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Editorial on the Research Topic

Smart Mobile Data Collection in the Context of Neuroscience

The Covid-19 pandemic demonstrates both the potential of mobile technology in medicine and
the need to exploit this potential (e.g., Zhang et al., 2021). On the flip side, many challenges have
to be addressed, for which still no suitable answer exists. This ranges from technical frameworks
to the reliability of research data, which have been collected with the help of mobile technology. It
is striking that the number of mobile data collection strategies in healthcare grows on a frequent
basis. Therefore, overarching topics and considerations are increasingly needed to keep pace with
these trends, particularly through their categorization and evaluation. In this Research Topic, such
an attempt was pursued for mobile data collection in the context of neuroscience.

Aim of this Research Topic: Digital phenotyping, experience sampling, digital health, and
ecological momentary assessments (EMA) are only a few methods and strategies that have been
presented at the intersection of mobile technology and healthcare. The need to involve multiple
disciplines constitutes another important recognition in the given field. Therefore, efforts are
constantly needed to review and categorize presented research works. We started this Research
Topic in 2018, as we saw and still see many open questions when using mobile technology
in healthcare scenarios, especially in the context of clinical neuroscience. The submitted works
addressed interesting and novel aspects, also driven through the insight of the identified submission
categories. For example, a categorymulti-modal data fusion could be identified, which will certainly
become increasingly important to foster evidence in the context of mobile technology and the
neuroscience domain. Altogether, many initially planned aims have been actually pursued by the
submissions, but also other directions were presented.

Overview: The works submitted to this topic (including rejected papers) cover many aspects
of the pursued topic goals. However, we were able to identify three major categories for the
contributions: Experience Sampling, Multi-modal Data Fusion, and Reviews and Meta-Analyses,
particularly showing two objectives of the research field of mobile data collection when being used
for neuroscience questions. The collection of ecologically valid data through experience sampling
or multi-modal data fusion constitutes the first objective. Note that the latter method enables
cross-validation of mobile data with other data sources collected through already established
methods to gain better insights on the achieved data validity. The second objective, in turn, is
concerned with general insights based on Reviews and Meta-Analyses.
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EXPERIENCE SAMPLING

The terms Experience Sampling, Ambulatory Assessment and
EMA describe a new research method allowing to systematically
collect self-reports of emotions, cognition, and behavior in the
real-world settings of the participants. A smartphone, wearable
or other mobile signaling device is used to prompt the participant
with a short questionnaire asking questions on the current
situation. This method can then be used to assess fluctuations of
clinical symptoms within and between days with high ecological
validity and low recall bias (e.g., Probst, 2017; Pryss, 2019).

In this Research Topic, two studies took advantage of this
research method: Stieger and Kuhlmann used an experience
sampling app to collect a dataset on dreams and nightmares in 92
participants over a period of 22 days. In their paper, they report a
detailed item-analysis on the Nightmare Distress Questionnaire
and identified those items that reliably discriminate between
bad sleep and nightmare. In a study by Weierstall-Pust et al.,
tablets were used to assess the Post-Traumatic Stress Syndrome
in 463 soldiers in Burundi. Based on this field data, the authors
were able to discriminate subgroups of soldiers with distinct
symptom profiles.

The authors Wurzer and Hauptmann describe an approach,
in which a mobile device was used for the treatment of chronic
tinnitus. Using a single-arm study design, an auditory stimulation
device was tested on a group of 25 tinnitus patients with a
treatment period of 16 weeks.

MULTI-MODAL DATA FUSION

The early contribution of Sariyska et al. on feasibility of linking
molecular genetic markers to real-world social network size
tracked on smartphones linked genetic data to data about the
social behavior of people, as recorded with a smartphone app,
and reported on an association between genetic expression and
social network size of the study participants. This is an example of
combining genetic and mobile data for digital phenotyping, and
points also to practical limitations: while mobile data are easily
scalable, the acquisition of genetic data is an elaborate task, which
requires time and money, and for which volunteer recruitment is
less easy. This results in smaller samples and less robust models.

Huckins et al. contributed a study on fusing mobile phone
sensing and brain imaging to assess depression in college
students, in which they identified associations between the time
a user had their smartphone unlocked and functional brain
activity in brain regions associated with depression. The authors
combined passive smartphone sensing data, EMA and functional
brain scans and investigated how smartphone usage can be
linked to brain connectivity metrics. Their results, derived in
one cohort and verified in a second cohort, demonstrate that
multi-modal data fusion can lead to new ways of assessingmental
health, but also revealed several challenges for the immediate
future. Among them, the curse of dimensionality implies that
the extraction of knowledge from the high-dimensional fused
data requires very large participant samples and dimensionality
reduction approaches.

In toward personalized tinnitus treatment: an exploratory
study based on internet crowdsensing, Simoes et al. analyzed data

of a self-help platform for tinnitus patients to identify predictors
of treatment response. Among other findings, the authors
showed that treatment duration is the variable explaining most
of the variance concerning treatment outcome. Such findings
indicate the potential of internet crowdsensing for generating
hypotheses for personalized treatments.

In mental condition monitoring based on multimodality
biometry, Kiguchi et al. captured multi-modal data to assess
mental distress in the workplace. The authors used devices for
activity tracking, sleep monitoring, and logging of interactions
with office PCs, and they showed that the tracked data agreed
with the perceived mental condition of the volunteers, as
recorded in questionnaires. Their results suggest that data
tracking at the work place has the potential to inform about
mental stress.

In motorized shoes induce robust sensorimotor adaptation
in walking, Aucie et al. investigated whether results on
locomotor adaptation outside the lab agree with insights won
in a controlled laboratory environment. They juxtaposed the
locomotory behavior of a control group to that of a groupwearing
motorized shoes with elaborate gear over their normal shoes,
and they found that the two groups exhibited mostly the same
adaptation patterns. Their results show the potential of wearable
devices in modeling movement and gait under real conditions.

REVIEWS AND META-ANALYSES

Research on smartphones in neuroscience is strongly
increasing. In PubMed.gov, the search terms “smartphone AND
neuroscience” revealed 51 publications for 2016, 71 publications
for 2017, 97 publications for 2018, 122 publications for 2019,
and 170 publications for 2020. Reviews and meta-analyses
are necessary to synthesize findings for both researchers and
practitioners. The review and meta-analysis presented by Goreis
et al. examined the potential of smartphone apps to reduce post-
traumatic stress symptoms. While a reduction of post-traumatic
stress symptoms was observed in participants using apps (g =
0.55), the effect was not significantly stronger than in participants
not using the apps (g = 0.09).

Seifert et al. summarized six challenges (collecting data in real-
life environments, real-time measurements, within-person data,
passive data, smartphone device, data security, and ethical issues)
for a smarter smartphone research in neuroscience and provided
valuable ideas to overcome these challenges in the future.

The use of smartphone apps to combine mobile crowdsensing
and EMA is the focus of the manuscript of Kraft et al.
The authors review their experience gathered in various
smartphone app projects (TrackYourTinnitus, TrackYourStress,
TrackYourHearing, TrackYourDiabetes, Intersession, KINDEX,
TinnitusTipps) and provide recommendations for the
developments of platforms that combine mobile crowdsensing
and ecological momentary assessments.

SUMMARY

The articles in this special topic provide an overview about
the rapidly growing area of mobile data collection in clinical
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neuroscience. The presented research indicates their huge
potential as well as the manifold and multifaceted areas
of application.
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Loss
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Chronic tonal tinnitus is often accompanied by sensorineural hearing loss which is

associated with altered tuning curves and bandwidth of alternating masking. In this

feasibility study the so-called hearing threshold adapted coordinated reset (HTA-CR)

neuromodulation was investigated. This method is based on CR neuromodulation,

which has been demonstrated to be an effective treatment for chronic tonal tinnitus.

It applies four stimulation tones that are determined by the patient’s individual tinnitus

frequency and hearing impairment. The HTA-CR neuromodulation was programmed to

the DesyncraTM for Tinnitus Therapy System and treatment was applied to 25 patients

for 4 months on average and 4 h daily. Regular check-ups were done every 4–6 weeks.

Therapy outcome was assessed by the tinnitus questionnaire (Tinnitusfragebogen, TF)

as per Goebel and Hiller. After 4 months the mean TF score was reduced by 27.4%.

A reduction of ≥ 15 points was found in 40% of the patients while for further 32% of

the patients a reduction of 6–14 points was found. Thus, a positive response rate of

72% was observed after 4 months of HTA-CR neuromodulation. Our results suggest that

HTA-CR neuromodulationmight be at least comparable to standard CR neuromodulation

providing another effective therapeutic option for the treatment of chronic tonal tinnitus.

Keywords: tinnitus, neuromodulation, acoustic stimulation, therapy, chronic disease

INTRODUCTION

Chronic tinnitus is an otorhinolaryngological disease affecting∼10–15% of the general population
in industrialized countries (1). The permanent perception of sound in the absence of a
corresponding sound source is often associated with hearing loss secondary, among others, to noise
exposure or aging. Recent studies using advanced imaging techniques and functional approaches
indicated that chronic tinnitus is a neural consequence of acoustic acquired sensory deprivation
(2–5) leading to an imbalance of excitatory and inhibitory neural networks in the central auditory
pathway. These alterations result in elevated spontaneous activity (6) and synchronization of
neurons (7, 8) in the auditory cortex, virtually a “tinnitus generator,” which is perceived as
tinnitus. An overview of involved neuropathophysiological circuits has been published recently
by Rauschecker et al. (9).

Because only 20% of patients with chronic tinnitus are affected by a severe impairment of
quality of life (10) it is assumed that the limbic system, the “emotional brain,” and the vegetative
neuronal network including the formatio recticularis impact the level of suffering experienced by
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patients (11–14). This aspect is recognized and implemented in
various therapeutical approaches for tinnitus treatment such as
use of psychotropic drugs, relaxation techniques (e.g., progressive
relaxation, Tai Chi, etc.), physiotherapy, cognitive behavioral
therapy (CBT), and tinnitus retraining therapy (TRT) (15–17). In
particular in Germany, TRT has been modified substantially and
is often combined with a sound therapy or tinnitus noisers, i.e.,
noise generators used to mask or cover up the tinnitus sensation
(18). So far, only for CBT efficiency in the treatment of tinnitus
has been demonstrated in a randomized clinical trial (19).

Various therapies for chronic tinnitus have been developed
aiming to manipulate the hyperactive “tinnitus generator” in the
auditory cortex by neuromodulation via acoustic stimulation.
Beside some special German methods like the Heidelberger
music therapy (20) and the tinnitus-centered music therapy
(TIM) developed by Cramer (21), tinnitus noisers and maskers
are widely used (18). However, the recommendations for therapy
of chronic tinnitus with these instruments differ substantially,
and sufficiently large randomized clinical trials to demonstrate
the efficacy of commonly used interventions are lacking (22).
Moreover, none of the in Germany currently available tinnitus
noisers is able to efficiently mask tinnitus tones with frequencies
above 11 kHz. Thus, more advanced noisers have been developed
which offer additional acoustic stimulation such as sounds of
rainfall, ocean waves or wind chime.

Another approach of acoustic neuromodulation is the so-
called tailor-made notch music therapy (TMNMT), where
patients listen to music from which a frequency band of one
octave around their individual tinnitus frequency had been
removed (23). In this way neurons in the auditory cortex
coding the tinnitus frequency are subject to lateral inhibition
by neighboring neurons, whereas the afferent input to these
neurons is negligible. Results from magnetoencephalography
(MEG) have shown that the auditory evoked cortex activity
was reduced after 12 months and patients reported reduced
subjective tinnitus loudness (23). However, a recent double-blind
randomized controlled trial applying TMNMT for 3 months
on 100 patients with chronic tonal tinnitus failed to show
an improvement on tinnitus distress assessed by the Tinnitus
Questionnaire (TQ) (24).

A different approach is the acoustic coordinated reset (CR)
neuromodulation, which was developed by the Research Center
Juelich, Germany, and is based on theoretical and clinical studies
(25–28). The method aims to desynchronize the synchronous
hyperactive neuron population coding the tinnitus frequency
by sequential stimulation of different subpopulations of the
target population (25, 26, 29). For this purpose, an extensive
pitch-matching procedure is used to determine the individual
tinnitus frequency (30). Four acoustic stimulation tones are
then generated based on a computationally developed CR
algorithm. These tones are of different frequencies centered
around the patient’s tinnitus frequency, and their loudness
is individually adapted to the loudness of the tinnitus. Via
dedicated sound generators and ear phones the patients are
exposed to the acoustic stimulation for several hours per
day. The first blinded study reported by Tass et al. in
2012 with 63 patients proved the safety and showed clinical

efficacy of CR neuromodulation (28). Since then several clinical
studies with more than 500 patients suffering from chronic
tonal tinnitus have been conducted. The results revealed
that 60–75% of patients treated with CR neuromodulation
respond well to this therapy as evident from decrease in
tinnitus questionnaire scores and improvement of visual analog
scale (VAS) scores for tinnitus loudness and annoyance by
∼40% (14, 31, 32, Wurzer et al. submitted). Importantly,
these improvements are persistent and stable. MEG and
electroencephalography (EEG) data revealed specific alterations
in patients with chronic tonal tinnitus such as increased
oscillatory power in the delta frequency range and decreased
alpha power in the auditory cortex region (12, 33, 34). Upon
CR neuromodulation a normalization of the EEG pattern
was observed in therapy responding patients (14, 35). Despite
these promising results for the majority of chronic tinnitus
patients ∼30% of these patients experience no improvement
of their tinnitus after CR neuromodulation, the so-called non-
responders. Accordingly, efforts are made to further optimize the
therapy.

The currently used CR neuromodulation stimulation tones
depend exclusively on the tinnitus frequency. Theoretically, a 25–
30% overlap of the stimulation tone’s tuning curves would be
optimal. However, several years of clinical experience support
the notion that the patient’s hearing ability should be considered
in the individual adaption of the CR neuromodulation therapy.
Sensorineural hearing loss is known to be associated with
altered tuning curves, altered bandwidth of alternating masking
and a changed discrimination that might be relevant for the
acoustic overlap of the stimulation tones (36). Therefore, in
this feasibility study for the first time the patient’s tinnitus
frequency, the intensity of the adjusted stimulation tones as
well as his/her individual audiogram were taken into account
when calculating the stimulation tones for the so-called hearing
threshold adapted CR neuromodulation therapy (HTA-CR).
Basically, the intensity of the stimulation tones was identified to
be responsible for the neuronal recruitment. Stronger stimulation
tones recruit more neurons and have therefore a flatter tuning
curve (36). Since the individual subject is asked to adjust
the stimulation such that the tones are audible the adjusted
tone intensity strongly depends on the hearing threshold. The
experiments done by Hopkins and Moore (36) provide the
database linking the tone intensities and hearing loss with
the shape of the tuning curve, which is used to calculate the
adapted stimulation tones in an iterative approach. The simple
study design lacks any control group, since the goal of this
feasibility study was to test, if a hearing threshold adapted CR
neuromodulation could be applied and to obtain first results
which can be used as input for a larger, randomized and
controlled study.

The DesyncraTM for Tinnitus medical devices (30) used in
this study were programmed accordingly. The primary objective
of this study was to verify a clinically significant improvement
of chronic tinnitus by this adapted CR neuromodulation within
3–4 months, which was assessed by the tinnitus questionnaire
(Tinnitus-Fragebogen, TF) as per Goebel and Hiller [German
version of Hallam’s TQ (37)].
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MATERIALS AND METHODS

Study Participants
Twenty-five patients attending a specialized consultation session
for tinnitus were enrolled in this clinical study on acoustic CR
neuromodulation, which was conducted in a specialized center
run by an ear, nose and throat (ENT) specialist located inMunich,
Germany. All patients were comprehensively informed about
the scope, aim, benefits, and risks of study participation, and
a written informed consent was obtained from all participants
according to the Declaration of Helsinki and Good Clinical
Practice. The study was approved by the relevant ethics
committee (Ethics Committee of the Bavarian State Medical
Association, BLAEK 2016-136). The inclusion and exclusion
criteria are listed in Table 1.

Screening data obtained during the initial examination
(visit 0) are summarized inTable 2. The patients’ age was between
21 years and 82 years (mean 51.3 years); the male to female
proportion was 16–9.The hearing ability ranged from normal to
severe hearing loss. The average hearing loss was calculated from
the sum of hearing loss at 0.25, 0.5, 1, 2, 4, 6, and 8 kHz. The
frequencies 6 and 8 kHz were included in the calculation taking
the hearing loss in the high frequency range of the patients into
account. Patients were classified into three hearing groups: group
1 with normal hearing ability (mean hearing impairment < 20
dB); group 2 with mild hearing loss (mean hearing impairment
between 20 and 40 dB), and group 3 with moderate to severe
hearing loss (mean hearing impairment > 40 dB, Table 2) (31,
38). Five patients using hearing aids were included in the study.

TABLE 1 | Overview of inclusion and exclusion criteria.

Inclusion criteria

1. Age ≥ 18 years

2. Primary chronic tinnitus ≥3 months [defined by AAO HNSF

guidelines (40)]

3. Tonal tinnitus

4. Tinnitus frequency of 0.4–10 kHz (in exceptional cases up to 12 kHz)

5. TF score > 30 (i.e., at least severity grade II)

6. Able to hear all stimulation tones

7. Commitment to wear the device for 4–6 h/day

8. No other tinnitus treatment in the period of the clinical investigation

Exclusion criteria

1. Secondary / somatic tinnitus [defined by AAO HNSF guidelines (40)]

2. Atonal, pulsatile, or intermittent tinnitus

3. Hearing loss > 70 dB HL between 0.25 to 10 kHz

4. Tinnitus main frequency differs >10% between right and left ear

5. Health related or other reasons that might prevent the patient to

complete the study

6. Use of medication that might cause tinnitus, i.e., daily high-dosed

NSAIDs (≥1,000 mg/d) and salicylates at doses higher than for

cardio-protection, loop diuretics, chemotherapy agents (e.g., cisplatin)

7. Permanent conductive hearing loss ≥15 dB for more than two

frequencies in one ear

8. Persistent eardrum defect

9. Atresia or malformation of the outer ear

10. Acute otorrhoea

11. Acute or fast progressing hearing loss within the last 90 days

12. Severe psychiatric disorders

Chronic tinnitus duration was between 1 and 35 years (median
8.0 years). Themean TF score at inclusion was 50.4± 12.9 points,
and most of the patients suffered from tinnitus with severity
grade ≥ 3. Moreover, all patients have been treated before study
start with at least two different therapeutic approaches (cortisone
infusion, noisers, acupuncture, etc.) without success.

Description of the Medical Device
For HTA-CR neuromodulation the DesyncraTM for Tinnitus
Therapy System was used, which is a Class IIa medical device
(CE-0123, certified 2016 by TÜV Süd, Germany; FDA certified
2016 by FDA, no. K151558). To adapt the system for HTA-
CR neuromodulation, the relation of the stimulation tones to
each other and to the individual tinnitus frequency was modified
taking into account the individually adjusted tone intensity and
measured hearing loss (Figure 1). The algorithm of time and tone
sequence as used for the standard acoustic CR neuromodulation
was left unaltered. The adjustments were done according to the
guidelines and controlled after 4–6 weeks. The patients were
asked to use the device daily for 4 h on average. The total duration
of the study was 4 months.

Study Conduct
During the initial examination (visit 0) medical and tinnitus
history was assessed, a medical examination of ear, nose, throat,
and the stomatognathic system was performed as well as manual
examination of the cervical spine. A hearing threshold and
high frequency (11–18 kHz) audiogram was recorded, and a
speech audiogram and evaluation of hearing aid performance was
performed if required. Moreover, measurement of impedance
and otoacoustic emissions, repeated tinnitus pitch matching and
tuning curve measurement at 1 kHz were conducted. Patients
completed the TF and, if found eligible and interested in study

TABLE 2 | Screening data of study population (n = 25).

Variable Mean ± SD (range)

AGE (YEARS)

Overall 51.3 ± 13.6 (21–82)

By Hearing Impairment

Group 1 (< 20 dB, n = 11) 46.3 ± 12.2 (21–64)

Group 2 (20–40 dB, n = 7) 47.9.4 ± 6.8 (39–59)

Group 3 (> 40 dB, n = 7) 62.6 ± 15.5 (37–82)

Tinnitus duration (years) 8.0* (1–35)

TF score 50.4 ± 12.9 (32–73)

Number of patients (%)

SEX

# Male 16 (64.0%)

# Female 9 (36.0%)

TINNITUS SEVERITY

Grade 1 ( 0–30 points) 0 (0.0%)

Grade 2 (31–46 points) 12 (48.0%)

Grade 3 (47–59 points) 6 (24.0%)

Grade 4 (60–84 points) 7 (28.0%)

*Value given as median.
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participation, they received the EC approved patient information
and informed consent form.

At the start of the study (= visit 1) patients were fully informed
about the study and signed the informed consent form. ENT
examinations, audiogram recording, and tinnitus pitch matching
procedures were repeated, and patients completed the following
questionnaires to assess various aspects of the tinnitus: TF,
Tinnitus-Beeintraechtigungsbogen (TBF-12), Tinnitus Handicap
Inventory (THI, German version), and Tinnitus Functional
Index (TFI, only available in English). The TFI contains numeric
rating scales (NRS) which were used to assess tinnitus loudness
(NRS-L) and annoyance (NRS-A). The baseline scores of the
questionnaires are summarized in Table 3. After completing all
study assessments of visit 1 patients received their individually
programmed mobile device and were also provided with detailed
instructions and information relating to device usage at home.

Check-ups were performed after 5 ± 1 weeks (= visit 2) and
9 ± 1 weeks (= visit 3). During the visits questionnaires were
repeated, tinnitus pitch matching performed and the stimulation
tones adjusted to the latest tinnitus frequency. Adverse events,
adverse device effects and general problems with the device were
collected.

The final visit took place after 16 ± 2 weeks (visit 4) with
determination of the latest tinnitus frequency, tuning curve

FIGURE 1 | Graphic presentation of the factors used to determine the

frequency of the four stimulation tones (f1-f4) for HTA-CR neuromodulation (line

with dots) and standard CR neuromodulation (dash line). It is assumed that the

stimulation tones are perceived ∼10 dB above the individual hearing threshold.

A patient with normal hearing ability hears the tones with 10 dB HL whereas a

patient with a hearing loss of 40 dB at the tinnitus frequency hears the tones

with 50 dB HL. Taking the last case as example, the factors to determine the

stimulation tones are 0.72 (tone 1 = f1), 0.85 (f2), 1.19 (f3), and 1.42 (f4) using

the HTA-CR neuromodulation corresponding to a deviation of −5.58% (f1),

−5.51% (f2), 8.20% (f3), and 1.18% (f4) compared to the standard CR

neuromodulation factors. These factors are then multiplied with the individual

tinnitus frequency to calculate the frequency of the stimulation tones.

assessment, audiogram control, and completion of TF, TBF12,
THI, and TFI by the patient.

Outcome Variables
For all questionnaires the scores were calculated according to the
instructions coming with the questionnaire.

To evaluate the therapy outcome TF score change from visit 1
to visit 4 was calculated (primary endpoint). An at least 15-point
reduction in TF score during the study period (16± 2 weeks) was
regarded as success (“Winner,” i.e., great responder), a reduction
of 6–14 points was defined as an improvement (“Responder”). If
a change between−5 and+5 points was observed, the result was
classified as unchanged (“Non-responder”), and increases by at
least 6 points were judged as deterioration (“Loser,” i.e., worsened
case).

Statistical Analysis
Scores obtained from questionnaires are summarized as mean
± standard deviation (SD). Changes from baseline (scores
before treatment minus scores after treatment) concerning scores
for all questionnaires were analyzed by paired Student’s t-test.
To assess potential relationships between continuous variables
(age, tinnitus duration, tinnitus severity, and therapy outcome)
Pearson’s coefficient of correlation (r) was calculated. Response
rates were compared between sex groups and between groups of
hearing impairment by use of Fisher’s exact test for contingency
tables. All statistical analyses were performed by M.A.R.C.O.
GmbH & Co.KG, Institute for Clinical Research and Statistics
(Düsseldorf, Germany) using SAS R© version 9.3. A p < 0.05 was
considered statistically significant.

RESULTS

All patients completed the study. Due to technical reasons (i.e.,
vacation dates) the duration of the study was slightly longer than
originally planned. On average patients used the DesyncraTM for
Tinnitus Therapy System for 16 weeks (from visit 1 to visit 4).

At baseline a positive correlation was found between age and
duration of the tinnitus (r = 0.43, p = 0.033), whereas age and
tinnitus severity were not correlated (r= 0.31, p= 0.13).

HTA-CR neuromodulation resulted in a significant reduction
of tinnitus and associated discomfort. At the beginning of
the study, the mean TF score was 44.9 ± 12.1 (Table 3). At
the end of the study it was reduced to 32.6 ± 15.5 points,

TABLE 3 | Baseline scores of questionnaires (n = 25). NRS-L and NRS-A scores

were taken from the TFI questionnaire.

Variable Mean ± SD (range)

TF score 44.9 ± 12.1 (27–71)

TBF-12 score 13.6 ± 4.7 (5–23)

THI score 52.5 ± 20.9 (10–92)

TFI score 55.1 ± 18.7 (11.2–86.6)

NRS-L score 6.5 ± 2.2 (1–10)

NRS-A score 5.4 ± 2.7 (1–9.5)
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corresponding to reduction by 27.4% (p < 0.001) compared
to baseline (Figure 2A). As shown in Figure 2B, for 10 out of
25 study participants (40%) the TF score was strongly reduced
by more than 15 points, which classified them as “Winners.”

Moreover, for additional 8 out of 25 patients (32%) a reduction

in the range of 6 to 14 points was observed (“Responders”).
Thus, the overall response rate (“Winners” plus “Responders”)

results to 72% in this study. No change of tinnitus was observed

in 5 out of 25 patients (20% “Non-responder”) treated with

HTA-CR neuromodulation while 2 patients (8%) experienced a
deterioration of the pre-existing conditions (“Losers”).

Interestingly, mean TF scores were higher at the initial
examination compared to study start (visit 0: 50.4 ± 12.9 points;
visit 1: 44.9 ± 12.1 points; see Tables 2, 3), corresponding to a
reduction of 10.9% (p= 0.002).

Table 4 shows descriptive statistics relating therapy outcome
with baseline characteristics. Response to the therapy (i.e.,
improvement of TF score) did not seem to depend on age

(r= 0.07, p= 0.733) and tinnitus duration (r= 0.31, p= 0.135),

whereas it appears to increase with tinnitus severity (r = 0.36,
p = 0.079). Response rates were not significantly different
between male and female patients (62.5 vs. 88.9%, p = 0.355).

With regard to the degree of hearing impairment, therapy
response was not significantly different between the hearing
groups (p = 0.65). Both in group 1 and group 3 more than 40%

of the patients experienced such an improvement of TF score that
they were classified as winners.

The mean score obtained from TBF-12 decreased significantly
by 19.7% (p = 0.006) from 13.6 ± 4.7 points at baseline to 10.9
± 5.4 points after 16 ± 2 weeks of HTA-CR neuromodulation

therapy (Figure 3A). For the THI questionnaire, with a

maximum score of 100 points, a significant reduction of 24.5%
(visit 1: 52.5 ± 20.9 points; visit 4: 39.6 ± 22.4 points; p = 0.013)
was observed (Figure 3B). Similarly, a significant decrease by
22.1% (p = 0.003) from 55.1 ± 18.7 points to 42.9 ± 23.3
points was found for the TFI (Figure 3C). To assess tinnitus
loudness and annoyance, NRS scores were evaluated. For NRS-L
(Figure 4A), the baseline value at visit 1 was 6.5± 2.2 points and

TABLE 4 | Therapy outcome related to baseline characteristics.

Winners

(n = 10)

Responders

(n = 8)

Non-

responders

(n = 5)

Losers

(n = 2)

Mean age

(range)

53.5 years

(40–82)

47.8 years

(21–71)

53.6 years

(39–77)

48.5 years

(37–60)

Median tinnitus

duration

(range)

8.5 years

(1–35)

8.0 years

(3–20)

7.0 years

(3–18)

6.0 years

(1–11)

SEX

# male (n = 16) 7 (43.7%) 3 (18.8%) 4 (25.0%) 2 (12.5%)

# female (n = 9) 3 (33.3%) 5 (55.6%) 1 (11.1%) 0 (0.0%)

TINNITUS SEVERITY (# PATIENTS)

Grade 1 (n = 2) 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%)

Grade 2 (n = 15) 5 (33.3%) 5 (33.3%) 3 (20.0%) 2 (13.3%)

Grade 3 (n = 6) 3 (50.0%) 1 (16.7%) 2 (33.3%) 0 (0.0%)

Grade 4 (n = 2) 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%)

HEARING IMPAIRMENT (# PATIENTS)*

Group 1 (n = 11) 5 (45.5%) 4 (36.4%) 2 (18.2%) 0 (0.0%)

Group 2 (n = 7) 2 (28.6%) 3 (42.9%) 2 (28.6%) 0 (0.0%)

Group 3 (n = 7) 3 (42.9%) 1 (14.3%) 1 (14.3%) 2 (28.6%)

*Refer to Table 2.

FIGURE 2 | Evaluation of tinnitus by TF questionnaire. 25 patients participated in the study and completed TF at visit 1 (baseline, 0 weeks) and visit 4, i.e., after 16 ±

2 weeks of therapy with HTA-CR neuromodulation. (A) Box plots of TF scores showing median (solid line), mean (dash line), 5th and 95th percentile; n = 25,

*p < 0.001 (paired t-test). (B) Percentage of patients classified as “Winners” (TF score reduced by ≥15 points), “Responders” (TF score reduced by 6–14 points),

“Non-responders” (change between −5 and +5 points), and “Losers” (TF score increased by ≥ 6 points).
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FIGURE 3 | Evaluation of tinnitus by TBF-12 (A), THI (B), and TFI (C) questionnaires. All patients completed the questionnaires at visit 1 (baseline, 0 weeks) and visit 4

(16 ± 2 weeks). Results are shown as box plots with median (solid line), mean (dash line), 5th and 95th percentile; n = 25, *p < 0.05 (paired t-test).

5.5 ± 2.9 points at visit 4 corresponding to a decrease of 14.9%
(p = 0.022). NRS-A scores were consistently reduced by 16.7%
(visit 1: 5.4± 2.7 points; visit 4: 4.5± 2.8 points; p= 0.106) after
16± 2 weeks of HTA-CR neuromodulation therapy (Figure 4B).

During the study six adverse events defined as any untoward
medical occurrence, and two serious adverse events (SAEs) were
reported. Six out of 25 patients reported a temporary worsening
of tinnitus symptoms, sensation of head pressure and headache.
These side effects were reversible and rapidly disappeared after
adjustment of the stimulation or daily stimulation duration. One
patient experienced an acute psychosis (anxiety disorder) at the

end of the study and was hospitalized for 14 days. Another
patient had an unknown cyclothymia and experienced a serious
depressive phase during the study resulting in hospitalization for
several weeks. Both SAEs were evaluated as not related to the
therapy with HTA-CR neuromodulation.

DISCUSSION

This study investigating HTA-CR neuromodulation with use
of the DesyncraTM for Tinnitus therapy system is based
on an adapted form of the standard CR neuromodulation,
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FIGURE 4 | Evaluation of tinnitus by NRS for loudness (A) and annoyance (B). Patients completed the scales as part of the TFI questionnaires at visit 1 (baseline, 0

weeks) and visit 4 (16 ± 2 weeks). Results are shown as box plots with median (solid line), mean (dash line), 5th and 95th percentile; n = 25; *p < 0.05 (paired t-test).

which was developed through many years of research at the
Research Center Juelich, Germany. First results with standard
CR neuromodulation from 2012 revealed response rates of 75%
in patients with chronic tonal tinnitus (28), which has been
confirmed in recent studies comprising meanwhile more than
500 patients (14, 31, 32, Wurzer et al. submitted). A larger
double blind study to prove the effectiveness of this method
has been carried out in England (RESET2, NCT01541969), but
due to serious technical errors the results were not useable (39).
Thus, new randomized double blind studies are currently being
conducted. Until the results from these studies are available, the
effectiveness of CR neuromodulation is critically evaluated in
daily clinical practice using non-interventional study approaches
(31, 32, Wurzer et al. submitted).

The stimulation tones used for standard CR neuromodulation
are determined based on theoretical considerations and
experimental results. In an outpatient setting, 67% of
patients suffering from tonal tinnitus experienced significant
tinnitus improvements after applying this method for 6–
12 months (31, Wurzer et al. submitted). However, the
altered processing of acoustic stimuli in the whole auditory
system associated with sensorineural hearing loss and
further experimental results suggest that the stimulation
tones might and should be further optimized by adjusting
them to the patient’s individual tone thresholds. Thus,
we applied this idea in our study using the individual
stimulation tone intensity and the experimental results
obtained by Hopkins and Moore (36). The technical
implementation of HTA-CR neuromodulation caused no
problem.

The primary objective of the study was to evaluate whether
the adapted stimulation with HTA-CR neuromodulation leads
to considerable tinnitus improvements. Our results show

that despite the small number of patients (n = 25)
and shorter duration of the study (i.e., ∼4 months) HTA-
CR neuromodulation has a remarkable response rate of
72%. A similar response rate was seen with standard CR
neuromodulation only in the first trial (28) or after 6 months
(31, Wurzer et al. submitted). Moreover, most of the patients
reported first subjective changes, e.g., subjective change of
tinnitus frequency, already after 2–3 weeks whereas such
observations were reported not until 6–8 weeks with standard CR
neuromodulation (31, Wurzer et al. submitted).

Unfortunately, the modified stimulation caused a temporary
deterioration of tinnitus symptoms in two patients; another
control examination after study end revealed that their
TF scores were similar to before study start. Based on
these first observations it seems reasonable to assume
that HTA-CR neuromodulation might induce accelerated
changes of tinnitus symptoms as compared to standard CR
neuromodulation whereas the overall improvements are
similar.

We also reported here a 10.9% improvement of TF score
from screening visit 0 to visit 1. This change occurred before
therapy start and reflects positive expectations on the therapy
outcome. However, most studies do not report detailed data on
this “pre-study effect” although it is well-known from clinical
experience. Importantly, the effect of HTA-CR neuromodulation
reported in our study was calculated as TF score difference
between baseline visit 1 (mean TF score: 44.9 ± 12.1 points)
and end of study visit 4 (mean TF score: 32.6 ± 15.5 points)
resulting in a mean TF score change of 12.3 points. If we consider
the TF scores from screening (mean TF score: 50.4 ± 12.9
points), the overall result would even be better resulting in a
mean TF score change of 17.8 points and a response rate of 88%
(i.e., 60% “Winners” plus 28% “Responders”). Only for 3 of 25
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patients (12%) HTA-CR neuromodulation would result in no
improvement of their tinnitus symptoms.

In summary, the results of this small feasibility study suggest
that the new HTA-CR neuromodulation is at least comparable
to the standard CR neuromodulation and might provide
another therapeutic option in the treatment of chronic tonal
tinnitus.
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Nightmares are a comparatively frequent phenomenon. They are often accompanied
by emotional distress and gain clinical relevance when recurrent. To assess how much
distress nightmares cause the individual, the Nightmare Distress Questionnaire (NDQ,
Belicki, 1992) is probably the most often used measure. However, its validity is still
disputed. To analyze the validity of the proposed three NDQ subscales in more detail,
we conducted an experience sampling study, gathering data either in real-time or
short retrospective timeframes over the course of 22 days twice per day (N = 92
participants). The measurements were implemented via a mobile app using participants’
own smartphones. Besides the dream quality, we assessed concepts on a daily basis
that past research found to be related to dreams. These included critical life events,
alcohol consumption, eating behavior, and well-being. We found that only the subscales
“general nightmare distress” and “impact on sleep” showed convergent as well as
divergent validity. The validity of the subscale “impact on daily reality perception” is
unclear. If at all, this subscale is rather indirectly associated with nightmare distress.
Furthermore, all of the NDQ items did not differentiate between a bad dream and a
nightmare, which suggests that the NDQ might rather be a measure of negative dreams
in general and not nightmares in particular. Based on the present experience sampling
design, we propose to advance the validation process by further possibilities, such as an
item-level, person-level, and multi-level approach. This approach seems to be especially
fruitful for concepts which are not very salient (e.g., laughter), can hardly be remembered
retrospectively (e.g., dream content), or are potentially threatened by recall biases (e.g.,
alcohol consumption).

Keywords: nightmare distress, validation, experience sampling, smartphone, psychometrics, questionnaire

INTRODUCTION

Nightmares are frightening dysphoric dream sequences accompanied by feelings of fear, usually
leading to the awakening of the dreamer. Interestingly, nightmares are a comparatively frequent
phenomenon (Wood and Bootzin, 1990) being more prevalent in children (compared to the
elderly; Salvio et al., 1992) and women (compared to men; Cuddy and Belicki, 1992; Levin, 1994).
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Epidemiological studies found prevalence rates of 2–6% of the
population having even recurrent nightmares (more than once a
week; Belicki and Belicki, 1982; Janson et al., 1995; Ohayon et al.,
1997; Schredl, 2010).

Although nightmares are a phenomenon well known to
the general public, they are often studied in connection to
psycho-pathological symptoms such as sleep disturbances, PTSD,
anxiety, or neuroticism (e.g., Levin, 1994; for a review, see
Nielsen and Levin, 2007) to name just a few. Neurophysiological
studies have found that in people with a nightmare disorder, the
activation in parts of the anterior cingulate cortex and parietal
lobule were increased and in the frontal and occipital gyri
decreased (Shen et al., 2016). It was also shown that people with
frequent idiopathic nightmares had differences in the density
of slow and fast spindles compared to a control group (Picard-
Deland et al., 2018). These studies using fMRI and EEG suggest
that there are neurophysiological differences between people
having frequent nightmares and those that do not.

Nightmares are often characterized by considerable emotional
distress possibly having a dream function by regulating emotions
(Blagrove et al., 2004). In general, there are several models of
nightmare production (e.g., psychoanalytic models; personality
and evolutionary models; neurobiological models) of which the
neurocognitive model – as one of the latest suggestions – seems
to integrate most of the principles of past models (Nielsen
and Levin, 2007). This model assumes that nightmares are the
result of a dysfunction in a network of affective processes. These
processes serve as an adaptive function to extinct fear memory.
If this fear extinction process is disturbed, nightmares emerge
(Nielsen and Levin, 2007).

Besides these models of nightmare genesis, a large corpus
of studies focuses on the consequences of having nightmares
mostly manifested in (psychological) distress. This so-called
nightmare distress has been conceptualized differently in the
past (e.g., nightmare intensity, nightmare effects, nightmare
related symptoms; for a review, see Böckermann et al., 2014).
One conceptualization that has been frequently studied is the
subjective appraisal of how much distress nightmares cause in
the sufferers. To assess these subjective feelings, the Nightmare
Distress Questionnaire (NDQ, Belicki, 1992) is probably the most
often used questionnaire. It consists of thirteen questions with
Likert-type answering options purportedly assessing trait-like
distress caused by nightmares.

Although the NDQ has good reliability (Cronbach α) and is
frequently used in research, its factor structure and validity is
still debated. For example, Martínez et al. (2005) found three
subscales in a sample of 162 university students. However,
their study only included 12 participants, who reported having
nightmares on a weekly basis. A more recent, well-powered
study by Böckermann et al. (2014) also analyzed the factor
structure of the NDQ by recruiting 213 individuals having one
or more nightmares in a typical week. Again, a 3-factor solution
was found in a principal component analysis (PCA) with the
factors general nightmare distress, impact on sleep, and impact on
daily reality perception. Although the authors found convergent
as well as divergent validity between the three subscales with
other nightmare related concepts (e.g., nightmare frequency,

sleep quality, fear, depression) they questioned the reliability
and validity of the subscale impact on daily reality perception.
Because of these shortcomings the authors call into question
if this subscale is an integral part of nightmare distress at all
(Böckermann et al., 2014).

Although validation studies are important steps in developing
new measures or verifying established ones, most of them follow
a cross-temporal view, i.e., data are assessed at one particular
point in time. For some concepts, this procedure is sufficient.
But for concepts that include state aspects, a longitudinal view
is necessary (e.g., Reis et al., 2016). In the present case of
nightmare distress, related concepts (e.g., sleep quality, dream
quality) are mostly assessed retrospectively, i.e., participants
should remember how many nightmares (or other kind of
dreams such as a nice dream) they had in a particular period
(usually a couple of weeks). Meanwhile it is well accepted that
these retrospective judgments are often biased (e.g., Schwarz
and Sudman, 2012; Monk et al., 2015; Pryss et al., 2018). This
especially pertains for events, which are not very salient, i.e.,
are not strong enough to make it into conscious awareness.
Although this may not apply for nightmares because of their
disturbing nature accompanied with awakening, sweating, and/or
being out of breath, it might apply for other types of dreams, e.g.,
nice dream, neutral dream. Even for nightmares, retrospective
judgments might not be accurate due to long periods that have
to be judged. One possible solution are longitudinal designs.
The experience sampling method (ESM) with up to several
measurements per day offers the opportunity to increase the
accuracy within a longitudinal framework (Mehl and Conner,
2012).

Experience sampling offers the possibility to capture
participants’ everyday life behavior and has the advantage that
collected data is more accurate than retrospective self-report
data (Conner et al., 2009; Kurtz and Lyubomirsky, 2011;
for an example about dream frequency, see Blagrove et al.,
2004). Research on nightmare distress already has applied
experience sampling designs (e.g., Wood and Bootzin, 1990;
Köthe and Pietrowsky, 2001; Blagrove et al., 2004; Lancee and
Schrijnemaekers, 2013). However, their usage is still quite rare,
despite the potential to advance the field substantially (for a
similar recommendation, see Nielsen and Levin, 2007).

Furthermore, using ESM offers ways for the development
of measures by advancing the validation and development
process by another level – the longitudinal one (for a
similar argumentation, see Gillath et al., 2009). Usually, scale
development and item selection is done by factor loadings,
item difficulty, or stability over time when it comes to traits
(usually one or two retests). With ESM designs, we have many
more measurement occasions, which offers the possibility to
additionally judge the deviations of measurements over time (e.g.,
Reis et al., 2016). For example, for a measure of state anxiety, a
validation step could be to select those items which show large
variation, i.e., are capable to assess a large variety of anxiety levels
in everyday life. This follows the state logic of changing anxiety
levels, validated in a within-person design capturing momentary
changes. ESM studies are particularly powerful to investigate
these changes. Furthermore, ESM designs offer the possibility to
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assess events (e.g., nightmares) alongside the items longitudinally
to examine contextual associations (Shiffman et al., 2008). These
can be used for the judgment of discriminatory power of items
regarding participants’ behavior, i.e., predictive validity.

In the present study, we applied such an approach by adding
an ESM based level to the cross-sectional assessment via the
NDQ. We utilized the longitudinal data to examine the validity
of the NDQ. First, we assessed dream quality longitudinally and
analyzed whether the items and subscales of the NDQ were able
to differentiate between dream qualities. Second, we aggregated
longitudinally assessed events and psychological measures to
create indicators that are less influenced by recall bias than
retrospective judgments. We used these aggregated measures
to analyze convergent and discriminant validity of the NDQ.
We included variables, which did show some connection to
nightmares or bad dreams in the past. For example, it has been
shown that nightmares are associated with lower well-being (e.g.,
Levin and Fireman, 2002), occurrence of life events (e.g., Dunn
and Barrett, 1988), alcohol consumption (e.g., Munezawa et al.,
2011), and food intake (e.g., Nielsen and Powell, 2015). Third,
we analyzed whether the NDQ had predictive validity for dream
quality, taking the multilevel structure of the data into account.

MATERIALS AND METHODS

Participants
The sample constitutes a convenience sample from a community
in Germany. Research assistants recruited participants by word-
of-mouth through friends, relatives, and friends-of-friends
resulting in a sample size of N = 108. Eight participants only
filled in one questionnaire (out of 44 possible ones) during the
longitudinal phase and another eight participants failed to fill
in the cross-sectional questionnaire. The remaining participants
(N = 92) were mostly students (93%) with an average age of 22.9
years (SD = 6.9, range 17–67). Female participants comprised
71% of the sample (one participant did not disclose his/her sex).

All participants gave written informed consent prior to their
participation in accordance with the Declaration of Helsinki,
and guidelines of the Department of Psychology, University of
Konstanz. Approval by an ethics committee was not necessary
because the study did not affect the physical or psychological
integrity, the right for privacy, or other personal rights or
interests. Data collection was anonymous and no harmful
procedures were used. Furthermore, participants were informed
that they could withdraw at any time during the study without
negative consequences.

Measures
Daily Questionnaire
Participants had to fill in the daily questionnaire two times a day,
once in the morning and once in the evening for 22 days. Most
variables of interest for the current study were only assessed in
the morning. These were critical life events, alcohol consumption,
eating behavior, and dream quality. They were reported for the
day and night prior to the assessment. The exact wording of the
items was: (1) Did you have a critical life event yesterday (yes/no)?

accompanied by a short definition what we meant by life event
(“A situation or event, which you experienced as disturbing,
traumatic, or stressful and which bothered you beyond that
situation/event, for example, separation from partner, accident,
job conflicts, and so forth.”); (2) Did you drink alcohol yesterday?
(yes/no); (3) Did you have a feeling of fullness prior to going to
bed? (yes/no); (4) How was your dream last night? (nice dream,
neutral dream, bad dream without awakening, bad dream with
awakening, I cannot remember; see Table 1). Well-being was
assessed as a state measure at both times of the day (Diener
et al., 1999). Participants had to answer the question “How is your
current well-being?” [visual analogue scale from 0 = very bad to
100 = very good]. There were further questions asked, which are
not part of this study (e.g., attractiveness, loneliness).

Internet-Based Cross-Sectional Questionnaire After
the ESM Part
In the final questionnaire, we assessed sociodemographics (age,
sex, occupation), nightmare distress (NDQ) as well as further
concepts which are not part of this study (e.g., Extraversion,
subclinical Narcissism, Satisfaction with Life).

The Nightmare Distress Questionnaire (NDQ; Belicki, 1992)
is a 13-item measure using 5-point Likert-type scales as the
response format (10 items with 1 = never to 5 = always; 2 items
with 1 = not at all to 5 = a great deal; 1 item with 1 = not
at all interested to 5 = extremely interested). The NDQ has
been proposed to measure three facets of nightmare distress
(Böckermann et al., 2014). These are labeled general nightmare
distress (NDQ General), impact on sleep (NDQ Sleep), and impact
on daily reality perception (NDQ Daily Reality). We did not
instruct participants to consider a specific time frame (e.g., in the
last year) for their responses.

E-Diary Procedure
The design of the study followed an experience sampling
methodology (ESM; real-time and multiple time point
measurements) implementing smartphones. A smartphone
app was designed for this project and made freely available
through the Google Play Store. Participants could directly
download the app anonymously. A back-end server software
realized communication with the app as well as the storage of
data. When the app was opened for the first time, participants had
to provide informed consent and were asked basic demographics
once (age, sex, nationality). After this initial stage, the main
screen appeared showing the items depending on the time of
the day. Before midday the morning items were presented,
after midday the evening items. Participants were reminded via
text messages or WhatsApp messages to do their ratings. They
filled in the items while being in their natural surroundings.
The reminders were sent out twice per day for a duration of 22
days. The first daily reminder was sent out during the morning
time frame between 8 a.m. and 10 a.m. and the second daily
reminder during the evening time frame between 6 p.m. and
9 p.m. The reminders followed a time-contingent sampling
approach, meaning they were sent at random times within time
frames. The compliance rate was on average 90.3%, i.e., only
about 10% of reminders were missed. Missingness for each
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measurement occasion was very low ranging from 1.7 to 2.4%.
Missingness did not increase or decrease over time as indicated
by the correlation between measurement point and percentage of
missingness: Spearman r =−0.09, p = 0.56. After the ESM part of
the study, the Internet-based cross-sectional questionnaire was
administered. Participation was remunerated by optional entry
to a raffle (two gift vouchers for 20€ each) or by course credit (for
students). The entire study was run in German.

Statistical Analyses
Our operational definition of a nightmare was a bad dream with
awakening (in contrast to a bad dream without awakening). For
the item-level analyses, we calculated a generalized linear mixed-
effects model (GLMM; Bates et al., 2015). Occasions (level 1) were
nested within persons (level 2) and the outcome was the dream
quality. Dream quality was transformed into three dummy-coded
variables (nice, bad, nightmare). The categories neutral and don’t
know did not show substantial differences in nightmare distress
and were therefore combined as the reference category. Three
logistic GLMMs were calculated, testing the predictive value of
the NDQ items in distinguishing the three dream qualities from
the neutral reference category. The NDQ items were entered as
level 2 predictors into the model and grand-mean centered (cgm;
Enders and Tofighi, 2007).

Level 1: logit (Dream qualityti ) = π0i + eti
Level 2: π0i = β00 + β01 respective NDQ item.cgmi + r0i

For the person-level analyses, we aggregated the dataset on
the person level. For continuous level 1 variables, this resulted in
means and mean squared successive differences (MSSD; Ebner-
Priemer et al., 2009). For dichotomous level 1 data, frequencies
were calculated. MSSDs have the advantage of reflecting the
deviation of values across time more accurately than classical
standard deviations, because they consider the time sequence.
Instead of just using the deviation from the mean, the deviation
of a certain value from the preceding value in the time sequence
is calculated, incorporating information from the time sequence
format.

For the multi-level (person and occasion) analyses, we
calculated a GLMM for dichotomous data in line with the item-
based analyses. The level 1 predictors were current well-being,
alcohol consumption the day before, life event the day before,
and the feeling of fullness before going to sleep. The three
subscales of the NDQ were entered as level 2 predictors into the
model.

Prior to the analyses we person-mean centered all level 1
variables and grand-mean centered all level 2 variables (Enders
and Tofighi, 2007). Following the recommended procedure by
Curran and Bauer (2011), we reintroduced the person-mean from
level 1 centering at level 2. The person-mean centered variable
then represents fluctuating state aspects whereas the person-
mean itself represents stable trait aspects (cwc = values centered
within context, i.e., around each participant’s mean; pm = person
mean; cgm = centered grand-mean). For the final analysis, we
used the following model for each of the three dummy coded
dream qualities:

Level 1: logit (Dream qualityti ) = π0i + π1i Well-being.cwcti
+ eti

Level 2: π0i = β00 + β01 Well-being.pmi + β02 NDQ
General.cgmi + β03 NDQ Sleep.cgmi + β04 NDQ Daytime
Reality.cgmi + r0i

Level 2: π1i = β10 + r1i

RESULTS

To judge data quality, we asked for participants’ sex and age at
the beginning of the ESM part of the study (assessed via the
smartphone app) as well as at the end of the study, 22 days later
in the final online questionnaire. Participants’ sex corresponded
to 100% and age to 99%. Only one participant diverged with
a difference of 7 years. Because the rest of the data from this
participant was not suspect, we retained this participant in the
data set.

The NDQ had satisfactory reliability (Cronbach α = 0.89).
The subscales suggested by Böckermann et al. (2014) also elicited
good to acceptable reliability scores: General distress (NDQ
General; 5 items): α = 0.86; Impact on sleep (NDQ Sleep; 3 items):
α = 0.66; Impact on daytime reality perception (NDQ Daytime
Reality; 4 items): α = 0.73. In contrast to Böckermann et al. (2014),
the impact on daytime reality perception subscale had in our case
acceptable reliability (Böckermann et al., 2014; α = 0.51).

Although our data potentially allowed to differentiate between
whether the nightmare was post-traumatic (i.e., due to a life-
event) or idiopathic (no known cause), the number of nightmares
after a life event was just n = 15. Therefore, we did not separate
between those two types due to power reasons.

In general, only two participants could not remember any
dream at all. All the other participants could remember up to
every dream during the 22-day time frame (for dream frequency,
see Table 1). On average, 10.2 dreams were recalled (SD = 5.3).
The prevalence rate of recurrent nightmares (more than once a
week) was 5% in our sample, which is very much in line with
past research (e.g., Schredl, 2010). Furthermore, the correlation
between nightmare distress and nightmare frequency was small
to moderate (rs = 0.13–0.27, see Table 2) again in line with past
research (e.g., Belicki, 1992). Participants who had at least one
nightmare during the study phase (n = 48) reported an average
of 2.1 nightmares within the 22 days (SD = 1.16, range 1–6).
In general, we found no sex-specific effects regarding dream
frequency [nightmares: t(89) = 1.09, p = 0.278, d = 0.25; nice
dream: t(89) = −1.19, p = 0.239, d = −0.28; neutral dream:
t(89) = 0.97, p = 0.337, d = −0.22] except for bad dreams.
Women had a higher frequency of bad dreams compared to
men, 2.3 vs. 1.3, respectively [t(89) = 2.07, p = 0.042, d = 0.48].
Furthermore, we found no age-specific effects regarding the
frequency of the different dream qualities (all rs > −0.132, all
ps > 0.213).

Item-Level Analyses
To analyze if the items of the NDQ were associated with
the occurrence of the different dream qualities (nice, bad,
nightmare), we calculated GLMMs for each NDQ item. If
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TABLE 1 | Descriptives of variables under investigation.

Dream quality Dream frequency (%)

Nice dream 243 (14.4)

Neutral dream 394 (23.4)

Bad dream without awakening 176 (10.4)

Nightmare 103 (6.1)

Don’t know 769 (45.6)

Sum 1685 (100%)

Number of days with a critical life events N of participants (%)

0 35 (38.9)

1 20 (22.2)

2 13 (14.4)

3 9 (10.0)

4 5 (5.6)

>4 (max = 9) 8 (8.8)

Sum 90 (100.0)

Number of days where alcohol was consumed N of participants (%)

0 6 (6.7)

1 8 (8.9)

2 5 (5.6)

3 5 (5.6)

4 9 (10.0)

5 12 (13.3)

6 8 (8.9)

7 7 (7.8)

>7 (max = 17) 30 (33.5)

Sum 90 (100.0)

Number of days with food intake before sleep N of participants (%)

0 17 (18.9)

1 16 (17.8)

2 7 (7.8)

3 12 (13.3)

4 8 (8.9)

5 4 (4.4)

6 7 (7.8)

7 6 (6.7)

> 7 (max = 19) 13 (14.3)

Sum 90 (100.0)

an NDQ items measures distress regarding nightmares, then
it should show a positive association with nightmares, no
association with bad dreams, and a negative (or null) association
with nice dreams. As can be seen from Table 3, none of the NDQ
items only showed associations with nightmare dreams without
showing an association with bad dreams as well.

Furthermore, only one of the items (#9) of the NDQ Daytime
Reality subscale showed an association with the occurrence of
nightmares. All other items of the this subscale failed to show
a significant association with nightmares. Counterintuitively,
all Daytime Reality subscale items showed positive associations
with nice dreams, though none was significant.This inconclusive
pattern regarding the NDQ subscale Daytime Reality is in
line with Böckermann et al. (2014) who stated that this
subscale has probably little to do with the occurrence of
nightmares.

All items of the NDQ General subscale showed a consistent
association with nightmare dreams (see Table 3). However, the
correlation for item #13 only approached significance, p < 0.10.
This is also in line with Martínez et al. (2005) and Böckermann
et al. (2014) who found that item 13 was problematic, in their
case because of poor communalities. All items of the subscale did
also show a consistent pattern of positive associations with bad
dreams and negative associations with nice dream occurrence.

For the NDQ Sleep subscale, Item #1 and #2 showed
associations with nightmare, but Item #4 actually failed.
Furthermore, in line with Böckermann et al. (2014), we found
that Item 12 was suspicious because it failed to reveal any
association with different dream qualities (see Table 3).

Person-Level Analyses
Next, we were interested if the NDQ is associated with the
frequency of each dream quality as well as other suggested
influences on dream quality (e.g., food intake before sleep,
alcohol consumption, life events; for descriptives, see Table 1).
If the NDQ has construct validity, then it should correlate with
nightmares and bad dream frequency (positive correlations)
as well as mean well-being (negative correlations; Blagrove
et al., 2004). Furthermore, we should also find a higher
fluctuation of well-being scores (represented by MSSD) due
to nightmare distress. Regarding potential daytime influences,
nightmare distress should be associated with high food intake
before sleep, alcohol consumption, and the occurrence of
life events. Intercorrelations of these variables are shown in
Table 2.

NDQ subscales showed significant and substantial inter-
correlations (see Böckermann et al., 2014). The frequency of
different dream qualities was unrelated except for a positive
correlation between nightmare and bad dream frequency that
almost reached statistical significance (r = 0.20, p < 0.10).
Interestingly, frequently having nice dreams does not lower the
probability of having a bad dream or nightmare. This supports
the assumption that dreams are independent from each other
with regard to their quality.

Nightmare frequency was unrelated to trait- and state-levels
of well-being, which was surprising. For nice and bad dream
frequency, we found significant correlations in the expected
directions (nice dreams were positively associated with trait
well-being, bad dreams negatively associated with trait well-
being).

Regarding construct validity NDQ General and NDQ Sleep
showed convergent as well as discriminant validity by being
positively correlated with nightmare and bad dream frequency,
and negatively with the mean well-being during the 3-week time
frame of data collection. NDQ General and NDQ Sleep were not
significantly correlated with nice dream frequency or fluctuation
of well-being over time. Descriptively, they did show the expected
associations, though. NDQ Daytime Reality failed to show any
significant correlations.

To sum up, we found construct validity for NDQ General
and NDQ Sleep but not for NDQ Daytime Reality. Furthermore,
we found that the NDQ was unable to differentiate between
nightmare and bad dream frequency.
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TABLE 2 | Results of the person-level analyses (Spearman correlations).

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

1. NDQ general

2. NDQ sleep 0.64∗∗∗

3. NDQ daytime reality 0.61∗∗∗ 0.41∗∗∗

4. Nightmare frequency 0.26∗ 0.27∗∗ 0.13

5. Nice dream frequency −0.15 −0.05 0.13 0.09

6. Bad dream frequency 0.33∗∗ 0.26∗ 0.17 0.20†
−0.17

7. Neutral dream frequency 0.06 0.01 −0.01 0.11 0.01 0.25∗

8. Mean well-being −0.30∗∗ −0.36∗∗∗ −0.13 −0.09 0.33∗∗ −0.27∗∗ −0.10

9. MSSD well-being 0.12 0.19† 0.15 0.17 0.19† 0.27∗∗ −0.04 −0.15

10. Life event frequency 0.14 0.20† 0.28∗∗ 0.01 0.16 0.19†
−0.06 −0.16 0.26∗

11. Alcohol frequency 0.06 0.03 0.03 0.04 0.10 −0.09 0.08 0.17 0.07 −0.12

12. Food intake frequency 0.05 0.20† 0.29∗∗ −0.06 0.16 0.04 −0.01 −0.06 0.27∗∗ 0.13 0.09

N = 92, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.10. NDQ, Nightmare Distress Questionnaire; MSSD, Mean Squared Successive Differences.

TABLE 3 | Results of the item-based analyses.

Estimate of the fixed effect coefficient β01

Nice dream Bad dream Nightmare

NDQ General distress subscale (NDQ General)

Item 5 −0.27 0.56∗∗∗ 0.49∗∗∗

Item 6 −0.27 0.37∗∗ 0.43∗∗

Item 7 −0.20 0.48∗∗∗ 0.34∗

Item 8 −0.18 0.40∗∗ 0.46∗∗

Item 13 −0.21 0.29∗ 0.30†

NDQ Impact on sleep subscale (NDQ Sleep)

Item 1 0.02 0.31∗ 0.49∗∗

Item 3 −0.26 0.49∗∗ 0.46∗

Item 4 −0.08 0.24† 0.23

NDQ Impact on daytime reality perception

subscale (NDQ Daytime reality)

Item 2 0.08 0.32∗ 0.23

Item 9 0.15 0.25∗ 0.33∗

Item 10 0.15 0.09 0.07

Item 11 0.25 0.12 0.21

Excluded by Böckermann et al., 2014

Item 12 −0.41 0.28† 0.35†

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.10. NDQ, Nightmare Distress
Questionnaire.

Multi-Level (Person and Occasion)
Analyses
In a further step, we wanted to know if there is an association of
the three subscales of the NDQ with the probability of having a
certain type of dream. First, alcohol consumption, occurrence of
a life event, and feelings of fullness did not show any significant
effects on dream quality in any of the analyses (except for
a counterintuitive small effect of alcohol consumption on the
probability of not having a bad dream) and were therefore
discarded to keep the models parsimonious.

As can be seen in Table 4, a nice dream was associated with
higher well-being the next morning whereas a bad dream and

nightmare was associated with significantly lower well-being.
Regarding the NDQ, only the NDQ General subscale had any
consistent predictive value for dream quality. Higher general
nightmare distress was associated with a lower chance for a nice
dream, but a higher chance for a bad dream and nightmare
(although not significant for a nightmare). NDQ Sleep had no
predictive value for any type of dreams and NDQ Daytime Reality

TABLE 4 | Results of the multi-level analyses.

Outcome Predictor Fixed Random

Coef. Est. SE z Coef. SD

Nice dream

Intercept β00 −4.38 r0i 1.11

Well-being.cwc β10 0.02 < 0.01 3.29∗∗∗ r1i 0.02

Well-being.pm β01 0.04 0.01 2.37∗

NDQ general β02 −0.94 0.37 −2.57∗

NDQ sleep β03 0.39 0.29 1.35

NDQ daytime reality β04 0.70 0.29 2.41∗

Bad dream

Intercept β00 −1.35 r0i 0.76

Well-being.cwc β10 −0.02 < 0.01 −2.58∗∗ r1i 0.03

Well-being.pm β01 −0.01 0.01 −1.26

NDQ general β02 0.68 0.23 3.00∗∗

NDQ sleep β03 −0.07 0.23 −0.29

NDQ daytime reality β04 −0.07 0.23 −0.33

Nightmare

Intercept β00 −3.14 r0i 1.05

Well-being.cwc β10 −0.04 0.01 −4.40∗∗∗ r1i 0.02

Well-being.pm β01 > −0.01 0.01 −0.01

NDQ general β02 0.51 0.29 1.75†

NDQ sleep β03 0.30 0.28 1.05

NDQ daytime reality β04 −0.04 0.28 −0.15

Coef., Coefficient from multilevel Equations; Est., Estimate; Well-being.cwc,
person-mean centered well-being; Well-being.pm, person mean of well-being
reintroduced into the model as level 2 variable. NDQ subscales (level 2) were grand-
mean centered. NDQ, Nightmare Distress Questionnaire. ∗∗∗p < 0.001, ∗∗p < 0.01,
∗p < 0.05, †p < 0.10.
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did show a reversed, counterintuitive value for dream quality, i.e.,
the higher NDQ Daytime Reality the higher was the chance of
having a nice dream.

DISCUSSION

In the present methodological study, we analyzed the validity of
the NDQ, being one of the most used measures of nightmare
distress. To achieve this, we implemented data from an
experience sampling design. We assessed dream quality and
further related variables over time, investigating the contextual
associations as well as their associations with the NDQ. The
results can be summarized as follows:

The items from the NDQ General subscale were able to
differentiate between dream qualities (negative vs. positive)
slightly better (except Item 13) than the items from the
NDQ Sleep subscale. Similar to the NDQ Sleep subscale, it
showed significant correlations with nightmare and bad dream
frequencies, and convergent validity with well-being (only the
mean, not the fluctuations over time). Compared to the other
NDQ subscales, NDQ General was the best predictor of the
different dream qualities in the multi-level view.

The items from the NDQ Sleep subscale were also capable
of differentiating between positive and negative dream qualities
(except Item #4). The subscale showed significant correlations
with nightmare and bad dream frequencies, and convergent
validity with well-being (again only the mean, not the fluctuations
over time). The subscale was not capable of predicting any kind
of dream quality in the multi-level analyses.

Finally, the NDQ Daytime Reality subscale does not seem
to be associated with nightmare distress at all. First, the
items belonging to that subscale were not clearly capable of
differentiating between negative and positive dream qualities in
general (except Item #9, but also revealed a counterintuitive
positive association with nice dream occurrence). Although this
subscale showed substantial correlations with the other two NDQ
subscales (NDQ General, NDQ Sleep), it failed to show any
significant associations with dream frequencies. Interestingly,
this subscale showed significant correlations with the frequency
of life events and feeling of fullness frequency, in contrast to the
other NDQ subscales.

Nevertheless, because the NDQ General as well as the NDQ
Sleep subscale did not show any substantial associations with
these variables, it remains unclear if this can be interpreted
as a sign of convergent validity for the NDQ Daytime Reality
subscale. Furthermore, from the multi-level view, NDQ Daytime
Reality had a positive effect on the probability of having a
nice dream, not, as would have been expected, negative dreams
(bad dream, nightmare). Although further research is needed
here, it seems that NDQ Daytime Reality is probably not an
integral concept of nightmare distress (see also Böckermann
et al., 2014). If at all, NDQ Daytime Reality might reflect
a concept which is indirectly associated with nightmare
distress.

To sum up, item-based analyses revealed that the NDQ did not
really differentiate between a bad dream and a nightmare. This is

supported by the multi-level analyses where the NDQ had similar
predictive value for the bad dream and nightmare (descriptively,
even higher for the bad dream). Therefore, the NDQ might be
rather a measure of negative dream distress including bad dreams
that are not nightmares.

Furthermore, our analyses suggest perhaps dropping Item 13
from the NDQ General subscale, Item 4 from the NDQ Sleep
subscale, as well as dropping the whole NDQ Daytime Reality
subscale. In our study, we only found few associations with dream
quality and other indicators for this subscale, casting doubt on its
validity and usefulness.

Predictors of Negative Dreams
Although past research found associations of negative dreams
with well-being (e.g., Levin and Fireman, 2002), occurrence of
life events (e.g., Dunn and Barrett, 1988), alcohol consumption
(e.g., Munezawa et al., 2011), and food intake (e.g., Nielsen and
Powell, 2015), we only found some significant associations with
well-being (see Table 2). Participants with a higher frequency of
nice dreams and lower frequency of bad dreams had higher well-
being on average. Bad dream frequency was associated with a
higher fluctuation of well-being over time. All the other potential
predictors failed to show significant effects. Besides the possibility
that indeed H0 is true, there might be other explanations for
these findings. First, alcohol consumption was only assessed in
the 3-week time frame, i.e., it might be not representative for
the time outside this time frame. Furthermore, the alcohol intake
of the night before was assessed the next day. This measure
has been shown to be less accurate than real-time assessment
(Monk et al., 2015). Second, the definition of life events was
very broad, beginning with minor conflicts with the partner
to severe life events such as the death of a beloved person.
Focusing on severe life events might have shown effects. Third,
the effect of food intake onto dreams is in general a rather
weak finding mostly of anecdotal origin (Nielsen and Powell,
2015). In our study, we did not find any effects for feelings
of fullness, except for NDQ Daytime reality, but its validity is
unclear.

Limitations
Although we collected over 3,500 data points from 92
participants, 44 retests, and a mean compliance rate of 90.3%,
the design was slightly underpowered to detect small to medium
effects (ICC = 0.3, α = 5%, power = 80%, conservative power
calculation based on the recommendation by Twisk (2006),
(p. 123ff), 80% power reached for correlations larger than
0.16). Nevertheless, convergent validity requires substantial
correlations. Therefore, the low power for small effects only
reduces the exploratory power of divergent validity where weak
to null correlations are expected.

Furthermore, our results are limited by the fact that our
sample was relatively young and consists mainly of women.
Moreover, we had a non-clinical sample. In practice, the NDQ
might be mostly used to screen for distress in patients with
nightmares (nightmare diagnoses ICD-10: F51.5). Associations
between the NDQ and the prospectively assessed items might be
different in actual patients.
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Future Directions
It is interesting that the frequencies of the different dream
qualities were almost unrelated. This supports the assumption
that a certain dream type on a particular day does not influence
the occurrence of a certain dream type in the following night
(such as dream-lag effects; e.g., Henley-Einion and Blagrove,
2014), i.e., they seem to be isolated events with minimal
“spillover” effects, if any. Future research might address this in
more detail.

Furthermore, in line with Böckermann et al. (2014), we found
that distress was produced not only by nightmares, but also by
bad dreams (see item-based analyses in Table 3). The awakening,
which distinguishes nightmares from bad dreams, did not elicit
any differences in distress. This could be due to two reasons:
First, the NDQ might really be a global measure of “negative sleep
distress.” Second, participants who are asked about nightmare
distress retrospectively might not be capable to differentiate
between distresses elicited by nightmares as compared to bad
dreams. Because the questions in the NDQ explicitly focus on
the frequency of nightmare-related aspects (e.g., falling to sleep
again, negative impact on well-being) and not bad dreams per
se, we would rather think that the second reasoning is true, i.e.,
because of the retrospective remembering of nightmare events,
participants are not capable to differentiate between bad dreams
and nightmares anymore. Future research could investigate the

differentiation further to try to discern distress from bad dreams
and nightmares.

Because prevalence rates of nightmares in the population are
comparatively high, future research could try to assess situation-
dependent state-aspects of nightmare distress in the morning
after a nightmare took place using an experience sampling design
with an event-based sampling procedure. After several of these
events, a mean of these NDQ state scale measurements can
be calculated which might be a better predictor of nightmare-
related aspects than the classical trait-based NDQ (for a similar
discussion about the dimensional structure of state- and trait-
aspects, see Schimmack et al., 2000).
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BACKGROUND

Mobile data collection with smartphones—which belongs to the methodological family of
ambulatory assessment, ecological momentary assessment, and experience sampling—is
a method for assessing and tracking people’s ongoing thoughts, feelings, behaviors,
or physiological processes in daily life using a smartphone (Mehl and Conner, 2012; Miller,
2012; Trull and Ebner-Priemer, 2013; Harari et al., 2016). The primary goal of this method is to
collect in-the-moment or close-to-the-moment active data (i.e., subjective self-reports) and/or
passive data (e.g., data collected from smartphone sensors) directly from people in their daily
lives. The collection and assessment of such data is possible because smartphones are widely
available and come with the computational power and sensors needed to obtain information
about their owners’ daily lives. Researchers in the fields of social science (e.g., Raento et al., 2009),
psychology (e.g., Miller, 2012; Harari et al., 2016), and neuroscience (e.g., Schlee et al., 2016;
Ladouce et al., 2017) use smartphones to collect data about personality processes and dynamics
(Allemand and Mehl, 2017; Beierle et al., 2018a; Stieger et al., 2018; Zimmermann et al., 2018),
daily cognitive behaviors (Aschwanden et al., 2018), social support behaviors (Scholz et al., 2016),
momentary thoughts (Demiray et al., 2017), couple interactions (Horn et al., 2018), physical
activity (Gruenenfelder-Steiger et al., 2017), and moods and emotions (Erbas et al., 2018).

Using smartphones for data collection provides a snapshot of individuals’ everyday perceptions,
experiences, and interactions with their environments. The use of mobile devices for the assessment
of individuals’ daily lives is not a new research method (e.g., Fahrenberg et al., 1996). However,
because smartphones have now become so widespread throughout the population, are low in cost,
and are equipped with sensor technology and ready for data collection through apps (Miller, 2012;
Cartwright, 2016; Harari et al., 2016; Beierle et al., 2018a), we are now living in an interesting time
for smart mobile data collection. Despite much progress, based on our experiences and discussions
with experts in the field, we see the potential for further development of this method.

SMART MOBILE DATA COLLECTION

Mobile data collection with smartphones is growing rapidly in popularity due to its many
advantages. One such advantage is that the findings are ecologically valid because they are collected
during people’s day-to-day lives and capture behaviors and experiences in real environments
outside of research laboratories (Wrzus and Mehl, 2015). Real-time reports (i.e., active data) and
sensor data (i.e., passive data) are measured in the moment and are therefore less prone to memory
bias than are retrospective assessments (Redelmeier and Kahneman, 1996). By capturing real-time
data about when and where an action takes place, the method provides important information
about the dynamics of real-life patterns (Hektner et al., 2007). A smartphone allows researchers to
capture such data by installing random, continuous, or event-based alarms to ask participants for

25

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00971
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00971&domain=pdf&date_stamp=2018-12-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alexander.seifert@uzh.ch
https://doi.org/10.3389/fnins.2018.00971
https://www.frontiersin.org/articles/10.3389/fnins.2018.00971/full
http://loop.frontiersin.org/people/443380/overview


Seifert et al. Smart Mobile Data Collection

their responses to questions or events during the day. Intensive
repeated measurements of one participant capture within-person
information, which represents the behaviors and experiences
of a single individual. In contrast, between-person information
demonstrates variability between individuals. Collecting within-
person information allows for the study of the mechanisms and
processes that underlie behavior, and this can be contrary to
between-person information (Hamaker, 2012). For example, a
study by Stawski et al. (2013) showed that processing speed
is important for understanding between-person differences in
working memory, whereas attention switching is of greater
importance to within-person variations. Therefore, it can be
argued that the proper study of the dynamic nature of
psychological processes requires repeated observations within
individuals (Conner et al., 2009). Smartphones are ideal tools for
collecting such data.

Real-life data measurements are also rich in contextual
information, as mobile data collection allows for the combination
of self-reports or observer-reports (i.e., active data) and objective
assessments (i.e., passive data) of activities, movements, social
interactions, bodily functions, and biological markers, using
the sensors that are built into smartphones (Ebner-Priemer
et al., 2013). For example, it is possible to collect self-reports
(e.g., individuals’ feelings of social inclusion) and simultaneously
to record acoustic sound clips of conversation to collect the
objective patterns of participants’ actual proximity to and
interaction with others (e.g., Mehl et al., 2001).

Finally, as measurement devices, smartphones are both
powerful and widespread in the population. This enables data
analysis in real time and the opportunity to run machine learning
approaches within the devices, allowing for large, individualized,
dynamic, and intensive real-life studies (Raento et al., 2009;
Bleidorn andHopwood, 2018). Becausemost participants already
have their own smartphones, an app is the only thing they need
to install to participate in a study (Miller, 2012). This gives
researchers the opportunity to conduct studies with large samples
(Dufau et al., 2011).

SMARTER MOBILE DATA COLLECTION IN

THE FUTURE

In our research, we identified some of the challenges
accompanying mobile data collection with smartphones. In
addition to discerning six challenging areas, we offer some
suggestions for dealing with these challenges in the future. The
first challenge relates to collecting data in real-life environments.
Collecting smart data in daily life may result in the validation
of existing theories, some of which may relate to behaviors
and phenomena outside the realm of day-to-day life. However,
this requires that researchers develop theories that reflect the
multiple factors and dynamics of the real-life context that may
influence the individual. Additionally, real-life data should not be
collected simply because it is possible to do so, with conclusions
about the theoretical significance of the data being drawn
afterwards. Instead, we should develop and discuss the potential
of real-life theories that consider both the within-person and
between-person effects and the real-life context.

The second challenging area relates to real-time
measurements. In data collection, real-time also means right on
time; in other words, researchers have to carefully determine
whether they are collecting data about the most relevant variables
at the most appropriate moments and at ideal time intervals.
To do so, they must first know when to collect data and when
behaviors, thoughts, or changes are likely to occur. This question
is crucial in mobile data collection, because conclusions about
fluctuations, variability, and dynamics need to stem from a
sound theoretical rationale or from the behavior patterns of
the target participant (e.g., Wright and Hopwood, 2016). For
instance, smartphone sensor technology and machine learning
can help researchers by detecting the time points of events within
a participant, by learning when events normally occur, or by
learning the dependency of other subjective or objective variables
upon events (e.g., Albert et al., 2012).

The third challenging area concerns within-person data.
Typical smartphone studies collect data with great fidelity and
generate large quantities of observations, placing the approach
clearly within the domain of “big data” and requiring its
associated advanced analytic techniques (Yarkoni, 2012; Fan
et al., 2014). Working with big data requires highly technical
expertise that researchers outside the field of computational
science do not normally have. Resources must be organized, and
after collecting the data, skills in advanced statistical analyses,
including longitudinal structural equation modeling (Little,
2013), dynamic structural equation modeling (Asparouhov
et al., 2017), multilevel modeling (Bolger and Laurenceau,
2013), and machine learning (e.g., Bleidorn and Hopwood,
2018), are required. As a result, an interdisciplinary research
approach involving researchers interested in collecting data with
smartphones and experts familiar with those forms of data
collection, management, and analysis is crucial. Such endeavors
should be supported by funding organizations and academic
career programs, enabling the full potential of mobile data
collection with smartphones to be achieved.

As a fourth challenging area, we identify the contextual
information that can be collected with smartphone sensor data
(i.e., passive data), as researchers have to consider the different
forms, intervals, and amounts of sensor data (e.g., GPS data,
app use, and accelerometer data). When collecting passive data
continuously over multiple days, researchers need to consider
more than just the data itself; they must also be able to
interpret what the measurements indicate and convert the data
into psychologically meaningful variables, such as sociability
or mobility patterns (e.g., Mehl et al., 2006; Harari et al.,
2016). Although this task is fundamental to the research, it
often requires new skills of researchers and new approaches
within the technology—approaches that ideally automatically
aggregate passive smartphone-sensor-based data. For example,
when collecting sound files containing conversation, it would be
very helpful to automatically detect the spoken words of a target
person (e.g., Mehl et al., 2001), detect contextual information
(e.g., Lu et al., 2012), or interpret GPS data in terms of
mobility patterns (e.g., Ryder et al., 2009). For such requirements,
preliminary solutions do exist (e.g., Barry et al., 2006; White
et al., 2011), but much more development and validation work
is needed before we can achieve automatic, preprocessed, and
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validated smartphone-sensor data that can be combined with
other types of data collection.

The fifth challenging area relates to the smartphone device
itself. Mobile data collection with smartphones requires more
technical preparation and greater technical confidence and skills,
on the side of both the researcher and participant, than is
required in classic paper-and-pencil studies. Daily technical
hassles such as malfunctioning software and hardware, low
smartphone batteries, and operation systems crashing during
ongoing studies cost time and resources. Therefore, we highly
recommend including an explicit time buffer and anticipating
a higher than usual drop-out rate in smartphone studies to
compensate for potential technical problems and challenges (for
more information on technical issues, please see Mehl and
Conner, 2012; Miller, 2012; Harari et al., 2016). Although the
technical side of mobile data collection with smartphones is likely
to become more reliable over time, more validation studies are
required in this area andmore ready-made valid apps are needed.
When using smartphones for data collection within specific
population groups, it is also important to consider the unique
needs of the target group. For example, when working with older
adults, it can be helpful to reflect participants’ potential lack of
smartphone skills by adapting briefings on smartphone/app use
(Seifert et al., 2017).

The final, though certainly not least important, challenging
area is that of data security and ethical issues. Collecting mobile
data has revived past concerns about data protection and the
ethical use of data. Using mobile devices for data collection,
including tracking behavior and lifestyle patterns, introduces
a unique dimension to individual participant protection.
When collecting intensive profiles of individuals, which is
the main research method within mobile data collection with
smartphones, anonymization is nearly impossible. Therefore,
traceable real-life data requires an intensive consideration of
ethical and legal approval, the safeguarding of participant
privacy, and the establishment of data security and data privacy
(Harari et al., 2016; Marelli and Testa, 2018). As an example,
Beierle et al. (2018b) conceived a privacy model for mobile
data collection apps. Zook et al. (2017) present ten simple
rules for responsible big data research, concluding that ethical
and data protection issues should not prevent research but

that it is vital to ensure “that the work is sound, accurate,
and maximizes the good while minimizing harm” (Zook et al.,
2017, p. 8). When using participants’ own smartphones, it is
also important that researchers acquire participants’ consent
to share self-recorded data with researchers (Gustarini et al.,
2016). In a quantitative population survey among persons over
50 years of age, Seifert et al. (2018) found that more than
the half of this demographic group is willing to share self-
recorded data with researchers, regardless of participants’ age,
gender, education, technology affinity, or perceived health. The
sharing and use of participants’ own self-recorded data may
require new models of participant involvement, with the goal of
creating a trusted relationship between the data providers and
researchers working with the data (Beierle et al., 2018b; Seifert
et al., 2018).

CONCLUSIONS

Mobile data collection with smartphones offers unique and
innovative opportunities for studying human beings and
processes in real life and real time. This approach offers
researchers the opportunity to collect real-time reports of
participants in their natural environment and within their
individual dynamics and life contexts with the help of a regular
smartphone. However, the approach also brings many challenges
that provide interesting avenues for future developments. To
date, mobile data collection with smartphones is already very
smart, but we see the potential for even smarter mobile data
collection in the future.
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The study of individual differences in human social behavior has a long tradition in
(personality) psychology focusing on traits such as extraversion linked to vividness and
assertiveness. The study of molecular genetic underpinnings of individual differences
in social behavior produced many genetic association studies with only few genetic
variants, robustly associated with individual differences in personality. One possible
reason for non-replication of findings might be the different inventories used to assess
human social traits. Moreover, self-report methods to assess personality and social
behavior might be problematic due to their susceptibility to different biases such as
social desirability or poor abilities in self-reflection. We stress the importance of including
recorded behavior to understand the molecular genetic basis of individual differences in
personality and linked social traits. We present preliminary data linking oxytocin genetics
to individual differences in social network size derived from smartphones. Here, the
genetic variation rs2268498, located in the adjacent area of the promoter of the gene
coding for the oxytocin receptor (OXTR), was linked to the number of active contacts and
incoming calls, tracked on the smartphone for 12 days (note that these results became a
bit weaker when age was controlled for). Although the present empirical findings should
only be seen as a proof of concept study, this work demonstrates the feasibility to
combine molecular genetic variables with real world behavior. If this approach keeps its
promises, the field of personality research might experience a boost in psychometric
quality in the near future.

Keywords: Personality Neuroscience, molecular genetics, oxytocin, oxytocin genetics, extraversion,
smartphones, Psychoinformatics, digital phenotyping

INTRODUCTION

Disentangling individual differences in personality and intelligence represents an old quest, going
back to the days of Sir Francis Galton, who was an early advocate of the use of twin studies
(Montag and Hahn, 2018). Currently, abundant research is available demonstrating that individual
differences in the mentioned areas are shaped by both nature and nurture. Per rule of thumb about
0.50 on the genetic and 0.50 on the environmental side impact individual differences in human
traits as carved out in a large study reviewing 2,748 twin studies published between 1958 and 2012
(Polderman et al., 2015).
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A logical next step from this branch of research would be
to estimate the heritability of individual differences in a given
trait such as personality through the localization of distinct areas
on the human genome linked to individual differences in traits
such as extraversion or neuroticism. This kind of research has
started over 20 years ago being either pursued via the candidate
gene approach or genome wide scan association studies (for
an overview see Montag and Reuter, 2014). Until today the
study of the molecular genetic basis of personality struggles
with many problems, perhaps the greatest struggle is to still
see only few genetic variants to be robustly associated with
personality traits (for a recent overview on genome wide scan
studies see Sanchez-Roige et al., 2018). One of the problems
clearly has been underpowered, small sample-size studies (see
for an overview also Munafò and Flint, 2011). Therefore, a
recent attempt is noteworthy, that came up with reproducible
gene-personality associations, but needed to include more than
329,000 participants from a United Kingdom biobank to observe
15 SNPs being robustly linked to neuroticism (Luciano et al.,
2018). Of note, from our perspective this does not mean that
the candidate gene approach is not able to produce robust
associations (although others see this differently, e.g., Jern et al.,
2017). For example, a highly cited meta-analysis observed that the
interaction between the prominent 5-HTTLPR polymorphism
and adverse environmental effects on negative emotionality
seems to be stable (Karg et al., 2011). Recent work presented a
new promising research paradigm in the context of the candidate
gene approach, namely linking genetic variations to individual
differences in personality in independent samples stemming from
different ethnic groups, probably hinting at globally valid effects
(Montag et al., 2017b; Sindermann et al., 2018).

In sum, different routes to the study of the molecular genetic
basis of personality might ultimately be successful, but without
doubt the “hunt” for genetic variants underlying personality is
still challenging. This clearly is also due to (a) the polygenetic
nature of personality, potentially influenced by several hundreds
or even thousands of genetic variations all with small to tiny
effects (see also recent advances stressed by Plomin and von
Stumm, 2018) and (b) the type of personality assessment used in a
respective study. Moreover, often not the same inventories and/or
personality assessments are applied, making the comparison of
results across genetic association studies even more problematic.
In addition, most of the studies assess traits “only” via self-report,
ergo problems such as social desirable answers (Van de Mortel,
2008) or not being able to remember previous events correctly
(Stone and Shiffman, 2002; Montag et al., 2015a) might bias the
data. While the polygenetic nature of personality needs consistent
research efforts on a large scale, the limited psychometric quality
on which personality research is often based, jeopardizes a whole
research area.

Therefore, we aim to present in this short communication
preliminary data on a new way to assess personality and, thus,
to conduct research in the field of Personality Neuroscience. We
already stress at this point that the presented empirical data of
this work should be seen as preliminary, because the sample size
is not sufficient to produce a stable outcome. On the other hand
collecting the present data took more than one and half years with

the recruiting of more than 100 participants providing us with
insights into their objectively measured smartphone behavior
and molecular genetic variables. Therefore, the present work
should be understood as a study testing the feasibility to combine
molecular genetic information with real-world behavior, tracked
on smartphones, giving insights into individual differences in
extraversion-linked smartphone variables.

In earlier works it was demonstrated that in particular call
variables (Montag et al., 2014; Stachl et al., 2017), the use of
social messengers such as WhatsApp (Montag et al., 2015b), but
probably also the here investigated size of a person’s network
are linked to extraversion (see the importance to assess age in
this context, Roberts et al., 2008). The latter assumption is based
on existing literature, reporting a link between high extraversion
and the number of “friends” and memberships in different
groups on Facebook (Ross et al., 2009; Amichai-Hamburger and
Vinitzky, 2010). Extraversion itself is a personality trait closely
linked to gregariousness, but also assertiveness, to name a few
(Costa and McCrae, 1992). As the size of the social network of
a person might be linked to the oxytocinergic system (Pearce
et al., 2017; for problems with this work see Jern et al., 2017),
the present study focused on the investigation of a polymorphism
on the oxytocin receptor (OXTR) gene and individual differences
in social network size. For the present work we hypothesized
that the prosocial TT variant of the OXTR gene, linked to
lower autistic traits in both Germany and China (Montag et al.,
2017b), higher empathy (Christ et al., 2016), higher abilities
in face recognition (Melchers et al., 2013) and processing of
social information (Melchers et al., 2015), would be linked to
having also a higher number of (active) telephone contacts in the
smartphone and more active call behavior.

MATERIALS AND METHODS

Participants
Smartphone and genetic data was available from N = 117
participants (77 females), mostly with a student background. The
average age of participants was 23.04 years (SD = 7.32) and 76.9%
reported having A level as their highest educational qualification.
Most of the participants were recruited at Ulm University and
signed an informed consent prior to participation in the study.
They received university credits or monetary compensation for
their participation. The study was approved by the local ethics
committee of Ulm University, Ulm, Germany.

Materials
The application Insights (an Android-based smartphone
application, developed by Christopher Kannen1) was installed on
participants’ phones either by the examiner or the participants
themselves. This application records different variables such as
the number of calls per day (incoming, outgoing, missed), the use
of different applications such as YouTube or how active a person
is (distance per day measured using the GPS function on the
phone) etc. In the current study the number of contacts (names

1https://www.ckannen.com
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saved in the phone book, as well as the total phone numbers)
and the average number of contacts one is in touch with per
day through calls/actively used contacts per day (referred to as
“active contacts”2) were used to measure the size of the social
network. Furthermore, the average number and duration of calls
per day (including the incoming, outgoing and missed calls) were
considered as an additional measure. Twelve days of recordings
were used to build an average of the tracked variables.

The genotyping was conducted at Ulm University. DNA
was extracted from cell material via buccal swabs. DNA
purification was conducted by means of the MagNa Pure 96
system (Roche Diagnostics) and genotyping via a Light Cycler
Cobas z480 (Roche Diagnostics, real-time quantitative PCR
and subsequently high resolution melting; Primer Assays by
TibMolBiol) and a mass spectrometer MassARRAY (Agena
Bioscience / Sequenom). Participants were genotyped for
rs2268498, a functional single nucleotide polymorphism (SNP)
on the OXTR gene (Reuter et al., 2017), positioned on
chromosome 3p25.

Participants filled in a short version of the Trait-Self
Description Inventory (TSDI, for the German version see Olaru
et al., 2015), consisting of 42 items rated on a seven-point Likert
scale (1 = strongly disagree to 7 = strongly agree). Only the
personality characteristic extraversion was used in the analyses
of the present study. Cronbach’s Alpha was α = 0.77.

Statistical Analyses
The distribution of the variables was examined by assessing
the skewness and kurtosis of the variables (Miles and Shevlin,
2001). Since all smartphone variables and age deviated from
the normal distribution, non-parametric tests were applied.
The CC and CT genotypes of rs2268498 were combined to
a C+ group and compared to the TT genotype (C− group),
according to our hypothesis. Since both age and gender have
been linked to recorded smartphone use (see studies by Montag
et al., 2014; Stachl et al., 2017), these associations were also
tested in the present study. Spearman’s correlations were used to
examine the link between age and the investigated smartphone
variables. Mann–Whitney U test was applied to compare

2We computed the variable “active contacts” by running through/inspecting the
call list of every participant per day. All numbers (from incoming, outgoing, and
missed calls) were looked up in the contact list and saved to an active contact list.
If there were duplicates, these were deleted. Also different phone numbers of one
contact person were summed up to one active contact. At the end a mean over the
12 days of recordings was computed per participant.

male and female participants with respect to the investigated
smartphone variables and to assess the association between
the rs2268498 genotypes and the smartphone variables. Where
there was a need to control for age, the respective dependent
variables were normalized using Blom rank-based transformation
(Solomon and Sawilowsky, 2009) and an ANCOVA was
conducted.

RESULTS

The distribution of rs2268498 genotypes did not deviate from
the Hardy-Weinberg equilibrium (X2 = 0.22, p = 0.64). N = 27
participants were CC-carriers, n = 61 were carriers of the
CT-genotype and n = 29 of the TT-genotype. According to our
grouping 29 participants (TT or C−) were tested against n = 88
C+ carriers (CC+ CT).

In Table 1 the descriptive statistics of the investigated variables
are presented (including the median due to the non-normal
distribution of the variables).

The correlation analysis demonstrated that the variables
active contacts (rho = 0.24, p < 0.01), calls count (rho = 0.23,
p < 0.05), outgoing calls (rho = 0.20, p < 0.05), and incoming calls
(rho = 0.28, p < 0.01) were significantly linked to age.

Next, gender differences were tested by means of a Mann–
Whitney U test. With respect to the smartphone variables, males
demonstrated higher values in active contacts (Z = −2.744,
p < 0.01), calls count (Z = −3.317, p < 0.01), incoming calls
(−3.782, p < 0.01), outgoing calls (Z =−2.977, p < 0.01) and call
duration in minutes (Z =−2.221, p < 0.05).

The results of a Mann–Whitney U test demonstrated that
the TT-genotype (C- group) was linked to a significantly higher
number of active contacts (Z =−2.313, p = 0.02) and significantly
higher number of incoming calls (Z = −2.298, p = 0.02)
(Figure 1). Due to the significant association between those
variables and age, an ANCOVA with Blom-transformed variables
was conducted where age was included as a covariate. The results
with respect to the variable active contacts [F(1,114) = 3.890,
p = 0.05] barely missed significance. The same was true
for the variable incoming calls after age was controlled for
[F(1,114) = 3.428, p = 0.07]. Moreover, no significant interactions
between gender and rs2268498 on the smartphone variables
incoming calls and active contacts could be observed, when gender
was entered as a second independent variable. However, we point
to the fact that searching for a gene by gender interaction is not

TABLE 1 | Descriptive statistics for the investigated variables.

Total contact
names

Total phone
numbers

Active contacts
mean

Calls
count

Incoming
calls

Outgoing
calls

Missed
calls

Call duration
min.

Mean 205.06 219.23 1.15 2.15 0.45 1.33 0.36 7.50

Median 180.00 190.00 0.83 1.33 0.25 0.67 0.25 4.10

SD 115.05 124.47 1.13 2.38 0.52 1.72 0.36 9.86

Min. 20 21 0.00 0.00 0.00 0.00 0.00 0.00

Max. 700 773 8.33 15.50 3.58 10.67 1.67 51.24

N = 117, SD = standard deviation; Min. = minimum; Max. = maximum.
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FIGURE 1 | Association between the rs2268498 genotypes and the
smartphone variables active contacts and incoming calls. N(C+) = 88,
n(C–) = 29, ∗p < 0.05. Please note that the depicted significance is derived by
the means of the Mann-Whitney U test. The means of the variables on the Y
axis (and not the mean ranks) are presented here for reasons of clarity.

meaningful in our study because the cell sizes were rather small
(e.g., the number of male TT-carriers was 13).

Since in total eight smartphone variables were examined,
we applied the Bonferroni method as a multiple-comparisons
correction. The significance threshold was then p = 0.05/8 = 0.006
and none of the previously shown associations remained
significant. However, please note that the Bonferroni correction
is a very strict correction with the consequence of low power
in statistical testing and a number of other disadvantages
(we refer to Bender and Lange, 2001; the authors advise
to use the Bonferroni correction when the number of tests
is less than five). Additionally, since we set up a directed
hypothesis on the relationship between the smartphone variables
and the rs2268498, and did not test a random/large number
of smartphone variables, we think that the results from the
Bonferroni correction might be too strict and need to be
interpreted with caution. In sum, we find it important to
report the results of the present study (being in line with a
large body of literature on this SNP), but again stress that the
present findings should be understood as preliminary. From our
perspective, the findings demonstrate the feasibility of linking
molecular genetic markers with real-world variables and the here
presented findings should be “only” seen as an illustration of
this.

Extraversion (M = 4.37, SD = 0.91) was positively linked to
all investigated smartphone variables. The correlations varied
between rho = 0.20 and rho = 0.40 (p < 0.05). The rs2268498
genotypes and extraversion were not significantly linked.

DISCUSSION

The present work aimed to prove the feasibility to combine
molecular genetic information in a meaningful way with
real-world behavior, here size of the active social network tracked
directly from the smartphone. We do not want to overstress the

present results, because our sample is too small to claim general
validity of our findings. Aside from this, the observed genetic
association fits very well with the literature, again demonstrating
that the TT-variant of rs2268498 is linked to higher prosocial
behavior/prosocial abilities (Melchers et al., 2015, 2017), here
in the light of a larger social network mirrored in the variable
number of active contacts. Note that other genetic variations of
the OXTR gene have been also investigated in the context of social
neuroscience (Ebstein et al., 2012; Kumsta and Heinrichs, 2013),
therefore other candidates on this gene clearly would have been
interesting targets in the realm of the present work. Given that
rs2268498 is one of the few, where functionality is likely/has been
demonstrated (Reuter et al., 2017) and also in line with the rather
straight forward findings so far (as cited), we focused on this
single SNP.

Aside from the genetic link to this smartphone variable, the
present study reveals several important notes for researchers
interested in this new discipline coined Psychoneuroinformatics
(Montag et al., 2016; see also Yarkoni, 2012; Markowetz et al.,
2014 for an introduction into the term Psychoinformatics). Of
note, other researchers speak in the realm of this new field
of digital phenotyping (Onnela and Rauch, 2016; Insel, 2017),
probably best achieved via methods of Psychoinformatics. First
of all, an advantage of the present research approach to study
the biological underpinnings of personality/sociality traits is the
inclusion of information beyond self-report. E.g., if you ask a
person how large his or her social network is, you might get
biased data. Using smartphone variables such as the present ones
gives you an exact estimate also with the advantage that one gets
insights into the actual size of both the social network per se,
but also the active social network. The importance to distinguish
between these concepts (active vs. passive or complete social
network) becomes visible, because in our work an association
appeared only between rs2268498 and the active social network
size. Using smartphone applications as the present one will also
enable researchers to conduct more easily longitudinal research,
also in the area of Personality Neuroscience.

Although real-world behavior is of great relevance to be
included in future neuroscientific works (see evidence for the
feasibility to combine MRI data with real-word data in Montag
et al., 2017a), several problems arise. First, for the moment
it is not that easy to recruit a large number of participants
for biologically/neuroscientifically oriented works, investigating
individual differences in human behavior, since applications
have to be installed on smartphones or related devices together
with gathering biomarkers. This naturally limits the inclusion
of thousands of participants, as done in the impressive work by
Luciano et al. (2018). In particular, in molecular genetics small
sample sizes such as the present one represent a problem. In
addition, researchers will need to find a standard on how often
and how long variables from the Internet of Things need to
be tracked to get stable insights into a person’s behavior. Or
more generally spoken, the psychometric quality of predicting
personality by real-world behavior tracked on smartphones need
yet to be established. Additionally, more research is needed on the
question if and how personality or the situational context might
affect one’s smartphone use, and, in turn, affect the examined
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associations. First studies demonstrated divergent findings on
this topic, with some studies reporting a positive link between
smartphone use and social engagement (e.g., attending gatherings
with friends and colleagues) (Kim et al., 2016), while others
demonstrated using mobile smart devices less for online content
or social activities when in social situations such as at a restaurant
with friends or in an intimate moment with a partner (Vorderer
et al., 2016). See also the new work by Dwyer et al. (2018) showing
that smartphones reduce enjoyment of face-to-face interactions.
Kushlev et al. (2019) even reported that smartphones reduce
smiles between strangers. However, please note that several of the
here mentioned studies used self-report data, where the answers
might be biased through (a) information recall difficulties (e.g.,
frequency of smartphone use) or (b) social desirability (when
participants need to report how often they use their phones in
social situations, they might adapt their responses in accordance
with social norms). Finally, problems regarding multiple testing
arise. A trait such as extraversion impacts on many features
of the smartphone. Therefore, it is very difficult to hypothesize
on which exact variable on a smartphone the effect of a SNP,
best linked to self-reported personality, can be observed. Please
note that due to technical reasons (“sandbox principle”) it was
not possible to take a look at activities inside social network
applications such as WhatsApp. Moreover, tracking content
in WhatsApp would raise further ethical concerns and might
also lower recruitment success given the very intimate nature
of one’s own content. However, since WhatsApp works with
the telephone numbers, saved on our phones, we believe that
the variable “contacts” examined in the present study also

represents a reasonable approximate of a person’s WhatsApp
contacts.

In sum, we stress at the end of this article again, that the
presented findings should be understood as being illustrative of
a new approach to do studies in the field of molecular genetic
association studies.
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As smartphone usage has become increasingly prevalent in our society, so have rates
of depression, particularly among young adults. Individual differences in smartphone
usage patterns have been shown to reflect individual differences in underlying affective
processes such as depression (Wang et al., 2018). In the current study, a positive
relationship was identified between smartphone screen time (e.g., phone unlock
duration) and resting-state functional connectivity (RSFC) between the subgenual
cingulate cortex (sgCC), a brain region implicated in depression and antidepressant
treatment response, and regions of the ventromedial/orbitofrontal cortex (OFC), such
that increased phone usage was related to stronger connectivity between these
regions. This cluster was subsequently used to constrain subsequent analyses looking
at individual differences in depressive symptoms in the same cohort and observed
partial replication in a separate cohort. Similar analyses were subsequently performed
on metrics of circadian rhythm consistency showing a negative relationship between
connectivity of the sgCC and OFC. The data and analyses presented here provide
relatively simplistic preliminary analyses which replicate and provide an initial step in
combining functional brain activity and smartphone usage patterns to better understand
issues related to mental health. Smartphones are a prevalent part of modern life and the
usage of mobile sensing data from smartphones promises to be an important tool for
mental health diagnostics and neuroscience research.

Keywords: depression, mental health, smartphone, screen time, fMRI, resting-state, circadian rhythm

INTRODUCTION

Smartphone usage has become nearly ubiquitous in daily life at a time when depression rates are
concurrently rising, particularly among college students. Smartphones contain a variety of sensors
that can allow researchers to passively measure various behaviors of the phone’s user. Previous
research has linked smartphone usage to self-reported depressive symptoms (Matar and Jaalouk,
2017; Twenge et al., 2018; Wang et al., 2018). In parallel, depressive symptoms have been linked to
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brain connectivity using resting-state functional connectivity
(RSFC) MRI (Greicius et al., 2007). The current manuscript
has multiple goals. First, is to provide a proof-of-concept
for linking passive mobile smartphone sensing technologies
to brain connectivity measures that have also been linked
to self-reported depressive symptoms. Second is to replicate
these initial findings in a separate cohort. Third, is to identify
preliminary links between a key behavior inferred from sensing
(e.g., smartphone screen time or circadian rhythm consistency)
and brain connectivity metrics. Fourth, is to briefly describe a
variety of methods which could be used to combine results across
these various data types in the future.

Depression Assessment
Depressive disorders affect over 300 million people worldwide
and is currently ranked as the single largest contributor to
global disability (Ustün et al., 2004; World Health Organization,
2018). Despite this, the diagnosis of depression has remained
largely unchanged; further, a reliable means of identifying
individuals at risk of becoming depressed remains absent.
Psychology, psychiatry and neuroscience have long relied up
self-reported surveys and in-person interviews to measure
symptoms, diagnose mental health disorders and identify
appropriate treatment strategies (Horwitz et al., 2016). As a
result of staggering fiscal and personal costs inflicted at both
individual and societal levels, clinicians and researchers set
out to redefine the way mental disorders are conceptualized
in hopes of creating innovative identification and prevention
strategies. The aforementioned aims have been synthesized
in a research framework known as RDoC (Research Domain
Criteria). RDoC’s objective is to incorporate information across
all planes of analysis ranging from cellular level data to person
level self-report survey data to provide of a holistic picture
of mental disorders (NIMH). A core principle within the
RDoC framework is the notion that neuroscience will inform
future psychiatric classification schemes; in other words, aid
in moving toward the establishment of a neural biomarker
for depression. Thus, of great importance is understanding
the complete range of human behavior (and neurological
functioning) from typical to atypical (Insel et al., 2010). The
Patient Health Questionnaire (PHQ, with two, four, eight and
nine question versions) is a reliable, short survey which has
been validated in clinical settings and can be used to assess
self-reported symptoms of depression that cause significant
impairment and subjective distress (Kroenke et al., 2001,
2009a,b; Cameron et al., 2008), an approach in keeping within
the RDoC research framework, seeking to explain individual
variance in symptoms across domains, constructs, and units of
analysis. Future methods to accurately diagnose depression may
hold promise with the inclusion of techniques that capitalize
on the passive collection of behavioral data through mobile
sensors (e.g., smartphones).

Passive Sensing
Passive sensing using mobile smartphone technology allows for
the assessment of daily activities by the smartphone user without
continual effort on their part. This increases the frequency

with which data can be collected and is less vulnerable to
self-report bias, which is often a problem in prompted surveys
(Rosenman et al., 2011; Ben-Zeev et al., 2015). Smartphone
ownership has increased steadily over the last decade, with
over 75% of the United States population owning one (Smith,
2017). In parallel, depression rates have increased over the
last decade (Twenge et al., 2018). While it is unlikely that
smartphone ownership by itself has prompted increased rates
of depression, has perhaps facilitated increased access to and
usage of social network platforms (Kross et al., 2013). Prevalence
of both smartphone ownership and depression rates are often
reported as being higher in college-age students (Eisenberg
et al., 2013; Nielsen.com, 2016). Screen time, e.g., the amount of
time that the screen is unlocked and being used is a relatively
simple metric to calculate that has been previously related to
depressive symptoms by multiple groups through either passive
sensing or self-reported surveys (Twenge et al., 2018; Wang
et al., 2018). Screen time and unlock duration will be used
interchangeably henceforth.

Depression has been linked to a variety of metrics available
from smartphone sensing applications including amount of
stationary time, GPS patterns, phone usage and conversation
patterns, among others (Burns et al., 2011; Canzian and
Musolesi, 2015; Saeb et al., 2015; Mehrotra et al., 2017;
Wang et al., 2018). The higher amplitude circadian rhythms
as measured by accelerometer are associated with reduced
chances of major depressive disorder and other negative
mental health outcomes (Lyall et al., 2018). Saeb et al.
(2015) determined that circadian movement (regularity in 24-h
patterns), mobility between favorite locations and location
variance were all negatively correlated with depressive symptoms,
while phone usage was positively correlated with depressive
symptoms. Using smartphone passive sensing, distance between
locations visited and a routine index, or the reliability of
the locations visited on a day-to-day basis were related to
depressive symptoms (Canzian and Musolesi, 2015). Links
between features such as location category (home, car, office
etc.) and depression, with further accuracy in prediction
when adding context, such as if the individual is alone, with
other people (particularly friends) or current physical exertion
status (Burns et al., 2011). Self-reported happiness has been
linked to decreased phone usage in the subsequent hour
(Mehrotra et al., 2017). While several groups have started
to characterize traits linked to depression, phone usage and
circadian rhythms are the ones that are most prominent in the
current literature.

Resting-State Functional Connectivity
Blood-oxygenation-level dependent (BOLD) functional magnetic
resonance imaging (fMRI) is a non-invasive way to study
activity in the human brain. Changes in BOLD signal are highly
correlated with changes in neuronal activity in the local area,
particularly local field potentials (Logothetis et al., 2001). RSFC
measures the relationship between the time-courses of different
regions, often by using the correlation of the time-series. While
connectivity across the whole brain, or “functional connectome”
is fairly similar across individuals, there are small individual
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differences in connectivity between individuals which can be
reliably observed across time. There are a variety of factors which
may potentially influence RSFC, including genetics, experiences
across the lifetime and current physiological and emotional state
(Shehzad et al., 2009; Birn et al., 2013; Patriat et al., 2013;
Zuo et al., 2014; Poldrack et al., 2015; Richiardi et al., 2015;
Sinclair et al., 2015).

Depression and Neuroimaging
Resting-state functional connectivity has been used successfully
to distinguish between healthy controls and depressed
individuals, even going so far as to distinguish between
subtypes of depressed individuals (Greicius et al., 2007;
Berman et al., 2013; Kaiser et al., 2015; Drysdale et al., 2016).
Task-based studies of self-referential processing have revealed
that the sgCC is preferentially involved in processing valenced
self-referential information (Moran et al., 2006; Somerville
et al., 2006). Additionally, this region has been associated
with antidepressant treatment response, and an area proximal
to this has been used as a site of deep-brain stimulation
for treatment-resistant depression (Mayberg et al., 2005;
Holtzheimer, 2012).

Combing RSFC and Mobile Smartphone
Passive-Sensing Technology
There are a wide-variety of approaches that can be taken when
combining high-dimensional data from multiple modalities. We
wanted to answer the following question: do smartphone sensing
features previously identified as being related to depression
show correlations with RSFC from a region previously identified
to have aberrant connectivity in depressed individuals? A
targeted approach was used, selecting screen time with mobile
smartphone (e.g., unlock duration), a feature previously shown
to be linked to depressive symptoms (Saeb et al., 2015;
Twenge et al., 2018; Wang et al., 2018) and a brain area, the
subgenual cingulate cortex (sgCC) which has previously been
identified as having aberrant RSFC in depressed individuals,
and more recently has been used as a target for deep brain
stimulation for treatment resistant depression (Mayberg et al.,
2005; Greicius et al., 2007; Holtzheimer, 2012). Furthermore,
if there are regions identified in the passive-sensing unlock
duration analysis and RSFC analysis, do these regions also
show similar connectivity patterns when looking at the same
correlations with brief surveys of self-reported depressive
symptoms (PHQ-2, 4 and 8)? We expect that they would.
Alternatively, depression may be a summation of multiple factors
and may be better understood by interrogating passive-sensing
mobile technology and neuroimaging than self-reported scales.
As a secondary analysis, other passive-sensing features similar
to those previously reported by other groups to be indicative
of depression were explored, specifically, circadian rhythms in
both movement and number of locations visited. Keeping within
the RDoC matrix, a variety of units of analysis including brain
connectivity with fMRI (physiological), passive-sensing of phone
usage (behavioral) and both computer-based and phone-based
depression scales (self-report) were assessed.

MATERIALS AND METHODS

Study Design
In the current study two separate cohorts of first-year
undergraduate students were enrolled and analyzed separately
for test-retest comparison. Individuals were enrolled in three
study components: neuroimaging, smartphone sensing/EMA and
online surveys. Three modified versions of the PHQ-9 were
used: PHQ-2/4/8. PHQ-8 is the same as PHQ-9 with the suicide
ideation question removed. This question was removed before
administration because the survey results are not monitored in
real-time. PHQ-4 is a four-question survey which includes two
questions from the PHQ-8 and two from the GAD-7 as to assess
both depressive and anxiety related symptoms (Kroenke et al.,
2009a,b). They are used because of their brief form. They may
miss some of the nuances that the other inventories pick up on
but have been found to have high internal reliability (Cronbach’s
Alpha > 0.8) and are correlated with diagnoses of clinically
relevant depression (Cameron et al., 2008; Khubchandani et al.,
2016). PHQ-2 is used as a super-brief form of the PHQ-8 that is
slightly more specific to depressive symptoms by excluding the
GAD-related questions (Arroll et al., 2010).

Individuals completed an online survey to assess study
eligibility (safe for MRI per Dartmouth Brain Imaging Center
guidelines, no contraindications that would lead to MRI signal
loss, and owned an Android or iOS smartphone compatible
with StudentLife). If an individual was eligible and interested in
participating in the study, she or he completed a battery of online
surveys, including the PHQ-8 through REDCap (Harris et al.,
2009). Individuals were then scanned during the academic term
and had the StudentLife application (Wang et al., 2014) installed
on their phone at or near the time of scanning. In Cohort 1,
StudentLife data was collected from the time of scanning until the
end of the term. In Cohort 2, StudentLife data was collected from
the time of scanning and data collection is currently ongoing but
the data presented here is only from their first term in college.

StudentLife
A smartphone application, StudentLife is used in the current
study to collect a variety of data about smartphone usage
and mood from participants. The application is installed on a
participant’s phone (iOS or Android) and collects data from the
GPS, microphone, accelerometer and lock/unlock status among
others. Data from StudentLife is uploaded to a secure server
whenever a participant is both using WiFi and charging their
phone, which they were encouraged to do daily. Data from
these sensors are processed on the server to create variables that
assesses the day-to-day and week-by-week impact of workload
on stress, sleep, activity, mood, sociability, mental well-being,
and academic performance of students (Wang et al., 2014).
The workflow of the current study includes data collected
through StudentLife, MRI scanning sessions and self-reported
surveys (Figure 1). Unlock duration is a measurement of time
that the phone is unlocked and the screen is on, calculated
as the time between the user unlocking the phone and the
user either manually relocking the phone or autolocking due
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FIGURE 1 | Summary graphic of the study workflow in the current study, showing raw data collection from both smartphones (StudentLife, passive sensing) and
MRI (resting-state functional connectivity, sgCC seed-based analysis). Calculated features were selected based on previous research. Survey data was collected
with both online (REDCap, PHQ-8) and smartphone (StudentLife, Ecological Momentary Assessments, PHQ-2/4) sources.

to disuse (iOS default of 30 seconds, Android default vary by
manufacturer). Notification and system services do not influence
the measurement of unlock duration. While not an absolute
measurement of phone usage it is the closest approximation
implemented in StudentLife. In Cohort 1, unlock duration
(phone usage) was continually sampled, providing coverage 100%
of the time. This was decreased in Cohort 2 to help conserve
battery usage. In Cohort 2, phones were remotely triggered every
10 min, sampling 1 min every 10 min period (minimum 10%
temporal coverage), unless conversation was detected during the
1-min sampling period, in which case sampling was extended up
to 3 min for a maximum of 30% temporal coverage.

Ecological Momentary Assessments
Students were prompted once a week within the StudentLife
application during the term to complete a few short surveys
as Ecological Momentary Assessments EMA, one of which was
PHQ-4 (Shiffman et al., 2008). In the current study PHQ-4 was
collected weekly as an EMA PHQ-4 is a modified, shorter version
of the PHQ-8 which in four questions provides a glimpse of
depressive and anxious symptoms (two questions related to each,
with the two depression questions comprising the PHQ-2).

Calculation of Circadian Similarity
As part of the StudentLife app, many feature estimates are
calculated for each of the following time-epochs: 9 am – 6 pm
(day), 6 pm – 12 am (evening), 12 am – 9 am (night).
Accordingly, the relative occurrences of behaviors within each
epoch can be estimated and analyzed alongside their daily totals
as features. Similarity of day-to-day variation in these feature

values across these three time periods were calculated using intra-
class correlation, or ICC (Shrout and Fleiss, 1979) which was
slightly modified to still run with missing values, by changing
mean and summation operations to the equivalent NaN operator
in MATLAB. Only individuals with more than 20 days of data for
a given feature were included.

Several motion features such as time spent walking, biking,
running, or in car are calculated, there is some variance in
how they are calculated between Android and iOS. The feature
with the most similarity across platforms, which allows for the
retention of the greatest number of subjects is the feature “time
still,” which is a relatively simple metric which is calculated by
how much time the phone is still or not moving. This was broken
into three time-epochs as mentioned above and the similarity of
activity cycles (or lack thereof) across days was calculated using
ICC and termed Circadian Stillness Similarity.

Previous research has focused on frequency of visits to known
places and the interaction with depression. Within the constraints
of the currently processed data, these features could not be
calculated exactly, but instead the number of unique locations
visited during each time-epoch was calculated (Wang et al., 2014).
The reliability of how many locations a person visited through
the three epochs each day was calculated with ICC and termed
Circadian Location Number Similarity.

Subjects
Subjects were first-year undergraduate students recruited from
the Dartmouth College community. Cohort 1 included 151
subjects (94 female, mean age = 19.59, std = 1.69, range = 18–28)
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which were all scanned during their first year at Dartmouth
and followed for the subsequent academic term. Cohort 2
included 106 subjects (75 female, mean age = 18.25, std = 0.63,
range = 18–22) which were all scanned during the first academic
term of their first year at Dartmouth. In Cohort 2, one subject
was removed from the study for having an incompatible phone
and one MRI session was stopped due to not reporting a
permanent top retainer.

See Table 1 for a summary of the number of individuals
included in each analysis, grouped by Cohort. Subjects were
only included in each analysis if they met the minimum
number of time-points for smartphone-based StudentLife data
and each analysis and had RSFC that passed quality control
(see RSFC analysis methods section below for further details).
Subjects had normal or corrected-to-normal visual acuity. The
Committee for the Protection of Human Subjects at Dartmouth
College approved this study. Each subject provided written
informed consent in accordance with guidelines set by the
above-mentioned committee and received either course credit or
monetary compensation for participating in the study.

RSFC Data Collection
Apparatus
Cohort 1 imaging was performed on a Philips Intera Achieva
3-Tesla scanner (Philips Medical Systems, Bothell, WA,
United States). Cohort 2 imaging was performed on a Siemens
MAGNETOM Prisma 3-Tesla scanner (Siemens Medical
Solutions, Malvern, PA, United States). Data for both cohorts
was collected using a 32-channel phased array head coil. During
scanning, participants viewed a white fixation cross on a black
background projected on a screen positioned at the head end of
the scanner bore, which participants viewed through a mirror
mounted on top of the head coil.

Cohort 1 Imaging
Anatomic images were acquired using a high-resolution
3-D magnetization-prepared rapid gradient echo sequence
(MP-RAGE; 160 sagittal slices; TE, 4.6 ms; TR, 9.9 ms; flip angle,
8◦; voxel size, 1 × 1 × 1 mm). Resting-state functional images
were collected using T2∗-weighted fast field echo, echo planar
functional imaging sensitive to BOLD contrast (TR = 2500 ms;
TE = 35 ms; flip angle = 90◦; 3× 3 mm in-plane resolution; sense
factor of 2). Functional scanning was performed in one or two
runs; during each run, 240 brain volumes (36 slices, 3.5 mm slice
thickness, 0.5 mm skip between slices) were acquired, allowing

TABLE 1 | Summary of the number of subjects in each analysis.

Cohort 1 Cohort 2

Total scanned 151 106

RSFC data (Passed QC) 145 93

PHQ-8 65 89

PHQ-4 (>= 1-Day) 84 89

PHQ-2 (>= 1-Day) 84 89

Unlock duration (>= 20-Days) 77 89

complete brain coverage. As such, each participant completed
between 10 and 20 min of RSFC scanning.

Cohort 2 Imaging
Anatomic images were acquired using a high-resolution
3-D magnetization-prepared rapid gradient echo sequence
(MP-RAGE; 192 sagittal slices; TE, 2.32 ms; TR, 2300 ms; flip
angle, 8◦; voxel size, 1× 1× 1 mm) with a Grappa 2 acceleration
factor. Resting-state functional images were collected using
T2∗-weighted fast field echo, echo planar functional imaging
sensitive to BOLD contrast (TR = 1190 ms; TE = 32 ms; flip
angle = 63◦; 2.4 × 2.4 mm in-plane resolution; SMS factor of
4). Functional scanning was performed in one or two runs;
during each run, 605 volumes (46 slices, 3 mm slice thickness,
no skip between slices) were acquired, allowing complete brain
coverage. As such, each participant completed 12 or 24 min
of RSFC scanning. Initial data acquisition and conversion to
BIDS for cohort 2 was facilitated by the ReproIn specification
and tools (ReproNim project NIH-NIBIB P41 EB019936) and
organized into BIDS format with datalad (Gorgolewski et al.,
2016; Halchenko et al., 2017).

RSFC Analyses
All processing was performed using a standard previously
published processing stream (Power et al., 2014) with two
exceptions: frame-displacement (FD) threshold was set to
0.25 mm (instead of 0.2 mm) and 36 motion parameters (instead
of 24) were used for motion regression. Functional images
were preprocessed to reduce artifacts, including: (i) slice-timing
correction, (ii) rigid body realignment to correct for head
movement within and across runs, (iii) within-run intensity
normalization such that the intensity of all voxels and volumes
achieved a mode value of 1000 scale with 10 units equal to
∼1% signal change, (iv) transformation to a standardized atlas
space (3 mm isotropic voxels) based on (Talairach and Tournoux,
1988), (v) frame censoring, (vi) nuisance regression (excluding
censored frames), (vii) interpolation, and (viii) bandpass filtering
(0.009 < f < 0.08Hz) following Power et al. (2014) and using
exactly the same processing stream as Huckins et al. (2019). Final
correlation calculations between time-courses were calculated
based upon uncensored frames. Preprocessing steps i-v were
completed using custom scripts which call 4dfp Tools1. Steps
specific to resting-state functional-connectivity processing (vi-x)
were completed using custom MATLAB (Version R2012b, by
MathWorks, Natick, MA, United States) scripts.

Nuisance Regressors
To control for motion, a Volterra expansion (Friston et al., 1996)
with 36 motion parameters was used. This expansion includes
motion, motion squared, motion at the previous two frames,
and motion in the previous two frames squared. Tissue-based
nuisance regressors were calculated by taking the mean signal
across voxels within each of the following individual masks from
FreeSurfer2 (Dale et al., 1999; Desikan et al., 2006): an eroded

1ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/
2http://surfer.nmr.mgh.harvard.edu

Frontiers in Neuroscience | www.frontiersin.org 5 March 2019 | Volume 13 | Article 24839

ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/
http://surfer.nmr.mgh.harvard.edu
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00248 March 19, 2019 Time: 17:59 # 6

Huckins et al. Multimodal Depression Assessment

(up to 4x) ventricular mask for the cerebrospinal fluid, an eroded
white matter mask for the white matter signal, and a whole-brain
mask for global signal. When eroded masks included no voxels,
lesser erosions were progressive considered until a mask with
qualifying voxels was identified. This occurred infrequently for
white-matter masks while erosions of 1 were often used for CSF
masks. The first derivative for each tissue regressor, as calculated
by the difference from the current from to the previous frame,
was also included.

Volume Censoring and Data Retention
Movement of the head from one volume to the next (FD) was
calculated by the sum of the absolute values of the differentiated
realignment values (x, y, z, pitch, roll, yaw) at each time-point
(Power et al., 2012). A frame displacement threshold of 0.25mm
was used. Volumes with motion above the frame displacement
threshold were identified and replaced after multiple regressions
but prior to frequency filtering. Spectral decomposition of the
uncensored data was performed and used to reconstitute (stage
vii: interpolation) data at censored time-points. The frequency
content of uncensored data was calculated with a least squares
spectral analyses for non-uniformly sampled data (Mathias et al.,
2004) based upon the Lomb-Scargle periodogram (Lomb, 1976).
Segments of data with less than 5 contiguous volumes below the
FD threshold were flagged for censoring. Functional runs were
only included in the final analysis if the run contained 50 or
more uncensored frames. Only subjects with at least 5 min of
uncensored data across runs were included in the current study.
Consistent with Power et al. (2014), only uncensored volumes
were used when calculating temporal correlations.

Neurosynth Analysis and Subgenual
Cingulate Cortex Seedmaps
To identify an unbiased sgCC seed to create voxelwise functional
seed maps, an automated meta-analysis was performed using
Neurosynth for the term “subgenual” (Yarkoni et al., 2011). sgCC
seed maps were created from a 4mm spherical seed placed at
0, 25, −10 (MNI coordinates), which was the peak of the term
“subgenual” as of February 17th, 2017 and are centered around
BA 25. The mean time-course from this seed was correlated with
the time-course from every voxel within the brain. These seed
maps, i.e., maps of resting-state connectivity from the subgenual
region, were produced for each individual that passed quality
control (more than 5 min of uncensored frames, see above
for more details).

Combining Data
Since the version of the StudentLife application used in the
current study generates 182 features automatically, and with
RSFC it is possible to generate thousands of features, it is
necessary to minimize the number of features compared given
the relatively small size of the Cohorts (N < 100). To minimize
the number of features inspected, unlock duration was the only
feature inspected given its simplicity to calculate and previously
identified relationship with PHQ-8 (Wang et al., 2018). While
many features were automatically calculated, unlock duration
(e.g., screen time) was first targeted as a simple feature both to

calculate and to conceptualize as it can be considered a proxy for
total phone screen time.

For all surveys analyzed here, one time-point was sufficient
for a subject to be included in the current analyses. If there were
multiple responses to ecological momentary assessments (EMAs,
e.g., surveys prompted by the application) over the course of the
term those responses were averaged. Individuals were included in
the passive sensing unlock duration analysis if they had 20 days of
quality data with more than 16 h of quality unlock duration data
for each day that was included.

Group Analyses and Statistics
Subgenual cingulate cortex seedmaps from Cohort 1 were
correlated with unlock duration sampled from smartphone usage
with the StudentLife application. For each analysis, the degrees
of freedom was N-2, with N being the number of subjects which
is listed in Table 1. Results from the unlock duration and sgCC
correlational analysis from Cohort 1 were volume corrected to
account for multiple comparisons using AFNI’s 3dClustSim ACF
function. Results from the sgCC/unlock duration analysis were
used to restrict the regions investigated in further analyses. Given
the proof-of-concept and exploratory nature of the current work,
clusters are marked as having passed volume-correction or not.

Visualization
All results were transformed into MNI space (Montreal
Neurological Institute) and mapped onto the Conte69 template
for volume-based slices or inflated surfaces for visualization (Van
Essen et al., 2012). Group results were visualized in Connectome
Workbench Version 1.1.1 (Marcus et al., 2010).

RESULTS

Self-Reported Depression Measures
Depression symptomatology severity was assessed pre-scan with
an online survey using PHQ-8 and during the term using
the StudentLife application to administer the PHQ-4 (which
contains the PHQ-2). PHQ-8 distributions were similar between
Cohort 1 and Cohort 2 (mean = 4.77, 4.52; SEM = 0.58, 0.47,
respectively). Depression severity (as categorized by Kroenke
et al., 2001) revealed that in both Cohorts a large portion of
individuals had minimal depressive symptoms (56.9 and 62.9%,
respectively), leaving roughly 40 percent of individuals with
a range of depressive symptoms (Supplementary Table S1).
PHQ-4 distributions where also similar between Cohort 1 and
Cohort 2 (mean = 2.52, 2.09; SEM = 0.24, 0.18, respectively).
PHQ-2 distributions where also similar between Cohort 1 and
Cohort 2 (mean = 0.77, 0.80; SEM = 0.13, 0.10, respectively).
Density figures for all self-reported depression symptoms can be
found in the Supplementary Figure S1.

Passive Sensing Features Correlated
With sgCC Connectivity
In Cohort 1 exploratory whole-brain analyses of the correlation
between unlock duration and sgCC seedmaps identified a
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large cluster (584 voxels, 15,768mm3) in the ventromedial
prefrontal cortex with a positive linear relationship (Figure 2
and Supplementary Figure S2A). This cluster extended from the
ventral striatum to medial frontal orbitofrontal cortex (OFC) and
dorsally to medial prefrontal cortex. Information about subpeaks
within this cluster can be found in Table 2. To determine if these
results replicated in Cohort 2, the cluster identified in Cohort 1
was used as a mask and voxels which showed a significant positive
relationship between unlock duration and sgCC connectivity
in Cohort 2 were identified. This analysis identified a cluster
with the peak located at −6, 51, −18 (MNI coordinates, peak
T = 2.94, voxel extent = 42, volume-corrected to p < 0.05)
(Supplementary Figure S2B).

Two features estimating the reliability of day-to-day activity
patterns, including phone motion measured as how long the
phone is still at three different time epochs throughout the
day and the number of locations an individual visits per time
epoch were subsequently analyzed. Circadian Stillness Similarity
derived from phone stillness across the three daily time-epochs
did not identify any significant regions in Cohort 1 (N = 77)
after volume-correction within the prefrontal mask from unlock
duration used in other analyses in the main text. Cohort 2
(N = 89) did, however, identify a small cluster (MNI = 12,
45, −12; t = 2.73; 31 voxels) in right medial OFC which was

FIGURE 2 | Exploratory analysis correlation sgCC RSFC seedmaps correlated
with mean unlock duration identified a cluster with a positive relationship to
unlock duration in the ventromedial prefrontal cortex (p < 0.01, volume
corrected using ACF to p < 0.001) shown on inflated lateral (top left), medial
(bottom left) and ventral (right) cortical surfaces. The sgCC seed is
represented as a black 10 mm sphere, larger than the 4 mm sphere used to
create the seedmaps for visualization purposes.

TABLE 2 | Exploratory analysis correlation sgCC RSFC seedmaps correlated with
mean unlock duration (smartphone screen time) identified one cluster in the
ventromedial prefrontal cortex (p < 0.01, volume corrected using AFNI’s ACF to
p < 0.001, k > 449, voxel extent = 548).

Best estimate of region X Y Z T

Caudate −15 21 −9 4.29

Caudate 12 21 −9 3.64

Anterior sgCC 6 33 −12 3.34

Peaks were identified with xjview 9.6, showing 3 maximia within this cluster, at
least 8 mm apart.

negatively correlated with circadian similarity. In other words,
individuals with daily movements patterns that were more similar
had less connectivity between sgCC and medial OFC. Similar
results were observed for Circadian Location Number Similarity,
where no clusters passed volume correction in Cohort 1, but
a small cluster (MNI = −9, 45, −12; t = −2.54; 31 voxels)
was found in left medial OFC (not shown given similarity with
Supplementary Figure S5). Between the two analyses there were
7 voxels which overlapped.

Self-Reported Depression Symptoms
Correlated With sgCC Connectivity
Previous research (Wang et al., 2018) identified a relationship
between depressive symptoms and unlock duration. To
determine if depressive symptoms and unlock duration had
overlap in the brain connectivity (seed based subgenual RSFC)
regressions for both computer-based pre-screening (PHQ-8),
phone based post-scanning (PHQ-2/4 as EMA) were performed.
Results from each of these analyses were masked with the cluster
identified in Cohort 1’s sgCC/unlock duration analysis.

PHQ-8 computer-based surveys correlated with sgCC
connectivity maps identified clusters with a positive relationship
with sgCC connectivity in both Cohorts and identified a cluster
which overlapped between the two. Cohort 1 revealed one
cluster at which passed volume-correction −21, 42, −12 (peak
T = 3.19, voxel extent = 63, volume corrected to p < 0.05), 24,
51, −9 (peak T = 2.55, voxel extent = 15, did not pass volume
correction) (Figure 3 and Table 3). In the PHQ-8 analysis of
Cohort 2, results were further masked by the cluster which

FIGURE 3 | PHQ-8 regression for sgCC connectivity seedmaps for (A) Cohort
1 (MNI Z of –10 to –22 in steps of 4) and (B) overlap between Cohort 1 and
Cohort 2 (MNI Z of –12). Cohort 1 PHQ-8 results were masked with the
volume-corrected cluster identified in the Cohort 1 phone usage analysis
(unlock duration) and Cohort 2 PHQ-8 results were masked with the PHQ-8
results from Cohort 1.
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TABLE 3 | Results for the correlation of sgCC RSFC seedmaps with PHQ-8,
masked by phone screen time results.

Best estimate of region X Y Z T Extent

Cohort 1

Left OFC −21 42 −12 3.19 63

−18 51 −15 3.09 Subpeak

−6 48 −21 3.04 Subpeak

Right OFC∗ 24 51 −9 2.55 15

18 42 −12 2.19 Subpeak

Overlap between cohorts

Left OFC −15 33 −12 2.98 8

Overlap between Cohort 1 and Cohort 2 for sgCC RSFC seedmaps correlated with
PHQ-8 (Bottom). Subpeaks are at least 8 mm apart. ∗signifies that cluster didn’t
pass volume correction. Cohort 1 PHQ-8 results were masked with the cluster
identified in the Cohort 1 phone usage analysis (unlock duration) and Cohort 2
PHQ-8 results were masked with the PHQ-8 results from Cohort 1.

passed volume-correction in the Cohort 1 PHQ-8 analysis (63
voxels), identifying 1 significant cluster in Cohort 2, located at
−15, 33, −12 (peak T = 2.98, voxel extent = 8, volume corrected
to p < 0.05). In addition to identifying a cluster with overlap
between the both Cohorts for the PHQ-8 analysis, qualitative
visual inspection suggests proximal cortical regions in both
cohorts meeting a voxelwise threshold of p < 0.05, with regions
proximal to the mask having overlap at a threshold of p < 0.05
and increased overlap, including right OFC at a more liberal
threshold of p < 0.1.

PHQ-4 EMAs correlated with sgCC connectivity maps
identified peaks in Cohort 1 and 2, but there was no overlap
in the clusters between the Cohorts (Supplementary Figure S3
and Table S2). In Cohort 1 no significant clusters were
identified when PHQ-4 was masked with Cohort 1 unlock
duration. As Cohort 1 didn’t identify any regions which
passed volume-correction, there was no overlap of significant
volume-corrected regions between Cohort 1 and Cohort 2
for PHQ-2 (Supplementary Figure S4). As such, Cohort
2 results were masked with the Cohort 1 unlock duration
cluster which identified one significant cluster with the peak
at −15, 30, −12 (peak T = 3.71, voxel extent = 41, volume
corrected to p < 0.05). Two clusters were identified that
didn’t pass volume correction were also identified at −9, 51,
−18 (peak T = 2.87, voxel extent = 28, volume correction
ns) and 24, 39, −15 (peak T = 1.87, voxel extent = 9,
volume correction ns).

PHQ-4 includes two anxiety questions, so the subsequent
analysis was restricted to the two questions related to depressive
symptoms which comprise the PHQ-2. As Cohort 1 didn’t
identify any regions which passed volume-correction, there was
no overlap of significant volume-corrected regions between
Cohort 1 and Cohort 2 for PHQ-2. As such, Cohort 2 results
were masked with the Cohort 1 Unlock Duration cluster which
identified 1 cluster which passed volume correction, with the
peak at −18, 30, −12 (peak T = 3.81, voxel extent = 60, volume
corrected to p < 0.05). One cluster was identified that didn’t
pass volume correction with peak at −9, 42, −27 (peak T = 2.93,
voxel extent = 40, ns).

Overlap Across Analyses
Given the similarity of regions found across the PHQ analyses
in Cohort 2, the overlap between the results of PHQ 2/4 masked
by the Cohort 1 unlock duration was investigated, with 39 voxels
out of the 41 voxels identified in the PHQ-2 analysis overlapping
with the PHQ-4 analysis. The overlap between Cohort 2 PHQ-2,
4 and 8 identified 11 voxels, which are located around the peaks
of the PHQ-8 analysis.

DISCUSSION

The current manuscript is provided as a proof-of-concept
example of how passive smartphone metrics, active
smartphone-based surveys of mental health and computer-based
surveys of mental health with brain connectivity measures can
be linked. Specifically, RSFC between the subgenual cingulate
cortex, a region previously implicated in depression, and nearby
ventral prefrontal regions, was strongly related to unlock
duration, such that more connectivity was associated with more
screen time, which has been implicated as being related to
self-reported depressive symptoms. The link between RSFC and
individual differences has long been established but extending
that and combining it with an individual’s behavior inferred from
smartphone sensors provides exciting new directions. While the
results presented here are a relatively simple analysis of complex,
highly dimensional data, methods are discussed which could
be used in the future to combine these highly multivariate and
complex datasets in exciting ways.

Phone-related screen time, defined here as the amount of time
a phone is unlocked, or unlock duration, has previously been
shown to be related to self-reported depression levels (Twenge
et al., 2018; Wang et al., 2018). An exploratory analysis in
Cohort 1 of the correlation between unlock duration and sgCC
seedmaps identified a large cluster which extended from the
anterior caudate to medial frontal OFC and dorsally to medial
prefrontal cortex, a result which was replicated in Cohort 2
with a smaller voxel extent, even though the sampling rate for
screen time was greatly reduced, reducing our sensitivity to
pick up individual differences in phone usage for this cohort.
Next, to determine if depressive symptoms showed a similar
pattern of connectivity between sgCC and ventral prefrontal
cortex the cluster from Cohort 1’s unlock duration analysis
was used as a mask with PHQ-8, a commonly used survey
to assess depressive symptoms in the general population. Two
small clusters of overlap were identified in the left OFC, one
of them neighboring voxels that were identified to replicate in
the unlock duration analysis between the Cohorts. While these
clusters are not large and would not necessarily survive volume
correction on their own, observing similar regions across Cohorts
and analyses suggests that there is a link between depressive
symptoms and related behaviors and sgCC-OFC connectivity,
particularly left OFC that should be further investigated. The
PHQ-4, which contains two depression questions and two anxiety
questions, did not show the same robust relationship across
both Cohorts, with no voxels overlapping, although Cohort 2
identified a cluster in the left OFC which overlapped with results
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observed with PHQ-8 in both Cohorts. Connectivity between
the sgCC seed (BA 25), located at 0, 25, −10 and the left OFC
region around −15, 33, −12 shows a consistent relationship
between self-reported depressive symptoms and screen time,
which has previously been associated with depression. Increased
connectivity between sgCC, a region involved in processing of
valenced information about the self (Moran et al., 2006) and OFC,
which is involved in valuation and reward processing has been
linked increased depressive symptoms and screen time across
both Cohorts. Similar results were observed with PHQ-2, which
only contains the two questions directly related to mood. It
seems quite plausible that regions involved in valence processing
related to the concept of self and a more general reward
valuation processing region would have increased connectivity in
individuals with higher depressive symptoms.

Individuals in Cohort 2 with daily movement routines which
were more similar from day-to-day exhibited less connectivity
between sgCC and medial OFC. This is the opposite direction
of a correlation that unlock duration and PHQ depression
surveys identified, which is expected in light of results by Lyall
et al. (2018), where individuals that exhibited activity patterns
with reliable rest/activity cycles were less likely to be depressed.
Similarly, individuals with more similarity in locations visited,
meaning consistent day-to-day schedules had less connectivity
between sgCC and medial OFC, which in the current study is
associated with lower depression levels. The current work used
very large time epochs and could be investigated in more depth
with future modifications to the StudentLife application and
feature generation pipeline to perform finer grained analyses.
Similarly, extending StudentLife to calculate frequently visited
locations such as Burns et al. (2011) could prove fruitful. In
summary, in the current dataset the regularity in the number of
locations visited (as measured by GPS) and regularity in the time
that the phone is not moving are both negatively correlated with
connectivity between the sgCC and medial OFC.

We have shown that RSFC of the brain, as measured with
MRI, in two separate Cohorts of individuals, with two separate
MRI’s and two separate versions of the StudentLife application
and three separate passive-sensing feature show similarity in the
results observed. The cluster identified with the unlock duration
analysis covered an extent similar to that of the limbic network
previously identified (Yeo et al., 2011; Choi et al., 2012). Due to
the constraints we imposed on the analysis, all of the subsequent
results were within this area, but noticeably, many of the results
were proximal to the left OFC, which is also a member of
a set of nodes which are commonly activated during reward
processing and can form their own preferentially coupled system
(Huckins et al., 2018) and is identified as a peak of the term
“reward” in reverse-inference meta-analyses using Neurosynth
(Yarkoni et al., 2011).

LIMITATIONS AND FUTURE DIRECTIONS

The current work is a first-pass at analyzing longitudinal
multi-cohort, multimodality data and has several limitations.
There are several ways in which future research may provide

a more comprehensive survey of the relationships between
the diverse set of features provided from passive smartphone
sensing, functional brain connectivity measures and self-reported
measures of depression or other mental health metrics. The
relatively small number of clinically depressed individual in
the current sample weighs the results heavily on the RSFC
and passive-sensing features from those individuals. Test-retest
within the moderately sized samples allows for identification
of factors with reliable cross-cohort replicability in RSFC both
and passive-sensing features. Ideally, similar sensing features
could be collected across many sites, allow for identification
and characterization of depressive subtypes that span across
passive-sensing and RSFC as has been done by Drysdale et al.
(2016) with RSFC and survey data. Diagnosis of depression by
neuroimaging techniques such as RSFC MRI could potentially be
cost prohibitive in a medical setting. With that said, the medical
costs associated with untreated depression accounts for $26.1
billion per year with a total economic loss about $83 billion in
just the United States alone (Greenberg et al., 2003). As noted in
the current Cohorts, roughly 40 percent of participants had mild
depressive symptoms or worse as measured.

In the current study, particularly Cohort 2 in which data
quality was actively monitored, a relatively large portion of
individuals from those scanned was retained (see Table 1). The
sample sizes used here would have been considered relatively
large several years ago. Increased sample sizes in the current
study would help future analyses given the large number of
features from both passive mobile smartphone sensing and RSFC.
An outstanding question is if long-term changes in depressive
symptoms can be better predicted by RSFC or smartphone
sensing metrics at the initiation of the study or if changes in
either of these over time parallel depressive symptoms. Ideally to
assess this a large number of individuals would be tracked over
multiple years. In the second Cohort our working group aims
to track them over multiple years while eventually increasing the
number of individuals enrolled. Furthermore, including multiple
sites, as the ABCD study does (Volkow et al., 2017), would
increase applicability to a wider population. Multiple research
sites are currently collecting MRI data, self-reported surveys
and smartphone sensing metrics. An unresolved issue is what,
exactly, is the optimal approach to analyze the huge amounts of
multivariate data produced by these methods.

Application Changes Between Cohorts
In the current study, unlock duration data collection changed
between the cohorts. In Cohort 1, unlock duration was
continually sampled, while in Cohort 2 unlock duration was
adaptively sampled between 10 and 30% of the time. This change
was instituted to optimize battery life, a primary limitation
to users being willing to keep the StudentLife app on their
phone. By decreasing the amount of time sampled from 100% to
10–30%, our ability to accurately estimate unlock duration may
decrease slightly as evidenced by an observed decrease in peak
effect (T-value) and voxel extent. As with all passive and active
smartphone features, the ability to collect data must be weighed
against the invasiveness to the user experience, either through app
prompts or decreased battery life and phone speed.
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Feature Selection and Calculation
In the current study, initial analyses focused on unlock duration
as a proxy for general phone usage then investigated the similarity
of individuals circadian rhythms from day to day and how each
of these was related to brain connectivity from a region known
to be involved in depression and many cognitive functions.
Unlock duration on its own in very unlikely to be an optimal
feature to predict depression and this is where generating and
testing a variety of higher-level features may prove fruitful.
Identifying changes in features from day-to-day or week-to-week
may increase predictability, such as an increase in unlock
duration could be associated with increases in depression within
an individual (Wang et al., 2018). Variability or stability of
passive-sensing features may also be able to predict individual
differences in depression. Ideally, a template of passive-sensing
features for non-depressed individuals could be created and
deviance from this template could be calculated as a sort of
depression-index or propensity score. This high-level feature
could then be linked to deviance of brain connectivity patterns
from non-depressed individuals. Critically, future work should
select features that reflect not just phone usage and other standard
passive-sensing metrics, but build upon the current sensing
literature related to depression (Burns et al., 2011; Canzian and
Musolesi, 2015; Saeb et al., 2015; Lyall et al., 2018; Wang et al.,
2018) and calculate higher level features which are likely to better
reflect nuances in behavioral differences across individuals.

Temporal Factors Related to School
The demands of the academic term provide a generally applicable
path of stress which is shaped over the term. Avoiding,
or potentially purposefully collecting MRI data during finals,
which may be particularly stressful, or during popular social
weekends may lead to changes in stress levels, sleep patterns
and other variables which could alter connectivity patterns and
self-reported behavioral data that would have otherwise been
observed. In the study herein, attempts were made to scan before
finals and avoid well-known “party weekends.” Future studies
may be able to capitalize on temporal differences in stress and
depression levels by scanning at these peak times of stress or sleep
deprivation and comparing that data to less stressful times, such
as the beginning of the term.

Functional Differences and Alignment
Across Individuals
Resting-state functional connectivity shows robust and relatively
reliable connectivity across large groups of individuals across
methods (Yeo et al., 2011; Gordon et al., 2016). Meanwhile
there are individual differences in the cortical extent of
large-scale functional regions across individuals and even the
network membership of these regions can vary (Gordon et al.,
2017). Furthermore, critical to identifying group and individual
differences is acquiring a large quantity of high-quality data
(Gratton et al., 2018). Defining networks on an individual basis
will likely help in the pursuit of the individual differences in
brain connectivity that underlie depression. Variability in RSFC
has been observed at the functional parcel level, but what

about at finer resolutions? While a departure of traditional
anatomical alignment methods, hyperalignment is a method
which attempts to align brain based on similar response patterns
in high-dimensional space (Guntupalli et al., 2016). While this
method originated using time-locked dynamic stimuli such as
a movie, it has recently been applied to RSFC as connectivity
hyperalignment (CHA), which revealed both coarse-scale, areal
structure as previously observed, along with fine-scale structure
which was previously inaccessible. Applying CHA to RSFC data
will hopefully allow for increased ability to discern individual
differences in depression and other mental-health metrics.

Voxelwise Resting-State Functional
Connectivity
A relatively simple first-pass method is to target specific region
and feature pairs. If there are a priori hypotheses related to
the topic of interest it may be possible to look at connectivity
from one region using seed maps or between a small number of
regions and relate them to specific passive-sensing features. As
shown here this is plausible but even correlating seed maps with
1 sensing variable leads to potential multiple comparisons issues
based on the 50,000+ voxels in the brain using a 3 mm3 voxel
size. Recent statistical simulations have suggested an increased
false-positive rate associated with older versions of 3dClustSim,
a function of AFNI (Cox et al., 2017). Indeed, the authors
of 3dClustSim now suggest using a different algorithm with
the same program, the autocorrelation function (ACF) with a
high p-value threshold per voxel to minimize the possibility
of false-positives. In some datasets, at lower p-value thresholds
ACF requires a much larger voxel-extent than the old version
of 3dClustSim. The increased voxel-extent may make it less
likely to identify smaller functional regions in a whole-brain
regression using a lower per-voxel p-value threshold (p < 0.05).
This evolution of methods decreases the rate of the false-positives
which is critical but requires a larger expected functional region,
a very strong effect size or a very large number of participants.
Across all possible methods presented here there are a variety of
factors which should be taken into consideration to decrease false
positive rates. Having a large number of subjects to draw data will
increase the portion of the population sampled.

If possible having two distinct Cohorts to analyze then looking
for overlap in results between the Cohorts would decrease false
positives due to random sampling, Cohort specific variance,
and further increase the total size of individuals sampled. The
above factors apply to most any study. With passive smartphone
mobile sensing there are many features which can be measured
or computed based on the intersection of multiple features.
For example, “phone unlock duration” is a very simple metric,
which measures the time that the smartphone was unlocked.
This can be further broken down into location specific features,
such as “phone unlock duration at dorm” or “phone unlock
duration at study places” by looking at the intersection of location
on a geo-tagged campus and “phone unlock duration.” Given
the large number of initial features that can be calculated,
along with the nearly endless number of meta-features that
could potentially be generated, making sure that the feature
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is relatively straightforward to calculate and interpret should
be at the forefront of anyone analyzing passive-mobile phone
sensing features. Features that are difficult to calculate or
interpret could easily be embedded with unforeseen confounds.
Furthermore, such features should be validated to make sure they
are measuring the effect or phenomena they are supposed to in
an accurate manner.

Typically, only features with sensing data from many days
should be used to get a more stable estimate of that features’
value. While putting a sensing application of many students’
phones may seem like a plausible method for maximizing
data collect, there are a variety of factors which can lead to
reduced data collection, potentially rendering an individual’s
sensing data unusable. Phone operating system (OS) updates
can often change application permission or render the sensing
application completely useless. To avoid this beta testing should
be done as early as possible and new versions of the application
that are compatible with the latest OS pushed to participants.
Participant non-compliance or attrition is another important
factor to consider. Individuals may delete the application, limit
its permissions within the OS or otherwise limit the researcher’s’
ability to accurately measure data. Clearly, it is the individual’s
choice to continue to participate in any study, particularly one
where large amounts of data are being collected (anonymously)
on their habits. It may be difficult for the researcher to
determine if the individual has deleted the application or simply
not uploaded their data in while. Finally, a rate of attrition
is expected in all longitudinal studies and some individuals
may simply decide that they do not wish to continue their
participation in the study.

Whole-Brain and Network-Based
Connectivity
A possible method to deal with the large number of comparisons
related to voxelwise or whole-brain connectivity is to simply
look at connectivity between a set of predefined regions or
parcellation (Power et al., 2011; Yeo et al., 2011; Poldrack et al.,
2015; Gordon et al., 2016; Huckins et al., 2018). Connectivity
between each pair of regions can be correlated with the sensing
feature of interest. Unfortunately, many of the commonly used
parcellations have many nodes, which increases the total number
of comparisons in a non-linear manner as the number of nodes
increases. The number of comparisons can soon approach the
number of comparisons evident when using voxelwise seed maps
without methods such as voxel extent to appropriately correct for
the associated multiple comparisons.

A simple but perhaps relatively unsophisticated sophisticated
method is to calculate mean connectivity within a functional
system or network. The system or network would be determined
off of data driven approach such community detection using a
random walk technique like InfoMap (Rosvall and Bergstrom,
2008) or regions identified as being part of a coherent functional
system using another method or even searching Neurosynth.org
for a term of interest. In this approach, the mean of all
Fisher r-to-z transformed correlation values between nodes of
interest is calculated. For example, mean connectivity within

the Cingulo-Opercular network would be calculated between all
nodes or parcels belonging to that network. Between-network
or system connectivity can also be calculated by taking the
mean of all pairwise connections between the two networks of
interest. This can greatly reduce the number of total connections
observed, thus reducing the multiple comparisons problem
mentioned under the whole-brain connectivity section. One
drawback to this method is that it is not selective about which
connections it is using in the calculation – specifically, that
it may be and probably is including connections that are not
physiologically or psychologically relevant.

A plausible may to reduce the number of connections by
selections ones that are likely to be “real,” such that information
may actually travel through that connection on the neural level,
even if not on a first-order or even second-order synapse.
Multiple approaches have been taken to identify meaningful
connections. Within or between networks there are likely to
be positive and negative correlations, which then somewhat
cancel out. One could take the absolute value of each connection
before averaging across the network, but this would introduce
bias in any connections with a distribution of correlation
values that included positive and negative values. Values of
correlation, or connectivity measures in the brain vary by
orders of magnitude. Identifying a multiscale network backbone
that accounts for important connections within and between
communities, regardless of the connectivity strength would be
a method to decrease the number of connections analyzed.
One way of identifying the network backbone is to use the
z-value from each connection as the weight, or amount of
information that could travel between the two brain regions
that the connectivity was estimated from. A group did just
this (Serrano et al., 2009), identifying connections which are
statistically relevant across multiple scales of connectivity,
work which has been extended non-parametrically (Foti et al.,
2011). By identifying the network backbone for each individual
(Huckins et al., 2019), it may be plausible to identify a variety
of subcategories or continuums of depression along which
different symptom severities fall for each individual, along with
passive smartphone monitoring will allow for greater insight into
interactions of behavioral, self-report and physiological RDoC
matrix criteria.

Wrangling High Dimensional Data
A variety of techniques can be used to extract information
from data that are both longitudinal and high-dimensional; that
is, situations where the data are collected from participants at
multiple time points and the number of covariates begins to
approach, or even surpasses the number of subjects in the dataset
(Wang et al., 2012; Cheng et al., 2014; Zipunnikov et al., 2014;
Chu et al., 2016).

As has been mentioned repeatedly above, both with resting-
state and passive smartphone sensing there are a large quantity
of features and analyses that can be generated. In the current
study we chose features that were reasonable based on previous
data but are unlikely to be the optimal features that describe
the relationship between depression, passive mobile sensing and
brain connectivity. Multiple approaches could be taken with data

Frontiers in Neuroscience | www.frontiersin.org 11 March 2019 | Volume 13 | Article 24845

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00248 March 19, 2019 Time: 17:59 # 12

Huckins et al. Multimodal Depression Assessment

from both sources. One approach which would greatly decrease
the number of features that were necessary including trying to
create a singular propensity metric, or biomarker of depression
for both the resting-state fMRI data and a separate one for the
sensing data then observing the relationship between the two.
Alternatively, data reduction techniques such as independent
component analysis could be applied to each group then the
relationship between them could be measured. Many researchers
have taken a “risk” or “propensity” score approach, where they
generate models which contain predictive variables (gender,
substance use, family history) pertinent to the outcome of interest
and use the propensity score as a regressor when doing analyses
at the group or individual difference level (Stuart, 2010; Hansen
et al., 2012). This could be applied to smartphone data, but
only once appropriate sensor features, and model have been
calculated. By creating a unitary risk feature multiple comparison
issues can be greatly mitigated. Data reduction techniques that
account for variance that is common between two data modalities
such as joint ICA, parallel ICA and CCA-Joint ICA, which has
been implemented for combining high-dimension data across
fMRI and genetic data (FusionICA, available from http://mialab.
mrn.org/software/fit/).

Unresolved Questions About
Directionality and Timing
In the current sample, resting-state fMRI data is from 1
time-point while mobile smartphone sensing data is dynamic and
data is collected over a longer period of time. An unresolved
question is if changes in fMRI data across multiple sessions
reflects or predict changes in smartphone usage. Likely a more
sensitive measure would be to do the reverse – using changes in
smartphone usage, which is continuously monitored, to predict
when there may be changes in brain connectivity as measured
by fMRI. Changes in depressive symptoms have been successfully
predicted with passive smartphone features (Wang et al., 2018),
and may be useful for signaling when an individual should be
referred to clinical services or brought in for a subsequent fMRI
session. Longitudinal penalized functional regression is a method
designed to deal with multiple timepoints of both exposure
and outcomes (Goldsmith et al., 2012) which may help provide
insight into the temporal association between brain connectivity,
depression and phone usage.

Moderating Factors of RSFC
Resting-state functional connectivity has repeatedly been shown
to be relatively stable across individuals and time, displaying
similar network structure across thousands of individuals. While
similar network structure and connectivity patterns are observed
between sites, preprocessing methods, and Cohorts, differences
between individuals are observed across individual differences
in personality, affect and current mood have been related to
alterations in RSFC. Furthermore, individual differences in the
network structure on an individual level have been observed.
Properly mapping individual differences in networks across
the cortex would allow for better cross-subject alignment. The
network assignment of particular regions may in itself be linked

to depressive symptoms, while lining up networks would allow
for the proper comparison of networks across individuals.
Additionally, the current state physiological state an individual
is in, such as food satiety or caffeination status can influence
their mood (Rogers and Lloyd, 1994) and has also been shown
to influence an individual’s brain connectivity (Poldrack et al.,
2015). While there are a variety of factors that can influence
RSFC, reliable individual differences across brain disorders have
been observed in previous studies and here. As the predictive
accuracy of RSFC or other neuroimaging methods increases
the field may move closer to using MRI as a biomarker of
depression, as has been done with physical pain (Atlas et al., 2010;
Wager et al., 2013).

CONCLUSION

In summary, the current work identified proof-of-concept
relationships between RSFC of the brain, passive mobile
smartphone sensing features (unlock duration and circadian
similarity of stillness and number of location visited), web-based
self-reported surveys of depressive symptoms (PHQ-8) and
mobile smartphone based ecological momentary assessments
of depressive symptoms (PHQ-4). The results observed here
extend previous work which relates the amount of time spent
using a phone is with depressive symptoms. Further, these
symptoms, both before and after time-of-scanning (PHQ-8 and
PHQ-2/4, respectively), show a relationship with connectivity
between areas implicated in depression, reward and processing of
valenced self-relevant material. Importantly, these initial results
predominantly replicate across the two separate cohorts and
similar results are observed across three passive sensing features,
increasing the applicability and scope of the findings herein.
Although the current results do not elucidate causality in the
relationship between phone usage metrics, depression and brain
connectivity, future work should aim to do so, especially given
recent changes to public policy, with professional groups such
as the American Academy of Pediatrics providing suggesting
screen-time limits and policy and investor groups calling on
media device makes such as Apple and other phone makers.
Previous research was extended, with results that replicate across
multiple MRI scanners and cohorts all while combining data
from a while variety of sources. The analyses done here are by
no means comprehensive and we hope that the findings of this
study and future research methods proposed herein are useful
to a wide-range of researchers. Ultimately continuation and
extensions of this research has the potential to provide important
insights into mental health, as well as inform psychological
treatments and other interventions.
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Introduction: Chronic tinnitus is a condition estimated to affect 10–15% of the

population. No treatment has shown efficacy in randomized clinical trials to reliably and

effectively suppress the phantom perceptions, and little is known why patients react

differently to the same treatments. Tinnitus heterogeneity may play a central role in

treatment response, but no study has tried to capture tinnitus heterogeneity in terms

of treatment response.

Research Goals: To test if the individualized treatment response can be predicted using

personal, tinnitus, and treatment characteristics.

Methods: A survey conducted by the web platform Tinnitus Hub collected data of

5017 tinnitus bearers. The participants reported which treatments they tried and the

outcome of the given treatment. Demographic and tinnitus characteristics, alongside with

treatment duration were used as predictors of treatment outcomes in both an univariate

as well as a multivariate regression setup. First, simple linear regressions were used with

each of the 13 predictors on all of 25 treatment outcomes to predict how much variance

could be explained by each predictor individually. Then, all 13 predictors were added

together in the elastic net regression to predict treatment outcomes.

Results: Individual predictors from the linear regression models explained on average

2% of the variance of treatment outcome. “Duration of treatment” was the predictor

that explained, on average, most of the variance, 6.8%. When combining all the

predictors in the elastic net, the model could explain on average 16% of the deviance of

treatment outcomes.

Discussion: By demonstrating that different aspects predict response to various

treatments, our results support the notion that tinnitus heterogeneity influences the

observed variability in treatment response. Moreover, the data suggest the potential of

personalized tinnitus treatment based on demographic and clinical characteristics.

Keywords: tinnitus, heterogeneity, crowdsensing, smart device, personalized treatment
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1. INTRODUCTION

Tinnitus is a condition characterized by an auditory perception,
usually in the form of ringing or hissing, for which there
is no corresponding external source (1). The prevalence of
tinnitus has been estimated between 10 and 15% in the adult
population (2, 3). From those, one fifth will require clinical
intervention (4). Additionally, the mean annual cost of illness
was estimated at 6.8 billion euros globally (5). On the individual
level, tinnitus may be accompanied by comorbidities such as
insomnia, anxiety and depression, constituting a high burden
to patients (6). Current clinical guidelines recommend that
clinicians target those potential comorbidities, and although
no treatment has shown efficacy in randomized clinical trials
to reliably and effectively suppress the phantom perceptions,
it is clear that various treatment options result in different
degree of improvements—most likely because of the underlying
heterogeneity of the etiology and pathophysiology of tinnitus
(2, 7, 8). The clinical guidelines also recommend different
management strategies for tinnitus, including, but not limited
to, psycho-education, counseling, cognitive behavior therapy,
hearing aids when assessed as necessary and sound therapy (2).
Importantly, the current clinical understanding is that certain
treatments may not be suitable/effective for all, and clinicians
should recommend treatments to patients in an individual basis
(8). Thus, albeit the low evidence levels for treatments on a group
level, these same treatments may be beneficial in specific cases on
the individual level.

From a clinical perspective, bothersome, chronic, and

subjective tinnitus is a common and challenging form of

tinnitus (2, 6). However, this form of tinnitus might be highly
heterogeneous. In recent years, the notion of tinnitus as a

complex, multi-faceted condition gained traction (9). For that
reason, researchers and clinicians have drawn their attention to
the different ways of tinnitus manifestation, including its etiology
(e.g., sound blast, persistent loud noise exposure, whiplash, etc.),
phenotype (e.g., type of sound perceived, laterality of the sound
perception, presence of hearing loss, etc.), and accompanying
comorbidities (e.g., insomnia, depression, anxiety, etc.). Such
heterogeneity constitutes a complex puzzle that challenges
both researchers and clinicians in their understanding of the
pathophysiology of tinnitus and in the development of new
treatments (1). Importantly, tinnitus heterogeneity may account
for the low success rates of clinical trials at the group level,
as well as why certain individuals respond positively to specific
treatments (8, 10).

Noteworthy efforts to capture tinnitus heterogeneity
include the studies from Langguth et al. (11), Tyler et al.
(12) and Van den Berge et al. (13). Overall, the studies
showed modest results without a clear delineation of
tinnitus subtypes. However, those studies were limited
due to sample size and/or homogeneous samples recruited
from specialized tinnitus clinics. It is yet unclear how
representative samples from tertiary clinics represent the
whole tinnitus population; thus, we consider a broader data
sample necessary to capture a yet unexplored facet of tinnitus
heterogeneity (14).

Crowdsourced health research studies have been proposed as
a mean to circumvent the difficulties experienced during patient’s
recruitment, such as the increased costs of adding participants
to a study and the homogeneous sample representation from
tertiary clinics (15). Crowdsourcing can be defined as the
collaborative collection of data in which individuals and/or
institutions participate voluntarily (15, 16). When the data is
collected through mobile devices, such as smartphones, tablets,
or wearable devices, the term crowdsensing is commonly used
(17). The number of policy makers, health providers and
academics using such technologies increased drastically in the
last decade due to the ubiquity of mobile and sensing devices
(18). Especially in tinnitus research, crowdsensing has been
substantially used (14, 17, 19, 20). Importantly, such technologies
may yield new insights about phenomena hardly accessible to
traditional settings.

To the best of our knowledge, no study tried to capture
tinnitus’ heterogeneity using crowdsensing technology, especially
in terms of treatment response. Our study aims to fill
that research gap. We collected crowdsensed data from
an online tinnitus self-help platform to explore tinnitus
heterogeneity avoiding the aforementioned limitations during
data collection, namely the reduced sample size and/or
homogeneous patient representation. First, we investigated
whether tinnitus heterogeneity could be expressed not only

TABLE 1 | Sample size of each treatment.

Treatment n

Self Sound Stimulation 1,562

Supplements and Herbal 1,157

Antidepressants 785

Hearing Aid 681

Acunpuncture 621

Masker 503

Chiropractor 489

Homeopathic 425

Psychologist 388

Cognitive Behavior Therapist 371

Tinnitus Retraining Therapy 370

Steroids 346

Off-label Medication 312

Psychiatrist 298

Neurofeedback / Meditation 270

Books / self help 254

Gabaergic medication 237

Notched Music 223

Soundcure 144

Acoustic Neuromodulation 120

Neuromonics 95

Low Level Laser Therapy 65

Retigabbine 53

Hyperbaric Oxygen Therapy 46

Transcranial Magnetic Stim. 45
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TABLE 2 | Sample’s demographic and tinnitus characteristics.

Predictor Levels n Percentage

Gender Male 1,712 58.8%

Female 1,181 40.5%

Other 21 0.7%

Age Under 18 13 0.4%

18–24 162 5.6%

25–34 364 12.5%

35–44 427 14.7%

45–54 606 20.8%

55–64 869 29.8%

65–74 405 13.9%

75 + 58 2.0%

Prefer not to say 10 0.3%

Tinnitus onset Less than 3 months 147 5.0%

4–6 months 156 5.4%

6–12 months 293 10.1%

1–2 years 427 14.7%

2–3 years 359 12.3%

3–5 years 347 11.9%

5–10 years 388 13.3

10–20 years 339 11.6%

20 + years 458 15.7%

Noise

reactiveness

Sounds have no affect 587 20.1%

Some sounds make it a lot

worse

627 21.5%

Some sounds make it

somewhat worse

354 12.1%

Some sounds make it better

and some make it worse

725 24.9%

Some sounds make it

somewhat better

212 7.3%

Some sounds make it a lot

better

113 3.9%

NA 296 10.2%

Hyperacusis No 1,006 34.5%

Mildly 795 27.3%

Moderately 776 26.6%

Severely 291 10.0%

NA 96 3.3%

Somatic No 1,643 56.4%

Yes 1,056 36.2%

NA 215 7.4%

Jaw and neck

problems

Problems with Jaw 261 9.0%

Problems with Neck 503 17.3%

Problems with Jaw and Neck 407 14.0%

NA 1,743 59.8%

Hearing loss Mild hearing Loss 1,265 43.4%

Moderate hearing loss 400 13.7%

Severe hearing loss 152 5.2%

NA 1,097 37.6%

Laterality of

hearing loss

Both ears 699 24.0%

One ear 1,119 38.4%

NA 1,096 37.6%

(Continued)

TABLE 2 | Continued

Predictor Levels n Percentage

Tinnitus

frequency

Low (<1 kHz) 152 5.2%

Mid (1–3kHz) 151 5.2%

Mid high (3–8 kHz) 525 18.0%

Very high (8 kHz +) 350 12.0%

Several dis in Hearing 77 2.6%

Unsure 563 19.3%

Na 1,096 37.6%

Perception of

tinnitus

One ear 688 23.6 %

Both ears 1,031 35.4 %

More in the brain 204 7 %

In the ears and brain 952 32.6 %

Not sure 39 1.3 %

Perception of

tinnitus during

the day

Does not change at all 774 26.6 %

Fluctuates, no pattern 1,369 46.9 %

Fluctuates, better in the

morning

131 4.5 %

Fluctuates, better in the

evening

626 21.4 %

NA 14 0.4 %

in terms of phenotype, etiology and comorbidities as has
previously been done, but also in terms of treatment response.
To investigate this hypothesis, we modeled each predictor
(i.e., tinnitus characteristics and demographics) individually
as an independent variable on single linear regressions with
treatment outcomes for 25 different treatments as dependent
variables. Second, we investigated whether tinnitus heterogeneity
could predict treatment response from demographic factors and
tinnitus characteristics. We operationalized this hypothesis by
combining all predictors in a statistical model to predict the
outcome of treatments.

2. METHODS

Data for our sample were collected by Tinnitus Hub. Founded
in 2015 by SH and MV, the Tinnitus Hub operates “Tinnitus
Talk” (www.tinnitustalk.com), created in 2011, the largest online,
anglophone self-help platform for tinnitus patients. The survey
took place between February 8th and March 13th of 2016.
Members of the forum received a link to the digital survey.
We collected information of 5017 participants, from those 2916
reported trying at least one treatment and thus were included in
the data set for the final analysis. It was not possible to obtain
written informed consent from the users of Tinnitus Talk, but
the “Terms and Rules” of the website informed the users that the
collected data will be analyzed for scientific purposes. All the data
were saved anonymously. A similar dataset was used in a former
study (14).

Personal and tinnitus information was collected from
participants of the survey alongside questions about which
tinnitus-related treatments were tried and were used as
independent values in our statistical models. In total, 13
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factors were included in our analysis (Table 2). Additionally,
participants were asked to rate how effective a given treatment
was in reducing the distress and/or suppressing the noise
perception, and the duration of the treatment retrospectively (1:
“this treatment made my tinnitus much worse,” 2: “this treatment
made my tinnitus mildly worse,” 3: “this treatment had no effect
on my tinnitus,” 4: “this treatment made my tinnitus slightly
better,” and 5: “this treatment made my tinnitus much better”).

Our analysis included the outcome of 25 different treatments
and used as dependent variables in our statistical model.
Participants consented to have their anonymous data used for
scientific research. Simple linear regressions were performed
for individual predictors (i.e., demographics and tinnitus
characteristics, and treatment duration) on treatment outcomes
(i.e., dependent variable). Regressions were weighted based on
the number of treatments that patients tried and p-values were

adjusted for multiple comparisons using Hommel correction
(21, 22). Collinearity was assessed with the variance inflation
factor (VIF). The VIF is the ratio of variance in a model with
multiple predictors, divided by the variance of a model with one
predictor alone (23). The high VIF values in ourmodels indicated
that models containing all 13 demographic factors and tinnitus
characteristics as predictors would contain high collinearity. To
address this issue, we used elastic net regularization (24). Elastic
net accounts for collinearity by penalizing the coefficients in the
model either by shrinking their values or by setting them to
0 (24). We ran a n-fold cross validated elastic net to estimate
the optimal lambda (i.e., one of the penalizing coefficients from
elastic net) over 11 different alpha values ranging from 0 (i.e.,
RIDGE regression) to 1 (i.e., Lasso Regression). For this analysis,
the predictors encoded as factors were converted into dummy
variables as a prerequisite from the statistical software. We

FIGURE 1 | Amount of variance explained in the linear regression models by each predictor across all different 25 treatments.
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selected the models with minimized mean squared error for our
final analysis.

All statistical analysis was conducted with R statistical
software (25), alongside the “tidyverse” package (26). Power
analysis were calculated using the "effsize" package (27) and
the elastic net was performed by the "GLMnet" package (24).
Non-parametric tests were used when statistical assumptions
of parametric tests were not met. P-values below 0.05 were
considered statistically significant.

3. RESULTS

Table 1 shows the frequency of each treatment in our sample.
Clinical and demographic characteristics of the sample are
summarized in Table 2. First, we applied linear regression
models with individual predictors as independent variables on
the self-reported treatment outcomes as dependent variables.
The aim of this analysis was to test how much variance
could be explained by individual predictors for the different
treatments. Figure 1 shows the average amount of variance
explained by each predictor on all 25 different treatments.
A summary of all statistical models can be found in the
Supplementary Materials. The amount of variance explained
by single predictors over all treatments was 2% on average.

FIGURE 2 | Mean amount of variance explained by type of predictor. Error

bars represent standard deviation. “Personal Characteristics” contains the

predictors Age, Gender, and Tinnitus Onset. “Tinnitus Characteristics”

contains the predictors Tinnitus Frequency, Laterality of Hearing Loss,

Perception of Tinnitus, Reactiveness to Noise, Hearing Loss, Laterality of

Tinnitus, Hyperacusis, and Jaw/Neck Problems. “Treatment Characteristics”

contains the predictor Treatment Duration.

Next, we investigated what type of predictor could explain
most of the variance of treatment outcomes. For this analysis,
we grouped predictors in three groups: personal, tinnitus
and treatment characteristics (Figure 2). Personal and tinnitus
characteristics could explain, on average, the same amount
of variance.

As shown in Figures 1, 2, the predictor “Duration of
Treatment” explained on average more variance than the
remaining predictors (p <0.05). To further explore the
relationship between treatment duration and treatment
outcome, we clustered the average treatment outcomes based
on their duration. The results can be found in Figure 3, where
our analysis of variance showed no trend of time over treatment
outcome (p= 0.99).

Next, we fitted all predictors as independent variables and self-
reported treatment outcomes as the dependent variable in our
elastic net regression model. This analysis aimed to measure how
much of the deviance on treatment outcomes can be explained
by combining all analyzed items. Figure 3 shows the amount of
deviance explained by all predictors for each of the 25 treatments.
On average, 16% of the deviance could be explained by all
predictors combined. Table 3 summarizes which predictors were
considered statistically significant by the elastic net and linear
regressions respectively.

Lastly, we conducted one exploratory analysis based on
the coefficients obtained by both models to identify clinical
markers of treatment success. From coefficients estimated by
linear regression, we observed that participants who reported
responding positively to sounds (i.e., rating a 4 or 5 in the
Likert scale) reported more frequently benefiting positively
to treatments with an acoustic component. Thus, we subset
only patients who reacted positively to sounds and divided
treatments with and without an acoustic component (Figure 4).
Our group mean comparison analysis corroborated our data-
driven hypothesis, as patients who reported reacting positively
to sounds also reported higher outcomes with treatments with an
acoustic component (p= 0.02, Cohen’s d= 1.07).

4. DISCUSSION

In this study we investigated whether personal, tinnitus, and
treatment characteristics collected from an internet self-help
platform population can be used to explain which patients are
responding to different treatments. Similar attempts to predict
treatment outcomes with patients’ characteristics have been
tried in a spectrum of mental conditions, including lower back
pain (28), depression (29), post traumatic stress disorder (30),
obsessive-compulsive disorder (31), substance abuse (32), and
tinnitus itself (33). To the best of our knowledge, this is the
first study attempting to capture tinnitus’ heterogeneity in terms
of a wide range of treatment responses using crowdsensing
technology. Moreover, whereas most studies tried to predict the
outcome of a single treatment, our study aimed to predict the
outcome of 25 different treatments.

Our results showed that 2% of the variance of treatment
outcomes could be explained, on average, by individual
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TABLE 3 | Predictors identified as significant by the elastic net model (X) and by linear regressions (O).

Duration of

treatment

Laterality of

hearing loss

Fluctuation of

sound perception

Noise

reactiveness

Jaw/Neck

problems

Onset Age Hyperacusis Gender Tinnitus

frequency

Hearing

loss

Somatic Laterality

of tinnitus

Acoustic

Neuromodulation

X X X X X X X X X X X

Hearing aid X/O X/O X X/O X/O X/O X X X X X/O O

Self Admin. Sound

Therapy

X/O X X/O X/O X X X X X/O X

TRT X/O X X X X X X/O X X X/O

Antidepressants X/O X X/O X X X X/O X/O X

Soundcure X/O X X X X X X X X/O

Psychiatrist X X X X X X X X X

Psychologist X X X/O X X X X X X

Supplements/Herbal

admin.

X X X X X X X X

Homeopathic

admin.

X X X X X X X X

GABA admin. X/O O X/O X/O X X X

In ear masker X/O X X O X X X

Acunpuncture X X X X/O X X X/O

Hyperbaxic

Oxygen Therapy

X X X X X X

Notched music X/O X/O X X X

Off Label

Medication admin.

X X X X X

Self learning X X X X X

CBT X X/O X O

Chiropractor X X

Neurofeedback X/O X

Steroids admin. X X

LowLevelLaser

Therapy

X

Neuromonics X

Retigabine admin. X

Transcranianl

Magnetic Stim.

X

Coefficients associated with significant predictors can be found in Supplementary Materials.

F
ro
n
tie
rs

in
P
u
b
lic

H
e
a
lth

|w
w
w
.fro

n
tie
rsin

.o
rg

6
Ju

n
e
2
0
1
9
|V

o
lu
m
e
7
|
A
rtic

le
1
5
7

55

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Simoes et al. Toward Personalized Tinnitus Treatment

FIGURE 3 | Amount of variance explained by the Elastic Net model with all the 13 predictors added simultaneously. HBOT, Hyperbaric Oxygen Therapy; TRT, Tinnitus

Retraining Therapy; TMS, Transcranial Magnetic Stimulation; CBT, Cognitive Behavior Therapy.

predictors (Figure 2). Additionally, our analysis showed that
both personal characteristics and tinnitus characteristics, despite
being significant predictors for multiple treatments (Table 3),
could explain little variance on average. At first glance, it
seems that the analyzed parameters have only a small impact
on treatment outcome, but the average amount of deviance
explained by the elastic net combining all 13 predictors into
a single model was 16%, after accounting for covariance. We
identified multiple statistically significant predictors in both
regression setups (Table 3), but the individual amount of
variance they could explain was limited. These results suggest

that although no single predictor is paramount to predict
the treatment outcomes, personal, tinnitus, and treatment
characteristics may have a predictive role when combined.
Altogether, those characteristics could be used in the future
to predict treatment responsiveness in tinnitus, especially
after better markers of treatment success are identified.
For instance, our analysis did not include information
about patients’ personality, depression or tinnitus-related
distress, nor did it collect information of the sequence in
which treatments were tried or whether treatments were
tried simultaneously.
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FIGURE 4 | Mean treatment outcomes on a 1–5 Likert scale clustered by

treatment duration.

Capturing tinnitus heterogeneity has been proposed
as an important clinical and scientific goal, but previous
attempts obtained limited results (12, 13). Importantly, tinnitus
heterogeneity may explain why only a subset of patients are
responding to specific treatments (10). A broader comprehension
of tinnitus, encompassing not only demographics and tinnitus
characteristics, but also treatment response, could, for example,
explain the limited treatment efficacy seen in clinical practice
(2). For instance, it is yet unclear whether previous successful
or unsuccessful treatments have any predictive power on the
outcomes of future treatments. Ultimately, the subtyping of
tinnitus could lead to personalized care, a long-standing request
by both clinicians and patients (6). Our results, though modest,
suggest that personalized treatment for tinnitus patients based
on patients’ personal, tinnitus, and treatment characteristics
should be feasible.

One example of future implications that this type of analysis
could lead to, is the effect of noise reactiveness in the outcomes of
treatments with and without an acoustic component (Figure 5).
Our results suggest that participants whose tinnitus respond
positively to sounds tend to benefit more from treatments
with an acoustic component than from treatment without such
component. Although future studies should try to replicate these
results, we believe that the insights from large data sets such as
these could have meaningful effects in tinnitus care and research.
For instance, such insights could help researchers define new,
fine-grained inclusion criteria for future clinical trials in acoustic-
based treatments.

Regarding treatment duration, the predictor that could,
on average, explain most of the variance, did not show any
statistically significant difference between time periods. These

results should be interpreted with caution as it is well-known that
certain treatments, such as cochlear implants, require some time
for adaptation whereas other treatments, such as antidepressants,
require longer periods to be effective. Nonetheless, our results
support the notion that the duration of treatment is not
inherently beneficial or detrimental to the treatment’s efficacy.

Our study comes with some inherent limitations. First, we
did not have access to information about treatments which were
performed in an overlapping span of time, thus we were unable to
account for possible interaction between treatments. Second, our
outcome measure was retrospective and subjective, which could
have biased the results. We consider a subjective metric, although
coarser than an objective one such and the Tinnitus Handicap
Inventory, adequate for this type of analysis given the multiple
treatments that a single patient tried and the sometimes-long
period of time between the administration of a treatment and
the survey. Nevertheless, further prospective studies analyzing
outcome predictors would be desirable. Third, although we
examined 25 different treatments, this number was insufficient
to capture the whole complexity of available interventions for
tinnitus treatments. Cognitive Behavior Therapy (CBT), for
example, can be performed in a span of days or months, sessions
can be individual or in group, a wide range of techniques can be
applied in each session, etc. Such variety of treatment details and
subtypes were not exclusive to CBT, but rather a commonality
across treatments. Fourth, we chose a limited number of potential
predictors for the survey, but we might have missed other
important items. Particularly we would expect that there may
exist further items that may be relevant for response to some
of the investigated treatments. Finally we are aware that the
investigated sample, albeit large and international, might not be
representative of all patients with tinnitus (14).

5. CONCLUSION

Our results suggest that tinnitus heterogeneity could be expressed
in terms of treatment response. The variance explained by
individual predictors on treatment outcomes suggests that
specific traits could explain why certain people are responding
positively to a given treatment. In the future, especially with the
availability of “big” multi-faceted data, a better understanding of
the factors involved in treatment responsiveness could lead to
individualized, optimal tinnitus management.
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FIGURE 5 | Mean treatment outcomes on a 1–5 Likert scale clustered by treatments with an acoustic component (yellow) and without an acoustic component (blue).

Error bar accounts for the standard deviation across all 25 treatments. TRT, Tinnitus Retraining Therapy; CBT, Cognitive Behavior Therapy; TMS, Transcranial

Magnetic Stimulation; HBOT, Hyperbaric Oxygen Therapy.
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Post-traumatic stress disorder (PTSD) symptoms are prevalent in both civilian andmilitary

service members. As the number of smartphone-based applications (apps) grows rapidly

in health care, apps are also increasingly used to help individuals with subthreshold

PTSD or full PTSD. Yet, if the apps are self-managed, the feasibility and efficacy of

such interventions are still rather unclear in these two populations with PTSD symptoms.

Hence, the present meta-analysis set out to evaluate the effect of self-management

smartphone-based apps on PTSD and depressive symptoms in populations with

subthreshold PTSD or full PTSD. Studies were included if they conducted randomized

controlled trials or pre-post comparisons. Six studies (n= 2 randomized controlled trials)

were identified for meta-analysis. In pre-post comparisons, N = 209 participants were

included in the analyses. In randomized controlled trials, N = 87 participants received

smartphone-based self-management interventions and N = 82 participants were in

waitlist control conditions. Meta-analysis for pre-post comparisons concluded an effect

of g = 0.55 (p < 0.001) regarding the overall reduction in PTSD symptoms (n = 6) and

g = 0.45 (p < 0.001) for reduction in depressive symptoms (n = 5). Yet, in randomized

controlled trials, no significant difference was found between app-based treatment and

waitlist control groups (g = 0.09, p = 0.574). The duration of the interventions did not

significantly influence the results. Overall, despite positive pre-post effects, current results

indicate that smartphone-apps for PTSD patients are not significantly more effective than

waitlist control conditions. Nevertheless, a combined smartphone and standard therapy

approach may be a fruitful field for future research.

Keywords: smartphone app, PTSD, post-traumatic stress disorder, mHealth, trauma intervention, depression,

meta-analysis, mobile phone intervention
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INTRODUCTION

Post-traumatic stress disorder (PTSD) is a cause of substantial
disability in both civilian and military populations, leading to
long-term problems for individuals, families, and society in
terms of compromised emotional well-being, productivity loss,
and high cost of treatment (Kessler, 2000; Breslau et al., 2004;
Buckley et al., 2004; Cohen et al., 2009; Kok et al., 2012; Marmar
et al., 2015). PTSD is characterized by a multitude of symptoms
resulting from exposure to one or more traumatic events (World
Health Organization, 1993; American Psychiatric Association,
2013). Individuals with PTSD are typically affected by anhedonia,
emotional numbness, social detachment, unresponsiveness to
external stimuli, insomnia, and suffer from hyperarousal (Elhai
and Palmieri, 2011; e.g., Armour et al., 2016). The experience
of traumatic events is also associated with elevated symptoms of
depression and anxiety (Etkin and Wager, 2007; Mandelli et al.,
2015).

PTSD has an estimated lifetime prevalence ranging from 2%

in Europe (Darves-Bornoz et al., 2008; Maercker et al., 2008) to
7% in the United States (Kessler et al., 2005), and 4% in a cross-

national study of 24 countries (Koenen et al., 2017). Furthermore,
a significant number of individuals experience symptoms of

subthreshold or subclinical PTSD in response to traumatic
events that do not meet diagnostic criteria (Brancu et al., 2016).
Subthreshold PTSD has previously been identified to affect
around 20% of U.S. veterans returning from Afghanistan (Hoge
et al., 2006) and prevalence estimates for civilian populations
are mirroring—at least—the prevalence rates of those with full
PTSD (Stein et al., 1997; Marshall et al., 2001; Breslau et al.,
2004; Bergman et al., 2015). Research has shown that levels of
distress and functional impairment are significantly heightened
for individuals with subthreshold PTSD (e.g., Mylle and Maes,
2004), underscoring the fact that both subthreshold PTSD and
the full PTSD cause impairment and represent considerable
public health concerns (Bergman et al., 2015).

Evidence-based treatments are available for PTSD (Foa et al.,
2009), and guidelines generally recommend exposure therapy
and cognitive therapies, and pharmacological treatment as an
adjunct treatment (for an overview of psychological treatments
see Cusack et al., 2016). Literature on treatment options for
subthreshold PTSD is limited (Dickstein et al., 2013), but
treatment with lower intensity may be favorable (Shiner et al.,
2012; Korte et al., 2016). Many affected individuals, however,
remain without treatment due to negative beliefs about efficacy,
stigma, logistic reasons, or shortage of qualified treatment centers
in the adjacent geographic region (Hoge et al., 2004; Shalev
et al., 2011; Kazdin and Rabbitt, 2013). Early and accessible
interventions are equally important in subthreshold PTSD, as
25% of those affected develop the full PTSD (Marshall et al., 2001;
Breslau et al., 2004; Cukor et al., 2010).

Innovative technology, such as applications (apps) for
smartphones, can address the need for accessible and effective
interventions after traumatic experiences, especially on a
population level (Cernvall et al., 2018). Smartphones are carried
by amajority of adults with ownership rates ranging between 77%
in the U.S. (Pew Research Center, 2018) and 79% in the European

Union (Eurostat, 2016). Promisingly, no ethnic disparities exist
in smartphone ownership in U.S. adults (Pew Research Center,
2018) and applications for smartphones could be a feasible means
of reaching minority populations with a possibly limited access
to health care (López et al., 2012). Applications allow individuals
to approach specific treatments at their own pace, individually,
and confidentially, which may result in greater acceptance and
compliance (Juarascio et al., 2014). Emerging evidence suggests
that smartphone applications improve depression and anxiety
symptoms (Donker et al., 2013; Firth et al., 2017), health
behaviors such as physical activity, diet (Schoeppe et al., 2016),
smoking cessation (Whittaker et al., 2016), and reduces alcohol
consumption (Gustafson et al., 2014). Preliminary results also
exist for potential benefits in patients with schizophrenia (Firth
and Torous, 2015) and eating disorders (Juarascio et al., 2014).

Based on this, a multitude of applications, which specifically
target subthreshold PTSD have been developed. In a literature
review of mobile health apps for PTSD, Rodriguez-Paras et al.
(2017) found 45 publicly available PTSD-specific apps in
their recent review and they stated that minimal effort and
transparency has been made regarding development, usability,
and validation of this plethora of apps. The PTSD Coach app,
for example, was jointly developed by the U.S. Department of
Veterans Affairs’ and the Department of Defense, providing users
with self-management, psychoeducative elements concerning
PTSD symptoms and treatment, symptom monitoring, and
coping skills (U. S. Department of Veterans Affairs, 2011a,b;
Possemato et al., 2016). PTSD Coach is available for iOS
and Android devices, and preliminary studies reported a high
satisfaction and acceptance among veteran (Kuhn et al., 2014)
and community samples (Miner et al., 2016). Another app,
PE Coach (U. S. Department of Veterans Affairs, 2017a,b),
was also developed by the U.S. Department of Veteran
Affairs and provides psychoeducation, symptom tracking, and—
optionally—support features to improve patient compliance (e.g.,
appointment reminders, audio recordings, imaginal exposure
homework). It was previously utilized to support users who were
in primary care settings or receiving therapy (Reger et al., 2013,
2015). Some studies have been conducted to test the efficacy
of these applications for individuals with (subthreshold) PTSD
(Miner et al., 2016; Possemato et al., 2016; e.g., Kuhn et al., 2017).
Results were promising, with moderate to large effects (d= 0.78)
regarding the reduction of PTSD-symptoms post-intervention in
the PTSD Coach group when compared to a waitlist-condition
(Miner et al., 2016). In another study, 57% of PTSD Coach users
reported a reduction of PTSD symptoms compared to 26% in a
waitlist condition (Kuhn et al., 2017). In both studies, however,
the two groups did not differ significantly in PTSD or depressive
symptoms post treatment. Yet, sample sizes for the PTSD Coach
condition were small in both studies (n = 25 in Miner et al.,
2016; n = 62 in Kuhn et al., 2017), possibly impeding significant
differences to be detected. Similar patterns emerged in Cernvall
et al. (2018) with 11 participants, pre-post effect sizes for the
reduction of symptoms were moderate for PTSD and depressive
symptoms (d = 0.51 and d = 0.58, respectively), but both
failed to reach nominal significance. As symptoms of depression
and anxiety often have profound effects on affected individuals
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that overlap and co-occur with PTSD symptoms (Norris et al.,
1997; e.g., Luxton et al., 2010) it is of additional interest to
investigate the efficacy of smartphone-based apps on depressive
and anxiety symptoms.

It is discernable that this field of research is underpowered and
conclusions about the benefits of smartphone-based applications
cannot be drawn on single trials alone. A recent study
(Wickersham et al., 2019) reviewed the efficacy of mobile
interventions, both self-managed and with clinician support,
for the treatment of PTSD symptoms in randomized controlled
trials (RCTs) and found inconclusive yet promising results,
with a decrease of symptoms in app-based treatments, but
not compared to control groups. To evaluate the efficacy
of self-managed apps alone, further granulation and meta-
analysis of individual studies is needed. We therefore present
a meta-analysis on all available studies assessing the effects
of self-management smartphone-based applications for PTSD
treatment. The aim of the present meta-analysis is two-fold: (1)
to conduct a meta-analysis of studies reporting the effect of self-
managed mobile application on PTSD symptoms, and (2) to
conduct a meta-analysis of studies reporting the effect of mobile
applications on depression and anxiety symptoms as secondary
outcome variables.

METHOD

Search Strategy and Inclusion Criteria
A search of MEDLINE, Scopus, and Web of Science was
conducted using the keywords “PTSD OR trauma OR
posttraumatic-stress disorder AND Smartphone OR App OR
Application OR mobile phone” from the beginning of database
records until January 2019. Studies were eligible to be included
in the meta-analysis if they (i) conducted randomized controlled
trials with waitlist controls or (ii) pre-post studies assessing the
effect of self-management smartphone-based apps on PTSD
symptoms. No other inclusion or exclusion criteria were applied.
No limitations on language or publication status were invoked.
We additionally coded and analyzed symptoms of depression
and anxiety if they were reported. Furthermore, Google Scholar
alerts were enabled to ensure inclusion of accepted articles
and articles in preprint, and authors were contacted to ensure
inclusion of unpublished studies. Two Authors (ODK and JXK)
independently examined the title, abstract, and main text of each
study and full text papers were obtained where necessary to
evaluate inclusion. Any discrepancies were discussed by the two
authors. Final inclusion was based on the following criteria:

(1) Participants: Individuals with varying severity of PTSD
symptoms as indicated by self-report questionnaires or via
clinical interview conducted by a psychologist or physician.

(2) Intervention: Self-managed smartphone-based apps.
(3) Comparison: Studies with and without control groups

were included.
(4) Outcomes: Reported at least a PTSD symptom severity score

before and after the intervention.
(5) Study design: Pre-post studies or randomized

controlled trials.

FIGURE 1 | PRISMA flowchart of screening, exclusion, and inclusion criteria.

Exclusion of documents occurred at each stage (see Figure 1 for
PRISMA flow diagram and Supplementary Table 3 for PRISMA
checklist). The initial search generated 343 results. After the
article selection process, six studies were identified and included
in our meta-analysis.

Data Extraction and Analysis
To analyze the effect of app-based interventions from pre to post,
we computed the standardized mean difference (Hedges’ g) of
PTSD-symptoms, depressive symptoms, and anxiety symptoms
based on means and standard deviations (Dunlap et al., 1996)
before and after the app-based intervention. We used the
formula d = (Mpre − Mpost)/SDpooled, where Mpre is the mean
of the measure before the intervention and Mpost after the
intervention, with SDpooled as the standard deviation for both

measurements, defined as SDpooled = SQRT(SD2
pre + SD2

post)/2
(Lakens, 2013). For the standardized mean difference between
intervention and control groups as indicator of the efficacy of
the intervention in randomized-controlled trials, we calculated
Cohen’s d for the post-intervention scores, based on means
and standard deviations, with the formula d = (MIntervention –
MControl)/SDpooled, with the respective means of measurements
for the intervention and control groups. To investigate changes
from baseline separately in the intervention and control groups
of the RCTs, we also computed the above-mentioned effect
sizes for pre-post changes. Means, standard deviations and
sample sizes were retrieved and entered into a spreadsheet.
The calculations of the effect sizes and the subsequent meta-
analysis were then conducted using the package metafor for
R (Viechtbauer, 2010), which automatically corrects Cohen’s d
for a potential positive bias in small samples, yielded the effect
size Hedges’ g (Hedges, 1981). Following general convention
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(Cohen, 1988), an effect size of 0.20 was considered a small
effect, 0.50 a moderate effect, and 0.80 a large effect. Random
effects models were applied to estimate aggregated effect sizes
(Borenstein et al., 2011). Heterogeneity across study outcomes
was reported with I2 values, where 0 to 40% might not be
important, 30 to 60%may represent moderate heterogeneity, and
50 to 90% may represent substantial heterogeneity (Higgins and
Green, 2011).

Egger’s regressions were conducted to analyze indications
for publication bias (Sterne and Egger, 2005). Trim-and-fill
analyses were calculated to provide estimates for adjusted
effect sizes and, based on funnel plot asymmetry, numbers
of imputed missing studies (Duval and Tweedie, 2000).
Publication bias can be tested by entering data in a funnel
graph (a plot of dispersion between study effect and a
measure of study size). A symmetrical inverted distribution
of the studies around the mean effect size represented
in the funnel would indicate an absence of publication
bias. Moderator analysis (meta-regression) was calculated
to test whether the durations of interventions (in weeks)
moderate the effect of the self-management app-based
interventions on PTSD and depressive symptoms. The
alpha level was set at 5% for all analyses. All data and
codes are stored on a repository of the Open Science
Framework (doi: 10.17605/OSF.IO/DZJT7).

Risk of Bias Assessment
We assessed risk of bias for each study using predefined
criteria based on the AHRQ Method Guide for Comparative
Effectiveness Reviews (Viswanathan et al., 2018). Therefore,
categories regarding randomization, selection and attrition bias,
confounding bias, measurement bias and statistical problems
were included for coding. We rated all studies according to
low, moderate or high risk of bias. Results assessed as having
low risk of bias are considered to be valid, moderate risk of
bias indicate some risk of bias, but probably this does not
invalidate its results, a high risk indicates significant issues with
design, measurement, conduct or analysis, all of which probably
invalidates the results.We predefined that inappropriatemethods
of randomization, no control for confounding factors high
attrition≥40% or differential loss≥30%, problems in participant
selection and adequate statistical power are reasons for high risk
of bias ratings. However, we rated grades of overall strength
of evidence (SOE) according to Owens et al. (2010) for all
studies as displayed in Table 1. The supplemental materials
(Supplementary Tables 1, 2) deliver an overview concerning
the coding categories and risk of bias assessments. The
assessments were independently determined by two investigators
(AG and ODK); disagreements between the two investigators
were discussed.

RESULTS

Study Characteristics
The six studies included in our meta-analysis covered data from
209 participants in self-management app-based intervention
groups and 82 in control groups. All study samples included

persons with both PTSD and subthreshold PTSD. Three
studies (Possemato et al., 2016; Roy et al., 2017; Tiet et al.,
2019) included samples of military service members, the
remainder evaluated participants from the general population.
All studies were conducted in the U.S., with the exception
of Cernvall et al. (2018), which was conducted in Sweden.
Additionally, all studies used the same application (PTSD
Coach, U. S. Department of Veterans Affairs, 2011a,b), with
the exception of Roy et al. (2017), who provided their sample
with a multitude of applications with varying content (e.g.,
LifeArmor and PE Coach for psychoeducation concerning
prolonged exposure, Tactical Breather for breathing exercises,
Eventful to facilitate positive social engagement). See Table 1

for detailed study characteristics and SOE assessments for
each study.

Four of these six studies were included as pre-post
comparisons (Possemato et al., 2016; Roy et al., 2017; Cernvall
et al., 2018; Tiet et al., 2019) and two were included as
randomized controlled trials with waitlist control conditions
(Miner et al., 2016; Kuhn et al., 2017). Two studies (Possemato
et al., 2016; Roy et al., 2017) had a randomized controlled
design, but only pre-post comparisons were included to be in
line with the aim of the present meta-analysis, i.e., to examine
the effect of self-management apps. One study (Possemato
et al., 2016) randomly assigned participants to either self-
managed or clinician-managed PTSD Coach conditions (n = 10
per condition). The clinician managed condition received four
20-min sessions (via phone) which focused on providing
instructions for app use, setting goals for symptom reduction,
and assigning activities between sessions (Possemato et al.,
2016). In order to assure cross-study comparability, we only
included the self-managed PTSD Coach condition in which
no support by a clinician was provided in our meta-analysis
as a pre-post comparison. Roy et al. (2017) compared the
efficacy of an app-based intervention supported by daily brief
text messages with elements of resilience enhancement and
cognitive-behavioral therapy to a self-management control group
without such support. As the aim of the present meta-
analysis was to evaluate the effect of self-management app-based
interventions, we included only the self-management group of
the study by Roy et al. (2017) as a pre-post comparison in
our meta-analysis.

All included studies used the DSM-IV based PTSD checklist
(PCL) in either the civilian or specific versions (Weathers et al.,
1994, 2001; Weathers and Ford, 1996) to assess PTSD symptoms.
Four studies assessed depressive symptoms with the Patient
Health Questionnaire Depression Scale (PHQ-9; Kroenke et al.,
2001), one study used the PHQ-8 (Kroenke et al., 2009). Except
for Roy et al. (2017), none of the studies assessed symptoms of
anxiety. Therefore, we were not able to meta-analytically evaluate
the effects of smartphone apps on anxiety symptoms.

The study by Owen et al. (2015) was excluded although
PTSD symptoms were measured using the PCL-C via the app;
the authors analyzed data from users who had downloaded
and used the app between 2012 and 2014 (N = 3,462)
and, thus, had aggregated over 12,449 sessions. Yet, sample
characteristics during the time points of assessment were not
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TABLE 1 | Characteristics of the six studies included in the meta-analysis.

Study Country Sample Treatment Group Control Group* App Duration Design SOE

n Age M (SD) % male n Age M (SD) % male

Cernvall et al.

(2018)

Sweden General population

with full or partial

PTSD (according

to CAPS-5)

11 38.6 (Range

32–55)

27 – – – PTSD Coach 4 weeks Pre-test

post-test

design

low

Kuhn et al. (2017) USA General population

with PCL-C score

> 34

(subthreshold)

62 39.43 (15.16) 26 58 39.12 (14.08) 36 PTSD Coach 3 months RCT with

waitlist control

group

high

Miner et al. (2016) USA General population

with PCL-C score

> 24

(subthreshold)

25 whole

sample: 45.7

(13.9)

16 24 – 21 PTSD Coach 1 month RCT with

waitlist control

group

moderate

Possemato et al.

(2016)

USA Veterans with

PCL-S score > 40

(subthreshold)

10 42 (12) 95 – – – PTSD Coach 2 months RCT with

clinician-

support

control group

low

Roy et al. (2017) USA Military service

members and

relatives with PCL

score > 27

(subthreshold)

72 33.97 (10.8) 50 – – – LifeArmor, PE

Coach, Eventful,

Positive Activity

Jackpot, Tactical

Breather, Daily

Yoga, Simple Yoga

6 weeks RCT with

clinician-

support

control group

moderate

Tiet et al. (2019) USA Military service

members with

PC-PTSD score >

2 (probable PTSD)

29 Median: 61 97 – – – PTSD Coach 4 months Pre-test

post-test

design

moderate

The description of Tiet et al. (2019) is the treatment arm without clinician support. SOE, Strength of Evidence; CAPS-5, Clinician-Administered PTSD for DSM-5 (Weathers et al., 2017).

PCL, PTSD Checklist; PC-PTSD, Primary Care-PTSD Screen (Prins et al., 2004). *Only RCTs with waitlist control groups are reported.

readily available, making it unfeasible to calculate effect sizes
for meta-analysis. Mean scores for the PCL-C changed in the
study by Owen et al. (2015) from M = 57.2 (SD = 15.7)
at the first session to M = 55.1 (SD = 16.6) at individual
return sessions. Reger et al. (2015) subjected two active-duty
military service members with a current diagnose of PTSD to
8 weeks of prolonged exposure treatment, half of the duration
with the support of PE Coach and the other half without the
app. Since the participants in this study were both receiving
prolonged exposure treatment and Reger et al. (2015) used a
crossover design, it was not possible to isolate the effects of self-
administer app. Participants, however, indicated higher levels of
satisfaction concerning the weeks in which they were supported
by the app.

Effects of Self-Management App-Based
Interventions on PTSD Symptoms
(Pre-post Comparisons)
Six effect sizes covering 209 participants were extracted to
calculate the overall effect, operationalized in changes in
PCL scores before and after the intervention. Meta-analysis
concluded an effect of g = 0.55 (CI 0.29–0.80, p < 0.001)
regarding the reduction in PTSD symptoms post intervention.
Low heterogeneity between studies was found (I2 = 31.47,
Q(5) = 6.38, p = 0.271). Meta-regression did not reveal a

significant coefficient for the duration of the intervention on
PTSD symptoms (b=−0.02, SE= 0.03, p= 0.622). See Figure 2
for forest plot.

Effects of Self-Management App-Based
Interventions on Depressive Symptoms
(Pre-post Comparisons)
Five effect sizes covered the changes in PHQ scores of 184
participants before and after the intervention. Meta-analysis
revealed an effect of g = 0.45 (CI 0.24–0.65, p < 0.001).
Low heterogeneity between studies was found for depressive
symptoms (I2 = 0.58, Q(4) = 2.52, p = 0.642). Furthermore,
meta-regression did not reveal a significant coefficient for the
duration of the intervention on depressive symptoms (b = 0.01,
SE= 0.03, p= 0.629). See Figure 3 for forest plot.

Efficacy of Self-Management App-Based
Interventions in Randomized Controlled
Trials
Two studies (Miner et al., 2016; Kuhn et al., 2017; overall
N = 169) compared app-based interventions to waitlist control-
groups in randomized controlled trials. Meta-analysis of post-
treatment scores in PTSD symptoms of these two studies resulted
in no significant difference between app-based treatment and
waitlist groups (g = 0.09 [CI −0.22–0.39], p = 0.574). No
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FIGURE 2 | Forest plot of the standardized mean difference (Hedges’ g) of the effect of self-management smartphone-based apps on PTSD symptoms (pre-post

changes). A positive effect size indicates that the PTSD symptoms decreased at the post measurement.

FIGURE 3 | Forest plot of the standardized mean difference (Hedges’ g) of the effect of self-management smartphone-based apps on depressive symptoms (pre-post

changes). A positive effect size indicates that the depressive symptoms decreased at the post measurement.

heterogeneity was found between the two studies (I2 = 0.00,
Q(1) = 0.30, p = 0.584; results not shown). Interestingly, meta-
analysis concluded an effect post treatment of g = 0.47 for PTSD

symptom reduction in waiting list controls compared to an effect
post treatment of g = 0.79 in the treatment groups. Studies were
rated with moderate-high SOE.
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FIGURE 4 | Funnel plot for the meta-analysis of the effect of self-management

smartphone-based apps on PTSD symptoms.

Publication Bias and Risk of Bias
Assessment
Visual inspection of the funnel plots (see Figures 4, 5) did
not suggest a publication bias in the present meta-analysis.
Results for Egger’s regression for funnel plot asymmetry were not
significant both for the analysis of PTSD symptoms (z = −1.09,
p = 0.277) and the analysis of depressive symptoms (z = −0.67,
p = 0.503). No adjustments were needed according to the trim-
and-fill analysis (no studies added left of the summary effect) in
both analyses. This suggests no indication for publication bias in
the present meta-analysis. Studies are heterogeneous regarding
strengths of evidence in overall quality of evidence assessment.
Our review revealed that majority of studies showed high or
moderate risk of bias as presented in Figure 6.

DISCUSSION

In light of the ever increasing, promising use of innovative
technologies in the context of treatment, the current meta-
analysis set out to systematically analyze the effect of self-
management smartphone-based applications as a means of
intervention in populations with PTSD. Six studies with an
overall sample of 209 participants with both subthreshold and full
PTSD who used one or more self-management applications as an
intervention were included in the meta-analysis. PTSD as well as
anxiety and depressive symptoms were used as outcomes.

In the overall sample, self-management smartphone-based
applications showed a moderate effect size (g = 0.55) for the
reduction of PTSD symptoms (assessed with the PCL) post
treatment. In the two included RCTs with waitlist controls,
however, no significant decrease in PTSD symptoms was found
after the intervention (g = 0.09). Regarding depressive symptoms
(assessed with the PHQ), the overall effect was g = 0.47,

FIGURE 5 | Funnel plot for the meta-analysis of the effect of self-management

smartphone-based apps on depressive symptoms.

FIGURE 6 | Graphical Representation of the Risk of Bias Assessment.

bordering on a moderate effect size. A separate analysis for
depressive symptoms in RCTs was not possible, as they were not
assessed in these trials. In addition, the effect of self-management
apps on anxiety symptoms could not be analyzed as only one
study (Roy et al., 2017) reported according scores. As anxiety
symptoms are regarded a frequent comorbidity of PTSD (e.g.,
Ginzburg et al., 2010), it is crucial to systematically assess them
in future controlled trials which evaluate the efficacy of PTSD
interventions. This would allow for a more differentiated picture
regarding the differential effect of according treatments on the
reduction of anxiety.

Overall, the current results suggest that PTSD symptom
severity is reduced while using self-management smartphone-
based apps, yet, the factors to which these changes may be
attributed remain unclear. The app-specific effect evaluated in the
RCTs was not significant.

Unexpectedly, the results of our meta-analysis indicate that
there is no difference between an app-based intervention and
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waitlist control conditions regarding PTSD symptom severity
post treatment. This might be due to the small number of RCT
studies (n = 2) included in our analysis as well as to the high
pre-post effect size of g = 0.47 for PTSD symptom reduction in
the waitlist control group. A possible explanation for symptom
reduction in the absence of treatment may be that the inclusion
of a patient in a study often entails a beneficial shift in attentional
focus. Even though no treatment is provided, the patient is still
subject to repeated clinical assessments and receives support and
information regarding his/her symptoms. Accordingly, Smith
et al. (2007) found that patients improved significantly simply
by monitoring their PTSD symptoms. This questions the efficacy
of self-management applications and encourages further RCT
research regarding smartphone-based apps, and furthermore, a
deeper discussion of its usefulness as a stand-alone intervention.
Moreover, the content of self-management apps used by most
included studies was similar or even the same, limiting a possible
generalization of the effects for other or future smartphone-
based applications. Further research of content-based factors
for treatment outcomes (e.g., level of interactivity, type of
tasks such as relaxation tasks, self-monitoring tasks) would
be beneficial for the field of smartphone-based therapy apps.
Nevertheless, such research would be advantageous for all mobile
applications in the context of psychological therapy. Hence,
based on the current results, the conceptual integration of
smartphone-based apps for self-management intervention in
consisting therapies seems to be essential, as well as a further
development to reach an exponentially higher efficacy with a
combined treatment.

Moreover, findings suggest that depressive symptoms decrease
during the use of smartphone-based apps. However, it was
not possible to conduct additional meta-analysis to assess the
app-specific effect on depression change in RCTs, as only
one study (Kuhn et al., 2017) assessed depressive symptoms
in a randomized control design. Kuhn et al. (2017) reported
a reduction in depressive symptoms, yet—similarly to our
meta-analysis of PTSD symptoms in RCTs—scores between
the intervention and waitlist group did not differ at post
treatment. Both the utilization and the prospect of being able
to utilize apps appear to have a supportive, stress-buffering
effect. This means, that the individual is protected against
the detrimental consequences of stress over time through
continuing support. Accordingly, a recent experimental study
(Kothgassner et al., 2019a) succeeded in demonstrating a
considerable stress buffering effect of virtually provided support
compared with face-to-face support. Results indicate that acute
stress regulation, negative emotions of shame and rumination—
as essential markers for PTSD and depressive symptoms—
improvedwhen people received digitallymediated social support,
yet this support was only effective in terms of stress buffering
if participants thought it was provided by another person (via
an avatar) and not by a computer (via an agent). Following
this, it can be argued that the patients’ assumption that they
are being supported—either virtually or physically—by another
human could be a crucial factor influencing the efficacy of
innovative, interactive intervention apps and may limit the

efficacy of apps providing only self-administered content without
a supporting person.

Avatar-based technology facilitates several therapy
approaches, as it can substitute face-to-face contact with a
clinician. According to Rehm et al. (2016), two concepts exist
of how to include avatars into therapy: On the one hand, the
patient interacts with an avatar, this was used as an effective
tool in Virtual Reality Exposure Therapy (e.g. Cárdenas and
De La Rosa, 2012 for PTSD), and as the embodiment of a real
clinician or a supporting tool for self-management technology
(e.g., Pinto et al., 2016 for depressive symptoms). On the
other hand, patients may represent themselves as a virtual
avatar, either as representation of the self for assessment or
to be involved in a therapy setting. As an avatar can be seen
as digital representation of the self that may become part of
a person’s overall identity after a certain time (Bessière et al.,
2007), it reflects a link to a person’s personality, strengths, and
impairments. Further, the matter of how individuals behave and
interact via avatars can be used for assessment or therapeutic
information. It has been shown that avatar preference of persons
with traumatic events differs from persons without traumatic
events and that there are differences between men and women
with emotional or physical abuse regarding their choices of
avatar characteristics. Women choose avatar characteristics
to help others, while men tend to use aggressive features for
their avatars (Kothgassner et al., 2020). Other studies already
showed evidence for the effect of avatars as representations
of the patient to assess PTSD symptoms through a computer-
based avoidance task (Myers et al., 2016; e.g., Allen et al.,
2017).

In sum, it is—at this point—difficult to deduce specific
recommendation for future apps from the current results since
all but one study (Roy et al., 2017) have used the same
self-management app. The PTSD Coach entails four modules
including psychoeducative elements (about the disorder itself as
well as about treatment options and family relations), the option
to track symptoms (i.e., in the form of repeated assessments
of related thoughts and emotions), symptom management tasks
(e.g., stress relief) as well as a feature for receiving support (e.g.,
in the event of crisis). In line with the idea of self-management,
this app offers only limited interactivity with another person
(e.g., psychologist, friends, peers etc.). Based on the consideration
that social resources (e.g., involvement of significant others in
the treatment process) and virtual social support (see above,
Kothgassner et al., 2019a) may show particularly beneficial effects
on treatment outcome (see Heaney and Israel, 2008), we may,
with caution, suggest the inclusion of more social interactive
elements in future apps, be it in the form of actual interactions
(via chat, voice recordings, video etc.) or via a pre-programmed
virtual human which implies the presence of another person.
Being accompanied by an avatar throughout the online treatment
process has proven beneficial in past studies (see Rehm et al.,
2016 for a review). Further, this lack of knowledge regarding the
design of smartphone-based therapy applications strengths the
need for including therapy naïve and experienced patients in the
development for future therapy applications.
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In general, the effects of self-management smartphone-
based intervention apps are smaller compared with the effects
found by another meta-analysis on more established and
evidence-based interventions for PTSD like prolonged exposure
therapy (PE) (g = 1.08 for PTSD symptoms; see Powers
et al., 2010). Similarly, studies in the field of child and
adolescent trauma-focused cognitive behavioral therapy (tf-CBT)
showed a higher effect (d = 0.88 for PTSD symptoms; see
Goldbeck et al., 2016) compared to a waiting list control group.
However, compared with another technology-mediated therapy
approach—the Virtual Reality exposure therapy—larger effect
sizes are found for PTSD and depression symptom reduction
compared to waiting list controls in a recent quantitative review
(g = 0.62; g = 0.50; see Kothgassner et al., 2019b). For the current
results, the inclusion of subthreshold and full PTSD is a clear
limitation, because self-management smartphone-apps may be
helpful and supportive for people with experienced trauma and
mild symptoms, but not for full PTSD. According to this, it is
necessary to state that the inclusion of patients with subthreshold
PTSD strongly limits comparability to other studies including
only full PTSD patients for treatment. However, this is a major
point for future original studies investigating smartphone-based
interventions. In light of the present results, self-management
smartphone-apps might be a supportive intervention, but not a
stand-alone solution. Another shortcoming is the small number
of studies included which made it impossible to evaluate
the efficacy of self-management apps only via RCTs. Some
studies were pilot trials and did not have randomized control
groups, others did not have control conditions that would make
comparisons feasible (e.g., treatment as usual or apps with
clinician support). This was explicated by SOE ratings, showing
only one study with high, yet two studies with low SOE. However,
by including non-randomized studies and reporting an overall
pre-post effect, we were able to analyze the efficacy of self-
managed apps as a stand-alone intervention—-in a granulated
manner—-with more confidence. Additionally, as the studies
included in the meta-analysis predominantly used one specific
smartphone-app for treatment it was not possible to compare
different solutions and designs. This hinders generalization for
all smartphone-app approaches treating PTSD symptoms.

Furthermore, third variables, which are not possible to control
for, might have influenced the extracted effect sizes concerning
PTSD and depressive symptoms. For instance, both the duration
and the daily use of the applications seem to be vital for the
method’s success (Henson et al., 2019). Although we did not
find a moderating effect of duration, it was not possible to
test for the actual use of applications in the daily life due to a
lack of consistent reporting. Only few authors assessed use of
applications in self-report; here, individuals indicated that they
used the mobile app between 2.27 (Kuhn et al., 2017) and 2.65
times a week (Miner et al., 2016). The interventions’ duration
ranged between fo0ur and 12 weeks in the included studies, and it
did not explain heterogeneity neither in PTSD nor in depressive
symptoms. Future studies should investigate the relation between
frequency of usage and improvement of symptoms.

Standardizing treatment duration, frequency of usage, and
comparing key outcomes to treatment-as-usual control groups

in a randomized controlled design would certainly add to
a better understanding of processes underlying the efficacy
of smartphone-based intervention applications for PTSD for
example by mediation analyses. Another open question pertains
to the fact that, to date, it is unclear how patients with PTSD
perceive health-related mobile apps in terms of usability and
acceptability (Rodriguez-Paras et al., 2017). This, however, may
be a crucial issue when it comes to patient compliance and
adherence in the context of mobile health applications, in
particular with regards to self-management but also regarding
data protection and security concerns. Understanding these
technologies and perceiving them as useful may be an essential
prerequisite for an adequate usage by patients. Furthermore, the
investigation of guided and unguided support via smartphone
apps could be a future interest for research in PTSD treatment.
Research synthesis already showed guidance as a beneficial
feature in Internet- and mobile-based interventions and reveals
that clinical qualification of the person providing guidance is
surprisingly of minor importance (Baumeister et al., 2014).
Furthermore, first results concerning Internet- and mobile-based
interventions used as supportive, adjunct tools in face-to-face
therapy (blended care) seem promising (e.g., in the context of
depression, Berger et al., 2018).

CONCLUSION

The current meta-analysis found small-to-moderate pre-post
effect sizes for the reduction of PTSD and depressive symptoms
in an overall sample of 209 participants. Even though effects
are smaller than those of typical evidence-based interventions
and therapies for PTSD (Powers et al., 2010), smartphone-based
apps—due to their reach and availability—have a considerable
potential to become vital parts of treatment strategies and
interventions for communities andmilitary populations suffering
from subthreshold PTSD. In particular, the option of assessing
health data on a day-to-day basis and in an ecologically valid
fashion would not only allow for pinpointed assessments of
key symptoms in future. It would also add to more customized
technology-based interventions with an improved interaction
between patient needs and clinician resources.

The results of our study imply that a self-managed
smartphone-based app is not superior to waitlist control. It might
therefore not be recommended to use these tools as stand-alone
interventions. Following recent research, the social component
seems to be important in basic computer mediated as well as in
more complex virtual social interactions. According to this, it is
safe to assume that a professional social entity is needed for a
significant impact on symptomatology (e.g., Kothgassner et al.,
2019a), but further smartphone-based apps have the potential
to enrich traditional therapy protocols. Currently, there is a
definitive lack of research on combined treatments (traditional
face-to-face therapy including mobile app interventions) in the
field of PTSD treatment. Evaluating the benefits of such blended
care approaches during PTSD therapy as well as in the context of
ambulatory recovery seems to be a particularly fruitful field for
future research.
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The increasing prevalence of smart mobile devices (e.g., smartphones) enables the

combined use of mobile crowdsensing (MCS) and ecological momentary assessments

(EMA) in the healthcare domain. By correlating qualitative longitudinal and ecologically

valid EMA assessment data sets with sensor measurements inmobile apps, new valuable

insights about patients (e.g., humans who suffer from chronic diseases) can be gained.

However, there are numerous conceptual, architectural and technical, as well as legal

challenges when implementing a respective software solution. Therefore, the work at

hand (1) identifies these challenges, (2) derives respective recommendations, and (3)

proposes a reference architecture for a MCS-EMA-platform addressing the defined

recommendations. The required insights to propose the reference architecture were

gained in several large-scale mHealth crowdsensing studies running for many years

and different healthcare questions. To mention only two examples, we are running

crowdsensing studies on questions for the tinnitus chronic disorder or psychological

stress. We consider the proposed reference architecture and the identified challenges

and recommendations as a contribution in two respects. First, they enable other

researchers to align our practical studies with a baseline setting that can satisfy the

variously revealed insights. Second, they are a proper basis to better compare data

that was gathered using MCS and EMA. In addition, the combined use of MCS and

EMA increasingly requires suitable architectures and associated digital solutions for the

healthcare domain.

Keywords: mobile crowdsensing (MCS), crowdsourcing, ecological momentary assessments (EMA), mobile

healthcare application, chronic disorders, reference architecture

1. INTRODUCTION

For many use cases in the healthcare domain, e.g., in the assessment of chronic diseases and
disorders, there is a need for the collection of large, qualitative, longitudinal, and ecologically
valid data sets. Additionally, contextual information like environmental factors can give even more
valuable insights to researchers, healthcare providers (e.g., physicians or therapists), and last but
not least, the patients themselves. At the same time, smart mobile devices (e.g., smartphones and
smartwatches) and low-powered sensors are becoming increasingly ubiquitous. Two concepts that

72

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00164
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00164&domain=pdf&date_stamp=2020-02-28
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:robin.kraft@uni-ulm.de
https://doi.org/10.3389/fnins.2020.00164
https://www.frontiersin.org/articles/10.3389/fnins.2020.00164/full
http://loop.frontiersin.org/people/803094/overview
http://loop.frontiersin.org/people/45949/overview
http://loop.frontiersin.org/people/412671/overview
http://loop.frontiersin.org/people/329563/overview
http://loop.frontiersin.org/people/33917/overview
http://loop.frontiersin.org/people/385425/overview
http://loop.frontiersin.org/people/326556/overview
http://loop.frontiersin.org/people/328093/overview


Kraft et al. MCS and EMA in Healthcare

highly benefit from these advancements are mobile crowdsensing
(MCS) and ecological momentary assessments (EMA). They can
be used in combination in the form of mobile apps to correlate
EMA assessment data with sensor measurement data in order to
gain even more valuable insights about patients. However, there
are numerous challenges when implementing a software solution
in order to provide the desired functionality, to cope with
technical aspects, as well as to comply with high standards and
regulations in the healthcare domain. In this work, we discuss
these challenges, derive several recommendations and propose
a reference architecture for a respective software platform.
These insights were mainly gained through several studies that
combined MCS and EMA based on mHealth apps that we have
developed in the last years. The mentioned studies, in turn,
address different healthcare questions and are mostly running
for many years. This provides us with a proper basis for the
proposed reference architecture as well as the introduced set of
recommendations. To conclude, the work at hand provides the
following contributions:

• Various challenges are pointed out and discussed on the basis
of the ongoing research project TrackYourTinnitus (TYT),
which has been running since 2014.

• A number of recommendations are derived from the findings
during this and other related projects.

• A reference architecture for a platform enabling the
combination of MCS and EMA is proposed that aims to
address the defined recommendations. Additionally, technical
considerations for the implementation of the architecture
are discussed.

The remainder of this paper is organized as follows. In section 2,
related work in the fields of mobile crowdsensing and ecological
momentary assessments is presented, and the combination of
both concepts is discussed. Lessons learned during the operation
of the TrackYourTinnitus (TYT) project are presented in
section 3. In section 4, we derive recommendations for a MCS-
EMA platform, propose a reference architecture to address these
recommendations, and discuss selected technical considerations.
Furthermore, the findings and their implications for MCS and
EMA research are discussed in section 5. Finally, section 6
concludes the paper with a summary and an outlook.

2. MOBILE CROWDSENSING IN
HEALTHCARE

In this section, we discuss mobile crowdsensing (MCS) in the
healthcare domain. We cover related work in the fields of MCS
and EMA and explain how we relate ecological momentary
assessments (EMA) apps to MCS.

2.1. Mobile Crowdsensing (MCS)
Mobile crowdsensing is a paradigm in which a community
is leveraging devices with sensing and computing capabilities
to collectively share data and extract information in order to
measure and map phenomena of common interest. Therefore,
it is also referred to as community sensing. As opposed to

personal sensing, where the phenomena that are monitored
belong to an individual user, community sensing applications
focus on monitoring large-scale phenomena that cannot easily
be measured by a single user or device (Ganti et al., 2011).
This set of applications can then further be classified into
participatory sensing (Burke et al., 2006) and opportunistic
sensing (Lane et al., 2010) applications. Participatory sensing
requires an active and conscious involvement of the user in
order to contribute sensor data, while in opportunistic sensing,
user involvement is minimal and sensor measurements as well
as data transmission are done passively. In reality, mobile
crowdsensing applications will often be located somewhere
between these two extremes and use both paradigms to some
extent. Furthermore, there exist recent works that reflect the
categories of participatory and opportunistic sensing in the
healthcare context (e.g., Pryss, 2019).

Furthermore, we consider the concept ofmobile crowdsensing
in the healthcare domain. Therefore, we are focusing on
correlating personal sensing data with assessment data in
order to gain insights on specific health conditions, (chronic)
diseases and the patients’ behavior. We consider the potential
knowledge generated from this data as the phenomenon of
common interest in terms of mobile crowdsensing. There are
a number of applications in the field of healthcare (Guo et al.,
2015). Its use cases include data collection in clinical and
health/psychological trials (Pryss et al., 2015; Schobel et al.,
2015), environmental monitoring and pollution measurement
like noise pollution (Schweizer et al., 2011; Zappatore et al., 2017)
or air pollution (Mun et al., 2009), public health (Wesolowski
et al., 2012), and personal well-being (Consolvo et al.,
2006). Although various mobile applications and solutions
have been proposed, less works exist that cover reference
settings to build generic solutions (Tokosi and Scholtz,
2019). In addition, few works are based on comprehensive
experiences that are gained through various long-running
projects (Tokosi and Scholtz, 2019).

2.2. Ecological Momentary Assessments
(EMA)
Ecological Momentary Assessment (EMA) (Stone and Shiffman,
1994) denotes a range of research methods aiming to assess
phenomena with ecological validity by allowing subjects and
patients to repeatedly report in real time, in real-world settings,
over time, and across contexts and therefore avoiding the
bias of retrospective reports (Pryss et al., 2018a). Among
numerous other aspects, EMA is characterized by several key
features (Shiffman et al., 2008):

• Ecological: Data is collected in situ, i.e., in real-world settings
and environments, which constitutes the ecological validity.

• Momentary: Assessments focus on current or very recent
states in real time, which aims to avoid a bias associated with
retrospective assessments.

• Strategic sampling: Assessment timings are strategically
selected by specific sampling schemes, e.g., based on particular
events of interest or by random, representative samplings
across contexts.
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• Longitudinal data: Subjects complete multiple assessments
over time, which provides longitudinal data with insights on
how the state varies over time and across situations.

A related methodology in the field of momentary research
is the Experience Sampling Method (ESM) (Larson and
Csikszentmihalyi, 2014; Van Haren, 2018), which aims at
measuring momentary behavior, thoughts, symptoms, and
feelings of participants, collected through self-reports that are
typically filled out several times a day over several consecutive
days (Myin-Germeys et al., 2009; Van Berkel et al., 2018).
Generally, ESM has a focus on random time sampling and
private, subjective experiences, while EMA is defined more
broadly, as it also includes other sampling approaches and
behavioral as well as physiological measures (Stone and Shiffman,
2002). Since we are striving to make our architecture as generic
as possible and to additionally address physiological sampling via
mobile sensors, we focus on EMA within the scope of this work.

2.2.1. Implementation of EMA With Mobile Devices
EMA studies can be carried out with the help of portable
electronic devices, which support the following EMA key
functions (Shiffman, 2007; Shiffman et al., 2008):

1. Present assessment content to the subject (i.e., display
questions and response options).

2. Manage assessment logic (e.g., handle branching and
validate inputs).

3. Provide time-stamp data to document when assessments
are completed.

4. Store assessment data.
5. Manage prompting schedules (e.g., determine when

assessments should be made).
6. Prompt the subject to complete assessments.

Modern smartphones offer all of these functions, as they provide
high-resolution displays, advanced processing power and storage,
as well as push notifications (Raento et al., 2009). They have
already been used in different EMA studies (Ebner-Priemer and
Kubiak, 2007; Schlee et al., 2016). We summarize smartphone
applications that offer EMA functionality using the term EMA
apps. Smartphones offer additional capabilities that go beyond
the initially defined EMA key functions, most importantly
advanced processing capabilities, an (almost) always available
network connection and built-in as well locally connected
sensors (Van Berkel et al., 2018). Furthermore, data can be
stored locally on the device and synchronized with the server,
enabling an offline availability. Therefore, we explore different
extensions of EMA apps and their combinations and study
their effects. These extensions can be broadly categorized in (1)
guidance, (2) feedback, (3) adjustable prompts, and (4) dynamic
questionnaires. Generally, we distinguish between EMA apps and
features that are used for data collection only (mainly research)
and others that offer a benefit to the user (research and health
care). The four categories of extensions we consider are described
in the following:

• Guidance: We refer to guidance as the option for the
user of the EMA app to link to a contact person. This

contact person might be some kind of healthcare provider
(HCP) that has some professional qualifications, e.g., a
physician or therapist. The HCP might influence the
process of EMA prompts, provide feedback to submitted
data, and offer general advice to the user, or just act as
an observer.

• Feedback: The EMA app could offer feedback to the user
when he/she submits questionnaires. This feedback can be
in the form of text messages by the HCP or automated
feedback by the app, like tips and warnings when certain
thresholds are exceeded, as well as graphical feedback in the
form of graphs about the history of different measurements.
We assume that feedback of this kind might act as an
incentive to users and therefore increase adherence, but
we also want to study the effects of this feedback on the
EMA data.

• Adjustable prompts: Assessment prompts (i.e., notifications)
can either be fixed and determined by the system, defined by
the HCP, event-triggered (e.g., when a patient perceives his
tinnitus, or when a context change is detected through sensor
data), or can be adjusted by the user in a flexible manner.

• Dynamic questionnaires: The content of EMA questionnaires
could be dynamic and adjusted depending on answered
questionnaires in the past, occurring events, or other external
parameters (e.g., the current weather retrieved through a
web service).

2.2.2. Potential Challenges
There are a number of potential challenges when employing
EMA studies, which are outlined in the following (Van Berkel
et al., 2018):

• Participant burden: Answering questionnaires multiple times
a day can be burdensome for participants. To counteract this
issue, the number of questions, alerts, and question types
should be kept as small as possible.

• Participant retention: Related to the frequent answering of
questionnaires, study dropout rates are generally high. There
has to be some sort of incentive for participants in order to
keep them entering their data in a constant manner.

• Programming: There is no generic software solution that
allows to employ EMA studies on mobile devices without
requiring at least basic programming skills.

• Platform heterogeneity: Flexible software is required in order
to support a large number of different hardware devices and
operating systems.

• Data quality: Since data is not collected in a controlled
environment, participants’ data might be of low quality or
noisy. Mechanisms should be in place to avoid or compensate
missing, wrong or careless answers, as well as response shifts
(i.e., changes in the participant’s internal standards) or changes
in the participants reactivity (i.e., behavioral adjustments
because the participants know that they are being observed). In
the context of participant retention, participants might answer
the questionnaires as often as possible, even in a dishonest
way, if they expect a reward or think they are supporting the
platform in this way.
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2.3. Combining Mobile Crowdsensing and
Ecological Momentary Assessments
Crucially, smartphones enable us to not only collect explicit
answers to EMA questionnaires, but additionally capture the
context in which they are collected (Van Berkel et al., 2018). We
consider EMA apps similar to mobile crowdsensing, in which the
assessed phenomenon in terms of mobile crowdsensing is the
ecological data collected in EMA questionnaires. Consequently,
we combine the concepts and features of EMA apps with the
paradigms of mobile crowdsensing by correlating questionnaire
responses and sensor data in order to gain new insights on
certain phenomena. Furthermore, we derive different classes
of mobile crowdsensing EMA apps depending on the EMA
features they provide and the crowdsensing paradigms that
they make use of. Table 1 shows examples for apps that are
incorporating both EMA and mobile crowdsensing features
that were developed by the authors. The TrackYourTinnitus
(TYT) project tracks one’s individual tinnitus and is described
in detail in section 3. Similar to TYT, TrackYourHearing (TYH),
TrackYourDiabetes (TYD), and TrackYourStress (TYS) (Pryss
et al., 2019) help the user to assess and track the progress
of their hearing loss, diabetes, or stress level, respectively,
and allow them to be more sensitive to symptom changes in
specific contexts. The TinnitusTipps app was designed to enable
the communication between healthcare providers (HCP) and
tinnitus patients, including the assessment of the user’s tinnitus
and various automatic as well as manual feedback options. The
KINDEX mum screen enables the assessment of psychosocial
stress factors during pregnancy (Ruf-Leuschner et al., 2016).
Finally, the Intersession app focuses on the assessment and
guidance of users during the time between therapy sessions.
Even though the last two apps are not incorporating any sensor
measurements and are therefore by definition not utilizing MCS,
we consider their assessed ecological data as phenomenon of
common interest in terms of mobile crowdsensing and their
contributions regarding guidance and feedback as a valuable
basis for MCS-EMA platforms. The number of users, submitted
answer sheets and released versions as well as the incorporated
sensor measurements for the developed apps are shown in
Table 2. The sensor measurements are performed while the
patients answer the questionnaires and stored together with the
answer data in order to allow to investigate correlations. To
put these apps into perspective, Figure 1 shows how they are
incorporating guidance and feedback (as defined in section 2.2.1)
on a relative two-dimensional scale based on a subjective rating
(however, guided by the extensive experiences) by the authors.

3. LESSONS LEARNED FROM THE
TRACKYOURTINNITUS PROJECT

The TrackYourTinnitus (TYT) platform is available and has
been maintained since April 2014. It consists of a website for
registration1, two native mobile applications (iOS and Android),
and a central backend that stores the collected data in a

1https://www.trackyourtinnitus.org/

relational database. The mobile apps track the individual tinnitus
perception by asking the patients to complete tinnitus assessment
EMA questionnaires at different times during the day and on
a random basis. The daily questionnaire is assessing tinnitus by
measuring eight dimensions, e.g., tinnitus loudness and distress,
utilizing the questions shown in Table 3. Furthermore, the apps
measure the environmental sound level while patients fill out
the questionnaires (Pryss et al., 2015). Medically, tinnitus is the
perception of a sound when no corresponding external sound
is present. The symptoms, in turn, are subjective and vary over
time. Hence, TYT was realized to monitor and evaluate the
variability of symptoms over time based on EMA and mobile
crowdsensing (Schlee et al., 2016).

One potential risk worth considering is whether continuous
tracking of tinnitus with the app could aggravate the patient’s
symptoms by drawing additional attention to them. However,
it has been shown that the regular use of the TYT app has
no significant negative effect on the perceived tinnitus loudness
and the tinnitus distress. Therefore, the app can be considered
as a safe method for the longitudinal assessment of tinnitus
symptoms in the everyday life of patients (Schlee et al., 2016).
Another health risk is that patients (or their HCP) use TYT as a
treatment tool and unnecessarily change their treatment plan due
to self-reported symptoms in the app. In order to make patients
aware of these risks, they are outlined on the TYT website2.

Figures 2, 3 show the general process a user is going
through when using the TYT iOS or Android application.
Note that these figures are process-oriented graphs in terms
of the Business Process Modeling Notation (BPMN). This
notation is an industry standard and also well-known for the
documentation of healthcare-related procedures (Reichert and
Pryss, 2017). With respect to these figures, first of all, a user
authenticates himself/herself with his/her login data. Then, all
available questionnaires are loaded from a central backend. If
the loading is unsuccessful (e.g., no connection to the server
can be established), locally stored data is used until the next
synchronization attempt. In case there are no locally stored
questionnaires, the synchronization attempt is retried until it
succeeds. The app then checks if there are first usage (i.e.,
questionnaires that are only answered once after the first login)
or one-time (i.e., questionnaires that are only answered once but
might be answered at a later time) questionnaires available. If this
is the case, these questionnaires are displayed and can be filled in
by the user one after the other. Data is then synchronized with the
backend by uploading all newly answered questionnaire data and
loading all studies the user is subscribed to. If the synchronization
is unsuccessful, the local storage is checked once again and the
process is retried after some time if no data can be retrieved
both remotely and locally. In the next step, an overview of all
available studies is presented to the user. He/Shemay then select a
study from that overview. Depending on the study and the user’s
subscription status, the following process differs. If the user is
currently not subscribed to the study, he/she will be able to (a)
directly subscribe to that study if it is public, or (b) be prompted
to enter a password if it is a private study. For private studies,

2https://www.trackyourtinnitus.org/about
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TABLE 1 | Examples of apps developed by the authors combining mobile crowdsensing (MCS) and ecological momentary assessments (EMA), compared according to

their respective features.

App name Guidance Feedback Adjustable prompts Dynamic questionnaires Participatory sensing Opportunistic sensing

TrackYourTinnitus (TYT) X X X

TrackYourHearing (TYH)a X X X

TrackYourDiabetes (TYD) X X X X

TrackYourStress (TYS)b X X X X

TinnitusTipps X X X X X

KINDEX X X X (X)

Intersession X X X X (X)

ahttps://www.trackyourhearing.org/
bhttps://www.trackyourstress.org/

TABLE 2 | Descriptive statistics on mobile crowdsensing EMA apps developed by the authors.

App Number of total

users

Number of users with at

least one answer sheet†
Submitted

answer sheets

Sensor measurements

TrackYourTinnitus (TYT) 4,480 2,905 76,105 Environmental sound level

TrackYourHearing (TYH) 437 167 6,102 Environmental sound level, EEG*

TrackYourDiabetes (TYD) 58 36 3,097 Position (GPS), environmental sound

level, blood sugar*

TrackYourStress (TYS) 204 138 2,989 Position (GPS), environmental sound

level, heart rate sensor

TinnitusTipps 95 66 8,209 Position (GPS)

KINDEX 1,779 1,779 1,943 –

Intersession 6 4 220 –

Total 7,059 5,095 98,665

Numbers extracted on 05 Dec 2019.

*External sensor measurements.
†Compared to the second column, this column does not include users that quit using the app after registration and are therefore considered as early dropouts.

the password is then checked with the backend. If the password
is correct, the user is subscribed to the study. Otherwise, an
error hint is displayed and the user is redirected back to the
study overview. If the user is currently subscribed to the study
and that study is already finished, its details are loaded from the
backend and the user is forwarded to the main menu. If the user
is currently subscribed to the study and that study is still running,
the user is also forwarded to the main menu. From the main
menu, the user can choose to go back to the study overview,
display his/her results, fill in questionnaires and perform sensor
measurements, and finally, change the settings. From the results,
questionnaire and settings views, he/she can always return to the
main menu. If the user selects the study overview, or if the study
period is expired (respectively, if the study is finished), the study
overview is displayed once again.

During the development and advancement of the platform,
we faced several challenges and peculiarities. Additionally, we
gained some valuable insights when implementing such a
combination of an EMA and MCS approach. First, we required
a basic functionality to identify different users. One could argue
that, since data has to be stored anonymized, a device ID
would be sufficient, but this would prevent the users from
changing devices without data loss. Therefore, we implemented
basic authentication and authorization mechanisms, including

registration via email, login with username and password, as well
as password reset features.

The core of the application is the presentation and fill-in
process of (EMA) questionnaires. In order to facilitate adding
new questionnaires and adjusting existing questionnaires at a
later time, the platform should offer a generic approach to handle
questionnaires. We achieved this by defining the questionnaires
as JavaScript Object Notation (JSON) objects containing an array
of questionnaire elements (e.g., headline, text, multiple-choice-
question), stored on the backend. The apps provide components
with functionalities to render, configure, and handle the input for
each of these elements. The components are then put together
in a list view, and additional checks like input validation or
ensuring that required questions are filled in are performed.
Another requirement was to make the questionnaires easy to use,
while not introducing bias. In order to improve usability of the
apps, we tried to make the questionnaires look similar to their
paper-pencil counterpart while using as many system-provided
and default UI elements as possible when implementing the
element components. However, some of the default UI elements
are not suitable for the use in psychological questionnaires and
had to be adjusted. For instance, default iOS and Android sliders
have a pre-selected value, which fosters undesirable anchoring
affects (Tversky and Kahneman, 1974).
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FIGURE 1 | Subjective and relative rating of guidance and feedback of

selected EMA apps developed by the authors.

TABLE 3 | Questions of the daily questionnaire in the TrackYourTinnitus (TYT)

smartphone application, along with their scale and the dimension they

measure (Schlee et al., 2016; Pryss et al., 2017).

# Question Scale Dimension

1 Did you perceive the tinnitus right now? BS Perception

2 How loud is the tinnitus right now? VAS Loudness

3 How stressful is the tinnitus right now? VAS Distress

4 How is your mood right now? VAS Mood

5 How is your arousal right now? VAS Arousal

6 Do you feel stressed right now? VAS Stress

7 How much did you concentrate on the things

you are doing right now?

VAS Concentration

8 Do you feel irritable right now? BS Irritability

BS, binary scale; VAS, visual analog scale.

Furthermore, a sophisticated algorithm has to be deployed in
order to implement the notification (i.e., prompting) schedules.
The algorithm has to account for the users’ sleep and work
schedules, ensuring notifications are not too close to each other3

and allowing different adjustments by the user (e.g., the time
frame and number of notifications per day). Since we managed
the notification schedules exclusively inside the apps, there was
no way to retrieve any information on the scheduled and received
notifications. Therefore, we were unable to extract valuable
information on how users change their notification schedules
and, most importantly, we could not evaluate the notification
adherence. We offered both random (in a given time frame,
adjustable by the user) and fixed (at an exact point in time, chosen
by the user) notifications. However, users reported problems
with random notifications not being delivered as configured or
not delivered at all. While fixed notifications have proven to be

3We chose 15 min as minimal distance between two consecutive notifications.

more reliable, more flexible, and less disruptive to the user, their
value in terms of EMA is to be questioned. Users might integrate
answering the questionnaire into their daily routine, which can
lead to a possible bias.

In our first version of the app, we incorporated an
environmental sound measurement. If enabled by the user, the
app tracks the average loudness recorded by the smartphone
microphone while the user answers the questionnaires. This
value is then stored together with the questionnaire data and
can be correlated to gain new valuable insights on tinnitus and
its interrelations with environmental sound. However, due to
manufacturer and device model differences, measurements are
not comparable across users. Calibrations with different device
models or other measures to ensure comparability should be
performed before integrating similar measurements into mobile
applications. Additionally, these sensor measurements are hard-
coded into the apps. A dynamic framework to integrate internal
and external sensors would facilitate studies aiming to correlate
different sensor data with questionnaire data. In this way, one
could integrate additional sensors, e.g., positioning with GPS in
order to investigate the interrelations to motion patterns or the
influence of weather-related factors.

Another aspect worth considering is incentives. There needs
to be some sort of motivation for users to continuously submit
data. Zhang et al. (2015) divide incentives in mobile crowd
sensing applications into entertainment, service, and monetary
incentives. Since we do not consider monetary incentives
sustainable in the long term (especially in the research context),
we focus on the former two categories in order to increase
the users’ extrinsic and intrinsic motivation. While in TYT, we
provided someminimalistic feedback in the form of a chart of the
perceived tinnitus loudness and an option to review the history
of submitted questionnaires for each individual user, we believe
the main incentive for users is the contribution to research on a
chronic disorder from which they are suffering. However, more
than 78% of users drop out after 10 days of participation. More
incentive mechanisms, like advanced feedback, gamification, or
social features should be implemented (Agrawal et al., 2018).

In order to perform different studies with the app (and to
exclude test users from the actual data set), the need to separate
users into study groups inside the app emerged. We updated
the app to incorporate a basic study allocation. Users are able
to join studies by manually selecting them from a list inside the
app. However, users can currently only be member of a single
study at a time and there is no functionality in place for the
study manager to control or verify which user joins which study
without checking the database.

Since mobile devices are not guaranteed to always be
connected to the internet (i.e., be online), the app should also be
functional without internet connection whenever possible. TYT
offers a basic offline functionality by initially downloading all
questionnaires and storing them on the device. Additionally, the
users’ given answers for questionnaires are cached on the device if
there is no internet connectivity until the connection is restored.
This way, the feedback features also remain functional. However,
other features, e.g., the study management, are only available if
the device is online.
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FIGURE 2 | BPMN representation of the general process of the TrackYourTinnitus (TYT) smartphone application (Part 1).
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FIGURE 3 | BPMN representation of the general process of the TrackYourTinnitus (TYT) smartphone application (Part 2).
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Furthermore, safety, security, and privacy are aspects of
high importance in the healthcare domain. Region-specific
regulations, e.g., the General Data Protection Regulation (GDPR)
and the Medical Device Regulation (MDR) in the EU, as well
as high expectations of patients need to be considered when
designing a software system in this field. TYT applies state-
of-the-art security measures with an email verification as part
of the registration process, credential-based authentication and
token-based authorization (see above) as well as encrypted data
transmission via SSL/TLS (Rescorla, 2018). Health risks are
outlined on the website. However, since safety, security, and
privacy requirements are constantly evolving, a more transparent
informed consent, additional security measures and a privacy-
preserving design would be desirable for the future (e.g., Beierle
et al., 2019).

Data quality of the submitted data is another critical issue in
MCS-EMA apps (see section 2.2.2). As already discussed above,
reliable sensor and comparable measurements on mobile devices
are difficult to achieve due to the variety of device models. But,
also for the questionnaire data, no real statement can be made
regarding its quality. Since we only require the user to answer
two of the eight questions in the daily questionnaire, users can
skip most of the questions if they would like to do so, which
leads to missing values. Also, if users feel forced to answer
a question or have malicious intentions, they might provide
untruthful data. In addition, the use of a smartphone to gather
large amounts of personal data in real life that is stored to a
large database for scientific research could boost competition
thoughts. Consequently, participants might provide data only for
the purpose of providing more data than others. Such factors
should be taken into account and mechanisms should be in place
to cope with data quality.

Moreover, scientists providing the platform and HCPs want to
analyze the collected data. In TYT, data analysis is only possible
in a static way by querying the raw database. More flexible,
on-demand analysis functionalities for scientists evaluating the
platform data are desirable. Furthermore, HCPs and their
patients could benefit from a dynamic analysis of the patients’
data, providing detailed insights and building the baseline for
tailored feedback.

Finally, the experiences gained with TrackYourTinnitus and
the projects shown in Table 2 are discussed in the light of their
general contribution and their generalizability. A recent review of
mobile health crowdsensing research (Tokosi and Scholtz, 2019)
shows that the projects shown in Table 2 and the related papers
are heavily recognized by their selected key terms of existing
works. Tokosi and Scholtz (2019) also shows that although more
and more research is pursued in this context, less experiences
are reported that were gained over multiple large-scale and long-
running projects. Therefore, we consider our experiences as a
proper starting point to conceive a reference architecture that
incorporates aspects that are relevant on one hand. On the
other, these aspects have shown their importance at multiple
times. Furthermore, the authors have already worked on better
generic solutions for parts of the reference architecture. For
example, for the REST interface (see Figure 4) in Pryss et al.
(2018b), a more generic solution was proposed. This solution,

in turn, is utilized by all projects shown in Table 2 that have
been started after TrackYourTinnitus. However, as for other
purposes, like mobile data collection, better generic solutions
have been proposed (e.g., Schobel et al., 2019). A configurable
crowdsensing platform based on (1) the archetype shown in
(Schobel et al., 2019) and (2) the results of this work is currently
conceived. Moreover, developments, such as PACO4 show that
easily customizableMCS-EMA apps are highly welcome by users.
In addition, commercial tools, such as ilumivu5 emphasize the
need of generic solutions in the given context of EMA andmobile
crowdsensing. Thereby, the ilumivu technical solution provides
already sophisticated features for EMA apps on a generic level.
Importantly, these features deal with many aspects raised in
this work. On the other, ilumivu still does not consider all of
the discussed aspects. For example, ilumivu does not convey
how they cope with a management of incentives. Following this,
the work at hand can be utilized to reflect existing solutions
or new developments with the shown experiences and derived
recommendations, especially as they are gained over time and
across projects. We do not claim that these recommendations are
complete or cover every aspect, but we consider them as a proper
starting point for various projects and questions in the context
of healthcare and the combination of mobile crowdsensing
and EMA.

4. TOWARD A REFERENCE
ARCHITECTURE

Based on the findings in section 3, we derive a number of
recommendations for a mature and contemporary MCS-EMA
platform. We then propose a reference architecture to address
these recommendations and discuss technical considerations
with respect to the implementation.

4.1. Recommendations
We derived twelve recommendations from the lessons learned
during the TYT project (see section 3), various discussions
with colleagues and domain experts, as well as general
considerations when building a modern software system.
Namely, these recommendations are (R1) User Identity, (R2)
Generic Questionnaires, (R4) Sensors and Context-Awareness,
(R5) Incentive Mechanisms, (R6) Groups, Studies and HCPs, (R7)
High Availability and Performance, (R8) Offline Availability, (R9)
Safety, Security, and Privacy, (R10) Data Quality, (R11) Data
Analysis, and (R12) Interoperability. The recommendations are
described in detail in Tables 4, 5.

4.2. Architecture
Based on the recommendations defined in section 4.1, we
propose a reference architecture for a platform supporting the
combination of mobile crowdsensing and ecological momentary
assessments in the healthcare domain. Figure 4 shows the general
architecture. It comprises a central backend with different
services, a database and a file server, as well as mobile apps

4https://pacoapp.com/
5https://ilumivu.com/
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FIGURE 4 | Reference architecture for MCS-EMA platforms in the healthcare domain.

for both Android and iOS, a web dashboard for HCPs and
another web dashboard for system administrators (admins). The
clients (mobile apps, HCP dashboard and admin dashboard)
communicate with the backend via a RESTful interface. Files,
like multimedia and documents, are stored on a file server.
Relevant files are downloaded and additionally stored on the
mobile devices. All relevant data, like questionnaires, notification
schedules as well as answer and sensor data are synchronized
between the central database in the backend and the mobile
apps’ local databases. The backend additionally provides other
interfaces for external systems, implementing common standards
in the healthcare domain.

4.3. Selected Technical Considerations
Furthermore, we discuss technical considerations in order
to address some of the architectural aspects of the defined

recommendations in respect to our reference architecture. First,
in order to achieve high availability, the system has to be
scalable, and in the best case, elastic. According to definitions
provided by Herbst et al., scalability is “the ability of a system to
handle increasing workloads with adequate performance,” while
elasticity is “the degree to which a system is able to adapt to
workload changes by provisioning and deprovisioning resources
in an autonomic manner, such that at each point in time the
available resources match the current demand as closely as
possible” (Herbst et al., 2013). We suggest to use a cloud-native
approach to address these recommendations. A cloud-native
application (CNA) is explicitly designed to be operated in the
cloud. Therefore, such application is—by design—distributed,
elastic, and horizontally scalable. Furthermore, it is composed
of microservices with a minimum of isolated states (Kratzke
and Quint, 2017). The internal architecture for a cloud-native
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TABLE 4 | Recommendations for a platform combining mobile crowdsensing (MCS) and ecological momentary assessments (EMA) in the healthcare domain (Part 1).

ID Name Description

R1 User identity The platform should allow authentication and authorization in order to uniquely identify users. The user should be

able to log into the platform with multiple devices, change and recover his/her password if it is lost, and deactivate

as well as delete his/her account.

R2 Generic questionnaires The platform should be able to handle generically defined questionnaires. Both one-time (e.g., demographic) and

repeating (e.g., EMA) questionnaires should be supported. The mobile application should be able to display

multiple questionnaires, which are available at different intervals, concurrently. Supported question types should

be at least single choice, multiple choice, text input, and date input. There should be an option to define dynamic

questionnaires, which adapt to the previous input of the user (i.e., conditional content). Optionally, the user can

also adapt his/her own questionnaire according to his/her needs (e.g., add additional questions).

R3 Notifications The platform should be able to prompt the user to fill in questionnaires. For each questionnaire, one or multiple

notification schedules can be defined, which determines how and how often the user is notified. A default

configuration for each questionnaire can be provided, which is optionally adjustable by the user. Notifications can

be set for fixed times (i.e., fixed), or randomly within a given time frame for each day (i.e., random). An algorithm

should ensure that notifications from different schedules are not conflicting with each other. Additionally,

notifications that are event-triggered (e.g., by a context change) can be defined. Information on the notification

adherence (i.e., when the notification has been displayed; if/when did the user trigger the notification) should be

stored and made available for analysis.

R4 Sensors and context-awareness For each questionnaire, a set of sensor measurements (e.g., GPS coordinates, sound level, brightness, or

wearable sensors) that are performed on the mobile devices should be definable. These measurements can be

configured to be performed (a) once or (b) continuously during the fill-in process of the respective questionnaire;

(c) continuously during the app usage; or (d) continuously in the background. Additionally, different sensors can be

combined (i.e., sensor fusion) to retrieve various context information.

R5 Incentive mechanisms Different incentive mechanisms should be deployed in order to support the patients’ adherence. We define three

types of incentives: feedback, gamification, or social features.

R5.1 Feedback The platform should provide different types of feedback to the user. Graphical feedback (e.g., charts or graphs),

daily tips, automatic feedback based on the given answers, as well as manual feedback in the form of messages

by the HCP can be incorporated. Manual feedback could be supported or partly be replaced by incorporating a

chatbot with automated analysis of the user’s input (both answer data and text messages).

R5.2 Gamification The platform should offer gamification features like achievements (e.g., submission streaks), badges, points, and

leaderboards.

R5.3 Social features The platform should offer social features like public user profiles, group chats, discussion boards on certain topics

and following as well as sharing functionalities.

implementation of the backend in our reference architecture
is shown in Figure 5. The backend can be decomposed to
multiple microservices, and these microservices can then be
replicated in order to enable horizontal scalability. Optimally, the
database, file server and file system should be distributed and/or
replicated as well. In order to provide elasticity, an orchestration
system is used to monitor metrics describing the load of the
system and automatically orchestrate resources based on these
metrics in order to scale in and scale out. A common approach
would be to use Docker6 as container technology to implement
microservices and Kubernetes7 (Burns et al., 2016) as container-
orchestration system.

In order to provide high levels of security and privacy,
all communication between different components of the
architecture should be encrypted. All personal and private user
data should be stored separately from the application data to
reduce the risk of it being exposed in case of a data breach.
Optionally, in a privacy-preserving design, this data should be
encrypted in a way that it can only be decrypted by each

6https://www.docker.com/
7https://kubernetes.io/

respective user himself. In the best case, a dedicated privacy
model is incorporated or developed (e.g., Beierle et al., 2019).

Furthermore, for the development of the mobile apps, it has
to be decided whether to develop a native app for each target
platform (e.g., Android, iOS, web browser) or use cross-platform
frameworks that enable the developer to use a single code-base
and deploy this code to different platforms. We recommend
to use cross-platform frameworks (e.g., Xamarin8, Flutter9, or
Ionic10) for small developer teams and teams which are prone
to changes (e.g., research projects), since the single code base
requires less efforts for development and maintenance, as well
as causes lesser heterogeneity-based challenges in programming
languages and tools, which makes it easier for new developers
to enter the team. However, for bigger and more consistent
developer teams, native app development might be better suited.
Native apps might provide a better interface to the operating
system and therefore more control over sensors and the user
interface, as well as potentially better performance. This has
special value to MCS apps incorporating advanced sensor usage.

8https://dotnet.microsoft.com/apps/xamarin
9https://flutter.dev/
10https://ionicframework.com/

Frontiers in Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 16482

https://www.docker.com/
https://kubernetes.io/
https://dotnet.microsoft.com/apps/xamarin
https://flutter.dev/
https://ionicframework.com/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kraft et al. MCS and EMA in Healthcare

TABLE 5 | Recommendations for a platform combining mobile crowdsensing (MCS) and ecological momentary assessments (EMA) in the healthcare domain (Part 2).

ID Name Description

R6 Groups, studies, and HCPs Users should be able to join one or multiple groups. These groups can represent studies, HCPs or other

groupings (e.g., test users). Users can be invited to groups by their respective group owner (e.g., the HCP) or join

them via different join mechanisms (e.g., join requests, password-restricted or freely).

R7 High availability and Performance The platform should be available to its users in the best possible way. There should not be any noticeable

performance drops under higher loads.

R8 Offline availability The mobile app should still be functional when there is no internet connection (or more generally, no connection to

the server) whenever possible. All data should be stored on the device where appropriate and synchronized with

the server.

R9 Safety, security, and privacy The platform should meet high safety, security and privacy standards. Region-specific regulations like the EU

General Data Protection Regulation (GDPR) and the Medical Device Regulation (MDR) should be considered. All

confidential data should be stored securely and transmitted in encrypted form. User data and credentials should

be stored separately from the answer data. Health risks should be identified and addressed at an early stage and

outlined to users and HCPs in a transparent way. A security model for the mobile apps and the entire platform

should exist.

R10 Data quality Data quality should be kept as high as possible. Different data quality aspects like believability, relevancy, accuracy

(i.e., error-free, reliable, precise), interpretability, understandability, accessibility, objectivity, timeliness,

completeness and (representational) consistency (Wang and Strong, 1996) should be addressed depending on

the specific requirements of the use case. The platform should perform input validation and prevent invalid inputs,

perform plausibility checks, as well as other measures to improve quality of answer and sensor data. This also

includes measures for detecting and handling misstatements by users, which might be both intentional and

malicious (e.g., faking), as well as unintentional (e.g., self-deception), summarized with the terms faking and

socially desirable responding (SDR) (Paulhus, 2001; Van de Mortel, 2008).

R11 Data analysis The platform should offer easy-to-use data analysis functionalities on live data for researchers, HCPs, and also the

users themselves. Both static and dynamic data analysis (e.g., aggregation with the help of filters and time

windows or clustering) should be enabled. All relevant data should be exportable to common formats (e.g., CSV,

SPSS, R, PDF). The HCP and the user should be able to review and analyze the individual answers to

questionnaires as well as sensor measurements and compare them to the data of other users.

R12 Interoperability The platform should offer a good interoperability with other (external) systems. This includes implementing

common data exchange format standards and communication protocols, as well as providing uniform,

understandable, and well-documented interfaces.

FIGURE 5 | Scalable design of a backend in the reference architecture for

MCS-EMA platforms in the healthcare domain.

Finally, in order to provide good interoperability with other
internal as well as external systems, common interfaces should
be provided. This includes state-of-the-art architectural styles in
web technology like REST (Fielding and Taylor, 2000; Pryss et al.,
2018b), but also standards in the healthcare domain [e.g., FHIR11

11https://www.hl7.org/fhir/

or XDS (Trotter and Uhlman, 2011)]. Standards that one wants
to support should be considered at an early stage when designing
the data models.

5. DISCUSSION

We argue that, when considering mobile crowdsensing in the
healthcare domain, differentiating only between participatory
and opportunistic sensing is not sufficient. Other aspects like
context-awareness, incentive mechanisms, groups, security, and
privacy, data quality, as well as technical aspects like availability,
performance, offline availability and interoperability should be
also thoroughly taken into account. Additionally, although
personal sensing data on its own only belongs to an individual
user, it can be used in order to be beneficial for the community
as a whole by processing, clustering, and correlating this type
of data. Therefore, we further argue that in the context of
mobile crowdsensing in healthcare, there is no distinct separation
between community sensing and personal sensing, and that both
concepts should be considered depending on the scenario that
is addressed.

Furthermore, in the literature, MCS and EMA are considered
as separate, mostly unrelated concepts. While they have different
origins, we argue that both concepts make use of similar
approaches, namely leveraging the crowd and their (already
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existing) mobile devices in order to assess phenomena of
common interest. Therefore, they should be considered closely
related to each other, and their combination should get more
awareness. Beyond that, the architectural model is often not
provided in publications on MCS and EMA studies, although we
argue that it has meaningful implications on the comparability
of their results. We believe that a reference architecture, such as
that introduced in this work, can raise awareness and counteract
this issue to a certain degree. In this context, we have particularly
shown which aspects the reference architecture incorporates to
develop more generic technical solutions based on it.

6. CONCLUSION

In this work, we discussed the combination of mobile
crowdsensing (MCS) and ecological momentary assessment
(EMA) in the healthcare domain. We introduced both terms
and described how we considered their underlying concepts
that are similar to each other, which fosters combining MCS
and EMA in a single approach. Furthermore, we discussed
the lessons we learned from the TrackYourTinnitus project,
which is running for over 5 years. Based on these findings,
we derived recommendations for a platform supporting the
combination of MCS and EMA in the healthcare domain. We
then proposed a reference architecture for such a platform,
described its components and how they interact. Additionally, we
outlined how the reference architecture could be implemented
in order to address the defined recommendations from the

technical side. Furthermore, we discussed how MCS and EMA
research should be considering both concepts in combination
and propose that publications in this field should refer to the used
architectural model.

In conclusion, one can see that there are numerous
conceptual, architectural and technical, as well as legal challenges
when designing a MCS-EMA platform for the healthcare
domain. We believe that the defined recommendations can—
adjusted to the individual factors, needs and requirements of a
(research) project or product—act as foundation for future MCS-
EMA systems. All the different aspects should be considered
at an early stage of the project. Additionally, the reference
architecture can serve as a generic template for a platform
implementation. Technical considerations should be kept in
mind in order to be able to scale and cope with future
requirements. However, we believe that the combination of
MCS and EMA is a promising approach for many different use
cases in the healthcare domain. For this endeavor, our reference
architecture and recommendations shall be a basis for more
generic and comparable technical solutions.
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The motor system has the flexibility to update motor plans according to systematic
changes in the environment or the body. This capacity is studied in the laboratory
through sensorimotor adaptation paradigms imposing sustained and predictable motor
demands specific to the task at hand. However, these studies are tied to the laboratory
setting. Thus, we asked if a portable device could be used to elicit locomotor
adaptation outside the laboratory. To this end, we tested the extent to which a pair of
motorized shoes could induce similar locomotor adaptation to split-belt walking, which
is a well-established sensorimotor adaptation paradigm in locomotion. We specifically
compared the adaptation effects (i.e. after-effects) between two groups of young,
healthy participants walking with the legs moving at different speeds by either a split-belt
treadmill or a pair of motorized shoes. The speeds at which the legs moved in the split-
belt group was set by the belt speed under each foot, whereas in the motorized shoes
group were set by the combined effect of the actuated shoes and the belts’ moving
at the same speed. We found that the adaptation of joint motions and measures of
spatial and temporal asymmetry, which are commonly used to quantify sensorimotor
adaptation in locomotion, were indistinguishable between groups. We only found small
differences in the joint angle kinematics during baseline walking between the groups –
potentially due to the weight and height of the motorized shoes. Our results indicate that
robust sensorimotor adaptation in walking can be induced with a paired of motorized
shoes, opening the exciting possibility to study sensorimotor adaptation during more
realistic situations outside the laboratory.

Keywords: locomotion, motor learning, rehabilitation robotics, real-world, portable device

INTRODUCTION

The motor system has the flexibility to update motor plans according to systematic changes in the
environment or the body. This human ability is studied in the laboratory through sensorimotor
adaptation paradigms imposing sustained and predictable motor demands specific to the task
at hand, such as unusual visuomotor rotations (e.g. Krakauer et al., 2000) or constant forces
during walking (Savin et al., 2010) or reaching (Shadmehr and Mussa-ivaldi, 1994). For example,
split-belt walking is a well-established paradigm in which participants update spatiotemporal
gait features in response to a persistent speed difference between their legs (Dietz et al., 1994;
Reisman et al., 2005; Malone et al., 2012). Important motor adaptation principles have been
learned from these sensorimotor adaptation paradigms, such as the computations underlying
motor adaptation (Thoroughman and Shadmehr, 2000; Haruno et al., 2001; Smith et al., 2006) or

Frontiers in Neuroscience | www.frontiersin.org 1 March 2020 | Volume 14 | Article 17486

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00174
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00174
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00174&domain=pdf&date_stamp=2020-03-06
https://www.frontiersin.org/articles/10.3389/fnins.2020.00174/full
http://loop.frontiersin.org/people/917672/overview
http://loop.frontiersin.org/people/917861/overview
http://loop.frontiersin.org/people/917848/overview
http://loop.frontiersin.org/people/67869/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00174 March 6, 2020 Time: 14:38 # 2

Aucie et al. Motorized Shoes Induce Locomotor Adaptation

neural structures involved in this process (Deuschl et al., 1996;
Smith and Shadmehr, 2005; Morton and Bastian, 2006). However,
there are inherent limitations to laboratory-based studies that
bring into question the extent to which principles governing
motor adaptation apply to motor learning in the real-world.

Specifically, there are task-constraints in laboratory-based
studies that limit our ability to investigate factors that are critical
for motor learning outside the laboratory setting. For example,
laboratory-based protocols challenge the study of extended
practice, which is a critical aspect of motor learning (Ericsson
and Pool, 2016; Haith and Krakauer, 2018). There are several
efforts to investigate the effect of extended practice on motor
behavior by bringing participants to the laboratory multiple times
(Day et al., 2018; Leech et al., 2018; Hardwick et al., 2019). This
research effort would be facilitated if individuals could practice
outside the laboratory setting. Further, we constrain movements
by for example making people walk at a constant speed (Dietz
et al., 1994), or repeatedly reach to a certain direction (Krakauer
et al., 2000). This is done to simplify the control variables affecting
the studied behavior, and at the extreme, this could yield to
the study of unnatural behaviors, whose underlying mechanisms
might not apply to realistic situations. A byproduct from task-
constraints is the context-specificity of motor patterns learned in
the laboratory that is movements adapted with the device only
partially carry over to movements without the training device
(Kluzik et al., 2008; Torres-Oviedo and Bastian, 2010). This is
detrimental not only because it limits our capacity for studying
the generalization of motor learning across distinct situations, but
also because it limits the possibility for using laboratory-based
tasks for motor rehabilitation. Notably, it is well-accepted that
the generalization of motor patterns from trained to untrained
situations can be improved when the two contexts are more
similar to one another (Tulving and Thomson, 1973; Spear, 1978;
Bouton et al., 1999). Thus, there could be more generalization
of laboratory-based knowledge to realistic situations when the
tasks studied in the laboratory are more similar to those observed
under naturalistic conditions.

Portable devices may offer the possibility to overcome the
limitations of laboratory-based studies of motor learning. For
example, portable devices allow us to investigate motor learning
in real-life settings, such as studies of surgical training with the
same tools that are used at the clinic (Sharon et al., 2017). In
addition, the portability of training devices also enables the study
of extended practice since individuals are not constrained to only
train in the laboratory setting (Hardwick et al., 2019). Further,
portable devices might allow for more complex movements that
involve the whole body (Haar et al., 2019), which might lead to
greater motor variability – a key factor for motor learning (Kelly
and Sober, 2014; Wu et al., 2014; Therrien et al., 2016). In the
context of locomotion there have been efforts to develop portable
devices to study motor adaptation (Handzic et al., 2011; Handzic
and Reed, 2013; Lahiff et al., 2016). However, the previous
devices were passive, lacking the control over the speed difference
between the feet. In addition, gait adjustments induced by these
devices are not as robust as the ones observed with laboratory-
based apparatus such as split-belt treadmills. Thus, we asked if
a pair of motorized shoes could induce locomotor adaptation

comparable to split-belt walking, which is a well-established
sensorimotor adaptation paradigm in locomotion.

We specifically hypothesized that introducing a speed
difference between participant’s feet with the motorized shoes
would result in adaptation of spatiotemporal gait patterns similar
to split-belt walking. To test this hypothesis, we compared
locomotor adaptation at comparable speed differences imposed
by either a pair of motorized shoes or a split-belt treadmill. If
the locomotor adaptation with the motorized shoes is similar to
the one observed during split-belt walking paradigm, participants
could start wearing these shoes outside the laboratory, which
would offer the exciting possibility to study locomotor learning
under more realistic situations.

MATERIALS AND METHODS

Participants
We investigated if a pair of motorized shoes could induce
locomotor adaptation and after-effects similar to a split-belt
treadmill. To this end, a group of 18 young, healthy, and
naïve adults were adapted using either (1) the motorized shoes
that imposed speed differences between the feet using actuated
wheels under the shoe (motorized shoes group: n = 9; three
females: 26.6 ± 3.5 years) or (2) a split-belt treadmill, in which
belts moved at different speeds (split-belt group: n = 9; four
females: 25.3 ± 4.3 years). The Institutional Review Board
at the University of Pittsburgh approved our experimental
protocol and all participants gave their written informed consent
before being tested.

Set Up
The motorized shoes group walked on the treadmill while
wearing the custom made motorized shoes (Nimbus Robotics,
Pittsburgh, PA, United States) as shown in Figure 1A on top of
their normal walking shoes. In brief, the shoes were designed
to move an individual (weighing <100 kg) up to 1 m/s in the
forward direction only (i.e. wheels cannot be actuated to rotate
backward). Each of the motorized shoe (∼1.7 kg) consisted of
a motor, a controller box, a gearbox, two toothed timing belts,
and four rubber wheels (Figure 1B). Lithium batteries (3V) were
used to power the motor, which rotated the timing belts via a
gearbox connecting the two. The feet moved at different speeds
with the motorized shoes by locking the wheels of one foot and
actuating the wheels of the other foot, such that the combined
effect of the treadmill’s belt moving the foot backward and the
motorized shoe moving the foot forward would result in the
desired foot speed of 0.5 m/s (Figure 1B). To this end, the timing
belts and rubber wheels were coupled to rotate the wheels such
that they locked the non-actuated shoe during stance (∼0 m/s)
and moved the actuated shoe forward at a linear speed of 1 m/s.
The controller boxes received signals through a remote controller
operated by the experimenter. All software for the controller
boxes and the remote controller were written in Python. Details
on the control software are published in Zhang (2017) and a
detailed description of the motorized shoes will be revealed in the
full utility patent (currently in provisional status). The split-belt
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FIGURE 1 | (A) A motorized shoe involving proprietary technology was used to induce adaptation in the motorized shoes group. (B) Schematic of the motorized
shoe. This consists of a motor, a controller box, a gearbox, two toothed timing belts, and four rubber wheels. (C) Mean time courses for foot speed across
participants for the motorized shoes and the split-belt groups. The white background indicates experimental epochs of “tied” walking when both feet moved at the
same speed, whereas the gray background indicates the epoch of “split” walking when the dominant leg moved three times faster than the non-dominant leg. The
table summarizes the procedure used to set the slow, fast, and medium speeds for each foot. The same procedure was used in all epochs. It is worth pointing out
that the treadmill always moved at 1.5 m/s during adaptation in the motorized shoes group. The speed difference between feet was achieved by locking the wheels
on the fast side and moving the slow foot forward at 1 m/s to obtain a net speed of 0.5 m/s on the slow side. Of note, the foot’s speed on the fast side was slightly
slower on the motorized shoes than the split-belt group.

group did not wear the motorized shoes and walked with their
regular shoes on an instrumented split-belt treadmill (Bertec,
Columbus, OH, United States).

General Paradigm
All participants adapted following a conventional sensorimotor
adaptation paradigm that consisted of three walking conditions:
baseline, adaptation, and post-adaptation (Figure 1C, Top).
During these periods, participants’ feet moved at one of three
possible speeds: slow (0.5 m/s), medium (1 m/s), or fast (1.5 m/s).
The implementation of these speeds is displayed in Figure 1C.
Participants in the motorized shoes group wore these shoes
throughout the experimental protocol, whereas participants in
the split-belt group wore regular sneakers. Thus, the net foot
speed in the motorized shoes group was the sum of the treadmill’s
speed (moving the foot backward) and the shoe’s speed (moving
the foot forward), whereas the foot speed in the split-belt group
was only dependent on the treadmill’s speed (Figure 1C, Bottom).
For example, in the motorized shoes group the slow foot speed
(0.5 m/s) resulted from the combined effect of the treadmill
moving the foot at 1.5 m/s (backward) and the motorized shoe
moving the foot at 1 m/s (forward) (i.e. 1.5 −1 = 0.5 m/s). The

motorized shoes were OFF and wheels were locked (0 m/s) at
the fast and medium speeds; thus, the foot’s net seed at those
velocities was only determined by the treadmill’s speed. This was
done to maximize the experiment’s duration for a given battery
life. Our approach also enabled us to implement the same feet
speed’s in both groups while participants in the motorized shoes
group walked on a regular treadmill (i.e. both belts moving at
the same speeds).

A baseline period was collected during which both feet moved
at either slow, fast, or medium speeds for 150 strides each
(Figure 1C, Top). The baseline behavior during the slow and fast
speeds served as a reference for the adaptation condition when
the feet moved at different speeds, whereas the medium speed
served as a reference for the post-adaptation period when the
two feet move at the same medium speed. Moreover, the baseline
speed was matched not only in the speed at which the feet moved,
but also on how this speed was implemented. For example, in
the motorized shoes group, the shoe was actuated in the slow
side (net speed = 0.5 m/s) and it was OFF (wheels locked) in
the fast side (net speed = 1.5 m/s) during the adaptation period.
Accordingly, both motorized shoes were either actuated or OFF
in the slow and fast baselines, respectively. The adaptation period
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lasted 750 strides (approx. 15 min) and the dominant leg (self-
reported leg to kick a ball) walked fast. The speed difference and
period duration was selected to match other split-belt walking
studies showing robust gait adaptation (Sombric et al., 2019).
Following the adaptation block, all participants experienced a
post-adaptation period of 600 strides during which both feet
moved at 1 m/s, which was the average speed of the fast and slow
feet. The purpose of this phase was to measure the adaptation
effects and its washout when the speed perturbation induced by
different devices was removed.

Data Collection
All participants walked on an instrumented treadmill either with
or without the motorized shoes, while kinematic and kinetic data
were collected to characterize participants’ gait. Kinematic data
were collected at 100 Hz with a passive motion capture system
(Vicon Motion Systems, Oxford, United Kingdom) and kinetic
data were collected at 1000 Hz using force plates embedded in the
treadmill. Gaps in raw kinematic data due to marker occlusion
were filled by visual inspection of each participant in Vicon
Nexus software. Positions from the toe (5th metatarsal), ankle
(lateral malleolus), knee (lateral epicondyles), and the hip (greater
trochanter) were collected bilaterally (Figure 2B). Heel-strikes
(i.e. foot landing) and toe-offs (i.e. foot lift off) were identified
using the ground reaction force (Fz) perpendicular to the walking

surface. More specifically, heel-strike was defined as the instance
when Fz > 30 N and toe-off as the instance when Fz < 30 N. We
used this force threshold to have equivalent event detection (i.e.
heel strike and toe off) on the treadmill for both groups since each
of the motorized shoe weighted 17 N (∼1.7 kg in mass).

Data Analysis
We compared the gait pattern between the motorized shoes
and split-belt groups in terms of spatial and temporal symmetry
measures that are known to adapt on the split-belt treadmill
(Figure 2A; Finley et al., 2015). Specifically, we used step
length asymmetry as a robust measure of adaptation. Step
length asymmetry was defined as the difference between step
lengths (i.e. distance between ankles) with the slow leg vs.
the fast leg (Eq. 1). A zero value of step length asymmetry
indicated that both step lengths were equal and a positive
value indicated that the step length of the fast (dominant)
leg was longer than the slow (non-dominant) leg. Step length
asymmetry was further decomposed into StepPosition, StepTime,
and StepVelocity because these parameters have been shown to be
adapted differently during split-belt walking (Finley et al., 2015).
The StepPosition quantified the difference in positions of the
leading leg (i.e. leg in front of the body) between two consecutive
steps (Eq. 2). The StepTime quantified the difference in the
duration of each of these steps (Eq. 3). Lastly, the StepVelocity

FIGURE 2 | (A) This schematic illustrates step length asymmetry and its decomposition into StepPosition, StepTime, and StepVelocity. Step length asymmetry is
quantified as the difference between fast and slow step lengths, normalized by stride length. The equation and decomposition are explained in detail in the section
“Materials and Methods” of this manuscript. In brief, (StepPosition) differences between the fast (black leg) and the slow (gray leg) leading leg’s positions contribute
to step length asymmetry. Similarly, differences in the trailing leg’s positions (white legs) also contribute to step length asymmetry. The trailing leg’s position depends
on step time and step velocity. Consequently, differences in step times (tfast and tslow) or step velocity (V fast and Vslow) leads to step length asymmetry. We also show
a schematic of Cadence, which is computed as the inverse of the gait period (T). (B) Illustration of reflective marker positions and joint angle conventions. (C) Epochs
of interest are illustrated by the red circles placed over a schematic of step length asymmetry. Shaded gray area represents the adaptation period when the feet
move at different speeds (“split” walking), whereas white areas represent when the feet move at the same speed.
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quantified the difference in the velocities of each foot with respect
to the body for these two steps (Eq. 4). Since participants take
steps with different sizes, we normalized the differences in step
length, StepPosition, StepTime, and StepVelocity by their stride
length, quantified as the sum of two step lengths. This allowed us
to avoid inter-subject variability. For visualization purposes, these
parameters were smoothed with a five-step running average.

Step legnth asymmetry =
Fast Step Length− Slow Step Length

SL
(1)

StepPosition =
(1αfast −1αslow)

SL
(2)

StepTime =
vslow+vfast

2 (tslow − tfast)
SL

(3)

StepVelocity =
tslow+tfast

2 (vslow − vfast)
SL

(4)

In these equations, 1α indicates the difference between each
foot’s position (i.e. ankle marker) and the body (i.e. mean position
of the two hip markers) at ipsilateral heel strike (Figure 2A); In
addition, t indicates the step time defined as the duration between
the heel-strike of ipsilateral leg to the contralateral leg; and v
indicates the step velocity quantified as the relative velocity of the
foot with respect to the body. When walking on the treadmill,
vslow and vfast approximated the speeds of the slow and fast belt,
respectively. Therefore, StepVelocity was mostly reflective of belt
speed difference, rather than participants’ behavior. Finally, note
that all measures were normalized by each participant’s stride
length (SL, sum of both step lengths) to account for inter-subject
differences in step sizes.

We also computed joint angles and cadence to determine the
impact of the motorized shoes on each foot’s motion and step
frequency. Ankle, knee, and hip angles were computed on the
sagittal plane (2D) to directly contrast our results to previous
reports of joint angles during split-walking (Reisman et al., 2005).
Joint angles were calculated such that flexion/dorsiflexion was
positive and extension/plantarflexion was negative (Figure 2B).
We also defined all angles to have value of 0◦ at the neutral
standing position (i.e. full extension for knee and hip and
approximately 90◦ angle between shank and foot for the ankle).
More specifically, ankle angles were calculated as the angle
between the foot (ankle marker to toe marker vector) and the
shank (ankle marker to knee marker vector) subtracted from each
participant’s neutral position (i.e. mean and standard deviation:
88.4 ± 3.7◦ for the group wearing the motorized shoes and
91.2± 0.95◦ for the split-belt group). Knee angles were calculated
as the angle between the shank and the thigh (knee marker to
hip marker vector) subtracted from 180◦. Lastly, we computed
the hip angles as the angle between the thigh and the vertical
unit vector. Angle data was time-aligned and binned to compute
mean angle values over six intervals of interest during the gait
cycle. This was done to focus on changes in angles within the
gait cycle, rather than on changes due to differences in cycle

duration across the distinct walking conditions (Dietz et al., 1994;
Reisman et al., 2005). More specifically, we computed averaged
angle values over six phases of interest (Perry, 2010): double
support (DS1 and DS2), single stance (SS1 and SS2), and the
swing phases (SW1 and SW2). Double support during early
stance (DS1) was defined as the period from heel strike to
contralateral toe off. Single stance (from contralateral toe-off to
contralateral heel strike) was divided into two equal phases (SS1
and SS2). Double support during late stance (DS2) was defined
as the interval from contralateral heel strike to ipsilateral toe
off. Finally, the swing phase (from ipsilateral toe-off to ipsilateral
heel-strike) was divided into two equal phases (SW1 and SW2).
Joint angles were assessed in eight participants per group since
the remaining two participants (one per group) was missing
essential marker data. Lastly, we computed cadence (i.e. number
of strides per second) to determine if this gait feature was altered
by wearing the motorized shoes.

Outcome Measures
Each gait parameter was analyzed during four experimental
epochs of interest (early adaptation, late adaptation, early post-
adaptation, and late post-adaptation) to compare the adaptation
and after-effects between the motorized shoes and the split-
belt treadmill groups. We computed the averaged value of each
parameter over these epochs as follows. First, we removed the
five strides at the beginning and at the end of each trial to
eliminate effects of holding on to the handrail when starting and
stopping the treadmill. This was done to characterize people’s
movement when no individuals were holding on to the safety
rail. Then, we computed the average value for each epoch as
follows: early adaptation (EAdapt, average of five strides: 6th–10th

stride), late adaptation (LAdapt, average of 40 strides: 706th–
745th stride), early post-adaptation (EPost, average of five strides:
6th–10th stride), and late post-adaptation (LPost, average of 40
strides: 546th–595th stride) (Figure 2C). All of the parameters
were corrected by any baseline biases (MidBase, average of 40
strides: 106th–145th stride). EAdapt gave us information about
the induced perturbation by the “split” condition, while the
LAdapt provided information regarding the steady-state behavior
at the end of the adaptation trial. The behavior during EPost
was quantified to assess how much participants adapted to the
new walking pattern (e.g. after-effects). Finally, we assessed LPost
behavior to ensure that participants returned to their baseline
walking behavior (e.g. washout). Moreover, we used joint angle
measures to determine the effect of the motorized shoes on the
overall gait pattern. This analysis was intended to determine
if participants were actually walking with the motorized shoes
(i.e. not dragging their feet or sliding their feet). To this end,
we computed the averaged value over the last 40 strides (after
removing the very last five strides, as in the other kinematic
parameters) for each one of the four experimental epochs of
interest (i.e. SBase, FBase, MidBase, and LAdapt).

Statistical Analysis
We performed one-sample Kolmogorov–Smirnov tests to
determine if each parameter (i.e. Step length asymmetry, Step
lengths, StepPosition, StepTime, StepVelocity, and Cadence) was
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normally distributed in every epoch of interest (i.e. EAdapt,
LAdapt, EPost, and LPost). We found that all parameters were
normally distributed, thus we ran separate two-way repeated
measures ANOVAs to test the effects of epochs and groups (i.e.
motorized shoes vs. split-belt) on each of our gait parameters.
Statistical analysis was done with unbiased data (i.e. MidBase was
subtracted from all the epochs) to focus on changes that occurred
beyond those due to distinct group biases. In case of significant
main or interaction effects, we used Fisher’s post hoc testing to
determine whether values were different between groups. We
chose this post hoc testing to be more sensitive to potential group
differences. Lastly, we performed a one-sided one sample t-test
to determine whether early post-adaptation values were different
from zero. This was done to determine if after-effects were
significant in each group. Comparisons between post-adaptations
values across groups were only done when we found significant
interactions between group and epoch.

Two separate multiple linear regressions were performed
to determine if the individual variation in two independent
variables: (1) StepPosition and (2) StepTime in late adaptation
could be predicted by two regression coefficients and their
interaction: group (categorical factor), StepVelocity (continuous
variable), and group#StepVelocity (interaction). We also
performed two separate multiple linear regressions to determine
if the individual variation in after-effects in StepPosition and
StepTime (two independent variables) were predicted by
group or each respective steady state (StepPosition LAdapt or
StepTime LAdapt). This was done because we observed speed
differences between the groups (Figure 1C, Top) that could
impact the extent of adaptation and after-effects on spatial and
temporal measures.

Joint angles were compared across groups using unpaired
t-test for each of the gait phases. We reasoned this was
an appropriate statistical test to compare the behavior across
groups given that joint angles are highly temporally correlated
within the gait cycle and spatially correlated across segments.
We subsequently corrected the significance threshold for each
epoch using a Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995), setting a false discovery rate of 5% (FDR
correction). The reason for choosing this correction was due to
higher number of comparisons that we made.

A significance level of α = 0.05 was used for all statistical tests.
Stata (StataCorp., Collage Station, TX, United States) was used to
perform the ANOVAs, whereas MATLAB (The MathWorks, Inc.,
Natick, MA, United States) was used for all other analyses.

RESULTS

Motorized Shoes Can Induce Robust
Sensorimotor Adaptation of Locomotion
Our results show that the motorized shoes were able to induce
similar adaptation of step length asymmetry compared to the
split-belt treadmill. Specifically, there were no significant group
(F(1,48) = 0.21, p = 0.65) or group by epoch interaction
effects (F(3,48) = 1.26, p = 0.29) on the adaptation of step
length asymmetry, indicating that this parameter was similarly

modulated throughout the experiment between the motorized
shoes and split-belt groups (Figure 3A). We observed a
significant main effect of epoch (F(3,48) = 94.91, p< 0.001) in step
length asymmetry and found that both groups had significant
after-effects (motorized shoes: p < 0.001; split-belt: p < 0.001;
Figure 3A). While modulation of step length asymmetry was
indistinguishable between groups, we observed small differences
in the adaptation of the fast leg’s step length. Specifically, we
found a group by epoch interaction effect in the fast step length
(F(3,48) = 3.18, p = 0.032; Figure 3B) driven by between-
group differences during the early adaptation phase (p = 0.012).
While significant, this between-group difference might not be
meaningful given that the values that observed in both groups
fall within the range of those previously reported (Sombric et al.,
2019). Moreover, after-effects in this parameter were significant
in the motorized shoes group (p = 0.013), but not in the split-
belt group (p = 0.15). In contrast, the adaptation of the slow leg’s
step length was similar across groups throughout the experiment
(group: F(1,48) = 0.63, p = 0.44; group by epoch interaction:
F(3,48) = 0.69, p = 0.49; Figure 3C). We only found a significant
epoch effect on slow step length (F(3,48) = 70.47, p < 0.001)
and substantial after-effects in both groups (motorized shoes:
p< 0.001; split-belt: p< 0.001). In summary, fast leg’s step length
exhibited small differences between the motorized shoes and
split-belt groups that did not impact the adaptation of step length
asymmetry, which was indistinguishable between these groups.

Smaller Speed Difference With the
Motorized Shoes Reduced the
Adaptation of StepPosition
We observed between-group differences in the adaptation of
StepPosition (quantifying spatial asymmetry), but not StepTime
(quantifying temporal asymmetry). This was indicated by the
significant group by epoch interaction found in StepPosition
(F(3,48) = 3.47, p = 0.023), but not in StepTime (F(3,48) = 2.39,
p = 0.09) (Figure 4). Post hoc analyses indicated that these
differences in StepPosition were driven by distinct early and
late adaptation values of this parameter in the motorized shoes
group compared to the split-belt group (early adaptation:
p = 0.031; late adaptation: p = 0.036). Yet, after-effects in
StepPosition were significant in both groups (motorized
shoes: p < 0.001; split-belt: p < 0.001) and after-effects
in StepTime were only significant in the motorized shoes
group (motorized shoes: p = 0.017; split-belt: p = 0.087)
Interestingly, we also found a group effect (F(1,48) = 6.58,
p = 0.021) on StepVelocity and a group by epoch interaction
trending effect (F(1,48) = 2.78, p = 0.051) (Figure 4C). In
particular, the StepVelocity was smaller in the group with
motorized shoes than in the split-belt group during late
adaptation (p = 0.001), which we thought could impact the
motor adaptation of the motorized shoes group. Thus, we
performed multiple linear regression analysis on the late
adaptation epoch with either StepTime or StepPosition as
the dependent variable and StepVelocity as the predictor.
StepVelocity was indeed related to StepTime (R2 = 0.59;
p = 0.005; StepTime = −1.19 ∗ StepVelocity − 0.32) and
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FIGURE 3 | Modulation of step length asymmetry and step lengths. (A–C, Left panel) Time courses for step length asymmetry and individual step lengths during
medium baseline, adaptation, and post-adaptation. Shaded gray area represents the adaptation period when the feet move at different speeds (“split” walking),
whereas white areas represent when the feet move at the same speed. Colored dots represent the group average of five consecutive strides and colored shaded
regions indicate the standard error for each group (motorized shoes: red; split-belt: blue). (A–C, Right panel) Bar plots indicate the mean ± standard errors for step
length asymmetry and step lengths for each group and epoch of interest. Note that the reported step lengths are unbiased. This was done by subtracting the
averaged step length values during baseline at medium speed in each participant. Significant differences for post hoc tests were indicated as follows. Black asterisks
over the bracket above each epoch represent statistical significant differences between the motorized shoes and the split-belt groups (p < 0.05). Colored asterisks
over the bars indicate significant after-effects (i.e. early post-adaptation is significantly different from baseline; p < 0.05) for each of the groups (motorized shoes: red;
split-belt: blue). The small bar plots on the right indicate the mean ± standard errors for the step lengths for each group during medium baseline.

StepPosition (R2 = 0.55; p = 0.009; StepPosition = −0.82 ∗
StepVelocity− 0.15). However, individual StepVelocity values
were only a predictor of StepTime values [Group: p_group = 0.19,
regression coefficient = 0.44, 95% CI = (−0.25, 1.13);
StepVelocity: p_velocity = 0.001, regression coefficient = −1.99,
95% CI = (−3.08, −0.91); Interaction: p_group#velocity = 0.16,
regression coefficient = 1.14, 95% CI = (−0.49, 2.78)], whereas
the relation between StepVelocity and StepPosition was
driven by a group effect (Group: p_group = 0.047, regression
coefficient = 0.71, 95% CI = (0.0092, 1.4); StepVelocity:
p_velocity = 0.068, regression coefficient = −1.01, 95%
CI = (−2.1, 0.086); Interaction: p_group#velocity = 0.069,
regression coefficient = 1.5, 95% CI = (−0.13, 3.16)] (Figure 4D).

We also found that the inter-subject variability in steady-
state values was not associated to individual after-effects in
neither StepPosition (R2 = 0.23; p = 0.29), nor StepTime
(R2 = 0.12; p = 0.59) (Figure 4E). To sum up, the reduced
speed difference in the motorized shoes group limited the
adaptation of StepPosition, but we still observed group
after-effects with the motorized shoes in the spatial and
temporal domains.

Similar Cadence Is Observed Between
the Groups Throughout the Experiment
We found that the motorized shoes did not alter the modulation
of cadence throughout the experiment compared to split-belt
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FIGURE 4 | Adaptation of spatiotemporal components of step length asymmetry. (A–C, Left panel) Time courses for StepPosition, StepTime, and StepVelocity
before, during, and after adaptation. Shaded gray area represents the adaptation period when the feet move at different speeds (“split” walking), whereas white
areas represent when the feet move at the same speed. Colored dots represent the group average of five consecutive strides and colored shaded regions indicate
the standard error for each group (motorized shoes: red; split-belt: blue). (A–C, Right panel) The bar plots indicate the mean ± standard errors for StepPosition,
StepTime, and StepVelocity for each group and epoch of interest. Gray dots represent individual participants. Note that the values were corrected for baseline biases.
Significant differences for post hoc tests were indicated as follows. Black asterisks over the bracket above each epoch represent statistical significant differences
between the motorized shoes and the split-belt groups (p < 0.05). Colored asterisks over the bars indicate significant after-effects (i.e. early post-adaptation is
significantly different from baseline; p < 0.05) for each of the groups (motorized shoes: red; split-belt: blue). (D) Scatter plots illustrate the association between the
StepVelocity at steady state and either the StepPosition or StepTime at steady-state during adaptation (i.e. LAdapt). We present the p-values for the multiple
regression model (p), for the continuous variable (StepVelocity, p_velocity) and for the categorical variable (group, p_group). (E) Scatter plots illustrate the association
between the LAdapt and EPost for StepPosition and StepTime. No significant relations were observed for neither StepPosition nor StepTime.
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FIGURE 5 | Modulation of cadence. (Left) Time courses during medium baseline, adaptation, and post-adaptation for the average cadence is shown for each
group. Shaded gray area represents the adaptation period when the feet move at different speeds (“split” walking), whereas white areas represent when the feet
move at the same speed. Colored dots represent the group average of five consecutive strides and colored shaded regions indicate the standard error for each
group (motorized shoes: red; split-belt: blue). (Right) Bar plots indicate the mean ± standard errors for cadence for each group and epoch of interest. Note that the
values were corrected for baseline biases (i.e. MidBase). Colored asterisks over the bars indicate significant after-effects (i.e. early post-adaptation is significantly
different from baseline; p < 0.05) for each of the groups (motorized shoes: red; split-belt: blue). The small bar plot on the right indicates the mean ± standard errors
for the Cadence for each group during medium baseline.

walking (Figure 5, left). Specifically, there were no significant
group (F(1,48) = 0.02, p = 0.88) or group by epoch interaction
effects on cadence (F(3,48) = 0.32, p = 0.81), indicating
that the adaptation and after-effects of cadence were similar
between groups (Figure 5, right). We also found that both
groups exhibited increased cadences during early post-adaptation
compared to baseline (motorized shoes: p = 0.002; split-belt:
p = 0.003). In sum, individual wearing the motorized shoes
modulate cadence similarly to individuals in the split-belt group.

Effect of Wearing Motorized Shoes on
Gait Kinematics
Overall, the gait pattern with and without the motorized shoes
was similar. Figure 6A illustrates the joint angles over the gait
cycle for the ankle, knee, and hip joints for the group wearing
the motorized shoes (red) and the group wearing regular shoes
(blue) during medium baseline walking. We found joint angles
were the same between groups for most phases of the gait cycle,
in which significance was determined with an FDR controlling
procedure (18 comparisons, p> Pthreshold, Pthreshold = 0.0055,
see the section “Materials and Methods”) (Figure 6A). There
were only a few differences in specific phases of the gait cycle.
Specifically, the motorized shoes group demonstrated reduced
ankle dorsiflexion following ipsilateral heel strike and during
late swing (double support DS1: p = 0.004, effect size = 3.3◦;
late swing SW2: p = 0.004, effect size = 4.1◦). Moreover, the
motorized shoes group exhibited reduced knee flexion compared
to the split-belt group during early swing (SW1: p = 0.004, effect
size = 7.8◦), followed by slightly more knee extension in late
swing (SW2: p = 0.001, effect size = 9.6◦). Lastly, the motorized
shoes group had larger hip flexion during stance of baseline
walking (p = 0.005, effect size = 4.1◦). While these between-
group differences were significant, they should be interpreted
consciously given the reliability of kinematic measurements.
Namely, one can find significant changes in joint angles that

are greater than 5◦ when measured across sessions within the
same cohort of healthy, young participants (Wilken et al., 2012).
Therefore, the differences that we find, ranging from 3.3◦ to
9.6◦, might not be meaningful. In addition to baseline joint
kinematics, we also compared late adaptation kinematics across
groups (Figure 6B). Specifically, we contrasted the changes
in joint angles during late adaptation relative to the speed-
specific baseline for each of the six phases of the gait cycle.
We found no differences between the groups (36 comparisons,
p > Pthreshold), suggesting that joint angles were modulated
similarly in the split condition with the motorized shoes or
the split-belt treadmill. Thus, our results demonstrated that
walking with the motorized shoes had only minor effects on joint
kinematics and did not alter the adaptation of individual joint
angles during split walking.

DISCUSSION

Summary
We investigated if a pair of motorized shoes could induce split-
like locomotor adaptation. We found that the adaptation effects
induced by the motorized shoes moving at different speeds
were as robust as those observed with a split-belt treadmill.
Moreover, we found that the gait pattern was largely similar
between walking with the motorized shoes or on the split-belt
treadmill. Specifically, step length asymmetry, cadence, and step
lengths were similar across groups during and after the split
condition with either device. We only observed subtle differences
in individual joint angles during the baseline condition with the
motorized shoes compared to walking with regular shoes, which
might be due to the greater height and weight of the motorized
shoes. Taken together, our results suggest motorized shoes can
induce robust sensorimotor adaptation in locomotion, opening
the exciting possibility to study locomotor learning under more
realistic situations outside the laboratory setting.
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FIGURE 6 | Joint angles over the gait cycle during baseline and adaptation. (A) Baseline joint angles are shown for the group walking with regular sneakers (i.e. blue
trace) and the group walking with the motorized shoes (i.e. red trace). Solid lines represent the group average and shaded areas represent standard errors. Asterisks
indicate instances during the gait cycle when joint angles were significantly different across groups. The overall motion for all joints was similar across groups, but hip
flexion, knee flexion, and ankle dorsiflexion were smaller when wearing the motorized shoes. (B) Speed specific baseline (gray) and steady-state angle trajectories
during adaptation for the motorized shoes (red) and the split-belt (blue) groups. Solid lines represent the motion of the leg walking fast in the split condition (colored
lines) and in the fast baseline (gray) condition. The dashed lines represent the motion of the leg walking slow in the split condition (colored lines) and in the slow
baseline (gray) condition. The bars represent the change from the speed-specific baseline to late adaptation in joint angles during different phases of the gait cycle.
DS, double support; SS, single stance; SW, swing; DF, dorsiflexion; PF, plantarflexion; F, flexion; E, extension.

Similar Walking and Adaptation With
Split-Belt Treadmill and With Motorized
Shoes
We demonstrated that the motorized shoes can induce locomotor
adaptation largely similar to the adaptation induced with

the split-belt treadmill. This was shown by the comparable
adaptation across groups of gait parameters, such as step length
asymmetry, and the same modulation of joint angles from
baseline to adaptation for both groups. Namely, the initial and
steady state values during the split condition for the split-belt
group and motorized shoes group were consistent with values
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previously reported for joint angle kinematics (Winter, 1987;
Reisman et al., 2005) and asymmetries in step length (Malone
and Bastian, 2010; Finley et al., 2015), step position (Sombric
et al., 2017), and step time (Gonzalez-Rubio et al., 2019). We
found between-group differences in the fast step length during
early adaptation, such that participants with the motorized shoes
placed the fast leg closer to the body. This distinct behavior might
also be explained by the fact that the balance is perturbed in the
beginning of the split condition (Buurke et al., 2018; Iturralde and
Torres-Oviedo, 2019) and it might be further challenged when
stepping with the motorized shoes by augmenting the center
of mass’ height, increasing even further gait instabilities while
walking. However, this between-group differences might not be
very meaningful and should be interpreted cautiously given than
the range of these step length values fall within those previously
reported (Sombric et al., 2019).

Participants with the motorized shoes reached lower steady
state values of StepPosition (spatial) and slightly lower steady
state values of StepTime (temporal) relative to the split-belt
group. Our multiple regression analysis indicated that smaller
speed differences (i.e. perturbation) were predictive of smaller
steady state values for StepTime, but not StepPosition. Thus,
perturbation size regulated the extent to which participants
adapted in our temporal measure, as observed in other
sensorimotor adaptation protocols of reaching (Morehead et al.,
2015; Marinovic et al., 2017) or walking (Finley et al., 2015;
Yokoyama et al., 2018). We did not find a direct relation between
perturbation size and the reached steady state of StepPosition
at an individual level, indicating that there are other factors,
such as navigation strategies (Matthis et al., 2017) or practice
(Day et al., 2018), influencing “where” people place their feet.
Despite the subtle differences during adaptation, we saw similar
after-effects between groups during early post-adaptation in all
gait parameters. For example, cadence exhibited comparable
changes between the groups during early adaptation and early de-
adaptation, which is consistent with previous literature showing
that stride time (i.e. inversely related to cadence) decreases in
the beginning of adaptation (Reisman et al., 2005) and post-
adaptation (MacLellan et al., 2014). In summary, our portable
device induced significant adaptation and after-effects of gait
asymmetries in space and time opening the door for studying
locomotor adaptation outside of the laboratory.

We did not find a direct correspondence between adaptation
and after-effects in neither the spatial nor the temporal domains.
The positive relation between steady state values and after-
effects is commonly found in reaching or saccadic movements
with well-defined performance errors (Chen-Harris et al., 2008).
This relation between steady-state values during the adaptation
period and after-effects is, however, elusive in split-belt protocols.
For example, gait parameters such as StepTime asymmetry can
change dramatically during the Adaptation period (i.e. split
condition) without showing any significant after-effects (Long
et al., 2015; Gonzalez-Rubio et al., 2019). A recent study has also
shown that changes in motor patterns during steady state split-
belt walking and post-adaptation are not related and might be
mediated by different neural substrates (de Kam et al., 2020).
Taken together our findings further support the idea that gait

adjustments during and after split-belt walking are governed by
different mechanisms.

Study Implications
We found a few differences in joint motions when walking with
our motorized shoes during regular walking, which will be useful
for future designs of this portable device. Notably, we observed
gait changes during baseline walking (i.e. both feet moving at the
same speed) with the motorized shoes that were consistent with
other studies showing that shoe weight (Ochsmann et al., 2016)
and height (McDonald et al., 2019) alter walking movements.
In addition, the rigidity of the motorized shoes’ soles (Chiou
et al., 2012) is another factor that might contribute to the
differences that we observed in joint angles during baseline
walking. Thus, our gait analysis enabled us to identify key shoe
features that we will modify to reduce the effect of the motorized
shoes on the regular walking pattern. This is important because
contextual differences when wearing the motorized shoes could
limit the extent of generalization of movements from walking
with them to walking without this portable device. Locomotor
adaptation with the motorized shoes overground could certainly
reduce context-specific difference that limit the generalization
of treadmill movements, such as visual flow (Torres-Oviedo
and Bastian, 2012), walking speed (Dingwell et al., 2001), and
step initiation. However, it remains to be determined whether
contextual cues due to the height, weight, and rigidity of the
motorized shoes would also limit the generalization of locomotor
learning with them.

It is worth emphasizing that both groups were tested on a
treadmill. This was done to track the movements of participants
throughout the experiment, which we could not do with the
motorized shoes outside the laboratory. Nevertheless, our results
are promising because body-worn sensors, also referred to as
wearables, now provide an inexpensive opportunity for the
continuous monitoring of ambulatory activity in free-living
environments (Wang and Adamczyk, 2019), which is a match to
our technology. The actuation of the motorized shoes can add
up to 1 m/s to the speed of each foot. Thus, we are certain that
we can evoke speed differences comparable to split-belt studies
(Reisman et al., 2005; Sombric et al., 2019) with these motorized
shoes while walking over ground. In sum, the combination of
these technologies can enable gait adaptation studies in realistic
settings outside the laboratory. However, future studies with
systems including adequate sensing mechanisms are needed to
test this possibility.

Our results are also exciting because this portable device
could also offer the possibility to study gait under more
realistic situations, such as walking with self-regulated and
variable gait speeds. It is well-accepted that motor variability
can impact motor learning (Wu et al., 2014; Ulman et al.,
2019), and walking on a treadmill is less variable compared
to overground walking (Dingwell et al., 2001). Thus, having a
device that can induce locomotor adaptation overground would
help us gain more understanding about the relationship between
variability and motor adaptation in walking. Moreover, learning
a new task involves generation of new neural activity patterns,
which appears after several days of practice (Oby et al., 2019).
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Our device will enable training over longer periods of time
because individuals will be able to train at home and gain
much more practice in the altered split environment than
what is currently available. This can help us contribute to
recent efforts to investigate the effect of long-term practice
(Hardwick et al., 2019).

There have been efforts to develop portable rehabilitation
devices (Handzic et al., 2011; Afzal et al., 2015; Lahiff et al.,
2016; Calabrò et al., 2018) and assistive devices (Rao et al., 2008;
Awad et al., 2017; Bae et al., 2018) to improve walking patterns
in individuals with gait asymmetries, such as individuals post-
stroke. While these apparatus could reduce the metabolic cost
associated to gait in this clinical population (Awad et al., 2017)
and improve walking speed (Rao et al., 2008; Buesing et al.,
2015; Calabrò et al., 2018), these devices were unsuccessful in
modifying the step length asymmetry (Handzic et al., 2011),
which is an important parameter in rehabilitation of post-stroke
patients (Patterson et al., 2008, 2014). For example, Lahiff et al.
(2016) were able to modify push-off and breaking forces, but
their device was unable to change step length of the participants.
Similarly, Handzic and colleagues designed a device to passively
induce a speed difference between the feet (Handzic et al., 2011;
Handzic and Reed, 2013). However, this passive device induced
limited changes in step length asymmetry post-adaptation (i.e.
∼5% of the after-effect size observed with the split-belt treadmill
and motorized shoes). In sum, our study indicates that motorized
shoes could tackle previous limitations altering gait asymmetries
with portable devices and thus could be potentially used to
correct asymmetric steps post-stroke.
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We have developed a system with multimodality that monitors objective biomarkers for

screening the mental distress in the office. A field study using a prototype of the system

was performed over four months with 39 volunteers. We obtained PC operation patterns

using a PC logger, sleeping time and activity levels using a wrist-band-type activity

tracker, and brain activity and behavior data during a working memory task using optical

topography. We also administered two standard questionnaires: the Brief Job Stress

Questionnaire (BJS) and the Kessler 6 scale (K6). Supervised machine learning and cross

validation were performed. The objective variables were mental scores obtained from

the questionnaires and the explanatory variables were the biomarkers obtained from the

modalities. Multiple linear regression models for mental scores were comprehensively

searched and the optimum models were selected from 2,619,785 candidates. Each

mental score estimated with each optimum model was well correlated with each mental

score obtained with the questionnaire (correlation coefficient = 0.6–0.8) within a 24% of

estimation error. Mental scores obtained bymeans of questionnaires have been in general

use in mental health care for a while, so our multimodality system is potentially useful for

mental healthcare due to the quantitative agreement on the mental scores estimated with

biomarkers and the mental scores obtained with questionnaires.

Keywords: multimodality, multivariate linear regression, PC logger, activity tracker, near-infrared spectroscopy

(fNIRS)

INTRODUCTION

Mental disorders are of significant concern in terms of not only public health but also economic
development and social welfare (1). Depression affects over 120 million people and causes long
absences from work and increased risk of suicide. Organization for Economic Co-operation and
Development (OECD) reported that mild-to-moderate mental disorders affect around 20% of the
working-age population in the average OECD country and predominantly include highly treatable
disorders such as anxiety and depression. Although treating depression in primary care is feasible
and very cost-effective, studies have shown that 56.3% of patients do not get sufficient care (2).
Furthermore, U.S. workers suffering from depression cost employers an additional 31 billion dollars
each year in lost productive time (3). A key management issue facing enterprises today is ensuring
that they prevent depression, support the return to work, and prevent recurrence. Many companies
have services for managing employees’ mental condition, such as the employee assistance program
(EAP)1. Because the mental distress is a risk factor of depression, early detection of risk factors

1Web Page of International Employee Assistance Professionals Association (EAPA). Available online at: https://www.eapassn.

org/FAQs
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could be exploited for prevention purposes. Therefore, the
accurate and low-cost monitoring of mental condition is required
for screening distress in office.

Information and Communication Technology (ICT) and
Internet of Things (IoT) have the potential to provide a low-
cost condition monitoring system with high accuracy for mental
healthcare. Especially, the mental distress levels observed using
questionnaires are widely used for screening. A variety of devices
for monitoring mental stress have already been developed (4).
We previously developed a PC logger, a wrist-band type activity
tracker, and a wearable optical topography as a non-invasive
brain activity sensor. These have been independently used in
several studies on mental healthcare application. The fractal
dimensions obtained from the PC logger data are expected to
be related with mood states (5). The usage of the wrist-band
type activity tracker for judgments of reinstatement reduced
the ratio of re-leave (6). The brain activity measured by optical
topography during working memory tasks was affected by mood
state (7–9). The optical topography measurement was applied
to return-to-work trainees in remission of mental disorders
with depressive symptoms (10). In this paper, we introduce a
multimodality data acquisition system we developed to combine
these devices for monitoring multilateral conditions of mental
health. The combination of behavioral and brain measurements
is a novel approach.

FIGURE 1 | Devices used for monitoring mental conditons: (A) PC logger, (B) Life Scope (LS), and (C) HOT-1000 optical topography (OT). (D) The data acquisition

and database system.

METHOD

Multimodality Measurements
The equipment and data acquisition system used in this

study are shown in Figure 1. The PC logger is our original
software developed for the Windows OS. It was installed on
each participant’s PC and hooked key- and mouse-events with

time stamps as a background process. In order to avoid an
information security risk, the kind of tapped key, i.e., alphabet
key, number key, or special key, was recorded instead of
key characters. Mouse button click and mouse movement
distance were recorded as well. A cumulative distribution of the
key/mouse events frequently showed power of event intervals.
These power exponents are related to the total number of event
and operator mood states. Using the key/mouse data recorded
over the course of a day, a fractal dimension was obtained
as a slope of fitted line for cumulative distribution vs. time-
interval graph. Because the fractal dimension also depends on
the workload in a day, the key/mouse index dkey/mouse for the day
was obtained as a deviation from the fractal dimension stemming
from workload (5).

The wrist-band type activity tracker, Life Scope (LS, Hitachi,
Ltd.), is equipped with a triaxial accelerator. All raw signals of the
accelerator are stored in its own memory. A variety of features
were calculated using the raw data in the server (11). Among
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them, we used steps, activity strength in metabolic equivalents
(METs), and sleeping hours for the analysis.

Optical topography (OT) is a tool for measuring cerebral
blood volume change associated with brain activity on the basis of
Near-infrared spectroscopy (NIRS). Two regions on the forehead
were covered by a handy and wireless model, HOT-1000 (Hitachi
High-technologies Corporation). The headset was connected
through Bluetooth with a tablet PC that provided a task for
activating brain function, acquired data, and displayed the
results. The brain activity during a working memory (WM) task
(namely, a delayed matching task; see Figure 2), was observed
by OT for estimating mood states (10). Increases of oxygenated
hemoglobin during spatial and verbal working memory tasks
at the left and right sides of the forehead were measured. The
response time to answer and the rate of correct answers were
also recorded.

Each item of time-series data obtained by the PC logger, wrist-
band type activity tracker, and optical topography was stored in
the time-series analysis database through the local network. The
query object graph analysis method was used to enable analysis
sharing among analysts by preventing duplicate processing and
data explosion (12).

Questionnaires
The Kessler psychological distress scale (K6) (13) and a part of the
Brief Job Stress Questionnaire (BJS) (14)2 were used for obtaining
mental scores. The K6 score is the standard questionnaire for
screening the mental distress. When the K6 score is lower, the

2The Brief Job Stress Questionnaire English version. Available online at: https://

www.mhlw.go.jp/bunya/roudoukijun/anzeneisei12/dl/160621-1.pdf

condition is better. The cutoff is 5. BJS consists of 52 questions
concerning job, health, and people surrounding the respondent.
As the situations concerning job and people did not frequently
change during the field test, 29 questions concerning health
were used for determining subjective mental scores of lassitude,
irritation, fatigue, anxiety, depression, and physical stress. All
mental scores of BJS were converted into values from 1 to 5 in
accordance with the manual3. When the mental score is higher,
the condition is better. A total value of mental scores lower than
12 is regarded as stressful.

Trial in Office
Thirty-nine healthy volunteers (32 males, 7 females, 43.7 ± 8.9
years old) with no history of mental disorders participated in
the measurement over four months. Neither measured data nor
information were fed back to participants so as to avoid any
effects on the trial. The data from the volunteers were obtained
according to the regulations set forth by the internal review
board at the Central Research Laboratory, Hitachi, Ltd., following
receipt of their written informed consent.

The PC loggers were installed on all PCs used by participants
in the office. The keyboard and mouse operations were recorded
the entire time PCs were running. All logs were combined for
each participant according to the timestamp. The key index and
the mouse index were calculated using data from one day and
averaged over one week.

The participants were asked to wear the LS wristband all day
except when bathing. Data from the LS was sent to the server

3Available online at: http://www.tmu-ph.ac/topics/pdf/sotenkansan.pdf

(in Japanese).

FIGURE 2 | Verbal and spatial delayed matching tasks for optical topography measurement. Four Japanese characters (hiragana) or four squares were displayed for

1.5 s on a tablet PC as a target in the verbal or spatial working memory task, respectively. After memory retention for 7.0 s, another Japanese character (katakana) or

one square was shown as a probe. In the verbal task, participants were asked to click the circle button or the cross button displayed on the tablet PC when the probe

character had the same pronunciation as one of the target characters or when it did not. In the spatial task, the agreement of the position between the probe and one

of the targets was answered in the same way.
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TABLE 1 | The number of explanatory variable and model for each target variable.

Target variable Explanatoy

variable

Model

Lassitude 24 28230

Irritation 31 108551

Fatigue 27 56103

Anxiety 19 6239

Depression 16 2288

Physical stress 20 10354

Total score 16 2816

K6 15 2777

Total – 217358

Average 21 27169.75

through a local area network once a week. The values of steps,
METs, and sleeping hours were obtained as averages of one week.

Once a week at the same time, the OT measurements were
performed and the questionnaires were administered. While the
dates and times for each participant were set in principle, they
were nevertheless flexible in order to ensure that enough data
were gathered.

Analysis
A linear multiple regression model was obtained for each mental
score using multimodality indices, as

y [i] = c0 +
∑

m
j cjxj [i] (1)

ε2 =

∑N
i=1

(

yo [i]− y [i]
)2

N
, (2)

with target variable yo, explanatory variable xj, regression
coefficients cj, square error ε2, the number of explanatory
variables m, and the number of data N. Target variables
were scores of lassitude, irritation, fatigue, anxiety, depression,
physical stress, total, and K6. The obtained multimodality indices
are listed in Table 1. In order to check the possibility of
prediction, each index was observed one week and two weeks
before the score sheet was tallied. In total, 51 explanatory
variables were obtained.

Here, we investigated three cases of m = 3, 4, and 5. The
total combinations of choosing 3, 4, and 5 indices out of 51
indices equal to 2,619,785 for onemental score.More than twenty
million cases of calculation were required for eight mental scores.
In order to reduce the number of calculations, each explanatory
variable that had a correlation coefficient with each target variable
of<0.1 was rejected as a target variable. Also, combinations of the
same index for a different week were not permitted. As a result,
the number of combinations was reduced to one-hundredth.

The number of the explanatory variables may be different
across participants because the measurement schedules did not
match the participants’ ones (e.g., business trips, days off).

When the temporally shifted explanatory variables (i.e., one,
two weeks in prior to the measured target variables) were used
in regression models, the temporal data of the target variables
consequently decreased. Therefore, missing some temporal data
inevitably occurred; only data having the complete temporal
information were included in the regression analysis. Neither
data normalization nor further elimination were performed
because there was no observed improvement (data not shown).

The three-fold cross validation was performed to select each
optimum model for each target variable. The fold number was
determined to ensure that a sufficient amount of data was
included in each subset. The subsets were created based on the
participant-wise approach to validate participant dependency
on models. No data measured from a participant at different
measurement times were assigned in different subsets; models
with the minimum participant-dependent effect were selected.
In order to avoid dropping the models with a larger correlation
coefficient r and slightly larger ε2 than the model with minimum
ε2, we define an evaluation indexV for selecting candidates of the
optimum model as follows:

V =
r− < r >

σ r
−

ε2− < ε2 >

σε2
, (3)

where <r>, <ε2>, σr , and σε2 are mean values and standard
deviations of r and ε2, respectively. Both r and ε2 were
standardized to equally contribute to V. The optimum model for
eachmental score whose ε2 was the smallest among ten candidate
models identified using V was chosen.

RESULTS AND DISCUSSION

Table 1 shows the valid target variables and the numbers of
models for each target variable obtained after the reduction
described above. The numbers of significant explanatory

variables (xsig) and regressionmodels
(

C3
xsig

+ C4
xsig

+ C5
xsig

)

were

varied across the target variables. The total number of models was
217,358, which means we were able to reduce the computation
cost by 1/1000 compared to the initial one.

The explanatory variables are shown in Table 2. The postfix,
“_n” means that the explanatory variable was obtained n weeks
before the measurement of target variables. For example, Ped_2
is the mean value of steps in a week obtained two weeks in prior
to the measurement of mental scores. The number of data (N; the
complete temporal data) ranged from about 30 to 70.

Figure 3 shows the relationship between mental scores and
values estimated using each optimum model shown in Table 3.
The best combination of explanatory variables was selected for
each target variable. For example, the best model for depression
is described as below.

Depression = 1.25+ 6.53∗keylog_0+ 4.06∗mlog_2

+2.43∗ot_cr_2+ 0.000149∗ot_s_rt_2. (4)

No explanatory variables taken one week before themeasurement
of depression score was used in the above model.
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TABLE 2 | Explanatory variables.

Name Modality Description

Ped_n LS Steps in a day

mets_n LS Metabolic equivalents in a day

sleep_n LS Sleeping time in a day

keylog_n BM1 Fractal dimension of key operation in a day

mlog_n BM1 Fractal dimension of mouse operation in a day

ot_s_l_n OT Left PFC activity during spatial working memory task

ot_s_r_n OT Right PFC activity during spatial working memory

task

ot_v_l_n OT Left PFC activity during verbal working memory task

ot_v_r_n OT Right PFC activity during verbal working memory

task

ot_sv_l_n OT Left PFC activity (spatial—verbal)

ot_sv_r_n OT Right PFC activity (spatial–verbal)

ot_s_rl_n OT Laterality of PFC activity during spatial working

memory task

ot_v_rl_n OT Laterality of PFC activity during verbal working

memory task

ot_s_cr_n OT Correction rate of spatial working memory task

ot_v_cr_n OT Correction rate of verbal working memory task

ot_s_rt_n OT Response time for spatial working memory task

ot_v_rt_n OT Response time for verbal working memory task

“_n” indicates that the values were obtained n weeks before the mental score.

According to Table 3, the correlation coefficients were 0.6
for depression and anxiety and 0.7–0.8 for others. Each error
ε for each mental score, lassitude, irritation, fatigue, anxiety,
depression, or physical stress was about 1, which is almost the
same as the minimum scale of score. The errors for total score
and K6 were 5.2 and 2.9, and the full scores for total score and K6
were 30 and 24, respectively. Each error was within 24% of each
full score. Considering the accuracy of the subjective score sheet,
these errors seem acceptable for practical use.

The coefficients of variation (CVs) of mean squared errors
across participants for the target variables were around one
(Figure 4). When CV is one, the standard deviation is equal to
the mean value. The effect of participant dependency on models
was remarkable, although it had been tried to be controlled
through the participant-wise cross validation. Other participant
features, such as gender and age, were not controlled in this
study due to the small number of data. Case analysis potentially
improves the robustness of model. Increasing the number of
participants data possibly provide the models with much smaller
participant dependency.

We should point out here that the optimum model
for K6 consisted of explanatory variables measured one
or two weeks before the mental score. As such, these
multimodality measurements predicted the mental condition
before participants made a subjective complaint. Because K6 is
used for screening mental distress, the system shows potential as
an early screening technique.

FIGURE 3 | Comparison of mental scores and values estimated using

optimized multivariate linear regression model.

Major participants were healthy volunteers. Neither clinical
diagnosis nor intervention were performed according to the
results obtained in this study. Therefore, the effectiveness of this
system for screening and preventing mental distress has not been
confirmed yet. This system remains to be investigated further.
Even though the current results were preliminary, this system
showed a promising function to replace the conventional mental
health care services based on manual questionnaire sheets.
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TABLE 3 | Optimum model for each mental score with correlation coefficient r, estimation error ε, and percentage of ε to full score.

Mental

score

c0 c1/var c2/var c3/var c4/var c5/var r ε ε [%]

Lassitude 4.17 −0.00341 0.00316 −0.0257 0.204 −7.82 0.765 0.935 18.7

ot_s_rt_0 ot_v_rt_0 sleep_1 ot_s_r_1 mlog_2

Irritation 7.76 0.305 0.00184 −4.36 −2.21 −0.192 0.798 0.780 15.6

ot_v_l_1 ot_v_rt_1 mets_2 mlog_2 ot_sv_r_2

Fatigue 3.93 0.352 0.177 −0.0483 −0.000195 −0.233 0.688 1.19 23.8

ot_v_rt_0 ot_s_r_1 ot_s_rt_1 sleep_2 mlog_2

Anxiety −1.65 −0.598 3.53 −0.00108 0.00290 −0.0554 0.624 0.961 19.2

mlog_0 ot_v_cr_0 ot_s_rt_1 ot_v_rt_1 sleep_2

Depression 1.25 6.53 4.06 2.43 0.000149 0.627 1.09 21.8

keylog_0 mlog_2 ot_s_cr_2 ot_s_rt_2

Physical

stress

1.23 0.273 −11.4 −0.137 −0.504 −0.0228 0.826 0.874 17.5

sleep_0 mlog_1 ot_s_r_1 ot_s_rl_1 ot_s_cr_2

Total score −4.79 −0.135 1.28 14.3 0.0116 0.252 0.762 5.22 17.4

sleep_0 ot_v_r_0 ot_s_cr_1 ot_v_rt_1 ot_s_l_2

K6 8.14 −0.007028 0.339 −27.5 49.6 0.738 2.88 12.0

ot_v_rt_1 sleep_2 keylog_2 mlog_2

FIGURE 4 | Coefficients of variation of mean squared errors (mse) across

participants for the target variables.

CONCLUSION

We developed a monitoring system for mental condition
involving the PC logger, the activity tracker, and Optical
Topography (OT). We collected the biometric data from
thirty-nine healthy volunteers in office for more than four
months. The multivariate linear models for mental scores of
BJS and K6 were obtained by using the supervised machine
learning and the cross-validation. Those models included

several variables from the collected biometric data such as
the fractal dimensions of PC operation obtained from the
PC log, steps, METs, and sleeping time from the activity
tracking log, brain activities, laterality, correction rates and
response time during working memory tasks from the brain
activity and performance log. Each mental score estimated by
each model was well agreed with each score of questionnaire.
Especially, K6 score was estimated by using the biometric
data collected from one or two weeks before. The system
is potentially useful for the mental healthcare including
the prevention.
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Research on the use of mobile technology in health sciences has identified several

advantages of so-called mHealth (mobile health) applications. Tablet-supported clinical

assessments are becoming more and more prominent in clinical applications, even in

low-income countries. The present study used tablet computers for assessments of

clinical symptom profiles in a sample of Burundian AMISOM soldiers (i.e., African Union

Mission to Somalia; a mission approved by the UN). The study aimed to demonstrate

the feasibility of mHealth-supported assessments in field research in Burundi. The study

was conducted in a resource-poor setting, in which tablet computers are predestined

to gather data in an efficient and reliable manner. The overall goal was to prove the

validity of the obtained data as well as the feasibility of the chosen study setting. Four

hundred sixty-three soldiers of the AMISOM forces were investigated after return from

a 1-year military mission in Somalia. Symptoms of posttraumatic stress disorder (PTSD)

and depression were assessed. The used data-driven approach based on a latent profile

analysis revealed the following four distinct groups, which are based on the soldiers’

PTSD and depression symptom profiles: Class 1: moderate PTSD, Class 2: moderate

depression, Class 3: low overall symptoms, and Class 4: high overall symptoms. Overall,

the four identified classes of soldiers differed significantly in their PTSD and depression

scores. The study clearly demonstrates that tablet-supported assessments can provide a

useful application of mobile technology in large-scale studies, especially in resource-poor
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settings. Based on the data collected for the study at hand, it was possible to differentiate

different sub-groups of soldiers with distinct symptom profiles, proving the statistical

validity of the gathered data. Finally, advantages and challenges for the application of

mobile technology in a resource-poor setting are outlined and discussed.

Keywords: tablet computer, application, post-deployment aggression, PTSD, depression, latent-profile-analysis,

soldiers, mobile data collection

INTRODUCTION

In recent years, more and more studies and meta-analyses have
investigated and shown the usefulness of mobile technology
in psychological research, clinical assessments, and therapeutic
interventions [e.g., (1, 2)]. In particular, digital assessments and
interventions offer several advantages but also challenges [e.g.,
(3, 4)]. On the one hand, the collection of data can be improved
by reducing time efforts and resources, especially when large
data sets have to be processed in a rather short period of time
(5). On the other hand, a suitable infrastructure has to be
provided, additional development costs have to be covered, and
data security issues must be addressed [e.g., (6, 7)].

However, the implementation of mobile health (mHealth)
applications is not solely bound to practical issues. The validity
of the gathered data via mobile devices has to be considered
carefully. As the proliferation of mobile technology has increased
by orders of magnitude, more and more researchers address
validity issues in the context of mHealth-collected data. In
the beginning of the development of mHealth applications, no
guidelines existed on how interventions based on mHealth have
to be reported in scientific applications, making it difficult to
compare the quality of research designs. The World Health
Organization (WHO) mHealth Technical Evidence Review
Group therefore developed the mHealth evidence reporting and
assessment (mERA) checklist in 2016, covering 16 items to
be addressed when reporting mHealth applications in scientific
publications (8).

Although extant research on mHealth mostly stems from
western countries, several studies in resource-poor countries
have emerged in recent years that used mobile technology;

e.g., in the East African countries Burundi, Rwanda, and
Uganda [e.g., (9–11)]. The latter studies covered aspects on

interventions as well as diagnostic questions. This demonstrates
that mHealth does not have to be limited to studies in first-world
countries, but can be applied all over the world. The validity
of the psychodiagnostic assessments, however, is a substantial
and necessary prerequisite for any further clinical research for

example on interventions based on mHealth applications and
mobile technology. Therefore, the use of mobile technology
is demonstrated in this paper based on psychodiagnostic
assessments in a sample of Burundian soldiers. The conducted
study utilized tablet computers to carry out standardized clinical

interviews digitally. Instead of solely focusing on the users’
willingness to use a mobile application, this paper aims to
demonstrate - on the basis of a data-driven approach - that
the gathered data is valid and suitable for further clinical
research questions.

There is a considerable amount of public attention on
psychological consequences ofmental health problems in soldiers
in the aftermath of their deployment (12, 13). Among the
various disorders reported in the literature, the post-traumatic-
stress disorder (PTSD) and depression are among the most
common ones (14). While some studies primarily focus on either
depression (15) or PTSD symptoms (16), others acknowledge
the high comorbidity between the two disorders (17). Although
the relation between PTSD and depression in soldiers after
deployment is still under debate (18), it is reasonable to assume
that different subgroups of soldiers exist. In these subgroups,
in turn, soldiers might either display predominant PTSD or
depression symptoms, or suffer from both of them (comorbidity).
The present study therefore investigated whether or not distinct
depression and PTSD symptom profiles can be identified in
AMISOM (African Union Mission to Somalia) soldiers, based on
a tablet-supported data collection solution.

The AMISOM (19, 20) is a UN Security Council authorized
peacekeeping mission, sending military troops based in Uganda,
Kenya, Burundi, Djibouti, and Ethiopia to stabilize Somalia
and try to reclaim territories from the Al-Shabaab militia.
AMISOM troops frequently cope with attacks and armed fights
in a hostile environment. Beside mission related hassles, most
Burundian soldiers experience a civil war that already started
in 1993 and lasted more than a decade (21–24). During this
period, the currently active Burundian soldiers often must fight
against each other, including fights with former government
troops or rebel movements. As a consequence of these particular
circumstances, the affected population is challenged with severe
traumas. Therefore, it is promising – and required - to investigate
trauma- and deployment related mental-health consequences in
these people.

The aim of this study was not only to demonstrate the
general feasibility of structured clinical interviews in a low-
income country that are accomplished through the use of tablet
computers. On top of that, privacy concerns are discussed (25),
which might have an impact on the participation in tablet
computer guided interviews, leading to a general tendency
to either disclose information or producing meaningless or
invalid data. As an approach to validate the experts’ ratings
conducted in this study, it was tested, whether analyses of
the collected data are capable to differentiate distinct symptom
profiles in PTSD and depression symptoms. Altogether, a sample
of 463 participants from the AMISOM was investigated 1 year
after their deployment. A latent profile analyses (LPA) was
conducted to separate different symptom profile groups. We
expected to identify distinct diagnostic groups according to PTSD
and depression.
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MATERIALS AND METHODS

Participants
The tabled-based diagnostic procedure was accomplished in a
larger project aiming to improve the mental health status of
Burundian soldiers of the AMISOM mission [for further details
on PTSD rates and specific types of trauma-exposure pre- and
peri-deployment see (17)]. The composition of the survey was
limited to PTSD and depression as main psychiatric disorders
and was primarily concerned with the assessment of deployment-
associated risk factors. In general, this sample was exposed to
various traumatic pre-deployment events [Median = 11 (17)],
many of them thereby related to the Burundian civil war.
Many of the sample have faced traumatic incidents during their
deployment [Median = 5 (17)], including being attacked by
an enemy, experiencing suicide attack, or witnessing comrades
being killed.

For the present analysis, only full data sets of 463 participants
were included who had been assessed 1 year after returning from
their AMISOM deployment. No data imputation method was
used in order to avoid any bias due to modeling data prior to
the actual data-driven analysis. All participants were male. Mean
age was 35 (SD = 5 years) at the time of interview (i.e., post
deployment). Out of the 463 soldiers, 81% reported to bemarried,
whereas the rest was not in a stable relationship. Seventy-nine
percentage of the soldiers had at least one child. On average, the
soldiers had received 6 years of formal education (SD= 2 years).
Out of the 463 soldiers who reported their military rank, the
following main ranks were obtained: major: corporal: 219 (48%);
chief corporal: 173 (38%); other: 66 (14%).

The participation was on a voluntary basis. Participants
received no incentives for participation. All participants gave
written informed consent. Oral informed consents were collected
in case of illiteracy. The Ethical Review Boards of the University
of Konstanz and the University of Bujumbura, Burundi approved
the study. The study was conducted in cooperation with the Force
de la Défense National, Burundi. All parties involved granted
strict confidentiality, acknowledging the specific vulnerability of
the target population.

Study Procedure
Clinical symptoms were assessed using standardized clinical
interviews, guided by a survey implemented for tablet computers
(i.e., Apple ipads). All participants were released from their
routine duty for the interviews. To ensure anonymity and
confidentiality, electronic coding and storage of the data
was utilized, which fulfilled the highest and most secure
data encryption standards (7). Before their application in the
interviews, all questionnaires had been translated into Kirundi,
using back and forth translations (26). Trained mental health
experts from Burundi and Germany conducted all interviews
in Kirundi, so that literacy was not an issue. Bi-lingual local
interpreters supported the German mental health experts. All
questionnaires were translated from English into Kirundi using
back-and-forth translations. All translations were discussed in
an experts’ panel consisting of bi-lingual translators as well as
mental health experts from Burundi and Germany. Assessments

were conducted in different military camps of the Burundian
army and lasted about 2 h. Separate barracks were provided for
the implementation of the research project by the Burundian
army and interviews were conducted individually to prevent
any undue influence or the issue of stigma, which could have
resulted from group-based assessments. Interviewers entered the
participants’ responses into the iPad and probed the responses
prior to the rating.

All questionnaires and scales were administered on tablet
computers, using the software and technical equipment described
below. Only written informed consent was collected by
paper-pencil mode. Interviews were carried out in a private
space between the participant, the clinical interviewer, and
if necessary, by a local interpreter. Clinical interviewers had
to rate symptoms and responses using the tablet computers.
Experienced international and local clinical psychologists, and
Burundian psychology students, who had been – just like the
interpreters - excessively trained in mental health concepts,
were continuously supervised during the assessment period, and
carried out the diagnostic interviews. Ongoing intervision and
rotating supervisors, which attended the interviews at random,
ensured a high quality of the interviews.

Assessment of Posttraumatic Stress
Symptoms
The fifth version of the PTSD Symptom Scale Interview [PSS-I;
(27)] was administered for the assessment of PTSD symptoms.
It is a 20-item interview that assesses each symptom of the
DSM-5 during the past month for severity and frequency.
However, due to the necessity to keep the results comparable
to previous assessments, the response options for each item
ranged in accordance with the DSM-IV version on a four-
point Likert scale from 0 (not at all) to 3 (five or more times
per week/almost always), instead of the newly adapted five-
point Likert scale of the DSM-5 version. The PSS-I has proven
its validity already in an application with soldiers from the
Burundian Army prior to their deployment and in a sample of
former Burundian combatants (28). Homogeneity in the present
sample was satisfying (Cronbach’s Alpha = 0.89). To conduct
latent profile analysis (LPA), individual item scores were used.
To distinguish class profiles, sub-scores for the DSM B (PSS-
I re-experiencing), C (avoidance), D (PSS-I negative changes
in cognition and mood) and E (PSS-I increased arousal and
reactivity), criteria across classes were compared. Mean PSS-
I score in the present study was 4.4 (SD = 6.1); clusters:
reexperiencing (M = 1.1, SD = 2.0), avoidance (M = 0.6, SD =

1.0), negative changes in cognition and mood (M = 1.1, SD =

2.1), and increased arousal and reactivity (M = 1.3, SD= 2.1).

Assessment of Depression Symptoms
Depression symptoms were assessed with the Patient Health
Questionnaire-9 (PHQ-9), a well validated, and short severity
measure of depression [cf. (29)]. The PHQ-9 was originally
designed as a self-rating instrument, but has been successfully
implemented in clinical interviews as well (14). For the
identification of symptom profiles in the LPA, individual items
were included in the analysis. However, for the specification of
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class characteristics, class differences in the PHQ-9 sum score
were analyzed. Therefore, the item scores for the assessment of
symptom frequency were summed up (M = 2.7, SD = 3.7).
Cronbach’s Alpha for the entire scale was 0.85.

Mobile Devices
The data collection procedure was performed using mobile
devices. As a new iOS tablet application with particular
characteristics was developed for this study, some aspects of
more general interest are shortly discussed. The overall time to
develop the mobile application was rather tight (i.e., roughly
8 weeks), therefore an approach from computer science was
chosen that is called rapid prototyping [cf. (30)]. However, only
using this well-known approach was not sufficient enough in
the end, more ideas had to be created and technically carried
out to cope with the challenges of the study. As it turned out
that the application had to be changed frequently on-site, having
in mind that often no internet connection is available and the
computer scientists were not present in Africa, a procedure had
to be found to transfer application changes from Germany to
Burundi. The reasons for these change demands were mainly
due to language issues, new interview functions (e.g., feature to
quickly jot down notes), or user interface changes. Beside on-site
changes, it was challenging to cope with requirements pertaining
to the provided procedure how questionnaires are filled out
by the psychologists. They wanted features to navigate through
questionnaires that required to implement individual features by
the computer scientists. In the light of the short implementation
time, while preserving validity and integrity of the collected data
at the same time, the implementation phase was challenging
before the study as well as during the study. As another important
aspect, the procedure how data was stored on the used iPads
as well as securely transferred for statistical analyzes, was also
challenging and required new ideas, procedures, and features.
This included implementation efforts as well as training efforts
between the psychologists and the computer scientists. Finally,
note that the mobile application was not installed to the used
iPads using the official App Store fromApple. Instead, the mobile
application was directly installed to the iPads; i.e., before the
interviewers left Germany to Burundi.

Mobile Data Assessment and Data Security
The collection procedure for the study at hand was accomplished
using the aforementioned mobile application. At the time of the
study, 3rd generation iPads have been used. During the collection
procedure, three aspects were particularly relevant. First, all data
must be locally stored on the iPads to properly consider the local
circumstances. In addition, data must be locally secured. For this
purpose, data was anonymized and encrypted. For encryption
purposes, the AES-256 encryption algorithm was used (31).
Second, a multi-user feature was implemented to distinguish
between interviewers and administrators. The latter were the
only entitled persons to decrypt all locally store data. Therefore,
administrators had their own area within the mobile application,
which was also secured with a password. To secure the data
transfer procedure even more strictly, the data transfer was only
possible from the iPads to a stationary PC in this administrator
area using iTunes. Third, applications adaptions during the data

collection procedure became actually necessary. Technically, if
adaptions had to be carried out, they were accomplished using
an SVN server (32) to which the psychologists in Burundi
had remote access. To properly use this access method, the
psychologists were taught by the computer scientists in Germany
how to deploy a new version of the mobile application. The final
collected and anonymized data was secured according to data
protection regulations in Germany and stored for 10 years.

Data Analysis
The data analysis was conducted in two steps. First, a latent
profile analysis (LPA) (33) was performed to identify subgroups
of soldiers based on the PHQ-9 and PSS-I items, accounting
for depression and PTSD symptoms simultaneously. The LPA
was conducted using Mplus 7 for Mac. A LPA uses latent
categorical variables to identify groups of individuals with similar
symptom patterns (classes) on a set of clinical variables. In
comparison to other statistical approaches that aim to identify
groups of participants within a dataset, like a cluster analysis,
LPA has several advantages, in particular the “availability of
more rigorous empirical criteria for determining the number of
clusters” (34). Due to positively skewed, over-dispersed, and non-
normally distributed outcome data, a negative binomial model
was preferred over linear or Poisson regression models. Applying
a zero-inflated negative binomial model to the data was discarded
due to unacceptable fit indices. For the appropriate assignment
of class labels, one-way analyses of variance (ANOVAs) were
conducted with group membership as the independent variable
and depression as well as PTSD symptom severity as dependent
variables. For the selection of the appropriate number of classes,
Lo–Mendell–Rubin-adjusted likelihood ratio tests (LMR-A) as
well as bootstrap likelihood ratio test (BLRT) were calculated,
indicating the superiority of the final model in comparison to
models with a different number of classes [cf. (33)]. Additionally,
the Bayesian Information Criterion (BIC) was chosen as a model
fit indicator. Analyses were conducted using R statistics, applying
a cutoff-level for significance of p= 0.05.

RESULTS

Class Assignment by Symptom Profiles
In a first step, latent profile analyses were calculated for two-
to eight-classes models, using negative binomial models with
automatic starting values and random starts. For the two-class

TABLE 1 | Fit indices for the seven different latent profile analyses.

Modell Log-likelihood BIC Entropy LMR-A p BLRT p

2 classes −7,828.89 14,184.64 0.914 <0.001 <0.001

3 classes −6,826.47 13,905.54 0.895 0.232 0.231

4 classes –6,591.97 13,762.56 0.881 0.103 0.103

5 classes −6,428.32 13,818.59 0.888 0.502 0.503

6 classes −6,396.03 13,981.80 0.891 0.735 0.736

7 classes −6,352.41 14,173.28 0.901 0.655 0.656

8 classes −6,306.72 14,258.65 0.911 0.340 0.340

BIC, bayesian information criterion; LMRA-A, Lo-Mendell-Rubin adjusted likelihood ratio

test; BLRT, bootstrap likelihood ratio test. The bold values represent the finally selected

model.
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model, LMR-A and BLRT tests were significant on a p < 0.05
level. For the comparison between the three- and four classes
model, the LMR-A test did not reach statistical significance.
However, the BIC value favored a four classes model. Thus,
according to the recommendations by the authors of (10), and in
line with the results demonstrating that models with more than

five classes did not further improve the model fit, the four-class
model was selected for all further analyses on the identification
of latent profiles (Cluster 1: n = 194, 41.9 %; Cluster 2: n =

91, 19.7 %; Cluster 3: n = 115, 24.8 %; Cluster 4: n = 63, 13.6
%). Table 1 and Figure 1 give an overview and illustration of the
seven different models’ fit indices.

FIGURE 1 | Estimated coefficient means in the PHQ-9 and PSS-I items across the four classes derived from the Latent Profile Analyses. For a better visual

presentation, coefficients smaller than−10 were set to−10.
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TABLE 2 | Average posterior probabilities for the 4-class model.

class N 1 2 3 4

class 1 194 0.95 0.01 0.04 0.00

class 2 91 0.02 0.93 0.04 0.02

class 3 115 0.05 0.04 0.89 0.02

class 4 63 0.00 <0.01 <0.01 0.99

Posterior probabilities represent the probability that an individual belongs to the respective

assigned class. The bold values highlight the correct classification.

Results in Table 2, in turn, indicate a number of cases
in each of the four classes between 63 and 194 participants.
The posterior probabilities that participants belonged to their
assigned class ranged between 0.89 and 0.99. Therefore, the
model selection produced a meaningful class assignment with
four distinguishable classes.

Differences in Psychopathology Between
Classes
In a second step (for a better illustration, see Figure 2),
mean differences between classes were compared using one-way
ANOVAs for the (1) PHQ-9 scale [F(3, 459)= 291.50, p < 0.001,
ηp2 =0.66], the (2) PSS-I re-experiencing scale [F(3, 459) =

161,19, p< 0.001, ηp2= 0.51], the (3) PSS-I avoidance scale [F(3,
459) = 115.23, p < 0.001, ηp2 = 0.43], the (4) PSS-I changes in
mood and cognition scale [F(3, 459) = 161.64, p < 0.001, ηp2 =
0.51], and the (5) PSS-I hyper-arousal scale accordingly [F(3, 459)
= 215.04, p < 0.001 ηp2= 0.58]. Almost all post-hoc Tamhane t2
tests for pairwise comparisons were also statistically significant
(all p< 0.001), except for the difference between (1) PHQ-9: Class
1 vs. Class 2, (2) PSS-I avoidance scale: Class 1 vs. Class 3 and
Class 2 vs. Class 4, and (3) PSS-I changes in mood and cognition
scale: Class 1 vs. Class 3.

Thus, the results revealed four classes with distinct symptom
profiles. Class 1 (low overall symptoms) had the lowest scores
on all mental health measures, whereas Class 4 (high overall
symptoms) had the highest symptoms scores on both, depression
and PTSD scales. Participants in Class 2 (moderate PTSD)
showed moderate PTSD symptoms, and in comparison, to the
other three groups, low to almost no depression symptoms.
Class 3 (moderate depression) was characterized by moderate
depression symptoms and low to almost no PTSD symptoms.

DISCUSSION

The results of this study emphasize the feasibility of tablet-
assisted clinical interviews assessing mental health symptoms
in resource-poor post-conflict regions, such as Burundi. Using
a latent class analysis, we identified four different symptom
cluster groups amongst Burundian soldiers in a 1-year follow-
up after the deployment in AMISOM. Those cluster groups
included a low overall symptom profile, a moderate PTSD profile,
a moderate depression profile, and within a minority, a high
overall-symptom profile.

These findings indicate that mental health symptoms related
to depression and PTSD are clustered in a similar way as we

would expect amongst soldiers from high-income countries after
deployment (35, 39–42). This result could indicate that mental
health symptoms as a reaction to traumatic and/or daily stressors
might be indeed similar between different cultures (13). The
results add to the mounting evidence that mental health concepts
and assessment tools developed in high-income cultures can
be successfully adapted to different cultural backgrounds (13).
These implications would be in line with evidence suggesting that
many symptoms of trauma-related disorders and also depressive
symptoms result from universal physiological reactions to stress,
e.g., the ways traumatic memories are processed within the brain
(36, 37).

The majority of the participants had little to no experience
with tablets prior to this mental health project, and many of them
had little school education. Nevertheless, the use of tablets in the
clinical interviews seems not to have affected their willingness
to talk about their mental health problems with clinical mental
health experts in a way, which provides meaningful results. This
conclusion is very promising and might allow researchers and
mental health services in resource-poor countries to use mobile
technology for meaningful assessments and service provisions.
As technology will get more accessible and its’ use more usual
in every culture in the future, overcoming possible remaining
obstacles, such as unfamiliarity with use for self-assessments,
and/or lack of alphabetisation, seems very likely.

However, while we could identify four clearly distinct
symptom profiles, the mental health symptoms were not that
pronounced in individuals of our sample. Taking the mean values
of PTSD symptoms (M = 4.4) and depression symptoms (M
= 2.7) into account, we have to acknowledge that we either
assessed a highly resilient group of individuals, the majority
of whom did not develop severe mental symptoms despite
their significant exposure to traumatic stress and violence, or
that the soldiers underreported some of their mental health
symptoms. Most likely, both of these potential explanations
contribute to the low reported symptom scores. The soldiers we
assessed remained in the Burundian army after the end of the
civil war, when many of those severely affected by injuries had
been demobilized. The soldiers continuously took benefit from
unit support and relative income stability resulting from their
status. Furthermore, they have been less exposed to traumatic
experiences than their demobilized colleagues, and might have
been particularly adapted to traumatic and violent environments
(28). However, mental health problems are also associated with
stigma, particularly amongst soldiers. For some of the soldiers,
symptoms might be underreported due to the necessity being
regarded as strong and functional soldiers, and to avoid any
risk of demobilization. Even though, we informed them that
no individual information would be passed on to superiors,
nevertheless, comprehensibly, a certain mistrust remained. The
fact that we successfully identified the four symptoms clusters
despite the low symptom Scores, might indicate that those
symptoms have been in fact underreported. Hence, sophisticated
statistical methods, such as latent class analysis, help to better
understand underlying properties of data that would otherwise
not be detectable, thereby confirming reliability and validity of
the data gathered by the use of mobile technology
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FIGURE 2 | Differences in the mean scores between the four classes of participants for the PHQ-9 sum score as well as the PSS-I sub-scales. Means and Standard

Deviations are displayed.

Other analyses methods could be applied to expand the
results of the latent class analysis. For example, machine-
learning methods could be used to re-evaluate the classes.
Based on the number of variables and participants, several
machine learning approaches could be a valuable target (e.g.,

support vector machines). One limitation of this study is that
professionals interviewed and entered the data for the soldiers.
In consequence, participants might have been less open to
report about their mental health symptoms, as research from
high-income countries indicates that participants generally tend
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to be more honest when providing their answers directly to a
digital solution [cf. (38)]. Possibly, this circumstance could be
improved in the future with more literate samples, although
it remains unclear if the reporting bias identified within high-
income countries toward more openness is the same within
cultures less exposed to technology when reporting health issues
to a machine. Another shortcoming relates to the fact that the
same measures were used for identifying and validating the
profiles. After a set of PTSD and depression measures is used
to empirically determine profiles, using a new set of PTSD and
depression measures to validate the profiles would provide a
stronger validation approach.

However, it was striking during this study that the mobile
application has several benefits compared to a traditional paper-
based study. A higher amount of collected data in a rather
short time and with higher data quality could be achieved.
Regarding the data quality, transcription errors are minimized
since a procedure to digitize the data is no longer necessary. In
addition, by easily switching between different languages for a
questionnaire, the collection procedure could be also improved
since translation issues could be mitigated. For example, a
psychologist can always toggle between languages if needed,
which eases the understanding of questions at hand. Finally,
being a challenge from the software engineering perspective,
mobile applications that are used for studies must ensure that
even when changes are applied to the implementation, the study
results must be still valid and comparable. Therefore, data sets
must be always tagged with a questionnaire version if substantial
changes have been applied to the structure of the questionnaire
or the general app implementation.

CONCLUSION

With the present study, it could be demonstrated that mobile
technology can enable clinical studies in a new, reliable,
and innovative way, especially when studies are carried out
in challenging environments. In particular, studies can be
conducted in a rather short time with many advantages
compared to traditional paper-based studies. For example, by
gathering larger amounts of data and with less required resources
when using tablet computers or smartphones. In addition,
the application of recently emerging analysis methods like
machine learning become more easily possible. This study has
demonstrated that mobile technology is able to produce data
sets, which are valuable and feasible for innovative analysis
methods. However, the use of mobile technology also causes

challenges that must be considered carefully. As this study
showed that the implemented mobile application for the Apple
iPad is able to reveal new and valuable research insights in the
context of a large-scale study in a resource-poor setting, the
general use of mobile technology for clinical studies, especially in
challenging environments and with large-scale demands, seems
to be promising.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethical Review Boards of the University of
Konstanz and the University of Bujumbura, Burundi. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

RW, AC, and RP wrote the manuscript. RW, AC, CN, and MB
defined the study design, were responsible for the data collection,
and led the project. RW and AC conducted the data analysis
and the pre-processing. RP developed the technical solution.
CN, MB, and TP provided critical feedback on the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This research was funded by the Volkswagen foundation.

ACKNOWLEDGMENTS

We are pleased to acknowledge the valuable contribution and
excellent support of the Burundian National Defense Force
(FDN). We are most grateful to the Institute of Databases
and Information Systems at Ulm University for providing
mobile data collection and storage technology. Furthermore, we
are grateful to all the Burundian and German students and
psychologists who have been involved in this project and without
whom interviewing such a large sample of participants would
have been impossible.

REFERENCES

1. Carpenter RW, Wycoff AM, Trull TJ. Ambulatory assessment: new

adventures in characterizing dynamic processes. Assessment. (2016) 23:414–

24. doi: 10.1177/1073191116632341

2. Lindhiem O, Bennett CB, Rosen D, Silk J. Mobile technology boosts the

effectiveness of psychotherapy and behavioral interventions: a meta-analysis.

Behav Mod. (2015) 39:785–804. doi: 10.1177/0145445515595198

3. Gruszka P, Burger C, Jensen MP. Optimizing expectations via mobile apps: a

new approach for examining and enhancing placebo effects. Front Psychiatry.

(2019) 10:365. doi: 10.3389/fpsyt.2019.00365

4. Lui JH, Marcus DK, Barry CT. Evidence-based apps? A review of mental

health mobile applications in a psychotherapy context. Pro Psychol Res Pra.

(2017) 48:199. doi: 10.1037/pro0000122

5. Schobel J, Pryss R, Probst T, Schlee W, Schickler M, Reichert M.

Learnability of a configurator empowering end users to create mobile

Frontiers in Public Health | www.frontiersin.org 8 April 2021 | Volume 9 | Article 490604114

https://doi.org/10.1177/1073191116632341
https://doi.org/10.1177/0145445515595198
https://doi.org/10.3389/fpsyt.2019.00365
https://doi.org/10.1037/pro0000122
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Weierstall et al. Effective Adoption of Tablets in Rural Burundi

data collection instruments: Usability study. JMIR Mhealth Uhealth. (2018)

6:e148. doi: 10.2196/mhealth.9826

6. Areán PA, Ly KH, Andersson G. Mobile technology

for mental health assessment. Dial Clin Neuro. (2016)

18:163. doi: 10.31887/DCNS.2016.18.2/parean

7. Schobel J, Pryss R, Schickler M, Reichert M. Towards Flexible Mobile

Data Collection in Healthcare. In: 29th IEEE International Symposium on

Computer-Based Medical Systems (CBMS 2016) Dublin: IEEE (2016). p. 181–

82. doi: 10.1109/CBMS.2016.43

8. Agarwal S, LeFevre AE, Lee J, L’Engle K, Mehl G, Sinha C, et al. Guidelines

for reporting of health interventions using mobile phones: mobile health

(mHealth) evidence reporting and assessment (mERA) checklist. BMJ. (2016)

352:i1174. doi: 10.1136/bmj.i1174

9. Mercader HFG, Kabakyenga J, Katuruba DT, Hobbs AJ, Brenner JL. Female

respondent acceptance of computer-assisted personal interviewing (CAPI) for

maternal, newborn and child health coverage surveys in rural Uganda. Int J

Med Inf. (2017) 98:41–6. doi: 10.1016/j.ijmedinf.2016.11.009

10. Ndayizigamiye P, Maharaj M. Determinants of mobile health adoption in

burundi. Afri J Inf Syst. (2017) 9:4.

11. Rusatira JC, Tomaszewski B, Dusabejambo V, Ndayiragije V, Gonsalves S,

Sawant A, et al. Enabling access to medical and health education in rwanda

using mobile technology: needs assessment for the development of mobile

medical educator apps. JMIRMed Edu. (2016) 2:e7. doi: 10.2196/mededu.5336

12. Heavey SC, HomishDL, Goodell EA, HomishGG.US reserve soldiers’ combat

exposure and intimate partner violence: not more common but it is more

violent. Stress Health. (2017) 33:617–23. doi: 10.1002/smi.2748

13. Weiss MG, Saraceno B, Saxena S, van Ommeren M. Mental health in the

aftermath of disasters: consensus and controversy. J Nerv Ment Dis. (2003)

191:611–5. doi: 10.1097/01.nmd.0000087188.96516.a3

14. Wulsin L, Somoza E, Heck J. The feasibility of using the Spanish PHQ-9 to

screen for depression in primary care in Honduras. Prim Care Com J Clin

Psychiatry. (2002) 4:191–5. doi: 10.4088/PCC.v04n0504

15. Bonde JP et al. Risk of depressive disorder following disasters and military

deployment: systematic review with meta-analysis. Bri J Psychiatry. (2016)

208:330–6. doi: 10.1192/bjp.bp.114.157859

16. Eekhout I, Reijnen A, Vermetten E, Geuze E. Post-traumatic stress symptoms

5 years after military deployment to afghanistan: an observational cohort

study. Lancet Psychiatry. (2016) 3:58–64. doi: 10.1016/S2215-0366(15)00368-5

17. Nandi C, Crombach A, Elbert T, Bambonye M, Pryss R, Schobel J, et al.

The cycle of violence as a function of PTSD and appetitive aggression:

a longitudinal study with burundian soldiers. Aggr Behav. (2020) 46:391–

9. doi: 10.1002/ab.21895

18. Ginzburg K, Ein-Dor T, Solomon Z. Comorbidity of posttraumatic stress

disorder, anxiety and depression: a 20-year longitudinal study of war veterans.

J Aff Dis. (2010) 123:249–57. doi: 10.1016/j.jad.2009.08.006

19. Williams PD. Fighting for peace in somalia: AMISOM’s seven strategic

challenges. J Int Peac. (2013) 17:222–47. doi: 10.1163/18754112-1704004

20. Williams PD. Stabilising somalia: the african union mission and the

next stage in the war against Al-Shabaab. RUSI J. (2014) 159:52–

60. doi: 10.1080/03071847.2014.912803

21. Bundervoet T, Verwimp P, Akresh R. Health and civil war in rural burundi. J

Hum Res. (2009) 66–88. doi: 10.1596/1813-9450-4500

22. Daley P. Ethnicity and political violence in Africa: the challenge to the

burundi state. Pol Geog. (2006) 25:657–79. doi: 10.1016/j.polgeo.2006.

05.007

23. Daley P. Unearthing the local: hegemony and peace discourses in central

Africa. Geog Peace. (2014) 66:66–86. doi: 10.5040/9780755619900.ch-004

24. Uvin P. Life after Violence. A peoples Story of Burundi. New York, NY: Zed

Books (2009).

25. Bhuyan SS, Kim H, Isehunwa OO, Kumar N, Bhatt J, Wyant DK, et al. Privacy

and security issues in mobile health: current research and future directions.

Health Policy Technol. (2017) 6:188–91. doi: 10.1016/j.hlpt.2017.01.004

26. Beaton DE, Bombardier C, Guillemin F, Ferraz MB. Guidelines for the process

of cross-cultural adaptation of self-report measures. Spine. (2000) 25:3186–

91. doi: 10.1097/00007632-200012150-00014

27. Foa E, Capaldi SI. Manual for the Administration and Scoring of the

PTSD Symptomscale–Interview for DSM-5 (PSS-I-5). (2013). Available

online at: https://www.ptsd.va.gov/professional/assessment/adult-int/pss-i.

asp (accessed June 4, 2021).

28. Nandi C, Crombach A, Bambonye M, Elbert T, Weierstall R. Predictors of

post-traumatic stress and appetitive aggression in active soldiers and former

combatants. Eur J Psychotraumatol. (2015) 6:26553. doi: 10.3402/ejpt.v6.26553

29. Kroenke K, Spitzer RL, Williams JB. The Phq-9. J Gen Int Med. (2001)

16:606–13. doi: 10.1046/j.1525-1497.2001.016009606.x

30. Najjar LJ. Rapid Prototyping (TR 52.0020). (1990). Available online at:

http://www.lawrence-najjar.com/papers/Rapid_prototyping.html (accessed

September 12, 2012).

31. Biryukov A, DunkelmanO, Keller N, Khovratovich D, Shamir A. Key recovery

attacks of practical complexity on AES-256 variants with up to 10 rounds.

In: Gilbert H, editor. Advances in Cryptology – EUROCRYPT 2010. Berlin;

Heidelberg: Springer. (2010). p. 299–319.

32. Collins-Sussman B, Fitzpatrick BW, Pilato CM. Version Control with

Subversion. (2008). p. 299.

33. Nylund KL, Asparouhov T, Muthén BO. Deciding on the number of classes in

latent class analysis and growth mixture modeling: a Monte carlo simulation

study. Str Equ Mod. (2007) 14:535–69. doi: 10.1080/10705510701575396

34. Meyer JP, Stanley LJ, Vandenberg RJ. A person-centered approach

to the study of commitment. Hum Res Manag Rev. (2013) 23:190–

202. doi: 10.1016/j.hrmr.2012.07.007

35. MacManus DK, Dean M, Jones RJ, Rona N, Greenberg L, Hull T

et al. Violent offending by UK military personnel deployed to iraq

and afghanistan: a data linkage cohort study. Lancet. (2013) 381:907–

17. doi: 10.1016/S0140-6736(13)60354-2

36. Brewin CR, Gregory JD, Lipton M, Burgess N. Intrusive images in

psychological disorders: characteristics, neural mechanisms, and treatment

implications. Psychol Rev. (2010) 117:210–32. doi: 10.1037/a0018113

37. Elbert T, Schauer M. Burnt into memory. Nature. (2002)

419:883. doi: 10.1038/419883a

38. Berry N, Bucci S, Lobban F. Use of the internet and mobile phones for self-

management of severe mental health problems: qualitative study of staff views

JMIR ment health. (2017) 4:e52 doi: 10.2196/mental.8311

39. Wilk JE, Quartana PJ, Clarke-Walper K, Kok BC, Riviere LA. Aggression

in US soldiers post-deployment: associations with combat exposure and

PTSD and the moderating role of trait anger. Aggr Behav. (2015) 41:556–

65. doi: 10.1002/ab.21595

40. Thomas JL, Wilk JE, Riviere LA, McGurk D, Castro CA, Hoge CW.

Prevalence of mental health problems and functional impairment

among active component and national guard soldiers 3 and 12

months following combat in Iraq. Archiv Gen Psychiatry. (2010)

67:614–23. doi: 10.1001/archgenpsychiatry.2010.54

41. Nichter B, Norman S, Haller M, Pietrzak RH. Psychological burden of

PTSD, depression, and their comorbidity in the US veteran population:

suicidality, functioning, and service utilization. J Aff Dis. (2019) 633–

40. doi: 10.1016/j.jad.2019.06.072

42. Milliken CS, Auchterlonie JL, Hoge CW. Longitudinal assessment of mental

health problems among active and reserve component soldiers returning from

the Iraq war. JAMA. (2007) 298:2141–8. doi: 10.1001/jama.298.18.2141

Conflict of Interest: The authors declare that this study received funding from

the Volkswagen Foundation. The funder was not involved in the study design,

collection, analysis, interpretation of data, the writing of this article or the decision

to submit it for publication.

Copyright © 2021 Weierstall, Crombach, Nandi, Bambonyé, Probst and Pryss. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Public Health | www.frontiersin.org 9 April 2021 | Volume 9 | Article 490604115

https://doi.org/10.2196/mhealth.9826
https://doi.org/10.31887/DCNS.2016.18.2/parean
https://doi.org/10.1109/CBMS.2016.43
https://doi.org/10.1136/bmj.i1174
https://doi.org/10.1016/j.ijmedinf.2016.11.009
https://doi.org/10.2196/mededu.5336
https://doi.org/10.1002/smi.2748
https://doi.org/10.1097/01.nmd.0000087188.96516.a3
https://doi.org/10.4088/PCC.v04n0504
https://doi.org/10.1192/bjp.bp.114.157859
https://doi.org/10.1016/S2215-0366(15)00368-5
https://doi.org/10.1002/ab.21895
https://doi.org/10.1016/j.jad.2009.08.006
https://doi.org/10.1163/18754112-1704004
https://doi.org/10.1080/03071847.2014.912803
https://doi.org/10.1596/1813-9450-4500
https://doi.org/10.1016/j.polgeo.2006.05.007
https://doi.org/10.5040/9780755619900.ch-004
https://doi.org/10.1016/j.hlpt.2017.01.004
https://doi.org/10.1097/00007632-200012150-00014
https://www.ptsd.va.gov/professional/assessment/adult-int/pss-i.asp
https://www.ptsd.va.gov/professional/assessment/adult-int/pss-i.asp
https://doi.org/10.3402/ejpt.v6.26553
https://doi.org/10.1046/j.1525-1497.2001.016009606.x
http://www.lawrence-najjar.com/papers/Rapid_prototyping.html
https://doi.org/10.1080/10705510701575396
https://doi.org/10.1016/j.hrmr.2012.07.007
https://doi.org/10.1016/S0140-6736(13)60354-2
https://doi.org/10.1037/a0018113
https://doi.org/10.1038/419883a
https://doi.org/10.2196/mental.8311
https://doi.org/10.1002/ab.21595
https://doi.org/10.1001/archgenpsychiatry.2010.54
https://doi.org/10.1016/j.jad.2019.06.072
https://doi.org/10.1001/jama.298.18.2141
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	Smart Mobile Data Collection in the Context of Neuroscience
	Table of Contents
	Editorial: Smart Mobile Data Collection in the Context of Neuroscience
	Experience Sampling
	Multi-modal Data Fusion
	Reviews and Meta-Analyses
	Summary
	Author Contributions
	Acknowledgments
	References

	Adapted Acoustic CR Neuromodulation in Patients With Chronic Tonal Tinnitus and Hearing Loss
	Introduction
	Materials and Methods
	Study Participants
	Description of the Medical Device
	Study Conduct
	Outcome Variables
	Statistical Analysis

	Results
	Discussion
	Data availability
	Author Contributions
	Funding
	Acknowledgments
	References

	Validating Psychometric Questionnaires Using Experience-Sampling Data: The Case of Nightmare Distress
	Introduction
	Materials and Methods
	Participants
	Measures
	Daily Questionnaire
	Internet-Based Cross-Sectional Questionnaire After the ESM Part

	E-Diary Procedure
	Statistical Analyses

	Results
	Item-Level Analyses
	Person-Level Analyses
	Multi-Level (Person and Occasion) Analyses

	Discussion
	Predictors of Negative Dreams
	Limitations
	Future Directions

	Author Contributions
	Acknowledgments
	References

	Mobile Data Collection: Smart, but Not (Yet) Smart Enough
	Background
	Smart Mobile Data Collection
	Smarter Mobile Data Collection in the Future
	Conclusions
	Author Contributions
	Acknowledgments
	References

	Feasibility of Linking Molecular Genetic Markers to Real-World Social Network Size Tracked on Smartphones
	Introduction
	Materials and Methods
	Participants
	Materials
	Statistical Analyses

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Fusing Mobile Phone Sensing and Brain Imaging to Assess Depression in College Students
	Introduction
	Depression Assessment
	Passive Sensing
	Resting-State Functional Connectivity
	Depression and Neuroimaging
	Combing RSFC and Mobile Smartphone Passive-Sensing Technology

	Materials and Methods
	Study Design
	StudentLife
	Ecological Momentary Assessments
	Calculation of Circadian Similarity

	Subjects
	RSFC Data Collection
	Apparatus
	Cohort 1 Imaging
	Cohort 2 Imaging

	RSFC Analyses
	Nuisance Regressors
	Volume Censoring and Data Retention

	Neurosynth Analysis and Subgenual Cingulate Cortex Seedmaps
	Combining Data
	Group Analyses and Statistics
	Visualization

	Results
	Self-Reported Depression Measures
	Passive Sensing Features Correlated With sgCC Connectivity
	Self-Reported Depression Symptoms Correlated With sgCC Connectivity
	Overlap Across Analyses

	Discussion
	Limitations and Future Directions
	Application Changes Between Cohorts
	Feature Selection and Calculation
	Temporal Factors Related to School
	Functional Differences and Alignment Across Individuals
	Voxelwise Resting-State Functional Connectivity
	Whole-Brain and Network-Based Connectivity
	Wrangling High Dimensional Data
	Unresolved Questions About Directionality and Timing
	Moderating Factors of RSFC

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Toward Personalized Tinnitus Treatment: An Exploratory Study Based on Internet Crowdsensing
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	5. Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Efficacy of Self-Management Smartphone-Based Apps for Post-traumatic Stress Disorder Symptoms: A Systematic Review and Meta-Analysis
	Introduction
	Method
	Search Strategy and Inclusion Criteria
	Data Extraction and Analysis
	Risk of Bias Assessment

	Results
	Study Characteristics
	Effects of Self-Management App-Based Interventions on PTSD Symptoms (Pre-post Comparisons)
	Effects of Self-Management App-Based Interventions on Depressive Symptoms (Pre-post Comparisons)
	Efficacy of Self-Management App-Based Interventions in Randomized Controlled Trials
	Publication Bias and Risk of Bias Assessment

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	Combining Mobile Crowdsensing and Ecological Momentary Assessments in the Healthcare Domain
	1. Introduction
	2. Mobile Crowdsensing in Healthcare
	2.1. Mobile Crowdsensing (MCS)
	2.2. Ecological Momentary Assessments (EMA)
	2.2.1. Implementation of EMA With Mobile Devices
	2.2.2. Potential Challenges

	2.3. Combining Mobile Crowdsensing and Ecological Momentary Assessments

	3. Lessons Learned From the TrackYourTinnitus Project
	4. Toward a Reference Architecture
	4.1. Recommendations
	4.2. Architecture
	4.3. Selected Technical Considerations

	5. Discussion
	6. Conclusion
	Author Contributions
	References

	Motorized Shoes Induce Robust Sensorimotor Adaptation in Walking
	Introduction
	Materials and Methods
	Participants
	Set Up
	General Paradigm
	Data Collection
	Data Analysis
	Outcome Measures
	Statistical Analysis

	Results
	Motorized Shoes Can Induce Robust Sensorimotor Adaptation of Locomotion
	Smaller Speed Difference With the Motorized Shoes Reduced the Adaptation of StepPosition
	Similar Cadence Is Observed Between the Groups Throughout the Experiment
	Effect of Wearing Motorized Shoes on Gait Kinematics

	Discussion
	Summary
	Similar Walking and Adaptation With Split-Belt Treadmill and With Motorized Shoes
	Study Implications

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Mental Condition Monitoring Based on Multimodality Biometry
	Introduction
	Method
	Multimodality Measurements
	Questionnaires
	Trial in Office
	Analysis

	Results and Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Effective Adoption of Tablets for Psychodiagnostic Assessments in Rural Burundi: Evidence for the Usability and Validity of Mobile Technology in the Example of Differentiating Symptom Profiles in AMISOM Soldiers 1 Year After Deployment
	Introduction
	Materials and Methods
	Participants
	Study Procedure
	Assessment of Posttraumatic Stress Symptoms
	Assessment of Depression Symptoms
	Mobile Devices
	Mobile Data Assessment and Data Security
	Data Analysis

	Results
	Class Assignment by Symptom Profiles
	Differences in Psychopathology Between Classes

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Back Cover



