

pypcsimplus package. (A) Spike response of the spiking network
implemented in the Section “Custom Network Elements”, with input neurons
emitting spikes generated from a homogeneous Poisson process with a rate of
5 Hz, for the fi rst 0.4 s of the simulation. (B) Cross-correlogram of the spike

response of the network model from (A). (C) Spike response of the spiking
network implemented in the Section “Custom Network Elements”, when the
input neurons emit spikes generated from an inhomogeneous Poisson process
with a rate changing according to a sinusoidal function (see text for details). (D)
Cross-correlogram of the spike response of the network model from (C).

24http://matplotlib.sourceforge.net

896
897
898
899
900
901
902
903
904
905
906
907

908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

71

http://ipython.scipy.org
http://matplotlib.sourceforge.net

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

Additionally we will calculate and plot the cross-correlogram
of the spiking activity, defi ned as the histogram of time differences
between the spike times from two different spike trains, calculated
and summed over a set of randomly chosen pairs of neurons from
the network. To achieve this, we utilize the pypcsimplus function
avg_cross_correlate_spikes.

corr = avg_cross_correlate_spikes(r.spikes, num_pairs = 2000,
 binsize = 1e−3,
 corr_range = (−200e−3,200e−3))

figure(2)
bar(arange(−200e−3,201e−3, 1e−3), corr, width = 1e−3,
 color = ’k’)

In our case the cross-correlogram is calculated from the spike
times of 2000 randomly chosen pairs of neurons from the network,
for time lags within the range [−200 ms, 200 ms] and a bin size of
1 ms. We then plot the cross-correlogram values with the bar func-
tion from matplotlib (the plot is shown in Figure 6B)25.

In the example in the Section “Custom Network Elements”, the
input neurons were setup to generate a homogeneous Poisson spike
trains with 5 Hz rate. Now we will modify the input generation so
that the input neurons will emit inhomogeneous Poisson spike
trains, with a fi ring rate r(t) = 5(1 + sin(2π 10t)). First we create a
population of input neurons of type SpikingInputNeuron that
emit an explicitly given sequence of spike times.

inpNrnPop = SimObjectPopulation
 (net, SpikingInputNeuron(), 1000)

Then we iterate through all the input neurons and set the
spike sequence of each input neuron according to the previously
defi ned inhomogeneous Poisson process. For the generation of
the inhomogeneous Poisson spike time sequences we invoke the
inh_poisson_generator method of an instance of the StGen
(stimulus generator) class available in the NeuroTools Python
package for computational neuroscience. The method accepts
three parameters, a sequence specifying the time moments where
the rate changes (parameter t), the sequence of the new fi ring rate
values at these time moments (parameter rate) and the duration
of the spiking process (parameter t_stop)26.

time_steps = arange(0,2000,1); stgen = StGen()
for i in range(inpNrnPop.size()):
 spikelist = stgen.inh_poisson_generator
 (rate = 5*(1 + sin(time_steps/1000.0*20*pi)),
 t = time_steps, t_stop = 2000.0)
 inpNrnPop.object(i).setSpikes(spikelist.spike_times/1000)

The spike raster and the cross-correlogram obtained after rerun-
ning the simulation with the newly defi ned input are shown in
Figures 6C,D, respectively.

Through this demo we have elucidated to the reader how a
typical PCSIM simulation run is performed in Python, and the
benefi ts that come from the utilization of Python as a unifying

scripting environment within which PCSIM is used together with
its add-on pypcsimplus and other scientifi c and computational
neuroscience Python packages. Additionally to their side-by-side
usage with PCSIM, the Python scientifi c packages are harnessed also
in the bundling of common recipes and reoccurring usage patterns
in the PCSIM extra add-on packages, as in the case of pypcsimplus.
The collection of Python scientifi c packages presently available
cover a broad enough range of functionalities to enable, in almost
all cases, handling all of the steps of a modeling effort in Python (e.g.
stimulus preparation, response analysis and plotting as shown in the
demo). The data communication between the different packages
and PCSIM typically reduces to passing Python sequences (lists or
numpy arrays) from one package to another.

PYLSM
The pylsm package is aimed to support the analysis of the compu-
tational properties of cortical microcircuits within the liquid state
machine (LSM) approach (Maass et al., 2002). In this approach
multiple simulation trials are performed where input spike trains,
drawn from a defi ned input distribution, are injected in the cortical
circuit, and a readout which reads the spiking activity of the circuit
is trained by a supervised learning algorithm to approximate some
function of these inputs.

The framework contains all the necessary machinery for per-
forming the simulations and the training of the readout27. In a
typical task the user defi nes the neural circuit to be used as a liquid,
chooses the desired input distribution, the input-output mapping
function, and the learning algorithm for the readout from the ones
available in the package, and then performs the LSM training and
testing procedures. For example, the user can defi ne a distribution
of inputs which consist of different time segments, and each of
these time segments contains a jittered version of some predefi ned
spike train template. In the available learning algorithms for the
readout a least-square algorithm with non-negative constraints is
also included. It can be used to train a linear readout with the
biologically more realistic constraint that all the weights originat-
ing from excitatory (inhibitory) neurons are positive (negative)
(Haeusler and Maass, 2007).

DISCUSSION
The application programming interface of PCSIM is an object-
oriented framework composed of many classes interacting together
to achieve the desired operation. Within this framework we intro-
duced several novel concepts like element and connector factories,
value generators and connection decision predicates. The user can
customize and extend this framework by deriving from the interface
classes of the API to implement his own specifi c network elements
or network construction algorithms.

THE WRAPPING APPROACH
There exist several possible approaches for implementing a Python
interface of a simulation software library implemented in C/C++.
An extension to the NCS software called Brainlab (Drewes, 2005)
uses generation of a fi le from Python with declarative specifi cation

25For clarity reasons, we only give the main matplotlib plotting command in the
example code blocks, and omit the additional formatting commands used for
 Figure 6.
26Time in neurotoools is specifi ed in milliseconds, hence the division by 1000 when
we need to convert the spike time sequence in seconds before inserting it in a PC-
SIM neuron.

27It has similar features as the package described in Natschläger et al. (2003), which
was implemented in Matlab and was part of the CSIM package.

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

988
989
990
991
992
993
994
995
996
997
998
999
1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033

1034
1035
1036
1037
1038

72

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

techniques employing the highly effi cient numerical Python package
numpy (which is implemented in C). This adds fl exibility, since the
equations describing the element can be changed quickly without
any necessary compilation while not sacrifi cing performance, since
by using numpy vectors, the integration algorithm is broken down
in elementary vector operations thus avoiding any loops within
Python that could be detrimental for the performance.

This approach seems also to be advantageous when one wants
to implement network elements that have some abstract processing
logic, e.g. signal processing fi lters, machine learning algorithms or
similar. In this case one can utilize a large set of available C++ librar-
ies that have Python bindings, for an effi cient implementation, and
handle in Python the transfer of data from the input ports of the
network element to the input methods of the library, and from the
output of the library to the output ports of the network element.

The possibility to implement PCSIM network elements in pure
Python offers a convenient way to achieve run-time interoperabil-
ity between PCSIM and other neural network simulators (Cannon
et al., 2007), provided that the simulator has a Python interface,
allows control of the simulation process at individual time steps, and
has the possibility to write input and read output data during the
simulation at each time step. As shown in the example in the Section
“Custom Network Elements”, we have successfully implemented
interoperability with the Brian simulator, which possesses the afore-
mentioned capabilities. One interesting further application of this
interoperability could be a distributed simulation of a large neural
network where the sub-networks on each node are implemented
with the Brian simulator, and the parallel communication is handled
by PCSIM’s communication system. Another possible approach of
using Python as a glue language to achieve simulator interoperability
is to setup a Python script as a top-level coordinator of a step-by-step
simultaneous execution of two simulators, where the necessary data
transfer between the simulators is realized through intermediate
Python data structures (Ray and Bhalla, 2008).

HIGH-LEVEL WRAPPING SPECIFICATION AND EXTENSIBILITY
Since the interface of PCSIM has a fi ne granular structure, com-
posed of many decoupled classes (≈300) this implies that there are
many classes to be wrapped and exposed to Python. It would simply
be impossible to manually manage all the necessary Boost.Python
wrapper code. Furthermore, the possibility of adding extensions to
the interface puts additional constraints to the wrapping approach
to be robust enough to work for the extension classes too, without
any signifi cant intervention from the user. Nevertheless, by exploit-
ing the powerful interface generator tool Py++ the wrapping of
such a large number of classes is rendered feasible31. We were able
to specify high-level generic rules within Py++ for the defi nition of
the wrapping of all the classes in the PCSIM API and their sensible
extensions. To be precise, the Python program that specifi es the
rules for the Python interface generation for ≈300 classes is about
400 lines of Python code. As these rules apply for the extensions too,
the user can easily extend the PCSIM simulator with its own cus-
tom C++ classes and compile them in a separate Python extension

of the model which is then loaded in the simulator. Another com-
mon method is to use interpreter-to-interpreter interaction with
the conversion of data structures between Python and C++ handled
by means of the Python/C API, an approach adopted by NEURON
(Hines et al., 2009) and NEST (Eppler et al., 2008). This method is
applicable only if the simulator already has an interpreting interface.
For the creation of PyMoose (Ray and Bhalla, 2008), the Python
interface of MOOSE28, the developers applied the interface genera-
tor tool SWIG29 (Beazley, 2003). Certainly, one can also implement
a Python interface by using solely the Python/C API.

Since PCSIM’s Python interface was to be newly developed, only
the later two options were applicable. We opted for the interface
generator tool approach combined with automatic wrapper code
generation, since from the available options it seemed to us the fast-
est way, in terms of the amount of development effort required, to
achieve the desired Python wrapping of the PCSIM object-oriented
framework. One of our goals for the integration of PCSIM with
Python was to simplify and support a hybrid modeling approach
by enabling the user to implement extensions of the PCSIM object-
oriented framework in Python and/or C++, while not having to
bother with details regarding the interoperability between these
two programming languages.

The excellent support of Boost.Python for advanced C++ con-
cepts and appropriate mapping of corresponding idioms between
the two languages allowed us to expose the complete PCSIM API,
currently ≈300 classes, to Python in a non-intrusive way. This means
that the fact that the PCSIM API is to be exposed to Python does not
impose any changes at the C++ level nor does it put any constraints
on its design. Furthermore the compilation of the libpcsim library
itself does not depend on any Python library or wrapping code.

BIDIRECTIONAL INTERFACE AND HYBRID MODEL DEFINITION
One of the features of Boost.Python enabling the hybrid approach is
the ability to derive Python classes from the wrapped interface classes,
and override the virtual functions. Hence, such custom Python class
methods can be called from within C++ and thus allow an integration
of Python code into the PCSIM C++ code. A similar bidirectional
interface has been implemented between Python and NEURON
(Hines et al., 2009), where Python can issue commands towards
NEURON, but also Python code can be called and executed from
within NEURON in an active Hoc session30. In PCSIM the two-way
interaction between Python and C++ enables user customizations
to be coded in pure Python, and then plugged into the PCSIM C++
framework. This brings additional fl exibility and freedom to the
user, meaning that he can fi rst do fast implementations in Python,
e.g. extensions to the network construction interface (see Network
Construction), in the prototyping phase, and afterwards the imple-
mentation can be ported to C++ to gain maximum performance.

The ability to defi ne PCSIM network elements in Python opens
a possibility for a seamless Python-C++ integration also during the
simulation, not only in the network construction stage. The example
described in the Section “Custom Network Elements” shows that net-
work elements can be implemented in Python, by using vectorized

31The only drawback we encounter is the rather long compile time when recompi-
ling the whole Python interface. This is due to the fact that Boost.Python heavily
uses C++ templates.

28http://moose.sourceforge.net/
29http://www.swig.org
30Hoc is the native NEURON interpreting language.

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

73

http://moose.sourceforge.net/
http://www.swig.org

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

 package, which can be used together with the main pypcsim pack-
age (the tool support for this is included in PCSIM). This was made
possible by the Boost.Python and Py++ support for cross-module
inheritance relationships and component-based development (see
“Extending PCSIM Using C++”).

To summarize, by the easy extensibility of its interface both
in Python and C++, PCSIM enables the modelers to think hybrid
when developing their models (Abrahams and Grosse-Kunstleve,
2003).

PYTHON AS A SCRIPTING ENVIRONMENT
Providing a Python interface to a neural simulator increases its
versatility and consequently the productivity of the modelers in
many ways. The object oriented design of the language, its expres-
sive and clean syntax, allows the modeler to focus on the high-level
logic of the model instead of struggling with the intricacies and the
nuts and bolts of the programming language. Furthermore, there
is a growing number of general scientifi c and specifi c computa-
tional neuroscience software tools available as Python packages, for
numerical calculations, scientifi c functions, plotting, saving data to
fi les, parallel computing etc. We have used several scientifi c Python
packages to enhance PCSIM with useful utilities on top of its basic
interface. As we have illustrated through a simple example in the
Section “PCSIM Add-Ons Implemented in Python”, in combina-
tion with such Python packages PCSIM can be used as the main
component of a Python-based neural simulation environment
where all steps within a neural model development life-cycle, from
the specifi cation of the model and performing the simulations, to
storage of simulation output data, data analysis and visualization
can be performed. Overall, the integration of PCSIM with Python

added additional valuable facilities to the user, turning PCSIM into
a full-fl edged neural simulation environment.

PCSIM RESOURCES
Many resources for PCSIM can be found at its web page32. The web
page contains a user manual, examples, installation instructions,
complete class reference documentation and the complete material
for the tutorial that was given at the FIAS Theoretical Neuroscience
and Complex Systems summer school held in Frankfurt, Germany
in August, 2008. The users can discuss topics and pose questions
concerning usage and installation of PCSIM on the pcsim-users
mailing list on Sourceforge®33 where the PCSIM development
project is hosted. In the future, the user manual will continuously
undergo extensions and revisions to better organize the content
and to include additional topics and more elaborate information
about the PCSIM concepts and constructs. Additional examples
covering various PCSIM features will also be made available on
the web site.

ACKNOWLEDGMENTS
We would like to thank Eilif Muller and Andrew P. Davison for
helpful discussions, and the two reviewers for providing valuable
suggestions that helped improving the manuscript. Written under
partial support of the Austrian Science Fund FWF, project #S9102-
N04, as well as project #FP6-015879 (FACETS, http://facets.kip.
uni-heidelberg.de) and #216593 (SECO, http://www.seco-project.
eu) of the European Union.

REFERENCES
Abrahams, D., and Grosse-Kunstleve, R. W.

(2003). Building hybrid systems with
Boost.Python. C/C++ Users J. 21,
29–36.

Beazley, D. (2003). Automated scientifi c
software scripting with SWIG. Future
Generat. Comput. Syst. 19, 599–609.

Bower, J. M., and Beeman, D. (1998).
The Book of GENESIS (2nd ed.):
Exploring Realistic Neural Models
With the GEneral NEural SImulation
System. New York, Springer-Verlag
New York, Inc.

Brette, R., Rudolph, M., Carnevale, T.,
Hines, M., Beeman, D., Bower, J. M.,
Diesmann, M., Morrison, A.,
Goodman, P. H., Harris, F. C., Jr.,
Z i r p e , M. , Natsch läger, T. ,
Pecevski, D., Ermentrout, B. ,
Djurfeldt, M., Lansner, A., Rochel, O.,
Vieville, T., Muller, E., Davison, A. P.,
Boustani, S. E., and Destexhe, A.
(2007). Simulation of networks of
spiking neurons: a review of tools
and strategies. J. Comput. Neurosci.
23, 349–398.

Buzas, P., Kovacs, K., Ferecsko, A. S.,
Budd, J. M. L., Eysel, U. T., and

Kisvarday, Z. F. (2006). Model-
based analysis of excitatory lateral
 connections in the visual cortex.
J. Comp. Neurol. 499, 861–881.

Cannon, R., Gewaltig, M.-O., Gleeson, P.,
Bhalla, U., Cornelis, H., Hines, M.,
Howell, F., Muller, E., Stiles, J.,
Wils, S., and Schutter, E. D. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. New York,
Cambridge University Press.

Dalcín, L., Paz, R., Storti, M., and D’Elía, J.
(2008). Mpi for python: performance
improvements and mpi-2 exten-
sions. J. Parallel Distrib. Comput. 68,
655–662.

Davison, A. P., Brüderle, D., Eppler, J. M.,
Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2008). PyNN:
a common interface for neuronal net-
work simulators. Front. Neuroinform.
2, 11.

Drewes, R. (2005). Modeling the brain
with NCS and brainlab. Linux Journal
2005, 2.

Eppler, J. M., Helias, M., Muller, E.,
Diesmann, M., and Gewaltig, M.-O.
(2008). Pynest: a convenient inter-
face to the nest simulator. Front.
Neuroinform. 2, 12.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (NEural Simulation
Tool). Scholarpedia 2, 1430.

Goodman, D., and Brette, R. (2008). Brian:
a simulator for spiking neural net-
works in python. Front. Neuroinform.
2, 5.

Haeusler, S., and Maass, W. (2007).
A statistical analysis of information-
processing properties of lamina-
 specifi c cortical microcircuit models.
Cereb. Cortex 17, 149–162.

Hammarlund, P., and Ekeberg, O. (1998).
Large neural network simulations
on multiple hardware platforms.
J. Comput. Neurosci. 5, 443–459.

Hines, M., Davison, A. P., and Muller, E.
(2009). Neuron and python. Front.
Neuroinform. 3, 13.

Hines, M. L., and Carnevale, N. T. (1997).
The neuron simulation environment.
Neural Comput. 9, 1179–1209.

Hines, M. L., Morse, T., Migliore, M.,
Carnevale, N. T., and Shepherd, G. M.

(2004). ModelDB: a database to sup-
port computational neuroscience.
J. Comput. Neurosci. 17, 7–11.

Hunter, J. D. (2007). Matplotlib: a 2d
graphics environment. Comput. Sci.
Eng. 9, 90–95.

Izhikevich, E. (2004). Which model
to use for cortical spiking neu-
rons? IEEE Trans. Neural Netw. 15,
1063–1070.

Maass, W., Natschlager, T., and
Markram, H. (2002). Real-time com-
puting without stable states: a new
framework for neural computa-
tion based on perturbations. Neural
Comput. 14, 2531–2560.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of
high-connectivity network simulation
with distributed computing. Neural
Comput. 17, 1776–1801.

Natschläger, T., Markram, H., and
Maass, W. (2003). Computer models
and analysis tools for neural micro-
circuits. In Neuroscience Databases.
A Practical Guide, R. Kötter, ed.
(Boston, Kluwer Academic Publishers),
Ch. 9, pp. 123–138.

32http://www.igi.tugraz.at/pcsim
33http://www.sourceforge.net/projects/pcsim

1143
1144
1145
1146
1147
1148
1149
1150
1151

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

1172
1173

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

74

http://facets.kip.uni-heidelberg.de
http://www.seco-project.eu
http://www.igi.tugraz.at/pcsim
http://www.sourceforge.net/projects/pcsim

Pecevski et al. PCSIM

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 11 |

Obermayer, K., and Blasdel, G. G.
(1993). Geometry of orientation
and ocular dominance columns in
monkey striate cortex. J. Neurosci.
13, 4114–4129.

Oliphant, T. E. (2007). Python for scientifi c
computing. Comput. Sci. Eng. 9, 10–20.

Pérez, F., and Granger, B. E. (2007).
IPython: a system for interactive sci-
entifi c computing. Comput. Sci. Eng.
9, 21–29.

Plesser, H., Eppler, J., Morrison, A.,
Diesmann, M., and Gewaltig, M.-O.
(2007). Effi cient parallel simulation
of large-scale neuronal networks on
clusters of multiprocessor comput-
ers. Lect. Notes Comput. Sci. 4641,
672–681.

Ray, S., and Bhalla, U. S. (2008).
PyMOOSE: interoperable script-
ing in Python for MOOSE. Front.
Neuroinform. 2, 6.

Confl ict of Interest Statement: The authors
declare that the research was conducted in
the absence of any commercial or fi nancial
relationships that could be construed as a
potential confl ict of interest.

Received: 14 September 2008; paper pend-
ing published: 21 October 2008; accepted: 21
April 2009; published online: 27 May 2009.
Citation: Pecevski D, Natschläger T and Schuch
K (2009) PCSIM: a parallel simulation envi-

ronment for neural circuits fully integrated
with Python. Front. Neuroinform. (2009)
3:11. doi: 10.3389/neuro.11.011.2009
Copyright © 2009 Pecevski, Natschläger and
Schuch. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

75

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 27 May 2009
doi: 10.3389/neuro.11.014.2009

OpenElectrophy: an electrophysiological data- and
analysis-sharing framework

Samuel Garcia* and Nicolas Fourcaud-Trocmé

Neurosciences Sensorielles Comportement Cognition, CNRS – UMR5020 – Université Claude Bernard Lyon 1, Lyon, France

Progress in experimental tools and design is allowing the acquisition of increasingly large
datasets. Storage, manipulation and effi cient analyses of such large amounts of data is now a
primary issue. We present OpenElectrophy, an electrophysiological data- and analysis-sharing
framework developed to fi ll this niche. It stores all experiment data and meta-data in a single
central MySQL database, and provides a graphic user interface to visualize and explore the data,
and a library of functions for user analysis scripting in Python. It implements multiple spike-
sorting methods, and oscillation detection based on the ridge extraction methods due to Roux
et al. (2007). OpenElectrophy is open source and is freely available for download at http://
neuralensemble.org/trac/OpenElectrophy.

Keywords: python, electrophysiology, analysis, oscillation, spike sorting, database, SQL

how to simply and conjointly manipulate experimental data and
meta-data.

OpenElectrophy was designed more as a framework for data
analysis than a piece of completely frozen analysis software. For
example, it is not specifi c to a given type of electrophysiological
signal, and does not directly perform a specifi c type of analysis at
the request of a researcher with a “point-and-click” scheme. Rather,
it provides tools to facilitate data storage, exploration and analysis
script writing. It gathers the best of the two open source approaches
described previously, both in terms of purpose (time–frequency
analysis and spike sorting) and in terms of user interface (GUI
and toolboxes). In addition, it includes generic tools for conjointly
manipulating both experimental data and meta-data. The project’s
main philosophy has three parts: fi rst, for each experiment, the
data and meta-data are all stored in a single central database. This
strategy allows for fl exibility in mixing both types of data in the
subsequent analyses. Second, it provides a GUI that is useful for
exploring the data and detecting events of interest (oscillations or
spikes). Third, it contains a library of “methods” (high-level func-
tions) to aid in the writing of analysis scripts, both in the interfac-
ing of these scripts with the database and in the manipulation of
the data.

OpenElectrophy was developed through a collaboration of peo-
ple working on electrophysiological signals, such as extra- or intrac-
ellular recordings or EEG signals. In these fi elds, people are especially
interested in detecting and analyzing transient oscillations or neu-
ronal spikes. When this project was started, the conjoint analysis
of both spikes and oscillations could not be performed using any
available software. Thus, one of the main goals of OpenElectrophy
was to provide a complete and convenient way to detect spikes and
transient oscillations, store all of the detected events in the same

INTRODUCTION
Recent developments in electrophysiology experimental techniques
have lead to increases in the amount of data produced. It is now
common to record continuous signals simultaneously from many
electrodes with a sampling rate of 10 kHz or more. This increase
in raw data fl ow has been accompanied by an increase in the com-
plexity of the experimental protocol and the subsequent analyses.
Indeed, each experiment is controlled by a large number of param-
eters that are either set by the experimenter (e.g., according to the
stimuli applied or the state of the subject) or constrained by the
experimental setup (e.g., electrode properties). These parameters
are the meta-data associated with the experiment. A variety of new
software aiming to facilitate data storage, exploration and analysis
are appearing to help scientists handle such large amounts of data
and experimental parameters.

Several commercial software products have been developed to
tackle the increasing data management demands of state-of-the-art
electrophysiology. However, as such commercial software products
have not always evolved as rapidly as the needs of the fi eld, sev-
eral open source projects have appeared which are developed by
the researcher community. Among them are open source software
that performs commonly used analysis methods (e.g., averaging,
time–frequency analysis) for analyzing magnetoencephalography
(MEG) or electroencephalography (EEG) data. These programs
generally have a highly developed graphical user interface (GUI).
In contrast, in the fi eld of spike sorting, various toolboxes are avail-
able, and these toolboxes usually require the researcher to write-
specifi c scripts in order to use the toolbox for a specifi c set of data.
Thus, there are at least two different approaches with regard to
purpose and user interface in open source software design. None
of the available software or toolboxes addresses the problem of

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Robert Oostenveld, Cognition and
Behaviour Centre for Cognitive
Neuroimaging, The Netherlands
Eilif Muller, Brain Mind Institute, EPFL,
Switzerland

*Correspondence:

Samuel Garcia, Laboratoire de
Neurosciences Sensorielles
Comportement Cognition, CNRS –
UMR5020 – Université Claude Bernard
Lyon 1, Equipe logistique et technique,
50 Avenue Tony Garnier, 69366 Lyon
Cedex 07, France.
e-mail: sgarcia@olfac.univ-lyon1.fr

76

http://neuralensemble.org/trac/OpenElectrophy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

database as the original data, and then manipulate them conjointly.
Subsequent analyses could then include simultaneously detected
events, raw data and meta-data. We emphasize that OpenElectrophy
is one of the few currently available open source tools designed to
work simultaneously with spikes and oscillations.

This article presents the design and use of OpenElectrophy. It is
organized into fi ve sections. We fi rst compare OpenElectrophy to sim-
ilar projects and detail the advantages, drawbacks and differences of
purpose for each project. Second, we explain how we used the database
manager MySQL and the scripting language Python (and its scientifi c
module SciPy) to construct the core architecture of OpenElectrophy.
Third, we present the OpenElectrophy work fl ow and the general
way in which it is used. Fourth, we briefl y describe the spike and
oscillation detection methods that are currently implemented. Last,
we present an example of the standard usage of OpenElectrophy to
analyze extracellular local fi eld potential (LFP) recordings and obtain
information about action potential locking on LFP oscillation.

COMPARISONS WITH OTHER PROJECTS AND THE MAIN
GOALS OF OpenElectrophy
Commercial products like Plexon1, Tucker Davis2 or Spike23 exist for
the analysis of electrophysiological signals and are in wide-spread
use. We will not go into detail about these software programs, but we
will point out that despite their high quality GUIs, support and con-
tinuous development, they use proprietary languages, which present
barriers for code sharing and reuse, and which have limited uptake
of tools being developed by the scientifi c computing community
compared to languages such as Python. Moreover, the fi le format
specifi cations are generally not available, making long-term storage
or sharing of data problematic since anyone who wants to access the
data needs the right software. To deal with this issue, Neuroshare4
was created in an attempt to provide standardized libraries that can
access proprietary fi le formats. However, Neuroshare provides only
reading functionality, the code is not open source, and libraries are
available only for the Windows 32 platform.

The various open source projects belong to two families: soft-
ware and toolboxes for analyzing EEG or MEG data, and software
for spike sorting. Few projects mix spike and spectral analyses.

In the EEG/MEG family, visible projects include EEGLab5,
FieldTrip6 and SPM7 (EEG sub-package). These three projects
are all written with MATLAB, have a comprehensive GUI for
non- programmer users, use a homemade data format based on
MATLAB structures and store data in the MATLAB fi le format.
Their main features include analyses of event-related potentials,
time–frequency analyses, independent component analyses (ICA)
and 3D plotting methods. They also implement methods for source
detection.

In the spike-sorting software family, most projects can be sepa-
rated into two classes. The fi rst class includes tools dedicated

solely to spike sorting: WavClus8, Mclus9, Spike-O-Matic10 and
Klustakwik11. They do not perform any data management, but can
load one or several data formats and store the results (detected
spikes) in custom fi le formats. They generally provide only basic
GUIs, except for Klustakwik, which provides no GUI. WavClus
and Mclus are written in MATLAB; Spike-O-Matic is written with
R; Klustakwik is a C++ library. In general, these projects were
written to introduce a new spike-sorting method: WavClus is
based on superparamagnetic clustering (SPC) and wavelet pro-
jection, Spike-O-Matic is based on Monte Carlo Markov Chain
methods, and Mclus and Klustakwik are based on a classifi cation
expectation maximization algorithm. The second class of projects
is dedicated to the analysis of spike trains: Spike Train Analysis
Toolkit12, NeuroTools13, and Pandora14. These three projects are
collections of scripts for analyzing spike trains after spike sorting
has already been completed. The Spike Train Analysis Toolkit is
based on MATLAB and provides functions related to entropy and
information theory. NeuroTools is written in Python and provides
functions for analyzing simulated datasets generated from mod-
els. Pandora is MATLAB-based; it is one of the few projects that
uses the concept of a database for managing datasets, but it uses
a custom-built database system written in MATLAB, as opposed
to employing an established database system such as MySQL.

Finally, we must mention three projects that mix spike fi ring
analyses and spectral analyses on an LFP signal: FIND15, MEA-tools16
and Chronux17. These projects were all written with the same pri-
mary goal as that of OpenElectrophy: to function as a framework for
sharing analyses. They provide most of the standard analysis tools
and others developed more recently, all written in MATLAB, but they
include no database framework or meta-data management.

OpenElectrophy was written for several reasons:

• To have a project that is useful for all types of electrophy-
siological signals and experiments that mix time–frequency
studies, spike-sorting and spike train analyses, and that uses
pre- existing scripts or toolboxes whenever possible.

• To have a project that includes various spike-sorting methods
and allows the user to choose which one best fi ts his data.

• To have a project that directly manages data and meta-data
through a MySQL database that allows for sustainable data
storage. Most previously developed projects use custom-built
and language-dependent fi le formats. MySQL is open source
and well established; datasets can be accessed with many
 scripting languages (Python, MATLAB, Excel, R, Statistica)
and with most of the traditional software used in a neuro-
science laboratory.

1http://www.plexoninc.com/
2http://www.tdt.com/
3http://www.ced.co.uk/
4http://neuroshare.org/
5http://sccn.ucsd.edu/eeglab
6http://www.ru.nl/neuroimaging/fi eldtrip
7http://www.fi l.ion.ucl.ac.uk/spm/

8http://www.vis.caltech.edu/∼rodri/Wave_clus/Wave_clus_home.htm
9http://www.neuroinf.org/lists/comp-neuro/Archive/2000/0065.html
10http://www.biomedicale.univ-paris5.fr/SpikeOMatic
11http://klustakwik.sourceforge.net/
12http://neuroanalysis.org/toolkit/
13http://neuralensemble.org/trac/NeuroTools
14http://userwww.service.emory.edu/∼cgunay/pandora/
15http://fi nd.bccn.uni-freiburg.de/
16http://material.brainworks.uni-freiburg.de/research/meatools/
17http://chronux.org/

77

http://www.plexoninc.com/
http://www.tdt.com/
http://www.ced.co.uk/
http://neuroshare.org/
http://sccn.ucsd.edu/eeglab
http://www.ru.nl/neuroimaging/fi eldtrip
http://www.fi l.ion.ucl.ac.uk/spm/
http://www.vis.caltech.edu/%E2%88%BCrodri/Wave_clus/Wave_clus_home.htm
http://www.neuroinf.org/lists/comp-neuro/Archive/2000/0065.html
http://www.biomedicale.univ-paris5.fr/SpikeOMatic
http://klustakwik.sourceforge.net/
http://neuroanalysis.org/toolkit/
http://neuralensemble.org/trac/NeuroTools
http://userwww.service.emory.edu/%E2%88%BCcgunay/pandora/
http://fi nd.bccn.uni-freiburg.de/
http://material.brainworks.uni-freiburg.de/research/meatools/
http://chronux.org/

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

• To have a free project that relies only on other open source
projects. Most previously developed projects are based on
MATLAB; it is quite contradictory to have an open source
project that forces the community to pay a license to a third
party (Matworks) while free alternatives exist (Python and its
scientifi c module SciPy).

• To have the capability to quickly design a high quality GUI.
This goal is achievable with PyQt, a Python wrapper for the
modern graphics library Qt. This is in contrast to MATLAB,
which possesses a less appropriate object-oriented program-
ming approach and GUI toolkit.

We must emphasize that OpenElectrophy is neither a simple
GUI interface nor a library of functions, but rather a combina-
tion of both, depending on what needs to be done with the data.
Hence, the GUI is used mainly for data storage, visualization, and
exploration; it also guides the initial analysis steps, such as the
detection of events of interest (e.g., spikes or oscillations). Script
writing is necessary to perform the specifi c analyses that are needed
by the researcher. In order to make analysis writing as simple and
as fl exible as possible, OpenElectrophy provides Python methods
to appropriately query the database and manipulate the electro-
physiological data.

Finally, we must point out that at its current development stage,
OpenElectrophy is primarily designed for the LFP and spike com-
munity rather than the multi-channel EEG community. For exam-
ple, it does not currently include any advanced visualization tools,
such as 3D scalp plot or source localization techniques.

TECHNICAL CHOICES
The development of OpenElectrophy is based on two technologies:
MySQL, an open source database server, and SciPy, the Python
scientifi c module. The GUI was implemented with PyQt4. We
chose to rely on these open sources projects because they are widely
used and have strong support communities that ensure free avail-
ability and reliability. Moreover, they provide effi cient interfaces
with other scripting or compiled languages (e.g., MATLAB, R,
C/C++, Statistica, Excel). These interfaces are important to allow
for interaction with previously developed methods from other
open source projects. Lastly, Python is an object-oriented lan-
guage that is well adapted to developing long-term projects with
highly structured designs, thus facilitating collaboration between
developers and users.

In this section, we present a summary of the core architecture of
OpenElectrophy. In particular, we show how MySQL and Python
are used to help fulfi ll OpenElectrophy’s goals.

MySQL
Briefl y, as a reminder, it should be stated that the intrinsic concept
of a database system is a collection of tables. Each table has a collec-
tion of fi elds of different types. Tables are linked to one another by
indexes or keys. Putting data into a database is equivalent to splitting
it up in an atomic way and organizing it into different tables. The
logical or hierarchical organization between tables is not known a
priori, but is formed while exploring the data, as opposed to fi le sys-
tems, which are organized into directories and sub-directories with a
fi xed organization. Thus, it is possible to have multiple views of the

same database. This mechanism, while apparently basic, proves to be
fl exible and effi cient. To work with this system, the user must learn
structured query language (SQL). This language permits the user
to reconstruct, fi lter and sort the data. The user can also add fi elds
or tables at a later point without affecting previous work.

A crucial point is the design of the table’s schema: the list of
tables, and their contents and links. The idea was to design a generic
core schema that can deal as naturally as possible with any elec-
trophysiological dataset. In electrophysiology, people manipulate
two main types of signals: continuous signals, which come from
electrodes, and discrete or stepwise signals such as triggers or
time events, which come from the context of the data acquisition
(e.g., stimulus, subject states). Based on this requirement, the core
schema that was chosen for OpenElectrophy is detailed in Figure 1.
The three central tables are trial, epoch and electrode. The table trial
includes a coherent recording of continuous or discrete events. The
table electrode holds the raw continuous signals from each physical
electrode. The table epoch manages all discrete events: trigger times,
periods of stimulation, animal states or event markers. These three
tables can accommodate a generic electrophysiological recording.
The tables spike, spiketrain and cell were then added to manage
neuron spike discharge. The table oscillation manages transient
oscillatory events in the LFP.

This schema has already been proven to be fl exible enough to fi t
several types of experimental setups, such as one-cell intracellular
recordings, extracellular multi-electrode recordings, short- or long-
protocol recordings, LFP studies, multiple repetitions of stimuli, and
animal behavior data. For each experiment, this design is at the core
of the data management; however, each new study usually requires a
short extension of the table schema. Extra fi elds commonly need to
be added to the original tables, and new tables must sometimes be
added to address new concepts such as animal position or heartbeat.
The versatility of the database allows for this kind of customization
without interfering with the core of OpenElectrophy.

Today, many data manipulation tools include an SQL interface;
MySQL is a kind of “universal” data format that does not depend
on a particular language. Another advantage of this type of data
storage is the MySQL client/server design. Indeed, all of the data
is collected on a single server that is simultaneously accessible by
many users of OpenElectrophy (or other tools). This access does
not need to be local, such that collaborations between labs working
on the same dataset are possible. We note here that transferring
large sets of raw data over the Internet can take a prohibitively
long time, but it is generally not a problem to transfer only discrete
events such as spike times (also present in the database), which
can be done by using appropriate SQL queries. Another benefi t of
the database scheme is that each time someone makes a new entry
into the database (e.g., raw data or meta-data, spikes, oscillations,
a new fi eld with a specifi c type of information), that information
is immediately available to all of his collaborators. Lastly, MySQL
offers many effi cient backup capabilities (from single global or
partial transfers of the whole database to continuous incremental
saves) to secure the data or make them portable.

PYTHON
Python is a high-level object-oriented programming language. It
is available for a wide range of platforms and comes with a large

78

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

collection of libraries (modules). For scientists and engineers deal-
ing with computing, one of the most interesting Python modules
is SciPy. This module provides N-dimensional array manipula-
tion with the NumPy module and a fast implementation of an
extensive set of scientifi c algorithms, such as fi ltering, statistics,
interpolation, and linear algebra. For neuroscience studies that
generate increasingly large datasets, Python is the equivalent of a
Swiss army knife.

Using MySQL to explore and select data is effi cient, but creating a
table schema and inserting or modifying data is a repetitive and tedi-
ous task with pure SQL. Object-relational mapping (ORM) is a tech-
nical programming method that converts between a database and a
Python object. Thus, OpenElectrophy incorporates a custom-built

ORM to simplify read/write database access (see Section “A Typical
Use-case” for an example of its use). This SQL mapper, a Python
class included in OpenElectrophy, allows the user to declare a table
structure with fi eld names and types with only a few lines of code.
Each instance of this class can directly map onto all of the fi elds of a
table entry. Each SQL fi eld becomes a member of the class instance.
There are two methods (load_from_db and save_to_db) for auto-
matically loading or saving all fi elds from the database without writ-
ing any SQL. The conversion from Python types to MySQL types
is straightforward for basic types (int, fl oat, str). For numpy.array
(the basic type for N-dimensional arrays of the SciPy module), the
conversion is automatically done by OpenElectrophy in three fi elds:
one blob fi eld for the buffer of the array, one fi eld for the dimensions

FIGURE 1 | Database schema. This is a classical relational design. Each frame
corresponds to a table that holds all of the properties of an element in its fi elds.
For example, the table spike holds for each spike its own index (id_spike), the
index of the spike train it belongs to (id_spiketrain), its position (pos), the
maximum amplitude (val_max) and its raw waveform (waveform). All of the
tables and fi elds are natively generated by OpenElectrophy; the schema is
fl exible and extensible to accommodate specifi c needs. The core of the schema
includes the trial, electrode and epoch tables. A trial is a combination of several
simultaneous coherent recordings. These recordings are continuous or discrete,

and are stored in the electrode or epoch tables, respectively. Additional tables
are as follows. The series table, which gathers a set of trials (e.g., those
recorded in the same location). The spike table contains all detected spikes and
their positions and shapes. The spikes are grouped according to their spike train
(there may be many spike trains per electrode). The cell table groups spike trains
that were recorded from the same cell but in different trials; thus, the cell table
groups them relationally. Finally, the oscillation table contains all of the
information related to transient oscillatory events (see Section “Oscillation
Extraction”).

79

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

and one for the array element type. Thus, the user can store vectors
or matrices in MySQL, which is normally not allowed. Each MySQL
table corresponds to a specifi c Python class that inherits the SQL
mapper base class and that implements methods that are specifi c
to the table content. For example, the Electrode class can query the
electrode table and implements different plotting methods (raw or
fi ltered signals and time–frequency maps).

As a further example, the SpikeTrain class offers methods for recon-
structing a spike train in different ways, such as a vector of time stamps,
as sample indexes, as intervals or in Boolean form for information
theoretical methods. Of course, all of these methods directly query the
spike table, collect all individual spikes that are linked with an element
of the spiketrain table and reorganize the results into the appropriate
format. Three plotting methods are also available: raster, large dots
superposed on the electrode signal and cumulative waveform.

Currently, only tables and fi elds that are present in the schema
in Figure 1 are loaded by OpenElectrophy classes. Thus, additional
fi elds or tables that are created for specifi c experiments must be
accessed via SQL queries directly with a Python script. Alternatively,
existing OpenElectrophy Python classes can be manually overloaded
to take into account the new elements.

WORK FLOW
In this section, we describe the general workfl ow of OpenElectrophy
as summarized as a series of steps in Figure 2. Each step of the
workfl ow is discussed in detail in turn below.

DATA INTEGRATION
The fi rst step of OpenElectrophy workfl ow involves import-
ing data into the database. The idea is to integrate all available

 information into the database, including data (e.g., signal, trig-
gers, events) and meta-data (e.g., protocol context, date, time).
In so doing, during the analysis, the user no longer has to work
with a heterogeneous collection of fi les; instead, the user works
directly with the database system. OpenElectrophy is already
able to integrate into the database data that is stored in different
fi le formats, including ASCII, raw binary, Elan, TDT, Elphy, and
Micromed. In the near future, many additional data formats will
be incorporated. The end user can go deeper into data integration
by writing new scripts that not only incorporate neural data but
also setup-specifi c meta-data. For instance, stimulus generation
software often provides lists of stimuli and context information in
a clear fi le format. These fi les can be parsed and integrated during
the integration of neural data. Finally, note that the database can
also be directly accessed and fi lled or edited with a basic MySQL
client editor.

At this stage, it is possible to explore the database using differ-
ent hierarchical tree views and to plot raw signals (bandwidth or
fi ltered) or wavelet-based time–frequency maps.

SPIKE AND OSCILLATION DETECTION
The next major step is the extraction of the phenomena of inter-
est: spikes and transient oscillatory events. In these two cases, a
graphical interface helps in searching for parameters that allow
for good detection. This step is crucial for subsequent stages of
the analysis. There are two possible methods for detection: indi-
vidual detection, which is done signal-by-signal, or bulk detection,
which is done by applying the same parameters to an ensemble
of signals targeted by an SQL query that is directly written in the
OpenElectrophy GUI.

FIGURE 2 | General work fl ow. The main steps for using OpenElectrophy are:
(A) integration of data from a heterogeneous collection of fi les into the
database; (B) exploration and plotting of raw signals directly from the
database; (C) extraction of spikes from the raw signals and integration of

these spikes into the spike, spiketrain and cell tables; (D) extraction of
oscillations and integration of these oscillations into the oscillation table;
(E) analysis with Python scripts using OpenElectrophy-specifi c classes and
methods.

80

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

With regard to spike detection, methods used in OpenElectrophy
will be detailed in Section “Spike Extraction”. The central idea of the
framework is to store individual spike events in the MySQL spike
table and group them using the spiketrain and cell tables. All studies
on spike discharge will deal directly with these three tables using
SQL queries, but will benefi t from all of the tables when working
with protocol information and context meta-data.

The oscillation detection method is based on a new approach
detailed in Section “Oscillation Extraction”. The result is a list of
oscillations for each signal. In this case, each oscillation is stored
in the oscillation table. Thus, for studies on multi-frequency oscil-
latory regimes (e.g., theta, gamma, and beta bands), the analysis
is computed directly in this table, although it again also benefi ts
from the data stored in all other tables.

SQL FILTERING
The ability of SQL to dynamically provide different views of the
database is heavily exploited during analysis. Consequently, a basic
knowledge of this language is required. Data analysis can be sum-
marized as applying an algorithm or a statistical measure or plotting
synthetic views of a subset of the data. The traditional method for
analyzing data is to manipulate and aggregate the data by hand,
creating a text list for each condition or factor or constructing many
synthetic tables with an external knowledge of protocol factors.
With SQL, this tedious work is done directly. With a few lines of
code, values of interest can be rapidly and effi ciently aggregated.
Using SQL, there is no need to store lists, sublists or sub-sublists of
data; the user only needs to store the queries and use them for each
analysis. Overall, the user must manage queries that are useful for
selecting data according to context and factor fi elds; then, the user
must write new analyses in Python that can be applied to a subset
of the data that is extracted with these SQL queries.

ANALYSIS
Analysis is the fi nal stage of the OpenElectrophy workfl ow, which
transforms the now pre-processed data into meaningful results.
The OpenElectrophy framework does not provide ready-made
“point-and-click” analyses for obtaining a given result. Rather, it
is necessary to write scripts in Python to perform statistical tests
or other specifi c analyses. Here, the management of the data in
a central database simplifi es the selection of the data to analyze
(see Section “SQL Filtering”), and the Python classes provided by
OpenElectrophy ease the manipulation of the data to match a given
analysis. Additionally, the Python SciPy module provides many
standard and high-level analysis tools, and the Matplotlib module
offers extensive 2D plotting methods.

Writing analysis scripts can seem diffi cult for researchers not
familiar with programming, but the power and fl exibility of this
approach is quickly preferred over the restrictive convenience of a
GUI. For example, to our knowledge none of the available software
for doing spike analysis provides a GUI as an alternative to analysis
scripting. Starting with simple script examples is usually suffi cient
to allow beginners to compose very sophisticated analyses. Thus,
OpenElectrophy does not constrain data analysis with a fi xed GUI,
but allows for the use of user programmable scripts.

As already mentioned, a major advantage of using the Python
scripting language is its ability to interface with other languages.

Packages like Mlabwrap18, rpy19, cython20 or SciPy.weave21
enable to use pre-existent code from MATLAB, R, or C/C++.
Employing these tools, the list of external modules that can be
linked to OpenElectrophy to help write analysis scripts is long:
the International Neuroinformatics Coordinating Facility provides
a list of tools available for studying neural data22. In particular,
OpenElectrophy, as a framework for managing data, would likely
complement recent Python-based approaches to neural data stud-
ies, such as PyEntropy (Ince et al., 2009) for information theory
and PyMVPA (Hanke et al., 2009) for machine learning.

Details on how to use OpenElectrophy classes for scripting are
available on the OpenElectrophy wiki page23.

DETAILS OF EXTRACTION METHODS
SPIKE EXTRACTION
One crucial part of multi-extracellular electrophysiological record-
ings is spike detection and sorting. All subsequent interpretations rely
on the accuracy of these steps. Many approaches to this challenge
already exist. Some systems use in-line, real-time, and unsupervised
spike sorting, while others, including OpenElectrophy, prefer off-line
and semi-automatic spike sorting. There is no perfect method; a
compromise must exist between fully automatic and fully super-
vised processing. Several numerical algorithms for spike sorting
have been published. Processing can be separated into four steps:
fi ltering, detection, decomposition (or projection) and clustering.
The literature on projection and clustering is extensive (Lewicki,
1998; Pouzat et al., 2004; Quiroga et al., 2004; Wood et al., 2006).
Less effort has been put into fi ltering and detection. These two steps
cannot be neglected, however, as bad fi ltering directly infl uences spike
shape, and can thereby generate strange results even with a good
clustering algorithm. To overcome these diffi culties, OpenElectrophy
is designed in a modular way and offers several methods for each
step. Thus, spike extraction can be tuned for many experimental
setups, and new methods can be added to the framework by external
contributors.

At the moment, the implemented algorithms are:

• Filtering: “fast Fourier transform”-based fi lter, Bessel, Butterworth,
median sliding fi lter for removing slow components.

• Detection: threshold on maximum amplitude.
• Projection: principal component (PCA) of the spike shape,

independent component (ICA), raw waveform shape.
Wavelet projection will be implemented soon. PCA and
ICA projections are done with the Modular toolkit for Data
Processing, a machine learning package for Python (Zito
et al., 2008).

• Clustering: “k-means” method and “SPC” (Blatt et al., 1996).

A future step for OpenElectrophy will be to incorporate addi-
tional spike-sorting methods developed in other open source

18http://mlabwrap.sourceforge.net/
19http://rpy.sourceforge.net/
20http://www.cython.org/
21http://www.scipy.org/Weave
22http://software.incf.org
23http://neuralensemble.org/trac/OpenElectrophy/wiki/OEScriptTutorial

81

http://mlabwrap.sourceforge.net/
http://rpy.sourceforge.net/
http://www.cython.org/
http://www.scipy.org/Weave
http://software.incf.org
http://neuralensemble.org/trac/OpenElectrophy/wiki/OEScriptTutorial

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

projects (see Section “Comparisons with Other Projects and the
Main Goals of OpenElectrophy”).

OSCILLATION EXTRACTION
The detection of non-stationary oscillations in LFPs by
OpenElectrophy is based on a new method described by S. Roux
(Roux et al., 2007). Classical studies on oscillatory phenomena have
used time–frequency Morlet scalograms. The Roux method goes
further to use the scalogram to extract individual oscillations with
a ridge extraction method. This method is useful when signals
have oscillations in different frequency bands, when oscillation
frequencies shift as a function of time or when there is no a priori
knowledge of the signal.

The main steps in the processing are:

• computing the Morlet scalogram
• choosing a signifi cant threshold for the detection of

oscillations
• detecting local maxima above this threshold in the frequency

bands of interest
• extracting ridges point by point, starting from the maximum

and continuing until the threshold is reached.

Finally, each ridge is a time–frequency line that describes a
trajectory in time and frequency point by point; it is a complex
number. The complex modulus estimates the energy envelope of
the oscillation, and the angle from the real axis estimates its instan-
taneous phase.

From each extracted line, the oscillatory epoch duration and
onset can be estimated, as well as the frequency, phase and ampli-
tude evolution as a function of time. In short, this method allows
for the extraction of all oscillation parameters.

This approach introduces a more intuitive and more accurate
method to analyze non-stationary local fi elds with oscillations.
Statistics can be applied, for example to the duration or frequency
shift, as analyses become quantitative.

A Python class associated with a MySQL table manages all
oscillations. All parameters are stored in the appropriate fi elds; the
time–frequency line itself is directly stored as a “numpy.array”.

A TYPICAL USE CASE
In this section, we will present an example of how OpenElectrophy
might typically be used and demonstrate its GUI. We consider an
experiment in which the extracellular LFP was recorded in the
piriform cortex of an anesthetized rat. The aim of this experiment
was to study the relationship between local fi eld oscillatory activity
(network level) and single unit activity (neuron level) (Litaudon
et al., 2008).

The raw signal was fi rst saved into the database as previously
explained. The next step was then to extract oscillatory events. Upon
completion of the extraction, the GUI is as shown in Figure 3A.
On the left of the screen are all of the parameters that are used for
detection; these parameters can be modifi ed by the user and saved for
later use. These parameters cover the time/frequency space and the
precision used for the detection, as well as the threshold above which
oscillations are detected (an absolute level or relative to a reference
period in the same signal); in addition, some of these parameters

are used to remove overlapping or unwanted short oscillations. On
the right of the screen, the list of oscillations detected for this elec-
trode is shown. Below, their trajectories are plotted superimposed
both on the electrode Morlet scalogram and on the electrode raw
signal (lower right of the screen). When the user is satisfi ed with the
results, he can save it to the database. Note that in this example, the
detection of oscillations was done for a single electrode. Another GUI
can be used to detect oscillations for many electrodes simultaneously.
In this case, the GUI presents the same parameters as for the single
electrode GUI, but with an additional window in which the user may
provide the SQL query to select the electrodes for detection.

The next step was the detection of spikes in the same signal.
The GUI shown in Figure 3B presents fi ve tabs corresponding to
the four steps used in the spike detection (see Section “MySQL”)
and a fi fth for the database options (which summarizes the results
and, in the case of multiple detected spike trains, allows the user to
choose which results should be saved to the database). At any step,
the parameters can be set and saved for later use. Spike detection
can be done in its entirety or in a step-by-step fashion, with various
plots on each tab dedicated to the intermediate results. Again, this
task can be performed for multiple electrodes simultaneously with
a similar GUI that includes all tabs (without graphic feedback) and
a window to specify the SQL query. A special case is the detection
of spikes from the same electrode channel across all trials from
a given series. In this case, the signals from all trials are pooled
before spike detection, and the resulting spike trains (one for each
trial) are linked in the database via the cell table, so that it can be
documented that they are all associated with the same neuron.

The fi nal step was the analysis of the results, which here consisted
of a histogram of spike phases (relative to the oscillations). This
analysis has already been implemented in OpenElectrophy, and the
user needs only to specify a list of oscillations and a list of spike
trains with two SQL queries to obtain the graph in Figure 3C. To
demonstrate how this process can be done using an external script,
we present here the Python code that was used in this analysis:

Initialize result array
phase_spike = empty((0))

write a query for spike train of interest
for example, spike trains of electrode 5
query_spiketrain = """
 SELECT spiketrain.id_spiketrain
 FROM spiketrain, electrode
 WHERE electrode.id_
 electrode = spiketrain.id_electrode
 AND electrode.num_channel = 5
 """

execute query and get id list
list_id_spiketrain, = sql(query_spiketrain)
for id_spiketrain in list_id_spiketrain:
 # Python class implemented by OpenElectrophy
 # that maps one spike train
 sptr = SpikeTrain()
 # method to load spiketrain properties from the
 database
 sptr.load_from_db(id_spiketrain)
 # method to get spike positions of the spiketrain
 pos_spike = sptr.pos_spike()

82

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

FIGURE 3 | (A) Snapshot of the oscillation detection dialog. On the left side,
frames encapsulate different kinds of parameters: for the Morlet scalogram, the
threshold defi nition and “cleaning” the detection. On upper right, there is a list
of detected oscillations. On lower right, there is a zoomed picture of one time–
frequency line, which represents an oscillatory event, and the relative phase
reconstruction superimposed on the raw signal. When the detection is done, the
results can be stored in the MySQL database. (B) Snapshot of the spike

detection dialog. On the left, there are different tabs corresponding to the
different steps of spike extraction: fi ltering, detection, projection and clustering.
The result of a particular detection that can be saved into the database is on the
shown tab. (C) Example of how spike and oscillatory events can be mixed,
showing how a spike train is phase locked on the LFP phase. One oscillation
cycle is depicted in red, and a histogram of the phases of spike discharge is
shown in blue.

83

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

 # Select oscillations from the same trial as the
 spike train
 # and that are in the gamma band
 query = """ SELECT oscillation.id_oscillation
 FROM oscillation
 WHERE oscillation.id_trial = %s
 AND oscillation.freq_max > 35
 AND oscillation.freq_max < 100
 """
 list_id_oscillation, = sql(query,(sptr. id_trial),
 Array=True)

 for id_oscillation in list_id_oscillation:
 # Python class implemented by
 OpenElectrophy
 # that maps one oscillation
 osci = Oscillation()
 # method to load the oscillation’s
 properties from the database
 osci.load_from_db(id_oscillation)
 # get phase of spikes that are on the
 oscillation
 phase_spike = r_[phase_spike,angle(osci.
 line_val[setmember1d
 (osci.line_t,pos_spike)])]

Plot the result…

CONCLUSION
In summary, we have presented OpenElectrophy, an open source
project aimed at facilitating the management and manipulation of
electrophysiological data along with experiment meta-data. The
key contribution of OpenElectrophy is the framework architecture:
MySQL married to Python + SciPy, all of which are reliable, widely
used and free tools. We have shown how the use of a MySQL data-
base allows for long-term storage, easy access and sharing of data.
In particular, all of the data and meta-data are recorded in a central
database and can be combined for further analyses, allowing the
user, for example, to fuse electrophysiological and behavioral data.
We have also shown how OpenElectrophy uses the Python language
to simplify interaction with the database and manipulation of data
during the writing of analysis scripts. Another primary feature of
OpenElectrophy is the integration of the detection and storage of
spikes and transient oscillatory events found in electrophysiologi-
cal recordings. We note that the CARMEN24 project has recently
been created and appears to pursue goals similar to ours, but it
is now primarily a repository of diverse methods without much
global integration.

The OpenElectrophy project is free and open source, which
means that anyone can download, use, modify or extend it and
then share his work with the whole user community. It is hosted in
a forge with a Trac system25, which offers SVN as a version control
system and a wiki for live documentation. A mailing listing for
discussion between users and developers is available26.

Like many other free projects, the success of OpenElectrophy
depends on the size of the community using it and developing

it. For the moment, OpenElectrophy is a young project and the
community is relatively small (about 20 people). Its development
has thus mostly involved addressing the needs of this small com-
munity. Nonetheless, we hope to have designed the foundations
of OpenElectrophy with enough care in terms of fl exibility and
technological choices such that adapting it to a wider range of
needs and use cases would require minimal effort.

At the moment, the OpenElectrophy GUI adequately covers
the exploration of data, spike sorting and detection of transient
oscillations. The analyses must be computed with Python scripts,
which need to be provided by the user. Obviously, these scripts
can be written from scratch, but as we already have mentioned,
one of the advantages of Python is that it can be interfaced with
previously developed analysis toolboxes. Thus, it will be useful
in the future to provide, either directly in OpenElectrophy or
as script examples (which could be available on the wiki pages
for OpenElectrophy), simple ways to interface the data managed
by OpenElectrophy with other open source toolboxes, such as
the ones presented in this issue, e.g., PyMVPA, PyEntropy or
NeuroTools. Additionally, one possible extension would be to
write an intuitive GUI for launching some simple analyses in
order to make OpenElectrophy more attractive to users who do
not write scripts.

Finally, with regard to the more technical aspects of OpenElectrophy,
we must mention two future improvements. The fi rst is the integra-
tion of a standard ORM such as SQLAlchemy for mapping data to
OpenElectrophy objects. At the moment, the SQL mapper is home-
made, but it has the advantage of incorporating “numpy.array”. Using
SQLAlchemy instead will allow for the direct use of database systems
other than MySQL, such as SQLlite or PostgreeSQL. Second, use of
the concept of BLOB streaming27 while using MySQL to read continu-
ous electrode data should be a great improvement. This technique
consists in loading BLOB (binary) fi elds into a stream chunk by
chunk. This is a defi nitive solution for long recordings at high sample
rates and solves memory problems.

In the present article, it has been argued that MySQL is a good
choice for a data storage architecture, given its powerful features
to store, organize, and provide dynamic views of data. However,
its socket-based architecture might raise concerns of perform-
ance over other scientifi c binary formats. A simple comparison of
read and write performance with the widely used and performant
hdf528 for an array of 10e7 elements shows OpenElectrophy (local
MySQL server) has only slight penalties for read (factor of 1.4)
and moderate penalties for write (factor of 4). Assuming that in a
normal study cycle, we spend more time in reading than writing,
we believe that the architectural advantages of MySQL mentioned
previously counterbalance the moderate performance penalty, and
it remains an attractive alternative to hdf5.

In developing OpenElectrophy, we have endeavored to follow
the fundamental philosophy that the integration of database stor-
age and object-oriented programming paves the way for more
effi cient and usable data management and analysis systems. In
this task, we have built on open source tools as other research-
ers in the growing community of neuroscientist Python users,

27http://blobstreaming.org/
28http://www.hdfgroup.org/HDF5//

24http://www.carmen.org.uk/
25http://neuralensemble.org/trac/OpenElectrophy
26http://groups.google.fr/group/openelectrophy

84

http://blobstreaming.org/
http://www.hdfgroup.org/HDF5//
http://www.carmen.org.uk/
http://neuralensemble.org/trac/OpenElectrophy
http://groups.google.fr/group/openelectrophy

Frontiers in Neuroinformatics www.frontiersin.org May 2009 | Volume 3 | Article 14 |

Garcia and Fourcaud-Trocmé OpenElectrophy

and classification of neural action
 potentials. Network 9, R53–R78.

Li taudon, P. , Garc ia , S . , and
Buonviso, N. (2008). Strong cou-
pling between pyramidal cell activ-
ity and network oscillations in the
olfactory cortex. Neuroscience 156,
781–787.

Pouzat, C., Delescluse, M., Viot, P., and
Diebolt, J. (2004). Improved spike-
sorting by modeling fi ring statistics
and burst-dependent spike amplitude
attenuation: a Markov chain Monte
Carlo approach. J. Neurophysiol. 91,
2910–2928.

Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul,
Y. (2004). Unsupervised spike detection
and sorting with wavelets and super-
paramagnetic clustering. Neural.
Comput. 16, 1661–1687.

represented in this special issue. Emerging from this community
are new solutions to promote data and code sharing, and we
encourage others to participate and join in the development of a
new generation of software to benefi t to the whole neuroscience
community.

ACKNOWLEDGMENTS
We thank Nathalie Buonviso, Tristan Cenier and Phillipe Litaudon
for being the courageous fi rst users of OpenElectrophy, Stephan
Roux for original contributions to this project, and Eilif Muller for
helpful proofreading of this manuscript.

REFERENCES
Blatt, M., Wiseman, S., and Domany, E.

(1996). Superparamagnetic clus-
tering of data. Phys. Rev. Lett. 76,
3251–3254.

Hanke , M. , Ha lchenko, Y.O. ,
Sederberg, P. B., Olivetti, E., Fründ, I.,
Rieger, J.W., Herrmann, C. S.,
Haxby, J. V., Hanson, S., and
Pollmann, S. (2009). PyMVPA: a uni-
fying approach to the analysis of neu-
roscientifi c data. Front. Neuroinform.
3,3. doi: 10.3389/neuro.11.003.2009.

Ince, R. A., Petersen, R. S., Swan, D. C., and
Panzeri, S. (2009). Python for infor-
mation theoretic analysis of neural
data. Front. Neuroinform. 3,4. doi:
10.3389/neuro.11.004.2009.

Lewicki, M. S. (1998). A review of meth-
ods for spike sorting: the detection

Roux, S. G., Cenier, T., Garcia, S., Litaudon, P.,
and Buonviso, N. (2007). A wavelet-
based method for local phase extraction
from a multi- frequency oscillatory sig-
nal. J. Neurosci. Methods 160, 135–143.

Wood, F., Goldwater, S., and Black, M. J.
(2006). A non-parametric Bayesian
approach to spike sorting. Conf.
Proc. IEEE Eng. Med. Biol. Soc. 1,
1165–1168.

Zito, T., Wilbert, N., Wiskott, L., and
Berkes, P. (2008). Modular toolkit
for data processing (MDP): a
Python data processing frame-
work. Front. Neuroinform. 2, 8. doi:
10.3389/neuro.11.008.2008.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial

or fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 12 September 2008; paper pend-
ing published: 27 October 2008; accepted:
30 April 2009; published online: 27 May
2009.
Citation: Garcia S and Fourcaud-Trocmé N
(2009) OpenElectrophy: an electrophysiological
data- and analysis-sharing framework.
Front. Neuroinform. (2009) 3:14. doi:
10.3389/neuro.11.014.2009
Copyright © 2009 Garcia and Fourcaud-
Trocmé. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

85

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 27 March 2009
doi: 10.3389/neuro.11.009.2009

DataViewer3D: an open-source, cross-platform multi-modal
neuroimaging data visualization tool

André Gouws*, Will Woods, Rebecca Millman, Antony Morland and Gary Green

Department of Psychology, York NeuroImaging Centre, University of York, UK

Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance
imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data
within a common, defi ned coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging
data visualization tool offering a cross-platform, open-source solution to simultaneous data
overlay visualization requirements of imaging studies. While DV3D is primarily a visualization
tool, the package allows an analysis approach where results from one imaging modality can
guide comparative analysis of another modality in a single coordinate space. DV3D is built on
Python, a dynamic object-oriented programming language with support for integration of modular
toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the
power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling
VTK’s low level C++ functions from Python. Users interact with data via an intuitive interface
that uses Python to bind wxWidgets, which in turn calls the user’s operating system dialogs
and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM
formats for MRI data display (including statistical data overlay). Formats for other data types
are supported. The modularity of DV3D and ease of use of Python allows rapid integration of
additional format support and user development. DV3D has been tested on Mac OSX, RedHat
Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of
tutorial resources and example data.

Keywords: visualization software, multi-modal neuroimaging, Python, VTK, fMRI, MEG, DTI, DV3D

and BrainVoyager4. Widely used open-source analysis toolboxes
for MATLAB5 are exemplifi ed by Statistical Parametric Mapping
(Frackowiak et al., 1997), Fieldtrip6, EEGLAB (Delorme and Makeig,
2004), mrVista (Teo et al., 1997; Wandell et al., 2000) and NUTMEG7.
Stand-alone, cross-platform analysis packages include FSL8 and
FreeSurfer9. In addition to analysis packages, a number of stand-
alone visualization packages have been developed, some to comple-
ment particular analysis packages (e.g. FSL’s FSLView10) and others
independently of analysis packages (MRICron11; 3D Slicer12).

Both analysis and stand-alone visualization packages are often
customized solutions developed by a site to address their specifi c
requirements. Many software packages are later extended to pro-
vide analysis frameworks for a more diverse range of hardware
platforms, data types and analysis methods. Sharing and distribu-
tion of platform independent software with unifi ed data formats
allows the neuroimaging community increased access to analysis

INTRODUCTION
This paper describes DataViewer3D (DV3D), a software package
built with Python1 and designed and optimized to address many of
the issues encountered when visualizing multi-modal neuroimag-
ing data.

The combination of analyses from multiple imaging modalities is
an important and growing trend in neuroimaging (e.g. McDonald,
2008; Stuffl ebeam and Rosen, 2007). Researchers are conscious of
the limitations of individual imaging techniques and their associated
analysis methods (e.g. Coltheart, 2006). With sites having access
to more than one data acquisition technology, the neuroimaging
community has the opportunity to compare and contrast results
from different modalities and analysis approaches. Multi-modal
techniques are used to exploit differences in results obtained from
different techniques (e.g. Liu et al., 2006) and potentially provide
converging evidence concerning researchers’ hypotheses.

A variety of neuroimaging analysis packages are available
to researchers, facilitating analysis of data from a complex and
diverse range of data acquisition techniques. The Neuroimaging
Informatics Tools and Resources Clearinghouse2 list many of these
tools. Commercial analysis software packages include ANALYZE™3

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Stephen C. Strother, Baycrest, Canada;
University of Toronto, Canada
David Kennedy, Harvard Medical
School, USA

*Correspondence:

André Gouws, York NeuroImaging
Centre, University of York, York Science
Park, York YO10 5DG, UK.
e-mail: andre.gouws@ynic.york.ac.uk

4http://www.brainvoyager.com/
5http://www.mathworks.com/products/matlab/
6http://www.ru.nl/fcdonders/fi eldtrip/
7http://nutmeg.berkeley.edu/
8http://www.fmrib.ox.ac.uk/fsl/
9http://surfer.nmr.mgh.harvard.edu/
10http://www.fmrib.ox.ac.uk/fslview
11http://www.sph.sc.edu/comd/rorden/mricron/
12http://slicer.org/

1http://www.python.org/
2http://www.nitrc.org/
3http://www.analyzedirect.com/Analyze/

86

http://www.brainvoyager.com/
http://www.mathworks.com/products/matlab/
http://www.ru.nl/fcdonders/fi eldtrip/
http://nutmeg.berkeley.edu/
http://www.fmrib.ox.ac.uk/fsl/
http://surfer.nmr.mgh.harvard.edu/
http://www.fmrib.ox.ac.uk/fslview
http://www.sph.sc.edu/comd/rorden/mricron/
http://slicer.org/
http://www.python.org/
http://www.nitrc.org/
http://www.analyzedirect.com/Analyze/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

methods. Researchers may have to compare the visual outputs of
two or more different packages side by side, often comparing two-
dimensional (2D) outputs from one to 3D outputs of another. The
lack of a like-for-like comparison of results in a uniform coordinate
space can increase the potential for misinterpretation of results.
Reproducibility of results and consistency in analysis, interpreta-
tion, and display of results may be compromised when compar-
ing results from different analyses and visualization software (e.g.
Mackenzie-Graham et al., 2008).

DV3D does not attempt to compete with existing analyses pack-
ages in terms of analysis routines but rather acts as a support tool
for neuroimaging analysis packages. DV3D allows users to integrate
results from a number of different analysis packages, in a variety of
formats and in an open-source, platform independent implementa-
tion. DV3D is designed to offer 2D and 3D visualization support
for results from a number of neuroimaging acquisition modes and
analysis techniques including magnetic resonance imaging (MRI),
magnetoencephalography (MEG), positron emission tomography,
computed axial tomography and diffuse optical imaging. DV3D has
a highly modular, transparent design and is optimized for integra-
tion of additional display routines and fi le format support. DV3D
provides export routines for high-resolution images, movies and
objects created by the program for data sharing.

FSLView, 3D Slicer and MRICron are three of the most widely
used stand-alone packages for visualizing neuroimaging data, and
thus DV3D’s functionality will be most closely compared and con-
trasted to them. None of these packages (and no other single stand-
alone package to the best of our knowledge) offer support for all
of the multiple analysis outputs of the aforementioned imaging
technologies. DV3D is designed to fi ll this gap.

DV3D is built on Python, a cross-platform interpreted pro-
gramming language. In DV3D, Python is used to wrap famil-
iar, system-native Graphical User Interface (GUI) functionality
using wxWidgets13 and powerful graphics rendering using the
Visualization Toolkit14 (VTK). DV3D’s code base is completely
platform independent allowing code to run on any system with
Python, VTK and wxWidgets installed. This minimizes code trans-
lation time and system-dependent error handling, increasing the
effi ciency of software development and new process integration.

First we outline the design objectives for DV3D. Following this
we will discuss the value of using an open-source, platform inde-
pendent framework for developing such a package, focusing on
Python as the programming language to facilitate cross-platform
software development. We will then outline the current functional-
ity of the release package of DV3D and how it achieves our design
objectives. We will conclude by comparing DV3D’s functionality to
similar existing tools, highlighting how DV3D currently provides
more comprehensive functionality in a single package, as well as an
accessible framework for future development by the neuroimaging
community.

SOFTWARE DESIGN AND FRAMEWORK: DESIGN OBJECTIVES
While the exact requirements of every neuroimaging research envi-
ronment are different, we note that many researchers regularly use a

number of core functions when either exploring their data visually
or reporting results to their peers. The key requirements that we
have tried to address in the development of DV3D are discussed
below. They are:

• Dealing with different data types
• A common space for data
• Co-registration with atlases
• Export routines for sharing and publication
• An effi cient working environment.
• A fl exible, scalable and accessible open-source framework

DEALING WITH DIFFERENT DATA TYPES
Considering the number of different data sources in neuroimaging,
many different ways to display the results of neuroimaging data
have been adopted.

Due to the nature of their individual underlying analysis meth-
ods, many existing software packages are optimized for displaying
results in their own preferred way. Figure 1 summarizes some of
these conventions using FSL, SPM, DTI-Studio15, FreeSurfer, mrV-
ista and EEGLab as examples. Most packages are, understandably,
optimized for the display of imaging results from a limited number
of technologies, protocols, analysis methods and fi le formats. DV3D
provides a platform in which the user can display a wider range of
data in a number of different formats, be they 2D or 3D.

When considering the data types that a multi-modal neuroim-
aging visualization tool may be required to handle, there are at
least four levels of abstraction we need to consider. An example of
the complexity of the data structures that require consideration
for neuroimaging data processing streams is shown in Figure 2.
Analyzing and presenting data from MRI protocol subtypes alone
requires a support for a broad range of data formats. A software
package capable of supporting multi-modal data thus needs to
consider: (a) the technology being used to acquire the different
data types, (b) the acquisition settings (or protocol) being used
to acquire the data, (c) the analysis techniques used to analyze the
acquired data, and (d) the format in which the data and results
are stored.

The fi rst key objective of DV3D is to ensure fl exibility in design
that will enable users to integrate neuroimaging data whether it
comes from different technologies, from different acquisition pro-
tocols, from different analysis approaches and independently of
which data format they are saved in.

A COMMON SPACE FOR DATA
In order to sensibly overlay data for visualization of multi-modal
analyses, we need to display the data in a common reference frame.
An MEG data set, for example, will typically have a coordinate
space defi ning the sensor positions, the participant’s head shape
and head position relative to the sensors. To overlay this data onto,
for example, a surface extracted from an MRI scan, we need to
align the coordinate space of the MRI scanner to that of the MEG
scanner. Many analysis packages already have algorithms and proc-
esses for computing these alignments. Affi ne 3D transformation
matrices are used to describe linear transformations as in FLIRT

13http://www.wxwidgets.org/
14http://www.vtk.org/ 15https://www.mristudio.org/

87

http://www.wxwidgets.org/
http://www.vtk.org/
https://www.mristudio.org/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

FIGURE 1 | Some common display conventions for neuroimaging data.

Examples of some of the methods commonly used to display neuroimaging
data. (A) FSL’s FSLView is used in this example to show the overlay of fMRI data
onto three orthogonal planes generated for a 3D MRI volume. (B) DTIStudio can
display DTI-fi ber paths as streamlines mapped onto orthogonal planes
generated from 3D MRI Volumes. (C) FreeSurfer can be used to display surfaces
extracted from MRI data. In this example the grey matter to white matter

boundary is displayed in 3D, with separate surfaces for the left (red) and right
(yellow) hemispheres of the brain. (D) SPM can be used to output 2D
projections of regions of statistical signifi cance to a ‘glass brain’ view.
(E) EEGLab can be used to show iso-contour patterns of changing
electrical fi elds over the scalp in 2D. (F) mrVista can be used to map scalar
values (here different visual areas are represented by different colors) to a
cortical surface.

FIGURE 2 | Data handling complexity in MRI analysis streams. A schematic
representation of the some of the levels of abstraction considered when
preparing software capable of handling multi-modal neuroimaging data. (A) The
technology type used: Here we use MRI as an example. (B) Some MRI
acquisition protocols or sub-types: a researcher using a combination of protocols
may, for example, be looking for changes in blood oxygenation using functional
MRI, localizing the regions of activation to specifi c brain regions using structural
MRI, and then looking for anatomical connections between these regions
using Diffusion weighted MRI. They may then wish to overlay the results from
each modality to explore spatial relationships. (C) Examples of the types of
different analysis algorithms and routines for any given protocol. (D) Examples

of data formats: although researchers may use the same technology, the
same protocol, and even the same analysis technique/algorithm, they may
save their results in different fi le formats not immediately accessible to
software utilized at other sites. *In the case of Fiber tract fi les, few standard
fi le formats have been developed specifi cally for DTI data, and even fewer
for saving the results of fi ber tracking algorithm output. The.nrrd fi le format
(http://www.na-mic.org/Wiki/index.php/NAMIC_Wiki:DTI:Nrrd_format) is used
by 3D Slicer to load DTI values and parameters into memory. Fibers are
subsequently calculated and can be saved to a vtk fi le format, unspecifi c for DTI
fi bers but useful for import and conversion by any VTK based programs,
including DV3D.

88

http://www.na-mic.org/Wiki/index.php/NAMIC_Wiki:DTI:Nrrd_format

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

(Jenkinson et al., 2002). Non-linear coregistration routines, as used
in SPM (Ashburner et al., 1999) and FNIRT16, provide nonlinear,
one-to-one coordinate mapping between data sets.

Data overlay in some existing packages is also limited by the
resolution of the inputs. In FSL’s current FSLView, for example, MRI
data with a voxel resolution of 2 × 2 × 2 mm3 cannot be overlaid
onto a data set with a 1 × 1 × 1 mm3 resolution, even if the data
sets are defi ned in the same coordinate space.

The second key objective of DV3D is to enable users to align
different data sets into a common reference space. As DV3D is not
an analytical tool, we will refrain from calculating alignments on
the fl y. The alternative is to facilitate alignment by providing tools
to load previously calculated transformations from other software
packages. Additionally, once data sets are aligned, the resolution of
the data sets should already have been interpreted and processed
accordingly to allow sensible overlay and corresponding scaling.

CO-REGISTRATION WITH ATLASES
Neuroimaging analysis results often describe spatial distributions
of signifi cant activity in the brain. These maps are typically overlaid
in 2D onto an individual or group brain data, as in Figure 1A, so
that this spatial distribution can be seen.

In addition to viewing data in an individual or across a group,
it is common practice in many neuroimaging data modalities to
compare these spatial distributions to equivalent positions, and
thus brain structures, in some reference brain space. These reference
brains, or atlases, include the MNI brain (Mazziotta et al., 2001),
the Talairach brain (Talairach and Tournoux, 1988), the Harvard-
Oxford cortical and sub-cortical structural atlases17 and the ICBM-
DTI-81 white-matter labels atlas (Wakana et al., 2004). At the time
of this submission, the current version of FSLView cross-references
and reports information for the equivalent structures in all of the
above atlases if the data set loaded has been transformed into the
MNI coordinate space. An alternative for users not using FSLView
would be to transform their data into the MNI coordinate space
and then use the online MNI-Talairach daemon18 to manually check
every point of interest – a more time-consuming process.

Incorporation of functionality to allow cross-referencing with
other standardized brain volume data is thus the third key objective
of DV3D. The ability to do this in real-time, without any additional
software dependencies is also preferable.

EXPORT ROUTINES FOR SHARING AND PUBLICATION
The production of informative, high-resolution images for com-
munication of results in publications, presentations and educa-
tional material is a fundamental requirement in neuroimaging.
Many neuroimaging data analysis packages have export routines to
capture screen contents to static reports, individual frames to high-
resolution images and even short movies of rotating 3D objects
or time-series data. Researchers using a specifi c analysis package
can also share data sets with each other. By providing another user
with a data set and a set of instructions, the secondary user can
reproduce the same analysis or visualization result.

As a fourth objective, DV3D should facilitate the export of data
from the visualization screen to a number of formats with options
for control of resolution. Movie export options should allow users
more freedom in terms of temporal and spatial interaction with
data visible on the screen. DV3D should also provide a functionality
for users to share results, even without having to provide raw data
sets from which the results have been produced.

AN EFFICIENT WORKING ENVIRONMENT
Analysis of neuroimaging data can be a very labor-intensive proc-
ess. Visualization and interpretation of obtained results adds sig-
nifi cantly to this workload. Any functionality that saves the user a
signifi cant amount of time and effort is valuable. Many approaches
can be taken to increase the effi ciency of processing pipelines in
software. Perhaps the most obvious is to ensure that, at the design
stage, the processing pipeline for a software package is optimized
for the hardware and software framework it is built on.

Current computing gives researchers access to multiple proces-
sors that can handle computations independently or in parallel.
Many computing facilities extend this model to computing clusters
with multiple nodes across which processes can be distributed or
parallelized. Access to parallel processing is already a feature of a
few of the existing neuroimaging software packages. FSL’s Bayesian
Estimation of Diffusion Parameters Obtained using Sampling
Techniques (BEDPOST) toolbox19, for example, can be easily con-
fi gured to run over Sun Grid Engine20, or even simply distributed
across any additional local processors.

While parallel processing in the context of BEDPOST is uti-
lized to reduce the amount of processing time required to generate
results, the principle can be applied to computationally expen-
sive visualization routines when viewing results. Loading surfaces
with millions of vertices and rendering them is an example; a user
wanting to load multiple surfaces into memory may still have to
wait in the order of minutes for them to load and render. While
computers have increasingly large amounts of memory, allocation
and management of memory is still a problem that any software
designer needs to take into account. This is especially poignant
when handling neuroimaging data where data sets can be very large.
It is common for MEG data sets acquired at high sampling rates to
exceed 1 GB in size. Memory allocation errors are often terminal,
causing a computer program to crash if allocation fails. This can
be both frustrating and ineffi cient.

Many of the analysis routines applied to neuroimaging data are
repetitive; analysis of data from each individual in a group is an
example. Automation of processing streams for similar data sets
is an increasing feature in neuroimaging data analysis. Users often
use scripts to pass list of arguments and settings into a program
that can be accessed via a command line. This can help to reduce
the overheads associated with repetitive GUI interaction. In this
way, a researcher can apply the same processing, thresholding, and
result export routines for each individual in a large group with a
single fi le and a single button press, even if they then do have to
wait several hours for the process to complete. This principle can
be a useful feature for the visualization of results. A user may want

16http://www.fmrib.ox.ac.uk/fsl/fnirt/
17http://www.cma.mgh.harvard.edu/
18http://www.talairach.org/applet/

19http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_bedpostx.html
20http://gridengine.sunsource.net/

89

http://www.fmrib.ox.ac.uk/fsl/fnirt/
http://www.cma.mgh.harvard.edu/
http://www.talairach.org/applet/
http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_bedpostx.html
http://gridengine.sunsource.net/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

to, for example, provide an instruction list to a program to load
a particular surface, overlay a statistical result fi le, threshold to a
specifi ed value, export a high-resolution image from a top-down
view and save a movie. The user would then have a template to
process different statistical results, different thresholds, or simply
different participants without having to manually run each indi-
vidual through a GUI.

Some software packages help to increase user productivity by
saving metadata fi les that describe the current status of the work-
space the user is working in. The MATLAB toolbox, mrVista, is a
good example. In this package users have a session fi le for each
individual. Many settings, fi le paths, and associated analysis out-
puts are automatically loaded for the user the next time they load
a previously processed participant’s data. Evidently, a metadata
fi le describing the processes applied to a data set, its overlays, and
dependent thresholds is potentially time-saving when dealing with
the visualization of neuroimaging data sets. Furthermore, such a fi le
could easily be shared with another researcher to ensure a consistent
result when viewing the same input data.

Saving of processing metadata and automated processing scripts
both provide a reference which describes the processes and routines
used to produce a set of results. The use of scripts to drive analysis
and visualization routines decreases the chances of inconsisten-
cies due to user error. Provenance, the description of the history
of a set of data, is important with the recent increases in cross-
site collaboration and data sharing (e.g. Mackenzie-Graham et al.,
2008). The LONI Inspector21, an application for examining medical
image fi les, is an example of a tool developed for the compari-
son of the metadata stored with and between different fi le types.
Metadata is particularly informative when fi les are converted from
one format to another. Assumptions about default orientations,
for example, can cause left-right fl ipping of the data during the
conversion process and can cause errors in subsequent visualiza-
tion and interpretation.

Access to parallel processing, command line scripting, session or
workspace metadata and effi cient memory management are all ways
in which a neuroimaging visualization tool can increase user pro-
ductivity. As such, the fi fth objective in the development of DV3D
is to utilize a software and hardware framework that encompasses
as many of these features as possible.

A FLEXIBLE, SCALABLE AND ACCESSIBLE OPEN-SOURCE FRAMEWORK
An open-source software package with a self-supporting user com-
munity can be a viable solution for scientifi c software develop-
ment. With a community contributing to code development and
maintenance, costs can be minimized. Other factors need to be
considered when developing useful, sustainable open-source soft-
ware packages.

Transparency is a factor that concerns many researchers, although
this is more often related to the implementation of analysis algo-
rithms. While there is very little analysis per se in stand-alone visu-
alization packages, researchers should have access to processing
routines that generate the visual output (e.g. the color lookup tables
applied to thresholded statistical overlay data and interpolation
routines applied to loaded data).

Accessibility of the code base can be an issue that restricts
 interested users from understanding and developing programs.
At least three factors can be considered to affect the accessibility
of software:

• Educational resources are crucial to aid users in learning how to
use a package. Documentation and tutorial routines are often
lacking in software packages restricting the range of potential
users.

• Platform independence is an increasingly common feature in
neuroimaging software packages. Software that runs on any
hardware platform is not only more accessible to any indi-
vidual site, but aids collaboration across different sites with
potentially different hardware infrastructures.

• Coding language. Some coding languages are more complex
and / or less intuitive than others. While it is impossible to pro-
vide a coding language that every programmer would like, it
may be sensible to settle for a compromise between a language
that is simple to read and use, and one that is very powerful
and effi cient.

Extendibility and fl exibility of software is a measure of how easily
the software can be expanded to incorporate additional process-
ing routines. Since the authors have not set out to predict every
possible permutation of input-to-output requirement of poten-
tial users, it is crucial that the software framework is designed to
facilitate incorporation of additional routines with minimal effort.
A modular software framework not only facilitates such independ-
ent development, but allows for incorporation of appropriate tools
and routines often developed for completely different purposes. We
could, for example, choose to incorporate an implementation of
an algorithm for decimating surfaces, borrowing the code from an
external mathematics toolbox. Once imported into the package as
an independent module one could simply pass a brain surface to
this module as a set of vertices and run the module to down-sample
the number of vertices for increased rendering speed.

DV3D has been designed with an open-source, user commu-
nity developed model in mind. As such it is imperative that the
package is built on a software framework that is accessible to a
wide variety of users on a wide range of hardware platforms,
extendible by non-specialist developers, intuitive to use, and well
documented.

METHODS: IMPLEMENTING A Python FRAMEWORK
Having outlined the key objectives for a new multi-modal neu-
roimaging data visualization tool, we can now consider the imple-
mentation of the project. The software package can be considered
to consist of three main components:

1. The visualization engine: this is the lowest level of the pro-
gram, i.e., the functions that actually do the rendering of the
images to the screen.

2. A user interaction interface: this is the component of the pro-
gram that allows users to control the rendering routines of the
visualization engine in an interactive and intuitive manner.

3. A master control program: the component of the program
that binds or wraps the functionality of the underlying com-
ponents and allows them to run on the operating system.21http://www.loni.ucla.edu/Software/

90

http://www.loni.ucla.edu/Software/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

We will discuss each of these components in turn, highlighting
the requirements and implemented solution for each.

THE VISUALIZATION ENGINE: VTK
The Visualization ToolKit (VTK) is a widely used, free, open-source
software package for data visualization and image processing, with
support for 2D and 3D graphics rendering. With an active and vast
international development community, VTK is a model for open-
source software development.

VTK has an extensive set of implemented visualization algo-
rithms. Routines for processing scalar, vector, tensor, texture, and
volumetric methods exist. VTK offers a large variety of complex
algorithms as part of the standard toolkit, many of which are
directly useful for visualizing neuroimaging data. Contouring,
surface decimation and triangulation, re-sampling, cutting, and
interception detection are just a few examples. Many of these
algorithms are directly integrated into widgets allowing users to
interactively interrogate combinations of 2D and 3D data in real
time. VTK is licensed under the BSD license. VTK is reported to
have been installed and tested on nearly every Unix-based platform,
Windows PC, and Mac OSX Jaguar or later. VTK is an effi cient and
fast toolkit consisting of an extensive C++ class library, access to
which is available via several interpreted interface layers including
Tcl/Tk, Java, and Python.

USER INTERFACE: WXWIDGETS
Learning to use a new software package can be challenging. In a
program with a number of complicated functions, the provision
of a highly interactive GUI and familiar workspace environment
should benefi t the user. wxWidgets is a free, open-source toolkit
that provides developers with an API (application programming
interface) for writing GUI applications on multiple platforms.
wxWidgets is licensed under the wxWindows license, essentially
the L-GPL (Library General Public License), with an exception
stating that derived works in binary form may be distributed on
the user’s own terms. By using each platform’s own native controls
rather than emulating them, wxWidgets applications look and feel
familiar to the operating system’s, and should thus be immediately
more familiar to the user. The list of widgets and features offered
is extensive and the code base is very mature. wxWidgets can be
called via interface layers for a variety of languages including C++,
Python, and Perl.

Either C++ code or Python could be used to produce a program
with a GUI in wxWidgets containing a VTK window for rendering.
The relative ease of use of Python over C++, combined with the
large array of readily accessible functionality offered by Python,
makes this the preferred choice for our application.

THE MASTER ENVIRONMENT: Python
Python is a dynamic, object-oriented programming language
that is reported to run successfully on Linux, Windows, FreeBSD,
Macintosh, Solaris, and other operating systems. Since Python is
an interpreted language, it internally converts and translates source
code into the native language of the computer and then runs it.
Once Python has been installed on a system, users do not have to
compile a Python program or worry about library linkage and load-
ing. Python programs are portable: copying the source code from

one operating system onto another (which has Python installed)
will allow the software to run.

The Python-specifi c Python license is compatible with GPL
licensing. Python is distributed with extensive standard libraries.
The list of functions implemented in Python is extensive. Additional
modules for Python include a number of mathematical, numerical
methods and plotting toolboxes that are useful for manipulating
numerical lists and arrays, before passing data into VTK for render-
ing. Some Python modules support parallel processing and thread-
ing often with as few as three lines of additional code (an example
is provided in Figure 10). Modules allowing access to system com-
mand calls and environmental variables are abundant, allowing the
user to spawn and even control external processes and applications
from within the Python environment application. Python supports
integration with other languages and tools (including wxWidgets
and VTK), which are often loaded by nothing more than using the
import command.

Python and individually distributed toolboxes can be built from
source and installed independently. At the time of this submission
an increasing number of developers are producing binary installers
for entire Python distributions with many core modules includ-
ing VTK. Using the academic download of the Enthought Python
Distribution22, users on Windows, Mac OSX, or RedHat Linux have
access to a ‘one click installation’ of the Python framework required
to run DV3D.

In short Python was chosen over C++ for the development of
DV3D because of its relative ease of use, the vast array of addi-
tional functionality available, and because it allows access to the
core underlying components (wxWidgets and VTK) in a single
programming language.

DEPENDENCIES AND INSTALLATION
Dependencies
For the reasons we have already discussed in detail above, DV3D is
designed to be as platform independent as possible.

DV3D has few software or hardware dependencies and requires
only the following to run:

• Python 2.4.1 or later
• wxPython 2.6 or later
• VTK 5.0.3 or later
• The Numpy module for the appropriate version of Python

installed
• A Windows, Mac OSX, or Linux platform.

Installation
We have already outlined that Enthought provide a binary installer
for Microsoft Windows, Mac OSX, and RedHat Linux. Use of
these installers provides a comprehensive build of the core com-
ponents and additional modules required to run DV3D. Use of the
Enthought installers is currently free for academic use. Users with
platforms not supported by these installers can often fi nd binary
installers for the individual components on operating specifi c sup-
port sites. All modules can be built from source on platforms by
users wanting additional installation options and control.

22http://www.enthought.com/products/epd.php

91

http://www.enthought.com/products/epd.php

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

DATA IMPORT
Supported formats
DV3D currently supports the following formats:

• DICOM. Digital Imaging and Communications in Medicine
is a standard for handling, storing, printing, and transmitting
information in medical imaging23. Many MRI scanners now
export their data directly to this format. The DICOM format
provides private header fi elds that can be utilized to store
additional scan information. Unfortunately many sites now
use these fi elds in a non-uniform manner (according to the
DICOM standard). Different DICOM readers do not always
correctly interpret metadata describing data acquisition and
storage protocols in the fi le. DV3D addresses inconsistencies
in DICOM headers by adjusting the DICOM reading routi-
nes provided by Python to specifi c scan protocols and scanner
types.

• ANALYZE™ (.hdr and.img) is an image processing program
developed by The Biomedical Imaging Resource at the Mayo
Foundation. This program uses the ANALYZE™ format
(www.mayo.edu/bir/PDF/ANALYZE75.pdf) which is curren-
tly widely used in neuroimaging. Many programs (including
FSL, SPM, AFNI, Cox, 1996, FreeSurfer and MRICron) are able
to read and write the format. The fi les typically store voxel-
based volumes in two fi les: the binary data itself is stored with
a fi lename extension.img; another fi le acts as a header (.hdr)
describing information about the data such as voxel size, slice
numbers and data origin. As with DICOM, some software
packages use the ANALYZE™ format header in different ways.
Some software packages interpret ANALYZE™ volumes diffe-
rently due to differences in header writing conventions across
sites. DV3D addresses inconsistencies in ANALYZE™ headers
by adjusting the reading routines to detect which program was
used to produce the fi le (where possible).

• NIfTI-1 (.nii or.nii.gz) is an adaptation of the ANALYZE™ 7.5
fi le format24. NIfTI-1 uses unassigned spaces in the ANALYZE
7.5 header to add several new features. Since it is possible to
compress data stored in NIfTI-1 fi les the nii.gz fi le format is
often utilized. DV3D supports the.nii or.nii.gz fi le formats.

• GIfTI (.gii). Support for the unifi ed XML-based GIfTI fi le for-
mat25 is provided.

• VTK polydata fi les(.vtk). VTK provides routines for expor-
ting objects in memory to its own native polygon data fi les.
Additional routines allow these objects to be read into VTK
applications at a later date. This offers an incredibly useful
tool for users wanting to save objects created in a VTK session
for sharing or later access without the need for regeneration.
DV3D offers visualization routines for.vtk fi les in binary or
ascii format.

• OFF (.off). The Object File Format is described by the Geomview
package26. It is used to represent collections of planar polygons
with possibly shared vertices. This is a useful format used to

describe surfaces by programs including SurfRelax (Larsson,
2001). DV3D offers visualization routines for.off fi les in binary
or ascii format.

• FREESURFER surfaces (lh.* and rh.* are examples). Surfaces
generated by typical default processing in FreeSurfer include
left and right hemisphere cortices representing the white mat-
ter and grey matter surfaces, with anatomically correct and
infl ated versions. DV3D offers support for these standard
surfaces and additional surfaces generated by post-processing
routines (an extracted scalp for example). DV3D is also capa-
ble of handling additional scalar descriptors for these fi les,
including curvature values. DV3D offers visualization routines
for FreeSurfer fi les in binary or ascii format.

• 4-D Neuroimaging (4DNI) MEG data (.m4d). Creation of
a.m4d fi le using the pdf2set program allows direct reading of
4DNI MEG data. DV3D currently supports the 4DNI output
format, but could easily be extended to support other MEG
and EEG time-series formats.

Although many of the formats discussed above have a standard
description, i.e., a set of instructions for fi le creation designed to
maintain conformity across sites, not all packages use these formats
to read and write fi les in the standardized way. There will always be
corner-cases where the readers used to import data into DV3D may
fail. Fortunately, the previously discussed power of Python allows
developers to easily amend existing readers or write new ones to
handle these inconsistencies. Users are actively invited to submit
failing data sets with descriptions of acquisition parameters and
header formats so that current readers can be amended or new
readers developed.

Supported software packages
Since DV3D currently supports all the data formats outlined above,
it should, in theory, support at least some of the formats from a
wide range of existing neuroimaging analysis packages. Any package
capable of writing these formats could be used. This is not so simple
in practice, as we have alluded to in the Section ‘Supported Formats’
of this paper. There are complications when different sites and pack-
ages adopt varying standards for data export to specifi c formats. We
look forward to collaborating with sites with additional data sets in
order to resolve as many of these disparities as possible.

Program processing pipeline
On startup, the user can choose to launch DV3D in one of two
modes.

• MRI-overlay mode. This mode is traditionally used where a ‘base’
MRI volume is initially loaded. Other objects aligned to the
coordinate space of this volume can then be loaded and overlaid
onto the base volume. The ‘base’ MRI volume thus defi nes the
coordinate space into which additional objects are loaded.

• Non-overlay mode. The user can choose to not load a base
volume. In this case the program will launch with an empty
renderer and pre-created 2D or 3D objects can be loaded by
the user.

A graphical representation outlining DV3D’s processing pipeline
is shown in Figure 3.

23http://medical.nema.org/
24http://nif.ti.nimh.nih.gov
25http://www.nitrc.org/projects/gifti/
26http://www.geomview.org/docs/html/OFF.html#OFF

92

www.mayo.edu/bir/PDF/ANALYZE75.pdf
http://medical.nema.org/
http://nif.ti.nimh.nih.gov
http://www.nitrc.org/projects/gifti/
http://www.geomview.org/docs/html/OFF.html#OFF

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

RESULTS
DV3D is accompanied by user documentation, example data sets
and tutorial videos. Links to this information are provided in
the Supplementary Material section of this paper. The fi ne detail
describing interaction with the application is described in these
documents and tutorials. Here instead we will discuss the broad
concepts and functions of the program, and how they satisfy our
design objectives.

DESIGN OBJECTIVE: A COMMON SPACE FOR MULTIPLE DATA TYPES
DV3D’s workspace
DV3D provides a single, common workspace for viewing neuroim-
aging data, simultaneously in 2D and 3D. The main workspace
environment of DV3D consists of two windows:

Main application window (Figure 4). This window is divided
into quadrants:

• VTK window. The bottom-right quadrant holds the
wxVTKRenderWindowInteractor, the VTK class that allows a
functional VTK session to be embedded in a wxPython pro-
gram. We will refer to this as the VTK window. When data
objects are loaded into or created by DV3D they are added to

this window. The VTK window is the core tool allowing us to
provide a common space for simultaneous multi-modal data
overlay.

• Button Panel. The top-right quadrant is constructed from a
wxNotebook object that we will refer to as the Button Panel. It
consists of a number of pages which each contain a panel of
buttons and widgets which allow the user to interact with the
VTK window. A tab labeled with the title of the panel denotes
each page. Each page is brought to the front by clicking on its
tab. Pages group functions of similar types together for ease of
navigation. The Button Panel can be extended to have many
more pages, allowing for a multitude of additional functions
to be added to DV3D at a later date without excessively clutte-
ring an individual button page. Potential developers will also
be interested to note that each page here is derived from a sepa-
rate class allowing easy parallel development and integration.

• Object List. The bottom-left panel holds a wxTreeCtrl that we
will refer to as the Object List. It displays its items in a tree
like structure similar to many operating systems’ fi le browsing
dialogs. An item may be either collapsed (meaning that its chi-
ldren are not visible) or expanded (meaning that its children
are shown). Whenever a new object is loaded into the program

FIGURE 3 | DV3D processing pipeline. A schematic representation of the processing pipeline of program startup, data loading and export user events in DV3D.

93

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

or generated by one of DV3D’s routines, a tree item is added to
this list. In addition to this, a property panel is created for each
new object. This panel has a number of different buttons and
tools used to manipulate the display properties of the objects
in the VTK window. Since a unique item identifi er identifi es
each item in the tree, it can be linked to the object in the VTK
window. This allows us to manipulate some of the properties
of the object in the VTK window associated with a specifi c item
in the Object List simply by clicking on the object in the list.
Each item has its own (optional) icon and a label. Users can
simply rename the item in the tree to a more meaningful string
without losing the interaction with the associated object in the
VTK window. The Object List offers an intuitive and effi cient
tool for managing the content of the VTK window.

• Message Dialog. The top-left quadrant, which we will refer to
as the Message Dialog, holds a wxTextCtrl. This object is effec-
tively a text box that is updated with information for the user
as the program is used. Interaction coordinates from the VTK

window (bottom right quadrant) are displayed in the Message
Dialog if a base MRI volume is loaded.

• Sizers. A vertical and horizontal sizer bar defi ne the bounda-
ries of the quadrants. Clicking and dragging these sizers allows
the user to alter the relative sizes of the quadrants of the Main
application window.

The Main application window’s VTK window allows us to display
multi-modal data, whilst the Button Panel, Object List and object
associated Property Panels allow us to manipulate the properties
of the displayed objects.

In addition to the 3D viewing capabilities of the VTK window,
DV3D provides traditional 2D orthogonal views of the 3D window
via the Orthogonal view window. This window consists of three
orthogonal projections of the VTK window’s content. The options
panel in this window allows the user to set the refresh frequency of
the viewports, increasing program performance. Plane orientation
and placement of the viewpoints is also fully customizable.

FIGURE 4 | DV3D’s main application window. The main window for data
interaction in DV3D. The bottom-right quadrant holds the VTK window where all
3D rendering takes place. The top-right holds the Button Panel, which consists
of multiple sub-pages allowing a large array of user interaction functions. The
top-left quadrant holds the Message dialog which displays the current

coordinates of the interaction cross hair in the VTK window. The bottom-left
quadrant holds the Objects List: a list of all objects loaded in the the VTK
window. Panels can be resized by clicking and dragging the vertical and
horizontal dividers between each panel. Views in the VTK window are
neurological by convention.

94

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

Viewing conventions
It is important to make the default visualization conventions of
DV3D clear at this stage.

Radiological vs. neurological. Data viewed in the 3D VTK window
of the Main application window is rendered according the neuro-
logical convention as described by FSL27. Data viewed in the 2D
Orthogonal view window also conforms to the neurological conven-
tion, but can be switched to the radiological convention.

Perspective vs. parallel projection. To make 3D visualization more
natural, the VTK window utilizes a perspective projection algorithm
during rendering to infer depth in the scene. Since the planes in
the Orthogonal view window are effectively 2D we refrain from
using this algorithm (since it carries some processing overhead)
and revert to parallel projection.

Aligning different data sets
Transformations. DV3D allows the user to add different data sets of
different types into the same coordinate space (the VTK window).
Data is loaded into a millimeter coordinate frame defi ned by the
data set’s header description (e.g. the sform or qform matrices held
in the header of NIfTI-1 fi les). By using header transformation
matrices, DV3D can automatically align data. Alternatively, the
user can provide additional affi ne transformations (4 × 4 matri-
ces) to apply previously calculated alignment parameters (typical
examples include affi ne transformations provided by FSL’s FLIRT
when coregistering an individual MRI to the MNI brain). This
principle applies to any volumes or surfaces loaded. DV3D does
not currently calculate new transformations, but rather handles
those pre-calculated in external analysis packages.

Resolution and scaling. Unlike many other visualization pack-
ages (e.g. FSLView), DV3D does not require MRI data to be at
the same resolution. DV3D uses a millimeter coordinate space.
All data loaded into the VTK window are scaled according to the
header information (e.g. the pixdim values in ANALYZE™ and
NIfTI headers describe the voxel dimensions).

DESIGN OBJECTIVE: DEALING WITH DIFFERENT DATA TYPES
Viewing volume data in 2D and 3D
The vtkImagePlaneWidget is the core tool utilized by DV3D to dis-
play and interact with volumetric MRI data and associated overlay
volumes. This widget works by creating a plane that can be interac-
tively placed in an image volume. Readers may ask why a 2D tool is
incorporated in a 3D data viewer. VTK allows the user to manipulate
this plane in real time, using the third dimension to tilt, rotate, or
translate the plane in virtually any orientation. Thus a 2D plane
becomes a diverse data exploration tool. Figure 5A shows a set of
planes created for an MRI data set. The functionality of the vtkIm-
agePlaneWidget is described in detail in the tutorial examples and
documentation. In short, it offers the following functionality:

• Coordinate lookup. DV3D captures the slice number data
displayed by the vtkImagePlaneWidget and uses it to calculate

the equivalent millimeter coordinates in the underlying data
set. The slice number and calculated millimeter coordinates
are then displayed in the Message Dialog of the Main applica-
tion window. Figure 5B shows the lookup cross-hair activated
in the plane.

• Interactive volume re-slicing. The core functionality of the wid-
get relies on the vtkImageReslice class that takes the image
volume data as an input, re-slices (or ‘reformats’) it as required
and then passes the output to the texture mapping pipeline.
This tool allows real time slicing through volumetric data at
virtually any angle. Figures 5C–E show this functionality in
action.

• Brightness and contrast. In addition to rotation and translation
of the planes, it is also possible to change the windowing and
level of the data. This effectively adjusts the brightness and
contrast of the data displayed in the window. Slider style con-
trols are provided to control the absolute values of the win-
dow width and level for more precise user control. The default
behavior allowing the mouse to control window width and
level can be re-enabled in User Preferences.

Using multiple vtkImagePlaneWidgets, DV3D allows simultane-
ous overlaying of statistical data in 2D. Once a base volume has been
loaded and its planes have been created, additional volumes can be
loaded and overlaid onto this volume. The overlay load routine is
accessed via the Functional tab on the Button Panel. Overlay vol-
umes currently have to be transformed into the coordinate space
of the base volume but do not need to be at the same resolution.
For every overlay volume loaded, an additional set of planes is cre-
ated; one for each axis in the VTK window and one for each axis in
the Orthogonal view window. The overlay data is initially assigned
a yellow (for its minimum value) to red (for its maximum) color
lookup table before it is rendered. As with the base image planes,
two additional objects are created: an Object List label and a Property
Panel. Sliders control the window width and window level of the
overlay layer only, i.e. the effective scalar range for the data that
are visible in the overlay layer. This acts as a real time 2D and 3D
statistical thresholding tool. The color map currently in use can
also be altered using the color map selection dialog.

Viewing 3D surfaces
DV3D provides methods for loading and generating surfaces for
display in the VTK window. Surfaces are created in memory as
vtkPolyData objects, which have a number of native properties
that the program is able to manipulate to increase user interactiv-
ity. Examples include access to the global transparency and color
properties of the object. These properties can then be altered using
the property panel automatically created for any surface loaded
or generated.

Loading surfaces. Surface load routines are accessed via the Surfaces
tab on the Button Panel. Clicking the Load button opens a fi le dialog
offering the import of a number of different fi le formats. Surface
inputs currently supported by DV3D include:

• FreeSurfer output surfaces (including infl ated surfaces).
• SurfRelax output surfaces in the Geomview binary.off fi le

format.27http://www.fmrib.ox.ac.uk/fslfaq/#general_radiologicaldef

95

http://www.fmrib.ox.ac.uk/fslfaq/#general_radiologicaldef

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

• mrVista.mrm outputs.
• vtkPolyDataWriter output fi les (.vtk).
• Any surface exported to the GIfTI format.

Once the surface load dialog completes the object is loaded and
automatically added to the VTK window and the Orthogonal view
window. The automatically generated property panel will also be
displayed.

Generating surfaces. VTK provides techniques for dynamically
generating surfaces from volume data in memory. DV3D uses the
vtkContourFilter to calculate and extract surfaces from underlying
MRI data volumes. The vtkContourFilter interrogates the volume
data set, fi nding points in the volume where the scalar value cor-
responds to a value stipulated by the user. It then scans through
the data volume, connecting points of the same value and creating
isocontour lines (in 2D) or isosurfaces (in 3D). Since the stipulated
search value may occur several times in the data volume, multi-
ple isolines or isocontours can be returned by the algorithm. An
additional option offered by the algorithm is to retain only the
largest connected surface, i.e., the surface with the largest number
of vertices.

It may be interesting to generate surfaces from underlying data
for a number of reasons. In Figure 6 we show an example of a
rough estimate of a scalp (Figure 6A) and rough cortical sur-
face (Figure 6B) representative of the white-matter/gray-matter

 boundary, extracted from the same individual’s data. Isosurfaces
extraction is highly sensitive to homogeneity inconsistencies in
the MRI image volume and produces better results with inten-
sity normalized volumes. In Figure 6C we show the same routine
applied to the skull-stripped 1 × 1 × 1 mm3 MNI brain distributed
with FSL 4.0. It should be evident that this result is less noisy than
that shown in Figure 6B, a result of the intensity normalization
of the MNI brain. Surface generation for cortical surfaces using
DV3D is meant to aid quick data exploration and is not nearly
as informative or accurate as the algorithms utilized by programs
like FreeSurfer, FSL’s FAST28 or SurfRelax. The speed with which
an individual can extract a rough representation of this surface
is however very useful. DV3D can give a user a quick insight into
the cortical shape in just 30 s, where other packages take between
15 min and several hours to run.

Activation color mapping. In addition to offering access to the
global transparency and color properties of the object, vtkPolyData
objects allow access to the properties of individual vertices that
defi ne the shape of the surface. Each vertex can have a scalar value
associated with it. VTK allows the user to create a color lookup table
covering the range of all scalar values associated with the vertices
of a surface. The color presented at each vertex on the surface can

FIGURE 5 | The use of plane widgets to show 3D volume data. (A) A set of
three orthogonal planes, each intersecting a single 3D MRI volume. (B) Left
clicking on any one plane with a mouse will make a cross-hair visible (in red)
allowing data from a specifi c coordinate in the data set to be displayed. Real-
time reformatting of data (re-slicing it in any plane direction) is possible by tilting

the planes around their current origin. (C) The axial plane is rotated around the
y-axis by clicking on the edge of the plane (show in red) and moving the mouse.
(D) The axial plane is rotated around the x-axis by clicking on another plane edge
(shown in red). (E) The axial plane is rotated around the z-axis by clicking in the
corner of the plane (shown in red).

28http://www.fmrib.ox.ac.uk/fsl/fast4/

96

http://www.fmrib.ox.ac.uk/fsl/fast4/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

then be directly mapped through this lookup table to the scalar
value at that point. This offers an easy way to map patterns of
activation to a surface.

Viewing time-series data
Interactive time-series data visualization is another data exploration
technique supported by DV3D. The ability to follow real time changes
in signal amplitude at specifi ed locations in data sets relies on VTK’s
aforementioned ability to map scalar data to individual vertices of
loaded surfaces. DV3D extends the ability of VTK to map scalar data
by allowing users to pass new values into surface objects’ scalar arrays.
By allowing users to update the scalar values mapped to surfaces with
data from any time point in a time-series, DV3D allows dynamic
viewing of time-series data in 2D and 3D by stepping through succes-
sive time points. DV3D also supports extraction of sensor time-series
data for MEG and EEG data (e.g. Butterfl y plots).

Numpy29 is a mathematical methods module for Python that
allows, amongst many other mathematical functions, the use
and manipulation of arrays and matrix mathematics in Python.
Python’s automatic memory management, coupled with the power
of Numpy matrix manipulations means that DV3D has access to
effi cient temporary data storage of large data arrays. VTK also offers
techniques for data arrays to be passed directly into VTKArray
classes, further increasing processing effi ciency.

Two time-series objects are shown in Figure 7. A 3D contour plot
and a minimum norm solution (techniques used for visualizing and
analyzing MEG and EEG data) for two MEG data sets are shown in
Figures 7A,B, respectively. The user fi rst provides a coordinate fi le
that describes the surface that is to be added to the VTK window.
This fi le provides the coordinates for the vertices and edges of the
surface to be generated. The user then provides a time-data fi le that
holds an array of scalar values. This fi le holds multiple values for
each vertex, arranged chronologically to represent the time-series at

each location or vertex in the coordinate fi le. Independently of the
exact fi le formats, DV3D generates a surface from the coordinate
fi le, and then loads the time-data fi le into memory, constructing a
Numpy array to hold the time-series data. As the user interacts with
the object, stepping to subsequent or previous time points, DV3D
simply steps to the appropriate point in the array and extracts the
relevant values. These values are then converted to a VTKArray
and passed directly to the scalar value representation of the object.
Although this process may seem rather complex, it is an extremely
effi cient technique for managing large data arrays without restrict-
ing rendering speed when visualizing time-series data.

Advanced interaction techniques
We have shown the way in which DV3D can load surfaces or gener-
ate them from underlying data, or re-slice volume data in real time
using image planes. We will now briefl y describe three of the more
advanced features demonstrated in the user documentation and
tutorials to show the data exploration potential of DV3D.

3D overlay data. This visualization technique relies on the pre-
viously described method for extracting isosurfaces from MRI
volumes using the vtkContourFilter. We previously described
extracting a rough representation of the cortex by passing a base
sMRI volume to the vtkContourFilter. Following the same princi-
ple, we can pass an overlay volume to the vtkContourFilter in the
place of the structural volume. This volume could, for example, be
a statistical z-score map of the activation resulting from a contrast
analysis of fMRI data. This is illustrated with a visual motion fMRI
data set in Figure 8. The 2D overlay data is shown in Figure 8A.

Isocontouring with depth-dependent transparency mapping is
a technique that can be applied to a variety of neuroimaging data
types or result fi les. Figure 8E shows how this technique can be
applied to probabilistic DTI visualization (e.g. FSL’s Probtrack30

FIGURE 6 | Viewing 3D Surfaces in DV3D. (A) Example of a rough estimate of a scalp using the surface extraction technique. (B) Example of a rough estimate of a
cortex using the same technique. Here the data set has been skull stripped fi rst using FSL’s Brain Extraction Tool. (C) A rough cortical extraction of the 1 × 1 × 1 mm3
MNI brain distributed with FSL 4.0.

29http://numpy.scipy.org/ 30http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_probtrackx.html

97

http://numpy.scipy.org/
http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_probtrackx.html

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

output) to give a clear representation of the entire extent of prob-
able connectivity between regions. In addition to being a tool for
producing interesting 3D images of the connectivity probability
distribution of the DTI data set, this technique has another poten-
tial benefi t for DTI. Standard DTI fi ber tracking techniques tend
to represent 3D results at streamlines or stream-tubes in 3D space.
With this technique, the colors mapped to each surface have actual

probabilistic value and can be mapped along the length of the tract
or network path with a visible color bar.

Surface interrogation of overlay volume data. The vtkContourFil-
ter interrogates data volumes, fi nding specifi c scalar values and then
extracting the 3D coordinates with corresponding scalar values,
constructing isolines or isosurfaces by effectively ‘connecting the

FIGURE 7 | Viewing time-series data in DV3D. (A) Evolution of an MEG fi eld displayed via 3D-contour plot. (B) Evolution of a minimum norm projection via surface
scalar lookup table. In both instances frames can be automatically generated by cycling data and exported for movie creation.

FIGURE 8 | 3D overlay data using isosurface transparency. (A) 2D overlay
data from an fMRI experiment overlaid onto a structural MRI volume. (B) The
vtkContourFilter can be applied to create an isosurface through the data at a
specifi c threshold value, say z = 2.3. The returned 3D surfaces will encompass
all areas in the data set that have a z-score of z = 2.3 or above. We could
repeat the process, asking the vtkContourFilter to return smaller surfaces as
we increase the threshold. (C) A 2D representation (using isocontours shown
in blue) of 2 separate isovalues used to extract surfaces. (D) If we
simultaneously render fi ve sets of surfaces, at z-scores of z = 2.3, 3.3, 4.3, 5.3,
and 6.3, for example, the only set of surfaces visible would be that at z = 2.3,
since all other surfaces are inside this surface. We can manipulate the
transparency and color of the vtkPolyData class to make the distribution of

activation visible and overcome this problem. By making the outermost
surface (at the lowest threshold value) 80% transparent, the second
outermost 60% transparent, the third 40% transparent, the fourth 20%
transparent, and the highest threshold surface completely opaque, we make
all surfaces simultaneously visible. To emphasize this effect, we can also apply
a color gradient (yellow to red) across the surface threshold range.
Interacting with this mode of visualization in 3D gives an instantaneous
percept of the entire distribution of the activation in 3D. (E) This image shows a
number of tracts output from FSL’s Probtrack toolbox rendered using the
3D overlay technique. The tracts are seen as yellow to red isosurfaces. The
green spheres indicate the positions of seed and target points as defi ned in
Probtrack.

98

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

dots’. VTK also offers techniques to do the reverse: having a surface
in the same coordinate space as a data volume, we can fi nd where
each vertex of the surface intercepts with the data volume and
extract the volume’s scalar value at this point. We have already
shown (in Figure 7) that when a scalar values are provided for
each vertex of a surface, we can use a color lookup table to over-
lay a color map of the distribution of the scalar value amplitudes
across the surface.

Figure 9 demonstrates the usefulness of this technique. An
overlay volume can be loaded into sMRI space (Figure 9A). The
user can then create or load a surface (Figure 9B) into the same
space. From the property panel of this surface the user can choose
to map statistical data to the surface (at the current threshold and
color map defi ned by the overlay plane’s property set). This gives
the user a very quick way to visualize activation distributions in
3D (Figure 9C).

DESIGN OBJECTIVE: COREGISTRATION TO ATLASES
Automatic atlas lookup
DV3D provides methods for real-time cross referencing with brain
atlases. Atlas lookups are currently only possible on MRI-overlay
mode. Once the user has loaded a base MRI volume, they can load
a second volume into memory. On the Reference tab of the Button
Panel, the user can select a fi le to load as the reference volume to
compare to the base volume. Once the user selects a volume, they
are prompted to supply a transformation matrix describing the
mapping of the base volume (e.g. an individual’s brain) to the ref-
erence volume (e.g. the MNI brain). DV3D is currently optimized
for use with FSL output data, allowing referencing with the MNI
and Talairach brains. If a user supplies the MNI brain as a refer-
ence, the user can select to automatically lookup the equivalent
Talairach coordinates and brain label. DV3D uses the MTT-pooled
transform for the MNI brain to the Talairach brain (Lancaster et al.,
2007). Coordinates and slice numbers of the current and reference
data set are displayed in the Message Dialog of the Main applica-
tion window. The Talairach label, slice number and coordinate is
displayed in the Message dialog if the supplied reference volume is
the MNI brain and the user has checked the Ref is MNI and Show

Talairach Transform check boxes on the Button Panel. Interaction
with a base MRI volume, with cross referencing to the MNI and
Talairach atlas is demonstrated in Figure 4.

DESIGN OBJECTIVE: EXPORT ROUTINES FOR SHARING AND
PUBLICATION
Surfaces
Any surface currently displayed in DV3D’s VTK window can be
written out to a fi le for sharing or reloading at a later time. Export
routines for surfaces can be called by selecting the required surface’s
label in the Object List, clicking on the list item with the right mouse
button and selecting the Export surface option. This will launch
the operating system’s native ‘Save fi le as’ dialog. The fi le can then
simply be saved and re-loaded where required.

Images
DV3D offers a number of different options for saving out images,
capturing the content of the VTK window and the Orthogonal view
window as required. The user has full control over the resolution of
the image output and is given the option of multiple output formats
(including JPEG, TIFF, BMP and PNG). Controls enable the user
to export the current view to single image, or export a sequence
of views as separate frames (e.g. 360° rotation of the viewport to
multiple, sequential images).

Movies
DV3D offers options for saving and creating movies from of the
VTK window. The user has full control over the resolution of the
image output since the frames of the movie are simply captured
at the dimensions of the VTK window as it is displayed on the
computer monitor. On the Export tab of the Button Panel the user
can select:

• Export 360° directly to.AVI movie. VTK provides a vtkAVIWri-
ter class that is capable of writing renderer contents directly to
AVI format video fi les. Currently this export routine does the
same as the Export 360° to multiple images routine, rotating
the camera through 360° around the object over 180 frames

FIGURE 9 | A demonstration of surface interrogation of overlay volume data. (A) Structural MRI space with fMRI data overlay. (B) Rough cortical extraction from
underlying structural MRI data. (C) Rough cortex with overlay intersection data rendered onto the surface at the user defi ned thresholds.

99

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

and creating the output as a movie. Depending on the build
options used at VTK installation time or the installer that the
user has chosen to use, the vtkAVIWriter class is not always
automatically compiled. The Enthought Python distribution,
for example, builds this class on Windows by default, but not
on OSX. Users wanting access to this functionality should con-
sider manual installation of the VTK modules, or see the more
advanced functionality of the streaming routine described in
Start interactive streaming.

• Start interactive streaming. This is the most advanced interac-
tion capture technique currently available with DV3D. It has
the capability to capture user interactions in real time, periodi-
cally capturing frames from the VTK window as the user chan-
ges objects in it. Clicking the start interactive streaming button
launches the operating system’s ‘Choose folder dialog’, allowing
the user to specify a folder for the output to be saved in. With
this routine, frames are saved to memory as they are captu-
red rather than being written out immediately. The user will
notice very little jittering during interaction due to the decrea-
sed processing load. The individual frames are then written
out when the Stop stream button in pressed. Individual frames
can then be combined into a move format by external software
programs such as Apple’s QuickTime Pro.

Examples of all export routines are provided at the software
website references in the Supplementary Material section of this
paper.

DESIGN OBJECTIVE: AN EFFICIENT WORKING ENVIRONMENT
A number of features of DV3D are designed to aid users to optimize
the working environment of the package.

User preferences
A user preferences fi le can be accessed via the Preferences panel.
This allows users access to environmental variables including:

• Automatic property panel display: users can choose whether
the property panels generated for each loaded object are auto-
matically displayed or not.

• Orthogonal window orientations: these settings allow the
user fi ner control over the layout of the orientations of the
Orthogonal view window panels.

• Automatically render orthogonal window: this setting tog-
gles whether the program default is to automatically render
the Orthogonal window when the VTK window changes, or
whether the user calls this manually.

Parallel processing
Python offers access to parallel processing via a number of differ-
ent modules. While there is little need for this at present, we have
included a sample of how Python can manage separate threads with
this release as a demonstration of how easy it is to implement, and
how much potential there is for speeding up user interaction. The
demonstration can be run from the Threading tab on the Button
Panel. This function runs the load routine for a surface fi le with over
one million vertices. The routine is run in the background while
the user continues to interact with the program. Loading the same
surface without threading requires the user to wait between 20 and

45 s for the process to complete. An example of the simplicity of the
code required to access this functionality is shown in Figure 10.

Workspace saving
At any point during use of DV3D, users can choose to save the
current status of the workspace to a fi le. This fi le holds metadata
that an be loaded at the start of a later session to load the current
working environment, with many of the current settings in use
by the user, including all loaded objects and color / transparency
settings. This fi le hard-codes the paths of input fi les and will fail if
fi les are moved between sessions.

Surface decimation
Upon loading surfaces into memory, DV3D can be set to run a
decimation routine to down-sample the number of vertices of each
surface by between 10 and 90%. This surface is not shown automati-
cally (the high-resolution surface is visible by default), but the user
can choose to toggle between the decimated and original surface
during interaction to help increase the speed of rendering.

Command line access for scripting
In addition to handling workspace fi les, DV3D offers the ability
to handle explicit arguments passed to the program on the com-
mand line. This allows users access to advanced scripting options
for automation of processing streams.

FIGURE 10 | A demonstration of code simplicity in Python: enabling

threading. (A) This code example demonstrates how a function may be linked
to a button press in a standard Python script using the thread running the main
program. On the button click, the program asks the user to choose a fi le to
load. The program then passes the fi le to the subroutine (Load_surface_fi le)
and runs the subroutine. While the subroutine is running the user has to wait
for the object to be loaded and returned to the main program before
continuing. (B) This second code example shows that we can produce the
same result using Python’s threading module. First the threading module is
imported. The functionality of code example in (A) is then added as a function
(RunFunctionInThread). The button click in this instance calls a thread (my_
thread.start) and runs the load routine will run in the background allowing the
user to continue working while it is prepared. Note that threading only
requires a few extra lines of simple code.

100

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

DESIGN OBJECTIVE: A FLEXIBLE, SCALABLE AND ACCESSIBLE
OPEN-SOURCE FRAMEWORK
Our implementation of a fl exible, scalable and accessible open-
source framework is described largely in the Section ‘Methods:
Implementing a Python Framework’ of this paper. We show that
the combination of Python, wxWidgets and VTK gives us the ability
to produce a code base that is freely distributable and platform inde-
pendent. This implementation has all the functionality required
to process a number of different fi le types and formats, is highly
modularized for ease of understanding and promotes future user
development due to the relative simplicity of Python as a program-
ming language (for an example, see Figure 10).

DISCUSSION
The ‘Results’ Section of this paper shows that DV3D satisfi es each
of the key design objectives identifi ed as important for a multi-
modal neuroimaging data visualization package. In summary,

DV3D allows users to view data from many different imaging
modalities and analysis streams in a single coordinate space. Data
can be cross-referenced with standard spaces in real-time, from
2D or 3D objects. DV3D supports the display of a large number of
input data formats, and allows the user to export data in a number
of different formats. The user workspace can be customized to
allow optimum productivity and allows access for both casual and
power users (command line scripting and parallelization). DV3D’s
platform independence (due to Python) makes it fl exible, and the
modularity and simplicity of the code base makes it both acces-
sible and scalable.

Readers may ask about the novelty of DV3D. While we (to the
best of our knowledge) are unaware of any other software pack-
age that utilizes isocontouring with depth-dependent transparency
mapping to display 3D statistical overlays (see Advanced Interaction
Techniques), we do not claim that any other techniques utilized
by DV3D are novel. Table 1 summarizes the features of DV3D,

Table 1 | Feature summary and comparison of imaging data visualization packages. This table summarizes some of DV3D’s key features and compares

DV3D’s functionality with three commonly used imaging data visualization tools, FSLView, MriCron and 3D Slicer. Features are accurate as at the time of initial

development of DV3D.

Software feature FSLView MRICron 3D Slicer DV3D

NEUROIMAGING DATA SUPPORT

Optimised for neuroimaging –

Structural MRI

Functional MRI

DTI – probabilistic – –

DTI – tractography – – Calculated online Loaded from memory

DTI – 2d vectors – –

DTI – 3d vectors – –

MEG/EEG contour plots (2D and/or 3D) – – –

MEG/EEG 3d time-series on surface – Single instant – Full dynamic

MEG/EEG dipoles – – –

MEG/EEG butterfl y plots – – –

DATA EXPLORATION

2D statistical map overlay

3D statistical map overlay – –

Interactive surface extraction – – Complex watershed Simple isosurfaces

Real-time atlas cross-referencing If data in MNI space – – 4 × 4 Transform required

COMPLEX VISUALIZATION FUNCTIONS

Real-time reformatting – – Single plane Multiple planes

Interactive data intersection – – –

Interactive time-series interrogation 2d fMRI only – – 2D and 3D fMRI, EEG and MEG

Batch processing from command line – –

EXPORT

Static images –

Movies – –

Real-time streaming – – –

TECHNICAL

Main code base language C,C++,Tcl/Tk Pascal C++,Tcl/Tk Python

Platform independent code base – – –

Access to parallel processing – – –

101

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

 comparing the resulting functionality achieved by DV3D with simi-
lar packages already available. We show that, while DV3D is not an
entirely comprehensive solution for visualizing neuroimaging data,
it does represent a utility that can offer a single solution to users
of a variety of neuroimaging analysis packages. Being optimized
for neuroimaging data, this single package offers more options to
researchers interested in multi-modal neuroimaging data analysis
than any alternative stand-alone visualization package.

While visualization packages are primarily used to display the
results output by analysis packages, many visualization tools have
developed to include techniques to physically manipulate loaded
results fi les with complex analytical algorithms. 3D Slicer, for
example, utilizes complex segmentation algorithms to allow tis-
sue segmentation from any MRI volume acquired at any part of
the body. This allows 3D Slicer to be regarded as a tool that is suited
to generalized medical imaging analysis and visualization rather
than being neuroscience specifi c. When handling neuroimaging
data, 3D Slicer is also more analytically driven than MRICron or
DV3D. 3D Slicer does not load fi ber-tracking results from exter-
nal analysis packages. Rather it analyzes diffusion-weighted MRI
data to calculate fi ber tracts31. This move away from being a pure
visualization tool, specifi c for neuroimaging data, does mean that
3D Slicer has more demanding development and maintenance
overhead and can take longer to become familiar with, compared
to MRICron or DV3D.

DV3D was designed to be a tool optimized for the visualization
of neuroimaging data and not an analysis tool per se. Although
many algorithms and calculations underlie the functionality of
DV3D, they are primarily image processing functions allowing VTK
to display results of analyses conducted in other software pack-
ages. If DV3D were solely a data visualization tool, it would simply
take user input and display it in its raw format. We have shown
however that DV3D offers routines for manipulating loaded data
to add value to the visualization environment: DV3D can average
raw MEG time series data by epoch and display this average as a
contour plot; DV3D can manipulate volume grid data and extract
and interpolate 3D surfaces from this data to display isosurfaces
and isovolumes; DV3D offers the ability to decimate large surface
data sets to increase rendering speed. DV3D has thus already began
to evolve from a pure visualization tool to a tool that allows users
to interact with their data. DV3D does not, however, lose focus of
its optimization for neuroimaging data processing.

Since DV3D has the potential to be more than a visualization
tool, we have considered extending its functionality. Including more
functions in DV3D will allow a more extensive range of tools for
users to interrogate data. The modularity of the framework and
platform independence of the code base allows access for rapid
development and extension to include additional fi le format sup-
port and processing routine extension. Many functions have already
been requested by interested parties and are under current consid-
eration for inclusion in subsequent releases. Python offers modules
for handling pipes on operating systems, allowing the potential
for system calls and data exchange between system processes. We
are currently exploring the capability to include calls to DV3D

to/from a number of packages. Other examples of user requests
currently under development include the ability to align volumes
and/or surfaces manually or with automated error-minimization
routines, and functions to measure distances, areas, and volume
size between/on displayed objects. Future development of DV3D
will focus on support for additional formats, increased automa-
tion of processing streams, extended local settings customization,
and more extensive data sharing options. We will also consider
including the GIfTI format as a surface export option due to the
signifi cant increases in performance reported when handling these
fi les relative to the.vtk format (Harwell et al., 2008).

Python has a large and diverse international user base, and pro-
motes the development of increasingly accessible and comprehen-
sive solutions for current computing and analysis requirements. The
use of Python as the base for DV3D allows a cross-platform, trans-
parent, and extendible code base for user development. By using
Python to wrap existing toolkits, including tools for visualization,
rendering, parallelization and GUI generation, DV3D development
has required minimal new code to be written to solve complex com-
putations. In addition to the functionality DV3D currently offers,
DV3D can also be easily expanded to meet users’ changing needs
because of its modular, open-source design. DV3D’s framework is
intentionally modularized to provide concise working examples,
illustrating the power of VTK and how easily this power can be har-
nessed by Python. While the authors are keen to extend the package,
provision of an open-source package is intended to stimulate and
facilitate further development of the software by the user commu-
nity. Example code illustrating the extension of the functionality of
the package is provided for users interested in contributing code or
developing the package for their own purposes. DV3D’s code base
currently consists of circa 12,000 lines of Python code. 3D Slicer
has over 550,000 lines of C++ code, although this includes a large
amount of additional analytical functionality that DV3D does not
have. We suggest that the simplicity of Python relative to C++, and
the vastly smaller code base, make DV3D more accessible in terms
of community extension and development prospects.

DV3D’s primary function is to allow easy, interactive display
of multi-modal neuroimaging data. DV3D has been successfully
implemented on many platforms and is currently used by local
users from a variety of disciplines. DV3D is provided as a free, open-
source package built on Python’s platform independent model.
DV3D can thus be used and, more importantly, developed by the
wider neuroimaging community.

ACKNOWLEDGMENTS
The authors would like to acknowledge the developers of Python,
VTK and wxWidgets for their ongoing support of open-source soft-
ware provision. The reviewers are to be thanked for their insight-
ful comments, some of which have already resulted in additional
functionality being incorporated into the package.

SUPPLEMENTARY MATERIAL
DOWNLOADING THE SOFTWARE, EXAMPLES AND EDUCATIONAL
RESOURCES
DV3D, examples output and input fi les and interactive user
tutorials can be freely downloaded from http://www.ynic.york.
ac.uk/software/dv3d.31http://www.slicer.org/slicerWiki/index.php/Slicer3:DTMRI

102

http://www.slicer.org/slicerWiki/index.php/Slicer3:DTMRI
http://www.ynic.york.ac.uk/software/dv3d
http://www.ynic.york.ac.uk/software/dv3d

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 9 |

Gouws et al. DV3D in multi-modal neuroimaging

REFERENCES
Ashburner, J., Andersson, J., and

Friston, K. J. (1999). High- dimensional
nonlinear image registration using
symmetric priors. NeuroImage 9,
619–628.

Coltheart, M. (2006). What has functional
neuroimaging told us about the mind
(so far)? Cortex 42, 323–331.

Cox, R. W. (1996). AFNI: software for
analysis and visualization of functional
magnetic resonance neuroimages.
Comput. Biomed. Res. 29, 162–173.

Delorme, A., and Makeig, A. (2004).
EEGLAB: an open-source toolbox for
analysis of single-trial EEG dynamics.
J. Neurosci. Methods 134, 9–21.

Frackowiak, R. S. J., Friston, K. J.,
Frith, C. D., Dolan, R. J., and
Mazziotta, J. C. (1997). Human Brain
Function. San Diego, Academic Press.

Harwell, J., Bremen, H., Coulon, O.,
Dierker, D., Reynolds, R. C.,
Silva, C., Teich, K., Van Essen, D. C.,
Warfi eld, S. K., and Saad, Z. S. (2008).
GIfTI: Geometry Data Format for
Exchange of Surface-Based Brain
Mapping Data. OHBM – Poster
Presentation

Jenkinson, M., Bannister, P. R.,
Brady, J. M., and Smith, S. M. (2002).
Improved optimisation for the robust
and accurate linear registration and
motion correction of brain images.
NeuroImage 17, 825–841.

Lancaster, J. L., Tordesillas-Gutiérrez, D.,
Martinez, M., Salinas, F., Evans, A.,
Zilles, K., Mazziotta, J., and Fox, P. T.
(2007). Bias between MNI and
Talairach coordinates analyzed using
the ICBM-152 brain template. Hum.
Brain Mapp. 28, 1194–1205.

Larsson, J. (2001). Imaging Vision:
Functional Mapping of Intermediate
Visual Processes in Man. Ph.D. thesis,
Karolinska Institute, Stockholm.

Liu, Z., Kecman, F., and Bin, H. (2006).
Effects of fMRI–EEG mismatches in
cortical current density estimation
integrating fMRI and EEG: A simu-
lation study. Clin. Neurophysiol. 117,
1610–1622.

Mackenzie-Graham, A. J., Van Horn, J. D.,
Woods, R. P., Crawford, K. L., and
Toga, A. W. (2008). Provenance in neu-
roimaging. NeuroImage 42, 178–195.

Mazziotta, J., Toga, A., Evans, A., Fox, P.,
Lancaster, J., Zilles, K., Simpson, G.,

Woods, R., Paus, T., Pike, B. et al.
(2001). A four-dimensional atlas of
the human brain. J. Am. Med. Inform.
Assoc. 8, 401–430.

McDonald, C. R. (2008). The use of
neuroimaging to study behavior in
patients with epilepsy. Epilepsy Behav.
12, 600–611.

Stufflebeam, S. M., and Rosen, B. R.
(2007). Mapping cognitive func-
tion. Neuroimaging Clin. N. Am. 17,
469–484.

Talairach, J., and Tournoux, P. (1988). Co-
planar Stereotaxic Atlas of the Human
Brain: 3-Dimensional Proportional
System – An Approach to Cerebral
Imaging. New York, Thieme Medical
Publishers.

Teo, P. C., Sapiro, G., and Wandell, B. A.
(1997) . Creat ing connected
 representations of cortical gray
matter for functional MRI visualiza-
tion. IEEE Trans. Med. Imaging 16,
852–863.

Wakana, S., Jiang, H., Nagae-Poetscher, M.,
van Zijl, P. C. M., and Mori, S. (2004).
A fi ber-tract based atlas of Human
white matter anatomy. Radiology
230, 77–87.

Wandell, B. A., Chial S., and Backus, B.
(2000). Visualization and measure-
ment of the cortical surface. J. Cogn.
Neurosci. 12, 739–752.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 12 September 2008; paper pend-
ing published: 25 October 2008; accepted:
05 March 2009; published online: 27 March
2009.
Citation: Gouws A, Woods W, Millman R,
Morland A and Green G (2009)
DataViewer3D: an open-source, cross-
 platform multi-modal neuroimaging data
visualization tool. Front. Neuroinform. (2009)
3:9. doi: 10.3389/neuro.11.009.2009
Copyright © 2009 Gouws, Woods, Millman,
Morland and Green. This is an open-access
article subject to an exclusive license agree-
ment between the authors and the Frontiers
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original
authors and source are credited.

103

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 24 March 2009
doi: 10.3389/neuro.11.008.2009

Topographica: building and analyzing map-level simulations
from Python, C/C++, MATLAB, NEST, or NEURON components

James A. Bednar*

Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK

Many neural regions are arranged into two-dimensional topographic maps, such as the
retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable
insights about how cortical topography develops and functions, but further progress has been
hindered by the lack of appropriate tools. It has been particularly diffi cult to bridge across levels
of detail, because simulators are typically geared to a specifi c level, while interfacing between
simulators has been a major technical challenge. In this paper, we show that the Python-based
Topographica simulator makes it straightforward to build systems that cross levels of analysis,
as well as providing a common framework for evaluating and comparing models implemented
in other simulators. These results rely on the general-purpose abstractions around which
Topographica is designed, along with the Python interfaces becoming available for many
simulators. In particular, we present a detailed, general-purpose example of how to wrap an
external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines
of Python code, making it possible to use any of the extensive input presentation, analysis, and
plotting tools of Topographica. Additional examples show how to interface easily with models in
other types of simulators. Researchers simulating topographic maps externally should consider
using Topographica’s analysis tools (such as preference map, receptive fi eld, or tuning curve
measurement) to compare results consistently, and for connecting models at different levels.
This seamless interoperability will help neuroscientists and computational scientists to work
together to understand how neurons in topographic maps organize and operate.

Keywords: Python, simulators, interoperability, interfacing, topographic maps, large-scale, cortex, visual

spiking neurons, while NEST provides only limited support for
fi ring-rate neurons (necessary for the largest scale models) or for
more detailed individual neuron models, and does not provide a
GUI for large-scale visualizations. Combining multiple simulators
to bridge between these levels of analysis could provide a complete,
biologically grounded explanation of how single-neuron properties
lead to large-scale topographic maps. Even for models at the same
level, interfacing multiple simulators into a coherent framework can
also help provide a uniform means for comparing and evaluating
them. However, interconnecting simulators has previously been a
signifi cant technical challenge (Cannon et al., 2007; Djurfeldt and
Lansner, 2007).

This paper describes how the Topographica map-level simu-
lator can be used to achieve important types of interoperability
between a very wide range of simulators with surprisingly little
coding or development effort. One reason that interoperability is
practical in Topographica is that Topographica is implemented in
the Python scripting language, and many neural simulators now
include Python interfaces. Another reason is that Python is a very
high level language, known as a glue language (Ousterhout, 1998),
that makes it easy to connect different interfaces for rapid software
development. Even more important, however, is that Topographica
is built around a high-level abstraction of the properties of topo-
graphic maps, which is relatively simple to adapt to components
implemented in any particular simulator yet provides access to a

INTRODUCTION
In mammals, much of the cortical surface (and many subcorti-
cal structures) can be partitioned into topographic maps (Kaas,
1997; Van Essen et al., 2001). These maps contain systematic two-
dimensional representations of features relevant to sensory and
motor processing, such as retinal position, sound frequency, line
orientation, and motion direction (Blasdel, 1992; Merzenich et
al., 1975; Ohki et al., 2005; Weliky et al., 1996; Xu et al., 2007).
Figure 1 shows an example retinotopic and orientation map from
the primary visual cortex (V1). Understanding the development
and function of topographic maps is crucial for understanding
brain function, and will require integrating large-scale experimental
imaging results with single-unit studies of the individual neurons
and their connections that make up these maps. In principle, com-
putational modeling can help make these links explicit, in order
to explain how topographic maps can emerge from the behavior
of single neurons.

However, existing simulators typically address only a small range
of levels of analysis. For instance, NEURON (Hines and Carnevale,
1997) and GENESIS (Bower and Beeman, 1998) primarily focus
on detailed studies of individual neurons or very small networks
of them, rather than enough neurons to form a meaningful topo-
graphic map. Topographica (Bednar, 2008) and NEST (Diesmann
and Gewaltig, 2002) allow much larger scale simulations of sim-
pler neurons, but Topographica provides only limited support for

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Stephen Eglen, University of
Cambridge, UK
Marc-Oliver Gewaltig, Honda Research
Institute Europe GmbH, Germany

*Correspondence:

James A. Bednar, Institute for Adaptive
and Neural Computation, University of
Edinburgh, 10 Crichton Street,
Edinburgh, EH8 9AB, UK.
e-mail: jbednar@inf.ed.ac.uk

104

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

Bednar Topographica: interoperable map-level simulations

large range of useful tools. Simply put, if a simulation in any other
simulator or language contains a large number of neurons (at any
level of complexity) arranged into a two-dimensional sheet or array
(or a three-dimensional stack of such two-dimensional arrays),
then it will be practical to use that simulation or parts of it within
Topographica.

In turn, integrating such a simulation into Topographica will be
useful if it can make use of analyses that rely primarily on an average
(fi ring rate) activation level for each neuron, particularly if they
are based on measuring responses to an input pattern. Many such
routines are already implemented in Topographica, such as meas-
uring receptive fi elds, tuning curves, or feature preference maps of
any type, decoding activity values, and 1D, 2D, or 3D plotting of
these and other measurements. Other simulators implement some
of these functions, but rarely in a fully general form that can be
applied to any neural area and any type of input feature. To make
the most use of these components, it is helpful if each sheet of
neurons in the underlying model can be separated from the others
with well-defi ned interfaces, but even relatively monolithic models
can be analyzed if they include at least one sheet of neurons that can
accept an external input, and at least one neuron or set of neurons
whose fi ring-rate activity patterns are of interest. Any such model
can then be compared and tested against any similar model, using a
consistent analysis and visualization framework. Similar considera-
tions apply to using small parts of external models, such as a model
retinal or cortical area, as part of a larger hierarchical or network
model of a neural system connected in Topographica.

These features make it surprisingly straightforward to use
Topographica for simulating and analyzing large-scale, detailed
 models of topographic maps, using either native or externally imple-
mented components. Topographica is an open source project, and
binaries and source code are freely available through the internet
at topographica.org for interfacing to external code on Linux,
Microsoft Windows, and Macintosh OS X platforms. In the sections
below, we describe the main assumptions and abstractions used by
Topographica, provide a detailed example of interfacing to an external
spiking simulator, show how to interface to a wide variety of other
external systems and simulators, and discuss in more detail which types
of models are most suitable for interfacing with Topographica.

SOFTWARE DESCRIPTION AND METHODS
Models supported natively by Topographica typically consist of a
collection of topographic maps in cortical or subcortical regions,
such as an auditory or visual processing pathway. Figure 2 shows
an example simulation along with various types of analysis and
plotting. This simple model consists of four separate populations
of neurons, called Sheets: one sheet of retinal photoreceptors
(labeled Retina), a sheet of ON retinal ganglion cell (RGC)/lat-
eral geniculate nucleus (LGN) cells labeled LGNON, a sheet of OFF
cells labeled LGNOFF, and a sheet of V1 pyramidal cells labeled V1.
Neurons in each sheet are arranged topographically, with similar
properties but at different spatial locations.

Topographica is a general-purpose discrete-event simulator,
simulating a set of EventProcessors (any object in a Simulation

FIGURE 1 | Retinotopic and orientation map in V1. Given a particular fi xation
point (marked with a red + symbol above), the visual fi eld seen by an animal can
be divided into a regular grid, with each square representing a 1° × 1° area of
visual space. In cortical area V1 of mammals, neurons are arranged into a
retinotopic map, with nearby neurons responding to nearby areas of the retina.
As an example, the image on the right shows the retinotopic map on the surface
of V1 of a tree shrew for an 8° × 7° area of visual space (adapted from
Bosking et al., 2002 with permission; scale bar is 1 mm). A stimulus presented
in a particular location in visual space (such as the thick black bar shown) evokes
a response centered around the corresponding grid square in V1 (6°, 2°). Which

specifi c neurons respond within that general area, however, depends on the
orientation of the stimulus. The V1 map is color coded with the preferred
orientation of neurons in each location; e.g. the black bar shown at left will
primarily activate neurons colored in purple in the corresponding V1 grid
squares. Similar maps could be plotted for this same area showing preference
for other visual features, such as motion direction, spatial frequency, color,
disparity, and eye preference (depending on species). Other cortical areas are
arranged into topographic maps for other sensory modalities, such as touch and
audition, and for motor outputs. Topographica is designed to simulate any of
these cortical or subcortical areas.

105

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

Bednar Topographica: interoperable map-level simulations

capable of receiving and sending Events) connected into a graph
by EPConnections. An EPConnection ensures that Events are
delivered to the appropriate target after a specifi ed delay. The pat-
tern of connections and delays in a certain network determines
how a simulation will progress, with events being generated at a
certain EventProcessor, processed by the target EventProcessor,
and potentially leading to additional Events delivered to other
EventProcessors. Of course, any pattern of connection is allowed,
including lateral and feedback connections. This approach is gen-
eral enough to simulate any physical system as a collection of inter-
connected entities that can interact and change over time.

To make it practical to model large-scale topographic maps, the
most common type of EventProcessor in Topographica is a two-
dimensional Sheet of neurons as in the example above, rather than
a neuron or a part of a neuron. Each Sheet is typically a population
of similar neurons, and multiple Sheets can be used for each neural
area, e.g. to represent different laminae or qualitatively different cell

classes. Conceptually, a sheet is a continuous, two-dimensional area
(as in Amari, 1980; Roque Da Silva Filho, 1992), which is typically
approximated by a fi nite array of neurons. This approach is crucial
to the simulator design, because it allows user parameters, model
specifi cations, and interfaces to be independent of the details of
how each Sheet is implemented.

Apart from accepting and generating Events, all a Sheet is required
to do is to have a fi xed area and density of neurons, and to be able
to generate a fl oating-point array of the appropriate size when
asked for its current pattern of activity. Once this activity matrix
is available for a new Sheet type, then nearly all of Topographica’s
analysis and plotting code can be used with the new Sheet type,
e.g. to decode neural responses from the fi ring rate, or to measure
a topographic map. This general-purpose interface is what makes it
practical to wrap around a wide variety of external simulations, as
long as they can be interpreted as a two-dimensional array whose
elements can have some average fi ring-rate activity value.

FIGURE 2 | Topographica software screenshot. This image shows a sample
session from Topographica version 0.9.3, available freely at topographica.
org. Here the user is studying the behavior of an orientation map in the primary
visual cortex (V1), using a model of photoreceptors as the input to the Retina,
ON and OFF RGC/LGN cells, and a simple V1 model. The window at the left
labeled “Orientation Preference” shows a self-organized orientation map in V1.
The window labeled “Activity” shows (from left to right) a sample visual image
input to the retina, the ON and OFF channel responses to that input, and (on the
right) an orientation-color-coded representation of activity in the V1 Sheet of
neurons. The input patterns were generated using the Test Pattern “Preview”

dialog at the right. The window labeled “Connection Fields” shows the
strengths of the connections to one neuron in V1. The lateral weights for a 9 × 9
sampling of the V1 neurons are shown in the “Weights Array” window in the
center; neurons tend to connect to their immediate neighbors and to distant
neurons of the same orientation. The “Topographic Mapping” window shows
how retinotopy has been distorted by the orientation map, and the “FFT Plot”
shows that the orientation map repeats regularly in all dimensions, as in animals.
This type of large-scale analysis is diffi cult with other simulators, but typically
requires no new coding or software development once a network simulation has
a basic connection to Topographica.

106

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

Bednar Topographica: interoperable map-level simulations

Topographica comes with a variety of Sheet types, plus a
large library of other simulation objects, such as projections
(EPConnections between Sheets), activation functions, learning
rules, analysis routines, and visualizations. The most extensive sup-
port is for models of the visual system, and Topographica includes
fl exible components for generating visual inputs (based on geomet-
ric patterns, mathematical functions, and photographic images),
plus general-purpose mechanisms for measuring maps of visual
stimulus preference, such as orientation, ocular dominance, motion
direction, and spatial frequency maps. But many of the primitives
are usable for any topographically organized system, and there are
already Topographica models of somatosensory areas (e.g. monkey
skin and rat whisker barrel areas), auditory inputs, and motor areas
(e.g. for driving visual saccades). Moreover, additional components
can be added easily to make external simulations visible from within
Topographica, or to implement new functionality in general.

INTEROPERABILITY
To demonstrate concretely the procedure for connecting external
simulations to Topographica, in this section we present a detailed
example of wrapping an external NEST simulation using the
Topographica Sheet interface. Shorter examples of how to interface
with a variety of other simulators follow.

INTERFACING TO PERRINET RETINAL MODEL IN PyNN
For this example, we wrapped a spiking retinal ganglion cell model
that is being developed by Laurent Perrinet (INCM/CNRS) as part
of the FACETS project1 and being used in a large-scale spiking
model of cortical columns in V1 (Kremkow et al., 2007). Writing
this interface was surprisingly simple, taking about 2 h to adapt
one of the example Topographica simulations to send output to
an external simulator and retrieve input from it, and we expect
interfacing to other models to be similarly straightforward if they
meet the assumptions laid out in the “Discussion” section.

The Perrinet retina model is specifi ed in PyNN (Davison et al.,
2007)2, a Python wrapper that sets up and runs simulations of
neural models relatively independently of the underlying simula-
tion engine. This particular script calls the NEST simulator, which
is well adapted for large-scale spiking neural networks (Diesmann
and Gewaltig, 2002), but it could also be run under NEURON by
changing one line of declaration.

The model contains two populations of spiking retinal ganglion
cells, a 32 × 32 array of ON cells and a 32 × 32 array of OFF cells,
receiving input from a 32 × 32 array of photoreceptors whose acti-
vation level can be controlled externally. The code can be obtained
and run by downloading Topographica release 0.9.6 (or SVN ver-
sion 9857 or later) of Topographica, and installing PyNN, NEST,
and PyNEST using Topographica’s copy of Python (as described
in examples/perrinet_retina.ty in the distribution).

Figure 3 shows the Python code for wrapping this network as a
Photoreceptor Sheet (Photoreceptors), a connection to PyNN
(PyNNR), and two ganglion cell Sheets (ON_RGC and OFF_RGC), and
Figure 4 shows the resulting simulation running in Topographica.
The example code would be nearly the same for interfacing to any

other external simulation that consists of two-dimensional arrays
of neurons, and so we will step through each part of this code to
show how the interface is achieved. In each case, the relevant line of
code is marked with a circled number, which can be found on the
code listing. Note that this code constitutes the complete, runnable
model specifi cation for Topographica; it is not a code excerpt or a
high-level interface to some underlying, complicated interfacing
code, but instead it is all that was required to connect to and run
the external simulation within Topographica.

1 First, the external simulation is imported, making anything
available to Python from that simulation also available to
Topographica. For this import to succeed, PyNN, NEST, and
PyNEST need to be installed, and each need to have been
given Topographica’s copy of Python during installation so
that they will be available to Topographica.

2 Next, we defi ne a new type of Topographica EventProcessor
PyNNRetina to handle communication between Topographica
and the external simulator. This class simply accepts an inco-
ming event from Topographica that contains a matrix of pho-
toreceptor activity, passes the matrix to the external spiking
simulator, collects the fi ring-rate-averaged results, and sends
them out to any Topographica sheets that may be connected.

3 More specifi cally, the class fi rst declares that it can accept an
incoming event on a port labeled Activity, and that it will
generate two separate types of output data to be made avai-
lable on the ONActivity and OFFActivity dest_ports.
It also declares that it has two user-controlled parameters, N
(size of array of neurons) and simtime (duration to run the
simulation for each input). (Additional parameters from the
underlying simulator can be declared similarly, or all of the
underlying parameters could be exposed as a batch using sui-
table gluing code.)

4 The constructor (__init__) does any initialization that
should be done once per run, here consisting only of defi ning
some parameters, but potentially including launching an
external simulator, making a connection to a remote simula-
tor already running, etc.

5 The input_event method is called by Topographica whe-
never an Event delivers data to this object’s src_port
(Activity). In this case, the method adds the incoming acti-
vity matrix into its parameters data structure (ps), and then
calls the external function run_retina to run the underlying
simulation. When the external simulator completes, two lists
of spikes are returned, one for ON and one for OFF, and these
are processed using the helper function process_spike-
list. For each list, process_spikelist computes the
fi ring rate of each neuron and sends the resulting fl oating-
point arrays out the appropriate port.

6 The remainder of the code instantiates a model network to
display the results from this class, defi ning one PyNNR object,
a Photoreceptors Sheet to generate input patterns, two
RGC Sheets to display the resulting activity patterns, and con-
nections between them.

Running this model (or other Python-based simulations) within
Topographica adds only a tiny amount of computational cost.
For this example running on a 3GHz Intel Core 2 Duo machine,

1http://facets.kip.uni-heidelberg.de.
2http://neuralensemble.org/trac/PyNN.

107

http://facets.kip.uni-heidelberg.de
http://neuralensemble.org/trac/PyNN

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

Bednar Topographica: interoperable map-level simulations

 simulating in batch mode with N=8 and simtime=4 s takes 16.07 s
in Topographica, versus 15.88 s using the native PyNN version
(averages of 5 trials; variance negligible). This 0.2-s time difference

consists mainly of libraries that Topographica imports when it starts
up, and the ongoing cost is normally negligible for a non-trivial
external Python model.

FIGURE 3 | Sample Topographica interface code. This Python code shows a
complete, runnable Topographica 0.9.6 simulation interfacing with an external
PyNN/PyNEST spiking simulation of ON and OFF retinal ganglion cells. The text
in bold starts the PyNN simulation and retrieves the results, and would need to

be changed for interfacing to a new external simulation. The other text sets up
an appropriate Topographica simulation framework, and only needs changing to
e.g. match the number and type of sheets that you want to expose from the
underlying external simulation.

 import numpy
 from topo import sheet, numbergen, pattern, param, projection
 from topo.base.simulation import EventProcessor
1 import perrinet_retina_pynest as pynr

2 class PyNNRetina(EventProcessor):
3 dest_ports=["Activity"]
 src_ports=["ONActivity","OFFActivity"]
 N = param.Number(default=8,bounds=(0,None), doc="Network width")
 simtime = param.Number(default=4000*0.1,bounds=(0,None),
 doc="Duration to simulate for each input")

 def__init__(self,**params):
 super(PyNNRetina,self).__init__(**params)
4 self.ps=pynr.retina_default()
 self.ps.update("N":self.N)
 self.dt=self.ps["dt"]

5 def input_event(self, conn, data):
 self.ps.update("simtime":self.simtime
 self.ps.update("amplitude":.10*data)
 on_list,off_list=pynr.run_retina(self.ps)
 self.process_spikelist(on_list,"ONActivity")
 self.process_spikelist(off_list,"OFFActivity")

 def process_spikelist(self,spikelist,port):
 spikes=numpy.array(spikelist)
 spike_time=numpy.cumsum(spikes[:,0]) * self.dt
 spike_out=pynr.spikelist2spikematrix(
 spikes,self.N,self.simtime/self.dt,self.dt)
 self.send_output(src_port=port,data=spike_out)

6 N=32
 topo.sim["PyNNR"]=PyNNRetina(N=N)

 topo.sim["Photoreceptors"]=sheet.GeneratorSheet(
 nominal_density=N, period=1.0, phase=0.05,
 input_generator=pattern.Gaussian(
 orientation=numbergen.UniformRandom(lbound=-pi,ubound=pi,seed=l)))

 topo.sim["ON_RGC"] =sheet.ActivityCopy(nominal_density=N, precedence=0.7)
 topo.sim["OFF_RGC"]=sheet.ActivityCopy(nominal_density=N, precedence=0.7)

 topo.sim.connect("Photoreceptors","PyNNR",name='.',
 delay=0.05,src_port="Activity",dest_port="Activity")
 topo.sim.connect("PyNNR","ON_RGC",name='..',
 delay=0.05,src_port="ONActivity",dest_port="Activity")
 topo.sim.connect("PyNNR","OFF_RGC",name='...',
 delay=0.05,src_port="OFFActivity",dest_port="Activity")

108

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

Bednar Topographica: interoperable map-level simulations

With this interface in place, the external simulation can be used
with nearly all of Topographica’s features. For instance, Figure 4
shows one example input pattern and the resulting pattern of ON
and OFF RGC activity. For this example, the main benefi t to having
the Topographica wrapper is to be able to present any of the types
of input patterns in Topographica’s large library of input patterns,
using either the GUI so that the results can be seen interactively, or
systematically using Python code. For other simulations, e.g. those
including cortical areas such as V1, Topographica can compute tun-
ing curves, receptive fi elds, many types of preference maps, and other
analyses and plots for any of the neurons and Sheets available to
Topographica, with no coding required. As long as the computa-
tion only requires average fi ring rates, no special-purpose code or
additional interface will be needed beyond what is shown in this
example. Thus Topographica can be used to provide a consistent set
of analyses and plots for a wide variety of underlying simulations.

INTERFACING TO OTHER PYTHON CODE (E.G., PyNEST, NEURON)
The general approach outlined in the section “Interfacing to Perrinet
Retinal Model in PyNN” can be used for any other model running in
an external simulator that has a Python interface or is written directly
in Python. In each case, a new Topographica EventProcessor class can
be created to accept incoming events, process them somehow, and
generate appropriate output. For instance, similar steps would have
been used if the retina model had been written in PyNEST directly
rather than PyNN, or in NEURON’s own Python interface. As long
as the external simulator can be told to use Topographica’s copy
of Python, then Topographica can import the required functions,
execute them as part of such a class, and thus control its input and
output. As a result, the main issues with interfacing to other Python-
based simulators are not so much technical as conceptual; these
conceptual issues will be reviewed in the “Discussion” section.

INTERFACING TO MATLAB
Topographica can also connect easily to external simulations
 running in Matlab, using the Python ↔ Matlab interface package
mlabwrap3 that is supplied with Topographica.

For instance, the following complete, runnable Topographica
script defi nes a Python/numpy array a and then calls a Matlab
function “nestedsum” on it:

 from mlabwrap import mlab
 import numpy
 len=100000
 a=numpy.array(range(len))
 print mlab.nestedsum(a, len)

Here nestedsum.m is an arbitrary example of a Matlab function
placed somewhere in Matlab’s path, containing:

 function s = nestedsum(a,len)
 s=0.0;
 for i=1:len
 s=s+sum(a);
 end

(This code prints 5.0000e+14 when run from Matlab, and
4.99995000e+14 when run from Topographica/Python.) Any
built-in or user-supplied Matlab function can be called similarly
(including plotting code like mlab.plot(a)), with nearly seam-
less interchange of scalar and array data between the two systems.
This capability makes it simple to develop interfaces like that in
the section “Interfacing to Perrinet Retinal Model in PyNN”,
or just to use small bits of Matlab code or visualizations when
appropriate.

The mlabwrap package performs some data conversion behind
the scenes, but the overhead is still usually negligible. The exam-
ple above run on the same machine as for PyNN takes 12.27 s in
Topographica, versus 11.57 s for a pure Matlab version. Again, this
0.7 s difference includes the entire startup time, and increases little
with simulation size (e.g. 0.8 s out of 44 for len=200000).

The main technical limitation of the mlabwrap Matlab
 interface is that at present it only supports 1D and 2D arrays,
because the mlabwrap author has not yet added n-dimensional
array support. More importantly, interfacing to external Matlab
models can be diffi cult because of the monolithic (as opposed to
object-oriented) programming style typically used for Matlab pro-
gramming. For instance, the Olshausen and Field (1996) model

FIGURE 4 | Example architecture. This fi gure shows the simulation from
Figure 3 running in Topographica. On the input sheet is a 2D Gaussian pattern
generated by Topographica and presented to the underlying spiking network,

with the resulting spike count responses shown on the ON and OFF RGC
sheets. The type of input pattern and its parameters can be manipulated as
shown.

3http://mlabwrap.sourceforge.net.

109

http://mlabwrap.sourceforge.net

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

Bednar Topographica: interoperable map-level simulations

available from4 is a good match to Topographica conceptually, but
running it within Topographica in a useful way requires splitting
up the Matlab code into three components to handle the input
pattern generation, response to the input, and the weights update
separately. These functions were originally controlled by a single
Matlab script. Thus in practice how diffi cult it would be to interface
to Matlab code depends on the programming style and complexity,
with simple functions being simple to access but complicated mod-
els potentially requiring prior reorganization on the Matlab side.

INTERFACING TO C/C++
Python offers a wide variety of methods for interfacing to C or C++
code, any of which could be used with Topographica. The specifi c
interface currently used for the performance-critical portions of
Topographica is Weave5, which allows snippets of C or C++ code
to be called easily from within Python code. A sample complete,
runnable Topographica/Python script with C code is:

 import weave,numpy
 len=100000
 sum=0.0
 a=numpy.array(range(len))
 code = """
 int i,j;
 for (i=0; i<len; i++)
 for (j=0; j<len; j++)
 sum+=a[i];
 return_val=sum;
 """
 print weave.inline(code,["a","len","sum"])

Here the C code in the string named code is computing the same
function as the Matlab code above; it will print 4.99995e+14 when
run. The fi rst time it is run the C compiler will be called automati-
cally to compile that code fragment, and then the saved object fi le
will be reused in subsequent calls and on subsequent runs, unless
the C code string is changed. This approach makes it simple to
include bits of existing C code to optimize specifi c functions, or
to make calls to C libraries.

The C interface adds very little overhead, in part because it
uses numpy arrays in place. The example above takes 10.34 s in
Topographica, versus 10.07 for a pure C equivalent. This 0.3-s dif-
ference is primarily due to the Topographica startup time, because
it does not increase with simulation size or length. Also note that
the full C version must be recompiled for any change, even trivial
ones, while the Topographica/Python version only recompiles when
the code string changes (which is typically rare if C is used only for
performance-critical sections; recompilation adds about 1 s to the
runtime in this example).

Using weave in this way makes it simple to add small bits
of C code, but other approaches such as ctypes (included in
Python 2.5) can be more suitable for interfacing to large external
C packages. Again, how diffi cult the interface will be depends
on whether the external code is arranged into entities that
can be called directly from Topographica; as discussed below,

 reorganizing the code in this way is usually straightforward but
can take some effort.

DISCUSSION
As the examples above show, very little coding is required to wrap
even complex simulations into the basic Sheet and EventProcessor
components used in Topographica. A large class of models across
different modelling and analysis levels (e.g., fi ring-rate, integrate-
and-fi re, and compartmental neuron models) can fi t into this struc-
ture, allowing all of them to be analyzed and compared consistently,
interconnected where appropriate, and explored visually even if
the underlying simulator has no graphical interface (as for NEST).
Although the general problem of simulator interoperatibility is
diffi cult to address, in this specifi c case it is relatively easy to get
practical benefi ts from combining simulators.

Although the approach outlined above is general purpose, it
does require coding a new Topographica component to match each
specifi c model implemented externally. A useful but more complex
alternative would be to provide a detailed mapping between object
types in an external simulator. For instance, one could provide
a Topographica Sheet object that instantiates a corresponding
NEST layer object, and similarly for a Topographica Projection
object and a NEST connection object. In this way NEST or other
simulators could be used to provide specifi c functionality missing
from Topographica, rather than to implement complete models.
However, developing such interfaces is much more involved than
the simple wrapping described here.

Even though the Topographica Sheet interface is general enough
to fi t a wide range of current models, there are some models that do
not fi t within its assumptions. In particular, a Sheet usually needs to
have an underlying grid shape to the population of neurons, though
individual neurons can be absent or at jittered spatial locations, as
long as no more than one neuron is present in any grid cell. (Strictly
speaking, it need only be possible to visualize the model in this
way; the actual organization is arbitrary.) Also, only Cartesian grids
are currently supported, though hexagonal grids could be added
in the future. Arbitrary 3D locations will be diffi cult to support,
except by imposing a 3D grid. Note that nonlinear spacings are
supported, using arbitrary coordinate mapping between Sheets,
e.g. for foveated retinotopic mappings, as long as there is still an
underlying grid of neurons.

Apart from operating loosely on a grid, Topographica assumes
that models will have regions that are separable from each other,
communicating only over well defi ned channels, and usually incre-
mentally processing some sort of external stimuli that change over
time. Although these assumptions are extremely general, and can
apply to any physical system, many models do not satisfy them
fully. For instance, models that represent inputs not as individual
patterns but as correlation functions (e.g. Miller, 1994) are diffi cult
to connect to Topographica, because most of the functionality of
Topographica requires testing the response to specifi c external stim-
uli (e.g. for measuring maps, tuning curves, and receptive fi elds).
Other types of models that operate in a “batch” mode rather than
one pattern at a time (e.g. Olshausen and Field, 1996) can usually be
adapted to work in incremental mode as required by Topographica,
but they may then run much more slowly.4https://redwood.berkeley.edu/bruno/sparsenet/

5www.scipy.org/Weave.

110

www.scipy.org/Weave
https://redwood.berkeley.edu/bruno/sparsenet/

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

Bednar Topographica: interoperable map-level simulations

Given the ease with which many models can be wrapped, an
intermediate-term goal will be to provide example code for wrap-
ping as many current V1 models as possible into Topographica,
to establish for the fi rst time a platform for evaluating their
behavior and functionality consistently. At present, each model
is implemented independently, with different analysis routines
and types of visualization, and thus it is extremely diffi cult to
determine if apparent differences in behavior are signifi cant. As
long as runnable code is available for each model, wrapping it
into Topographica should be straightforward and should provide
immediate benefi ts.

In addition to interfacing with external model components, any
of the mechanisms outlined above can be used to call externally
defi ned general-purpose analysis or visualization functions. For
instance, the NeuroTools package6 defi nes an object-based Python
representation of spike trains, such as those used in the spiking
retina model above. A native spiking Topographica model can
then use these functions rather than reimplementing them within
Topographica.

This paper focuses on making external simulations available
within Topographica, to allow simulations at the topographic map
level or at lower levels to be brought into a common analysis and
testing framework. It is also straightforward to interface in the
opposite direction, running a Topographica simulation from
within an external system or simulators. The Topographica User
Guide7 provides detailed examples of running models from the
Python command line or Python scripts, and the same interface
can be used from within any simulator that has Python bind-
ings. Moreover, Topographica has a highly modular design with
few dependencies between components, and there are many
Topographica objects that are useful on their own and can be

used just as any other Python object from within an external
program.

At present, Topographica is primarily useful for doing analy-
ses based on fi ring rates, because of its extensive fi ring-rate based
libraries. Spiking simulations are also possible in Topographica,
but they are currently quite limited, and will require additional
work to establish general-purpose abstractions that can be used
to integrate data across models and simulators. In the long run,
we intend Topographica to be useful as a high-level platform for
analyzing spiking output as well as fi ring-rate output, and would
welcome collaborations with people interested in that topic or in
other aspects of Topographica or interoperability development.

In summary, working at the topographic map level makes it
practical to provide interconnections between models and simula-
tors working at the same or different levels of detail. As long as the
neurons are grouped into two-dimensional sheets of related units,
they will be able to interface easily with Topographica’s tools and
components. The result provides a shared platform for evaluating
models from different sources, allowing consistent analysis and
testing even for very different implementations. We believe this
shared, extensible tool will be highly useful for the community of
researchers working to understand the large-scale structure and
function of the nervous system.

ACKNOWLEDGMENTS
Supported in part by the National Institutes of Mental Health under
Human Brain Project grant 1R01-MH66991, by the National Science
Foundation under grant IIS-9811478, and by the EPSRC/MRC
Doctoral Training Centre in Neuroinformatics at the University
of Edinburgh. Thanks to Laurent Perrinet (INCM/CNRS) for con-
tributing his retina model as an example, for assisting with the
process of interfacing it to Topographica, and for making comments
on an earlier draft of this manuscript. Thanks also to all of the
Topographica developers, particularly Christopher Ball, without
whom this work would not have been possible.

6http://neuralensemble.org/trac/NeuroTools.
7www.topographica.org.

REFERENCES
Amari, S. (1980). Topographic organiza-

tion of nerve fi elds. Bull. Math. Biol.
42, 339–364.

Bednar, J. A. (2008). Understanding
neural maps with topographica. In
Interactive Educational Media for the
Neural and Cognitive Sciences. Brains,
Minds and Media, Vol. 3, bmm # 1402,
S. Lorenz and M. Egelhaaf (eds).
http://www.brains-minds-media.
org/archive/1402.

Blasdel, G. G. (1992). Orientation selec-
tivity, preference, and continuity in
monkey striate cortex. J. Neurosci. 12,
3139–3161.

Bosking, W. H., Crowley, J. C., and
Fitzpatrick, D. (2002). Spatial cod-
ing of position and orientation in
primary visual cortex. Nat. Neurosci.
5, 874–882.

Bower, J. M., and Beeman, D. (1998). The
Book of GENESIS: Exploring Realistic
Neural Models with the GEneral

NEural SImulation System, 2nd Edn.
Santa Clara, Telos.

Cannon, R. C., Gewaltig, M.-O., Gleeson, P.,
Bhalla, U. S., Cornelis, H., Hines, M. L.,
Howell, F. W., Muller, E., Stiles, J. R.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience mod-
eling software: Current status and
future directions. Neuroinformatics
5, 127–138.

Davison, A., Yger, P., Kremkow, J.,
Perrinet, L., and Muller, E. (2007).
PyNN: towards a universal neu-
ral simulator API in Python. BMC
Neurosci. 8(Suppl. 2), P2 (Toronto,
Proceedings of the Sixteenth Annual
Computational Neuroscience Meeting
(CNS*2007)).

Diesmann, M., and Gewaltig, M. (2002).
NEST: an environment for neural
systems simulations. In Forschung
und wisschenschaftliches Rechnen,
Beiträge zum Heinz-Billing-Preis
2001, Vol. 58, T. Plesser and V.

Macho, eds (Göttingen, Ges. für Wiss.
Datenverarbeitung), pp. 43–70.

Djurfeldt, M., and Lansner, A.
(2007). Workshop report: 1st
INCF workshop on Large-scale
Modeling of the nervous system.
Available from Nature Precedings.
doi:10.1038/npre.2007.262.1.

Hines, M. L., and Carnevale, N. T. (1997).
The NEURON simulation environ-
ment. Neural Comput. 9, 1179–1209.

Kaas, J. H. (1997). Theories of visual cor-
tex organization in primates. Cereb.
Cortex 12, 91–125.

Kremkow, J., Perrinet, L., Kumar, A.,
Aertsen, A., and Masson, G. (2007).
Synchrony in thalamic inputs enhances
propagation of activity through cor-
tical layers. BMC Neurosci. 8(Suppl.
2), P206. (Toronto, Proceedings of
the Sixteenth Annual Computational
Neuroscience Meeting (CNS*2007)).

Merzenich, M. M., Knight, P. L., and
Roth, G. L. (1975). Representation

of cochlea within primary auditory
cortex in the cat. J. Neurophysiol. 38,
231–249.

Miller, K. D. (1994). A model for the
development of simple cell receptive
fi elds and the ordered arrangement of
orientation columns through activity-
dependent competition between ON-
and OFF-center inputs. J. Neurosci. 14,
409–441.

Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P.,
and Reid, R. C. (2005). Functional
imaging with cellular resolution
reveals precise micro-architec-
ture in visual cortex. Nature 433,
597–603.

Olshausen, B. A., and Field, D. J. (1996).
Emergence of simple-cell receptive
fi eld properties by learning a sparse
code for natural images. Nature 381,
607–609.

Ousterhout, J. K. (1998). Scripting: higher
level programming for the 21st cen-
tury. Computer 31, 23–30.

111

www.topographica.org
http://neuralensemble.org/trac/NeuroTools
http://www.brains-minds-media.org/archive/1402

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 8 |

Bednar Topographica: interoperable map-level simulations

Roque Da Silva Filho, A. C. (1992).
Investigation of a generalized ver-
sion of Amari’s continuous model
for neural networks. PhD Thesis.
Brighton, School of Cognitive and
Computing Sciences, University of
Sussex.

Van Essen, D. C., Lewis, J. W., Drury, H. A.,
Hadjikhani, N., Tootell, R. B. H.,
Bakircioglu, M., and Miller, M.
I. (2001). Mapping visual cortex
in monkeys and humans using

 surface-based atlases. Vision Res. 41,
1359–1378.

Weliky, M., Bosking, W. H., and
Fitzpatrick, D. (1996). A system-
atic map of direction preference in
primary visual cortex. Nature 379,
725–728.

Xu, X. , Anderson, T. J. , and
Casagrande, V. A. (2007). How do
functional maps in primary visual
cortex vary with eccentricity? J. Comp.
Neurol. 501, 741–755.

Confl ict of Interest Statement: The authors
declare that the research was conducted in
the absence of any commercial or fi nancial
relationships that could be construed as a
potential confl ict of interest.

Received: 15 September 2008; paper pend-
ing published: 20 November 2008; accepted:
26 February 2009; published online: 24
March 2009.
Citation: Bednar JA (2009) Topographica:
building and analyzing map-level simu-

lations from Python, C/C++, MATLAB,
NEST, or NEURON components.
Front. Neuroinform. (2009) 3:8. doi:
10.3389/neuro.11.008.2009
Copyright © 2009 Bednar. This is an
open-access article subject to an exclusive
license agreement between the authors
and the Frontiers Research Foundation,
which permits unrestricted use, distribu-
tion, and reproduction in any medium,
provided the original authors and source
are credited.

112

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 24 March 2009
doi: 10.3389/neuro.11.007.2009

Python scripting in the Nengo simulator

Terrence C. Stewart*, Bryan Tripp and Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada

Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by
the recent addition of a Python script interface. Nengo provides a wide range of features that
are useful for physiological simulations, including unique features that facilitate development
of population-coding models using the neural engineering framework (NEF). This framework
uses information theory, signal processing, and control theory to formalize the development
of large-scale neural circuit models. Notably, it can also be used to determine the synaptic
weights that underlie observed network dynamics and transformations of represented variables.
Nengo provides rich NEF support, and includes customizable models of spike generation,
muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical
user interface. All aspects of Nengo models are accessible via the Python interface, allowing
for programmatic creation of models, inspection and modifi cation of neural parameters, and
automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated
with any existing Java or 100% Python code libraries. Current work includes connecting neural
models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine
detailed neural models of specifi c brain regions with higher-level models of remaining brain
areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural
components, and (2) more realistic sub-components for the larger cognitive models.

Keywords: Python, neural models, neural engineering framework, theoretical neuroscience, neural dynamics, control

theory, representation, hybrid models

NENGO
Nengo is an open-source cross-platform software package for mod-
eling neuronal circuits1, and tested on Macintosh OS X, Linux, and
Microsoft Windows. It is implemented in Java, and provides both a
detailed Application Programming Interface and a Graphical User
Interface (Figure 1), so that it is suitable for both novice and expert
modelers. As will be discussed, the Python scripting system forms
a bridge between the easy-to-use graphical environment and the
full power of the underlying programmatic interface. This ensures
a smooth transition from novice to expert, as all aspects of the
simulation are accessible at all times.

A variety of spiking point-neuron models are provided with
Nengo. This includes the standard LIF neuron and the Hodgkin-
Huxley model, as well as an adapting LIF (La Camera et al., 2004)
and the Izhikevich model (Izhikevich, 2003). Integration is per-
formed with a variable-timestep integrator, using the Dormand-
Prince 4th and 5th order Runge-Kutta formulae (Dormand and
Prince, 1980). At the network level, interaction between neurons
treats spikes as discrete events; Nengo is not meant for neural mod-
els where the detailed voltage profi le of a specifi c spike affects the
post-synaptic neurons.

These neuron models can be connected directly to form simple
networks, and input can consist of current injection or voltage
clamp. Spike times, membrane voltages, and current can be recorded
from the neurons. This approach is suitable for situations where
connectivity information is known, or where the dynamics of a

INTRODUCTION
Large-scale neural modeling requires software tools that not only
support effi cient simulation of hundreds of thousands of neurons,
but also provide researchers with high-level organizational tools.
Such neural models involve heterogeneous components with com-
plex interconnections that may be either speculative in nature or
constrained by existing neurobiological evidence. To effectively
construct, modify, and investigate the behaviour of these mod-
els, researchers need to be able to specify the collective behavior
of large groups of neurons as well as the low-level physiological
details.

In order to support this style of research, we have developed
a neural simulator package called Nengo. For high-level organi-
zation, Nengo makes use of the neural engineering framework
(NEF; Eliasmith and Anderson, 2003), which provides methods
for abstractly describing the representations and transforma-
tions involved in a neural model and how they relate to spiking
behavior. To provide access to the broad range of functionality
we require (from neural groups to individual synapses), we inte-
grated a Python language scripting system into the simulator. This
enables a variety of novel features, including the inspection and
modifi cation of running models, the ability to script common
experimental tasks, and the integration of non-neural cognitive
models. In this paper, we describe this system (see Introduction),
discuss the features related to its use of Python (see Python and
Nengo), and provide an extended example of ongoing research
that has directly benefi ted from these abilities (see Integration
with Other Libraries).

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Andrew P. Davison, CNRS, France
Jochen M. Eppler, Honda Research
Institute Europe GmbH, Germany;
Albert Ludwigs University, Germany

*Correspondence:

Terrence C. Stewart, Centre for
Theoretical Neuroscience, University of
Waterloo, 200 University Avenue West,
Waterloo, ON, Canada N2L 3G1.
e-mail: tcstewar@uwaterloo.ca

1http://nengo.ca

113

http://nengo.ca
http://nengo.ca

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

i has an associated preferred direction vector � (the stimulus for
which it most strongly fi res), bias current Jbias, and scaling factor α.
For a given neuron, α and Jbias can be experimentally determined
from its maximum fi ring rate and the minimum value of x for
which it responds. If the nonlinearities of any given neural model
(LIF, ALIF, etc.) are written as G[⋅] and the neural noise of variance

particular confi guration are being investigated. However, modeling
of more sophisticated population-coding networks is greatly facili-
tated by using the NEF-related features of the simulator.

NEURAL ENGINEERING FRAMEWORK
For complex neural models, it is often useful to describe the system
of interest at a higher level of abstraction, such as that shown in
Figure 2. For this reason, we defi ne heterogeneous groups of neu-
rons (where individual neurons vary in terms of their neural prop-
erties such as bias current and gain) and projections between these
groups. We can then use the NEF (Eliasmith and Anderson, 2003)
as a method for realizing this high-level description using neural
models with adjustable degrees of accuracy. The NEF provides not
only a method for encoding and decoding time-varying represen-
tations using spike trains, but also a method for deriving linearly
optimal synaptic connection weights to transform and combine
these representations. This approach combines work from a variety
of researchers, most notably Georgopoulos et al. (1986), Rieke et al.
(1999), Salinas and Abbott (1994), and Seung (1996).

The NEF has been used to model the barn owl auditory system
(Fischer, 2005), rodent navigation (Conklin and Eliasmith, 2005),
escape and swimming control in zebrafi sh (Kuo and Eliasmith,
2005), working memory systems (Singh and Eliasmith, 2006), the
translational vestibular ocular refl ex in monkeys (Eliasmith et al.,
2002), and the manipulation of symbolic representations to support
high-level cognitive systems (Stewart and Eliasmith, 2009).

Within the NEF, a neural group forms a distributed representa-
tion of a time-varying vector x(t) of arbitrary length. Each neuron

FIGURE 1 | A neural model of the basal ganglia developed in Nengo.

FIGURE 2 | A neural model of the mammalian vestibular system using

the NEF. Boxes represent distinct neural populations and arrows represent
projections between them. Inputs to the system are linear acceleration
sensed by the left and right otoliths (AL, AR) and the angular velocity from the
canals (ΩL and ΩR). From these, the system calculates inertial acceleration
(I) using the formula developed by Angelaki et al. (1999). (For further details,
see Eliasmith et al., 2002).

114

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

σ2 is η(σ), then the encoding of any given x(t) as the temporal spike
pattern across the neural group is given as Eq. 1.

δ α η() () ()t t G t Ji i i i
n

− = ⋅ + +⎡⎣ ⎤⎦∑ in � x bias σ

(1)

Given this spiking pattern, we can in turn estimate the original
vector as ˆ().x t In some approaches (e.g. Georgopoulos et al., 1986),
this is done by weighting each encoding vector � by the average
fi ring rate of the corresponding neuron. In the NEF, however, we
derive the linearly optimal decoding vectors � for each neuron
(see Eliasmith and Anderson, 2003 for details). This method has
been shown to uniquely combine accuracy and neurobiological
plausibility (e.g. Salinas and Abbott, 1994).

� =

=

=

−

∫
∫

Γ 1ϒ

Γ

ϒ

ij i j

j i

a a dx

a x dx

(2)

Since x(t) varies over time, we do not weight these decoding
vectors by the average fi ring rate. Instead, we weight them with the
post-synaptic current h(t) induced by each spike. The shape and
time-constant of this current are determined from the physiological
properties of the neural group:

ˆ() () () ()x t t t h t h t ti i i= − ∗ = −∑∑δ in in
inin

� �

(3)

The representational error between x(t) and ˆ()x t is dependent
on the particular neural parameters and encoding vectors, but in
general is inversely proportional to the number of neurons in the
group. Given a suffi cient number of neurons, an arbitrary level of
accuracy can be reached. For a known number of neurons with
known physiological properties, we can determine how well the
values can be represented.

The derivation of the optimal decoding vector also allows us to
determine the optimal connection weights to perform arbitrary
transformations of these representations. For linear functions,
consider two neural populations, X representing x(t) and Y repre-
senting y(t). If we want y(t) = M x(t), we can derive the following
for the neurons in population Y:

δ αt t G t J

t t t

jm j j j
m

−() = +⎡⎣ ⎤⎦

=

∑ �y

y Mx x

()

() () ()

bias

substitute: ≈≈ = −()

= −() +⎡⎣ ⎤⎦

=

∑ˆ()x

M

t h t t

G h t t J

G

i

j j j i j

j j

in
in

in

�

α

α

� �

�

bias

jj i jh t t JMφ() −() +⎡
⎣

⎤
⎦in

bias

(4)

This manipulation converts weighted post-synaptic currents
caused by the spikes in neural group X into a spiking pattern for
group Y that would cause Y to represent the value in X transformed
by the linear operation M. Crucially, if we set the synaptic connec-
tion weights between the ith neuron in X and the jth neuron in
Y to be ω αij j j i= � M� , then the post-synaptic neurons will encode
M x(t). This allows us to develop a model by defi ning the hypoth-
esized computations and directly solving for the corresponding

connection weights, rather than relying on a learning rule or manu-
ally setting the weights.

For nonlinear transformations, we can generalize the derivation of
the decoding vector to estimate the desired function f(x). This pro-
vides a new set of decoding vectors �f(x) which can be used in place of
the previous � to provide an optimal linear estimate of this function.
This allows arbitrary nonlinear functions to be computed, although
more complex nonlinearities across multiple dimensions of x will
require more neurons with � values that lie in those dimensions.

� f x f x

ij i j

j
f x

i

a a dx

a f x dx

() ()

() ()

=

=

=

−

∫
∫

Γ ϒ

Γ

ϒ

1

(5)

Treating neural groups as representing time-varying vectors and
synaptic connections as performing arbitrary transformations allows
us to organize a neural system using the powerful framework of
control theory. Eliasmith and Anderson (2003) have shown how to
translate any state-space model from modern control theory into an
equivalent neural circuit. For example, an ideal integrator is shown
in Figure 3A, and its NEF counterpart, a neural integrator imple-
mented with 300 LIF neurons, is shown in Figure 3B. Importantly,
the idealized version can be seen as an approximation of the actual
neural behaviour. As is discussed in the next section, this feature can
be used to create large-scale models where every component can
potentially be simulated at the level of neurons, even though it may
be too computationally expensive to do so for the whole system.

The NEF provides a generic method for modeling any neural
system where groups of neurons are taken to represent scalars,
vectors, and functions, and where synaptic connections implement
transformations on these representations. The system generalizes
to higher dimensional vectors and has also been used as the basis
of models of path integration (Conklin and Eliasmith, 2005) and
working memory (Singh and Eliasmith, 2006). Arbitrary nonlinear
encodings are supported by adjusting G to be the output of any
neural model. While the above derivation assumes linear dendrites,
the approach generalizes to nonlinear dendritic behavior as well
(see Eliasmith and Anderson, 2003).

PROGRAMMING INTERFACE
Nengo is a highly modular object-oriented Java program, making
the underlying simulation system extensible and adaptable to novel
modeling situations. The following features are directly exposed to
the developer by the architecture:

Neuron models
Specialized neuron models can be written in Python or Java. These
can extend existing models and/or use generic components, such as
the built-in dynamical system solver. For example, a Nengo imple-
mentation of a dopamine-sensitive bistable striatal neuron (Gruber
et al., 2003) was recently developed. The core of its implementation
is shown later in this paper.

Neural plasticity
Arbitrary functions can be added for adjusting synaptic weights
based on spike timing and modulatory signals.

115

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

Muscle models
For any neural models involving motor neurons, the dynamic
behavior of the muscles form an important part of the model as
well. Nengo supports multiple approaches to muscle modeling
(e.g. Keener and Sneyd, 1998; Winter, 1990).

All of these components, along with other useful tools for
modeling such as external inputs and probability distribution
functions for various neural properties, can be implemented in
either Java or Python. As discussed in further detail below, all of
the features of Nengo are exposed in both languages, allowing
developers the fl exibility to choose the approach which is most
suitable to them.

Since the software was developed for large-scale modeling, each
component within a Nengo model has an adjustable simulation
mode. For neural groups defi ned using the NEF approach, three
modes are provided: spiking neurons, rate neurons, and a direct
high-level abstraction of the overall neural behavior. This direct
mode allows for fast approximate simulations where the individual
neurons within the group are not simulated; instead the behavior
is approximated in terms of the underlying represented values x(t).
When neural groups simulated at a low level connect with groups
simulated at a high level, Eqs 1 and 3 (above) are used to determine
the corresponding spike trains and ˆ()x t values. If suffi cient time and
computational resources are available, all parts of the model can
be simulated in terms of spiking neurons. However, this capability
of mixing levels of simulation means that a detailed neural model
involving tens of thousands of neurons can be embedded within
a high-level approximation of the millions of other neurons with
which this system must interact. By switching modes of particular
neural groups, the effect of different degrees of accuracy can be
easily determined. Changing simulation models is also a useful
exploratory tool, since approximate behavior can be determined
quickly.

USER INTERFACE
Nengo also provides a graphical user interface for constructing and
simulating models. Neural groups can be created and confi gured,
projections and synaptic connection weights can be defi ned, and
simulations can be run and analyzed, all through a point-and-
click interface. This provides a direct method for visualizing the
overall organization of a complex neural circuit at multiple levels
of abstraction.

This interface is intended to be equally suitable for novice and
expert users. In particular, we wanted to ensure that while com-
mon tasks are made easier by the interface, more experienced users
have simultaneous access to the full capabilities of the programmatic
interface. To achieve this, a Python scripting interface is embedded in
the graphical user interface, complete with a full history and object-
inspection based code completion tools. Usage examples of this com-
bined graphical and scripting system are given in the next section.

Python AND NENGO
To blend the graphical interface with the full power of the under-
lying programmatic interface, we embedded a Python scripting
engine. This allows Python code and scripts to run in concert
with the user interface. In this way, users can follow a graphical
point-and-click approach for common modeling tasks, and turn
to Python scripting for more complex or specialized tasks.

Since Nengo is implemented in Java, the scripting interface
was implemented with Jython2. This is a Java implementation of
Python, which allows Python code to be compiled to the Java Virtual
Machine, and provides seamless interaction between languages,
including inheritance between languages and full access to the
Java API using Python syntax. Importantly, no extra development
effort (beyond embedding Jython within the Nengo graphical user

2http://www.jython.org

FIGURE 3 | A classic control-theory integrator (A) and an NEF integrator

(B). Both integrators are provided with the same sine wave input x(t). The NEF
integrator uses 300 LIF neurons with maximum fi ring rates distributed
uniformly between 100 and 200 Hz, post-synaptic current time constants of

20 ms, and refractory periods of 2 ms. The output value for the NEF integrator
is determined from the individual spike times of each neuron using Eq. 3.
Neuron spikes are shown as dots in panel (B), with neurons arranged along
the y-axis.

116

http://www.jython.org

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

interface) was required to allow Python access to the Nengo code;
Jython automatically provides the Python syntax and interactive
capabilities described here.

As an example, Figure 4 shows the Python scripting interface
being used to duplicate an existing group of neurons (groupA,
created using the point-and-click interface). This duplication is
performed using the standard Java clone() method. The name of
this new neural group is then changed to groupB and it is added
to the existing network. These tasks can also be performed via
the graphical interface; this example is meant to show the direct
relationship between the underlying Java entities, the graphically
displayed objects, and the Python scripting.

RUN-TIME INSPECTION AND MODIFICATION
The simplest use of the scripting system is to display and edit the
values of variables within the simulation. The most recent object
selected in the graphical display is always bound to the variable
that in the scripting system. This allows us to quickly inspect and
change objects. For example, to display the bias current (Jbias in
Eq. 1) of a given neuron, we can click on it in the interface and type
the following, with the output from Nengo shown in bold:

print that.bias
1.9371659755706787

The command that.bias is automatically converted by Jython
into the Java method invocation getBias() on the currently

selected object, and the result is printed to the screen. This con-
venience functionality is built in to Jython and works with any Java
code that conforms to the JavaBean properties standards.

For more complex situations, we use Python to extract relevant
information and analyze and record it in the desired manner. For
example, we can display all of the Jbias values across a group of neu-
rons, fi nd their average, and save the values in a comma-separated
values (CSV) fi le.

bias=[n.bias for n in groupA.nodes]
print bias
[1.9371659755706787, 0.5016773343086243,
0.40018099546432495, 2.8485255241394043,…
print sum(bias)/len(bias)
-17.20441970984141
import csv
csv.writer(file('output.csv','w')).writerow(bias)

This approach can also be used to set values within the simula-
tion; the command that.bias = 0.3 is converted into the Java
method setBias(0.3) by Jython. This allows model parameters
to be set in a fl exible manner. For example, to cause the RC time
constant for a group of neurons that use an LIF spike generator
to be uniformly distributed between 200 and 300 ms, we can do
the following:

for n in groupA.nodes: n.generator.tauRC=random.
uniform(0.2,0.3)

FIGURE 4 | Basic usage of the Python scripting interface to interact programmatically with a neural model.

117

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

PROGRAMMATIC MODEL CREATION
Python can also be used to directly create models. This involves
defi ning the various neural groups and specifying the projections
between them. As this is done, Nengo automatically solves for the
required synaptic weight matrices, based on the neural properties,
preferred direction vectors, and the desired transformation.

To confi gure a NEF neural group, we defi ne the various param-
eters based on the neurobiological properties of the particular types
of neurons being modeled. This can include specifying probability
distributions for those aspects that are heterogenous across the
group.

ef=ca.nengo.model.nef.impl.NEFEnsembleFactoryImpl()
ef.nodeFactory.tauRC=0.02
ef.nodeFactory.tauRef=0.002
ef.nodeFactory.maxRate=GaussianPDF(200,50)
ef.nodeFactory.intercept=IndicatorPDF(-1,1)

Given this defi nition, we can now create neural groups of the
desired size, encoding vectors of a given length. Terminations
are defi ned by providing the linear transformation matrix (M in
Eq. 4) and the post-synaptic time constant. Nonlinear functions are
computed by creating a separate origin and providing the desired
function. This separate origin does not imply a separate source of
action potentials; it is implemented internally using the same spike
timing as the standard projection origin (i.e. the neural group’s
axons), but with a different set of decoding vectors, as per Eq. 5.
For example, the following script will create a neural group which
accepts fi ve inputs and outputs the maximum value encoded by
those fi ve inputs, using the neural properties defi ned above.

group=ef.make('group',neurons=1000,dimensions=5)
for i in range(5):
 M=[0,0,0,0,0]
 M[i]=1
 group.addDecodedTermination('in'+i,[M],tauPSC=0.007
 .modulatory=False)
group.addDecodedOrigin('max',[PostfixFunction
 ('max(x)',5)],'AXON')

We have found this approach to be fl exible and highly useful for
our ongoing research. In particular, this has allowed us to quickly
explore the behaviors of complex cognitive models, including our
ongoing work on neural implementation of Kalman fi lters for sen-
sorimotor integration, language based reasoning, the role of basal
ganglia in motor control, and other projects. While much of Nengo
is devoted to supporting NEF-style models, similar commands are
used for models that directly specify neural connections and plas-
ticity, or that merge the two approaches.

SCRIPTING OF COMMON TASKS
Besides directly creating or modifying models, Python is also use-
ful for defi ning stimuli, controlling simulations, and analyzing or
recording results. Inputs to neural groups can be defi ned using
arbitary Python code, allowing for anything from simply adding
white noise to a baseline input value to providing dynamic inputs
based on the current motor outputs of the model.

More generally, we can use the scripting system to evaluate neu-
ral models. That is, we can easily run multiple simulations, adjusting
parameters, and recording the data. For example, the following code

runs an existing simulation 10 times, adjusts the refractory period
each time, and records the model output to a MATLAB® fi le. This
allows us to quickly explore the behavioral effects of physiological
parameters.

result=ca.nengo.io.MatlabExporter()
for i in range(10):
 for n in groupA.nodes: n.generator.tauRef=0.001*i
 simulator.run(start=0,end=1)
 result.add('data'+i,probe.data)
result.write(file('result.m','w'))

DEFINING NEURON TYPES
Given the wide range of existing neuron models, and the continual
development of new ones, Nengo needs to allow the user to easily
defi ne and use new neuron models throughout the system. This
is facilitated by a general-purpose dynamical system solver which
creates spiking neuron models based on their dynamical descrip-
tion. Given the simplicity of the Python syntax, existing published
neural models can be easily translated from their mathematical
description into code.

For example, the following Python code defi nes the membrane
dynamics for a dopamine-sensitive bistable striatal neuron devel-
oped by Gruber et al. (2003). This model’s behaviour is affected by
levels of dopamine, which are set using a separate modulatory input
within Nengo, allowing it to be controlled by other neural groups.

Cm=1; E_K=-90; g_L=.008; VKir2_h=-111; VKir2_c=-11;
gbar_Kir2=1.2
VKsi_h=-13.5; VKsi_c=11.8; gbar_Ksi=.45; R=8.315;
F=96480; T=293
VLCa_h=-35; VLCa_c=6.1; Pbar_LCa=4.2; Ca_o=.002;
Ca_i=0.0000001

class GruberDynamics(ca.nengo.dynamics.
AbstractDynamicalSystem):
 def f(self,time,input):
 I_s,mu=input
 Vm=self.state[0]

 L_Kir2=1.0/(1+exp(-(Vm-VKir2_h)/VKir2_c))
 L_Ksi=1.0/(1+exp(-(Vm-VKsi_h)/VKsi_c))
 L_LCa=1.0/(1+exp(-(Vm-VLCa_h)/VLCa_c))
 P_LCa=Pbar_LCa*L_LCa

 x=exp(-2*Vm/1000*F/(R*T))
 I_Kir2=gbar_Kir2*L_Kir2*(Vm-E_K)
 I_Ksi=gbar_Ksi*L_Ksi*(Vm-E_K)
 I_LCa=P_LCa*(4*Vm/1000*F*F/(R*T))*
 ((Ca_i-Ca_o*x)/(1-x))
 I_L = g_L*(Vm-E_K)

 return [-1000/Cm*(mu*(I_Kir2+I_LCa)+I_Ksi+I_L-I_s)]

Using this approach, any component of a neural system expressed
in terms of its internal dynamics can be integrated into a Nengo
model.

INTEGRATION WITH OTHER LIBRARIES
Since Nengo integrates a Python scripting system via Jython, Nengo
models can also make use of other code libraries. This not only
includes the standard built-in Python libraries for string processing,

118

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

random number generation, asynchronous communication, and
other common tasks, but also any other library written in Java or
100% Python. Unfortunately, Jython currently does not support
direct integration with Python extension modules, such as NumPy
or SciPy. To make use of such tools for data analysis, the output from
Nengo can be exported to a fi le. However, for modules which can
be directly integrated, Nengo allows for seamless communication
between systems from within the graphical user interface.

ACT-R
As an example of this model integration, we have combined Nengo
with a Python implementation of ACT-R, a high-level model of
human cognition (Anderson and Lebiere, 1998). ACT-R divides
human cognitive function into a variety of separate modules, which
map on to particular brain areas (Anderson et al., 2008). Although
no neural implementation of these modules exists as of yet, the
underlying theory provides millisecond-level timing information for
the behaviour of these modules which accords well with timing of
overt behavior and of fMRI BOLD responses. ACT-R distills decades
of cognitive science research into a form that provides a high-level
model of many brain regions that can, in theory, interact with a
lower-level neural model. In order to bring about this possibility, we
connected the Python implementation of ACT-R (Stewart and West,
2007) to Nengo. This is freely available as part of CCMSuite3.

The modules in ACT-R (see Figure 5) were developed to explain
human cognitive performance across a wide variety of tasks, includ-
ing serial recall, visual search, mental arithmetic, task switching, and
the use of graphical interfaces. Each cortical module maintains a
buffer which contains one chunk of information. This chunk is a
symbolic representation of the current working memory associated
with that module. For example, the declarative memory module may
retrieve the fact that two plus two is four, storing that in its buffer as
the chunk 'value1:two value2:two operation:plus result:
four'. The symbolic values within a chunk are organized into slots,
and a chunk of a given type always has the same set of slots.

Communication between modules is controlled by a general-
ized action selection system associated with the basal ganglia. This
contains a set of production rules: IF-THEN statements which iden-
tify which values should be placed in which buffers based on the
current values in other buffers. To fi t a wide range of behavioral
data, a cycle of determining which productions match the current
situation, selecting one of them, and sending its associated values
is assumed to take the brain approximately 50 ms.

REPRESENTATION MAPPING
To integrate ACT-R and Nengo, we need to defi ne a system of
communication between them. That is, if we construct a neural
model of a given brain region, we need to remove the corresponding
component from the ACT-R model and connect the Nengo model
in its place. This connection requires translating the symbolic

FIGURE 5 | The basic modules of ACT-R and their corresponding brain

regions. The buffers are small-capacity working memories and represent the
current cognitive state. The basal ganglia match this state against learned

production rules, resulting in and output which can change the values stored in
the different buffers. These changes in turn can cause other modules to perform
various actions, including memory recall, motor commands, and visual search.

3http://ccmlab.ca/ccmsuite.html

119

http://ccmlab.ca/ccmsuite.html

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

 representations used in ACT-R into spiking patterns and vice-versa,
since communication in ACT-R is via chunks and communication
in Nengo is via spikes.

Since Nengo provides access to the NEF, this mapping from
symbols to population spike trains is facilitated by Eqs 1 and 3
described above for mapping vectors to population spike trains.
We simply need to map the symbolic representation of a chunk
into a vector and back again. In theory, this could be as simple
as having a separate dimension in the vector for every possible
chunk, or as sophisticated as using Vector Symbolic Architectures
(Gayler, 2006). For example, the following code maps the chunk
'state:A' to [1,0,0], 'state:B' to [0,1,0], and 'state:C'
to [0,0,1] and vice-versa. Note that the mapping from vector to
chunk must take into account the representational noise introduced
by the spiking neurons.

class Translator:
 def convertToVector(self,model):
 chunk=str(model.input)
 if chunk=='state:A': return [1,0,0]
 elif chunk=='state:B': return [0,1,0]
 elif chunk=='state:C': return [0,0,1]
 else: return [0,0,0]
 def applyVector(self,model,vector):
 mx=max(vector)
 if mx<0.3: model.output=None
 elif mx==vector[0]: model.output=Chunk('state:A')
 elif mx==vector[1]: model.output=Chunk('state:B')
 elif mx==vector[2]: model.output=Chunk('state:C')

INTEGRATED SIMULATION
To demonstrate this integration, we can create a Nengo implemen-
tation of an ACT-R buffer and connect it to an ACT-R model. For
simplicity, the ACT-R model is of a set of three production rules
which causes the goal buffer to cycle through three possible values
(from state:A to state:B to state:C and back to state:A and
so on). This simplistic model is suffi cient to demonstrate com-
munication from the ACT-R portion of the model to the Nengo
portion and back again.

from ccm.lib.actr import *
class Model(ACTR):
 goal=Buffer()

 def production1(goal='state:A'):
 goal.set('state:B')
 def production2(goal='state:B'):
 goal.set('state:C')
 def production3(goal='state:C'):
 goal.set('state:A')

Once this model is defi ned, it can be created within Nengo.
This involves the helper function nengo.create which is pro-
vided by CCMSuite and ensures that time in the ACT-R model is
synchronized with time in the Nengo simulation. Once the model
is created, a Nengo origin and termination are defi ned that use the
defi ned mapping between ACT-R symbols and Nengo spike trains
given above. Once these origins and terminations are defi ned, they
are treated exactly as any other in Nengo, allowing neural models
to be built and connected to them via either the Nengo graphical
user interface or through the scripting system.

import ccm
model = ccm.nengo.create(Model)
goal = model.getNode('goal')
goal.createOrigin('output',Translator())
goal.createTermination('input',Translator())

For this case, we implement the buffer using a three-dimen-
sional integrator of the same type as that shown in Figure 3. This
consists of 300 LIF neurons in a single neural group which inte-
grates the value provided by ACT-R and outputs the current stored
value back to ACT-R. These neurons are confi gured as per section
“Programmatic Model Creation”

goalBuffer=ef.make("GoalBuffer",neurons=300,
 dimensions=3)

M=[[1,0,0],[0,1,0],[0,0,1]]
goalBuffer.addDecodedTermination("input",M,tauPSC=0.007,
 modulatory=False)
goalBuffer.addDecodedTermination("feedback",
 M,tauPSC=0.007,
 modulator=False)

model.addProjection(goalBuffer.getOrigin('X'),
 goalMemory.getTermination('feedback'))
model.addProjection(goalBuffer.getOrigin('X'),
 goal.getTermination('input'))
model.addProjection(goal.getOrigin('output'),
 goalMemory.getTermination('input'))

The behavior of this model is shown in Figure 6. The neural
group maintains the stored value over time, and then quickly
changes this value when requested by the ACT-R production sys-
tem. Importantly, the behavior of the model is robust over the time
frame expected by ACT-R.

DISCUSSION
Nengo greatly facilitates the creation of complex neural circuits.
The use of the NEF provides a general-purpose framework for
representing information in spiking neurons that is fl exible enough
to support a wide variety of neuron models. The way in which
the NEF systematically relates high-level information processing

FIGURE 6 | Spike pattern and vector decoding of a neural population

implementing an ACT-R goal buffer. Dots indicate spike times for each
neuron in the goal buffer, arranged along the y-axis. The three lines show the
three-dimensional value decoded from the spikes using Eq. 3. The three
dimensions correspond to the three possible values for the buffer, showing
that the represented value cycles through the three states.

120

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 |

in a model of zebrafi sh network inter-
action. Biol. Cybern. 93, 178–187.

La Camera, G., Rauch, A., Lüscher, H.-R.,
Senn, W., and Fusi, S. (2004). Minimal
models of adapted neuronal response
to in vivo-like input currents. Neural
Comput. 16, 2101–2124.

Rieke, F., Warland, D., de Ruyter van
Steveninck, R., and Bialek, W. (1999).
Spikes: Exploring the Neural Code.
Cambridge, MIT Press.

Salinas, E., and Abbott, L. F. (1994). Vector
reconstruction from firing rates.
J. Comput. Neurosci. 1, 89–107.

Seung, H. S. (1996). How the brain keeps
the eyes still. Proc. Natl. Acad. Sci.
U.S.A. 93, 13339–13344.

Singh, R., and Eliasmith, C. (2006).
Higher-dimensional neurons explain
the tuning and dynamics of work-
ing memory cells. J. Neurosci. 26,
3667–3678.

Stewart, T. C., and Eliasmith, C. (2009).
Compositionality and biologically
plausible models. In Oxford Handbook
of Compositionality, W. Hinzen,
E. Machery and M. Werning, eds
(Oxford University Press).

Stewart, T. C., and West, R. L. (2007).
Deconstructing and reconstructing

modeling: an application to the ves-
tibular system. Neurocomputing 46,
1071–1076.

Fischer, B. (2005). A model of the com-
putations leading to a representation
of auditory space in the midbrain of
the barn owl. PhD thesis. St Louis,
Washington University in St Louis.

Gayler, R. W. (2006). Commentary: vec-
tor symbolic architectures are a viable
alternative for Jackendoff ’s challenges.
Behav. Brain. Sci. 29, 78–79.

Georgopoulos, A. P., Schwartz, A. B., and
Kettner, R. E. (1986). Neuronal popu-
lation coding of movement direction.
Science 233, 1416–1419.

Gruber, A. J., Solla, S. A., Surmeier, D. J.,
and Houk, J. C. (2003). Modulation
of striatal single units by expected
reward: a spiny neuron model dis-
playing dopamine-induced bistability.
J. Neurophysiol. 90, 1095–1114.

Izhikevich, E. M. (2003). Simple model of
spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572.

Keener, J., and Sneyd, J. (1998).
Mathematical Physiology. New York,
Springer.

Kuo, D., and Eliasmith, C. (2005).
Integrating behavioral and neural data

ACT-R: exploring the architectural
space. Cogn. Syst. Res. 8, 227–236.

Winter, D. A. (1990). Biomechanics and
Motor Control of Human Movement.
John Wiley & Sons, New Jersey.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 14 September 2008; paper pend-
ing published: 10 October 2008; accepted:
20 February 2009; published online: 24
March 2009.
Citation: Stewart T, Tripp B and Eliasmith
C (2009) Python scripting in the Nengo
simulator. Front. Neuroinform. (2009) 3:7.
doi: 10.3389/neuro.11.007.2009
Copyright © 2009 Stewart, Tripp
and Eliasmith. This is an open-access
article subject to an exclusive license
agreement between the authors and the
Frontiers Research Foundation, which
permits unrestricted use, distribution,
and reproduction in any medium, pro-
vided the original authors and source are
credited.

to electro-physiology facilitates modeling of complex circuits and
validation against both behavioral and electro-physiological data.
Finally, the integrated Python scripting language, with its emphasis
on readability and rapid development, makes it ideal for quickly
creating models and exploring model variations.

This system is also supported by a rich graphical user interface
suitable for introducing new users in, for example, classroom situ-
ations. Common tasks are supported directly by the user interface,
and Python scripting offers a highly readable syntax for more com-
plex situations without extensive language-specifi c training. Nengo
is currently being used in a graduate-level course on the NEF, and
students without previous Python exposure are able to make use
of it and the user interface to create complex models, including
modeling sensorimotor control using Kalman fi lters and sequence
recognition in birdsong. Importantly, having the Python scripting
available means that both experienced researchers and new students
can use Nengo effectively.

Nengo’s ability to integrate with other software libraries written in
either Java or Python opens up many new research possibilities. For
example, there are two key research benefi ts from integrating Nengo
neural models with higher-level behavioral models such as ACT-R.
First, it is of benefi t to cognitive scientists, since the neural models pro-
vide a more detailed implementation of the components postulated
by the overall cognitive theory. This may lead to more detailed and
more accurate predictions, as well as a strong neurological ground-
ing for these components. Second, it is of benefi t to neuroscientists,
since the cognitive theory provides realistic boundary conditions for
the neural components. That is, the inputs to a neural model can be
derived from a dynamic cognitive model, and the outputs from the
neurons in turn affect the behaviour of that model. This provides a
more realistic environment for simulating neural models.

ACKNOWLEDGMENTS
We thank Shu Wu for developing Nengo’s graphical user interface.

REFERENCES
Anderson, J. R., Fincham, J. M., Qin, Y.,

and Stocco, A. (2008). A central cir-
cuit of the mind. Trends Cogn. Sci. 12,
136–143.

Anderson, J. R., and Lebiere, C. (1998).
The Atomic Components of Thought.
Mahwah, Erlbaum.

Angelaki, D. E., McHenry, M. Q.,
Dickman, J. D., Newlands, S. D., and
Hess, B. J. M. (1999). Computation
of inertial motion: neural strategies
to resolve ambiguous otolith informa-
tion. J. Neurosci. 19, 316–327.

Conklin, J., and Eliasmith, C. (2005). An
attractor network model of path inte-
gration in the rat. J. Comput. Neurosci.
18, 183–203.

Dormand, J. R., and Prince, P. J. (1980).
A family of embedded Runge–Kutta
formulae. J. Comput. Appl. Math. 6,
19–26.

Eliasmith, C., and Anderson, C. (2003).
Neural Engineering: Computation,
Representation, and Dynamics in
Neurobiological Systems. Cambridge,
MIT Press.

Eliasmith, C., Westover, M. B., and
Anderson, C. H. (2002). A general
framework for neurobiological

121

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 09 March 2009
doi: 10.3389/neuro.11.006.2009

Technical integration of hippocampus, basal ganglia and
physical models for spatial navigation

Charles Fox1*, Mark Humphries1, Ben Mitchinson1, Tamas Kiss2, Zoltan Somogyvari 2, Tony Prescott1

1 Adaptive Behaviour Research Group, Department of Psychology, University of Sheffi eld, Sheffi eld, UK
2 Department of Biophysics, KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest, Hungary

Computational neuroscience is increasingly moving beyond modeling individual neurons or neural
systems to consider the integration of multiple models, often constructed by different research
groups. We report on our preliminary technical integration of recent hippocampal formation,
basal ganglia and physical environment models, together with visualisation tools, as a case study
in the use of Python across the modelling tool-chain. We do not present new modeling results
here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment
with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a
fl exible platform, offering a signifi cant reduction in development time, without a corresponding
signifi cant increase in execution time. We illustrate this by implementing a part of the model in
various alternative languages and coding styles, and comparing their execution times. For very
large-scale system integration, communication with other languages and parallel execution may
be required, which we demonstrate using the BRAHMS framework’s Python bindings.

Keywords: hippocampus, basal ganglia, spatial navigation, place cells, plus-maze, BRAHMS, Python

CA1/CA3 encode position in space (O’Keefe and Conway, 1978;
Wiener, 1996); “grid”-cells in entorhinal cortex (EC) provide met-
ric information for path-integration via a tessellating rhomboid
pattern (Hafting et al., 2005; McNaughton et al., 2006); and hip-
pocampal lesions impair (but not necessarily abolish) rats’ abili-
ties to navigate in open environments (Whishaw, 1998). The basal
ganglia’s main input nucleus – the striatum – is a major target of
hippocampal formation output, and also appears necessary for
unimpaired spatial navigation: lesioning the connecting fi bres
impairs accurate navigation in open environments (see e.g. Devan
et al., 1996; Gorny et al., 2002; Whishaw et al., 1995), and block-
ing plasticity in the region of striatum targeted by hippocampal
fi bres prevents acquisition of paths to targets (Sargolini et al., 2003;
Smith-Roe et al., 1999).

A recurring theme in the basal ganglia literature is that they form
a selection mechanism for motor programs (Hikosaka et al., 2000;
Mink and Thach, 1993) or, more generally, for “actions” (Redgrave
et al., 1999). Thus, the specifi c hypothesis underlying our integrated
model is that the basal ganglia select movement direction based on
current spatial position provided by the hippocampal formation
input.

The system described below is a preliminary technical integration
of the action-selecting basal ganglia model of Gurney et al. (2001a,b)
with the hippocampal navigation model of Ujfalussy et al. (2008).
The basal ganglia model may be used to select between any types
of action, but simple predefi ned saliencies between two target loca-
tions are currently used. The hippocampus model may run using
any form of sensory input: at present we use visual input, but report
on the implementation of physical simulation of tactile whisker-like
sensors as an example of developing advanced sensors in Python,
which could form a further input in future. Neither the inputs to the
models or the placeholder function connecting them are intended

INTRODUCTION
As computational resources inexorably grow, computational neuro-
science is increasingly moving beyond modeling individual neurons
or neural systems to consider the integration of multiple models,
often constructed by different research groups. At the software level
there is a drive towards interoperability of simulators at both model
specifi cation (Goddard et al., 2001) and run-time stages (Cannon
et al., 2007). However, these efforts have concentrated on creating
small networks of different multi-compartment models (Gleeson
et al., 2007), or large networks of different single-compartment
spiking neuron models (Cannon et al., 2007).

Our focus here is on a third strand that can take advantage of
growth in computing power: the integration of multiple neural
models that form components of a brain-wide system, and the
testing of that integrated model in an embodied form. Embodiment
often takes the form of a robot and a test environment, whether
simulated or real. Requiring the neural models to generate appro-
priate behavioural output using only inputs available in the envi-
ronment is a strong test of the proposed computations of that
neural system (Humphries et al., 2005; Prescott et al., 2006). In
such large simulations, development time is as much an issue as
computation time – to implement and test the models, construct
simulated environments, implement realistic sensors, and so on.
This paper shows how Python provides an excellent solution to
both development and computation time problems; we also discuss
how Python can work with platforms designed for such large-scale
integration (Mitchinson et al., 2008).

As a case study, we report on our preliminary integration of
recent hippocampal formation and basal ganglia models, both
proposed components of the neural system for spatial naviga-
tion (Redish and Touretzky, 1997). The hippocampal formation’s
role in spatial navigation is not controversial: “place” cells within

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Michael E. Hasselmo, Boston
University, USA
Eilif Muller, Brain Mind Institute, EPFL,
Switzerland

*Correspondence:

Charles Fox, Adaptive Behaviour
Research Group, Department of
Psychology, Faculty of Pure Science,
University of Sheffi eld, Sheffi eld,
South Yorkshire, Western Bank,
Sheffi eld S10 2TP, UK.
e-mail: charles.fox@sheffi eld.ac.uk

122

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

to be biologically realistic at this stage. The neural models control
a mobile rat-like robot in a standard plus-maze environment with
external landmarks, all implemented in a 3D simulator built using
existing Python modules. The purpose of this paper is to illustrate
a complete neural and physical simulation system, detailing the spe-
cifi c libraries and packages in the tool-chain that were found useful,
and not to make any new claims about the biological models. We
hope that it will provide a guide for others who wish to implement
similar systems, as it can be diffi cult for newcomers to select the best
tools from the plethora of open-source Python extensions.

COMPUTATIONAL MODELS
We are updating prior models of hippocampal formation-basal
ganglia interactions (Arleo and Gerstner, 2000; Chavarriaga et al.,
2005) by including the entire basal ganglia circuit and by using a
grid-cell driven model of hippocampus. In addition, prior models
assumed a direct, modifi able, projection from place cells to the stria-
tum (Arleo and Gerstner, 2000; Chavarriaga et al., 2005). However,
such a projection, if it exists, is minor compared to input from other
regions of the hippocampal formation, particularly the subicu-
lum, suggesting further stages of processing between the basic

 representation of position and the striatum (see e.g. Groenewegen
et al., 1999; van Groen and Wyss, 1990). In the current integrated
system, we provide a simple spatial decoding scheme as a proxy for
detailed models of the intervening structures to follow. We do not
here present new results from the individual models (Gurney et al.,
2001a,b; Ujfalussy et al., 2008), but report on systems integration
at a technical level using Python and BRAHMS.

BASAL GANGLIA
The basal ganglia are a group of inter-connected subcortical nuclei,
which receive massive convergent input from most regions of cor-
tex, and output to targets in the thalamus and brainstem (Bolam
et al., 2000). We have previously shown how this combination of
inputs, outputs, and internal circuitry implements a neural sub-
strate for a selection mechanism (Gurney et al., 2001a,b, 2004;
Humphries and Gurney, 2002; Humphries et al., 2006; Prescott
et al., 2006). Figure 1 illustrates the macro- and micro-architec-
ture of the basal ganglia, highlighting three key ideas underlying
the selection hypothesis: that the projections between the neural
populations form a series of parallel loops – channels – running
through the basal ganglia from input to output stages (Alexander

FIGURE 1 | Architecture of the basal ganglia model. The main circuit (centre)
can be decomposed into two copies of an off-centre, on-surround network: a
selection pathway (right) and a control pathway (left). Three parallel loops –
channels – are shown in both pathways, with example activity levels in the bar
charts to illustrate the relative contributions of the nuclei (the three channels are
colour-coded black/grey/white, corresponding to the example bar charts). Note
that, for clarity, full connectivity is only shown for the second channel. Briefl y, the
selection mechanism works as follows. Constant inhibitory output from substantia
nigra pars reticulata (SNr) provides an “off” signal to its widespread targets in the
thalamus and brainstem. Cortical inputs representing competing saliences are

organised in separate channels (groups of co-active cortical neurons), which
project to corresponding populations in striatum and STN. In the selection circuit,
the balance of focussed (one-to-one) inhibition from striatum and diffuse (one-to-
many) excitation from STN results in the most salient input suppressing the
inhibitory output from SNr on that channel, signalling “on” to that SNr channel’s
targets. In the control circuit, a similar overlap of projections to GP exists, but the
feedback from GP to the STN acts as a self-regulating mechanism for the activity
in STN, which ensures that overall basal ganglia activity remains within operational
limits as more and more channels become active. For quantitative demonstrations
of this model, see Gurney et al. (2001b, 2004) and Humphries et al. (2006).

123

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

and Crutcher, 1990); that the total activity from cortical sources
converging at each channel of the striatum encodes the salience of
the action represented by that channel; and that the selection of
an action is signalled by a process of disinhibition – the selective
removal of tonic inhibition from cells in the basal ganglia’s target
regions that encode the action (Chevalier and Deniau, 1990).

We use here the population-level implementation of this model
from Gurney et al. (2001b). The average activity of all neurons
comprising a channel in a population is represented by a single
unit that changes according to

τa a u= − + (1)

where τ is a time constant and u is summed, weighted input. We
use τ = 40 ms. The normalised fi ring rate y of the unit is given by
a piecewise linear output function

y F a

a

a a

a

= , =
≤

− < < +
≥ +

⎧
⎨
⎪

⎩⎪
()ε

ε
ε ε ε

ε

0

1

1 1

(2)

The following describes net input u
i
 and output y

i
 for the ith

channel of each structure, with n channels in total. Net input is
computed from the outputs of the other structures, except cortical
input c

i
 to channel i of striatum and subthalamic nucleus (STN).

The striatum is divided into two populations, one of cells with the
D1-type dopamine receptor, and one of cells with the D2-type
dopamine receptor. Many converging lines of evidence from elec-
trophysiology, mRNA transcription, and lesion studies suggest a
functional split between D1- and D2-dominant projection neurons
and, further, that the D1-dominant neurons project to SNr, and
the D2-dominant neurons project to globus pallidus (GP; Gerfen
and Wilson, 1996; Surmeier et al., 2007).

Activation of these receptors has opposite effects on striatal
input: D1 activation increases the effi cacy of the input; D2 activa-
tion decreases the effi cacy of the input (see Gurney et al., 2001b,
for full details). Let the level of tonic dopamine be λ: then the
increase in synaptic effi cacy due to D1 receptor activation is given
by (1 + λ); the decrease in synaptic effi cacy due to D2 receptor acti-
vation is given by (1 − λ). Normal dopamine levels were indicated
by λ = 0.2, and dopamine-depletion by λ = 0, following previous
work (Gurney et al., 2001b; Humphries and Gurney, 2002). The
full model is thus given by:

Striatum D1: u ci
d

i
1 1= +()λ (3)

 y F ai
d

i
d1 1 0 2= , .() (4)

Striatum D2: u ci
d

i
2 1= −()λ (5)

 y F ai
d

i
d2 2 0 2= , .() (6)

STN: u c yi
stn

i i
gp= − (7)

 y F ai
stn

i
stn= ,− .()0 25 (8)

Globus pallidus:

u y yi
gp

i
stn

i
d

i

n

= . −∑0 9 2

(9)

 y F ai
gp

i
gp= ,− .()0 2 (10)

SNr:

u y y yi
snr

i
stn

i
d

i
gp

i

n

= . − − .∑0 9 0 31

(11)

 y F ai
snr

i
snr= ,− .()0 2 (12)

Full details for the chosen constants can be found in (Gurney
et al., 2001a), and are summarised here. Thresholds for striatal out-
put were set ε > 0 so that a large positive input would be required for
any output from these neurons, modelling the large input required
to push the striatal projection neuron into its fi ring-ready “up-state”
(Gerfen and Wilson, 1996). The STN, SNr, and GP all had ε < 0, as
each of these has tonic output at rest (Bolam et al., 2000). Non-unity
weights (0.3,0.9) on inputs were set to be within analytically-derived
bounds for stable operation of the model (Gurney et al., 2001a).

We used forward Euler to simulate this system for a two-channel
model, with the same time-step of 10 ms as was used for the discrete
equations of the hippocampus model (see below).

The model was implemented in Python using an object-oriented
hierarchy. Neuron objects contain Dendrite objects, which store
modulated and unmodulated weights, and references to parent
neurons. Neurons also store their parameters (ε,τ,s) (where s is
the sign of dopamine action) and state (u,a,y). The neuron class
contains methods to apply dopamine modulation and determine
the unit’s output. A Population class groups units together, and con-
tains methods to instantiate sets of one-to-one (e.g. GP→SNr) or
diffuse (e.g. STN→SNr) links to other Populations. These methods
automatically construct Dendrite objects and update references.

We have found Python’s default and named arguments to be
especially useful in this type of modeling. Neurons may be given
many default parameter values which remain invisible in the user-
level code unless specifi cally overridden. For example, the sign s of
dopamine action is assumed to be zero (meaning no effect) unless
an easy-to-read named parameter is passed:

STN = Population(n, epsilon = −0.25)
STN.addParPopOneToOne(Cx, w_Cx_STN)
D2 = Population(n,dopamineAction = −1, epsilon = 0.2)
D2.addParDopamine(SNc)
D2.addParPopOneToOne(Cx, w_Cx_D2)

HIPPOCAMPAL FORMATION MODEL
The hippocampal formation comprises the EC, dentate gyrus (DG),
fi elds CA3 and CA1 of the hippocampus proper, and the subiculum.
These form a feed-forward loop of connections that starts and
ends in the EC. Though all structures are thought to contribute,
the hippocampal model of Ujfalussy et al. (2008) instantiates just
the minimum putatively required for the hippocampal formation
to act as a memory store (following Treeves and Rolls, 1994); for
spatial navigation, the memory formed is considered the place code
created by the place cells. Figure 2 shows the basic structure, formed
by just the EC, DG, and CA3.

Following previous models (e.g. Treeves and Rolls, 1994), the
model of Ujfalussy et al. (2008) makes three key assumptions.
First, the DG region is a preprocessing stage for CA3, acting as a
competitive network that creates a sparse and clustered code of
the pre-synaptic EC input, which – similarly to other neocortical
regions – realises a denser representation. This sparse, orthogonal
code is in turn used as a teaching signal for the CA3 region. Second,
the CA3 region acts as an auto-association memory, which stores
memory traces in its extensive recurrent local collaterals for later
retrieval. Third, many previous hippocampal models (Arleo and
Gerstner, 2000; Rolls, 1995; Treeves and Rolls, 1994) assume that
the hippocampus operates in two distinct modes during learning

124

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

and retrieval, which are also incorporated into the present model.
As in these models, switching between the two modes is performed
manually (contrary to models such as Hasselmo et al. (1995, 1996)
which explicitly address the separation between learning and recall).
Figure 2 shows the connections that change between the modes.

Entorhinal cortex
Grid cells in EC are modeled as having fi ring rates that are functions
of the agent’s actual physical position r = (x,y) in the simulated
environment. Grid cells each have two parameters, determining
the phase and scale of their receptive fi elds. The output of the i,jth
grid cell is

g si j k i j
k

() cos ()r w r, = ⋅ −⎡⎣ ⎤⎦∑1

3
2 θ

(13)

where s
i
 and θ

j
 are the ith scale factor and jth phase shift respectively,

and { }wk k= :1 3 are unit vectors at 60° from each other. We used an
ordered set of scale factors from 0.5 to 2.5 in steps of 0.5, and an
ordered set of phases from 0 to π in steps of π/5; i and j are indices
into these sets. Figure 3 shows that Eq. 13 produces receptive fi elds
with the characteristic rhomboid or “double triangle” tesselation
of grid cells (Hafting et al., 2005).

The EC relays input from several cortical areas (Marr, 1971) to
the hippocampal formation, and is thus often treated (e.g. Rolls,
1995; Rolls et al., 2006), as in the present model, as the input source
for all sensory information. Thus, as well as comprising a large
population of grid cells, EC is modelled with an additional popula-
tion of sensory cells. We use 100 visual cells, whose activations are
set by 10 × 10 grayscale images.

Dentate gyrus
The DG is thought to perform a principal-components-like dimen-
sionality reduction of input from the EC (Lorincz, 1998). Writing
w

ij
 for weights on inputs y

i
, the jth DG unit’s neural activation is

given by

a w yj ij i
i

= ∑

(14)

where the sum is taken over all EC inputs. Output fi ring rates {y
j
}

are given by a m-best function {y
j
} = F{a

j
} which preserves the m

largest activations, linearly re-maps them to the interval [0,1], and
sets the others to zero.

During the training phase only, every EC → DG weight is
updated at each time-step using the standard Hebbian learning
rule,

Δ = −w y y wij j i ijα ()

(15)

where α is the learning rate, and again j represents the DG cell
population and i represents the afferent EC population.

CA3 place cells
CA3 functions differently during training and recall. During train-
ing, CA3 is driven only by input from DG; hence unit activity
is updated according to Eq. 14 with j representing the CA3 cell
population and i representing the afferent DG population. CA3
output is computed from these activations with the same m-best
function used for the DG output.

Despite being driven by DG only, no learning is performed on
this connection. Instead, learning is performed on the otherwise
dormant EC→CA3 and CA3→CA3 pathways. EC→CA3 weights
are altered by Eq. 15, where y

i
 is EC output, and y

j
 is CA3 output.

Following Rolls (1995), each recurrent CA3→CA3 weight is altered
by the gated Hebbian rule,

Δ = − −w y y w wij i j ij ijα β()1

(16)

where β sets the “forgetting rate”, and i and j now both refer to cells
within the CA3 population.

During the recall phase, the EC input is used to initiate retrieval
of a stored memory pattern. First, the activation of CA3 units is
computed from the EC inputs only, using Eq. 14 with j representing
the CA3 cell population and i representing the afferent EC popu-
lation; their output is then computed using the m-best function.
Second, this initial output vector was used as the cue to retrieve
the memory trace in the CA3 autoassociative network. The activity

EC

DG CA3

EC

DG CA3

Training Recall

* * *

FIGURE 2 | Basic structure of the hippocampal model. Different
connections are active during learning and recall modes. Learning is
performed on the asterisked connections only. Thin lines indicate connections
which do not drive their targets, but perform learning only.

FIGURE 3 | Grid cell receptive fi elds from the model, over physical 2D

space. These are plotted with Pylab’s Matlab-style imagesc command.

125

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

of the kth CA3 unit is then the weighted sum of total output from
the EC and the recurrent connections

a w y w yk ik i
i

jk j
j

= +
∈ ∈
∑ ∑

EC CA3

(17)

with CA3 output y
k
 again computed by applying the m-best func-

tion. Activation (Eq. 17) and output calculations of the CA3 units
were iterated I times to bring the CA3 close to an attractor state as
in Hopfi eld-style networks (Hopfi eld, 1984).

We used eight DG cells and 30 CA3 cells with: learning rate
α = 0.05, forgetting rate β = 0.00002, sparsity m = 20 and I = 5
recurrent iterations.

Implementation in Python
The hippocampal model uses simple rate-coded units and linear
weights, in contrast to the basal ganglia’s leaky integrators. For this
reason the population activations and fi ring rates are amenable to
fast implementation as vectors rather than as attributes of individual
objects. Multiplication of population fi ring rates by weight matrices
may then be performed by matrix algebra. This style of programming
is common in Matlab, and may be performed in Python using the
Numpy library1. Numpy emulates much of Matlab’s matrix syntax,
including notation for slicing matrices (e.g. A = M[:,1:5]), address-
ing (M[2,3] = 4) and performing operations such as element-wise
addition (B = A + 1) as well as matrix algebra (C = dot(A,B)).

We have also made use of two further libraries: SciPy2 provides
a library of higher-level mathematical functions similar to Matlab’s
toolboxes; and Pylab3 provides interactive plotting commands. For
example, Figures 3 and 4 were plotted using Pylab. Pylab emulates
many of Matlab’s graphics commands including 2D and 3D graphs,
and image viewers. The Matlab application programmer interfaces
(APIs) are replicated almost literally, using the same function names
and argument conventions where possible, such as clf, plot and
imagesc.

Training
Training of the EC→DG, EC→CA3 and CA3→CA3 weights was
performed over fi ve epochs. Weights were initialised to random real
values from a uniform distribution ranging from 0 to 1. Grid and
visual cell input data was collected from a simulated robot moving
to a sequence of pre-determined points in a plus-maze environ-
ment (see “Building and Using the 3D Simulator” for simulator
details). The robot enters the maze from the open arm, then visits
each of the other arms in turn and comes to rest at the center.
About 1,500 data points were sampled during this motion. After
training, Python’s standard cPickle library provided a simple way
to serialise and save the trained Hippocampus object, using only
the following code:

file = open("myfile", "r")
cPickle.dump(myObject, file)
file.close()

The effect of training the hippocampus model with the grid cell
and visual input was to generate place fi elds in CA3, such as those

shown in Figure 4, which shows the locations of strongest fi ring
for nine of the 30 CA3 cells, superimposed on the robot’s path. Of
the 30 cells simulated, 11 responded to single places, 13 to two or
more places, and 6 were silent at all places (where a “single” place
is defi ned as a contiguous series of strong activations).

DECODING PLACE
We used a placeholder function for decoding hippocampal place
representations into striatal input, as a proxy for detailed models of
the intervening structures (e.g. CA1, subiculum) to follow. A simple
linear regression was used to fi nd a linear mapping from the vec-
tor of place cell activations to the Cartesian (x,y) spatial positions.
SciPy provides such regression in its linear algebra sub-package
(function linalg.lstsq).

BUILDING AND USING THE 3D SIMULATOR
THE PLUS-MAZE ENVIRONMENT
We used Python to construct a plus-maze environment in which to
test our current and future forms of the integrated basal ganglia-
hippocampus model. The plus-maze environment was chosen as
it is widely used for neural recording studies that probe the roles
of striatum, hippocampus, and their interactions in spatial tasks
(Albertin et al., 2000; Khamassi, 2007; Mulder et al., 2004; Tabuchi
et al., 2000, 2003). Following these studies, the simulated plus-maze
comprised a symmetric arrangement of walled arms, and two extra-
mazecues (Figure 5).

The neural model was used to control the “ICEAsim” simu-
lated robot, a differential wheels robot in a rat-like form, created
by Cyberbotics (Lausanne) for the ICEA project4. ICEAsim was

FIGURE 4 | Receptive fi elds for nine CA3 place cells, superimposed on the

robot’s path around the plus maze. Crosses show locations where cells
fi ring rates are in the top 5% of their activity throughout the path. Plotting was
performed with Pylab’s plot command, which has similar syntax to Matlab.

1www.numpy.scipy.org
2www.scipy.org
3www.matplotlib.sourceforge.net 4www.iceaproject.eu

126

www.numpy.scipy.org
www.scipy.org
www.matplotlib.sourceforge.net
www.iceaproject.eu

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

initially created under Cyberbotics’ Webots simulator (Michel,
2004), but was readily imported into a Python simulation via the
standard VRML format. Wheel commands are sent via a higher-
level (and non-biological) function which takes as input a requested
target location to which to move. Our implementation of ICEAsim
added two whisker sensors, which output the angle and curvature
at their bases for use in tactile perception algorithms (see “Python
Physics Implementation” and “Comparison to PyRobotics”). We
added realistic whisker-like sensors as the basis for future studies:
while rats can successfully navigate in the dark, and correspond-
ing place fi elds are formed in the hippocampal formation, this has
been attributed entirely to idiothetic (self-motion) cues (Quirk
et al., 1990; Rossier et al., 2000); surprisingly little attention has
been paid to the potential role of rats’ whiskers in constructing
spatial maps in the dark.

For the purposes of this paper, we used a simple task and a place-
holder function to test that the models were correctly implemented
and technically integrated. After hippocampal training (a separate
task, not involving basal ganglia), the robot was simply required to
successfully navigate to the end of a maze arm, starting from the
entrance of the maze. The basal ganglia model received input sali-
ences {c

1
,c

2
} on two channels, corresponding to two actions (“go to

left arm” and “go to right arm”), and which – in this preliminary
system – were assigned predefi ned time series. The placeholder
function monitored the hippocampal position estimate, and when
this estimate was close to the center of the maze, the action cor-
responding to the basal ganglia output channel (in SNr) with
minimum value was selected and executed to completion. A “go
to left arm” or “go to right arm” routine is called, which uses hip-
pocampal output to estimate the required path to follow and sets

the robot’s differential wheel speeds accordingly. Figure 5 illustrates
the simulated robot’s behaviour: video of the robot’s movement,
and corresponding activity in the integrated neural models, are
available as Supplementary Material. Future biological models of
basal ganglia-hippocampus interactions may of course replace the
predefi ned time series and placeholder function with more complex
and ongoing interactions between the models, using the technical
integration framework presented here.

PYTHON PHYSICS IMPLEMENTATION
To simulate tactile whisker sensors requires realistic physics mod-
eling, as the precise bending (Birdwell et al., 2007), vibration
(Ueno and Kaneko, 1994) and other dynamics (Ritt et al., 2006)
of whiskers are crucial in making inferences from touch. The Open
Dynamics Engine (ODE) is an excellent open-source (BSD license)
physics engine, and we use the PyODE wrapper (pyode.source-
forge.net) to use it from Python. ODE provides primitive objects
such as cubes, spheres and cylinders, which may be combined and
transformed to produce objects such as the walls of the plus-maze
and the parts of the robot. PyODE wraps all the major ODE func-
tions for shapes, kinematics and collision handling, and provides
access to ODE’s standard set of fl exible joints. We use the latter to
construct rotating wheels, and whiskers. The whiskers are modelled
as a series of spherical or cylindrical segments, connected by joints
with rotational Hooke’s law springs. ODE handles the constraint
forces required to keep joints together automatically; however very
small time steps (and hence long simulation times) are needed
when the number of segments is above three. For example with
three segments per whisker the simulation requires about 3 min to
run stably on a 1.6-GHz machine; with four segments it requires
about 10 min.

VISUALISATION
3D visualisation is important in robotics simulation, both to ensure
that the simulation is behaving as intended, and also to provide
realistic visual input to robot sensors, for processing by neural
models.

OpenGL is a standard 3D graphics API5, and is implemented
by the free software Mesa and by many hardware-specifi c graphics
drivers. OpenGL provides low-level graphics commands to draw
lines, triangles and polygons, and position lights and cameras.
The OpenGL API is wrapped in Python by pyOpenGL (pyopengl.
sourceforge.net).

Higher-level graphics commands – such as drawing cubes,
cylinders and cones using scene graphs – are provided by the
OpenInventor API, implemented by the free software Coin6. Coin
has been wrapped for Python by the Pivy binding7 (Fahmy, 2006)
which we use here. Pivy allows raw pyOpenGL commands to be
mixed into its higher-level structures where necessary.

To simulate vision (for input to the hippocampus model) we
read back images from simulated cameras attached to the robot.
Pivy wraps Coin’s SoOffScreenRenderer function to perform
this task. (Modelers are advised that use of this function may be

FIGURE 5 | The simulated plus-maze environment. The hippocampus
reports the current estimated location, shown by the cross on the fl oor. When
this estimate is close to the center of the plus-maze, the basal ganglia is
consulted for an action to turn. 3D physical simulation and visualisation uses
PyODE and Pivy.

5www.OpenGL.org
6www.coin3d.org
7www.pivy.coin3d.org

127

www.OpenGL.org
www.coin3d.org
www.coin3d.org

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

incompatible with the use of direct rendering on some graph-
ics hardware. Disabling direct rendering solves this problem but
reduces execution speed.) If graphical output is required in video
form only – such as for presentation but not as data for neural
 models – the free program Yukon8 is able to export OpenGL graph-
ics to .avi movies, whose frame-rate and resolution may be edited
with the free Avifi x program9.

In addition to the main 3D representation of the physical world,
it is often useful to attach additional graphical monitors to show the
internal state of the neural models in real-time. Pivy – like Coin –
takes control of program fl ow, calling back user functions to draw
and update the world. When multiple displays are required – or
when handing over control is too intrusive – it is useful to instan-
tiate several processes running Pivy. We use the Python Remote
Objects package (PyRo10) to handle communication between such
processes. PyRo allows an object from one process to appear on
another as if it was resident there, allowing function to be called and
data to be passed easily. PyRo processes communicate via TCP/IP
so the monitors may run on different machines to the main simula-
tion. Figure 6 shows a screen-shot of the state visualisation tool we
built for the integrated basal ganglia-hippocampus model.

COMPARISON TO PYROBOTICS
Our simulation is constructed using Python wrappers for ODE and
OpenGL. An alternative approach to simulation would be to use
the higher-level Player interface and Gazebo simulator11 which are
available though the PyRobotics12 integrated robotics simulator.
PyRobotics allows worlds and robots to be built from standard com-
ponents using XML specifi cation, and controllers written in Python.
This approach is recommended for simulations requiring standard
physics, but our use of the lower-level APIs was determined by the
need to write custom physics code for the whisker sensors. Whiskers
are diffi cult to model and coding with ODE directly allows fi ner

control over the contacts and forces that are simulated than would
be available in a higher-level simulator. Our custom simulations are
not intended to be an integrated robotics simulator, but they serve
as an example of lower-level PyODE and Pivy simulation.

SPEED COMPARISONS
Python is often thought of as being a “slow language” and if this is
the case then it would be a barrier to its use in large scale, compu-
tationally-intensive neural simulations. However, various libraries
and programming styles exist that can improve performance. We
investigated a variety of these to evaluate Python’s suitability for
large simulations. We chose execution of the previous basal ganglia
model alone as a benchmark representative of many neural simula-
tion tasks, and used a model with 100 channels running over 1,000
time steps to provide a sizable task requiring time of the order of
seconds. Neural models are commonly implemented in high-level
Matlab code (and its open-source equivalent, Octave), or in low-level
C code. C code allows and requires the user to perform their own
memory management, leading to greater development time but often
faster running times. We re-implemented the basal ganglia model in
these languages, writing the fastest code our skills allowed.

In addition to the object-oriented Python model described
earlier, we also re-implemented Python models using the Numpy,
Pyrex and Weave libraries. As described above, Numpy provides
Matlab-like data structures, operations and syntax, to the extent
that the Matlab program can be ported to Numpy with only minor
syntactic modifi cations. Pyrex13 is a Python-like language for writ-
ing Python extension modules, which provides C-like manual typ-
ing and data structures. As with C, Pyrex increases development
time by adding work to the programmer’s load, but may increase
execution time as a result. Programming Pyrex is conceptually simi-
lar to writing C programs, but using a Python-like syntax and allow-
ing very simple integration into pure Python code. Weave (part of
SciPy) allows inline C code to be embedded directly into Python
fi les, and its “converters” library automates data type conversion
between languages. We implemented inline Weave code within the
body of the main Numpy simulation loop.

Another way to improve Python speed is to use more advanced
compilers and virtual machines. There is much current research
into such tools but a popular system is Psyco14. We used Psyco to
run the pure Python, object-oriented model (it has negligible effect
on Numpy code, in which most of the computation is performed
by external numerical C libraries).

Table 1 shows the average execution times for the above imple-
mentations (and a BRAHMS version discussed below). Execution was
performed on a 1.6 GHz, 1.5 GB Ubuntu system and time averages
were taken over fi ve runs. No calls were made to platform-specifi c
BLAS or random-number generator libraries within the simulation
loops (such calls are not required or useful in implementing the
basal ganglia model’s equations). It can be seen that for the Matlab
and C-like programming styles (i.e. Numpy and Pyrex respectively)
Python is about four times slower than the non-Python alternative.
Weave is only a fraction slower than raw C, the overhead being due

FIGURE 6 | Real-time graphical neuron monitor, showing basal ganglia

and hippocampus model populations. The monitor runs remotely from the
simulation over TCP/IP using Pyro, and displays graphics using Pivy.

8www.dbservice.com/projects/yukon
9www.transcoding.org
10www.pyro.sourceforge.net
11www.playerstage.sourceforge.net
12www.pyrobotics.org

13www.cosc.canterbury.ac.nz/greg.ewing/
14www.psyco.sourceforge.net

128

www.dbservice.com/projects/yukon
www.transcoding.org
www.transcoding.org
www.transcoding.org
www.transcoding.org
www.transcoding.org
www.transcoding.org

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

to type conversions. The object-oriented version has a much larger
run-time – as expected of this style of programming – and the time
is reduced by about 25% using Psyco.

These results suggest that Python is not inherently “slow” – a
factor of four is not large in such comparisons – though it can be
used to write slow but conceptually meaningful, human-readable,
object-oriented code if desired. Alternatively, if human comprehen-
sion is less important, then Matlab-like and C-like programming
styles can be used to regain speed. In most cases it is desirable to
work on an easily comprehendible “reference implementation” of
a model at fi rst, then develop a faster implementation once the
research is complete. Python eases this often diffi cult transition as
Numpy, Weave and Pyrex commands may be gradually mixed into
and replace the research code: the more traditional replacement of
Matlab by C programs requires a complete rewrite from scratch.

SUBJECTIVE EXPERIENCES WITH Python
The above has considered architectural and computational features
of Python and its associated libraries that are useful in embodied
neural modeling. However these are not the only criteria for choos-
ing a language for development: at least as important are the more
subjective aspects of the system during development and debug-
ging. Here we offer our experiences of hands-on development of
the neural and physical models.

We have found that Python supports a wide range of coding
styles. In particular, it is possible to code almost literal line-by-
line translations of Matlab programs by making heavy use of
Numpy’s matrices and Pylab’s plotting facilities. A key feature
is the ability to use interpreted Python from a command line,
enabling Matlab-like exploitation of data, testing of functions,
and calculator-style calculations. There is typically a little more
keyboard typing than when using Matlab. Throughout we have
drawn explicit parallels between using Python and Matlab, as
Matlab (or Octave) is often the preferred choice for rapid model
development and analysis.

Python’s class system allows Java-like object-oriented construc-
tion of dendrites, neurons and populations. Stylistically its use is
similar to Java, or C++ with passing by reference. We have found
it a natural but relatively slow-execution way to model neural
systems.

The physical and neural simulation, with OpenGL interface,
runs at comparable speed to commercial robotics simulators such

as Webots (Cyberbotics, Lausanne). We have found development
time to be much improved over C++, and comparable with Matlab.
However Python gives more versatility than Matlab, allowing easy
integration with many open-source libraries and the underlying
operating system. Our development has used Emacs with its Python
mode. In particular, this integrates with the Python debugger, pdb,
to allow visual stepping through code and command-line interac-
tion as in Matlab. This type of interaction can be especially impor-
tant in neural and AI programs, whose states and interactions can
become very complex in unpredicted ways.

LARGE-SCALE INTEGRATION WITH BRAHMS
All of the components discussed above (basal ganglia, hippoc-
ampus, 3D simulator) were implemented as stateful functions
in Python. Thus, integrating them into a computational system
was straightforward, by writing a simple Python “main” func-
tion that called these objects in turn to progress them through
time. Such an approach to integration is effective, so long as
there is no requirement for integration across more complex
boundaries. One example of a more complex boundary is cross-
language: integrating between functions written in Python, C,
Java, or Matlab, for instance, is not generally straightforward.
Whilst Python might be a suitable language for large portions of
a development, bottleneck computations may benefi t from being
recoded in a lower-level language such as C. Besides, contribut-
ing authors may not all share competence and/or enthusiasm
for Python development.

Other obstacles to integration include different component
authors, particularly in different groups. This can be problem-
atic since different authors tend to design different interfaces
for their components and, in the world of research, rarely have
time to properly document these interfaces. Integrating through
time – that is, using code written some years ago with code writ-
ten today – can throw up the same problems as integrating across
authors, particularly if documentation is lacking. Cross-platform
integration is sometimes necessary, particularly as emphasis shifts
to high-performance or embedded computing, and this is far from
trivial.

As such multi-module eclectic models become prevalent, and
with growing interest in widely varying use cases (high-performance,
desktop, embedded), a general solution to the integration problem
is urgently required. One such solution is the BRAHMS Modular
Execution Framework (brahms.sourceforge.net; Mitchinson et al.,
2008). BRAHMS consists of a supervisor, which is analogous to the
simple Python “main” function mentioned above, a fi xed supervi-
sor interface against which software components can be devel-
oped (currently available in C, C++, Matlab and Python), and a
user-extensible set of data types for passing data between software
components (forming the inter-process interface). Components
need not agree between themselves on implementation: they need
only conform to these two interfaces provided and made public by
the framework. A BRAHMS system, constructed from processes
authored as described below, can be parallelised across compu-
ter cores sharing memory or connected by an MPI layer or LAN;
alternatively, it can be run on an embedded system, since BRAHMS
is lightweight. Here we describe the BRAMHS Python language
binding.

Table 1 | Computation times for the basal ganglia model implemented

in different languages and programming formats.

Language/format Time (s)

Object-oriented Python 66.1

As above, with Psyco 48.6

Octave 1.31

Numpy Python + BRAHMS 0.89

Numpy Python 0.82

Pyrex 0.22

Matlab 0.21

Scipy.weave.inline 0.05

Raw C 0.04

129

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

A BRAHMS PROCESS IN Python
The current BRAHMS Python binding (called “1262”) requires that
the process be implemented as a function; this function is rendered
stateful by passing in and out a reference to a dictionary object,
called persist. The function is a handler for framework events,
so its body consists of a switch block on the event type. The 1262
template provided with BRAHMS handles four events.

The fi rst, (EVENT_MODULE_INIT), returns information about the
process to the framework, and is already implemented completely in
the template. The developer can update the author information as
appropriate and familiarise themself with the two possible process
fl ags (discussed below). The second, (EVENT_STATE_SET), passes
the component its state, which is obtained by the framework from
the system document. This “state” typically consists only of proc-
ess parameters for initialisation. The third event, (EVENT_INIT_
CONNECT), requires that the process validate its inputs and create
its outputs (discussed below). The fourth, (EVENT_RUN_SERVICE),
requires that the process service its inputs and outputs (read input
data, write output data) at some time, t. This implies that the proc-
ess must complete its computations at least up to time t (a process
is free to progress its state beyond t for any reason). This last event
(discussed below) is received multiple times during execution and
is, effectively, the process step function.

Connectivity
In general, a system to be computed may include any number of
processes, each of which has each of its outputs dependent on
some subset of its inputs. A valid (fully specifi ed) system may
have arbitrary (including recursive) output structure dependen-
cies. Since processes are responsible for instantiating their own
outputs this requires, in general, multiple calls from the framework
to each process in the system to request that it create outputs. The
BRAHMS supervisor takes care of making these calls (by sending
event EVENT_INIT_CONNECT), guarantees that more inputs will
be available on each subsequent call (with zero to N available on
the fi rst call, and exactly N available on the last), and requires that
each process follow a simple algorithm on receiving each call. The
algorithm is: (a) observe (and validate, if necessary) the structure
of any newly presented inputs; (b) create as many outputs as pos-
sible. This algorithm will successfully instantiate any valid system.
When required dependencies are not met, the framework will raise
a “deadlock” error.

EXAMPLE
We have constructed and executed successfully a second version of
the integrated basal ganglia, hippocampus and physical world simu-
lation in which these three components are implemented as sepa-
rate BRAHMS modules. Such conversion is straightforward, with
each module being pasted into the template and modifi ed such that
it expresses the interface described above. Wrapper code linking a
Hippocampus Python object to BRAHMS is given in the Appendix.
We tested the overhead introduced by the BRAHMS framework by
running a BRAHMS-wrapped version of the Numpy basal ganglia
model used in the previous speed comparisons. Table 1 shows that
the overhead of using BRAHMS is very small; yet using it will now
allow extensions to the basic integrated model in any (currently
supported) language or level of modelling detail.

CONCLUSIONS
For large-scale integration and testing of neural models, Python can
achieve an excellent balance between development time and com-
putational run-time. The fl exibility offered by its modules allows
programmers to adopt the style most comfortable to them, without
a strong penalty in computation time. We have shown here how
all these aspects have contributed to the construction of both an
integrated basal ganglia-hippocampal formation model for spatial
navigation and its embodiment. Moreover, Python either forms the
basis for (PyNN; neuralensemble.org/trac/PyNN), or is compatible
with (BRAHMS; Mitchinson et al., 2008), platforms that address
larger-scale integration across modelling levels and hardware. Thus,
Python is a crucial part of the neuroinformaticstoolbox: fl exible,
usable, readable, and scalable.

APPENDIX
The following shows the code used to link the Hippocampus model
to the BRAHMS framework. The code implements four BRAHMS
events. The persistent state consists of an instance of a pre-trained
Hippocampus object, created in EVENT_STATE_SET. Servicing
(EVENT_RUN_SERVICE) consists of reading the BRAHMS inputs,
passing them in an appropriate format to the Hippocampus object,
and passing its output back to BRAHMS. The other events are
described in the Section “A BRAHMS Process in Python”.

import brahms
from hc import *
def brahms_process(persist, input):
 output = {’info’:{},’operations’:[],’event’:
 {’response’: 0}}

if input[’event’][’type’] == EVENT_MODULE_INIT:
 #these flags inform BRAHMS that this process
 #needs all inputs to be available before it can

initalise,
 #and that the process does not change the sample rate.
output[’info’][’flags’] = F_NEEDS_ALL_INPUTS + F_NOT_

RATE_CHANGER
 output[’info’][’component’] = (0, 1)
 output[’info’][’additional’] = "
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_STATE_SET:
 #create an instance of the Python Hippocampus object
 pars = persist[’state’]
 persist[’ptHC’] = loadHippocampus()
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_INIT_CONNECT:
 #check the data types of the BRAHMS inputs
 p = input[’iif’][’default’][’ports’]
 if len(p) ! = 1:
 output[’error’] = ’expects one input’
 return (persist, output)
 if p[0][’class’] ! = ’dev/std/data/numeric’:
 output[’error’] = ’expects data/numeric INPUT’
 return (persist, output)
if p[0][’structure’] ! = ’DOUBLE/REAL/102’:
 output[’error’] = ’expects real double 2x1 input’
 return (persist, output)
 #create a BRAHMS output

130

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

 persist[’hOut’] = brahms.operation(
 persist[’self’],OPERATION_ADD_PORT,
 ",’dev/std/data/numeric’,
 DOUBLE/REAL/’ + str(persist[’state’][’n_out’]),
 out’)
 output[’event’][’response’] = C_OK

elif input[’event’][’type’] == EVENT_RUN_SERVICE:
 ptHC = persist[’ptHC’] #retreive my persistent state
 #retreive my current inputs from BRAHMS
 ins = input[’iif’][’default’][’ports’][0][’data’]
 x = ins[0]
 z = ins[1]
 img = ins[2:102]
 img = array(img.ravel())
 img.shape = (100,1)
 #call to the Python Hippocampus object
 x_hat, z_hat = ptHC.step(x,z,img)
 #create output and send it to BRAHMS
 myOutput = numpy.array([x, z, x_hat, z_hat], numpy.
double)

 brahms.operation(persist[’self’], OPERATION_SET_CONTENT,
persist[’hOut’], myOutput)

 output[’event’][’response’] = C_OK

#return the output and the modified persistent state
return (persist, output)

ACKNOWLEDGEMENTS
This work was supported by the European Union Framework 6
IST project 027819 (ICEA project: www.iceaproject.eu) and the
European Union Framework 7 ICT project 215910 (BIOTACT
project: www.biotact.org).

SUPPLEMENTARY MATERIAL
Videos and source code from the simulation and speed
 comparisons are presented in the Supplementary Material. The
Supplemental Material for this article can be found online at
http://www.frontiersin.org/neuroinformatics/paper/10.3389/
neuro.11.006.2009

REFERENCES
Albertin, S. V., Mulder, A. B., Tabuchi, E.,

Zugaro, M. B., and Wiener, S. I.
(2000). Lesions of the medial shell of
the nucleus accumbens impair rats
in fi nding larger rewards, but spare
reward-seeking behavior. Behav. Brain
Res. 117, 173–183.

Alexander, G. E., and Crutcher, M. D.
(1990). Functional architecture of
basal ganglia circuits: neural substrates
of parallel processing. Trends Neurosci.
13, 266–272.

Arleo, A., and Gerstner, W. (2000).
Spatial cognition and neuro-mimetic
navigation: a model of hippocampal
place cell activity. Biol. Cybern. 83,
287–299.

B i r d w e l l , J . , S o l o m o n , J . ,
Thajchayapong, M., Taylor, M.,
Cheely, M., Towal, R., Conradt, J., and
Hartmann, M. (2007). Biomechanical
models for radial distance determi-
nation by the rat vibrissal system.
J. Neurophysiol. 98, 2439–2455.

Bolam, J. P., Hanley, J. J., Booth, P. A., and
Bevan, M. D. (2000). Synaptic organ-
isation of the basal ganglia. J. Anat.
196(Pt 4), 527–542.

Cannon, R. C., Gewaltig, M.-O.,
Gleeson, P., Bhalla, U. S., Cornelis, H.,
Hines, M. L., Howell, F. W., Muller, E.,
Stiles, J. R., Wils, S., and Schutter, E. D.
(2007). Interoperability of neuro-
science modeling software: cur-
rent status and future directions.
Neuroinformatics 5, 127–138.

Chavarr iaga, R. , Ströss l in, T. ,
Sheynikhovich, D., and Gerstner, W.
(2005). A computational model of
parallel navigation systems in rodents.
Neuroinformatics 3, 223–241.

Chevalier, G., and Deniau, J. M. (1990).
Disinhibition as a basic process in the

expression of striatal function. Trends
Neurosci. 13, 277–280.

Devan, B. D., Goad, E. H., and Petri, H. L.
(1996). Dissociation of hippocam-
pal and striatal contributions to
spatial navigation in the water maze.
Neurobiol. Learn Mem. 66, 305–323.

Fahmy, T. (2006). Pivy – Embedding a
Dynamic Scripting Language into
a Scene Graph Library. Master’s
Thesis, Vienna, Vienna University of
Technology.

Gerfen, C., and Wilson, C. (1996).
The basal ganglia. In Handbook of
Chemical Neuroanatomy, Vol 12,
Integrated Systems of the CNS,
Part III, L. Swanson, A. Bjorklund, and
T. Hokfelt, eds (Amsterdam, Elsevier),
pp. 371–468.

Gleeson, P., Steuber, V., and Silver, R. A.
(2007). neuroConstruct: a tool for
modeling networks of neurons in 3D
space. Neuron 54, 219–235.

Goddard, N. H., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards NeuroML:
model description methods for col-
laborative modelling in neuroscience.
Philos. Trans. R Soc. Lond., B, Biol. Sci.
356, 1209–1228.

Gorny, J. H., Gorny, B., Wallace, D. G., and
Whishaw, I. Q. (2002). Fimbria-for-
nix lesions disrupt the dead reckoning
(homing) component of exploratory
behavior in mice. Learn Mem. 9,
387–394.

Groenewegen, H. J., Mulder, A. B.,
Beijer, A. V. J., Wright, C. I., Lopes Da
Silva, F. H., and Pennartz, C. M. A.
(1999). Hippocampal and amygdaloid
interactions in the nucleus accumbens.
Psychobiology 27, 149–164.

Gurney, K., Prescott, T. J., and Redgrave, P.
(2001a). A computational model of

action selection in the basal ganglia I: a
new functional anatomy. Biol. Cybern.
85, 401–410.

Gurney, K., Prescott, T. J., and Redgrave, P.
(2001b). A computational model of
action selection in the basal ganglia II:
analysis and simulation of behaviour.
Biol. Cybern. 85, 411–423.

Gurney, K. N., Humphries, M., Wood, R.,
Prescott, T. J., and Redgrave, P. (2004).
Testing computational hypotheses of
brain systems function using high level
models: a case study with the basal
ganglia. Network 15, 263–290.

Hafting, T., Fyhn, M., Molden, S.,
Moser, M.-B., and Moser, E. I. (2005).
Microstructure of a spatial map in
the entorhinal cortex. Nature 436,
801–806.

Hasselmo, M., Schnell, E., and Barkai, E.
(1995). Dynamics of learning and
recall at excitatory recurrent synapses
and cholinergic modulation in rat hip-
pocampal region ca3. J. Neurosci. 15,
5249–5262.

Hasselmo, M., Wyble, B. , and
Wallenstein, G. V. (1996). Encoding
and retrieval of episodic memories:
role of cholinergic and gabaergic
modulation in the hippocampus.
Hippocampus 6, 693–708.

Hikosaka, O., Takikawa, Y., and Kawagoe, R.
(2000). Role of the basal ganglia in
the control of purposive saccadic eye
movements. Physiol. Rev. 80, 953–978.

Hopfi eld, J. J. (1984). Neurons with graded
response have collective computa-
tional properties like those of two-
state neurons. Proc. Natl. Acad. Sci.
U.S.A. 81, 3088–3092.

Humphries, M. D., Gurney, K., and
Prescott, T. J. (2005). Is there an inte-
grative center in the vertebrate brain-
stem? A robotic evaluation of a model

of the reticular formation viewed as an
action selection device. Adapt. Behav.
13, 97–113.

Humphries, M. D., and Gurney, K. N.
(2002). The role of intra-thalamic
and thalamocortical circuits in action
selection. Network 13, 131–156.

Humphries, M. D., Stewart, R. D., and
Gurney, K. N. (2006). A physiologically
plausible model of action selection and
oscillatory activity in the basal ganglia.
J. Neurosci. 26, 12921–12942.

Khamassi, M. (2007). Complementary
Roles of the Rat Prefrontal Cortex and
Striatum in Reward-Based Learning
and Shifting Navigation Strategies.
Ph.D. Thesis, Paris, University Paris 6.

Lorincz, A. (1998). Forming independent
components via temporal locking of
reconstruction architectures: a func-
tional model of the hippocampus.
Biol. Cybern. 79, 263–275.

Marr, D. (1971). Simple memory: a theory
for archicortex. Philos. Trans. R. Soc.
Lond., B, Bio. Sci. 262, 23–81.

McNaughton, B. L., Battaglia, F. P.,
Jensen, O., Moser, E. I. , and
Moser, M.-B. (2006). Path integration
and the neural basis of the ‘cognitive
map’. Nat. Rev. Neurosci. 7, 663–678.

Michel, O. (2004). Webots(tm): profes-
sional mobile robot simulation. Int. J.
Adv. Robotic Syst. 1, 39–42.

Mink, J. W., and Thach, W. T. (1993). Basal
ganglia intrinsic circuits and their role
in behavior. Curr. Opin. Neurobiol. 3,
950–957.

Mitchinson, B., Chan, T., Humphries, M.,
Chambers, J., Fox, C., and Prescott, T.
(2008). BRAHMS: Novel middleware
for integrated systems computation.
Proceedings of the IEEE International
Conference on Intelligent Robots and
Systems. Nice, France.

131

www.iceaproject.eu
www.biotact.org
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11.006.2009

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 6 |

Fox et al. Hippocampus, basal ganglia and physics integration

Mulder, A. B., Tabuchi, E., and Wiener, S. I.
(2004). Neurons in hippocampal affer-
ent zones of rat striatum parse routes
into multi-pace segments during
maze navigation. Eur. J. Neurosci. 19,
1923–1932.

O’Keefe, J., and Conway, D. H. (1978).
Hippocampal place units in the freely
moving rat: why they fi re where they
fi re. Exp. Brain Res. 31, 573–590.

Prescott, T. J., Montes Gonzalez, F. M.,
Gurney, K., Humphries, M. D., and
Redgrave, P. (2006). A robot model of
the basal ganglia: behavior and intrinsic
processing. Neural Netw. 19, 31–61.

Quirk, G. J., Muller, R. U., and Kubie, J. L.
(1990). The firing of hippocampal
place cells in the dark depends on the
rat’s recent experience. J. Neurosci. 10,
2008–2017.

Redgrave, P., Prescott, T. J., and Gurney, K.
(1999). The basal ganglia: a vertebrate
solution to the selection problem?
Neuroscience 89, 1009–1023.

Redish, A. D., and Touretzky, D. S. (1997).
Cognitive maps beyond the hippoc-
ampus. Hippocampus 7, 15–35.

Ritt, J., Andermann, M., Skowronski-
Lutz, E., and Moore, C. (2006).
Characterization of Vibrissa Motion
During Volitional Active Touch.
Atlanta, Barrels XIX.

Rolls, E. (1995). A model of the opera-
tion of the hippocampus and cortex
in memory. Int. J. Neural Syst. 6,
51–71.

Rolls, E., Stringer, S., and Elliot, T. (2006).
Entorhinal cortex grid cells can map to
hippocampal place cells by competi-
tive learning. Network 17, 447–465.

Rossier, J., Kaminsky, Y., Schenk, F., and
Bures, J. (2000). The place preference
task: a new tool for studying the relation
between behavior and place cell activity
in rats. Behav. Neurosci. 114, 273–284.

Sargolini, F., Florian, C., Oliverio, A.,
Mele, A., and Roullet, P. (2003).
Differential involvement of NMDA
and AMPA receptors within the
nucleus accumbens in consolidation
of information necessary for place
navigation and guidance strategy of
mice. Learn Mem. 10, 285–292.

Smith-Roe, S. L., Sadeghian, K., and
Kelley, A. E. (1999). Spatial learning
and performance in the radial arm
maze is impaired after n-methyl-d-
aspartate (NMDA) receptor blockade
in striatal subregions. Behav. Neurosci.
113, 703–717.

Surmeier, D. J., Ding, J., Day, M., Wang, Z.,
and Shen, W. (2007). D1 and D2
dopamine-receptor modulation of
striatal glutamatergic signaling in
striatal medium spiny neurons. Trends
Neurosci. 30, 228–235.

Tabuchi, E., Mulder, A. B., and Wiener, S. I.
(2003). Reward value invariant place
responses and reward site associated
activity in hippocampal neurons
of behaving rats. Hippocampus 13,
117–132.

Tabuchi, E. T., Mulder, A. B., and
Wiener, S. I. (2000). Position and
behavioral modulation of syn-
chronization of hippocampal and
accumbens neuronal discharges in
freely moving rats. Hippocampus 10,
717–728.

Treeves, A., and Rolls, E. (1994).
Computational analysis of the role
of the hippocampus in memory.
Hippocampus 4, 374–391.

Ueno, N., and Kaneko, M. (1994).
Dynamic Active Antenna – A Principle
of Dynamic Sensing. IEEE ICRA, San
Diego, CA, USA, pp. 1784–1790.

Ujfalussy, B., Eros, P., Somogyvari, Z., and
Kiss, T. (2008). Episodes in space: a
modelling study of hippocampal
place representation. In From Animals
to Animats 10, Vol. 5040 of LNAI, M.
Asada, J. Hallam, J.-A. Meyer, and
J. Tani, eds (Berlin, Springer-Verlag),
pp. 123–136.

van Groen, T., and Wyss, J. M. (1990).
Extrinsic projections from area CA1
of the rat hippocampus: olfactory,
cortical, subcortical, and bilateral
hippocampal formation projections.
J. Comp. Neurol. 302, 515–528.

Whishaw, I. Q. (1998). Place learning in
hippocampal rats and the path inte-
gration hypothesis. Neurosci. Biobehav.
Rev. 22, 209–220.

Whishaw, I. Q., Cassel, J. C., and
Jarrad, L. E. (1995). Rats with fi mbria-
fornix lesions display a place response

in a swimming pool: a dissociation
between getting there and knowing
where. J. Neurosci. 15, 5779–5788.

Wiener, S. I. (1996). Spatial, behavioral
and sensory correlates of hippocam-
pal CA1 complex spike cell activity:
implications for information process-
ing functions. Prog. Neurobiol. 49,
335–361.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 10 September 2008; paper pend-
ing published: 21 October 2008; accepted:
20 February 2009; published online: 09
March 2009.
Citation: Fox C, Humphries M, Mitchinson
B, Kiss T, Somogyvari Z and Prescott T (2009)
Technical integration of hippocampus, basal
ganglia and physical models for spatial nav-
igation. Front. Neuroinform. (2009) 3:6.
doi: 10.3389/neuro.11.006.2009
Copyright © 2009 Fox, Humphries,
Mitchinson, Kiss, Somogyvari and Prescott.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

132

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 11 February 2009
doi: 10.3389/neuro.11.004.2009

Python for information theoretic analysis of neural data

Robin A. A. Ince1*, Rasmus S. Petersen1, Daniel C. Swan2 and Stefano Panzeri1,3*

1 Faculty of Life Sciences, University of Manchester, Manchester, UK
2 Bioinformatics Support Unit, Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
3 Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology, Genoa, Italy

Information theory, the mathematical theory of communication in the presence of noise, is
playing an increasingly important role in modern quantitative neuroscience. It makes it possible
to treat neural systems as stochastic communication channels and gain valuable, quantitative
insights into their sensory coding function. These techniques provide results on how neurons
encode stimuli in a way which is independent of any specifi c assumptions on which part of the
neuronal response is signal and which is noise, and they can be usefully applied even to highly
non-linear systems where traditional techniques fail. In this article, we describe our work and
experiences using Python for information theoretic analysis. We outline some of the algorithmic,
statistical and numerical challenges in the computation of information theoretic quantities from
neural data. In particular, we consider the problems arising from limited sampling bias and from
calculation of maximum entropy distributions in the presence of constraints representing the
effects of different orders of interaction in the system. We explain how and why using Python
has allowed us to signifi cantly improve the speed and domain of applicability of the information
theoretic algorithms, allowing analysis of data sets characterized by larger numbers of variables.
We also discuss how our use of Python is facilitating integration with collaborative databases
and centralised computational resources.

Keywords: Python, information theory, neural coding, entropy, maximum entropy, bias, e-science

CPU and memory requirements of information calculations for
neural data has signifi cantly increased. This is due to a number of
reasons. First, the improvement of the techniques to correct for
the sampling bias problem (Panzeri et al., 2007) has allowed the
information theoretic analysis of larger populations. Second, some
of these bias corrections techniques are computationally intensive.
Third, in the context of understanding whether the correlation
structure of neural activity can be described by simple low order
models, it has become important to compute distributions with
maximum entropy in the presence of various sets of constraints
(Schneidman et al., 2006; Shlens et al., 2006; Tang et al., 2008).
These calculations are particularly demanding in terms of proces-
sor and memory resources. Fourth, while most information analysis
has been applied to spike trains, in the context of the development
of brain machine interfaces it has become important to evaluate the
information content of other types of brain signals, such as local
fi eld potentials (LFPs) or Electroencephalograms (EEGs) which
are analog in nature and must be represented at each time step
(Belitski et al., 2008; Montemurro et al., 2008; Rubino et al., 2006;
Waldert et al., 2008). The manipulation of these signals stretches
computational requirements much more than using spikes, which
due to their sparse binary nature can be represented compactly, for
example by storing only the spike arrival times.

The increased demand on the information theoretic routines
raises the question of whether it may be advantageous for the sci-
entifi c community to implement information theoretic algorithms
for the analysis of neural data using platforms other than MATLAB.
In the continuing development of these methods, we have recently
started using Python, together with the numerical libraries NumPy

INTRODUCTION
Information theory (Cover and Thomas, 2006; Shannon, 1948),
the mathematical theory of communication in the presence of
noise, is playing an increasingly important role in modern quan-
titative neuroscience, because it makes it possible to treat neural
systems as stochastic communication channels and gain valuable,
quantitative insights into their sensory coding function (Borst and
Theunissen, 1999; Rieke et al., 1999; Victor, 2006). Information
theory provides a set of fundamental mathematical quantities, such
as entropy and mutual information, that quantify with meaningful
numbers the reduction of uncertainty about stimuli gained from
neural responses, without the need to make any specifi c assumption
of what is signal and what is noise in the neuronal response.

Most laboratories (including ours) have so far implemented
information theoretic analyses using MATLAB®1. MATLAB is a
numerical computing environment and programming language
which is used by most neurophysiosiological laboratories to store,
preprocess and plot experimental data. In our view, the reason for
the choice of MATLAB for the implementation of such routines
is that it allows interactive and rapid development of algorithms,
though at the cost of some performance overhead. Traditionally,
information calculations have not been demanding in terms of
memory usage or CPU time because the information calculations
were restricted to relatively small neural populations as a conse-
quence of the limited sampling bias problem. Therefore, it has been
convenient to perform the analysis with the tools used to obtain,
preprocess and store the data. However, over the last few years, the

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Osvaldo A. Rosso, The University of
Newcastle, Australia
Pietro Berkes, Brandeis University, USA
John M. Beggs, Indiana University, USA

*Correspondence:

Robin A. A. Ince, Faculty of Life
Sciences, 3.614 Stopford Building,
Oxford Road, Manchester,
M13 9PT, UK.
e-mail: robin.ince@postgrad.
manchester.ac.uk
Stefano Panzeri, Robotics, Brain and
Cognitive Sciences Department, Italian
Institute of Technology, Via Morego, 30,
16163 Genoa, Italy.
e-mail: stefano.panzeri@iit.it

1The Mathworks, Inc, Natick, MA. http://www.mathworks.com/

133

http://www.mathworks.com/

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

and SciPy. We have found several key advantages to this change
that make it more suitable for the analysis of the datasets we are
currently studying and for future challenges such as implementing
these methods into computational grids and clusters.

In this article, we fi rst briefl y present the principles of informa-
tion theory and its importance to neuroscience. We then review
some features of Python that are particularly useful for information
theoretic analysis and consider in detail the implementation of the
mathematical algorithms that are crucial for obtaining accurate and
unbiased estimates of information from neural data. We also detail
a method to compute the entropy of neural data given a number of
plausible constraints, and we put particular emphasis on the specifi c
advantages of Python in addressing these algorithmic challenges.
We fi nally apply the methodology to real data recorded from the
rat somatosensory cortex, and discuss the potential implications
of wider use of Python in information theoretic analysis of the
neural code.

INFORMATION THEORY FOR ANALYSIS OF NEURAL DATA
Information theory is a “mathematical theory of communication”
developed in the 1940’s by Claude Shannon at Bell Labs (Cover and
Thomas, 2006; Shannon, 1948). It formalises, in a mathematically
rigorous way, a measure of “information” in a system with appli-
cations to coding and transmission of that information. While it
was originally developed for analysis of artifi cial systems, such as
transmission of signals along a telegraph wire, the generality of
the formulation means it can be usefully applied to a wide range
of problems.

Consider an experiment in which an animal is presented with a
stimulus s selected with probability P(s) from a stimulus set S con-
sisting of S elements, and the consequent response (either of a single
neuron or an ensemble of neurons) is recorded and quantifi ed in a
certain post-stimulus time window. The aim of information theo-
retic analysis is to gain insight into how the neurons represent the
stimuli. In most applications this is done by examining the informa-
tion content of different candidate neural codes. To carry out such
an analysis, the fi rst step is to choose the neural code. In practice
this means choosing a way to quantify the neuronal response that
refl ects our assumption of what is most salient in it. For example,
if we think that only spike counts (not the precise temporal pattern
of spikes) are important, we choose a spike-count code: we defi ne
a post-stimulus response interval and count the number of spikes
it contains on each repetition (trial) of a stimulus. In most cases,
the neural response is quantifi ed as a discrete, multi-dimensional
array r = {r

1
,…, r

L
} of dimension L. For example, to quantify the

spike count response of a population of L cells, r
i
 would be the

number of spikes emitted by cell i on a given trial in the response
window. Alternatively, to quantify the spike timing response of a
single neuron, the response window is divided into L bins of width
Δt, so that r

i
 is the number of spikes fi red in the i-th time bin (Strong

et al., 1998). Here Δt is the assumed time precision of the code and
can be varied parametrically to characterize the temporal precision
of the neural code. We denote by R the set of possible values taken
by the response array.

Having quantifi ed the response, the second step is to com-
pute how much information can be extracted from the chosen
response quantifi cation. This allows an assessment of how good the

 candidate neural code is. The more the response of a neuron varies
across a set of stimuli, the greater its ability to transmit informa-
tion about those stimuli (de Ruyter van Steveninck et al., 1997).
The fi rst step in measuring information is thus to measure the
response variability. The most general way to do this is through
the concept of Shannon entropy, referred to hereafter as entropy,
which is a measure of the uncertainty associated with a random
variable. Intuitively one can posit some desirable properties of any
uncertainty measure. It should be continuous; that is small changes
in the underlying probabilities should result in small changes in the
uncertainty. It should be symmetric; that is the measure should not
depend on the labelling or ordering of the variables and outcomes.
The measure should take its maximum value when all outcomes
are equally likely and for systems with uniform probabilities, the
measure should increase with the number of outcomes. Finally,
the measure should be additive; that is it should be independent of
how the system is grouped or divided into parts. It can be shown
(Cover and Thomas, 2006) that any measure of uncertainty about
the neural responses satisfying these properties has the form

H P P() ()log ()R r r
r R

= −
∈
∑ 2

(1)

where P(r) is the probability of observing response r across all
trials to all stimuli. The response entropy quantifi es how neuronal
responses vary with the stimulus and thus sets the capacity of
the spike train to convey information. In Eqs 1 and 2 the sum-
mation over r is over all possible neuronal responses. However,
neurons are typically noisy; their responses to repetitions of an
identical stimulus differ from trial to trial. H(R) refl ects both
variation of responses to different stimuli and variation due
to trial-to-trial noise. Thus H(R) is not a pure measure of the
stimulus information actually transmitted by the neuron. We can
quantify the variability specifi cally due to noise, by measuring
the so-called noise entropy, which is the entropy conditional on
stimulus presentation:

H P s P s P s
s

(|) () (|) log (|)R S r r
S r R

= −
∈ ∈
∑ ∑ 2

(2)

The summation over s is over all possible stimuli. P(r|s) is the
probability of observing a particular response r given that stimulus s
is presented. Experimentally, P(r|s) is determined by repeating each
stimulus on many trials, while recording the neuronal responses.
The probability P(s) is usually chosen by the experimenter. The
noise entropy quantifi es the irreproducibility of the neuronal
responses at fi xed stimulus. The noisier is a neuron, the greater
is H(R|S). The information that the neuronal response transmits
about the stimulus is the difference between the response entropy
and the noise entropy. This is known as the mutual information
I(S; R) between stimuli and responses (in the following abbrevi-
ated to information).

I(S; R) = H(R) − H(R|S) (3)

Mutual information quantifi es how much of the information
capacity provided by stimulus-evoked differences in neural activ-
ity is robust to the presence of trial-by-trial response variability
(de Ruyter van Steveninck et al., 1997). Alternatively, it quantifi es

134

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

the reduction of uncertainty about the stimulus that can be gained
from observation of a single trial of the neural response.

The mutual information has a number of important qualities
that make it well suited to characterizing how a response is modu-
lated by the stimulus (Borst and Theunissen, 1999; Fuhrmann
Alpert et al., 2007; Panzeri et al., 2008; Rieke et al., 1999). First,
as outlined above, it quantifi es the stimulus discriminability
achieved from a single observation of the response, rather than
from averaging responses over many observations. Second, I(S; R)
is the most general measure of correlation between the stimuli
and the neural responses, because it automatically takes into
account contributions of correlations at all orders. Third, comput-
ing information does not require specifying a stimulus–response
model; it only requires computing the response probabilities in
response to each stimulus condition. Therefore, the calculation
of information does not require spelling out which stimulus fea-
tures (e.g., contrast, orientation, etc.) are encoded. Fourth, I(S; R)
takes into account the full stimulus–response probabilities, which
include all possible effects of stimulus-induced responses and
noise. Thus, it does not require the signal to be modeled as a set
of response functions plus noise and is applicable even to situ-
ations when such decompositions are diffi cult or dubious. The
last three points show that information theory can, in principle,
be applied to any type of neural signal, including responses such
as LFPs or spikes that are clearly nonlinear and diffi cult to model
by a set of standard functions. Fifth, it is possible to analyze and
combine the information given by different measures of neural
activity e.g. spike trains and LFPs. These two signals have a very
different nature and signal to noise ratios. Therefore, a certain
increase of the peak height of an LFP cannot be compared to a
certain change in the spike train to understand how well LFPs or
spikes encode stimuli. In contrast, with information theory the
LFPs and spikes can be directly compared because information
theory projects both signals onto a common scale that is mean-
ingful in terms of stimulus knowledge.

Information theoretic techniques have been successfully used to
address a number of questions about sensory coding. For example,
they have been used to address the question of whether neurons
convey information by millisecond precision spike timing or sim-
ply by the total number of emitted spikes (the spike count). The
application of information theory to spike train analysis has showed
that the ms-precise timing of spikes provides important informa-
tion that cannot be extracted from spike counts (Panzeri et al.,
2001; Victor, 1999, 2006). Information theory has also been used
to characterize the functional role of correlations in population
activity, by investigating in which conditions correlations play a
quantitatively important role in transmitting information about the
stimulus (Averbeck et al., 2006; Dan et al., 1998; Hatsopoulos et al.,
1998; Latham and Nirenberg, 2005; Panzeri, 1999; Petersen et al.,
2001; Pola et al., 2003) or in constraining the dynamic range of net-
work responses (Schneidman et al., 2006). Information theory has
also been used to characterize the amount of interactions between
neural populations (Honey et al., 2007).

WHY PYTHON?
For many years, the de facto standard for many groups working in
the area of neurophysiological data analysis has been MATLAB®.

However, the Python programming language (van Rossum, 1995)
combined with the numerical and scientifi c libraries NumPy and
SciPy (Jones et al., 2001) provide a compelling alternative for sci-
entifi c programming. Python is a modern, fully object-oriented
programming language that is powerful, fl exible and easy to learn.
The NumPy library provides a multi-dimensional array object and
associated vectorised operations, and SciPy enhances this with a
range of scientifi c functions using the NumPy array object. The
syntax is familiar to anyone coming from a background with
MATLAB or another C derivative language and there are a com-
prehensive set of tools for plotting and interactive use (IPython and
Matplotlib). Assignments are by reference rather than by copying,
which allows fi ner grained control of memory usage, and there
are several ways to rapidly extend the system with external code
written in FORTRAN and C. The fl exibility and good design of
the Python language make large projects much more manageable
than with MATLAB, where each function must reside in a separate
fi le and refactoring to reduce code repetition grows increasingly
diffi cult with project size. Python is a well developed language,
with libraries available for almost any conceivable task, such as
GUI development, network communication, support for different
fi le formats, etc. It is possible to read and write MATLAB binary
fi les, and even call MATLAB commands from within the Python
environment, which allows for a smooth transition and means
that time invested in an existing MATLAB code base is not wasted.
Finally, the Python tool set is open source2, rather than a propri-
etary product, which has several obvious advantages for scientifi c
work. Its free availability allows better reproducibility of the results,
since all interested parties are free to run the software without an
expensive license. It is also inherently future-proof, since it will
always be possible to obtain and use the version for which the code
was written, whereas a commercial product may be withdrawn at
some point in the future.

THE LIMITED SAMPLING BIAS PROBLEM
A major diffi culty when applying techniques involving information
theoretic quantities to experimental systems, is that they require
measurement of the full probability distributions of the variables
involved. If we had an infi nite amount of data, we could measure
the true stimulus-response probabilities precisely. However, any
real experiment only yields a fi nite number of trials from which
these probabilities must be estimated. The estimated probabilities
are subject to statistical error and necessarily fl uctuate around their
true values. The signifi cance of these fi nite sampling fl uctuations
is that they lead to both statistical error (variance) and systematic
error (called limited sampling bias) in estimates of entropies and
information. This bias is the difference between the expected value
of the quantity considered, computed from probability distribu-
tions estimated with N trials or samples, and its value computed
from the true probability distribution. The bias constitutes a sig-
nifi cant practical problem, because its magnitude is often of the
order of the information values to be evaluated, and because it

2“Open source is a development method for software that harnesses the power of
distributed peer review and transparency of process. The promise of open source is
better quality, higher reliability, more fl exibility, lower cost, and an end to predatory
vendor lock-in.” http://www.opensource.org/

135

http://www.opensource.org/

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

cannot be alleviated simply by averaging over many neurons with
similar characteristics.

ORIGINS OF THE BIAS
The most direct way to compute information and entropies is to esti-
mate the response probabilities as the histogram of the experimen-
tal frequency of each response across the available trials. Plugging
in these empirical probability estimates into Eqs 1–3 results in a
direct estimate that we refer to as the “plug-in” method.

In general, both the full output entropy H(R) and the noise
entropy H(R|S) are biased downwards. That is, the estimated
value is less than the true value, and the estimated value increases
with the number of trials used, asymptotically approaching the
true value. Intuitively, this is because fi nite sampling means it is
less likely that the full range of responses will be included and so
the measured responses seem less variable than they really are. In
addition, estimates of H(R|S) are signifi cantly more biased than
those of H(R), since the latter depends on P(r) which is calculated
with data gathered across all stimuli and is better sampled than the
conditional distributions, which are each sampled with data from
a single stimulus only. The bias in the mutual information is then
the difference between the bias of H(R) and that of H(R|S). This
results in an upward bias in the information, since the magnitude
of the bias of H(R|S) is greater, and its sign is reversed in Eq. 3.
Again, this makes sense intuitively, since the fi nite sampling can
introduce spurious stimulus-dependent differences in the response
probabilities, which make the stimuli seem more discernible and
hence the neuron more informative than it really is.

BIAS CORRECTION METHODS
Fortunately a number of techniques have been developed to address
the issue of bias, and allow much more accurate estimates of infor-
mation theoretic quantities than the “plug-in” method described
above. Panzeri et al. (2007) provide a review of such methods, a
selection of which are briefl y outlined here. For other methods and
approaches please see Panzeri et al. (2007) and Victor (2006).

Panzeri–Treves (PT)
In the so-called asymptotic sampling regime, when the number of
trials is large enough that every possible response occurs many
times, an analytical approximation for the bias (i.e. the difference
between the true value and the plug-in estimate) of entropies and
information can be obtained (Miller, 1955; Panzeri and Treves,
1996).

BIAS H
N

R

BIAS H
N

R

BIAS I

s
s

[()]
ln

[]

[(|)]
ln

[]

[(

R

R S

= − −

= − −∑

1

2 2
1

1

2 2
1

SS R;)]
ln

[] []= − − − −
⎧
⎨
⎩

⎫
⎬
⎭

∑1

2 2
1 1

N
R Rs

s

(4)

The value of the bias computed from the above expressions
is then subtracted from the plug-in estimate to obtain the cor-
rected values. This requires an estimate of the number of relevant
responses Rs. The simplest approach is to approximate Rs by the

count of responses that are observed at least once – this is the “naive”
count. However due to fi nite sampling this will be an underestimate
of the true value. A Bayesian procedure (Panzeri and Treves, 1996)
can be used to obtain a more accurate value.

Quadratic Extrapolation (QE)
In the asymptotic sampling regime, the bias of entropies and infor-
mation can be approximated as second order expansions in 1/N,
where N is the number of trials (Strong et al., 1998; Treves and
Panzeri, 1995). For example, for the information:

I I
a

N

b

Nplugin true(;) (;)S R S R= + +
2

(5)

This property can be exploited by calculating the estimates with
subsets of the original data, with N/2 and N/4 trials and fi tting the
resulting values to the polynomial expression above. This allows an
estimate of the parameters a and b and hence I

true
(S; R). To use all

available data, estimates of two subsets of size N/2 and four subsets
of size N/4 are averaged to obtain the values for the extrapolation.
Together with the full length data calculation, this requires seven
different evaluations of the quantity being estimated.

Nemenman–Shafee–Bialek (NSB)
The NSB method (Nemenman et al., 2002, 2004) utilises a Bayesian
inference approach and does not rely on the assumption of the
asymptotic sampling regime. It is based on the principle that when
estimating a quantity, the least bias will be achieved when assuming
an a priori uniform distribution over the quantity. This method is
more challenging to implement than the other methods, involving
a large amount of function inversion and numerical integration.
However, it often gives a signifi cant improvement in the accuracy
of the bias correction (Montemurro et al., 2007b; Nemenman et al.,
2002, 2004).

Shuffl ed Information Estimator (Ish)
Recently, an alternative method of estimating the mutual informa-
tion has been proposed (Montemurro et al., 2007b; Panzeri et al.,
2007). Unlike the methods above, this is a method for calculating
the information only, and is not a general entropy bias correction.
However, it can be used with the entropy corrections described
above to obtain more accurate results. For this method, two new
quantities are defi ned. H

ind
(R|S) is the noise entropy that would be

obtained if each individual component r
i
 of the response array r were

independent of any other component r
j
 (i ≠ j) at fi xed stimulus; that

is the entropy calculated from the distribution P
ind

(r|s) = Π
i
 P(r

i
|s).

Since this value depends only on the fi rst order marginal values of
the response, it has a small bias. H

sh
(R|S) is the entropy that results

when stimulus conditional response correlations are removed by
“shuffl ing” the data. That is, for each stimulus s, the individual
response components r

i
 are shuffl ed independently across trials, to

obtain a new set of vector responses r. Both of these values provide
estimates of the entropy of the system if correlations were removed
and become equal for an infi nite number of trials. However, with
fi nite trials, H

ind
(R|S) shows a small bias, while H

sh
(R|S) shows

a much larger bias, which is of the same order of magnitude as
that of H(R|S), but typically slightly more negative. Using these

136

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

properties, a so-called shuffl ed information estimator, I
sh

, can be
computed as

I
sh

(S; R) = H(R) − H
ind

(R|S) + H
sh

(R|S) − H(R|S) (6)

In the limit of a large number of trials I
sh

(S; R) = I(S; R) since
H

sh
(R|S) = H

ind
(R|S). For small numbers of trials, the biases of

H
sh

(R|S) and H(R|S) approximately cancel out, leaving the bias
of I

sh
(S; R) dominated by that of H(R) − H

ind
(R|S) which is much

smaller than that of the normal information estimate I(S; R). Using
this shuffl ing technique, combined with entropy bias correction
methods as described above, can reduce the number of trials needed
for a reliable estimate by a factor of four (Montemurro et al., 2007b;
Panzeri et al., 2007).

James–Stein Shrinkage (“Shrink”) Estimator
Another recently proposed technique to compute entropies from
limited samples is the so-called “James–Stein shrinkage” technique
(Hausser and Strimmer, 2008), which works by improving the
estimate of the underlying probabilities, rather than the entropy
specifi cally. The James–Stein shrinkage technique is based on aver-
aging two models with different properties; a high dimensional
model with low bias and high variance and a lower dimensional
one with larger bias but smaller variance. The probabilities p

r
 of

each response r are determined by

p t pr r r
Shrink ML= + −λ λ()1 (7)

where λ ∈ [0, 1] is the shrinkage intensity, pr
ML is the normal

maximum likelihood estimate from frequency counts and t
r
 is the

shrinkage target. The maximum entropy uniform distribution is
suggested as a convenient target in Hausser and Strimmer (2008).
The shrinkage intensity λ is then given by the following

λ*
()

=
− ()

− −()
∑
∑

1

1

2

2

p

n t p

rr

k rr

ML

ML

(8)

This is repeated for all the stimulus conditional distributions,
and the entropy is calculated from the corrected probability values
using the plug-in method.

Comparative performance of different estimators
Figure 1 reports the results of the performance of bias correction
procedures on a set of simulated spike trains from eight simulated
neurons. Each of these neurons could emit a spike or not with a
probability obtained from a Bernoulli process. The spiking prob-
abilities were exactly equal to those measured, in the 10–15 ms
post-stimulus interval, from eight neurons in rat somatosensory
cortex responding to 13 stimuli consisting of whisker vibrations
of different amplitude and frequency (Arabzadeh et al., 2004).
The 10–15 ms interval was chosen since it was found to be the
interval containing highest information values. Figure 1A shows
that (with the exception of the James–Stein shrinkage) all bias
correction procedures generally improve the estimate of I(S; R)
with respect to the plug-in estimator, and the NSB correction is
especially effective. For the James–Stein shrinkage estimator, a
uniform target distribution was used, and this may account for
the relatively poor performance of that method outside of the

 asymptotic regime. Figure 1B shows that the bias-corrected esti-
mation of information is much improved by using I

sh
(S; R) rather

than I(S; R). The use of I
sh

(S; R) makes the residual errors in the
estimation of information much smaller and almost independent
from the bias correction method used. Taking into account both
bias correction performance and computation time, for this simu-
lated system the best method to use is the shuffl ed information
estimator combined with the Panzeri–Treves analytical correction.
Using this, an accurate estimate of the information is possible
even when the number of samples per stimulus is R

4
 where R is the

dimension of the response space.
While the basic plug-in entropy calculation is a straightforward

sum of logarithms, the correction methods described above add sig-
nifi cant complexity to the required calculations. In QE, the under-
lying entropy calculations have to be run many times, for PT the
Bayesian estimate of the number of stimulus responses involves
additional calculations and NSB involves a complicated procedure
of many numerical integrations. For large data sets, with the large
probability spaces that can often arise from modern physiological
techniques, performance can be an issue as these computational
methods become increasingly CPU and memory intensive. Since
the performance of bias correction procedures depends on the
statistics of data under analysis, in each data analysis task it is also
important to test the accuracy of information estimation methods
on simulated data with statistical properties similar to the actual
experimental data of interest (Panzeri et al., 2007). It is therefore
crucial that these methods be implemented as effi ciently as pos-
sible. An advantage of Python is that one can benefi t both from the
improved development time due to the simple syntax and interac-
tive environment, as well as a number of well developed methods
for optimising the performance critical portions of the code when
necessary. There are tools for automatically converting Python to C
inline, inserting your own C code within a Python program, writing
full C and FORTRAN extension modules or using Cython, which

A B

FIGURE 1 | Comparison of the performance of different bias correction

methods. The methods were applied to spike trains of eight simulated
somatosensory cortical neurons (see text). The information estimates I(S; R)
and Ish(S; R) are plotted as a function of the available number of trials per
stimulus. (A) Mean ± SD/2 (over 50 simulations) of I(S; R). (B) Mean ± SD/2
(over 50 simulations) of Ish(S; R). This calculation is very similar to that in
Panzeri et al. (2007, Figure 3), which also used realistic simulations of cortical
spike trains (the only difference was that for this fi gure, the simulated
population did not contain any correlations). This fi gure was produced using
the Python library for bias corrections described in Section “A Python Library
for Information Theoretic Estimates”, and the code to produce it is available at
http://code.google.com/p/pyentropy/.

137

http://code.google.com/p/pyentropy/

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

is a variant of the Python language with a similar syntax but that
compiles straight to C code.

A PYTHON LIBRARY FOR INFORMATION THEORETIC ESTIMATES
The study and development of techniques for estimation of infor-
mation theoretic quantities and associated bias corrections has
developed into a fi eld of its own. In order for the results of this work
to be useful outside of this small community it must be possible
for non-specialists to easily apply these techniques to their data.
We have therefore developed a library of tools with the dual pur-
pose of allowing easy application of the most suitable cutting edge
bias corrections, while also providing a framework for continued
enhancement of existing methods as well as development of new
techniques. Although this has been developed for application to
investigations of neural coding, the library has been designed to be
as general as possible, in the hope that it might also be of use in other
areas, and it is publicly available under an open source license3.
There are similar packages available in other languages, such as the
R entropy library4 and the MATLAB Spike Train Analysis Toolbox5,
but the authors are not aware of any similar Python package.

At the core of the library are two classes, DiscreteSystem and
SortedDiscreteSystem which sample and store the probability
distributions associated with a system and contain methods to
compute different entropy quantities. DiscreteSystem is the
most general and can take arbitrarily ordered input. The class
is initialised as s=DiscreteSystem(X, X_dims, Y, Y_dims)
where X_dims=(Xn,Xm) and Y_dims=(Yn,Ym) are tuples of val-
ues describing the parameters of the X and Y spaces respectively. Xn
and Yn are the number of variables in the space, each of which is
quantised to take one of Xm or Ym possible values, respectively. In
total therefore there are XmXn possible values in the X space and YmYn
in the Y space for each trial. X and Y are provided as integer arrays
with values in [0, Xm − 1] and [0, Ym − 1] respectively with
Xn, Yn rows representing the constituent variables and a column
for each trial. It is important the columns match, that is the value
of X in a given column corresponds to the same trial as the value
of Y in the same column, but there are no further requirements
on the format of the input. SortedDiscreteSystem requires the
input trials to be grouped in values of the variable Y. This allows
much more effi cient sampling of the required probability distri-
butions, since the trials for a given Y value can be easily isolated
without having to search through the whole data set. This requires
the space Y to be a single fi nite alphabet variable, so it should
be decimalised beforehand if necessary. The class is initialised as
s = SortedDiscreteSystem(X, X_dims, Ym, Ny) where X,
X_dims are as above and Ym is the number of possible values for
the single variable Y space. Ny is an array containing the number of
trials available for each Y value. For example, Ny[0\] is the number
of trials available with Y = 0\, and the corresponding X values
are found at X[0\ : Ny[0\]]. Both of these classes inherit from a
base class BaseSystem which contains the common entropy and
information calculations, reducing code duplication and increas-
ing maintainability.

In neural coding applications such as those described previously,
Y would be the stimulus space S, while X would be the response
space R. Since the stimuli are usually controlled by the experi-
menter, the results are often available already sorted by stimulus,
allowing use of the more effi cient SortedDiscreteSystem class.
Mutual information is symmetric, I(X; Y) = I(Y; X), so in fact
the stimulus and response spaces can be provided in any order,
but due to the way the conditional probabilities are sampled it is
strongly suggested that the smaller of the two spaces be provided
as the Y parameter.

Once initialised as above, entropy quantities can be calculated
using the method s.calculate_entropies(method, sam-
pling, calc) where method is one of [‘plugin’,‘pt’,‘qe’,
‘nsb’] and selects the bias correction technique to use, sam-
pling is one of [‘naive’,‘beta:x’,’shrink’] which selects
the method for estimating the probability distributions and calc
is a list containing a number of entropies to calculate. The entropies
available are [‘HX’,‘HY’,‘HXY’,‘SiHXi’,‘HiX’,‘HiXY’,
‘HshXY’,‘ChiX’], which in the case where, as described above,
the space X corresponds to the response space R and Y to the stimu-
lus space S, denote respectively H(R), H(S), H(R|S), ∑ =i

Rn H1 ()Ri ,
H

ind
(R), H

ind
(R|S), H

sh
(R|S) and χ(R). χ(R) is a quantity needed for

the information breakdown of (Pola et al., 2003) and is reported
in Eq. 25 therein. This function will fi rst decimalise the X and Y
spaces, if required (if n > 1) which involves converting the length-n
base-m words representing the values for each space to a single deci-
mal integer value in [0, mn − 1]. The probabilities required for the
requested output entropies are then computed using the sampling
method specifi ed. “naive” represents the standard histogram bin
counting method which is usually used. The add-constant estimator
(Schürmann and Grassberger, 1996) is implemented through the
“beta:x” method. The β parameter is provided after the colon in
the option, so “beta:0\.0\1” would use the add-constant estima-
tor with β = 0.01. The “shrink” option selects the James–Stein
shrinkage estimator (Hausser and Strimmer, 2008). All the entropy
estimates are currently implemented in pure Python, except for
the NSB estimator. This is implemented using existing publicly
available optimised codes6. We have not yet implemented a direct
link to the NSB codes, but instead write the data for analysis to
a fi le, for processing by the standalone external program before
reading back results from a fi le. Python’s heritage as a scripting
language makes this process of reading and writing formatted
fi les and programmatically calling an external program from the
code very easy. The functions s.I() and s.Ish() can be used
to obtain the mutual information estimate and shuffl ed mutual
information estimate respectively, provided the required entropies
have been computed. Similarly s.pola_decomp() will return the
computed values for the decomposition of the mutual informa-
tion presented in Pola et al. (2003), again provided the required
entropies were computed.

The module has been designed to be as fl exible as possible, allow-
ing comparison of the different methods at every stage. For example,
the DiscreteSystem instance contains the sampled probability
distributions, so it is possible to compare the different probability
estimation methods directly. It is easy to add additional entropic 3See http://code.google.com/p/pyentropy/

4See http://www.strimmerlab.org/software/entropy/index.html
5See http://neuroanalysis.org/toolkit/ 6From http://nsb-entropy.sourceforge.net/

138

http://code.google.com/p/pyentropy/
http://www.strimmerlab.org/software/entropy/index.html
http://neuroanalysis.org/toolkit/
http://nsb-entropy.sourceforge.net/

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

quantities or new functions of them to the class. The code is docu-
mented through use of Python docstrings, which are embedded in
the source and accessible through the interactive interpreter. Having
the code documented in this way makes it easier for others to under-
stand and contribute to.

There are several properties of Python that make it well suited to
this application. Many loops can be vectorised into a single opera-
tion acting on arrays which is implemented through the NumPy
interface to a highly effi cient linear algebra library (ATLAS). When
taking slices (extracting a single row or column) of a NumPy array,
for example when determining the independent probabilities of the
X variables, a new view is created, but points to the same original
data. In contrast, in MATLAB, taking such a slice always results in
the extracted row being copied in memory to a new array object. As
discussed, the object-oriented nature of Python allows code reuse
through inheritance. To give an example of the performance of the
Pyentropy library, for the preparation of the data for the Plugin, PT
and QE methods in Figure 1, the time taken using the Pyentropy
library on a 2.4GHz Core 2 Duo laptop was 439 s. This includes
data simulation for 50 trials at each sample size. The same task,
using similar MATLAB code on an equivalent laptop was 987 s.
There is also work in progress to extend the Pyentropy code with a
more direct calculation of the core estimates in Cython. Cython is
a language for writing C extensions to Python, and it shares a very
similar syntax. This provides an easy way to quickly develop fast C
modules to speed up the execution of Python code.

FINITE ALPHABET MAXIMUM ENTROPY SOLUTIONS
CORRELATIONS AND MAXIMUM ENTROPY MODELS
Simultaneous recordings of the activity of individual neurons
placed within local networks in the central nervous system show
that most pairs of neurons are weakly correlated: the probabil-
ity of observing simultaneous spiking is typically sightly – but
 signifi cantly – different to the product of the probability of observ-
ing the individual spikes (Averbeck et al., 2006; Mastronarde, 1983).
These correlations are hypothesized by many investigators to be a
fundamental part of the neural population code; they may con-
tribute, for example, by tagging the occurrence of particular salient
stimulus combinations (Gray et al., 1989), or by constraining the
number of possible network states so that the network may per-
form error corrections (Schneidman et al., 2006). Whatever the
role of correlated fi ring, an observer of neural activity (either a data
analyst or a downstream neural system) trying to assess the impor-
tance of correlated activity has to face a hard problem: correlations
are diffi cult to sample because they are described by a number of
parameters that increases exponentially with the number of cells
considered. Therefore, it is important to establish whether it is
possible to describe all correlations between neurons with a small
number of parameters that preserve all the relevant features of
the joint distribution of simultaneous responses. One way to fi nd
compact representations of the correlation structure of response
probability can be obtained by using the technique of maximum
entropy (Montemurro et al., 2007b; Schneidman et al., 2003; Tang
et al., 2008; Victor, 2006), as follows.

The question addressed by maximum entropy models is how
well we can describe all interactions between all variables in terms
of subsets of interactions between up to K variables only, or whether

and to what degree higher order interactions are present and impor-
tant. The maximum entropy technique compares the measured
response probability to one that takes into account all the observed
interactions of up to K elements but does not impose any additional
structure on the data. Measuring all interactions of up to K variables
means measuring all the marginal response probabilities involving
up to K variables. Therefore any probability matching the observed
interactions of up to K elements must obey (apart from the usual
non negativity and normalization constraints) the following lin-
ear constraints. Here we consider a response vector r = {r

1
,…, r

L
}

of dimension L, with each variable r
i
 taking values from a fi nite

alphabet A containing m elements.

P r P r

P r r P r r

P r r

K i i i
r

K i j i j ij

r r

K i i

i

i j

K

() ()

(,) (,)

(, ,)

= ≡

= ≡

η

η

" "

…
1

== ≡P r ri i i i

r r

K K

i iK(, ,)
1 1

1… …
…η

(9)

Each line above denotes a family of constraints on a model
distribution P

K
(r) enforcing equality of the marginal values of a

given order to those of the true distribution P(r). These marginals
are denoted by η with subscript indices representing the variables
involved in the marginal and superscript indices the corresponding
values. The ath order constraint applies for all unique combina-
tions of a variables, and every permutation of possible values that
those variables can take. Thus the ath line above represents ma L

a()
constraints, the product of permutations of a values with choices
of a variables.

The probability distribution P
K
(r) with maximum entropy

among those satisfying the above constraints is the one that does
not impose the presence of any additional higher order correla-
tions or interactions between the variables. To choose a distribution
with lower entropy would correspond to the assumption of some
additional structure that we do not know; to choose one with a
higher entropy would necessarily violate the constraints that we
wish to enforce.

Following Amari (2001); Cover and Thomas (2006) it can be
shown that there is a unique solution to the constrained maximum
entropy problem, which can be written in the following exponential
form:

PK i i

r r

i i

r r

i i L
r

a

i ia

a

i ia

a

i

(;) exp ()

,

r θ θ δ θ= +
≤ < < ≤

0
1

1

1

1

1

1

1

…
…

…
…

"

r

……,r
a

K

ia
∈

=
∑∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

A
1

(10)

The set of indices i
1
,…,i

a
 label the subsets of a variables among

the total L considered. The set of indices r ri ia1
, ,… labels a specifi c

set of values of these variables. The fi rst term in the sum is a fi nite
alphabet Kronecker delta function which takes the value 1 when
the variables of the argument specifi ed by the subscript indices take
the values specifi ed by the superscript indices, and 0 otherwise. As
with the marginal constraints, the second sum for each order is over
all unique combinations of a variables and all permutations of a
values that those variables can take; there are ma L

a() summands, and
the same number of distinct θ coeffi cients of that order.

139

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

In order to compute the maximum entropy distribution
P

K
(r; θ) compatible with all the known interactions up to K-th

order, we need to fi nd the θ coeffi cients with up to K indices to
construct the solution above. These can be determined from the
knowledge of the experimental η marginal probabilities of up to
K elements through a set of algebraic equations, as detailed in
the following section.

Previous applications of the maximum entropy approach have
included temporal sequences of spiking activity, or multi-unit spik-
ing activity across a population, both of which are binary. This
simplifi es the calculation of the maximum entropy solutions. The
extension to a fi nite alphabet probability space is a signifi cant one,
since it greatly increases the scope of possible applications for the
method. For example, if larger time bins are used, there will some-
times be more than one spike occurring in each bin. At the moment
these values are generally binarized, but using the fi nite alphabet
method allows use of extended time bins, while keeping the effect
of all spikes. It can therefore be used to investigate the effect of
bursting. Similarly, the fi nite alphabet extension means the method
can be applied to other data, such as LFPs (Belitski et al., 2008)
or fMRI, which are inherently continuous but may be meaning-
fully quantised into a fi nite alphabet. It also allows investigation
of the reverse problem, neural encoding, where one studies the
properties of the stimulus, given that a response (such as a spike)
as occurred.

In the following, we describe an implementation of the fi nite-
alphabet maximum entropy computation using Python. In analogy
to Schneidman et al. (2003), we apply the maximum entropy calcu-
lation to P(r). However, the same procedure could be in principle
applied to P(r|s).

AN ALGORITHM FOR FINITE-ALPHABET MAXIMUM
ENTROPY SOLUTIONS
The key concept in the algorithm we use to obtain the maximum
entropy solution is the idea of identifying a specifi c probability
distribution using different coordinate systems. The most obvious
way of characterising a discrete probability distribution is by speci-
fying the full list of probabilities for each element of the space. For
example, if we have a fi nite alphabet response vector r = {r

1
,…,r

L
}

as above, then there are mL possible values for r and so the prob-
ability distribution P(r) can be characterised by mL − 1 probability
values, since one degree of freedom is removed by the normalisation
constraint. These are called the p-coordinates. An alternative way
of uniquely determining a probability distribution is by listing the
marginal probability values. As mentioned in the previous section,
there are mk L

k() marginals containing of order k, so the collection of
all marginals has ∑ = −=k

L k Lm mL
k1 1() elements. This way of describ-

ing the probability is called the η-coordinates. For the fi nal char-
acterisation of a probability distribution, we consider the form
suggested by Eq. 10. Taking K = L, P

K
(r) = P(r) and Eq. 10 shows

that any probability can be computed from the set of coeffi cients, θ.
Again there are mk L

k() coeffi cients of each order k. θ
0
 is fi xed by the

normalisation condition, so again we have mL − 1 numbers that
uniquely identify the probability distribution. Expressing a prob-
ability distribution in this way is also known as the log-linear form,
and the coeffi cients, θ are called the log-linear effects. Here we refer
to them as the θ-coordinates.

A given probability distribution is represented in any of
these coordinate systems by a vector of values. In the following
p denotes a vector describing a probability distribution in the
p-coordinates, η denotes a vector of η-coordinate values and θ
a vector of θ-coordinates. The p vector is ordered so that the
value of the vector at a given index represents the probability of
the underlying state which, when interpreted as a length L base
m word, has the decimal value of the index. This ordering was
chosen since it is easy to convert between state values and vec-
tor indices using existing change of basis functions. The vector
η = (η

1
, η

2
,…,η

L
) where η

i
 is the set of all marginals of order i and

similarly θ = (θ
1
, θ

2
,…,θ

L
). The ordering of the vector within the

subsets of different orders is arbitrary, however it is important that
the subsets θ

i
 and η

i
 share the same ordering for each i.

These notions are rigorously developed in Amari (2001) using
the framework of information geometry, in which the set of prob-
ability distributions on a given vector space are treated as a mani-
fold, and the properties of the coordinate systems described above
are formalised.

Coordinate Transformations
An important step in the numerical method for obtaining the maxi-
mum entropy solution is the implementation of the transforma-
tions between the different coordinate systems described above for
representing a probability distribution.

η–p transforms. The key transformation is that from p-coordinates
to η-coordinates. This is a linear transformation which performs the
summation of relevant probabilities for calculating the marginal.
With the coordinates arranged in vectors, as described above, it can
be expressed as

η = Ap (11)

where A is a square matrix containing binary values. Each row of A
contains a 1 in the column for each p coordinate that contributes
to that marginal. The inverse transformation, p coordinates from
η coordinates is simply

p = A−1η (12)

The matrix A is invertible since it is square and all its constituent
rows are linearly independent.

θ–p transforms. For the θ–p transformations, fi rst notice from
Eq. 10 that in vector form p = +e ATθ θ

0 . This is because, for a given
probability, the θ terms required are those corresponding to the
non-zero elements of that specifi c state vector. Similarly, for a given
probability, that probability will appear in the sum for the mar-
ginals corresponding to the same non-zero elements of the state
vector. The marginals that a given probability appears in are given
by the columns of the matrix A, so provided the θ vector is ordered
in the same way as the η vector, the sum of θ terms required in
the exponential of Eq. 10 for each probability is given by ATθ. By
evaluating Eq. 10 for the zero state vector p P ri i

L
0 10= =()={ } we see

that the constant factor in the log-linear model, eθ0, is in fact p
0
.

From p = p e AT

0

θ
, it is trivial to obtain the following transformation

from p coordinates to θ coordinates.

140

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

θ = A−T [ln p − ln p
0
] (13)

The other direction is slightly more complicated, since for a
closed expression for p we must compute p

0
 from the theta vector.

The normalisation condition requires that ∑ + =p p0 1, since the
vector p does not include the p

0
 value. Substituting the expression

above gives p e p p eA AT T

0 0 0

1

1 1∑ + = ⇒ = + ∑()−θ θ
, yielding

p =
+ ∑

e

e

A

A

T

T

θ

θ
1

(14)

Numerical Optimisation
The advantages of the different coordinate systems described above
are that they allow us to easily represent our constraints on the max-
imum entropy solution. From Eq. 9 fi xing interactions up to order
K to those of the measured distribution corresponds to setting the
low order η-coordinates of the maximum entropy solution equal
to those of the measured distribution. From Eq. 10 the maximum
entropy constraint is enforced by setting the high order compo-
nents of the θ-coordinates to zero. By enforcing these constraints
simultaneously, we obtain a set of N simultaneous equations in N
unknowns, where N mj

k j L
j= ∑ =1 () is the number of coordinates up

to order k. Again m is the size of the fi nite alphabet.
In the following η

k
 represents the N low order (up to order k)

marginals of the sampled distribution. θ θk k
, + represent the low and

high order theta coordinates of the maximum entropy distribution.
p̌(·) denotes the coordinate transformation from θ to p coordinates
from Eq. 14 and η̌

k
(·) denotes the coordinate transformation in

Eq. 11 but with only the low order marginals returned. Setting the
high order theta’s, θ

k+ , to zero ensures that there are no higher order
interactions. It is then possible to fi nd the low order theta’s that pro-
duce the same low order marginals as the sampled distribution, η

k
.

These low order theta’s, θk , completely characterise the maximum
entropy distribution. In vector form the equations are:

η
k
 − η̌

k
[p̌ (,)]θ θk k+ = =0 0 (15)

Once the θk are determined by numerically solving the equa-
tion above, one can convert back to p-coordinates to obtain the
corresponding maximum entropy distribution and calculate its
entropy.

PYTHON IMPLEMENTATION
Initially the method described above was implemented in
MATLAB. Later, the same algorithm was converted to Python
with NumPy and SciPy. This was both because we were having
performance issues with MATLAB in the fi nite alphabet case,
and partly as a way to evaluate Python as a platform for our
work. This gives the opportunity to make comparisons between
the two systems. However, as well as moving the code to Python,
we continued to develop and improve the algorithms, making it
diffi cult to provide rigorous performance comparisons between
the two systems. Instead we hope to provide an overview of our
experiences and impressions of using Python in an ongoing
research project.

A major difference in the code between the two systems is
the structure of the program. In MATLAB the notion of the

global workspace was exploited. Here a setup script is used to
defi ne the coordinate transformation functions in the global
workspace, from where they can be easily called by other scripts
or used to interactively investigate data. In Python, an object-
oriented approach was taken featuring two main classes. The
fi rst of these, AmariSolve, contains the parameters related to
the underlying probability distribution, the required coordinate
transformations and the code for performing the numerical
solution. This is initialised with two parameters, the number
of variables and the fi nite alphabet of each variable, since this is
the only information required to implement the solution. The
second class, AmariSystem, contains the data related to a spe-
cifi c system being studied, and contains the sampled probability
distributions, calculated maximum entropy distributions and
associated entropies. In this way the data independent analysis
code is separated from the system specifi c code and data – the
idea being that a single AmariSolve instance can be used on
different data sets, providing the dimensions of the probability
space are the same. It was found this approach gave much more
fl exibility than the global workspace, which could be confusing
to manage during development, for example by requiring a full
copy of the setup script to be maintained for every change to the
algorithm investigated.

A key step in the implementation of the algorithm is the genera-
tion of the matrix A which provides the transformation between
probabilities (p-coordinates) and marginals (η-coordinates). A
recursive function is used in a loop over each order, to compute
the elements of A row by row. The code implements the long-
hand approach used for manual calculation of smaller matrices.
The idea is that each marginal is the sum over all variables not
fi xed by the specifi cation of the marginal. For each order a vec-
tor called terms is created which contains all base m words of
length L − o, where o is the order being considered. Then for each
marginal, if columns of the appropriate value are inserted into
the appropriate position in the terms array, the result contains
a row for each probability state included in that marginal. These
are converted to decimal, which directly gives the index in the
probability vector, and the corresponding columns in A are set
to 1. To cover the different marginals, fi rst the alphabet value and
then the position is looped over. For orders higher than one, this
process is recursive, so the fi rst alphabet value is looped over, then
within that the fi rst position, then within that the second alphabet,
then the second position and so on. This transformation matrix
can be very large since its dimensions are the dimensions of the
full probability space. However, it is highly sparse in structure,
so in both implementations the provided sparse array construct
was used to reduce the amount of memory required. In SciPy,
the sparse array module is very fl exible, providing a number of
formats and datatypes. The advantage of this was that the binary
matrix A could be stored as a sparse array of 8-bit integers in SciPy,
which provided a factor of eight memory saving over the 64-bit
double which is the only type the MATLAB sparse matrix supports.
Equations 12 and 13 show that some coordinate transformations
require inversion of the matrix A. Although this is not required
directly for the computation of the maximum entropies, it was
frequently useful while investigating properties of the system and
of the different maximum entropy solutions. SciPy offers a very

141

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

fl exible direct interface to the UMFPACK7 library of sparse solv-
ers (Davis, 2004), that allowed us to easily pre-factor the matrix
and store the results allowing rapid calculation of the coordinate
transforms when needed.

The numerical optimisation step is very similar in both imple-
mentations, using the fsolve function of the respective system.
In MATLAB a Gauss–Newton method was used, while in SciPy
fsolve is a wrapper around the MINPACK (Moré et al., 1999)
hybrd algorithm which implements a modifi cation of the Powell
hybrid method. Both of these methods performed similarly. The
function that the optimiser runs is the same in both implemen-
tations and this is a direct implementation of the left hand side
of Eq. 15; the Python version is shown below. Here Asmall is a
subset of the transformation matrix A containing only the rows
required and Bsmall is the transpose of this. Asmall is extracted
from A using the slice operator, for example in Python, Asmall =
A[:l, :]. Python again provides a signifi cant advantage here in
terms of memory used. In MATLAB, any such slice results in a
copy of the data. However, with NumPy, the slice results in a view
of the original data. Similarly, in NumPy the transpose is also a
view, with a different starting point and striding, but the same data
buffer as the original array. In MATLAB the transpose operation
also produces a copy.

defdef solvefunc(self, theta_un, Asmall, Bsmall, eta_sampled):
 b = np.exp(Bsmall.matvec(theta_un))
 y = eta_sampled(Asmall.matvec(b)/(b.sum() + 1))
 return return y

As the method was developed and applied to increasing large
probability spaces, it became clear that the limiting factor for these
more challenging parameter sets was the memory usage rather than
the computation time. The Python implementation was therefore
optimised to reduce the memory usage.

This enhancement was simplifi ed by using the object-oriented
features of Python. New classes were created which inherited from
AmariSolve and AmariSystem described above. It was then pos-
sible to change only the required functions, for example the matrix
generation routine, to stop at the required row. This minimised
the other changes and duplication of code. Also, developing in this
way meant very few changes were required to the analysis scripts to
take advantage of this change – in most cases a simple substitution
of the class name at the top of the script was enough to use the
new method. One of the memory optimisations was to produce
the matrix A in smaller blocks, writing the rows and columns of
the non-zero elements directly to fi les on disk to reduce memory
overhead. Once this procedure was completed a sparse matrix in
coordinate (COO) format could be generated directly from these
fi les, and then converted to compressed sparse column (CSC)
format for effi cient matrix-vector multiplication. This is another
example of where good results were obtained by using low level
features that would not have been available in MATLAB.

As an example of the relative performance of Python and
MATLAB, maximum entropy solutions of up to second order were
computed for a system with n = 4, m = 9 (four variables each taking
1 of 9 values). The MATLAB code took 17 s with a peak resident

memory usage of 340 MB and the Python code took 12 s with a
peak resident memory usage of 110 MB. These results are typical of
our experience across a range of parameter values. The numerical
optimisation routine took almost exactly the same time in both
systems, with the difference being due to the improved performance
of the sampling of the probability distributions in Python. This is
likely to be due to the reduced amount of data copying needed with
NumPy when using slicing and other array operations.

In conclusion, for the development of this technique the use
of Python with NumPy and SciPy libraries as an alternative to
MATLAB was highly successful. The computational speed was very
similar, but using NumPy allowed us to reduce the memory require-
ment by around two-thirds. This is important, because as described
above, memory usage was the limiting factor restricting the size of
the probability space over which the analysis could be performed. As
well as the vectors representing the actual probability distribution,
the sparse matrix A must be calculated and held in memory. The
ability to use an 8-bit integer for this binary matrix with Python
provided a factor of 8 memory saving over the MATLAB equiva-
lent. More signifi cantly, the algorithm requires extraction of the
submatrix of up to the relevant order, and the transpose of that,
which in MATLAB consists of copies (meaning for each order the
data is copied in memory three times, once for the full matrix A,
once for the extracted Asmall for the given order, and once for
the transpose thereof, Bsmall). As an example, this meant that
on a workstation with 2 GB of RAM the largest binary probability
space that could be analysed up to order 3 was 12 variables for the
MATLAB implementation, but 18 variables for the Python version.
It is also worth noting that, while being similar to MATLAB, the
Python language is a great pleasure to work with.

Example of application to thalamic neural recordings
To illustrate the application of maximum entropy techniques,
here we compute maximum entropy models from a neuron in
the ventro posterior medial nucleus (VPm), which is the principal
whisker-related relay nucleus in the rat thalamus. Using extracellu-
lar microelectrodes, we recorded the responses of single VPm units
in anaesthetised rats whose whiskers were mechanically stimulated
with a piezoelectric wafer driven by a low-pass fi ltered white noise
(see Montemurro et al., 2007a, for details). We used two types of
white noise stimulation. The fi rst sequence was identical on every
trial (repeated stimulus); the second was independently gener-
ated on every trial (non-repeated stimulus). Figure 2B shows a
raster plot of the spikes fi red by a single neuron in response to
70 repetitions of the stimulus in Figure 2A. As previously reported
(Montemurro et al., 2007a; Petersen et al., 2008), VPm responses to
white noise were highly repeatable and temporally precise. An infor-
mation theoretic analysis of these data revealed that these neurons
convey information at sub-ms temporal precision (Montemurro
et al., 2007a) and that there are correlations between the times of
individual spikes. One source of correlation came from the refrac-
toriness of neurons, and another source of correlation came from
their tendency to fi re spikes in bursts (Montemurro et al., 2007a).
An important question is whether these correlations between the
times of spikes emitted by the same neuron have a signifi cant impact
on the information and entropy of the neural spike train, and if
these correlations can be described by simple pairwise models or if 7http://www.cise.ufl .edu/research/sparse/umfpack/

142

http://www.cise.ufl .edu/research/sparse/umfpack/

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

they rather need a complex, high order characterization. Here we
will address these questions by using maximum entropy models
which, as explained above, provide a natural framework to study the
impact of different orders of correlation to spike train entropy and
information. Previous studies employing maximum entropy have
focussed mainly on correlations across a population of neurons
(Schneidman et al., 2006; Shlens et al., 2006). Here, we extend this
study to focus on correlations in time between spikes of a single
neuron. This is interesting because fi nding a compact maximum

entropy representation of within cell correlations is an important
step towards understanding spike timing codes and representing
them effi ciently (Nirenberg and Victor, 2007; Tang et al., 2008).

We discretized the time into small bins of size Δt = 4 ms and
quantifi ed the response of the considered VPm neuron as a binary
sequence of 1’s and 0’s (spikes or silence in that bin respectively),
characterising the neural response r as non-overlapping binary
words of length L extracted from this signal. We then consid-
ered the probability of response P(r) in response to all patterns of
whisker stimulation obtained from the non-repeated white noise
sequences, and we compared its entropy to that of the maximum
entropy probability P

K
(r) at level K (K = 1,…,3) and to the entropy

of the true distribution. Results are reported in Figure 3. We found
that the lowest order model (K = 1, which considers spikes in each
bin as independent from each other) provides an entropy very
close to that carried by higher order probability models. The dif-
ference between lower and higher order entropies becomes pro-
portionally larger as the length L of the binary word increases.
However, differences remain small: for L = 14, the difference
between the independent-model, K = 1 entropy and the true one
remain within 3%. This suggests that the spike train could be
quantitatively well described even by a simple model that ignores
correlations between spikes at different time bins. It should be
noted that in the Python implementation of this calculation, the
limit on the maximum number of time bins L and the order K that
could be analysed was set by the number of trials available and
the effectiveness of the sampling bias corrections implemented,
whereas in the corresponding MATLAB implementation the limit
was reached when the available memory was consumed. For a
binary system as described here that limit was L = 12, K = 2 on
our workstation. This highlights the advantages of Python for
these implementations.

It should be noted that while we are applying the analysis here to
data from a single cell, the computational challenge is determined
solely by the dimension of the underlying probability space. In
this case, the largest underlying probability space considered has a
dimension of 214 which is computationally equivalent to the case of
the binary response of 14 simultaneously recorded neurons.

A

B

FIGURE 2 | Responses of a VPm neuron to white noise vibrissa

stimulation. (A) Vibrissa position as a function of time in units of stimulus SD
(1 SD = 70 µm). (B) Spikes fi red by the neuron in response to 70 repetitions of
the stimulus shown in (A).

A B C

FIGURE 3 | Response entropy of a VPm neuron to white noise vibrassa

stimulation. The full response entropy [H(R) denoted H in the fi gure] is shown
together with that of maximum entropy models preserving fi rst [H(1)], fi rst and

second [H (2)] and up to third order [H (3)] marginal densities. The response is
treated as non-overlapping words of length 6 (panel A), 10 (panel B) and 14
(panel C) bins, with each bin of 4 ms duration.

143

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

COLLABORATIVE COMPUTING
There is a growing trend in neuroscience towards the development
and use of collaborative computing services. These are multi-user
systems, accessed over the internet which provide computational
resources while facilitating interaction between users. This is a
natural evolution for the fi eld, as rapid advances in physiologi-
cal techniques of many kinds result in data sets of increasing size
and with an associated proliferation of analysis tools of increasing
complexity. The idea is to provide an environment to foster collabo-
ration, especially between experimentalists and theoreticians, by
providing databases of experimental results, and online analytical
tools for application to those data.

The fi eld of bioinformatics has pioneered the development of
such systems, which are now well established and playing an impor-
tant role. However, implementing such systems for neuroscience
presents some challenges not faced by the bioinformatics commu-
nity. The greatest of these is the volume and variety of experimental
data. While traditional bioinformatics services tend to process data
as strings – which is partly why the Perl programming language
still underpins much bioinformatics analysis – in neuroscience we
deal with large sets of binary data in a variety of different formats.
This presents diffi culties for the decentralised model of separately
provided and hosted services that has become popular in the bio-
informatics community. This data requires signifi cant contextual
detail, or metadata, to be useful and is large enough to make the
sharing of terabytes of data between labs a signifi cant issue. It there-
fore seems that neuroscience requires a stronger organisational
structure for these systems, to facilitate easier interoperability of
data and provide security and access control.

The adoption of Python is highly advantageous in this context.
The Python language is fl exible, extensible and runs on a wide range
of platforms. It also has the fast array mathematics crucial for neuro-
science work, which are not available in languages such as Perl, which
have been traditionally used for bioinformatics services. Like Perl
though, it is a dynamic interpreted language, which simplifi es the
deployment of code on distributed systems. It has a similar syntax to
MATLAB, the established standard in the fi eld, and although there
are no automated tools, translating code and algorithms from one
to the other is relatively straightforward. Unfortunately it is diffi cult
to use MATLAB to provide these kinds of multi-user services due to
licensing restrictions. We are working on adapting our information
theoretic techniques for use in systems of this type, and this was one
of the factors that infl uenced our decision to investigate Python.

The Code, Analysis, Repository and Modelling for e-Neuroscience
(CARMEN)8 project is a consortium effort to create a virtual
laboratory for neurophysiology (Gibson et al., 2008), and is one
example of project attempting to provide a centralised organisa-
tional structure for collaborative computing in neuroscience, as
discussed above. CARMEN is an e-Science Pilot Project funded
by the Engineering and Physical Sciences Research Council (UK)
and involves investigators from 11 UK universities.

The goals of the CARMEN project are to create a decentralised
computing resource used by experimentalists and theoreticians
alike; a repository for both experimental data and analysis code that

can be made available to all users of the system. We are working
to provide our Python-based information theoretic algorithms as
“services” on the CARMEN system. Providing such packaged serv-
ices as modules that can be used in easy to construct “workfl ows”
has many advantages. It allows easy comparison of different analyti-
cal techniques on the same dataset, as well as allowing application
of a given technique to a number of different datasets that might
otherwise be hard to obtain or convert to a suitable format. It allows
application of the techniques of information theory by experi-
mentalists and others who may otherwise lack the mathematical
background, programming skills or inclination to implement such
techniques by hand from the literature. It should also allow better
reproducibility of published results, as well as providing a substan-
tial computational resource allowing calculations that could be too
time consuming for a user to perform on a desktop computer.

PYTHON WEB SERVICES
A “web service” is “a software system designed to support inter-
operable machine-to-machine interaction over a network”9. Web
services are well suited to collaborative computing services, and
they have been proven as a successful model for e-Science through
their use in the bioinformatics community. They are also used as the
foundation of the analysis code in the CARMEN project described
above. Web services are operating system, location and language
neutral. This is exploited in CARMEN to allow dynamic deploy-
ment of services to different computational nodes, and also sim-
plifi es the use and integration of analysis code written in a range
of languages.

There are a number of standards governing the behaviour of
web services, largely provided by the World Wide Web Consortium
(W3C), which are required to allow them to interact. The fact that
these standards are vendor neutral has enabled them to gain trac-
tion where previous attempts to provide interoperable services has
failed. Simple Object Access Protocol (SOAP)10 is a standard XML
based messaging format used to pass data and parameters to an
analysis service, and then receive the results back. All clients and
web services are capable of passing and decoding SOAP messages.
The other pivotal standard is that of the Web Services Description
Language (WSDL)11, an XML document for the description of a
web service; that is the method calls it provides, the arguments they
require and the results they return. The WSDL that represents a web
service is suffi ciently informative to allow automatic generation of
clients capable of binding to the service.

As part of our work we are making the information theoretic
techniques that we are developing available as web services, for
use in CARMEN and similar systems. Python greatly eases this
process. We can create a Python-based service for a specifi c informa-
tion theoretic task simply by importing our information theoretic
library and calling the appropriate function with the appropri-
ate arguments. This reduces code repetition, and the fl exibility
and simplicity of the Python module system makes the process
easy to manage. For example, if the algorithmic code was actually

9http://www.w3.org/TR/ws-gloss/
10http://www.w3.org/TR/soap/
11http://www.w3.org/TR/wsdl8http://www.carmen.org.uk/

144

http://www.carmen.org.uk/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

included in the service programs, this would exist in every service
performing an information theoretic calculation with a copy on
every node to which the service had been deployed. By having a
library with a consistent API, this can be updated in a single place
on each computational node without having to change any of the
existing services.

Once there is a Python script to perform the required task, it is
necessary to “wrap” it to create a web service. There are a number
of toolkits to do this including the Python native Zolera SOAP
Infrastructure (ZSI) and SOAPpy. However, the method we have
been using is InstantSOAP12 a generic toolkit capable of expos-
ing legacy applications as web services. Initially, we have created
Python scripts that run as command line applications. This is
straightforward since Python includes an excellent tool for easily
parsing command line options. InstantSOAP provides a native
command line processor to wrap any command line application
into a web service through the creation of a single XML fi le.
Work is currently in progress to extend InstantSOAP to natively
support Python services, allowing direct deployment of a Python
function as a web service, without requiring the developer to
understand the web services stack, a signifi cant barrier to entry
in developing web services in any language. Python’s licensing
model is also important in the deployment of distributed serv-
ices; MATLAB suffers from licensing restrictions for collaborative
deployment. This makes it harder both to provide open services
to a large number of users and to employ the dynamic deploy-
ment architecture through which code may run on a number of
computational nodes. For example, whilst CARMEN is capable of
providing MATLAB web services, it is through compiled MATLAB
scripts, supported by the MATLAB runtime environment, and has
no native interface to MATLAB per se, adding additional complex-
ity to the procedure of creating, deploying and managing web
services. There are also a number of ongoing technical challenges
related to running the compiled MATLAB binaries within the web
service environment.

DISCUSSION
In modern neuroscience a growing challenge is handling and inter-
preting increasingly large volumes of physiological data of many
different types. To face this challenge computational techniques are
becoming more and more important. We have described informa-
tion theory, which is one such technique that is particularly suited
to the challenges posed by neurophysiological datasets, and can
provide valuable insights into neural coding and the function of
the nervous system.

Information theory provides a natural framework to study
communication in most systems, and the brain is no exception. An
obstacle to a wider spread of its use among sensory neurophysi-
ology laboratories has been the technical diffi culties associated
with its calculation (mostly the problem of bias corrections) and
the lack of well defi ned, cross-platform packages that can handle
generic datasets. The work presented in this paper is an attempt
to address this limitation and provide the neuroscience commu-
nity with open source packages that allow unbiased calculation

of information from various types of neural data, from spikes to
fi eld potentials. The use of Python helps to develop fl exible tools
that can easily be applied or extended (because of the fl exibility
of the Python language) to handle different types of neurophysi-
ological signals (because of the ability to manage memory effi -
ciently) and to different data formats (because of the ability of
Python to easily read a variety of data formats commonly used
in neuroscience).

We have also described a current area of intensive research on
neural coding; namely a new implementation for computing solu-
tions of maximum entropy given marginal constraints. Although
the example presented in Figure 3 was on a binary data space, the
ability of the code to support fi nite alphabet probability spaces is
signifi cant and allows the application of the maximum entropy
technique to a wide range of new areas. In our own experience
with simulated data (results not shown here, but partly reported in
Lüdtke et al., 2009), using the Python implementation described
here we were able to solve maximum entropy solutions of order
2 on spaces of up to 7 variables quantised to 9 levels (a probability
space with dimension ∼4.7 m) on a well-equipped workstation
in a reasonable amount of time (∼1 day). This was a dramatic
improvement over what we were initially able to achieve with the
MATLAB version of code; indeed the MATLAB version would
have been unable to solve for a system of that size due to memory
limitations. Other potential fi nite alphabet applications include
analysis of quantised naturally continuous signals, such as LFP or
fMRI as well as opening the possibility of studying the interactions
between the stimulus features encoded by spiking responses, where
instead of response given stimulus we consider the properties of
the stimulus given a response.

Looking to the future of inter-disciplinary science, we have con-
sidered the possibilities offered by collaborative computing services
based on grid or cloud architectures. While such systems have been
developed for use in other areas, neuroscience poses some unique
challenges. We have outlined our work as part of the CARMEN
project, which hopes to address these challenges and provide a
valuable service for storage, processing and analysis of electrophysi-
ological data. We are developing information theoretic analysis
tools as web services, which will make them available to greater
range of practitioners, and hopefully increase their use within the
neuroscience community.

The development of analysis tools like the ones discussed
here has potentially signifi cant implications for the refi nement,
reduction and replacement (3R) of animals in research. In our
specifi c case, the opportunity to easily run information analysis
on a number of different existing datasets (which as discussed,
is facilitated by Python) maximizes the probability of obtaining
new insights into neural codes without the need to sacrifi ce new
animals. The free availability of advanced routines for calculation
of bias-corrected information estimates offers neurophysiologi-
cal laboratories the possibility of reliably computing informa-
tion from a smaller number of trials, thereby maximizing the
potential to record from multiple sites in the same animal and
thus reducing the total number of animals needed for statisti-
cal signifi cance. The ability of the code to adapt to the different
types of neural signals that can simultaneously be extracted from 12http://instantsoap.sourceforge.net/

145

http://instantsoap.sourceforge.net/

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

the extracellular signal also increases the amount of information
that can be obtained without increasing the invasiveness of the
recording procedures.

We have found signifi cant advantages to using Python for all
of the work described above. As discussed, we have found it well
suited both to reimplementing existing techniques for exposure to a
wider audience, as open-source packages and hosted computational
services, and to the research and development of new techniques
and algorithms. Together with the excellent interactive environ-
ment IPython13, it provides much of the power available from low
level C coding with a numerical library, but with greatly reduced
complexity and development time. For example, a major advantage
for our maximum entropy application was the way we were able to
fi ne tune the use of the sparse matrix structures. The interactive
nature, familiar to users of MATLAB, is crucial to aid research,
both in terms of investigation of data as well as development of
algorithms. Compared to MATLAB, we have seen performance
increases in moving our code to Python, particularly related to
memory management in the case of our more demanding algo-
rithms. In addition, increased productivity and code manageability,
for example from the ability to use object-oriented programming
techniques, speed development and ease collaboration with other
researchers.

We have experienced few problems with migrating our code
from MATLAB. We have been able to easily access existing data
stored in .MAT fi les and also to smoothly translate code. It is
even possible to call MATLAB from Python, through the mla-
bwrap module14, which we have used to run existing MATLAB
code provided by colleagues for preprocessing data. Initially the
required packages were diffi cult to install, requiring compilation
from source of a range of packages with complicated depend-
encies. Actually getting the software installed was therefore the
greatest challenge when we began using Python. However, since
then, the community has done a lot of work in improving this
process, and there are now regular binary releases of all the impor-
tant components, as well as a number of projects that distribute
a complete scientifi c tool chain with all required components
through a common installer15. Another challenge was adapting
to the pass by reference semantics of Python rather than the pass
by value style of MATLAB, as well as adapting to 0 based index-
ing. However, once these mental adjustments had been made we
found ourselves more productive with Python than we were with
MATLAB. Other disadvantages of Python are that the documenta-
tion of the included functions, while still available interactively,
is not as comprehensive as that provided with MATLAB and the
plotting functionality provided by matplotlib, is not quite as
easy to use or well developed as the MATLAB version, especially
with regard to 3D plotting.

We have been able to easily provide our Python code as web serv-
ices, for integration into collaborative systems such as CARMEN,
without requiring a signifi cant time investment to adjust or tune

the code for this purpose. In fact, Python is an excellent fi t for
projects such as CARMEN. It provides the fl exibility of dynamic
interpreted languages such as Perl, that have traditionally been
used to provide services in systems of this type, while includ-
ing the fast array mathematics that are crucial for the effi cient
analysis of neurophysiological data. It is diffi cult to use MATLAB
in systems such as this, due to licensing restrictions which pose
problems, both for allowing multiple users to access the service,
and for running the service on different nodes in a grid infrastruc-
ture. Obviously, with Python being open source, there are no such
issues. The benefi ts of open source extend beyond collaborative
computing projects however; there is a compelling open-access
argument for avoiding expensive proprietary software in published
scientifi c work.

So far we have only scratched the surface in terms of what is
available in the Python ecosystem that could be of benefi t for our
work. The extensive collection of modules available for Python allow
great fl exibility, for example making it much easier to develop GUI
interfaces and handle a wide variety of data formats. There are also
several methods to easily extend Python code with natively com-
piled C extensions, to increase the performance of critical sections
of code, while still allowing the interactive use and rapid devel-
opment of Python. We are currently focussed on optimising our
information theoretic codes through the use of Cython16, which
we are fi nding signifi cantly easier to use and less error prone than
the MATLAB equivalent (the MEX interface). Another area we are
actively investigating in the use of parallelism. In many cases our
problems are embarrassingly parallel, for example calculating infor-
mation theoretic bias-corrected quantities over a number of data
sets or computing maximum entropy solutions of different orders
and conditional distributions. A number of open source solutions
exist for parallel computing with Python, and we are investigating
using these features of IPython to easily distribute these types of
jobs to available machines.

SUPPLEMENTARY MATERIAL
The Python library for information theoretic estimates described
in Section “A Python Library for Information Theoretic Estimates”,
including code for producing Figure 1, can be found at http://code.
google.com/p/pyentropy/. The code for obtaining the fi nite alpha-
bet maximum entropy solutions can also be found on that page.
This code is provided as Supplementary Material on the condi-
tions that (1) the authorship of the software shall be acknowledged,
(2) the present article shall be correctly cited in any publication that
uses results generated by the software, (3) any publication that uses
results generated by our software shall correctly cite the original
articles (cited in this paper) which developed any bias correction
methods used.

ACKNOWLEDGEMENTS
This work was supported by the EPSRC “CARMEN” grant and by
IIT. We are indebted to C. Magri, R. Senatore, F. Montani, N. Ludtke
and M. A. Montemurro for useful discussions on the implementa-
tion of entropy methods and for important contributions to the
development of the information theoretic algorithms.

13“An enhanced interactive Python shell and architecture for interactive parallel
computing”, http://ipython.scipy.org/ (Perez and Granger, 2007)
14“A high-level Python to MATLAB bridge”, http://mlabwrap.sourceforge.net/
15See for example http://www.pythonxy.com/ and http://www.enthought.com/pro-
ducts/epd.php 16The Cython language, “C extensions for Python”, http://cython.org/

146

http://code.google.com/p/pyentropy/
http://ipython.scipy.org/
http://mlabwrap.sourceforge.net/
http://www.pythonxy.com/
http://www.enthought.com/products/epd.php
http://cython.org/

Ince et al. Python for information theoretic analysis

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 4 |

REFERENCES
Amari, S. I. (2001). Information geom-

etry on hierarchy of probability
 distributions. IEEE Trans. Inf. Theory
47, 1701–1711.

Arabzadeh, E., Panzeri, S., and
Diamond, M. E. (2004). Whisker
vibration information carried by rat
barrel cortex neurons. J. Neurosci. 24,
6011–6020.

Averbeck, B. B., Latham, P. E., and
Pouget, A. (2006). Neural correlations,
population coding and computation.
Nat. Rev. Neurosci. 7, 358–367.

Belitski, A., Gretton, A., Magri, C.,
Marayama, Y., Montemurro, M. A.,
Logothetis, N. K., and Panzeri, S.
(2008). Low-frequency local field
potentials and spikes in primary
visual cortex convey independent
visual information. J. Neurosci. 28,
5696–5709.

Borst, A., and Theunissen, F. E. (1999).
Information theory and neural cod-
ing. Nat. Neurosci. 2, 947–957.

Cover, T. M., and Thomas, J. A. (2006).
Elements of Information Theory,
2nd Edn. Hoboken, NJ, John Wiley
& Sons.

Dan, Y., Alonso, J. M., Usrey, W. M., and
Reid, R. C. (1998). Coding of visual
information by precisely correlated
spikes in the lateral geniculate nucleus.
Nat. Neurosci. 1, 501–507.

Davis, T. A. (2004). Algorithm 832:
UMFPACK V4. 3 – An unsymmet-
ric-pattern multifrontal method. ACM
Trans. Math. Soft. 30, 196–199.

de Ruyter van Steveninck, R., Lewen, G.,
Strong, S., Koberle, R., and Bialek, W.
(1997). Reproducibility and variabil-
ity in neural spike trains. Science 21,
1805–1808.

Fuhrmann Alpert, G., Sun, F. ,
Handwerker, D., D’Esposito, M., and
Knight, R. (2007). Spatio-temporal
information analysis of event-related
BOLD responses. Neuroimage 34,
1545–1561.

Gibson, F., Austin, J., Ingram, C.,
Fletcher, M., Jackson, T., Jessop, M.,
Knowles, A., Liang, B., Lord, P.,
Pitsilis, G., Periorellis, P., Simonotto, J.,
Watson, P., and Smith, L. (2008). The
CARMEN Virtual Laboratory: Web-
Based Paradigms for Collaboration
in Neuroscience. 6th International
Meeting on Substrate-Integrated
Microelectrodes. Reutl ingen,
Germany.

Gray, C. M., Konig, P., Engel, A. K.,
and Singer, W. (1989). Oscillatory
responses in cat visual cortex exhibit
inter-columnar synchronization
which refl ects global stimulus prop-
erties. Nature 338, 334–337.

Hatsopoulos, N. G., Ojakangas, C. L.,
Paninski, L., and Donoghue, J. P.

(1998). Information about movement
direction obtained from synchro-
nous activity of motor cortical
neurons. Proc. Natl. Acad. Sci. 95,
15706–15711.

Hausser, J., and Strimmer, K. (2008).
Entropy inference and the
James–Stein estimator. Preprint,
arXiv:0811.3579v1.

Honey, C. J., Kotter, R., Breakspear, M.,
and Sporns, O. (2007). Network
structure of cerebral cortex shapes
functional connectivity on multiple
time scales. Proc. Natl. Acad. Sci. 104,
10240–10245.

Jones, E., Oliphant, T., Peterson, P., et al.
(2001). SciPy: Open Source Scientifi c
Tools for Python. URL http://www.
scipy.org/

Latham, P. E., and Nirenberg, S. (2005).
Synergy, redundancy, and independ-
ence in population codes, revisited.
J. Neurosci. 25, 5195–5206.

Lüdtke, N., Ince, R. A. A., Brown, M.,
Kell, D. B., and Panzeri, S. (2009). A
comparative evaluation of entropy
and variance based methods for sen-
sitivity analysis. In Preparation.

Mastronarde, D. N. (1983). Correlated
fi ring of cat retinal ganglion cells. I.
Spontaneously active inputs to X- and
Y-cells. J. Neurophysiol. 49, 303–324.

Miller, G. A. (1955). Note on the bias of
information estimates. In Information
Theory in Psychology: Problems and
Methods, H. Quastler, ed. (Glencoe,
Ill, Free Press), pp. 95–100.

Montemurro, M. A., Panzeri, S.,
Maravall, M., Alenda, A., Bale, M. R.,
Brambilla, M., and Petersen, R. S.
(2007a). Role of precise spike tim-
ing in coding of dynamic vibrissa
stimuli in somatosensory thalamus.
J. Neurophysiol. 98, 1871–1882.

Montemurro, M. A., Senatore, R., and
Panzeri, S. (2007b). Tight data-robust
bounds to mutual information com-
bining shuffling and model selec-
tion techniques. Neural Comput. 19,
2913–2957.

Montemurro, M. A., Rasch, M. J.,
Murayama, Y., Logothetis, N. K., and
Panzeri, S. (2008). Phase-of-firing
coding of natural visual stimuli in
primary visual cortex. Curr. Biol. 18,
375–380.

Moré, J., Garbow, B., and Hillstrom, K.
(1999). Minpack. URL http://www.
netlib.org/minpack

Nemenman, I., Bialek, W., and de Ruyter
van Steveninck, R. (2004). Entropy
and information in neural spike trains:
progress on the sampling problem.
Phys. Rev. E 69, 56111.

Nemenman, I., Shafee, F., and Bialek, W.
(2002). Entropy and inference, revis-
ited. Adv. Neural. Inf. Process. Syst. 14,
95–100.

Nirenberg, S., and Victor, J. (2007).
Analyzing the activity of large
 populations of neurons: how tractable
is the problem? Curr. Opin. Neurobiol.
17, 397–400.

Panzeri, S. (1999). Correlations and
the encoding of information in the
nervous system. Proc. R. Soc. B 266,
1001–1012.

Panzeri, S., Magri, C., and Logothetis, N.
(2008). On the use of information
theory for the analysis of the rela-
tionship between neural and imag-
ing signals. Magn. Reson. Imaging 26,
1015–1025.

Panzeri, S., Petersen, R., Schultz, S.,
Lebedev, M., and Diamond, M. (2001).
The role of spike timing in the coding
of stimulus location in rat somatosen-
sory cortex. Neuron 29, 769–777.

Panzeri, S., Senatore, R., Montemurro, M.,
and Petersen, R. (2007). Correcting
for the sampling bias problem in
spike train information measures.
J. Neurophysiol. 98, 1064–1072.

Panzeri, S., and Treves, A. (1996).
Analytical estimates of limited sam-
pling biases in different information
measures. Netw. Comput. Neural Syst.
7, 87–107.

Perez, F., and Granger, B. (2007). Ipython:
a system for interactive scientifi c com-
puting. Comput. Sci. Eng. 9, 21–29.

Pe te r s e n , R . , B r a m b i l l a , M . ,
Bale, M., Alenda, A., Panzeri, S.,
Montemurro, M., and Maravall, M.
(2008). Diverse and temporally pre-
cise kinetic feature selectivity in the
VPm thalamic nucleus. Neuron 60,
890–903.

Petersen, R., Panzeri, S., and Diamond, M.
(2001). Population coding of stimulus
location in rat somatosensory cortex.
Neuron 32, 503–514.

Pola, G., Thiele, A., Hoffmann, K., and
Panzeri, S. (2003). An exact method
to quantify the information transmit-
ted by different mechanisms of corre-
lational coding. Netw. Comput. Neural
Syst. 14, 35–60.

Rieke, F., Bialek, W., Warland, D., and
Van Steveninck, R. (1999). Spikes:
Exploring the Neural Code. Bradford
Book. Cambridge, MA, MIT Press.

Rubino, D. , Robbins, K. , and
Hatsopoulos, N. (2006). Propagating
waves mediate information transfer
in the motor cortex. Nat. Neurosci. 9,
1549–1557.

Schneidman, E., Berry, M., II, Segev, R.,
and Bialek, W. (2006). Weak pairwise
correlations imply strongly correlated
network states in a neural population.
Nature 440, 1007–1012.

Schneidman, E., Still, S., Berry, M., and
Bialek, W. (2003). Network informa-
tion and connected correlations. Phys.
Rev. Lett. 91, 238701.

Schürmann, T., and Grassberger, P.
(1996). Entropy estimation of symbol
sequences. Chaos. 6, 414–427.

Shannon, C. (1948). A mathematical
theory of communication. Bell Syst.
Tech. J. 27, 379–423.

Shlens, J., Field, G., Gauthier, J.,
Grivich, M., Petrusca, D., Sher, A.,
Litke, A., and Chichilnisky, E. (2006).
The structure of multi-neuron fi ring
patterns in primate retina. J. Neurosci.
26, 8254.

Strong, S., Koberle, R., de Ruyter van
Steveninck, R., and Bialek, W. (1998).
Entropy and information in neu-
ral spike trains. Phys. Rev. Lett. 80,
197–200.

Tang, A., Jackson, D., Hobbs, J., Chen, W.,
Smith, J. L., Patel, H., Prieto, A., Petrusca,
D., Grivich, M. I., Sher, A., Hottowy, P.,
Dabrowski, W., Litke, A. M., and Beggs,
J. M. (2008). A maximum entropy
model applied to spatial and temporal
correlations from cortical networks in
vitro. J. Neurosci. 28, 505–518.

Treves, A., and Panzeri, S. (1995). The
upward bias in measures of informa-
tion derived from limited data sam-
ples. Neural Comput. 7, 399–407.

van Rossum, G. (1995). Python Reference
Manual. CWI Reports CS-R 9525.

Victor, J. (1999). Temporal aspects of
neural coding in the retina and lateral
geniculate. Netw. Comput. Neural Syst.
10, 1–66.

Victor, J. (2006). Approaches to
 information-theoretic analysis of neu-
ral activity. Biol. Theory 1, 302–316.

Waldert, S., Preissl, H., Demandt, E.,
Braun, C., Birbaumer, N., Aertsen, A.,
and Mehring, C. (2008). Hand move-
ment direction decoded from MEG
and EEG. J. Neurosci. 28, 1000–1008.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 21 September 2008; paper pend-
ing published: 20 November 2008; accepted:
27 January 2009; published online: 11
February 2009.
Citation: Ince RAA, Petersen RS, Swan
DC and Panzeri S (2009) Python for
information theoretic analysis of neural
data. Front. Neuroinform. (2009) 3:4. doi:
10.3389/neuro.11.004.2009
Copyright © 2009 Ince, Petersen, Swan and
Panzeri. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

147

http://www.scipy.org/
http://www.netlib.org/minpack

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 10 February 2009
doi: 10.3389/neuro.11.005.2009

OMPC: an open-source MATLAB®-to-Python compiler

Peter Jurica* and Cees van Leeuwen

Perceptual Dynamics Laboratory, RIKEN Brain Science Institute, Wako-Shi, Saitama, Japan

Free access to scientifi c information facilitates scientifi c progress. Open-access scientifi c
journals are a fi rst step in this direction; a further step is to make auxiliary and supplementary
materials that accompany scientifi c publications, such as methodological procedures and data-
analysis tools, open and accessible to the scientifi c community. To this purpose it is instrumental
to establish a software base, which will grow toward a comprehensive free and open-source
language of technical and scientifi c computing. Endeavors in this direction are met with an
important obstacle. MATLAB®, the predominant computation tool in many fi elds of research, is
a closed-source commercial product. To facilitate the transition to an open computation platform,
we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax
adaptation and emulation to allow transparent import of existing MATLAB® functions into
Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying
on Python’s numerical and scientifi c libraries. Python offers a stable and mature open source
platform that, in many respects, surpasses commonly used, expensive commercial closed source
packages. The proposed software will therefore facilitate the transparent transition towards a
free and general open-source lingua franca for scientifi c computation, while enabling access
to the existing methods and algorithms of technical computing already available in MATLAB®.
OMPC is available at http://ompc.juricap.com.

Keywords: technical computation, Python, Matlab, compiler

products are Octave and Scilab. None of these packages ever reached
100% compatibility and failed to meet the challenge of catching up
with a platform with substantial fi nancial support.

We propose OMPC as a possible alternative strategy to facilitate
transition to an open-source platform. OMPC aims to offer a bridge
between MATLAB® and Python. Development of the Python pro-
gramming language project was started in late 1980s (http://www.
artima.com/intv/python.html) at the National Research Institute
for Mathematics and Computer Science in the Netherlands as
an open-source scripting language for gluing components of an
operating system. Today, powerful hardware allows Python to be
used as a general purpose programming language. Over the years,
the community contributing to the development of the Python
language has grown considerably. Programmers and scientists
alike are attracted by the simplicity of its syntax and its powerful
set of features. Python is a good bet for a future free and open-
source product that will develop far and fast enough to become
the new lingua franca of technical computing (Fangohr, 2004;
Langtangen, 2006).

Since the early stages there have been attempts to develop a
Python package that offers certain features available in MATLAB®-
compatible languages (http://matpy.sourceforge.net/). Scientifi c
computation libraries were developed in the 1990s (Oliphant, 2006)
and have been updated several times (Ascher et al., 2001; Oliphant,
2007), gaining in reliability, stability and versatility over years of
development and use. The most important ones, especially in the
context of our project, are numpy, scipy and matplotlib (http://
numpy.scipy.org/, http://www.scipy.org/ and http://matplotlib.
sourceforge.net/ respectively). The fi rst two provide functions

INTRODUCTION
Scientifi c progress is optimally served when everyone has access
to the relevant information. No matter how effective commercial
organizations, such as publishers or software houses, are in distrib-
uting information; their copyright and proper use requirements are
often an impediment to information sharing. Open-access scientifi c
journals attempt to remedy this problem; but this is only a fi rst step,
involving the free distribution of scientifi c results. The next step
is to make auxiliary and supplementary materials that accompany
scientifi c publications, such as methodological and data-analysis
procedures, open and accessible to the scientifi c community in the
form of freely downloadable software.

Sharing software tools requires a common platform. Currently
one platform dominates the sciences: MATLAB®. As a commercial
product, this language has successfully conquered the market for
scientifi c communication (Moler, 2004, 2006) because it is easy
to adopt for beginners as well as professionals, and because of its
policy to offer licenses at reduced rates to educational institutions.
However, it does not meet our criteria to be used as a common
standard for free sharing of software tools. Using a method imple-
mented in MATLAB® requires a full MATLAB® license. Moreover,
its core software is closed source, preventing users from verifying,
updating, and improving it.

While some MATLAB® users fi nd the features of the language
suffi cient and see no reason to switch to an alternative, those who
want to move to another platform feel the weight of code already
written in MATLAB® impeding on their decision. Developers who
have tried to offer an open-source alternative have made efforts to
offer a level of compatibility with MATLAB®. Examples of such

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Eilif Muller, Brain Mind Institute, EPFL,
Switzerland
Dan Goodman, École Normale
Supérieure, France

*Correspondence:

Peter Jurica, Perceptual Dynamics
Laboratory, RIKEN Brain Science
Institute, Hirosawa 2-1, 351-0198
Wako-Shi, Saitama, Japan.
e-mail: pjurica@brain.riken.jp

148

http://ompc.juricap.com
http://www.artima.com/intv/python.html
http://matpy.sourceforge.net/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

largely equivalent to those of MATLAB®, while matplotlib is pro-
viding plotting functionality. Within the controlled development
of Python, a proposal was made in 2000 to enhance Python with
a feature that has been one of the major assets of MATLAB®: the
availability of both matrix and element-wise operators (Zhu and
Lielens, 2000). Another proposal has been to include a numerical
array package numpy into the standard Python library, resulting
in a revision of the buffer interface for the Python 3.0 (Oliphant
and Banks, 2006). The new buffer interface facilitates the sharing
of multi-dimensional data between different Python extension
modules. All these developments point to an expanding role for
Python in scientifi c computation.

The main problem with these packages is that each offers only
a subset of MATLAB® features, but they lack a common, standard-
ized interface. Our fi rst aim, therefore, is to organize the available
numerical libraries and provide them with a common interface.
Our second aim is to provide 100% compatibility with MATLAB®
syntax and with its dynamic interpreter (the MATLAB® engine).
One advantage is that users will be able to download MATLAB®
applications and run them for free. For programmers, OMPC offers
the advantage of a free and open collaboration platform allowing
reuse of code developed for the commercial MATLAB® platform
without laborious rewriting.

OMPC is basically a translator of MATLAB® code to Python-
compatible syntax. This paper discusses the compiler and the fun-
damental concepts that allow it to generate interpretable code; in
particular code that will handle certain dynamic MATLAB® features
not present in Python. For the generated code to work, OMPC
needs to be complemented by a library that will ensure the proper
interpretation of the translated code. We refer to this library as
OMPClib. OMPClib contains, in particular, numerical objects
that emulate the dynamical behavior of their MATLAB® counter-
parts. Proof-of-concept implementations of OMPClib that possess
additional functionality just suffi cient to reproduce the results of
a spiking neural-network simulation (from Izhikevich, 2003) are
presented in the Supplementary Material. OMPClib is a work in
progress. A regularly updated version is found at the project’s web-
site (http://ompc.juricap.com). The current implementation of the
OMPClib is an integral component of the OMPC package and is
based on the extension modules numpy, scipy and matplotlib.

PROBLEM STATEMENT
In part, the translation of MATLAB® into Python code is a straight-
forward, technical problem. We need a compiler to generate Python
compatible code from MATLAB® code (see The Compiler). In addi-
tion, there are four MATLAB® types (string, cell array, array, and
slice) that have features not available in the corresponding Python
objects. For these, we introduce Python objects that act as proxies
for their MATLAB® equivalents (see Numerical Library).

The central, unique feature of the present translation problem
is that both languages are interpreted languages, but have different
dynamic features. Usually “dynamic” refers to a property of vari-
able types and means that variables do not have to have a declared
purpose or type – we refer to an object by its name and the inter-
preter decides at run-time if an operation on the variable is allowed.
However, MATLAB® also adds dynamics to a number of other
aspects of the language. The dynamic features of the MATLAB®

engine differ from those of Python as well as most other general-
purpose interpreters, because of the specifi c purpose for which
MATLAB® was designed. These issues include: array slicing, on-
demand updating of the variable namespace and populating it with
implied variables such as nargin/nargout, element-wise operations,
and implied returns. The dynamic feature of MATLAB® that is
the most diffi cult to implement in languages other than Python is
the nargin/nargout implied variable. The slicing syntax, although
available in Python, differs in syntax. In subsequent Sections
“Array Slicing, Index Base 1”, “Dynamic Update of the Variable
Name Space, Emulation of nargin/nargout”, “Assignments to Novel
Variables, Assignments to Slices”, “Element-wise Operations” and
“Implied Returns”, we show how each of these particular problems
can be solved. In Section “The mfunction Decorator” we mention
how OMPC allows integration of these solutions with a mini-
mum impact on the structure of the original MATLAB® code. Our
approach illustrates that it is possible, given enough knowledge of
the compiler of a particular language, to interpret code written in
an arbitrary programming language, provided that the emulated
language has a subset of the features of the emulating one. This
translation maxim may apply universally between any pair of lan-
guages. However, as we argue, Python in addition is syntactically
close, suffi ciently dynamic, and has a large enough library to enable
translation that leaves the original structure intact.

Any platform for technical and scientifi c computation should
keep up to the standards of speed and quality of MATLAB®. This
is only possible if such a platform is built on the base of standard
numerical packages. Indeed at the base of all of currently compet-
ing scientifi c packages we fi nd ATLAS (Automatically Tuned Linear
Algebra Software). This is the reason why results of operations on
matrices are bit-by-bit equivalent in MATLAB®, Python, Octave
and many other tools. Also the speed of execution of operations
defi ned in this library does not change signifi cantly between differ-
ent engines. There is no essential difference in speed of execution
compared to compiled languages like C/C+++; C/C++ code written
by the average user can even be slower compared to implemen-
tations available from the ATLAS BLAS/LAPACK libraries used
by numpy/scipy. This is because optimization of the elementary
operations is done automatically at the time of compilation of
the library and the speed of the result in not affected by the pro-
gramming language from which this library is initiated (except for
translation of parameters). The functionality of many toolboxes of
MATLAB® is dependent on a number of other open-source pack-
ages as well. These are all available to Python users and probably
have already been wrapped into a Python package. For custom
made, non-standard packages (MEX extensions), we still need a
way to allow OMPC to use them. This issue is discussed in Section
“OMPC Extensions”.

PROPOSED SOLUTION
An underappreciated aspect of Python, especially in scientifi c com-
puting, is a feature known as introspection. Python offers built-
in modules that allow run-time inspection of its own bytecode.
Bytecode is the equivalent of the machine language in interpreted
and just-in-time compiled languages. Introspection makes possible
the run-time modifi cation of the bytecode of a program, provided
that the engine allows this. Python offers this facility. Where the

149

http://ompc.juricap.com

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

specifi c dynamic features of the MATLAB® engine have made it
impossible for Python to interpret MATLAB® code directly, we
show that with the help of introspection it is possible to emulate the
remaining features. The following section presents specifi c features
that together implement the proposed solution. Supplementary
Material fi les on the project site include Python scripts that dem-
onstrate the features presented in this section.

OMPC – A MATLAB®-TO-PYTHON COMPILER
OMPC is a compiler that translates MATLAB® code to function-
ally equivalent Python code. The design philosophy of OMPC is to
enable seamless integration of existing MATLAB® code in Python
programs. As a feature of convenience, OMPC allows automatic
loading and translation of .m fi les using the Python import state-
ment. Thus, assuming there is an m-function called add imple-
mented in a fi le called add.m, an example Python session using
this fi le would look as follows1:

>>> import ompc
>>> import add
>>> add(1,2)
ans = 3

The steps taken during execution are schematically illustrated
in Figure 1. They are:

1. import ompc – OMPC installs a so-called import hook into
the current instance of the interpreter. This allows OMPC to
act at every import statement and compile m-fi les to Python
code on demand. From this point on it is possible to import .m
fi les.

2. import add – the OMPC import hook is called and searches
for add.m on the current path (an equivalent to MATLAB®’s

path variable). OMPC compiles add.m to a .pym fi le and sub-
mits this fi le to Python’s built-in __import__ function that will
compile this fi le as any other regular Python fi le.

3. add(1, 2) – is a Python function call. It is running in the
current Python instance as a Python function working with
Python variables. In other words, MATLAB® is not involved at
any stage of this process.

OMPC is complemented by the module OMPClib. This module
provides implementations of objects that act as proxies of dynamic
features specifi c to MATLAB®.

Note that the mentioned enhancement of functionality is
realized without any change to the Python language itself. It is
absolutely important not to change the Python language in favor
of a single package. Changes to the interpreter should only be
made if they are met with general acceptance among the users
of the language. Otherwise it would lead to the opposite of the
unifi cation aimed for. Moreover, a program translated by OMPC
preserves the structure of the original MATLAB® program. The
resulting program, in all but three cases (function declaration,
switch statement, multiple statements on a single line), corre-
sponds line by line to its MATLAB® source code. An example of
equivalent MATLAB® and Python compatible codes can be found
in the “Results” section.

THE COMPILER
To use MATLAB® code in Python, an intermediate step of
MATLAB®-to-Python syntax adaptation is needed. The MATLAB®
code must be parsed and translated into Python code that is func-
tionally equivalent to its original. To parse MATLAB® source code
we used a free 100% Python implementation of lex and yacc pars-
ing tools called PLY (http://www.dabeaz.com/ply/). The compiler is
implemented in a single Python fi le (examples/ompc/ompcply.py).
This fi le is a collection of grammar defi nitions. Each defi nition
is associated with a processing function for a specifi c language
construct (keyword, number, assignment, index access and oth-
ers). The grammatical rule for each construct is specifi ed in the

1The following sections contain listings of code in both programming languages.
We adhere to the following convention: The mark >> at the beginning of a state-
ment signifi es a MATLAB® program, while the mark >>> signifi es Python code.
Each of the concepts introduced in the following subsections has a corresponding
executable script that is part of the Supplementary Material.

FIGURE 1 | OMPC structure. Each .m fi le has to be translated to Python compatible syntax. Statements for an .m fi le are replaced by their Python equivalents with
minimal structural changes that allow emulation. This translated code relies on features implemented in a numerical object similar to ndarray of the numpy module.

150

http://www.dabeaz.com/ply/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

documentation string of its processing function. The functions are
designed to cover every syntactically correct MATLAB® language
statement. The PLY module uses the grammar fi le to generate a
parser, which searches a source text for language constructs
and passes these to their corresponding processing functions.
The parser produces the translated Python-compatible code. In
the case of strings, the syntactical rule is the regular expression
STRING = r�((?:�|[^\n�])*)� and the processing function looks
as follows:

def p_expression_string(p):
 "expression : STRING"
 p[0] = "mstring(%s)"%p[1]

Every MATLAB® string that passes through this function will be
enclosed in the expression mstring(.). Such a string can have all the
features of a MATLAB® string. If this is not required, it is possible
to replace the last line with p[0] = p[1]. As a result the strings from
the original will stay intact.

The important advantage of using Python for the translation is
that its code is easy to read and can be easily modifi ed. Modifying
a Python program does not require installation of a large compli-
cated development system, common for low level languages like
C++ or Java. The development advantages outweigh the negligible
differences in processing speed.

NUMERICAL LIBRARY
Here we present the additional objects necessary for full compat-
ibility with MATLAB®. The following MATLAB® example illus-
trates the impossibility of differentiating between variables and
functions at translation.

>> add = @(a,b) a+b;
>> add(1,2) % Python -> add(1,2)
ans = 3
>> add = 1:10;
>> add(1,2)
ans = 2 % Python -> add[0,1]

MATLAB® uses the same syntax for calling a function and
retrieving elements from an array. This makes it impossible to
determine if an identifi er add in the above listing is a variable or
a function. Therefore it is not possible to correctly translate the
statement >> add(1,2) at compilation time. Our solution is based
on the fact that object-oriented programming allows overloading
of operators. We therefore have the option to overload the object’s
__call__ function. Thus the OMPC code can be executed in Python,
behaving equivalently to its MATLAB® original, independently of
whether add is a function or a variable. Note that this added feature
enhances the original numerical array (numpy in our examples)
without altering its original function. The new object marray inher-
its all functionality from the original numerical array. This object
enhanced by an overloaded __call__ operator allows the following
example to run in Python:

>>> add = lambda a,b: a+b;
>>> add(1,2)
3
>>> add = mslice[1:10];
>>> add(1,2)
ans = 2.0

The supplementary OMPC numerical object is currently
based on numpy’s array object. This is however not the only
option. It is possible to use base objects from another pack-
age like Numarray, CVXOPT (http://abel.ee.ucla.edu/cvxopt)
or others. For non-numerical objects we can enhance Python
built-in types. For example the OMPC string is based on the
Python string implementation. The OMPC’s cell array object is
based on the Python built-in list object, which is equivalent in
features to the cell array but, as is obvious from the following
example, the performance boost achieved by using the Python
list object is considerable.

>> m = {}; tic, for i=1:100000, m{i} = 12; end, toc
Elapsed time is 9.637410 seconds.

Python does not allow on-demand growing of lists, but this
feature can easily be emulated:

>>> class mcellarray(list):
 def __setitem__(self,i,v):
 if i >= len(self):
 self.extend([None]*(i-len(self)) + [v])

>>> m = mcellarray()
>>> tic()
>>> for i in xrange(100000): m[i] = 12
>>> toc()
Elapsed time is 0.372690 seconds.

The above example is not the optimal way of using the cell array.
Such incorrect use of MATLAB®’s benevolent interpreter is, how-
ever, very common. As the last example shows, Python can help to
greatly enhance the usability of such sub-optimal code.

ARRAY SLICING, INDEX BASE 1
The fi rst element of a Python sequence type is 0, while MATLAB®
uses 1 as the base for indexing, for instance a[0] in Python is
equivalent to a(1) in MATLAB®. OMPC solves this incompat-
ibility by overloading the numerical object’s __call__ method.
The same technique of overloading the __call__ function also
makes it possible to use MATLAB® style array slicing. Consider
again:

>>> b = a(1:10);

it is unclear until run-time if a is a function accepting a vector or a
vector from which we are retrieving the fi rst 10 elements. Python
does not allow using a slice object outside of the index [] operator.
By translating this statement into Python acceptable syntax

>>> b = a(mslice[1:10]);

and making a an object with overloaded __call__ operation,
this code can be executed in Python, behaving equivalently to its
MATLAB® original independently of whether a is a function or
a variable.

The mslice proxy object does two things. First it allows a slice
object to be used as a parameter to a function call. Secondly it
adapts MATLAB® index-base-1 slices from the syntax start:step:
stop to Python’s start:stop:step. Python’s slice object returns slices
up to the stop element, while MATLAB®’s slices range up to the
stop element including it.

151

http://abel.ee.ucla.edu/cvxopt

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

DYNAMIC UPDATE OF THE VARIABLE NAME SPACE, EMULATION OF
NARGIN/NARGOUT
Python comes with a built-in module called inspect. Using this
module it is possible to look into the execution stack to see in what
context a function is being executed. This means that at any time
a function is called we can look a couple of steps back in history
and ask the interpreter about the code from which our function
has been called. Consider the following statement:

>>> [a, b] = sort(rand(10,1))

Python accepts both a, b, and [a, b] (the correct syntax in
MATLAB®) as left-value for an assignment. The inspect module
makes it possible to ask the interpreter for the number of argu-
ments on the left side of the assignment at the moment just before
a function was called. The OMPClib module contains a function
_getnargout that does exactly this. The following Python statement
that leaves nargout undefi ned:

def f(x):
 if nargout == 2:
 return 1, 2
 else:
 return 1

can thus be rewritten to:

def f(x):
 nargout = _getnargout()
 if nargout == 2:
 return 1, 2
 else:
 return 1

The mfuction decorator, which will be discussed in detail in
Section “The mfunction Decorator”, makes sure that a call to the
_getnargout function is inserted in the preamble of all functions
translated by OMPC. This means that the original MATLAB® func-
tion body again can stay intact; we only need to apply the mfunction
decorator that inserts nargout and, similarly, nargin into the variable
namespace of the function during runtime.

ASSIGNMENTS TO NOVEL VARIABLES, ASSIGNMENTS TO SLICES
We explained that it is possible to use the __call__ function to allow
MATLAB®-style array slicing. There is one exception, however:
Python does not allow function calls to be used for assignment. We
circumvent this restriction by assigning to a property of the slice.
The property mediates the assignment operation and makes the
syntax acceptable to the Python parser. For instance,

>>> a(1) = 1 # Syntax error

is not allowed, but the following is:

>>> a(1).lvalue = 1

MATLAB® allows assignment to slices of variables that were
not previously initialized. The module inspect allows us to detect
assignment to non-existent variables. In the translated code, the
variables are initialized during runtime by the mfunction decorator
(see The mfunction Decorator).

ELEMENT-WISE OPERATIONS
MATLAB® offers a convenient way of differentiating between oper-
ations for matrices and their element-wise equivalents. Although
such a differentiation was repeatedly proposed for Python (Zhu and
Lielens, 2000) it never gained enough support from the broader
Python community. In numpy, all numerical operations on arrays
are element-wise by default. In principle, it would not have been
a problem to use function calls to differentiate between these and
matrix operations, for instance:

a .* b => multiply(a, b) and a * b => dot(a, b)

However in accordance with our principle to preserve as much
as possible the original structure of the MATLAB® code, we sug-
gest another solution. This solution is inspired by a recipe from
the community-driven Python cookbook (http://code.activestate.
com/recipes/384122/). Python allows overriding of operators on
either side of an operand. This feature is commonly used to enable
automatic coercion of types. For example, it allows the user to
apply an arithmetic operation between a numpy array and any-
thing else. So, for adding to array x a list [1,2], instead of having
to convert it to an array: x + array([1,2]), we can simply write:
x + [1,2]. Therefore it is possible to change the above translation
rule as follows:

a .* b => a *elmul* b and a * b => a * b

The elmul is an instance of an object that has overloaded the *
operator (the __mul__ and __rmul__ function). Independently of
the execution order of the operations in the statement, the elmul
object remembers the operand from the fi rst multiplication and
instructs the second operand to perform element-wise multiplica-
tion (a*elmul -> elmul.left = a, elmul*b -> elmul.left*b).

IMPLIED RETURNS
MATLAB® uses implied returns; the “return” statement without
parameters serves only for breaking the execution of a function.
The return parameters of a function are specifi ed in the function
declaration. Python requires specifi cation of these variables at each
point of exit from the function. Python’s return statement consists
of a list of variables to be returned from a function call. Absence of
the list means the empty object None is returned.

function [mi,ma] = minmax(a)
mi = min(a);
if nargout > 1, ma = max(a); end

@mfunction("mi, ma")
def minmax(a=None)
 mi = min(a)
 if nargout > 1: ma = max(a)

In the above example it is not possible to simply append a
return statement return mi, ma. Because its value is being assigned
to a single object (mi), the minmax function is expecting to return
a single value. Python would therefore automatically assign a
sequence, or tuple, containing both return values to the single
variable at the output of the function call. This is illustrated in
the following:

>>> mi = minmax(rand(1,10));
ans = (0.0574, None)

152

http://code.activestate.com/recipes/384122/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

It would, in principle, be possible to add a statement return (mi,
ma)[:nargout] in all locations where function exit could occur. This
strategy would already rely on the introspection function to determine
the value of nargout. However, adding such statements is cumber-
some and destroys the structure of the original syntax. Introspection
allows us to preserve the structure by automatically modifying the
bytecode of translated functions, inserting the equivalent code wher-
ever needed. This and other previously mentioned modifi cations to
the bytecode are handled by the mfunction decorator.

THE MFUNCTION DECORATOR
Python offers the feature of decorators since version 2.4. Simply put,
decorators are function factories. They allow us to turn a regular
Python function into one that behaves like a MATLAB® function.
A Python decorator receives a function just before it is loaded into
the current workspace. The decorator can manipulate the function
in arbitrary ways. The mfunction decorator modifi es each function
translated by OMPC. We use the decorator to emulate the existence
of the variables nargin/nargout, to allow assignments to novel vari-
ables, and to implement implied returns (Figure 2).

This modifi cation of byte-code happens at run-time. It happens
only once when the interpreter loads a function, not every time the
function is called. The performance of the decorated function does
not differ from the performance of a function where modifi cations
are stated explicitly in the source code.

OMPC EXTENSIONS
Here we deal with the issue of how OMPC handles C/C++ and
FORTRAN (MEX) extensions for MATLAB®. Both MATLAB®
and Python allow extensions and both have an offi cial protocol
for writing them. However, the interface between platform and
extension differs considerably between the two respective lan-
guages. Extensions written for MATLAB®, therefore, do not work
in Python. We can solve this problem by implementing a C sup-
port library that allows compilation of extensions independently
of MATLAB. Compilation turns these routines into dynamic-link
libraries that can be called by any language, including Python. The
Supplementary Material has an example that shows how the mxCre-
ateDoubleMatrix function can be implemented for example, using
the Standard Template Library of C++.

In general it is very easy in Python to wrap external libraries
by using the open-source application GCCXML (http://www.
gccxml.org/). The Python community extensively uses this
application for automatically generating Python extensions for
libraries with complex structure and large numbers of exported
symbols. The advantage of GCCXML over tools like Cython or
Pyrex (http://cython.org/) and the multipurpose Swig (http://
www.swig.org/) is that it is based on a production-stable GCC
compiler. This means that any large project that relies on the lat-
est features of C++, including the use of templates, can be auto-
matically correctly parsed and analyzed to be further processed to

FIGURE 2 | Code injection by the mfunction decorator. Top-left panel:
original MATLAB® code; Bottom-left panel (A): translation with added code
necessary for execution in Python without mfunction; Right panel
(B): illustration of how mfunction inserts byte-code into automatically

translated functions at runtime. This is done only the fi rst time
each mfunction is loaded into the Python interpreter. Because these
additions are invisible to the user, the structure of the original code
remains intact.

153

http://www.gccxml.org/
http://cython.org/
http://www.swig.org/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

generate extensions (www.boost.org/doc/libs/release/libs/python/
doc/, http://pypi.python.org/pypi/ctypeslib/ and many others).

RESULTS
A website has been created for the project, http://ompc.juricap.
com/. The compiler is also available on-line at http://ompclib.
appspot.com/. This site will serve as a bug-tracking utility that
will allow users to submit fi les that are not correctly processed
by OMPC.

Because the formal specifi cation of the MATLAB® syntax is not
publicly available, it is diffi cult to properly test the OMPC compiler.
However, we have successfully translated m-fi les that are part of the
standard MATLAB® distribution. In addition, the compiler was
tested successfully using source code collected from a number of
users within the RIKEN Brain Science Institute and outside collabo-
rators. The styling of MATLAB® source code varied signifi cantly
from person to person.

The following example consists of original source code,
contained in online Supplementary Material to a neuroscience
publication (Izhikevich, 2003). The example shows the origi-
nal MATLAB® m-file and its fully automatic translation by
OMPC.

% Created by Eugene M. Izhikevich, February 25, 2003
% Excitatory neurons Inhibitory neurons
Ne=800; Ni=200;
re=rand(Ne,1); ri=rand(Ni,1);
a=[0.02*ones(Ne,1); 0.02+0.08*ri];
b=[0.2*ones(Ne,1); 0.25−0.05*ri];
c=[−65+15*re.ˆ2; −65*ones(Ni,1)];
d=[8−6*re.ˆ2; 2*ones(Ni,1)];
S=[0.5*rand(Ne+Ni,Ne),−rand(Ne+Ni,Ni)];

v=−65*ones(Ne+Ni,1); % Initial values of v
u=b.*v; % Initial values of u
firings=[]; % spike timings

for t=1:1000 % simulation of 1000 ms
 I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input
 fired=find(v>=30); % indices of spikes
 if ∼isempty(fired)
 firings=[firings; t+0*fired, fired];
 v(fired)=c(fired);
 u(fired)=u(fired)+d(fired);
 I=I+sum(S(:,fired),2);
 end;
 v=v+0.5*(0.04*v.ˆ2+5*v+140−u+I);
 v=v+0.5*(0.04*v.ˆ2+5*v+140−u+I);
 u=u+a.*(b.*v−u);
end;
plot(firings(:,1),firings(:,2),’.’);

The OMPC equivalent is:

Created by Eugene M. Izhikevich, February 25, 2003
Excitatory neurons Inhibitory neurons
Ne = 800
Ni = 200;

re = rand(Ne, 1)
ri = rand(Ni, 1);

a = mcat([0.02 * ones(Ne, 1),
 OMPCSEMI, 0.02 + 0.08 * ri])
b = mcat([0.2 * ones(Ne, 1),
 OMPCSEMI, 0.25 − 0.05 * ri])
c = mcat([−65 + 15 * re **elpow** 2,
 OMPCSEMI, −65 * ones(Ni, 1)])
d = mcat([8 − 6 * re **elpow** 2,
 OMPCSEMI, 2 * ones(Ni, 1)])
S = mcat([0.5 * rand(Ne + Ni, Ne), −rand(Ne + Ni, Ni)])

v = −65 * ones(Ne + Ni, 1) # Initial values of v
u = b *elmul* v # Initial values of u
firings = mcat([]) # spike timings

for t in mslice[1:1000]: # simulation of 1000 ms
 I = mcat([5 * randn(Ne, 1), OMPCSEMI,
 2 * randn(Ni, 1)]) # thalamic input
 fired = find(v >= 30) # indices of spikes
 if not isempty(fired):
 firings = mcat([firings, OMPCSEMI,
 t + 0 * fired, fired])
 v(fired).lvalue = c(fired)
 u(fired).lvalue = u(fired) + d(fired)
 I = I + sum(S(mslice[:], fired), 2)
 end
 v = v + 0.5 * (0.04 * v **elpow** 2 + 5 *
 v + 140 − u + I)
 v = v + 0.5 * (0.04 * v **elpow** 2 + 5 *
 v + 140 − u + I)
 u = u + a *elmul* (b *elmul* v − u)
end
plot(firings(mslice[:], 1), firings(mslice[:], 2),
 mstring('.'))

In this example we observe how well the translation preserves
the structure of the original MATLAB® program. The above
OMPC code is generated using rules that result in maximum
compatibility. For example the last line contains the Python
object mstring(‘.’) that emulates the MATLAB® string object. As
a consequence, the string is modifi able, as in the original. Since
this is not necessary in the context of this program, a simple
Python string could be used instead, as explained in Section
“The Compiler”. It is possible to further simplify the syntax by
syntactical shortcuts, so called index tricks (r_, c_, mgrid), that
are already part of the numpy library (Oliphant, 2006). The plot
statement of the last program could therefore be simplifi ed to,
for example:

plot(firings(m_[:], 1), firings(m_[:], 2), ‘.’)

The structural equivalence of both programs was made pos-
sible by using the introspection functionality of Python. Some
of the dynamical features, however, can equally well be resolved
by the OMPC compiler, provided that we are willing to compro-
mise on structural equivalence. This would enhance the clarity of
code for Python developers not familiar with implied variables of
MATLAB®. Only adopting and testing OMPC will allow the users
to make the correct decision. The fi nal form of code generated by
OMPC has still to be agreed upon. Future developments of the
compiler will enable such options through switches.

In the Supplementary Material to this paper, we provide OMPC
executables of the spiking neuron model described in (Izhikevich,

154

www.boost.org/doc/libs/release/libs/python/doc/
http://pypi.python.org/pypi/ctypeslib/
http://ompc.juricap.com/
http://ompclib.appspot.com/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

2003). At the moment of writing, two versions are available. One is
based on the ndarray numerical array of the numpy library. However,
optimized numerical packages such as numpy are not available yet
for the newest Python interpreters. The other version, therefore,
shows a pure Python implementation of an n-dimensional numeri-
cal array. This version is signifi cantly slower for operations on large
arrays but, because it runs on a clean Python installation, can be
run on other realizations of Python as well; we have successfully
tested this for Jython2.5a1, Python 2.6 and 3.0. The standard Python
modules array, random and math are at the core of this second
version; any Python interpreter suffi ciently developed to contain
these modules will execute the model. Maintaining a pure Python
version of OMPC could enable acceleration of OMPC modules
using PyPy (http://codespeak.net/pypy/, Rigo and Pedroni, 2006)
or Shedskin (An Optimizing Python-to-C++ compiler, http://shed-
skin.blogspot.com/).

DISCUSSION
A number of different implementations of Python are currently
available. We choose CPython because it is the primary Python
engine; the most mature and stable implementation. All numeri-
cal extensions were originally developed for CPython. CPython,
moreover, offers by default the ctypes module, which is of cru-
cial importance as a support library for OMPC. CPython allows
easy and effi cient access to extension modules written in C/C++,
FORTRAN and many other languages that allow us to create
dynamic-link libraries.

Amongst forthcoming Python implementations that may infl u-
ence the future development of OMPC, the most interesting one
is PyPy. PyPy is an implementation of Python in Python itself
and supports compilation of a restricted subset called RPython
(Restricted Python, http://codespeak.net/pypy/dist/pypy/doc/
coding-guide.html#rpython, Section 1.4) into the C language and
from there on into native binary executables. Although this pos-
sibility has not been tested, if PyPy will support specifi c CPython
features it should be possible to compile OMPC generated fi les to
native executables.

OMPC aims ultimately to offer full compatibility with the syntax
and the engine of MATLAB®. A number of its features, however,
have not yet been addressed in this article. The most sought after
ones relate to its GUI components. Implementing these is practica-
ble, based on the fact that the MATLAB® application GUI-designer
stores its information in “.fi g” fi les, which are actually .mat data
fi les. This means that they can be loaded into Python using OMPC,
enabled through the scipy.io module. These fi les hold enough infor-
mation to identify and reconstruct the GUI components within a
fi gure.

There is currently no plan to implement embedded Java,
because we consider it not to be a crucial part of MATLAB®.
While Java can be useful in MATLAB®, for example, for net-
working applications, the verbosity and complexity of Java are
a great obstacle to use for anybody without a professional soft-
ware engineering background. Moreover, all features that Java
offers as an enhancement of MATLAB® are, most likely, present
in Python as well. For networking purposes, therefore, Python is a
much more suitable extension than Java for a high level language
such as MATLAB®. Python includes support for networking by

default. It contains modules with ready-to-use implementations
of client-server applications. A good example is the OMPC on-line
compiler currently hosted as a Python service at http://ompclib.
appspot.com/.

In a broader scope, one of the great advantages of being able to
parse source code is that it allows analysis and possible optimiza-
tion of the code that will be executed. This is the approach taken
by platforms based on virtual machines like.NET, Java and LLVM.
Source code that can be parsed and translated into an intermediate
format (CIL, formerly known as MSIL, Java Bytecode, or LLVM IR)
can be run or translated to another low-level language including
machine code. PyPy uses this technique to translate a suffi ciently
static subset of Python into C (Rigo and Pedroni, 2006). OMPC
is an example of how to use Python byte-code as an intermediate
representation.

Choosing Python as a platform for technical computation offers
a number of additional benefi ts. As a popular general-purpose
language, Python offers up-to-date facilities for online sharing,
and enhancing the visibility of projects, in which computational
methods are naturally embedded. The online OMPC compiler
included in the Supplementary Material is one example of such
an application. Python is currently one of the most popular tools
in server-side Web 2.0 development.

The introduction mentions a number of attempts to provide
MATLAB® functionality in Python. Currently there is only one
actively developed project MlabWrap (http://mlabwrap.source-
forge.net/) that allows the use of MATLAB® functions along with
the numerical extensions of Python. This project embeds the
MATLAB® engine in a Python extension. This extension however
requires a licensed copy of MATLAB®. A similar approach could
be taken with the open-source library liboctave that is at the core
of the GNU Octave (http://www.gnu.org/software/octave/). The
design of OMPC allows any implementation of OMPClib to be used
for execution of the OMPC generated Python code. An OMPClib
could be built with liboctave’s Array class as its base numerical
object. The advantage of wrapping a library instead of embedding
an interpreter is the great simplifi cation of memory management.
Embedding a interpreter in an extension is very similar to running
a second process of which the data in memory are not directly
accessible to Python and another extensions.

The interest of the scientifi c community in the Python language
is growing (Langtangen, 2006, http://www.scipy.org/, http://www.
neuralensemble.org/), making it ever more likely that it will become
the main open-source language of scientifi c computation. One
of the important obstacles in this transition is the large amount
of legacy code written in MATLAB®. A fully automatic transla-
tion system could enable the reuse of large projects, the size of
which makes human translation infeasible. By presenting OMPC,
we demonstrated that Python could adopt MATLAB® code for
reuse; without human intervention this code can be translated into
Python. OMPC does this in a manner that, whenever possible,
preserves the structure of the original. The syntax and design of
MATLAB® language proved to be easy for beginners. In MATLAB®
every object is also a multi-dimensional array, even a number is a
1 × 1 matrix. Python users however face the challenge of under-
standing concepts such as different types (numbers and arrays) and
others common in programming, for example object reference. A

155

http://codespeak.net/pypy/
http://shedskin.blogspot.com/
http://codespeak.net/pypy/dist/pypy/doc/coding-guide.html#rpython
http://ompclib.appspot.com/
http://mlabwrap.sourceforge.net/
http://www.gnu.org/software/octave/
http://www.scipy.org/
http://www.neuralensemble.org/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 5 |

Jurica and van Leeuwen Open-source MATLAB®-to-Python compiler

number of MATLAB® inspired features could help removing many
obstacles for a user introduced to Python’s numerical facilities.
We discussed such features and their implementation in OMPC.
By providing automatic translation of MATLAB® code to Python
and the enhanced ease of use, OMPC will promote Python as the
open-source alternative for scientifi c computation. To the Python
community, OMPC offers this bridge as an incentive towards the
further enhancement of numerical computation capabilities.

ACKNOWLEDGMENTS AND REMARKS
MATLAB® is a registered trademark of The MathWorks, Inc.
“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation.

SUPPLEMENTARY MATERIAL
The Supplemental Data for this article can be found online at http://
ompc.juricap.com/.

REFERENCES
Ascher, D., Dubois, P. F., Hinsen, K.,

Hugunin, J., and Oliphant, T.
(2001). Numerical Python, Technical
R e p o r t U C R L - M A - 1 2 8 5 6 9 ,
Lawrence Livermore National
Laboratory. Available at: http://numpy.
scipy.org.

Fangohr, H. (2004). A Comparison
of C, MATLAB, and Python as
Teaching Languages in Engineering,
Lecture Notes in Computer Science,
Vol. 3039/2004. Berlin/Heidelberg,
Springer, pp. 1210–1217.

Izhikevich, E. M. (2003). Simple model of
spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572.

Langtangen, H. P. (2006). Python
Scripting for Computational Science.
Basel, Birkhäuser.

Moler, C., The Creator of MATLAB
(2004). The Origins of MATLAB.
Available at: http://www.mathworks.
com/company/newsletters/news_
notes/clevescorner/dec04.html.

Moler, C. (2006). The Growth of MATLAB
and The MathWorks over Two Decades.
Available at: http://www.mathworks.
com/company/newsletters/news_
notes/clevescorner/jan06.pdf.

Oliphant, T. E. (2006). Guide to NumPy.
Trelgol Publishing, Spanish Fork, UT.
Available at: http://numpy.scipy.org.

Oliphant, T. E., (2007). Python for scien-
tifi c computing. Comput. Sci. Eng. 9,
10–20.

Oliphant, T. E., and Banks, C. (2006).
Index of Python Enhancement
Proposals (PEPs), PEP 3118:
Revising the Buffer Protocol.

Available at: http://www.python.
org/dev/peps/pep-3118/.

Rigo, A., and Pedroni, S. (2006). PyPy’s
Approach to Virtual Machine
Construction, Dynamic Languages
Symposium at OOPSLA. Available at:
http://codespeak.net/svn/pypy/extra-
doc/talk/dls2006/pypy-vm-construc-
tion.pdf.

Zhu, H., and Lielens, G. (2000).
Index of Python Enhancement
Proposals (PEPs), PEP 225:
Elementwise/Objectwise Operators.
Available at: http://www.python.
org/dev/peps/pep-0225/.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that

could be construed as a potential confl ict
of interest.

Received: 14 September 2008; paper pend-
ing published: 13 October 2008; accepted:
30 January 2009; published online: 10
February 2009.
Citation: Jurica P and van Leeuwen
C (2009) OMPC: an open-source
MATLAB®-to-Py thon compi l e r.
Front. Neuroinform. (2009) 3:5. doi:
10.3389/neuro.11.005.2009
Copyright © 2009 Jurica and van Leeuwen.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

156

http://ompc.juricap.com/
http://numpy.scipy.org
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec04.html
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf
http://numpy.scipy.org
http://www.python.org/dev/peps/pep-3118/
http://codespeak.net/svn/pypy/extradoc/talk/dls2006/pypy-vm-construction.pdf
http://www.python.org/dev/peps/pep-0225/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 04 February 2009
doi: 10.3389/neuro.11.003.2009

PyMVPA: a unifying approach to the analysis of
neuroscientifi c data

Michael Hanke1,2†, Yaroslav O. Halchenko3,4,5†, Per B. Sederberg6,7, Emanuele Olivetti8,9, Ingo Fründ1,10,11,

Jochem W. Rieger 2,12,13, Christoph S. Herrmann1,11,13, James V. Haxby14,15, Stephen José Hanson3,5

and Stefan Pollmann1,2,13*

1 Department of Psychology, University of Magdeburg, Magdeburg, Germany
2 Center for Advanced Imaging, Magdeburg, Germany
3 Psychology Department, Rutgers Newark, New Jersey, USA
4 Computer Science Department, New Jersey Institute of Technology, Newark, New Jersey, USA
5 Rutgers University Mind Brain Analysis, Rutgers Newark, New Jersey, USA
6 Department of Psychology, Princeton University, Princeton, New Jersey, USA
7 Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
8 Center for Information Technology (Irst), Fondazione Bruno Kessler, Trento, Italy
9 Center for Mind/Brain Sciences (CIMeC/NILab), University of Trento, Italy
10 Leibniz Institute for Neurobiology, Magdeburg, Germany
11 Bernstein Group for Computational Neuroscience, Magdeburg, Germany
12 Department of Neurology, University of Magdeburg, Magdeburg, Germany
13 Center for Behavioral Brain Sciences, Magdeburg, Germany
14 Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
15 Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA

The Python programming language is steadily increasing in popularity as the language of
choice for scientifi c computing. The ability of this scripting environment to access a huge code
base in various languages, combined with its syntactical simplicity, make it the ideal tool for
implementing and sharing ideas among scientists from numerous fi elds and with heterogeneous
methodological backgrounds. The recent rise of reciprocal interest between the machine learning
(ML) and neuroscience communities is an example of the desire for an inter-disciplinary transfer
of computational methods that can benefi t from a Python-based framework. For many years, a
large fraction of both research communities have addressed, almost independently, very high-
dimensional problems with almost completely non-overlapping methods. However, a number
of recently published studies that applied ML methods to neuroscience research questions
attracted a lot of attention from researchers from both fi elds, as well as the general public, and
showed that this approach can provide novel and fruitful insights into the functioning of the brain.
In this article we show how PyMVPA, a specialized Python framework for machine learning
based data analysis, can help to facilitate this inter-disciplinary technology transfer by providing a
single interface to a wide array of machine learning libraries and neural data-processing methods.
We demonstrate the general applicability and power of PyMVPA via analyses of a number of
neural data modalities, including fMRI, EEG, MEG, and extracellular recordings.

Keywords: functional magnetic resonance imaging, electroencephalography, magnetoencephalography, extracellular

recordings, machine learning, Python

applicability to humans, and the corresponding neural correlates
that result from the measurement process.

Neuroscientists often focus on only one or a smaller subset of
these neural modalities partly due to the kinds of questions investi-
gated and partly due to the cost of learning to analyze data from
these different modalities. The diverse measurement approaches
to brain function can heavily infl uence the selection of a research
question and, in turn, the development of specifi c software pack-
ages to answer them. Consequently, the peculiarities of each data
acquisition modality and the lack of strong interaction between
the neuroscience communities employing them have produced
distinct software packages specialized for the conventional analy-
ses within a particular modality. Some analysis techniques have

INTRODUCTION
Understanding how the brain is able to give rise to complex
 behavior has stimulated a plethora of brain measures such as non-
invasive EEG1, MEG2, MRI3, PET4, optical imaging, and invasive
extracellular and intracellular recordings, often in conjunction
with new methods, models, and techniques. Each data acquisi-
tion method has offered a unique set of properties in terms of
spatio-temporal resolution, signal to noise, data acquisition cost,

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Martin A. Spacek, The University of
British Columbia, Canada
Samuel Garcia, Université Claude
Bernard Lyon I, France

*Correspondence:

Stefan Pollmann, Institut für
Psychologie II, Otto-von-Guericke-
Universität Magdeburg, PF 4120,
D-39016 Magdeburg, Germany.
e-mail: stefan.pollmann@ovgu.de
†Hanke and Halchenko contributed
equally to this article.

1Electroencephalography.
2Magnetoencephalography.
3Magnetic resonance imaging.
4Positron emission tomography.

157

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

to have in-depth knowledge about both data modality peculiarities
and software implementation details.

At the same time, Python has become the open-source scripting
language of choice in the research community to prototype and
carry out scientifi c data analyses or to develop complete software
solutions quickly. It has attracted attention due to its openness,
fl exibility, and the availability of a constantly evolving set of tools
for the analysis of many types of data. Python’s automatic mem-
ory management, in conjunction with its powerful libraries for
effi cient computation (NumPy8 and SciPy9) abstracts users from
low-level “software engineering” tasks and allows them to fully
concentrate their attention on the development of computational
methods.

As an interpreted, high-level scripting language with a simple
and consistent syntax, a plethora of available modules, easy ways
to interface to low-level libraries written in other languages10 and
high-level computing environments11, Python is the language of
choice for solving many scientifi c computing problems. Table 1
lists a number of Python modules which might be of interest in the
neuroscientifi c context, and is meant to complement the material
presented in the other articles in this special issue.

Despite the fact that it is possible to perform complex data analy-
ses solely within Python, it once again often requires in-depth knowl-
edge of numerous Python modules, as well as the development of a
large amount of code to lay the foundation for one’s work. Therefore,
it would be of great value to have a framework that helps to abstract
from both data modality specifi cs and the implementation details of
a particular analysis method. Ideally, such a framework should help
to expose any form of data in an optimal format applicable to a broad
range of machine learning methods, and on the other hand provide
a versatile, yet simple, interface to plug in additional algorithms
operating on the data. In the neuroscience context it would also be
useful to bridge between well-established neuroimaging tools and
ML software packages by providing cross library integration and
transparent data handling for typical containers of neuroimaging
data (e.g., NIfTI in fMRI research).

As an attempt to provide such a framework we have implemented
PyMVPA12 (MultiVariate Pattern Analysis in Python) – a free and
open-source Python framework to facilitate uniform analysis of
the neural information obtained from different neural modalities.
PyMVPA heavily utilizes Python’s ability to access libraries written
in a large variety of programming languages and computing envi-
ronments to interface with the wealth of existing machine learning
packages developed outside the neuroscience community. Although
the framework is eminently suited for neuroscientifi c datasets, it is
by no means limited to this fi eld. However, the neuroscience tuning
is a unique aspect of PyMVPA in comparison to other Python-based
ML or computing toolboxes, such as MDP13 or scipy-cluster14 which
are developed as domain-neutral packages.

become, due to normative concerns, de facto standards despite
their limitations and inappropriate assumptions for the given
data type. For instance, the general linear model (GLM) is the
prevalent approach used in fMRI data analysis, despite being a
restrictive mass-univariate method (Kriegeskorte and Bandettini,
2007; O’Toole et al., 2007).

While specialized software packages are useful when dealing
with the specifi c properties of a single data modality, they limit the
fl exibility to transfer newly developed analysis techniques to other
fi elds of neuroscience. This issue is compounded by the closed-
source, or restrictive licensing of many software packages, which
further limits software fl exibility and extensibility.

However, outside the neuroscience community, machine learn-
ing (ML) research has spawned a set of analysis techniques that are
typically generic, fl exible (e.g., classifi cation, regression, clustering),
powerful (e.g., multivariate, linear and non-linear) and often appli-
cable to various data modalities with minor modality-specifi c pre-
processing (see Pereira et al., in press, for a tutorial on application
of ML methods to the analysis of fMRI data). Moreover, large parts
of this community favor the open-source software development
model (Sonnenburg et al., 2007, see also MLOSS5 project website),
which leads to an increase in scientifi c progress due to the supe-
rior accessibility of information and reproducibility of scientifi c
results. These advantages have recently attracted considerable inter-
est throughout the neuroscience community (see Haynes and Rees,
2006; Norman et al., 2006, for reviews).

Nevertheless, various factors have delayed the adoption of these
newer methods for the analysis of neural information. First and
foremost, existing conventional techniques are well-tested and often
perfectly suitable for the standard analysis of data from the modal-
ity for which they were designed. Most importantly, however, a
set of sophisticated software packages has evolved over time that
allow researchers to apply these conventional and modality- specifi c
methods without requiring in-depth knowledge about low-level
programming languages or underlying numerical methods. In fact,
most of these packages come with convenient graphical and com-
mand line interfaces that abstract the peculiarities of the methods
and allow researchers to focus on designing experiments and to
address actual research questions without having to develop spe-
cialized analyses for each study.

However, only a few software packages exist that are specifi -
cally tailored towards straightforward and interactive exploration
of neuroscientifi c data using a broad range of ML techniques, such
as the Matlab®6 MVPA toolbox for fMRI data7 (Detre et al., 2006).
At present only independent component analysis (ICA), an unsu-
pervised method, seems to be supported by numerous software
packages (see Beckmann and Smith, 2005, for fMRI, and Makeig
et al., 2004, for EEG data analysis). Therefore, the application of
machine learning analyses, referred to in the literature as decoding
(Haynes et al., 2007; Kamitani and Tong, 2005), information-based
analysis (Kriegeskorte et al., 2006) or multi-voxel pattern analysis
(Norman et al., 2006), usually involves the development of a sig-
nifi cant amount of custom code. Hence, users are typically required

5http://www.mloss.org.
6Closed source commercial product of MathWorks®.
7It is possible to use the low-level functions of this toolbox for other modalities.

8http://numpy.scipy.org.
9http://www.scipy.org.
10e.g., ctypes, SWIG, SIP, Cython.
11e.g., mlabwrap and RPy.
12http://www.pymvpa.org.
13http://mdp-toolkit.sourceforge.net.
14http://code.google.com/p/scipy-cluster/.

158

http://numpy.scipy.org
http://www.scipy.org
http://www.mloss.org
http://www.pymvpa.org
http://mdp-toolkit.sourceforge.net
http://code.google.com/p/scipy-cluster/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

The following section provides a short summary of the princi-
pal design concepts, and the basic building blocks of the PyMVPA
framework. The main focus of this article is, however, a demon-
stration of PyMVPA’s fl exibility by applying various ML tech-
niques to typical EEG, MEG, fMRI and extracellular recordings
datasets.

PyMVPA
One of the main goals of PyMVPA is to reduce the gap between the
neuroscience and ML communities. To reach this goal, we designed
PyMVPA to provide a convenient, easy to use, community devel-
oped (free and open source15), and extensible framework to facili-
tate the use of ML techniques on neural information. PyMVPA
combines Python data processing, visualization, and basic I/O
facilities together with I/O code and examples tailored for neu-
roscience. For an easy start into PyMVPA a fMRI example dataset
(a single subject from the study by Haxby et al., 2001) is available
for download from the PyMVPA website.

As Table 1 highlighted, PyMVPA is not the only ML framework
available for scripting and interactive data exploration in Python.
In contrast to some of the primarily GUI-based ML toolboxes
(e.g., Orange, Elephant), PyMVPA is designed to provide not just
a toolbox, but a framework for concise, yet intuitive, scripting of
possibly complex analysis pipelines. To achieve this goal, PyMVPA
provides a number of building blocks that can be combined in a
very fl exible way. Figure 1 shows a schematic representation of
the framework design, its building blocks and how they can be
combined into complete analysis pipelines.

This article does not aim to provide a detailed description of the
PyMVPA framework, and therefore only a rough overview about
the most important technical aspects is presented here. However,
a comprehensive introduction is available in Hanke et al. (2009)
and the PyMVPA manual (Hanke et al., 2008).

In PyMVPA, each building block (e.g., all classifi ers) follows a
simple, standardized, interface. This allows one to use various
types of classifi ers interchangeably, without additional changes
in the source code, and makes it easy to test the performance of
newly developed algorithms on one of the many didactical neuro-
science-related examples and datasets that are included in PyMVPA.

Table 1 | Various free and open-source projects, either written in Python or providing Python bindings, which are germane to acquiring or

processing neural information datasets using machine learning (ML) methods. The last column indicates whether PyMVPA internally uses a particular

project or provides public interfaces to it.

Name Description URL PyMVPA

MACHINE LEARNING

Elephant Multi-purpose library for ML http://elefant.developer.nicta.com.au

Shogun Comprehensive ML toolbox http://www.shogun-toolbox.org

Orange General-purpose data mining http://www.ailab.si/orange

PyML ML in Python http://pyml.sourceforge.net

MDP Modular data processing http://mdp-toolkit.sourceforge.net

hcluster Agglomerative clustering http://code.google.com/p/scipy-cluster

– Other Python modules http://www.mloss.org/software/language/python

NEUROSCIENCE RELATED

NiPy Neuroimaging data analysis http://neuroimaging.scipy.org

PyMGH Access FreeSurfers.mghfi les http://code.google.com/p/pyfsio

PyNIfTI Access NIfTI/Analyzefi les http://niftilib.sourceforge.net/pynifti

OpenMEEG EEG/MEG inverse problems http://www-sop.inria.fr/odyssee/software/OpenMEEG

STIMULI AND EXPERIMENT DESIGN

PyEPL Create complete experiments http://pyepl.sourceforge.net

VisionEgg Visual stimuli generation http://www.visionegg.org

PsychoPy Create psychophysical stimuli http://www.psychopy.org

PIL Python Imaging Library http://www.pythonware.com/products/pil

INTERFACES TO OTHER COMPUTING ENVIRONMENTS

RPy Interface to R http://rpy.sourceforge.net

mlabwrap Interface to Matlab http://mlabwrap.sourceforge.net

GENERIC

Matplotlib 2D Plotting http://matplotlib.sourceforge.net

Mayavi2 Interactive 3D visualization http://code.enthought.com/projects/mayavi

PyExcelerator Access MS Excel fi les http://sourceforge.net/projects/pyexcelerator

pywavelets Discrete wavelet transforms http://www.pybytes.com/pywavelets

15PyMVPA is distributed under an MIT license, which complies with both Free
 Software and Open Source defi nitions.

159

http://elefant.developer.nicta.com.au
http://www.shogun-toolbox.org
http://www.ailab.si/orange
http://pyml.sourceforge.net
http://mdp-toolkit.sourceforge.net
http://code.google.com/p/scipy-cluster
http://www.mloss.org/software/language/python
http://neuroimaging.scipy.org
http://code.google.com/p/pyfsio
http://niftilib.sourceforge.net/pynifti
http://www-sop.inria.fr/odyssee/software/OpenMEEG
http://pyepl.sourceforge.net
http://www.visionegg.org
http://www.psychopy.org
http://www.pythonware.com/products/pil
http://rpy.sourceforge.net
http://mlabwrap.sourceforge.net
http://matplotlib.sourceforge.net
http://code.enthought.com/projects/mayavi
http://sourceforge.net/projects/pyexcelerator
http://www.pybytes.com/pywavelets

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

In addition, any implementation of an analysis method/algorithm
benefi ts from the basic house-keeping functionality done by the base
classes, reducing the necessary amount of code needed to contrib-
ute a new fully-functional algorithm. PyMVPA takes care of hid-
ing implementation-specifi c details, such as a classifi er algorithm
provided by an external C++ library. At the same time it tries to
expose all available information (e.g., classifi er training perform-
ance) through a consistent interface (for reference, this interface
is called states in PyMVPA).

PyMVPA makes use of a number of external software pack-
ages, including other Python modules and low-level libraries
(e.g., LIBSVM16) and computing environments (e.g., R17). Using

externally developed software instead of reimplementing algo-
rithms has the advantage of a larger developer and user base and
makes it more likely to fi nd and fi x bugs in a software package to
ensure a high level of quality. However, using external software
also carries the risk of breaking functionality when any of the
external dependencies break. To address this problem PyMVPA
utilizes an automatic testing framework performing various types
of tests ranging from unittests (currently covering 84% of all lines
of code) to sample code snippet tests in the manual and the source
code documentation itself to more evolved “real-life” examples.
This facility allows one to test the framework within a variety of
specifi c settings, such as the unique combination of program and
library versions found on a particular user machine.

At the same time, the testing framework also signifi cantly eases
the inclusion of code by a novel contributor by catching errors that

FIGURE 1 | PyMVPA workfl ow and design. PyMVPA is a modular
framework. It consists of several components (gray boxes) such as ML
algorithms or dataset storage facilities. Each component contains one or more
modules (white boxes) providing a certain functionality, e.g., classifi ers, but
also feature-wise measures (e.g., I-RELIEF; Sun, 2007), and feature selection
methods (recursive feature elimination, RFE; Guyon and Elisseeff, 2003;
Guyon et al., 2002). Typically, all implementations within a module are
accessible through a uniform interface and can therefore be used
interchangeably, i.e., any algorithm using a classifi er can be used with any
available classifi er implementation, such as support vector machine (SVM;
Vapnik, 1995), or sparse multinomial logistic regression (SMLR; Krishnapuram
et al., 2005). Some ML modules provide generic meta algorithms that can be
combined with the basic implementations of ML algorithms. For example, a
Multi-Class meta classifi er provides support for multi-class problems, even if
an underlying classifi er is only capable to deal with binary problems.
Additionally, most of the components in PyMVPA make use of some

functionality provided by external software packages (black boxes). In the case
of SVM, classifi ers are interfaced to the implementations in Shogun or
LIBSVM. PyMVPA only provides a convenience wrapper to expose them
through a uniform interface. By providing simple, yet fl exible interfaces,
PyMVPA is specifi cally designed to connect to and use externally developed
software. Any analysis built from those basic elements can be cross-validated
by running them on multiple dataset splits that can be generated with a variety
of data resampling procedures (e.g., bootstrapping, Efron and Tibshirani,
1993). Detailed information about analysis results can be queried from any
building block and can be visualized with various plotting functions that are part
of PyMVPA, or can be mapped back into the original data space and format to
be further processed by specialized tools (i.e., to create an overlay volume
analogous to a statistical parametric mapping). The solid arrows represent a
typical connection pattern between the modules. Dashed arrows refer to
additional compatible interfaces which, although potentially useful, are not
necessarily used in a standard processing chain.

16http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
17http://www.r-project.org.

160

http://www.r-project.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

would potentially break the project’s functionality. Being open-
source does not always mean easy to contribute due to various
factors such as a complicated application programming interface
(API) coupled with undocumented source code and unpredict-
able outcomes from any code modifi cations (bug fi xes, optimiza-
tions, improvements). PyMVPA welcomes contributions, and thus,
addresses all the previously mentioned points:

Accessibility of source code and documentation: All the source
code (including website and examples) together with the full devel-
opment history is publicly available via a distributed version control
system18 which makes it very easy to track the development of the
project, as well as to develop independently and to submit back
into the project.

Inplace code documentation: Large parts of the source code are
well documented using reStructuredText19, a lightweight markup
language that is highly readable in source format as well as being
suitable for automatic conversion into HTML or PDF reference
documentation. In fact, Ohloh.net20 source code analysis judges
PyMVPA as having “extremely well-commented source code.”

Developer guidelines: A brief summary defi nes a set of coding
conventions to facilitate uniform code and documentation look and
feel. Automatic checking of compliance to a subset of the coding
standards is provided through a custom PyLint21 confi guration,
allowing early stage minor bug catching.

Moreover, PyMVPA does not raise barriers by being limited to
specifi c platforms. It could fully or partially be used on any platform
supported by Python (depending on the availability of external
dependencies). However, to improve the accessibility, we provide
binary installers for Windows, and MacOS X, as well as binary
packages for Debian GNU/Linux (included in the offi cial reposi-
tory), Ubuntu, and a large number of RPM-based GNU/Linux
distributions, such as OpenSUSE, RedHat, CentOS, Mandriva,
and Fedora. Additionally, the available documentation provides
detailed instructions on how to build the packages from source
on many platforms.

A fi nal important feature of PyMVPA is that it allows, by design,
researchers to compress complex analyses into a small amount of
code. This makes it possible to complement publications with the
source code actually used to perform the analysis as Supplementary
Material. Making this critical piece of information publicly available
allows for in-depth reviews of the applied methods on a level well
beyond what is possible with verbal descriptions. To demonstrate
this feature, this paper is accompanied by the full source code to
perform all analyses shown in the following sections.

ILLUSTRATIVE EXAMPLES: PyMVPA ON
DIFFERENT MODALITIES
In this section we provide example analyses of four datasets, each
from a different modality (EEG, MEG, fMRI, and extracellular
recordings). All examples follow the same basic analysis pipeline:
initial modality-specifi c preprocessing, application of ML meth-
ods, and visualization of the results. For the modality-independent

machine learning stage, all four examples employ the same analysis
with exactly the same source code. Specifi cally, we fi rst perform
cross-validation with one or more classifi ers on each dataset then
compute feature-wise sensitivity measures. These measures can
then be examined to reveal their implications in terms of the under-
lying research question.

These examples do not aim to provide an overview of the full
functionality available within PyMVPA, but rather to show that ML
methods can be easily applied to various types of data to provide
meaningful and even thought-provoking results.

EEG
The dataset used for the EEG example consists of a single par-
ticipant from a previously published study on object recognition
(Fründ et al., 2008). In the experiment, participants indicated, for a
sequence of images, whether they considered each particular image
a meaningful object or just object-like with a meaningless confi gu-
ration. This task was performed for two sets of stimuli with different
statistical properties and under two different speed constraints.
EEG was recorded from 31 electrodes at a sampling rate of 500 Hz
using standard recording techniques. Details of the recording pro-
cedure can be found in Fründ et al. (2008). A detailed description
of the stimuli can be found in Busch et al. (2006, colored images)
and in Herrmann et al. (2004, line-art pictures).

Fründ et al. (2008) performed a wavelet-based time-frequency
analyses of channels from a posterior region of interest (ROI)
(i.e., no multivariate methods were employed). Here, we apply
multivariate methods to differentiate between two conditions: trials
with colored stimuli (broad spectrum of spatial frequencies and a
high level of detail) and trials with black and white line-art stimuli
(Figure 2A), collapsing the data across all other conditions. This
discrimination is orthogonal to the participants task of indicating
object vs. non-object stimuli.

The data for this analysis were 700 ms EEG segments start-
ing 200 ms prior to the stimulus onset of each trial, to which we
applied the following preprocessing procedure. We only included
trials that passed the semi-automatic artifact rejection procedure
performed in the original study, yielding 852 trials (422 color and
430 line-art). Each trial timeseries was downsampled to 200 Hz,
leaving 140 sample points per trial and electrode. We then defi ned
each trial, including the EEG signal of all sample points from all
channels, as a sample to be classifi ed (4340 features total). Finally,
all features for each sample were normalized to zero mean and unit
variance (z-scored).

As the main analysis we applied a standard sixfold cross-
 validation22 procedure with linear support vector machine (linC-
SVM; Vapnik, 1995), sparse multinomial logistic regression (SMLR;
Krishnapuram et al., 2005) and Gaussian process regression with
linear kernel (linGPR; Rasmussen and Williams, 2006) classifi ers.
Additionally, we computed the multivariate I-RELIEF (Sun, 2007)
feature sensitivity measures, and, for comparison, a univariate anal-
ysis of variance (ANOVA) F-score on the same cross- validation
dataset splits.

All three classifi ers performed with high accuracy on the inde-
pendent test datasets, achieving 86.2% (linCSVM), 91.8% (SMLR),

18http://en.wikipedia.org/wiki/Version_control_system.
19http://en.wikipedia.org/wiki/ReStructuredText.
20http://www.ohloh.net/projects/pymvpa/factoids.
21http://www.logilab.org/projects/pylint. 22http://en.wikipedia.org/wiki/Cross-validation#K-fold_cross-validation.

161

http://en.wikipedia.org/wiki/Version_control_system
http://en.wikipedia.org/wiki/ReStructuredText
http://www.ohloh.net/projects/pymvpa/factoids
http://www.logilab.org/projects/pylint
http://en.wikipedia.org/wiki/Cross-validation#K-fold_cross-validation

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

and 89.6% (linGPR) correct single trial predictions, respectively.
However, more interesting than the plain accuracy are the features
each classifi er relied upon to perform its predictions. PyMVPA
makes it very easy to extract feature sensitivity information from
all its classifi ers using a uniform interface. Figure 2B shows the
computed sensitivities from all classifi ers and measures. There is a
striking similarity between the shape of the classifi er sensitivities
plotted over time and the corresponding event-related potential
(ERP) difference wave between the two experimental conditions
(Figure 2A; example shown for electrode Pz, Fründ et al., 2008).
The head topography plot of the sensitivities reveals a high variabil-
ity with respect to the specifi city among the multivariate measures.
SVM, GPR and SMLR weights congruently identify three posterior
electrodes as being most informative (SMLR weights provide the
highest contrast of all measures). The I-RELIEF topography is much

less specifi c and more similar to the ANOVA topography in its
global spatial structure than to the other multivariate measures. It
should be noted, however, that these topographies aggregate infor-
mation over all timepoints and, therefore, do not provide informa-
tion about specifi c temporal EEG components.

One particularly interesting result is the difference between
the multivariate sensitivities and the univariate ANOVA F-scores
from 300 to 400 ms following stimulus onset. Only the multivari-
ate methods (especially SMLR, linCSVM and linGPR) detected a
relevant contribution to the classifi cation task of the signal in this
time window. This late signal may be related to the intracranial
EEG gamma-band responses that Lachaux et al. (2005) observed
at around the same time range when participants viewed complex
stimuli. Given that the present data also seem to show a similar
evoked gamma-band response (Fründ et al., 2008), it is possible

FIGURE 2 | Sensitivities for the classifi cation of color and line-art

conditions. Panel (A) shows ERPs of each condition for electrode Pz. The light
shaded area shows the standard deviation, the darker shade the 95%
confi dence interval around the mean ERP of each condition. The black curve is
the difference wave of both ERPs. The stimulus example images are from Fründ
et al. (2008). Panel (B) shows feature sensitivity measures for the different
methods. Sensitivities were normalized by scaling the vector norm of each
sensitivity vector (covering all timepoints from all electrodes) to unit length. This
allows for comparison of the relative weight each classifi er puts on each feature.

The head topography plots in the lower panel show the channel-wise sum over
time of the absolute scaled sensitivities. The upper panel shows the same
scaled sensitivities plotted over time for the Pz electrode (indicated as the dark
dot on the head topographies). This electrode was chosen as Fründ et al. (2008)
made it the subject of most visualizations. The shape of the sensitivity curves
nicely resemble the ERP difference wave. Interestingly, for a time window
around 350 ms after stimulus onset (indicated by the gray bar), all multivariate
sensitivity measures assign a considerable amount of weight on the respective
timepoints, whereas the univariate ANOVA is completely fl at at zero.

162

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

that the multivariate methods are sensitive to the gamma-band
activity in the data. Still, further work would be required to prove
this correlation.

MEG
The example MEG dataset was collected with the aim to test whether
it is possible to predict the recognition of briefl y presented natural
scenes from single trial MEG-recordings of brain activity (Rieger
et al., 2008) and to use ML methods to investigate the properties
of the brain activity that is predictive of later recognition. On each
trial participants saw a briefl y presented photograph (37 ms) of
a natural scene that was immediately followed by a pattern mask
(1000–1400 ms). The short masked presentation effectively limits the
processing interval of the scene in the brain (Rieger et al., 2005) and,
therefore, participants will later recognize only some of the scenes.
After the mask was turned off, participants indicated via button
presses whether they would subsequently recognize the photograph,
or if they would fail. Immediately after this judgement, four natural
scene photographs were presented and participants had to indicate
which of the four scenes had been previously presented (i.e., a four-
alternative forced-choice delayed match to sample task).

The MEG was recorded with a 151 channel CTF Omega MEG
system from the whole head (sampling rate 625 Hz and a 120 Hz
analogue low pass fi lter) while participants performed this task.
The 600 ms interval of the MEG time series data that was used for
the analysis started at the onset of the briefl y presented scene and
ended before the mask was turned off. As in the original study, we
analyzed only those trials in which participants both judged they
would be correct and also correctly recognized the scene (RECOG)
and the trials in which participants both predicted they would fail
and gave an incorrect response (NRECOG). For details about the
rationale of this selection, the stimulus presentation information,
and the recording procedure see Rieger et al. (2008). In this example
analysis we have used data from a single participant (labeled P1 in
the original publication).

The MEG timeseries were fi rst downsampled to 80 Hz and then
all trial segments were channel-wise normalized by subtracting their
mean baseline signal (determined from a 200 ms window prior to
scene onset). Only timepoints within the fi rst 600 ms after stimulus
onset were considered for further analysis. The resulting dataset con-
sisted of 151 channels with 48 timepoints each (7248 features), and
a total of 294 samples (233 RECOG trials and 61 NRECOG trials).

The original study contained analyses based upon SVM classi-
fi ers, which revealed, by means of the spatio-temporal distribution
of the sensitivities, that the theta band alone provides the most dis-
criminative signal. The authors also addressed the topic of how to
interpret heavily unbalanced datasets23. Given this comprehensive
analysis, we aimed here to replicate their basic analysis strategy with
PyMVPA and were able to achieve almost identical results.

As with the EEG data, we applied a standard cross-validation
procedure, this time eightfold, using linear SVM and SMLR classi-
fi ers. Additionally, we again computed univariate ANOVA F-scores

on the same cross-validation dataset splits. The SVM classifi er was
confi gured to use different per-class C-values24, scaled with respect
to the number of samples in each class to address the unbalanced
number of samples. Similar to Rieger et al. (2008), we also ran
a second cross-validation on balanced datasets (by performing
multiple selections of a random subset of samples from the larger
RECOG category).

Both, classifi ers performed almost identically on the full, unbal-
anced dataset, achieving 84.69% (SMLR) and 82.31% (linCSVM)
correct single trial predictions (83.0% in the original study).
Figure 3 shows sample timeseries of the classifi er sensitivities and
the ANOVA F-score of two posterior channels. Due to the sig-
nifi cant difference in the number of samples of each category, it is
important to additionally report mean true positive rate (TPR)25,
that amounted to 72% (SMLR), and 76% (linCSVM) respectively.
The second SVM classifi er trained on the balanced dataset achieved
a comparable accuracy of 76.07% correct predictions (mean across
100 subsampled datasets), which is a slightly larger drop in accuracy
when compared to the 80.8% achieved in the original study (see
Table 3 in Rieger et al., 2008).

Importantly, these results show that PyMVPA produces repro-
ducible results that depend on the ML methods employed, but not
on a particular implementation. However, the integrated frame-
work of PyMVPA allowed us to achieve these results with much
less effort than what was necessary in the original study.

fMRI
A single participant (participant 1) from a study published by
Haxby et al. (2001), which has been repeatedly reanalyzed since the
original publication (Hanson and Halchenko, 2008; Hanson et al.,
2004; O’Toole et al., 2007), served as the example fMRI dataset. The
dataset itself consists of 12 runs. In each run, the participant pas-
sively viewed greyscale images of eight object categories, grouped
in 24 s blocks separated by rest periods. Each image was shown
for 500 ms and was followed by a 1500 ms inter-stimulus interval.
Full-brain fMRI data were recorded with a volume repetition time
of 2500 ms, thus, a stimulus block was covered by roughly nine
volumes. For a complete description of the experimental design
and fMRI acquisition parameters see Haxby et al. (2001).

First, the raw fMRI data were motion corrected using FLIRT26
from FSL27 (Jenkinson et al., 2002). All subsequent data processing
was done with PyMVPA. After motion correction, linear detrending
was performed for each run individually. No additional spatial or
temporal fi ltering was applied.

For the sake of simplicity, we reduced the dataset to a four-class
problem (faces, houses, cats, and shoes). All volumes recorded during
any of these blocks were extracted and voxel-wise z-scored. This
normalization was performed individually for each run to prevent
any kind of information transfer across runs.

23Unbalanced datasets have a dominant category which has considerably more
 samples than any other category. That potentially leads to the problem when a clas-
sifi er prefers to assign the label of that category to all samples to minimize total
prediction error.

24Parameter C in soft-margin SVM controls a trade-off between width of the SVM
margin and number of support vectors (see Veropoulos et al., 1999, for an evaluation
of this approach).
25Mean TPR is equivalent to accuracy in balanced sets, and is 50% at chance per-
formance even with unbalanced set sizes (see Rieger et al., 2008, for a discussion
of this point).
26FMRIB’s Linear Image Registration Tool.
27http://www.fmrib.ox.ac.uk/fsl.

163

http://www.fmrib.ox.ac.uk/fsl

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

After preprocessing, we applied the same sensitivity analysis
performed for all other data modalities to this dataset. Here, only
a SMLR classifi er was used (sixfold cross-validation, with 2 of the
12 experimental runs grouped into one chunk, and trained on
single fMRI volumes that covered the full brain). For comparison,
a univariate ANOVA was again computed for the same cross-
 validation dataset splits.

The SMLR classifi er performed very well on the independent
test datasets, correctly predicting the category for 94.7% of all single
volume samples in the test datasets. To examine what informa-
tion was used by the classifi er to reach this performance level, we
computed ROI-based sensitivity scores for 48 non-overlapping
structures defi ned by the probabilistic Harvard-Oxford cortical
atlas (Flitney et al., 2007), as shipped with FSL (Smith et al., 2004).
To create the ROIs, we thresholded the probability maps of all
structures at 25% and assigned ambiguous voxels to the structure
with the higher probability. The resulting map was projected into
the space of the functional dataset using an affi ne transformation
and nearest neighbor interpolation.

In order to determine the contribution of each ROI, the sensitiv-
ity vector was fi rst normalized (across all ROIs), so that all absolute
sensitivities summed up to 1 (L1-normed). Afterwards ROI-wise
scores were computed by taking the sum of all sensitivities in a
particular ROI. The upper part of Figure 4 shows these scores for
the 20 highest-scoring and the three lowest-scoring ROIs.

The lower part of the fi gure shows dendrograms from a hierar-
chical cluster analysis28 on relevant voxels from a block-averaged
variant of the dataset (but otherwise identical to the classifi er train-
ing data). For SMLR, only voxels with a non-zero sensitivity were
considered in each particular ROI. For ANOVA, only the voxels with

the highest F-scores (limited to the same number as for the SMLR
case) were considered. For visualization purposes the dendrograms
show the distances and clusters computed from the average samples
of each condition in each dataset chunk (i.e., two experimental
blocks), yielding six samples per condition.

The four chosen ROIs clearly show four different cluster pat-
terns. The 92 selected voxels in temporal occipital fusiform cortex
(TOFC) show a clear clustering of the experimental categories, with
relatively large sample distances between categories. The pattern
of the 36 voxels in angular gyrus reveals an animate/inanimate
clustering, although with much smaller distances. The largest group
of 148 voxels in the frontal pole ROI seems to have no obvious
structure in their samples. Despite that, both sensitivity measures
assign substantial importance to this region. This might be due to
the large inter-sample distances visualized in the corresponding
dendrogram in Figure 4. Each leaf node (in this case an average
volume of two stimulation blocks) is approximately as distinct from
any other leaf node, in terms of the employed distance measure, as
the semantic clusters identifi ed in the TOFC ROI. Finally, the ROI
covering the anterior division of the superior temporal gyrus shows
no clustering at all, and, consequently, is among the lowest-scoring
ROIs of both measures. On the whole, the cluster patterns from
voxels selected by SMLR weights and F-scores are very similar in
terms of inter-cluster distances.

Given that these results only include the data of a single par-
ticipant, no far-reaching implications can be drawn from them.
However, the distinct cluster patterns might provide indications for
different levels of information encoding that could be addressed
in future studies. Although voxels selected in both angular gyrus
and the frontal pole ROIs do not provide a discriminative signal
for all four stimulus categories, they nevertheless provide some dis-
ambiguating information and, thus, are picked up by the classifi er.

FIGURE 3 | Event-related magnetic fi elds (EMF) and classifi er sensitivities.

The upper part shows EMFs for two exemplary MEG channels. On the left
sensor MRO22 (right occipital), and on the right sensor MZO01 (central

occipital). The lower part shows classifi er sensitivities and ANOVA F-scores
plotted over time for both sensors. Both classifi ers showed equivalent
generalization performance of approximately 82% correct single trial predictions.

28PyMVPA provides hierarchical clustering facilities through hcluster (Eads, 2008).

164

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

In angular gyrus, this seems to be an animate/inanimate pattern
that additionally also differentiates between the two categories of
animate stimuli. Finally, in the frontal pole ROI the pattern remains
unclear, but the relatively large inter-sample distances indicate a
differential code of some form that is not closely related to the
semantic stimulus category.

EXTRACELLULAR RECORDINGS
The extracellular dataset analyzed in this section is previously
unpublished, thus, we fi rst briefl y describe the experimental
and acquisition setup. Animal experiments were carried out in
accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals and approved by Rutgers
University. Sprague-Dawley rats (300–500 g) were anaesthetized
with urethane (1.5 g/kg) and held with a custom naso-orbital
restraint. After preparing a 3 mm square window in the skull over
auditory cortex, the dura was removed and a silicon microelec-
trode consisting of eight four-site recording shanks (NeuroNexus
Technologies, Ann Arbor, MI, USA) was inserted. The recording
sites were in the primary auditory cortex, estimated by stere-
otaxic coordinates, vascular structure (Sally and Kelly, 1988) and

tonotopic variation of frequency tuning across recording shanks,
and located within layer V, determined by electrode depth and
fi ring patterns.

Five pure tones (3, 7, 12, 20, 30 kHz at 60 dB) and fi ve different
natural sounds (extracted from the CD “Voices of the Swamp”,
Naturesound Studio, Ithaca, NY, USA) were used as stimuli. Each
stimulus had a duration of 500 ms followed by 1500 ms of silence.
All stimuli were tapered at beginning and end with a 5 ms cosine
window. The data acquisition took place in a single-walled sound
isolation chamber (IAC, Bronx, NY, USA) with sounds presented
free fi eld (RP2/ES1, Tucker-Davis, Alachua, FL, USA).

Individual units29 were isolated by a semi-automatic algorithm
(KlustaKwik30) followed by manual clustering (Klusters31). Post-
stimulus time histograms (PSTH) of spike counts per each unit
for all 1734 stimulation onsets were estimated using a bin size of
3.2 ms. To ensure an accurate estimation of PSTHs only units with a

FIGURE 4 | Sensitivity analysis of the four-category fMRI dataset. The upper
part shows the ROI-wise scores computed from SMLR classifi er weights and
ANOVA F-scores (limited to the 20 highest and the three lowest-scoring ROIs).

The lower part shows dendrograms with clusters of average category samples
(computed using squared Euclidean distances) for voxels with non-zero SMLR-
weights and a matching number of voxels with the highest F-scores in each ROI.

29The term “unit” in the text refers to a single entity, which was segregated from the
recorded data, and is expected to represent a single neuron.
30http://klustakwik.sourceforge.net.
31http://klusters.sourceforge.net.

165

http://klustakwik.sourceforge.net
http://klusters.sourceforge.net

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

mean fi ring rate higher than 2 Hz were selected for further analysis,
leaving us with a total of 105 units.

Since the segregation of individual units out of the extra-
cellular recordings is carried out without taking the respective
stimulus condition into account, i.e., in unsupervised fashion
(in ML terminology), it does not guarantee that the activity of
any particular unit can be easily attributed to some set of stimulus
conditions. From the stimulus-wise descriptive statistics of the
units presented in the top plots of Figure 5 it is diffi cult to state
that the activity of any particular unit at some moment in time is
specifi c for a given stimulus. Furthermore, due to the inter-trial
variance in the spike counts, it is even more diffi cult to reliably
assess what stimulus condition any particular trial belongs to.
Hence, the purpose of the PyMVPA analysis was to complement
the results of the unsupervised clustering with a characterization
of all extracted units in terms of their specifi city to any given
stimulus at any given time.

The analysis pipeline was similar to the one used for EEG,
MEG, and fMRI data. We ran a standard eightfold cross- validation
procedure for an SMLR classifi er, which achieved a mean of
77.57% accuracy estimate across all 10 types of stimuli. This gen-
eralization accuracy is well above chance (10%) for all stimulus
categories and allows one to conclude that the neuronal popula-
tion activity pattern at the recording site carries a differential
signal across all 10 stimuli. Misclassifi cations mostly occurred for
low-frequency stimuli. Pure tones with 3 and 7 kHz were more
often confused with each other than tones with a larger frequency

difference (see Figure 6), which suggests a high similarity in the
spiking patterns for these stimuli. We could further speculate that
this neuronal population is more tuned towards the processing
of higher frequency tones.

Besides being able to label yet unseen trials with high accuracy,
the trained classifi er can readily provide its sensitivity estimates
for each unit, time bin, and stimulus condition (see bottom plots
of Figure 5). Temporal sensitivity profi les of any particular unit
(see unit #42 profi les in lower left plot of Figure 5) can reveal that
the stimulus specifi c information is contained in spike times rela-
tive to stimulus onset or can be represented as slowly modulated
pattern of spike counts (see 3 kHz stimuli). An aggregate sensitivity
(in this case the sum of absolute sensitivities) across all time-bins
provides a summary statistic of any unit’s sensitivity to a given
stimulus condition (see lower right plot of Figure 5). In contrast
to a simple variance measure, it provides an easier way to associate
any given unit to a set of stimulus conditions. Additionally, it can
identify units which might lack a substantial amount of variance,
but nevertheless carry a stimulius-specifi c signal (e.g. unit #28 and
30 kHz stimulus).

CONCLUSIONS
In this article we presented PyMVPA, a data analysis framework
especially tailored to neural data from a wide range of acquisition
modalities. PyMVPA provides ML techniques as core functional-
ity, addressing recent trends in neuroscience research. To illustrate
the generalizability of the PyMVPA analysis pipeline we provided

FIGURE 5 | Statistics of multiple single unit extracellular simultaneous

recordings and corresponding classifi er sensitivities. All plots sweep through
different stimuli along vertical axis, with stimuli labels presented in the middle of
the plots. The upper part shows basic descriptive statistics of spike counts for
each stimulus per each time bin (on the left) and per each unit (on the right).
Such statistics seem to lack stimulus specifi city for any given category at a given
time point or unit. The lower part on the left shows the temporal sensitivity
profi le of a representative unit for each stimulus. It shows that stimulus specifi c

information in the response can be coded primarily temporally (few specifi c
offsets with maximal sensitivity like for song2 stimulus) or in a slowly modulated
pattern of spikes counts (see 3 kHz stimulus). Associated aggregate sensitivities
of all units for all stimuli in the lower right fi gure indicate each unit’s specifi city to
any given stimulus. It provides better specifi city than simple statistics like
variance, e.g., unit 19 is active in all stimulation conditions according to its high
variance, but according to its classifi er sensitivity it carries little, if any, stimuli-
specifi c information for natural songs 1–3.

166

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

example analyses of data from EEG, MEG, fMRI and extracellular
recordings.

The framework presented here is Python-based, sophisticated,
free and open-source software. Its intended audience is threefold.
First, there are neuroscience researchers interested in testing ML
algorithms on neural data, e.g., people working on brain- computer
interfaces (BCI, see Birbaumer and Cohen, 2007; Lebedev and
Nicolelis, 2006). PyMVPA provides researchers with the ability
to execute complex analysis tasks in very concise code. Second, it
is also designed for ML researchers interested in testing new ML
algorithms on neural data. PyMVPA offers a highly-modularized
architecture designed to minimize the effort of adding new algo-
rithms. Moreover, the availability of neuroscience-related code-
examples (like the ones presented in this article) and datasets greatly
reduces the time to get actual results. Finally, PyMVPA is welcoming
code contributors from both neuroscience and ML communities
interested in improving or adding modality-specifi c functions or
new algorithms. PyMVPA offers a community-based development
model together with a distributed version control system and exten-
sive reference documentation.

FUTURE WORK
PyMVPA does not aim to provide all possible ML analysis algorithms,
and it will likely not come close, even in the future. Given that PyMVPA
is tailored towards the high-dimensional problems found in neuro-
science, it currently provides many of the most common algorithms
tuned for this target. Still, as the neuroscience and ML communities
unite, new and promising algorithms are constantly emerging and
being added to PyMVPA. Beyond the inclusion of new ML algorithms,
there are numerous plans for future enhancements to PyMVPA.

Because the current use of ML techniques in neuroscience is
mainly limited to the application of only basic algorithms to neural
data, one of the next, most intriguing, new directions of PyMVPA
will be to provide custom workfl ows designed for specifi c neuroscience
modalities. An example of such a custom workfl ow is the analysis
of fMRI data from experiments with event-related designs, where
multiple fMRI volumes after the onset of the event compose a single
sample within a dataset provided to the ML methods for processing.
Combining multiple volumes into a single sample obviates the need
to provide a hemodynamic response function because the important
features can be extracted independently for each voxel.

FIGURE 6 | Confusion matrix of SMLR classifi er predictions of stimulus

conditions from of multiple unit recordings. The classifi er was trained to
discriminate between stimuli of fi ve pure tones and fi ve natural sounds.
Elements of the matrix (numeric values and color-mapped visualization) show
the number of trials which were correctly (diagonal) or incorrectly

(off-diagonal) classifi ed by a SMLR classifi er during an eightfold cross-validation
procedure. The results suggest a high similarity in the spiking patterns for stimuli
of low-frequency pure tones, which lead the classifi er to confuse them more
often, whenever responses to natural sound stimuli and high-frequency tones
were hardly ever confused with each other.

167

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

In addition, PyMVPA has yet to confront the problem of model
selection. Currently, only Gaussian process regression has the
ability to select hyper-parameters of the model. Uniform model
selection for ML methods within PyMVPA is planned for the
next major release of the project. It will provide the facility to
automatically search for the best set of parameters for each clas-
sifi er without sacrifi cing unbiased estimates of the generalization
performance.

SUPPLEMENTAL MATERIAL
The Supplemental Materials (e.g., source code) for this article can
be found online at http://www.frontiersin.org/neuroinformatics/
paper/10.3389/neuro.11/003.2009.

ACKNOWLEDGMENTS
We are thankful to Dr. Artur Luczak and Dr. Kenneth D. Harris
(CMBN, Rutgers University, Newark, NJ, USA) for provid-
ing the extracellular recordings dataset for the paper. Michael
Hanke was supported by the German Academic Exchange Service
(grant: PPP-USA D/05/504/7). Per Sederberg was supported
by National Institutes of Health NRSA (grant: MH080526).
Yaroslav O. Halchenko and Dr. Stephen J. Hanson were sup-
ported by the National Science Foundation (grant: SBE 0751008)
and the James McDonnell Foundation (grant: 220020127).
Stefan Pollmann and Jochem W. Rieger were supported by
Deutsche Forschungsgemeinschaft (PO 548/6-1 and RI 1511/1-3
respectively).

REFERENCES
Beckmann, C. F., and Smith, S. M. (2005).

Tensorial extensions of independent
component analysis for multisub-
ject fMRI analysis. Neuroimage 25,
294–311.

Birbaumer, N., and Cohen, L. G. (2007).
Brain-computer interfaces: communi-
cation and restoration of movement in
paralysis. J. Physiol. 579, 621–636.

Busch, N. A., Herrmann, C. S.,
Müller, M. M., Lenz, D., and Gruber, T.
(2006). A cross-laboratory study of
event-related gamma activity in a
standard object recognition paradigm.
Neuroimage 33, 1169–1177.

Detre, G., Polyn, S. M., Moore, C.,
Natu, V., Singer, B., Cohen, J.,
Haxby, J. V., and Norman, K. A.
(2006). The Multi-Voxel Pattern
Analysis (MVPA) Toolbox. Poster
presented at the Annual Meeting of
the Organization for Human Brain
Mapping (Florence, Italy). Available
at: http://www.csbmb.princeton.
edu/mvpa.

Eads, D. (2008). Hcluster: Hierarchical
Clustering for SciPy. Available at:
http://scipy-cluster.googlecode.com/.

Efron, B., and Tibshirani, R. (1993).
An Introduction to the Bootstrap.
New York, NY, Chapman &
Hall/CRC.

Flitney, D., Webster, M., Patenaude, B.,
Seidman, L., Goldstein, J., Tordesillas
Gutierrez, D., Eickhoff, S., Amunts, K.,
Zilles, K., Lancaster, J., Haselgrove, C.,
Kennedy, D., Jenkinson, M., and
Smith, S. (2007). Anatomical Brain
Atlases and Their Application in the
FSLView Visualisation Tool. Thirteenth
Annual Meeting of the Organization
for Human Brain Mapping. Chicago,
IL, USA.

Fründ, I., Busch, N. A., Schadow, J.,
Gruber, T. , Körner, U. , and
Herrmann, C. S. (2008). Time pres-

sure modulates electrophysiological
correlates of early visual processing.
PLoS ONE 3, e1675.

Guyon, I., and Elisseeff, A. (2003). An
introduction to variable and feature
selec tion. J. Mach. Learn. Res. 3,
1157–1182.

Guyon, I., Weston, J., Barnhill, S., and
Vapnik, V. (2002). Gene selection for
cancer classification using support
vector machines. Mach. Learn. 46,
389–422.

Hanke, M., Halchenko, Y. O. ,
Sederberg, P. B., Hanson, S. J.,
Haxby, J. V., and Pollmann, S. (2009).
PyMVPA: A Python toolbox for
multivariate pattern analysis of
fMRI data. Neuroinformatics. doi:
10.1007/s12021-008-9041-y.

Hanke, M., Halchenko, Y. O. ,
Sederberg, P. B., and Hughes, J. M.
(2008). The PyMVPA Manual.
Available at: http://www.pymvpa.
org/PyMVPA-Manual.pdf.

Hanson, S., Matsuka, T., and Haxby, J.
(2004). Combinatorial codes in ven-
tral temporal lobe for object recogni-
tion: Haxby (2001). revisited: is there a
“face” area? Neuroimage 23, 156–166.

Hanson, S. J., and Halchenko, Y. O. (2008).
Brain reading using full brain support
vector machines for object recogni-
tion: there is no “face” identifi cation
area. Neural Comput. 20, 486–503.

Haxby, J., Gobbini, M., Furey, M., Ishai, A.,
Schouten, J., and Pietrini, P. (2001).
Distributed and overlapping rep-
resentations of faces and objects in
ventral temporal cortex. Science 293,
2425–2430.

Haynes, J.-D., and Rees, G. (2006).
Decoding mental states from brain
activity in humans. Nat. Rev. Neurosci.
7, 523–534.

Haynes, J.-D., Sakai, K., Rees, G., Gilbert, S.,
Frith, C., and Passingham, R. E.
(2007). Reading hidden intentions

in the human brain. Curr. Biol. 17,
323–328.

Herrmann, C. S., Lenz, D., Junge, S.,
Busch, N. A., and Maess, B. (2004).
Memory-matches evoke human
gamma-responses. BMC Neurosci.
5, 13.

Jenkinson, M., Bannister, P., Brady, J.,
and Smith, S. (2002). Improved
 optimisation for the robust and
accurate linear registration and
motion correction of brain images.
Neuroimage 17, 825–841.

Kamitani, Y., and Tong, F. (2005).
Decoding the visual and subjective
contents of the human brain. Nat.
Neurosci. 8, 679–685.

Kriegeskorte, N., and Bandettini, P.
(2007). Analyzing for information, not
activation, to exploit high-resolution
fMRI. Neuroimage 38, 649–662.

Kriegeskorte, N., Goebel, R., and
Bandettini, P. (2006). Information-
based functional brain mapping.
Proc. Natl. Acad. Sci. U.S.A. 103,
3863–3868.

Kr i shnapur am, B. , Car in , L . ,
Figueiredo, M. A., and Hartemink, A. J.
(2005). Sparse multinomial logistic
regression: fast algorithms and gener-
alization bounds. IEEE Trans. Pattern
Anal. Mach. Intell. 27, 957–968.

Lachaux, J.-P., George, N., Tallon-
B a u d r y, C . , Ma r t i n e r i e , J . ,
Hugueville, L., Minotti, L., Kahane, P.,
and Renault, B. (2005). The many faces
of the gamma band response to com-
plex visual stimuli. Neuroimage 25,
491–501.

Lebedev, M. A., and Nicolelis, M. A. L.
(2006). Brain-machine interfaces: past,
present and future. Trends Neurosci.
29, 536–546.

Makeig, S., Debener, S., Onton, J., and
Delorme, A. (2004). Mining event-
related brain dynamics. Trends Cogn.
Sci. 8, 204–210.

Norman, K. A., Polyn, S. M., Detre, G. J.,
and Haxby, J. V. (2006). Beyond mind-
reading: multi-voxel pattern analysis
of fMRI data. Trends Cogn. Sci. 10,
424–430.

O’Toole, A. J., Jiang, F., Abdi, H., Penard, N.,
Dunlop, J. P., and Parent, M. A. (2007).
Theoretical, statistical, and practical
perspectives on pattern-based classi-
fi cation approaches to the analysis of
functional neuroimaging data. J. Cogn.
Neurosci. 19, 1735–1752.

Pereira, F., Mitchell, T., and Botvinick, M.
(in press). Machine learning classifi -
ers and fMRI: a tutorial overview. doi:
10.1016/j.neuroimage.2008.11.007.

Rasmussen, C. E., and Williams, C. K.
(2006). Gaussian Processes for
Machine Learning. Cambridge, MA,
MIT Press.

Rieger, J. W., Braun, C., Bülthoff, H. H., and
Gegenfurtner, K. R. (2005). The dynam-
ics of visual pattern masking in natural
scene processing: a magnetoencepha-
lography study. J. Vis. 5, 275–286.

R i e g e r, J . W. , Re i c h e r t , C . ,
Gegenfurtner, K. R., Noesselt, T.,
Braun, C., Heinze, H.-J., Kruse, R.,
and Hinrichs, H. (2008). Predicting
the recognition of natural scenes from
single trial MEG recordings of brain
activity. Neuroimage 42, 1056–1068.

Sally, S. L., and Kelly, J. B. (1988).
Organization of auditory cortex
in the albino rat: sound frequency.
J. Neurophysiol. 59, 1627–1638.

Smith, S . M. , Jenkinson, M. ,
Woolrich, M. W., Beckmann, C. F.,
Behrens, T. E. J., Johansen-Berg, H.,
Bannister, P. R., De Luca, M.,
Drobnjak, I., Flitney, D. E., Niazy, R. K.,
Saunders, J., Vickers, J., Zhang, Y.,
De Stefano, N., Brady, J. M., and
Matthews, P. M. (2004). Advances in
functional and structural MR image
analysis and implementation as FSL.
Neuroimage 23, 208–219.

168

http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/003.2009

Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 |

Hanke et al. The PyMVPA framework

Sonnenburg, S., Braun, M., Ong, C. S.,
Bengio, S., Bottou, L., Holmes, G.,
LeCun, Y., Müller, K.-R., Pereira, F.,
Rasmussen, C. E., Rätsch, G.,
Schölkopf, B., Smola, A., Vincent, P.,
Weston, J., and Williamson, R. (2007).
The need for open source software in
machine learning. J. Mach. Learn. Res.
8, 2443–2466.

Sun, Y. (2007). Iterative RELIEF for fea-
ture weighting: algorithms, theories
and applications. IEEE Trans. Pattern
Anal. Mach. Intell. 29, 1035–1051.

Vapnik, V. (1995). The Nature of
Statistical Learning Theory. New York,
Springer.

Veropoulos, K., Campbell, C., and
Cristianini, N. (1999). Controlling
the Sensitivity of Support Vector
Machines. Proceedings of the
International Joint Conference on
AI. Stockholm, Sweden.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-

mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 14 September 2008; paper pend-
ing published: 20 October 2008; accepted:
20 January 2009; published online: 04
February 2009.
Citation: Hanke M, Halchenko YO,
Sederberg PB, Olivetti E, Fründ I, Rieger
JW, Herrmann CS, Haxby JV, Hanson SJ
and Pollmann S (2009) PyMVPA: a unify-
ing approach to the analysis of neuroscien-

tifi c data. Front. Neuroinform. (2009) 3:3.
doi: 10.3389/neuro.11.003.2009
Copyright © 2009 Hanke, Halchenko,
Sederberg, Olivetti, Fründ, Rieger,
Herrmann, Haxby, Hanson and
Pollmann. This is an open-access article
subject to an exclusive license agreement
between the authors and the Frontiers
Research Foundation, which permits
unrestricted use, distribution, and
reproduction in any medium, provided
the original authors and source are
credited.

169

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 29 January 2009
doi: 10.3389/neuro.11.012.2008

PyNEST: A convenient interface to the NEST simulator

Jochen Martin Eppler1,2*†, Moritz Helias2†, Eilif Muller3, Markus Diesmann2,4,5 and Marc-Oliver Gewaltig1,2

1 Honda Research Institute Europe GmbH, Offenbach, Germany
2 Bernstein Center for Computational Neuroscience, Albert-Ludwig University, Freiburg, Germany
3 Laboratory for Computational Neuroscience, Swiss Federal Institute of Technology, EPFL, Lausanne, Switzerland
4 Theoretical Neuroscience Group, RIKEN Brain Science Institute, Wako City, Japan
5 Brain and Neural Systems Team, Computational Science Research Program, RIKEN, Wako City, Japan

The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for
heterogeneous networks of point neurons or neurons with a small number of compartments.
It aims at simulations of large neural systems with more than 104 neurons and 107 to 109
synapses. NEST is implemented in C++ and can be used on a large range of architectures from
single-core laptops over multi-core desktop computers to super-computers with thousands of
processor cores. Python (http://www.python.org) is a modern programming language that
has recently received considerable attention in Computational Neuroscience. Python is easy to
learn and has many extension modules for scientifi c computing (e.g. http://www.scipy.org).
In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines
NEST’s effi cient simulation kernel with the simplicity and fl exibility of Python. Compared to
NEST’s native simulation language SLI, PyNEST makes it easier to set up simulations, generate
stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python
and how it is implemented. With a number of examples, we illustrate how it is used.

Keywords: Python, modeling, integrate-and-fi re neuron, large-scale simulation, scientifi c computing, networks,

programming

(van Rossum, 2008). To do so, it is common to map the application’s
functions and data structures to Python classes and functions. This
approach has the advantage that the coupling between the applica-
tion and Python is as tight as possible. But there is also a drawback:
Whenever a new feature is implemented in the application, the
interface to Python must be changed as well.

On many high-performance computers Python is not available
and we have to preserve NEST’s native simulation language SLI.
In order to avoid two different interfaces, one to Python and one
to SLI, we decided to deviate from the standard way of coupling
applications to Python. Rather than using NEST’s classes, we use
NEST’s simulation language as the interface: Python sends data
and SLI commands to NEST and NEST responds with Python
data structures.

Exchanging data between Python and NEST is easy since
all important data types in NEST have equivalents in Python.
Executing NEST commands from Python is also straightfor-
ward: Python only needs to send a string with commands to
NEST, and NEST will execute them. With this approach, we only
need to maintain one binary interface to the simulation kernel
instead of two: Each new feature of the simulation kernel only
needs to be mapped to SLI and immediately becomes accessible
in PyNEST without changing its binary interface. This generic
interpreter interface allows us to program PyNEST’s high-level
API in Python. This is an advantage, because programming in
Python is more productive than programming in C++ (Prechelt,
2000). Python is also more expressive: A given number of lines of
Python code achieve much more than the same number of lines
in C++ (McConnell, 2004).

INTRODUCTION
The fi rst user interface for NEST (Gewaltig and Diesmann, 2007;
Plesser et al., 2007) was the simulation language SLI, a stack-based
language derived from PostScript (Adobe Systems Inc., 1999).
However, programming in SLI turned out to be diffi cult to learn
and users asked for a more convenient programming language for
NEST.

When we decided to use Python as the new simulation language,
it was almost unknown in Computational Neuroscience. In fact,
Matlab (MathWorks, 2002) was far more common, both for simula-
tions and for analysis. Other simulators, like e.g. CSIM (Natschläger,
2003), already used Matlab as their interface language. Thus, Matlab
would have been a natural choice for NEST as well.

Python has a number of advantages over commercial soft-
ware like Matlab and other free scripting languages like Tcl/Tk
(Ousterhout, 1994). First, Python is installed by default on all Linux
and Mac-OS based computers. Second, Python is stable, portable,
and supported by a large and active developer community, and has
a long history in scientifi c fi elds outside the neurosciences (Dubois,
2007). Third, Python is a powerful interactive programming lan-
guage with a surprisingly concise and readable syntax. It supports
many programming paradigms such as object-oriented and func-
tional programming. Through packages like NumPy (http://
www.numpy.org) and SciPy (http://www.scipy.org), Python
supports scientifi c computing and visualization à la Matlab. Finally,
a number of neuroscience laboratories meanwhile use Python for
simulation and analysis, which further supports our choice.

Python is powerful at steering other applications and provides
a well documented interface (API) to link applications to Python

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Upinder S. Bhalla, National Center for
Biological Sciences, India
Terrence C. Stewart, Carleton
University, Canada

*Correspondence:

Jochen Martin Eppler, Honda
Research Institute Europe GmbH,
Carl-Legien-Str. 30, 63073 Offenbach
am Main, Germany.
e-mail: eppler@biologie.uni-freiburg.de
†Eppler and Helias contributed equally
to this work.

170

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

NEST users benefi t from the increased productivity. They can
now take advantage of the large number of extension modules for
Python. NumPy is the Python interface to the BLAS libraries, the same
libraries which power Matlab. Matplotlib (http://matplotlib.
sourceforge.net) provides many routines to plot scientifi c data in
publication quality. Many other packages exist to analyze and visualize
data. Thus, PyNEST allows users to combine simulation, data analysis,
and visualization in a single programming language.

In the Section “Using PyNEST”, we introduce the basic modeling
concepts of NEST. With a number of PyNEST code examples, we
illustrate how simulations are defi ned and how the results are ana-
lyzed and plotted. In the Section “The Interface Between Python
and NEST”, we describe in detail how we bind NEST to the Python
interpreter. In the Section “Discussion”, we discuss our implementa-
tion and analyze its performance. The complete API reference for
PyNEST is contained in Appendix A. In Appendix B we illustrate
advanced PyNEST features, using a large scale model.

USING PyNEST
A neural network in NEST consists of two basic element types: Nodes
and connections. Nodes are either neurons, devices or subnetworks.
Devices are used to stimulate neurons or to record from them. Nodes
can be arranged in subnetworks to build hierarchical networks like
layers, columns, and areas. After starting NEST, there is one empty
subnetwork, the so-called root node. New nodes are created with the
command Create(), which takes the model name and optionally the
number of nodes as arguments and returns a list of handles to the new
nodes. These handles are integer numbers, called ids. Most PyNEST
functions expect or return a list of ids (see Appendix A). Thus it is easy
to apply functions to large sets of nodes with a single function call.

Nodes are connected using Connect(). Connections have a
confi gurable delay and weight. The weight can be static or dynamic,
as for example in the case of spike timing dependent plasticity
(STDP; Morrison et al., 2008). Different types of nodes and con-
nections have different parameters and state variables. To avoid
the problem of fat interfaces (Stroustrup, 1997), we use dictionar-
ies with the functions GetStatus() and SetStatus() for the
inspection and manipulation of an element’s confi guration. The
properties of the simulation kernel are controlled through the com-
mands GetKernelStatus() and SetKernelStatus(). PyNEST
contains the submodules raster_plot and voltage_trace to visualize
spike activity and membrane potential traces. They use Matplotlib
internally and are good templates for new visualization functions.
However, it is not our intention to develop PyNEST into a toolbox
for the analysis of neuroscience data; we follow the modularity
concept of Python and leave this task to others (e.g. NeuroTools,
http://www.neuralensemble.org/NeuroTools).

EXAMPLE
We illustrate the key features of PyNEST with a simulation of a
neuron receiving input from an excitatory and an inhibitory popu-
lation of neurons (modifi ed from Gewaltig and Diesmann, 2007).
Each presynaptic population is modeled by a Poisson generator,
which generates a unique Poisson spike train for each target. The
simulation adjusts the fi ring rate of the inhibitory input population
such that the neurons of the excitatory population and the target
neuron fi re at the same rate.

First, we import all necessary modules for simulation, analysis
and plotting.

 1 from nest import *
 2 from scipy.optimize import bisect
 3 import nest.voltage_trace as plot

Second, the parameters for the simulation are set.

 4 t_sim = 100000.0 #[ms] simulation time
 5 n_ex = 16000 #size of exc. population
 6 n_in = 4000 #size of inh. population
 7 r_ex = 5.0 #[Hz] rate of exc. neurons
 8 epsc = 45.0 #[pA] amplitude of exc.
 9 #synaptic currents
10 ipsc = −45.0 #[pA] amplitude of inh.
11 #synaptic currents
12 d = 1.0 #[ms] synaptic delay
13 lower = 5.0 #[Hz] lower bound of the
14 #search interval
15 upper = 25.0 #[Hz] upper bound of the
16 #search interval
17 prec = 0.05 #accuracy goal (in percent
18 #of inhibitory rate)

Third, the nodes are created using Create(). Its arguments
are the name of the neuron or device model and optionally the
number of nodes to create. If the number is not specifi ed, a single
node is created. Create() returns a list of ids for the new nodes,
which we store in variables for later reference.

19 neuron = Create("iaf_neuron")
20 noise = Create("poisson_generator", 2)
21 voltmeter = Create("voltmeter")
22 spikedetector = Create("spike_detector")

Fourth, the excitatory Poisson generator (noise[0]) and the
voltmeter are confi gured using SetStatus(), which expects a list
of node handles and a list of parameter dictionaries. The rate of
the inhibitory Poisson generator is set in line 32. For the neuron
and the spike detector we use the default parameters.

23 SetStatus([noise [0]], [{ "rate" : n_ex*r_ex }])
24 SetStatus(voltmeter, [{ "interval" : 1000.0,
25 "withgid" : True}])

Fifth, the neuron is connected to the spike detector and the
voltmeter, as are the two Poisson generators to the neuron:

26 Connect(neuron, spikedetector)
27 Connect(voltmeter, neuron)
28 ConvergentConnect(noise, neuron,
29 [epsc, ipsc], [d, d])

The command Connect() has different variants. Plain
Connect() (line 26 and 27) just takes the handles of pre- and
 postsynaptic nodes and uses the default values for weight and delay.
ConvergentConnect() (line 28) takes four arguments: A list of
presynaptic nodes, a list of postsynaptic nodes, and lists of weights
and delays. It connects all presynaptic nodes to each postsynaptic
node. All variants of the Connect() command refl ect the direc-
tion of signal fl ow in the simulation kernel rather than the physi-
cal process of inserting an electrode into a neuron. For example,
neurons send their spikes to a spike detector, thus the neuron is the

171

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

fi rst argument to Connect() in line 26. By contrast, a voltmeter
polls the membrane potential of a neuron in regular intervals, thus
the voltmeter is the fi rst argument of Connect() in line 27. The
documentation of each model explains the types of events it can
send and receive.

To determine the optimal rate of the neurons in the inhibitory
population, the network is simulated several times for different
values of the inhibitory rate while measuring the rate of the target
neuron. This is done until the rate of the inhibitory neurons is
determined up to a given relative precision (prec), such that the
target neuron fi res at the same rate as the neurons in the excitatory
population. The algorithm is implemented in two steps:

First, the function output_rate() is defi ned to measure the
fi ring rate of the target neuron for a given rate of the inhibitory
neurons.

30 def output_rate(guess):
31 rate = float(abs(n_in*guess))
32 SetStatus([noise [1]], [{"rate": rate}])
33 SetStatus(spikedetector, [{"n_events": 0}])
34 Simulate(t_sim)
35 n_events = GetStatus(spikedetector,
36 "n_events")[0]
37 r_target = n_events*1000.0/t_sim
38 print "r_in = %.4f Hz," % guess,
39 print "r_target = %.3f Hz" % r_target
40 return r_target

The function takes the fi ring rate of the inhibitory neurons as
an argument. It scales the rate with the size of the inhibitory popu-
lation (line 31) and confi gures the inhibitory Poisson generator
(noise[1]) accordingly (line 32). In line 33, the spike-counter of
the spike detector is reset to zero. Line 34 simulates the network
using Simulate(), which takes the desired simulation time in mil-
liseconds and advances the network state by this amount of time.
During the simulation, the spike detector counts the spikes of the
target neuron and the total number is read out at the end of the
simulation period (line 35). The return value of output_rate()
is an estimate of the fi ring rate of the target neuron in Hz.

Second, we determine the optimal fi ring rate of the neurons of
the inhibitory population using the bisection method.

41 print "Desired target rate: %.2f Hz" % r_ex
42 r = bisect(lambda x: output_rate(x)-r_ex,
43 lower, upper, rtol=prec)
44 print "Resulting inhibitory rate: %.4f" % r

The SciPy function bisect() takes four arguments: First a
function whose zero crossing is to be determined. Here, the fi ring
rate of the target neuron should equal the fi ring rate of the neurons
of the excitatory population. Thus we defi ne an anonymous func-
tion (using lambda) that returns the difference between the actual
rate of the target neuron and the rate of the excitatory Poisson
generator, given a rate for the inhibitory neurons. The next two
arguments are the lower and upper bound of the interval in which
to search for the zero crossing. The fourth argument of bisect()
is the desired relative precision of the zero crossing.

Finally, we plot the target neuron’s membrane potential as a
function of time.

45 plot.from_device(voltmeter, timeunit="s")

A transcript of the simulation session and the resulting plot are
shown in Figure 1.

PyNEST ON MULTI-CORE PROCESSORS AND CLUSTERS
NEST has built-in support for parallel and distributed computing
(Morrison et al., 2005; Plesser et al., 2007): On multi-core proces-
sors, NEST uses POSIX threads (Lewis and Berg, 1997), on computer
clusters, NEST uses the Message Passing Interface (MPI; Message
Passing Interface Forum, 1994). Nodes and connections are assigned
automatically to threads and processes, i.e. the same script can be
executed single-threaded, multi-threaded, distributed over multiple
processes, or using a combination of both methods. This naturally
carries over to PyNEST: To use multiple threads for the simulation,
the desired number has to be set prior to the creation of nodes and
connections. Note that the network setup is carried out by a single
thread, as only a single instance of the Python interpreter exists

A

jochen@winston:˜$ python balancedneuron.py
NEST 1.9.7865 (C) 2008 The NEST Initiative
Desired target rate: 5.00 Hz

r in=5.0000 Hz, r target=434.580 Hz
r in=25.0000 Hz, r target=0.020 Hz
r in=15.0000 Hz, r target=347.410 Hz
r in=20.0000 Hz, r target=34.350 Hz
r in=22.5000 Hz, r target=0.000 Hz
r in=21.2500 Hz, r target=0.680 Hz
r in=20.6250 Hz, r target=7.160 Hz

...
r in=20.7837 Hz, r target=4.640 Hz
r in=20.7825 Hz, r target=5.000 Hz

Resulting inhibitory rate: 20.7825 Hz

B

FIGURE 1 | Results of the example simulation. (A) The transcript of the
simulation session shows the intermediate results of r_target as bisect()
searches for the optimal rate. (B) The membrane potential of the target neuron

as a function of time. Repeated adjustment of the spike rate of the inhibitory
population by bisect() results in a convergence of the mean membrane
potential to −112 mV, corresponding to an output spike rate of 5.0 Hz.

172

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

in each process. Only the simulation takes advantage of multiple
threads. Distributed simulations can be run via the mpirun com-
mand of the respective MPI implementation. Where, for SLI, one
would execute mpirun -np n nest simulation.sli to distrib-
ute a simulation onto n processes, one has to call mpirun -np n
python simulation.py to get the same result with PyNEST. In
the distributed case, n Python interpreters run in parallel and execute
the same simulation script. This means that both network setup
and simulation are parallelized. With third-party tools like IPython
(http://ipython.scipy.org) or MPI for Python (http://
mpi4py.scipy.org), it is possible to use PyNEST interactively
even in distributed scenarios. For a more elaborate documentation
of parallel and distributed simulations with NEST, see the NEST
user manual (http://www.nest-initiative.org).

THE INTERFACE BETWEEN PYTHON AND NEST
NEST’s built-in simulation language (SLI) is a stack-based language
in which functions expect their arguments on an operand stack
to which they also return their results. This means that in every
expression, the arguments must be entered before the command
that uses them (reverse polish notation). For many new users, SLI is
diffi cult to learn and hard to read. This is especially true for math:
The simple expression α = t · e−t/τ has to be written as /alpha t
t neg tau div exp mul def in SLI. But SLI is also a high-level
language where functions can be assembled at run time, stored in
variables and passed as arguments to other functions (functional
programming; Finkel, 1996). Powerful indexing operators like
Part and functional operators like Map, together with data types
like heterogeneous arrays and dictionaries, allow a compact and
expressive formulation of algorithms.

Stack-based languages are often used as intermediate languages
in compilers and interpreters (Aho et al., 1988). This inspired
us to couple NEST and Python using SLI as an intermediate
language.

THE PyNEST LOW-LEVEL INTERFACE
The low-level API of PyNEST is implemented in C/C++ using the
Python C-API (van Rossum, 2008). It exposes only three func-
tions to Python, and has private routines for converting between
SLI data types and their Python equivalents. The exposed func-
tions are:

1. sli_push(py_object), which converts the Python object
py_object to the corresponding SLI data type and pushes it
onto SLI’s operand stack.

2. sli_pop(), which removes the top element from SLI’s ope-
rand stack and returns it as a Python object.

3. sli_run(slicommand), which uses NEST’s simulation lan-
guage interpreter to execute the string slicommand. If the
command requires arguments, they have to be present on SLI’s
operand stack or must be part of slicommand. After the com-
mand is executed, its return values will be on the interpreter’s
operand stack.

Since these functions provide full access to the simulation lan-
guage interpreter, we can now control NEST’s simulation kernel
without explicit Python bindings for all NEST functions. This
interface also provides a natural way to execute legacy SLI code

from within a PyNEST script by just using the command sli_
run("(legacy.sli) run"). However, it does not provide any
benefi ts over plain SLI from a syntactic point of view: All simulation
specifi c code still has to be written in SLI. This problem is solved
by a set of high-level functions.

THE PyNEST HIGH-LEVEL INTERFACE
To allow the researcher to defi ne, run and evaluate NEST simula-
tions using only Python, PyNEST offers convenient wrappers for
the most important functions of NEST. These wrappers are imple-
mented on top of the low-level API and execute appropriate SLI
expressions. Thus, at the level of PyNEST, SLI is invisible to the user.
Each high-level function consists essentially of three parts:

1. The arguments of the function are put on SLI’s operand
stack.

2. One or more SLI commands are executed to perform the desi-
red action in NEST.

3. The results (if any) are fetched from the operand stack and
returned as Python objects.

A concrete example of the procedure is given in the following
listing, which shows the implementation of Create():

1 def Create(model, n=1):
2 sli_run("/%s" % model)
3 sli_push(n)
4 sli_run("CreateMany")
5 lastid = sli_pop()
6 return range(lastid - n + 1, lastid + 1)

In line 2, we fi rst transfer the model name to NEST. Model names
in NEST have to be of type literal, a special symbol type that is not
available in Python. Because of this, we cannot use sli_push() for
the data transfer, but have to use sli_run(), which executes a given
command string instead of just pushing it onto SLI’s stack. The
command string consists of a slash followed by the model name,
which is interpreded as a literal by SLI. Line 3 uses sli_push()
to transmit the number of nodes (n) to SLI. The nodes are then
created by CreateMany in line 4, which expects the model name
and number of nodes on SLI’s operand stack and puts the id of
the last created node back onto the stack. The id is retrieved in
line 5 via sli_pop(). To be consistent with the convention that
all PyNEST functions work with lists of nodes, we build a list of
all created nodes’ ids, which is returned in line 6.

A sequence diagram of the interaction between the different
software layers of PyNEST is shown in Figure 2 for a call to the
Create() function.

DATA CONVERSION
From Python to SLI
The data conversion between Python and SLI exploits the fact that
most data types in SLI have an equivalent type in Python. The func-
tion sli_push() calls PyObjectToDatum() to convert a Python
object py_object to the corresponding SLI data type (see in
Figure 2). PyObjectToDatum() determines the type of py_object
in a cascade of type checks (e.g. PyInt_Check(), PyString_
Check(), PyFloatCheck()) as described by van Rossum (2008).
If a type check succeeds, the Python object is used to create a new

173

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

SLI Datum of the respective type. PyObjectToDatum() is called
recursively on the elements of lists and dictionaries. The listing
below shows how this technique is used for the conversion of the
Python type float and for NumPy arrays of doubles:

 1 Datum* PyObjectToDatum(PyObject *py_object)
 2 {
 3 if (PyFloat_Check(py_object)) //float?
 4 {
 5 return new DoubleDatum(PyFloat_AsDouble(
 6 py_object));
 7 }
 8
 9 if (PyArray_Check(py_object)) //NumPy array?
10 {
11 int size = PyArray_Size(py_object);
12 PyArrayObject *array;
13 array = (PyArrayObject*) py_object;
14 assert(array != 0);
15 switch (array->descr->type_num)
16 {
17 case PyArray_DOUBLE:
18 {
19 double *begin = (double*) array->data;
20 return new DoubleVectorDatum(
21 new std::vector<double>(
22 begin, begin+size));
23 }
24 //cases for NumPy arrays of other types
25 }

26 }
27 //checks for other supported Python types
28 }

From SLI to Python
To convert a SLI data type to the corresponding Python type, we can
avoid the cascade of type checks, since all SLI data types are derived
from a common base class, called Datum. The C++ textbook solution
would add a pure virtual conversion function convert() to the class
Datum. Each derived class (e.g. DoubleDatum, DoubleVectorDatum)
then overloads this function to implement its own conversion to the
corresponding Python type. This approach is shown for the SLI
type DoubleDatum in the following listing. The function get() is
implemented in each Datum and returns its data member.

1 PyObject*
2 DoubleDatum::convert()
3 {
4 return PyFloat_FromDouble(get());
5 }

However, this solution would make SLI’s type hierarchy (and
thus NEST) depend on Python. To keep NEST independent of
Python, we split the implementation in two parts: The fi rst is
Python-unspecifi c and resides in the NEST source code (Figure 3,
left rectangle), the second is Python-specifi c and defi ned in the
PyNEST source code (Figure 3, right rectangle).

We move the Python-specifi c conversion code from convert()
to a new function convert_me(), which is then called by the

FIGURE 2 | Sequence diagram showing the interaction between Python

and SLI. A call to the PyNEST high-level function Create() fi rst transmits
the model name to SLI using sli_run(). It is converted to the SLI type
literal by the interpreter (). Next, it pushes the number of nodes (10) to
SLI using sli_push(). The PyNEST low-level API converts the argument
to a SLI datum () and pushes it onto SLI’s operand stack. Next, it

executes appropriate SLI code to create the nodes of type iaf_neuron in
the simulation kernel. Finally it retrieves the results of the NEST
operations using sli_pop(), which converts the data back to a Python
object (). The result of the operation in SLI (the id of the last node created)
is used to create a list with the ids of all new nodes, which is returned to
Python.

174

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

interface function use_converter(). This function is now inde-
pendent of Python:

1 void
2 Datum::use_converter(DatumConverter& converter)
3 {
4 converter.convert_me(* this);
5 }

The function use_converter() is defi ned in the base class
Datum and inherited by all derived classes. It calls the convert_
me() function of converter that matches the type of the derived
Datum. NEST’s class DatumConverter is an abstract class that
defi nes a pure virtual function convert_me(T&) for each SLI
type T:

1 class DatumConverter
2 {
3 public:
4 virtual void convert_me(Datum&);
5 virtual void convert_me(DoubleDatum&)=0;
6 virtual void convert_me(DoubleVectorDatum&)=0;
7 //convert_me() function for other Datums
8 };

The Python-specifi c part of the conversion is encapsu-
lated in the class DatumToPythonConverter, which derives
from DatumConverter and implements the convert_me()
functions to actually convert the SLI types to Python objects.
DatumToPythonConverter::convert_me() takes a reference
to the Datum as an argument and is overloaded for each SLI type. It
stores the result of the conversion in the class variable py_object.
An example for the conversion of DoubleDatum is given in the
following listing:

1 void
2 DatumToPythonConverter::convert_me(
3 DoubleDatum& dd)
4 {
5 py_object = PyFloat_FromDouble(dd.get());
6 }

DatumToPythonConverter also provides the function con-
vert(), which converts a given Datum d to a Python object by
calling d.use_converter() with itself as an argument. It is used
in the implementation of sli_pop() (see in Figure 2). After the
call to use_converter(), the result of the conversion is available
in the member variable py_object, and is returned to the caller:

1 PyObject*
2 DatumToPythonConverter::convert(Datum& d)
3 {
4 d.use_converter(*this);
5 return py_object;
6 }

In the Computer Science literature, this method of decoupling
different parts of program code is called the acyclic visitor pattern
(Martin et al., 1998). Our implementation is based on Alexandrescu
(2001).

As an example, the diagram in Figure 4 illustrates the
sequence of events in sli_pop(): First, sli_pop() retrieves
a SLI Datum d from the operand stack (not shown). Second, it
creates an instance of DatumToPythonConverter and calls its
convert() function, which then passes itself as visitor to the
use_ converter() function of d. Datum::use_converter()
calls the DatumToPythonConverter’s convert_me() function
that matches the type of d. The function convert_me() then cre-
ates a new Python object from the data in d and stores it in the
DatumToPythonConverter’s member variable py_object,
which is returned to sli_pop().

NumPy support
To make PyNEST depend on NumPy only if it is available, we
use conditional compilation based on the preprocessor macro
HAVE_NUMPY, which is determined during the confi guration of
PyNEST prior to compilation. For example, the following listing
shows the implementation of the DatumToPythonConverter::
convert_me() function to convert homogeneous arrays of doubles
from SLI to Python. If NumPy is available during compilation, its

FIGURE 3 | Class diagram for the acyclic visitor pattern used to convert SLI

types to Python types. The left rectangle contains classes belonging
to NEST, the right rectangle contains classes that are part of PyNEST. All
SLI data types are derived from the base class Datum and inherit its function

use_converter(). The class DatumConverter is the base class of
DatumToPythonConverter. The actual data conversion is carried out in
one of DatumToPythonConverter’s convert_me() functions. Virtual
functions are typeset in italics.

175

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

 homogeneous array type is used to store the data. Without NumPy,
a Python list is used instead.

 1 void
 2 DatumToPythonConverter::convert_me(
 3 DoubleVectorDatum& d)
 4 {
 5 int dims = d->size();
 6 #ifdef HAVE_NUMPY
 7 PyArrayObject* array;
 8 array = (PyArrayObject*)
 9 PyArray_FromDims(1, &dims, PyArray_DOUBLE);
10 std::copy(d->begin(), d->end(),
11 (double*) array->data);
12 py_object = (PyObject*) array;
13 #else
14 py_object = PyList_New(dims);
15 for(int i=0; i<dims; i++)
16 PyList_SetItem(py_object, i,
17 PyFloat_FromDouble((*d)[i]));
18 #endif
19 }

ERROR HANDLING
Error handling in NEST is implemented using C++ exceptions
that are propagated up the calling hierarchy until a suitable error
handler catches them. In this section, we describe how we extend
this strategy to PyNEST.

PyNEST executes SLI code using sli_run() as described in the
Section “The PyNEST High-Level Interface”. However, the high-
level API does not call sli_run() directly, but rather through the
wrapper function catching_sr():

1 def catching_sr(cmd):
2 sli_run("{" + cmd + "} runprotected")
3 if not sli_pop(): #cmd caused an error

4 errorname = sli_pop()
5 commandname = sli_pop()
6 raise NESTError("NEST error: " +
7 errorname + " in " +
8 commandname)

In line 2, catching_sr() converts the command string cmd to
a SLI procedure by adding braces. It then calls the SLI command
runprotected (see listing below), which executes the procedure
in a stopped context (PostScript; Adobe Systems Inc., 1999). If an
error occurs, stopped leaves the name of the failed command on
the stack and returns true. In this case, runprotected extracts the
name of the error from SLI’s error dictionary, converts it to a string,
and puts it back on the operand stack, followed by false to indicate
the error condition to the caller. Otherwise, true is put on the stack.
In case of an error, catching_sr() uses both the name of the
command and the error to raise a Python exception (NESTError),
which can be handled by the user’s simulation code. The following
listing shows the implementation of runprotected:

 1 /runprotected
 2 {
 3 stopped dup
 4 {
 5 errordict /commandname get cvs
 6 % tell NEST that the error was handled
 7 errordict /newerror false put
 8 } if
 9 not
10 } def

Forwarding the original NEST errors to Python has the advan-
tage that PyNEST functions do not have to check their arguments,
because the underlying NEST functions already do. This makes the
code of the high-level API more readable, while at the same time,
errors are raised as Python exceptions without requiring additional

FIGURE 4 | Sequence diagram of the acyclic visitor pattern for data

conversion from SLI to Python. For the conversion of a SLI datum d, sli_
pop() creates an instance of DatumToPythonConverter. It then calls the
DatumToPythonConverter’s convert() function, which passes itself as a

visitor to the use_converter() function of d. Datum::use_converter()
calls the DatumToPythonConverter’s convert_me() function that matches
d’s type. convert_me() creates a new Python object from the data contained
in d. The new Python object is returned to sli_pop().

176

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

code. Moreover, this results in consistent error messages in NEST
and PyNEST.

DISCUSSION
The previous sections describe the usage and implementation of
PyNEST. Here we discuss consequences and limitations of the
PyNEST implementation.

PERFORMANCE
The use of PyNEST entails a certain computational overhead over
pure SLI-operated NEST. This overhead can be split into two main
components:

1. Call overhead because of using SLI over direct access to the
NEST kernel.

2. Data exchange between Python and NEST.

For most real-world simulations, the fi rst is negligible, since
the number of additional function calls is small. In practice, most
overhead is caused by the second component, which we can reduce
by minimizing the number of data conversions. For an illustration
of the technique, see the following two listings that both add up
a sequence of numbers in SLI. The fi rst creates the sequence of
numbers in Python, pushes them to SLI one after the other and
lets SLI add them. Executing it takes approx. 15 s on a laptop with
an Intel Core Duo processor at 1.83 GHz.

1 sli_push(0)
2 for i in range(1, 100001):
3 sli_push(i)
4 sli_run("add")

The second version computes the same result, but instead of
creating the sequence in Python, it is created in SLI:

1 sli_run("0 1 1 100000 { add } for")

Although Python loops are about twice as fast as SLI loops,
this version takes only 0.6 s, because of the reduced number of
data conversions and, to a minor extent, the repeated parsing of
the command string and the larger number of function calls in
the fi rst version.

The above technique is used in the implementation of the
PyNEST high-level API wherever possible. The same technique is
also applied for other loop-like commands (e.g. Map) that exist in
both interpreters. However, it is important to note that the total run
time of the simulation is often dominated by the actual creation and
update of nodes and synapses, and by event delivery. These tasks
take place inside of the optimized C++ code of NEST’s simulation
kernel, hence the choice between SLI or Python has no impact on
performance.

INDEPENDENCE
One of the design decisions for PyNEST was to keep NEST inde-
pendent of third-party software. This is important because NEST is
used on architectures, where Python is not available or only avail-
able as a minimal installation. Moreover, since NEST is a long term
project that has already seen several scripting languages and graph-
ics libraries coming and going, we do not want to introduce a hard
dependency on one or the other. The stand-alone version of NEST

can be compiled without any third-party libraries. Likewise, the
implementation of PyNEST does not depend on anything except
Python itself. The use of NumPy is recommended, but optional.
The binary part of the interface is written by hand and does not
depend on interface generators like SWIG (http://www.swig.
org) or third-party libraries like Boost.Python (http://www.
boost.org). In our opinion, this strategy is important for the
long-term sustainability of our scientifi c software.

EXTENSIBILITY
NEST can never provide all models and functions needed by every
researcher. Extensibility is hence important.

Due to the asymmetry of the PyNEST interface (see “Assymmetry
of the Interface”), neuron models, devices and synapse models
have to be implemented in C++, the language of the simulation
kernel. However, new analysis functions and connection routines
can be implemented in either Python, SLI or C++, depending on the
performance required and the skills of the user. The implementa-
tion in Python is easy, but performance may be limited. However,
this approach is safe, as the real functionality is performed by SLI
code, which is often well tested. To improve the performance, the
implementation can be translated to SLI. This requires knowledge
of SLI in addition to Python. Migrating the function down to the
C++ level yields the highest performance gain, but requires knowl-
edge of C++ and the internals of the simulation kernel.

Since the user can choose between three languages, it is easy to
extend PyNEST, while at the same time, it is possible to achieve
high performance if necessary. The hierarchy of languages also
provides abstraction layers, which make it possible to migrate
the implementation of a function between the different lan-
guages, without affecting user code. The intermediate layer of
SLI allows the decoupling of the development of the simula-
tion kernel from the development of the PyNEST API. This is
also helpful for developers of abstraction libraries like PyNN
(Davison et al., 2008), who only need limited knowledge of the
simulation kernel.

ASSYMMETRY OF THE INTERFACE
Our implementation of PyNEST is asymmetric in that SLI code
can be executed from Python, but NEST cannot respond, except for
error handling and data exchange. Although this is suffi cient to run
NEST simulations from within a Python session, it could be ben-
efi cial to allow NEST to execute Python code: The user of PyNEST
already knows the Python programming language, hence it might
be easier to extend NEST in Python rather than to modify the C++
code of the simulation kernel. SciPy, NumPy and other packages
provide well tested implementations of mathematical functions
and numerical algorithms. Together with callback functions, these
libraries would allow rapid prototyping of neuron and synapse
models or to initialize parameters of neuron models or synapses
according to complicated probability distributions: Python could
be the middleware between NEST’s simulation kernel and the
numerical package. Using online feedback from the simulation,
callback functions could also control simulations. Moreover, with a
symmetric interface and appropriate Python modules it would be
easier to add graphical user interfaces to NEST, along with online
display of observables, and experiment management.

177

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

Different implementations of the symmetric interface are pos-
sible: One option is to pass callback functions from Python to NEST.
Another option is to further exploit the idea that the “language is
the protocol”. In the same way as PyNEST generates SLI code, NEST
would emit code for Python. Already Harrison and McLennan
(1998) mention this technique, and in experimental implementa-
tions it was used successfully to symmetrically couple NEST with
Tcl/Tk (Diesmann and Gewaltig, 2002), Mathematica, Matlab and
IDL. The fact that none of these interfaces is still maintained con-
fi rms the conclusions of the Section “Independence”.

LANGUAGE CONSIDERATIONS
At present, PyNEST maps NEST’s capabilities to Python. Further
advances in the expressiveness of the language may be easier to
achieve at the level of Python or above (e.g. PyNN; Davison et al.,
2008) without a counterpart in SLI. An example for this is the sup-
port of units for physical quantities as available in SBML (Hucka
et al., 2002) or Brian (Goodman and Brette, 2008).

More generally, the development of simulation tools has not kept
up with the increasing complexity of network models. As a conse-
quence the reliable documentation of simulation studies is chal-
lenging and laboratories notoriously have diffi culties in reproducing
published results (Djurfeldt and Lansner, 2007). One component of
a solution is the ability to concisely formulate simulations in terms
of the neuroscientifi c problem domain like connection topologies
and probability distributions. At present little research has been car-
ried out on the particular design of such a language (Davison et al.,
2008; Nordlie et al., 2008), but a general purpose high-level language
interface to the simulation engine is a fi rst step towards this goal.

APPENDIX
A. PyNEST API REFERENCE
Models
Models(mtype="all", sel=None): Return a list of all available

models (nodes and synapses). Use mtype="nodes" to only see
node models, mtype="synapses" to only see synapse models.
sel can be a string, used to fi lter the result list and only return
models containing it.

GetDefaults(model): Return a dictionary with the default
parameters of the given model, specifi ed by a string.

SetDefaults(model, params): Set the default parameters of the
given model to the values specifi ed in the params dictionary.

GetStatus(model, keys=None): Return a dictionary with sta-
tus information for the given model. If keys is given, a value
is returned instead. keys may also be a list, in which case a list
of values is returned.

CopyModel(existing, new, params=None): Create a new
model by copying an existing one. Default parameters can be
given as params, or else are taken from existing.

Nodes
Create(model, n=1, params=None): Create n instances of type

model in the current subnetwork. Parameters for the new nodes
can be given as params (a single dictionary, or a list of dictionar-
ies with size n). If omitted, the model’s defaults are used.

GetStatus(nodes, keys=None): Return a list of parameter
dictionaries for the given list of nodes. If keys is given, a list

of values is returned instead. keys may also be a list, in which
case the returned list contains lists of values.

SetStatus(nodes, params, val=None): Set the parameters
of the given nodes to params, which may be a single diction-
ary, or a list of dictionaries of the same size as nodes. If val
is given, params has to be the name of a property, which is set
to val on the nodes. val can be a single value, or a list of the
same size as nodes.

Connections
Connect(pre, post, params=None, delay=None, model=

"static_synapse"): Make one-to-one connections of type
model between the nodes in pre and the nodes in post. pre
and post have to be lists of the same length. If params is given
(as a dictionary or as a list of dictionaries with the same size as
pre and post), they are used as parameters for the connections.
If params is given as a single fl oat, or as a list of fl oats of the
same size as pre and post, it is interpreted as weight. In this
case, delay also has to be given (as a fl oat, or as a list of fl oats
with the same size as pre and post).

ConvergentConnect(pre, post, weight=None, delay=None,
model="static_synapse"): Connect all nodes in pre to each
node in post with connections of type model. If weight is
given, delay also has to be given. Both can be specifi ed as a
fl oat, or as a list of fl oats with the same size as pre.

RandomConvergentConnect(pre, post, n, weight=None,
delay=None, model="static_synapse"): Connect n ran-
domly selected nodes from pre to each node in post with connec-
tions of type model. Presynaptic nodes are drawn independently
for each postsynaptic node. If weight is given, delay also has
to be given. Both can be specifi ed as a fl oat, or as a list of fl oats
of size n.

DivergentConnect(pre, post, weight=None, delay=None,
model="static_synapse"): Connect each node in pre to all
nodes in post with connections of type model. If weight is
given, delay also has to be given. Both can be specifi ed as a fl oat,
or as a list of fl oats with the same size as post.

RandomDivergentConnect(pre, post, n, weight=None,
delay=None, model="static_synapse"): Connect each
node in pre to n randomly selected nodes from post with con-
nections of type model. If weight is given, delay also has to
be given. Both can be specifi ed as a fl oat, or as a list of fl oats
of size n.

Structured networks
CurrentSubnet(): Return the id of the current subnetwork.
ChangeSubnet(subnet): Make subnet the current subnetwork.
GetLeaves(subnet): Return the ids of all nodes under subnet

that are not subnetworks.
GetNodes(subnet): Return the complete list of subnet’s children

(including subnetworks).
GetNetwork(subnet, depth): Return a nested list of subnet’s

children up to depth (including subnetworks).
LayoutNetwork(model, shape, label=None, customdict=

None): Create a subnetwork of shape shape that contains
nodes of type model. label is an optional name for the sub-
network. If present, customdict is set as custom dictionary of

178

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

the subnetwork, which can be used by the user to store custom
information.

BeginSubnet(label=None, customdict=None): Create a new
subnetwork and change into it. label is an optional name for
the subnetwork. If present, customdict is set as custom diction-
ary of the subnetwork, which can be used by the user to store
custom information.

EndSubnet(): Change to the parent subnetwork and return the
id of the subnetwork just left.

Simulation control
Simulate(t): Simulate the network for t milliseconds.
ResetKernel(): Reset the simulation kernel. This will destroy the

network as well as all custom models created with CopyModel().
The parameters of built-in models are reset to their defaults.
Calling this function is equivalent to restarting NEST.

ResetNetwork(): Reset all nodes and connections to the defaults
of their respective model.

SetKernelStatus(params): Set the parameters of the simula-
tion kernel to the ones given in params.

GetKernelStatus(): Return a dictionary with the parameters
of the simulation kernel.

PrintNetwork(depth=1, subnet=None): Print the network
tree up to depth, starting at subnet. If subnet is omitted, the
current subnetwork is used instead.

B. ADVANCED EXAMPLE
In the Section “Using PyNEST”, we introduced the main features
of PyNEST with a short example. This section contains a simula-
tion of a balanced random network of 10,000 excitatory and 2,500
inhibitory integrate-and-fi re neurons as described in Brunel (2000).
We start with importing the required modules.

1 from nest import *
2 import nest.raster_plot as plot
3 import time

We store the current time at the start of the simulation.

4 startbuild = time.time()

Next, we use SetKernelStatus() to set the temporal resolu-
tion for the simulation to 0.1 ms.

5 SetKernelStatus({"resolution": 0.1})

We defi ne variables for the simulation duration, the network
size and the number of neurons to be recorded.

6 simtime = 500.0 #[ms] Simulation time
7 NE = 10000 #number of exc. neurons
8 NI = 2500 #number of inh. neurons
9 N_rec = 50 #record from 50 neurons

The following are the parameters of the integrate-and-fi re neu-
ron that deviate from the defaults.

10 tauMem = 20.0 #[ms] membrane time constant
11 theta = 20.0 #[mV] threshold for firing
12 t_ref = 2.0 #[ms] refractory period
13 E_L = 0.0 #[mV] resting potential

The synaptic delay and weights and the number of afferent syn-
apses per neuron are assigned to variables. By choosing the relative

strength of inhibitory connections to be | J
in

 | / | J
ex

 | = g = 5.0, the
network is in the inhibition-dominated regime.

14 delay = 1.5 #[ms] synaptic delay
15 J_ex = 0.1 #[mV] exc. synaptic strength
16 g = 5.0 #ratio between inh. and exc.
17 J_in = −g*J_ex #[mV] inh. synaptic strength
18 epsilon = 0.1 #connection probability
19 CE = int(epsilon*NE) #exc. synapses/neuron
20 CI = int(epsilon*NI) #inh. synapses/neuron

To reproduce Figure 8C from Brunel (2000), we choose param-
eters for asynchronous, irregular fi ring: νθ denotes the external
Poisson rate which results in a mean free membrane potential equal
to the threshold. We set the rate of the external Poisson input to
ν

ext
 = ηνθ = 2νθ.

21 eta = 2.0 #fraction of ext. input
22 nu_th = theta/(J_ex*tauMem) #[kHz] ext. rate
23 nu_ext = eta*nu_th #[kHz] exc. ext. rate
24 p_rate = 1000.0*nu_ext #[Hz] ext. Poisson rate

In the next step we set up the populations of excitatory
(nodes_ex) and inhibitory (nodes_in) neurons. The neurons
of both pools have identical parameters, which are confi gured
for the model with SetDefaults(), before creating instances
with Create().

25 print "Creating network nodes …"
26 SetDefaults("iaf_psc_delta", {"C_m" : tauMem,
27 "tau_m": tauMem,
28 "t_ref": t_ref,
29 "E_L" : E_L,
30 "V_th" : theta})
31 nodes_ex = Create("iaf_psc_delta", NE)
32 nodes_in = Create("iaf_psc_delta", NI)
33 nodes = nodes_ex+nodes_in

Next, a Poisson spike generator (noise) is created and its
rate is set. We use it to provide external excitatory input to the
network.

34 noise = Create("poisson_generator",
35 params={"rate": p_rate})

The next paragraph creates the devices for recording spikes from
the excitatory and inhibitory population. The spike detectors are
confi gured to record the spike times and the id of the sending
neuron to a fi le.

36 SetDefaults("spike_detector", {"withtime": True,
37 "withgid" : True,
38 "to_file" : True})
39 espikes = Create("spike_detector")
40 ispikes = Create("spike_detector")

Next, we use CopyModel() to create copies of the synapse model
"static_synapse", which are used for the excitatory and inhibi-
tory connections.

41 SetDefaults("static_synapse", {"delay": delay})
42 CopyModel("static_synapse", "excitatory",
43 {"weight": J_ex})
44 CopyModel("static_synapse", "inhibitory",
45 {"weight": J_in})

179

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

The following code connects neurons and devices.
DivergentConnect() connects one source node with each of
the given target nodes and is used to connect the Poisson genera-
tor (noise) to the excitatory and the inhibitory neurons (nodes).
ConvergentConnect() is used to connect the fi rst N_rec excita-
tory and inhibitory neurons to the corresponding spike detectors.

46 print "Connecting network …"
47 DivergentConnect(noise, nodes,
48 model="excitatory")
49 ConvergentConnect(nodes_ex[:N_rec], espikes,
50 model="excitatory")
51 ConvergentConnect(nodes_in[:N_rec], ispikes,
52 model="excitatory")

The following lines connect the neurons with each other. The
function RandomConvergentConnect() draws CE presynaptic
neurons randomly from the given list (fi rst argument) and con-
nects them to each postsynaptic neuron (second argument). The
presynaptic neurons are drawn repeatedly and independent for
each postsynaptic neuron.

53 RandomConvergentConnect(nodes_ex, nodes, CE,
54 model="excitatory")
55 RandomConvergentConnect(nodes_in, nodes, CI,
56 model="inhibitory")

To calculate the duration of the network setup later, we again
store the current time.

57 endbuild = time.time()

We use Simulate() to run the simulation.

58 print "Simulating", simtime, "ms …"
59 Simulate(simtime)

Again, we store the time to calculate the runtime of the simula-
tion later.

60 endsimulate = time.time()

The following code calculates the mean fi ring rate of the excita-
tory and the inhibitory neurons, determines the total number of

synapses, and the time needed to set up the network and to simulate
it. The fi ring rates are calculated from the total number of events
received by the spike detectors. The total number of synapses is avail-
able from the status dictionary of the respective synapse models.

61 events_ex = GetStatus(espikes, "n_events")[0]
62 rate_ex = event_ex/simtime*1000.0/N_rec
63 events_in = GetStatus(ispikes, "n_events")[0]
64 rate_in = events_in/simtime*1000.0/N_rec
65 synapses_ex = GetStatus("excitatory",
66 "num_connections")
67 synapses_in = GetStatus("inhibitory",
68 "num_connections")
69 synapses = synapses_ex+synapses_in
70 build_time = endbuild−startbuild
71 sim_time = endsimulate−endbuild

The next lines print a summary with network and runtime
statistics.

72 print "Brunel network simulation using PyNEST:"
73 print "Number of neurons :", len(nodes)
74 print "Number of synapses:", synapses
75 print " Exitatory :", synapses_ex
76 print " Inhibitory :", synapses_in
77 print "Excitatory rate : %.2f Hz" % rate_ex
78 print "Inhibitory rate : %.2f Hz" % rate_in
79 print "Building time : %.2f s" % build_time
80 print "Simulation time : %.2f s" % sim_time

Finally, nest.raster_plot is used to visualize the spikes of the
N_rec selected excitatory neurons, similar to Figure 8C of Brunel
(2000).

81 plot.from_device(espikes, hist=True)

The resulting plot is shown in Figure 5 together with a transcript
of the simulation session. The simulation was run on a laptop with
an Intel Core Duo processor at 1.83 GHz and 1.5 GB of RAM.

ACKNOWLEDGMENTS
We are grateful to our colleagues in the NEST Initiative and the
FACETS project for stimulating discussions, in particular to Hans

A

jochen@winston:˜$ python brunel.py
NEST 1.9.7753 (C) 2008 The NEST Initiative
Creating network nodes ...
Connecting network ...
Simulating 500.0 ms ...
Brunel network simulation using PyNEST:
Number of neurons : 12500
Number of synapses: 15637600

Excitatory : 12512600
Inhibitory : 3125000

Excitatory rate : 31.52 Hz
Inhibitory rate : 31.96 Hz
Building time : 34.06 s

Simulation time : 78.88 s

B

FIGURE 5 | Results of the balanced random network simulation. (A) The
transcript of the simulation session shows the output during network setup and

the summary printed at the end of the simulation. (B) Spike raster (top) and
spike time histogram (bottom) of the N_rec recorded excitatory neurons.

180

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 |

Eppler et al. PyNEST: A convenient interface to NEST

REFERENCES
Adobe Systems Inc. (1999). Postscript

Language Reference Manual, third
edn. Reading, MA, Addison-Wesley.

Aho, A. V., Sethi, R., and Ullman, J. D.
(1988). Compilers, Principles,
Techniques, and Tools. Reading, MA,
Addison-Wesley.

Alexandrescu, A. (2001). Modern C++
Design. Boston, Addison-Wesley.

Brunel, N. (2000). Dynamics of sparsely
connected networks of excitatory and
inhibitory spiking neurons. J. Comput.
Neurosci. 8, 183–208.

Davison, A., Brüderle, D., Eppler, J. M.,
Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2008).
PyNN: a common interface for
neuronal network simulators.
Front. Neuroinformatics 2. doi:
10.3389/neuro.11.011.2008.

Diesmann, M., and Gewaltig, M.-O. (2002).
NEST: an environment for neural sys-
tems simulations. In Forschung und
wisschenschaftliches Rechnen, Beitrage
zum Heinz-Billing-Preis 2001, Vol. 58
of GWDG-Bericht, T. Plesser and V.
Macho, eds (Gottingen, Ges. für Wiss.
Datenverarbeitung), pp. 43–70.

Djurfeldt, M., and Lansner, A. (2007).
Workshop report: 1st INCF workshop
on large-scale modeling of the nerv-
ous system. Nature Precedings, doi:
10.1038/npre.2007.262.1.

Dubois, P. F. (2007). Guest editor’s intro-
duction: Python: batteries included.
Comput. Sci. Eng. 9, 7–9.

Finkel, R. A. (1996). Advanced
Programming Languages. Menlo Park,
CA, Addison-Wesley.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (Neural Simulation
Tool). Scholarpedia 2, 1430.

Goodman, D., and Brette, R. (2008). Brian:
a simulator for spiking neural networks
in Python. Front. Neuroinformatics 2.
doi: 10.3389/neuro.11.005.2008.

Harrison, M., and McLennan, M. (1998).
Effective Tcl/Tk Programming:
Writing Better Programs with Tcl and
Tk. Reading, MA, Addison-Wesley.

Hucka, M., Finney, A., Sauro, H. M.,
Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B. J., Bray, D.,
Cornish-Bowden, A. et al. (2002). The
systems biology markup language
(SBML): a medium for representa-
tion and exchange of biochemical
network models. Bioinformatics 19,
524–531.

Lewis, B., and Berg, D. J. (1997).
Multithreaded Programming With
PThreads.Upper Saddle River: Sun
Microsystems Press.

Martin, R. C., Riehle, D., and Buschmann, F.
(eds) (1998). Pattern Languages of
Program Design 3. Reading, MA,
Addison-Wesley.

MathWorks (2002). MATLAB The
Language of Technical Computing:
Using MATLAB. Natick, MA, 3 Apple
Hill Drive.

McConnell, S. (2004). Code Complete:
A practical Handbook of Software

Construction. 2nd edn. Redmond,
WA, Microsoft Press.

Message Passing Interface Forum
(1994). MPI: A Message-Passing
Interface Standard. Technical Report
UT-CS-94-230.

Mor r i son, A . , Diesmann, M. ,
a n d G e r s t n e r, W. (2 0 0 8) .
Phenomenological models of synaptic
plasticity based on spike-timing. Biol.
Cybern. 98, 459–478.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of
high connectivity network simulation
with distributed computing. Neural
Comput. 17, 1776–1801.

Natschläger, T. (2003). CSIM: A Neural
Circuit SIMulator. Technical report.

Nordlie, E., Plesser, H. E., and Gewaltig, M.-
O. (2008). Towards reproducible
descriptions of neuronal network
models. Volume Conference Abstract:
Neuroinformatics 2008. doi: 10.3389/
conf.neuro.11.2008.01.086.

Ousterhout, J. K. (1994). Tcl and
the Tk Toolkit. Professional
Computing. Reading Massachusetts:
Addison-Wesley.

Plesser, H. E., Eppler, J. M., Morrison, A.,
Diesmann, M., and Gewaltig, M.-O.
(2007). Effi cient parallel simulation
of large-scale neuronal networks on
clusters of multiprocessor computers.
In Euro-Par 2007: Parallel Processing,
Volume 4641 of Lecture Notes in
Computer Science, A.-M. Kermarrec,

L. Bouge, and T. Priol, eds (Berlin,
Springer-Verlag), pp. 672–681.

Prechelt, L. (2000). An empirical compari-
son of seven programming languages.
COMPUTER 33, 23–29.

Stroustrup, B. (1997). The C++
Programming Language, 3rd edn.
New York, Addison-Wesely.

van Rossum, G. (2008). Python/C API
Reference Manual. Available at: http://
docs.python.org/api/api.html.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 14 September 2008; paper pend-
ing published: 29 September 2008; accepted:
30 December 2008; published online: 29
January 2009.
Citation: Eppler JM, Helias M,
Muller E, Diesmann M and Gewaltig
M-O (2009) PyNEST: a convenient
interface to the NEST simulator.
Front. Neuroinform. (2009) 2:12. doi:
10.3389/neuro.11.012.2008
Copyright © 2009 Eppler, Helias, Muller,
Diesmann and Gewaltig. This is an open-
access article subject to an exclusive license
agreement between the authors and the
Frontiers Research Foundation, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

Ekkehard Plesser for drawing our attention to the visitor pat-
tern. Partially funded by DIP F1.2, BMBF Grant 01GQ0420 to the
Bernstein Center for Computational Neuroscience Freiburg, EU
Grant 15879 (FACETS), and “The Next-Generation Integrated

Simulation of Living Matter” project, part of the Development
and Use of the Next-Generation Supercomputer Project of the
Ministry of Education, Culture, Sports, Science and Technology
(MEXT) of Japan.

181

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 28 January 2009
doi: 10.3389/neuro.11.001.2009

NEURON and Python

Michael L. Hines1, Andrew P. Davison2* and Eilif Muller3

1 Computer Science, Yale University, New Haven, CT, USA
2 Unité de Neurosciences Intégratives et Computationelles, CNRS, Gif sur Yvette, France
3 Laboratory for Computational Neuroscience, Ecole Polytechnique Fédérale de Lausanne, Switzerland

The NEURON simulation program now allows Python to be used, alone or in combination with
NEURON’s traditional Hoc interpreter. Adding Python to NEURON has the immediate benefi t
of making available a very extensive suite of analysis tools written for engineering and science.
It also catalyzes NEURON software development by offering users a modern programming
tool that is recognized for its fl exibility and power to create and maintain complex programs. At
the same time, nothing is lost because all existing models written in Hoc, including graphical
user interface tools, continue to work without change and are also available within the Python
context. An example of the benefi ts of Python availability is the use of the xml module in
implementing NEURON’s Import3D and CellBuild tools to read MorphML and NeuroML model
specifi cations.

Keywords: Python, simulation environment, computational neuroscience

for the purely numerical issue of how many compartments are
used to represent each of the cable sections. In the early 90’s, Hoc
syntax was again extended to provide some limited support for
classes and objects, that is, data encapsulation and polymorphism,
but not inheritance.

Though Hoc has served well, continuing development and
maintenance of a general programming language steals signifi cant
time and effort from neurobiology domain-specifi c improvements.
Furthermore, Hoc has turned out to be an orphan language limited
to NEURON users. What is desirable is a modern programming
language such as Python, which provides expressive syntax, pow-
erful debugging capabilities, and support for modularity, facili-
tating the construction and maintenance of complex programs.
Python has proved its utility by giving rise to a large and diverse
community of software developers who are making reusable tools
that are easy to plug-in to the user’s code, the so-called “batteries
included” (Dubois, 2007). In the domain of scientifi c computing,
some examples include Numpy (Oliphant, 2007) and Scipy (Jones
et al., 2001) for core scientifi c functionality, Matplotlib (Hunter,
2007) for 2-D plotting, and IPython (Prez and Granger, 2007) for
a convenient interactive environment.

There are three distinct ways to use NEURON with Python. One
is to run the NEURON program with Python as the interpreter
accepting interactive commands in the terminal window. Another
is to run NEURON with Hoc as the interactive interpreter and
access Python functionality through Hoc objects and function calls.
These fi rst two cases we will refer to as embedded Python. The third
way is to dynamically import NEURON in a running Python or
IPython instance, which we will refer to as using NEURON as an
extension module for Python.

In the sections to follow, we describe the steps required to use
NEURON with Python, from a user’s point of view, and the tech-
niques employed to enable NEURON and Python to work together,
from a developer’s point of view. We begin in Section “Getting

INTRODUCTION
The NEURON simulation environment has become widely used
in the fi eld of computational neuroscience, with more than 700
papers reporting work employing it as of April, 2008. In large part
this is because of its fl exibility and the fact that it is continually
being extended to meet the evolving research needs of its user
community. Experience shows that most of these needs have a
software solution that has already been implemented elsewhere in
the domain of scientifi c computing. The problem is one of interfac-
ing an existing package with NEURON’s interpreter. Some cases
demand intimate knowledge of NEURON’s internals and consider-
able effort; examples include network parallelization with MPI, and
adoption of Sundials for adaptive integration. There are many more
cases in which existing packages could potentially be employed by
NEURON users. Few people, however, have the specialized exper-
tise required to manually interface an existing software package
and the creation of such interfaces is tedious. Instead of laborious
piecemeal adoption of individual packages that requires interven-
tion by a handful of experts, a better approach is to offer Python
as an alternative interpreter so that a huge number of resources
becomes available at the cost of only minimal interface code that
most users can write for themselves.

Since 1984, the NEURON simulation environment has used the
Hoc interpreter (Kernighan and Pike, 1984) for setup and control
of neural simulations. Hoc has a syntax for expressions and con-
trol fl ow vaguely similar to the C language. Hoc is not exactly an
interpreted language since, analogous to Pascal, Java, or Python,
Hoc statements are fi rst dynamically compiled to an internal stack
machine representation using a yacc parser and then the stack
machine statements are executed. A fundamental extension to Hoc
syntax was made in the late 80’s in order to represent the notion of
continuous cables, called sections. Sections are connected to form
a tree shaped structure and their principle purpose is to allow the
user to specify the physical properties of a neuron without regard

Edited by:

Rolf Kötter, Radboud University,
Nijmegen, The Netherlands

Reviewed by:

Felix Schürmann, Ecole Polytechnique
Fédérale de Lausanne, Switzerland
Volker Steuber, University of
Hertfordshire, UK
Arnd Roth, University College London,
UK

*Correspondence:

Andrew Davison, UNIC, Bât. 32/33,
CNRS, 1 Avenue de la Terrasse, 91198
Gif sur Yvette, France.
e-mail: andrew.davison@unic.cnrs-gif.fr

182

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

Started Using NEURON with Python” by describing how to install
and run NEURON with Python. We then demonstrate how model-
ling is carried out using Python by comparing it side-by-side with
Hoc syntax in Section “Writing NEURON Models in Python”. In
Section “Using Python Code from Hoc”, we describe how Python
can be accessed from the Hoc interpreter. In Section “Technical
Aspects”, we discuss some technical aspects of the implementation
of the Python-NEURON interaction. Finally, in Section “Importing
MorphML Files — A Practical Example” we give a detailed, practical
example, from the current NEURON distribution, of combining
Python and Hoc.

The code listings in Figures 1–3 are available for public down-
load from the ModelDB model repository of the Senselab database,
http://senselab.med.yale.edu (accession number 116491).

GETTING STARTED USING NEURON WITH PYTHON
INSTALLATION
NEURON works with Python on Windows, Mac OS X, Linux, and-
many other platforms such as the IBM Blue Gene/L/P and Cray XT3
supercomputers. Detailed installation information can be found
at http://www.neuron. yale.edu by following the “Download
and Install” link.

Binary installers are available for Windows, OS X and RPM-based
Linux systems. The Windows installer contains a large portion of
Cygwin Python 2.5. On OS X and Linux, the latest version of Python
2.3–2.5 previously or subsequently installed is dynamically loaded
when NEURON is launched. The binary installers provide Python
embedded in NEURON, but do not support using NEURON as an
extension module for Python or IPython.

If you would like to use NEURON as an extension module
for Python or IPython, if no installer for your platform exists,
or if you need to customize the installation (e.g. enable parallel/
MPI support, or change the location of binaries), you should
instead get the source code for the standard distribution, also
available from the above “Download and Install” link, and com-
pile it for your machine. Further instructions for this are given
in the Appendix.

BASIC USE
NEURON may be started without the graphical user interface
(GUI) using nrniv or with the GUI using nrngui. To use Python
as the interpreter, rather than Hoc, use the -python option:

$ nrniv -python
NEURON -- VERSION 7.0 (228: fbb244f333a9)
 2008-11-25
Duke, Yale, and the BlueBrain Project --
 Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

>>> from neuron import h

If there are any NEURON NMODL extension mechanisms (Hines
and Carnevale, 2000) in the working directory, and they have been
compiled with nrnivmodl, they will be loaded automatically.

Alternatively, you may wish to use NEURON as an exten-
sion to the normal Python interpreter, or to IPython (Prez and

Granger, 2007), a more interactive variant. To do so, you must build
NEURON from source and install the NEURON shared library
for Python, as described in the Appendix. In Python (or IPython)
then, NEURON is started (and any NMODL mechanisms loaded)
when you import neuron:

$ ipython
[…]

In [1]: from neuron import h
NEURON -- VERSION 7.0 (228: fbb244f333a9)
 2008-11-25
Duke, Yale, and the BlueBrain Project --
 Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

and the NEURON GUI is started by importing the neuron.gui
module:

In [2]: from neuron import gui

The h object that we import from the neuron module is the
principal interface to NEURON’s functionality. h is a HocObject
instance, and has two main functions. First, it gives access to the
top-level of the Hoc interpreter, e.g.:

>>> h('create soma')
>>> h.soma
< nrn.Section object at 0x8194080>

Second, it makes any of the classes defi ned in Hoc available to
Python:

>>> stim = h.IClamp(0.5, sec=h.soma)

Note that the soma section created through the Hoc inter-
preter appears in Python as a Section object. We can also create
Sections directly in Python, e.g.

>>> dend = h.Section()

These two section objects are entirely equivalent, the only
difference being that the name “dend” is not accessible within
the Hoc interpreter. In addition to the HocObject class (and
through it, any class defi ned in Hoc) and the Section class, the
Python neuron module also provides the Segment, Mechanism
and RangeVariable classes. More in-depth examples of using
NEURON from Python are given in Section “Writing NEURON
Models in Python”, while using Python code from Hoc is introduced
in Section “Using Python Code from Hoc”.

STARTING PARALLEL NEURON
Assuming NEURON was built with parallel support as discussed
in the Appendix, suitably parallelized Hoc scripts are started using
the MPI job execution command, typically mpiexec (Hines and
Carnevale, 2008) or the equivalent for your MPI implementation.
When Python is used rather than Hoc, the same parallelism features
are supported, with only slight changes in the execution model.
Both embedded Python (nrniv -python) and NEURON as an
extension module to Python are supported. MPI job execution for
embedded Python is the same as standard NEURON/Hoc, except

183

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

from itertools import chain
from neuron import h
Section = h.Section

--------------------- Model specification ---------------------

topology
noxa,ralisab,lacipa,amosetaerc#)(noitceS=amos

apical = Section()
basilar = Section()
axon = Section()

apical.connect(soma , 1, 0) # connect apical(0), soma(1)
basilar.connect(soma , 0, 0) # connect basilar(0), soma(0)
axon.connect(soma , 0, 0) # connect axon(0), soma(0)

geometry
soma {

03=L#03=L.amos
1=gesn#1=gesn.amos
03=maid#03=maid.amos

}
apical {

006=L#006=L.lacipa
32=gesn#32=gesn.lacipa

1=maid#1=maid.lacipa
}
basilar {

002=L#002=L.ralisab
5=gesn#5=gesn.ralisab
2=maid#2=maid.ralisab

}
axon {

0001=L#0001=L.noxa
73=gesn#73=gesn.noxa

1=maid#1=maid.noxa
}

biophysics
for sec in h.allsec(): # forall {

001=aR#001=aR.ces
1=mc#1=mc.ces

}

{amos#)'hh'(tresni.amos
insert hh
}

apical.insert('pas ') # apical {
insert pas

basilar.insert('pas ') # g_pas = 0.0002
e_pas = -65

for seg in chain(apical , basilar): # }
seg.pas.g = 0.0002 # basilar {

saptresni#56-=e.sap.ges
g_pas = 0.0002
e_pas = -65
}

{noxa#)'hh'(tresni.noxa
insert hh
}

FIGURE 1 | Code listing for a simple model neuron: building the neuron. The Python code is on the left and the equivalent Hoc code on the right.

184

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

--------------------- Instrumentation ---------------------

nysferjbo#tupnicitpanys#
syn = h.AlphaSynapse(0.5, sec=soma) # soma syn = new AlphaSynapse (0.5)

5.0=tesno.nys#5.0=tesno.nys
50.0=xamg.nys#50.0=xamg.nys

0=e.nys#0=e.nys

objref g
)(hparGwen=g#)(hparG.h=g

g.size(0, 5, -80, 40) # g.size(0, 5, -80, 40)
g.addvar('v(0.5)', sec=soma) # g.addvar("soma.v(0.5)")

--------------------- Simulation control ---------------------

520.0=td#520.0=td.h
5=potst#5=potst

56-=tini_v#56-=tini_v

{)(ezilaitinicorp#:)(ezilaitinifed
h.finitialize(v_init) # finitialize(v_init)

)(tnerrucf#)(tnerrucf.h
}

{)(etargetnicorp#:)(etargetnifed
)(nigeb.g#)(nigeb.g

while h.t < tstop: # while (t < tstop) {
h.fadvance() # fadvance()

)t(tolp.g#)t.h(tolp.g
}

)(hsulf.g#
}

)(hsulf.g

{)(ogcorp#:)(ogfed
)(ezilaitini#)(ezilaitini

)(etargetni#)(etargetni
}

)(og#)(og

FIGURE 2 | Code listing for a simple model neuron (continued from Figure 1): instrumenting and running the model. The Python code is on the left and the
equivalent Hoc code on the right.

that an extra -python command line option must be passed to
nrniv:

$ mpiexec -np 4 nrniv -python -mpi nrn-7.0/\
src/nrnpython/examples/test1.py

numprocs=4
NEURON -- VERSION 7.0 (228: fbb244f333a9)
 2008-11-25

Duke, Yale, and the BlueBrain Project --
 Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html
NEURON thinks I am 0 of 4
NEURON thinks I am 2 of 4
NEURON thinks I am 3 of 4
NEURON thinks I am 1 of 4

For users who prefer to use NEURON as an extension module
to Python or IPython, execution is as follows:

$ mpiexec -np 4 python nrn-7.0/src/nrnpython/\
examples/test0.py

MPI_Initialized==true, enabling MPI
 functionality.
numprocs=4
NEURON -- VERSION 7.0 (228: fbb244f333a9)
 2008-11-25
Duke, Yale, and the BlueBrain Project --
 Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

mpi4py thinks I am 2 of 4, NEURON thinks I am
 2 of 4
mpi4py thinks I am 1 of 4, NEURON thinks I am
 1 of 4
mpi4py thinks I am 3 of 4, NEURON thinks I am
 3 of 4
mpi4py thinks I am 0 of 4, NEURON thinks I am
 0 of 4

However, there is one important caveat: The NEURON exten-
sion module does not initialize MPI itself, but rather delegates
this job to Python. To initialize MPI in Python, one must import a

185

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

Python MPI module, such as “MPI for Python” (mpi4py) (Dalcín
et al., 2008), prior to importing neuron:

from mpi4py import MPI
from neuron import h

pc = h.ParallelContext()

s = "mpi4py thinks I am %d of %d,\
 NEURON thinks I am %d of %d\n"

cw = MPI.COMM_WORLD
print s % (cw.rank, cw.size, \
 pc.id(),pc.nhost())

pc.done()

The module mpi4py is available from the Python Package
Index (http://pypi.python.org).

ONLINE HELP
For new users of NEURON with Python, a convenient starting
place for help is Python online help, provided through the global
function help, which takes one argument, the object on which
you would like help:

>>> import neuron
>>> help(neuron)
Help on package neuron:

NAME
 neuron

FILE
 /usr/lib/python2.5/site-packages/neuron/
 __init__.py

DESCRIPTION
 neuron
 ======

 For empirically-based simulations of
 neurons and networks of neurons in
 Python.

 This is the top-level module of the official
 python interface to the NEURON simulation
 environment (http://www.neuron.yale.
 edu/neuron/).

 For a list of available names, try
 dir(neuron).

[…]

For commonly used Hoc classes, such as Vector, APCount,
NetCon, etc., helpful reminders of constructor arguments, attributes
and units with Python syntax examples are available at the Python
prompt:

>>> from neuron import h
>>> help(h.APCount)
NEURON+Python Online Help System
================================

class APCount

pointprocess

apc = APCount(segment)
apc.thresh --- mV
apc.n --
apc.time --- ms
apc.record(vector)

Description:

Counts the number of times the voltage at its
location crosses a threshold voltage in the
positive direction. n contains the count and time
contains the time of last crossing.

[…]

from neuron import h

create pre- and post -synaptic sections
pre = h.Section()
post = h.Section()

for sec in pre, post:
sec.insert('hh')

inject current in the pre-synaptic section
stim = h.IClamp(0.5, sec=pre)
stim.amp = 10.0
stim.delay = 5.0
stim.dur = 5.0

create a synapse in the pre-synaptic section
syn = h.ExpSyn(0.5, sec=post)

connect the pre-synaptic section to the
synapse object
nc = h.NetCon(pre(0.5)._ref_v , syn)
nc.weight[0] = 2.0

vec = {}
for var in 'v_pre ', 'v_post ', 'i_syn ', 't':

vec[var] = h.Vector()

record the membrane potentials and
synaptic currents
vec['v_pre '].record(pre(0.5)._ref_v)
vec['v_post '].record(post(0.5)._ref_v)
vec['i_syn '].record(syn._ref_i)
vec['t'].record(h._ref_t)

run the simulation
h.load_file("stdrun.hoc")
h.init()
h.tstop = 20.0
h.run()

plot the results
import pylab
pylab.subplot(2,1,1)
pylab.plot(vec['t'], vec['v_pre '],

vec['t'], vec['v_post '])
pylab.subplot(2,1,2)
pylab.plot(vec['t'], vec['i_syn '])

FIGURE 3 | Code listing demonstrating the use of ref and plotting.

186

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

In IPython, the ? symbol is a quick shorthand roughly equivalent
to online help:

In [3]: ? h.APCount

Type: HocObject
Base Class: <type 'hoc.HocObject'>
String Form: <hoc.HocObject object at 0
 xb79022f0>
Namespace: Interactive
Length: 0
Docstring:
 class APCount

 pointprocess

[…]

WRITING NEURON MODELS IN PYTHON
To show how a model neuron is implemented using Python, we
repeat the example described in Chapter 6 of the NEURON Book
(Carnevale and Hines, 2006), but using Python rather than Hoc.
The code listing is given in Figures 1 and 2, and has Python code
on the left and the equivalent Hoc code on the right.

There are only a few syntax and conceptual differences between
the Python and Hoc versions, and we expect that Hoc users will have
little diffi culty transitioning to Python, should they wish to do so
(Hoc will continue to be supported, of course). We now comment
on the most signifi cant differences.

First are the import statements, absent from the Hoc listing,
although Hoc does have the xopen() function that has similar
functionality. Since NEURON is now only one of potentially many
modules living within the Python interpreter, it must live in its own
namespace, so that the names of NEURON-specifi c classes and var-
iables do not interfere with those from other modules. Of particular
importance is the object h, which is the top-level Hoc interpreter,
and gives access to Hoc classes, functions and variables.

While sections are created using the create keyword in Hoc, in
Python we instantiate a Section object. Hence the important dis-
tinction in Hoc between sections and objects is removed: Everything
in Python is an object. Similarly, the connect keyword in Hoc is
replaced by a method call of the child section object in Python.

In NEURON, each cable section is made up one or more segments,
and the diameter is a property of each segment. Hoc’s shorthand,
allowing the diam attribute to be set on all segments by setting it on
the section is also available in Python. Inhomogeneous values for
range variables such as diam can also be set on the specifi c Segment
object, returned by calling the Section object as a function.

The forall keyword in Hoc, which iterates over all sections, is
replaced by the allsec() method of the top-level Hoc interpreter
object h. Here again we see, in setting the membrane capacitance
cm, the Hoc and Python shorthands to set the value for all segments
at once, without having to explicitly iterate over all Segments.

In instrumenting the model, we see that Python and Hoc objects
have very similar behaviours. In general, all Hoc classes (Vector,
List, NetCon, etc) are accessible within Python via the h object.
Hoc object references must be declared using the objref keyword,
and objects created using new, but once created, attribute access
and method calls have near-identical syntax in Python and Hoc.

There are three major exceptions to this rule. First, many func-
tions and methods act in the context of the ‘currently-accessed
section’. To support this in Python, these functions take a keyword
argument sec. Second, certain method calls take Hoc expressions
as arguments, so, for example, in adding the membrane potential
of the soma section to the list of variables to plot, in Hoc we use
g.addvar(“soma.v(0.5)”), but in the Python version the vari-
able soma does not exist on the Hoc side, and so we have to pass
the soma Section object as the sec keyword argument so that the
Hoc expression is evaluated in the context of that section. Third, a
number of functions/methods take Hoc variable references (indi-
cated by preceding the variable name with the ‘&’ character) as
arguments, the most important being Vector.record(&var)
and NetCon(&var, target). The equivalent syntax in Python
is to precede the variable name with _ref_, e.g.: Vector.record
(_ref_var). For example, given ‘pre’ and ‘post’ Section objects and
a dictionary of Hoc Vector objects addressed by a mnemonic string,
recording the voltage at the centres of those sections is activated
by the statements:

record the membrane potentials and
synaptic currents
vec['v_pre'].record(pre(0.5)._ref_v)
vec['v_post'].record(post(0.5)._ref_v)
vec['i_syn'].record(syn._ref_i)
vec['t'].record(h._ref_t)

Figure 3 shows the complete listing with the above fragment
in context and also illustrates the ease with which NEURON
code can be mixed with third-party code such as the power-
ful Pylab/Matplotlib plotting package (http://matplotlib.
sourceforge.net/): NEURON Vector objects work just as well
as Python lists or arrays as arguments to the plot() function.

USING USER-DEFINED MECHANISMS
One of NEURON’s most powerful features is the ability to write new
mechanisms using the NMODL language, and then compile these
mechanisms into the executable or into dynamic libraries (DLLs).
The standard behaviour of NEURON is to load any mechanisms
that have been compiled in the working directory. It is also pos-
sible to load DLLs from elsewhere in the fi lesystem using the Hoc
function nrn_load_dll(). This has the disadvantage that the full
path to the shared library fi le must be provided, which can be hard
to determine, since the fi le is within a hidden folder which itself is
within a folder with a platform- specifi c name. To simplify this, the
neuron Python module adds a function load_mechanisms(),
which takes as an argument the path to the directory containing the
NMODL source fi les, and searches for shared library fi les below this
directory. Furthermore, in analogy to the PYTHONPATH environ-
ment variable which contains a list of paths to search for importable
Python modules, if you have defi ned a NRN_NMODL_PATH environ-
ment variable, NEURON will search these paths for shared libraries
and load them at import time.

USING USER-DEFINED CLASSES
One of the principal advantages of writing NEURON programs in
Python rather than Hoc, especially for large, complex programs,
is that Python is a fully object-oriented language, supporting

187

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

 encapsulation, polymorphism and inheritance, whereas Hoc sup-
ports only encapsulation and a limited form of polymorphism.

Just as with built-in Hoc classes, access to attributes and meth-
ods of user-defi ned Hoc classes (using the begintemplate/
endtemplate keywords) uses the same syntax in Python as in
Hoc. For example, if we have the following user-defi ned Hoc class
in the fi le string.hoc:

begintemplate String
 public s
 strdef s
 proc init() {
 s = $s1
 }
endtemplate String

then we can use it as follows:

>>> from neuron import h
>>> h.xopen("string.hoc")
>>> my_string = h.String("Hello")
>>> my_string.s
'Hello'

It is also possible to subclass both built-in and user-defi ned
Hoc classes in Python, although with the restriction that multiple
inheritance from Hoc-derived classes is not possible. Subclassing
requires the use of the hclass class factory:

>>> from neuron import h, hclass
>>> class MyNetStim(hclass(h.NetStim)):
… """NetStim that allows setting
… parameters on creation."""
…
… def __init__(self, start=50, noise=0,
… interval=10, number=10):
… self.start = start
… self.interval = interval
… self.noise = noise
… self.number = number
…
>>> stim = MyNetStim(start=0, noise=1)
>>> stim.noise
1.0
>>> class MyString(hclass(h.String)):
… def repeat(self, n):
… return self.s*n
…
>>> my_string = MyString("Hello")
>>> my_string.repeat(3)
'HelloHelloHello'

NUMERICAL DATA TRANSFER BETWEEN HOC AND PYTHON
The Hoc Vector object provides NEURON with a convenient
and effi cient container for storing and manipulating collec-
tions of numerical values, such as membrane potential traces or
spike-times.

In Python, Hoc Vector objects expose iterator and indexing
methods, such that they can be used in most cases where Numpy

(Oliphant, 2007), Scipy (Jones et al., 2001), and Matplotlib
(Hunter, 2007), the most important scientifi c modules, accept
lists.

To benefi t from the elegant and expressive notation of Numpy
for N-dimensional array manipulation, and from results computed
using the large and growing repertoire of scientifi c packages avail-
able for Python, which largely return Numpy arrays, several opti-
mized methods are available for the conversion of Hoc Vectors
to and from Numpy arrays.

Transferring one-dimensional Numpy arrays and non-nested
lists with fl oat or integer items to Hoc Vectors is straightfor-
ward, as the Hoc Vector constructor accepts an array or list as
an argument:

>>> v1 = h.Vector(a)
>>> v2 = h.Vector(l)

Transferring a Hoc Vector to an array or list is equally straight
forward:

>>> a = array(v1)
>>> print a
[3. 2. 3. 2.]
>>> l = list(v2)
>>> print l
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

If you would like to transfer between an existing Numpy array
and a Hoc Vector, there are the Hoc Vector “in-place” member
functions to_python and from_python:

>>> v3 = h.Vector(len(a))
>>> v3.from_python(a)
>>> print list(v3)
[3.0, 2.0, 3.0, 2.0]
>>> b = zeros_like(a)
>>> v3.to_python(b)
>>> print b
[3. 2. 3. 2.]

USING PYTHON CODE FROM HOC
For interacting with Python, Hoc provides the nrnpython() func-
tion and the PythonObject class. nrnpython() takes as its one
argument a string that can be any Python statement, e.g.:

oc> nrnpython("a = 3.14159")
oc> nrnpython("print a")
3.14159

PythonObject has two main uses. Creating an instance using
new returns an object that encapsulates the top-level Python inter-
preter, e.g.

oc> objref py
oc> py = new PythonObject()
oc> py.b = "hello"
oc> nrnpython("print b")
hello

Strings and fl oat/double values move back and forth between
Python and Hoc (although Python integers become double values in

188

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

Hoc and remain doubles if they are passed back to Python). All other
Python objects become instances of the PythonObject class:

oc> objref dict
oc> nrnpython("d = {'a':1, 'b':2, 'c':3}")
oc> dict = py.d
oc> print dict
PythonObject [12]
oc> print dict.__getitem__("c")
3.0

For objects (such as lists and tuples) that take integer indices
or are callable as functions, there is a special method named ‘_’
(underscore):

oc> objref lst
oc> nrnpython("c = [7, 8.0, 'nine']")
oc> lst = py.c
oc> for i = 0, lst.__len__() -1 { print lst._[i] }
7.0
8.0
nine

The only other trap for the unwary is that both single and double
quotes are valid for string defi nitions in Python, but only double
quotes are accepted by Hoc!

A detailed example of using Python from Hoc, and of the value
of being able to access its large standard library, is given in Section
“Importing MorphML Files — A Practical Example” for the case
of importing 3D morphology from a MorphML fi le.

TECHNICAL ASPECTS
Tools for building Python extensions, such as BOOST.Python
(Abrahams and Grosse-Kunstleve, 2003) or SWIG (Beazley, 1996)
might have been useful in more expert hands. However, the ability
of users to declare variables, objects, and classes in Hoc, the fact
that many existing C++ classes and class methods were not gen-
erally meant to be directly visible to the user except through the
intermediation of Hoc syntax, and the fact that the Hoc connection
to the internal NEURON code was already reasonably uniform,
of reasonable size, and understood by us in depth, suggested to us
that a Python interface written using the Python C-API (http://
docs.python.org/c-api/) that reused as much as possible the
existing Hoc connection to internal data and functions would
give us the general control we needed, and allow us to accomplish
the project in reasonable time. It should be emphasized that this
design decision to reuse a few of the C functions that manipulate
the Hoc runtime stack neither hinders nor assists any future work
on development of APIs for major NEURON components, such
as the numerical solvers, which may be useful to other simulators.
However, our interface implementation does provide a compact
example of how an application can communicate with NEURON
within a shared address space and therefore makes the the process
of dynamically linking NEURON into a user application much
simpler.

Since double precision variables, arrays, constant strings,
functions, and objects have very similar syntax and semantics
in Hoc and Python, a single PyTypeObject structure called
HocObjectType associated with a PyHocObject structure for

a Python object instance containing Hoc Symbol and Object
fi elds was suffi cient to allow Python access to all these Hoc
data-types. When a name is given to an attribute method of the
HocObjectType (the refl exive self PyHocObject is also an argu-
ment to the method), the name is looked up in Hoc’s symbol table
for the PyHocObject Hoc Object fi eld, and the symbol along with
the Hoc object calls the same function that the Hoc interpreter
would call to resolve the attribute at runtime. The attribute, which
is typically a number, string, or HocObject, is then wrapped in
a Python object of the proper type and returned. Function calls
from Python into Hoc consist of pushing the function arguments
onto the Hoc runtime stack and, again, calling the same function
the Hoc interpreter would call at runtime. Thus, Python state-
ments involving PyHocObject objects end up generating and
executing the same Hoc stack machine code at runtime that would
be accomplished by the corresponding Hoc statement. It should
be noted that a great deal of interpreter effi ciency can be gained
in loop body statements by factoring out as much as possible the
precursor objects. For example:

from neuron import h
vec = h.Vector (1000000)
a = 0
for i in xrange (1000000):
 a += vec.x[i]

can be optimized by avoiding the repeated search for the
attribute x:

vx = vec.x
for i in xrange (1000000):
 a += vx[i]

The former takes 1.3 s on a 3 GHz machine, while the latter
takes 1.0 s.

A critical requirement was to have as natural a correspondence
as possible in Python for the special Hoc syntax for Sections, posi-
tion along a Section, membrane mechanisms, and Range Variables.
This was achieved through the C++ defi nition of corresponding
types in Python to create instances for: NPySecObj, NPySegObj,
NPyMechObj, and NPyRangeVar. For example, the NPySegObj
segment (compartment) object points to the NPySecObj of which
it is a part, specifi es its location, x, and also contains a fi eld to
help in iterating over the mechanisms that exist at that location.
An NPyRangeVar has, in practice, required only a pointer to the
compartment (NPySegObj) where it exists and a pointer to its Hoc
Symbol. A Section represents a continuous cable and evaluation of
or assignment to a variable associated with a particular location
always involves specifying both which Section and the relative arc
length location (0 ≤ x ≤1) along the Section. Internally, NEURON
employs a Section stack to determine the working Section and
Hoc syntax provided three ways to specify the top of the Section
stack. The Hoc Section.variable(x) syntax has a direct cor-
respondence to the Python Section(x).variable syntax and
the latter perhaps has more clarity. The Hoc Section { Hoc
statements } syntax is unique to NEURON and for the Python
side we were reduced to explicit management of the Section stack
with Section.push() with an explicit h.pop_section() as the
fi nal statement. This gets tedious for single function calls and so in

189

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

Python we allow the keyword argument, sec=Section, to push
and pop the Section during the scope of the Hoc function call.
The Hoc access Section statement does not require a Python
counterpart. However, the Python statement, sec = h.cas(),
returns the top of the Section stack.

There were several cases of syntax mismatch which could only be
overcome by the addition of new idioms. Hoc syntax does not allow
an object to be treated as a function, so in Hoc we use po._(…).
Python does not allow call by reference arguments. Therefore, when
a Hoc function called from Python requires a reference argument,
the variable name must be prefi xed by ‘_ref_’. Of course, such
variables can only be Hoc variables but that is not a diffi culty in
practice since either the need is to pass a Hoc RangeVariable or
the Python program can construct a Hoc variable for use in these
cases. Since all numbers in Hoc are double precision, type errors
are raised when Python expects an integer. For the case of array
arguments, the Hoc-to-Python interface converts the doubles
to integers automatically. Unfortunately, one cannot in general
call the __getitem__(int) method explicitly but must use the
[expr] Hoc syntax. If this becomes a problem in practice, it will
be necessary to supply a set of cast functions that can be explicitly
invoked by the user.

We have encountered only one problem with freeing object
memory that has proved resistant to a solution. In some cases there
is an ambiguity in regard to whether the Hoc or the Python side
owns a reference to an object. When this situation occurs, a refer-
ence to the object is kept in a list for a deferred call to Py_DECREF
when it is guaranteed that it is safe to do so.

Assignment of a constant value to a range variable in a Section
is far more common than assignment of different values within the
segments of a Section and Hoc provides a simple syntax for that
case which avoids writing an explicit loop. The latest extension of
the NEURON Python interface mimics that behavior in Python by
interpreting Section.RangeVariableName in that fashion instead of
raising an “AttributeError”. We are also considering extending the
implicit iteration idea to SectionLists and Cells to allow not only
assignment of constants but also application of inhomogeneous
functions.

A list of the principal differences in syntax between Hoc and
Python is given in Table 1.

IMPORTING MORPHML FILES — A PRACTICAL EXAMPLE
Our fi rst serious use of the NEURON Python interface was to
extend the Import3D GUI tool to read MorphML specifi ca-
tion fi les. Import3D is structured around a graphical view of
a list of Import3d_Section objects defi ned in Hoc. Among
many method and fi eld attributes, the principle data fi eld of the
Import3d_Section object is the raw x, y, z, diam information
along an unbranched cable and a list index indicating the parent
Import3d_Section. The list of Import3d_Section objects
is constructed by various fi le reader objects that understand a
specifi c fi le format such as Eutectic, SWC, or NeuroLucida ver-
sions 1 or 3. Since MorphML is an XML format, it was oppor-
tune to employ the XML reader module in the standard Python
distribution.

The problem of parsing and analyzing the MorphML format is
similar in diffi culty to that for NeuroLucida V3 fi les. We divided

the problem into Hoc and Python code portions. In contrast to
a fi le size of 1180 lines for the NeuroLucida V3 fi le reader, the
read_morphml.hoc fi le size is 78 lines and the Python portion
of the problem is carried out by rdxml.py with a fi le size of 370
lines. Since these fi les are located in the NEURON package default
search path – …/nrn/lib/hoc for the read_morphml.hoc fi le
and …/nrn/lib/python for the rdxml.py fi le – the MorphML
reader extension works wherever the NEURON Python interface
is installed.

The read_morphml.hoc fi le defi nes an Import3d_MorphML
Hoc template (class) which interacts with Import3d_GUI in exactly
the same manner as the other format readers.

When an Import3d_MorphML instance is created, the Python
helper module we wrote to parse the input fi le is imported with
nrnpython(“import rdxml”) and p = new PythonObject()
is defi ned in order to allow access to Python functions.

The proc input() {…} procedure defi nes a sections list
and populates it with Import3dSection objects indirectly via
p.rdxml.rdxml($s1, this) which passes the fi lename selected
earlier by the user along with a reference to the Import3dMorphML
instance to allow callback from the Python code.

The

def rdxml(fname, ho) :
 xml.sax.parse(fname, MyContentHandler(ho))

module function calls the xml parser with the fi lename and a new
instance of

class MyContentHandler(xml.sax.ContentHandler):
 def __init__(self, ho):
 self.i3d = ho
 ...

The reference to the Import3d_MorphML instance is stored by
the initializer for later use at the end of parsing. During fi le reading
there is no interaction between Hoc and Python, so let it suffi ce
that the xml parsing style is, at the beginning and end of every xml
element, to call the MyContentHandler methods

def startElement(self, name, attrs):
 if self.elements.has_key(name):
 if debug: print "startElement:", name
 self.elements[name](self, attrs)
 else :
 if debug:
 print "startElement unknown", name

 def endElement(self, name):
 if self.elements.has_key('end'+name):
 self.elements['end' +name](self)

where the elements literal map associates all possible element
names with a MyContentHandler method. E.g.

elements = {
 'neuroml':nothing,
 'morphml':nothing,
 ...
 'segments':segments,
 'endsegments':endsegments,

190

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

 'segment':segment,
 'proximal':proximal,
 ...

 }

The methods construct Python lists of Point, Cable, etc, as
well as maps associating identifi ers with list indices. At the end of
parsing, the MyContentHandler method

def endDocument(self):
 self.i3d.parsed(self)

is called by the xml parser.
At this point we fi nd ourselves back in the Hoc world with an

argument that references the MyContentHandler. Through that
we can obtain the information saved by the MyContentHandler
in various maps and lists and copy it into new Import3d_Section
instances.

proc parsed() {…
 cables = $o1.cables_
 points = $o1.points_
 cableid2index = $o1.cableid2index_
 for i=0, cables.__len__() - 1 {

 cab = cables._[i]
 sec = new Import3d_Section(cab.first_,\
 cab.pcnt_)
 sections.append(sec)
 if (cab.parent_cable_id_ >= 0) {
 ip = cableid2index_[cab.parent_cable_id_]
 sec.parentsec = sections.object(ip)
 sec.parentx = cab.px_
 }
 ...

Note the ‘._’ idiom for accessing a Python list element since,
in Hoc, cables[i] is syntax implying an object reference array
 created with objref cables[n]. Also, cableid2index is a
Python map which associates the cable identifi er read from the
xml input fi le, with the proper element in the Python cables
list.

DISCUSSION
Python makes available within NEURON a very extensive suite of
analysis tools written for the general science and engineering com-
munities. All existing models written in Hoc, including GUI tools,
continue to work without change. All NEURON objects are acces-
sible to Python via an instance of the HocObject. Within the Hoc

Table 1 | The principal differences in syntax between Hoc and Python.

Python Hoc Notes

obj() obj._()

obj[int] obj._[int]

obj[double] obj.__getitem__(double) or __setitem__

obj['string'] obj.__getitem__("string") or __setitem__

f(_ref_var) f(&var) when storing a persistent pointer

f(h.ref(strvar)) f(strvar) when f changes the string

f(h.ref(obj)) f(obj) when f changes the reference

f(h.ref(var)) f(&var) when f changes var (via $ &1)

sec = Section() create sec

sec.push() stmt h.pop_section() sec { stmt }

f(..., sec = section) section { f(...) }

child.connect(parent, px, cx) connect child(cx), parent(px)

sec.insert('mechname') sec { insert mechname }

sec(x).rangevar sec.rangevar(x)

for sec in h.allsec(): forall { } includes sec.push() and h.pop_section() of

 currently accessed section.

for sec in h.seclist: forsec seclist { }

for seg in sec: for (x, 0) the value of x is seg.x

for seg in sec.allseg(): for (x)

seg.hh.gnabar or seg.gnabar_hh gnabar_hh(x)

pp = PointProcess(x, sec=section) sec { pp = new PointProcess(x) }

for mech in seg: No direct equivalent. Use

 MechanismType

iteration for iterator Python supplies several styles of iteration and Hoc

 supplies an iterator idiom. Conversion from one to the

 other is done via explicit programming but Python cannot

 use a Hoc iterator directly. Nor can Hoc use generators

 except by calling the underlying __next__() method.

191

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

interpreter, all Python objects are accessible via the PythonObject.
Binary installation remains straightforward for the usage case of
launching NEURON with Python embedded: The MS Windows
installer contains a large subset of the 2.5 version of Python, and
the Linux RPM and Mac OS X dmg installations will use the latest
version of Python, if any, that is already present or subsequently
installed. The usage case of launching Python, e.g. using IPython,
and dynamically importing NEURON also works but presently
requires the extra installation steps described in the Appendix.
Numpy is not a prerequisite but, if present, copying of vectors
between Numpy and NEURON is very effi cient. The Python xml
module is used in the present standard distribution to extend
NEURON’s Import3D and CellBuild tools to allow reading of
MorphML (Crook et al., 2007) and NeuroML (Goddard et al.,
2001) model specifi cations. The Hoc portion of the xml readers
makes heavy use of Python maps and lists.

With the release of NEURON version 7.0, the Python interface
has largely stabilized, and is ready for general use. We recommend
that new users of NEURON and those already familiar with Python
should use Python rather than Hoc to develop new models. Those
with considerable expertise in Hoc but without Python knowledge
are likely to be more productive by continuing to develop models
with Hoc, but accessing Python’s powerful data structures, large
standard library and external numerical/plotting packages through
nrnpython() and the PythonObject class. There is no need to
rewrite legacy code in Python, as it will continue to work using the
Hoc interpreter or mixed in with new Python code and accessed
via the h object.

Users are encouraged to submit bug reports and feature requests
at the NEURON forum (http://www.neuron.yale.edu/
phpBB) in the “NEURON+Python” sub-section, so that we can
continue to improve the Python interface in response to users’
experiences.

APPENDIX
Here we give detailed instructions for building and installing
NEURON as a Python extension. Note that, as mentioned earlier,
to use NEURON with Python embedded you can use one of the
binary installers.

The following assumes a standard GNU build environment,
and a bash shell. You will need both NEURON (nrn-VERSION.
tar.gz) and InterViews (iv-VERSION.tar.gz) sources, avail-
able through the “Download and Install” link at http://www.
neuron.yale.edu.

First, build and install Interviews:

$ N= 'pwd '
$ tar xzf iv-17.tar.gz
$ cd iv-17

$./configure --prefix= 'pwd '
$ make
$ make install

Then build and install NEURON:

$ cd..
$ tar xzf nrn-7.0.tar.gz
$ cd nrn-7.0
$./configure --prefix= 'pwd '\
 --with-iv=$N/iv-17 --with-nrnpython
$ make
$ make install

Here, the “\” at the end of the fourth line, indicates it is con-
tinued on the fi fth. If you want to run parallel NEURON (Hines
et al., 2008; Migliore et al., 2006), add --with-paranrn to the
configure options. This requires a version of MPI to be installed,
for example MPICH2 (Gropp, 2002) or openMPI (Gabriel et al.,
2004).

Now add the NEURON bin directory to your PATH:

$ export PATH=$N/nrn-7.0/i686/bin:$PATH

(Here i686 will be different for different CPU architectures).
Now build and install the NEURON shared library for

Python:

$ cd src/nrnpython
python setup.py install

This command installs the neuron package to the Python site-
packages directory, which usually requires root access. If you don’t
have root access, you can install it locally using --prefix to specify
a location under your home directory:

$ python setup.py install\
 --prefix=$HOME/local

This will install the neuron package to $HOME/local/lib/
python/site-packages under your home directory. You will
then have to add this directory to the PYTHONPATH environ-
ment variable:

$ export PYTHONPATH=$PYTHONPATH:\
$HOME/local/lib/python/site-packages

ACKNOWLEDGEMENTS
This work was supported by NIH grant NS11613, by the European
Union under the Bio-inspired Intelligent Information Systems pro-
gram, project reference IST-2004-15879 (FACETS), and by a grant
from the Swiss National Science Foundation.

REFERENCES
A b r a h a m s , D. , a n d G r o s s e -

Kunstleve, R. W. (2003). Building
hybrid systems with Boost.Python.
C/C++ Users J. 21. http://www.ddj.
com/cpp/184401666.

Beazley, D. M. (1996). SWIG: an easy
to use tool for integrating scripting

 languages with C and C++. In
TCLTK’96: Proceedings of the 4th
Conference on USENIX Tcl/Tk
Workshop, 1996, (Monterey, CA,
USENIX Association), pp. 129–139.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. Cambridge,
Cambridge University Press.

Crook, S., Gleeson, P., Howell, F., Svitak, J.,
and Silver, R. (2007). MorphML: level 1
of the NeuroML standards for neuro-
nal morphology data and model speci-
fi cation. Neuroinformatics 5, 96–104.

Dalcín, L., Paza, R., Stortia, M., and
D’Elíaa, J. (2008). MPI for Python:
performance improvements and

MPI-2 extensions. J. Parallel Distrib.
Comput. 68, 655–662.

Dubois, P. F. (2007). Python: batteries
included. IEEE Comput. Sci. Eng. 9, 7–9.

Gabriel, E., Fagg, G. E., Bosilca, G.,
Ang s k u n , T. , D o n g a r r a , J . J . ,
Squyres, J M., Sahay, V., Kambadur, P.,
Barrett , B. , Lumsdaine, A. ,

192

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 |

Hines et al. NEURON and Python

Castain, R. H. , Danie l , D. J. ,
Graham, R. L., and Woodall T. S.
(2004). Open MPI: goals, concept,
and design of a next generation MPI
implementation. In Proceedings, 11th
European PVM/MPI Users’ Group
Meeting, D. Kranzlmüller, P. Kacsuk
and J. Dongara, eds (Budapest,
Springer), pp. 97–104.

Goddard, N., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards NeuroML:
model description methods for collabo-
rative modeling in neuroscience. Philos.
Trans. R. Soc. B 356, 1209–1228.

Gropp, W. (2002). MPICH2: a new start for
MPI implementations. In Proceedings
of the 9th European PVM/MPI Users’
Group Meeting on Recent Advances in
Parallel Virtual Machine and Message

Passing Interface, D. Kranzlmüller,
P. Kacsuk, J. Dongara and J. Volkert,
eds (London, Springer-Verlag), p. 7.

Hines, M., and Carnevale, N. (2008).
Translating network models to parallel
hardware in NEURON. J. Neurosci.
Methods 169, 425–455.

Hines, M. L., and Carnevale, N. T. (2000).
Expanding NEURON’s repertoire of
mechanisms with NMODL. Neural
Comput. 12, 995–1007.

Hines, M. L., Markram, H., and
Schuermann, F. (2008). Fully implicit
parallel simulation of single neurons.
J. Comput. Neurosci. 25, 439–448.

Hunter, J. D. (2007). Matplotlib: a 2D
graphics environment. IEEE Comput.
Sci. Eng. 9, 90–95.

Jones, E., Oliphant, T., Peterson, P., et al.
(2001). SciPy: open source scientifi c

tools for Python. URL http://www.
scipy.org/.

Kernighan, B., and Pike, R. (1984). The
Unix Programming Environment.
Englewood Cliffs, NJ, Prentice Hall.

Migliore, M., Cannia, C., Lytton, W. W.,
Markram, H., Hines, and M. L. (2006).
Parallel network simulations with
NEURON. J. Comput. Neurosci. 21,
119–129.

Oliphant, T. E. (2007). Python for scien-
tific computing. IEEE Comput. Sci.
Eng. 9, 10–20.

Prez, F., and Granger, B. E. (2007). IPython: a
system for interactive scientifi c comput-
ing. IEEE Comput. Sci. Eng. 9, 21–29.

Conflict of Interest Statement: The
authors declare that the research pre-
sented in this paper was conducted in the

absence of any commercial or fi nancial
relationships that could be construed as
a potential confl ict of interest.

Received: 24 September 2008; paper pend-
ing published: 21 October 2008; accepted:
05 January 2009; published online: 28
January 2009
Citation: Hines ML, Davison AP and
Muller E (2009) NEURON and Python.
Front. Neuroinform. (2009) 3:1. doi:
10.3389/neuro.11.001.2009
Copyright © 2009 Hines, Davison and
Muller. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

193

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 28 January 2009
doi: 10.3389/neuro.11.009.2008

encouraged us to standardize on Python for the spike sorting and
spike train analysis projects to follow. For one of us (M. Spacek), the
switch to Python has made programming a much more enjoyable
and productive experience, and has resulted in greatly improved
programming skills.

The benefi ts of Python have been extolled at length elsewhere
(Hetland, 2005; Langtangen, 2008; Lutz, 2006). Briefl y, Python is
a powerful, dynamically typed, interpreted language that “fi ts your
brain”, with syntax akin to “executable pseudocode”. Python’s clear,
simple syntax is perhaps its biggest selling point. Some of its clarity
stems from a philosophy to provide “one – and preferably only
one – obvious way” to do a given task (Peters, 2004), making fea-
tures easy to remember. Its clarity is also due to a strong adherence
to object-oriented programming principles [Chapter 7 of Hetland
(2005) is an excellent introduction]. In Python, nearly everything is
an object, even numbers and functions. This means that everything
has attributes and methods (methods are functions that are bound
to and act on objects), and can thus be treated in a similar way. An
object is an instance of a class. A class can inherit attributes and
methods from other classes hierarchically, allowing for substantial
code reuse, and therefore less code to maintain. Python code is
succinct compared to most other languages: a lot can be accom-
plished in only a few lines. Finally, Python is free and open source,
and encourages open source software development. This is partly
due to its interpreted nature: the source code and executable are
typically one and the same.

Python has a stable and feature-rich numeric library called
NumPy1 which provides an N-dimensional array object. NumPy
arrays can be subjected to vectorized operations, most of which call
static C functions, allowing them to run almost as fast as pure C
code. Yet, these operations remain accessible from within succinct
Python code. NumPy turns Python into an effective replacement

Python for large-scale electrophysiology

Martin Spacek1*, Tim Blanche2 and Nicholas Swindale1

1 Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
2 Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA

Electrophysiology is increasingly moving towards highly parallel recording techniques which
generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with
54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal
populations within a cortical column. To help deal with the complexity of generating and analysing
these data, we used the Python programming language to develop three software projects:
one for temporally precise visual stimulus generation (“dimstim”); one for electrophysiological
waveform visualization and spike sorting (“spyke”); and one for spike train and stimulus analysis
(“neuropy”). All three are open source and available for download (http://swindale.ecc.
ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we
found Python to be well suited for all three. Here we present our software as a showcase of
the extensive capabilities of Python in neuroscience.

Keywords: Python, silicon polytrodes, primary visual cortex, in-vivo

INTRODUCTION
As systems neuroscience moves increasingly towards highly paral-
lel physiological recording techniques, generation, management,
and analysis of large complex data sets is becoming the norm. We
are interested in the function of localized neuronal populations
in visual cortex. The goal is to understand how neurons in visual
cortex respond to visual stimuli, to the extent that the responses to
arbitrary stimuli can be predicted. Accurate prediction will require
an understanding of how these neurons interact with each other.
Neurons in close proximity are more likely to show functionally
interesting interactions, and insights into how such localized popu-
lations work may help guide understanding of other parts of cortex,
or even the brain as a whole. To this end we need to record and
analyse the simultaneous spiking behaviour of many neurons in
response to a wide variety of visual stimuli.

We use 54-channel silicon polytrodes, in both rat and cat pri-
mary visual cortex, to extracellularly sample spiking activity con-
strained to roughly a cortical column (Figure 1A) (Blanche et al.,
2005). Time-locked visual stimuli are presented to the animal while
simultaneously recording from dozens of neurons (Figure 1B).
Waveforms are recorded continuously at a rate of 2.7 MB/s for up
to 90 min (∼15 GB) at a time. A single animal experiment can last
up to 3 days and generate hundreds of GB of data. Setting up our
electrophysiology rig, with custom acquisition software written in
Delphi (Blanche, 2005), was the fi rst step. Although we had existing
solutions in place for visual stimulation, waveform visualization
and spike sorting, and spike train analysis, all three had limitations
which were addressed by rewriting our software in Python.

The fi rst of those tackled was visual stimulation. After an exten-
sive search for existing software, we discovered the “Vision Egg”
(Straw, 2008), a Python library for generating stimuli. We chose
the Vision Egg partly because of the language it was written in and
written for: Python. We were thus introduced to Python via one
of its many packages, and the experience was so positive that it

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Michele Giugliano, Ecole Polytechnique
Fédérale de Lausanne, Switzerland
Gaute T. Einevoll, Norwegian University
of Life Sciences, Norway

*Correspondence:

Martin Spacek, Department of
Ophthalmology and Visual Sciences,
University of British Columbia, 2550
Willow Street, Vancouver, BC V5Z 3N9,
Canada.
e-mail: frontiers@mspacek.mm.st

1http://numpy.org

194

http://swindale.ecc.ubc.ca/code
http://swindale.ecc.ubc.ca/code
http://numpy.org

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

for MatLab (The MathWorks, Natick, MA, USA), and is used exten-
sively by dimstim, spyke, and neuropy.

While all three projects presented here were written in Python,
their use and implementation are very different. Dimstim is script
based and is run from the system’s command line. Spyke has a
graphical user interface (GUI) and looks like a native application,
while neuropy is typically accessed from the Python command
line as a library. Here, we explore some of the features and benefi ts
of Python and its many add-on packages for the electrophysiolo-
gist, by introducing our own three packages as detailed working
examples.

DIMSTIM: VISUAL STIMULUS GENERATION
In our experiments, we needed a way to display and control a wide
variety of stimuli with many different parameters, often shuffl ed
with respect to each other in various ways. Since spike times are
acquired at sub-millisecond temporal resolution, and since pre-
cise spike timing may play a role in neural coding (Mainen and
Sejnowski, 1995; VanRullen and Thorpe, 2002), we also wanted high
temporal precision in the stimulus. Our prior stimulus software was
written in Fortran and ran under DOS with a 32-bit extender. It was
written for the 8514/A graphics standard which has now lapsed. The
last graphics cards to support it were limited in the size and speed
of movie frames they could draw to screen. Moreover, these cards
were limited to a screen refresh rate of 100 Hz at our desired resolu-
tion. We found signifi cant artefactual phase-locking of responses
in visual cortex at this frequency (Blanche, 2005), which has been
a concern reported elsewhere (Williams et al., 2004; Wollman and
Palmer, 1995). For these reasons, we needed a better solution.

Dimstim displays full-screen stimuli at a refresh rate of 200 Hz,
providing precise control of the display at 5 ms intervals with-
out frame drops. Stimuli include manually controlled, drifting,
and fl ashed bars and gratings, sparse noise, and m-sequence noise
(Golomb, 1967) and natural scene movies. Stimulus parameters
can be shuffl ed with or without replacement, independently or in
covariation with each other. Parameters include spatial location and
phase, orientation, speed, duration, size, mask, contrast, brightness,

and spatial and temporal frequencies. Each stimulus session is fully
specifi ed by its own user-editable script. A copy of the script, and
an index of the contents of the screen on each screen refresh, are
sent to the acquisition computer, for simultaneous recording of
stimulus and neuronal responses.

Dimstim relies heavily on the Vision Egg2 library (Straw, 2008)
to generate stimuli. The Vision Egg uses the well-established
OpenGL3 graphics language, which thanks to the demands of video
games, is now supported by all modern video cards on all major
platforms. We currently use an Nvidia GeForce 7600 graphics card
running under Windows XP. Stimuli are displayed on a 19'' Iiyama
HM903DTB and a 22'' HM204DTA CRT monitor, two of only
a handful of consumer monitors that are capable of 800 × 600
resolution at 200 Hz. Unfortunately, like most other CRTs, these
particular models have now been discontinued, but used ones
may still be available. Hopefully the timing of LCD monitors will
improve such that they can replace CRTs for temporally precise
stimulus control.

Multitasking operating systems (OSes) present a challenge for
real-time control of the screen. Often, the OS will decide to delay
an operation to maintain responsiveness in other areas. This can
lead to frame drops, but can be mitigated by increasing the prior-
ity of the Python process. Setting the process and thread priorities
to their maximum levels in the Vision Egg completely eliminated
frame drops in Windows XP, but with the unfortunate loss of mouse
and keyboard polling. In dimstim, this meant that the user had no
way of interrupting the stimulus script, other than by resetting the
computer. Moving to a computer with a dual core CPU alleviated
this problem, as the maximum priority Python process was del-
egated to one core without interruption, while other OS tasks such
as keyboard polling ran normally on the second core.

Dimstim communicates stimulus parameters on a frame-by-
frame basis to the acquisition computer via a PCI digital out-
put board (DT340, Data Translations, Marlboro, MA, USA), for

A B

65 μm

1723 μm

stimulus
computer

video
signal

stimulus information

anesthetized

headstage
& amplifier

acquisition
computer

206 μm

FIGURE 1 | (A) One of several 54-channel silicon polytrode designs used. Recording sites are closely spaced, such that a spike will typically appear on several sites at
the same time (see Figure 3). (B) Experimental setup. Stimuli are presented to the animal while stimulus information and extracellular voltage waveforms are
acquired and saved to disk.

2http://visionegg.org
3http://opengl.org

195

http://visionegg.org
http://opengl.org

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

 simultaneous recording of stimulus timing alongside neuronal
responses. Parameters are described by sending the row index of
a large lookup table (“sweep table”) on every screen refresh. The
sweep table contains all the combinations of the dynamic param-
eters, i.e. those stimulus parameters that can vary from one screen
refresh to the next.

The digital output board is controlled by its driver’s C library.
Because Python is written in C (other implementations also exist),
it has a C application programming interface (API), and exten-
sions to Python can be written in C. We wrote such an extension to
interact with the board’s C library, but today this is no longer nec-
essary. A new built-in Python module called “ctypes” now allows
interaction with a C library on any platform directly from within
Python code. This is much simpler, as it removes the need to both
write and compile C extension code using Python’s somewhat
tedious C API. If dimstim were rewritten today, ctypes would be
the method of choice. Dimstim includes a demo (olda_demo.py)
of how to use ctypes to directly interact with Data Translations’
Open Layers data acquisition library. Libraries for cards from
other vendors (such as National Instruments’ NI-DAQmx) can
be similarly accessed.

Frame timing was tested with a photodiode placed on the moni-
tor. The photodiode signal, along with the raster signal from the
video card and the digital outputs from the stimulus computer,
were all recorded simultaneously. We discovered that the contents
of the screen always lagged by one screen refresh, due to OpenGL’s
buffer swapping behaviour (Straw, 2008). This was corrected for
by adding one frame time (5 ms) to the timestamp of the digitized
raster signal in the acquisition system.

Gamma correction was used to ensure linear control of screen
luminance. Several levels of uncorrected luminance were measured
with a light meter (Minolta LS-100) and fi t to a power law expres-
sion to determine the exponent corresponding to the gamma value
of the screen (Blanche, 2005; Straw, 2008). Gamma correction can
be set independently for each script, or globally across all scripts
in dimstim’s confi g fi le.

Natural scene movies used by dimstim were fi lmed outdoors with
an ordinary compact digital camera (Canon PowerShot SD200) with
320 × 240 resolution at 60 frames per second (fps). Unfortunately,
this camera could record no more than 1 min of video at a time.
To generate longer movies, multiple clips were fi lmed in succes-
sion, while keeping the camera as motionless as possible between
the end of one clip and the start of the next. Concatenation of and
conversion from multiple colour .avi fi les to a single uncompressed
greyscale movie fi le was done using David McNab’s y4m4 package.
Processed movies were displayed in dimstim with the same visual
angle subtended by the camera, at 67 fps (three 5 ms screen refreshes
per movie frame).

USAGE
Dimstim’s confi g fi le stores default values for a variety of generic
parameters that apply to most stimuli. These parameters include
spatial location, size, orientation offset, and temporal and spatial
frequencies. For simplicity, all spatial parameters are specifi ed in
degrees of visual angle. The confi g fi le can be edited by hand, but

the typical procedure when optimizing parameters for the current
neural population is to run a manually controlled bar or grating
stimulus. For user convenience, the stimulus is shown simultane-
ously on two displays driven by two video outputs from the graphics
card: one for the animal, and one for the user. The parameters of
the manual stimulus are controlled in real-time with the mouse
and keyboard. Once the user is satisfi ed, the parameters are saved
to the confi g fi le. These can later be retrieved by an experiment
script for use as default values.

An example script for a drifting sinusoidal grating experiment
is shown in Figure 2. The script works in a bottom-up fashion.
First, objects for storage of static and dynamic parameters are
instantiated (“s” and “d” respectively, lines 5–6). To these are bound
various different parameters as attributes (denoted by a “ . ”). In
this example, most values are declared directly by the script, but
two static parameters, grating orientation offset and gamma cor-
rection, are retrieved from their defaults in the confi g fi le, using
the dimstim confi g parser object named “dc” (lines 15 and 23).
Dynamic parameters, if assigned a list of multiple values, will iter-
ate over those values over the course of the experiment. In this
case, grating orientation, spatial frequency, and temporal frequency
are all assigned multiple values (lines 28, 36, 38). The rest remain
constant for the duration of the experiment. In order to describe
their interdependence and shuffl ing, each multiple-value dynamic
parameter must be declared as a “Variable” (lines 53–55). Variables
with the same dimension value (“dim” keyword argument) covary
with each other, and must therefore all have the same number of
values and the same shuffl e fl ag. Variables with different dimension
values vary independently in a combinatorial fashion, with the low-
est numbered dimension varying slowest, and the highest varying
fastest. This is implemented by dynamically generating a string
object containing Python code with the correct number of nested
for loops (equalling the number of independent variables specifi ed
in the script), and then executing the contents of the string with
Python’s exec() function (see the dimstim.Core.SweepTable
class). Next, the number of times to cycle through all combinations,
and the frequency at which to insert a blank screen sweep (for
determining baseline fi ring rates) are specifi ed in their own objects
(lines 57–58). Finally, all these objects are passed together to the
Grating class (which like all other dimstim stimuli, inherits from
the Experiment class) to instantiate a Grating experiment object,
and the experiment is run (lines 62–65). With 12 orientations,
6 spatial frequencies, and 4 temporal frequencies, this experiment
has 288 unique parameter combinations, presented in shuffl ed
order. Each is presented four times for a total of 1152 stimulus
sweeps, lasting 4 s each, for a total experiment time of about 77 min
(not including blank sweeps).

Before running, various checks are done to alert for any obvious
errors in the user edited script. Then, a copy of the entire script
is sent to the acquisition computer. This makes it possible to later
reconstruct the sweep table for analysis, and even replay the entire
experiment exactly, without the need for access to the original script
on the stimulus computer. To ensure accurate timing, stimuli run
only on the animal display, while the user display shows the system
command line. In between experiments when no stimuli are run-
ning, a blank grey desktop is shown on the animal display. Scripts
can be paused or cancelled using the keyboard.4http://freenet.org.nz/y4m

196

http://freenet.org.nz/y4m

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

FIGURE 2 | A dimstim script describing a drifting sinusoidal grating. Such
scripts may be edited at will, and are the primary way the user interacts with
dimstim. After some error checking, the script executes from the system’s

command line, to which status messages are printed. Comments, denoted by #
and """ in Python, are highlighted in red. Line numbers have been added for
reference. See text for more details.

197

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

SPYKE: WAVEFORM VISUALIZATION AND SPIKE SORTING
Once neural waveform and stimulus data were saved to disk by
our acquisition system (written in Delphi), we needed a way to
retrieve the data for visualization and spike sorting. Our existing
program for this, also written in Delphi, had some bugs and miss-
ing features. However, the Delphi environment required a license,
the program would only run in Windows, and the code was more
procedural than object-oriented. In particular, some of the code had
blocks (if statements, for/while statements) that were nested many

 layers deep, making it diffi cult to follow. “Flat is better than nested”
(Peters, 2004) is another Python philosophy. Several short, shallow
blocks of code are easier to understand and manage than one long
deep block. We decided to start from scratch in Python.

Spyke has a cross-platform GUI with native widgets for data
visualization and navigation, and spike sorting (Figure 3). Spike
waveforms are displayed in two ways: spatially according to the
polytrode channel layout (spike window), and vertically in chart
form (chart window). Local fi eld potential (LFP) waveforms are

FIGURE 3 | Main spyke window (top), with data windows (bottom)

showing high-pass waveforms in polytrode layout (left) and chart layout

(middle). A third data window shows the low-pass LFP waveforms (right)

concurrently recorded from a subset of channels (colour coded). All data are
centred on the same timepoint. The shaded region in the middle of both the chart
and LFP windows represents the time range spanned by the window to its left.

198

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

also displayed vertically in chart form (LFP window). Polytrode
channels are closely spaced (43–75 µm) over two or three columns
(Figure 1A). A single spike can generate a signal on multiple chan-
nels, hence the need to visualize waveforms according to their poly-
trode channel layout. Channels are colour-coded to make them easy
to distinguish and align across windows. Spyke looks and behaves
like a native GUI application, with menus, buttons, and resizable
windows. Navigation is mouse and keyboard based. A horizontal
slider and combo box at the top of the main spyke window control
fi le position in time. Left and right arrow keys, and page up and
page down keys step through the data with single timepoint or
1 ms resolution respectively. Clicking on any data window (spike,
chart, or LFP) centres all three windows on that timepoint. Holding
CTRL and scrolling the mouse wheel over a data window zooms it
in or out in time. Holding CTRL and clicking on a channel enables
or disables it. Hovering the mouse over a data window displays a
tooltip with the timestamp, channel, and voltage currently under
the mouse cursor.

Spyke uses the wxPython5 library for its GUI. This is a Python
interface to the wxWidgets C++ GUI library which generates widg-
ets on Windows, Linux, and OSX. Now well over a decade old
(Rappin and Dunn, 2006), wxPython is a stable library that has
adapted to changing OSes. Widgets include everything from win-
dows, menus, and buttons, to more complex list and tree controls.
WxPython has a big advantage over other GUI libraries in its use of
widgets that are native to the OS the program is running on, such
that they look and behave identically to normally created widgets
in that OS. WxGlade6 was used to visually lay out the GUI. Itself a
wxPython based GUI application, wxGlade takes the programmer’s
visual layout and automatically generates the corresponding layout
code in Python. This code can then be included in the programmer’s
own code base, typically by defi ning a class that inherits from the
automatically generated code. Although wxGlade is not necessary
for writing a GUI with wxPython, we found it much faster and
easier than writing all of the layout code by hand.

Unfortunately, some widgets are inherently different on differ-
ent OSes. Writing and testing a wxPython GUI on only one OS will
therefore not guarantee perfect functionality on another. To do so
would require checking for the current OS, and implementing certain
things differently depending on the OS. Spyke does not currently do
this, and has so far only been thoroughly tested in Windows. A cross-
platform GUI library faces many challenges. Although wxPython is
one of the best (Rappin and Dunn, 2006), it has bugs7 – some of them
longstanding – that had to be worked around in spyke.

Although the widgets are handled by wxPython, waveforms are
plotted using matplotlib8. Matplotlib is a 2D plotting library for
Python that generates publication quality fi gures. It has two inter-
faces: one that mimics the familiar plotting commands of MatLab,
and another that is much more object- oriented. Spyke embeds mat-
plotlib fi gures within wxPython windows. Scaling of plots is handled
automatically by matplotlib, such that when the wxPython window
is resized by dragging its corner or edge, the plotted traces inside

resize accordingly. Another benefi t of matplotlib is its antialiasing
abilities, providing beautiful output with subpixel resolution. There
is some performance penalty for using such a high level drawing
library, but performance is fast enough on fairly ordinary hard-
ware (Pentium M 1.6 GHz notebook), even when scrolling through
54 channels of data with thousands of data points on screen at a time.
More importantly, matplotlib makes plotting very easy to do.

The data acquisition fi les are complex, with different types of
data multiplexed throughout the fi le. On opening, the fi le must be
parsed to determine the number and offset values of hundreds of
thousands of records in the fi le. For multi GB fi les, this can take
up to a few minutes. To deal with this, the parsing information
is saved to disk for quicker future retrieval. This is done using
Python’s pickle module, which can take a snapshot of almost any
Python object in memory, serialize it, and save it to disk as a “pickle”.
A pickle can then later be restored (unpickled) to memory as a live
Python object, even on a different platform. In this case, a custom
written File object containing all of the parse information is saved
to disk as a .parse fi le of only a few MB in size. Restoring from the
.parse fi le is about an order of magnitude faster than reparsing the
entire acquisition fi le.

Segments of waveform data are loaded from the acquisition fi le,
Nyquist interpolated, and sample-and-hold delay (SHD) corrected
on the fl y as needed (Blanche and Swindale, 2006). Interpolation is
performed to improve spike detection, and Nyquist interpolation
is the optimum method of reconstructing a bandwidth-limited
signal at arbitrary resolution. To do so, a set of sinc function kernels
is generated (one kernel per interpolated data point, each kernel
with a different phase offset) and convolved with the data. For SHD
correction, a different set of kernels is generated for each channel.
Correcting for each channel’s SHD requires appropriate modifi ca-
tion of the phase offset of each kernel for that channel. For example,
interpolating from 25 to 50 kHz with SHD correction requires two
appropriately phase corrected kernels per channel. Each kernel is
separately convolved with the data (using numpy.convolve()),
and the resulting data points are interleaved to return the fi nal
interpolated waveform.

SPIKE SORTING
Spike sorting is done by template matching (Blanche, 2005). Event
detection is the fi rst step in generating the required multichan-
nel spike templates. Two event detection methods are currently
implemented. The “bipolar amplitude” method looks for simple
threshold crossings of either polarity. The “dynamic multiphasic”
method searches for two consecutive threshold crossings of oppo-
site polarity within a defi ned period of time. The second crossing’s
threshold is dynamically set according to the amplitude of the fi rst
phase of the spike. For both methods, primary thresholds are cal-
culated separately for each channel, based on the standard devia-
tion or median noise level of either the entire recording or of a
narrow sliding window thereof. Spatiotemporal detection lockouts
prevent double triggering off of the same spike, while minimizing
the chance of missed spikes.

Some algorithms, such as these event detection methods, cannot
be easily vectorized and require a custom loop. Due to its dynamic
typing and interpreted nature, long loops are slow to execute in
Python. For the majority of software development, this is not an

5http://wxpython.org
6http://wxglade.sf.net
7See bugs #626 and #2307 at http://trac.wxwidgets.org
8http://matplotlib.sf.net

199

http://wxpython.org
http://wxglade.sf.net
http://trac.wxwidgets.org
http://matplotlib.sf.net

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

issue. Developer time is usually much more valuable than CPU time
(Hetland, 2005), but numerically intensive software is the exception.
Writing fast Python extensions in C has always been possible, but
the C interface code required by Python’s API is tedious to write,
and writing in C eliminates the convenience of working in Python
syntax. To get around this, the Cython9 package (a fork of the Pyrex
package) specifi es a sublanguage almost identical to Python, with
some extra keywords to declare loop variables as static C types. After
issuing the standard python setup.py build command, such
code is automatically translated into an intermediary C fi le includ-
ing all of the tedious interface code. This is subsequently compiled
into object code and is accessible as a standard C extension module
from within Python, just as a handwritten C extension would be.
This yields the computational speed of C loops when needed, with
the developmental speed, convenience and familiarity of Python
syntax to implement them. Cython was used to write the custom
loop that iterates over timepoints and channels for each of the
event detection methods. For 25 kHz sampled waveform data on
54 channels, this amounts to 1.35 million iterations per second of
data. On an average single-core notebook computer (Pentium M
1.6 GHz), this loop runs at about 5× real time.

The data is partitioned into blocks (typically 1 s long), and
each is searched independently, allowing multiple core CPUs to
be exploited. Search speed scales roughly proportionally with the
number of cores available. Due to the “global interpreter lock”
(GIL) in the C implementation of Python, multiple processes must
typically be used instead of multiple threads to take advantage of
 multiple cores. Unfortunately, a process can require signifi cantly
more memory and more time to create than a thread. There are
ways around the GIL, but the best solution for spyke is not yet
clear.

Search options are controlled in the “detect” tab in spyke’s main
window (Figure 3). Searches can be limited to specifi c time ranges
in the fi le, in the number of events detected, and whether to search
linearly or randomly. Random sampling is important to build up
a temporally unbiased collection of detected events with which to
build templates. Searching for the next or previous spike relative
to the current timestamp can be done quickly using the keyboard.
Searches are restricted to enabled channels, allowing for a targeted
increase in the number of events belonging to a spatially localized
template. This is useful for building up templates of neurons that
rarely fi re.

When a search completes, the sort window (Figure 4A) opens
and is populated with any newly detected events. The user then visu-
ally sorts the detected events (typically only a fraction of all spikes
in the recording) into templates corresponding to isolated neurons.
This is accomplished by plotting spikes over top of each other. Any
number of event or template mean waveforms can be overplot-
ted with each other. Although the mouse may be used, keyboard
commands are more effi cient for toggling the display of events and
templates, and moving events and keyboard focus around between
the sorted template tree (left column) and unsorted event list (right
column). The event list has sortable columns for event ID, maxi-
mum channel, timestamp, and match error. All the events in the
list can be matched against the currently selected template, and

those match errors populate the error column. Sorting the event
list by maximum channel or match error makes manual template
generation much easier, because it clusters similar events close to
each other in the unsorted event list.

Once templates have been generated, a full event detection is
run across the whole recording, and the templates are matched
against each detected event. Or, each template can be slid across
the recording and matched against every timepoint in the record-
ing (Blanche et al., 2005). Either way, matching to target and non-
target spikes or noise generally yields a non-overlapping bimodal
error distribution. For each template, a threshold is manually set
at the trough between the two peaks in the distribution, and events
whose match errors fall below this threshold are classifi ed as spikes
of that template.

At any point in the sorting process, the entire “Sort” session
object, which among other information includes detected events,
generated templates, and sorted spikes, can be saved to disk as a
.sort fi le, again using Python’s pickle module. Sort sessions can
then be restored from disk and sorting can resume in spyke, or
their sorted spike times can be used for spike train analysis (see
neuropy section). Waveform data for detected events and sorted
spikes is saved within the .sort fi le. This increases the fi le size, but
allows for review of detected and sorted spikes without the need to
access the original multi GB continuous data acquisition fi le.

Integrated into spyke is Patrick O’Brien’s PyShell (Figure 4B),
an enhanced Python command line that is part of the wxPython
package. This permits live command line inspection and modifi ca-
tion of all objects comprising spyke. This was, and continues to be,
a very useful tool for testing existing features and for developing
new ones. Neuropy (or almost any other Python package) can be
imported and used directly from this command line. For example,
spike sorting validation is not yet implemented in spyke’s GUI, but
all of neuropy’s functionality including autocorrelograms (to check
refractory periods) can be accessed by typing import neuropy
in spyke’s PyShell.

NEUROPY: SPIKE TRAIN ANALYSIS
After spike sorting, we needed a way to analyse spike trains and
their relation to stimuli. Our initial decision was to use MatLab for
spike train analysis, and we soon developed a collection of MatLab
scripts for the job, with one function per .m fi le. For example, one
.m fi le would load each neuron’s data from disk and return all
of them in a cell array of structures. This was highly procedural
instead of object-oriented. Furthermore, the code became diffi cult
to manage as each additional function required an additional .m
fi le. We were also faced with out of memory errors, limited GUI
capabilities, and a high licensing cost.

Although MatLab’s toolboxes are a major benefi t, SciPy10 (Jones
et al., 2001), an extensive Python library of scientifi c routines,
provides most of the equivalent functionality. Much of SciPy is
a wrapper for decades-old, highly tested and optimized Fortran
code. Another package, mlabwrap11, allows a licensed MatLab user
to access all of MatLab’s functionality, including all of its toolboxes,
directly from within Python. Although in the end we did not need

9http://cython.org

10http://scipy.org
11http://mlabwrap.sf.net

200

http://cython.org
http://scipy.org
http://mlabwrap.sf.net

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

to use mlabwrap, its existence erased any remaining hesitations
about switching to Python for analysis.

A data-centric object hierarchy (Figure 5A) quickly emerged
as a natural way to organize neuropy. Each object in the hierarchy
has an attribute that references its parent object, as well as all of its
child objects. Specifi cally, “Data” is an abstract object from which all
“Animals” are accessible. Each Animal has polytrode “Tracks”, each
Track has “Recordings”, and each Recording has both “Sorts” (spike
sorting sessions) and “Experiments” (which describe stimuli).

Finally, each Sort contains a number of “Neurons”, one of whose
attributes is a NumPy array of spike times.

Neuropy relies on a hierarchy of data folders on the disk with
a fairly rigid naming scheme, such that animal, track, recording,
experiment, and sort IDs can be extracted from fi le and folder
names. This forces the user to keep sorted data organized. All
objects have a unique ID under the scope of their parent, but not
necessarily under the scope of their grandparent. All data can be
loaded in at once by creating an instance of the Data class and then

FIGURE 4 | (A) An example of spyke’s sort window. Templates and their
member spikes are represented in the tree (left), and unsorted detected
events in the list (middle). Selecting a template or event in either the tree or
the list plots its waveform (right). The tree currently has keyboard focus,
making its selections more distinctly coloured than those of the list. Unsorted
events have colour coded channels, while each template (and its member
spikes) has a single identifying colour. Here, template 0 (red), a putative
neuron near the top of the polytrode, has 6 member spikes, and its mean
waveform is being overplotted with an unsorted event (#1260, multicoloured),

which fi ts quite well. Template 1 (orange) and all of its member spikes are
plotted near the middle of the polytrode. Also plotted further down is another
unsorted event (#1150, multicoloured), which obviously does not fi t either
template. The error values listed are from a match against template 0.
(B) The integrated PyShell window exposes all of spyke’s objects and
functionality at the Python command line. Template 0’s dictionary (a mapping
from names to values) of its 6 member events is referenced and returned on
lines 1–2. The “Sort” object’s attributes and methods are displayed in a
popup on line 3.

201

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

calling its .load() method. However, most often only a subset of
data is needed, such as only the data from a given animal, track, or
recording. For example, an object representing recording 92 from
the default track of the default animal can be instantiated by typ-
ing Recording(92) at the command line. This recording’s data
can then be loaded from disk into the object by calling its .load()
method. Default animal and track IDs can be modifi ed from the
command line. A recording loads the neurons from its default sort,
which can also be modifi ed.

Some analyses are written as simple methods of one of the data
objects, but most have their own separate class which is instantiated
by a data object’s method call. Many analyses generate plots, some
of them interactive (such as the population spike raster plot), again
using matplotlib and wxPython. Currently implemented analyses
include interspike interval histograms, instantaneous fi ring rates
and their distributions, cross- correlograms and autocorrelograms,
and spike-triggered averages (STAs) (Dayan and Abbott, 2001).
More specialized analyses include binary codes of population spike
trains, their correlation coeffi cient distributions, maximum entropy
Ising modelling of such codes (using scipy.maxent), and several
other related analyses (Schneidman et al., 2006; Shlens et al., 2006;
Spacek et al., 2007). Because of the data-centric organization, new
analyses are easy to add.

Neuropy is used interactively as a library from the Python
command prompt, usually in an enhanced shell such as PyShell
(Figure 4B) or the more widely used IPython12. An example of
neuropy use is shown in Figure 5B, which calculates and plots the
STA of neurons 2 and 5 of the default animal and track. The STA
estimates a neuron’s spatiotemporal receptive fi eld by averaging the
stimulus (in this case, an m-sequence noise movie) at fi xed time
intervals preceding each spike. Recording 92 was recorded during
m-sequence noise movie playback, and is used in this example.

Line 1 imports all of neuropy’s functionality into the local name-
space. Next, an object representing recording 92 is instantiated and
bound to the name r92 for convenience, and its data is loaded from
disk (lines 2–3). Its dictionary of available experiments is requested
and printed out (lines 4–5); only one experiment is available, with
ID 0. STAs are calculated with respect to this experiment by calling
its .sta() method and passing the IDs of the desired neurons (line 6).
The calculated STAs are returned in an “STAs” object, which upon
further inspection contains two “STA” objects, one per requested
neuron (lines 7–10). Finally, the STAs object’s .plot() method is
called with default options, displaying the result for both neurons
(Figure 5C).

Python’s object orientation has benefi ts even at the command line.
It allows the user to quickly discover what methods and attributes
are available for any given object, eliminating the need to recall them
from memory (Figure 4B). Instead of immediately returning the
raw result or plotting it, most analyses in neuropy return an analysis
object, which usually has .calc() and .plot() methods. The .calc()
method is run automatically on instantiation, and the results are
stored as attributes of the analysis object. Settings used to do the
calculation are also stored as attributes. These can be modifi ed, and
.calc() can be called again to update the result attributes. Once satis-
fi ed with the calculation, the user can call the .plot() method. This
can be done several times to generate different plots with different
plot settings. Each time a new plot is generated, it does so from the
existing results, saving on unnecessary recalculation time.

CONCLUSION
We have described Python packages for three tasks pertinent to
systems neuroscience: visual stimulus generation, waveform visu-
alization and spike sorting, and spike train analysis. Python allowed
us to meet these software challenges with a level of performance
not normally associated with a dynamically typed interpreted lan-
guage. Performance challenges included time-critical display and

FIGURE 5 | (A) Neuropy’s object hierarchy. (B) Example code using neuropy to
plot the spike-triggered average (STA) of two neurons in response to an
m-sequence noise movie (see text for details). (C) The resulting plot window.

Each row corresponds to a neuron, and each column corresponds to the
STA within a fi xed time range following the m-sequence white noise stimulus.
ON responses are red, OFF responses are blue.

12http://ipython.scipy.org

202

http://ipython.scipy.org

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 |

Spacek et al. Python for large-scale electrophysiology

communication of visual stimuli, parsing and streaming of mul-
tiplexed data from GB sized fi les, on the fl y Nyquist interpolation
and SHD correction, fast execution of non-vectorizable algorithms,
and parallelization. Other challenges, whose solutions were simpler
than in a statically compiled language, included a cross-platform
native GUI, the storage and retrieval of relatively complex data
structures to and from fi le (.parse and .sort fi les), and a command
line environment for interactive data analysis.

Dimstim is the oldest of the three packages, and the most
stable. Spyke is the most recent and remains under heavy devel-
opment, while new analyses are added to neuropy as needed. As
with most other Python packages, all three can be used alone or
from within another Python module. All three depend on each
other to a limited extent. Neuropy relies on the stimulus descrip-
tion and timing signals generated by dimstim, and on the spike
sorting results from spyke. Spyke can use parts of neuropy for
spike sorting validation. These three packages depend on many
other open source packages, which themselves rely on yet other
packages (e.g. the Vision Egg currently depends on PyOpenGL and
PyGame). Modularity and code reuse is thus maximized across
the community.

Because it greatly encourages object-oriented programming,
Python code is easier to organize and reuse than MatLab code. This
is important for scientifi c code which tends to continually evolve as
new avenues are explored. Often, scientifi c code is quickly written

and bug-tested, used once or twice, and then forgotten about, with
little chance of re-use outside of copying and pasting. Python has
reduced this tendency for us. Its object orientation and excellent
error handling have also helped to reduce bugs.

Finally, Python was chosen for these projects for its clear, suc-
cinct syntax. Dimstim, spyke, and neuropy have roughly 3000, 5000,
and 4000 lines of code respectively (excluding comments and blank
lines). Fewer lines make code maintenance easier, not just because
there is less code to maintain, but also because each line is closer
to all other lines, making it easier to navigate. Concise syntax also
makes collaboration easier.

We encourage others in neuroscience to consider Python for
their programming needs, and hope that our three examples (avail-
able at http://swindale.ecc.ubc.ca/code) may be of use
to others, whether directly or otherwise. Rallying around a common
open-source language may help foster efforts to increase sharing
of data and code, efforts deemed necessary (Teeters et al., 2008) to
push forward progress in systems neuroscience.

ACKNOWLEDGEMENTS
Keith Godfrey wrote dimstim’s C extension to interface with the
Data Translations board. Reza Lotun contributed code to early
versions of spyke. Funding came from grants from the Canadian
Institutes of Health Research, and the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES
Blanche, T. J. (2005). Large scale neu-

ronal recording. Ph.D. dissertation,
University of British Columbia,
Vancouver, BC.

Blanche, T. J., Spacek, M. A., Hetke, J. F.,
and Swindale, N. V. (2005). Polytrodes:
high-density silicon electrode arrays
for large-scale multiunit recording.
J. Neurophysiol. 93, 2987–3000.

Blanche, T. J., and Swindale, N. V.
(2006). Nyquist interpolation improves
neuron yield in multiunit recordings.
J. Neurosci. Methods 155, 81–91.

Dayan, P., and Abbott, L. F. (2001). Theor-
etical Neuroscience: Computational
and Mathematical Modeling of
Neural Systems. Cambridge, MA,
MIT Press.

Golomb, S. W. (1967). Shift Register
Sequences. San Francisco, Holden-Day.

Hetland, M. L. (2005). Beginning Python:
From Novice to Professional. Berkeley,
CA, Apress.

Jones, E., Oliphant, T., Peterson, P., et al.
(2001). SciPy: open source scientifi c
tools for Python. http://scipy.org.

Langtangen, H. P. (2008). Python Scripting
for Computational Science, 3rd Edn.
Berlin, Springer-Verlag.

Lutz, M. (2006). Programming Python,
3rd Edn. Sebastopol, CA, O’Reilly.

Mainen, Z. F., and Sejnowski, T. J. (1995).
Reliability of spike timing in neocorti-
cal neurons. Science 268, 1503.

Peters, T. (2004). The Zen of Python.
http://www.python.org/dev/peps/
pep-0020.

Rappin, N., and Dunn, R. (2006). wxPy-
thon in Action. Greenwich, CT,
Manning.

Schneidman, E., Berry, M. J. II, Segev, R.,
and Bialek, W. (2006). Weak pairwise
correlations imply strongly correlated
network states in a neural population.
Nature 440, 1007–1012.

Shlens, J., Field, G. D., Gauthier, J. L.,
Grivich, M. I., Petrusca, D., Sher, A.,
Litke, A. M., and Chichilnisky, E. J.
(2006). The structure of multi- neuron
firing patterns in primate retina.
J. Neurosci. 26, 8254–8266.

Spacek, M. A. , Blanche, T. J. ,
Seamans, J. K., and Swindale, N. V.

(2007). Accounting for network
states in cortex: are (local) pairwise
correlations suffi cient? Soc. Neurosci.
Abstr. 33, 790.1. http://swindale.ecc.
ubc.ca/Publications.

Straw, A. D. (2008). Vision Egg: an
open-source library for realtime
visual stimulus generation. Front.
Neuroinform. 2, 4.

Teeters, J. L., Harris, K. D., Millman, K. J.,
Olshausen, B. A., and Sommer, F. T.
(2008). Data sharing for computa-
tional neuroscience. Neuroinformatics
6, 47–55.

VanRullen, R., and Thorpe, S. J. (2002).
Surfi ng a spike wave down the ventral
stream. Vis. Res. 42, 2593–2615.

Williams, P. E., Mechler, F., Gordon,
J., Shapley, R., and Hawken, M. J.
(2004). Entrainment to video dis-
plays in primary visual cortex of
macaque and humans. J. Neurosci.
24, 8278–8288.

Wollman, D. E., and Palmer, L. A.
(1995). Phase locking of neuronal
responses to the vertical refresh of
 computer display monitors in cat

lateral geniculate nucleus and stri-
ate cortex. J. Neurosci. Methods 60,
107–113.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 18 September 2008; paper pend-
ing published: 04 November 2008; accepted:
19 December 2008; published online: 28
January 2009.
Citation: Spacek M, Blanche T and Swindale
N (2009) Python for large-scale electrophys-
iology. Front. Neuroinform. (2009) 2:9. doi:
10.3389/neuro.11.009.2008
Copyright © 2009 Spacek, Blanche and
Swindale. This is an open-access article
subject to an exclusive license agreement
between the authors and the Frontiers
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original
authors and source are credited.

203

http://swindale.ecc.ubc.ca/code
http://scipy.org
http://www.python.org/dev/peps/pep-0020
http://www.python.org/dev/peps/pep-0020
http://swindale.ecc.ubc.ca/Publications
http://swindale.ecc.ubc.ca/Publications

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 27 January 2009
doi: 10.3389/neuro.11.011.2008

PyNN: a common interface for neuronal network simulators

Andrew P. Davison1*, Daniel Brüderle2, Jochen Eppler3,4, Jens Kremkow5,6, Eilif Muller7, Dejan Pecevski8,

Laurent Perrinet6 and Pierre Yger1

1 Unité de Neurosciences Intégratives et Computationelles, CNRS, Gif sur Yvette, France
2 Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
3 Honda Research Institute Europe GmbH, Offenbach, Germany
4 Berstein Center for Computational Neuroscience, Albert-Ludwigs-University, Freiburg, Germany
5 Neurobiology and Biophysics, Institute of Biology III, Albert-Ludwigs-University, Freiburg, Germany
6 Institut de Neurosciences Cognitives de la Méditerranée, CNRS, Marseille, France
7 Laboratory of Computational Neuroscience, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
8 Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria

Computational neuroscience has produced a diversity of software for simulations of networks of
spiking neurons, with both negative and positive consequences. On the one hand, each simulator
uses its own programming or confi guration language, leading to considerable diffi culty in porting
models from one simulator to another. This impedes communication between investigators and
makes it harder to reproduce and build on the work of others. On the other hand, simulation
results can be cross-checked between different simulators, giving greater confi dence in their
correctness, and each simulator has different optimizations, so the most appropriate simulator
can be chosen for a given modelling task. A common programming interface to multiple
simulators would reduce or eliminate the problems of simulator diversity while retaining the
benefi ts. PyNN is such an interface, making it possible to write a simulation script once, using
the Python programming language, and run it without modifi cation on any supported simulator
(currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN
increases the productivity of neuronal network modelling by providing high-level abstraction,
by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic
analysis, visualization and data-management tools. PyNN increases the reliability of modelling
studies by making it much easier to check results on multiple simulators. PyNN is open-source
software and is available from http://neuralensemble.org/PyNN.

Keywords: Python, interoperability, large-scale models, simulation, parallel computing, reproducibility, computational

neuroscience, translation

compiler standards and simulators develop. Another is that model
source code is often not written with reuse and extension in mind,
and so considerable rewriting to modularize the code is necessary.
Probably the most important barrier is that code written for one
simulator is not compatible with any other simulator.

Although many computational models in neuroscience are writ-
ten from the ground up in a general purpose programming lan-
guage such as C++ or Fortran, probably the majority use a special
purpose simulator that allows models to be expressed in terms
of neuroscience-specifi c concepts such as neurons, ion channels,
synapses; the simulator takes care of translating these concepts
into a system of equations and of numerically solving the equa-
tions. A large number of such simulators are available (reviewed in
Brette et al., 2007), mostly as open-source software, and each has its
own programming language, confi guration syntax and/or graphi-
cal interface, which creates considerable diffi culty in translating
models from one simulator to another, or even in understanding
someone else’s code, with obvious negative consequences for com-
munication between investigators, reproducibility of others’ models
and building on existing models.

However, the diversity of simulators also has a number of positive
consequences: (i) it allows cross-checking – the probability of two

INTRODUCTION
Science rests upon the three pillars of open communication, repro-
ducibility of results and building upon what has gone before. In
these respects, computational neuroscience ought to be in a good
position, since computers by design excel at repeating the same
task without variation, as many times as desired: reproducibility
of computational results ought, then, to be a trivial task. Similarly,
the Internet enables almost instantaneous transmission of research
materials, i.e. source code, between labs.

However, in practice this theoretical ease of reproducibility and
communication is seldom achieved outside of a single lab and a
time frame of a few months or years. While a given scientist may
easily be able to reproduce a result obtained a few months ago,
precisely reproducing a result obtained several years ago is likely to
be rather more diffi cult, and the general experience seems to be that
reproducing the results of others is both diffi cult and time consum-
ing: very many published papers lack suffi cient detail to rebuild a
model from scratch, and typographic errors are common.

Having available the source code of the model greatly improves
the situation, but here still there are numerous barriers to reproduc-
ibility and to building upon previously published models. One is that
source code can rapidly go out of date as computer architectures,

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Graham Cummins, Montana State
University, USA
Fred Howell, Textensor Limited, UK

*Correspondence:

Andrew Davison, UNIC, Bât. 32/33,
CNRS, 1 Avenue de la Terrasse, 91198
Gif sur Yvette, France.
e-mail: andrew.davison@unic.cnrs-gif.fr

204

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

different simulators having the same bugs or hidden assumptions
is very small; (ii) each simulator has a different balance between
effi ciency (how fast the simulations run), fl exibility (how easy it is
to add new functionality; the range of models that can be simu-
lated), scalability (for parallel, distributed computation on clusters
or supercomputers), and ease of use, so the most appropriate can
be chosen for a given task.

Addressing the problems associated with an ecosystem of mul-
tiple simulators while retaining the benefi ts would greatly increase
the ease of reproducibility of computational models in neuroscience
and hence make it easier to verify the validity of published models
and to build upon previous work.

There are at least two possible (and complementary) approaches
to this. One is to enable direct, effi cient communication between
different simulators at run-time, allowing different components
of a model to be simulated on different simulators (Ekeberg and
Djurfeldt, 2008). This approach addresses the problem of building a
model from diverse components, but still leaves the problem of hav-
ing to use different programming languages, and does not enable
straightforward cross-checking. The other approach is to develop
a system for model specifi cation that is simulator-independent.
Translation then only has to be done once for each simulator and
not once for each model.

Here we can take advantage of the recent, rapid emergence of
the Python programming language as an alternative interface to
several of the more widely-used simulators. Thus, for example, both
NEURON and NEST may be controlled either via their original,
native interpreter (Hoc and SLI, respectively) or via Python. More
recent simulators (e.g. PCSIM, Brian) have Python as the only avail-
able scripting language. This widespread adoption of Python is
probably due to a number of factors, including the powerful data
structures, clean and expressive syntax, extensive library, maturity
of tools for numerical analysis and visualization (allowing use of a
single language for the entire modelling workfl ow from simulation
to analysis to graphing), and the ease-of-use of Python as a glue
language which allows computation-intensive code written in a
low-level language such as C to be transparently accessed within
high-level Python code.

Python alone does not address the translation problem (although
it does make the translation process easier, since at least simple data
structures such as lists and arrays are the same for each simulator),
since neuroscience-specifi c concepts are still expressed differently.
However, it is now possible to defi ne a simulator-independent
Python interface for neuronal network simulators and to implement
automatic translation to any Python-enabled simulator. We have
designed and implemented such an interface, PyNN (pronounced
“pine”). In this paper we describe its design, concepts, implemen-
tation and use. We do not attempt here to provide a complete
user guide – this may be found online at http:// neuralensemble.
org/PyNN.

DESIGN GOALS
When designing and implementing a common simulator interface,
the following goals should be taken into account. These are the
goals we have kept in mind when designing and implementing
the PyNN interface, but they are equally applicable to any other
such interface.

Write the code for a model once, run it on any supported simu-
lator or hardware device without modifi cation. This is the primary
design goal for PyNN.

Support a high-level of abstraction. For example, it is often
preferable to deal with a single object representing a population of
neurons than to deal with all the individual neurons directly. Each
single neuron can be accessed when necessary, but in many cases
the population is the more useful abstraction. The advantages of
this approach are that (i) it is easier to maintain a conceptual idea
of the model, without being distracted by implementation details,
and (ii) the internal implementation of an object can be optimized
for speed, parallelization or memory requirements without chang-
ing the interface presented to the user.

Support any feature provided by at least two supported simula-
tors. The aim is to strike a balance between supporting all features
of all simulators (unfeasible) and supporting only the subset of
features common to all simulators (overly restrictive).

Allow mixing of PyNN and native simulator code. PyNN should
not limit the range of models that can be implemented. Following
the two-simulator rule, above, there will be things that are possible
in one simulator and not in any other. Although a model imple-
mentation consisting of 100% PyNN is the best scenario for run-
ning on multiple simulators, an implementation with 50% PyNN
code will be easier to convert between simulators than one with
no PyNN code.

Facilitate porting of models between simulators. PyNN changes
the process of porting a model between simulators from all-or-
 nothing, in which the validity of the translated model cannot be
tested until the entire translation is complete, to an incremen-
tal approach, in which the native code is gradually replaced by
 simulator-independent code. At each stage, the hybrid code remains
runnable, and so it is straightforward to verify that the model
behaviour has not been changed.

Minimize dependencies, to make installation as simple as pos-
sible and maximize fl exibility. There are no visualization and few
data analysis tools built-in to PyNN, which means the user can use
any such tools they wish.

Present a consistent interface on output as well as on input.
The formats used for simulation outputs are consistent across
simulator back-ends, making it a stable base upon which to build
more complex systems of simulation control, data-analysis and
visualization.

Prioritize compatibility over optimizations, but allow
 compatibility-breaking optimizations to be selected by a deliber-
ate choice of the user (e.g. the compatible_output fl ag of the
various print() methods is True by default, but can be set to
False to get potentially-faster writing of data to fi le).

API Versioning. The PyNN API will inevitably evolve over time,
as more simulators are supported and to take account of the pref-
erences of the community of users. To ensure backwards compat-
ibility, the API should be versioned so that the user can indicate
which version was used for a particular implementation. Note that
the examples given in this paper use version 0.4 of the API.

Transparent parallelization. Code that runs on a single processor
should run on multiple processors (using MPI) without changes.

Some of these goals are somewhat contradictory: for exam-
ple, having a high level of abstraction and making porting easy.

205

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

Reconciling this particular pair of goals has led to the presence in
PyNN of both a high-level, object-oriented interface and a low-
level, procedural interface that is more similar to the interface of
many existing simulators. These will be discussed further below.

USAGE EXAMPLES
Before describing in detail the concepts underlying the PyNN
interface, we will work through some examples of how it is used
in practice: fi rst a simple example using the low-level, procedural
interface and then a more complex example using the high-level,
object-oriented interface.

For the simple example, we will build a network consisting of
a single integrate-and-fi re (IF) cell receiving spiking input from a
Poisson process.

First, we choose which simulator to use by importing the rel-
evant module from PyNN:

>>> from pyNN.neuron import *

If we wanted to use PCSIM, we would just import pyNN.pcsim,
etc. Whichever simulator back-end we use, none of the code below
would change.

Next we set global parameters of the simulator:

>>> setup(timestep=0.1, min_delay=2.0)

Now we create two cells: an IF neuron with synapses that respond
to a spike with a step increase in synaptic conductance, which then
decays exponentially, and a “spike source”, a simple cell that emits
spikes at predetermined times but cannot receive input spikes.

>>> ifcell = create(IF_cond_exp,
… {'i_offset': 0.11,
… 'tau_refrac': 3.0,
… 'v_thresh' : -51.0})
>>> times = map(float, range(5,105,10))
>>> source = create(SpikeSourceArray,
… {'spike_times': times})

Behind the scenes, the create() function translates the stand-
ard PyNN model name, IF_cond_exp in this case, into the model
name used by the simulator, Standard_IF for NEURON, iaf_
cond_exp for NEST, for example and also translates parameter
names and units into simulator-specifi c names and units. To take
one example, the i_offset parameter represents the amplitude of
a constant current injected into the cell, and is given in nanoamps.
The equivalent parameter of the NEST iaf_cond_exp model has
the name I_e and units of picoamps, so PyNN both converts the
name and multiplies the numerical value by 1000 when running
with NEST. Standard cell models and automatic translation are
discussed in more detail in the next section.

The create() function returns an ID object, which provides
access to the parameters of the cell models, e.g.:

>>> ifcell.tau_refrac
3.0
>>> ifcell.tau_m = 12.5
>>> ifcell.get_parameters()
{'tau_refrac': 3.0, 'tau_m': 12.5,
 'e_rev_E': 0.0, 'i_offset': 0.11,

 'cm': 1.0, 'e_rev_I': -70.0,
 'v_init': -65.0, 'v_thresh': -51.0,
 'tau_syn_E': 5.0, 'v_rest': -65.0,
 'tau_syn_I': 5.0, 'v_reset': -65.0}

Having created the cells, we connect them with the connect()
function:

>>> connect(source, ifcell, weight=0.006,
… synapse_type='excitatory', delay=2.0)

Now we tell the system what variable or variables to record, run
the simulation and fi nish.

>>> record_v(ifcell, 'ifcell.dat')
>>> run(200.0)
>>> end()

The result of running the above model is shown in Figure 1,
which also shows the degree of reproducibility obtainable between
different simulators for such a simple network.

The low-level, procedural interface, using the create(),
 connect() and record() functions, is useful for simple models
or when porting an existing model written in a different language
that uses the create/connect idiom. For larger, more complex net-
works we have found that an object-oriented approach, with a
higher-level of abstraction, is more effective, since it both clarifi es
the conceptual structure of the model, by hiding implementation
details, and allows behind-the-scenes optimizations.

–65

–64

–63

–62

–61

–60

–59

 0 50 100 150 200

M
em

br
an

e
po

te
nt

ia
l (

m
V

)

Time (ms)

A
NEURON

PCSIM

NEST

–60

–59

 40 60 80

B

–60

–59

 40 60 80

C

FIGURE 1 | Results of running fi rst example given in the text, with

NEURON, NEST and PCSIM as back-end simulators. (A) Entire membrane
potential trace with integration time-step 0.1 ms. (B) Zoom into a smaller
region of the trace, showing small numerical differences between the results
of the different simulators. (C) Results of a simulation with integration
time-step 0.01 ms, showing greatly reduced numerical differences.

206

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

To illustrate the high-level, object-oriented interface we turn
now from the simple example of a few neurons to a more complex
example: a network of several thousand excitatory and inhibitory
neurons that displays self-sustained activity (based on the “CUBA”
model of Vogels and Abbott (2005), and reproducing the bench-
mark model used in Brette et al. (2007)). This still is not a par-
ticularly complicated network, since it has only two cell types, no
spatial structure and no heterogeneity of neuronal or connection
properties, but in demonstrating how building such a network
becomes trivial using PyNN we hope to convince the reader that
building genuinely complex, structured and heterogeneous net-
works becomes manageable.

Again, we begin by choosing which simulator to use. We also
import some classes from PyNN’s random module.

>>> from pyNN.nest2 import *
>>> from pyNN.random import (NumpyRNG,
… RandomDistribution)

We next specify the parameters of the neuron model (the same
model and same parameters are used for both excitatory and inhibi-
tory neurons).

>>> cell_params = {
… 'tau_m': 20.0, 'tau_syn_E': 5.0,
… 'cm': 0.2, 'tau_syn_I': 10.0,
… 'v_rest': -49.0, 'v_reset': -60.0,
… 'v_thresh': -50.0, 'tau_refrac': 5.0
… }

Parameters with dimensions of voltage are in millivolts, time in
milliseconds and capacitance in nanofarads. The units convention
is discussed further in the next section.

We now initialize the simulation, this time accepting the default
values for the global parameters.

>>> setup()

Now, rather than creating each cell separately, we just create a
Population object for each different type of cell:

>>> pE = Population(4000, IF_cond_exp,
… cell_params,
… label="Excitatory")
>>> pI = Population(1000, IF_cond_exp,
… cell_params,
… label="Inhibitory")

By default, all cells of a given Population are created with identi-
cal parameters, but these can be changed afterwards. Here we wish
to randomize the value of the membrane potential at the start of
the simulation to values between −50 and −70 mV.

>>> unif_distr = RandomDistribution('uniform',
… [-50,-70])
>>> pE.randomInit(unif_distr)
>>> pI.randomInit(unif_distr)

randomInit() is a convenience method for randomizing the ini-
tial membrane potential. For the more general case of randomizing
any cell parameter use rset().

Just as individual neurons are encapsulated within Populations,
connections between neurons are encapsulated within Projections.
To create a Projection object, we need to specify how the neurons will
be connected, either via an algorithm or via an explicit list. Different
algorithms are encapsulated in different Connector classes, e.g.
FixedProbabilityConnector, AllToAllConnector. An explicit
list of connections can be provided via a FromListConnector or a
FromFileConnector.

>>> FPC = FixedProbabilityConnector
>>> exc_conn = FPC(0.02, weights=0.004,
… delays=0.1)
>>> inh_conn = FPC(0.02, weights=0.051,
… delays=0.1)

Note that weights are in microsiemens and delays in millisec-
onds. Where the delay is not specifi ed, the global minimum delay
specifi ed in the setup() function is used. Here we set all weights
and delays of a Projection to the same value, but it is equally
possible to pass the constructor a RandomDistribution object,
as we did above for the initial membrane potential, or an explicit
list of values.

To create a Projection, we need to specify the pre- and post-
synaptic Populations, a Connector object, and a synapse type.
The standard IF cells each have two synapse types, “excitatory”
and “inhibitory”. User-defi ned models can use arbitrary names,
e.g. “AMPA”, “NMDA”.

>>> e2e = Projection(pE, pE, exc_conn,
… target='excitatory')
>>> e2i = Projection(pE, pI, exc_conn,
… target='excitatory')
>>> i2e = Projection(pI, pE, inh_conn,
… target='inhibitory')
>>> i2i = Projection(pI, pI, inh_conn,
… target='inhibitory')

Having constructed the network, we now need to instrument
it, using the record() (for recording spikes) and record_v()
(membrane potential) methods of the Population objects. Here
we choose to record spikes from 1000 of the excitatory neurons
(chosen at random) and all of the inhibitory neurons, and to record
the membrane potential of two specifi c excitatory neurons. We then
run the simulation for 1000 ms.

>>> pE.record(1000)
>>> pI.record()
>>> pE.record_v([pE[0], pE[1]])
>>> run(1000.0)

After running the simulation, we can access the results or write
them to fi le.

>>> pI.getSpikes()[:5]
array([[715. , 1.5],
 [609. , 1.6],
 [708. , 1.7],
 [796. , 1.7],
 [34. , 1.8]])

207

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

>>> pE.get_v()[:5]
array([[0. , 0.1 , -55.073],
 [1. , 0.1 , -50.163],
 [0. , 0.2 , -55.098],
 [1. , 0.2 , -50.212],
 [0. , 0.3 , -55.122]])
>>> end()

The results of running simulations of the above network with
two different simulator back-ends are shown in Figure 2.

PRINCIPAL CONCEPTS
To achieve the goal of “write the code for a model once, run it
on any supported simulator without modifi cation” requires (i) a
 common interface, (ii) neuron and synapse models that are stand-
ardized across simulators, (iii) consistent handling of physical
units, (iv) consistent handling of (pseudo-)random numbers. To
achieve the twin goals of supporting a high-level of abstraction

and facilitating porting of models between simulators requires
both an object- oriented and a procedural interface. The imple-
mentation of all these requirements is described in more depth in
the following. We also illustrate the mixing of PyNN and native
simulator code, and how PyNN can support features that are found
in only a single simulator back-end, by describing support for
multi- compartmental models.

STANDARD CELL MODELS
A fundamental concept in PyNN is the cell type – a given model
of a neuron, representable by a set of equations, and comprising
sub-threshold behaviour, spiking mechanism and post-synaptic
response. The public interface of a cell type is mainly defi ned by its
parameters. Different neurons of the same cell type may have very
different behaviour if they have different values of the parameters.
For example, the Izhikevich model (Izhikevich, 2003), can repro-
duce a wide range of spiking patterns, from fast-spiking through
regular spiking to multiple types of bursting, depending on the

A

NEST NEURON

 20 mV

100 ms

B

E
xc

In
h

100 ms

 0

 500

 1000

 1500

 2000

 10 100 1000

n
in

 b
in

Inter-spike interval (ms)

C

Exc

 0

 100

 200

 300

 400

 500

 10 100 1000

Inh

 0

 500

 1000

 1500

 2000

 10 100 1000

Exc

 0

 100

 200

 300

 400

 500

 10 100 1000

Inh

 0

 100

 200

 300

 400

 500

 0 0.5 1 1.5 2

n
in

 b
in

CV(ISI)

D
Exc

 0

 50

 100

 150

 0 0.5 1 1.5 2

Inh

 0

 100

 200

 300

 400

 500

 0 0.5 1 1.5 2

Exc

 0

 50

 100

 150

 0 0.5 1 1.5 2

Inh

FIGURE 2 | Results of running the second example given in the text,

with NEURON and NEST as back-end simulators. Note that the network
connectivity and initial conditions were identical in the two cases.
(A) Membrane potential traces for two excitatory neurons. Note that the
NEST and NEURON traces are very similar for the fi rst 50 ms, but after that
diverge rapidly due to the effects of network activity, which amplifi es the

small numerical integration differences. (B) Spiking activity of excitatory (black)
and inhibitory (green) neurons. Each dot represents a spike and each row of
dots a different neuron. All 5000 neurons are shown. (C) Distribution of
pooled inter-spike intervals (ISIs) for excitatory and inhibitory neurons.
(D) Distribution over neurons of the coeffi cient of variation of
the ISI [CV(ISI)].

208

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

parameter values chosen. A cell type is therefore a model type rather
than a biologically defi ned cell type (such as “Layer V pyramidal
neuron”, for example).

When using a given simulator back-end, PyNN can work with
any cell type that is supported by that simulator. In this case, the cell
type is generally represented by a string, holding a model name that
is meaningful for that simulator, e.g. “iaf_neuron” in NEST.

Of course, such a cell type will only work with one simulator. To
create a model that will run on different simulators requires you to
use one of PyNN’s built-in, standard cell models, each represented
by a sub-class of the StandardCell class. The models provided
by PyNN include various simple IF models, the Izhikevich-like
adaptive exponential IF model (Brette and Gerstner, 2005), a single-
compartment neuron with Hodgkin–Huxley sodium and potas-
sium channels, and various models that emit spikes (e.g. according
to a Poisson process) but cannot receive them.

The StandardCell class contains machinery for translating
model names, parameter names and parameter units between
PyNN standardized values and simulator-specifi c values. This is
particularly useful when the underlying simulators use different
unit systems or different parameterizations of the same set of equa-
tions, e.g. when one simulator expects the membrane time constant
and another the membrane leak conductance. An example of the
translations performed by PyNN is given in Table 1.

Currently, all the standard cell types are single-compartment
or point neuron models, since PyNN currently supports only one
simulator for multi-compartmental models (NEURON). Further
details on using multi-compartmental models with PyNN’s
NEURON back-end are given below. We plan in future to allow
specifying multi-compartmental cell types using a NeuroML
description (Crook et al., 2005).

UNITS
As is clear from the previous section, each simulator back-end has
its own convention for which units to use for which physical quanti-
ties. The exception to this is Brian, which has a system for explicitly
specifying units and for checking that equations are dimensionally
consistent. In the future, we plan to adopt Brian’s system for PyNN,
but for now we have chosen to use a convention, which is similar to

that of NEURON and NEST in that the units are those that tend to
be used by experimental physiologists. An alternative would have
been the convention used by PCSIM (and also by the GENESIS
simulator) of using pure SI units with no prefi xes. The advantage of
the latter convention is that there is no need for checking equations
for dimensional consistency. The disadvantage is that numerical
values in such a system are often very large or very small, and hence
the human intuition for reasonable and unreasonable parameter
values is mostly lost.

Irrespective of the relative merits of different conventions, the
most important thing is that PyNN now provides a single conven-
tion which is valid across simulators. In detail, the convention is as
follows: voltage – mV, current – nA, conductance – µS, time – ms,
capacitance – nF.

STANDARD SYNAPSE MODELS
In PyNN, the shape and time-course of the elementary post- synaptic
current or conductance change in response to a pre-synaptic spike
are considered to be a part of the post-synaptic neuron model, while
all other properties of a synaptic connection, notably its weight (the
peak current or conductance of the synaptic response), delay (for
point models, this implicitly includes axonal propagation, chemical
transmission and dendritic propagation; more morphologically
and/or biophysically detailed models may model explicitly some
or all of these sources of delay), and short- and long-term plas-
ticity, are considered to depend on both pre- and post-synaptic
neurons, and so are encapsulated in the concept of “synapse type”
that mirrors the “cell type” discussed above.

The default type of synaptic connection in PyNN is static, with
fi xed synaptic weights. To model dynamic synapses, for which the
synaptic weight (and possibly other properties, such as rise-time)
varies depending on the recent history of post- and/or pre- synaptic
activity, we use the same idea as for neurons, of standardized,
named models that have the same interface and behaviour across
simulators, even if the underlying implementation may be very
different.

Where the approach for dynamic synapses differs from that
for neurons is that we attempt a greater degree of compositional-
ity, i.e. we decompose models into a number of components, for

Table 1 | Comparison of parameter names and units for different implementations of a leaky integrate-and-fi re model with a fi xed fi ring threshold

and current-based, alpha-function synapses. This model is called IF_curr_alpha in PyNN, iaf_psc_alpha in NEST, LIFCurrAlphaNeuron in PCSIM

and StandardIF in NEURON (this is a model template distributed with PyNN and is not in the standard NEURON distribution). Manual conversion of names

and units is straightforward but error-prone and time-consuming. PyNN takes care of such conversions transparently.

Parameter PyNN NEST NEURON PCSIM

Resting membrane potential v_rest mV E_L mV v_rest mV Vresting V

Reset membrane potential v_reset mV V_reset mV v_reset mV Vreset V

Membrane capacitance cm nF C_m pF CM nF Cm F

Membrane time constant tau_m ms tau_m ms tau_m ms taum s

Refractory period tau_refrac ms t_ref ms t_refrac ms Trefrac s

Excitatory synaptic time constant tau_syn_E ms tau_syn_ex ms tau_e ms TauSynExc s

Inhibitory synaptic time constant tau_syn_I ms tau_syn_in ms tau_i ms TauSynInh s

Spike threshold v_thresh mV V_th mV v_thresh mV Vthresh V

Injected current amplitude i_offset nA I_e pA i_offset nA Iinject A

209

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

example for short-term and long-term dynamics, or for the timing-
dependence and the weight-dependence of STDP rules, that can
then be composed in different ways.

The advantage of this is that if we have n different models for
component A and m models for component B, then we require only
n + m models rather than n × m, which had advantages in terms
of code-simplicity and in shorter model names. The disadvantage
is that not all combinations may exist, if the underlying simula-
tor implements composite models rather than using components
itself: in this situation, PyNN checks whether a given composite
model AB exists for a given simulator and raises an Exception if
it does not. The composite approach may be extended to neuron
models in future versions of the PyNN interface depending on the
experience with composite synapse models.

Currently only a single model exists in PyNN for the short-term
plasticity component, the Tsodyks–Markram model (Markram et al.,
1998). For long-term plasticity there is a spike-timing-dependent
plasticity STDP component, which itself is composed of separate
timing-dependence and weight-dependence components.

LOW-LEVEL, PROCEDURAL INTERFACE
We refer to the procedural interface as “low-level” because it deals
with a lower level of abstraction – individual neurons and indi-
vidual synapses – than the object-oriented interface. The procedural
interface consists of the functions create(), connect(), set(),
record() (for recording spikes) and record_v() (for record-
ing membrane potential). Each of these functions operates on, or
returns, either individual cell ID objects or lists of such objects. As
was described in the Usage Examples section, as well as being passed
around as arguments, the ID object may be used for accessing/
modifying the parameters of individual neurons, and takes care
of parameter translation using the StandardCell mechanisms
described above.

It is possible to some extent to mix the low-level and high-level
interfaces. For example, it is possible to access individual neurons
within a Population as ID objects and then use the connect()
function to connect them, instead of using a Projection object.

Why have both a low-level and high-level interface? Having
both is a potential source of confusion for users and is defi nitely a
maintenance burden for developers. The main reason is to support
the use of PyNN as a porting tool. The majority of neuronal net-
work models using existing simulators use a procedural approach,
and so conversion to PyNN is easier if PyNN supports the same
approach. In addition, when developing a PyNN interface for a
simulator, or for neuromorphic hardware, that deals primarily with
individual cells and synaptic connections, it is easier to implement
only the low-level interface, since the high-level interface can be
built upon it.

HIGH-LEVEL, OBJECT-ORIENTED INTERFACE
Object-oriented programming has been used for many years in
computer science as a method for reducing program complexity. As
the ambition and scope of large-scale, biologically detailed neuronal
network modelling increases, reducing program complexity will
become more and more critical, as the limiting factor in computa-
tional neuroscience becomes the productivity of the programmer
and not the capacity of the computer (Wilson, 2006). It is for this

reason that the preferred interface in PyNN for developing new
models is an object-oriented one.

The object-oriented interface is built around three main
classes:

Population – a group of cells all with the same cell type (model
type). It is generally considered that the cells in a Population
should all represent the same biological cell type, i.e. although
parameter values may vary between cells in the group, all cells
should have qualitatively the same fi ring response. This is not
enforced, but is a good guideline to follow for producing under-
standable code. The Population class eliminates tedious itera-
tion over lists of neurons and enables more effi cient, array-based
management of neuron properties.

Projection – the set of connections of a given synapse type
between two Populations. Creating a Projection requires speci-
fying the pre- and post-synaptic Populations, the synapse type,
and the algorithm used to determine which neurons connect to
which.

Connector – an encapsulation of the connection algorithm
used in creating a Projection. Simple examples of such algorithms
are “all-to-all”, “one-to-one” and “connect-each-pre-and-post-
 synaptic-cell-with-a-fi xed-probability”. It is also possible to provide
an explicit list of which cells are to be connected to which others.
Each algorithm is defi ned within a subclass of the Connector class.
PyNN contains a number of such classes, but it is fairly straight-
forward for a user to defi ne their own algorithms.

In future development of PyNN, we plan to extend the interface
to still higher-level abstractions, such as layers, cortical columns,
brain areas and inter-areal projections. We also aim to use the high-
level interface as a link between spiking network models and more
abstract models that do not represent individual neurons, such as
mean-fi eld models.

RANDOM NUMBERS
The central nervous system contains many sources of noise, and
activity patterns are often suffi ciently complex, and possibly cha-
otic, to make a stochastic representation a reasonable model.

This can become a problem when comparing the behaviour of a
given model run on different simulators, since random differences
might obscure real inconsistencies between implementations of the
model. Similarly, when performing distributed computations on
parallel machines, the model behaviour should not depend on the
number of processors used (Morrison et al., 2005), and random
differences can conceal real differences between the parallel and
serial implementations.

For these reasons, it is important to be able to use identical
sequences of random numbers in different simulators, and to have
the random number used at a particular point in the program
execution be independent of which processor it is running on.

Another consideration is that simulations in most cases use only
pseudo-random sequences, and low-quality random number gen-
erators (RNGs) may have correlations between different elements of
the sequence that can signifi cantly affect the qualitative behaviour
of a network. Hence it is necessary to be able to test the simulation
with different RNGs.

PyNN supports simulator-independent RNGs and use of dif-
ferent generators – currently any of the generators provided by

210

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

the numpy package or by the GNU Scientifi c Library (GSL) can
be used.

This is done by wrapping the numpy and GSL RNGs in classes
with a common interface. PyNN’s random module contains the
classes NumpyRNG and GSLRNG, which both have a single method,
next(n, distribution, parameters), which returns n ran-
dom numbers from a distribution of type distribution with
parameters parameters, e.g.

>>> from pyNN.random import NumpyRNG, GSLRNG
>>> rngN = NumpyRNG(seed=76847376)
>>> rngG = GSLRNG(seed=87548753)
>>> rngN.next()
0.91457981651574294
>>> rngG.next(5)
array([0.02518011, 0.79118205, 0.16679516,
… 0.1902914, 0.66204769])
>>> rngN.next(3, 'gamma', [2.0, 0.5])
array([0.48903019, 0.63129009, 0.70428452])
>>> rngG.next(distribution='uniform')
0.93618978746235371

Since all PyNN code that uses random numbers accesses the
RNG classes only through this next() method, a user can substi-
tute their own RNG simply by defi ning a wrapper class with such
a method.

Since very often one wishes to use the same random distribution
repeatedly, rather than changing distribution each time, the random
module also provides the RandomDistribution class, which is
initialized with the distribution name and parameters, and there-
after the next() method is simplifi ed to take a single argument,
the number of values to draw from the distribution, e.g.

>>> from pyNN.random import (NumpyRNG,
… RandomDistribution)
>>> rng = NumpyRNG(seed=8745753)
>>> gamma_distr = RandomDistribution('gamma',
… [2.0, 0.5],
… rng=rng)
>>> gamma_distr.next(3)
array([0.72682412, 0.82490159, 1.03882654])

Note that NumpyRNG and GSLRNG distributions may not
have the same names, e.g. “normal” for NumpyRNG and “gaussian”
for GSLRNG, and the arguments may also differ. One of our future
plans is to extend the random module in order to harmonize names
across RNGs.

MULTI-COMPARTMENTAL MODELS
PyNN currently supports only a single simulator, NEURON, that
is suitable for many-compartment models. Given the principle
of supporting simulator-independence only for features that are
shared by at least two of the supported simulators, and given
PyNN’s focus on network modelling, PyNN does not provide an
API for specifying simulator-independent multi-compartmental
models. This is a possible future development – preliminary work
has been done on a PyNN interface to the MOOSE simulator (Ray
and Bhalla, 2008) – but a more likely path would be to make use

of the NeuroML standards for specifying multi-compartmental
 models. In this scenario, the fi lename of a NeuroML level 2 fi le,
specifying a single cell type, would be passed as the cellclass
argument to the PyNN create() function or Population
constructor.

However, since native and PyNN code can be mixed, the
pyNN.neuron module already supports simulations with multi-
 compartmental models. The pre-synaptic compartment whose
voltage is watched to trigger synaptic transmission (e.g. axon
terminal) can be specifi ed using the source argument to the
Projection constructor, and the post-synaptic mechanism speci-
fi ed with the target argument.

DEBUGGING
Should an error occur in a PyNN simulation, a good fi rst step is to
re-run it on another simulator back-end and so narrow down the
source of the problem to one back-end in particular. Nevertheless,
it has proven to be the case that the additional layers of abstrac-
tion provided by PyNN sometimes make it harder to track down
sources of errors. To counterbalance this, PyNN traps errors coming
from the simulator core and employs Python’s introspection capa-
bilities to provide additional information about the error context.
For example, if an invalid parameter name is provided to a neu-
ron model, the error message lists all the valid parameter names
for that model. Furthermore, logging can be switched on via the
init_logging() function in the pyNN.utility module, causing
detailed information about what the system is doing to be written
to fi le, a valuable resource for tracking down bugs.

IMPLEMENTATION
PyNN is both a defi nition of a common simulator interface and
an implementation of this interface for each supported simulator.
PyNN is implemented as a Python package containing a common
module, which defi nes the API and contains functionality common
to all simulator back-ends, a random module (described above),
and a module for each simulator back-end, as shown in Figure 3.
Each simulator module separately implements the API, although
it can make use of much shared code in common. In most cases,
the simulator modules have been implemented by, or in close col-
laboration with, the simulator developers.

PyNN currently fully supports the following simulators:
NEURON (Carnevale and Hines, 2006; Hines and Carnevale,
1997; Hines et al., 2008), NEST (Eppler et al., 2008; Gewaltig and
Diesmann, 2007), PCSIM (http://www.lsm.tugraz.at/pcsim/) and
Brian (Goodman and Brette, 2008). Support for MOOSE (Ray
and Bhalla, 2008) and for export in NeuroML format (Crook et al.,
2005) is under development.

PyNN also supports the Heidelberg neuromorphic hardware
system (Schemmel et al., 2007). This illustrates a major benefi t of
the existence of a common neuronal simulation interface: novel
simulation or emulation systems do not need to develop their own
programming interface, but can benefi t from an existing one that
guarantees interoperability with existing tools. Using PyNN as the
interface to neuromorphic hardware systems provides the possi-
bility of closing the gap between the two domains of numerical
simulation and physical emulation, which have so far coexisted
rather separately.

211

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

LIMITATIONS ON REPRODUCIBILITY
For a given model with a given parameter set run on a given version
of a given simulator, it should be possible to exactly reproduce a
simulation result, independent of computer architecture (except
where this affects the precision of the fl oating-point representa-
tion) or operating system. For parallel systems, results should also
be independent of how many threads or processes are used in the
computation, although here exact quantitative reproduction is
harder to achieve. Reproducibility across different versions of a
given simulator is not essential provided the precise version used
to generate a given result is specifi ed, but it is of course highly
desirable. When running a model on different simulators, exact
reproduction is impossible to achieve, except in simple cases, due
to round-off errors in fl oating point calculations. When validating
a model implementation by running it on two or more simulators,
therefore, what level of reproducibility is achievable, and how can
we tell whether any differences are due to round-off error or to
implementation errors?

To get a preliminary handle on this problem, we have com-
pared the difference in model activity between two simulators to
the difference due to two different initial conditions with the same
simulator.

Our test case is the balanced random network, based on Vogels
and Abbott (2005), whose implementation was shown above. The
activity pattern of this network is very sensitive to initial condi-
tions (chaotic or near-chaotic), and so we cannot use differences in
the precise spike pattern to measure reproducibility: we are more
interested in the statistical properties of the activity, and so we
have chosen to take the distribution of inter-spike intervals (ISIs)
of excitatory neurons (see Figure 2C) as a measure of network
activity.

To measure the difference between the distributions from two
different runs we use the Kolmogorov–Smirnov two-sample test.
We ran the simulation ten times, each time with a different seed
for the RNG used to generate the initial membrane potential
distribution, with both NEURON and NEST back-ends. This gave
values for the Kolmogorov–Smirnov D-statistic between 0.008
and 0.026 (n � 19000) with a mean of 0.015, with associated

p-values (probability that the two distributions are the same)
between 6.3 × 10−5 and 0.68 with mean 0.15.

We then ran the simulation twenty times just on NEURON, each
time with a different RNG seed, to give 10 pairs of distributions. In
this case the D-values were in the range 0.007–0.026, mean 0.015,
and the p-values in the range 2.8 × 10−5 to 0.77, mean 0.20.

In summary, the differences due to different simulators are in
almost exactly the same range as those due to different initial con-
ditions, suggesting that the differences between the simulators are
indeed due to round-off errors and that there are not, therefore,
any implementation errors in this case.

It is also interesting to note that in most cases the null hypothesis
is supported, i.e. the distributions are the same, but that for some
initial conditions there are highly signifi cant differences between
the ISI distributions. The ISI distribution may not therefore be the
best measure for reproducibility in this case.

DISCUSSION
In this article we have presented PyNN, a Python-based common
simulator interface, which allows simulator-independent model
specifi cation. PyNN is already in use in a number of research groups,
and has been a key technology enabling improved communication
between labs in a pan-European collaborative project with a major
component of modelling and of neuromorphic hardware develop-
ment (the FACETS project: http://www.facets-project.org).

By providing a standard simulation platform, PyNN also has
the potential to act as the foundation for other, simulator agnostic
but neuroscience-specifi c, tools such as analysis, visualization and
data-management software.

PyNN is not the only project to address simulator- independent
model specifi cation and simulator interoperability (review in
Cannon et al., 2007). neuroConstruct (Gleeson et al., 2007) is a
tool to develop networks of morphologically-detailed neurons
using a graphical user interface (GUI), that can generate code
for both the NEURON and GENESIS simulators. A limitation
with respect to PyNN is that since it uses code generation rather
than a direct interface, neuroConstruct cannot receive informa-
tion back from the simulator except by reading the data fi les it

sli

GENESIS 2 MOOSE

NeuroML

PCSIMNEST NEURONSimulator kernel

Native interpreter

Python interpreter

Simulator-specific
PyNN module

hoc

FACETS
hardware

nrnpy

SLI

PyMOOSEPyPCSIM PyHALPyNEST

pynn.neuronpynn.nest pynn.pcsim pynn.
facetshardware1

pynn.neuroml pynn.moose
pynn.

genesis2

PyNN

Direct communication Code generation Implemented Planned

Brian

pynn.brian

FIGURE 3 | The architecture of PyNN.

212

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 |

Davison et al. Simulator-independent modelling with PyNN

REFERENCES
Brette, R., and Gerstner, W. (2005).

Adaptive exponential integrate-and-
fi re model as an effective description
of neuronal activity. J. Neurophysiol.
94, 3637–3642.

Brette, R., Rudolph, M., Carnevale, T.,
Hines, M., Beeman, D., Bower, J.,
Diesmann, M., Morrison, A.,
Goodman P. H., Harris, F. Jr,
Zirpe, M., Natschlager, T., Pecevski, D.,
Ermentrout, B., Djurfeldt, M.,
Lansner, A., Rochel, O., Vieville, T.,
Muller, E., Davison, A., El Boustani, S.,
and Destexhe, A. (2007). Simulation of
networks of spiking neurons: a review
of tools and strategies. J Comput.
Neurosci. 23, 349–398.

Cannon, R., Gewaltig, M., Gleeson, P.,
Bhalla, U., Cornelis, H., Hines, M.,
Howell, F., Muller, E., Stiles, J.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. Cambridge,
University Press.

Crook, S., Beeman, D., Gleeson, P., and
Howell, F. (2005). XML for model

specification in neuroscience: an
introduction and workshop summary.
Brains Minds Media 1, bmm228 (urn:
nbn:de:0009–3–2282).

Ekeberg, Ö., and Djurfeldt, M. (2008).
MUSIC – multisimulation coor-
dinator: request for comments.
Nat. Precedings http://dx.doi.
org/10.1038/npre.2008.1830.1.

Eppler, J., Helias, M., Diesmann, M., and
Gewaltig, M.-O. (2008). PyNEST:
a convenient interface to the NEST
simulator. Front. Neuroinform. 2. doi:
10.3389/neuron.11.012.2008.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (NEural Simulation
Tool). Scholarpedia 2, 1430.

Gleeson, P., Steuber, V., and Silver, R. A.
(2007). neuroConstruct: a tool for
modeling networks of neurons in 3D
space. Neuron 54, 219–235.

Goodman, D., and Brette, R. (2008). Brian:
a simulator for spiking neural net-
works in Python. Front. Neuroinform.
2. doi: 10.3389/neuron.11.005.2008.

Hines, M. L., and Carnevale, N. T.
(1997). The NEURON simulation
environment. Neural Comput. 9,
1179–1209.

Hines, M., Davison, A., and Muller, E.
(2008). NEURON and Python.

 networks of integrate-and-fi re neu-
rons. J. Neurosci. 25, 10786–10795.

Wilson, G. (2006). Where’s the real bot-
tleneck in scientifi c computing? Am.
Sci. 94, 5–6.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 21 September 2008; paper pend-
ing published: 21 October 2008; accepted:
22 December 2008; published online: 27
January 2009.
Citation: Davison AP, Brüderle D, Eppler J,
Kremkow J, Muller E, Pecevski D, Perrinet L
and Yger P (2009) PyNN: a common
interface for neuronal network simulators.
Front. Neuroinform. (2009) 2:11. doi:
10.3389/neuro.11.011.2008
Copyright © 2009 Davison, Brüderle, Eppler,
Kremkow, Muller, Pecevski, Perrinet and
Yger. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

Front . Neuroinform . 2 . doi :
10.3389/neuron.11.001.2009.

Izhikevich, E. (2003). Simple model of
spiking neurons. IEEE Trans Neural
Netw. 14, 1569–1572.

Markram, H., Wang, Y., and Tsodyks, M.
(1998). Differential signaling via the
same axon of neocortical pyramidal
neurons. Proc. Natl. Acad. Sci. USA 95,
5323–5328.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of
 high- connectivity network simulation
with distributed computing. Neural
Comput. 17, 1776–1801.

Ray, S., and Bhalla, U. (2008). PyMOOSE:
interoperable scripting in Python for
MOOSE. Front. Neuroinform. 2. doi:
10.3389/neuron.11.006.2008.

Schemmel, J., Brüderle, D., Meier, K.,
and Ostendorf, B. (2007). Modeling
synaptic plasticity within networks
of highly accelerated I&F neurons.
In Proceedings of the 2007 IEEE
International Symposium on Circuits
and Systems (ISCAS’07). New Orleans,
IEEE Press, pp. 3367–3370. doi:
10.1109/ISCAS.2007.378289.

Vogels, T., and Abbott, L. (2005). Signal
propagation and logic gating in

generates. A second limitation is that features that are not avail-
able through the GUI cannot be incorporated in a model. The
NeuroML standards (Crook et al., 2005, http://www.neuroml.org)
are intended to provide an infrastructure for exchanging model
specifi cations between groups in a simulator-independent way.
Their scope includes much more detailed levels of modelling, e.g.
membrane ion channels and detailed dendritic morphology, than
are supported by PyNN. They have the advantage over PyNN of
being language-independent, since specifi cations are written in
XML, for which tools exist in all major programming languages.
The major disadvantage of purely declarative specifi cations is lack
of fl exibility: if a concept or entity is not defi ned in the standard,
it is not possible to specify models that use it, whereas with a
procedural/imperative or mixed declarative-procedural specifi -
cation such as is achievable with PyNN, arbitrary specifi cations
are possible.

Although we emphasize here the differences between the
GUI, pure-declarative, and programming-interface approaches
to simulator-independent model specifi cation, in fact they are
highly complementary. Graphical interfaces are particularly
good for beginners, for teaching, for giving high-level overviews
of a system, and for integrating analysis and visualization tools.
It would be very useful for neuroConstruct to be able to gener-
ate PyNN code, for example, in addition to code for NEURON
and GENESIS. Declarative specifi cations reach the highest levels

of system- independence, for the range of concepts that are sup-
ported. They are also particularly suitable for transformation into
human-readable formats and for automated GUI generation. As
such, they seem to be best suited for domains in which the model-
ling approach is fairly stable, e.g. for describing neuron morpholo-
gies or non- stochastic ion channel models. In PyNN, we plan to
support simulator-independent multi-compartmental models
using NeuroML: in this scenario cell models would be specifi ed in
NeuroML while PyNN would be used for network specifi cation
and for simulation setup and control.

Our main priorities for future development of PyNN are to
increase the number of supported simulators (simulator developers
who are interested in PyNN support for their simulator are encour-
aged to contact us), improve the support for multi-compartmental
modelling, and extend the interface towards higher-level abstrac-
tions, such as cortical columns and more abstract modelling
approaches. PyNN is open source software (CeCILL licence, http://
www.cecill.info) and has an open development model: anyone who
wishes to contribute is welcome and invited to do so.

ACKNOWLEDGEMENTS
This work was supported by the European Union (FACETS project,
FP6-2004-IST-FETPI-015879). Jens Kremkow is also supported by
the German Federal Ministry of Education and Research (BMBF
grant 01GQ0420 to BCCN, Freiburg).

213

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 15 January 2009
doi: 10.3389/neuro.11.010.2008

Generating stimuli for neuroscience using PsychoPy

Jonathan W. Peirce*

Nottingham Visual Neuroscience, School of Psychology, University of Nottingham, Nottingham, UK

PsychoPy is a software library written in Python, using OpenGL to generate very precise visual
stimuli on standard personal computers. It is designed to allow the construction of as wide
a variety of neuroscience experiments as possible, with the least effort. By writing scripts in
standard Python syntax users can generate an enormous variety of visual and auditory stimuli
and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG
etc.). The structure of scripts is simple and intuitive. As a result, new experiments can be written
very quickly, and trying to understand a previously written script is easy, even with minimal code
comments. PsychoPy can also generate movies and image sequences to be used in demos or
simulated neuroscience experiments. This paper describes the range of tools and stimuli that
it provides and the environment in which experiments are conducted.

Keywords: Python, psychophysics, software, neuroscience, vision, fMRI, EEG, MEG

largely stable (it is largely backward-compatible between versions)
and is suffi ciently complete and bug-free that it is used as the
standard means of conducting psychophysical and/or neuroim-
aging experiments in a number of labs worldwide. The software
is still very much under development however; stimuli are still
being added, code is still being optimised and the user interface
is being refi ned constantly. There is a mailing list where users
can report bugs, discuss improvements and get help in general
use of the software.

PYTHON
One of the strengths of PsychoPy is its use of Python. The high-level
functions and libraries available in Python make it an ideal language
in which to develop such software. The platform independence that
PsychoPy enjoys is based very much on the fact that it is based on
pure Python code, using libraries such as wxPython, pyglet and numpy
that have been written to be as platform independent as is technically
possible. The fact that Python now has such a large user base means
that there is a large community of excellent programmers developing
libraries that PsychoPy can make use of. The fact that Python can
be used in such a wide variety of ways (for example, in the author’s
own lab Python is used not only for stimulus presentation but also
for data analysis, for the generation of publication-quality fi gures,
for computational modelling and for various general purpose scripts
to manipulate fi les) means that in many cases this is likely to be the
only programming language that a scientist need learn, with the
obvious benefi ts in time that result. By nature of its clean, readable,
and powerful syntax combined with its free and open-source release
model Python is clearly a very popular language that is continu-
ously growing and developing further. Where Matlab has, in the past,
benefi ted from its large user base and wide variety of applications to
science, Python stands to benefi t even more.

HARDWARE ACCELERATED GRAPHICS
One of the goals of PsychoPy was to generate stimuli in real-time, that
is to update the character of a stimulus on a frame-by-frame basis as
needed without losing temporal precision. For static stimuli this is an

INTRODUCTION
The majority of experiments in modern neuroscience require the
presentation of auditory or visual stimuli to subjects while a meas-
ure is taken of their ability to see, remember or interact with that
stimulus, or of the brain activity that results from its presentation.
As a result, neuroscience needs for tools that allow the accurate
presentation of stimuli and collection of participant responses.
Those tools should be as easy to use as possible to reduce the
time spent constructing experiments, while being able to deliver
as wide a variety of stimuli and experimental designs as possible
to reduce the variety of software that a single scientist needs to
learn to use. Additionally the ideal software package should be
open-source, such that scientists can fully examine the code and
know exactly what is being done “under the hood”, it should be
platform independent and it should, of course, be free.

This article describes PsychoPy, an open-source software library
that allows a very wide range of visual and auditory stimuli and
a great variety of experimental designs to be generated within a
very powerful script-driven framework based on Python. It is built
entirely on open-source libraries and technologies, such that the
user can, if they desire, examine all of the code that contributes
to the stimuli they present. By leveraging the power of Python,
and several existing cross-platform Python libraries, the software
is fully platform independent and is being used in a number of labs
worldwide on Windows, Mac OS X and Linux.

A previous publication (Peirce, 2007) describes the design phi-
losophy and underlying mechanisms of PsychoPy and its relation-
ship to other software packages, such as Vision Egg (Straw, 2008)
and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). This paper
focuses on its use, describing more of the variety of stimuli that
the library can generate and present (images, dot arrays, text and
movies), the environment in which experiments are developed and
the latest developments and additions to the software.

MATERIALS AND METHODS
PsychoPy has been under active development since 2003 and,
at time of writing, had reached version 0.95.2. The code is now

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Andrew D. Straw, California Institute of
Technology, USA
Peter Tass, Forschungszentrum Jülich,
Germany

*Correspondence:

Jonathan Peirce, School of Psychology,
University of Nottingham, University
Park, Nottingham NG7 2RD, UK.
e-mail: jon@peirce.org.uk

214

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 |

unnecessary benefi t, but for moving stimuli, where the alternative is
to pre-compute a movie sequence it makes for much cleaner experi-
mental code, with fewer delays (some experiments would previously
require several seconds or even minutes before running where they
computed the stimulus movies). The possibility of real-time stimulus
manipulations also allows experiments to alter based on input form
the participant such that, for example, a stimulus might be moved
fl uidly under mouse (or even eye- movement) control, or the next
stimulus can be generated based on the previous response.

In order to achieve good temporal precision, while updating stim-
uli in real-time from an interpreted language like Python or Matlab,
it has been essential to make good use of the hardware accelerated
graphics capabilities of modern computers. Most modern machines
have very powerful graphics processing units that can perform a lot
of the calculations necessary to present stimuli at a precise point in
space and time and to update that stimulus frequently. The OpenGL
specifi cation determines, fairly precisely, what a graphics card should
do given various commands, such that platform independence is
largely maintained (there are certain aspects, such as the synchroni-
sation of drawing with the screen vertical refresh that are graphics
card and/or platform dependent). PsychoPy 0.95 is fully compatible
with the OpenGL 1.5 specifi cation but makes use of further facilities
that were added to OpenGL 2.0 on graphics cards and drivers where
these are available. Nearly all modern graphics cards are capable of
using OpenGL (although they may need updated drivers) and per-
fectly adequate cards from nVidia or ATI, that support the OpenGL
2.0 extensions, can be currently purchased and added to a desktop
computer of any platform for roughly £30.

PLATFORM INDEPENDENCE
Platform independence is a particular goal of PsychoPy. Computer
technologies change rapidly and the relative advantages of differ-
ent platforms can vary equally quickly. Scientists should not need
to learn a whole new set of tools just because they have decided
to switch their main computer platform, and should be able to
share code and experiments with colleagues using other platforms.
Perfect independence is never possible because of hardware differ-
ences between computers. Some such differences are obvious; for
example, Apple Macs have not supported parallel ports directly
for several years so scripts using parallel port communication
cannot work on those platforms. Other differences are subtle and
unnoticed by most users. An example of this is that the OpenGL
specifi cation allows for the frame not to be cleared after a swap of
the “front” and “back” buffers during a screen refresh, but does
not specify whether the new back buffer is maintained from the
previous back buffer (most useful for the continuity of drawing
frames) or retrieved from the previous front buffer (as implied by
the term “swapping” buffers). As a result, the behaviour is free to,
and does, vary between manufacturers.

In the vast majority of cases, however, thanks to the hard work
of the developers of libraries such as pyglet, numpy and wxPython,
a PsychoPy script will run identically on all platforms.

RESULTS
INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)
PsychoPy was developed as a Python package that could be imported
from scripts needing to present stimuli. For new users of Python

that has certain disadvantages; users need to install Python and
other dependent libraries separately, they need some form of text
editor to write the scripts and they need to know where to fi nd the
text, including error messages, that scripts might output. Although
none of these are diffi cult (and may seem obvious to an experienced
programmer or user of command-line operating systems), they
were impediments to new users, particularly from Windows and
“traditional” Mac platforms. PsychoPy now comes with a built-in
code editor (PsychoPyIDE), complete with code auto-completion,
code folding and help tips. Scripts can be run directly from the
editor and code output is directed to another window in the appli-
cation (see Figure 1). When this output includes error messages
these show up as URL-style links that take the user directly to the
line on which the error occurred.

On Windows, installation is very straightforward using simple
double-clickable installers. On Intel-based Apple Macintosh com-
puters running OS X an application bundle is provided that con-
tains its own copy of Python and all the dependent libraries. This
has a number of advantages. The fi rst is that it installs simply as a
single application that can be dragged into the Applications folder
(or other location) and can be removed equally easily by simply
sending to the trash. As well as being easy to install by this method,
distributing PsychoPy with its own copy of Python has two major
advantages: PsychoPy’s developers know what libraries have been
installed and that they are compatible and the user knows that it
won’t interfere with any existing Python installation that they have
(such as previous installs, or the Apple system Python). For more
experienced Python users, who may wish to install to their own
customised set of libraries, the standard Python-style methods of
installing from source distributions are also available.

On Linux the dependencies can be installed simply from simple
apt-get commands and PsychoPy is then easily installed from its
source distribution.

MODULE STRUCTURE
As with most Python packages, PsychoPy contains a number of sub-
modules, which can be imported relatively independently (some
depend on each other) depending on the task at hand. This is useful
in keeping related functions and classes together in meaningful
units. For instance, the following will import modules useful in
presenting visual and auditory stimuli and collecting responses
(events) from the subject:

from psychopy import visual, core, event

The main modules that can be imported from PsychoPy, and the
main libraries that they depend upon are shown in Figure 2.

PRESENTING STIMULI
A subset of the available visual stimuli is shown as a screenshot
in Figure 3.

Windows
Most experiments begin with creating a window into which visual
stimuli or instructions can be presented. In PsychoPy this can be
achieved in a full screen mode or in a normal window, with the
mouse either shown or hidden. Furthermore, multiple windows can
be created at one time and these may be presented on any physical

215

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 |

screen if more than one is connected. This makes the presentation
of binocular stimuli straightforward.

PsychoPy windows can also be given information about the
monitor that they are being presented in, such as its physical size
and distance from the participant (this information can be provided
as part of the script or from a dialogue box as part of the develop-
ment environment). Once provided with the necessary information
PsychoPy will then allow the user to specify their stimulus attributes
such as size and location in any of a variety of meaningful units,
such as cm or degrees of visual angle. If the monitor has been colour
calibrated with a spectro-radiometer, a process which can also be
automated from within PsychoPy, then the colour of stimuli can
also be specifi ed in a biologically relevant colour space. For exam-
ple, using the MB-DKL cone-opponent space (Derrington et al.,
1984; MacLeod and Boynton, 1979) allows isoluminant stimuli to
be generated trivially from within scripts.

Windows are double-buffered, meaning that any drawing com-
mands are initially executed to a hidden window (the back buffer)
and are only translated to the screen on the next vertical blank
(VBL) period after the Window.flip() command has been called.
On most systems (a very small number of graphics card do not
support the feature) this will then pause the running of the thread,
such that no further commands are executed until the frame has
been refreshed. This feature of synchronising to the VBL can be used
as a mechanism to control timing during an experiment, since the
period between VBLs is extremely consistent and precise.

PatchStim
The most widely-used stimulus in PsychoPy is the PatchStim, used
to control a visual patch on the screen. Patches can contain any
bitmap-style data, including periodic textures (such as sinusoi-
dal gratings or repetitive lines) or photographic images. These

FIGURE 1 | The integrated development environment (IDE) running

one of the demo scripts. Multiple scripts can be opened at once in
the editor, appearing as tabs. There is a menu from which demos can be
easily loaded for a quick view of how to use various aspects of the program.

Output from the running script is displayed in the panel at the bottom of the
window and scripts can be started and forced to quit directly from
the editor. Although the OS X version is shown here, the editor
runs on all platforms.

216

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 |

also support alpha masks, which defi ne the transparency of the
stimulus across the patch and can therefore determine the shape,
or “envelope” of the stimulus. These stimuli can be manipulated

in real-time in a wide variety of useful ways; the bitmaps can be
rotated, have their phase shifted, change the number of cycles in
either dimension etc.

FIGURE 2 | The structure of PsychoPy. PsychoPy comprises a number of sub-modules for controlling different aspects of an experimental setup, from stimulus
presentation to analysis of data. In turn these use a number of dependent libraries, that typically have a very good degree of platform-independence.

FIGURE 3 | A sample of PsychoPy components. Within the Window is a
coloured Gabor from PatchStim, some rotated Unicode text from the
TextStim and 500-dot DotStim. The central image is actually a MovieStim.

All the stimuli are dynamic and being updated simultaneously at 60Hz, without
any dropped frames. Also shown is a dialog (gui.DlgFromDict) to receive
information about the current experiment.

217

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 |

As a result, PatchStim stimuli can be used to present a wide
variety of image-based objects, either those used typically in visual
psychophysics (gratings, Gabors etc…) or those in higher-level psy-
chology and cognitive neuroscience studies (such as photographic
images) or to create simple geometric shapes such as fi xation points
and arrows.

TextStim
Another common experimental requirement is the presentation of
text to subjects, either as instructions or as actual stimuli. PsychoPy
has a stimulus that provides simple access to clear, anti-aliased text
in any true-type font available on the host system (obviously more
can be installed). These stimuli are fully compatible with Unicode,
so that symbols and non-English characters can be included. Text
objects can be coloured in any of the colour spaces and referred to by
any coordinate system for which the window has been calibrated (see
Windows). They can also be rotated arbitrarily and in real-time.

Sound
PsychoPy also provides direct and simple access to methods for
presenting auditory stimuli. Sound objects can be created from fi les
(wav, mpg), from pure tones (the user specifi es the duration and
either frequency or the name of the note and octave on a standard
scale) or can be generated from arbitrary waveforms using the
standard numpy library in Python. Sound objects can be played in
full stereo in asynchronous threads, so as to overlap as necessary
with each other and with visual presentations.

The ability to play arbitrary stereo waveforms as sounds makes
PsychoPy perfectly capable of running full auditory psychophysi-
cal experiments, but the sounds can equally easily be used just to
present feedback tones to subjects carrying out basic experimental
tasks.

DotStim
A common stimulus in visual neuroscience is the random dot pat-
tern (e.g. see Scase et al., 1996), also known as the Random Dot
Kinematogram and this is provided in PsychoPy by the DotStim
object. This allows either an array of dots, or an array of other
PsychoPy stimuli (e.g. PatchStims) to be drawn as a fi eld. The posi-
tion of the dot elements can then be automatically updated by a
variety of rules, for instance where a number of target dots move
in a given direction while the remaining (distracter) dots move
in random directions. This type of stimulus makes heavy use of
OpenGL optimisations and allows a large number of dot elements
(several hundred) to be drawn and updated in realtime without
dropping frames.

MovieStim
PsychoPy can present movies in a variety of formats including
mpeg, DivX, avi and Quicktime, allowing studies using natural
scene stimuli or biological motion displays. As with most other
stimulus types, these can also be transformed in a variety of ways
(e.g. rotated, fl ipped, stretched) in real-time.

COLLECTING RESPONSES
Most experiments also need to receive and store information about
responses from subjects. For PsychoPy, this can be achieved via a

number of simple means; keyboards, mice, joysticks and specialised
hardware such as button boxes. The simplest possible input method
is to examine recent events from the keyboard using the event.
getKeys() and event.waitKeys() functions. These allow the
user to see what keys have been pressed since the last call or to wait
until one has been pressed (and may be restricted to a small number
of allowed keys). The event.Mouse object allows PsychoPy users
to determine where the mouse is at any given moment or whether
a mouse button has been pressed with simple methods such as
getPos(), getWheelRel() (to retrieve the relative movement
of the mouse scroll wheel) and getPressed(). Code Snippet 1
demonstrates how to use these mouse and keyboard facilities to
control a drifting Gabor patch (a sinusoidal grating in a Gaussian-
shaped envelope) in real-time within a PsychoPy window.

INTEGRATING WITH HARDWARE
Many input/output devices can be accessed directly from within
PsychoPy by emulating keyboards or rodents. For example, the fORP
MR-compatible button boxes (Current Designs, Philadelphia, USA)
are capable of outputting signals that emulate key presses on a stand-
ard keyboard (e.g. keys 1–4 can represent buttons with key 5 repre-
senting a trigger pulse from an MRI scanner). Many touch- sensitive
screens simply emulate a mouse press at the location where the screen
was touched, and can therefore be used within PsychoPy as if a mouse
event had occurred. These often provide the simplest methods of
input to an experimental program. On other occasions these are
unsuitable, either because the nature of the information being trans-
mitted does not easily emulate such devices or because those devices
are already in use. For example, what happens if you need button-box
input as well as, and separate from, keyboard input?

PsychoPy also provides simple and complete access to input
and output via serial and parallel ports (or via USB serial/parallel
emulators, on systems where direct hardware ports are unavailable).
An example of the use of serial and parallel port communications
is shown in Code Snippet 2. Typically the parallel port is used to
control and receive simple triggers in switching a current from high
(+5 V) to low (0 V) or vice-versa and particularly useful in inform-
ing other hardware (such as an Electroencephalography device) of
the precise onset of an event in PsychoPy. Serial ports can be used
to pass more complex information, such as text characters or data
in bytes at a fi xed rate and are still heavily used by a large number
of scientifi c devices because of their relative simplicity. For exam-
ple, PsychoPy uses the serial port protocol to communicate with a
PR650 spectrophotometer (Photo Research Inc, Chatsworth, USA)
sending commands to begin measurements and receiving data back
from the device such as the full power spectrum of the currently
presented screen.

Some devices may also make use of calls from binary-compiled
dynamically-loaded libraries (dlls on the Windows platform, dylibs
on OS X). In particular most devices connecting via USB, Firewire
or PCI cards will come with drivers that fall into this category.
Python provides a module called ctypes (as of version 2.5), which
allows seamless calls to any such drivers and dynamic libraries
directly from Python itself.

Through one of these methods, any hardware that can com-
municate with your computer, can also communicate with Python
and PsychoPy.

218

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 |

from psychopy import visual, core, event # import the PsychoPy libraries

#create a window to draw in
myWin = visual.Window((600.0,600.0), allowGUI=True)

#initialise some stimuli
fixSpot = visual.PatchStim(myWin,
 tex="none", mask="gauss", #no texture and a Gaussian shape
 pos=(0,0), size=(0.05,0.05), #size and location as fraction of window
 rgb=[-1.0,-1.0,-1.0]) #the colour of the fixation (black)
grating = visual.PatchStim(myWin,pos=(0.5,0),
 tex="sin",mask="gauss", #grating texture and a Gaussian shape
 rgb=[1.0,0.5,-1.0], #
 size=(1.0,1.0), sf=(3,0)) #set the size and the grating cycles
myMouse = event.Mouse(win=myWin) #a mouse object related to our window
message = visual.TextStim(myWin,pos=(-0.95,-0.9), #a TextStim to provide info
 alignHoriz='left', height=0.08,#specifying the size of the font
 text='left-drag=SF, right-drag=pos, scroll=ori') #and the actual text

for frameN in range(2000): #for 2000 frames
 #handle key presses each frame
 for key in event.getKeys(): #returns keys pressed this frame
 if key in ['escape','q']:
 core.quit()

 #get mouse events
 mouse_dX,mouse_dY = myMouse.getRel() #get position relative to previous
 mouse1, mouse2, mouse3 = myMouse.getPressed()
 #based on the mouse button and change in position, change the stimulus
 if (mouse1): #if button 1 is down (ie left-click)
 grating.setSF(mouse_dX/200.0, '+')
 elif (mouse3): #else if button 3 is down (ie right-click)
 grating.setPos([mouse_dX/400.0, -mouse_dY/400.0], '+')

 #Handle the mouse wheel(s)
 wheel_dX, wheel_dY = myMouse.getWheelRel()
 #change the grating orientation according to the wheel
 grating.setOri(wheel_dY*5, '+') #2 clicks will give 10deg rotation
 event.clearEvents() #get rid of other, unprocessed events

 #draw our stimuli (every frame)
 fixSpot.draw() #visual stimuli have a simple ‘draw’ function
 grating.setPhase(0.05, '+') #advance grating by 0.05 cycles per frame
 grating.draw()
 message.draw()
 myWin.flip() #update the window

core.quit() #when we’re done (Python loops finish when code indentation ends)

CODE SNIPPET 1 | Presenting stimuli under real-time control. This demo script controls a drifting grating in real-time according to input from the mouse. It
demonstrates the use of the Window, PatchStim, TextStim and Mouse objects and how to get keyboard input from the participant. These objects have associated
methods that allow them to have their attributes changed.

TIMING
Timing is a critical issue for many experiments in neuroscience and
psychology. Many studies require a temporal precision to within a
few milliseconds, or even in the sub-millisecond range. PsychoPy
provides various methods to achieve very precise timing of events
and to synchronise with other devices. This is achieved by means

of synchronising drawing to the VBL of the monitor, by the use of
very precise clocks on the host CPU and by access to rapid com-
munication ports such as the serial and parallel ports.

PsychoPy (like most such software) uses a double-buffered
method of rendering, whereby stimuli are initially drawn into a
back buffer, a virtual screen in the memory of the graphics card.

219

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 |

At the point when the VBL occurs (signifying the end of one frame
and the beginning of the next) the contents of this back buffer are
fl ipped with the actual screen buffer. When the command Window.
flip() is sent, PsychoPy will halt all processing (or processing just
in this thread if multiple threads are being used) until the graphics
card signals that a frame fl ip has occurred. Since these frame fl ips
occur at a very precise interval they can be used as a very precise
timing mechanism and by executing a command immediately after
the fl ip one can be certain that it is time-locked to the presentation
of that stimulus frame.

The precision of this system can break down when frames are
dropped – if too many commands are attempted (e.g. too many
stimuli are drawn) between frames then the VBL may occur before
the request to fl ip the buffers occurred, in which case the frame will
remain unchanged for twice the normal period. In some cases this
will be unimportant (e.g. if it occurs during an inter-trial interval
it is likely to be irrelevant). At other times it could cause a slip in
the timing of the study, causing a stimulus to be presented longer
than intended. For dynamic stimuli it may change the perceptual
appearance of the stimulus, causing a smoothly-moving stimulus
to stutter in its motion, for instance.

PsychoPy alleviates this hazard by using the graphics card proces-
sor as much as possible for calculations involved in drawing, such as
the transformations needed in rotating, scaling and blending multiple
stimuli. For simple experiments, using just a few standard stimuli,
almost any modern computer is likely to have the processing power to
draw multiple stimuli without dropping frames. For studies needing
large numbers of stimuli updating every frame, the need for faster
computers and graphics cards exerts itself. In particular, the use of
computers with “onboard” graphics processors (such as the GMA
950 graphics processor that comes on many Intel processors) is not
recommended – even the cheapest nVidia and ATI graphics cards
will easily outperform these chips. Also, as complexity increases, so
does the need to write more effi cient experiment scripts. Often this
is simply a case of fi nding ways to reduce the number of commands

executed, for example by manipulating large lists of numbers as
numpy arrays rather than iterating operations in for-loops. Sometimes
it may mean having a better understanding of the speed of opera-
tions that will result from the command – giving a PatchStim a new
texture is time-consuming if the texture is large, whereas changing its
orientation or colour has a relatively small overhead, so preloading
textures into stimuli is a good idea whenever possible.

Although PsychoPy and Python are potentially (subject to a
well-written script) very precise in their reporting and generation of
stimuli, there are a number of hardware limitations in most experi-
mental setups that limit the absolute temporal accuracy of studies.
The most obvious is the temporal resolution of the presentation
device (typically a monitor or projector) but many experiment-
ers are also unaware of the inherent latencies of other hardware
components in their system. In general, these limit the accuracy
rather than precision of the studies, since the latencies are relatively
constant, but are nevertheless worthy of exploration.

Frame rates and monitor technology
The most fundamental limitation to the temporal precision of most
studies is the frame rate of the monitor, and this varies dependent
on the particular monitor technology. Cathode ray tube screens
typically operate at refresh rates ranging 60–200 Hz, dependent
on the monitor and the resolution of the display. For the majority
of the frame period (say 12 ms for an 85-Hz refresh rate) pixels
are being drawn sequentially in lines progressing from the top of
the screen to the bottom. When the beam illuminating the pixels
reaches the bottom of the screen there is a pause of around 1.5 ms
while it returns to top, ready to draw the next frame (this is the VBL
period). The obvious result is that visual stimuli cannot be changed
at a rate greater than the frame rate – when a stimulus is scheduled
for drawing, for example following some user response, it cannot
be drawn until the next refresh of the screen. A less obvious result
is that stimuli are drawn as much as 10 ms apart, even on the same
frame, depending on their screen position.

from psychopy import core, parallel, serial

#initialise ports
serialPort = serial.Serial("COM1", baudrate=115200, bytesize=8, parity='N',
 stopbits=1, timeout=0.0001)
parallel.setPortAddress(0x378) #need to know your parallel port address

#set pin 2 to high and send a command to Cedrus RB730
parallel.setPin(pinNumber=2, state=1) #set pin 2 to high
serialPort.writelines("_d1") #send a command to the serial port

core.wait(0.5)

#set pin 2 to low and read response from Cedrus RB730
parallel.setPin(pinNumber=2, state=0) #set pin 2 to low
nCharsToGet = serialPort.inWaiting()
message = serialPort.read(nCharsToGet)#read the current characters
print message

CODE SNIPPET 2 | The use of serial and parallel ports to control hardware and synchronisation. The demo sends a command to the serial port (in this case
the command would request information from a Cedrus box about its type and version) and reads the response after a 0.5-s pause. During this period pin 2 on
the parallel port is set to high.

220

Peirce Neuroscience stimuli in PsychoPy

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 10 |

LCD panel displays (either projectors or monitors) are typically
limited to a screen refresh rate of 60 Hz and therefore share the
problem of having a limited rate at which stimuli can be changed.
They do not, however, draw the lines to the screen sequentially
and so do not suffer from the problem that parts of the screen
are drawn before others. On the other hand, the response time
of these displays is considerably slower – an LCD switching from
black to white changes rather gradually, over a period of around
20 ms. In cases where the screen is changed very rapidly this can
have profound effects. For instance, if a stimulus is intended to
fl ash black and white on alternating screens, it is unlikely on these
monitors to reach full black and full white and a lower contrast
stimulus will result.

The use of USB devices
Commonly the need for timing accuracy comes from the need to
know how long a participant took to respond to the presentation
of a stimulus, where their response is measured by pressing a but-
ton on a keyboard or response box. Unfortunately these devices
are often USB-based and this introduces another temporal lag of,
typically, 10–20 ms. Again, for a given device and computer system
it is likely to be relatively constant, affecting the absolute accuracy
of the response time measurement more than the precision.

DISCUSSION
PsychoPy is already a very useful tool for running experiments
that require visual and auditory stimuli in a wide variety of envi-
ronments. It is platform-independent, entirely free, simple to use
and extremely versatile. It is also continuously improving in the
variety of stimuli it can present, the accuracy and speed with
which it can present them and in its ease of installation and use.

As an open-source project its continued development benefi ts
from its increasing user base, and that of the wider Python com-
munity. Python is also a language suitable for a wide variety of
other tasks, including complex data analysis and computational
modelling. Data can be shared easily between PsychoPy and other
Python-based packages (e.g. using stored numpy arrays), or can
be exported to other programs using comma-separated or tab-
delimited text fi les.

The variety of stimuli that PsychoPy can produce and its tem-
poral precision in generating these in real-time make it an ideal
environment for many neuroscience endeavours. It was originally
designed for psychophysical studies in vision, but is also an ideal
package for presenting stimuli in more traditional cognitive psy-
chology experiments, including the ability to interface with touch-
screens and, by virtue of its simple interface to parallel and serial
ports, it is already being used by a number of labs for fMRI, MEG,
EEG. PsychoPy is relatively young. Although it has been used as
standard in the author’s lab since 2004 it has been used in other labs
only since 2006. The community around it is growing however; at
the time of writing the package had been downloaded 5000 times
and has an active mailing list with 50 members.

A great deal more information is available from the project’s
website (http://www.psychopy.org), including tutorials, demon-
stration code and reference material for the writing of scripts.

ACKNOWLEDGEMENTS
PsychoPy has been developed with support from a BBSRC project
grant (BB/C50289X/1), a Wellcome Trust Grant and seed funding
grants from The Royal Society and the University of Nottingham.
Many thanks to all those that have provided constructive criticism,
and destructive testing, especially Dr. B.S. Webb.

REFERENCES
Brainard, D. H. (1997). The psychophysics

toolbox. Spat. Vis. 10, 433–436.
Derrington, A. M., Krauskopf, J.,

and Lennie, P. (1984). Chromatic
 mechanisms in lateral geniculate
nucleus of macaque. J. Physiol. 357,
241–265.

MacLeod, D. I., and Boynton, R. M.
(1979). Chromaticity diagram show-
ing cone excitation by stimuli of
equal luminance. J. Opt. Soc. Am. 69,
1183–1186.

Peirce, J. W. (2007). PsychoPy-
Psychophysics software in Python.
J. Neurosci. Methods 162, 8–13.

Pelli, D. G. (1997). The VideoToolbox
software for visual psychophysics:
transforming numbers into movies.
Spat. Vis. 10, 437–442.

Scase, M. O., Braddick, O. J., and
Raymond, J. E. (1996). What is noise
for the motion system? Vision Res. 36,
2579–2586.

Straw, A. D. (2008). Vision egg: an
open-source library for realtime

visual stimulus generation. Front.
Neuroinformatics 2, 4.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 09 September 2008; paper pend-
ing published: 27 October 2008; accepted:
19 December 2008; published online: 15
January 2009.

Citation: Peirce JW (2009) Generating
stimuli for neuroscience using PsychoPy.
Front. Neuroinform. (2009) 2:10. doi:
10.3389/neuro.11.010.2008
Copyright © 2009 Peirce. This is an open-
access article subject to an exclusive license
agreement between the authors and the
Frontiers Research Foundation, which
permits unrestricted use, distribution,
and reproduction in any medium, pro-
vided the original authors and source are
credited.

221

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 08 January 2009
doi: 10.3389/neuro.11.008.2008

Modular toolkit for Data Processing (MDP): a Python data
processing framework

Tiziano Zito1*, Niko Wilbert1,2, Laurenz Wiskott1,2 and Pietro Berkes3

1 Bernstein Center for Computational Neuroscience, Berlin, Germany
2 Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Germany
3 Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA

Modular toolkit for Data Processing (MDP) is a data processing framework written in Python.
From the user’s perspective, MDP is a collection of supervised and unsupervised learning
algorithms and other data processing units that can be combined into data processing
sequences and more complex feed-forward network architectures. Computations are
performed effi ciently in terms of speed and memory requirements. From the scientifi c
developer’s perspective, MDP is a modular framework, which can easily be expanded. The
implementation of new algorithms is easy and intuitive. The new implemented units are then
automatically integrated with the rest of the library. MDP has been written in the context of
theoretical research in neuroscience, but it has been designed to be helpful in any context
where trainable data processing algorithms are used. Its simplicity on the user’s side, the
variety of readily available algorithms, and the reusability of the implemented units make it
also a useful educational tool.

Keywords: Python, Modular toolkit for Data Processing, computational neuroscience, machine learning

and NIPALS), several Independent Component Analysis algorithms
(CuBICA, FastICA, TDSEP, and JADE), Locally Linear Embedding,
Slow Feature Analysis, Gaussian Classifi ers, Fisher Discriminant
Analysis, Factor Analysis, and Restricted Boltzmann Machine (see
Table 1 for a more exhaustive list and references). Particular care has
been taken to make computations effi cient in terms of speed and
memory. To reduce memory requirements, it is possible to perform
learning using batches of data, and to defi ne the internal parameters
of the nodes to be single precision, which makes the usage of very
large data sets possible. Moreover, an MDP subpackage in its fi nal
stages of development offers a parallel implementation of the basic
nodes and fl ows.

From the developer’s perspective, MDP is a framework that makes
the implementation of new supervised and unsupervised learning
algorithms easy and straightforward. The basic class, Node, takes care
of tedious tasks like numerical type and dimensionality checking,
leaving the developer free to concentrate on the implementation of
the learning and execution phases. Because of the common interface,
the node then automatically integrates with the rest of the library
and can be used in a network together with other nodes. A node can
have multiple training phases and even an undetermined number
of phases. This allows the implementation of algorithms that need
to collect some statistics on the whole input before proceeding with
the actual training, and others that need to iterate over a training
phase until a convergence criterion is satisfi ed.

MDP is distributed under the open source LGPL license. It has
been written in the context of theoretical research in neuroscience,
but was designed to be helpful in any context where trainable data
processing algorithms are used. Its simplicity on the user’s side
together with the reusability of the implemented nodes make it
also a useful educational tool.

INTRODUCTION
The use of the Python programming language in computational
neuroscience has been growing steadily during the past few years.
The maturation of two important open source projects, the sci-
entifi c libraries NumPy1 and SciPy2, gives access to a large col-
lection of scientifi c functions that rivals in size and speed well
known commercial alternatives like The MathWorks™ Matlab®3.
Furthermore, the fl exible and dynamic nature of Python offers the
scientifi c programmer the opportunity to quickly develop effi cient
and structured software while maximizing prototyping and reus-
ability capabilities. The Modular toolkit for Data Processing (MDP)
package4 contributes to this growing community a library of widely
used data processing algorithms, and the possibility to combine
them according to a pipeline analogy to build more complex data
processing software.

MDP has been designed to be used as-is and as a framework for
scientifi c data processing development. From the user’s perspec-
tive, MDP consists of a collection of supervised and unsupervised
learning algorithms, and other data processing units (nodes) that
can be combined into data processing sequences (fl ows) and more
complex feedforward network architectures. Given a set of input
data, MDP takes care of successively training or executing all nodes
in the network. This allows the user to specify complex algorithms
as a series of simpler data processing steps in a natural way. The
base of available algorithms is steadily increasing and includes, to
name but the most common, Principal Component Analysis (PCA

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Nicholas T. Carnevale, Yale University
School of Medicine, USA
Thomas Natschläger, Software
Competence Center Hagenberg
GmbH, Austria

*Correspondence:

Tiziano Zito, Bernstein Center for
Computational Neuroscience,
Philippstraße 13, House 6, Humboldt-
Universität zu Berlin, 10115 Berlin,
Germany.
e-mail: tiziano.zito@bccn-berlin.de

1http://numpy.scipy.org
2http://www.scipy.org
3http://www.mathworks.com/products/matlab/
4http://mdp-toolkit.sourceforge.net

222

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 |

Zito et al. Modular toolkit for Data Processing

THE PACKAGE STRUCTURE
The MDP framework consists of a library of data processing nodes
with a common Application Programming Interface (API) and a
collection of objects which are used to connect nodes together
to implement complex data processing workfl ows. In the follow-
ing sections the framework structure is outlined followed by an
example application. The full API together with an extensive tuto-
rial covering both usage and instruction for writing extensions are
available at the MDP homepage.

NODES
A node is the basic building block of an MDP application. It represents
a data processing element, like for example a learning algorithm, a
data fi lter, or a visualization step (see Table 1 for a list of some of
the available algorithms). Each node is characterized by an input
dimension (i.e., the dimensionality of the input vectors), an output
dimension, and a dtype, which determines the numerical type of
the internal structures and of the output signal. By default, these
attributes are inherited from the input data.

Nodes can have a training phase, where training data is analyzed
in order to adapt the internal variables, and an execution phase,
where new data can be processed using the learned parameters.
For example, the Principal Component Analysis (PCA) algorithm
(Jolliffe, 1986) requires the computation of the mean and cov-
ariance matrix of a set of training data from which the principal
eigenvectors of the data distribution are estimated. MDP offers
an implementation of this algorithm in the class PCANode. The
node can be trained on the data using the interface common to all
nodes: PCANode.train(x) analyzes a new batch of data x, and
updates the estimation of mean and covariance matrix; PCANode.
stop_training() fi nalizes the algorithm by computing and
selecting the principal eigenvectors. Once the training is fi nished,

new data can be projected on the principal components calling the
PCANode.execute(y) method. If the transformation specifi ed by
the underlying algorithm is invertible, the node can also be executed
“backwards” using the PCANode.inverse(z) method. In the case
of PCA, for example, this corresponds to projecting a vector in the
principal components space back to the original data space.

Node was designed to be applied to arbitrarily long sets of data:
if the underlying algorithms support it, the internal structures can
be updated incrementally by sending multiple batches of data. It
is thus possible to perform computations on amounts of data that
would not fi t into memory or to generate data on-the-fl y. The
general form of the training phase thus is:

create an instance of the desired node
node_instance = mdp.nodes.XXXNode()

for data_batch in data_source:
 node_instance.train(data_batch)

node_instance.stop_training()

In the code, data_source can be any Python iterator5 (e.g. a
list, an iterator object, or a generator function) that returns an array
with a batch of training data. The last line fi nalizes the training
phase. It is shown here for completeness, but can replaced by a call
to the execute or inverse methods. Nodes also defi ne some util-
ity methods, like for example copy and save, that return an exact
copy of a node and save it in a fi le, respectively. Additional methods
may be present, depending on the algorithm. The PCANode.get_
projmatrix method, for example, returns the matrix projecting
input data into the principal components’ space. For a toy signal-
denoising application that makes use of the basic Node features
just described in Figure 1.

Table 1 | Some of the nodes available in MDP.

Node class name Algorithm and Reference

PCANode Principal Component Analysis (Jolliffe, 1986)

NIPALSNode Nonlinear Iterative Partial Least Squares PCA (NIPALS) (Fritzke, 1995)

CuBICANode Cumulant-based Independent Component Analysis (CuBICA) (Blaschke and Wiskott, 2004)

FastICANode Independent Component Analysis (FastICA) (Hyvärinen, 1999)

JADENode Cumulant-based Independent Component Analysis (JADE) (Cardoso, 1999)

TDSEPNode Temporal blind-source separation algorithm (TDSEP) (Ziehe and Müller, 1998)

LLENode Locally Linear Embedding Analysis (Roweis and Saul, 2000)

HLLENode Hessian Locally Linear Embedding Analysis (Donoho and Grimes, 2003)

FDANode Fisher Discriminant Analysis (Bishop, 1995)

SFANode Slow Feature Analysis (Wiskott and Sejnowski, 2002)

ISFANode Independent Slow Feature Analysis (Blaschke et al., 2007)

RBMNode Restricted Boltzmann Machine (Hinton et al., 2006)

GrowingNeuralGasNode Growing Neural Gas (learn a graph structure of the data) (Fritzke, 1995)

FANode Factor Analysis (Bishop, 2007)

GaussianClassifierNode Supervised gaussian classifi er

PolynomialExpansionNode Expand the signal in a polynomial space

TimeFramesNode Expand the signal using a sliding temporal window (temporal embedding)

HitParadeNode Record local minima and maxima in the signal

NoiseNode Additive and multiplicative noise injection

5http://docs.python.org/lib/typeiter.html

223

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 |

Zito et al. Modular toolkit for Data Processing

Some nodes, namely the one corresponding to supervised
algorithms, e.g. Fisher Discriminant Analysis (Bishop, 1995), may
need some labels or other supervised signals to be passed during
training:

input = {’a’: data_a, ’b’:data_b, ’c’:data_c}
fdanode = mdp.nodes.FDANode()
for label in [’a’, ’b’, ’c’]:
 fdanode.train(input[label], label)

A node could also require multiple training phases. For example,
the training of fdanode is not complete yet, since it has two training
phases: The fi rst one computing the mean of the data conditioned
on the labels, and the second one computing the overall and within-
class covariance matrices and solving the FDA problem. The fi rst
phase must be stopped and the second one trained:

fdanode.stop_training()
for label in [’a’, ’b’, ’c’]:
 fdanode.train(input[label], label)

The easiest way to train multiple phase nodes is using fl ows,
which automatically handle multiple phases (see Flows).

MDP makes it easy to write new nodes that interface with the
existing data processing elements. The Node class is designed to
make the implementation of new algorithms easy and intuitive.
This base class takes care of setting input and output dimension
and casting the data to match the numerical type (e.g. fl oat or
double) of the internal variables, and offers utility methods that
can be used by the developer. To expand the MDP library of imple-
mented nodes with user-made nodes, it is suffi cient to subclass
Node, overriding some of the methods according to the algorithm
one wants to implement, typically the _train, _stop_train-
ing, and _execute methods. Figure 2 shows an example of a
simple node that removes the mean of the signal. A more detailed

introduction to writing new nodes in MDP can be found in the
online tutorial6.

It is also possible to specify multiple training phases by defi ning
additional training methods and overwriting the _get_train_seq
method. For example

class MultiplePhaseNode(mdp.Node):
 def _get_train_seq(self):
 return [(self._train_A, self._stop_A),
 (self._train_B, self._stop_B)]
 [...]

defi nes a new node with two training phases, one updated by the
method _train_A and fi nalized using _stop_A, and analogously
the second is defi ned by the methods _train_B and _stop_B.
The fi nal user will still perform the training phase by calling the
usual methods train and stop_training (although multiple
times), and need not know about the specifi c implementation of
the algorithm.

FLOWS
A fl ow is a sequence of nodes that are trained and executed together
to form a more complex algorithm. Input data is sent to the fi rst
node and is successively processed by the subsequent nodes along
the sequence. Using a fl ow as opposed to handling manually a set
of nodes has a clear advantage: The general fl ow implementation
automates the training (including supervised training and multiple
training phases), execution, and inverse execution (if defi ned) of
the whole sequence. For example, suppose we need to analyze a
very high-dimensional input signal using Independent Component
Analysis (ICA). To reduce the computational load, we would like to
reduce the input dimensionality of the data using PCA. Moreover,

Simple denoising algorithm
Given is a set of multidimensional signals, for example
EEG waves, from which normal statistics are learned,
and a set of noisy signals to be denoised.

1 - Create an instance of the PCA algorithm
The argument output_dim = 0.9 tells the node to retain
a number of principal components such that the
explained variance is at least 90%
A fixed number of output components can be specified
for example by output_dim=10
pcanode = mdp.nodes.PCANode(output_dim = 0.9)

2 - Perform PCA on the set of training signals
pcanode.train(signals)

3 - Stop learning and estimate the principal components
pcanode.stop_training()

4 - Project noisy signals in the principal component space
proj_signals = pcanode.execute(noisy_signals)

5 - Project the data back to the input space for visualization
and comparison with original data
denoised_signals = pcanode.inverse(proj_signals)

FIGURE 1 | A simple denoising application.

6http://mdp-toolkit.sourceforge.net/tutorial.html

224

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 |

Zito et al. Modular toolkit for Data Processing

we would like to fi nd the data that produces local maxima in the
output of the ICA components on a new test set (this information
could be used for instance to characterize the ICA fi lters). To imple-
ment this algorithm using MDP, we need to generate an instance
of Flow using the appropriate nodes:

Define a data processing sequence.
- PCANode(output_dim=5) performs PCA and keeps
the first 5 principal
components only
- CuBICANode() is a cumulant-based ICA algorithm
- HitParadeNode(3) records the 3 largest local
maxima from the output of
the previous node
flow = mdp.Flow([mdp.nodes.PCANode(output_dim=5),
 mdp.nodes.CuBICANode(),
 mdp.nodes.HitParadeNode(3)])

The training and execution are performed as for the Node
class:

Train all the nodes using the data array ‘x’
flow.train(x)
Compute the output of the node sequence
when presented with array ‘x_test’
output = flow.execute(x_test)

A single call to the fl ow’s train method will automatically take
care of training nodes with multiple training phases, if such nodes
are present.

Flow objects are defi ned as Python containers, and thus are
endowed with most of the methods of Python lists: one can
obtain slices, append new nodes, pop or insert nodes, and con-
catenate fl ows. For example, to get the maxima computed by the

class MeanFreeNode(mdp.Node):
 def �init�(self, input_dim=None, dtype=None):
 super(MeanFreeNode, self).�init�(input_dim=input_dim, dtype=dtype)
 self.avg = None
 self.tlen = 0

 def _train(self, x):
 # Initialize the mean vector with the right
 # size and dtype if necessary:
 if self.avg is None:
 self.avg = mdp.numx.zeros(self.input_dim, dtype=self.dtype)
 # Update the average
 self.avg += mdp.numx.sum(x, axis=0)
 # Update the number of data points examined
 self.tlen += x.shape[0]

 def _stop_training(self):
 # Compute the average signal
 self.avg /= self.tlen

 def _execute(self, x):
 return x - self.avg

 def _inverse(self, y):
 return y + self.avg

FIGURE 2 | Defi nition of a new node that removes the mean of the signal.

HitParadeNode, one can refer to the last node using the list
 construct flow[-1]:

maxima, indices = flow[-1].get_maxima()

The Flow class defi nes a number of utility methods, includ-
ing save and copy methods. It also implements a crash recovery
mechanism that can be activated by setting a fl ag: in case an excep-
tion is thrown during training, the current state of the fl ow is saved
for later inspection.

HIERARCHICAL NETWORKS
In case the desired data processing application cannot be defi ned
as a sequence of nodes, the hinet subpackage makes it possible
to construct arbitrary feed-forward architectures, and in par-
ticular hierarchical networks. It contains three basic building
blocks (which are all nodes themselves): Layer, FlowNode, and
Switchboard.

The fi rst building block, Layer, works like a horizontal version
of fl ow. It acts as a wrapper for a set of nodes that are trained and
executed in parallel. For example, we can combine two nodes with
100-dimensional input to construct a layer with a 200-dimensional
input:

node1 = mdp.nodes.PCANode(input_dim=100,
 output_dim=10)
node2 = mdp.nodes.SFANode(input_dim=100,
 output_dim=20)
layer = mdp.hinet.Layer([node1, node2])

The fi rst half of the 200-dimensional input data is then auto-
matically assigned to node1 and the second half to node2. We
can train and execute a layer just like any other node. In order to
be able to build arbitrary feed-forward node structures, hinet

225

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 |

Zito et al. Modular toolkit for Data Processing

provides a wrapper class for fl ows (i.e., vertical stacks of nodes)
called FlowNode. For example, we can replace node1 in the above
example with a FlowNode:

node1_1 = mdp.nodes.PCANode(input_dim=100,
 output_dim=50)
node1_2 = mdp.nodes.SFANode(input_dim=50,
 output_dim=10)
node1_flow = mdp.Flow([node1_1, node1_2])
node1 = mdp.hinet.FlowNode(node1_flow)
node2 = mdp.nodes.SFANode(input_dim=100,
 output_dim=20)
layer = mdp.hinet.Layer([node1, node2])

node1 has two training phases in this example, one for each
internal node. Therefore layer now has two training phases as
well and behaves like any other node with two training phases. By
combining and nesting FlowNode and Layer, it is thus possible
to build complex node structures.

When implementing networks one might have to route different
parts of the data to different nodes in a layer in complex ways. This
is done by the Switchboard node, which can handle such routing.
A Switchboard is initialized with a 1-dimensional array with one
entry for each output connection, containing the corresponding
index of the input connection that it receives its input from, e.g.:

switchboard = mdp.hinet.Switchboard(
 input_dim=6,
 connections=[0,1,2,3,4,3,4,5])
print switchboard
should print: Switchboard(input_dim=6,
output_dim=8,
dtype=None)
x = mdp.numx.array([[2,4,6,8,10,12]])
print switchboard.execute(x)
should print:
array([[2, 4, 6, 8, 10, 8, 10, 12]])

The switchboard can then be followed by a layer that splits the
routed input to the appropriate nodes, as illustrated in Figure 3.

Since hierarchical networks can become quite complicated to
build and debug, hinet includes the class HiNetHTML that translates
an MDP fl ow into a graphical visualization in an HTML fi le.

A COMPLETE APPLICATION
In this section we show a complete example of MDP usage in a
machine learning application, and use non-linear Slow Feature
Analysis for processing of non-stationary time series. We consider a
chaotic time series derived by a logistic map (a demographic model
of the population biomass of species in the presence of limiting
factors such as food supply or disease) that is non- stationary in
the sense that the underlying parameter is not fi xed but is vary-
ing smoothly in time. The goal is to extract the slowly varying
parameter that is hidden in the observed time series. This example
reproduces some of the results reported in Wiskott (2003). The
complete code is shown in Figure 4.

We fi rst generate the slowly varying driving force parameter r
t

as a combination of three sine waves r
t
 = sin(10πt) + sin(22πt) +

sin(26πt). We then generate the time series using the logistic

 equation x
t +1

 = (3.6 + 0.13r
t
)x

t
 (1 − x

t
). The resulting time series x

is shown in Figure 5.
To reconstruct the underlying parameter, we defi ne a Flow

to perform SFA in the space of polynomials of degree 3. We
fi rst use a node that embeds the 1-dimensional time series in a
10-dimensional space using a sliding temporal window of size 10
(TimeFramesNode). Second, we expand the signal in the space of
polynomials of degree 3 using a PolynomialExpansionNode.
Finally, we perform SFA on the expanded signal and keep the slowest
feature using the SFANode. In order to measure the slowness of the
input time series before and after processing, we put at the begin-
ning and at the end of the node sequence a node that computes the
η-value (a measure of slowness, see Wiskott and Sejnowski, 2002)
of its input (EtaComputerNode). The slow feature should match
the driving force up to a scaling factor, a constant offset and the
sign. To allow a direct comparison we rescale the driving force to
have zero mean and unit variance. The real driving force is plotted
together with the driving force estimated by SFA in Figure 6.

FUTURE DEVELOPMENT
MDP is currently maintained by a core team of three developers,
but it is open to user contributions. Users have already contributed
some of the nodes, and more contributions are currently being
reviewed for inclusion in future releases of the package. The pack-
age development can be followed on the public subversion code
repository7. Questions, bug reports, and feature requests are typi-
cally handled by the user mailing list8.

Development of the core functionality of MDP continues and
the next release of MDP is going to include a new package for
parallelization, designed for nodes in which a large part of the com-
putation is embarrassingly parallel 9 (e.g. calculating the covariance

FIGURE 3 | Example of feed-forward network topology.

7http://mdp-toolkit.svn.sourceforge.net
8http://sourceforge.net/mail/?group_id = 116959
9In the jargon of parallel computing, an embarrassingly parallel problem is one
for which no particular effort is needed to segment the problem into a very large
number of parallel tasks, that can be executed more or less independently, without
communication among tasks (Foster, 1995, Section 1.4.4.).

226

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 |

Zito et al. Modular toolkit for Data Processing

import mdp
N = mdp.numx

def logistic_map(x,r):
 return r*x*(1-x)

time axis is 1 second sampled at 10KHz
t = N.linspace(0,1,10000,endpoint=0)
driving force
dforce = N.sin(10*N.pi*t) + N.sin(22*N.pi*t) + N.sin(26*N.pi*t)

resulting time series
series = N.zeros((10000,1),’d’)
series[0] = 0.6 # initial condition
for i in range(1,10000):
 series[i] = logistic_map(series[i-1],3.6+0.13*dforce[i])

define the flow
sequence = [mdp.nodes.EtaComputerNode(), mdp.nodes.TimeFramesNode(10),
 mdp.nodes.PolynomialExpansionNode(3), mdp.nodes.SFANode(output_dim=1),
 mdp.nodes.EtaComputerNode()]

flow = mdp.Flow(sequence, verbose=1)
train the flow
flow.train(series)

execute the flow to get the SFA estimate of the driving force
slow = flow.execute(series)

rescale driving force to compare with SFA estimate
resc_dforce = (dforce - N.mean(dforce,0))/N.std(dforce,0)

verify that the results are correct
result should be > 0.99
print mdp.utils.cov2(resc_dforce[:-9],slow)
result should be ˜= 3000
print ’Eta value (time-series): ’, flow[0].get_eta(t=10000)
result should be ˜= 10
print ’Eta value (slow feature): ’, flow[-1].get_eta(t=9996)

FIGURE 4 | Python code to reproduce the results in Wiskott (2003).

0 0.2 0.4 0.6 0.8 1
–3

–2

–1

0

1

2

3

driving force
SFA estimate

FIGURE 6 | The real driving force and the driving force as estimated by SFA.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

x

FIGURE 5 | Chaotic time series generated by the logistic equation.

matrix to perform PCA). The new parallel package will consist of
two parts: The fi rst part introduces parallel versions of the familiar
MDP structures (nodes and fl ows, including hinet) that are able
to split the computations for some of the algorithms (e.g. PCA and

SFA). The second part of the package consists of schedulers that
take individual jobs and execute them in a parallel way. Currently
a scheduler for parallelization across multiple processors (or cores)
is provided. Since the scheduler code is largely independent of

227

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 8 |

Zito et al. Modular toolkit for Data Processing

component analysis. IEEE Trans.
Neural Netw. 10, 626–634.

Jolliffe, I. (1986). Principal Component
A n a l y s i s . Ne w Yo r k , N Y,
Springer-Verlag.

Roweis, S., and Saul, L. (2000). Nonlinear
dimensionality reduction by locally
linear embedding. Science 290,
2323–2326.

Solé, V. A., Papillon, E., Cotte, M., Walter,
P., and Susini, J. (2007). A multiplat-
form code for the analysis of energy-
dispersive x-ray fl uorescence spectra.
Spectrochim. Acta Part B 62, 63–68.

Wiltschko, A. B., Gage, G. J., and Berke, J.
D. (2008). Wavelet fi ltering before spike
detection preserves waveform shape
and enhances single-unit discrimina-
tion. J. Neurosci. Methods 173, 34–40.

Wiskott, L. (2003). Estimating Driving
Forces of Nonstationary Time Series
with Slow Feature Analysis. arXiv.
org e-Print archive, http://arxiv.
org/abs/cond-mat/0312317/.

Wiskott, L., and Sejnowski, T. (2002). Slow
feature analysis: unsupervised learn-
ing of invariances. Neural Comput.
14, 715–770.

Ziehe, A., and Müller, K.-R. (1998).
TDSEP – an effi cient algorithm for
blind separation using time structure.
In Proceeding of the 8th International

MDP, one can write simple adapters for other schedulers like for
example Parallel Python10. The new parallel subpackage can be
tested already and it is available on the public code repository.

Another new, large MDP package is currently under develop-
ment that will extend MDP with more complex data fl ows, includ-
ing back-propagation and loops. This framework will be integrated
with both the parallel and the hinet package to allow for large and
complex data processing networks.

MDP could also act effi ciently as a wrapper for the plethora of
statistical data analysis algorithms already available in other libraries
and languages. A prominent example is the R Project for Statistical
Computing11 with the Python wrappers RPy12 and R/S Plus13.

CONCLUSIONS
With over 10,000 downloads since its fi rst public release in 2004,
MDP has become one of Python’s major scientifi c packages. The
package has minimal dependencies, requiring only the NumPy
numerical extension, is completely platform-independent, and is
available in the Linux Debian distribution and the Python(x,y)14
scientifi c Python distribution.

MDP has been used to implement a model of the visual system
of a virtual rat moving around in a virtual environment (Franzius
et al., 2007), to perform pattern recognition (Franzius et al., 2008)
and handwritten digit recognition (Berkes, 2006), to analyze

 intra-cerebral array-recorded neurophysiological data in the audi-
tory forebrain of song birds15, and to perform PCA and spike-sorting
of electrophysiological data (Wiltschko et al., 2008), to name a few
of the applications in computational neuroscience. MDP has also
been used embedded in the X-ray fl uorescence mapping package
PyMCA (Solé et al., 2007), to implement auto tagging capabilities
into the personal organizer application Chandler16 by OSAF17, and as
a framework for the implementation of data processing algorithms
in the context of an advanced course in scientifi c computing (Zito
and Wilson, 2008) aimed at graduate students.

As the number of its users and contributors is increasing, MDP
appears to be a good candidate for becoming a community-driven
common repository of user-supplied, freely available, Python
implemented data processing algorithms.

ACKNOWLEDGMENTS
We wish to heartily thank Mathias Franzius for discussion and
help during the early phases of the project, for being our main
beta-tester afterwards, and for his code contributions. For con-
tributing code and comments we thank Gabriel Beckers, Farzad
Farkhooi, Susanne Lezius, Michael Schmuker, and Jake VanderPlas.
For maintaining the Debian package we are grateful to Yaroslav
Halchenko. We fi nally wish to acknowledge all those users who
reported bugs and feature requests, which helped us making MDP
a better library.

10http://www.parallelpython.com
11http://www.r-project.org/
12http://rpy.sourceforge.net/
13http://www.omegahat.org/RSPython/
14http://www.pythonxy.com

15Gabriel J.L. Beckers, Max Planck Institute for Ornithology, Starnberg, Germany,
personal communication.
16http://chandlerproject.org/
17http://www.osafoundation.org/

REFERENCES
Berkes, P. (2006). Temporal Slowness

as an Unsupervised Learning
Principle. Ph.D. Thesis, Humboldt-
Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät I,
http://edoc.hu-berlin.de/docviews/
abstract.php?id = 26704.

Bishop, C. M. (1995). Neural Networks for
Pattern Recognition. New York, NY,
Oxford University Press.

Bishop, C. M. (2007). Pattern Recognition
and Machine Learning. New York, NY,
Springer-Verlag.

Blaschke, T., and Wiskott, L. (2004).
CuBICA: independent component
analysis by simultaneous third- and
fourth-order cumulant diagonaliza-
tion. IEEE Trans. Signal Process. 52,
1250–1256.

Blaschke, T., Zito, T., and Wiskott, L. (2007).
Independent slow feature analysis and
nonlinear blind source separation.
Neural Comput. 19, 994–1021.

Cardoso, J. (1999). High-order contrasts
for independent component analysis.
Neural Comput. 11, 157–192.

Donoho, D. L., and Grimes, C.
(2003). Hessian eigenmaps: locally
linear embedding techniques for
high-dimensional data. Proc. Natl.
Acad. Sci. U.S.A. 100, 5591–5596.

Foster, I. (1995). Designing and Building
Parallel Programs. Reading, MA,
Addison-Wesley.

Franzius, M., Sprekeler, H., and Wiskott, L.
(2007). Slowness and sparseness lead to
place, head-direction, and spatial-view
cells. PLoS Comput. Biol. 3, e166.

Franzius, M., Wilbert, N., and Wiskott, L.
(2008). Invariant object recogni-
tion with slow feature analysis. In
Proceeding of the 18th International
Conference on Artificial Neural
Networks (ICANN 2008), Prague,
Czech Republic, September 3–6, 2008.
Lecture Notes in Computer Science
Series, Part I, Vol. 5163 (Berlin, Springer
Verlag). http://www.springerlink.
com/content/v20024g580t1/.

Fritzke, B. (1995). A growing neural gas
network learns topologies. In Advances
in Neural Information Processing
Systems 7. Proceedings of the 1994
Conference, November 28 to December
1, 1994, Denver, Colorado, G. Tesauro,
D. S. Touretzky and T. K. Leen, eds.
(Cambridge, MIT Press), pp. 625–632.

Hinton, G., Osindero, S., and Teh, Y.
(2006). A fast learning algorithm for
deep belief nets. Neural Comput. 18,
1527–1554.

Hyvärinen, A. (1999). Fast and robust
fi xed-point algorithms for independent

Conference on Artificial Neural
Networks (ICANN 1998), Vol. 2,
M. B. Boden, L. F. Niklasson and
T. Ziemke, eds. (London, Springer),
pp. 675–680.

Zito, T., and Wilson, G. (2008). Software
Carpentry for Scientists. http://itb.biol-
ogie.hu-berlin.de/˜zito/teaching/SC/.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 05 September 2008; paper pend-
ing published: 26 October 2008; accepted:
19 December 2008; published online: 08
January 2009.
Citation: Zito T, Wilbert N, Wiskott L and
Berkes P (2009) Modular toolkit for Data
Processing (MDP): a Python data process-
ing framework. Front. Neuroinform. (2009)
2:8. doi: 10.3389/neuro.11.008.2008
Copyright © 2009 Zito, Wilbert, Wiskott and
Berkes. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

228

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 19 December 2008
doi: 10.3389/neuro.11.006.2008

PyMOOSE: interoperable scripting in Python for MOOSE

Subhasis Ray and Upinder S. Bhalla*

National Centre for Biological Sciences, Bangalore, India

Python is emerging as a common scripting language for simulators. This opens up many
possibilities for interoperability in the form of analysis, interfaces, and communications
between simulators. We report the integration of Python scripting with the Multi-scale Object
Oriented Simulation Environment (MOOSE). MOOSE is a general-purpose simulation system
for compartmental neuronal models and for models of signaling pathways based on chemical
kinetics. We show how the Python-scripting version of MOOSE, PyMOOSE, combines the
power of a compiled simulator with the versatility and ease of use of Python. We illustrate this
by using Python numerical libraries to analyze MOOSE output online, and by developing a GUI
in Python/Qt for a MOOSE simulation. Finally, we build and run a composite neuronal/signaling
model that uses both the NEURON and MOOSE numerical engines, and Python as a bridge
between the two. Thus PyMOOSE has a high degree of interoperability with analysis routines,
with graphical toolkits, and with other simulators.

Keywords: simulators, compartmental models, systems biology, NEURON, GENESIS, multi-scale models, Python,

MOOSE

Beeman, 1998; Carnevale and Hines, 2006; Hines, 1993) included
optimized custom code that would allow the simulation to be run
in affordable time and memory. This process of building domain-
specifi c general simulators has continued with several simulators
devoted to different aspects of computational and systems biology
(e.g., VCell, Smoldyn, COPASI). This proliferation of simulators
brings back the problems of model exchange and interoperability,
albeit at a higher-level than raw Fortran or C code. While these
simulators now have a common set of shared higher-level concepts
(e.g., compartments, channels, synapses), they use entirely different
vocabularies and languages for set up and control.

MOOSE is a new simulator project that supports simulations
across a wide range of scales in computational biology, includ-
ing computational neuroscience and systems biology. In order to
improve interoperability, MOOSE uses two existing languages:
the GENESIS scripting language, and Python. The Neurospaces
(Cornelis and De Schutter, 2003; http://neurospaces.sourceforge.
net/) project takes a distinct approach to supporting some GENESIS
capabilities using backward-compatible scripting, and it too can
utilize Python.

Most established simulators have their own scripting languages.
For example, NEURON uses hoc along with modl fi les to set up
simulations. GENESIS has its own custom scripting language.
MOOSE avoids introducing a new language, and instead inherits
the GENESIS parser. To increase compatibility, MOOSE has equiva-
lents for most objects in GENESIS, and many old scripts can be
run on MOOSE with little or no modifi cation. Given these existing
capabilities, why add Python scripting? Despite its fl exibility, the
GENESIS scripting language has several limitations:

1. Domain specifi city: It is not used outside GENESIS. This forces
the user to learn a special-purpose scripting language.

2. Problem with extensibility: While it is easy to write a script to
defi ne functions that can be included in other scripts, these

INTRODUCTION
In computational biology there are two approaches to developing
a simulation. First, write your custom program to do a specifi c
simulation, and second, write a model and run it in a general-
purpose simulator. While the fi rst approach is very common, it
requires the scientist to be a good programmer (or have one at
her/his disposal) and moves the focus towards programming rather
than science. Furthermore, it is very diffi cult for others to read such
a program and understand how it relates to the targeted biological
system. In this context, a model is a well-defi ned set of equations
and parameters that is meant to represent and predict the behavior
of a biological system. Ideally, a general-purpose simulator allows
the model to be separated from the low-level data-structures and
control. The scientist is no longer concerned with minutiae of soft-
ware engineering and can concentrate on the biological system of
interest. The model can be shared by other people and understood
relatively easily using intermediate-level descriptions of the model
with a more obvious mapping to the real biological system. General
simulators also lend themselves to declarative, high-level model
descriptions that have now become important part of scientifi c
interchange in the computational neuroscience and systems biol-
ogy communities (Beeman and Bower, 2004; Cannon et al., 2007;
Goddard et al., 2001; Hucka et al., 2002; http://www.morphml.org/;
http://neuroml.org, http://sbml.org). The goal of this paper is to
show how the simulator Multi-scale Object Oriented Simulation
Environment (MOOSE; http://moose.ncbs.res.in/, mirrored at
http://moose.sourceforge.net/) uses Python to address these issues
of interoperability with analysis software, graphical interfaces, and
other simulators.

General-purpose simulators have been in use since the venerable
circuit simulator SPICE was utilized to solve compartmental mod-
els (Bunow et al., 1985; Segev et al., 1985). While this level of gen-
erality ran into limitations of computing power, more specialized
neuronal simulators such as GENESIS and NEURON (Bower and

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Michael Hines, Yale University, USA
Hugo Cornelis, UTHSCSA, USA

*Correspondence:

Upinder S. Bhalla, National Centre for
Biological Sciences, Tata Institute of
Fundamental Research, Bellary Road,
Bangalore 560065, India.
e-mail: bhalla@ncbs.res.in

229

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

interpreted functions are much slower than compiled code. The
GENESIS scripting language itself provides for some degree of
extensibility, but this is diffi cult to implement. Adding a sin-
gle command requires implementation in C, as well as defi -
nition of the command in a confi guration fi le that must be
pre- processed to include into the interpreter. The addition of a
new class is still more involved.

3. Lack of existing libraries: The GENESIS scripting language is a
special-purpose language and has no additional features other
than those written into the language.

4. Syntax: The syntax is complex and inconsistent as a result
of accretion of features by many developers and users. For
 example, arrays are implemented in three inconsistent ways in
the GENESIS scripting language: as arrays of elements, entries
within tables and extended fi elds.

To harness the capabilities provided by a modern widely used
scripting language, we chose a Python interface. Among the plethora
of programming languages, Python has some special advantages:

1. Interactive: We need a scripting language that comes with a
command line interpreter. Python is suited for this. User
interaction is as important as running standalone scripts.
Simulations are built incrementally, and it is important that
users can try out bits and pieces of code and get quick feedback
from the system. Moreover, this practice helps in identifying
errors early in the development process, which saves conside-
rable time and computational resources.

2. It is easy to interface with other programming languages:
Python itself is written in C. It has a standard developers’ API
for creating extension libraries. This simplifi es creating Python
interface for C/C++ code. Moreover, tools like Simplifi ed
Wrapper and Interface Generator (SWIG), Qt sip, boost-
Python can automate the task of creating a Python interface
from existing C/C++ code.

3. It is portable: Python runs on Linux, Solaris, Macintosh and
Windows operating systems and many other platforms (http://
www.python.org/about/).

4. Free: Python is free and open-source.
5. Widely used: Python is widely used in scientifi c community.

There is a large repertoire of third-party libraries for Python.
Many of these libraries are free, open source and mature.

In this study we show how PyMOOSE harnesses each of these
capabilities.

MATERIALS AND METHODS
There are two common approaches to create a Python interface to
a C/C++ library: (1) statically link it with the Python interpreter –
which involves compiling the Python interpreter source-code,
(2) create a dynamic link library and provide it as a Python mod-
ule. We took the second approach as it provides more fl exibility
on the choice of the Python interpreter and reduces the burden
on the maintainer.

MAPPING MOOSE CLASSES INTO PYTHON
MOOSE has a set of built-in classes for representing simulation
entities. These classes provide a mapping from the concept space

to the computational space. Physical or chemical properties and
other relevant parameters are accessible as member fi elds of the
classes and the time-evolution of these parameters is calculated by
a special process method of each class. These classes add another
layer over ordinary C++ classes to provide messaging and sched-
uling as well as customized access to the member fi elds. MOOSE
provides introspection (Maes, 1987; Smith, 1982), so that full fi eld
information for each class is accessible to the programmer. This
class information is statically initialized for each class at startup
time. We utilized this class information and SWIG (Beazley, 1996;
http://www.swig.org) to build the Python interface.

SWIG is a mature software with good support for Python and
C/C++ interfacing as well as many other languages. While it is rather
simple to create an interface for ordinary C++ class using SWIG, our
task was complicated because MOOSE classes have another layer
over ordinary C++ classes. For this reason we created a framework
for Python interface with additional C++ classes to wrap MOOSE
classes and a few classes to manage the system.

SIMULATOR CONTROL THROUGH PYTHON
All operations on MOOSE objects are carried out via a special
class, Shell, of which there is a single instance on each processor
node that is running MOOSE. In PyMOOSE we implemented
a singleton context object to communicate with the Shell. The
context object provides a set of functions that can be called to
pass appropriate messages to the Shell. The user can call global
MOOSE functions by calling the corresponding methods of the
context object. Operations like creation of objects, setting integra-
tion time step, running the simulation are all done through the
context object.

We created a one-to-one mapping of MOOSE classes to Python
classes by means of light-weight C++ wrapper classes. All the wrap-
per classes were derived from one common base class. Each MOOSE
object is identifi ed by an Identifi er (ID) fi eld. The main data content
of a wrapper class instance is the ID of the corresponding object in
MOOSE. Additionally, the wrapper classes have a static pointer to
the single instance of the context object. Wrapper classes provide
accessor methods that can be used to access the fi elds in the cor-
responding MOOSE object.

These C++ wrapper classes were input to SWIG to create the
Python module. After translation to Python, the user sees the mem-
ber fi elds in the Python classes in place of the accessor methods in
the C++ wrapper classes. Behind the scene the Python interpreter
calls these accessor methods whenever the user script tries to access
MOOSE object fi elds (Figure 1A).

Manually developing C++ wrapper classes for all MOOSE classes
was a tedious but repetitive task. We therefore embedded stub code
in the MOOSE initialization code to generate most of the wrap-
per code programmatically using Run-Time Type Information
in C++. This auto-generated code was used with a few modifi ca-
tions to generate a Python module using SWIG. SWIG takes an
interface fi le with SWIG-specifi c directives and generates a single
C++ fi le for the library and a Python source-code fi le that contains
support code. We completed the PyMOOSE code generation by
compiling and linking the SWIG-generated C++ source-code as
a dynamic library. This dynamic library can be imported in any
Python program.

230

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

LEGACY MODELS AND PyMOOSE
The PyMOOSE context object keeps a single instance of the
GenesisParser class in order to run legacy GENESIS scripts.
Whenever the user asks for executing a GENESIS statement, the
context object disconnects itself from the Shell and connects the
GenesisParser object instead. The GENESIS statement string is
passed to the GenesisParser object, which executes it as if the user
typed it in at the MOOSE command prompt. After execution of the
statement (or script) the GenesisParser object is disconnected from
the Shell and the context object is reconnected (Figure 1B).

While it is valuable to run GENESIS scripts within PyMOOSE,
this feature is intended only to support legacy code and is better
avoided in new model development. The use of GENESIS scripting
language inside Python defeats the whole purpose of moving to
a general-purpose programming language. It reduces readability
and the user needs to know both languages in order to understand
the code.

RESULTS
We used the Python interface of MOOSE to achieve three key tar-
gets: (1) Interfacing with standard libraries in a mature scientifi c
computing language, (2) giving access to a portable GUI library
for developing user interface and (3) enabling MOOSE to work
together with other simulators.

INTERFACING SIMULATIONS WITH PYTHON LIBRARIES
We used Python scientifi c and graphing libraries to analyze and
display the output of a PyMOOSE simulation. The interface with
Python gives the user freedom to choose from a wide variety of
scientifi c and numerical libraries available from third parties. We
demonstrate the use of two libraries along with PyMOOSE for
developing simulations with plotting and data analysis within
Python. The fi rst of these, NumPy, is a library that provides data
structures and algorithms for fast matrix manipulation (http://
numpy.scipy.org/). Even though Python is interpreted, with attend-
ant slow execution, NumPy library provides access to compiled code
and hence the functions from the library are as fast as compiled
code. The second library, matplotlib, provides a rich set of func-
tions for plotting 2D data both in hardcopy formats and interac-
tively (http://matplotlib.sourceforge.net/). It can use NumPy for

fast matrix operations in Python and several portable GUI toolkits
(GTK/Qt/Tk/wxWidgets) as graphical back-end.

We implemented a simulation of the squid giant axon using
Hodgkin–Huxley Na+ and K+ channels and parameters (script
attached in Appendix). We applied an injection current with
random amplitude uniformly distributed between 0 and 100 nA.
We recorded the time-series for the membrane potential during
the simulation in a MOOSE table object, which can accumulate
a time-series of simulation output (Figure 2A). The interface
to Python was done using the MOOSE table class. This class is
exposed to Python with methods to emulate iterable type (Martelli
et al., 2005). The array constructor in NumPy accepts an iter-
able object and creates a NumPy array with a copy of the con-
tents of the object. Thus the user is relieved of explicitly iterating
over the table entries and copying them to a NumPy array. This
completes the interface from the MOOSE simulation output to
NumPy (Figure 2B). We used the fast Fourier transform operation
available in NumPy to compute the discrete Fourier transform of
the time-series of the simulated membrane potential. We used
matplotlib to plot the original time-series, as well as the output
of the FFT (Figure 2C).

Overall, this example simulation illustrates how PyMOOSE
facilitates interoperability of Python numerical and graphing
libraries with MOOSE.

PORTABLE GUI THROUGH PYTHON
The use of Python separates the problem of GUI development
from simulator development. Moreover, it gives one the freedom
to choose from a number of free GUI toolkits. The major platform
independent GUI toolkits with Python interfaces are Qt(TM) avail-
able as PyQt, wxWidgets (wxPython), Tk and GTK (http://wiki.
python.org/moin/GuiProgramming; http://www.python.org/doc/
faq/gui/). We used PyQt4 to develop a simple user interface for a
clone of the GENESIS squid tutorial in MOOSE. We selected Qt4
as it is a mature and clean toolkit that is freely distributed and runs
well on all the major operating systems.

The program was divided into three modules – (1) the squid
axon compartment with Hodgkin–Huxley channels, (2) a model
object which combined a few tables with the squid compartment to
record various parameters through the time of the simulation, and

context

Python

Compartment
ID: 314

Channel
ID: 271

MOOSE

shell

Compartment
ID: 314
Vm
Rm
Cm

Channel
ID: 271
Ik

A

PyMooseContext

Shell

GenesisParser

Python phase

Legacy phase

B

FIGURE 1 | PyMOOSE interface. (A) Communication between
Python and MOOSE. MOOSE represents concepts through objects and
manipulates them using the singleton Shell object. PyMOOSE provides a
light-weight mirror representation of each MOOSE object. Operations on
PyMOOSE objects are communicated to MOOSE via the context and

the Shell object. (B) Accessing legacy scripts through PyMOOSE.
The Shell object is usually controlled through the PyMooseContext. When
loading a GENESIS script, control is temporarily passed to the legacy
GENESIS script language parser, and then returned to the
PyMooseContext.

231

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

(3) the GUI to take user inputs and to plot data. We implemented
the squid axon model as described in the previous section, using
PyMOOSE to set up and parameterize the model. As before, the
model was interfaced with table objects to monitor time-series out-
put of the simulation. Finally, we implemented the GUI by loading
in the PyQt4 libraries, and using Python calls to set up the inter-
face (Figure 3). While there are Qt IDEs available (http://trolltech.
com/products/qt/), we constructed the interface through explicit
Python calls to create widgets, assign actions, and manage output
data. Qt uses a signal-slot mechanism for passing event informa-
tion. PyQt allows the use of arbitrary Python methods to be used
as slots. Hence we could connect the GUI widgets to methods in
the PyMOOSE model class and thus provided simulation control
through the GUI in a clean manner. We used PyQwt, a Python
interface of the Qt-based plotting library Qwt, for creating output
graphs. Since PyQwt can take NumPy arrays as data, we converted
the tables in MOOSE to NumPy arrays and used PyQwt plotting
widgets to display them.

We based the layout of the simulation on the widely used GENESIS
Squid tutorial program. To confi rm portability of the system, we ran
the model on Linux as well as the Windows operating system.

This exercise demonstrated the capability of PyMOOSE to draw
upon existing graphical libraries for its graphical requirements. This
is an important departure from GENESIS. The GENESIS graphical
libraries (XODUS) were an integral part of the C code-base and
XODUS objects were visible as, and manipulated in the same way
as other GENESIS objects. In contrast, PyMOOSE did not need to
implement any graphical objects within the MOOSE C++ code,
but instead reused extant third-party graphical libraries available
for Python. Furthermore the existing libraries are professionally
designed and have a much more consistent look-and-feel than did
the original GENESIS graphical library, XODUS (Bhalla, 1998).

SIMULATOR INTEROPERABILITY
With Python becoming a popular language for developing platform
independent scripts, several neuronal simulators have implemented

80
100
120

A
injection current (nA)

membrane voltage (mV)

PyMOOSE Table

__getitem__(index)

B

20

0

40

60

80

100

P
o

w
er

C

-100
-80
-60
-40
-20

0
20
40
60

0 50 100 150 200

time (ms)

__setitem__(index, value)
__len__()
__iter__()

NumPy
array constructor

NumPy array

matplotlib
plot

0 2 4 6 8 10 12 14 16 18

FIGURE 2 | Analysis and graphing of a PyMOOSE simulation. (A) Simulation
input (random input current) and output (membrane potential). (B) Data fl ow. The
simulation time-series is recorded in the MOOSE table object, which is visible to

Python as a sequence object. This is accessed as an array in NumPy. The fast
Fourier transform is applied to this array, and the result plotted in Matplotlib.
(C) Output of FFT analysis (with the fundamental frequency removed).

232

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

Python interfaces. This raises the possibility of using Python as a
glue language to run simulations that span different simulators.
As a fi nal demonstration of interoperability, we used PyMOOSE
with PyNEURON to build a multi-scale, multi-simulator model
that incorporates neuronal electrical activity as well as biochemical
signaling (Figure 4A).

We used NEURON to model a multicompartmental electri-
cal model of a Type A neuron from the CA3b region of the rat
hippocampus (Migliore et al., 1995; http://senselab.med.yale.
edu/ModelDB/ShowModel.asp?model=3263). This is a morpho-
logically detailed model with experimentally constrained distri-
bution of membrane ion channels. It reproduces experimental
observations of fi ring behavior and intracellular Ca2+ dynamics.
We modifi ed the hoc script for the model, to run it for arbitrary
time intervals. We directed the output data to Vector objects in
NEURON. The Python wrapper class for this model provided
a handle for the simulation parameters and functions defi ned
in the hoc script. As described in the PyNEURON documen-
tation (http://www.neuron.yale.edu/neuron/docs/help/neuron/
neuron/classes/python.html), Python commands were directed
to the NEURON engine by constructing hoc statement strings
and executing them through the hoc interpreter instance pro-
vided by the neuron module. Moreover, hoc object references are
directly available in Python as attributes of the hoc interpreter
object. Thus accessing hoc objects was quite clean in Python
(Figure 4A).

We used MOOSE to model calcium-triggered biochemical
signaling events at the synapse. We used a model of a bistable
MAPK-PKC-PLA2 feedback loop that was originally implemented
in GENESIS/Kinetikit (Ajay and Bhalla, 2004; Bhalla and Iyengar,
1999; Bhalla et al., 2002) and uploaded to the DOQCS database
(http://doqcs.ncbs.res.in/template.php?&y=accessiondetails&an=
79). The model was defi ned in the GENESIS scripting language. We
used the legacy scripting mode of PyMOOSE to load the GENESIS/
kinetikit model. The simulation objects thus instantiated were
standard MOOSE objects, and were accessible using Unix-like path
strings. The PyMOOSE interface exposed these objects as regular
Python objects. Thus access to the MOOSE objects, represent-
ing GENESIS data concepts, was also straightforward in Python
(Figure 4A).

We used the Python interface to accomplish three critical opera-
tions to combine the two simulations: (1) Initialization, (2) run-
time control and synchronization, and (3) variable communication
and rescaling.

1. To initialize the models, we used PyNEURON command load_
fi le to load the hoc script. Once the script is loaded, variables
and functions defi ned in the script become available as mem-
bers of the hoc interpreter instance inside Python. In this case
we defi ned a setup function to initialize the NEURON simula-
tion. This function is called in the constructor (__init__) of the
Python wrapper class over the NEURON simulation. At this

FIGURE 3 | Screen shot of PyMOOSE/Qt interface for the Hodgkin–Huxley model. The layout is closely modeled on the Squid demo from GENESIS.

233

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

stage we applied a test pulse of 1 nA for 250 ms to measure the
fi ring properties of the neuron before potentiation. We then
ran the NEURON model for 1 s to allow the model to settle.
Similarly we loaded the GENESIS/Kinetikit model using the
loadG command, and ran this simulation for 1800 s to settle.

2. In the Python wrapper class for each model, we defi ned a
run method to advance the simulation in time. That for the
NEURON model uses a run function we defi ned in the custom

hoc script. This run function calls NEURON’s fadvance com-
mand to advance the simulation. In the wrapper class for the
GENESIS/Kinetikit model the run method calls the step com-
mand to advance the simulation (Figure 4B).

3. We used the Python interface to read out somatic calcium
levels from the NEURON model and insert them into the
MOOSE model, and to feed back MAPK activity changes from
the MOOSE model to modulate KCa conductances.

0
0.2
0.4
0.6
0.8

1

0 50 100 150 200

C
on

ce
nt

ra
tio

n

D [Ca2+] relative

[MAPK*] relative

-100
-80
-60
-40
-20

0
20
40
60

0 50 100 150 200

V
m

 (m
V

)

Time (s)

E

10

15

Python

NEURON
hoc interpreter

hoc script

load file

loadG

MOOSE
genesis parser

Kinetikit

GENESIS-kkit script

read kkit dump

F

B

A

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

1.00 1.05 1.10 1.15 1.20 1.25

V
m

 (m
V

)

Time (s)

C

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

192.25 192.30 192.35 192.40 192.45 192.50

V
m

 (m
V

)

Time (s)

Time (s)

in
je

ct
io

n
cu

rr
en

t
(n

A
)

G

0 1 1.25 2.25 9.25 192.25 192.5

MOOSE

NEURON

Time (seconds)
1800

2.25
190

0.25

Set up
Combined simulation

Test pulse

MOOSE NEURON

[MAPK*]

[Ca2+]

1

FIGURE 4 | A combined, multi-scale NEURON and GENESIS model. (A) Setup
of combined model, using NEURON and GENESIS model defi nition fi les.
(B) Information fl ow during simulation. The two models were run independently
for an initial settling period and for the test pulse to the NEURON model. During
the combined simulation phase, each model was advanced for 1 s and then data
was transferred via Python to the other model. Finally a second test pulse was
delivered. (C) Response of NEURON model to fi rst test pulse. (D) Calcium and

MAPK levels in the signaling model. (E) Voltage responses from the NEURON
model. (F) Experiment design and input to NEURON model. A test current pulse
of 0.15 nA was delivered for 0.25 s to the NEURON model in the initialization
phase. At the start of the combined simulation, a stimulus of 10 nA was
delivered for 7 s. After 180 s of combined simulation a second test pulse
(0.15 nA, 0.25 s) was applied. (G) Response of NEURON model to second test
pulse. The difference is due to modulation of KCa by the elevated MAPK activity.

234

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

We wrote another higher-level function run to advance the
 coupled simulations using the two wrapper classes (not to be con-
fused with the member method run of these classes). This function
(1) creates instances of both wrappers, which involves initializing
the models, (2) runs the NEURON simulation for 1 s, (3) reads
out the calcium level, performs rescaling and updates the kinetic
model with this value, (4) advances the kinetic simulation for 1 s
to catch up with the electrical model, (5) reads out the activity
level of MAPK from the GENESIS/Kinetikit model and modifi es
the [Ca2+] dependent K+ channel conductances in the NEURON
model in inverse proportion to this (Figures 4E,F).

Our simulated experiment is illustrated in Figure 4F. We loaded
the models and allowed them to settle. We measured baseline
neuronal responses at this stage using a 250-ms, 0.15 nA current
pulse. Following this we used the run function for the further time-
 evolution of the system. We applied a strong LTP-inducing stimulus
to the neuronal model for 7 s, and then allowed the simulation to
continue for 183 s. Finally we repeated the 250 ms, 0.15 nA test for
neuronal responses.

The time-evolution of membrane potential, Ca2+ levels, and
MAPK activity are shown in Figures 4D,E. The initial and fi nal
burst waveforms of the neuron are shown in Figures 4C,G. We
observe that the coupled model shows how electrical stimulation
can lead to signaling events, with feedback effects on the electri-
cal properties of the neuron. We should point out that this simu-
lation is only a demonstration and the relationship between the
chemical system and the biophysical properties of the neuron is
over- simplifi ed, although the two component models we used are
realistic within their respective domains.

This example also illustrates the effi ciency of using Python
for data transfer when traffi c volumes are small compared to the
computational times. The neuronal calculations in NEURON took
about 91% of the simulation run-time, the signaling calculations
in MOOSE took ∼8.5%, and the data transfer through Python
accounted for only around 0.5%. As we discuss below, there may
be other interface contexts where more effi cient, low-level data
transfer protocols may be needed, and the relatively facile Python
interface may not be appropriate.

DISCUSSION
We have used PyMOOSE, the Python interface to MOOSE, to
achieve interoperability at three levels. First, we used standard
mathematical packages in Python to analyze MOOSE output.
Second, we used the QT graphical toolkit from within Python to
build a GUI for a MOOSE simulation. Third, we used Python as a
glue language to run a cross-simulator model combining an elec-
trophysiological model set up in NEURON with a biochemical
signaling model set up in GENESIS/Kinetikit.

ISSUES WITH PYTHON INTEROPERABILITY
The strengths of the Python language make it perhaps too easy to
repeat well-known mistakes in simulation development. We con-
sider two such issues. First, Python is an interpreted language in
most implementations. In the context of simulations, it is not meant
for number crunching. Well-designed libraries like NumPy can
hide some of these limitations from the user, and fast hardware can
conceal other ineffi ciencies. However, given the same specialized

algorithms, a compiled language will perform better than an inter-
preted one. Therefore, for large simulations, we need to combine the
best possible algorithms with optimized and compiled languages.
MOOSE has as one of its goals the capability of managing the
low-level, high-traffi c fl ow of data between different numerical
engines incorporated into MOOSE. We do not consider Python
appropriate for such operations. Second, many aspects of model
specifi cation should be done using declarative rather than proce-
dural approaches (Cannon et al., 2007; Crook et al., 2005, 2007).
However, Python makes procedural model defi nition very easy, and
may even provide a certain level of interoperability if several simu-
lators provide equivalent calls for model setup. For example, there
are some impressive recent efforts to develop a standard vocabulary
for network defi nitions across simulators (http://neuralensemble.
org/trac/PyNN/; this issue). While the presence of Python as a
common link language may temporarily address the interoper-
ability issues of this approach, we feel that it would be a cleaner
design to use a separate, declarative defi nition for networks such as
NeuroML (http://neuroml.org). Nevertheless, we completely agree
that a standard vocabulary for model defi nitions is an important
fi rst step toward this goal.

MODEL SPECIFICATION VS. SIMULATOR CONTROL
Model specifi cation and exchange issues have been ably addressed
by the communities developing model specifi cation languages
(Le Novère et al., 2005; Qi and Crook, 2004; http://neuroml.org;
http://sbml.org). The current paper focuses on the second prob-
lem, that of making it easier for researchers to control and set up
these diverse simulation tools. We have shown how this can be
done with the simulator MOOSE, using Python as a glue language.
Run-time communication between simulators has previously been
achieved using the NEOSIM framework, which uses Java (Goddard
et al., 2001; Howell et al., 2002). More recently, the MUSIC frame-
work specifi es an API for simulators to use to communicate with
each other (Ekeberg and Djurfeldt, 2008). Our study is novel in
two respects. First, we use the built-in Python capabilities of two
simulators to achieve run-time communication, without the need
to modify either simulator or to build an additional framework
for communication. Second, we carry out bidirectional commu-
nications across scales (biophysical to biochemical models) and
involving continuous data types (channel conductance and calcium
concentrations) rather than spike events.

The evolution of neuronal simulator technology has seen a grad-
ual separation of different aspects of modeling, with a correspond-
ing improvement in interoperability. The fi rst step was to develop
higher-level simulation tools (e.g., NEURON and GENESIS) to
separate the numerical and housekeeping code from the model-
specifi c code. This let people share models, provided they were
written for the same simulator. The second was the development
of declarative model specifi cations that were separate from the
simulator. This initially took the form of semi-declarative cell
morphology fi les (NEURON ‘.geom’ fi les and GENESIS ‘.p’ fi les),
which required additional fi les for channel specifi cation. This proc-
ess of separation of model defi nition from simulator control has
continued. The Neuroconstruct suite refi nes the declarative defi -
nition of models, with NeuroML and ChannelML as declarative
defi nitions suffi cient for most single-neuron models. Importantly,

235

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

at this level quite different simulators can use the same original
model defi nition to run simulations. A third stage is the conver-
gence of different simulators to use the same link language, in this
case Python. This makes it possible to explicitly separate model
defi nition from simulator control. In the current paper, we have
illustrated this with a composite signaling-neuronal model drawing
on NEURON and MOOSE. We have utilized two legacy models,
one written for NEURON, and one written for GENESIS. Even
though the legacy models themselves were not entirely set up in a
declarative manner, we used the original model defi nitions only to
load in the model specifi cations. We used Python as the procedural
language to control these operations, and to mediate communica-
tion between the models at run-time.

SUSTAINABILITY OF PYTHON INTEROPERABILITY
Simulator interoperability has long been regarded as important
(Crook et al., 2005, 2007; Goddard et al., 2001). Such projects have
been diffi cult to execute, and still harder to maintain, because they

depend on multiple underlying simulator projects, each with differ-
ent APIs, directions and life-cycles. Python is a potential way out of
this problem. First, Python itself is a well-established language with
a strong community and support. Second, the issues of interfacing
to Python are now being undertaken by individual simulator devel-
opment teams. Interoperability emerges from these independent
efforts rather than requiring a separate project to achieve coordina-
tion. Third, PyMOOSE itself will be maintained for the long-term,
since Python will be the default scripting language for MOOSE.
We suggest that long-term improvements in interoperability will
be driven both by widespread simulator support for declarative
model specifi cations, and by a richer ecosystem of simulators fl u-
ent in Python.

APPENDIX
Program listing: ca3_db.hoc provides the functions to load and
initialize the NEURON CA3 cell model as well as for advancing the
simulation for a specifi ed interval and for updating parameters.

/**

 * Derived from Hippocampal CA3 pyramidal neuron model from the paper

 * M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer

 * simulations of morphologically reconstructed CA3 hippocampal neurons, J.

 * Neurophysiol. 73, 1157-1168 (1995).

 * The original model is available in modeldb: accession no: 3263

 * http://senselab.med.yale.edu/ModelDb/ShowModel.asp?model=3263

 *

 * Modifi ed by: Subhasis Ray , 2008

 **/

objref cvode, vecCai, vecT, vecV, outFile, stim1, stim2, stim3, fi h

vecV = new Vector()

vecCai = new Vector()

vecT = new Vector()

outFile = new File()

cvode = new CVode(0)

cvode.active(1)

cvode.atol(1e-3)

START = 2

AMP = 1.0

// ************* NEURON A **********

FARADAY=96520

PI=3.14159

secondorder=2

dt=0.025

celsius=30

fl agl=0

xopen("ca3a.geo")

proc conductances() {

 forall {

 insert pas e_pas=-65 g_pas=1/60000 Ra=200

 insert cadifus

 insert cal gcalbar_cal=0.0025

 insert can gcanbar_can=0.0025

236

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

 insert cat gcatbar_cat=0.00025

 insert kahp gkahpbar_kahp=0.0004

 insert cagk gkbar_cagk=0.00055

 }

 soma {

 insert nahh gnabar_nahh=gna

 insert borgkdr gkdrbar_borgkdr=gkdr

 insert borgka gkabar_borgka=gka

 insert borgkm gkmbar_borgkm=gkm

 }

 for i=0,1 dend2[i] {

 insert nahh gnabar_nahh=gna

 insert borgkdr gkdrbar_borgkdr=gkdr

 insert borgka gkabar_borgka=gka

 insert borgkm gkmbar_borgkm=gkm

 }

 for i=0,2 dend3[i] {

 insert nahh gnabar_nahh=gna

 insert borgkdr gkdrbar_borgkdr=gkdr

 insert borgka gkabar_borgka=gka

 insert borgkm gkmbar_borgkm=gkm

 }

 for i=37,38 dend3[i] {

 insert nahh gnabar_nahh=gna

 insert borgkdr gkdrbar_borgkdr=gkdr

 insert borgka gkabar_borgka=gka

 insert borgkm gkmbar_borgkm=gkm

 }

}

proc init() {

 t=0

 coord_cadifus()

 forall {

 cao=2

 cai=50.e-6

 ek=-91

 v=-65

 if (ismembrane("nahh")) {ena=50}

 }

 vecV.record(&soma.v(0.5))

 vecCai.record(&soma.cai(0.5))

 vecT.record(&t)

 fi nitialize(v)

 fcurrent()

 forall {

 if (ismembrane("nahh")) {e_pas=v+(ina+ik+ica)/g_pas} else {e_pas=v+(ik+ica)/g_pas}

 }

 cvode.re_init()

}

237

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

proc setup(){

 strength = 1.0 /*namps*/

 tstim = 50

 tstop=500

 gna=0.015

 gkdr=0.03

 gka=0.001

 gkm=0.0001

 conductances()

 /* The schedule of experiment is as follows:

10nA

0.15nA 0.15nA

1s 0.25s 7s 183s 0.25s 0.05s

 The 1800 s runs with 1 s intervals interspersed with 1 s of

 kinetic simulation and update of gkbar for all ca dependent k

 channels.

 The genesis model needs over 1 uM [Ca2+] for 10 s.

 */

 soma {

 // fi rst test pulse

 stim1 = new IClamp(0.5)

 stim1.amp = 0.15

 stim1.del = 1000.0

 stim1.dur = 250

 // tetanus pulse

 stim2 = new IClamp(0.5)

 stim2.amp = 1.0

 stim2.del = 2250

 stim2.dur = 7e3

 // fi nal test pulse

 stim3 = new IClamp(0.5)

 stim3.amp = 0.15

 stim3.del = 192.25e3

 stim3.dur = 250

 }

 init()

}

proc update_gkbar(){/* multiply all Ca2+ dependent K+ conductance by $1 */

 forall {

 gkahpbar_kahp = gkahpbar_kahp * $1

 }

 soma {

 print "soma gkdrbar before:", gkdrbar_borgkdr

 gkdrbar_borgkdr = gkdrbar_borgkdr * $1

 gkmbar_borgkm = gkmbar_borgkm * $1

 print "soma gkdrbar after", gkdrbar_borgkdr

 }

 for i=0,1 dend2[i] {

 gkdrbar_borgkdr = gkdrbar_borgkdr * $1

238

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

 gkmbar_borgkm = gkmbar_borgkm * $1

 }

 for i=0,2 dend3[i] {

 gkdrbar_borgkdr = gkdrbar_borgkdr * $1

 gkmbar_borgkm = gkmbar_borgkm * $1

 }

 for i=37,38 dend3[i] {

 gkdrbar_borgkdr = gkdrbar_borgkdr * $1

 gkmbar_borgkm = gkmbar_borgkm * $1

 }

 fcurrent()

}

access soma

distance()

/* run for interval specifi ed as argument# 1 */

proc run(){

 t_start = t

 while (t < (t_start + $1)){

// print "run() - @t=", t

 fadvance()

 }

// print "run(): t_start =", t_start, " current time =", t, "run interval =", $1

}

proc do_run(){

 setup()

 print "setup done. running 7.25s"

 run(12250)

 print "t = ", t, "ms. done running. dumping data in test_neuron1.dat"

 outFile.wopen("test_neuron1.dat")

 for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %g\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6,

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute

value - unit is nM*2

 }

 outFile.close()

 print "done dumping. running for 5s with 0.5nA"

 run(5000)

 print "t =", t, "ms. soma.Cai = ", soma.cai(0.5), ". now updating gkbar"

 update_gkbar(10.0)

 print "done updating. writing to fi le"

 outFile.wopen("test_neuron2.dat")

 for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %g\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6,

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute

value - unit is nM*2

 }

 outFile.close()

 print "done dumping. now running the rest"

 run(1800300)

 print "t = ", t, "ms. done running. writing to fi le"

 outFile.wopen("test_neuron3.dat")

 for ii = 0, vecT.size() - 1 {

 outFile.printf("%g %g %\n", vecT.x(ii), (vecCai.x(ii) - 50e-6)*2e6,

239

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

vecV.x(ii)) // the original GUI plots this function of cai instead of absolute

value - unit is nM*2

 }

 outFile.close()

}

Program listing 2: moosenrn.py – this program wraps the GENESIS model and the NEURON model and provides simulation control and data exchange

between the two simulators.

#!/usr/bin/env python

Author: Subhasis Ray

import sys

sys.path.append("/home/subha/lib/python2.5/site-packages")

sys.path.append("/home/subha/lib/python2.5/site-packages/neuron")

import pylab

import numpy

import neuron

import moose

class NeuronSim:

 """Wrapper class for the neuron simulation"""

 def __init__(self, fi leName="ca3_db.hoc"):

 """Load the fi le specifi ed by fi leName"""

 self.hoc = neuron.h

 self.hoc.load_fi le(fi leName)

 self.hoc.setup()

 def run(self, interval):

 """Simulate for interval time in second"""

 self.hoc.run(interval * 1e3) # neuron keeps time in milli second

 def cai(self):

 """Returns cai of in nM"""

 return self.hoc.soma(0.5).cai

 def cai_record(self):

 """Returns a tuple containing the array of time points and the array

of cai values at the corresponding points"""

 timeVec = numpy.array(neuron.h.vecT)

 caiVec = numpy.array(neuron.h.vecCai)

 return (timeVec, caiVec)

 def v_record(self):

 """Returns a tuple containing the array of time points and the array

of membrane potential values at the corresponding points"""

 timeVec = numpy.array(neuron.h.vecT)

 vmVec = numpy.array(neuron.h.vecV)

 return (timeVec, vmVec)

 def update_kconductance(self, factor):

 """Modify the k hcannel conductances in inverse proportion of mapk_star_conc"""

 self.hoc.update_gkbar(factor)

 self.hoc.fcurrent()

240

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

 def saveplots(self, suffi x):

 cai = "nrn_cai_" + str(suffi x) + ".plot"

 vm = "nrn_vm_" + str(suffi x) + ".plot"

 t_series, vm_series, = self.v_record()

 t_series, cai_series, = self.cai_record()

 numpy.savetxt(cai, cai_series)

 numpy.savetxt(vm, vm_series)

 numpy.savetxt("nrn_t_" + str(suffi x) + ".plot", t_series)

class MooseSim:

 """Wrapper class for moose simulation"""

 volume_scale = 6e20 * 1.257e-16

 def __init__(self, fi leName="acc79.g"):

 self._settle_time = 1800.0

 self._ctx = moose.PyMooseBase.getContext()

 self._t_table = []

 self._t = 0.0

 self._ctx.loadG(fi leName)

 self.ca_input = moose.Molecule("/kinetics/Ca_input")

 self.mapk_star = moose.Molecule("/kinetics/MAPK*")

 self.pkc_active = moose.Molecule("/kinetics/PKC-active")

 self.pkc_active_table = moose.Table("/graphs/conc2/PKC-active.Co")

 self.pkc_ca_table = moose.Table("/graphs/conc1/PKC-Ca.Co")

 self.mapk_star_table = moose.Table("/moregraphs/conc3/MAPK*.Co")

 self.mapk_star_table.stepMode = 3

 self.mapk_star_table.connect("inputRequest", self.mapk_star, "conc")

 self.mapk_star_table.useClock(2)

 self.ca_input_table = moose.Table("/moregraphs/conc4/Ca_input.Co")

 self.ca_input_table.stepMode = 3

 self.ca_input_table.connect("inputRequest", self.ca_input, "conc")

 self.ca_input_table.useClock(2)

 self._ctx.reset()

 self._ctx.reset()

 def set_ca_input(self, ca_input):

 """Sets the conc. of Ca_input molecule"""

 print "set_ca_input: BEFORE: nInit =", self.ca_input.nInit, ", n =",

self.ca_input.n, ", setting to: ", ca_input* MooseSim.volume_scale

 self.ca_input.nInit = ca_input * MooseSim.volume_scale

 self.ca_input.n = ca_input * MooseSim.volume_scale

 print "set_ca_input: AFTER: nInit =", self.ca_input.nInit, ", n =",

self.ca_input.n

 def ca_input(self):

 """Returns scaled value of Ca_input conc."""

 return self.ca_input.conc

 def run(self, interval):

 """Run the simulation for interval time."""

 self._ctx.step(fl oat(interval))

 # Now expand the list of time points to be plotted

 points = len(self.pkc_ca_table) - len(self._t_table)

 delta = interval * 1.0 / points

 for ii in range(points):

 self._t_table.append(self._t)

 self._t += delta

241

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

 def pkc_ca_record(self):

 """Returns the time series for pkc_ca conc."""

 return (self._t_table, self.pkc_ca_table)

 def pkc_active_record(self):

 """Returns time series for pkc_active conc."""

 return (self._t_table, self.pkc_active_table)

 def mapk_star_conc(self):

 """Returns MAPK* conc. in uM"""

 return self.mapk_star.n / MooseSim.volume_scale

 def mapk_star_record(self):

 """Returns time series for [MAPK*]"""

 return (self._t_table, self.mapk_star_table)

 def saveplots(self, suffi x):

 pkc_a = "mus_pkc_act_" + str(suffi x) + ".plot"

 pkc_ca = "mus_pkc_ca_" + str(suffi x) + ".plot"

 mapk_star = "mus_mapk_star_" + str(suffi x) + ".plot"

 ca_input = "mus_ca_input_" + str(suffi x) + ".plot"

 numpy.savetxt("mus_t_" + str(suffi x) + ".plot", self._t_table)

 self.mapk_star_table.dumpFile(mapk_star)

 self.pkc_ca_table.dumpFile(pkc_ca)

 self.pkc_active_table.dumpFile(pkc_a)

 self.ca_input_table.dumpFile(ca_input)

 def test_run(self):

 self.run(500)

 print "After 500 steps of uninited run: [MAPK*] =", self.mapk_star_conc()

 self.ca_input.nInit = 10 * MooseSim.volume_scale

 self.ca_input.n = 10 * MooseSim.volume_scale

 self.run(5)

 print "After another 5 s with 10uM ca input: [MAPK*] =", self.mapk_star_conc()

 self.ca_input.nInit = 0.08 * MooseSim.volume_scale

 self.ca_input.n = 0.08 * MooseSim.volume_scale

 self.run(500)

 print "fi nished run. going to plot"

 print "After another 500 s with 0.08 uM ca input: [MAPK*] =",

self.mapk_star_conc()

 pylab.plot(pylab.array(self._t_table),

 pylab.array(self.pkc_active_table),

 pylab.array(self._t_table),

 pylab.array(self.pkc_ca_table))

 pylab.show()

if __name__ == "__main__":

 mus = MooseSim()

 mus.set_ca_input(0.08)

 mus.run(1800.0)

 mus.saveplots("1")

 start_mapk = mus.mapk_star_conc()

 nrn = NeuronSim()

 nrn.run(2.25)

 nrn.saveplots("1")

 fi le_ = open("cai_setings.txt", "w")

242

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

 # Interleaved execution of MOOSE and NEURON model

 # Synchronizing after every 1 s of simulation

 while nrn.hoc.t < 192.25e3

 scaled_cai = scale_nrncai(nrn.cai())

 mus.set_ca_input(scaled_cai)

 print "scaled_cai =",scaled_cai

 fi le_.write(str(nrn.cai()) + " " + str(scaled_cai)+"\n")

 mus.run(1.0)

 gkbar_scale = start_mapk / mus.mapk_star_conc()

 start_mapk = mus.mapk_star_conc()

 print "[mapk*] = ", start_mapk

 nrn.update_kconductance(gkbar_scale)

 nrn.run(1.0)

 print "time is ", nrn.hoc.t * le-3, "s"

 fi le_.close()

 nrn.saveplots("2")

 mus.saveplots("2")

 # fi nal test pulse run

 nrn.run(0.3)

 nrn.saveplots("3")

 t_series, vm_series, = nrn.v_record()

 t_series, cai_series, = nrn.cai_record()

 pylab.subplot(121)

 pylab.plot(t_series, numpy.array(vm_series), t_series, numpy.array(cai_series)

* 1e6)

 t_series, pkc_act, = mus.pkc_active_record()

 t_series, pkc_ca, = mus.pkc_ca_record()

 t_series, mapk_star, = mus.mapk_star_record()

 pylab.subplot(122)

 pylab.plot(numpy.array(t_series), numpy.array(pkc_act), numpy.array(t_series), numpy.array(pkc_

ca), numpy.array(t_series), numpy.array(mapk_star))

 pylab.show()

ACKNOWLEDGEMENTS
The development of MOOSE is supported by grants from the
Department of Biotechnology, India, and the NIGMS/Systems

Biology Center of New York. We acknowledge support from FACETS
to S. Ray to attend the FACETS/CodeJam meeting at CNRS, Gif-sur-
Yvette, which further stimulated PyMOOSE development.

REFERENCES
Ajay, S. M., and Bhalla, U. S. (2004).

A role for ERKII in synaptic
 pattern selectivity on the time-scale
of minutes. Eur. J. Neurosci. 20,
2671–2680.

Beazley, D. M. (1996). SWIG: an easy to
use tool for integrating scripting lan-
guages with C and C++. In Proceedings
of the 4th Annual USENIX Tcl/Tk
Workshop, Monterey, CA.

Beeman, D., and Bower, J. M. (2004).
Simulator-independent representa-
tion of ionic conductance models with
ChannelDB. Neurocomputing 58–60,
1085–1090.

Bhalla, U. S. (1998). Advanced XODUS
techniques. In The Book of GENESIS:
Exploring Realistic Neural Models with
the General Neural Simulation System,
2nd edn, J. M. Bower and D. Beeman,
eds (New York, Springer).

Bhalla, U. S., and Iyengar, R. (1999).
Emergent properties of networks of
biological signaling pathways. Science
283, 381–387.

Bhalla, U. S., Ram, P. T., and Iyengar, R.
(2002). Map kinase phosphatase as
a locus of flexibility in a mitogen-
 activated protein kinase signaling
network. Science 297, 1018–1023.

Bower, J. M., and Beeman, D. (1998). The
Book of GENESIS: Exploring Realistic
Neural Models with the General
Neural Simulation System, 2nd edn.
New York, Springer.

Bunow, B., Segev, I., and Fleshman, J. W.
(1985). Modeling the electrical behav-
ior of anatomically complex neurons
using a network analysis program:
excitable membrane. Biol. Cybern.
53, 41–56.

Cannon, R. C., Gewaltig, M. O., Gleeson, P.,
Bhalla, U. S., Cornelis, H., Hines, M. L.,

Howell, F. W., Muller, E., Stiles, J. R.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. Cambridge,
Cambridge University Press.

Cornelis, H., and De Schutter, E. (2003).
NeuroSpaces: separating modeling
and simulation. Neurocomputing
52–54, 227–231.

Crook, S., Beeman, D., Gleeson, P., and
Howell, F. (2005). XML for model
 specifi cation in neuroscience. In Special
Issue on Realistic Neuro Modeling –
Wam-Bamm ‘05 Tutorials. J.M.
Bower and D. Beeman (eds.). Brains
Minds Media, Vol. 1, bmm228 (urn:
nbn:de:0009-3-2282). http://www.
brains-minds-media.org/archive/228

Crook, S., Gleeson, P., Howell, F., Svitak, J.,
and Silver, R. A. (2007). MorphML: level
1 of the NeuroML standards for neuro-
nal morphology data and model specifi -
cation. Neuroinformatics 5, 96–104.

Ekeberg, Ö., and Djurfeldt, M. (2008).
MUSIC – multisimulation coordina-
tor: request for comments. Nature
Proceedings. Available at: http://dx.
doi.org/10.1038/npre.2008.1830.1.

Goddard, N., Hood, G., Howell, F.,
Hines, M., and De Schutter, E. (2001).
NEOSIM: portable large-scale plug
and play modelling. Neurocomputing
38–40, 1657–1661.

Goddard, N., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards NeuroML:
model description methods for col-
laborative modeling in neuroscience.
Philos. Trans. R. Soc. Lond., B, Biol. Sci.
356, 1209–1228.

243

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 6 |

Ray and Bhalla Python interface for MOOSE

Hines, M. (1993). NEURON – a pro-
gram for simulation of nerve equa-
tions. In Neural Systems: Analysis and
Modeling, F. Eeckman, ed. (Norwell,
MA, Kluwer), pp. 127–136.

Howell, F., Bazhenov, M., Rogister, P.,
Seznowski, T., and Goddard, N.
(2002). Scaling a slow-wave sleep cor-
tical network model using NEOSIM.
Neurocomputing 44–46, 453–458.

Hucka, M., et al. (2002). The systems
biology markup language (SBML):
a medium for representation and
exchange of biochemical network
models. Bioinformatics 19, 524–531.

Le Novère, N., Finney, A., Hucka, M., Bhalla,
U. S., Campagne, F., Collado-Vides, J.,
Crampin, E. J., Halstead, M., Klipp,
E., Mendes, P., Nielsen, P., Sauro, H.,

Shapiro, B., Snoep, J. L., Spence, H. D.,
and Wanner, B. L. (2005). Minimum
information requested in the annota-
tion of biochemical models (MIRIAM).
Nat. Biotechnol. 23, 1509–1515.

Maes, P. (1987). Concepts and experi-
ments in computational reflection.
In Proceedings of the Conference
on Object-Oriented Programming
Systems, Languages, and Applications
(OOPSLA). Orlando, FL, ACM,
pp. 147–155.

Martelli, A., Ravenscroft, A. M., and
Ascher, D. (2005). Python Cookbook,
O’Reilly, p. 14

Migliore, M., Cook, E. P., Jaffe, D. B.,
Turner, D. A., and Johnston, D.
(1995). Computer simulations of
 morphologically reconstructed CA3

hippocampal neurons. J. Neurophysiol.
73, 1157–1168.

Qi, W., and Crook, S. M. (2004). Tools
for neuroinformatic data exchange:
an XML application for neuronal
morphology data. Neurocomputing
58C–60C, 1091–1095.

Segev, I., Fleshman, J. W., Miller, J. P.,
and Bunow, B. (1985). Modeling the
electrical behavior of anatomically
complex neurons using a network
analysis program: passive membrane.
Biol. Cybern. 53, 27–40.

Smith, B. C. (1982). Reflection and
Semantics in a Procedural Language.
Ph.D. thesis, MIT, Cambridge, MA.

Confl ict of Interest Statement: The authors
declare that the research was conducted in

the absence of any commercial or fi nancial
relationships that could be construed as a
potential confl ict of interest.

Received: 15 September 2008; paper pend-
ing published: 13 October 2008; accepted:
01 November 2008; published online: 19
December 2008.
Citation: Ray S and Bhalla US (2008)
PyMOOSE: interoperable scripting in Python
for MOOSE. Front. Neuroinform. (2008) 2:
6: xx–xx. doi: 10.3389/neuro.11.006.2008
Copyright © 2008 Ray and Bhalla. This is
an open-access article subject to an exclusive
license agreement between the authors and
the Frontiers Research Foundation, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

244

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 16 December 2008
doi: 10.3389/neuro.11.007.2008

A Python analytical pipeline to identify prohormone
precursors and predict prohormone cleavage sites

Bruce R. Southey1,2*, Jonathan V. Sweedler1 and Sandra L. Rodriguez-Zas2

1 Department of Chemistry, University of Illinois, Urbana, IL, USA
2 Department of Animal Sciences, University of Illinois, Urbana, IL, USA

Neuropeptides and hormones are signaling molecules that support cell–cell communication in
the central nervous system. Experimentally characterizing neuropeptides requires signifi cant
efforts because of the complex and variable processing of prohormone precursor proteins
into neuropeptides and hormones. We demonstrate the power and fl exibility of the Python
language to develop components of an bioinformatic analytical pipeline to identify precursors
from genomic data and to predict cleavage as these precursors are en route to the fi nal bioactive
peptides. We identifi ed 75 precursors in the rhesus genome, predicted cleavage sites using
support vector machines and compared the rhesus predictions to putative assignments based
on homology to human sequences. The correct classifi cation rate of cleavage using the support
vector machines was over 97% for both human and rhesus data sets. The functionality of
Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.
uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community
that provides cleavage site prediction from a wide range of models, precision and accuracy
statistics, post-translational modifi cations, and the molecular mass of potential peptides.
The combined results illustrate the suitability of the Python language to implement an all-
inclusive bioinformatics approach to predict neuropeptides that encompasses a large number
of interdependent steps, from scanning genomes for precursor genes to identifi cation of
potential bioactive neuropeptides.

Keywords: Python, bioinformatics, neuropeptides, machine learning, support vector machine, precursor cleavage,

rhesus monkey

Analysis Consortium, 2007), only four rhesus prohormone genes
have been reported compared to over 90 human prohormone genes.
Consequently, accurate bioinformatic identifi cation of neuropep-
tide genes and characterization of precursors is essential in rhesus
neuroscience research.

Several factors make annotating prohormones and their associ-
ated peptides diffi cult. First, neuropeptides result from a complex
series of post-translational modifi cations (PTMs) of precursor
proteins. Second, the conserved “bioactive” peptide sequence that
interacts with its cognate receptor can be short, only a few amino
acids long, with large sections of diverse sequences in the prohor-
mone. Thus, homology to well-studied species is not enough to
offer accurate neuropeptide predictions across species.

The typical structure of neuropeptide precursor after translation
includes a signal peptide region and a region that contains one or
more neuropeptides (Fricker, 2005; Hook et al., 2008). After trans-
lation, the signal peptide is removed by signal peptidases and the
remaining peptide is cleaved by other proteases (notably proprotein
or prohormone proteases) that cleave the sequence at basic (Arg
or Lys) sites (Fricker, 2005; Hook, 2006; Hook et al., 2008). After
cleavage, the N- terminal basic amino acids are typically removed by
carboxylases and various additional PTMs such as amidation and
glycosylation can occur (Fricker, 2005; Hook et al., 2008).

We address these points here with a bioinformatics toolkit to
discover and characterize neuropeptides. Essential components

INTRODUCTION
Neuropeptides are a class of cell–cell peptides that can act as neu-
rotransmitters and hormones and have various paracrine, endo-
crine, and autocrine effects (Boutrel, 2008; Heinrichs and Domes,
2008). Neuropeptides directly infl uence a diverse set of biological
processes from growth and development to learning. For example,
oxytocin is known as a mammalian hormone associated with repro-
duction but also is a neurotransmitter that has been associated with
social behavior traits including trust, autism, inhibition of tolerance
to additive drugs and impaired learning and memory functions.
Furthermore, oxytocin and arginine vasopressin are intermediar-
ies of social behaviors, including attachment, social cognition and
stress, anxiety, and aggression (Heinrichs and Domes, 2008).

Experimental detection of neuropeptides in mammals has been
limited to a few species (primarily human, mouse and rat) or the
characterization of selected peptide families (such as insulin) across
greater numbers of species. This lack of experimental characteri-
zation is predominantly because such experimental procedures
are resource intense and the presence of neuropeptides varies
with species, tissue, developmental stage and even organism state.
Genomic sequencing provides the opportunity to discover neu-
ropeptides in other species with limited or no experimental studies
on neuropeptides. For example, while the rhesus macaque monkey
(Macaca mulatta) is widely used as model organism and its genome
has been sequenced (Rhesus Macaque Genome Sequencing and

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Yoonseong Park, Kansas State
University, USA
Niovi Santama, University of Cyprus
and Cyprus Institute of Neurology and
Genetics, Cyprus

*Correspondence:

Bruce Southey, Department of
Chemistry, University of Illinois,
1207 W. Gregory Dr., Urbana, IL 61801,
USA. e-mail: southey@illinois.edu

245

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

Southey et al. Precursor and cleavage site annotation

of this analytical pipeline are the computational identifi cation of
precursor genes in nucleic databases and model-based prediction
of cleavage and other PTMs of the precursors. Python is an ideal
language to develop this analytical pipeline for the discovery and
characterization neuropeptides. The core language has easy to use
functions that facilitate complex manipulation of information and
integration of results from the multistep analytical pathway. The
suitability of Python is further strengthened by third-party modules
such as BioPython (http://biopython.org) for bioinformatics (Bassi,
2007) and Numerical and Scientifi c Python (http://www.scipy.org)
for numerical computation (Oliphant, 2007). The combination of
all these features in a single language makes Python an ideal choice
for bioinformatic applications (Bassi, 2007; Kinser, 2008). In terms
of a pipeline, the power and fl exibility of Python can be used for the
full pipeline or to integrate different components of the pipeline
together. We illustrate the use of Python to implement an analytical
pipeline that integrates vastly different components necessary to
identify rhesus neuropeptides and associated precursors.

PRECURSOR IDENTIFICATION USING BIOINFORMATICS
RESOURCES
An exhaustive survey of neuropeptide precursors in a genome is
the fi rst step in the complete characterization of the neuropepti-
dome of a species. The development of bioinformatics analytical
pipeline to discover neuropeptide precursors requires the integra-
tion of multiple steps involving multiple tools. Bioinformatic tools
including sequence homology search using BLAST (Altschul et al.,
1997) and multiple sequence alignment using T-Coffee (Notredame
et al., 2000) are available as standalone packages or via a web inter-
face. BioPython provides an integrated environment that supports
different aspects of bioinformatics including parsing results from
bioinformatics tools. For example, Bassi (2007) illustrates the use
of BLAST with BioPython.

In the fi rst step of the prohormone analytical pipeline, rhesus
precursors were identifi ed based on precursor information from
other mammalian species with extensive neuropeptide research. In
particular, a list of human precursors and neuropeptide sequences
was collected from the UniProt Knowledgebase database (The
UniProt Consortium, 2008) and literature review (Amare et al.,
2006; Tegge et al., 2008). The set of human precursors was queried
against the database of predicted proteins derived from the rhesus
genome (http://www.ncbi.nlm.nih.gov/projects/genome/guide/
rhesus_macaque/) using a standalone version of BLAST (version
2.2.18) using the default parameter settings (e.g., expectation value
of 10 and Blosum62 scoring matrix) except for disabling the fi l-
ter option. Queries were conducted using the complete precursor
sequence that included the regions that contain the signal peptide
and neuropeptides to maximize the detection of the rhesus pre-
cursor. Human precursors were used because of the evolutionary
relationships between the rhesus and human species and the com-
pleteness of the list in humans. Information from other species (e.g.
mouse and rat) can also be used to evaluate the accuracy of the
search process. The repetitive process of searching for each human
precursor on the rhesus database was implemented by exploiting
the ability of BLAST to handle multiple sequences and using Python
to parse results. The query input fi le containing all human precur-
sors was submitted to BLAST and the output was saved in an XML

formatted fi le. An XML format provides structured information in
a machine readable format that permits repeated access.

The XML fi le of BLAST results can be also be parsed directly
using standard Python libraries such as the elementtree library to
extract the results for each of the human precursors. The script in
Listing 1 opens the specifi ed XML fi le and recursively stores the
contents in a Python class that contains the attributes and values
specifi ed by the XML docment type defi nitions used by BLAST.
After parsing the BLAST XML fi le, the script loops across the query
sequences and displays the match and the score and e-value of the
best match to the query sequence. Using a Python script allows
greater control of the output including extracting precursors with
the highest scoring BLAST hits, precursors with no hits, all hits that
exceed a threshold determined by the user, or all hits. Furthermore,
Python provides suffi cient fl exibility to identify the common sce-
narios with comparative genome analyses where multiple precur-
sors match the same target or the same precursor matches different
targets with similar scores.

The complete identifi cation of precursors can require different
levels of user input especially related to species divergence. The dif-
fi culties imposed by species divergence and available resources can
be investigated by evaluating different BLAST specifi cations (e.g.
selection of database, scoring matrices, E-value threshold), different
genomic resources (e.g. unassembled sequences) and information
from species when this is available. Due to the repetitive nature of
these investigations, Python can be used to facilitate the rapid evalu-
ation of the different specifi cations and combining the information
for user assessment.

Although low E-values constitute statistical evidence that sup-
ports the detection of homologous sequences between species, false
matches and partial matches are possible. The accuracy of the iden-
tifi cation of predicted rhesus precursors was accessed by aligning
the sequence to corresponding sequences from multiple other spe-
cies using multiple sequence alignment tools such as T-Coffee. Most
multiple sequence alignment tools only perform a single alignment
so that it is necessary to perform one alignment for every precur-
sor. Simple Python scripts can be used for the repetitive creation
of sequence fi les including multiple sequences across species for
each precursor and subsequent alignment for each precursor. The
resulting alignments were then viewed to identify which rhesus
precursor predictions are reliable or contain the prediction but are
too long (the result of automated predictions and sequencing or
assembly errors) or incomplete (due to incomplete coverage of the
particular genomic region, sequencing or assembly errors). Based
on the fi nal alignments, 67 rhesus neuropeptides precursors were
identifi ed solely in the rhesus database of predicted proteins.

Identifi cation of precursors using protein predictions and auto-
mated tools is fast and effective. However, this approach misses
precursors that are partially predicted or not predicted due to
sequencing or assembly issues. In order to identify if a human
precursor is present in the genome of the rhesus monkey, the pro-
tein sequences of the precursors are queried against the nucleotide
sequences from the genome assembly. The result of the BLAST
query only provides the locations that suffi ciently match the protein
sequence and consequently ignore low scoring and intronic regions.
The full precursor sequence can be extracted using Wise2 (http://
www.ebi.ac.uk/Tools/Wise2/index.html; Birney et al., 2004). Wise2

246

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

Southey et al. Precursor and cleavage site annotation

predicts the gene structure by comparing a protein sequence to a
genomic DNA sequence and using a gene prediction model that
allows for introns and frameshift errors. The genomic sequence
required by Wise2 was obtained by using Python to read the
genomic DNA sequence of the assembled rhesus genome, iden-
tify and extract the relevant chromosomal region and perform the
reverse transcription into the complementary strand if necessary. If
the extracted region is insuffi cient to accurately identify the main
gene structure components, the genomic region can be expanded
and resubmitted to Wise2. An additional advantage of combining
the BLAST and Wise2 tools is that the protein sequence, mRNA
sequence and the location of the exons are simultaneously available
and can be used to confi rm the accuracy of the predictions.

The combined strategy of using BLAST and Wise2 directly
identifi ed eight additional precursors that were not been previ-
ously predicted and provide valuable information for the manual
annotation of rhesus precursors. For example, the rhesus CCKN
precursor was identifi ed on chromosome 2 but lacked a match to
last 28 amino acids of the human CCKN sequence. Examination
the genomic sequence showed that a region of 91 unknown bases
occurred immediately after the last residue of the mRNA sequence
predicted using Wise2. This nucleotide segment most likely codes
the missing precursor sequence that corresponded to the last exon
of the human precursor gene and was missed in the assembly. The
search for the missing region among the rhesus trace archives (a
collection of raw sequence traces, http://www.ncbi.nlm.nih.gov/
projects/genome/guide/rhesus_macaque/), uncovered a hit to a
contig that contained the missing segment and resulted in the

prediction of a complete CCKN precursor. A different scenario
was encountered with the NPS precursor because the Wise2 predic-
tion missed the start of the NPS precursor. This failure was most
likely due to the structure of the human gene where the fi rst exon
only codes for two amino acids. Consequently, the corresponding
rhesus exon was identifi ed by a query using the complete human
NPS nucleotide and combined with the Wise2 prediction to obtain
the complete rhesus NPS precursor.

There were also 17 precursors that could not be recovered solely
based on the assembly alone without further examining the trace
archives for unassembled or incorrectly assembled contigs. For
example, the related crab-eating macaque (M. fascicularis) insulin
(INS) precursor has been reported (Wetekam et al., 1982) and, thus,
is expected to be found in the rhesus genome. Queries of the human
and M. fascicularis INS sequence on the M. mulatta genome did not
permit full recovery of the rhesus INS precursor due to gaps and
a stop codon in the genomic assembly. The results from a search
of the trace achives indicated that the inclusion of different contig
(ti|523766964) would most likely result in the identifi cation of the
complete rhesus INS precursor.

The individual precursors undergo a number of additional
processing steps before the fi nal bioactive peptides are created. Thus,
once the list of precursor protein sequences has been compiled,
expected prohormone structural features such as a signal peptide
and prohormone cleavage sites are identifi ed for each individual
precursor. The signal peptide was predicted using SignalP (Bendtsen
et al., 2004) and the length of the signal peptide was recorded with
the sequence. The rhesus precursors lack experimental cleavage

LISTING 1 | Parsing an BLAST XML fi le in Python.

247

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

Southey et al. Precursor and cleavage site annotation

information so cleavage sites must be assigned based on homology
to other animals or cleavage models. The reliability of the homol-
ogy-based prediction of cleavage relies on the degree of conserva-
tion of the precursor between species available.

Human data were expected to provide the most accurate assign-
ment of cleavage data due to the close evolutionary relationship
between the human and rhesus species. Python scripts were devel-
oped to assign precursor cleavage information based on homology
to human sequences. The human and rhesus sequences of each
precursor were fi rst aligned using T-Coffee. The locations of the
human cleavage sites were then found in the corresponding aligned
rhesus sequence. Finally the rhesus sequence and cleavage data
was obtained after removing any gaps that had been entered dur-
ing the sequence alignment. Assuming that the precursor cleav-
age assignment based on human information provides a perfect
characterization of precursor processing in the rhesus, then the
comparison of model-based cleavage predictions and confi rmed
or homology-based cleavage information will provide the number
of true and false positives (cleavage sites) and true and false nega-
tives (non-cleavage sites). These results can be used to construct
further indicators of cleavage model performance including cor-
rect classifi cation rate (ratio of true versus true and false results),
sensitivity (ratio of true positives versus all positives), specifi city
(ratio of true negatives versus all negatives), positive and negative
precision (Southey et al., 2006a).

CLEAVAGE PREDICTION USING MACHINE LEARNING
TECHNIQUES
Prediction of the cleavage sites within the precursor is essential
for identifi cation of the fi nal peptides produced by the prohor-
mones, including the neuropeptides. Previously we have shown
that machine learning techniques including logistic regression,
artifi cial neural networks and memory-based reasoning are suc-
cessful in predicting cleavage sites in neuropeptide precursors in
diverse sets of species (Amare et al., 2006; Hummon et al., 2003;
Southey et al., 2008; Tegge et al., 2008). An analytical pipeline to
predict cleavage using machine learning involves preparing and
processing the sequence and cleavage data, training and testing of
prediction models using machine learning techniques to identify
the most appropriate model, predict the possible peptides using
the most appropriate model and any PTMs present in the predicted
peptides.

Python can be used to process the sequence and cleavage data
into a generic fi le that can be used by a single application as well
by different applications following the steps outlined by Southey
et al. (2008). Generally these steps involve: (1) reading the sequence
and cleavage data, (2) removing the signal peptide, (3) splitting
the remaining sequence into overlapping windows, (4) assigning
cleavage status to the window and (5) recoding the amino acids
as binary indicators with respect to the actual location within the
window. The script in Listing 2 demonstrates how a single neu-
ropeptides sequence with length of signal peptide and cleavage site
is processed. First the signal peptide is removed and the resulting
sequence is padded to permit windows that may extend past the
ends of the sequence. The sequence is then split into overlapping
windows and windows with basic amino acids (Lys and Arg) are
kept. The amino acids within each window are then recoded with

dummy values and cleavage status is assigned. The resulting loca-
tion within the complete precursor sequence, the window of the
sequence, cleavage status of the window and coding of the amino
acids is then displayed.

The resulting generic fi le can be used as input to a stand-alone
machine learning package or tool (e.g. R http://www.r-project.
org), or by a tool directly implemented in Python (e.g. the SciKit
learn http://www.scipy.org/scipy/scikits/wiki/MachineLearning),
or automatically passed to a stand-alone tool using a Python inter-
face and language bindings. This latter strategy will be illustrated
using the Python bindings provided with the LibSVM package
(Chang and Lin, 2001) that implement training and cross-valida-
tion of support vector machines in Python. The general use of
LibSVM involves the input of data, selection of a support vector
machine and associated parameter, training of the support vector
machine given the data and parameters and evaluation of trained
support vector machine. Following Salzberg (1997), the optimal
parameters for the support vector machine were identifi ed using
cross- validation and a grid search across the parameters of the sup-
port vector machine. Preliminary results indicated that the default
support vector machine with a radial basis function provided the
same performance as other types and had the advantage of only
requiring two parameters. The LibSVM also provides k-fold cross-
validation where the training data was split into k components of
which k − 1 components was used to train a model and the last
component was used for testing. The cross-validation approach
was repeated such that all data components were used as testing
and the overall cleavage miss-classifi cation rate across complete
data is obtained.

A Python script was used process generic fi le previously obtained
from the human and rhesus sequence and cleavage data into human
and rhesus data sets in the format required by the LibSVM. Part of
the script (Listing 3) loops across the two parameters of a support
vector machine with a radial basis function (gamma and C) and
within the loop calls the LibSVM cross-validation routine with the
parameters of the support vector machine and supplied degree of
cross-validation. This script also trains the support vector machine
for the supplied parameters on the full training data set and com-
putes the accuracy of this support vector machine on the test and
training data sets. This script can be easily extended to evaluate
multiple support vector machine specifi cations including linear
and polynomial. In addition to the cross-validation, the script also
trained a support vector machine on the full test data set for the
supplied parameter values and tested the resulting support vector
machine on the full test data and the training data. For data sets
where the cross-validation and full data set support vector machine
analyses for each combination of parameters becomes prohibitive,
the script can be modifi ed such that the support vector machine
analysis of the full data set is only executed after the parameter
values that provide the lowest miss-classifi cation rate have been
identifi ed in a prior cross-validation step.

The parsing of the results from the Python script that trained
and tested the support vector machine models offered insights into
the similarities between the human and rhesus cleavage patterns.
The rhesus and human cleavage prediction models selected had
the highest 5-fold cross-validation accuracy and the fewest predic-
tion errors in the training data. The evaluation of the parameters

248

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

Southey et al. Precursor and cleavage site annotation

on the full data sets was also important because support vector
machines with similar cross-validation correct classifi cation rates
had lower performance on the full and test data sets. For example,
in the human support vector machine, the two highest scoring
human support vector machines had correct classifi cation rates
of 91.0% and 90.6% after cross-validation. However, the highest
scoring human support vector machine had correct classifi cation
rates of 99.9% and 99.6% in the human full data set and rhesus full
data set, respectively. Whereas the second scoring human support
vector machine had an approximately 3% lower correct classifi ca-
tion rate in human full data set, and rhesus full data set (97.3%
and 96.4%, respectively).

The performance of the support vector machine models was
compared to the mammalian logistic regression model (Amare
et al., 2006), the human logistic regression and human artifi cial
neural models (Tegge et al., 2008) and the empirical Known Motif
model Southey et al. (2006b). On the human data set, the human
support vector machine had the highest correct classifi cation
rate (99.9%), as expected, followed by the rhesus support vector
machine (97.9%), human artifi cial neural model (92.2%), human
logistic regression (90.2%), mammalian logistic regression (82.5%)

and fi nally the Known Motif model (76.6%). The rhesus support
vector machine provided perfect classifi cation on the rhesus data
set followed by the human support vector machine (99.6%), human
artifi cial neural model (91.3%), human logistic regression (89.6%),
mammalian logistic regression (82.4%) and fi nally the Known
Motif model (76.7%). Models trained on human data had better
prediction than general mammalian model or empirical known
motif model. This result was expected independently of evolution-
ary relationships because the human cleavage data was used to
assign cleavage in the rhesus.

The main reason for the different model performance was the
lower number of false positive predictions by the support vector
machines relative to the other methodologies. The rhesus support
vector machine had slightly lower number of false negative predic-
tions in the human data set than the human artifi cial neural net-
work. The differences between the different prediction approaches
are due to differences in the data sets used to train and test the
models and the ability of the methodologies to accommodate lin-
ear and non-linear relationships between the input variables and
cleavage patterns. Tegge et al. (2008) used 62 human precursors
to train artifi cial neural network and logistic regression models,

LISTING 2 | Python script to recode an amino acid sequence into generic format for machine learning applications.

249

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

Southey et al. Precursor and cleavage site annotation

LISTING 3 | Python script for training and testing a support vector machine.

Amare et al. (2006) used 39 mammalian precursors to train logistic
models and the human support vector machine model developed
in this study were trained on 93 human precursors. The artifi cial
neural network had perfect (100%) classifi cation on the human
data set reported in Tegge et al. (2008).The lower correct classifi -
cation rate result by including more human precursors indicating
that the human data set used by Tegge et al. (2008) likely does not
contain complete information on cleavage that was used in training
the support vector machines.

Across species, the impact of the precursor sequences used to
train and test in the model performance can be assessed by compar-
ing the performance of the same model across species. Comparison
of the data used to train the support vector machines showed that
all rhesus precursors had homologous in the human data set but
20 human precursors were not present on the rhesus data set. Of
the 37 sites that received different cleavage classifi cation by the
two support vector machines, only 10 sites corresponded to pre-
cursors that were present in both species data sets; meanwhile the
remaining sites were only present in the human precursor data
set. Among the sites with differential cleavage prediction between
species, four sites pertained to rhesus sequences that have differ-
ent amino acids than the human sequence and these amino acids

have a strong association with cleavage patterns. For example, the
INSL4 precursor in the rhesus includes a window with the amino
acid sequence ‘GCGPRFGKR↓MLSYCPMPE’ where ↓ denoted
the predicted cleavage site. However, this site was assigned a non-
cleavage observed value because the homologous human win-
dow, ‘GCGPRFGKHLLSYCPMPE’, has not reported to be cleaved.
Similarly, Southey et al. (2006b) reported a single amino acid dif-
ference between human and chimpanzee RFRP precursor that
resulted in a false positive prediction in the chimpanzee sequence.
These results demonstrate the value of bioinformatic prediction of
precursor cleavage, especially in species with limited experimental
confi rmation. One important use of across species predictions is
to eliminate false positive results from experimental consideration.
As another use, this same information can also identify potentially
 species-specifi c cleavage sites to explain peptides that are unex-
pected based on homology alone.

APPLICATION/TOOL TO ASSIST IN THE IDENTIFICATION OF
NEUROPEPTIDES
The prediction of cleavage sites in a protein sequence requires
that the sequence must be processed into a usable format, then
the prediction model is applied and fi nally the actual prediction

250

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

Southey et al. Precursor and cleavage site annotation

are returned. Each of these steps requires specialized knowledge
ranging from processing the sequence to technical knowledge
of applying the models derived from machine learning models.
Developing a web application is one approach to remove spe-
cialized knowledge because a web form can be provided where
the underlying script is responsible to convert the input into
required format, apply the prediction models and display result-
ing predictions.

We developed NeuroPred (http:// neuroproteomics.scs.uiuc.
edu/neuropred.html), a web application in Python, to supports
the detection and characterization of the neuropeptidome (Southey
et al., 2006a). The user requires only a sequence basic knowledge of
neuropepeptides and there is no requirement for specialized knowl-
edge of areas such as Python or machine learning. Using a simple
form, users can enter one or more protein sequences and then select
one or more prediction models and different options that control
the subsequent processing of the resulting peptides and output. A
user can select either simple options where most options have been
preselected for the user a more advanced options that provide all
possible models and control of the input and output. NeuroPred
validates all the inputs, predict cleavage sites for all sequences
entered and models selected. Under the default options, NeuroPred

will display a cleavage prediction diagram indicating the predicted
cleavage locations and optionally the probabilities of cleavage for
the sequences entered and model selected (Figure 1).

To assist in the experimental studies using mass spectrometry
(e.g., Hummon et al., 2005; Li and Sweedler, 2008), NeuroPred
also computes the predicted mass of peptides including most of
the known neuropeptide PTMs. The computation of the mass of
the predicted peptides that can be used in high throughput mass
spectrometry studies to assist in the identifi cation of peptides.
Depending on the options selected, NeuroPred will list the differ-
ent peptides possible, the source for cleavage for the peptide (such
as signal peptidase or prediction from one or more models), PTMs
applied to the resulting peptides, predicted mass and full peptide
sequence. NeuroPred also joins adjacent peptides to account for
false positive cleavages and the presence of intermediate peptides
that are eventually cleaved.

NeuroPred provides cleavage predictions using model devel-
oped from a vast range of species (including mollusk, insects and
mammals) used in neuroscience research. Generally it is expected
that the most appropriate model will be trained on the same or
closely related species. However, it is expected that there are situa-
tions where there is no obvious appropriate model or that there is

FIGURE 1 | Predicted cleavage sites of the rhesus cocaine- and amphetamine-regulated gene using different models in NeuroPred.

251

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

Southey et al. Precursor and cleavage site annotation

a requirement for a greater understanding cleavage prediction at
different sites. For these types of situations, NeuroPred can compute
different model accuracy statistics when cleavage information is
uploaded together with sequence. The resulting output enables
the comparison of the selected models for individual precursors
and for all precursors.

One valuable aspect of using Python was that much of the code
developed for the analytical pipeline was reused in NeuroPred
and can also be easily packaged into a stand-alone application.
For example, the processing of sequence information and appli-
cation of different cleavage prediction models requires the same
code across the different applications. This feature allows the
main coding to be focused on integrating components rather than
developing a completely new application. Furthermore, additional
or more effi cient Python code developed for a new application
can be reused by previous application. For example, the original
prediction equations from different models were implemented
using scalar computations. However, faster code was generated by
implementing the prediction equations as a series of vector-matrix
multiplications in Numerical Python. Improvements in compu-
tational speed were benefi cial for all applications and particularly
for NeuroPred because of the volume of requests handled by this
public web service.

The text processing capabilities in Python were important
to enable the integration of the NeuroPred application with the
visual appearance of the main web site. The main site provides
static information that does not change in response to the user.
In contrast, the output from NeuroPred is dynamic because the
output depends on user interaction. If the html coding recoding
is directly used within the script, the script must be changed when
the main web site changes. However, the string processing abil-
ity of Python permits Python scripts to easily search and replace
portions of text. In particular, the template of the main web site
or an existing web page in the required format can be directly
parsed by Python and the necessary portions replaced such that
the web application will provide the same visual appearance as
the main web site. Alternatively, Python web frameworks such as
Django (http://www.djangoproject.com/) can be used to develop
and maintain extensive web sites.

CONCLUSION
The Python language is well-suited to implement a bioinformat-
ics approach that encompasses a large number of interdependent
steps, from scanning genomes for precursor genes to identifi cation
of neuropeptides. We did not encounter any shortcomings with
Python that were specifi c to our application or that hampered our
efforts to obtain results. The series of steps encompassed in the
analytical pipeline implemented in Python refl ect the fl exibility
of this language to support diverse applications. The versatility of
Python across all steps, identifi cation of neuropeptide precursors
from genomic sequences, generation and training of cleavage pre-
diction models, and development of a web application to predict
cleavage sites, PTMs, and resulting peptides was illustrated.

The components of an neuropeptide analytical pipeline devel-
oped using Python supports the examination and annotation of
genomes, prediction of cleavage sites, and characterization of
resulting peptides, irrespectively of the extent of experimental
neuropeptide evidence. The successful application of the discov-
ery aspect of this pipeline led to the identifi cation of 78 rhesus
neuropeptide precursors, including 11 precursors that had not
been predicted during the automated annotation of the genome.
The training and evaluation of models to predict cleavage sites in
rhesus precursors resulted in models that had correct classifi ca-
tion rate of over 80% based on homologous cleavage assignments
from human precursors indicating successful application of the
cleavage prediction component of the pipeline. NeuroPred is a
direct application of the neuropeptide analytical pipeline to pro-
vide an all-inclusive Python web application that allows users to
predict precursor cleavage and subsequent PTMs of the resulting
peptides. This application supports targeted experimental search
for likely predicted peptides and greatly facilitates the laborious
search for neuropeptides in mass spectra from high throughput
proteomic studies.

The level of user input required to comprehensively identify
the precursor complement depends on the available resources
and on the divergence of the species under study with respect to
other species with known precursor information. In this study we
demonstrated how Python routines can aid with many tedious
components of genome-wide precursor identifi cation and cleavage
prediction such as the processes that must be repeated for each
precursor. Our routines help to address the challenges associated
with species divergence and in-progress sequencing and assembly
processes (e.g. coverage, accuracy) by facilitating the evaluation of
different specifi cations (e.g. databases, scoring matrices, E-value
thresholds) and of models from species with different level of
divergence.

Results from characterization of the rhesus neuropeptidome
using an analytical pipeline and implementation of the pipeline as
a public web application that serves the neuroscience community
demonstrate the suitability of the Python language for multiplexed
and high throughput bioinformatics applications. The object-
 orientated nature of the Python language enabled considerable
reuse of code at the different stages of development. A completely
integrated approach can also be achieved by combining the bioin-
formatics tools in BioPython and the numerical tools in Numerical
and Scientifi c Python.

ACKNOWLEDGEMENTS
The support of the National Institute on Drug Abuse Award P30
DA 018310 to the UIUC Neuroproteomics Center on Cell to Cell
Signaling is gratefully acknowledged.

SUPPLEMENTARY MATERIAL
Supplementary material can be found online at http://www.
frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/
007.2008/.

252

http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/007.2008/
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/007.2008/
http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/007.2008/

Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 |

Southey et al. Precursor and cleavage site annotation

REFERENCES
Altschul, S. F., Madden, T. L.,

Schäffer, A. A., Zhang, J., Zhang, Z.,
Miller, W., and Lipman, D. J. (1997).
Gapped BLAST and PSI-BLAST: a
new generation of protein database
search programs. Nucleic Acids Res.
25, 3389–3402.

Amare, A., Hummon, A. B., Southey, B. R.,
Zimmerman, T. A., Rodriguez-
Zas, S. L., and Sweedler, J. V. (2006).
Bridging neuropeptidomics and
genomics with bioinformatics:
 prediction of mammalian neu-
ropeptide prohormone processing.
J. Proteome Res. 5, 1162–1167.

Bassi, S. (2007). A primer on Python for
life science researchers. PLoS Comput.
Biol. 3, e199.

Bendtsen, J. D., Nielsen, H., von Heijne, G.,
and Brunak, S. (2004). Improved pre-
diction of signal peptides: SignalP 3.0.
J. Mol. Biol. 340, 783–795.

Birney, E., Clamp, M., and Durbin, R.
(2004). GeneWise and genomewise.
Genome Res. 14, 988–995.

Boutrel, B. (2008). A neuropeptide-centric
view of psychostimulant addiction. Br.
J. Pharmacol. 154, 343–357.

Chang, C., and Lin, C. (2001). LIBSVM:
a library for support vector machines.
Available at: http://www.csie.ntu.
edu/∼cjlin/libsvm.

Fricker, L. D. (2005). Neuropeptide-
processing enzymes: applications
for drug discovery. AAPS J. 7,
E449–E455.

Heinrichs, M., and Domes, G. (2008).
Neuropeptides and social behavior:

effects of oxytocin and vasopressin
in humans. Prog. Brain Res. 170,
337–350.

Hook, V. Y. (2006). Unique neuronal func-
tions of cathepsin L and cathepsin B
in secretory vesicles: biosynthesis of
peptides in neurotransmission and
neurodegenerative disease. Biol. Chem.
387, 1429–1439.

Hook,V., Funkelstein, L., Lu, D.,
Bark, S., Wegrzyn, J., and Hwang, S.
(2008). Proteases for processing
 proneuropeptides into peptide
 neurotransmitters and hormones.
Ann. Rev. Pharmac. Toxicol. 48,
393–423.

Hummon, A. B., Hummon, N. P.,
Corbin, R. W., Li, L. J., Vilim, F.
S., Weiss, K. R., and Sweedler, J.
V. (2003). From precursor to fi nal
peptides: a statistical sequence-based
approach to predicting prohor-
mone processing. J. Proteome Res.
2, 650–656.

Hummon, A. B., Richmond, T. A.,
Verleyen, P. , Baggerman, G. ,
Huybrechts, J., Ewing, M. A.,
Vierstraete, E., Rodriguez-Zas, S. L.,
Schoofs, L., Robinson, G. E., and
Sweedler, J. V. (2005). From the
genome to the proteome: uncovering
peptides in the Apis brain. Science 314,
647–649.

Kinser, J. (2008). Python for Bioinformatics.
Sudbury, Massachusetts: Jones and
Bartlett Publishers.

Li, L., and Sweedler, J. V. (2008). Peptides
in the brain: mass spectrometry-
based measurement approaches and

challenges. Annu. Rev. Anal. Chem. 1,
451–483.

Notredame, C., Higgins, D., and Heringa, J.
(2000). T-coffee: a novel method for
multiple sequence alignments. J. Mol.
Biol. 302, 205–217.

Oliphant, T. E. (2007). Python for scien-
tifi c computing. Comput. Sci. Eng. 9,
10–20.

Rhesus Macaque Genome Sequencing
and Analysis Consortium (2007).
Evolutionary and biomedical insights
from the rhesus macaque genome.
Science 316, 222–234.

Salzberg, S. L. (1997). On comparing clas-
sifi ers: pitfals to avoid and a recom-
mended approach. Data Min. Knowl.
Disc. 1, 317–328.

S o u t h e y, B . R . , A m a r e , A . ,
Zimmerman, T. A., Rodriguez-
Zas, S. L., and Sweedler, J. V. (2006a).
NeuroPred: a tool to predict cleav-
age sites in neuropeptide precursors
and provide the masses of the result-
ing peptides. Nucleic Acids Res. 34,
W267–W272.

Southey, B. R., Rodriguez-Zas, S. L., and
Sweedler, J. V. (2006b) Prediction of
neuropeptide prohormone cleavages
with application to RFamides. Peptides
27, 1087–1098.

Southey, B. R., Sweedler, J. V., and
Rodriguez-Zas, S. L. (2008).
Prediction of neuropeptide cleavage
sites in insects. Bioinformatics 24,
815–824.

Tegge, A. N., Southey, B. R., Sweedler, J. V.,
and Rodriguez-Zas, S. L. (2008).
Comparative analysis of neuropeptide

cleavage sites in human, mouse, rat,
and cattle. Mamm. Genome 19,
106–120.

The UniProt Consortium (2008). The
universal protein resource (UniProt).
Nucleic Acids Res. 36, D190–D195.

We te k a m , W. , Groneberg , J . ,
Leineweber, M., Wengenmayer, F.,
and Winnaker, E. -L. (1982). The
nucleotide sequence of cDNA cod-
ing for preproinsulin from the pri-
mate Macaca fascicularis. Gene 19,
179–183.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 04 September 2008; paper
pending published: 26 September 2008;
accepted: 11 November 2008; published:
16 December 2008
Citation: Southey BR, Sweedler JV and
Rodriguez-Zas SL (2008) A Python ana-
lytical pipeline to identify prohormone pre-
cursors and predict prohormone cleavage
sites. Front. Neuroinform. (2008) 2:7. doi:
10.3389/neuro.11.007.2008
Copyright: © 2008 Southey, Sweedler and
Rodriguez-Zas. This is an open-access
article subject to an exclusive license agree-
ment between the authors and the Frontiers
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original
authors and source are credited.

253

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 18 November 2008
doi: 10.3389/neuro.11.005.2008

Brian: a simulator for spiking neural networks in Python

Dan Goodman* and Romain Brette

Département d’Informatique, École Normale Supérieure, Paris, France

“Brian” is a new simulator for spiking neural networks, written in Python (http://brian.
di.ens.fr). It is an intuitive and highly fl exible tool for rapidly developing new models,
especially networks of single-compartment neurons. In addition to using standard types of
neuron models, users can defi ne models by writing arbitrary differential equations in ordinary
mathematical notation. Python scientifi c libraries can also be used for defi ning models and
analysing data. Vectorisation techniques allow effi cient simulations despite the overheads of
an interpreted language. Brian will be especially valuable for working on non-standard neuron
models not easily covered by existing software, and as an alternative to using Matlab or C
for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching
computational neuroscience.

Keywords: Python, spiking neurons, simulation, integrate and fire, teaching, neural networks, computational

neuroscience, software

shows a more complicated example, illustrating many of the fea-
tures of Brian.

BACKGROUND
One of the diffi culties with current software for neural network simu-
lation is the necessity to learn and use custom scripting languages
for each tool: for example Neuron’s Hoc and NMODL (Carnevale
and Hines, 2006), NEST’s SLI (Gewaltig and Diesmann, 2007), and
Genesis’ SLI (Bower and Beeman, 1998), the last two being different
languages with the same name. This increases the learning curve and
is less fl exible than using an established language with strong support
and development tools such as integrated development environments
(IDEs), debuggers and profi lers. Data analysis is either limited to
those functions provided by the tool, or has to be carried out in
another application such as Matlab, which can slow down the process
of prototyping and refi ning models. Writing extensions to these tools
can be rather diffi cult or somewhat infl exible, depending on whether
extensions are written in the same language as the simulator itself.

To address this problem, there are projects in various stages of
completion to provide Python interfaces for each of the tools men-
tioned above (see other chapters in this special issue). Because it is
both easy and powerful, Python is rapidly becoming a standard tool
in the fi eld and in scientifi c computing more generally. In addition,
the PyNN project is working to provide a unifi ed Python interface
to each simulator. These projects have considerable benefi ts. Users
will only need to learn a single programming language rather than
one or more for each tool, and that language is easy to learn, highly
developed, very powerful, and has a large user base which provides
excellent support and tools. A great deal of time can be saved work-
ing in just one environment, rather than having to switch back
and forth between different applications and GUIs for developing
models, running simulations and analysing data.

Brian complements these projects and has some additional benefi ts
unique to it. Firstly, equations – differential equations in particular
– can be defi ned at the highest level using standard mathematical nota-
tion (see Figures 1 and 2). Brian does not restrict you to using standard
models of neurons and synapses (although many are provided in the

INTRODUCTION
A reasonable question to ask is whether there is any need for another
neural network simulator. There are now several mature simulators,
which can simulate sophisticated neuron models and take advan-
tage of distributed architectures with effi cient algorithms (Brette
et al., 2007). Yet, many researchers in the fi eld still prefer to use their
own Matlab or C code for their everyday modelling work. It might
be that currently available simulators do not fulfi ll the expectations
of those users. Generally, what we expect from simulation software
is that it should be able to run our specifi c model (fl exibility) in a
reasonable amount of time (effi ciency). However effi ciency is not
only about the speed of simulations. The time it takes the user to
implement the model is at least as important in many situations.
For example, if it takes only 1 s to simulate a model with a given
tool but 30 min to write the simulation script, one might prefer
to use a tool which simulates the model in 10 s but for which the
script can be written in 3 min. For those modelling situations, we
only want the simulation software to be “reasonably fast”.

Brian is a new project (http://brian.di.ens.fr) to create
a clock driven spiking neural network simulator with the goals of
being easy to learn and use, highly fl exible, and “reasonably fast”. It
is ideally suited to rapid prototyping and refi nement of networks of
single compartment model neurons. Brian is written entirely in the
Python programming language and will run on any platform that
supports Python (i.e. almost all platforms). Users with a C compiler
on their system can take advantage of a slight speed increase by
opting to use certain core routines written in optimised C code,
but these are strictly optional. Everything works the same without
them. The way Brian works is that it is a Python package providing
functions, classes and objects. It can be used either interactively
using a Python shell, or as part of a Python program (module).
Figure 1 shows a very simple Brian script. This script defi nes a ran-
domly connected network of 4000 leaky integrate-and-fi re neurons
with exponential synaptic currents. This is Brian’s implementation
of the current-based (CUBA) model network used as one of the
benchmarks in Brette et al. (2007). The simulation takes 3–4 s on
a typical PC, for 1 s of biological time (with dt = 0.1 ms). Figure 2

Edited by:

Rolf Kötter, Radboud University
Nijmegen, Netherlands Antilles

Reviewed by:

Robert C. Cannon, Textensor Limited, UK
Markus Diesmann, RIKEN Brain
Science Institute, Japan

*Correspondence:

Dan Goodman, Equipe Audition,
Département d’Etudes Cognitives,
Ecole Normale Supérieure, 29 rue
d’Ulm, 75230 Paris Cedex 05, France.
e-mail: dan.goodman@ens.fr

254

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

library), and neuron models based on new differential equations can
be used without writing or compiling any code. Secondly, as Brian
is written entirely in Python itself, it has all the advantages of the
projects above and some additional ones. Integration with Python
is tighter because the implementation is not in a separate language
to the interface. This means that Brian can be used more fl exibly, for
example to write code which reads and modifi es the variables of the
simulation as it runs. Additionally, extensions to Brian are easy to
write because everything is written in the same language.

TEACHING
Brian was originally designed for research, but it would also make
an ideal tool for teaching purposes. First of all, the Python language
is extremely quick and easy to learn and the syntax allows code to be
written very compactly, saving time and making it easier to present
examples. Secondly, since Brian is written in pure Python, it works
on almost every platform, so there are less compatibility issues
for students with different hardware or operating systems. Finally,
using Brian itself is very easy, and the core concepts and syntax of
Brian code correspond very straightforwardly to neuroscientifi c
concepts (see Figure 1). Equations are specifi ed using a familiar
mathematical syntax, for example eqs='dV/dt=-V/tau:volt',
where the only unfamiliar part of the syntax is the :volt term,
which specifi es that V has units of volts. Figure 1 shows that defi ning
thresholds and resets is typically just a single keyword term such as

threshold=−70*mV or reset=−55*mV, and creating groups of
neurons is as simple as writing G=NeuronGroup(N,model).

FEATURES
Brian is a clock driven simulator, that is, all events take place on a
fi xed time grid t = 0, dt, 2dt, 3dt,…. Neuron models are normally
defi ned by differential equations which can be arbitrary linear,
nonlinear or stochastic, specifi ed either by directly writing the
equations in a string, by using standard equations such as leaky
integrate-and-fi re, or by building more complicated sets of equa-
tions using standard components such as K+ and Na+ currents. Both
integrate-and-fi re and Hodgkin–Huxley type models can be used.
Multiple compartment models are possible, but at the moment
they are neither particularly convenient nor effi cient for more than
a few compartments. For linear differential equations, Brian uses
exact updates. For nonlinear differential equations, Euler (explicit)
and exponential Euler (semi-implicit) methods are available (and
more are planned).

Network connectivity can be built either directly by specifying
connectivity per pair of neurons (i, j), or more effi ciently with all-
to-all or random connectivity, where the synaptic weights can be
either single values or specifi ed by a weight function f(i, j). Synaptic
connections can include delays.

Network activity can be controlled in various ways. For spik-
ing behaviour there are various standard models such as Poisson

from brian import *
eqs =
dV/dt = (ge+gi-(V+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt

P = NeuronGroup(4000, model=eqs,
threshold=-50*mV, reset=-60*mV)

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, ge)
Ci = Connection(Pi, P, gi)
Ce.connect_random(Pe, P, p=0.02,

weight=1.62*mV)
Ci.connect_random(Pi, P, p=0.02,

weight=-9*mV)
M = SpikeMonitor(P)
P.V = -60*mV+10*mV*rand(len(P))
run(.5*second)
raster_plot(M)
show()

τm
dV

dt
= −(V − EL) + ge + gi

τe
dge

dt
= −ge

τi
dgi

dt
= −gi

FIGURE 1 | The CUBA network in Brian, with code on the left, neuron

model equations at the top right and output raster plot at the bottom

right. This script defi nes a randomly connected network of 4000 leaky integrate-
and-fi re neurons with exponential synaptic currents, partitioned into a group of
3200 excitatory neurons and 800 inhibitory neurons. The subgroup() method
keeps track of which neurons have been allocated to subgroups and allocates
the next available neurons. The process starts from neuron 0, so Pe has neurons
0 through 3199 and Pi has neurons 3200 through 3999. The script outputs a

raster plot showing the spiking activity of the network for a few hundred ms.
This is Brian’s implementation of the current-based (CUBA) network model used
as one of the benchmarks in Brette et al. (2007), based on the network studied
in Vogels and Abbott (2005). The simulation takes 3–4 s on a typical PC (1.8 GHz
Pentium), for 1 s of biological time (with dt = 0.1 ms). The variables ge and gi are
not conductances, we follow the variable names used in Brette et al. (2007). The
code :volt in the equations means that the unit of the variable being defi ned
(V, ge and gi) has units of volts.

255

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

spiking neurons, and more direct control mechanisms can be used
to specify spike times for a neuron with a list or Python function.
While the simulation is running, all the variables of the simulator
are directly accessible and this can be used for controlling almost
any aspect of the simulation. The emphasis is on fl exibility, and
most aspects of the way Brian works can be overridden.

Basic support for short term plasticity and spike timing depend-
ent plasticity is included. This will be standardised and made easier
to use in later releases.

Brian also has a system for specifying quantities with physical
dimensions, which makes things easier because variables can be
entered without having to look up the scale defi ned for that variable

CBA

FED

from brian import *
w = .5*mV
def adaptive_threshold_reset(P, spikes):

P.V[spikes] = 0*mV
P.Vt[spikes] = clip(P.Vt[spikes]+2*mV, 10*mV, 15*mV)

eqs = dV/dt = (5*mV-V)/(10*ms) + 4*mV*xi/(10*ms)**.5 : volt
tlov:)sm*03(/)tV-Vm*01(=td/tVd

group=NeuronGroup(100, model=eqs,
threshold=lambda V,Vt:V>=Vt,
reset=adaptive_threshold_reset)

C = Connection(group, group, V , delay=2*ms)
S = SpikeMonitor(group)
C.connect_full(group, group, weight=lambda i,j:w*cos(2.*pi*(i-j)*1./100))
group.V = rand(100)*5*mV+5*mV
group.Vt = 10*mV
run(2.5*second)
raster_plot(S)
show()

FIGURE 2 | An example showing many of the features of Brian in action. The
neuron model in this code follows a stochastic differential equation
d d () ()V T V E tl/ = − − / /τ σξ τ+ , dVt /dt = −(Vt − Vt0)/τt. Here all the undefi ned
symbols are constants except for ξ(t) which corresponds to the term xi in the
code, and represents a white noise term ξ ξ δ() () ()t t t t′ = − ′(). The rest of the
neuron model is defi ned by a custom reset function adaptive_threshold_
reset which increases the value of Vt by a constant each time a neuron spikes
(but never takes it above a fi xed ceiling), and a custom threshold function lambda
V,Vt:V>=Vt which defi nes the condition for a spike. The arguments to the
custom reset function are a NeuronGroup object P (a population of neurons),

and an array spikes containing the indices of the neurons in P that have spiked.
Together these two custom functions defi ne an adaptive threshold model. The
option to specify custom functions makes Brian’s reset and threshold mechanism
very fl exible. The code also shows synaptic delays, and setting the synaptic
weights with a custom function of (i, j), w*cos(2.*pi*(i-j)*1./100)). The
output of the code shown is the raster plot in (B), with the value w=.5*mV.
(A) shows w=.1*mV and (C) shows w=.65*mV. (D) shows the synaptic weight
matrix for the w=.65*mV case. (E) and (F) show the values of V (solid blue) and
Vt (dashed green) for the neuron with index 50 for the raster plots immediately
above them ((B) and (C)) with w=.5*mV and w=.65*mV respectively.

256

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

by the simulator package, and is useful because it helps to catch
hard to debug problems stemming from parameters or equations
having inconsistent units (see Physical Units).

Finally, Brian is fairly effi cient. Although Python is an inter-
preted language, it can still achieve speeds comparable to that of
code written directly in C, and typically better than code written
in Matlab. See the section “Simulation Speed” for a discussion of
performance issues.

HOW IT WORKS
Brian is designed to be easy to use, fl exible and reasonably fast. To
achieve the fi rst goal, Brian uses features of the Python program-
ming language, in particular its extremely dynamic typing which
allows code to be much simpler and more expressive. Flexibility in
Brian stems from using a single high-level language for user code
and the library itself, and from making differential equations a
fundamental high-level data structure (see Background). For the
third goal, Brian uses the strategy of vectorised code.

Brian makes considerable use of Python’s dynamic typing to
make writing models easier, and to make the syntax concise and
readable. So for example, in specifying a neuron model a thresh-
olding procedure is required for producing spikes. This can be
done by specifying a single number, a function, or a threshold
object. In the fi rst case, with the threshold specifi ed by a single
number V

t
 say, Brian infers the thresholding condition V ≥ V

t
. In

the second case, Brian examines the function provided. Consider
a neuron model with variables V and Vt, and the threshold speci-
fi ed as the function lambda V, Vt: V>=Vt (which is the Python
expression for a function of two variables V and Vt which returns
the value V>=Vt). In this case Brian examines the names of the
arguments to the function and passes the appropriate values so
that the code behaves as expected. This would be one way of
providing a variable threshold condition (because Vt is a variable
of the neuron model, and could evolve according to a differential
equation or function of other variables for example). Another way
is to provide a threshold object, either one of the standard types
in the library, or a user-defi ned one by writing a class that derives
from the Threshold class. The variable threshold condition above
corresponds to the standard object VariableThreshold('Vt')
for example.

Vectorising code is the strategy, familiar to users of Matlab, to
minimise the amount of time spent in interpreted code compared
to highly optimised array functions. This typically means trying to
minimise the number of for loops in code, and using data struc-
tures and algorithms that make this easier. Brian uses the NumPy
package (see below) which has an array data type that makes, for
example, the expression V [spikes]=Vr equivalent to but much
faster than for i in spikes: V[i]=Vr. In Matlab this would be V
(spikes)=Vr, and in many cases the NumPy syntax is very similar
to the Matlab syntax making the transition between the two very
easy. The issue of Brian’s speed and effi ciency is covered in more
detail in the section “Simulation Speed”.

Brian uses the following standard Python packages: Numerical
Python, which is designed for providing effi cient array data struc-
tures and operations (NumPy, http://www.scipy.org/NumPy,
Scientifi c Python, which extends NumPy to include more general
algorithms for scientifi c work (SciPy, http://www.scipy.org),

and PyLab/Matplotlib for plotting (http://matplotlib.
sourceforge. net/).

WORKED EXAMPLE
Figure 3 shows a slightly simplifi ed version of the code in Figure 1
with diagrams showing schematically the meaning or function of
each group of lines of code. Panels A through F illustrate lines
of code, and Panel F, which corresponds to actually running the
simulation, is composed of four sub-panels a through d which
illustrate the four steps involved in each timestep dt of the simula-
tion. We proceed to explain how this example works with reference
to the fi gure.

A Firstly, the differential equations for the model are defi ned.
This is illustrated in Panel A which shows the code which
defi nes the equations and the equations in a more standard
mathematical form. These equations will be used to defi ne
an integrate-and-fi re neuron with exponential inhibitory and
excitatory synapses with different time constants. The diffe-
rential equation for V defi nes a leaky integrator with currents
g

e
 and g

i
. The variable g

e
 is used for excitatory currents. When

an excitatory spike arrives, the value of g
e
 is increased instan-

taneously by a fi xed amount. The inhibitory variable g
i
 works

similarly. Technically then, the full mathematical differential
equations for the model would be:

τ

τ τ δ

d

d

d

d

V

t
V V g g

g

t
g W t t

j
j

r e
j

i
j

e
e
j

e
j

e e
kj

l
k

k

N

l

= − − + +

= − + −()
=

∑∑

()

1

ττ τ δi
i
j

i
j

i i
kj

l
k

k

N

l

g

t
g W t t

d

d
= − + −()

=
∑∑

1

 where the superscripts indicate neuron indices, W kj
* are the

excitatory and inhibitory weight matrices, N = 4000 is the
number of neurons, and t l

k is the time of the lth spike fi red
by neuron k. The spike propagation behaviour is defi ned in
Panels C and D, see the description below.

B Having defi ned the differential equations, a group P of
4000 neurons is created with these equations, a threshold
mechanism set to fi re spikes if V ≥ V

t
 = −50 mV, and a reset

V ← V
r
 = − 60 mV. The diagram in Panel B shows Brian’s

internal data structure for this group. It is a two-dimensional
array or matrix S. At a given time the ith column of S holds the
state variables for the ith neuron. Each row of the matrix is a
vector of length 4000 of the values of a particular variable for
all the neurons in the group.

C The next step is to create the network structure. We create two
subgroups Pe and Pi of 3200 and 800 neurons respectively.
The subgroup() method of the NeuronGroup object keeps
track of which neurons have been allocated to subgroups and
when called allocates the next available neurons. The process
starts from neuron 0, so Pe has neurons 0 through 3199 and
Pi has neurons 3200 through 3999. These two subgroups will
be the excitatory and inhibitory neurons. In the diagram in
Panel C, we have separated the columns of the state matrix S
corresponding to each neuron. The excitatory and inhibitory

257

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

from brian import *

eqs = '''
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
'''

P = NeuronGroup(4000 , model=eqs,
threshold=-50*mV, reset=-60*mV)

Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, 'ge')
Ci = Connection(Pi, P, 'gi')

Ce.connect_random(Pe, P, 0.02

1.62 *mV)

Ci.connect_random(Pi, P, 0.02

9*mV)

P.V = -60*mV+ 10*mV*rand(len (P))

run(1*second)

Pe Pi

P

Ci
Ce

A

B

C

D

E

F

0 1 2 3 4 5 6 7

spikes = [2, 5, 6]

b. Thresholda. State update

c. Propagate d. Reset

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

exc.

inh.

+

=

FIGURE 3 | The code from Figure 1 expanded to show how Brian works

internally. In (A), the equations for the model are defi ned. In (B), a group of
4000 neurons is created with these equations. In (C), the logical structure of
the network is defi ned, partitioning the 4000 neurons into excitatory and
inhibitory subgroups with corresponding connections to the whole group.
In (D), the weight matrices for the excitatory and inhibitory connections

are defi ned. In (E), the membrane potential is initialised uniformly randomly
between reset and threshold values. In (F), the simulation is running,
consisting of repeated applications of four operations each time step;
(a) shows the update of the state matrix; (b) shows the thresholding
operation; (c) shows the propagation of spikes; and (d) shows the reset
operation.

258

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

subgroups are boxed and labelled Pe and Pi respectively. Next,
excitatory and inhibitory connections Ce and Ci are created.
The declaration of Ce specifi es that the group Pe (the exci-
tatory subgroup) should be connected to the variable g

e
 (the

excitatory current) of the group P (the whole group), and
similarly for Ci. This means that when a neuron in Pe fi res a
spike, the variable g

e
 will be increased for those neurons in P

which the neuron in Pe synapses onto.
D Having defi ned the logical network structure, we create the

weight matrix itself. Each pair of neurons (i, j) are connected
independently at random with probability 0.02. The excitatory
synapses have weight 1.62 mV and the inhibitory ones have
weight −9 mV (negative to make it inhibitory, and larger than
the excitatory synapses as there are less inhibitory neurons).
For effi ciency, the random connectivity function constructs
the sparse matrix row by row. For each row it generates a
binomial random number k from B(N, p) which is the num-
ber of synapses in that row, and then randomly allocates those
k synapses amongst the N possible target neurons, assigning
them with equal fi xed weight values. This process is illustrated
in the diagram in Panel D.

E Now we prepare to actually run the simulation. The fi rst step
is to initialise the variables. At the start, all variables have the
value zero. In Panel E, on the left hand side of the diagram, this
is indicated by the V row being white (as 0 is much bigger than
the threshold value which is negative), and the g

e
 and g

i
 rows

being almost black. We leave the values of g
e
 and g

i
 as 0, and set

V to be uniformly distributed between the reset and threshold
values. The notation P.V refers to the fi rst row, the V row, of
the state matrix S.

F Finally, we run the simulation. Panel F shows the four ope-
rations executed each time step dt of the simulation: state
update, threshold, spike propagation, and reset. In the state
update phase (sub-panel a), the state matrix S is updated from
t → t + dt, which as the differential equations are linear is just
multiplication of S by a fi xed matrix and addition of a fi xed
vector to each column of S. In the thresholding stage (sub-
panel b), each value of V is simply compared to V

t
 and a list

spikes of the indices of each of the neurons satisfying the
condition is returned. In the propagation phase (sub-panel c),
which is carried out separately for the excitatory and inhibi-
tory connections, for each index i ∈ spikes the ith row of
W

*
, W [i,:], is added to the row vector corresponding to the

variable g
*
. Finally, in the reset phase (sub-panel d), for each

index i in spikes, V is reset to V
r
.

This worked example shows the general anatomy of a Brian
script: import the Brian package and defi ne neuron models
(Panel A); create groups of neurons (Panel B); create synaptic con-
nections (Panels C and D); create monitors and other operations for
recording data and controlling variables as a simulation runs (not
shown in fi gure); initialise variables (Panel E); run the simulation
(Panel F); and fi nally analyse and plot the data using any Python
package (not shown in fi gure). Creating monitors and plotting out-
put is not shown in Figure 3 but can be seen in Figure 1. The lines
M=SpikeMonitor(P) and raster_plot(M) record and plot the
spikes produced by the neurons in P. The raster_plot function

is part of Brian, but there are many Python packages which can be
used for analysing and plotting data, including the ones used by
Brian itself, NumPy, SciPy and Pylab/Matplotlib.

PHYSICAL UNITS
Brian also features a system for specifying physical quanti-
ties with units. This is an independent package originally writ-
ten for Brian but now available as a standalone package called
Piquant (http://piquant.sourceforge.net/). It builds on
the NumPy and SciPy packages, adding support for physical quan-
tities. This has various benefi ts. It makes it possible to write code
which syntactically and semantically expresses both the physical
dimensions and scale of numbers. So for example, something like
conductance=36*mS rather than conductance=36. In the latter
case, the code alone does not express the value without knowing
the standard scale for the software, and this often leads to errors
which can be very hard to debug. In addition, because units retain
their physical dimensions as well as their scale, accidentally writing
something using the wrong units will cause an error (for example
in Brian, differential equation with inhomogeneous units will raise
an error).

A quantity with physical units is a standard fl oat value with an
additional array of the indices of the seven fundamental SI units
distance, mass, time, etc. The fl oat value expresses the quantity
at the standard SI scale, so that for example the fl oat value of 1
*mV is 0.001. Operating on quantities with physical units is clearly
more computationally demanding than operating on quantities
without. To ameliorate this problem, Brian does two things. First
of all, internal calculations done by Brian during a simulation only
use the underlying fl oat values, so that only initialisation code and
custom functions use the units system. Secondly, Brian includes
an option for switching the units system off globally. This only
requires the addition of a single line of code to the top of a Brian
program, and simply converts all the objects with units to their
underlying fl oat values. So for example with units turned off the
symbol mS becomes the fl oat value 0.001. The recommended usage
is to leave the units system on when developing a model or when
adding new code, and turning it off for longer and larger runs once
the code is stable.

TECHNICAL DETAILS
The user specifi es a model by providing the mathematical equa-
tions which defi ne it. This can either be done directly by writing
out the differential equations in full, or by building a set of equa-
tions using objects from the library (for things like ion channels or
synapses). The former is useful in situations where there are not too
many equations and where they are constantly being changed in the
process of developing the model. The latter is useful in situations
where the model is built from standard components and produces
an unwieldy number of equations.

Given a fi nal set of equations, Brian produces a StateUpdater
object. In general, this is an object that updates the state variables
of a group of neurons in any way. For differential equations, it per-
forms the integration step updating the state variables from times
t to t + dt. Brian automatically inspects the equations to choose the
most appropriate type of StateUpdater. For linear differential
equations for example, updates are exact. More precisely, if the

259

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

 equations are X M X B= −() then the exact solution for the update
step is X(t + dt) = eMdt(X(t) − B) + B, where eMdt is a constant matrix
and B is a constant vector evaluated (numerically) at initialisation
time (see Morrison et al., 2007 for a closed form method). Nonlinear
equations are integrated by default with Euler updates, and the
exponential Euler method (a semi-implicit method, MacGregor,
1987) is also implemented for Hodgkin–Huxley models. The
 second-order Runge-Kutta method is also implemented. Stochastic
differential equations are integrated with Euler updates (i.e., adding
normally distributed random numbers every time step). Nonlinear
equations given as text are compiled to Python functions at initiali-
sation time, then used directly during the update phase with vector
arguments [for example, x ← x + f(x)dt for a single state variable x
and equation dx/dt = f(x)].

A NeuronGroup object is created by specifying the number
of neurons in the group and a model. A model requires a set of
differential equations or a StateUpdater object, and can have
optional thresholding and reset mechanisms. A Connection object
is a mechanism for propagating spikes from one NeuronGroup to
another. It is specifi ed by an input group, an output group (which
can be the same) and a target state variable. When a neuron in the
input group fi res a spike, the target state variable is increased for all
the neurons in the output group to which that neuron is connected.
This mechanism is very general and allows for all the standard
types of synapses. Once a Connection object has been created,
the actual connectivity of neurons can be specifi ed in various ways.
The main four ways are full connectivity, random connectivity,
functionally specifi ed connectivity (e.g. for spatial distributions)
or by providing a connectivity matrix directly. The Connection
methods connect_random and connect_full, for random and
full connectivity respectively, take as their fi rst two arguments the
source and target neuron groups. This seems redundant because
the Connection object knows the source and target groups, but
the weight matrix can be constructed in blocks and the fi rst two
arguments to these methods can be subgroups of the groups speci-
fi ed in defi ning the Connection. In the present version, homo-
geneous synaptic delays can also be specifi ed. Each neuron group
stores a circular list of the last spikes over the required delay, each
element of that list being an array of the indexes of neurons that
spiked during one timestep. Spikes are then delivered in the same
way as explained in the section “Worked Example” (Panel F).

SIMULATION SPEED
Python is an interpreted language, and although it is very fast there
is an overhead for every Python operation. Brian can achieve very
good performances by using the technique of vectorisation, similar
to the same technique familiar to Matlab users. The idea is to replace
loops by operations on large vectors, so that the interpretation
overhead becomes negligible. Brian uses vectorisation for both the
simulation and the construction of the model (e.g., initialisation
of synaptic weights).

For example, for a single neuron i with state vector x
i
, the update

step from x
i
(t) to x

i
(t + dt) might be x

i
(t + dt) = Mx

i
(t) + b for a

matrix M and vector b. This operation is the same for every i so
rather than looping through all the neurons carrying out the same
operation, we write a state matrix S whose columns are the state
vectors of each neuron. Now the loop carrying out the operation for

each neuron i can be written in one operation, S(t + dt) = MS(t) + B
(where B is a matrix with every column equal to b). The number of
mathematical operations is the same, but the interpretation over-
head is reduced from N interpretation operations for N neurons
to 1 interpretation operation. Brian uses the NumPy package for
these vectorised operations. NumPy is written in optimised C code,
and for linear algebraic operations uses the Basic Linear Algebra
Subprograms (BLAS) application programming interface (API).
This means that NumPy can be combined with an implementa-
tion of the BLAS API that is optimised for the specifi c details of
the processor it is running on. For large networks, the time spent
on mathematical operations is much larger than the time spent on
interpretation operations and so Brian is very effi cient. For smaller
networks, the interpretation overhead is much larger in proportion
but in many situations it is not critical because the simulation time
is shorter too. The least favourable scenario for Brian is the simula-
tion of a small network for a long biological time.

PERFORMANCE OF VECTORISED SIMULATIONS
In this section, we outline an analysis of Brian’s performance. A
formula for the simulation time of a network with a clock-driven
algorithm is given in Brette et al. (2007):

Update Propagation+

× + × × ×c
N

t
c F N pU Pd

where c
U
 is the cost of one update and c

P
 is the cost of one spike

propagation, N is the number of neurons, p is the number of syn-
apses per neuron, F is the average fi ring rate and dt is the time
step (the cost is for 1 s of biological time). If the simulation is fully
vectorised, then interpretation can be included in this formula as
a constant overhead c

I
 per time step:

Update Propagation Interpretation+ +

× + × × × +c
N

t
c F N p

c

tU P
I

d d

and the interpretation overhead becomes negligible when the net-
work is large. In more detail, the update constant c

I
 grows with the

complexity of the model (in particular the number of variables)
and the interpretation constant c

I
 grows with the number of objects

created, such as groups of neurons. Therefore, the strategy for run-
ning effi cient simulations with Brian is to collect all neurons sharing
the same differential equations in the same group. It is still possible
to have heterogeneous groups in this way, for example the follow-
ing code defi nes a group of 100 integrate-and-fi re neurons with
membrane time constants between 5 and 30 ms:

eqs='''
dv/dt=-v/tau : volt
tau : second
'''
G=NeuronGroup(100,model=eqs,threshold=15*mV,
reset=0*mV) G.tau=linspace(5*ms,30*ms,100)

Here tau becomes a state variable instead of a parameter. The
same method can be used to obtain the results of a simulation for
different parameter values. Note that with this change the differential

260

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

equation becomes nonlinear with respect to the two variables; equa-
tions are then integrated with an approximation scheme (Euler by
default). A mechanism for declaring state variables to be constant so
that the above equation would be considered linear and integrated
with exact matrix updates (one matrix for each parameter value)
is in preparation for a future release of Brian.

In many cases, the initialisation can also be vectorised. For exam-
ple, the following instruction connects all pairs of neurons of a
group with a distance-dependent weight (the topology is a ring):

C.connect_full(group,group,weight=lambda i,j:
cos((2.*pi/N)*(i-j)))

The program builds the weight matrix row by row by calling the
weight function with arguments (i, j) where i is the row number
and j is the vector (0, 1,…, N − 1). Thus, the matrix is constructed
with N vector-based operations, in a way that is transparent to the
user. This is made possible by the fact that Python is a dynamically
typed language (functions do not need to specify the type of their
arguments in their defi nition).

COMPARISON WITH C AND MATLAB
In this section, we compare the empirical performance of Brian
with that of C and Matlab. We compare absolute performance and,
since it was always the fastest, times relative to C. The C code was
always compiled with the heaviest optimisations possible, the -O3
switch with the gcc compiler. Brian was always run with the
optional compilation switch on, and unit checking turned off.
This means that certain key routines (the thresholding operation
and the spike propagation phase) were written in C to avoid the
Python overheads. These key operations are very generic, and so
having them written in C rather than pure Python does not affect
the fl exibility of Brian as a whole. Note that this compilation switch
is optional, and on a system without a C compiler installed Brian
will use alternative versions of these core routines which are slightly
slower but still very usable. Typically, running Brian with pure
Python only takes about 25–50% longer than with the C routines.
In the following benchmarks, times were computed by running each
set of parameters 10 times and taking only the 7 best times, which

helps to remove outliers where performance is degraded due to
the operation of an unrelated process running on the system. The
comparisons shown were obtained using a 2.33 GHz Intel Xeon
processor with 2 GB RAM running on Windows XP. The version of
NumPy used was 1.1.1 with the default BLAS linear algebra package.
Using a custom build of NumPy with a BLAS package tuned for the
particular CPU architecture would give better performance. The
source code for the comparisons is available on request.

The fi rst benchmark we consider is a modifi ed version of the
CUBA network presented above in Figures 1 and 3. This is a net-
work of linear differential equations, and Brian does exact updates
for the state matrix for t �→ t + dt which amounts to a matrix mul-
tiplication. We used the same mechanism exactly for the C and
Matlab code. In all cases, the connection matrix uses a sparse matrix
data structure implemented in effectively the same way.

We fi rst modify the network so that instead of random con-
nectivity with each pair of neurons connected with probability
0.02, the probability is p/N, where N is the number of neurons,
making an average of p synapses per neuron independent of N. This
 guarantees that the fi ring rate of an individual neuron is independ-
ent of N. According to the calculations in the section “Performance
of Vectorised Simulations” then, the computation time as a function
of N should be proportional to N. Figure 4 shows the times for this
network. You can see that the performance of Brian is better than
Matlab, but not as good as C. You can also see that as N increases,
the relative performance of Brian compared to C improves. This is
because the Python overheads are a fi xed cost independent of N. At
N = 32,000, Brian takes approximately 2.4 times as long as C, and
we would expect that this ratio would improve further for larger N.
For this N, Matlab takes approximately seven times as long as C.

The next benchmark is the same CUBA network, but this time
with all synapses removed. Performance in general is largely domi-
nated by two factors: the state update phase, and the spike propaga-
tion phase. This benchmark gives an idea of how performance for
the state update phase alone scales. Figure 5 shows the comparison.
For large N, Brian takes around twice as long as C, and Matlab about
four times as long. The jump in the times for Brian going from
N = 16,000 to N = 32,000 may be due to CPU cache behaviour.

FIGURE 4 | Computation time for the CUBA network using Brian, C and

Matlab. This version of the CUBA network uses a fi xed 80 synapses per
neuron, and a varying number of neurons N. The fi gure on the left shows the

absolute time on the test machine. The fi gure on the right shows the time
compared to the C code. Theoretically, we would expect O(N) computation time
(see Performance of Vectorised Simulations).

261

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

The next benchmark uses a fi xed N, but varies the parameter w
e
,

the excitatory synaptic weight. Increasing this increases the fi ring
rate. Figure 6 shows the comparison. For the range of w

e
 shown,

leading to a range of fi ring rates from about 5 Hz to about 25 Hz,
the times appear to grow at a similar rate for each of C, Matlab
and Brian.

In conclusion, Brian is mostly around two to four times slower
than C code for the typical network considered, and Matlab is
around seven times slower. For smaller networks, Brian is slower
than this, and for larger networks, we expect Brian to be faster
than this. This seems like a reasonable trade off, given that smaller
networks tend to take less time to run in absolute terms than larger
networks.

DISCUSSION AND FUTURE WORK
Brian has been developed for quickly coding models of spiking
neural networks in everyday situations. It is easy to learn, intuitive
and fl exible, which also makes it ideal for teaching. Although it
is written in an interpreted language, it remains computationally

effi cient in many situations thanks to vectorised algorithms. It is
however not currently designed for very large scale simulations
which require clusters of computers, or for detailed biophysical
models with complex morphologies.

COMMUNITY
Brian is open source, and we are following the open source strategies
of code reuse and interoperability. To make the development effort
lighter and support easier, we chose to use existing packages and
components as much as possible, and only write what is necessary
on top of that. In writing Brian, we have used the NumPy, SciPy
and PyLab/Matplotlib packages. There is a PyNN module for Brian
currently in development, through which Brian will support open
standards such as NeuroML (Goddard et al., 2001) and other XML
description standards (Cannon et al., 2007).

We would also encourage others to make their code written
with Brian accessible to others. Complete models can be posted
to ModelDB (Hines et al., 2004), and in addition there is the new
“Computational Neuroscience Cookbook” project hosted on the

FIGURE 5 | Computation time for the CUBA network if all synapses are removed. This largely demonstrates the performance for the state update step, which in
this case is a matrix multiplication.

FIGURE 6 | Computation time for the CUBA network with on average

p = 500 synapes per neuron and N = 4000 at different fi ring rates. The
parameter we, the excitatory weight, was varied between 1.62 and 4.8 mV
which had the effect of varying the fi ring rate between about 5 Hz and about

25 Hz. This shows how performance scales with the number of spikes. Here the
fi ring rates as well as the times are averaged over the seven fastest trials, as
fi ring rates vary from trial to trial. Note that times due to spiking depend on both
the fi ring rate and the number of synapses per neuron.

262

Frontiers in Neuroinformatics www.frontiersin.org November 2008 | Volume 2 | Article 5 |

Goodman and Brette Brian: a neural simulator in Python

NeuralEnsemble website (http://neuralensemble. org/cook-
book). The idea of the cookbook is for submission of fragments
of code which can be cut and pasted into others’ code. Finally, we
encourage others to contribute to the Brian project itself (http://
brian.di.ens.fr/contribute.html).

FUTURE WORK
In the near future, our priorities for improving Brian are increasing the
effi ciency of Brian simulations and adding more modelling features.
Specifi cally, we have started using the parallel processors present in
modern graphics cards (GPU, Graphics Processing Unit) to improve
the speed of Brian simulations with no additional work from the user
(Luebke et al., 2004). These can be used as parallel coprocessors for
vectorised calculations (Cummins et al., 2008). On the modelling side,

we are focusing our efforts on synaptic plasticity. It is already possible
to simulate spike timing dependent plasticity (STDP, as in e.g. Song
et al., 2000) and short term plasticity (STP; Tsodyks and Markram,
1997) with the current mechanisms implemented in Brian (since these
are defi ned as differential equations with resets in those references,
see Morrison et al., 2008 for a review of plasticity rules), and we are
working on making it as fl exible and simple to use as possible.

ACKNOWLEDGEMENTS
This work was partially supported by the European Union
(Visiontrain, a Marie Curie Research Training Network) and by
the French ANR (ANR-RIAM Wired Smart). The authors would
like to thank all those who tested early versions of Brian and made
suggestions for improving it.

REFERENCES
Bower, J. M., and Beeman, D. (1998).

The Book of GENESIS: Exploring
Realistic Neural Models with
the GEneral NEural Simulation
System, 2nd edn., Springer-Verlag,
New York.

Brette, R., Rudolph, M., Carnevale, T.,
Hines, M., Beeman, D., Bower, J. M.,
Diesmann, M., Morrison, A.,
Goodman, P. H., Harris, F. C.,
Z i r p e , M . , Na t s c h l ä g e r, T. ,
Pecevski, D., Ermentrout, B.,
Djurfeldt, M., Lansner, A., Rochel, O.,
Vieville, T., Muller, E., Davison, A. P.,
Boustani, S. E., and Destexhe, A.
(2007). Simulation of networks of
spiking neurons: a review of tools
and strategies. J. Comput. Neurosci.
23, 349–398.

Cannon, R., Gewaltig, M.-O., Gleeson, P.,
Bhalla, U., Cornelis, H., Hines, M.,
Howell, F., Muller, E., Stiles, J.,
Wils, S., and Schutter, E. D. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. Cambridge
University Press, Cambridge, UK.

Cummins, G., Adams, R., and Newell, T.
(2008). Scientific computation
through a GPU. In Proceedings of
the Southeastcon 2008, an IEEE con-
ference, Huntsville, AL, pp. 244–246.
http://ieeexplore.ieee.org/xpl/freeabs_
all.jsp?arnumber=4494293

Gewaltig, O., and Diesmann, M. (2007).
NEST (neural simulation tool).
Scholarpedia 2, 1430.

Goddard, N. H., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards NeuroML:
model description methods for col-
laborative modelling in neuroscience.
Philos. Trans. R. Soc. Lond., B, Biol. Sci.
356, 1209–1228.

Hines, M. L., Morse, T., Migliore, M.,
Carnevale, N. T., and Shepherd, G. M.
(2004). ModelDB: a database to sup-
port computational neuroscience.
J. Comput. Neurosci. 17, 7–11.

Luebke, D., Harris, M., Krüger, J.,
Purcel l , T. , Govindaraju, N.,
Buck, I., Woolley, C., and Lefohn, A.

(2004). GPGPU: General Purpose
Computation on Graphics Hardware.
Los Angeles, CA, ACM, p. 33.

MacGregor, R. J. (1987). Neural and
Brain Modeling. Academic Press,
San Diego.

Morrison, A., Diesmann, M., and
Gerstner, W. (2008). Phenomenological
models of synaptic plasticity based on
spike timing. Biol. Cybern. 98, 459-478.
PMID: 18491160

Morrison, A., Straube, S., Plesser, H. E.,
and Diesmann, M. (2007). Exact sub-
threshold integration with continu-
ous spike times in discrete-time neural
network simulations. Neural Comput.
19, 47–79.

Song, S., Miller, K. D., and Abbott, L. F.
(2000). Competitive hebbian learn-
ing through spike-timing-dependent
synaptic plasticity. Nat. Neurosci. 3,
919–926.

Tsodyks, M. V., and Markram, H. (1997).
The neural code between neocorti-
cal pyramidal neurons depends on
neurotransmitter release probabil-
ity. Proc. Natl. Acad. Sci. U.S.A. 94,
719–723.

Vogels, T. P., and Abbott, L. F. (2005).
Signal propagation and logic gating
in networks of integrate-and-fi re neu-
rons. J. Neurosci. 25, 10786–10795.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 11 September 2008; paper
 pending published: 30 September 2008;
accepted: 26 October 2008; published
online: 18 November 2008
Citation: Goodman D and Brette R (2008)
Brian: a simulator for spiking neural net-
works in Python. Front. Neuroinform. (2008)
2:5. doi: 10.3389/neuro.11.005.2008
Copyright © 2008 Goodman and Brette.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

263

November 2008 | Volume 2 | Article 4

Vision Egg: an open-source library for realtime visual
stimulus generation

Andrew D. Straw*

Bioengineering, California Institute of Technology, Pasadena, CA, USA

Edited by: Rolf Kötter, Radboud University Nijmegen, Netherlands Antilles

Reviewed by: Laurent Perrinet, INCM-CNRS, France
Jonathan W. Peirce, University of Nottingham, UK

Modern computer hardware makes it possible to produce visual stimuli in ways not previously possible. Arbitrary scenes, from traditional
sinusoidal gratings to naturalistic 3D scenes can now be specifi ed on a frame-by-frame basis in realtime. A programming library called
the Vision Egg that aims to make it easy to take advantage of these innovations. The Vision Egg is a free, open-source library making use
of OpenGL and written in the high-level language Python with extensions in C. Careful attention has been paid to the issues of luminance
and temporal calibration, and several interfacing techniques to input devices such as mice, movement tracking systems, and digital
triggers are discussed. Together, these make the Vision Egg suitable for many psychophysical, electrophysiological, and behavioral
experiments. This software is available for free download at visionegg.org.

Keywords: visual stimulus generation, open source, Python

INTRODUCTION
A neuroscientist may need precisely defi ned spatial, temporal,
spectral, and polarization properties of light to perform a par-
ticular visual experiment. Standard computer monitors and
projectors are capable of producing a wide range of stimuli suf-
fi cient for many experiments, and special purpose displays may
be built or purchased with a standard interface. A tool which
produces precisely controlled signals from a video port (such as
VGA) is therefore of great utility. This paper outlines the Vision
Egg, a programming library developed to serve as such a tool
in combination with a standard computer and other software
libraries.

HISTORICAL CONTEXT
A brief outline of the display systems with the most impact on
the design of the Vision Egg follows.

In the 1980s and 1990s, vision scientists frequently displayed
their stimuli on a Tec-tronix 608 display, a small (∼12 cm diago-
nal) cathode ray tube with independent X,Y and luminance
inputs originally intended for use in a high-bandwidth analog
oscilloscope. However, instead of using it as an oscilloscope dis-
play, vision scientists often controlled the 608 with an Innisfree
Picasso device, a specialized function generator that creates

a raster scan of X,Y positions and modulates luminance to
 produce a variety of simple stimuli such as sinusoidal gratings
and rectangles. Many scientists found the Picasso wonderfully
easy to use, as its intuitive interface with a myriad of switches
and potentiometers allowed rapid experimentation until a suit-
able stimulus was found. Furthermore, by providing BNC con-
nections for voltage inputs, time-varying stimuli could be driven
via analog outputs from the same data acquisition system being
used to record responses, simplifying experimental design. The
main limitations of the Picasso are essential to its design as a
specialized function generator – namely that it is tied to a spe-
cifi c (and now rare) display device, and that the range of stimuli
it could produce were limited.

Computers provide the ability to produce arbitrary visual
stimuli, but with a new set of limitations. Early systems devel-
oped in the 1990s required no specialized hardware but could
only draw pre-rendered stimuli and movies (e.g., early releases
of the PsychToolbox: Brainard, 1997; Pelli, 1997) or were lim-
ited to simple stimuli and required extensive programming and
debugging in low-level C (e.g., John Maunsell’s custom LabLib).
These systems achieved frame-by-frame temporal precision by
operating within a cooperative multitasking operating system
such as Mac OS (prior to Mac OS X) and running at interrupt
time. Under such conditions, the underlying OS would not
preempt a program’s use of the CPU or other resources. With
the rise of pre-emptive multitasking operating systems such as
Windows 95, GNU/Linux, and Mac OS X, such an approach to
precise timing was no longer guaranteed. Another issue, which
persists today, is that the general-purpose nature of display
hardware meant that producing stimuli with a large dynamic
range of contrast can be diffi cult.

Custom hardware solutions, such as the Cambridge Research
Systems’ VSG 2/3F, addressed the issues of precise timing and

*Correspondence: Andrew D. Straw, Bioengineering, California Institute of Technology,
1200 E. California Boulevard, Mail Code 138-78, Pasadena, CA 91125, USA. e-mail:
astraw@caltech.edu

Received: 15 September 2008; paper pending published: 26 September 2008; accepted:
08 October 2008; published online: 04 November 2008.

Citation: Front. Neuroinform. (2008) 2: 4. doi: 10.3389/neuro.11.004.2008

Copyright © 2008 Straw. This is an open-access article subject to an exclusive license
agreement between the authors and the Frontiers Research Foundation, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original
authors and source are credited.

264|

 November 2008 | Volume 2 | Article 4

Straw

dynamic range through the use of special purpose processing
units and digital to analog converters isolated from the main
computer system on a PCI card. Programs would execute
onboard these cards independently from the host operating
system, bypassing the issues outlined above. Such cards were
expensive, however, often costing fi ve or more times the price
of the host computer itself, with additional RAM costing still
more. Additionally, programming the VSG 2/3F involved either
using a script language with limited performance or a low-level,
assembly-like language specifi c to the processing unit onboard
the card.

By the year 2000, OpenGL, a library to abstract standard
graphics hardware, was being used for realtime generation of
3D graphics on broadcast television without skipping frames.
I was encouraged to try a similar approach for my own experi-
ments on the visual system of fl ies, where the ability to use 3D
video acceleration hardware was appealing because it meant that
wide-fi eld stimuli could be accurate across displays subtending
very large angles. Such graphics hardware was appealing more
generally for vision research because this hardware was very fast
at mathematical operations involved in drawing scenes while
the open nature of the OpenGL specifi cation meant that solu-
tions would be portable to future hardware. The high speed
allowed new possibilities for the display of visual stimuli that
change over time. Dynamic scenes of high complexity, includ-
ing in 3D, could be rendered in realtime, only an instant before
display. This could be done at high update rates without skip-
ping frames, and these video cards could display anything from
simple shapes to naturalistic 3D scenes. The immediate benefi t
for my research was to enable drawing at 200 Hz of perspective-
corrected Gabor wavelets (Straw et al., 2006) and temporally
anti-aliased (so called motion blurred) moving natural images
(Straw et al., 2008). Both of these types of stimuli had been very
diffi cult to implement with the other systems.

OPEN SOURCE SOFTWARE AND PYTHON
Fundamental to the scientifi c process is the repeatability of
measurements. For this reason, open source software should be
preferred in scientifi c applications – this prevents software mis-
takes from becoming hidden in proprietary code, allows others
to learn from and independently reproduce work, and allows a
community approach to solve problems together. As illustrated
by the articles in this issue, Python is becoming a standard high-
level, open source language in neuroscience. Perhaps the most
exciting aspect of the confl uence of tools available in Python is
the possibility of software that incorporates components from
various sources into software with new capabilities. The suit-
ability of Python for drawing visual stimuli is well described in
Peirce (2007), and additional notes are in Section “Timing of
Visual Stimuli: Speed and Latency.” The Vision Egg also makes
use of software for which no Python interface previously existed.
These function calls are written as C extension modules to
Python included with the Vision Egg.

VISION EGG
The aim of this paper is to describe the Vision Egg, an open source
(LPGL license) computer programming library which makes
use of modern hardware accelerated graphics using OpenGL to
generate visual stimuli. One important goal for the project is
to allow non-experts to use modern computer hardware to its
maximum capability for common vision science tasks. A screen-
shot of an included demonstration script showing several of the
visual stimulus possibilities is shown in Figure 1, and source
code to a moving sinusoidal grating is shown in Figure 2.

At the initial development and release of the Vision Egg in
2001–2002, existing software for vision scientists was not able
to take advantage of the capabilities present in the emerging
hardware standards. Now, almost every personal computer
being sold is equipped with graphics hardware suitable for many

Sin Grating 2D (color) Spinning Drum

Vison Egg multi stimulus demo - Press any key to quit

A B C

D E F

put_pixels()

Dot Area 2D Sin Grating 2D (gabor) put_new_framebuffer()

Figure 1 | Screenshot of Vision Egg multi_stim.py demonstration script showing several included visual stimulus types. The dynamic stimuli are
updated in realtime without skipping frames at rates up to the fastest vertical refresh rate of the display tested (200 Hz). Stimuli, are: (A) A circularly windowed
color grating changing in space and color over time. (B) A rotating, perspective distorted drum with a natural panorama used as a texture image. (C) Arbitrary
arrays of RGB data updated on each frame generated from a uniform random distribution. (D) Random dot stimuli with 100 independently moving dots.
(E) A drifting Gaussian windowed sinusoidal grating. (F) A copy of the framebuffer recursively redrawn at smaller scale.

265|

Vision Egg

 experiments. Although more expensive hardware, often designed
with computer games in mind, continues to push the limits of
performance, the modest graphics systems now found in laptops
and some motherboards perform fi ne for many experimental
purposes. Even the creation of artifi cially closed-loop “virtual-
reality” experiments with the Vision Egg is possible with rela-
tively inexpensive hardware (e.g., Fry et al., 2004, 2008) but the
library is also useful for a variety of simpler tasks.

The biggest challenge with such an approach is addressing
potential problems when attempting to produce precisely control-
led stimuli for visual science on hardware which was not explicitly
designed for the task. The remainder of this paper describes the
implementation of the Vision Egg, some experiments to charac-
terize its performance, a discussion of it in relation to other visual
stimulus technologies, and some potential future directions.

LOW-LEVEL HARDWARE AND SOFTWARE OVERVIEW
HARDWARE
This section presents a brief review of modern computer archi-
tecture from a hardware perspective for drawing visual stimuli.
Applications run on the CPU of the host computer, though which
they manipulate the memory, video system, and other devices
of the computer. Video cards have onboard graphics processors
(GPUs) that are faster than CPUs at pushing pixels. By shifting
the majority of the drawing work onto the video card, the role
of the CPU can be limited to directing the powerful GPU. To
render a complicated 3D scene, for example, the CPU computes
a wireframe model that is transmitted, along with rasterization
instructions such as texture images and coordinates, to the video
card. This communication is specifi ed by OpenGL, which hides
the hardware level details such as transmission of data across the
computer bus. The GPU renders this image to a framebuffer,
which is then read out either by a high-speed digital to analog
converter (RAMDAC) or a digital transmitter (e.g., DVI, HDMI,
and Display Port). Luminance and color information is limited in
typical framebuffers because they store 8 bits per color per pixel,
or 2563 values of red, green, and blue each for a total of 2563 (16.6

million) possible colors. The RAMDAC converts these digital val-
ues to an analog voltage after passing them through a color lookup
table, which can be used to correct non-linearities the display
process such as gamma (see Section “Precise Control of Color and
Luminance: Results of Luminance Calibration”). Recently, manu-
facturers have been increasing the precision of the lookup tables
in the RAMDAC, and although many 8 bit per color RAMDACs
are still available, 10 bit cards are becoming more common.
Furthermore, some higher-end cards have 10 bit framebuffers.

DRAWING IN OpenGL
The Vision Egg scripts enter a loop which draws a new frame
on each cycle. Often each frame can be drawn completely from
scratch, allowing realtime control of stimuli or simply to elimi-
nate a common brute force approach of pre-rendering several
frames and then displaying them sequentially. Furthermore,
the frame skips do not lead to cumulative error if each frame is
drawn in realtime based on an accurate clock time. In an OpenGL
system, a double buffering technique is used, meaning that new
frames are rendered to the back framebuffer while the RAMDAC
draws the contents of the front buffer to the display. Due to this
double buffering, partially completed frames are not drawn to
the screen. When fi nished rendering to the back framebuffer, the
application informs the graphics system to use the back buffer
as the source of data for the RAMDAC. Thus, the front and back
buffers are swapped (with an OpenGL flip() or Vision Egg
swap_buffers() function call) and drawing continues on the
new back buffer. In the so-called vsync (vertical sync) mode, the
buffer swap is synchronized to occur only between frame draws
by the display, and thus no “tearing” artifacts are present. With
small displacements between individual frames, however, tearing
is minimal without using vertical sync. Regardless of vsync mode,
the main loop OpenGL delays execution of the program until the
buffer swap command is sent to the video hardware.

A member of the Vision Egg community has performed exten-
sive testing on the latencies associated with drawing in OpenGL
(Sol Simpson, SR Research, personal communication), which are

A B

Figure 2 | Source code of simple Vision Egg program to draw a moving sinusoidal grating illustrating a simple but complete program. Two means of
controlling the fl ow of execution are available, as described in Section “Mid-level Software Overview: Controlling Program Flow.” (A) Program fl ow is controlled
by the Vision Egg’s Presentation class. (B) Program fl ow is explicitly specifi ed within the script.

266 November 2008 | Volume 2 | Article 4 |

 November 2008 | Volume 2 | Article 4

Straw

in agreement with my personal observations and more limited
testing. His tests show that even with vsync on, the actual call
to swap_buffers() acts in an asynchronous manner when no
buffer swaps are pending, but begins blocking when another swap
is scheduled. In other words, the fi rst call to swap_buffers()
will return immediately and the graphics card is instructed to
swap buffers during the next vertical retrace. However, if another
call to swap_buffers() is issued before the retrace occurs, this
call is blocked (does not return) until the fi rst scheduled buffer
swap happens. Thus, a program which paces itself via returning
from blocked calls to swap_buffers() will always be drawing
frames which will be drawn not on the next buffer swap, but on
the second buffer swap.

Thus, if a program calls swap_buffers() less than once per
retrace interval, then the swap_buffers() call is not blocked
and returns right away and not necessarily at the start of a
retrace. In this case, one does not see a constant 1 retrace inter-
val delay. Instead, one will see a variable delay (the time between
when swap_buffers() returns and when the display is actu-
ally updated), with a duration up to the retrace interval depend-
ing on when swap_buffers() was called.

This suggests that one cannot not rely on when swap_
 buffers() returns to determine when the fl ip actually occurs and
instead should use a combination of swap_buffers() followed
by some code that actually waits until, or determines, the start of
the next retrace. The Vision Egg currently provides such a func-
tion for Windows (see Section “Low-level Hardware and Software
Overview: Detecting Retrace Events and Refresh Rates”). The same
results are found with the Vision Egg, pure C OpenGL and with
SDL when using the DirectX backend on ATI and nVIDIA graph-
ics cards (Sol Simpson, SR Research, personal communication).

Due to the intricacies of the above latency issue when vsync is
on and the lack of a way to detect retrace events on all supported
platforms, the Vision Egg currently (up to and including 1.1.1)
simply assumes that frames are drawn when swap_buffers()
returns. This gives an accurate estimate of whether refresh inter-
vals were skipped and consequently a frame was not updated, but
results in latency increased by one refresh interval.

Recent video cards (e.g., nVIDIA GeForce 8500 GT with
the Forceware version 163.71 driver on Windows XP) support
“triple buffering.” In this mode, there are two back buffers that
are alternately drawn upon, and the most recently completed
buffer is used at the start of display of a new frame to the screen.
Although I have not tested this technique, it theoretically allows
near-minimal latencies without tearing artifacts or diffi cult pro-
gramming involving refresh detection.

OPERATING SYSTEMS
The Vision Egg runs on any platform which supports Python
and OpenGL. It is known to run on Microsoft Windows (95,
2000, and XP), GNU/Linux with kernels 2.4 and 2.6 (Ubuntu,
Redhat, Debian), Mac OS X and SGI IRIX. All of these are pre-
emptive multitasking operating systems, with important rami-
fi cations described in section “Timing of Visual Stimuli: Speed
and Latency.”

DETECTING RETRACE EVENTS AND REFRESH RATES
The Vision Egg offers some platform-dependent features. One
of these is the ability to detect or wait for a vertical retrace event.
This is implemented according to the method of Riemersma
(2000) and implemented in the Win32_vretrace.pyx fi le.
Furthermore, the refresh rate can be detected on Windows and

Mac OS X as implemented in the win32_getrefresh.c and
darwin_getrefresh.m fi les. Unfortunately, the Vision Egg
does not currently allow the user to set the refresh rate.

MAXIMUM PRIORITY MODE
Operating systems typically have means to boost the priority
of some processes above that of other processes. The details are
specifi c to each platform, but the Vision Egg includes support for
raising priority on Windows via the SetPriorityClass() and
SetThreadPriority() functions, on POSIX systems (such
as Linux) via the sched_setscheduler() and mlockall()
functions, and on Mac OS X via the thread_policy_set(),
setpriority() and pthread_setschedparam() functions.
On Mac OS X, these function calls tell the kernel’s realtime
scheduler to grant programs a periodic time slice from the CPU,
which theoretically might give hard realtime performance (guar-
anteed latency), but practically is limited by the issues described
in Section “Timing of Visual Stimuli: Speed and Latency.”

MID-LEVEL SOFTWARE OVERVIEW
DISPLAY OF STIMULI
The Vision Egg has methods to draw a wide variety of stimulus
types. These stimuli operate within defi ned guidelines so that
they only modify certain values of the OpenGL state machine,
but leave all other values unchanged. In this way, multiple stim-
uli can be combined simultaneously, as in Figure 1. Both 2D and
3D stimuli are available. 2D stimuli commonly use an ortho-
graphic projection such that coordinates are specifi ed in pixel
units. Perspective projections can be used for 3D stimuli such
that a calibrated projection will provide an accurate representa-
tion of object shapes when viewed on a fl at display (e.g., Kern
et al., 2001; Straw et al., 2006). Included with the Vision Egg are
routines for drawing luminance sinusoidal gratings (2D or 3D,
with or without contrast windows, which can be circular or ani-
sotropic Gaussian in shape), color sinusoidal gratings, random
dot stimuli, arbitrary image fi les, arbitrary numeric array data,
QuickTime movies, MPEG movies, a spinning 3D drum with a
textured image, rectangles and fi xation points.

Many features of OpenGL are supported, including realtime
resampling of the texture image data using linear interpolation
and use of mipmapped textures generated with bicubic interpo-
lation (or other means). These features allow display of slowly
moving images without quantization of other systems where
pixel-by-pixel steps must be made in integer multiples of the
inter-frame interval. Other features, such as realtime lighting
and shadows, are not currently implemented.

USER INTERACTION AND ALTERNATIVE SOURCES OF INPUT
User interaction, such as handling of keystrokes, mouse clicks,
and joysticks can occur within the main loop of a Vision Egg
program by using the pygame library. Additionally, because
the Vision Egg is written in Python and can be easily extended
with C, there are many potential sources of external input. For
example, the UDP network protocol is frequently used in online
computer games for low latency network communication and
can be used for realtime control of visual stimuli from an exter-
nal program. In this manner, a Vision Egg script may be written
which is controlled from a data acquisition environment written
in Python, Lab View, or MATLAB. The TCP network protocol,
although slower than UDP, offers built-in error checking and
correction, and has been used to provide realtime input for the
Vision Egg (Fry et al., 2004, 2008).

267|

Vision Egg

CONTROLLING PROGRAM FLOW
The Vision Egg offers two ways of program fl ow control. The
most conceptually simple of these is to let the programmer spec-
ify what happens on every frame, as illustrated in Figure 2B.

Because the Vision Egg was originally developed for stud-
ies in which controlling motion adaptation was critical, I paid
careful attention to issues such as allowing a stimulus to con-
tinue moving while not in an experimental trial. The result is the
programmer relinquishes control by entering the go() method
of the Presentation class, as defi ned in the VisionEgg.
FlowControl module, as in Figure 2A. This is the concept of a
go loop, which usually corresponds to the experimental trial, and
the concept of refreshing stimuli between go loops. Any function
calls or stimulus updates not automatically performed by the
Vision Egg must be implemented by means of Controllers,
which are implementations of callback functions. Such a main-
loop-and-callback style of programming is common in GUI pro-
gramming. For example, the WX Widgets toolkit and the Mac
OS X Cocoa libraries operate this way.

HIGH-LEVEL SOFTWARE OVERVIEW
SPECIFYING GRAPHICS STATE
A confi guration GUI (Figure 3) can optionally be called at the
beginning of any Vision Egg script. Although all options are
available from the programmatic interface, it is often conven-
ient to see and edit these parameters through this interface.
Particularly important are the options for loading the color

lookup tables to perform gamma correction as illustrated in
Section “Precise Control of Color and Luminance: Results of
Luminance Calibration.”

AN APPLICATION FOR ELECTROPHYSIOLOGY
The Vision Egg includes two applications for integration within
an electrophysiology environment (see Figure 4). The fi rst is
ephys_server.py, which draws stimuli on its video hardware.
To minimize the possibility of frame skipping, this program may
run as the sole application on a dedicated stimulus computer.
This server program listens on a network port for a connection
from the ephys_gui.pyw program, which offers a GUI for the
experimenter to control.

THE QUEST ALGORITHM
A pure Python implementation of Watson and Pelli’s (1983)
QUEST algorithm is available from the Vision Egg website. This
well-known Bayesian adaptive method allows estimating psycho-
metric thresholds, and was translated directly from the MATLAB
code of Denis G. Pelli, who graciously allowed redistribution of
the Python version under an open-source BSD license.

QuickTime AND MPEG MOVIES
The Vision Egg includes support to decode movies and send
them to OpenGL by using Apple’s QuickTime API on Windows
and Mac OS X and py game/SDL’s Movie objects on all sup-
ported operating systems.

Figure 3 | Screenshot of the standard Vision Egg confi guration GUI. Numerous options for confi guration are available, including framebuffer size and bit
depth, color lookup tables for gamma correction and platform-dependent realtime priority, as described in Section “High-level Software Overview: Specifying
Graphics State.”

268 November 2008 | Volume 2 | Article 4 |

 November 2008 | Volume 2 | Article 4

Straw

TIMING OF VISUAL STIMULI
METHODS TO MEASURE LATENCY
This section contains the results of experiments in which the
total latency of the system, from input to output, was measured.
Because it is diffi cult to measure the precise time of events hap-
pening inside and outside a computer on the same clock (or syn-
chronized clocks), a task was chosen in which only a single time
reference was necessary. The task was to measure the duration
for a USB mouse movement to be translated into the movement
of a rectangle drawn on the screen, both of which were fi lmed
with a high speed video camera and later analyzed. The latencies
measured in this task should be comparable to the latencies of
other input–output tasks.

An LED was rigidly fi xed to each computer mouse (Logitech
MX-300 USB and Dell DEL1 Optical USB). The mouse was
connected to a USB port on the motherboard of the compu-
ter (Acer Aspire T690 with Intel ICH7 chipset including USB2
EHCI and USB UHCI controllers). A PCI-Express xl6 video card
(nVIDIA GeForce 8500 GT) was connected to a CRT monitor
(Iiyama Vision Master 450) using a VGA cable. The display was
set to a resolution of 800 × 600 at 140 Hz update rate using the
nVIDIA control panel (Forceware version 163.71) on Windows
XP Service Pack 2 and confi rmed by using the monitor’s on
screen display.

The Vision Egg version 1.1.1 was used to draw a 3 × 3 pixel
white square using the Target2D class on a Screen with a
black background color in a way that it acted as a mouse cursor.
The position of the mouse controlled the position of this small
square using a version of the mouseTarget.py demo program
that was simplifi ed to remove the code that set the orientation
of the target.

A high speed digital video camera (Photron Fastcam APX
120) was placed to record the LED and target location on the
screen in the same image frame. Images were acquired at 2000
frames per second while the mouse was rapidly moved back and
forth by hand in a roughly sinusoidal manner (e.g., Figure 5).

Digital images were analyzed to identify the “center of mass” of
the bright areas using the center_of_mass() function of the
scipy.ndimage module. For the on-screen target, this only
occurred approximately every 14th frame due to the discrete
nature of raster scan CRT displays.

SPEED AND LATENCY
Because Python is an interpreted language, programs written in
it will run more slowly than a well-written C program. However,
Python is fast enough for two primary reasons. First, the most
computation-intensive task, manipulation of large data arrays
is performed with high-performance C and FORTRAN code
via the numpy module of Python. Thus, Python code directs
computationally intensive tasks without performing them in
the slower interpreted environment. Second, computer displays
cannot be refreshed beyond their maximum vertical frequency,
which typically ranges up to 200 Hz. This therefore represents
an upper bound on the amount of computation required for
realtime rendering tasks.

In fact, the biggest timing-related concern is unrelated to the
programming language used. A pre-emptive multitasking operat-
ing system may take control of the CPU from the stimulus gen-
erating program for periods longer than an inter-frame interval,
thus leading to skipped frames. Even if the OS takes control of the
CPU from an application for much less than an inter-frame inter-
val, frames may still be skipped if the stimulus generation program
uses a strategy of waiting until the last instant to render a frame
and CPU control is taken at this critical instant. Operating systems
may have some means addressing this issue such as a realtime
scheduler that guarantees uninterrupted CPU time at specifi ed
intervals. The Vision Egg makes use of such facilities where avail-
able (see Section “Low-level Hardware and Software Overview:
Maximum Priority Mode”). Although they can certainly help
eliminate timing issues, such priority- boosting solutions can-
not provide absolute guarantees about timing because OpenGL
implementations themselves may be subject to unpredictable

A B

Figure 4 | Screenshot of electrophysiology-oriented GUI application included with the Vision Egg called ephys.gui.pyw and described in Section
“High-level Software Overview: An Application for Electrophysiology.” (A) Main window shows parameters for repeated presentations of a stimulus with
the possibility of automatically sequencing over variables. All settings can be saved and loaded from disk. (B) The loop parameters window allows control of
experiments.

269

|

Vision Egg

behavior and generally are not written to operate in a hard realtime
(in other words, with deterministic latency) manner. For example,
drawing a single additional object may cause the hardware to pass
a critical threshold for memory use and force a slow operation.
A low-level solution which operated in hard realtime would have
to bypass complex OpenGL libraries and implement routines to
draw directly to the framebuffer to guarantee performance.

It is worth noting that because of this unavoidable variable
latency listed above (pre-emptive multitasking operating sys-
tems and OpenGL implementations), the variable latency intro-
duced by use of an interpreted language with garbage collection,
such as Python, does not fundamentally worsen the situation.
In other words, use of Python introduces no fundamental prob-
lem other than that of an additional potential source of variable
latency to that already imposed by the OS and OpenGL.

MEASUREMENTS OF LATENCY
A high speed video camera was used to measure the absolute total
latency between input (a standard USB computer mouse) and
output (the position of a rectangle on the screen), as described
in the methods Section “Timing of Visual Stimuli: Methods to
Measure Latency.” Figure 5 shows that latency can be reduced
to around 15 ms, but that the vsync state plays a very signifi cant
role in total latency (Table 1). On a 140-Hz display (7.1 ms inter-
frame interval), latency jumped by 17 ms or more when vsync was
enabled. This is presumably due to the latency imposed by draw-
ing in the middle of a refresh interval and waiting for that inter-
val to be done combined with the additional latency described in
Section “Low-level Hardware and Software Overview: Drawing in
OpenGL.” Although the results would be interesting, these experi-
ments were not repeated in triple buffering mode.

ONLINE DETECTION OF FRAME SKIPPING
Frame skipping is determined by measuring the interval between
successive buffer swap commands using standard system calls to

query the computers clock. If this value exceeds the known monitor
inter-frame interval, a frame has been skipped. Stimuli generated
by the Vision Egg are routinely presented for hours without skip-
ping a frame when measured this way. The most likely occurrence
of a skipped frame is at the immediate beginning of drawing a
stimulus – presumably when some initialization occurs with the
video system. Often this can be dealt with by initializing the video
system in a non-critical task, such as drawing a black rectangle.

TRIGGER OUTPUT AND INPUT
It is often useful to trigger external hardware when a stimulus
presentation begins. There are several ways to achieve this on typi-
cal personal computers. The parallel port can be used so that a pin
goes from low to high voltage when the fi rst frame of a stimulus is
drawn. The Vision Egg has support for reading and writing to the
parallel port, but because OpenGL operates in an asynchronous
manner (see Section “Low-level Hardware and Software Overview:
Drawing in OpenGL”), the parallel port cannot be updated at the
exact instant the display begins a new frame. Instead, the parallel
port can only be updated before the swap_buffers() command
is given or after it returns. Better accuracy could be obtained by
“arming” the trigger of a data acquisition device immediately
before stimulus onset and triggering from the vertical sync pulse
of a video cable. Ultimate verifi cation can be done with a pho-
todetector on a patch of screen that changes luminance at the
onset of the experiment. This patch-of-screen is implemented in
the ephys_gui.pyw application described in Section “High-level
Software Overview: An Application for Electrophysiology.”

Some hardware used in experiments, such as fMRI machines,
has intrinsic timing requirements and thus it is advantageous for
the Vision Egg to act as a slave and to begin a stimulus upon receiv-
ing a digital pulse. Because of its realtime nature, it is straight-
forward to achieve temporal precision equivalent to the latencies
described in Section “Timing of Visual Stimuli: Measurements of
Latency,” although there might be slight differences in timing due
to use of a parallel port for input rather than a USB mouse.

PRECISE CONTROL OF COLOR AND LUMINANCE
METHODS TO MEASURE LUMINANCE
For the measurements described below, the Vision Egg version
1.0 was running on a dual Athlon 1400 Windows 2000 sys-
tem with an nVIDIA GeForce 4 Ti 4200 graphics card and an

1

1.0

0.5
–20 0 20 40

p
os

iti
on

 (n
or

m
al

iz
ed

)

co
rr

el
at

io
n

0

0

display

sample & hold
interpolate
mouse

100 200

time (msec)

time (msec)

300 400
–1

Figure 5 | Total latency of system, including input from an optical USB
mouse and display on 140 Hz CRT display, can be reduced to about
15 ms, as described in Section “Timing of Visual Stimuli: Measurements
of Latency.” The main panel shows representative data gathered from a high
speed camera of an LED fi xed to a mouse (green line) and a bright spot on
the screen controlled by the mouse (blue dots). Display positions could rea-
sonably be interpolated using a sample-and-hold function (blue solid line) or
linear interpolation (blue dashed line). Inset panel shows cross correlation of
2 s of such data when interpolated. These data were gathered with vsync off
and a Logitech MX-300 USB mouse.

Table 1 | Latency as estimated by the peak of the cross correlation
 between mouse location and displayed point location. Optimistic laten-
cies were estimated using the cross correlation with the linearly interpolated
display positions as plotted in Figure 5 and described in Section “Timing of
Visual Stimuli: Measurements of Latency.” Pessimistic latencies were also
estimated with a cross correlation, but used a sample-and-hold function rather
than linear interpolation to estimate display position.

Vsync Mouse Optimistic latency Pessimistic latency
 (ms) (ms)

Off Logitech MX-300 12.0 16.0
 Optical USB
On Logitech MX-300 35.0 38.5
 Optical USB
Off Dell DEL1 19.5 24.5
 Optical USB
On Dell DEL1 38.0 41.5
 Optical USB

270 | November 2008 | Volume 2 | Article 4

 November 2008 | Volume 2 | Article 4

Straw

LG Electronics Flatron 915 FT + CRT monitor at a resolution
of 640 × 200 at 200 Hz. Luminance measurements were made
with a silicon photometer (OptiCal with LightScan software by
Cambridge Research Systems, Ltd).

RESULTS OF LUMINANCE CALIBRATION
An 8-bit per color framebuffer allows specifi cation of 256 lumi-
nance levels for each of the three color channels (see Section
“Low-level Hardware and Software Overview: Hardware”). Each
red, green, and blue value is used as an index into the appro-
priate color lookup table, which is used by the RAMDAC to
produce an analog signal. Low contrasts or other effects may
be achieved, even with an 8-bit per color framebuffer, by use of
a 10-bit lookup table. Non-linearities of CRT displays are well
understood (for review, see Brainard et al., 2002) with the most
famous non-linearity being display luminance gamma. The
lookup tables can compensate for this gamma property such
that color specifi ed is linearly proportional to the luminance
produced on the display, and the Vision Egg includes the ability
to calibrate and compensate automatically for this gamma prop-
erty. Finally, some computers have framebuffers with >8 bits per
color. In OpenGL and the Vision Egg, colors are specifi ed as a
fl oating point value between 0.0 and 1.0 so the same program
benefi ts immediately from the improved hardware.

Photometric luminance measurements of the display made
with full screen color values are shown in Figure 6. The most
well known of the non-linearities of video displays is character-
ized by the gamma function

L = kpγ, (1)

with L being luminance (in cd/m2), k being a scaling constant,
p being the color value specifi ed to OpenGL for each of the red,

green, and blue components of the screen, and gamma γ. In the
example shown, the uncalibrated display system had γ = 2.1. By
loading the appropriate values in the color lookup tables, a lin-
ear relation between specifi ed color value and luminance output
was achieved, with γ = 1.0.

DISCUSSION
IMPACT OF THE VISION EGG
Although usage for open source software is notoriously diffi cult
to estimate, the number of downloads of the Vision Egg from
SourceForge.net since the fi rst release (November 2001) totals
over 15,000. Another estimate is the number of papers citing use
of the Vision Egg. To date, the total listed at the website is 14. The
University of Bielefeld, Germany and the University of Adelaide,
Australia have used the Vision Egg in undergraduate courses
(Bart Geurten and David O’Carroll, personal communication).

Other software uses or incorporates the Vision Egg. For
example, in this issue, (Spacek and Swindale, 2008), describe use
of the Vision Egg as part of a system for high-throughput elec-
trophysiology. Python based extensions called BCPy2000 to the
large project BCI2000, a general-purpose system for brain–com-
puter interface (BCI) research, allow customizable experiment
design using the Python scripting language (Schreiner, 2008;
Jeremy Hill, personal communication). SR Research developed
Pylink to interface their eye tracker to Python-based software,
such as the Vision Egg, and they ship a Vision Egg based example
to demonstrate gaze contingent control of a moving gradient.

Finally, perhaps the greatest impact of software packages
such as the Vision Egg has simply been as a proof of concept that
using OpenGL and Python for creating visual stimuli is possi-
ble. Several people have told me that they looked at the Vision
Egg to see how something was done and then re-implemented it
themselves. Such a spread of ideas is one of the benefi ts of open
source, although the diversity of similar but different solutions
can also be a challenge, particularly for those attempting to pick
a solution without investing too much in an evaluation process.

COMPARISON TO SIMILAR OPEN SOURCE SOFTWARE
PsychoPy is another Python-based open source visual stimulus
system (BSD license). The author, Peirce (2007) says, “For a good
programmer, Vision Egg achieves its goals very well, provid-
ing a powerful and highly optimized system for visual stimulus
presentation and interactions with hardware (including the abil-
ity to run experiments remotely across a network). Straw does,
however, adhere very strongly to an object-oriented model of
programming which can be harder for relatively inexperienced
programmers, like most scientists, to understand. For instance,
the temporal control of experiments in Vision Egg is predomi-
nantly though the use of presentation loops, whereby the user
sets an object to run for a given length of time, attaches stimuli
to it, attaches it to a screen and then tells it to go.” I believe the
criticism is directed not so much toward object oriented pro-
gramming (which is also employed at a fundamental level within
PsychoPy) but rather Peirce’s concern is with the mainloop-
and-callback mechanism of fl ow control described in Section
“Mid-level Software Overview: Controlling Program Flow.” As
mentioned in that section, and demonstrated in Figure 2, this
is only optional, and the user may also maintain full control of
program execution. Nevertheless, in the early development of the
Vision Egg, this mainloop-and-callback style was present in all the
demonstration scripts, and was intrinsic to the electrophysiology

120
measurement after correction
fit (k = 103.2, γ = 1.0)

measurement before correction

Lu
m

in
an

ce
 (L

, c
d

/m
2)

fit (k = 102.9, γ = 2.1)
100

80

60

40

20

0

0.0 0.2 0.4

OpenGL R,G,B color values (p)

0.6 0.8 1.0

Figure 6 | Luminance output of a CRT display is made linear with respect
to commanded pixel value. Color values specifi ed in OpenGL units produce
non-linear luminance relationship on an uncorrected display (red circles), but
a corrected display has a linear relationship between specifi ed and actual
luminance (blue crosses). Lines are linear least squares fi ts to Eq. 1, Section
“Precise Control of Color and Luminance: Results of Luminance Calibration,”
with coeffi cients given in the legend.

271

|

Vision Egg

With the continued increase in power of conventional con-
sumer graphics hardware, the use of such systems for vision
science experiments will continue to become more common.
This paper described a visual stimulus generation system that
utilizes such hardware and addresses critical calibration issues
in the luminance and time domains. Of course, such calibration
also depends on the display device, which also has temporal,
spatial, spectral, and polarization properties that need to be
accounted for.

With powerful stimulus generation software and video cards
now available, the greatest challenge of producing visual stim-
uli may now be fi nding an appropriate physical display device.
CRTs are well understood (Bach et al., 1997; Brainard et al., 2002;
Cowan, 1995) and would remain a popular stimulus presentation
device, but are becoming increasingly more diffi cult to acquire as
their production stops. LCD and DLP based devices are useful
for many experiments (Packer et al., 2001). Finally, custom built
LED devices may be constructed to address many issues faced
with standard commercial technology (Lindemann et al., 2003;
Reiser and Dickinson, 2008). Regardless of display technology, if
the display device accepts standard inputs (e.g., VGA or DVI), a
modular approach to stimulus generation may be used, and stim-
ulus generation software such as the Vision Egg may be used.

CONFLICT OF INTEREST STATEMENT
The author declares that the research was conducted in the
absence of any commercial or fi nancial relationships that could
be construed as a potential confl ict of interest.

ACKNOWLEDGEMENTS
I thank David O’Carroll for many discussions about, much feed-
back on, and an environment in which to create the Vision Egg.
Many others have contributed to the Vision Egg over the years with
bug reports and code submissions. Sol Simpson of SR Research,
in particular, helped elucidate the latency issue described in
Section “Low-level Hardware and Software Overview: Drawing
in OpenGL.” Silicon Graphics, Inc. provided a loan of a high
performance workstation. Thanks to Michael Dickinson for use
of the high speed video camera. Work was partially supported
by a Predoctoral fellowship from the Howard Hughes Medial
Institute, who also graciously allowed a leave of absence to work
for a summer in private industry, where I learned enough about
realtime graphics to create the Vision Egg.

REFERENCES
Bach, M., Meigen, T., and Strasburger, H. (1997). Raster-scan cathode-ray tubes

for vision research – limits of resolution in space, time and intensity, and
some solutions. Spat. Vis. 10, 403–414.

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436.
Brainard, D. H., Pelli, D. G., and Robson, T. (2002). Display characterization. In

Encyclopedia of Imaging Science and Technology, J. Hornak, ed. (New York,
NY, Wiley), pp. 172–188.

Cowan, W. B. (1995). Displays for vision research. In Handbook of Optics, Vol. 1:
Fundamentals, Techniques, and Design, M. Bass, ed. (New York, NY, McGraw-
Hill), pp. 27.21–27.44.

Fry, S. N., Müller, P., Baumann, H. J., Straw, A. D., Bichsel, M., and Robert, D.
(2004). Context-dependent stimulus presentation to freely moving animals
in 3d. J. Neurosci. Methods 135, 149–157.

Fry, S. N., Rohrseitz, N., Straw, A. D., and Dickinson, M. H. (2008). TrackFly: vir-
tual reality for a behavioral system analysis in free-fl ying fruit fl ies. J. Neurosci.
Methods 171, 110–117.

Kern, R., Lutterklas, M., Petereit, C., Lindemann, J. P., and Egelhaaf, M. (2001).
Neuronal processing of behaviourally generated optic fl ow: experiments and
model simulations. Netw. Comput. Neural Syst. 12, 351–369.

applications envisioned, like that of Section “High-level Software
View: An Application for Electrophysiology.” Indeed, it was a
response to my own diffi culties implementing psychophysics
experiments with this style that I wrote demo scripts with their
own fl ow control and began documenting the possibility.

Apart from the differences mentioned above in the style of
programming, the most substantive differences today between
the Vision Egg and PsychoPy are that the Vision Egg offers
relatively simple perspective corrected stimuli utilizing the 3D
nature of OpenGL, while PsychoPy has an automated luminance
calibration utility and interfaces with Bits++ from Cambridge
Research Systems, Ltd. Furthermore, the primary development
platform of the Vision Egg is GNU/Linux, while it appears to be
Windows for PsychoPy.

The Psychophysics Toolbox (Brainard, 1997; Pelli, 1997)
has evolved greatly since the situation described in Section
“Introduction: Historical Context.” There is a large overlap
between the possibilities offered by the PsychToolbox and the
Vision Egg. Although the PsychToolbox is now offi cially open
source (GNU GPL license), the main language of implementa-
tion is MATLAB, a proprietary application. Thus, its appeal as
an open source solution is limited. Nevertheless, a core devel-
oper, Mario Kleiner, tests PsychToolbox functions with Octave,
an open-source MATLAB clone, and many useful functions are
implemented in C and could be used from environments other
than MATLAB. Due to its heritage, most of the demonstration
scripts for the PsychToolbox use pre-rendered stimuli, but it is
now capable of using OpenGL and generating complex stimuli
in realtime.

For another comparison between Vision Egg, PsychoPy, and
the PsychToolbox, see Peirce (2007).

TOWARD A DATABASE OF VISUAL STIMULI
An online database of scripts to generate stimuli used in vis-
ual neuroscience would be useful for realizing the benefi ts of
open-source software described in Section “Introduction: Open
Source Software and Python.” Other databases, such as of neu-
ronal models (e.g., ModelDB and NeuronDB), biochemical
reaction networks (e.g., SBML), and so on are proving useful in
their fi elds. For visual neuroscience, Viperlib, an online visual
perception library, might be a natural host for such a database
of stimulus scripts for experiments. First, however, some serious
technical issues must be solved. Although libraries like the Vision
Egg and PsychoPy make it relatively easy to generate visual stim-
uli in a free way that is theoretically hardware independent, the
issues of framerate, display luminance and position calibration,
and synchronization with data acquisition and other hardware
would all need to be addressed. Nevertheless, the availability of
open source libraries and a number of publications based on
them means that such endeavor could already be started.

CONCLUSION
The Vision Egg is a free and open-source programming library
that allows scientists to produce arbitrary visual stimuli. Such
stimuli can be specifi ed in realtime without skipping frames,
may involve traditional stimuli such as sinusoidal gratings, or
may be more complex, 3D, and naturalistic scenes. Features
such as perspective correction and realtime interpolation of
image data for sub-pixel movement are part of OpenGL and
thus occur in realtime at little or no extra programming or
computational cost.

272 November 2008 | Volume 2 | Article 4 |

 November 2008 | Volume 2 | Article 4

Straw

Lindemann, J. P., Kern, R., Michaelis, C., Meyer, P., van Hateren, J. H., and Egelhaaf,
M. (2003). Flimax, a novel stimulus device for panoramic and highspeed
presentation of behaviourally generated optic fl ow. Vis. Res. 43, 779–791.

Packer, O., Diller, L. C., Verweij, J., Lee, B. B., Pokorny, J., Williams, D. R., Dacey,
D. M., and Brainard, D. H. (2001). Characterization and use of a digital light
projector for vision research. Vis. Res. 41, 427–439.

Peirce, J. W. (2007). PsychoPy – psychophysics software in python. J. Neurosci.
Methods 162, 8–13.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: trans-
forming numbers into movies. Spat. Vis. 10, 437–442.

Reiser, M. B., and Dickinson, M. H. (2008). A modular display system for insect
behavioral neuroscience. J. Neurosci. Methods 167, 127–139.

Riemersma, T. (2000). Detecting vertical retrace. Windows Dev. J. 11.
Schreiner, T. (2008). Development and Application of a Python Scripting

Framework for bci2000. Thesis, Universität Tübingen.
Spacek, M., and Swindale, N. (2008). Python for high-throughput electrophysiol-

ogy. Front. Neuroinform.
Straw, A. D., Rainsford, T., and O’Carroll, D. C. (2008). Contrast sensitivity of

insect motion detectors to natural images. J. Vis. 8, 1–9.
Straw, A. D., Warrant, E. J., and O’Carroll, D. C. (2006). A bright zone in male

hoverfl y (Eristalis tenax) eyes and associated faster motion detection and
increased contrast sensitivity. J. Exp. Biol. 209, 4339–4354.

Watson, A. B., and Pelli, D. G. (1983). QUEST: a Bayesian adaptive psychometric
method. Percept. Psychophys. 33, 113–120.

273|

EPFL Innovation Park · Building I · 1015 Lausanne · Switzerland

T +41 21 510 17 00 · info@frontiersin.org · frontiersin.org

ADVANTAGES OF PUBLISHING IN FRONTIERS

TRANSPARENT

Editors and reviewers
acknowledged by name

on published articles

OPEN ACCESS

Articles are free to read,
for greatest visibility

GLOBAL SPREAD

Six million monthly
page views worldwide

SUPPORT

By our Swiss-based
editorial team

COPYRIGHT TO AUTHORS

No limit to
article distribution

and re-use

IMPACT METRICS

Advanced metrics
track your

article’s impact

RESEARCH NETWORK

Our network
increases readership

for your article

COLLABORATIVE
PEER-REVIEW

Designed to be rigorous –
yet also collaborative, fair and

constructive

FAST PUBLICATION

Average 90 days
from submission

to publication

http://www.frontiersin.org/

	Cover
	Frontiers Copyright Statement
	Python in Neuroscience
	Table of Contents
	Python in neuroscience
	Overview of the Research Topic
	Discussion
	References

	STEPS: modeling and simulating complex reaction-diffusionsystems with Python
	Establishing a novel modeling tool: a python-based interfacefor a neuromorphic hardware system
	Near-infrared neuroimaging with NinPy
	Network features and pathway analyses of a signaltransduction cascade
	Brainlab: a Python toolkit to aid in the design, simulation, andanalysis of spiking neural networks with the NeoCorticalSimulator
	PCSIM: a parallel simulation environment for neural circuitsfully integrated with Python
	OpenElectrophy: an electrophysiological data- andanalysis-sharing framework
	DataViewer3D: an open-source, cross-platform multi-modalneuroimaging data visualization tool
	Topographica: building and analyzing map-level simulationsfrom Python, C/C++, MATLAB, NEST, or NEURON components
	Python scripting in the Nengo simulator
	Technical integration of hippocampus, basal ganglia andphysical models for spatial navigation
	Python for information theoretic analysis of neural data
	OMPC: an open-source MATLAB®-to-Python compiler
	PyMVPA: a unifying approach to the analysis ofneuroscientifi c data
	PyNEST: A convenient interface to the NEST simulator
	NEURON and Python
	Python for large-scale electrophysiology
	PyNN: a common interface for neuronal network simulators
	Generating stimuli for neuroscience using PsychoPy
	Modular toolkit for Data Processing (MDP): a Python dataprocessing framework
	PyMOOSE: interoperable scripting in Python for MOOSE
	A Python analytical pipeline to identify prohormoneprecursors and predict prohormone cleavage sites
	Brian: a simulator for spiking neural networks in Python
	Vision Egg: an open-source library for realtime visualstimulus generation
	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

