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Editorial on the Research Topic

Targeting the PD-1/PD-L1 Cancer Immune Evasion Axis: Challenges and Emerging Strategies

Extensive exploration and utilization of cancer immunotherapy have revealed promising but
challenging prospect of this field. The clinical benefits of Immune Checkpoint Blockade Therapy
(ICBT) were limited due to intrinsic and adaptive resistance as well as emerging side effects. In this
field, existing translational and basic investigations remain limited and controversial, revealing our
insufficient understanding of cancer immune evasion mechanisms. This topic includes 16 updated
articles. They focus on various aspects, including but not limited to analysis of clinical significance,
side effects of ICBT, regulation of immune checkpoints and novel strategies.

The prognostic role of PD-L1 expression in immunotherapy was proposed before (Patel and
Kurzrock, 2015), but the correlation between PD-L1 expression and prognosis are not well
addressed in many cancer types. Under this topic, the prognostic and clinicopathological
significance of PD-L1 expression were analyzed in colorectal cancer, prostate cancer, and bladder
cancer in three articles respectively. By systematically reviewing and meta-analyzing past studies,
they all concluded that PD-L1 expression is associated with poor prognosis. But they differ from
each other on focuses according to characteristics of different cancer types. In colorectal cancer
(CRC), PD-1/PD-L1 axis has been widely acknowledged as a promising therapeutic target,
supported by recent clinical trials. This study not only evaluated the prognostic significance of
PD-L1 expression, but also suggested that PD-L1 expression might be used as a biomarker for
prognosis. In addition, the association between PD-L1 expression and location and differentiation of
CRC, among other clinicopathological parameters, were statistically significant according to this
analysis. Authors proposed several possible mechanisms that could upregulate PD-L1 level, such as
Microsatellite Instability (MSI) (Li, He et al.). In prostate cancer, PD-L1 DNA methylation (mPD-
L1) was additionally analyzed. The risk of biochemical recurrence was significantly higher in
patients with higher mPD-L1. PD-L1 was specially analyzed with several clinical parameters, among
which Gleason score and androgen receptor status were found significantly related to PD-L1. This
study presented credible analysis, though credibility of results is somehow less convincing due to
limited number of studies (Li, Huang et al.). In Bladder cancer, PD-L1 expression was found
significantly correlated with tumor stage and metastasis, in addition to poor prognosis (Zhu et al.).
These three articles mentioned above summarized eligible studies to help us obtain a better
in.org September 2020 | Volume 11 | Article 59118815
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understanding of the role of PD-L1 expression in multiple
cancers. They also suggested that more work should be done to
deal with existing controversies, both clinically and mechanically.

Owing to massive application and experiments of
immunotherapy, more and more clinicians are confronted with
immune-related adverse effects (irAEs) of immunotherapies.
These adverse effects largely cut down on the benefits patients
can achieve from immunotherapy (Martins et al., 2019). There
are four articles here that discuss unfavorable effects, such as
diabetes, immune-related pneumonitis, and liver fibrosis. Xiuju
Liang and colleagues reported a case and provided a literature
review on immune-related pneumonitis. The patient was given
an additional PD-1 inhibitor after her disease progressed on
previous PD-L1 inhibitor. After that she rapidly developed a
severe steroid-resistant pneumonitis, suggesting that clinicians
should take a history of pneumonitis into consideration as a
possible risk factor for immune-related pneumonitis (Liang
et al.). Lijun Da and colleagues conducted a meta-analysis on
randomized controlled trials about organ-specific irAEs. They
involved 8 RCTs with 2716 patients and listed the most common
adverse effects of Immune Checkpoint Inhibitors (ICI). Colitis
was ranked as most common irAE, followed by hypothyroidism,
hepatitis, hypophysitis, hyperthyroidism, and pneumonitis.
Notably, ICI combination therapy significantly increased the
risk of all irAEs mentioned above (Da et al.), which
supplemented the former case report about pneumonitis and
provided with solid evidence. These two articles highlighted the
risk of combining ICIs, which deserves more attention and
investigations. Jingli Lu and colleagues presented a meta-
analysis of 40 randomized controlled trials and conclude that
the risk od new-onset diabetes with ICI is rather low but
unneglectable, appealing more studies to substantiate these
findings (Lu et al.). Clinical use of PD-L1 can also be
combined with inhibition of transforming growth factor-b
(TGF-b), which displayed additive antitumor response in a sub
group of cancer patients. Xiutao Fu and colleages digged into the
underlying mechanism of miR-20a-5p/TGFBR2 axis that
dominantly regulates TGF-b pathway. Results suggested that
miR-20a-5p plays a critical role in liver fibrosis through pro-
inflammatory macrophages (Fu et al.).

The mechanisms underlying tumor immune evasion, though
popularly investigated, are still poorly understood. Prognostic
factors that may contribute to adverse reactions and efficacy are
reviewed and discussed by Xinyu Yan and colleagues. Their
summary categorized the contributing factors into four group,
the characteristics of tumor, the features of microenvironment,
the factors in peripheral blood and the individuality of host,
illustrating a comprehensive frame of tumor-host interaction
network (Yan et al.). The efficacy of ICBT, often disrupted by
adaptive and intrinsic drug resistance, is a major concern about
the application of PD-1/PD-L1 inhibition therapy. Luisa
Chocarro de Erauso and colleagues attempted to find out
predictive biomarkers to stratify patients with probability of
response to ICBT by clarifying the molecular mechanism
of PD-1/PD-L1 ICBT resistance (Chocarro de Erauso et al.).
Peixin Dong and Oliviero Marinelli both put their focus on
Frontiers in Pharmacology | www.frontiersin.org 26
gynecological malignancies. Dong and colleagues emphasized
the importance of acknowledging tumor-intrinsic signaling of
PD-L1 in modulating immune-independent functions such as
epithelial-to-mesenchymal transition (EMT), cancer stem cell
(CSC)-like phenotype, metastasis and drug resistance. They
carried on a meta-analysis that demonstrated coamplification
between PD-L1 and MYC, SOX2, N-cadherin and SNAI1. Their
findings may evoke more researches on related pathways and the
role of PD-L1 (Dong et al.). On the other hand, Marinelli and
colleagues summarized the controversial role of PD-L1 as a
prognostic factor in gynecological malignancies, while stressed
the importance of a novel molecule, PD-L2, in improving
efficiency of immunotherapy (Marinelli et al.). Recent studies
of post-translational modification of PD-L1 have broaden the
horizon of PD-L1 pathway regulation (Wang et al., 2019; Yao
et al., 2019). A summary of multifaceted regulation of PD-L1 is
composed by YitingWang, providing a variety of routes that may
be promising targets for new therapies (Wang et al.). The tumor
immune microenvironment (TIME) is widely acknowledged as a
pivotal factor contributing to tumor immune evasion, but the
complexity and individual differences vastly hold back the
understanding and utilization of it. Weilun Fu and colleagues
leveraged mass cytometry with a panel of 33 markers to analyze
the infiltrating immune cells in diffuse astrocytoma and
oligodendroglioma. The composition and status of immune
cells were assessed. This article provides a methodology of
analyzing tumor-immune interaction, by directly profiling the
landscape of TIME (Fu et al.). This method may be applied in
more researches to unveil the features and mechanisms of
cancer immunology.

Optimistically, novel strategies are constantly emerging.
Abscopal effects (AbE) was discovered 60 years ago. It refers to
systematic antitumor reactions caused by radiation therapy (RT),
which leads to regression of nonirradiated lesions (NiLs).
Accumulating evidence fostered a growing consensus that
combination of immunotherapy and RT provides a better
opportunity to boost AbE (Ngwa et al., 2018). Trommer and
colleagues conducted a retrospective study on patients with
metastatic cancer. With strict inclusion criteria, they concluded
that combination of RT and ICI provided stronger AbE,
compared to ICI alone (Trommer et al.). Their results
encouragingly call on more prospective researches on this topic
to provide solid and sophisticated guidelines on combination of
ICI and RT. The unprecedented breakthrough brought by
chimeric antigen receptor-redirected T (CAR T) cell therapy
marked a new mile stone of cancer immunotherapy. Disruption
of endogenous inhibitory immune checkpoints on T cells
presents additive immune response. Xingliang Guo and
colleagues used the CRISPR/Cas9 gene-editing system to knock
down the PD-1 expression on the Glypican-3 (GPC3)-targeted
second-generation CAR T cells employing CD28 as the
costimulatory domain. In vitro, CAR T cells were cocultured
with PD-L1 expressing Hepatocellular carcinoma (HCC). PD-1
disrupted GPC3-CAR T cells displayed not only stronger CAR-
dependent antitumor activity but also less sign of exhaustion,
compared to wild-type GPC3-CAR T cells. In vivo, PD-1
September 2020 | Volume 11 | Article 591188
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disrupted GPC3-CAR T cells showed improved persistence and
infiltration in subcutaneous xenograft tumor model of NSG mice
(Guo et al.). Discovery of eligible new targets is another strategy
to tackle with the dilemma in immunotherapy. B7H3, also
known as CD276, is an immune checkpoint molecule that is
aberrantly over-expressed in many types of cancer. Peixin Dong
and colleagues reviewed its role in modulating cancer behavior in
many aspects and employed miRNA as potential therapeutic
strategy (Dong et al.).

Under this topic we have seen analysis of prognostic role of
PD-L1 expression in various cancer types, which requires more
mechanistical investigations to turn the phenomenon into deep-
scale understanding and translational strategies. Researches on
the adverse effects of ICIs quantified the frequency of common
irAEs. Specially, combination of different ICIs significantly
increases risk of adverse effects, which deserves to be emphasized
and considered in clinical scenes. Mechanisms underlying the
modulation of PD-1/PD-L1 axis are explored and summarized,
hoping to deepen and widen the understanding on PD-L1 and its
role in cancer immune evasion, progression as well as resistance to
Frontiers in Pharmacology | www.frontiersin.org 37
ICIs. Novel strategies including combination of therapies,
disruption of checkpoints on CAR T cells and employment of
new targets provides promising and encouraging methodologies.
Discussion and exploration on the cancer immune evasion and
immune checkpoint targeting therapy will continue to provide
exciting findings and benefit patients.
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Immune checkpoint blockade therapies (ICBTs) targeting programmed cell death
1 (PD-1) and its ligand programmed death ligand-1 (PD-L1/B7-H1/CD274) have
exhibited momentous clinical benefits and durable responses in multiple tumor types.
However, primary resistance is found in considerable number of cancer patients,
and most responders eventually develop acquired resistance to ICBT. To tackle
these challenges, it is essential to understand how PD-L1 is controlled by cancer
cells to evade immune surveillance. Recent research has shed new light into the
mechanisms of PD-L1 regulation at genetic, epigenetic, transcriptional, translational,
and posttranslational levels. In this work, we systematically discuss the mechanisms
that control the gene amplification, epigenetic alteration, transcription, subcellular
transportation and posttranscriptional modification of PD-L1 in cancer cells. We further
categorize posttranscriptional PD-L1 regulations by the molecular modification of
PD-L1, including glycosylation, phosphorylation, ubiquitination, deubiquitination, and
lysosomal degradation. These findings may provide new routes for targeting tumor
immune escape and catalyze the development of small molecular inhibitors of PD-L1
in addition to existing antibody drugs.

Keywords: PD-L1, immunotherapy, gene expression, post-translational modification, small molecular inhibitors

INTRODUCTION

Over the past decades, a novel therapy that utilizes human immune system to treat
cancer is increasingly popular, which is known as cancer immunotherapy (Yang, 2015). The
immunosuppressive microenvironment of tumor is one of the six distinct biological properties
that enable tumor growth and metastasis (Hanahan and Weinberg, 2011). Human tumors
typically harbor genomic instability, which induce somatic mutations (Hanahan and Weinberg,
2011). Accumulation of mutations may facilitate tumor growth and metastasis, while some
non-synonymous mutations, leading to replacement of amino acid residual, create new T cell
epitopes (neoepitopes), offering opportunities for immune system to recognize and eliminate
cancer cells (Matsushita et al., 2012; Rooney et al., 2015). It has been reported that the number
of non-synonymous mutations, defined as mutational load, is closely related with the efficacy
of immunotherapy (Danilova et al., 2016). However, cancer cells collaborate with immune
cells to dodge the immune destruction, and the anti-cancer pathway is intervened in this
microenvironment (Blank et al., 2016; Sukari et al., 2016). The depressed immunology of T
cells, if appropriately empowered, may be an efficient and powerful weapon against cancer.
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Specifically, active vaccination, adoptive cell transfer therapy and
immune checkpoint blockade are the three major approaches
that could turn on T cell-based anti-cancer immune reaction.
In recent years, immune checkpoint blockade therapy (ICBT)
has exhibited momentous clinical benefits, placing tumor
immunotherapy under the spotlight (Sukari et al., 2016). PD-L1,
a type I transmembrane protein with an extracellular N-terminal
domain, inhibits the immune response through interaction
with receptor PD-1 expressed on T cells (Horita et al., 2017).
Under physiological conditions, PD-L1 is expressed in a wide
range of cell types and tissues and shown to be overexpressed
with immune activation, such as inflammations (Ritprajak and
Azuma, 2015). The PD-L1/PD-1 axis maintains the balance
between tolerance and autoimmunity and thus deficiency or
excess function of it can lead to a variety of disease. Many
auto-immune diseases have been found to be associated with
PD-L1/PD-1 disruption including arthritis and lupus (Zamani
et al., 2016). PD-L1 expression has been found positive in 5–40%
tumor cells (Xie et al., 2016; Xiang et al., 2018), helping them to
dodge the immune elimination through interaction of PD-L1 on
the surface of cancer cells with PD-1 on T cells (Topalian et al.,
2015). Thus, blockade of PD-L1/PD-1 axis assists the recognition
and elimination of cancer cells. PD-L1 expression on tumor
cells has been reasonably detected as a biomarker of ICBT (Ma
et al., 2016). Further investigation revealed that the inducible
but not continuous expression of PD-L1 is associated with
activated CD8+ T cells in hepatocellular carcinoma (Xie et al.,
2016), although the expression of PD-L1 is not independently
prognostic (Wang X. et al., 2016; Xie et al., 2016).

The binding of immune checkpoint inhibitors and optimal
targets is the core idea of ICBT. By inhibiting the immune-
suppressive pathways, ICBT allows the clearance of cancer
cells by the immune system (Topalian et al., 2015). Several
immune checkpoints are discovered to be optimal targets
for immune blockade, including the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and programmed cell-death
protein 1 (PD-1)/programmed cell-death 1 ligand 1 (PD-L1)
pathways. Drugs targeting these two pathways have nourished
recently and many of them have been approved by FDA. Drugs
that target PD-1 like Pembrolizumab (Keytruda) and Nivolumab
(Opdivo) were approved in 2014. Some PD-L1 inhibitors
were also approved including Atezolizumab (Tecentriq) (2016),
Avelumab (Bavencio) (2017) and Durvalumab (Imfinzi) (2017).
Ipilimumab (Yervoy) is a monoclonal antibody targeting CTLA-
4 that gained approval in 2011. Information comes from the
official website of United States Food and Drug Administration.
Notably, inhibitors targeting PD-1 or PD-L1 have been found
to be especially advantageous in the treatment of many kind
of cancer, including non-small cell lung carcinoma (NSCLC)
(Wang C. et al., 2016), renal cell carcinoma (RCC), bladder
cancer, breast cancer (Hu et al., 2017), melanoma (Luke et al.,
2017) and Hodgkin’s lymphoma (Allen and Gordon, 2016).
The landscape of cancer therapy is evolving with deeper and
wider acknowledgment of Immunotherapy with PD-1 or PD-L1
blockade (Pardoll, 2012).

Despite of the promising laboratory results and many
positive clinical applications, there seems to be a discount on

its overall clinical benefits due to intrinsic and/or acquired
resistance to this therapy (Sharma et al., 2017). In certain cancer
patients, the significant clinical response and enduring tumor
retardation achieved by ICBT have improved patient progress-
free survival (PFS) and overall survival (OS). However, the
efficacy rate and profits of usage in general patients remain
at a modest level, impeding the widespread application of
ICBT (Pardoll, 2012). The tumor immunogenicity is a multi-
level and delicately modulated process. Therefore, accumulation
of mutations may lead to dysregulation of immunogenicity
and create an immunosuppressive microenvironment, causing
intrinsic resistance to ICBT (Zhao and Subramanian, 2017).
Among them is the insufficiency of T cell infiltration (Spranger
et al., 2016; Tang et al., 2016). On the other hand, after the
significant retardation and durable response of tumor when
initially treated with anti-PD-1 therapy, relapses in the long
term were observed even after continuous therapy (Zaretsky
et al., 2016). The acquired resistance to ICBT in melanoma
was reported to be associated to antigen presentation deficiency,
in which the interferon signal pathway was involved (Zaretsky
et al., 2016). Alternative checkpoints were discovered to be
adaptively upregulated after PD-L1 targeting treatment (Koyama
et al., 2016). Moreover, PD-L1 upregulation after chemotherapy
and nivolumab treatment was reported as a potential cause of
acquired resistance (Haratake et al., 2017). In these tumors,
immune evasion involves PD-L1/PD-1 interaction, which is the
reason why the therapy initially worked. But the aftereffect
of increased PD-L1 may have partially restored PD-L1/PD-1
function by providing more PD-L1 sites that were not neutralized
by injected antibodies. Nonetheless, not enough investigations
have been done to clarify the adaptive upregulation of PD-
L1. In this scenario, understanding the mechanisms of PD-L1
regulation in cancer cells would certainly benefit the development
of more effective and durable ICBTs.

While the PD-1/PD-L1 pathway has been proven both
theoretically and clinically a mature and efficient target for
immunotherapy, it is of urgent need to develop more effective
approaches to target PD-L1. Firstly, many disadvantages of PD-
L1 targeted antibodies are unneglectable. The relatively large
size of Mono-antibodies (MAbs) may prohibit its penetration
into the complex tumor microenvironment, and thus limiting
the therapeutic efficacy (Lee and Tannock, 2010). It is crucial
to develop new drugs with smaller sizes and to improve the
specificity of tumor PD-L1 targeting, even though existing drugs
and research are flourishing (Tan et al., 2016).

Secondly, the primary and acquired resistance to ICBT in
many tumors highlights a crucial requirement for developing
alternative PD-L1/PD-1-targeting approaches. Several cancer
mutations have been suggested to be the cause of PD-L1
suppression and therefore primary resistance to PD-L1 blockade
drugs. Inactivation mutations of JAK1/2 is an example (Shin
et al., 2017). Thirdly, As a protector of host tissue and regulator
of inflammation, PD-1/PD-L1 is located not only on tumor
cells but also on normal cells, including anti-tumor T cells
and tumor associated macrophages (Tan et al., 2016; Horita
et al., 2017). The blockage of physiological PD-1/PD-L1 functions
inevitably brings about unfavored results- the depletion of cells
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which are meant to be activated and functioning. Lastly, the
activation of oncogenic pathways, including RAS/RAF/MAPK
and PI3K signaling, combined with the complexity of tumor
microenvironment, may desensitize anti-tumor immunity (Zhao
and Subramanian, 2018). The main components of tumor
microenvironment, including infiltrated T cells (Tang et al.,
2016), metabolites (will be further discussed) and oxidative stress
(Maj et al., 2017), have been reported to be disruptors of anti-
tumor immunity. Our understanding on the mechanisms of
ICBT resistance and PD-L1 regulation remains rather limited,
proposing an urgency to decode the multifaceted roles and
complex control of PD-L1 in cancer.

The enthusiastic devotion from both clinical and biological
investigators have brought the PD-1/PD-L1 biology into a new
era in cancer research. Translational studies targeting the PD-
1/PD-L1 pathway have boosted dramatically in recent years.
Some progresses in the research of PD-L1 expression in cancer,
especially at transcriptional and epigenetic levels, have been
forged into a regulatory model for unified explanation (Chen
et al., 2016). However, more recent findings that shed light into
the multifaceted control of PD-L1 as a membranous protein
has not been systematically discussed. In this review, we will
summarize the exciting progresses in PD-L1 research in a more
comprehensive manner, aiming to facilitate future basic and
translational studies in the field of cancer immunotherapy.

GENOMIC ALTERATIONS DRIVE PD-L1
EXPRESSION

Enhanced PD-L1 expression was detected in a wide range
of cancers but the prognostic and predictive value of it
is controversial (Wang X. et al., 2016). It’s also a sign of
efficacy of ICBT targeting PD-1/PD-L1 (Chen et al., 2016),
as reported in B-cell lymphomas (Wang X. et al., 2016),
breast cancer (Mittendorf et al., 2014), small-cell lung cancer
(George et al., 2017) and pancreatic cancer (Wang et al.,
2010). Given that many oncogenes are upregulated by gained
copy number alterations (CNAs), efforts have been made
to clarify the relationship between PD-L1 expression and
CNA. As the main form of CNA, PD-L1 copy number
amplification directly leads to PD-L1 mRNA upregulation.
Tumors harboring PD-L1 amplification presents significantly
higher load of mutation, comparing to non-amplified subjects
(Budczies et al., 2016). Increased copy number of chromosome
9p24, predominant amplification of focal gene CD274 (which
resides on chromosome 9p24.1, as shown in Figure 1),
together with abundant PD-L1 expression were observed in a
subset of small-cell lung cancer (SCLC) (George et al., 2017).
The Janus kinase 2 (JAK2) amplification was documented to
be simultaneously activated with 9p24.1 chromosome copy
number amplification and upregulated PD-L1 expression in
primary cancers (Figure 2), suggesting a possible transactivation
between JAK2 and PD-L1 genes (Green et al., 2010; Ikeda
et al., 2016; Clave et al., 2018). What’s more, PD-L1/PD-
L2 alterations were defined as a feature of Classical Hodgkin
lymphomas (cHLs). Specifically, amplification of 9p24.1 was

reported to be associated with patients’ advanced stage disease
and poor prognosis in cHL and in Epstein-Barr virus-associated
gastric cancer (EBVaGC) (Roemer et al., 2016; Saito et al.,
2017). These findings collectively suggest that CD274 gene
amplification is a crucial factor that drives PD-L1 expression
in cancer, and thus targeting PD-L1 at genetic level may be a
rationalized strategy in PD-L1 positive tumors. Considering the
rapid development of gene therapies, such prospect won’t be
infeasible.

Structural variations may also be responsible for elevated
transcription of PD-L1 (Kataoka et al., 2016). For example,
truncation of its 3′UTR was reported to be associated with
aberrant PD-L1 expression in multiple cancers (Kataoka et al.,
2016).

EPIGENETIC REGULATION OF PD-L1

Epigenetic regulation was revealed to be involved in PD-L1
expression in cancer cells. Micro RNAs (miRNAs), defined as
22–24 nucleotides non-coding single-stranded RNAs, have been
implicated in the regulation of PD-L1 expression (Wang Q.
et al., 2017). The binding of some miRNAs to the PD-L1 mRNA
causes the latter one to degrade and thus PD-L1expression
is suppressed. Specifically, the abundance of miR-513, miR-
570, miR-34a, and miR-200 were reported to have an inverse
correlation with PD-L1 expression (Chen, 2009; Chen et al.,
2014; Wang et al., 2015), as described in Figure 1. Among
them is miR-513 which inhibits PD-L1 protein translation by
binding to 3′ untranslated regions (UTRs) of PD-L1 RNA as
complement (Chen, 2009). Supportively, IFN-γ-induced PD-
L1 expression was diminished by introducing miR-513 into
Jurkat cells, while anti-miR-513 enhanced PD-L1 expression
in cholangiocytes (Gong et al., 2009; Jardim et al., 2009).
Similar function was found with miR-570. Research has shown
that mutation of the PD-L1 3′ UTR which disrupts the
association with miR-570, correlated with overexpression of
PD-L1 (Wang et al., 2013). P53 was reported to regulate
PD-L1 through miR-34 (Cortez et al., 2016). In the case of
miR-200, the process of epithelial-to-mesenchymal transition
(EMT) is found to be mediated by the regulation of PD-
L1 expression by miR-200 (Chen et al., 2014). Moreover,
MiR-197 was reported to repress STAT3, a regulator of PD-
L1, to decrease PD-L1 expression (Fujita et al., 2015), as
demonstrated in Figure 1. Other miRs reported to regulate
PD-L1 includes miR-424 (Xu et al., 2016), miR-138 (Zhao
et al., 2016), miR-17 (Audrito et al., 2017) and cluster miR-
25-93-106b (Cioffi et al., 2017). Most recently, a mechanism
that stabilizes PD-L1 mRNA was reported through modulation
of the AU-rich element-binding protein tristetraprolin (TTP)
(Coelho et al., 2017).

Recent studies have also focused on the promoter methylation
of PD-L1 (mPD-L1), which was suggested to be a biomarker
for prediction of response to PD-1/PD-L1 targeted ICBT.
Significant inverse correlations between mPD-L1 and patient
age was reported. The correlation between mPD-L1 and PD-L1
mRNA expression shares similar pattern, indicating a potential
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FIGURE 1 | Genetic and epigenetic regulations of PD-L1 in tumor cells. The CD274 gene encoding PD-L1 is located on chromosome 9p, which is amplified in a
subset of cancers. Increased gene copy number leads to upregulation of mRNA expression, while methylation of the gene promoter suppresses its transcription.
Micro RNAs (miRNAs) may regulate PD-L1 expression by suppressing Stat3, which transactivates PD-L1. MiRNAs may also bind to the 3′ UTR of PD-L1 mRNA,
leading to its degradation. The p53 tumor suppressor has been reported to downregulate PD-L1 through miR-34, a miRNA that binds to the 3′ UTR of PD-L1
mRNA. The PD-L1/PD-1 interaction and MHC-antigen/TCR interaction collaboratively define an inhibitory output of the immune checkpoint.

interaction between patient age and methylation of PD-L1 gene
and that promoter methylation suppresses PD-L1 expression
in colorectal cancer (CRC) (Goltz et al., 2017). Correlation
between PD-L1 promoter methylation and clinical outcomes
was also revealed in other cancers including NSCLC (Wrangle
et al., 2013) and prostate cancer (Gevensleben et al., 2016).
Moreover, in patients treated with PD-1/PD-L1 targeting drugs,
enhanced mPD-L1 is associated with worse overall survival
and recurrence-free survival. Epigenetic therapy has also been
suggested to sensitize tumor response to PD-L1 targeting
drugs (Wrangle et al., 2013). Interestingly, results proved no
meaningful correlation between PD-L1 mRNA expression and
patients’ outcome. (Goltz et al., 2017)

TRANSCRIPTIONAL ACTIVATION OF
PD-L1

Several transcriptional factors have been found to control
PD-L1 transcriptional activation (Figure 2). As an example,
PTEN represses PD-L1 transcription and expression in breast
cancer cells, suggesting a new tumor suppressive function
of PTEN. In addition, PD-L1 expression decreased after
inhibition of phosphoinositide 3-kinase (PI3K) pathway using
the AKT inhibitors, further emphasizing the role of PTEN and
PI3K signaling in PD-L1 regulation (Mittendorf et al., 2014).
Transcription activity, demonstrated by the level of PD-L1

mRNA expression, was promoted through JAK2/STAT1 pathway,
as was shown in pancreatic cancer cells treated with anticancer
agents (5-fluorouracil, gemcitabine, or paclitaxel) (Wang et al.,
2010). Notably, when treated with chemotherapeutic drugs,
the MAPK pathway was also reported to upregulate PD-L1
in cancer cells (Chen et al., 2016). While distinct signaling
pathways share the ability to control PD-L1 expression by
regulating its transcription, the exact mechanisms involved may
vary considerably (Chen et al., 2016).

Hypoxia inducible factor 1α (HIF-1α) is a major cancer
driver (Ortmann et al., 2014) and a potential therapeutic target
(Brown and Wilson, 2004; Vaupel and Mayer, 2007; Wilson
and Hay, 2011). The binding of HIF-1α to PD-L1 promoter, a
hypoxia response element (HRE), stimulates the transcription
of PD-L1 (Noman and Chouaib, 2014). Research has revealed
the co-existence of HIF-1α overexpression, increased PD-L1
level, and repression of T-cell function (Noman et al., 2014;
Pollizzi and Powell, 2014; Shehade et al., 2014). It was also
reported that PD-L1 works predominantly in lactate-enriched
tumor microenvironments (Feng et al., 2017). Meanwhile, T
cell autophagy is induced in a microenvironment lack of
amino acids tryptophan and arginine as well as glucose. In
this nutrients-deprived situation, glucose metabolism shrinks
while the lactate accumulates, creating an optimal environment
for PD-1/PD-L1 interaction and resistance to cancer therapies
consequently (Robainas et al., 2017). In other words, Lactate,
as a major metabolite under hypoxia condition, may protect
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FIGURE 2 | Transcriptional activation of PD-L1 in response to different signaling pathways. PD-L1 is transcribed in response to the activation of multiple signaling
pathways, and transcription factors (TFs) such as HIF1-α, Myc, Stats, NF- κB, and AP-1 have been reported to bind and transactivate PD-L1. These TFs are
controlled by the interconnected pathways involving EGF/PI3K/AKT/MTOR (suppressed by PTEN), RTK/Ras/Raf/MEK/ERK, IFN-γ/JAKs (also induced by mutant
NPM-ALK gene and EBV-activated LMP1), TLRs/Myd88/Traf6/IKKs, and lactate-enriched microenvironment.

tumor cells from cytotoxic T-cell targeting. Accordingly, tumor
cell metabolic reprograming was found to correlate with
immune suppression (Feng et al., 2017). Taken together,
it is suggested that hypoxic environments, which induce
activation of HIF-1α and accumulation of lactate (Koukourakis
et al., 2005; Marchiq and Pouyssegur, 2016; Ban et al.,
2017), contribute to evasion of tumor cells from immune
system. The transactivation of PD-L1 by HIF-1 represents a
crucial step in the above-mentioned process, and may be a
promising target to combat the immune suppression of tumor
cells.

STAT3 is another important transcriptional factor that
upregulates PD-L1 expression by binding to PD-L1 promoter.
Mutations of oncogene chimeric nucleophosmin/anaplastic
lymphoma kinase (ALK) have been found to upregulate PD-L1
expression, and this effect could be abolished by silencing STAT3
(Marzec et al., 2008). Furthermore, Latent membrane protein-
1 (LMP1) of Epstein-Barr virus was found to increase both
PD-L1 expression and STAT3 phosphorylation (p-STAT3) (Fang
et al., 2014) (Figure 2). Consistently, the JAK3 inhibitor CP-
690550 blocked the above process through suppressing p-STAT3

(Marzec et al., 2008). NF-κB, as a transcriptional factor mediating
inflammation-associated tumorigenesis, has been reported to
boost PD-L1 expression. However, the exact mechanisms remain
unclear. NF-κB is required for LMP1-induced PD-L1 expression,
which is evidenced by decreased PD-L1 induction caused by NF-
κB inhibitors (Marzec et al., 2008). Notably, the NF-κB inhibitor
abolished INF-induced PD-L1 expression, while MAPK, PI3K
and STAT3 inhibitors did not. Thus NF-κB also seems to be
involved in INF-γ-induced PD-L1 expression (Gowrishankar
et al., 2015).

GLYCOSYLATION OF PD-L1

N-glycosylation is a crucial protein modification that determines
protein structure and function, especially the function of
membrane proteins. By altering protein conformation,
glycosylation may modulate protein activities and protein–
protein interactions, such as those between ligands and receptors
(Ohtsubo and Marth, 2006). In Western Blot assays, the majority
of PD-L1 is detected at 45 kDa representing the glycosylated
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species, while the non-glycosylated form is detected at 33 kDa. By
bioinformatics prediction, mass spectrometry and mutagenesis,
PD-L1 was found to be exclusively N-glycosylated at N35, N192,
N200, and N219 (Li et al., 2016).

The PD-L1 molecule containing N192, N200, and N219
residues forms a region that is the prerequisite for PD-L1 binding
to GSK3β, and N-glycosylation on these sites buries the necessary
residues and disrupts the interaction between PD-L1 and GSK3β.
Glycogen synthase kinase 3beta (GSK3β), a serine/threonine
protein kinase, was originally identified as a regulator of glycogen
metabolism (Doble and Woodgett, 2003). When bound to

non-glycosylated PD-L1, GSK3β leads to phosphorylation and
consequent ubiquitination of PD-L1 (Li et al., 2016) (Figure 3).
In addition, it was further elucidated that inactivation of GSK3β

by activating EGFR enhanced PD-L1 expression by preventing
it from being ubiquitinated (Li et al., 2016). Significantly, a
small molecular inhibitor of glycosylation, tunicamycin, was
found to efficiently decrease PD-L1 expression in cancer cells
(Li et al., 2016). Latest results have provided evidence that
targeting glycosylated PD-L1 promotes PD-L1 internalization
and degradation, leading to eradication of triple-negative breast
cancer cells (Li et al., 2018).

FIGURE 3 | Post-translational modifications and subcellular transportation of PD-L1. As a membrane protein, PD-L1 is extensively modified after its translation.
N-glycosylation of PD-L1 extracellular domain occurs in the lumen of endoplasmic reticulum (ER), and this modification facilitates the interaction of PD-L1 with lipid
membrane. Glycosylation also inhibits phosphorylation by GSK3β, and thereby blocking the ubiquitination by β-TrCP. Deubiquitination by CSN5 also protects PD-L1
from proteasomal degradation. In addition, PD-L1 may also be destructed in lysosome, and this process relies on a series of subcellular transportations from cell
membrane to early endosome, late endosome, and finally to lysosome. However, CMTM6 has been found to promote PD-L1 transportation to recycling endosome,
causing decreased distribution to late endosome and lysosome. Interestingly, CMTM6 and its homolog CMTM4 may also stabilize PD-L1 by suppressing its
ubiquitination.
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PHOSPHORYLATION OF PD-L1

Phosphorylation involves in a widespread of regulatory
mechanisms in cellular signaling, and may affect the
conformation, activity, and interactions of proteins. Although
one protein may contain multiple phosphorylation sites,
the phosphorylation of PD-L1 has been sparsely reported.
As mentioned above in the glycosylation part, GSK3β is a
multifunctional switch that mediates the direct phosphorylation
of a wide range of substrates, including e IF2B, cyclin D1,
c-Jun, c-myc, NFAT, MCl-1, and Snail (McCubrey et al.,
2014). It also contributes to the phosphorylation of PD-L1
through an evolutionarily conserved GSK3β phosphorylation
motif on PD-L1 (Li et al., 2016) (Figure 3). Furthermore,
the phosphorylation mediated by GSK3β has been found to
initiate the interaction with E3 ligase, which targets proteins to
proteasomal degradation (Zhou et al., 2004; Ding et al., 2007;
Wang et al., 2018).

Meanwhile, it was reported that treatment of the epidermal
growth factor (EGF) would induce tyrosine phosphorylation,
together with acetylation and ubiquitination of PD-L1 (Horita
et al., 2017). These provide evidential hypothesis for the effects
of Gefitinib, an inhibitor of EGFR, in promoting the immune
response against breast cancer. Gefitinib was found to cut
down on PD-L1 expression and limit its oncogenic potential,
therefore promoting T cell immunity. These findings suggest
that targeting EGFR by Gefitinib not only suppresses MAPK-
dependent tumor proliferation, but also blocks PD-L1-dependent
immune suppression (Li et al., 2016). Based on the predicted
isoelectric points corresponding to different modifications, the
PhosphoSite database has listed potential phosphorylation sites
of PD-L1 (basal Isoelectric point = 6.76) (PhosphoSite Plus
Protein Page: Pd-L1 Human, 2018). However, no systematic
experimental characterization of PD-L1 phosphorylation has
been carried out. It also deserves in-depth study how PD-L1
phosphorylation varies and fluctuates in response to distinct
microenvironments, therapeutic stresses and interaction with its
partner proteins.

UBIQUITINATION OF PD-L1

Ubiquitination-dependent proteasomal degradation controls the
metabolism of many proteins, including membrane proteins
like PD-L1 (Zhou et al., 2014). As mentioned above, the EGF
treatment may induce tyrosine phosphorylation, acetylation, and
ubiquitination of PD-L1 (Horita et al., 2017). The increased
PD-L1 mono- and multi-ubiquitination induced by EGF were
blocked by gefitinib treatment. Recent study further revealed
that ubiquitin E3 is involved in PD-L1 downregulation in
EGFR wild-type NSCLC (Wang et al., 2018). In a recent study,
cyclin D-CDK4 kinase was reported to destabilize PD-L1 via
cullin 3-SPOP, which was proved to be involved in Pd-L1
ubiquitination (Zhang et al., 2018). Surprisingly, the EGF-
stimulated PD-L1 mono-ubiquitination not only coexisted with
PD-L1 overexpression, but also seemed to occur ahead of its
upregulation (Akbay et al., 2013; Chen et al., 2015; Li et al.,

2016; Horita et al., 2017). Inhibition of the ubiquitin E1 by
blocking its activating enzyme decreased PD-L1 mono- and
multi-ubiquitination and total PD-L1 protein expression at the
same time, suggesting a possible causal relationship between
ubiquitination and overexpression of PD-L1 (Horita et al.,
2017).

CMTM6, a type-3 transmembrane protein was recently
identified as a positive regulator of PD-L1. Decrease of CMTM6
expression downregulated PD-L1 protein level in a wide range
of human tumor cells and in primary human dendritic cells.
Apart from CMTM6, its closest family member, CMTM4, was
confirmed to share similar function (Figure 3). Of note, the
enhancement of PD-L1 protein pool stimulated by CMTM6
was not associated with any variation in PD-L1 transcription.
Instead, CMTM6 was found to interact with PD-L1 on cell
surface, interfering its ubiquitination to prolong its half-life.
It was also functionally confirmed that by enhancing PD-L1
protein pool, CMTM6 improves the evasion ability of PD-
L1positive tumor cells to immune elimination (Mezzadra et al.,
2017).

DEUBIQUITINATION OF PD-L1

On the contrary to ubiquitination, deubiquitination of PD-L1
stabilizes the protein from degradation. The deubiquitination
and stabilization of PD-L1 significantly affect the inflammatory
response or so-called ‘inflammation-mediated anti-tumor
immunity’ (Lim et al., 2016). Recently, COP9 signalosome
5 (CSN5) was identified as a crucial protein that promotes
the deubiquitination of PD-L1 (Lim et al., 2016) (Figure 3).
It was reported that tumor necrosis factor alpha (TNF-α),
as one of the major inflammatory cytokines secreted by
macrophages, plays an important role in maintaining
cancer cell evasion from immune system. Mechanistically,
TNF-α may activate NF-κB and induce CSN5 expression,
leading to PD-L1 stabilization. Consistently, CSN5 has
been found to be indispensable for TNF-α-mediated PD-
L1 stabilization because of its function in deubiquitinating
PD-L1 (Lim et al., 2016). With potential translational
significance, the authors found that destabilization of
PD-L1 by curcumin, an inhibitor for CSN5, may benefit
immunotherapy.

SUBCELLULAR TRANSPORTATION OF
PD-L1

PD-L1 functions on the membrane surface, but it may also
translocate into the cytoplasm. Many membrane proteins are
shuttled between the recycling endosomes and cell surface, and
PD-L1 has been tracked in recycling endosomes (Grant and
Donaldson, 2009). Furthermore, inhibition of endocytic recycling
by primaquine caused vast depletion of membrane PD-L1 protein
level in wild-type cells. These results suggest that: first, a large
proportion of membrane PD-L1 undergoes metabolism and
internalization continuously; second, the dynamic recycling and
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releasing of PD-L1 maintains the amount of PD-L1 located
on cell membrane (Burr et al., 2017). Notably, CMTM6,
recognized as a PD-L1 regulator, is predominantly identified in
recycling endosomes together with TFRC and RAB11, factors
that define the endocytic recycling compartment. What’s more,
CMTM6 co-localizes with PD-L1 both on the plasma membrane
and in recycling endosomes, so that CMTM6 functions as a
protector of PD-L1 that prevents it from being targeted for
lysosome-mediated degradation and increases its protein pool
(Figure 3).

Interestingly, membrane and cytoplasmic PD-L1 expression
is more significant in macrophage cells than in cancer cells
(Gong et al., 2017). Studies have been done to test PD-L1
molecule in peripheral blood mononuclear cells (PBMC) and
surprisingly revealed a novel human PD-L1 splice variant in
activated PBMC. Further studies compared the conventional
isoform with the novel isoform and found distinct localization
patterns between both proteins. Specifically, the conventional
isoform is predominantly expressed on the plasma surface,
while the novel isoform is distributed mainly on intracellular
membrane. The alternative splicing of PD-L1 may be a
posttranscriptional regulator that modulates PD-L1 expression
as well as its function in determining the outcome of
specific immune responses in the peripheral tissues (He et al.,
2005).

In addition to its cellular distribution, PD-L1 has also
been detected outside the cells, proposing its potential role
as a semi-invasive biomarker. An A/C polymorphism at
position 8923 was detected together with increased level of
plasma soluble PD-L1 (sPD-L1) in NSCLC patients, especially
those with adenocarcinoma (Cheng et al., 2015). Investigation
is now undergoing to define the value of plasma PD-
L1 protein levels as a predictive biomarker of prognosis
in NSCLC and also as a reliable companion diagnostics
for individualized treatment with ICBT (Zhu and Lang,
2017).

LYSOSOMAL DEGRADATION OF PD-L1

Unlike cytosolic proteins, many membrane proteins are mainly
degraded through the lysosomal pathway. As mentioned in
the ubiquitination part, CMTM6 reduces PD-L1 ubiquitination
and increases its stability (Mezzadra et al., 2017). Interestingly,
different opinion presents another explanation about the
stabilization of membrane PD-L1 by CMTM6. In addition to its
expression at the plasma membrane, CMTM6 is predominantly
identified in recycling endosomes (Zhang et al., 2018). Although
CMTM6 is not required for PD-L1 maturation, it functions in
protecting PD-L1 from lysosome-mediated degradation (Burr
et al., 2017). Thus, CMTM6 depletion, via the reduction
of PD-L1, significantly alleviates the suppression of tumor-
specific T cell activity in vitro and in vivo (Burr et al.,
2017). Although there is no doubt that CMTM6 suppresses
PD-L1 degradation, the effect still seems to be indirect,
requiring the competitive transportation to the recycling
endosome. It remains unclear which protein may directly

interact with CMTM6 and transport it to lysosome for
degradation (Figure 3). Future efforts to clarify this crucial node
would benefit the development of alternative PD-L1-targeting
approaches.

STRUCTURE-BASED MODULATION OF
PD-L1

Some mutations of PD-L1 gene may impede the protein level
of PD-1/PD-L1 but others may cause disturbance on protein
folding, and therefore disrupt the interaction of PD-1 and PD-
L1. PD-1 and PD-L1 bind through the conserved front and side
of their Ig variable (Ig V) domains, representing the structural
basis for the design of intervention molecules. By locating the
loops at the ends of the IgV domains on the same side of
the PD-1/PD-L1 complex, a surface is formed, being similar to
the antigen-binding surface of antibodies and T-cell receptors
(Zak et al., 2017). Several residues have been identified to
play important roles in folding and forming the PD-1/PD-L1
interface (Lin et al., 2008). The immune receptor-like loops
provide a new surface for further study and potentially the
design of molecules that would affect PD-1/PD-L1 binding and
thereby regulate the immune system. Multiple peptides and
small-molecular compounds have been evaluated in preclinical
models, in order to develop novel PD-1/PD-L1 inhibitors (Zak
et al., 2017).

In addition to directly block the interaction between
PD-1 and PD-L1, methods have also been developed to
inhibit the dimerization of PD-L1, and hence the PD-1/PD-
L1 interaction. Particularly, this effect could be achieved by
small molecular compounds such as BMS-202 and BMS-
8, with considerable translational significance (Zak et al.,
2017). Since small molecules behold advantages in terms
of production scale, quality standardization, pharmacological
kinetics and tissue distribution, it is of enormous interest
to discover small molecular drugs targeting the PD-L1/PD-
1 axis (Lin et al., 2008). Despite the structural insights
provided by recent crystallographic research, it is still unclear
how the reported PTMs, e.g., glycosylation, phosphorylation,
ubiquitination, etc., may affect the conformation and molecular
interactions of PD-L1/PD-1. Understanding these detailed
processes would also improve the confidence of structure-based
drug design targeting this crucial immune suppression signaling
pathway.

SIGNIFICANCE OF COMBINED
INTERVENTION

PD-L1-targeted ICBT is a promising breakthrough in the
field of cancer immunotherapy, but primary and acquired
resistances have presented enormous challenges in this fast-
evolving area (Pardoll, 2012; Spranger et al., 2016; Zaretsky
et al., 2016; Sharma et al., 2017; Zhao and Subramanian,
2017). It has been suggested that the post-treatment positive
conversion of PD-L1 expression may be a cause of resistance
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(Haratake et al., 2017). The regulatory pathways of PD-L1
are of meaningful potential to be translated into therapeutic
approaches for tackling the resistance to ICBT (Lee and
Tannock, 2010; Tan et al., 2016; Tang et al., 2016; Maj et al.,
2017; Shin et al., 2017; Zhao and Subramanian, 2018). The
significant PD-L1 overexpression found in multiple cancer
types may be an output of interconnected regulatory network,
which involves molecular alterations at genetic, epigenetic,
transcriptional, translational, post-translational, and structural
levels. In fact, several key regulators of PD-L1 have long been
established as cancer-related genes, such as JAK2 (Green et al.,
2010; Budczies et al., 2016; Ikeda et al., 2016; Clave et al.,
2018), PTEN, MAPK, PI3K, HIF-1α, STAT3 (Marzec et al.,
2008; Gowrishankar et al., 2015; Chen et al., 2016), TNFα,
NF-κB (Gowrishankar et al., 2015), and INF-γ, etc. Existing
small molecular compounds targeting these genes/pathways
may be repurposed for modulating PD-L1, thus providing
readily tools to improve T cell-dependent anticancer immunity.
Likewise, the discovery of key post-transcriptional modifications
(PTMs) that control PD-L1 stability such as glycosylation,
phosphorylation, and ubiquitination also provide alternative
strategies for targeting PD-L1 (Zhou et al., 2004; Ding et al.,
2007; Li et al., 2016; Lim et al., 2016; Horita et al., 2017).
It is worthy to further analyze the function of curcumin
(CSN5 inhibitor) and tunicamycin (glycolysis inhibitor) in
suppressing PD-1/PD-L1 signaling in vivo and in preclinical
models. The inhibitors o In addition, the connection between
cancer metabolism and resistance to immunotherapy suggests
potential benefit for combined targeting of tumor glycolysis
and PD-1/PD-L1 axis (Koukourakis et al., 2005; Vaupel and
Mayer, 2007; Wilson and Hay, 2011; Shehade et al., 2014;
Marchiq and Pouyssegur, 2016; Feng et al., 2017). Apart from
controlling the abundance of PD-L1 in cells, the mechanisms
underlying PD-L1 transportation and structural modulation
may also provide novel strategies to optimize the blockage
of PD-L1 (van Weert et al., 2000; He et al., 2005; Lin
et al., 2008; Cheng et al., 2015). With the multifaceted
regulation of PD-L1 being revealed, it would be more
feasible to develop complementary therapies to sustain the
response once cancer cells acquire resistance to the initial
treatment.

OUTSTANDING CHALLENGES

The prosperity and challenges of immunotherapies targeting the
PD-1/PD-L1 axis warrant increasing attentions by biological and
pharmaceutical scientists. In our opinion, several research
directions would be especially beneficial to a sustained
improvement of ICBT.

Firstly, the regulation of PD-L1 should be further clarified
in more specified conditions, considering the variations in
tumor regions and developmental stages. It has been suggested
that PD-L1 expression may differ considerably on the tumor
boundary. Cells located here have higher accessibility where
immune cells encounter the tumor cells. Thus, tissue sampling
by traditional methods may not robustly capture such alterations

and result in low fidelity in different assays such as Western
Blot, qPCR and microarray tests. On the other hand, hypoxia-
related induction of PD-L1 is more likely to occur in the center
of solid tumors where oxygen is less accessible. Moreover, our
recent study found that PD-L1 is significantly upregulated in
metastatic CRCs while compared to primary tumors (Wang
H.B. et al., 2017). Thus, the regulation of PD-L1 during
metastasis and its corresponding biomarker significance should
be considered differentially from those in the primary tumors.
To investigate the regulation of PD-L1 in tumors, it is essential
to precisely mark the region and stage (e.g., primary vs.
metastatic, pre-treatment vs. post-treatment, etc.) of a particular
patient, because these variations are associated with the indicated
mechanisms.

Secondly, the link between PD-L1 expression and cancer
subtyping has been investigated based on genomic and
transcriptomic characterizations of tumors. In many tumors,
the microsatellite instability (MSI) subtype is linked to PD-
L1 positivity and considered as a key factor indicating
the suitability for checkpoint blockade therapy (Xiao
and Freeman, 2015; Dudley et al., 2016). Even though,
more comprehensive understanding on the implications
of PD-L1 in cancer subtyping should also be founded by
insights into the epigenetic and metabolic reprograming
of cancer cells. As described previously, epigenetic and
metabolic alterations in tumors are emerging as crucial
factors affecting the abundance of PD-L1. In a translational
perspective, significant and functional alterations at these
facets may also present novel biomarkers and intervention
opportunities.

Thirdly, it deserves tremendous efforts to clarify the overlaps
and differences between PD-L1 and its homolog PD-L2 in their
functions and regulations in various tumors. Although PD-
L2 was initially considered to be mainly expressed in immune
cells, recent studies have revealed its positive expression in
different tumor cells with potential prognostic significance.
As an example, we found that PD-L2 is expressed in a
considerable subset of CRC cells, with independent association
with poor patient survival (Wang H. et al., 2017). It is
thus of interest to clarify the relative importance of PD-L1
and PD-L2 in a specific tumor type. Will one protein
compensate the function of the other, or be upregulated
when its homolog is blocked in immunotherapy? Which
ligand of PD-1 may play a predominant role in suppressing
T-cell immunity in a given cancer type of patient, and
should this be considered when optimizing the strategy for
immunotherapy? These questions should be addressed, in order
to understand and improve the effectiveness and sustainability of
ICBT.

Finally, the structure-based drug design targeting PD-L1
may not be limited in the binding surface to PD-1 or the
site mediating its dimerization. If allosteric control of PD-L1
activity could be identified, additional approaches targeting PD-
L1 would be feasible. Moreover, the protein interactions between
PD-L1 and its reported regulators (e.g., CSN5, CMTM6, etc.)
could be characterized in and enough resolution, rational design
of blocking peptides or compounds may also be developed.
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In other words, basic research about the structural dynamics
and detailed interaction sites of PD-L1 may provide additional
resources for the development of de novo PD-L1 targeting
approaches.

CONCLUSION

Immune checkpoint blockade therapy represents a breakthrough
in cancer treatment, but the primary and acquired resistance
to immunotherapy warrant further efforts to understand the
multifaceted regulation of PD-L1 in cancer. As a cell surface
protein that responds to microenvironment stimuli, PD-L1 reacts
promptly to balance the outside stresses and inside requirements
of cells, representing a key node in the cancer signaling network.
In this scenario, the effective and sustained targeting of PD-
L1 has to take the complexity of its regulation into account.
Identification of the exact causes of PD-L1 upregulation and
responsive functional compensations in a broader range of
molecular events would improve the targeting specificity and
efficiency. A chasm is yet to be crossed by obtaining small
molecular inhibitors of PD-L1 in addition to antibody drugs,
to improve the cancer distribution and metabolic kinetics of
immunotherapeutic medicines. Current approaches for targeting
PD-L1 could also affect its normal functions in immune cells,

with expected unwanted effects. In these scenarios, targeting PD-
L1 effectively and specifically in cancer cells remains a Gordian
knot.
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B7H3 (also known as CD276, an immune checkpoint molecule) is aberrantly overex-
pressed in many types of cancer, and such upregulation is generally associated with a 
poor clinical prognosis. Recent discoveries indicate a crucial role for B7H3 in promot-
ing carcinogenesis and metastasis. This review will focus on the latest developments 
relating specifically to the oncogenic activity of B7H3 and will describe the upstream 
regulators and downstream effectors of B7H3 in cancer. Finally, we discuss the emerging 
roles of microRNAs (miRNAs) in inhibiting B7H3-mediated tumor promotion. Excellent 
recent studies have shed new light on the functions of B7H3 in cancer and identified 
B7H3 as a critical promoter of tumor cell proliferation, migration, invasion, epithelial-to- 
mesenchymal transition, cancer stemness, drug resistance, and the Warburg effect. 
Numerous miRNAs are reported to regulate the expression of B7H3. Our meta-analysis 
of miRNA database revealed that 17 common miRNAs potentially interact with B7H3 
mRNA. The analysis of the TCGA ovarian cancer dataset indicated that low miR-187 
and miR-489 expression was associated with poor prognosis. Future studies aimed at 
delineating the precise cellular and molecular mechanisms underpinning B7H3-mediated 
tumor promotion will provide further insights into the cell biology of tumor development. 
In addition, inhibition of B7H3 signaling, to be used alone or in combination with other 
treatments, will contribute to improvements in clinical practice and benefit cancer patients.

Keywords: B7H3, CD276, metastasis, epithelial-to-mesenchymal transition, cancer stem cells, microRNA

iNTRODUCTiON

Metastasis, or the consequences of their treatment, are the primary cause of cancer death (1). 
Metastasis is commonly viewed as a multistep event resulting in the dissemination of tumor cells 
from the primary tumor site to a distant location (2). These include loss of gap junction and tight 
junction contacts with neighboring cells, migration and invasion of basement membrane and extra-
cellular matrix, entry and survival in the blood vascular and lymphatic system, extravasation into the 
parenchyma of distant tissues, adaptation to tumor microenvironment and host tissue remodeling, 
and re-initiation of their proliferative programs at metastatic sites (3, 4).

Epithelial-to-mesenchymal transition (EMT) endows epithelial tumor cells with enhanced 
motility and invasiveness (5, 6). Furthermore, EMT-derived tumor cells acquire cancer stem cell 
(CSC) properties and exhibit therapeutic resistance (6–9). In addition, the mutual interactions 
between tumor cells and the surrounding tumor microenvironment will eventually promote 
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TABle 1 | The association between B7H3 expression and clinicopathologic factors of human cancers.

Cancer type No. Method expression Clinical factors Reference

Size Stage/ 
grade

invasion  
depth

lN meta/ 
recurrence

Survival

Bladder, breast, cervical, colorectal,  
esophageal, kidney, liver, lung,  
ovarian, pancreatic, prostate  
cancer, glioma, melanoma

1,342 IHC Upregulation NA NA NA NA NA (23)

Bladder cancer 302 IHC Upregulation − − − − NA (24)
Endometrial cancer 107 IHC Upregulation − + NA NA Poor (25)
Pancreatic cancer 26 ELISA Upregulation + NA NA NA NA (26)
Pancreatic cancer 59 IHC Upregulation NA + NA + NA (27)
Cervical cancer 108 IHC Upregulation + − − − Poor (28)
Breast cancer 90 IHC Upregulation − − − − Poor (29)
Breast cancer 82 IHC/qPCR Upregulation + + − + NA (30)
Intrahepatic cholangiocarcinoma 45 IHC Upregulation − − + + Poor (31)
Colorectal cancer 275 IHC Upregulation NA + + − Poor (32)
Ovarian cancer 103 IHC Upregulation NA + − − Poor (33)
Glioma 41 IHC/microarray Upregulation NA + − − NA (43)
Melanoma 97 IHC/qPCR Upregulation NA + − − Poor (44)
Lung cancer 270 IHC Upregulation NA + NA NA Poor (34)
Lung cancer 70 IHC Upregulation NA − NA + NA (35)
Liver cancer 24 IHC Upregulation NA + + − Poor (36)
Prostate cancer 823 IHC Upregulation NA NA + + Poor (37)
Prostate cancer 2,111 Microarray Upregulation NA + NA + Poor (38)
Oral squamous cell carcinoma NA IHC Upregulation + + − − Poor (39)
Kidney cancer 743 IHC Upregulation + + NA NA Poor (40)
Pancreatic cancer 96 IHC/qPCR Upregulation NA − − − Better (41)
Gastric cancer 32 IHC/qPCR Upregulation − − − − Better (42)

LN meta, lymph node metastasis; NA, data were not available.
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tumor development and metastasis (10). Tumor microenvi-
ronment comprises many cell types including immune cells, 
fibroblasts, and endothelial cells (11). Tumor cells frequently 
display altered expression of cytokines and chemokines that 
promote the infiltration and activity of suppressive immune cell 
populations and also express immune checkpoint molecules 
(such as programmed cell death 1 ligand 1 and B7H3, also 
known as CD276) to inhibit the antitumor immune response 
(12–17).

B7H3 is expressed on immune cells (such as antigen-
presenting cells or macrophages) and tumor cells and has 
inhibitory roles on T cells, contributing to tumor cell immune 
evasion (18–20). Recent studies have shown that B7H3 is a cru-
cial player in tumor growth and metastasis beyond the immune 
regulatory roles (21). The developments in our understanding 
of cancer biology have provided a better understanding of how 
B7H3 regulates EMT and cancer stemness and of molecular 
mechanisms responsible for controlling the expression of B7H3 
in cancer.

Although there have been substantial advances in our under-
standing of cancer at the molecular level, its prevention and 
treatment are still lacking. Considering the significant roles of 
B7H3 in cancer immunity and progression, the value of B7H3 in 
cancer diagnosis and treatment warrants further detailed study. 
Here, we review our current knowledge of how dysregulation of 
B7H3 and its signaling pathways can influence the hallmarks of 
cancer and discuss the potential use of microRNA (miRNA) as a 
potential therapeutic strategy for B7H3 overexpressing tumors, 

especially focusing on those miRNAs involved in the regulation 
of B7H3 expression in ovarian cancer.

B7H3 ACTivATiON iN CANCeR

B7H3 (CD276) belongs to the B7 superfamily of immune check-
point molecules (22). It is present at low levels in most normal 
tissues but is overexpressed in a wide variety of cancers, includ-
ing bladder, breast, cervical, colorectal, esophageal, glioma, 
kidney, liver, lung, ovarian, pancreatic, prostate, intrahepatic 
cholangiocarcinoma, liver, oral squamous cell carcinoma, 
endometrial cancer, and squamous cell carcinoma and gastric 
cancer (23–42), glioma (43), and melanoma (44) (Table  1). 
Numerous studies showed that the overexpression of B7H3 was 
correlated with advanced tumor stage and high tumor grade in 
endometrial, cervical, breast, kidney cancer, and oral squamous 
cell carcinoma (25, 28, 30, 39, 40). The overexpression of B7H3 
is associated with the proliferation and invasive potential of 
pancreatic, breast, colorectal, liver, prostate cancer, intrahepatic 
cholangiocarcinoma, and oral squamous cell carcinoma (26, 27, 
30–32, 36–40). Notably, overexpression of B7H3 was found to 
correlate with poorer prognosis in many cancers (25, 28, 29, 
31–34, 36–40, 44). However, high B7H3 expression predicts 
better survival for patients with gastric and pancreatic cancer 
(41, 45). A possible explanation for this discrepancy could be 
different cancer type (or subtypes), tumor heterogeneity, differ-
ences in sample size, and clinical stage, the time point of B7H3 
measurement and the different methodology used in research.
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FigURe 1 | High expression of B7H3 was correlated with poorer prognosis in cancers. (A) B7H3 expression profile across TCGA pan-cancer datasets. Images 
were taken from the GEPIA (Gene Expression Profiling Interactive Analysis) online database (http://gepia.cancer-pku.cn). N, normal; C, cancer. *P < 0.05.  
(B) Kaplan–Meier curves for overall survival in indicated cancer types using the Kaplan–Meier Plotter database (www.kmplot.com). Red and black lines indicate 
patients with higher and lower than median B7H3 mRNA expression, respectively. High expression of B7H3 was significantly correlated with shorter overall survival 
in each Kaplan–Meier plotter cohort. BRCA, breast invasive carcinoma; OV, ovarian serous cystadenocarcinoma; UCEC, uterine corpus endometrial carcinoma; 
LUSC, lung squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; STAD, stomach adenocarcinoma.

3

Dong et al. B7H3 Promotes Cancer Metastasis

Frontiers in Oncology | www.frontiersin.org July 2018 | Volume 8 | Article 264

We assessed B7H3 expression in TCGA pan-cancer datasets 
obtained from Gene Expression Profiling Interactive Analysis 
(GEPIA) online database.1 In agreement with previous reports, 
RNA sequencing analysis of mRNA expression from the 
GEPIA online database (46) revealed that B7H3 expression 
levels tend to be higher in breast, ovarian, endometrial, lung, 
liver, and gastric cancer tissues compared to corresponding 
normal tissues (Figure 1A). We also characterized the associa-
tion between B7H3 mRNA expression and prognosis in several 
cancers using the Kaplan–Meier plotter database2 (47). Higher 
expression of B7H3 was significantly associated with shorter 
overall survival in breast, ovarian, lung, liver, and gastric cancer 
(Figure 1B).

THe ROleS OF B7H3 iN DiFFeReNT 
CANCeR CellS AND POSSiBle 
MeCHANiSMS

The following sections and Table  2 summarize the current under-
standing of the functional role of B7H3 in metastasis and describe 
its underlying mechanisms in different tumor cells.

1 http://gepia.cancer-pku.cn (Accessed: June 5, 2018).
2 http://kmplot.com/analysis/ (Accessed: June 5, 2018).

ROleS OF B7H3 iN CANCeR Cell 
PROliFeRATiON AND iNvASiveNeSS

Evidence supporting a tumor-promoting role for B7H3 is now 
increasingly apparent from functional studies of diverse malig-
nancies. A lot of evidence demonstrated that B7H3 is involved 
in biological processes of cancer development, such as prolifera-
tion, migration, and invasion. For instance, knockdown of B7H3 
expression in prostate, breast, gastric, liver, pancreatic, colorectal 
cancer cells, and melanoma cells could significantly suppress cell 
migration and invasion (26, 42, 48–57).

Different molecular mechanisms may also underlie these 
effects: (1) B7H3 induced the migratory potential and invasive-
ness of tumor cells by increasing the expression of metastasis-
associated proteins such as MMP2, STAT3 and IL-8 (50); (2) by 
increasing the levels of CXCR4 and activating AKT, ERK, and 
JAK2/STAT3 pathways (52); (3) through activating the JAK2/
STAT3/MMP9 pathway (55); (4) by increasing the expression 
of MMP2 (56); (5) by activating the TLR4/NF-κB signaling and 
increased IL-8 and VEGF expression (57).

Several studies have provided convincing in  vivo functional 
data that are consistent with the data from cancer cell lines and 
thus support the tumor-promoting role of B7H3 during cancer 
progression. For example, in the subcutaneous transplantation 
pancreatic cancer mouse model, tumor growth rate was reduced 
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TABle 2 | Roles, functions, and mechanisms of B7H3 in cancer.

Cancer type Role Function Mechanism Reference

Prostate cancer Oncogene Migration, invasion NA (48)

Melanoma/breast cancer Oncogene Migration, invasion NA (49)

Melanoma/breast cancer Oncogene Migration, invasion Increased the expression of MMP2, STAT3, and IL-8 (50)

Melanoma Oncogene Proliferation, glycolytic capacity, resistance to 
chemotherapy and small-molecule inhibitors

NA (51)

Breast cancer Oncogene Paclitaxel resistance Activated JAK2/STAT3 pathway (64)

Breast cancer Oncogene Glucose uptake, lactate production,  
proliferation

Increased the expression of HIF1α and its downstream 
targets, LDHA and PDK1

(70)

Gastric cancer Oncogene Migration, invasion, proliferation NA (42)

Gastric cancer Oncogene Migration, invasion Increased CXCR4; and activated AKT, ERK, and JAK2/
STAT3 phosphorylation

(52)

Esophageal squamous cell 
carcinoma 

Oncogene Migration, invasion NA (53)

Liver cancer Oncogene Proliferation, adhesion, migration, and invasion NA (54)

Pancreatic cancer Oncogene Proliferation, invasion NA (26)

Colorectal cancer Oncogene Resistance to chemotherapy Activated JAK2/STAT3 pathway (65)

Colorectal cancer Oncogene Oxaliplatin resistance Increased the expression of XRCC1 via PI3K/AKT pathway (66)

Colorectal cancer Oncogene Migration, invasion Activated JAK2/STAT3/MMP9 pathway (55)

Colorectal cancer Oncogene Resistance to chemotherapy Increased BRCC3 expression (67)

Colorectal cancer Oncogene Resistance to chemotherapy Activated PI3K/AKT/TS pathway (68)

Colorectal cancer Oncogene Epithelial-to-mesenchymal transition,  
cancer stemness

Decreased E-cadherin expression and increased of 
N-cadherin, Vimentin, CD133, CD44, and OCT4 expression

(59)

Osteosarcoma Oncogene Invasion Increased the expression of MMP2 (56)

Pancreatic cancer Oncogene Invasion, metastasis Activated TLR4/NF-κB signaling and increased IL-8 and 
VEGF expression

(57)

Glioma Oncogene Migration, invasion, cancer stemness NA (61)

Ovarian cancer Oncogene Resistance to chemotherapy and small- 
molecule inhibitors, cancer stemness

Possibly increased the expression of ALDH (60)

NA, data were not available.
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by the knockdown of B7H3 (26). Similarly, the silencing of B7H3 
significantly decreased tumor proliferation in mantle cell lym-
phoma in vitro and in vivo (58).

B7H3 MeDiATeS eMT AND CSC iN 
CANCeR CellS

Some researchers claimed that B7H3 plays a key role in modulat-
ing EMT and CSC-like properties of various cancer cells. B7H3 
can promote EMT and cancer stemness by decreasing E-cadherin 
expression and increasing the expression of N-cadherin, 
Vimentin, CD133, CD44, and OCT4 (59). Blockade of B7H3 with 
a monoclonal antibody reduced the number of cancer-initiating 
cells (60). A previous study found that B7H3 is an inducer of cell 
invasion and sphere formation in glioma cells (61), further sug-
gesting a role of B7H3 in the cancer invasion process.

Cancer stem cells or tumor-initiating cells not only possess 
the ability of self-renewal but also develop strong resistance 
to chemotherapy (62). It was demonstrated that the induction 
of EMT generated cells with properties of CSCs (63). In breast 
cancer and colorectal cancer cells, B7H3 induced the resistance to 
paclitaxel or 5-fluorouracil (5-FU) through activating the JAK2/
STAT3 pathway (64, 65). In addition, a few other mechanisms 
may also underlie B7H3-mediated chemoresistance: (1) B7H3 
induces oxaliplatin resistance by increasing the expression of 
XRCC1 via PI3K/AKT pathway (66); (2) B7H3 also enhances 

cell resistance to chemotherapy by increasing the expression of 
BRCC3, which antagonizes DNA damage caused by 5-FU (67); 
(3) or via the activation of the PI3K/AKT pathway (68).

ROle OF B7H3 iN CANCeR MeTABOliSM

Warburg effect (or aerobic glycolysis) is a metabolic hallmark of 
cancer, characterized by an excessive conversion of glucose to 
lactate even with ample oxygen (69). A recent study found that 
B7H3 can promote the Warburg effect, evidenced by increased 
glucose uptake and lactate production in breast cancer cells. 
Furthermore, this stimulating effect of B7H3 on the Warburg 
effect was also observed in a mouse model of breast cancer (70). 
Mechanistically, B7H3-induced metabolic shift in cancer cells is 
mediated by HIF1α, a master regulator in the reprogramming 
of cancer metabolism in favor of glycolysis (70), revealing a new 
mechanism for the Warburg effect in cancer cells. Reasonably, we 
believe treating tumors by targeting their metabolism through 
modulation of B7H3 expression would probably generate a better 
effect of tumor eradication.

RegUlATORY MeCHANiSMS OF B7H3 iN 
CANCeR

Protein expression is usually controlled by the following 
mechanisms: the genetic aberrations of the gene loci (71), 
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FigURe 2 | MicroRNAs (miRNAs) that potentially regulate B7H3 expression 
in ovarian cancer. (A) Venn diagram showing the overlap of miRNAs that 
were predicted to bind to the B7H3 3′-UTR by alternative algorithms 
(TargetScan, miRSystem, and DIANA-MicroT-CDS). (B) The 17 predicted 
miRNAs were common to these three algorithms. (C) The Kaplan–Meier 
survival curves of 458 TCGA (Cancer Genome Atlas database) ovarian 
cancer samples were created using the SurvMicro database based on the 
low (n = 229) or high (n = 229) risk for a poor outcome. (D) Box plots 
demonstrating significantly lower levels of miR-187 and miR-489 expression 
in the high-risk ovarian cancer patients.
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transcriptional regulation (72), posttranscriptional regulation at 
the mRNA level (73), and protein modification (74). Epigenetic 
mechanisms such as DNA methylation (75), histone modification 
(76), and non-coding RNAs (77, 78) play a key role in regulating 
gene expression. DNA methylation and modification of histones 
mediate gene transcription, and miRNAs regulate gene expres-
sion posttranscriptionally (79). To date, it is less clear whether 
B7H3 overexpression observed in cancer is due to genomic DNA 
amplification, or which transcription factors are responsible for 
B7H3 transcription. However, chromatin immunoprecipitation 
analysis in prostate cancer cells revealed an androgen receptor-
binding site upstream of B7H3, and the presence of androgens 
decreased B7H3 expression (38).

Interestingly, immunoglobulin-like transcript-4 (ILT4) is an 
inhibitory receptor that inhibits the function of certain immune 
cells and was shown to upregulate B7H3 expression via the PI3K/
AKT/mTOR signaling in lung cancer cells (80). Co-expression 
of ILT4 and B7H3 was positively corelated with lymph node 
metastasis and advanced tumor stage (80). Consequently, further 
study is needed to elaborate the link between ILT4 and B7H3 in 
different cancer cells.

At the posttranscriptional level, numerous miRNAs, including 
miR-214, miR-363*, miR-326, miR-940, miR-29c, miR-665, miR-
34b*, miR-708, miR-601, miR-124a, miR-380-5p, miR-885-3p, 
and miR-593, directly interact with the 3′-UTR of B7H3 mRNA, 
resulting in attenuation of B7H3 expression in breast cancer 
(81). miR-124 also binds directly to the 3′-UTR of B7H3 mRNA, 
inhibiting its expression in osteosarcoma (82). TGF-β1 through 
SMAD3 and SMAD4 elevated miR-155 expression, which in turn 
attenuated CEBPB expression and consequently miR-143 expres-
sion in colorectal cancer cells. As a result, the reduction of miR-
143 led to the upregulation of B7H3, a direct target of miR-143 
(83). These results indicated that TGF-β1 may promote cancer 
immune escape by upregulating B7H3 expression. In addition, 
a recent study demonstrated that p53 binds to the promoter of 
miR-124 to elevate its expression in colorectal cancer cells (84). 
Meanwhile, iASPP, a novel oncoprotein overexpressed in many 
cancers, interacts with p53 to suppress p53-mediated transcrip-
tion of target genes (75, 85). Thus, these results indicate a possible 
mechanism underlying B7H3 overexpression in tumors: iASPP-
mediated p53 repression leads to the downregulation of miR-124, 
subsequently resulting in increased expression of B7H3.

We used three computational algorithms, including 
TargetScan,3 miRSystem,4 and DIANA-MicroT-CDS5 to identify 
miRNAs that might regulate B7H3 expression. This analysis 
revealed 17 common miRNAs predicted to bind the 3′-UTR of 
the B7H3 transcript (Figures  2A,B). In colorectal cancer cells, 
a recent study showed that miR-187 binds B7H3 mRNA and 
suppresses its expression to inhibit cell proliferation, migration, 
invasion, and induced cell apoptosis (86). In clear cell renal cell 
carcinoma, another study confirmed that B7H3 expression is 
downregulated by miR-187, a tumor suppressor that suppresses 

3 http://www.targetscan.org/vert_72/ (Accessed: June 5, 2018).
4 http://mirsystem.cgm.ntu.edu.tw/ (Accessed: June 5, 2018).
5 http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/
index (Accessed: June 5, 2018).

cancer cell proliferation and motility (87). Collectively, these data 
suggest that the loss of tumor suppressor miRNAs activate B7H3 
and contributes to cancer progression.

We further evaluated the correlation of patient survival with 
the expression of these miRNAs in ovarian cancer samples in the 
TCGA by using the online software SurvMicro.6 Ovarian patients 
were stratified into the high-risk (with a low probability of sur-
vival; n = 229) or low-risk (with a high probability of survival; 
n = 229) group (P = 8.4E−07, Figure 2C). High-risk patients had 
lower miR-187 and miR-489 expression levels than the low-risk 
patients (Figure 2D). Thus, these 17 miRNAs, especially miR-187 
and miR-489, are expected to have binding sites in the 3′-UTR of 
B7H3 in cancer cells, although functional validation remains to 
be performed.

CONClUSiON

Interruption of metastasis pathways holds preclinical and clinical 
promise as an anti-metastasis therapy. The emerging role of B7H3 
in human tumor cells and in inducing EMT/CSC-like features have 
been noted. Furthermore, tumor cells could rely on Warburg effect 
to generate energy (88). The recent findings led to the identification 
of B7HH3 as a contributor to the Warburg effect (70). Therefore, 
targeting the metastatic potential and metabolic changes with 
inhibitors against B7H3 may be a promising way for cancer therapy.

6 http://bioinformatica.mty.itesm.mx:8080/Biomatec/Survmicro.jsp (Accessed: 
June 5, 2018).
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The induced B7H3 expression has been detected in multiple 
cancers as compared with normal tissues. The B7H3 protein, 
especially when located in the cell membrane, may be a perfect 
choice for targeted drug development. Importantly, the treatment 
with an inhibitory B7H3 monoclonal antibody in melanoma 
cells leads to decreased proliferation and Warburg effect (51). 
Additionally, targeting B7H3 with a monoclonal antibody has 
demonstrated the safety and efficacy in the salvage treatment of 
stage IV childhood neuroblastoma (43). Activated T cell (ATC) 
armed with a novel anti-CD3 × anti-B7H3 bispecific antibody 
was found to significantly inhibit lung cancer growth in  vivo 
compared with unarmed ATC (89), indicating that targeting 
B7H3 represent a novel alternative to improve current cancer 
therapy.

Future studies aimed at delineating the precise cellular and 
molecular mechanisms underpinning B7H3-mediated tumor 
promotion will provide further insights into the cell biology of 

tumor development. In addition, inhibition of B7H3 signaling, 
to be used alone or in combination with other treatments, will 
contribute to improvements in clinical practice and benefit 
cancer patients.
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Although the role of PD-L1 in suppressing the anti-tumor immune response is extensively

documented, recent discoveries indicate a distinct tumor-intrinsic role for PD-L1 in

modulating epithelial-to-mesenchymal transition (EMT), cancer stem cell (CSC)-like

phenotype, metastasis and resistance to therapy. In this review, we will focus on the

newly discovered functions of PD-L1 in the regulation of cancer development, describe

underlying molecular mechanisms responsible for PD-L1 upregulation and discuss

current insights into novel components of PD-L1 signaling. Furthermore, we summarize

our current understanding of the link between PD-L1 signaling and the EMT program as

well as the CSC state. Tumor cell-intrinsic PD-L1 clearly contributes to cancer stemness,

EMT, tumor invasion and chemoresistance in multiple tumor types. Conversely, activation

of OCT4 signaling and upregulation of EMT inducer ZEB1 induce PD-L1 expression

in cancer cells, thereby suggesting a possible immune evasion mechanism employed

by cancer stem cells during metastasis. Our meta-analysis demonstrated that PD-L1 is

co-amplified along withMYC, SOX2,N-cadherin and SNAI1 in the TCGA endometrial and

ovarian cancer datasets. Further identification of immune-independent PD-L1 functions

and characterization of crucial signaling events upstream or downstream of PD-L1 in

diverse cancer types and specific cancer subtypes, would provide additional targets and

new therapeutic approaches.

Keywords: PD-L1, CD274, metastasis, EMT, cancer stem cells, microRNA

INTRODUCTION

In cancer, the epithelial-to-mesenchymal transition (EMT) is a phenotypic process that promotes
the acquisition of a mesenchymal features of epithelial tumor cells, reduces cell polarity and
cell-cell adhesion, and enables them to migrate and invade more efficiently, by switching off
the expression of epithelial markers, such as E-cadherin, and turning on mesenchymal markers,
including N-cadherin and Vimentin (1, 2). Epithelial tumor cells undergoing EMT are shown to
contribute to tumorigenesis, invasion, metastasis, and resistance to chemotherapy, radiation and
small-molecule-targeted therapy (3).

Cancer stem cells (CSCs) represent a fraction of undifferentiated cancer cells that are the seeds
of tumor recurrence, have the ability to self-renew and exhibit significant resistance to conventional
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chemo- and radiotherapy (4). Emerging evidence has revealed
an association between EMT and the acquisition of CSC-like
properties (5). The induction of EMT program is a critical
regulator of the CSC phenotype (6, 7). On the other hand, tumors
cells that exhibit the CSC phenotype also express genes associated
with the EMT features and show enhanced metastatic ability,
thus representing a novel mechanism contributing to cancer
metastasis (8).

The mutual interactions between tumor cells and the
tumor microenvironment are essential for tumorigenesis, tumor
progression,metastasis and resistance to drug therapy (9). Tumor
microenvironment consists of extracellular matrix and diverse
cell populations such as T cells, NK cells, macrophages, dendritic
cells, fibroblasts, and endothelial cells (10). Progression of cancer
to an advanced or metastatic disease usually suggests a failure
or insufficiency of the ongoing immune response. Tumors not
only effectively escape immune recognition, they also actively
inhibit T-cell-mediated normal anti-tumor activity to promote
further tumor growth and metastasis by modulating immune
checkpoints, which mediate immune tolerance and inhibit
the anti-tumor immune response (11). Multiple checkpoint
molecules, such as PD-1/PD-L1, CTLA4, BTLA, B7H3, B7H4,
HHLA2, IDO1, Tim-3, CD28, CD40, CD47, CD70, CD137,
VISTA, LAG-3, and TIGIT, have been reported (11). Among
them, B7H3 has been identified as a critical promoter of tumor
cell proliferation, migration, invasion, EMT, cancer stemness,
and drug resistance (12).

PD-L1 (also known as CD274 or B7H1) is expressed in tumor
cells and plays a crucial role in tumor immune escape and the
formation of a permissive immune microenvironment, through
at least three mechanisms: (i) tolerizing or anergizing tumor-
reactive T cells by binding to its receptor PD-1; (ii) rendering
tumor cells resistant to CD8+ T cell and Fas ligand-mediated
lysis; and (iii) tolerizing T cells by reverse signaling through
T cell-expressed CD80 (13, 14). In addition, PD-L1 is also
expressed by tumor-associated myeloid-derived suppressor cells
and macrophages, which are the major factors responsible for
tumor-associated immune deficiencies (15).

Although PD-L1 is widely implicated in tumor immune
evasion, the tumor-intrinsic roles of PD-L1 and the mechanisms
by which PD-L1 regulates EMT, the acquisition of tumor-
initiating potential and resistance to anti-tumor drugs, as well as
the ability to disseminate and metastasize in human cancers are
currently less well defined. As will be discussed in more detail
below, the identification of tumor-intrinsic PD-L1 signaling may
provide critical targets for the development of cancer therapies.

PD-L1 DYSREGULATION AND PROGNOSIS
IN CANCER

An increasing number of studies suggested that PD-L1 is
highly expressed in solid tumors, including colorectal cancer
(16), lung cancer (17), pancreatic carcinoma (18), hepatocellular
carcinoma (19), gastric cancer (20), ovarian cancer (21),
endometrial cancer (22, 23), and cervical cancer (24, 25).
High expression of PD-L1 was associated with significantly

worse overall survival in cervical cancer (25), non-small cell
lung cancer (26), gastric cancer (27), esophageal cancer (28),
glioma (29), ovarian cancer (30), and other cancers (31).
However, the prognostic value of PD-L1 for certain types
of cancer is still controversial. Some studies reported that
high PD-L1 could predict favorable prognosis (32, 33). In
cervical cancer, squamous cell carcinomas tended to express
more PD-L1 than adenocarcinomas (34). The possible reasons
for these inconsistent results might include cancer type (or
subtypes), tumor heterogeneity, sample size, clinical stage,
different intervention, the time point of PD-L1 measurement
as well as the different methodology used in research (such as
detection methods and procedures).

MECHANISMS OF PD-L1 ACTIVATION IN
CANCER

The tumor-intrinsic PD-L1 signaling pathway is inappropriately
activated in many cancers. Mechanisms underlying aberrant
PD-L1 activation mainly include genomic alterations (including
copy number amplification and 3’-UTR disruption), constitutive
oncogenic signaling activation, extrinsic factors and epigenetic
mechanisms, such as upregulation of oncogenic microRNAs
(miRNAs), downregulation of tumor suppressor miRNAs,
aberrant DNA methylation, and histone modifications
(Figure 1).

Copy Number Gain and 3′-UTR Disruption
Small-cell lung cancer (35), squamous cell carcinoma of the
oral cavity (36), cervical cancer (37), ovarian cancer (38),
breast cancer (39), melanoma, bladder cancer, head and neck
cancer, soft tissue sarcoma and prostate cancer (40) exhibit
increased copy number of chromosome 9p24, on which CD274
resides. Here, we investigated the frequency of elevated PD-
L1 in ovarian cancer and endometrial cancer in The Cancer
Genome Atlas (TCGA) data portal. Analysis of TCGA data
by cBioPortal (41) demonstrated that overall, PD-L1 was
highly expressed in these two cancers, mainly including gene
amplification and mRNA up-regulation (Figure 2A). Moreover,
analyses of U133A and U133Plus2 datasets in the GENT (gene
expression across normal and tumor tissue) database (42)
revealed that PD-L1 was highly overexpressed in many tumor
tissues (Figure 2B). Furthermore, analysis of the TCGA dataset
was performed by using the MethHC browser (43). PD-L1
mRNA expression was consistently upregulated across various
cancers (Figure 2C). In addition, disruption of the 3’ region
of the PD-L1 increases mRNA stability, leading to a marked
elevation of aberrant PD-L1 transcripts in multiple cancers
(44).

Constitutive Oncogenic Signaling
Activation
Loss of PTEN expression, activation of PI3K/AKT pathway,
activation of RAS/MAPK pathway, inhibition of p53 signaling,
upregulation of reprogramming factors (Oct4, Sox2, and c-Myc)
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FIGURE 1 | Mechanisms of PD-L1 activation in cancer. The diagram illustrates the diverse mechanisms of PD-L1 activation in cancer, including genetic alterations to

PD-L1 (such as gene amplification, 3’-UTR disruption, or dysregulated transcription) and a wide range of epigenetic mechanisms (including upregulation of oncogenic

microRNAs, downregulation of tumor suppressor microRNAs, aberrant DNA methylation and histone modifications).

and upregulation of ZEB1 (an inducer of EMT) are clearly linked
to the activation of PD-L1 signaling pathway (45, 46) (Figure 1).

PD-L1 expression could be regulated via the PI3K/AKT
and/or RAS/MAPK pathways in different tumor cell types (47–
49). PD-L1 expression is suppressed by the tumor suppressor
gene PTEN. Deletion of PTEN gene results in elevated PD-L1
expression at the translational level by activating the PI3K/AKT
signal pathway (50, 51). FOXOs inhibit the expression of PD-
L1 through repressing Myc or Wnt/β-catenin signaling pathways
in tumor cells (52). MUC1 elevates PD-L1 transcription by
recruitment of MYC and NF-κB (a downstream effector of
PI3K/AKT pathway (53) to the PD-L1 promoter in breast
cancer (54). Also, MUC1 was shown to increase PD-L1 levels
via downregulation of miR-34a and miR-200c, two direct
suppressors of PD-L1 (55–57).

Abnormal activation of stem cell signaling pathways
has been implicated in the regulation of PD-L1. OCT4
is a key regulatory gene that maintains the self-renewal
properties of CSC and promotes tumorigenesis of cervical
cancer cells by miR-125b/BAK1pathway (58). We recently
reported that, OCT4 promotes cervical cancer invasion and
proliferation by enhancing PD-L1 expression through a miR-
18a-dependent mechanism, by which miR-18a upregulates
PD-L1 by targeting PTEN, WNK2 and SOX6 to activate
the PI3K/AKT, MEK/ERK and Wnt/β-catenin pathways
and inhibit the p53 pathway (25). In addition, SOX2, a
transcription factor that controls tumor initiation and
cancer stem-cell functions, can directly bind to the PD-L1
promoter and transactive its expression, contributing to
the increased proliferation of hepatocellular carcinoma cells
(59). The upstream kinases of the Hippo pathway MST1/2

and LATS1/2 suppress PD-L1 expression, while TAZ and
YAP enhance PD-L1 levels in breast and lung cancer cells
(60).

Tumor cells undergoing EMT are shown to share a variety
of capabilities with experimentally defined CSC (61). In lung
cancer, PD-L1 expression was significantly higher in patients
with EMT phenotypes (such as increased SNAI1 and Vimentin
expression) compared with those with epithelial phenotypes
(62). siRNA-mediated ZEB1 knockdown suppressed PD-L1
expression but promoted E-cadherin expression in esophageal
squamous cell carcinoma (63). In agreement with these reports,
cBioportal analysis of data on somatic copy number variation
and mRNA level using TCGA endometrial and ovarian cancer
dataset demonstrated that PD-L1 is indeed co-amplified along
with MYC, SOX2, N-cadherin and SNAI1 in both cancer types
(Figure 2A).

Another study reported that transcription factor NKX2-
1 bound to the locus of PD-L1 and induced its expression
in mucinous lung cancer cells (64). In non-small cell lung
cancer cells, the ubiquitin ligases Cbl-b and c-Cbl inhibit PD-
L1 expression by inactivating STAT, AKT, and ERK signaling
(65), and overexpression of tumor suppressor gene TUSC2
downregulated PD-L1 expression (66). CDK4 and CDK6 kinase
destabilize PD-L1 protein via cullin 3–SPOP, leading to the
downregulation of PD-L1 in cancer cells (67).

Regulation of PD-L1 Expression by
Epigenetic Mechanisms
The expression of cancer-associated genes can occur by
epigenetic mechanisms, including DNA methylation (68),
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FIGURE 2 | Amplification and upregulation of PD-L1 and genes co-amplified with PD-L1 in TCGA data. (A) The Cancer Genome Atlas (TCGA) datasets in the

cBioPortal database (www.cbioportal.org) was used to investigate molecular alterations (RNA expression, copy number variation, and mutation). Shown are OncoPrint

outputs where each bar represents a tumor that was found to contain an alteration (amplification, deletion, mutation, upregulation, and downregulation, as indicated)

in PD-L1, MYC, SOX2, N-cadherin (CDH2), and SNAI1 gene in samples of endometrial cancer (upper panel) and ovarian cancer (lower panel) based on TCGA data.

(B) PD-L1 mRNA expression pattern was analyzed in a panel of cancer (red) vs. normal (green) tissues from the GENT database. (C) PD-L1 expression pattern was

determined in multiple cancer microarray datasets available in the MethHC database. N, normal; C, cancer. **P < 0.005.

histone modification (69), chromatin remodeling, and non-
coding RNAs (70). The anti-PD-1 therapy could induce PD-
L1 promoter methylation and decrease PD-L1 levels in patients
with non-small cell lung cancer (71). The class I histone
deacetylase HDAC8 acts as an epigenetic inhibitor of PD-
L1 expression in melanoma cells via modulating HOXA5
and STAT3 (72). Numerous miRNAs, including miR-15a/miR-
16 (73), miR-17-5p (74), miR-93/106b (75), miR-138-5p (76),
miR-140/miR-142/miR-340/miR-383 (25), miR-152 (77), miR-
155 (78), miR-193 (73), miR-195 (73), miR-324-5p/miR-
338 (79) and miR-322/miR-424 (80), have been shown to
directly target and inhibit PD-L1 expression in tumor cells.
In chemo-resistant non-small-cell lung cancer cells, miR-
197 indirectly inhibits PD-L1 expression by regulating the

CKS1B/STAT3 axis (81). On the other hand, oncogenic miR-
20b and miR-21 inhibited PTEN expression, resulting in PD-
L1 overexpression in colorectal cancer (82). Our recent data
established that an oncogenic OCT4-miR-18a pathway serves
as the key upstream activator of PD-L1 in cervical cancer
(27).

Extrinsic Factors Influencing the
Expression of PD-L1
The main regulators of PD-L1 are the interferon-γ (83),
inflammatory cytokines such as IL-17 (84) and TNF-α (84),
TGF-β1 (85), and HIF-1α (86). Of note, overexpressing
HPV16E7 oncoprotein increased PD-L1 protein expression,
and knockdown of HPV16E7 resulted in a reduction in
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FIGURE 3 | Tumor-intrinsic PD-L1 signaling in cancer initiation and development. The diagram illustrates signaling events downstream of PD-L1 activation in cancer.

Although PD-L1 could serve as a tumor suppressor by inhibiting cancer stem cell properties in cholangiocarcinoma, it plays a pivotal role in promoting cancer

stemness, EMT, tumor invasion, and chemoresistance in several tumor types. Importantly, activation of OCT4 signaling induces PD-L1 expression in cancer cells,

thereby suggesting a possible immune evasion mechanism employed by cancer stem cells during metastasis.

PD-L1 protein expression in cancer cells (87). Consistent
with this data, PD-L1 protein expression was significantly
higher in the normal cervical tissues with HPV infection than
those normal cervical tissues without HPV infection (53).
Estrogen is a well-known oncogenic driver of endometrial
and breast cancer, and it upregulates PD-L1 protein
expression in ERα-positive endometrial and breast cancer cells
(88).

THE ROLE OF PD-L1 IN STIMULATING OR
INHIBITING CANCER

A tumor-intrinsic role for PD-L1 in promoting cancer initiation,
metastasis, development, and resistance to therapy is emerging
(Figure 3). For instance, knockdown of PD-L1 expression
in gastric cancer cells could significantly suppress cell
proliferation, migration and invasion (89). Also, knockout
of PD-L1 expression by CRISPR/Cas9 inhibits the spheroid
formation of osteosarcoma cells (90). PD-L1 was shown to
promote EMT in esophageal cancer (91). Knockdown of PD-L1
expression significantly suppressed tumor growth in nude mice
in gastric cancer (92) and cervical cancer model (27).

Interestingly, a link between PD-L1 expression and
EMT/CSC-like phenotypes has been reported. For example,
bladder cancer cells with surface expression of PD-L1 exhibited
signatures of immune evasion as well as increased stemness
(93). PD-L1 has been shown to be preferentially expressed on
CD44high CSCs in lung cancer cells (94). Selective expression
of PD-L1 was observed on CD44+ head and neck tumor cells
compared with CD44− tumor cells (95). CD133+/PD-L1+

colorectal CSC cells showed the characteristic of EMT (96).
Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell
generation in melanoma and ovarian cancer (97). Similarly,

PD-L1 promotes OCT4 and Nanog expression in breast CSCs
through the activation of PI3K/AKT pathway (98).

Moreover, PD-L1 overexpression promotes EMT and invasion
in glioblastoma multiforme via RAS/ERK/EMT activation (99).
RNA-sequencing analysis of glioblastoma multiforme revealed
that PD-L1 significantly altered the expression of genes, which
were enriched in cell growth/migration/invasion pathways
(99). PD-L1 induced EMT via activating SREBP-1c in renal
cell carcinoma (100). CRISPR/Cas9 system-mediated PD-L1
disruption increased drug sensitivities for doxorubicin and
paclitaxel (90). The interaction of PD-L1 with PD-1 induced
phosphorylation of AKT and ERK, resulting in the activation
of PI3K/AKT and MAPK/ERK pathways and increased MDR1
expression in breast cancer cells (101).

However, depletion of PD-L1 expression by shRNA in
cholangiocarcinoma cells enhances their tumorigenicity and
increases ALDH activity, and patients with lower PD-L1
expression shows poorer prognosis when compared with those
with higher PD-L1 expression (102), indicating that PD-L1 may
also have anti-tumor effects by inhibiting cancer stemness under
certain circumstances.

CONCLUSIONS

It is becoming clear that, although PD-L1 could serve as a
tumor suppressor by inhibiting cancer stem cell properties in
cholangiocarcinoma, tumor cell-intrinsic PD-L1 plays a pivotal
role in promoting cancer stemness, EMT, tumor invasion,
and chemoresistance in several tumor types. Importantly,
activation of OCT4 signaling and upregulation of EMT
inducer ZEB1 induce PD-L1 expression in cancer cells,
thereby suggesting a possible immune evasion mechanism
employed by cancer stem cells during metastasis. The continued
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characterization of immune-independent PD-L1 functions
and identification of crucial signaling events upstream or
downstream of PD-L1 in diverse cancer types (or specific cancer
subtypes), would provide additional targets and new therapeutic
approaches.
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Checkpoint inhibitor (CPI) based immunotherapy (i.e., anit-CTLA-4/PD-1/PD-L1
antibodies) can effectively prolong overall survival of patients across several cancer
types at the advanced stage. However, only part of patients experience objective
responses from such treatments, illustrating large individual differences in terms of
both efficacy and adverse drug reactions. Through the observation on a series
of CPI based clinical trials in independent patient cohorts, associations of multiple
clinical and molecular characteristics with CPI response rate have been determined,
including microenvironment, genomic alterations of the cancer cells, and even gut
microbiota. A broad interest has been drawn to the question whether and how these
prognostic factors can be used as biomarkers for optimal usage of CPIs in precision
immunotherapy. Therefore, we reviewed the candidate prognostic factors identified by
multiple trials and the experimental investigations, especially those reported in the recent
2 years, and described the possibilities and problems of them in routine clinical usage
of cancer treatment as biomarkers.

Keywords: immunotherapy, checkpoint inhibitor, PD-1, PD-L1, CTLA-4

INTRODUCTION

Existence of immune checkpoints is essential for modulating duration and magnitude of T cell
responses and maintaining self-tolerance (Pardoll, 2012), while suppression of antitumor immune
responses facilitates harmful tumor growth. With a constantly deepening understanding of the
immune system and its role on cancer development, the field of cancer immunotherapy has
been explored with great enthusiasm, aimed at harnessing immune system to induce or restore
antitumor activities (Topalian et al., 2011). Among complicated pathways of immune system,
interactions of cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4) with CD80/CD86, and
programmed cell death 1 (PD-1) with programmed cell death ligand 1 (PD-L1) has been considered
to act as “brakes” on the immune system (Linsley et al., 1991; Freeman et al., 2000; Schildberg
et al., 2016). CTLA-4 has a much stronger affinity with CD80/86 than CD28, thus inhibiting
crucial CD28/CD80 and CD28/CD86 based T cell activation (Manson et al., 2016), while PD-
1/PD-L1 interaction induces imbalanced activation of signaling pathways which results in altered
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T-cell metabolism and subsequent abnormal differentiation,
leading to reduced T effector cells and increased T regulatory
cells (Tregs) as well as T exhausted cells (Boussiotis, 2016).
Therefore, CTLA-4 and PD-1/PD-L1 have been considered as the
“star” candidate targets to immune-checkpoint blockade (ICB)
based immunotherapy. Unprecedented success of anti-CTLA-4
and anti-PD-1/PD-L1 ICBs have been achieved in various tumor
types that were previously sentenced to gloomy prognosis under
traditional treatments (Thomas and Hassan, 2012; Gogas et al.,
2013; Lee et al., 2015; Restifo et al., 2016), significantly prolonging
overall survival with acceptable toxicity in patients with advanced
melanoma (Hodi et al., 2010; Wolchok et al., 2013; D’Angelo
et al., 2017), non-small-cell lung cancer (NSCLC) (Gettinger
et al., 2015, 2016; Hellmann et al., 2017), and other tumor types
(Hamanishi et al., 2015; Morris et al., 2017; Overman et al., 2017).

Until recently, six CPIs have been approved by the U.S. Food
and Drug Administration (FDA), and all of them are monoclonal
antibodies against the targets, including one for CTLA-4
(i.e., Ipilimumab), two for PD-1 (i.e., Pembrolizumab and
Nivolumab), and three for PD-L1 (i.e., Avelumab, Atezolizumab,
and Durvalumab) (Table 1). Ipilimumab was firstly approved
for advanced melanoma in 2011 (Ma et al., 2016), which
symbolizes the remarkable clinical success of anti-CTLA-4 and
thus elicits further investigations into PD-1/PD-L1 pathway.
Pembrolizumab was the first inhibitor for PD-1, which was
approved as the second-line treatment for unresectable or
metastatic melanoma, followed by Nivolumab (for unresectable
metastatic melanoma, advanced metastatic NSCLC and
advanced metastatic renal cell carcinoma), Atezolizumab (for
urothelial carcinoma following platinum-based chemotherapy),
Avelumab (for metastatic Merkel-cell carcinoma, and
Durvalumab for urothelial carcinoma following platinum-
based chemotherapy) (Manson et al., 2016; Pitt et al., 2016).
Afterward, indications of these CPIs have been largely expanded
after clinical trials, and exhibits remarkable disease responses
in a wide range of histological types of carcinomas, such as
hematologic malignancies, head and neck cancer, and bladder
cancer (Armand et al., 2013; Postow et al., 2015a; Table 1).
Recently, Nivolumab has been successfully used as a neoadjuvant
therapy before surgery in patients with early untreated NSCLC,
and preoperative usage of Nivolumab can induce augmentation
of neoantigen-specific T cells (Forde et al., 2018). Noteworthily,
though sharing almost similar mechanisms, anti-PD-L1 therapy
may render distinct effect from anti-PD-1. The subtle difference
lies in that the PD-L1 antibody does not block the interaction
between PD-1 and PD-L2, while PD-1 blockade cannot block
the interaction of PD-L1 with CD80, which is expressed on
T cells and deliver inhibitory signals of antitumor activities
(Butte et al., 2007). Actually, a meta-analysis has shown that
anti-PD-1 achieves higher overall survival and response rate
than anti-PD-L1 in NSCLC, which reveals anti-PD-1 as a better
choice for patients with NSCLC (You et al., 2018). Moreover,
accumulated evidence has indicated that combined usage of
anti-PD and anti-CTLA-4 antibodies can synergetically improve
clinical outcome compared with either agent alone (Larkin et al.,
2015; Hodi et al., 2016; Hellmann et al., 2017; Wolchok et al.,
2017), probably due to their different function mechanisms.

Although great success has been achieved with CPI based
immunotherapy, large individual differences were noticed in
terms of treatment outcomes (Gibney et al., 2016; Manson
et al., 2016; Pitt et al., 2016; Topalian et al., 2016; Zou et al.,
2016; Nishino et al., 2017), which varied among different cancer
types. For instance, the response rate for patients treated with
Ipilimumab is only 10–15% in metastatic melanoma (Hodi
et al., 2010), and rarely exceeds 40% for PD-1 blockade therapy,
even a large proportion of partial responders were included
(Brahmer et al., 2012; Hamid et al., 2013), indicating that the
majority of patients treated with PD-1/PD-L1 blockade fail
to respond sufficiently. In addition, PD-1/PD-L1 blockade can
induce immune-related adverse drug reaction events (ADR)
deriving from non-specific immunologic activation, which are
reported to be much less than those induced by anti-CTLA-4,
though (Larkin et al., 2015; Robert et al., 2015). The toxicities
observed in CPI treatment include the most frequent fatigue
and possibly fatal inflammatory pneumonitis, and high grade
adverse events may lead to forced abortion of the treatment
(Zou et al., 2016). Worse still, some patients even demonstrate
disease hyperprogression following treatment, which is defined as
<2 months of time-to-treatment failure (TTF), >50% increase in
tumor burden compared with preimmunotherapy imaging, and
>2-fold increase in progression pace (Champiat et al., 2017; Kato
et al., 2017). In this case, effective biomarkers for the indication of
treatment outcomes are largely required. Indeed, some biomarker
candidates have been put into practice, and recommended to be
determined before CPI treatments.

In precision medicine era, understanding the mechanisms,
by which patients lack response/produce resistance to CPI
treatments or suffer from severe ADR, is of utmost importance
for selecting the patients specifically suitable for the treatment.
In this review, we will focus on current knowledge of
factors that influence the sensitivity and resistance to CPI-
based immunotherapy (e.g., clinical characteristics, genomic
alterations, tumor microenvironment (TME), host immune
functions, and gut microbiota), and highlight the potential
biomarkers for CPI treatments, especially the new evidences
reported lately (Table 2 and Figure 1).

CLINICALLY RELEVANT FACTORS

Age, Gender, and Diet
Aging is commonly correlated with limited and dysfunctional
immune activities characterized by reduced lymphocyte
proliferation and increased exhausted T cells, resulting in
susceptibility to various diseases and increased cancer incidence
(Fulop et al., 2010; Lee et al., 2016). In vivo studies have shown
upregulation of PD-1 expression on T cells of aged animals,
indicating the potentially critical role of PD-1 blockades in
the old (Mirza et al., 2010; Lim et al., 2015). Consistent with
the decreased activity of immune system in elders, current
evidence exhibited that ICB therapy can significantly benefit
all age of patients with NSCLC with the exception of patients
≥75 years (Landre et al., 2016; Nishijima et al., 2016; Ferrara
et al., 2017). In another hand, anti-PD-1/PD-L1 is found
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TABLE 1 | FDA-approved immune checkpoint inhibitors in cancer treatment.

Target Antibody Trade name Company Indication (approval date)

CTLA-4 Ipilimumab YERVOY Bristol-Myers
Squibb (BMS)

Unresectable or metastatic melanoma (2011)

PD-1 Pembrolizumab KEYTRUDA Merck Sharp &
Dohme (MSD)

Unresectable or metastatic melanoma (approved for patients with
disease progression after ipilimumab and, if BRAF V600 mutation
positive in 2014, and expanded to initial treatment in 2015)

Metastatic NSCLC whose tumors express PD-L1 as determined by
an FDA-approved test and who have disease progression on or
after platinum-containing chemotherapy (2015)

Nivolumab OPDIVO Bristol-Myers
Squibb (BMS)

Metastatic melanoma (2014, approved for BRAF V600 wild-type
tumor in 2015)

Squamous NSCLC with progression or after platinum-based drugs
(2015, and expanded to non-squamous NSCLC later in 2015)

Advanced metastatic renal cell carcinoma after angiogenic therapy
(2015)

Classical Hodgkin lymphoma that has relapsed or progressed after
autologous hematopoietic stem cell transplantation and
post-transplantation brentuximab vedotin (2016)

Locally advanced or metastatic urothelial carcinoma which have
progression during or following platinum-containing chemotherapy
or have progression within 12 months of neoadjuvant or adjuvant
treatment with platinum-containing chemotherapy (2017)

PD-L1 Atezolizumab TECENTRIQ Roche and
Genentech

Locally advanced or metastatic urothelial carcinoma after failure of
cisplatin-based chemotherapy (2016), but the confirmatory trial
failed

Metastatic NSCLC whose disease progressed during or following
platinum-containing chemotherapy (2016)

Avelumab BAVENCIO Merck and Pfizer Metastatic Merkel-cell carcinoma (2017)

TABLE 2 | Factors related to the efficacy of ICBs.

Classification Biomarkers Influence

Clinical-relevant factors Age The elderly patients lack response to ICBs.

Gender Male patients respond better to ICBs.

Diet Obesity and improved FA catabolism improve anti-PD therapy.

Viral infection MCV and EBV infected patients respond better to anti-PD therapy.

Tumor autonomous mechanisms Tumor mutational/neoantigen load High mutational/neoantigen loads improve efficacy of ICBs

PD-L1 expression High PD-L1 expression improves anti-PD therapy

Tumor microenvironment Cells Increased TILs improve response to ICBs, while Tregs and MDSCs
impair the efficacy.

Immunoregulatory pathways Inhibition of TH1 chemokines, CD28/B7, IFN and activation of
TGFβ, TIM3 lead to resistance to PD blockades.

Host-related factors Peripheral blood markers Increased eosinophils, lymphocytes, monocytes and low LDH levels
improve response to PD blockades.

MHC class I Impaired MHC class I molecules lead to resistance to anti-PD
therapy

TCR repertoire Less diverse T cell repertoire improves response to anti-PD

The gut microbiota Bacteroides species facilitate anti-CTLA, more diversified bacteria,
such as Bifidobacterium, Akkermansia muciniphila,
Ruminococcaceae bacteria, facilitate anti-PD.

to be capable of inducing hyperprogressive disease during
the treatment, which is more frequent in elderly patients
(Champiat et al., 2017). Therefore, the age at diagnosis may
influence the efficacy and side ADR rate of CPI treatments,
although more confirmation investigations with larger samples
and less heterogeneity are warranted to settle this debated
topic.

Substantial sex-dependent diversities in innate and adaptive
immunity have been noticed for a long time, resulting in different
susceptibility and immune functions in response to infections
and autoimmune diseases between males and females (Fischer
et al., 2015; Klein and Flanagan, 2016). Interestingly, accumulated
evidence has highlighted that gender plays a considerable role
in response to CPIs. A systematic review on the relationship
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FIGURE 1 | Factors associated with response to anti-PD-1/PD-L1 therapy.

between efficacy and sex of patients indicates that the efficacy of
CPI based treatments is sex-dependent, with significantly greater
benefit in male patients in all studied cancer types (Conforti et al.,
2018). Likewise, another study shows that more improvement of
survival resulting from CPI treatment is observed in males than
females, and the survival of patients treated with anti-CTLA-4
is more influenced by sex compared with those receiving anti-
PD-1 (Wu et al., 2018). Though the current conclusions are not
confirmed and clinical trials including more female patients are
needed, the gender of patients should be taken into consideration
in CPI based treatments.

Healthy diet including sufficient nutrient intake is of great
significance for maintaining powerful immune defense against
invading pathogens, especially for patients combating tumor
progression. It is well reported that unbalanced diet may lead
to impaired immunity and accelerate disease development, and
obesity is associated with chronic inflammation and cancer
development (Fang et al., 2017; Quail et al., 2017). Paradoxically,
a meta-analysis of patients with metastatic melanoma indicates
that obesity is correlated with improved benefit of anti-
PD therapy compared with normal body-mass index (BMI)

(McQuade et al., 2018). Interestingly, this association is only
observed in males without any clear mechanisms clarified.
Moreover, dysregulated metabolism may contribute to the
exhaustion of lymphocyte infiltration within the TME. For
example, it has been recently discovered that CD8 + T cells
enhance peroxisome proliferator-activated receptor (PPAR)-α
signaling and catabolism of fatty acids when simultaneously
subjected to hypoglycemia and hypoxia. Promoting fatty acid
catabolism obviously improves the capacity of tumor infiltrating
lymphocytes (TILs) to delay tumor growth and synergizes with
PD-1 blockade to efficiently boost the efficacy of melanoma
immunotherapy (Zhang Y. et al., 2017). Through influencing
multiple immune components and functions, diet and metabolic
factors might be related to clinical effect of PD-1 blockade,
though direct evidence is currently lacked.

Viral Infections
Disorders of the immune system and failure in tumor eradication
can result from viral infections, which may also impact the
ICB treatment response. For instance, a clinical observation
regarding advanced Merkel-cell carcinoma exerts significantly
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high level of clinical response, providing a novel perspective
that virus-positive status may contribute to success of anti-
PD-1 therapy (Nghiem et al., 2016). Theoretically, oncogenic
viruses may serve as strong tumor-specific antigens, and cancer
cells should escape from the immune monitoring through
inducing immune inhibition. In fact, overexpression of PD-L1 is
commonly observed in Merkel-cell carcinoma cells (Wong et al.,
2015). Similarly, Epstein-Barr virus (EBV)-positive gastric cancer
has been recently reported to have low mutation burden but
high expression of immune checkpoint pathways and abundant
lymphocytic infiltration, thus demonstrating meaningful clinical
response to PD-1/PD-L1 inhibitors (Janjigian et al., 2017; Panda
et al., 2017). It has been further discovered that part of
CD8 + TILs can recognize tumor unrelated epitopes, such as
those from EBV, human cytomegalovirus and influenza virus,
which may explain the mechanism by which virus-positivity
facilitates host immunity. Moreover, these CD8 + TILs lack the
expression of CD39, suggesting that measuring CD39 expression
could be an effective approach to select the patients with high
possibility of virus infection (Simoni et al., 2018). Although
more virus related ICB treatment trials with larger sample size
are warranted, current evidence implies oncogenic viruses may
be considered as a potential biomarker for predicting effect of
anti-PD therapies.

TUMOR AUTONOMOUS MECHANISMS

Tumor Mutational Loads, Mismatch
Repair Deficiency, and Microsatellite
Instability
Tumor mutational burden (TMB), which is mostly determined
by next generation sequencing, has been broadly found to be
associated with the response to CPIs. Evidence from clinical trials
suggests the positive correlation between high tumor mutational
loads and improved clinical efficacy of ICB-based therapies
(including anti-PD-1, anti-PD-L1, and anti-CTLA-4) in NSCLC
and melanoma (Snyder et al., 2014; Rizvi et al., 2015; Van
Allen et al., 2015; Hugo et al., 2016; Forde et al., 2018), which
have the highest mutation burdens as well as response rates
(Lee et al., 2010; Berger et al., 2012; Topalian et al., 2012).
Actually, a pooled analysis across 27 tumor types or subtypes
illustrated a significantly strong positive correlation between
the TMB and the objective response rate to PD-1 inhibition
(Yarchoan et al., 2017), indicating the biomarker potential of
TMB for PD-1 blockade efficacy. Besides, TMB also predicts
clinical efficacy in the combination of anti-PD-1 and anti-CTLA-
4 (Hellmann et al., 2018). Loss-of-function of alterations in
genes involved in DNA repair can largely induce high TMB,
and lack of the ability to repair DNA errors is closely related
to microsatellite instability (MSI). Therefore, remarkable clinical
benefit from ICB therapy are significantly enriched in patients
with MSI status (Le et al., 2015) or specific alterations in
DNA repair genes, such as BRCA2, POLD1, POLE, and MSH2
(Rizvi et al., 2015; Hugo et al., 2016). Due to the stronger
practicality, clinical examination of MSI status, deficiency of
mismatch repair genes (through immunohistochemistry), or

Lynch Syndrome (inherited mutations in mismatch repair genes
with family history) can efficiently predict the good responders,
although some patients with negative signals of these potential
biomarkers may still get benefit from ICB treatments (Dudley
et al., 2016).

It is considered that better response of patients with high
TMB to ICB response is attributed to immunogenicity of
tumor cells, somatic mutations of which can be translated to
antigens and recognized as tags of “foreign” by the immune
system (Gibney et al., 2016). These tumor-specific antigens are
named as “neoantigens,” and thereby provide highly specific
targets for anti-tumor activities of the immune system (Hacohen
et al., 2013; van Rooij et al., 2013). The process of neoantigen
recognition is attenuated by expression of PD-L1 and some
other immunosuppressive ligands (Pages et al., 2005; Llosa
et al., 2015). Hence, blockade of immune checkpoints will
release inhibition of immune system and reinvigorate pre-
existing neoantigen recognition. Not surprisingly, neoantigen
burden is closely correlated to TMB, and can be also induced by
mismatch repair deficiency (Le et al., 2015). Quite a few patients
with advanced mismatch repair-deficient cancers demonstrate
significantly durable responses to PD-1 blockade with expanded
neoantigen-specific T cell clones (Le et al., 2017). Additionally,
neoantigens are mostly predicted by bioinformatic approaches
with computational algorithms, which is highly imperfect in
terms of low validation rate (e.g., 1–3 mutation-associated
neoantigens out of top 30–50 predicted candidates validated
by T cell responses) (Kvistborg et al., 2014; Tran et al., 2015),
while it is complicated and time-consuming to determinate
the functional neoantigens with a series of immunologic
experimental investigations, making it improper for neoantigens
as an effective clinical biomarkers so far.

Few but important exceptions rejecting the predictive role
of tumor mutational status exist in the aforementioned studies
(Rizvi et al., 2015; Hugo et al., 2016), consistent with a finding that
tumor infiltration is not weakened under the circumstance of low
mutational loads in gastrointestinal cancers (Tran et al., 2015),
indicating other equally considerable mechanisms contributing
to treatment resistance. Neoantigen intratumour heterogeneity
may play an important role, and patients with both high TMB
and low neoantigen intratumour heterogeneity (<1%) have
significantly longer progress-free survival and overall survival
compared to patients with high TMB alone (McGranahan et al.,
2016). Moreover, strong antigens may disobey the correlation
of neoantigen and TMB. For instance, Merkel cell polyomavirus
(MCV)-associated Merkel-cell carcinomas have a 100 times lower
mutational load than ultraviolet-induced virus-negative Merkel-
cell carcinomas (Wong et al., 2015; Goh et al., 2016), but exhibit
better response to ICB therapy, which can be explained by its
presentation of strong viral antigens (Yarchoan et al., 2017).

PD-L1 Expression
Increased PD-1 ligands and their ligation to PD-1 on tumor-
specific CD8 + T cells is a pivotal strategy adopted by
tumors to contend with host immune responses. In certain
cancer types (e.g., melanoma, NSCLC, pancreatic cancer, breast
cancer, and gastrointestinal stromal tumors), PD-L1 expression
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is upregulated and associated with poor prognosis (Konishi et al.,
2004; Bertucci et al., 2015; Sabatier et al., 2015; Birnbaum et al.,
2016). Tumor PD-L1 upregulation reflects negative dynamic
immune activities in the TME (Taube et al., 2012; Spranger
et al., 2013) and is the premise of anti-PD-1/PD-L1 therapy.
So far, PD-L1 is one of the best-studied as well as widely used
biomarkers.

Studies on NSCLC have shown that patients with high
expression of PD-L1 on the surface of tumor cells have
significantly better clinical responses to PD-1/PD-L1 inhibitors
(Passiglia et al., 2016; Muller et al., 2017). Likewise, patients
treated with the anti-PD-1 antibody BMS-936558 (also known
as MDX-1106) respond differently according to their PD-L1
status (Brahmer et al., 2010; Topalian et al., 2012). In a meta-
analysis of patients treated with Nivolumab, Pembrolizumab
or MPDL3280A (an engineered anti-PD-L1 antibody), response
rates are significantly higher in PD-L1-positive tumors, and
the predictive role of PD-L1 on tumor cells is stronger
for Pembrolizumab and Nivolumab (Carbognin et al., 2015).
Samples from several cancer types demonstrate that response
to anti-PD-1 blockade is most closely correlated with the
expression of tumor cell PD-L1 in comparison with that of other
immunosuppressive molecules such as PD-1 and PD-L2 (Taube
et al., 2014). On the other hand, in addition to PD-L1 expressed
on tumor cells, PD-L1 expression on tumor infiltrating cells
also displays noteworthy connections with clinical outcome of
MPDL3280A (Herbst et al., 2014; Powles et al., 2014).

PD-L1 immunohistochemistry (IHC) has been approved
by FDA as a companion diagnostic to select patients with
NSCLC suitable for Pembrolizumab treatment. Nevertheless,
absence of PD-L1 does not necessarily imply poor response
to anti-PD-1/PD-L1 blockades. Some patients with low PD-
L1 expression still demonstrate impressive clinical effect. The
paradoxical predictive value of PD-L1 expression may partly
be explained by different standards of analyzing, including
different staining techniques or assessed range (tumor or both
tumor and cells in microenvironment). The different threshold
of PD-L1 expression is also important. A good example is
the clinical trials of Nivolumab vs. Pembrolizumab as first-line
treatment. Nivolumab was the firstly emerged anti-PD-1 CPI,
however, failed in clinical trials probably because of the low
setting of PD-L1 expression threshold at >1%. On the contrary,
Pembrolizumab was later developed and precisely applied to
the patients with PD-L1 expression >50% in clinical trials,
which made it successfully become the first-line treatment for
NSCLC. Besides, dynamic and inducible characteristic of PD-L1
expression also contributes to the contradictory results. PD-L1
can be up-regulated by IFNγ, hence patients with low baseline
PD-L1 level may gradually become strong PD-L1 positive under
an inflammatory circumstance as the treatment proceeds, and
the response to anti-PD blockade also changes as PD-L1 is
upregulated (Manson et al., 2016; Zou et al., 2016). Therefore,
the application of PD-L1 expression assessment is endowed with
useful but not definitive predictive value.

In another hand, further efforts are still needed to refine
the clinical use of PD-L1 expression as biomarkers, especially
detected by immunohistochemistry. Firstly, PD-L1 expression

may be checked in multiple sites of tumor at multiple time points,
because PD-L1 expresses dynamically and thus can be influenced
by different mechanisms; secondly, standardized determination
of PD-L1 expression is largely needed to exclude the possible
variation induced by different PD-L1 antibodies (Gibney et al.,
2016).

Gene Mutations and Genomic
Alterations in Tumor
Cancer cell genetic alterations in pivotal signaling pathways
might be responsible for suppressed T cell activities and
deficient antitumor immunity, consequently impacting response
to anti-PD therapies (Table 3). Tumor-intrinsic activation of
WNT/β-catenin signaling pathway results in subdued CCL4
expression and subsequent precluded dendritic cell (DC)
recruitment and DC-mediated T-cell activities, thus leading to
resistance to anti-PD-L1 and anti-CTLA-4 therapies (Spranger
et al., 2015). Loss of phosphatase and tensin homolog (PTEN)
as well as activation of PI3K-AKT pathway in tumor cells brings
about increased immunosuppressive cytokines and attenuated
T-cell infiltration and activity, thereby promoting resistance
to PD-1 inhibitor therapy (Peng et al., 2016). Similarly,
EGFR pathway activation has been found to be correlated
with development of immunosuppressive microenvironment
represented by upregulation of PD-1, PD-L1, CTLA-4, and
multiple tumor-promoting inflammatory cytokines (Akbay et al.,
2013). Patients with EGFR mutation even receive less benefit from
ICB therapy compared to chemotherapy (Borghaei et al., 2015;
Rittmeyer et al., 2017). Clinical data of patients with NSCLC
shows that mutations in EGFR are associated with low overall
response rate to PD-1/PD-L1 inhibitors due to decreased PD-L1
expression and CD8 + TILs. However, T790M-negative EGFR-
mutant patients are more likely to benefit from anti-PD-L1 after
previous treatment (Gainor et al., 2016; Haratani et al., 2017). In
addition to poor outcome, patients with EGFR alterations tend to
be hyperprogressors with significantly increased tumor growth
rate after receiving PD-1/PD-L1 inhibitors (Kato et al., 2017).
In the other hand, recent evidence indicates that inhibitors of
the receptor tyrosine kinase c-MET impair reactive mobilization
and recruitment of neutrophils into tumors and draining lymph
nodes, and thus increase effector T cell infiltration, suggesting
c-MET pathway inhibition may improve responses to checkpoint
immunotherapies including anti-PD (Glodde et al., 2017).

Relapse specific mutations were investigated and identified in
four patients with required resistance to PD-1 blockade therapy
in melanoma, including loss of function of JAK1, JAK2, and
B2M, which induces either lack of response to interferon gamma
(IFNγ), or loss of surface expression of major histocompatibility
complex I (MHC I) (Zaretsky et al., 2016). Afterward, multiple
clinical reports and subsequent experiments have confirmed that
B2M alterations in tumor cells (i.e., mutations, deletions, and
down-regulation) can largely induce acquired CPI resistance
(Gettinger et al., 2017; Janjigian et al., 2017; Grasso et al.,
2018). Importantly, high frequency of initial B2M mutations were
found in patient-derived xenografts for lung cancer, suggesting
patients with this gene mutation may experience primary
resistance to CPIs (Pereira et al., 2017). With CRISPR screening,
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TABLE 3 | Alterations of genes associated with effect of anti-PD therapy.

Gene Change of the response caused by mutations Mechanism

BRCA2 Better Mismatch repair deficiency (Hugo et al., 2016)

POLD1, POLE, MSH2 Better Mismatch repair deficiency (Rizvi et al., 2015)

PTEN Worse Increased immunosuppressive cytokines and attenuated T-cell infiltration and
activity (Peng et al., 2016)

EGFR Worse Decreased PD-L1 expression and CD8 + TILs (Gainor et al., 2016; Haratani
et al., 2017)

JAK1, JAK2 Worse Insensitivity to IFNγ and its antiproliferative effects on cancer cells (Zaretsky
et al., 2016)

CALR, PDIA3, TAP1 Worse Impaired HLA-1 complex (Pereira et al., 2017)

B2M Worse Impaired MHC type I and HLA-1 molecules (Zaretsky et al., 2016; Janjigian
et al., 2017; Pereira et al., 2017)

PBRM1 Better Activation of JAK-STAT signaling pathway and elevated sensitivity to IFNγ

(Miao et al., 2018; Pan et al., 2018)

ARID2, BRD7 Better Enhanced sensitivity to T-cell-mediated cytotoxicity (Miao et al., 2018)

MDM2/MDM4, DNMT3A Worse Inhibition of p53 tumor suppressor (Kato et al., 2017)

TERT, NF1, NOTCH1 Better Unclear (Kato et al., 2017)

APLNR Worse Attenuated IFNγ responses in tumors (Patel et al., 2017)

multiple genes were also identified to be essential for cancer
immunotherapy, including APLNR, which can interact with JAK1
(Patel et al., 2017). Therefore, alterations of these genes may also
induce primary or acquired resistance. Clinically, it will be helpful
to predict the poor responders and relapse risk by examining the
alterations status of these resistance-related genes, which can be
further considered as biomarkers.

Despite of point mutations, somatic copy number alterations
(SCNAs) and structure variations (SVs) are also key hallmarks
and driver events of tumorigenesis. Interestingly, most of the
gene expression signatures exhibit down-regulation in high level
of SCNAs tumors (also named aneuploidy tumors), including
CD8 + T cell receptors and IFNγ pathways. Consistently,
SCNA level is negatively related to the CPI treatment outcomes.
Although paradoxically, SCNAs levels are positively correlated
with the number of TMBs in 8 out of 12 tumor types, especially
with passenger mutations. Combination of aneuploidy and TMB
can increase the prediction efficiency to separate good and poor
responders, indicating the potential of SCNAs as independent
biomarkers (Davoli et al., 2017).

TUMOR MICROENVIRONMENT

Cells Contributing to Tumor Immunity
The TME includes not only tumor cells, but also extracellular
matrix, stromal cells and immune cells, which closely interact
with tumor itself. As the main force in anticancer immunity, the
presence of TILs has been commonly considered as a favorable
predictor for prognosis of cancers (Ruffini et al., 2009; Reissfelder
et al., 2015; Brambilla et al., 2016). High baseline level of pre-
existing CD8 + T cells as well as increase in tumor infiltrating
CD8 + T cells during treatment has been found to be associated
with better response of patients treated with anti-PD-1 therapy
(Tumeh et al., 2014; Daud et al., 2016). In turn, anti-PD blockades
also increase the number and restore the function of effector T

cells during the treatment (Wei et al., 2017; Zhou et al., 2017).
Interestingly, TMB and PD-L1 overexpression is correlated to
presence of TILs (Herbst et al., 2014; Nishino et al., 2017).
Also, DNA repair gene mutation is companied by prominent
lymphocyte infiltrates, especially activated cytotoxic T cells.

Nonetheless, a recent study on gastric adenocarcinoma
indicates that increasing CD8+T cells are surprisingly correlated
with impaired survival as well as higher PD-L1 expression,
which marks an adaptive immune resistant microenvironment
(Thompson et al., 2017). In some clinical studies, increased TIL
density after the second dose of CPI instead of the baseline
of TIL status was significantly associated with clinical CPI
activities (Hamid et al., 2011; Tumeh et al., 2014). Moreover,
an approach to systematically assessing intra- and peri-tumoral
T cell infiltration, namely immunoscore, has been considered
as a stronger predictor of prognosis as well as response to
ICB therapies due to its integrated evaluation of immune
features (Mlecnik et al., 2016; Voong et al., 2017). Both
Tregs and myeloid derived suppressor cells (MDSCs) contribute
to T cell dysfunction and TME immunosuppression, thus
presenting profound impact on resistance to PD blockades
(Kalathil et al., 2013). The comparison of anti-PD-1 sensitive
and resistant patients reveals that Tregs partly preclude the
efficacy of anti-PD-1 (Ngiow et al., 2015), and that depletion of
Tregs can potentiate checkpoint inhibitors (Taylor et al., 2017).
Nevertheless, it is reported that apoptotic Tregs sustain and even
amplify their immunosuppressive function via the adenosine
and A2A pathways under oxidative stress, which highlights
oxidative pathway as a metabolic checkpoint controlling Tregs
and thus affecting the effect of anti-PD (Maj et al., 2017).
Moreover, it has been newly discovered that a canonical
nuclear factor κB (NF-κB) subunit c-Rel plays an essential role
in Treg function, and chemical inhibition of c-Rel impairs
Treg-mediated immunosuppression and potentiates the effect
of anti-PD-1 therapy (Grinberg-Bleyer et al., 2017). MDSCs
proliferate during cancer, inflammation and infection, and
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perform the immunosuppressive function through restraining
T-cell response. Reducing the number of MDSCs has been
proved to be capable of enhancing antitumor effect of anti-PD-
1 blockade (Orillion et al., 2017). Indoleamine-2, 3-dioxygenase
(IDO) is a rate-limiting enzyme that controls tryptophan
catabolism in tumor cells and MDSCs within the TME, which
is recognized as an important microenvironmental factor that
impairs cytotoxic T cell responses and survival (Schafer et al.,
2016). The microsatellite instable subset of colorectal cancer,
distinguished by high expression of IDO, poorly responds to
anti-PD-1 therapy (Xiao and Freeman, 2015). On the contrary,
IDO-knockout mice treated with anti-CTLA-4 or anti-PD-
1/PD-L1 demonstrate significant tumor growth regression and
prolonged survival, and combination treatment of IDO inhibitors
and CTLA-4 blockade has achieved remarkable tumor rejection
(Holmgaard et al., 2013). Importantly, combination of anti-
PD-1 CPI and IDO inhibitor (e.g., epacadostat) can increase
the objective response rate and prolong the overall survival in
clinical trial phase I/II, however, surprisingly failed in phase III
recently in 2018, with no benefit but increased ADR rate, possibly
requiring a biomarker to distinguish the precious responders.

Immunoregulatory Pathways Within TME
In addition to alterations in signaling pathways in tumor itself, a
series of pathways within TME also regulate immune activities
and thus impact on effect of anti-PD therapies. Epigenetic
silencing of T helper 1 (TH1)-type chemokines, CXCL9 and
CXCL10, precludes effector T cells from trafficking to the TME
and directly interacting with tumor cells. And it has been proved
that epigenetic modulators can restore T cell activities and
increase T cell infiltration, thus strengthening the therapeutic
efficacy of PD-L1 blockade (Peng et al., 2015). Moreover, the lack
of response to PD-1 blockade has also been found related to a
signature of TGFβ signaling, which renders T cell exclusion and
blocked acquisition of TH1-effector phenotype. And inhibition
of TGFβ signaling provokes antitumor activities and promotes
tumor susceptibility to anti-PD therapies in colorectal cancer
as well as urothelial cancer (Mariathasan et al., 2018; Tauriello
et al., 2018). CD28/B7 costimulatory pathway is commonly
known to be required for T cell proliferation and activation. It
is newly discovered that PD-1/PD-L1 interaction suppresses T
cell function primarily by CD28 inactivation, and the rescue of
exhausted CD8 + T cells by PD blockades is strongly dependent
on CD28 expression, which elucidates the important role of
CD28/B7 costimulatory pathway as a response indicator for
anti-PD therapies (Hui et al., 2017; Kamphorst et al., 2017).
Interestingly, contrary to that elevated PD-L1 expression benefits
the response to anti-PD therapy, upregulation of alternative
immune checkpoints, notably T-cell immunoglobulin mucin-
3 (TIM-3), is related to adaptive resistance. And subsequent
addition of TIM-3 blocking antibody can significantly reverse the
treatment failure of PD-1 blockade (Koyama et al., 2016).

Particularly, another important pathway is IFN signaling,
including IFN type I and II. IFNγ, produced primarily by Th1
cells, NKT cells and NK cells (Farrar and Schreiber, 1993; Boehm
et al., 1997), is abundantly generated and activated when ICBs
enhance T cell responses (Liakou et al., 2008; Peng et al., 2012).

As a pleiotropic and critical cytokine in host immune activities
and tumor rejection (Dighe et al., 1994; Kaplan et al., 1998), IFNγ

exerts its effects through a complex and orderly signaling pathway
(Ikeda et al., 2002). Loss or deficiency of IFNγ signaling pathway
may render disorders of host immune behavior and consequent
insensitivity to immunotherapy (Kaplan et al., 1998; Dunn et al.,
2005). In a study on metastatic melanoma described above, loss-
of-function mutations in genes involved in IFNγ pathway (e.g.,
JAK1 and JAK2) are found associated with relapse of patients who
have shown initial response to anti-PD-1 therapy. And in vitro
truncating mutations of JAK1 and JAK2 results in insensitivity
to IFNγ and its antiproliferative effects on cancer cells (Zaretsky
et al., 2016). IFNγ functions as an important inducer of PD-
L1 on the surface of tumor cells (Taube et al., 2012), and
patients who have a better response to PD-L1 blockade also
have increased IFNγ and IFNγ-inducible chemokines (Herbst
et al., 2014; Powles et al., 2014). These researches shed light on
the vital role of defective IFNγ pathway in the clinical effect
or prognosis of anti-PD therapies. Distinct from IFNγ, type I
IFN within innate immune system is critical for T cell priming
and tumor elimination through signaling on DCs and lack of
type I IFN will result in limited useful T cells for reactivating of
antitumor activities (Diamond et al., 2011; Fuertes et al., 2011).
This is in consistence with the effect of type I IFN induced by
radiotherapy (Lim et al., 2014). Moreover, radiation-induced type
I IFN has been proved to increase expression of MHC class I and
antigen recognition (Burnette et al., 2011; Deng et al., 2014b).
Peritumoral injection of immunostimulatory RNA into immune-
cell-poor melanomas has been observed to initiate a cytotoxic
inflammatory response and tumor inhibition mediated by type
I IFN. More importantly, the activation of type I IFN upregulates
the expression of both PD-1 and PD-L1 and consequently leads to
prolonged survival when PD-1 blockade is combined (Bald et al.,
2014).

HOST-RELATED FACTORS

Peripheral Blood Markers
Great interest has also been aroused in exploring biomarkers
within serum or plasma due to the convenience of sample
acquirement. In terms of immune cells, relatively high eosinophil
count and lymphocyte count indicate favorable overall survival
in patients with melanoma treated with Pembrolizumab (Weide
et al., 2016). A pretreatment neutrophil-to-lymphocyte ratio
(NLR) < 5 has been reported to be associated with improved
survival of patients with NSCLC treated with Nivolumab (Bagley
et al., 2017). The baseline frequency of CD14 + CD16-HLA-
DRhi monocytes has also been found to strongly predict
the response to anti-PD-1 of patients with melanoma (Krieg
et al., 2018). Moreover, low lactate dehydrogenase (LDH) is
related to the prognosis of patients receiving anti-PD-1 therapy.
Studies on patients with melanoma reveal that patients with
an elevated baseline LDH have a significantly shorter overall
survival compared to patients with normal LDH, and the extent
of increase in LDH during treatment is also correlated with
the outcome of anti-PD-1 (Diem et al., 2016; Weide et al.,
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2016). Notably, a peripheral blood profiling reveals that clinical
failure of anti-PD-1 therapy does not only result from insufficient
host immune activation, but also depends on the ratio between
circulating Ki-67-positive cytotoxic T cells and pretreatment
tumor burden. Patients with higher ratio are more likely to
exhibit improved response rate and survival (Huang et al.,
2017), indicating that decreasing tumor burden by previously
appropriate topical treatment may facilitate the effect of anti-PD
therapy.

MHC Class I and T-Cell Receptor (TCR)
MHC class I presenting antigen to cytotoxic T cells is an
essential prerequisite for immune recognition and elimination
of transformed cells (Aptsiauri et al., 2007). Downregulation of
MHC class I has been acknowledged as a common mechanism
of tumor immune escape and a potential determinant of
clinical success of many immunotherapies (Haworth et al.,
2015). Therefore, impaired MHC class I molecules have also
been proposed as a candidate mechanism of resistance to anti-
PD therapies, which has been reported to mainly result from
deficiency in β2-microglobulin (B2M), a critical component of
human MHC class I molecules (also named as HLA in human)
required for CD8 + T cell recognition (Restifo et al., 1996;
Wang et al., 2016; Zaretsky et al., 2016; Patel et al., 2017).
Likewise, a study on lung cancer confirms that the loss of
B2M is correlated with disrupted HLA-1 antigen processing and
presentation, which leads to acquired resistance to PD-1 blockade
(Gettinger et al., 2017). Another study also shows that factors
which impair HLA-1 complex, including not only inactivation of
B2M but also mutations at genes involved in maturation of HLA-
1 complex (e.g., CALR, PDIA3, and TAP1), can affect the response
to anti-PD-1/PD-L1 therapies (Pereira et al., 2017). In addition,
the diversity of HLA-1 genotype also contributes to the outcome
of anti-PD. It has been recently found that patients with maximal
heterozygosity at HLA-I loci (A, B, and C) demonstrate improved
overall survival compared to those who are homozygous for at
least one HLA locus. Moreover, patients with HLA-B44 supertype
have extended survival whereas HLA-B62 or somatic loss of
heterozygosity in HLA-1 is related to poor outcome in melanoma
cohorts (Chowell et al., 2017). Interestingly, loss of heterozygosity
in HLA is revealed to be associated with a high neoantigen
burden, upregulation of cytolytic activities and PD-L1 positivity,
indicating the significance of combining multiple biomarkers to
predict the response to PD-1/PD-L1 therapy (McGranahan et al.,
2017).

Additionally, the variety of TCR repertoire is also related to
clinical response. A more clonal and less diverse T cell repertoire
is found in responding patients treated with anti-PD-1 (Tumeh
et al., 2014), which is opposite to anti-CTLA-4 blockade (Postow
et al., 2015b).

Immune-Related Genetic Signatures
Mutations or altered expression of certain genes involved in
host immune activities may reduce lymphocyte infiltration
within tumors or compromise T cell functions (Table 3). As
abovementioned, loss-of-function mutations in B2M gene lead
to impaired MHC I molecules, and have been reported to

be associated with acquired resistance to anti-PD therapies in
melanoma, lung cancers and esophagogastric cancers (Zaretsky
et al., 2016; Gettinger et al., 2017; Janjigian et al., 2017;
Pereira et al., 2017). Particularly, in patients with KRAS-mutant
lung adenocarcinoma, STK11/LKB1 alterations are significantly
associated with PD-L1 negativity and promote resistance to PD-
1 inhibitors (Skoulidis et al., 2018). Furthermore, a study using
a genome-scale CRISPR–Cas9 library profiles essential genes
whose loss impairs the activity of CD8 + T cells, leading to
resistance or non-responsiveness of cancer cells to T-cell-based
immunotherapies. Notably, most of these genes play crucial
roles in antigen presentation or IFNγ signaling (Patel et al.,
2017). Interestingly, studies adopting the same approach newly
discover that the loss-of-function mutations in PBRM1, which
encodes a subunit of a SWI/SNF chromatin remodeling complex
(the PBAF subtype), might improve the responsiveness to ICBs
due to activation of JAK-STAT signaling pathway and elevated
sensitivity to IFNγ in renal cell carcinoma (RCC) and melanoma,
respectively. Apart from PBRM1, mutations of additional two
genes which also encode components of the PBAF form of the
SWI/SNF chromatin remodeling complex, ARID2 and BRD7,
are also found associated with the benefit of ICBs (Miao et al.,
2018; Pan et al., 2018). Analysis of genomic alterations associated
with accelerated tumor growth has found that MDM2/MDM4
amplification is correlated with poor clinical outcome and even
hyperprogression of patients after receiving anti-PD therapies.
Besides, abnormalities of EGFR and DNMT3A also indicate a
worse outcome, while alterations of TERT, PTEN, NF1, and
NOTCH1 appear to be related to better effect of anti-PD (Kato
et al., 2017). A transcriptional signature, including up-expression
of genes implicated in regulation of mesenchymal transition,
cell adhesion, extracellular matrix remodeling, angiogenesis and
wound healing, is indicated to be related to innate anti-PD-
1 resistance (Hugo et al., 2016). Similarly, overexpression of
genes involved with extracellular matrix (e.g., LAMA3) and
neutrophil function (e.g., CXCR2) is related to progressing
metastatic melanoma treated with PD-1 blockade (Ascierto et al.,
2017). Changes in certain immune-related genes might lead to
variations in the entire immune functions, hence genetically
evaluation of the host immune status should be considered as a
potential biomarker impacting on PD blockade immunotherapy.

THE GUT MICROBIOTA

The intestinal microbiota contain a dominant part of
innumerable bacteria in human bodies and are closely linked to
host health through absorbing nutrients, degrading xenobiotics,
regulating epithelial homeostasis and defending against potential
pathogens (Eberl, 2010). Disorders in gut microbiota have
been considered to participate in the development of not only
colorectal cancer but also extraintestinal cancers (Brennan
and Garrett, 2016; Loo et al., 2017). Previous studies have
revealed the influence of gut microbiota on clinical efficacy
of cancer chemotherapy (Iida et al., 2013; Viaud et al., 2013).
Also, later investigations have found correlations between
gut microbiome community and clinical response to ICBs.

Frontiers in Pharmacology | www.frontiersin.org 9 September 2018 | Volume 9 | Article 105045

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01050 September 20, 2018 Time: 15:0 # 10

Yan et al. Prognostic Factors for CPIs

It is firstly found that effects of CTLA-4 blockade depend on
distinct Bacteroides species, B. thetaiotaomicron or B. fragilis
(Vetizou et al., 2015). Similarly, the anticancer immunity in
mice models induced by anti-PD-L1 is reported to be associated
with Bifidobacterium, which might improve effect through
augmenting dendritic cell functions and subsequently enhancing
CD8 + T cell priming and accumulation in the TME. And oral
administration of Bifidobacterium alone generates equal effect on
tumor eliminating as anti-PD-L1 does, indicating its potentially
important role in strengthening immune functions (Sivan et al.,
2015).

Recently, the predictive value of gut microbiota has been
verified in human bodies. Routy et al. find that abnormal
intestinal microbiota composition caused by antibiotics can
lead to primary resistance to ICBs, and transplantation of
fecal microbiota from patients who respond to ICBs into
germ-free of non-responders can restore or enhance the
responsiveness. Correlation has also been revealed between
better clinical response to anti-PD-1 blockade and relative
abundance of Akkermansia muciniphila, which increases the
recruitment of CCR9 + CXCR3 + CD4 + T lymphocytes
into tumor beds in a IL-12-dependant manner (Routy et al.,
2017). A study on patients with melanoma unveils significantly
different gut microbiota constitution between responders and
non-responders treated with anti-PD-1 therapy. The gut
microbiome of responding patients shows higher diversity
and amplitude in Ruminococcaceae bacteria, while relatively
less diverse bacteria and plenty of Bacteroidales are found in
poorly responding patients. It is additionally found enrichment
of anabolic pathways as well as enhanced systemic and
anti-tumor immunity in responders (Gopalakrishnan et al.,
2017). Similarly, another study on patients with melanoma

also reveals a correlation between response to anti-PD-
1 and abundance in more diversified bacteria, including
Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus
faecium (Matson et al., 2018). Moreover, a study of the
effect of pretreatment gut microbiota and metabolites on
response in patients treated with different ICBs provides
more diversified results. In terms of different regimens, the
responders for all therapy types are enriched for Bacteroides
caccae, the microbiota of the responders for Ipilimumab
plus Nivolumab are rich in Faecalibacterium prausnitzii,
Bacteroides thetaiotaomicron, and Holdemania filiformis, and
that of the responders for Pembrolizumab contain abundant
Dorea formicogenerans. High levels of anacardic acid are
also found in ICB responders (Frankel et al., 2017). The
findings above indicate that it is plausible to modulate gut
microbiota to strengthen clinical effect of anti-PD therapy,
yet more preclinical analyses of certain bacteria species and
metabolites as well as confirmatory clinical studies are warranted.
Moreover, gut microbiota is largely varied in terms of multiple
factors, including ethnicity, living environment, diet habit, and
etc, thus very difficult to guide the clinical practice as a
biomarker.

COMBINATION THERAPIES WITH
PD-1/PD-L1 BLOCKADE

Hitherto, the remarkable outcomes of anti-PD therapies are
merely observed in quite limited patients with certain types of
cancers, while more patients fail to respond, exhibit resistance
or relapse following treatment. Based on currently known
mechanisms impacting clinical effect of anti-PD immunotherapy,

TABLE 4 | Effective therapeutic combinations with PD-1/PD-L1 blockade.

Target Rationale Combined therapy

T cells Promoting effector T-cell trafficking into TME Epigenetic reprogramming drugs

TNF family Enforcing T-cell function Utomilumab, a human IgG2 mAb agonist of the T-cell
costimulatory receptor 4-1BB/CD137

Immunosuppressive networks Depletion of Tregs Anti-CTLA-4 antibody, ipilimumab
Anti-CCR4 antibody, mogamulizumab
CD73-specific antibody

Inhibition of B7 family members (B7-H3, PD-L1) B7-H3 blockade CDK4/6 inhibitors

Blockade of other immune checkpoint inhibitors Tim-3, LAG3 and TIGIT blockades

Triggering innate immune system to achieve tumor
destruction

Radiation therapy and chemotherapy

Cancer cells Inhibiting oxygen consumption in tumor cells Metformin

Tumor specific antigens Increasing T cell infiltration Oncolytic viral therapy

Inflammatory mediators Decreasing MDSCs COX2 inhibitors

Tumor stromal fibroblasts Reducing CXCL12 produced by fibroblasts, which
mediates immunosuppressive effect in pancreatic cancer.

CXCL12 receptor chemokine receptor 4 (CXCR4) inhibitor,
AMD3100

Blocking TGFβ signaling TGFβ blockade

BRAF signaling pathway Increasing the cross-presentation of antigens from dead
tumor cells

BRAF inhibitors

MDSC-secreted factors Inhibition of angiogenic factor VEGF VEGF-specific antibody, bevacizumab

Inhibition of cytokine receptor CSF1R, resulting in CD8 T
cell infiltration into tumors

CSF1R inhibitors
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combination therapies are required and being explored in order
to improve response rate and expand benefited populations.

Adequate proliferation, smooth migration into tumors and
complete function performing of effective T cells are fundamental
requirements for the immune system to restrain tumor
progression. Accordingly, epigenetic reprogramming drugs to
facilitate T cell trafficking (Tan et al., 2007; McCabe et al., 2012),
and targeting TNF family signaling pathways to strengthen T cell
functions (Tolcher et al., 2017) have been developed and proved
to be effective in combination with anti-PD therapy. In addition
to positive roles of T cells which help combat tumor cells,
the negative roles of immunosuppressive components which
support tumor progression, including Tregs, MDSCs, some
B7 family members, are unneglectable. Tregs express CTLA-
4, which explains improved clinical success of combination of
anti-CTLA-4 and anti-PD as abovementioned (Larkin et al.,
2015; Hodi et al., 2016; Hellmann et al., 2017; Wolchok et al.,
2017). Prostaglandin E2 (PGE2) and its key synthesizing enzyme
cyclooxygenase 2 (COX2) can induce and recruit MDSCs in
TME, and inhibition of COX2 has synergized anti-PD therapy
in pre-clinical models (Li et al., 2016). Inhibitors targeting
other immune checkpoints such as Tim-3, LAG3 and TIGIT
have also been explored their synergetic effect aligned with PD
therapy (Sakuishi et al., 2010; Li et al., 2012; Chauvin et al.,
2015). PD-L1 expression is also a primary biomarker impacting
on PD pathway blockade. Lately, it has been discovered that
CDK4/6 inhibition elevate PD-L1 expression by restraining
its degradation mediated by cyclin D-CDK4 and the SPOP
ligase, and the combination of CDK4/6 inhibitors and anti-
PD-1 therapy enhances tumor regression and dramatically
improves overall survival of murine tumor models (Zhang J.
et al., 2017). In terms of the field of vaccination, PD pathway
blockade has been noticed to increase the antitumor effect of
conventional vaccines, which can stimulate T cell activities and
induce immune responses against tumor cells (Duraiswamy et al.,
2013; Karyampudi et al., 2014). Another vaccination approach
is oncolytic viral therapy. Locally injected oncolytic viruses have
been proved to enhance systemic antitumor immunity through
multiple mechanisms, thus improving the strength of anti-PD
immunotherapy and elevating response rate of patients with
advanced melanoma, brain tumors and breast cancer (Ribas
et al., 2017; Bourgeois-Daigneault et al., 2018; Samson et al.,
2018). Based on the significant role of metabolic fitness in
immune activities, it has been reported that metformin, a broadly
prescribed type II diabetes treatment, reverses the resistance
to PD-1 blockade which results from hypoxic environments
produced by tumors (Scharping et al., 2017). Conventional
therapies targeting tumor cells, including radiotherapy and
chemotherapy, also exert enhanced antitumor activities together
with anti-PD therapy through multiple interacting mechanisms
(Deng et al., 2014a; Shalapour et al., 2015; Sharabi et al., 2015;
Twyman-Saint Victor et al., 2015; Shaverdian et al., 2017).
However, more clinical evidence is needed to further determine
appropriate doses, timing and other parameters in combination
treatment. In addition, other potential combinatorial regimens
have been considered and the confirmation trials are ongoing,
such as tumor stromal fibroblast inhibitors and antibodies

targeting innate immune signaling pathway and oncogenic
signals (Mahoney et al., 2015; Sharma and Allison, 2015;
Zou et al., 2016; Table 4).

CONCLUSION

PD-1/PD-L1 pathway blockades have elicited outstanding clinical
effect with relatively tolerable toxicities only in a minority
of populations. In order to select patients most suitable to
receive the possibly effective but costly therapy, the underlying
prognostic factors leading to heterogeneous responses of different
individuals with various cancer types have been gradually
explored. In this review, a series of tumor-autonomous,
tumor microenvironmental and host-related mechanisms were
introduced, which need to be considered in terms of reducing
ADR. With more and more prognostic factors gradually
excavated, how to select most suitable biomarkers for certain
cohorts is of great significance. Especially, the selection becomes
more difficult when biomarkers predicting opposite response
to anti-PD therapy present in one individual. For example,
attenuated immune functions in elderly patients may result in
poor clinical response of anti-PD with insufficient effector T
cells, and on the other hand, the mutational burden accumulates
with aging, which makes the outcome of anti-PD in elderly
patients elusive. Unlike the traditional target therapy, which
directly inhibit the abnormal signal in tumor itself (e.g.,
proliferation), CPI immunotherapy is more complicated and can
be influenced by many factors. It has to be noted that some
prognostic factors interact with each other instead of impacting
the response of treatments independently. As aforementioned,
virus infections and HLA heterozygosity are both associated
with PD-L1 positivity or overexpression (Wong et al., 2015),
while oppositely, genomic alterations are significantly related to
PD-L1 negativity (Skoulidis et al., 2018). Loss of heterozygosity
in HLA is additionally associated with a high neoantigen
burden and upregulation of cytolytic activities (McGranahan
et al., 2017). Besides, expression of the whole PD-1/PD-L axis,
including PD-1, PD-L1, and PD-L2, has been reported to be
connected with cytolytic activities and mutational load (Danilova
et al., 2016). Above evidence indicates that it is necessary to
exclude the impact of interactions between biomarkers and
explore the independent roles of these candidates in larger
patient cohorts with detailed information for all candidate
biomarker, which will benefit the joint application of multiple
biomarkers. Generally, sufficient infiltration and potent function
of effector T cells in TME indicate an active pre-existing
antitumor immunity and are the most elementary mechanism,
through which most of other factors essentially impact on
response of the therapy. Patients with abundant intratumoral
infiltrate, elevated PD-L1 expression level and high mutational
load have been most commonly reported to benefit from anti-
PD therapies. Among all the influential factors, some were
newly discovered and thus need to be verified and further
explored, and some have been frequently reported but lack
standard of measurement or practical application. Notably,
there are contradictory findings in certain biomarkers. In terms
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of gut microbiota, some studies indicate a positive correlation
between responses and Bacteroides species (Vetizou et al., 2015;
Frankel et al., 2017), whereas the study of Gopalakrishnan et al.
provides with an opposite finding that plenty of Bacteroidales
are related to poor response to anti-PD-1 (Gopalakrishnan
et al., 2017). The contradiction may be attributed to diversities
in ethnics, region, diet, and limited sample sizes. Besides, the
study of responding patients with RCC and NSCLC revealed
different composition of beneficial gut microbiota from that of
studies of melanoma (Routy et al., 2017), which emphasizes the
role of different bacteria species in different cancer types, and
indicates that all the biomarkers require validations in more
cancer types. Based on currently known rationales, plenty of
other therapies have been explored in combination with anti-
PD therapies to improve benefit of previously poorly responsive
populations. Although failed in some studies, precision designs
with specific markers could provide insight on the combination
therapy.

In conclusion, it is essential to comprehensively assess the
patient’s status, especially with respect to the paradoxes, for
instance, mutation loads and immunity in old patients and
differences of beneficial bacteria in the above researches, etc.
Besides, the differences in population and regions of patients

should be taken into account. Finally, to adopt appropriate
therapies, such as combination therapies, benefits the most
for patients. Therefore, it is imperative to take comprehensive
factors related to TME, host immunity, clinical factors and gut
microbiome and so on into consideration when patients are
given ICB therapies, which may shed new light on personalized
precision therapy.
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Cancer immunotherapy has made unprecedented breakthrough in the fields of
chimeric antigen receptor-redirected T (CAR T) cell therapy and immune modulation.
Combination of CAR modification and the disruption of endogenous inhibitory immune
checkpoints on T cells represent a promising immunotherapeutic modality for cancer
treatment. However, the potential for the treatment of hepatocellular carcinoma (HCC)
has not been explored. In this study, the gene expressing the programmed death 1
receptor (PD-1) on the Glypican-3 (GPC3)-targeted second-generation CAR T cells
employing CD28 as the co-stimulatory domain was disrupted using the CRISPR/Cas9
gene-editing system. It was found that, in vitro, the CAR T cells with the deficient PD-
1 showed the stronger CAR-dependent anti-tumor activity against native programmed
death 1 ligand 1-expressing HCC cell PLC/PRF/5 compared with the wild-type CAR
T cells, and meanwhile, the CD4 and CD8 subsets, and activation status of CAR T
cells were stable with the disruption of endogenous PD-1. Additionally, the disruption
of PD-1 could protect the GPC3-CAR T cells from exhaustion when combating with
native PD-L1-expressing HCC, as the levels of Akt phosphorylation and anti-apoptotic
protein Bcl-xL expression in PD-1 deficient GPC3-CAR T cells were significantly
higher than those in wild-type GPC3-CAR T cells after coculturing with PLC/PRF/5.
Furthermore, the in vivo anti-tumor activity of the CAR T cells with the deficient PD-1
was investigated using the subcutaneous xenograft tumor model established by the
injection of PLC/PRF/5 into NOD-scid-IL-2Rγ−/− (NSG) mice. The results indicated
that the disruption of PD-1 enhanced the in vivo anti-tumor activity of CAR T cells
against HCC, improved the persistence and infiltration of CAR T cells in the NSG mice
bearing the tumor, and strengthened the inhibition of tumor-related genes expression
in the xenograft tumors caused by the GPC3-CAR T cells. This study indicates the
enhanced anti-tumor efficacy of PD-1-deficient CAR T cells against HCC and suggests
the potential of precision gene editing on the immune checkpoints to enhance the CAR
T cell therapies against HCC.

Keywords: hepatocellular carcinoma, immunotherapy, chimeric antigen receptor, PD-1, gene editing, CRISPR-
Cas9

Abbreviations: CAR, chimeric antigen receptor; CRISPR/Cas, clustered regularly interspaced short palindromic
repeat/CRISPR-associated protein; FBS, fetal bovine serum; GPC3, Glypican-3; GPC3-CAR, GPC3-specific 28ζ-CAR; gRNA,
guide RNA; HCC, hepatocellular carcinoma; Indels, insertions or deletions; NSG, NOD-scid-IL-2Rγ−/−; PD-1, programmed
death 1 receptor; PD-L, programmed death 1 ligand; UTD, untransduced T cells.
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INTRODUCTION

Hepatocellular carcinoma, the most predominant type of primary
liver cancer, is one of the leading causes of cancer-related death
and arouses global concern in recent years (Abdalla et al., 2018;
Hu et al., 2018; Jin et al., 2018). Because most (more than 80%)
of patients with HCC are diagnosed at a late stage of the disease,
potentially curative therapies (including ablation, chemotherapy,
proton beam therapy, chemoembolization, and targeted drug
therapy) are often less effective and only extend the overall
survival by a short time (Llovet et al., 2008; Gao et al., 2014; Xiang
et al., 2015).

CAR T cells are genetically engineered T cells expressing
an artificial recombinant receptor molecule (CAR) on the cell
surface. The CAR combines antigen-binding domain [most
commonly, a single-chain variable fragment (scFv) derived from
the variable domains of antibodies] with the signaling domain
of the TCRζ chain and additional costimulatory domain(s)
from receptors such as CD28, OX40, and 4-1BB that promote
the proliferation and survival of T cell, endowing T cells
with MHC-independent target recognition and a fundamental
antitumor advantage (Kuwana et al., 1987; Gross et al., 1989;
Di and Li, 2016; June et al., 2018). With the unprecedented
success of the CAR T cells in leukemia and lymphoma, a
growing number of studies have focused on the treatment
of solid tumors using the CAR-T technology (Bagley et al.,
2018). Excitingly, it was found that T cells expressing GPC3-
targeted CAR can efficiently kill GPC3-positive HCC cells (Gao
et al., 2014). Furthermore, the relevant phase 1 clinical trial
study (ClinicalTrials.gov identifier: NCT02395250) showed that
autologous T cells bearing CAR that can specifically recognize
GPC3 was safe and effective for patients with relapsed or
refractory HCC (Zhai et al., 2017). Meanwhile, the phase 1
clinical trial (ClinicalTrials.gov identifier: NCT02541370) of
CD133-directed CAR T cells for advanced HCC showed that
the feasibility, controllable toxicities, and effective activities of
the CAR T cells for treating the patients with CD133-positive
HCC (Wang et al., 2018). Thus, adoptive cell therapy based
on CAR-redirected T (CAR T) cells has been identified as an
effective and promising strategy for the treatment of patients
with HCC. However, the efficacy of CAR T cells in the solid
tumor is prone to be affected due to the immunosuppressive
tumor microenvironment [e.g., expression of inhibitory ligands
programmed death 1 ligand (PD-L) 1/ligand 2 on tumor
cells and surrounding tissues for the PD-1 of T cells], which
impairs the function and persistence of adoptively transferred
T cells (Leen et al., 2007; Rabinovich et al., 2007; Joyce
and Fearon, 2015; Bagley et al., 2018). PD-1 is a prominent
checkpoint receptor expressed on T cells following activation
(Harvey, 2014). PD-1:PD-L1/L2 pathway plays an important
role in dampening T cell response and increasing T cell
susceptibility to apoptosis (Bardhan et al., 2016; Papaioannou
et al., 2016). Fortunately, tumor-induced downregulation of
T cell function can be reversed using immune checkpoint
inhibitors that block PD-1-mediated signaling cascades and
maintain T cell activation within the tumor microenvironment
(Pardoll, 2012; Papaioannou et al., 2016), suggesting that the

disruption of endogenous PD-1-mediated inhibitory signaling
could be beneficial to the antitumor activity of CAR T
cells.

The CRISPR/Cas system is an adaptive immune system in
prokaryotes, and the CRISPR/Cas9 system has recently been
exploited for genome engineering (Cong et al., 2013). Su et al.
(2016) found CRISPR-edited T cells with deficient PD-1 showed
the enhanced cytotoxicity on the PD-L1 expressing melanoma
and gastric cells in vitro. Rupp et al. (2017) showed that
CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor
efficacy of human CAR T cells against myelogenous leukemia,
but the target tumor cell expressing PD-L1 was artificially
constructed by lentiviral transduction, and the efficacy on the
native PD-L1 expressing tumor cells remains unclear. Ren et al.
(2017) demonstrated that the disruption of PD-1 led to enhanced
in vivo antitumor activity of CAR T cells against pancreatic cancer
cell and B-cell precursor leukemia cells, while only the cells
with high stable expression of PD-L1 artificially constructed by
lentiviral transduction was used in leukemia model. Additionally,
these studies employed the 4-1BBζ CARs rather 28ζ CAR. The
CAR T cells employing different costimulatory domains shows
differential antitumor activity and PD-1 expression (Carpenito
et al., 2009; Guedan et al., 2014, 2018; Zhao et al., 2015). 28ζ

CAR T cells usually showed stronger anti-tumor activities relative
to BBζ CAR T cells, and BBζ CAR T cells often exhibited
greater in vivo persistence compared with 28ζ CAR T, although
the characteristics of in vivo expansion and persistence between
28ζ CAR T and BBζ CAR T cells were variant in different
tumor models. Zhong et al. (2010) showed that 28ζ CAR T cells
displayed stronger in vitro and in vivo anti-tumor activities, and
superior in vivo expansion compared with BBζ CAR T cells in
the prostate cancer model. Zhao et al. (2015) found, in acute
lymphoblastic leukemia model, 28ζ CAR T cells showed similar
in vitro cytotoxicity and stronger in vivo anti-tumor activity
compared with BBζ CAR T cells, but BBζ CAR T cells showed
greater persistence than 28ζ CAR T cells. Li et al. (2017) found
28ζ CAR T cells showed stronger in vitro cytotoxicities and
similar in vivo anti-tumor activities against HCC compared with
BBζ CAR T cells, although BBζ CAR T cells showed superior
in vivo expansion, and preferentially produced Th1 cytokines
(interferon γ/granulocyte macrophage colony-stimulating factor)
in contrast to 28ζ CAR T cells to preferentially produce
Th2 cytokines (interleukin-4/interleukin-10). Moreover, each
different cancer has a different microenvironment associated
with that malignancy (Hou et al., 2016; Ruvolo, 2016). Liver is
characterized by the inherent immunosuppressive environment,
and the PD-L1 expression was found on HCC and the majority
of the liver myeloid-derived suppressor cells (Chen et al., 2016;
Thorn et al., 2016). So far, it remains unclear for the effect of
disruption of endogenous PD-1 on the antitumor activity of CAR
T cells employing CD28 as the co-stimulatory domain against
HCC.

In the present study, the endogenous PD-1 in the second-
generation GPC3-targeted CAR T cells employing CD28 as the
co-stimulatory domain was disrupted using the CRISPR-Cas9
gene-editing system. The in vitro and in vivo antitumor efficacy
of PD-1-deficient CAR T cells against native PD-L1-expressing

Frontiers in Pharmacology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 111855

https://clinicaltrials.gov
https://clinicaltrials.gov
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01118 September 27, 2018 Time: 16:29 # 3

Guo et al. Anti-HCC Killing of PD-1-Deficient CAR-T

HCC and the effects of the CRISPR-mediated disruption of
endogenous PD-1 on CD4 and CD8 subsets, and activation status
of CAR T cells were studied.

MATERIALS AND METHODS

Safety
Over the course of this study, the standard biosecurity and
institutional safety procedures were followed for handling
biohazards, biological select agents, toxins, and restricted
materials or reagents.

Cell Culture
Human HCC cell lines (GPC3-positive PLC/PRF/5 and GPC3-
negative SK-HEP-1) (Gao et al., 2014) and human embryonic
kidney (HEK) 293T cell line were obtained from the American
Type Culture Collection. The GPC3-positive SK-HEP-1/GPC3
cell line was constructed by lentiviral transduction of SK-HEP-
1 with Pwpt-GPC3 virus encoding human GPC3 in the previous
study of our research group (Yu et al., 2018). All the cell lines
were maintained in Dulbecco’s modified eagle medium (DMEM)
(Gibco, United States) supplemented with 10% FBS (Gibco,
United States). Peripheral blood mononuclear cells (PBMC)
were obtained from Shanghai Blood Center. PBMC and the
activated T cells were maintained in AIM-V medium (Gibco,
United States) supplemented with 2% human AB serum (ABS,
Gemini Bioproducts, United States) and 500 U/ml recombinant
human IL-2 (Shanghai Huaxin High Biotechnology). All cells
were cultured at 37◦C in a humidified atmosphere containing 5%
CO2 and were routinely tested for mycoplasma contamination.

Construction of Lentiviral
CAR-Expression Vector
The lentiviral expression vector (pRRLSIN-hu9F2-28Z) encoding
GPC3-specific second-generation CAR was constructed using
a pRRLSIN lentiviral vector backbone. The CAR (Figure 1A)
comprised CD8α signal peptide, a humanized GPC3-specific
single chain antibody fragment (scFv, hu9F2) (Bi et al., 2017),
the hinge domain of the CD8α molecule (nucleotides 412–546,
GenBank NM 001768.6), the transmembrane region (nucleotides
457–537, GenBank NM 006139.3) and the intracellular signaling
domain (nucleotides 538–660, GenBank NM 006139.3) of the
human CD28 molecule, and the intracellular signaling domain of
CD 3ζ molecule (nucleotides 154–492, GenBank NM 198253.2).
MluI site and SalI site were added at the 5′ end and the 3′
end of the sequence encoding the CAR, respectively. The DNA
fragment encoding the CAR with MluI/SalI sites was synthesized
by Genewiz (Suzhou, China), and then, was inserted into the
MluI/SalI site of the EF-1α promoter-based lentiviral expression
vector pWPT-eGFP (Wang et al., 2011).

Lentivirus Production
The generation of lentivirus was performed according to the
method described by Wu et al. (2017). Briefly, as the confluence
reached 95%, HEK-293T cells were transfected with pRRLSIN-
hu9F2-28Z and the packaging constructs (RRE/REV, and VSVG)

using a polyethylenimine (PEI)-based DNA transfection reagent.
Then, the culture medium was replaced with fresh DMEM
containing 2% FBS after 6 h of the addition of PEI/DNA
complex. After 72 h of transfection, virus was harvested from
the conditioned medium and filtered using a 0.45 µm filter unit
(Millipore, United States) to remove cell debris. Subsequently, the
virus was concentrated and purified with polyethylene glycol.

Activation, Transduction, and Expansion
of Human T Cells
Peripheral blood mononuclear cells were stimulated for
48 h using anti-CD3/anti-CD28 magnetic beads (Invitrogen,
United States) at a bead:cell ratio of 1:1. Then, the activated
T cells were transduced with lentivirus at a multiplicity of
infection (MOI) of 10 on the RetroNectin (Takara, Japan) coated
plates. On day 4 post-stimulation, the magnetic beads were
removed. The transduced T cells were maintained at a density of
5 × 105 cells/ml, and the recombinant human IL-2 were added
to a final concentration of 500 U/ml every other day.

Design and in vitro Transcription of
Guide RNA
The gRNA was designed using the CRISPR Design Tool1.
Considering that simultaneous use of dual gRNAs to target
an individual gene can significantly improve the gene-editing
efficiency mediated by CRISPR/Cas9 system (Zhou et al.,
2014), in this study, two gRNAs were used for the disruption
of the PD-1, and both gRNAs targeted to the sequence
within exon 1 of the gene PDCD1 expressing the PD-1.
The DNA fragments (Supplementary Table S1) containing
the T7 promoter, 20 bp targeting sequence, and gRNA
scaffold, were synthesized by Genewiz (Suzhou, China), and
then used as the template for in vitro transcription of
both gRNAs using MEGAshortscriptTM T7 Transcription Kit
(Thermo Fisher Scientific, United States). Two targeting
sequences used in this study were listed as following: PD-1-
gRNA-1: GTCTGGGCGGTGCTACAACT; and PD-1-gRNA-2:
GGCCAGGATGGTTCTTAGGT. The amplification of template
for in vitro transcription was performed by PCR using the
primer pairs Temp-Forward (GTTAATACGACTCACTATA)
plus Temp-Reverse (AAAAAAAGCACCGACTCG GTGCCA).
The product of in vitro transcription was purified using
MEGAclearTM Transcription Clean-Up Kit (Thermo Fisher
Scientific, United States), and eluted into the nuclease-free water.

Generation of PD-1 Knockout CAR T
Cells
On day 3 post-transduction by lentivirus (i.e., day 5 post-
stimulation with anti-CD3/anti-CD28 beads), 3 µg Cas9
protein [New England Biolabs (NEB), United States] was
mixed with 3 µg gRNAs, and the mixture was incubated
for 10 min at room temperature. Then, the 5 × 106 CAR
T cells were electroporated with the CRISPR reagents of
Cas9 protein and gRNAs by the Nucleofector 2b Device

1http://crispr.mit.edu
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FIGURE 1 | Characterization of second-generation GPC3-specific CAR T cells. (A) Schematic representation of second-generation GPC3-specific CAR. CD8α SP,
CD8α signal peptide; hu9F2, a humanized GPC3-specific single chain antibody fragment; CD8 hinge, the hinge domain of the CD8α molecule; CD28 TM, the
transmembrane region of the human CD28 molecule; CD28 ICSD, the intracellular signaling domain of the human CD28 molecule; CD3ζ, the intracellular signaling
domain of CD3 molecule. (B) Flow cytometric analysis of the expression of GPC3-specific CAR (GPC3-CAR) on the surface of untransduced (UTD, Left) and
transduced (Right) human T cells with lentiviral vector. (C) In vitro cytotoxic activity of GPC3-CAR T cells against HCC cell PLC/PRF/5 at effector:target ratios of 3:1,
1:1, and 1:3. Data were the mean ± SD from triplicates. Bars, SD. ∗∗∗P < 0.001 by 2-tailed unpaired t-tests.

(Program: T-023) (Lonza, Germany) using Human T Cell
Nucleofector R© Kit (VPA-1002, Lonza, Germany) according to
the procedure described by the manufacturer. Meanwhile, as
the control (Cas9 Mock), the 5 × 106 CAR T cells were
electroporated only with 3 µg Cas9 protein but without
gRNAs.

Analysis of Allele Modification
The gene editing efficiency and the potential off-target mutations
were determined on day 3 post-electroporation. The genomic
DNA from tested cells was purified using the QIAamp
DNA Mini Kit (Qiagen, United States). The DNA fragment
spanning the gene-editing target sites was amplified by PCR
from the genomic DNA using the primer pairs of PDCD1-
detect-Forward (CAAGGAGATAAGCAAGCCATTT) plus
PDCD1-detect-Reverse (AAGCCAAGGTTAGTCCCACAT).
The DNA fragments spanning the potential off-target
sites were amplified by PCR from the genomic DNA
using the primer pairs listed in the Supplementary
Table S2.

(1) Sequencing and TIDE analysis: The allele modification
frequencies were quantified by clonal sequencing analysis and
TIDE analysis of PCR amplicon spanning the gene-editing target
sites. The purified DNA fragments spanning the gene-editing
target sites were ligated into the pMD-20T vector (Takara, Japan),
and a total of 60 colonies were selected for DNA sequencing
(Genewiz, Suzhou, China). As for the evaluation of Tracking
of Indels by Decomposition (TIDE) (Brinkman et al., 2014),
the purified DNA fragments spanning the gene-editing target

sites were Sanger-sequenced using the primers PD-1-seq-
Forward (5′TCCCCAGCACTGCCTCTGTCACTC3′) and PD-
1-seq-Reverse (5′CACAGCTC AGGGTAAGGGGCAGA3′) by
Genewiz (Suzhou, China), and the analysis of each sequence
chromatogram was carried out using the online TIDE software
available at http://tide.nki.nl. The sequence from a Cas9
mock-transfected sample was used as the reference sequence.
Parameters were set to the maximum indel size of 50
nucleotides and the decomposition window to cover the largest
possible window with high quality traces. When the TIDE
analysis was below the detection sensitivity of 1.5%, it was
set to 0%. All the sequencing primers which were used
for TIDE off-target analysis were listed in Supplementary
Table S3.

(2) T7EN1 assay: The mismatched DNA can be detected
by the T7EN1 assay (Niu et al., 2014). After purification, the
200 ng of DNA fragment spanning the gene-editing target
sites was denatured and reannealed in 1× NEBuffer 2 (NEB,
United States) in a thermocycler with the following steps
(Guschin et al., 2010): 95◦C, 5 min; 95–85◦C at −2◦C/s; 85–
25◦C at −0.1◦C/s; hold at 4◦C. Subsequently, 10 U of T7
Endonuclease I (T7EN1) (NEB, United States) were added
into the hybridized DNA fragments and reaction mixtures
were incubated for 15 min at 37◦C. Following digestion,
1 µl of proteinase K was added and incubated for 5 min
at 37◦C to inactivate the enzyme and stop the reaction. The
DNA fragments digested by T7EN1 enzyme were separated
by 1% agarose gel electrophoresis, stained with ethidium
bromide.
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In vitro Cytotoxicity Assays
The in vitro cytotoxicity was evaluated by the lactate
dehydrogenase (LDH) release assay with CytoTox96 Non-
Radioactive Cytotoxicity Kit (Promega, United States), and
the assay was performed according to the manufacturer’s
instructions. Briefly, 1 × 104 HCC cells (target cells) were co-
cultured with the genetically modified (or not) T cells (effector
cells) at an indicated effector:target ratio in a total volume of
100 µL in the wells of 96-well V-bottom plates for 18 h at 37◦C.
The RPMI 1640 medium (Gibco, United States) containing
10% FBS was used in the co-cultures. Then, the supernatants
were collected by centrifugation at 250 × g for 4 min at
room temperature, and the released LDH in the supernatants
was measured using colorimetric method at 490 nm. The
spontaneous release of LDH from target and effector cells and
the maximum release of LDH from target cells were determined
in parallel. The percentage of specific cell lysis was calculated
based on the following formula:

100 × (experimental release− target spontaneous release−

effector spontaneous release)/(target maximal release−

target spontaneous release)

Cytokine Release Assay
Firstly, 1 × 104 HCC cells (target cells) were co-cultured with
the genetically modified (or not) T cells (effector cells) at an
effector:target ratio of 1:1 in a total volume of 100 µL in the
wells of 96-well V-bottom plates for 18 h at 37◦C. The RPMI
1640 medium (Gibco, United States) containing 10% FBS was
used in the co-cultures. Then, the supernatant was collected
by centrifugation at 250 × g for 4 min at room temperature.
The concentrations of IFN-gamma and IL-2 in the supernatant
were measured by enzyme-linked immunosorbent assay (ELISA)
using the Human IFN-gamma ELISA kit (EK1802) and Human
IL-2 ELISA kit (EK1022) (both from Multisciences Biotech,
Hangzhou, China) according to the manufacturer’s instructions.
As for the mouse blood, after it was collected and clotted at 4◦C,
and then, the serum was used for the detection of cytokine as
above.

Flow Cytometry
For all experiments [except for intracellular Akt and phospho-
Akt (Ser473) staining], the cells were analyzed by surface
antibody staining. The following antibodies with indicated
specificity and the appropriate isotype controls were used:
anti-human CD3-FITC (11-0036-41), anti-human CD8-FITC
(11-0086-42), anti-human CD25-PE (12-0259-41), anti-human
PD-L1-PE (12-5983-42), mouse IgG1-FITC isotype control
(11-4714-81), and mouse IgG2a-FITC isotype control (11-
4724-42) (all from Thermo Fisher Scientific, United States);
anti-human CD4-FITC (555346), anti-human CD4-PE (555347),
anti-human PD-1-BV421 (564323), mouse IgG1-PE isotype
control (555749), and mouse IgG1-BV421 isotype control
(562438) (all from BD Biosciences, United States); anti-human
CD69-PerCP (310928) and Mouse IgG1-PerCP (400148)

(both from BioLegend, United States). The CAR expression was
evaluated by the biotinylated goat anti-human Fab antibody (109-
066-006, Jackson ImmunoResearch, United States), followed
by PE-conjugated streptavidin (12-4317-87, eBioscience,
United States) staining, if not specifically indicated. For the
intracellular Akt and phospho-Akt (Ser473) analysis, CAR T
cells were first stained by the biotinylated goat anti-human
Fab antibody and FITC-conjugated streptavidin (11-4317-87,
eBioscience, United States) on ice after the CAR T cells harvested
from the 48-h coculture of GPC3-CAR T and PLC/PRF/5 cells
at a ratio of 1:1, and then, the cells were fixed, permeabilized,
and stained using the antibodies of an anti-Akt mouse mAb
(2920S), an anti-phospho-Akt (Ser473) rabbit mAb (4060S), a
mouse mAb IgG1 isotype control (5415S) and Rabbit mAb IgG
isotype control (3900S) (all from Cell Signaling Technology,
United States) according to the manufacturer’s protocol,
followed by PE-conjugated secondary antibodies of anti-mouse
IgG (8887S, Cell Signaling Technology, United States) and anti-
rabbit IgG (8885S, Cell Signaling Technology, United States).
Fixable, viable stain 780 (565388, BD Biosciences, United States)
was used for discriminating live from dead cells according to
the manufacturer’s instruction. Flow cytometric measurements
were carried out using a FACSCelestaTM flow cytometer (BD
Biosciences, United States) equipped with FACSDiva software
for data acquisition. FlowJo software (Tree Star, United States)
was used for data analysis.

Mouse Xenograft Model
Six- to eight-week-old female NSG mice were housed and
treated at the Experimental Animal Center of Shanghai Jiao
Tong University School of Medicine (Shanghai, China) in
specific pathogen-free conditions. The animal experiments were
performed in accordance with the guidelines and regulations
approved by the Shanghai Medical Experimental Animal Care
Commission. Subcutaneous xenograft tumors were established
by injection of 3 × 106 PLC/PRF/5 in PBS. When the tumor
volume reached 100–200 mm3, mice bearing the tumor were
randomly allocated into four groups (n = 7) and assigned to
receive one of the following intravenous injections: (1) sterile
PBS, (2) 5× 106 UTD in sterile PBS, (3) 5× 106 wild-type CAR T
cells in sterile PBS, and (4) 5× 106 PD-1-deficient CAR T cells in
sterile PBS. Tumor burden was measured by an electronic caliper,
and tumor volume was calculated based on the following formula
as described by Gao et al. (2014):V = L ×W ×W / 2, where L was
length and W was width. When the mean tumor volume in the
control group reached 1,500–2,000 mm3, mice were euthanized.

Quantitative Real-Time PCR
mRNA was isolated from cells using TRIzol reagent (15596026,
Thermo Fisher Scientific, United States) and then reverse
transcribed into cDNA using the GoScriptTM Reverse
Transcription system (A5001, Promega, United States) according
to the manufacturer’s instructions. All the quantitative real-time
PCR reactions were performed with TB GreenTM premix Ex
TaqTM II (Tli RNaseH Plus) (RR820A, Takara, Japan) according
to the manufacturer’s protocol on an ABI 7500 RT-PCR system
(Applied Biosystems, United States), using the primers in
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the Supplementary Table S4. Glyceraldehyde 3-phosphate
dehydrogenase was used as the internal control. The relative
quantification was calculated by the 2−11Ct method (Livak and
Schmittgen, 2001).

Immunohistochemistry
To assess the infiltration of adoptive T cells in the xenografts after
treatment, the tumor tissues were fixed with formalin, embedded
in paraffin, and serially sectioned at 2-µm thickness. The sections
of fixed and embedded tumor tissues were immunostained with
an anti-CD3e monoclonal antibody (MA5-14524, Thermo Fisher
Scientific, United States) at a 1:150 dilution. Images were taken
under a Leica SCN400 system (Leica Microsystems, Germany) at
20×magnification.

Statistics
All data were shown as mean ± standard deviation (SD).
Two-tailed unpaired t-tests, one-way ANOVA with Turkey
post hoc tests, correlation and regression analysis were carried
out using GraphPad Prism version 6.0 (GraphPad Software Inc.,
United States). ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 were
considered statistically significant.

RESULTS

Generation of GPC3-Specific CAR T
Cells, and Cytotoxicity of the CAR T Cells
Against HCC Cell PLC/PRF/5
As shown in Figure 1A, GPC3-specific second-generation CAR
comprised CD8α signal peptide, a humanized GPC3-specific
single chain antibody fragment (scFv, hu9F2) (Bi et al., 2017),
the hinge domain of the CD8α molecule, the transmembrane
region and the intracellular signaling domain of the human
CD28 molecule, and the intracellular signaling domain of CD 3ζ

molecule. GPC3-CAR T cells were generated by lentiviral vector
transduction as described in the “Materials and Methods” section.
The expression of CAR was evaluated by flow cytometry on
day 3 post-transfection. As shown in Figure 1B, the percentage
of the CAR-positive T cells reached 97.6%, indicating that the
efficiency of lentiviral transduction was high, and GPC3-CAR
T cells were successfully generated. Furthermore, as shown in
Figure 1C, it was found that GPC3-CAR T cells showed the
significantly (P < 0.001) stronger cytotoxicity on HCC cell
PLC/PRF/5 compared with the UTD, and the cytotoxicity was
enhanced with the increase of effector:target ratio from 1:3 to
3:1, indicating that the cytotoxicity of GPC3-CAR T cells was
dose-dependent.

Remarkable Upregulation of PD-L1
Expression on PLC/PRF/5 After
Encountering GPC3-CAR T Cells
As shown in Figure 2, over 80% of the PLC/PRF/5 cells expressed
the inhibitory ligand PD-L1 after coculture with GPC3-CAR T
cells at an effector:target ratio of 1:1 for 18 h. However, only
1.24% of the PLC/PRF/5 cells were PD-L1-positive, when the

PLC/PRF/5 cells were normally cultured in the absence of GPC3-
CAR T cells. These results indicated that the expression of PD-L1
on HCC PLC/PRF/5 is inducible, and the expression can be
up-regulated after PLC/PRF/5 encountering GPC3-CAR T cells.

Preparation and Characterization of
PD-1-Deficient GPC3-Specific CAR T
Cells
To further investigate the effect of PD-1-mediated
immunosuppressive pathway on the efficacy of GPC3-CAR
T cells against HCC, the PD-1-deficient GPC3-CAR T cells
was generated through direct delivery of CRISPR/Cas9 gene-
editing system into the CAR T cells by electroporation on
day 3 post-lentiviral transduction. Gene-editing efficiency was
evaluated by sequencing and T7 endonuclease I (T7EN1)-
based mutation detection assay, 2–4 days after nucleofection.
Clonal sequencing indicated the genomic editing efficiency
reached 85%. There were fifteen kinds of indels resulted
from the non-homologous end joining (NHEJ) repair in 60
sequenced clones (Figure 3A), and deletion mutations were
the most prominent among the observed Indels. Multiple
peaks flanking the PD-1 target site appeared in the Sanger
sequencing data of the PCR amplicon spanning the gene-
editing target sites (Figures 3B,C), which confirmed that
the shift of genomic reading frame occurred downstream of
the target sites. The TIDE analyses showed that the indels
frequencies reached 77.9 and 76.8% at the target sites of PD-1-
gRNA-1 and PD-1-gRNA-2, respectively. In the T7EN1-based
mutation detection assay (Figure 3D), the obvious cleavage
further confirmed the mutation at the genomic locus of PD-1.
Furthermore, the expression of PD-1 was characterized by
flow cytometry on day 3 post-restimulation of CRISPR-edited
CAR T cells with anti-CD3/anti-CD28 beads. As shown
in Figure 4, above 83% reductions of CAR+ PD-1+ cells
were observed in both CD4- and CD8-gated cells, indicating
that PD-1 was successfully disrupted with high efficiency in
both CD4-positive and CD8-positive GPC3-CAR T cells. In
addition, the top five potential off-target sites for each gRNA
in the CRISPR-edited GPC3-CAR T cells were sequenced,
and no mutation was found at any of these sites using TIDE
analysis (Supplementary Table S5). Taken together, PD-1-
deficient GPC3-specific CAR T cells were successfully and
efficiently generated using the CRISPR/Cas9 gene-editing
system.

Given that the surface expression of PD-1 on CAR T
cell with intact genomic DNA was low (PD-1-positive cell
percentage: 1.18% on day 9 post the activation of primary
T cells, Supplementary Figure S1) after expansion if without
the restimulation by anti-CD3/anti-CD28 beads, and moreover,
repeated stimulation can cause T cells exhaustion (Cherkassky
et al., 2016), it was difficult to enrich the PD-1 deficient CAR
T cells. Therefore, the generated PD-1 deficient CAR T cells
used for the following in vitro and in vivo assays were a mosaic
population of cells with the disrupted or intact PD-1, although the
GPC3-CAR T cells with the disrupted PD-1 were the prominent
population.
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FIGURE 2 | Expression of PD-L1 on human HCC PLC/PRF/5 cells. (A) Human HCC PLC/PRF/5 cells were cultured alone in the absence of GPC3-CAR T cells in
RPMI 1640 medium containing 10% FBS. (B) Human HCC PLC/PRF/5 cells were cocultured with GPC3-CAR T cells at an effector:Target ratio of 1:1 for 18 h in
RPMI 1640 medium containing 10% FBS. PD-L1 was determined by flow cytometry in the CD3-negative gate, and the fixable, viable stain 780 was used for
discriminating live from dead cells.

Disruption of PD-1 in GPC3-CAR T Cells
Enhanced the Specific CAR-Dependent
Cytotoxic Function and Cytokines
Production in vitro, and Did Not Affect
Subsets Constitution and Activation
Status of the CAR T Cells
To evaluate whether the disruption of PD-1 affected specific
CAR-dependent cytotoxic function and cytokines secretion
of GPC3-CAR T cells, the in vitro tumor-lysis activity and
secreted cytokines of the CRISPR-edited (or not) CAR T
cells were investigated by the coculture of CAR T cells
and each of various GPC3-positive (PLC/PRF/5 and SK-HEP-
1/GPC3) or GPC3-negative (SK-HEP-1) HCC cells. As shown
in Figure 5A, the PD-1 deficient GPC3-CAR T cells showed
significantly (P < 0.01) stronger tumor-lysis activity against
GPC3-positive PLC/PRF/5 and SK-HEP-1/GPC3 HCC cells
compared with wild-type GPC3-CAR T cells, and the anti-
tumor activities of PD-1 deficient GPC3-CAR T cells against
PLC/PRF/5 and SK-HEP-1/GPC3 HCC cells were 1.25 and
1.30 times higher than those of wild-type GPC3-CAR T cells,
respectively, indicating that the disruption of PD-1 enhanced
the cytotoxic activity of GPC3-CAR T cells. Meanwhile, the
anti-tumor activity of PD-1 deficient GPC3-CAR T cells against
GPC3-negative SK-HEP-1 HCC cells was limited (<5%) and
similar to that of UTD and wild-type GPC3-CAR T cells,
indicating that the disruption of PD-1 did not affected the
cytotoxic specificity of GPC3-CAR T cells. As shown in
Figures 5B,C, the concentrations of IL-2 and IFN-gamma
in the cocultures of PD-1 deficient GPC3-CAR T cells and

GPC3-positive HCC cells (PLC/PRF/5 and SK-HEP-1/GPC3)
was significantly higher than those in the coculture of wild-
type GPC3-CAR T cells and GPC3-positive HCC cells, but
PD-1 deficient GPC3-CAR T cells similar to UTD and wild-
type GPC3-CAR T cells produced little or even negligible
cytokines in the coculture with GPC3-negative SK-HEP-1,
indicating that cytokines production by the GPC3-CAR T was
CAR-dependent and enhanced by the disruption of PD-1. In
addition, as shown in Figures 5D,E, no significantly statistical
difference was found between PD-1-deficient and wild-type
GPC3-CAR T cells in the CD4-positive, CD8-positive, CD69
(early activation marker)-positive or CD25 (intermediate or late
activation marker)-positive cell percentage, indicating that CD4
and CD8 subsets constitution and activation status of GPC3-
CAR T cells were stable with the disruption of endogenous
PD-1. Taken together, the disruption of PD-1 in GPC3-CAR
T cells enhanced specific CAR-dependent cytotoxic function
and cytokines secretion, and did not affect the CD4 and CD8
subsets constitution and activation status of the GPC3-CAR T
cells.

Disruption of PD-1 Increased the Levels
of Akt Activation and Bcl-xL Expression
in the GPC3-CAR T Cells After
Combating the HCC Cells
As shown in Figures 6A,B, both the Akt activation status
and the expression of anti-apoptotic protein Bcl-xL in PD-
1 deficient GPC3-CAR T cells was significant (P < 0.001)
increased compared with that in the wild-type GPC3-CAR T
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FIGURE 3 | CRISPR/Cas9 efficiently disrupted the gene expressing PD-1 in GPC3-CAR T cells. (A) Indels observed by clonal sequence analysis of PCR amplicons
from the CRISPR-edited region in the gene expressing PD-1. Blue base or dot in the clonal sequences indicated insertion or deletion base, respectively. The number
prefixed a “+” or “–” character in the bracket before a clonal sequence indicated the number of insertions or deletions in the corresponding clonal sequence,
respectively. The number prefixed with a “×” character in the bracket before a clonal sequence indicated the number of the corresponding indels profile in the sixty
clonal amplicons. Arrows indicated the putative cleavage sites. (B,C) The chromatograms from the Sanger sequencing of the PCR amplicon spanning the PD-1
CRISPR gRNAs [PD-1-gRNA-1 (B) and PD-1-gRNA-2 (C)] target sites within the exon 1 of the gene expressing PD-1. (D) Detection of the CRISPR-mediated
disruption of PD-1 by a mismatch-selective T7EN1 nuclease assay on the DNA (spanning the gRNAs target sites) amplified from the genomic DNA of the cells
shown.

FIGURE 4 | Efficient disruption of PD-1 expression on the surface of GPC3-CAR T cells. PD-1 and CAR expression on the surface of T cells were detected by flow
cytometry on day 3 after the re-stimulation with anti-CD3/anti-CD28 beads. UTD, untransduced T cells; WT, wild type.
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FIGURE 5 | Effects of disruption of PD-1 on cytotoxicity, cytokines production, and phenotype of GPC3-CAR T cells in vitro. (A) Cytotoxic activities of UTD and
GPC3-CAR T cells with intact or deficient PD-1 against GPC3-positive (PLC/PRF/5 and SK-HEP-1/GPC3) and GPC3-negative (SK-HEP-1) HCC cells at an
effector:target ratio of 1:1. (B,C) The production of IL-2 (B) and IFN-gamma (C) by the UTD and GPC3-CAR T cells with intact or deficient PD-1 cocultured with
GPC3-positive (PLC/PRF/5 and SK-HEP-1/GPC3) or GPC3-negative (SK-HEP-1) HCC cells at an effector:target ratio of 1:1. (D) CD4 and CD8 subsets constitution
of wild-type and PD-1-deficient GPC3-CAR T cells. The expressions of CD4 and CD8 on CAR T cells were measured by flow cytometry. (E) The expressions of early
(CD69), and intermediate or late (CD25) activation markers on cell surface of wild-type and PD-1-deficient GPC3-CAR T cells. The expressions of CD25 and CD69
were determined by flow cytometry. Data shown were mean ± SD from triplicates. Bars, SD. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 by one way ANOVA with
Turkey post hoc test.

FIGURE 6 | Akt activation and Bcl-xL expression in GPC3-CAR T cells with deficient or intact PD-1. The GPC3-CAR T cells were isolated from the 48-h coculture
with PLC/PRF/5. (A) Akt activation in GPC3-CAR T cells with deficient or intact PD-1 was cytometrically measured as the ratio of phospho-Akt (Ser473)/Akt in an
intracellular stain. Phospho-Akt (Ser473) and Akt were determined by flow cytometry in the CAR-positive gate, and the fixable, viable stain 780 was used for
discriminating live from dead cells. (B) mRNA expression levels of Bcl-xL in GPC3-CAR T cells with deficient or intact PD-1 determined by quantitative real-time
PCR. Data were the mean ± SD from triplicates. Bars, SD. ∗∗∗P < 0.001 by 2-tailed unpaired t-tests.
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cells after 48 h of coculture with native PD-L1-expressing GPC3-
positive PLC/PRF/5 HCC cells. The ratio of phospho-Akt/Akt
in the PD-1 deficient GPC3-CAR T cells was 4.35 times higher
than that in the wild-type GPC3-CAR T cells, and meanwhile,
the expression level of Bcl-xL in the PD-1 deficient GPC3-
CAR T cells was 1.86 times higher than that in the wild-type
GPC3-CAR T cells after 48 h of coculture with native PD-L1-
expressing GPC3-positive PLC/PRF/5 HCC cells. Taken together,
the disruption of PD-1 increased the levels of Akt activation
and anti-apoptotic protein Bcl-xL expression after combating the
HCC cells.

Disruption of PD-1 Enhanced in vivo
Antitumor Efficacy, Survival, Cytokines
Production, and Infiltration of GPC3-CAR
T Cells
Given that HCC cell PLC/PRF/5 natively expressed GPC3 on
the cell surface in contrast to SK-HEP-1/GPC3, the efficacy
of PD-1-deficient GPC3-CAR T cells was evaluated in vivo
in NSG mice bearing established PLC/PRF/5 subcutaneous
xenograft tumors. As shown in Figure 7A, tumor growth was
significantly (P < 0.01) inhibited in mice treated with GPC3-
CAR T cells compared with those treated with UTD or PBS.
Moreover, PD-1-deficient GPC3-CAR T cells showed stronger
anti-tumor activity compared with the wild-type GPC3-CAR
T cells. At the endpoint of the animal experiment, the tumor
volumes in the mice treated with PD-1-deficient GPC3-CAR T
cells were significantly (P < 0.05) smaller than those treated
with wild-type GPC3-CAR T cells, and tumor weights in the
mice treated by the PD-1-deficient GPC3-CAR T cells were
significantly (P < 0.01) lighter than those in other groups
(Supplementary Figure S2), indicating that the disruption
of PD-1 enhanced the anti-tumor activity of GPC3-CAR T
cells.

Meanwhile, to investigate the effect of the disruption of PD-
1 on the in vivo survival of GPC3-CAR T cells, the density of
GPC3-CAR T cells in mouse peripheral blood was tested. It
was found that, as shown in Figure 7B, while the survivals of
both wild-type GPC3-CAR T and PD-1-deficient GPC3-CAR T
cells in mice decreased with time, the density of PD-1-deficient
GPC3-CAR T cells was significantly (P < 0.01) higher than
that of wild-type GPC3-CAR T cells on day 20 post-CAR T
cells infusion. The results suggested that the disruption of PD-
1 benefited the in vivo survival of GPC3-CAR T cells. In addition,
correlation analyses showed that the density of GPC3-CAR T
cells in mouse peripheral blood significantly (P< 0.05) negatively
correlated with the tumor burdens in both treatment groups of
wild-type and PD-1-deficient GPC3-CAR T cells. Furthermore,
the levels of IFN-gamma and IL-2 in the mouse blood of the
group treated by the PD-1-deficient GPC3-CAR T cells were
significantly higher than the counterparts in those treated by
wild-type GPC3-CAR T cells as shown in Figures 7C,D. The
immmunochemical analysis (Figure 7E) showed that there were
more T cells infiltration in the tumor tissues treated by PD-
1-deficient GPC3-CAR T cells compared with those treated by
wild-type GPC3-CAR T cells, indicating that the disruption of

PD-1 enhanced the infiltration of GPC3-CAR T cells in tumor
tissues.

Disruption of PD-1 Enhanced Inhibition
of Tumor-Relate Genes Expression in
Xenografts Caused by the GPC3-CAR T
Cells
In order to investigate the effect of PD-1 deficient GPC3-CAR T
cells on the tumor-related genes expression in xenograft tumors
established with PLC/PRF/5, quantitative reverse transcription
PCR was carried out to characterize the mRNA expression levels
of tumor-related genes of CCND1 (cyclin D1), CTNNB1 (catenin
beta-1) and MET (MET proto-oncogene, receptor tyrosine
kinase) in xenografts treated with various genetically engineered
(or not) T cells or PBS. As shown in the Figure 8, both wild-type
GPC3-CAR T cells and those with deficient PD-1 significantly
(P < 0.001) inhibited the expression of the three tumor-related
genes in xenografts, and the PD-1 deficient GPC3-CAR T cells
caused the inhibition at a significantly (P < 0.001) larger degree
compared with wild-type GPC3-CAR T cells. Taken together,
disruption of PD-1 enhanced the inhibition of tumor-relate genes
expression in xenografts caused by the GPC3-CAR T cells.

DISCUSSION

Hepatocellular carcinoma is a prevalent cancer worldwide with
one of the worst prognoses, and the curative treatment option
is only for the patients with limited tumor burden (Yoshiji
et al., 1998; Callegari et al., 2013; Yu et al., 2018). HCC is
a uniquely immunosuppressive cancer (Obeid et al., 2018).
Immunosuppressive intrahepatic environment, which restricts
antitumor immunity and promotes tumor progression, is a
significant obstacle to treatment of liver cancer (Knolle and
Thimme, 2014; Thorn et al., 2016). The majority of liver
myeloid-derived suppressor cells were found to express immune-
inhibitory ligand PD-L1 (Thorn et al., 2016). Chen et al.
(2016) found PD-L1 expression in the primary human HCC
surgical specimens. In current study, the upregulation of PD-L1
expression was observed on the HCC cell PLC/PRF/5 exposed
to the GPC3-CAR T cells. In this sense, the efficacy of CAR
T cell therapy could be more prone to be challenged by
the inhibitory PD-1/PD-L1 pathway in the immunosuppressive
HCC microenvironment. In the present study, CRISPR-mediated
disruption of PD-1 led to enhanced antitumor activity against
HCC. Although the previous studies have showed that, in some
tumor models, the disruption of PD-1 enhanced the antitumor
activity of CAR T cells, those studies mainly focused on the
leukemia and pancreatic cancer cells, and most of tumor models
in those studies were not derived from the native PD-L1-
expressing tumor cells (Ren et al., 2017; Rupp et al., 2017).
The functions of CAR T cells could be differential among
those with the distinct co-stimulatory domains (Carpenito
et al., 2009; Guedan et al., 2014, 2018; Zhao et al., 2015),
and all the co-stimulatory domains in the abovementioned
previous studies were 4-1BB, which was different from CD28
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FIGURE 7 | In vivo antitumor activities, persistence, cytokines production and infiltration of GPC3-CAR T cells with intact or deficient PD-1 in the established
subcutaneous HCC tumor xenograft model with PLC/PRF/5. (A) Growth curve of PLC/PRF/5 xenografts treated with the indicated T cells or PBS (n = 7). At the
endpoint, the residual tumors treated with PD-1-deficient GPC3-CAR T cells were significantly (∗P < 0.05) smaller than those treated with wild-type GPC3-CAR T
cells. (B) The quantities of circulating human T cells from the mice bearing PLC/PRF/5 xenografts treated with the indicated T cells or PBS on days 10 and 20 after T
cells or PBS injection. The quantitative analysis was completed using TruCount tubes. On day 20 after T cells or PBS injection, PD-1-deficient GPC3-CAR T cells
showed the significantly (∗∗P < 0.01) enhanced in vivo persistence compared with wild-type GPC3-CAR T cells. (C,D) The levels of IFN-gamma (C) and IL-2 (D) in
mouse serum evaluated by ELISA at the endpoint of the experiment. Data shown were mean ± SD from each treatment group. Bars, SD. ∗P < 0.05, ∗∗P < 0.01,
and ∗∗∗P < 0.001 by one way ANOVA with Turkey post hoc test. (E) Infiltration of human T cells in the tumor tissues treated with indicated genetically engineered (or
not) T cells. Formalin-fixed, paraffin-embedded tumor sections were consecutively cut, and then, stained for human CD3e to detect the human T cell infiltration
(brown). Scale bar, 50 µm.
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FIGURE 8 | Characterization of the mRNA expression levels of tumor related genes in xenografts treated with various genetically engineered human T cells. The
mRNA expression levels of tumor related genes were evaluated by quantitative real-time PCR. CCND1, cyclin D1; CTNNB1, catenin beta 1; MET, MET
proto-oncogene, receptor tyrosine kinase. Data were the mean ± SD from triplicates. Bars, SD. ∗∗∗P < 0.001 by one way ANOVA with Turkey post hoc test.

employed in the current study. To our best knowledge,
the current study combined 28ζ CAR modification and the
CRISPR-mediated disruption of endogenous inhibitory immune
checkpoint receptor PD-1 in adoptive T cell immunotherapy of
native PD-L1-expressing HCC for the first time.

Robust expansion and persistence of CAR T cells are critical
for the in vivo antitumor efficacy (Louis et al., 2011; Maude
et al., 2014; Guedan et al., 2018). Menger et al. (2016) showed
that TALEN-mediated inactivation of PD-1 in tumor-reactive
lymphocytes promoted T-cell persistence and improved the
antitumor efficacy against melanoma and fibrosarcoma in vivo,
while the CAR was not introduced into the T cells. Cherkassky
et al. (2016) demonstrated that cotransduction of PD-1 dominant
negative receptor increased the proliferative ability of 28ζCAR
T cells and rescued CAR T cells from PD-1 ligand-mediated
inhibition. In the current study, the persistence of GPC3-CAR
T cells significantly (P < 0.05) negatively correlated with the
tumor burdens in both treatment groups of wild-type and PD-
1-deficient GPC3-CAR T cells. Moreover, CRISPR-mediated
disruption of endogenous PD-1 significantly (P< 0.01) improved
the persistence of 28ζ CAR T cells redirected toward GPC3 in vivo
as well, associating with the enhanced in vivo antitumor efficacy
against native PD-L1-expressing HCC.

Repeated antigen stimulation can induce T cell exhaustion
and deletion, and human CAR T cells are subject to inhibition
of their cytolytic functions upon repeated antigen encounter
in vivo (Cherkassky et al., 2016). Gargett et al. (2016) showed
that GD2-specific CAR T cells underwent potent activation and
deletion following antigen encounter, although the activation-
induced cell death was reduced by PD-1 blockade. In the
current study, although the CRISPR-mediated disruption of
endogenous PD-1 benefited the persistence of CAR T cells,
the PD-1-deficient CAR T cells were still to decrease in vivo
with time, which should be related to the exhaustion and
deletion of CAR T cells caused by the continual tumor challenge.

This could be an important reason for the phenomenon that
tumor stopped regression and re-grew after 13 days of the
infusion of CAR T cell with deficient PD-1. Additionally,
for this phenomenon, it cannot be excluded that inhibition
of cytolytic function of PD-1-deficient CAR T cells caused
by the compensatory upregulation of alternative checkpoints,
considering that the blockade of one checkpoint pathway is often
followed by the compensatory upregulation of other alternative
immune checkpoint pathways. Koyama et al. (2016) showed that
adaptive resistance to therapeutic PD-1 blockade is associated
with upregulation of alternative immune checkpoints on the
PD-1 antibody bound T cells in lung adenocarcinoma, notably
T-cell immunoglobulin mucin-3. Huang et al. (2017) found
that blockade of PD-1, LAG-3, or CTLA-4 alone conferred a
compensatory upregulation of the other checkpoints on T cells in
metastatic ovarian cancer. Henceforth, it will be very important
to investigate the compensatory immunosuppressive checkpoints
of PD-1: PD-L1/L2 pathway on 28ζ CAR T cells in the HCC
microenvironment, and the CRISPR-mediated combinatorial
disruption of checkpoints will be beneficial for the 28ζ CAR T
cells achieving the sustained regression and eradication of HCC.

Under physiological conditions, the PD-1:PD-L1/L2 pathway
prevents excessive effector activities by T cells and promotes
the tolerance to self-antigens to avoid the development of
autoimmunity (Papaioannou et al., 2016). Although monoclonal
antibodies blocking PD-1, such as pembrolizumab and
nivolumab, can retrieve the functionality of exhausted T
cells and produce potent antitumor immune response in
patients with various cancers, the systemic administration of
the immune checkpoint pathway blocking antibodies still runs
the risk of disrupting immunologic homeostasis, producing
unique immune-related adverse effects, and even threatening
the life (Gettinger et al., 2015; Larkin et al., 2015; Robert et al.,
2015; Weber et al., 2015). The disruption of intrinsic immune
checkpoints in T cells through gene editing is considered
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to be a relatively safer strategy compared with the systemic
administration of blocking antibody (Lloyd et al., 2013; June
et al., 2015). Su et al. (2016) found the disruption of PD-1 did
not change the activation status of human primary T cells not
carrying the CAR, while the CAR was not introduced into the T
cells. In the current study, the disruption of endogenous PD-1 did
not affect the activation status and cytotoxic specificity of CAR
T cells, and the cytotoxic function of the PD-1-deficient CAR T
cells was still CAR-dependent. However, given that CAR T cells
with individual disruption of PD-1 are still likely to express auto-
reactive TCRs, there might be the potential autoimmune adverse
effects resulted from the PD-1-deficient CAR T cells with intact
TCR (Rupp et al., 2017). Therefore, it will be crucial to disrupt
TCR for the safe and efficient utilization of the GPC3-CAR T
cell with deficient immunosuppressive checkpoint molecules on
anti-HCC therapy. Besides, considering the NSG animal model
used in this study with severe deficient immune system was
largely different from the clinical conditions, henceforth, safe
estimation is needed in the immunocompetent animal models
before proceeding to clinic.

Additionally, tumor-associated antigens often express at low
levels in normal tissues (Simpson et al., 2005; Johnson et al.,
2009). GPC3 is expressed in most (72%) of HCC and not in
normal liver tissue, but its expression in other normal tissues
could not be completely eliminated (Capurro et al., 2003;
Baumhoer et al., 2008; Hass et al., 2015). Thus, the on-target,
off-tumor toxicity of the GPC3-CAR T cell might occur, even
if without the disruption of the PD-1. Chen et al. (2017) found
that dual-targeted CAR-T cells co-expressing complementary
GPC3 and asialoglycoprotein receptor 1 (a liver tissue-specific
protein)-targeted CARs showed relatively potent anti-tumor
activity against HCC tumor xenografts with double antigens,
but exhibited the restricted antitumor activity against HCC
xenografts with a single antigen, indicating that dual-targeted
CAR-T cells could be a promising strategy for reducing or
avoiding the potential off-tumor toxicities of the GPC3-CAR
T cell therapy on HCC. In the present study, although the
antitumor activity of GPC3-CAR T cell with deficient PD-1 was
CAR-dependent, its off-tumor toxicity cannot be excluded in
clinical therapy. Henceforth, combination of the dual-targeted
CAR modification and the simultaneous disruption of the TCR
and compensatory immunosuppressive checkpoint molecules in
T cells will be important for the generation of the highly potent
and safe genetically engineered CAR T cells in the therapy of
HCC.

A key signaling target of PD-1-mediated inhibition is the
PI3K-Akt pathway (Boussiotis, 2016). The previous studies found
that the triggering of PD-1-mediated signals blocked the CD28-
mediated activation of PI3K and Akt, and the expression of
anti-apoptotic protein Bcl-xL (Chemnitz et al., 2004; Parry et al.,
2005). The current study found disruption of PD-1 can increase
the levels of Akt activation and anti-apoptotic protein Bcl-xL
expression in GPC3-CAR T cells after combating the HCC
cells, suggesting that the disruption of PD-1 can protect the
GPC3-CAR T cell from exhaustion when combating the native
PD-L1-expressing, GPC3-positive HCC. Among three analyzed
tumor-related genes, CTNNB1 and MET act as the oncogenes

in HCC, and CCND1 is the hallmarker of cell cycle procession
(Polakis, 2000; Zhang et al., 2002; Venepalli and Goff, 2013).
Previous study found that HCC growth behavior was positively
correlated with the expression levels of these tumor-related genes
(Jiang et al., 2016). The present study found that the disruption
of PD-1 can enhance the inhibition of the expression of tumor-
related genes correlated with the HCC growth behavior caused by
GPC3-CAR T cells, but the interaction mechanism between the
PD-1 deficient GPC3-CAR T cells and HCC, and the influence
of disruption of endogenous PD-1 on itself of GPC3-CAR T cells
when combating tumor need the further in-depth studies by the
combination of transcriptomics, proteomics, and bioinformatics,
which will be beneficial for the design and development of the
next-generation safe and more potent CAR T cells in HCC
therapy.

CONCLUSION

In summary, CRISPR-mediated disruption of endogenous PD-
1 can enhance the CAR-dependent antitumor activity of the
GPC3-specific second-generation CAR T cells employing CD28
as the co-stimulatory domain, and improve in vivo persistence
and infiltration of CAR T cells, but not affect the CD4 and
CD8 subsets, and activation status of CAR T cells. This study
is beneficial for the development of next-generation CAR T cell
with improved therapeutic efficacy in HCC by the precise genetic
engineering.
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Programmed Cell Death Ligand 1
(PD-L1) Expression in Patients With
Prostate Cancer: A Systematic
Review and Meta-Analysis
Yan Li 1,2, Qingying Huang 2, Yaoyao Zhou 2, Meizhi He 2, Jianhong Chen 2, Yubo Gao 1* and

Xue Wang 3*

1Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China, 2 The Second School of Clinical

Medicine, Southern Medical University, Guangzhou, China, 3Department of Plastic and Cosmetic Surgery, Nanfang Hospital,

Southern Medical University, Guangzhou, China

Background: Programmed cell death ligand 1 (PD-L1) expression has been shown to

correlate with poor prognosis in diverse human cancers. However, limited data exist

on the prognostic and clinicopathologic significance of PD-L1 expression in prostate

cancers (PCa), and the curative effect of anti-PD-1/PD-L1 therapy remains controversial.

In this systematic review and meta-analysis, we aimed to evaluate the prognostic and

clinicopathologic value of PD-L1 in PCa.

Methods: We performed a systematic literature search in the PubMed, Cochrane

Library, EMBASE, Web of Science, and SCOPUS databases up to July 21st, 2018.

Pooled prevalence of PD-L1 in PCa was calculated using Freeman-Tukey double arcsine

transformation by R software version 3.5.0. The data from the studies were examined

by a meta-analysis using Review Manager software 5.3 to calculate pooled hazard ratios

(HRs) and pooled odds ratios (ORs) with 95% confidence intervals (CIs) to estimate the

prognostic and clinicopathologic value of PD-L1 in PCa. Heterogeneity was tested by

the Chi-squared test and I2 statistic.

Results: Five studies with 2,272 patients were included in this meta-analysis. The pooled

prevalence of PD-L1 in PCa was 35% (95% CI 0.32 to 0.37). Both PD-L1 expression

(HR= 1.78; 95% CI 1.39 to 2.27; p < 0.00001) and PD-L1 DNA methylation (HR=2.23;

95% CI 1.51 to 3.29; p < 0.0001) were significantly associated with poor biochemical

recurrence-free survival (BCR-FS). PD-L1 tended to have high expression levels in high

Gleason score cases (OR = 1.54; 95% CI, 1.17 to 2.03; P = 0.002) and androgen

receptor-positive cases (OR = 2.42, 95% CI 1.31 to 4.50; P = 0.005). However, PD-L1

had relatively weak correlation with age, pathologic stage, lymph node metastasis and

preoperative PSA level.

Conclusions: This meta-analysis confirms the negative prognostic significance of PD-

L1 expression and mPD-L1 in PCa patients. Additionally, PD-L1 has a statistically

69
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significant correlation with Gleason score and androgen receptor status, while the

correlations with age, pathologic stage, lymph node metastasis, and preoperative PSA

level were not statistically significant. However, the number of included studies is too small

to make the conclusions more convincing, so more retrospective large-cohort studies are

expected for the further confirmation of these findings.

Keywords: prostate cancer, PD-1/PD-L1, prognostic, clinicopathologic, meta-analysis

INTRODUCTION

As a malignancy in the male reproductive system, prostate
cancer (PCa) was not only the second most common cancer
in males worldwide both in 2012 (1,112,000 new cases; 15.0%)
(Ferlay et al., 2015) and 2018 (1,276,100 new cases; 13.5%)
(Ferlay et al., 2018), but also the most common cancers among
males in the United States (164,690 new cases; 19%) in 2018
(Siegel et al., 2018). Overall, PCa was the fifth leading cause
of cancer-related death in men worldwide (307,000 deaths;
6.6%) in 2012 (Ferlay et al., 2015), while it became the fourth
leading cause of cancer-related death in men worldwide (359,000
deaths; 6.7%) in 2018 (Ferlay et al., 2018). Furthermore, PCa
was the second leading cause of cancer-related death in men
in the United States (29,430 deaths; 9%) in 2018 (Siegel et al.,
2018). PCa incidence rates increased, whereas PCa mortality
rates declined in most countries in recent years, especially in
more developed nations (Wong et al., 2016). Due to earlier
detection by prostate-specific antigen (PSA) testing and advances
in treatment, the mortality of PCa rapidly declined by 52%
from 1993 to 2015 (Siegel et al., 2018). For all cancers
combined, 5-year relative survival rates is highest for prostate
cancer patients with localized disease (99%) during the recent
time period (2007–2013) (Siegel et al., 2018), but declines to
28% for those at distant stage (Miller et al., 2016). Clinical
decisions vary in the extent of disease, risk of recurrence and
patient characteristics, so active surveillance is recommended
for less aggressive tumors as well as older patients and/or
those with severe comorbidities. Treatment options for early-
stage localized prostate cancer include radical prostatectomy,
external beam radiotherapy, androgen deprivation therapy
(ADT), chemotherapy, bone-directed therapy, radiation, while
a combination of the above therapies is used for advanced
disease (Horwich et al., 2010; Miller et al., 2016). Current
therapies in metastatic castration-resistant prostate cancer
(mCRPC) include androgen receptor (AR)-targeted therapy,
chemotherapy, immunotherapy, bone-targeted therapy, poly

Abbreviations: PD-1, programmed cell death 1; PD-L1, programmed cell death

ligand 1; mPD-L1, PD-L1 DNA methylation; PCa, prostate cancer; mCRPC,

metastatic castration-resistant prostate cancer; NOS, Newcastle Ottawa Quality

Assessment Scale; HR, hazard ratio; OR, odds ratio; CI, confidence interval;

BCR-FS, biochemical recurrence-free survival; PSA, prostate-specific antigen;

IHC, immunohistochemistry; ADT, androgen deprivation therapy; AR, androgen

receptor; AR+, androgen receptor-positive; AR-, androgen receptor-negative;

PARP, poly (adenosine diphosphate–ribose) polymerase; TILs, tumor-infiltrating

lymphocytes; NK cell, natural killer cell; DCs, dendritic cells; miR, microRNA;

Neo-AAPL, neoadjuvant androgen deprivation therapy with abiraterone acetate

plus prednisone and leuprolide.

(adenosine diphosphate–ribose) polymerase (PARP) inhibitors,
and other novel therapeutic targets (Nuhn et al., 2018).

Programmed cell death 1 (PD-1; CD279) is an inhibitory
receptor expressed by tumor-infiltrating lymphocytes (TILs),
such as activated T cells, B cells, and natural killer (NK) cells
(Pardoll, 2012; Riella et al., 2012). Its ligand, programmed
cell death ligand 1 (PD-L1; B7-H1; CD274), is expressed
constitutively on specific tumors and immune cells, including T
and B cells, dendritic cells (DCs), macrophages, mesenchymal
stem cells, and bone marrow-derived mast cells (Riella et al.,
2012). PD-1 and PD-L1 are immune check points that limit
autoimmunity and the activity of T cells under an inflammatory
response to infection (Pardoll, 2012; Wang P. et al., 2017).
Anti-PD-1/PD-L1 therapy is a promising immunotherapy that
can enhance antitumor immunity and elicit durable clinical
responses by blocking the PD-1/PD-L1 signaling pathway
(Aghajani et al., 2018). The responses strongly correlated
with increased PD-1 expression by TILs and increased PD-
L1 expression by tumor cells (Pardoll, 2012). Some published
studies reported that PD-L1 expression was a negative predictor
for prognosis (Zhang et al., 2016; Aghajani et al., 2018; Keller
et al., 2018; Miyama et al., 2018), whereas some other studies
manifested inconsistent results (Pardoll, 2012; Wang C. et al.,
2017; Huang et al., 2018). Various analyses on diverse tumors
have showed that the expression of PD-L1 can associate either
with poor prognosis, better prognosis or have no connection
with prognosis (Ohigashi et al., 2005; Ghebeh et al., 2006;
Wu et al., 2006; Hamanishi et al., 2007; Hino et al., 2010;
Pardoll, 2012; Iacovelli et al., 2016; Li et al., 2018). Studies
evaluating the prognostic and clinicopathologic significance of
PD-L1 expression in PCa are limited, and the curative effect
of anti-PD-1/PD-L1 therapy on PCa remains controversial.
Therefore, it prompted us to perform a meta-analysis to figure
out the prognostic and clinicopathologic significance of PD-
L1 in PCa patients, that is to say our meta-analysis aims
to find out whether PD-L1 expression of PCa is related to
outcome parameters (biochemical recurrence-free survival) and
clinicopathologic parameters (e.g., Gleason score). We report
this systematic review and meta-analysis following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement (Moher, 2009).

METHODS

Analysis Workflow
Literature data-mining of clinicopathologic and prognostic
significance of PD-L1 expression in prostate cancer, data
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collection, statistical analysis, and associated results extraction
followed the workflow depicted in Figure 1 with specifics as
provided in the sections below.

Literature Search
A comprehensive literature search was systematically performed
in the PubMed, Cochrane Library, EMBASE, Web of Science,
and SCOPUS databases to identify relevant studies up to July
21st, 2018. The following keywords were employed for literature
retrieval: (“prostate” or “prostatic”) and (“cancer” or “neoplasm”
or “tumor” or “tumor” or “carcinoma”) and (“Programmed Cell
Death Ligand 1” or “Programmed Death Ligand 1” or “PD-
L1” or “B7-H1” or “CD274” or “Programmed Cell Death 1” or
“ProgrammedDeath 1” or “PD-1” or “CD279”). Amanual search
of potential references was also conducted, and literature in the
field of interest was reviewed for additional eligible studies.

Study Selection
Assessment of every study retrieved was independently
examined by two reviewers (Q. Y. Huang and Y. Y. Zhou) for
comprehensive evaluation based on the following inclusion
criteria: (1) Patients were histologically confirmed as having
prostate cancer; (2) PD-L1 protein expression was assessed in
prostate cancer tissues; (3) PD-L1 expression was divided
into high (positive) and low (negative) categories; (4)
studies investigated the association between PD-L1 protein
expression and/or mPD-L1 with clinicopathologic features
and/or prognosis; (5) studies directly provided hazard ratio
(HR) or odd ratio (OR) with corresponding 95% confidence
interval (CI), or survival curves/number of patients with specific
clinicopathologic features to estimate them; and (6) studies were
published in English with available full texts. The exclusion
criteria were formulated and improved after we found some
studies satisfying our inclusion criteria but could not be included
in the final meta-analysis. The exclusion criteria were as follows:
(1) studies did not satisfy the inclusion criteria; (2) studies
turned out to be reviews, meta-analyses, editorials, case reports,
expert opinions, letters, notes, meeting abstracts or proceedings;
(3) non-human studies or in vitro studies; (4) duplication
publications or studies with overlapping data; and (5) studies
provided information unable to be pooled. Disagreements about
certain studies were resolved by discussion with a third reviewer
(YL).

Data Extraction
The data from the eligible studies were extracted independently
by two reviewers (Y. Y. Zhou and Q. Y. Huang) in piloted forms
(in duplicate) to tabulate the information, and any disagreements
between the two reviewers were resolved with consensus. The
following data were collected from each included study: name of
the first author, year of publication, country, number of patients,
tumor type, technique, PD-L1-positive expression as well as high
mPD-L1, cut-off values for PD-L1 positive expression as well
as high mPD-L1, the hazard ratios (HRs) and 95% confidence
intervals (CIs) for biochemical recurrence-free survival (BCR-
FS), and numbers of PD-L1-positive as well as PD-L1-negative
patients with (a) age <60 years, (b) age ≥60 years, (c) Gleason

score <7, (d) Gleason score ≥7, (e) pathologic stage pT2,
(f) pathologic stage pT3-pT4, (g) lymph node metastasis N0,
(h) lymph node metastasis N1, (i) preoperative PSA level
≤10 ng/ml, (j) preoperative PSA level >10 ng/ml, (k) androgen
receptor-negative (AR-), and (l) androgen receptor-positive
(AR+).

Population, Interventions, Comparators,
Outcomes and Study Designs (PICOS)
The population from the study is patients with prostate cancer.
PD-L1 expression and/or mPD-L1 was assessed in these patients.
PD-L1 status (PD-L1 positive and PD-L1 negative) and mPD-
L1 level (high and low) were compared by the endpoint BCR-
FS. The correlations of PD-L1 status with age, Gleason score,
pathologic stage, lymph node metastasis, preoperative PSA level,
and androgen receptor status were evaluated in these patients.
The study designs were to evaluate the association between PD-
L1 expression/mPD-L1 and prognosis as well as the relationship
of PD-L1 expression and age, Gleason score, pathologic stage,
lymph node metastasis, preoperative PSA level, and androgen
receptor status.

Quality Assessment
Two investigators (Y. Y. Zhou and Q. Y. Huang) independently
conducted the quality assessment of all included studies
according to the Newcastle-Ottawa Scale (NOS) criteria to
ensure consistency in reviewing and reporting results (Stang,
2010). The NOS consists of the following three parameters
of quality: (1) selection: 0–4; (2) comparability: 0–2; and (3)
exposure/outcome: 0–3. The maximum of NOS score is nine,
with studies scoring greater than five considered to be of high
quality. Any discrepancies between reviewers were resolved by
consensus.

Statistical Analysis
Pooled prevalence of PD-L1 in PCa were calculated using
Freeman-Tukey double arcsine transformation by R software
version 3.5.0. The HR is the ratio of the hazard rates
corresponding to the conditions described by two levels
of an explanatory variable, and the OR is defined as the
ratio of the odds of A in the presence of B and the odds
of A without the presence of B, which attempts to quantify
the strength of the association between A and B. Pooled
HRs with their 95% CIs were implemented to estimate the
association between BCR-FS and PD-L1 expression or mPD-
L1. Patients were dichotomized by age (<60 years vs. ≥60
years), Gleason score (<7 vs. ≥7), pathologic stage (pT2 vs.
pT3-pT4), lymph node metastasis (N0 vs. N1), preoperative
PSA level (≤10 ng/mL vs. >10 ng/mL), and androgen receptor
status (AR+ vs. AR-) categories of PD-L1 expression by
referring to National Comprehensive Cancer Network (NCCN)
Guidelines for Prostate Cancer (URL: https://www.nccn.
org/professionals/physician_gls/default.aspx#prostate). The
dichotomous outcomes were analyzed using the ORs with
95% CI as the summary statistics to evaluate the correlation
between PD-L1 expression and the above clinicopathologic
parameters. The Review Manager software version 5.3 (Revman,
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FIGURE 1 | Workflow for meta-analysis of clinicopathologic and prognostic significance of PD-L1 expression in prostate cancer.

the Cochrane Collaboration; Oxford, England) was used to
calculate HR and OR with 95% CIs in this meta-analysis.
Heterogeneity is defined as the consequence of methodological
and/or statistical diversity among studies and was assessed
by the Chi-squared test and I2 statistic. I2 values less than
25%, from 25 to 50%, and higher than 50% represented low,
medium and high heterogeneity, respectively. Statistical tests
were all two-sided, with P-values < 0.05 considered to be
statistically significant. Detailed interpretations of odds ratios,
confidence intervals and p-values can be found elsewhere (Tim,
2013).

According to Chapter 13 of the book Introduction to meta-
analysis (Borenstein et al., 2009), the following three points
should be noticed: (a) if the number of studies is very small,
then the estimate of the between-studies variance will have
poor precision, (b) while the random-effects model is still the
appropriate model, we lack the information needed to apply it
correctly, and (c) in this case, one option is to perform a fixed-
effect analysis. Hence, fixed-effect models were employed for all
statistical analyses because the number of our included studies is
small.

RESULTS

Search Results
In the present study, a total of 2,130 records were identified
initially from the five databases, 160 from PubMed, 722 from
EMBASE, 686 from SCOPUS, 40 from Cochrane Library, and
522 from Web of Science, by using the search strategy above.
After removing the duplicate publications (n = 884), the titles
and abstracts of all remaining publications (n = 1,246) were
reviewed, and 1,155 articles were excluded because they were
non-original articles (n = 175: 131 reviews, 12 meta-analyses, 5
case reports, 14 editorials, 2 letters, 2 expert opinions, 9 notes),
meeting abstracts (n = 44), animal or cell lines experiments
(n = 63), or not in the field of interest (n = 873). Of 91
remaining studies, 12 full texts were not available and so 79
studies were left. Another 61 studies were excluded for the
following reasons: (a) the studies focused on adverse events

of anti-PD-1/PD-L1 therapy, the effectiveness of PD-1/PD-
L1 inhibitors, the combination therapy with anti-PD-1/PD-L1
therapy plus other treatments, or the influences of other factors
on PD-L1 expression; (b) the studies were mechanism studies,
pharmacological experiments or ongoing clinical trials; (c) the
studies provided no information about outcome parameters
(such as overall survival, disease-free survival and progression-
free survival) or clinicopathologic features of PD-L1 positive
and negative patients. No outcome parameter except biochemical
recurrence-free survival (BCR-FS) was found in more than
one study, so studies which used the outcome parameters
except BCR-FS were excluded. The studies, which provided
the clinicopathologic features of PCa patients, but did not
provide the respective clinicopathologic features of PD-L1-
positive and PD-L1-negative patients, were also excluded. After
excluding 13 studies with unanalyzable data mentioned above,
five studies were eventually included in the final meta-analysis.
A flowchart depicting details of the study selection is shown in
Figure 2.

Study Characteristics
The characteristics of the included studies are summarized in
Table 1. The five eligible studies were published between 2009
and 2018: three studies from Germany and two from America.
Of note, the article by (Gevensleben et al., 2016a) offered two
cohorts: a training cohort and a test cohort, while another article
by (Gevensleben et al., 2016b) provided a training cohort and
a validation cohort. The validation cohort in 2016 not only
evaluated the prognostic value of PD-L1 protein expression,
but also the prognostic significance of mPD-L1. Therefore,
in total, seven comparisons (from five articles) consisting of
2,272 patients were included in the meta-analysis. Among
these articles, PD-L1 expression was detected by using the
immunohistochemistry (IHC) staining method in four articles
(1,475 cases) and was found in 557 patients (37.8%), with the
percentage ranging from 7.7 to 82.4%. As presented in Table 1,
different studies adopted different cut-off values to define positive
(high) and negative (low) PD-L1 expression. In Ebelt et al.
(2009), the estimated number of positively stained cells >50
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FIGURE 2 | Flow chart of study selection.

was considered to be PD-L1-positive. In Calagua et al. (2017)
and Haffner et al. (2018), PD-L1 positivity was defined as
≥1% of tumor cells stained positive for PD-L1. In Gevensleben
et al. (2016a), PD-L1 expression was dichotomized by median
(high = above median, low = below median). In Gevensleben
et al. (2016b), PD-L1 DNA methylation dichotomized by an
optimized cut-off (mPD-L1low < 0.98% ≤ mPD-L1high). The
0.98% here refers to the percentage of DNA methylation. For
this pooled analysis, we found PD-L1-positive patients and
high mPD-L1 patients according to their own specific cut-off
criteria. BCR-FS was implemented as the end point in five
comparisons out of two studies (Gevensleben et al., 2016a,b),
of which three comparisons were about PD-L1 expression and
the other two were comparisons about mPD-L1. Moreover,

we compared the prevalence of PD-L1 expression between
the following pairs: age <60 years and age ≥60 years (two
comparisons), Gleason score <7 and Gleason score ≥7 groups
(five comparisons), pathologic stage pT2 and pathologic stage
pT3-pT4 groups (five comparisons), lymph node metastasis N0
and N1 (four comparisons), PSA level ≤10 ng/ml and PSA level
>10 ng/ml (two comparisons), and androgen receptor-positive
and androgen receptor-negative (two comparisons).

Based on the Newcastle-Ottawa quality assessment scale
(URL: http://www.ohri.ca/programs/clinical_epidemiology/
nosgen.pdf), the NOS scores of the five studies ranged from 6 to
8, with a mean score of 6.8. Thus, these eligible studies were of
high quality. The details of the quality assessment are depicted in
Tables 2, 3.
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TABLE 1 | Characteristics of the eligible studies in the meta-analysis.

References Country No. Tumor Technique Cut-off PD-L1 positive

(%)

Outcome HR estimation

Ebelt et al., 2009 Germany 17 Prostate cancer IHC Cell counts≥50 14/17 (82.4) NA NA

Gevensleben et al., 2016a Germany Training

cohort: 209

Primary prostate

cancer

IHC + TMA Above median 109/209 (52.2) BCR-FS 2.37 [1.32–4.25]

Gevensleben et al., 2016a Germany Test cohort:

611

Primary prostate

cancer

IHC+TMA Above median 377/611 (61.7) BCR-FS 1.49 [1.10–2.02]

Gevensleben et al., 2016b Germany Validation

cohort: 299

Prostate cancer NA NA NA BCR-FS 2.58 [1.43–4.63]

Gevensleben et al., 2016b Germany Validation

cohort: 299

Prostate cancer qPCR ≥0.98% high mPD-L1:

102/299 (34.1)

BCR-FS 1.90 [1.09–3.31]

Gevensleben et al., 2016b Germany Training

cohort: 498

Prostate cancer qPCR NA High mPD-L1:

101/498 (20.3)

BCR-FS 2.60 [1.50–4.51]

Calagua et al., 2017 America 130 Prostate cancer IHC ≥ 1% 18/130(13.8) NA NA

Haffner et al., 2018 America 508 Acinar

adenocarcinomas

of the prostate

IHC ≥ 1% 39/508 (7.7) NA NA

NO, number of patients; NA, not available; IHC, immunohistochemistry; TMA, tissue microarrays; qPCR, quantitative methylation real-time PCR; PD-L1, programmed cell death ligand

1; mPD-L1, PD-L1 DNA methylation; BCR-FS, biochemical recurrence-free survival; HR, hazard ratio.

TABLE 2 | Quality assessment of the case control studies in the meta-analysis.

Included studies Selection Comparability Exposure Total quality score

S1 S2 S3 S4 C E1 E2 E3

Ebelt et al., 2009 a* a* b b a* a* a* a* 6

Calagua et al., 2017 a* a* a* b ab** b* a* a* 8

Haffner et al., 2018 a* a* c b ab** b* a* a* 7

S1, Adequacy of case definition; S2, Representativeness of the cases; S3, Selection of Controls; S4, Definition of Controls; C, Comparability of cases and controls on the basis of the

design or analysis; E1, Ascertainment of exposure; E2, Same method of ascertainment for cases and controls; E3, Non-Response rate.

Prevalence of PD-L1 Expression in
Prostate Cancer
The prevalence of PD-L1 expression among prostate cancer
patients in the five eligible studies ranged from 7.7 to 82.4%
(Table 1). The pooled analysis result gave an overall prevalence of
PD-L1 of 35% (fixed effect, 95% CI 0.32 to 0.37) with a significant
heterogeneity (P < 0.01; I2 = 99%) (Figure 3).

PD-L1 and MPD-L1 as Prognostic Factors
for Prostate Cancer
Two studies including three comparisons with 1,119 patients
reported biochemical recurrence-free survival (BCR-FS). The
pooled HR for BCR-FS showed that PD-L1 expression was
associated with poor BCR-FS in PCa with statistical significance
and a higher level of PD-L1 expression increased the risk of death
by 78 % with fixed effects (HR = 1.78; 95 % CI 1.39 to 2.27; p
< 0.00001) (Figure 4A). There was no significant heterogeneity
(Chi2 = 3.76, p= 0.15; I2 = 47%).

In addition, an association with statistical significance
between high mPD-L1 and the increased risk for BCR was
identified (fixed effect, HR = 2.23; 95% CI 1.51 to 3.29;
p < 0.0001) (Figure 4B), without significant heterogeneity
(Chi2 = 0.62, p= 0.43; I2 = 0%).

Correlation Between Pd-L1 Expression and
Clinicopathologic Characteristics
Age
We assessed the association between PD-L1 expression
and age among 819 patients from two comparisons
(Figure 5A). Among 602 older patients (≥60 years), 364
patients (60.5%) were PD-L1 expression positive, and 121
(55.8%) of 217 younger patients (<60 years) were PD-L1
expression positive. Pooled results (OR = 1.27; 95% CI 0.93
to 1.75; P = 0.14) showed that the odds of positive PD-
L1 expression in older patients were 27% higher than in
younger patients. However, this result was not statistically
significant.

Gleason Score
The rate of positive expression of PD-L1 between the groups
with Gleason scores ≥7 and <7 was compared in four studies
including 1,470 patients (Figure 5B). It was determined that 378
(35.6%) of 1,061 PCa patients with higher Gleason scores and
178 (43.5%) of 409 PCa patients with lower Gleason scores were
PD-L1 expression positive, with an odds ratio of 1.54 (95% CI,
1.17 to 2.03; P = 0.002). Therefore, the odds of positive PD-L1
expression in PCa patients with higher Gleason scores were 54%
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TABLE 3 | Quality assessment of the cohort studies in the meta-analysis.

Included studies Selection Comparability Outcome Total quality score

S1 S2 S3 S4 C O1 O2 O3

Gevensleben et al., 2016a a* a* c b ab** a* a* a* 7

Gevensleben et al., 2016b a* a* c b ab** c a* a* 6

S1, Representativeness of the exposed cohort; S2, Selection of the non-exposed cohort; S3, Ascertainment of exposure; S4, Outcome not present at start of study; C, Comparability

of cohorts on the basis of the design or analysis; O1, Assessment of outcome; O2, Length of follow-up; O3, Adequacy of follow-up.

FIGURE 3 | Forest plot showing the pooled prevalence of PD-L1 expression among prostate cancer patients.

FIGURE 4 | Forest plots evaluating the association between BCR-free survival and PD-L1 protein expression (A), PD-L1 DNA methylation (B) in patients with prostate

cancer.

higher than those with lower Gleason scores, and this result was
statistically significant.

Pathologic Stage
A total of 1,458 patients out of four studies were analyzed for
the association between PD-L1 expression and pathologic stage
(Figure 5C). Then we found that 213 (33.0%) of 646 patients
in stage pT3–pT4 and 342 (42.1%) out of 812 patients in stage
pT2 were PD-L1 expression positive. The odds of positive PD-L1
expression in patients at stage pT3–pT4 were 27% higher than

patients at stage pT2, a result with no statistical significance (OR
= 1.27, 95% CI 0.97 to 1.65; P = 0.08).

Lymph Node Metastasis
Three studies comprising 1,149 patients were evaluated for
the association between PD-L1 expression and lymph node
metastasis (Figure 5D). Of 93 patients with lymph node status
N0, 17 (18.3%) were PD-L1 expression positive, and 354 (33.5%)
of 1,056 patients with lymph node status N1 were PD-L1
expression positive. The pooled results (OR = 0.65, 95% CI
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FIGURE 5 | Forest plots for the association between PD-L1 expression and clinicopathologic features: age (A), Gleason score (B), pathologic stage (C), lymph node

metastasis (D), preoperative PSA (E), androgen receptor status (F).
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0.35 to 1.21; P = 0.17) showed that the odds of positive PD-L1
expression in PCa patients with N0 were 35% lower than those
with N1. However, this result was also not statistically significant.

Preoperative PSA
Only two comparisons out of one study, which included 802
patients, examined the correlation between PD-L1 expression
and preoperative PSA level. Of 226 PCa patients with higher
PSA levels (>10 ng/mL), 138 (61.1%) were PD-L1 expression
positive and 338 (58.7%) of 576 PCa patients with lower PSA
levels (≤10 ng/mL) were PD-L1 expression positive. The odds
of positive PD-L1 expression in patients with higher PSA level
were 13% higher than those with lower PSA level and this result
was not statistically significant (OR = 1.13, 95% CI 0.82 to 1.54;
P = 0.46) (Figure 5E).

Androgen Receptor Status
The correlation between PD-L1 expression and androgen
receptor status was assessed among two comparisons with 1,200
patients (Figure 5F). Of 703 AR+ patients, 433 (61.6%) were
PD-L1-positive, and 19 (42.2%) of 45 AR- patients were PD-
L1-positive. The pooled OR (OR = 2.42, 95% CI 1.31 to 4.50;
P = 0.005) showed a significant association between PD-L1
expression and androgen receptor status. In other words, the
odds of positive PD-L1 expression in AR+ patients were 142%
higher than AR- patients, with the true population effect between
31 and 350%. This result was statistically significant.

Significant heterogeneity was detected in the analysis of PD-
L1 expression with preoperative PSA levels (P = 0.07; I2 = 69%).
As for the remaining analyses of PD-L1 expression with age
(P = 0.73; I2 = 0%), Gleason score (P = 0.14; I2 = 42%),
pathologic stage (P = 0.23; I2 = 28%), lymph node metastasis
(P = 0.69; I2 = 0%) and androgen receptor status (P = 0.55;
I2 = 0%), there was no evidence of substantial heterogeneity.
The number of our included studies is small, hence we performed
fixed-effect models for all statistical analyses.

DISCUSSION

PD-1/PD-L1 antibodies were approved by the US-FDA for
multiple tumor types, including melanoma, non-small cell lung
cancer, bladder cancer, kidney cancer, etc. (Haffner et al.,
2018). However, the therapeutic effect of PD-1/PD-L1 antibodies
in prostate cancer remains controversial. The likelihood of
antitumor immune response to anti-PD-1 antibody therapy is
closely linked to expression of PD-L1 on the tumor cell surface
(Brahmer et al., 2010; Pardoll, 2012; Taube et al., 2014). Different
tumor types have a wide variety of baseline PD-L1 expression
levels (Gatalica et al., 2014; Taube et al., 2014; Haffner et al.,
2018). A phase 1 trial (Topalian et al., 2012) assessed the safety
and antitumor activity of BMS-936558, a fully human anti-PD-1
monoclonal antibody, in advanced solid tumor patients. Among
them, 36% of patients with PD-L1-positive tumors responded
to anti-PD-1 antibody, and no objective response was observed
in patients with PD-L1-negative tumors, which included PCa
patients. Similar results were also found in another phase I study
of single-agent anti-PD-1 (MDX-1106) (Brahmer et al., 2010).
In our review of several articles, multiple studies had shown

that the prevalence of PD-L1 in patients with prostate cancer
varied greatly (ranged from 0 to 92%) (Ebelt et al., 2009; Gatalica
et al., 2014; Martin et al., 2015; Gevensleben et al., 2016a; Massari
et al., 2016; Baas et al., 2017; Calagua et al., 2017; Ness et al.,
2017; Haffner et al., 2018; Wang et al., 2018), which may account
for the poor efficacy of anti-PD-1/PD-L1 immunotherapy in
PCa patients in previous studies. Predictive biomarkers or
clinical characteristics are then desperately needed so we can
identify patients who will benefit most from anti-PD-1/PD-L1
immunotherapy, and PD-L1 expression has the potential to be
a promising predictive biomarker for favorable clinical benefits
from therapeutic blockage of PD-1/PD-L1 pathway (Tang and
Heng, 2013; Taube et al., 2014).

As far as we know, this present meta-analysis is the first to
investigate the clinicopathologic and prognostic significance of
PD-L1 expression in prostate cancer. A highly variable frequency
of PD-L1 expression has been reported in the included studies
measuring the expression of PD-L1 in prostate cancer, which
ranged from 7.7 to 82.4% (Ebelt et al., 2009; Gevensleben et al.,
2016a; Calagua et al., 2017; Haffner et al., 2018), and the pooled
frequency of PD-L1 is 35%. An included study (Gevensleben
et al., 2016a) provided the first evidence that the prevalence
of PD-L1 expression is very common in primary prostate
cancer and is a negative predictor for BCR-free survival. Our
pooled results for BCR-FS demonstrated the adverse prognostic
value of positive PD-L1 expression and high mPD-L1 in PCa
patients. PD-L1 expression could then be considered a risk factor
to predict the prognosis of PCa and an effective biomarker
to identify the right patient population for anti-PD-1/PD-L1
treatment. There are at least six distinct mechanisms for how
PD-L1-expressing cells evade T-cell immunity: inducing (1)
apoptosis, (2) anergy or (3) functional exhaustion of T cells,
(4) forming a molecular shield to keep lysis off tumor cells, (5)
increasing production of the immunosuppressive cytokine IL-
10, and (6) facilitating TReg-cell-mediated suppression (Zou and
Chen, 2008). These functions of PD-L1 expression might explain
its role in cancer immune escape and the relation between tumor
progression and poor prognosis. Function-blocking monoclonal
antibodies against PD-1 suppress the above reaction and thus
activate antitumor immunity.

The fact that both positive PD-L1 expression and high
mPD-L1 were significantly connected with undesirable clinical
outcomes seems contradictory because DNA methylation is
usually perceived to cause gene silencing and thus leads
to a decrease of its expression product. A previous study
(Gevensleben et al., 2016b) revealed that there was an inverse
correlation between mPD-L1 and mRNA transcription but not
between mPD-L1 and protein expression in PCa. This finding
indicated the research value of post-transcriptional regulatory
mechanisms of PD-L1 protein expression. The differential
expression of microRNA (miR), the cellular component which
can stabilize or degrade mRNA by binding it, plays a significant
role in modifying the downstream processing of PD-L1 mRNA,
especially miR-197, miR-200, miR-570, miR-34a, and miR-513
(Chen et al., 2015). The intricate correlation betweenmiR,mRNA
and mPD-L1 discovered by Gevensleben et al. may therefore
explain the interference in the linear translation of PD-L1 mRNA
into PD-L1 protein (Gevensleben et al., 2016b). Meanwhile, more
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advanced research is still needed to unravel the complicated
interactions between DNAmethylation and PD-L1 expression in
PCa.

Recent studies demonstrated that PD-L1 overexpression is
related to higher clinical activity in patients with various tumor
types receiving anti-PD-1/PD-L1 immunotherapy (Meng et al.,
2015). In our analyses, we evaluate the correlation between PD-
L1 expression and clinicopathologic features of PCa patients.
Based on our pooled results, we provided credible evidence
that PCa patients with higher Gleason scores or positive
androgen receptor were more likely to have higher levels of
PD-L1 expression with statistical significance. These patients are
more likely to benefit from blocking the PD-1/PD-L1 pathway.
However, the correlations between PD-L1 with age, pathologic
stage, lymph nodemetastasis and preoperative PSA level were not
statistically significant.

We performed a Pearson’s chi-square test between the positive
PD-L1 expression of mCRPC and primary PCa via the data
extracted from a previous study evaluating PD-L1 expression
in primary and metastatic prostate cancer (Haffner et al.,
2018) and found that mCRPC had an increased prevalence
of PD-L1 expression compared with primary PCa (P < 0.01)
(Supplemental Table S1). This result suggests that patients with
mCRPC might obtain more favorable clinical benefit from
anti-PD-1/PD-L1 immunotherapy rather than patients with
primary PCa. Similar statistical analysis was performed based
on the data extracted from a study evaluating the effect of
neoadjuvant androgen deprivation therapy with abiraterone
acetate plus prednisone and leuprolide (Neo-AAPL) on PD-L1
expression in PCa (Calagua et al., 2017), and the difference of
the rates of PD-L1 expression between treated and untreated
PCa patients was not statistically significant (p = 0.062)
(Supplemental Table S2) Furthermore, Bishop was the first to
put forward that a statistically significantly increase of PD-
L1/2+ DCs was observed in Enzalutamide-resistant PCa patients
compared to those who were naïve (P = 0.0037) or those
who responded to treatment (P = 0.0060) (Bishop et al.,
2015). This finding reminds us that patients with Enzalutamide-
resistant PCa are more aggressive via suppressing immune
responses and more likely to benefit from anti-PD-1/PD-L1
immunotherapy. In addition, a DNA vaccination encoding
prostatic acid phosphatase can result in the upregulation of
PD-L1 expression on tumor cells of patients with castration-
resistant but non-metastatic PCa, hence it provided an in-
human rationale for the combination of DNA vaccines with
PD-1 blockade for the treatment of PCa patients, which
benefits much from vaccines but little from PD-1 antibodies
as monotherapies (Rekoske et al., 2016). This combination
therapy is currently being examined in patients with mCRPC
(NCT02499835).

There are several strengths in this study. First, to our
knowledge, this is the first meta-analysis that provides the
clinicopathologic and prognostic significance of PD-L1
expression in PCa. Second, our study provides a scientific
rationale and direct support for individualized estimations
of prognosis for PCa, identification of more aggressive

cancer patients, and clinical application of anti-PD-1/PD-
L1 immunotherapy. In this way, patients realize precision
medicine and individualized treatment. In addition, the study
may prompt researchers to design large-cohort clinical trials to
further confirm these findings.

We tried our utmost to perform this meta-analysis but there
are some limitations of the study that should be acknowledged.
First, the quantity of studies included was not big enough
to generate more authentic results due to limited published
studies. Therefore, more studies are needed to provide more
evidence for the prognostic value of PD-L1 and mPD-L1.
Second, only articles published in English were included in this
meta-analysis. Third, the cut-off values differentiating negative
(low) and positive (high) PD-L1 expression varied in different
studies. Fourth, the different antibodies used in the included
studies might affect the accuracy of the positive rate of PD-
L1 expression and might therefore affect the estimation of the
prognostic and clinicopathologic value of PD-L1 expression.
Previous studies had shown the influence of different antibodies
against PD-L1 on the percentage of PD-L1-stained tumor
cells (Hirsch et al., 2017; Haffner et al., 2018). Thus, a large
multicenter study implementing the same antibody and cut-
off value is expected to provide more precise and credible
results.

CONCLUSION

In conclusion, our meta-analysis confirms the fact that
PD-L1 expression and mPD-L1 are significant negative
independent prognostic factors in patients with prostate
cancer. Moreover, PD-L1 overexpression was statistically
significantly linked to high Gleason scores and positive
androgen receptor of PCa, while it was also associated with
age, pathologic stage, lymph node metastasis and preoperative
PSA level but with no statistical significance. This result
may guide clinicians in estimating the prognosis of patients
individually, identifying patients with poor prognosis, and
selecting suitable patients that will obtain favorable clinical
benefit to receive anti-PD-1/PD-L1 immunotherapy. This study
is expected to attract more practitioners to design retrospective
large-cohort studies for the further verification of these
findings.
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Background: Studies evaluating the prognostic significance of programmed

death-ligand 1 (PD-L1) expression in colorectal cancer (CRC) are limited and

remain controversial. This meta-analysis was conducted in order to evaluate the

clinicopathological and prognostic significance of PD-L1 expression in CRC patients.

Methods: A comprehensive search was performed against the Medline/PubMed,

Embase, Cochrane Library, Web of Science (WoS) and Scopus databases. Data were

extracted with name of the first author, year of publication, country of origin, tumor

type, number of cases, staining method, cut-off values, PD-L1 positive expression,

clinicopathological parameters, outcome, and quality assessment score, and statistical

analysis was conducted using Review Manager Version 5.3 (Revman the Cochrane

Collaboration; Oxford, England) and STATA version 14 (Stata Corporation; College

Station, TX, USA).

Results: Ten studies were included in this meta-analysis, in which the pooled hazard

ratio (HR) showed that PD-L1 expression in tumor cells was significantly associated

with a poor overall survival (HR = 1.50, 95% CI 1.05–2.13, P = 0.03). The pooled

HR for disease-free survival (DFS) indicated that PD-L1 expression was significantly

associated with shorter DFS (HR = 2.57, 95% CI 1.40–4.75, P = 0.002). The pooled

odds ratios (ORs) showed that PD-L1 expression was associated with poor differentiation

(OR = 3.47, 95% CI 1.37–8.77, P = 0.008) and right colon cancer (OR = 2.38, 95% CI

1.57–3.60, P < 0.0001). However, the expression of PD-L1 was independent of gender,

age, tumor size, tumor stage, lymph node metastasis, and tumor-node metastasis stage.

Conclusion: This meta-analysis indicated that a high level of PD-L1 expression might

be a biomarker for a poor prognosis in CRC patients. This information may be helpful for

clinicians to stratify CRC patients for anti-PD-1/PD-L1 therapy, particularly patients with

microsatellite instability high (MSI-H).

Keywords: colorectal cancer, PD-L1/ PD-1, prognostic, clinicopathological, meta-analysis
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INTRODUCTION

Globally, colorectal cancer (CRC) is the third leading cause of
cancer (Siegel et al., 2017). Although cancer screening programs
and the standardization of preoperative and postoperative care
have reduced mortality associated with a CRC diagnosis (Welch
and Robertson, 2016), CRC is still a leading cause of cancer-
related deaths worldwide, for it has a poor prognosis in its
malignant stages and recurrence is common. Therefore, it is
essential to identify new biomarkers to improve clinical decision-
making and patient outcomes.

As one of the most possible newly biomarkers to evaluate
cancer patients’ outcomes, programmed death 1 (PD-1) is an
immune-inhibitory receptor that is expressed on the surface of
activated T cells as a result of persistent inflammatory stimuli
(Inaguma et al., 2016; Zou et al., 2016). PD-L1 is expressed by T
and B cells, macrophages and dendritic cells and its expression
implies a weakened host immune response and consequent a
poor prognosis (Hansen et al., 2009). The binding of PD-L1 to
PD-1 can attenuate the cellular immune response by reducing
T cells apoptosis or exhaustion. Blockade of the PD-1/PD-
L1 pathway with monoclonal antibodies is a highly promising
therapy and prominent clinical benefits of this checkpoint-
blockade were observed in recent clinical trials (Zheng and Zhou,
2015; Wang et al., 2018).

Positive PD-L1 expression has been associated with
significantly poor prognoses; however, studies evaluating
the prognostic significance of PD-L1 expression in CRC are
limited and remain controversial. Therefore, we conducted a
comprehensive meta-analysis to evaluate the clinicopathological
and prognostic significance of PD-L1 expression in CRC patients.

MATERIALS AND METHODS

Literature Search
Two authors (M. Z. He and Y. Y. Zhou) independently conducted
comprehensive literature searches of published articles using
the Medline/PubMed, Embase, Cochrane Library, WoS and
Scopus databases. The endpoint for search items was July
21, 2018. The following keywords were used: (“colorectal”
OR “colorectum” OR “colon” OR “Rectum” OR “Rectal” OR
“large intestine”) AND (“adenocarcinoma?” OR “tumor?” OR
“neoplasm?” OR “carcinoma?” OR “cancer?” OR “malignant”)
AND (“Programmed Cell Death 1 Receptor” OR “CD279
Antigen” OR “PD-1” OR “B7-H1 Antigen” OR “Programmed
Cell Death 1 Ligand 1” OR “PD-L1 “OR “CD 274”). Titles
and abstracts were screened through NoteExpress and any
discrepancies were resolved by mutual discussion.

Abbreviations: PD-L1, programmed death-ligand 1; CRC, colorectal cancer;

WoS, wet of science; HR, hazard ratio; TCs, tumor cells; OS, overall survival;

DFS, disease-free survival; ORs, odds ratios; T stage, tumor stage; TNM, tumor-

node-metastasis; MSI-H, microsatellite instability high; PD-1, programmed death

1; IHC, immunohistochemistry; CIs, confidence intervals; NOS, newcastle-

ottawa quality assessment; IRS, immunoreactivity score; TILs, tumor-infiltrating

lymphocytes; CTLs, CD8+ cytotoxic T lymphocytes; CTLA4, CTL-associated

antigen 4; IDO1, indoleamine 2,3-dioxygenase 1; TIME, tumor immunity in the

microEnvironment; mPD-L1, PD-L1 promoter methylation.

Eligibility Criteria
The criteria for inclusion were: (1) All patients were histologically
confirmed as having CRC and had not received adjuvant
chemotherapy before surgery; (2) PD-L1 expression was
detected by immunohistochemistry (IHC); (3) Studies
showed a correlation between PD-L1 expression with
clinicopathological features and/ or prognoses; (4) Articles
were published as a full paper in English. The criteria for
exclusion were: (1) Case reports, reviews and letters; (2)
The main content did not evaluate the relationship of PD-
L1 expression with clinicopathological features and/ or
prognoses; (3) duplications and studies without eligible
data. When duplicate publications were identified, only the
article with the newest and most comprehensive information
was included.

Data Extraction and Quality Assessment
The following information from the included articles was
extracted by two reviewers (M. Z. He and Y. Y. Zhou):
name of the first author, year of publication, country of
origin, tumor type, number of cases, staining method, cut-
off values, PD-L1 positive expression, clinicopathological
parameters, outcome, and quality assessment score. Any
disagreements between the two reviewers were resolved
by consensus involving a third reviewer (Y. Li). Outcome
parameters comprised OS, DFS and recurrence-free survival
(RFS). The HRs and 95% confidence intervals (CIs) were
evaluated for outcome parameters. If the HRs were not available,
we extracted data from survival curves or contacted the
corresponding authors.

According to the Newcastle-Ottawa Quality Assessment
(NOS), a quality assessment was independently carried out
for the included articles by two authors (M.Z. He and
Y. Y. Zhou). Discrepancies in scoring were resolved by
discussion and consensus. The NOS consists of the following
three parameters of quality: selection, comparability and
outcome. The maximum NOS score is nine points, with
studies scoring greater than six considered to be of high
quality (Stang, 2010).

Statistical Methods
Pooled HRs and 95% CIs were calculated to evaluate the
association between PD-L1 positive expression with OS, DFS,
RFS and clinicopathological parameters. Heterogeneity among
studies was evaluated using the Chi-squared test and I2. A
random-effects model was used when there was evidence of
significant heterogeneity (I2 > 50% or P-value <0.1). In all other
cases, a fixed-effects model was used. Potential publication bias
was assessed through Egger’s and Begg’s tests. The statistical
analysis was conducted using Review Manager Version 5.3
(Revman the Cochrane Collaboration; Oxford, England) and
STATA version 14 (Stata Corporation; College Station, TX, USA).
All P-values and 95% CIs were two-sided, and P-values< 0.05
were considered to be statistically significant.
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FIGURE 1 | Flow diagram of the study selection process in this meta-analysis.

RESULTS

Search Results and Study Characteristics
After exclusion of 626 duplicates, 3,356 articles about PD-1/PD-
L1 in colorectal cancer were identified from a primary system
literature search in the Medline/PubMed, Embase, Cochrane
Library, WoS, and Scopus databases. The titles and abstracts
of the remaining articles were screened, and 2,985 records
were rejected because they were case reports, letters, meeting,
reviews or not in the fields of interests. We read 371 records
for further assessment. Among them, 319 full-text articles were
not available, another 40 lacked eligible data, and two scored
lower than 6 on the NOS. Finally, 10 articles were included
in this meta-analysis. A flowchart of the literature selection is
shown in Figure 1.

The characteristics of the 10 included studies are listed in
Table 1. These included studies were generally of high quality,
with NOS scores ranging from six to eight. All 10 studies
were retrospective and published between 2013 and 2018. In
total, 10 studies comprising 2,131 patients were included in
the pooled analysis and all selected studies used IHC assays
to evaluate PD-L1 expression in tumor cells and /or TILs.
Each article had an independent cut-off value used to define
the criterion for PD-L1 positive. Six studies provided OS data
(Shi et al., 2013; Zhu et al., 2015; Li et al., 2016; Enkhbat

et al., 2018; Lee S. J. et al., 2018; Liu et al., 2018), three
studies included DFS data (Enkhbat et al., 2018; Lee K. S.
et al., 2018; Lee S. J. et al., 2018) and three studies included
RFS data (Lee et al., 2016; Wang et al., 2016, 2017). In
addition, HRs and 95% CIs were abstracted directly from the 10
included studies.

Association Between PD-L1 Expression
and Prognostic Parameters
We evaluated the association between PD-L1 expression and
prognostic parameters (OS, DFS and RFS). The pooled HR
for OS in TC from six studies, involving 1,131 patients,
showed that PD-L1 expression was significantly associated with
poor OS in CRC (HR = 1.50, 95%CI 1.05–2.13, P = 0.03;
see Figure 2A). When we took Immunoreactivity score (IRS)
≥ 4 as the cut-off value, we found shorter survival in the
PD-L1 positive group (HR = 2.65, 95%CI 1.44–4.86, P =

0.002; see Figure 2B). The pooled HR for DFS in TC with
452 patients indicated that PD-L1 expression was significantly
associated with shorter DFS (HR = 2.57, 95%CI 1.40–4.75,
P = 0.002; see Figure 2C). The pooled HR for RFS in TC
with 657 patients (HR = 2.38, 95%CI 1.14–4.96, P = 0.02; see
Figure 2D) as well as the pooled HR for RFS in tumor-infiltrating
lymphocytes (TILs) with 516 CRC patients (HR = 1.79, 95%CI
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TABLE 1 | Main characteristics of the studies included for meta-analysis.

References Country No. Tumor

Histology

Stage Technique Cut-off PD-L1(+)

(%)

Outcome HR estimation (95%

CI)

Quality

assessment

(score)

Shi et al.,

2013

China 143 CRC I-IV IHC Moderate or

intense

staining

TC:

64/143(44.8)

OS TC: 2.77(1.05–2.99) 6

Zhu et al.,

2015

China 120 SAC NA IHC IRS≥ 4 TC:

28/120(23.3)

OS TC: 2.30(1.13–4.68) 7

Lee et al.,

2016

USA 395 CRC I-IV IHC+TMA ≥10% and

intense

staining

TC:

19/394(4.8)

RFS TC:

22.86(1.99–263.21)

6

Wang et al.,

2016

Switzerland 262 CRC II-III IHC+TMA ≥5% TILs:

54/262(20.6)

RFS TC: 1.90(0.88–4.14)

TILs: 1.83(1.09–3.05)

7

Wang et al.,

2017

China 254 CRC II-III IHC+TMA NA TILs:

89/254(35.0)

RFS TILs: 1.74(1.02–2.98) 6

Li et al., 2016 China 356

(TCGA)

CRC NA IHC+TMA IRS> 4 TC:

301/356(84.6)

OS TC: 0.63 (0.33–1.18) 8

Enkhbat

et al., 2018

Japan 116 CRC II-III IHC IRS≥ 4 TC:

52/116(44.8)

OS DFS OS:

TC:3.87(1.19–12.57)

DFS:

TC:1.91(0.81–4.52)

6

Liu et al.,

2018

China 60 mCRC NA IHC IS≥ 3 TC:

26/60(43.3)

OS TC:0.28(0.08–0.99) 6

Lee K. S.

et al., 2018

South

Korea

89 CC(MSI) I-III IHC ≥5% TILs:

56/89(62.9)

DFS TILs:0.33(0.11–0.80) 6

Lee S. J.

et al., 2018

South

Korea

336 CRC 0-IV IHC+TMA ≥1% TC:

15/336(9.4)

OS DFS OS:

TC:3.78(1.45–9.90)

DFS:

TC:3.50(1.46–8.41)

7

CRC, colorectal cancer; SAC, serrated adenocarcinoma; mCRC, metastatic colorectal cancer; CC, colon cancer; MSI, microsatellite instability; IHC, immunohistochemistry; NA, not

available; TMA, tissue microarray; OS, overall survival; HR, hazard ratio; TC, tumor cell; TILs, tumor-infiltrating lymphocytes; IRS, Immunoreactivity score; IS, Immunoscore; DFS,

disease-free survival; RFS, recurrence-free survival.

1.23–2.95, P = 0.002; see Figure 2E) showed that PD-L1
expression was significantly associated with poor RFS both in
TC and TILs.

Association Between PD-L1 Expression
and Clinicopathological Characteristics
Gender
The association between PD-L1 expression and gender
was evaluated in eight studies, comprising 3,477 patients.
320(31.37%) of 1,020 male patients and 241(31.42%%) of 767
female patients were PD-L1 expression positive. The pooled OR
showed that there was no significant association found between
PD-L1 expression and gender (OR= 1.00, 95%CI 0.76–1.31, P=

0.98; see Figure 3A).

Age
We evaluated the association between PD-L1 expression and
age in a total of 405 patients from two studies. 49 (26.78%) of
183 younger patients (<60 years of age) were PD-L1 expression
positive and 69 (31.08%) of 222 older patients (≥60 years of
age) were PD-L1 expression positive. There was no significant
association found between PD-L1 expression and age (OR= 1.41,
95% CI 0.90–2.23, P= 0.13; see Figure 3B).

Cancer Location
The association between PD-L1 expression and cancer location
was analyzed in six studies with a population of 1,025 patients.
Of 344 right colon cancer patients, 65 (18.90%) were PD-L1
expression positive, while 77(11.31%) in 681 left colon/rectum
cancer patients. The pooled OR showed a significant association
between PD-L1 expression and cancer location (OR = 2.38, 95%
CI 1.57–3.60, P < 0.0001; see Figure 3C).

Differentiation
Of 1,066 well/moderately differentiated tumors, 159 (14.92%)
were PD-L1 expression positive. Of 154 poorly differentiated
tumors, 49 (34.82%) were PD-L1 expression positive. The pooled
OR showed that PD-L1 expression was significantly associated
with differentiation based on pooled data from five studies (OR
= 3.47, 95%CI 1.37–8.77, P= 0.008; see Figure 3D).

Tumor Size
Only two studies, including 382 colorectal cancer patients,
analyzed the subgroup of tumor size based on the cut-off value of
5 cm. 36 (25.17%) of 143 patients with large tumors (≥5 cm) and
48 (20.01%) of 239 patients with small tumors (<5 cm) were PD-
L1 expression positive. The pooled results carried out in a fixed
effect model, showed that there was no significant association
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FIGURE 2 | Forest plot of 10 studies evaluating the association between PD-L1 expression and prognostic parameters in CRC patients (A: OS in TC; B: IRS≥4 as

cut-off value; C: DFS in TC; D: RFS in TC; E: RFS in TILs).

between PD-L1 expression and tumor size (OR = 1.31, 95%CI
0.80–2.14, P= 0.29; see Figure 3E).

T Stage
We evaluated the association between PD-L1 expression and T
stage in 1,716 patients. Of 283 Tis-T2 stage patients, 82 (28.98%)
were PD-L1 expression positive and 454 (31.68%) of 1,433 T3-T4
stage patients were PD-L1 expression positive. The pooled HR
showed that there was no significant association between PD-L1
expression and T stage (OR = 1.02, 95%CI 0.68–1.54, P = 0.93;
see Figure 3F).

Lymph Node Metastasis
The association between PD-L1 expression and lymph node
metastasis was evaluated in six studies (1,589 patients). The
pooled OR indicated that there was no significant association
found between PD-L1 expression and lymph node metastasis
(OR= 1.23, 95%CI 0.71–2.12, P= 0.46; see Figure 3G).

TNM Stage
Six studies, involving 1,329 patients, evaluated the association
between PD-L1 expression and TNM stage in a fixed effects
model. 138 (21.26%) of 649 stage I-II patients and 122 (17.94%)
of 680 stage III-IV patients were PD-L1 expression positive. The
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FIGURE 3 | Forest plots for the association of PD-L1 expression with

clinicopathological features in CRC patients (A: gender; B: age; C: cancer

location; D: differentiation; E: tumor size; F: T stage; G: lymph node

metastasis; H: TNM stage).

pooled result showed no significant association found between
PD-L1 expression and TNM stage (OR= 0.98, 95%CI 0.61–1.58,
P= 0.94; see Figure 3H).

Heterogeneity was identified in the analysis of PD-L1
expression with cancer location (P = 0.73, I2 = 82%) and lymph
node metastasis (P = 0.46, I2 = 67%). Therefore, a random
effects model was used in the above analyses and other subgroup
analyses were performed in a fixed effects model.

Publication Bias
Egger’s and Begg’s tests showed that no publication bias
influencing the HRs for OS was observed in the six studies
(Figure 4). The P-values for these tests were 0.683 and 1.000,
respectively. In addition, the funnel plots showed no publication
bias for gender or T stage (Figure 5).

DISCUSSION

In the present meta-analysis of the clinicopathological and
prognostic significance PD-L1 expression in CRC, we found
that PD-L1 expression was significantly associated with poor
OS in TC. In addition, the pooled results of RFS and DFS
showed that PD-L1 expression was significantly correlated with
unfavorable clinical outcomes. Poor differentiation and right
colon CRC tumors suggested a poor prognosis. The expression
of PD-L1 was independent of gender, age, tumor size, T stage,
lymph node metastasis, and TNM stage. To our knowledge,
this comprehensive meta-analysis is the first to evaluate
the association of PD-L1 expression with clinicopathological
characteristics and prognostic parameters in colorectal cancer.

During the process of study of selection, the study of Droeser
et al. (2013) was excluded for it included unselected, non-
consecutive, primary, sporadic colorectal cancers, and the data
of the included articles in this meta-analysis were satisfied
with a more rigorous standards, which excluded the patients
receiving adjuvant chemotherapy before surgery, diagnosis of
gastrointestinal stromal tumor or lymphoma, diagnosis with
additional cancers. It is well-known that accurate results were
based on the rigorous exclusion criteria in retrospective study.
Among the OS data in six included studies, one study showed
contradictory results showing that PD-L1 positive expression
was significantly associated with better OS. This study was not
the only one to report a positive prognostic impact of PD-
L1 expression. Sabatier et al. (Schalper et al., 2014) evaluated
PD-L1 expression in 5,454 breast cancer cases and found that
positive PD-L1 expression was associated with better metastasis-
free survival and improved response to chemotherapy. However,
the pooled result showed a significant correlation of PD-L1
expression and poor prognostic outcomes was supported by
other articles reporting poorer outcomes in renal cell carcinoma,
non-small cell lung cancer (Wang et al., 2015) and osteosarcoma
(Lussier et al., 2015). This was because of the complex function of
PD-L1 in the initiation and growth of CRC.

PD-L1 is upregulated by many inflammatory mediators and
cytokines (Keir et al., 2006, 2008; Okazaki and Honjo, 2006)
and PD1/PD-L1 binding can induce activated T cell apoptosis,
exhaustion, and interleukin-10(IL-10) expression as a negative
feedback system (Zou et al., 2016). Moreover, PD-L1 expression
can help tumor cells to evade immunosurveillance and enhance
the function of Tregs in CRC (Lu et al., 2011; Toh et al., 2016).
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FIGURE 4 | Egger’s and Begg’s funnel plot with 95% CI for OS publication bias in the included six studies.

However, MSI tumors in CRC display high infiltration with
CD8+ cytotoxic T lymphocytes (CTLs) and activated Th1
cells, which may contribute to better survival (Gubin et al.,
2014). MSI tumors are also counterbalanced by upregulating
expression of multiple immune checkpoints (Angelova et al.,
2015; Becht et al., 2016), such as CTL-associated antigen 4
(CTLA4), PD-1, PD-L1 and indoleamine 2,3-dioxygenase 1
(IDO1). Upregulated after T cell activation, PD-1 declines
when an antigen is cleared. While PD-1 expression remains
elevated, as in CRC cancer, T cells enter a state of exhaustion
or anergy (Xiao and Freeman, 2015). A study found that
Fusobacterium species could evade the high load of neoantigens
in MSI colorectal cancer (Tahara et al., 2014). And these species
may facilitate upregulation of PD-L1 and lead to poor survival
(Kostic et al., 2013). Considering the dynamic changes of
PD-L1 expression, our results showing that PD-L1 expression
was significantly associated with poor prognoses appear
more credible.

We also noticed a recently literature make a contradictory
conclusion with our study. This study considered that no
significant differences founded in colorectal cancer-specific or
overall survival by Tumor Immunity in the MicroEnvironment
(TIME) subtypes (Hamada et al., 2018). We found that the
primary data of their study were too old, as one cohort was
from 1986 to 1992 and the other was from 1986 to 2004
(Giovannucci et al., 1995; Wark et al., 2009). While, our primary
data were carried out from 2006 to 2016. The discrepancies
between Hamada et al. (2018) and our study might reflect the
different storage time of tissue sections. Reports by Bertheau
et al. (1998) and Jacobs et al. (1996), who investigated the loss of
immunoreactivity for a panel of antibodies in breast carcinomas,
neuroendocrine tumors and lymphomas, indicated that for the
majority of epitopes tested there is a time-dependent substantial
loss in stored tissue slides. CRC develops via sequential genetic
and epigenetic alterations of TCs, and is influenced by tumor-
host interactions. Because CRC patients easily developed local
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FIGURE 5 | Funnel blot visualizing a potential publication bias of PD-L1

expression with gender and T stage (A: gender; B: T stage).

recurrences and distant metastases within 5 years after surgical
treatment and CRC has typical immune subgroups (Dienstmann
et al., 2017), researchers found that immunotherapy is able to
reach center stage in the field of second-line therapy in oncology
treatment (Topalian et al., 2012; Hon et al., 2018). As one of the
types of CRC, high microsatellite instability (MSI-H) can gather
TILs and upregulate PD-L1 expression in tumor cells (Herbst
et al., 2014).Currently, PD-L1 expression on TCs is considered
as an immune-tolerance mechanism of carcinoma, because it
can attract PD-1 expressing immune-inhibitory TILs. However,
little is known about the complex interrelationship among PD-
L1 expression, TILs, and major tumor molecular features. PD-
L1 promoter methylation (mPD-L1) was significantly correlated
with poor PD-L1 mRNA expression, indicating that PD-L1
expression might be regulated by mPD-L1 on a cellular level
in CRC (Goltz et al., 2016). However, this study was not
available to provide data on PD-L1 protein expression and there
was a study had published a proteomic characterization of the
cohort, showing that protein abundance could not be reliably
predicted from DNA- or RNA-level measurements (Zhang et al.,
2014). Previous studies have shown a significant correlation
of PD-L1 expression with OS in melanoma (Robert et al.,
2015), breast cancer (Zhang et al., 2017), renal cell carcinoma

(Motzer et al., 2014), and non-small cell lung cancer (Zhang et al.,
2015), and observed prominent clinical benefits of PD-1/PD-
L1 checkpoint blockades in these carcinoma patients. Although
previous trials have suggested no role for immunotherapy in
patients with CRC, recent studies have demonstrated that MSI-
H in CRC did benefit (Kwak et al., 2016; Overman et al.,
2017). Therefore, we investigated the relationship between the
expression of PD-L1 and clinicopathological factors, and the
results showed that poor differentiation and right colon location
in CRC were PD-L1 expression positive. In addition, poor
differentiation and right colon location in CRC were also
significantly correlated with poor prognoses, which were more
likely to beMSI-H. Thus, our study provided a scientific rationale
and direct support for clinicians to selectMSI-HCRC patients for
anti-PD-1/PD-L1 immunotherapy.

This study provided moderate evidence to evaluate the
association of PD-L1 expression with prognostic outcomes
and clinicopathological factors. However, there were some
limitations. Firstly, only six included studies evaluated the
association of PD-L1 expression with OS. Although the sample
sizes of RFS and DFS were relatively small, their results
should have alleviated some of these concerns. Secondly,
the cut-off values determining positive and negative PD-
L1 expression and antibodies for PD-L1 varied among
the included studies. Thus, the subgroup of IRS ≥ 4 had
reduced heterogeneity and addressed some of these concerns.
Thirdly, only articles published in English were included.
Accordingly, to address these limitations, a large multicenter
study with uniform evaluation methods (the same antibody
and cut-off for positive PD-L1 expression) may be helpful
to attain results that are more accurate. Despite the above
limitations, the present meta-analysis demonstrated the
association of PD-L1 expression with prognostic outcomes
and clinicopathological factors. The findings of this study
may lead to improvements in the outcomes of anti-PD-
1/PD-L1 therapy through stratifying patients in a more
appropriate manner.

CONCLUSION

In conclusion, our results showed that PD-L1 positive expression
might be a new biomarker for poor prognosis in CRC. This
information may be helpful for clinicians to stratify CRC
patients for anti-PD-1/PD-L1 therapy, especially patients with
MSI-H. Well-designed and high-quality studies with uniform
evaluation methods are needed to confirm the association of
PD-L1 expression in CRC.
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Immune checkpoint inhibition (ICI) targeting the programmed death receptor 1 (PD-1) has

shown promising results in the fight against cancer. Systemic anti-tumor reactions due

to radiation therapy (RT) can lead to regression of non-irradiated lesions (NiLs), termed

“abscopal effect” (AbE). Combination of both treatments can enhance this effect. The aim

of this study was to evaluate AbEs during anti-PD-1 therapy and irradiation. We screened

168 patients receiving pembrolizumab or nivolumab at our center. Inclusion criteria were

start of RT within 1 month after the first or last application of pembrolizumab (2 mg/kg

every 3 weeks) or nivolumab (3 mg/kg every 2 weeks) and at least one metastasis outside

the irradiation field. We estimated the total dose during ICI for each patient using the linear

quadratic (LQ) model expressed as 2Gy equivalent dose (EQD2) using α/β of 10Gy.

Radiological images were required showing progression or no change in NiLs before

and regression after completion of RT(s). Images must have been acquired at least 4

weeks after the onset of ICI or RT. The surface areas of the longest diameters of the

short- and long-axes of NiLs were measured. One hundred twenty-six out of 168 (75%)

patients received ICI and RT. Fifty-three percent (67/126) were treated simultaneously,

and 24 of these (36%) were eligible for lesion analysis. AbE was observed in 29% (7/24).

One to six lesions (mean = 3 ± 2) in each AbE patient were analyzed. Patients were

diagnosed with malignant melanoma (MM) (n = 3), non-small cell lung cancer (NSCLC)

(n = 3), and renal cell carcinoma (RCC) (n = 1). They were irradiated once (n = 1), twice

(n= 2), or three times (n = 4) with an average total EQD2 of 120.0 ± 37.7Gy. Eighty-two

percent of RTs of AbE patients were applied with high single doses. MM patients received
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pembrolizumab, NSCLC, and RCC patients received nivolumab for an average duration

of 45± 35 weeks. We demonstrate that 29% of the analyzed patients showed AbE. Strict

inclusion criteria were applied to distinguish the effects of AbE from the systemic effect

of ICI. Our data suggest the clinical existence of systemic effects of irradiation under ICI

and could contribute to the development of a broader range of cancer treatments.

Keywords: abscopal effect, PD-1, radio-immunotherapy, radiotherapy, combination treatment, advanced cancer

disease, immune checkpoint inhibition

INTRODUCTION

In addition to radiation therapy (RT), chemotherapy (CTX), and
surgery, immunotherapy (IT) has been established as a fourth
pillar of cancer treatment. Different treatment regimens and
combination concepts are being evaluated and used in order to
optimize treatment outcome of various tumor diseases.

RT is used for local treatment of malignant diseases. More
than 50% of all patients with solid tumors are treated with RT
only or in a combined treatment setting. The interaction of RT
and patient’s immune system has gained particular interest after
the encouraging success of immune checkpoint inhibitors (ICIs)
targeting the programmed death receptor 1 (PD-1) (Garon et al.,
2015; Haanen and Robert, 2015; Robert et al., 2015; Ferris et al.,
2016; Sharma et al., 2016; Younes et al., 2016; Long et al., 2017; Ok
and Young, 2017). PD-1 checkpoint inhibitors act by suppression
of an inhibitory T-cell pathway, namely the PD-1/PD-L1 axis.
In metastatic malignant melanoma (MM), anti-PD1 therapy has
been proven as superior treatment to chemotherapy as first-line
therapy and after ipilimumab (anti-CTLA-4 antibody) failure
(Ribas et al., 2015; Weber et al., 2015) and in non-small cell
lung cancer (NSCLC) patients after progression to first-line
chemotherapy (Vokes et al., 2018). Despite all advancements,
not all patients benefit from treatment with ICIs, and different
systemic therapies are less effective if the tumor does not contain
a mutation that can be targeted. Looking for further treatment
strategies, the combination of local irradiation, and ICIs led to
promising results even beyond local tumor control (Kang et al.,
2016; Salama et al., 2016). The mechanisms by which RT and IT
synergistically modulate the immune response might also affect
treatment-related side effects. Evidence shows that simultaneous
administration of RT and ICIs as radio-immunotherapy (RIT)
is considered safe and that the number of adverse events does
not increase significantly (Bang et al., 2017; Hwang et al., 2018;
Trommer-Nestler et al., 2018). The first report on an immune-
mediated response to radiation therapy and the definition of the
term “abscopal” in this context was published in 1953 describing
the effects of ionizing radiation “at a distance from the irradiated
volume but within the same organism” (Mole, 1953). The so-
called abscopal effect (AbE) describes the regression of lesions or
tumor or metastatic regions outside the radiation field induced
by radiation.

Over time, there have been some reports of clinically observed
AbEs, most commonly in highly immunogenic tumor entities
(Abuodeh et al., 2016). The underlying mechanism of the AbE
is still unclear. Most likely it is mediated by the activation of

the immune system (Demaria et al., 2004) and is dependent
on RT-induced cell damage leading to the release of cell
fragments, neoantigens, cellular danger-associated molecular
patterns (DAMPs), and cytokines (Formenti and Demaria, 2013).
One way to improve the probability of the occurrence of AbEs
through RT is to modulate the tumor microenvironment. This
could be achieved by changing the radiation dose, fractionation,
site of irradiation and timing, or by combined RT with other
systemic therapies. The interactions of RT and IT might be
able to immunize the patient against the tumor, acting like a
type of “tumor vaccine” leading to a decrease of both tumor
and metastases (Demaria and Formenti, 2009; Frey et al., 2012;
Formenti and Demaria, 2013; Sharabi et al., 2015).

Currently, more and more case reports on the AbE are
being published (Grimaldi et al., 2014; Chandra et al., 2015;
Ribeiro Gomes et al., 2016). The incidence of AbEs is still rare
and the radiation characteristics like fractionation, timing,
fraction scheme, and total dose required for its occurrence
remains unclear up until today. The actual occurrence of the
AbE has not been well-evaluated in clinical studies so far. This
retrospective single center study was conducted to evaluate
AbEs in metastasized cancer patients treated with irradiation
and simultaneous PD-1 inhibition with pembrolizumab
or nivolumab.

MATERIALS AND METHODS

Out of a database of 168 patients treated with a PD-1 inhibitor
between 2013 and 2017 at our center (University Hospital of
Cologne) we retrospectively analyzed patients who received
pembrolizumab or nivolumab and radiotherapy simultaneously.
We included patients with any metastatic oncological disease
with at least one not locally treated distant metastatic lesion
outside V10% of the prescribed irradiation dose (volume of
normal tissue receiving at least 10% dose).

The indication for RT was due to locally progressive
disease under ICIs alone requiring symptomatic control. Disease
progression was defined according to RECIST (Response
Evaluation Criteria in Solid Tumors) version 1.1. Any irradiation
concept with respect to fractionation scheme and irradiation dose
like conventional radiation therapy (CFX), hypofractionated
radiation therapy (HFX), stereotactic body radiation therapy
(SBRT) or stereotactic radiosurgery (SRS), and multiple RT
sessions during IT were permissible. Since patients could have
received more than one RT at different sites and with different
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concepts we calculated the total irradiation dose during the IT
period for each patient using the linear quadratic (LQ) model
expressed as 2Gy equivalent dose (EQD2) using an α/β value
of 10Gy, which has been assumed for tumors (Fowler, 1989;
Stuschke and Pottgen, 2010).

Nivolumab was applied intravenously 3 mg/kg every 2 weeks,
pembrolizumab 2 mg/kg every 3 weeks. Patients receiving any
other systemic cancer treatment, such as ipilimumab, targeted
therapy or chemotherapy during the IT or RT periods were
excluded, while patients with previous use of systemic treatment
were not excluded. We defined simultaneously applied radio-
immunotherapy (RIT) as start of RT within 1 month after the
first or last application of ICI.

AbE was defined as regression of lesions outside the
irradiation field, more specifically outside the 10% iso-dose of
the applied radiation dose. In order to distinguish AbE from the
systemic effects of IT alone, radiological images were required to
show progression or no change in non-irradiated lesion(s) during
PD-1 inhibitor administration prior to RT application. If those
lesions showed regression after one or more RTs, this was defined
as AbE. Radiological images must have been acquired at least 4
weeks after the onset of ICI or RT for regression of lesions to be
considered a reliable treatment effect. Patients and radiological
images were regularly discussed in interdisciplinary panels.

All computed tomography (CT), magnetic resonance imaging
(MRI), and/or positron emission tomography (PET) images were
analyzed to identify lesions within and outside the irradiation
field. The longest diameters of both the short-axis and long-axis
of all non-irradiated lesions were measured and the resulting
surface area was analyzed using the Mint R© software (Mint R©

Medical GmbH, Germany). The surface areas were plotted as
a function of time with baseline images, which corresponded
to the non-irradiated lesions, as time point 0. The overall
lesion area reduction was calculated with respect to the largest
lesion area. When applicable, data were reported as mean ±

standard deviation.

RESULTS

Patients and Treatment Characteristics
From our database, 126 out of 168 (75%) patients were found
to receive checkpoint inhibition and RT. Of these patients, 53%
(67/126) were treated simultaneously, and 24 out of 67 (36%)met
the inclusion criteria and were eligible for lesion analysis.

AbE was observed in 29% (7/24) of the cases as lesion
shrinkage outside V10%. We analyzed 58% female and 42% male
patients with a mean age of 64 ± 13 years. Fifty-four percent
were diagnosed with malignant melanoma, 29% with non-small
cell lung cancer, and 13 and 4% with renal cell carcinoma (RCC)
and head and neck cancer (H&N), respectively. Fifty-four percent
of the analyzable patients received pembrolizumab, the mean
IT duration was 40 ± 28 weeks. Most of the RT courses (60%)
were applied hypofractionally. Three patients were excluded from
further analysis due to unreliable radiological images such as
missing contrast agent in the CT, pneumonitis or atelectasis of
the lung in the target lesion area. Baseline characteristics of all
included patients are demonstrated in Table 1.

TABLE 1 | Baseline demographics and treatment characteristics of all

included patients.

Characteristic Value

No. of patients 24

Age, years (range) 64 ± 13 (40–89)

Sex

Male, n (%) 10 (42)

Female, n (%) 14 (58)

Primary tumor

MM, n (%) 13 (54)

NSCLC, n (%) 7 (29)

RCC, n (%) 3 (13)

H&N, n (%) 1 (4)

IT

Pembrolizumab, n (%) 13 (54)

Nivolumab, n (%) 11 (46)

IT duration, weeks (range) 40 ± 28 (4–115)

RT during IT

No. of RT (range) 2 ± 1 (1–3)

CFX, n (%) 6 (14)

HFX, n (%) 25 (60)

SRS, n (%) 11 (26)

Analysis

AbE, n (%) 7 (29)

PD, n (%) 5 (21)

PR, n (%) 5 (21)

MR with IT alone, n (%) 4 (17)

Image unreliable, n (%) 3 (13)

Unless otherwise indicated, values represent means ± standard deviation. MM,

melanoma; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; RT,

radiotherapy; CFX, normofractionated radiotherapy; SRS, stereotactic radiosurgery; HFX,

hypofractionated radiotherapy; IT, immunotherapy; AbE, abscopal effect; PD, progressive

disease; PR, partial response; MR, mixed response.

The seven patients (two males and five females) exhibiting
AbE had an average age of 61 ± 12 years. Three of them were
diagnosed with MM, three with NSCLC, one with RCC. The
MM patients received pembrolizumab, the NSCLC, and RCC
patients received nivolumab with an average duration of 45 ±

35 weeks. Eighty-two percent of the RT courses were applied
with high single doses as HFX (41%) or SRS (41%), and 18%
normofractionated. Patients were irradiated for one (n = 1), two
(n = 2), or three (n = 4) times with an average total EQD2 of
120.0± 37.7Gy irrespectively of the number of irradiations fields
and their localization. Radiotherapy was applied between 1 and
49 days (mean= 16± 15 days) with the first RT being performed
at 19.5 ± 12.3 weeks after the induction of immunotherapy. In
these patients, one to six (mean = 3 ± 2) metastatic lesions
were analyzed.

Independent of the number of metastases diagnosed, each
patient had only one lesion outside the irradiation field which
regressed. Lesions were detected at the lung (n = 3), adrenal
gland (n = 1), axillar lymph node (n = 1), mediastinal lymph
node (n = 1), and at the perirenal region (n = 1). The AbE
was observed at 20 ± 6, 5 ± 1, and 6 ± 1 weeks after the first
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TABLE 2A | Baseline demographics and treatment characteristics of patients

showing AbE.

Characteristic Value

No. of patient 7

Age, years (range) 61 ± 12 (42–77)

Sex

Male, n (%) 2 (29)

Female, n (%) 5 (71)

Primary tumor

MM, n (%) 3 (43)

NSCLC, n (%) 3 (43)

RCC, n (%) 1 (14)

H&N, n (%) 0

IT

Pembrolizumab, n (%) 3 (43)

Nivolumab, n (%) 4 (57)

IT duration, weeks (range) 45 ± 35 (7–115)

RT during IT

No. of RT (range) 3 ± 1 (1–3)

CFX, n (%) 3 (18)

HFX, n (%) 7 (41)

SRS, n (%) 7 (41)

Unless otherwise indicated, values represent means ± standard deviation. MM,

melanoma; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; RT,

radiotherapy; CFX, normofractionated radiotherapy; SRS, stereotactic radiosurgery; HFX,

hypofractionated radiotherapy; IT, immunotherapy.

(n= 2 patients), second (n= 3 patients) or third (n= 2 patients)
RT, respectively, with an average lesion area reduction of 68.4
± 23.6%. Baseline demographics of AbE patients are shown in
Table 2A. A detailed description of treatment characteristics and
the corresponding AbE sites are presented in Table 2B.

Case Reports
Patient one of Table 2B
In July 1998, patient one was diagnosed with an AJCC stage IIb
melanoma located at the left thigh, which has been surgically
resected. In May 2017, pembrolizumab was applied at 2 mg/kg
for nine cycles for a period of 24 weeks due to progressive disease
with metastases in the lung and brain, AJCC stage IV. During
this period, the patient received two radiotherapy sessions, with
a total EQD2 of 100Gy on intracerebral lesions one (SRS) and
23 (CFX) weeks after the induction of IT. Of the six measured
metastases on the CT scans, one pulmonary metastasis showed
an increase in the surface area from 40.1 to 60.8 mm2 (52%) 10
weeks after the start of IT and 9 weeks after the first RT of cerebral
metastases, applied as SRS with a single dose of 20Gy (Figure 1).
One week after the second CFXwith a total dose of 50Gy, applied
with a single dose of 2Gy, and 3 weeks after the end of IT, a
regression of 37% (38.6 mm2) was observed, suggesting AbE. In
the next CT follow-up 23 weeks later, the lung lesion continued
to decrease to a size of 15.3 mm2, resulting in an overall lesion
regression of 75%.

Patient two of Table 2B
Patient two was diagnosed with an AJCC stage III malignant
melanoma located at the left knee in June 2014. The melanoma
was subsequently surgically removed including the lymph
drainage area of the left inguinal region. In November 2015,
pembrolizumab was applied at 2 mg/kg for 11 cycles for a total
period of 31 weeks due to progressive disease with cerebral
metastases, AJCC stage IV. During this period, the patient
received two RT sessions with a total EQD2 of 148.5Gy. The
first RT was applied as normofractionated whole brain radiation
therapy (WBRT) with a single dose of 2Gy up to a total dose
of 40Gy 1 week after the induction of IT. The second RT of
bone metastases of the left popliteal fossa and lower left leg was
applied as HFX with a single dose of 3Gy up to a total dose of
54Gy at 27 weeks after the start of IT. During this RT, brain
metastases were irradiated with 20Gy in one fraction (SRS) 29
weeks after IT induction. Our analysis revealed the presence of
one non-irradiated metastasis in the left perirenal area with a
surface area of 36.2 mm2 (Figure 2). The lesion progressed to
46.6 (28.7%) and 52.7 mm2 (45.6%) at 10 and 23 weeks after
the first application of IT, respectively, and after the first RT. In
the subsequent CT scan, which corresponded to 6 weeks after
the completion of IT and second RT, the lesion regressed by
67.9% to 16.9 mm2. Complete lesion remission was observed at
10 weeks.

Patient Four of Table 2B
Patient four was diagnosed with a UICC stage IV non-small cell
lung cancer (NSCLC) with metastases of the brain, suprarenal
gland and bones in May 2016. The patient received a primary
radiation treatment in May 2016, initially at 3 × 3Gy on
the mediastinal bulk due to superior inflow congestion. RT
was then continued with a single dose of 3Gy up to a total
dose of 51Gy. Regarding the brain metastases, SRS using the

Cyberknife© with 20Gy single dose each on the 65% isodose
was performed. Subsequently, the patient received palliative
chemotherapy with carboplatin and abraxane. Cerebral lesions
progressed in October 2016 and nivolumab was applied at 3
mg/kg for four cycles for a total of 7 weeks. Three weeks after
the start of nivolumab, a concurrent stereotactic radiosurgery
for cerebral metastases was applied (3 × 9Gy and 1 × 20Gy,
each prescribed on the 65% isodose). We found non-irradiated
lesions in the left and right suprarenal glands. While the left
suprarenal metastasis showed a regression with IT alone, the
right lesion showed an initial lesion progression from 448 to
1,773 mm2 at 1 and 4 weeks after completion of IT and
RT, respectively, followed by 33.9% lesion regression to 1,172
mm2 4 weeks after a HFX of the right femur with a single
dose of 3Gy up to a total reference dose of 30Gy ∼5 weeks
after completion of nivolumab (Figure 3). During the follow-
up CT scan 11 weeks later, the lesion was found to further
regress to 994 mm2, resulting in an overall lesion regression
of 44%. Three weeks after the prior CT scan the left sacrum
and ischium have been irradiated with a single dose of 3Gy up
to a total dose of 30Gy. The total EQD2 this patient received
was 157.75 Gy.
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TABLE 2B | Detailed description of treatment characteristics and the corresponding abscopal effects for each patient.

Patient Primary

tumor

IT IT

duration

(weeks)

No. of

RT

Type of RT Interval

between

RT

(weeks)

Irradiated

sites (n)

RT dose and

fractionation

regime (Gy)

EQD2 (Gy)

for

α/β = 10

RT

duration

(days)

Time to

RT after

IT

induction

(weeks)

Site of

analyzed

metastases

(n)

Site of

AbE (n)

Time to

AbE after

RT

Overall

lesion

reduction

(%)

1 MM Pembrolizumab 24 2 (i) SRS (ii) CFX (i–ii) 22 (i) Brain

(ii) Brain

(i) 1 × 20 Gy

(ii) 50 (2) Gy

100.00 (i) 1

(ii) 25

(i) 1

(ii) 23

Lung (5),

paraaortal

LN (1)

Lung (1) 4 wks after

2nd RT

75

2 MM Pembrolizumab 31 3 (i) CFX (WBRT)

(iia) HFX

(iib) SRS

(i–ii) 23 (i) Brain

(iia) Popliteal

fossa and lower

leg L.

(iib) Brain

(i) 40 (2) Gy

(iia) 54 (3) Gy

(iib) 1 × 20Gy

148.50 (i) 25

(iia) 28

(iib) 1

(i) 1

(iia) 27

(iib) 29

Perirenal

region L. (1)

Perirenal

region

L. (1)

6 wks after

2nd RT

100

3 MM Pembrolizumab 24 3 (i) SRS

(ii) SRS

(iii) SRS

(i–ii) 15

(ii–iii) 6

(i) Brain

(ii) Brain

(iii) Brain

(i) 1 × 20 Gy

(ii) 1 × 20 Gy

(iii) 1 × 20Gy

150.00 (i) 1

(ii) 1

(iii) 1

(i) 14

(ii) 29

(iii) 35

Lung (2) Lung (1) 5 wks after

3rd RT

100

4 NSCLC Nivolumab 7 3 (i) SRS

(ii) HFX

(iii) HFX

(i–ii) 8

(ii–iii) 7

(i) Brain

(ii) Femur R.

(iii) Os. Sacrum

and os.

ischiadicum L.

(i) 3 × 9Gy +

1 × 20 Gy

(ii) 30 (3) Gy

(iii) 30 (3) Gy

157.75 (i) 8

(ii) 12

(iii) 17

(i) 3

(ii) 12

(iii) 21

Suprarenal

glands (2)

Suprarenal

gland (1)

4 wks after

2nd RT

44

5 NSCLC Nivolumab 104 1 CFX – Cervical and

supravlavicular L.

54 (2) Gy 54.00 40 29 Mediastinal

LN (1), hilar L.

(1), axillar

LN (1),

intracarinal LN

(1)

Axillar

LN (1)

24 wks

after RT

55

6 NSCLC Nivolumab 52 3 (i) CFX

(ii) HFX

(iii) SRS

(i–ii) 9

(ii–iii) 4

(i) Supra- and

infra-clavicular

lymph

drainage area

(ii) 3rd rib R.,

iliac sacral joint

R., inguinal L.

(iii) Occipital L.

(i) 50.4 (1.8)

Gy

(ii) 30 (3) Gy

(iii) 1 × 20Gy

132.08 (i) 41

(ii) 49

(iii) 1

(i) 6

(ii) 22

(iii) 33

Lung (1) Lung (1) 7 wks after

3rd RT

56

7 RCC Nivolumab 32 3 (i) HFX

(ii) HFX

(iii) HFX

(i–ii) 19

(ii–iii) 20

(i) Os. Ilium L.

(ii) Hip (L.+R.),

os. Pubis R.

(iii) Thoracic

vertebra 12,

Lumbar

vertebra 3

(i) 36 (3) Gy

(ii) 30 (3) Gy

(iii) 30 (3) Gy

97.50 (i) 16

(ii) 14

(iii) 15

(i) 4

(ii) 25

(iii) 37

Mediastinal LN

(2), hilar (1),

pleural (1)

Mediastinal

LN (1)

16 wks

after 1st

RT

49

MM, malignant melanoma; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; RT, radiotherapy; CFX, normofractionated radiotherapy; SRS, stereotactic radiosurgery; HFX, hypofractionated radiotherapy; IT, immunotherapy;

AbE, abscopal effect; SD, standard deviation; L, left; R, right; LN, lymph node; wks, weeks.
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FIGURE 1 | Patient 1 (Table 2B) presenting AbE in the lung. CT scans show the analyzed lesion (yellow arrows) before (A), 10 (B), 27 (C), and 50 weeks (D) after the

induction of pembrolizumab. (E) The change in the lesion surface area with respect to the administration of IT (duration = 24 weeks, gray shaded area) and

concurrent RT (red lines and area) of cerebral metastases with 1 × 20Gy (1 week after 1st IT) and 25 × 2Gy (23 weeks after 1st IT).

FIGURE 2 | Patient 2 (Table 2B) presenting AbE a soft tissue metastasis in the perirenal region. CT scans show the analyzed lesion (yellow arrows) before (A), and 10

(B), 23 (C), 37 (D), and 47 weeks (E) after the induction of pembrolizumab. (F) The change in the lesion surface area with respect to the administration of IT

(duration = 31 weeks, gray shaded area) and concurrent RT (red shaded areas) of the whole brain with 20 × 2Gy (1 week after 1st IT) and of bone metastases in the

left popliteal fossa and lower left leg 18 × 3Gy (27 weeks after 1st IT) together with SRS of cerebral metastases with 1 × 20Gy (29 weeks after 1st IT, blue line).

DISCUSSION

In this study we analyzed retrospectively abscopal effects

in advanced cancer patients being treated simultaneously
with anti-PD1 therapy and radiation therapy. We used strict
inclusion criteria for the radio-immunotherapy concept as

being applied simultaneously and the radiological imaging
information on distant lesions. AbEs were observed in 29% of our
includable patients.

AbE was defined as radiation-induced shrinkage of distant,
non-treated lesions (Mole, 1953; Andrews, 1978) and this
was considered the visual evidence for the efficient immune-
stimulation by irradiation. The immune system has been

suggested as the key component for distant effects outside the
irradiation field after local RT, defined as abscopal response.
Local RT is considered to induce immunogenic cell death
(ICD) associated with antigen release, cytokine production, and
complement activation, leading to immune responses, and to
a tumor vaccination (Formenti and Demaria, 2012; Frey et al.,
2014; Barker et al., 2015). Mechanisms such as increasing the
expression of the major histocompatibility complex (MHC)
class I, activating dendritic cells, enhancing the presentation
of tumor antigens and the migration of immune cells into
the tumor micromilieu, which leads to an increase of tumor-
infiltrating lymphocyte density with a broader T-cell receptor
repertoire, improved effector T cell activity, and modulation
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FIGURE 3 | Patient 4 (Table 2B) presenting AbE in the suprarenal gland. CT images show the analyzed lesion (yellow arrows) before (A) and 3 (B), 12 (C), and 21

weeks (D) after the induction of nivolumab. (E) The change in the lesion surface area with respect to the administration of IT (duration = 7 weeks, gray shaded area)

and RT (red shaded areas) of brain metastases with 3 × 9Gy and 1 × 20Gy (3 weeks after IT induction), and RT of bone metastases 10 × 3Gy of the right femur, left

sacrum and ischium (3, 12, and 21 weeks after induction of IT).

of TReg cells and immune checkpoint molecule expression
may contribute to improved systemic immune response after
local radiotherapy (Demaria and Formenti, 2009; Formenti and
Demaria, 2012).

Despite the stimulation of the immune response, RT
alone does not seem to be sufficient to induce AbEs in
most patients. Demaria et al. demonstrated in preclinical
studies shrinkage of tumors outside the irradiation field when
irradiation was combined with immunotherapy. This was
naturally only observed in immunocompetent mice, indicating
the indispensability of the immune system in this complex
process (Demaria et al., 2004). In 2015, Reynders et al. (2015)
reviewed all publications relating to the term “abscopal” in the
context with RT in an oncological setting. They found that
AbEs induced by RT alone are rare in the clinical and even
in the preclinical setting. Interestingly, the majority of AbE
cases occurred in highly immunogenic tumors such as malignant
melanoma, renal cell carcinoma, and hepatocellular carcinoma
(HCC) (Abuodeh et al., 2016).

Preclinical data, retrospective evaluations and case reports
suggest that RT enhances the effect of IT or that radiation effects
may be intensified by IT (Demaria et al., 2005; Frey et al., 2014;
Ngwa et al., 2018). AbE rates of 25–52% are reported in current
literature when combined treatment concepts with RT and ICIs
are used (Grimaldi et al., 2014; Chandra et al., 2015). Most
reports on the combination of RT and ICIs refer to patients
with malignant melanoma treated with ipilimumab targeting the
CTLA4 checkpoint, since it was approved for the treatment of
metastatic melanoma in 2011 (Postow et al., 2012; Theurich et al.,
2016). In 2014, checkpoint inhibitors targeting the PD-1 receptor
were approved (pembrolizumab and nivolumab). The interaction
of PD-1 and its ligand PD-L1, which may be expressed on tumor
cells and antigen presenting cells, leads to a suppression of T-cell
activation and thus provides an immune escape for cancer cells

(Taube et al., 2012). There are many reasons why combining RT
with PD-1 inhibitors might be able to provide an opportunity
to boost abscopal response rates turning this rare event into a
clinically relevant effect (Ngwa et al., 2018). RT can induce the
expression of PD-L1 on tumor cells (Deng et al., 2014). In a
study from 2016, Ribeiro Gomes et al. (2016) observed an AbE
response rate of 18.7% out of 16 includable patients with solid
tumors being treated with anti-PD-1 treatment and concurrent
radiotherapy after disease progression occurred, all of these were
diagnosed with malignant melanoma. Of all the solid tumor
patients we analyzed, the 29%, which revealed AbE were either
diagnosed with MM, NSLCL, or RCC, which are tumors with a
high mutation frequency (Alexandrov et al., 2013).

The optimal dosing and fractionation therapy to produce the
highest immunogenic benefit has not been determined yet. Single
and fractionated therapy have been reported to boost AbE in
combination with ICIs (Deng et al., 2014; Ngwa et al., 2018). In
general, higher doses per fraction were associated with AbE. In
our patient cohort, six of the seven patients showing AbE received
multiple RT sessions and tended to have higher single doses. Only
one patient received a normofractionated RT concept. There may
be an optimal dose range where AbE is more likely to occur, or
below which immune stimulation may be inferior. We assume
that this range is at a high dose level (Bernstein et al., 2016).

Further questions remain about the right timing of RT
and ICI application. It is difficult to distinguish between the
combined effects of RIT and the effect of IT alone when applied
simultaneously. We have therefore established strict inclusion
criteria for the timing of radiological images.

It is also possible that patients we classified at showing AbE
might in fact be presenting pseudo-progression (PsP), which
is less frequent than AbE but definitely observed in analyses
reporting about ICI application (Hodi et al., 2016). Evidence
suggest that it could be evenmore frequent when being combined
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with RT (Trommer-Nestler et al., 2018). It is assumed that PsP is
generated by attracting immune cells to the tumor by a particular
mechanism like releasing neoantigens due to RT. This can lead
to a larger appearance of the lesion in radiological images, but
after some time the size of the lesion decreases due to treatment
effect and immune response (Hodi et al., 2016). We would
primarily assume that the locally irradiated tumor shows PsP
during RIT but it is also thinkable that it can be observed in
distant lesions. The so far reported prevalence of PsP during
ICI therapy is still too low to be considered as a reliable reason
for the progression observed during PD-1 blockade in the seven
patients presenting AbE, but must be considered as a possible
differential diagnosis.

CONCLUSION

In this data analysis, we were able to show that 29% of the
patients we included after applying strict inclusion criteria
showed regression of lesions outside the irradiation field. We
have identified AbE after radiation therapy distinctly from
the treatment effects of immunotherapy alone. Most patients
presenting AbE had received multiple RTs. Abscopal responses
are yet rarely described in humans and systematic analyses of
patients treated with radio-immunotherapy are lacking. Our
results provide evidence for a clinical existence of a systemic
effect of irradiation during immunotherapy and contribute to
the further development of cancer therapy options, in particular
with regard to combination therapies. Randomized prospective
studies are required to assess whether the addition of RT
to ongoing PD-1 inhibition might be able to induce reliable
and durable systemic responses and provide clinical benefits.
Particular attention must be paid to patient selection to find

the best treatment option and clear indications when AbE
induction is most likely to be effective and should be attempted.
Further studies should improve the optimization of dosing
regimens and the timing and sequencing of RIT concepts to
determine the appropriate treatment approach for optimal and
most immunogenic responses.

Our results are encouraging and represent a further step
toward a possible application of RT together with ICIs in patients
with advanced cancer stages to induce an AbE that enables amore
efficient long-term immune response after RT.
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Background: The prognostic role of programmed cell death-ligand 1 (PD-L1) in bladder 
cancer has been investigated in previous studies, but the results remain inconclusive. 
Therefore, we carried out a meta-analysis to evaluate the prognostic significance of 
PD-L1 in patients with bladder cancer.

Methods: The electronic databases PubMed, Embase, Web of Science, and Cochrane 
Library were searched. The association between PD-L1 expression and survival outcomes 
and clinicopathological factors was analyzed by hazard ratios (HRs) or odds ratios (ORs) 
and 95% confidence intervals (CIs).

Results: A total of 11 studies containing 1,697 patients were included in the meta-
analysis. High PD-L1 expression was associated with poor overall survival (OS) (HR = 1.83, 
95% CI = 1.24–2.71, p = 0.002). There was nonsignificant association between PD-L1 
and recurrence-free survival (RFS) (HR = 1.43, 95% CI = 0.89–2.29, p = 0.134), cancer-
specific survival (CSS) (HR = 1.51, 95%  CI = 0.80–2.87, p = 0.203), or disease-free 
survival (DFS) (HR = 1.53, 95%  CI = 0.88–2.65, p = 0.13). Furthermore, high PD-L1 
was significantly correlated with higher tumor stage (OR = 3.9, 95% CI = 2.71–5.61, 
p  <  0.001) and distant metastasis (OR = 2.5, 95%  CI = 1.22–5.1, p = 0.012), while 
PD-L1 overexpression was not correlated with sex, tumor grade, lymph node status, and 
multifocality.

Conclusions: The meta-analysis suggested that PD-L1 overexpression could predict 
worse survival outcomes in bladder cancer. High PD-L1 expression may act as a 
potential prognostic marker for patients with bladder cancer.

Keywords: meta-analysis, prognosis, PD-L1, bladder cancer, survival

INTRODUCTION

Bladder cancer is the most common malignancy of the urinary tract, accounting for 80,470 new 
cases and 17,670 deaths in 2019 alone in the United States (Siegel et al., 2019). When diagnosed, up 
to 75% of patients present with non-muscle-invasive bladder cancer (NMIBC), about 20% present 
with muscle-invasive bladder cancer (MIBC), and 5% would have metastatic disease. Although 
patients with NMIBC have a relatively good prognosis, the prognosis of regional and distant 
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metastatic disease is poor, with 5-year survival rates of 35% and 
5%, respectively (National Cancer Institute SEER Program). 
Therefore, investigation of novel biomarkers to stratify patients is 
important for clinical management (Slovin, 2017).

Cancer immunoediting is a process consisting of 
immunosurveillance and tumor development (Mittal et al., 2014). 
Programmed cell death-1 (PD-1) and its ligand programmed cell 
death-ligand 1 (PD-L1) have an important role in the regulation 
of responses of our immune system (Errico, 2015). PD-L1 is 
also known as B7-H1, CD274, which is expressed on many 
cancer cells. PD-L1 expression has shown prognostic value in 
various tumors including pancreatic cancer (Gao et al., 2018), 
colorectal cancer (Shen et al., 2019), and non-small cell lung 
cancer (Ma et  al., 2018). Recently, many studies (Nakanishi et 
al., 2007; Boorjian et al., 2008; Wang et al., 2009; Xylinas et al., 
2014; Bellmunt et al., 2015; Wu et al., 2016; Noro et al., 2017; Li 
et al., 2018b; Pichler et al., 2018; Owyong et al., 2019; Wang et 
al., 2019) also investigated the prognostic significance of PD-L1 
expression in bladder cancer, but the results remain controversial. 
Therefore, we collected relevant data and performed a meta-
analysis to quantify the prognostic role of PD-L1 and analyze 
the relationship of PD-L1 and clinicopathological parameters in 
bladder cancer.

METHODS

Literature Search
This meta-analysis was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Moher et al., 2009). The research 
of PubMed, Embase, Web of Science, and Cochrane Library 
identified relevant studies published in English. The last search 
was updated on March 2019. A comprehensive search strategy 
was performed based on the following terms: “programmed 
death ligand-1,” “PD-L1,” “B7-H1,” “CD274,” “bladder cancer,” 
“bladder neoplasm,” “bladder tumor,” and “bladder urothelial 
carcinoma.” The references of the included studies were also 
manually checked to identify relevant publications. Ethical 
approval was waived because we just collected the data from 
available publications.

Eligibility Criteria
The inclusion criteria were as follows: 1) patients were 
histologically diagnosed to have bladder cancer; 2) PD-L1 was 
detected via immunohistochemical staining (IHC); 3) the 
relationship between PD-L1 and survival of bladder cancer was 
studied; and 4) references are published in English. Exclusion 
criteria were as follows: 1) duplicate studies; 2) studies provided 
incomplete data; and 3) meeting abstracts, case reports, reviews, 
or animal studies.

Data Extraction and Quality Assessment
Two independent investigators extracted the following 
information from the eligible studies: first author, publication 
year, country, detection method, sample size, study design, 

survival analysis, age, and study period. Any disagreement 
was resolved by discussion. The quality of the selected articles 
was assessed according to the Newcastle-Ottawa Scale (NOS) 
(Wells et al., 2009). Total quality score of NOS was ranged 
from 0 to  9, and studies that scored ≥6 were considered as 
high-quality studies.

Statistical Analysis
Hazard ratios (HRs) and their 95% confidence intervals 
(CIs) were searched in the original articles or calculated 
by methods described by Tierney et al. (2007). The survival 
outcomes included overall survival (OS), recurrence-free 
survival (RFS), cancer-specific survival (CSS), and disease-free 
survival (DFS). The logHR and standard error (SE) were used 
to present the survival results. An observed HR  >  1 implied 
a poorer prognosis in patients with high PD-L1 expression, 
while HR  <  1 indicated a better prognosis. The relationship 
between PD-L1 expression and clinicopathological features 
was evaluated by odds ratios (ORs) and corresponding 95% 
CIs. Cochran’s Q test and Higgins I-squared statistic (I2) 
were used to measure the heterogeneity of the combined 
HRs (Higgins and Thompson, 2002). I2 > 50% and/or p < 0.1 
suggested significant heterogeneity in terms of statistics, and 
a random-effects model was utilized. Alternatively, a fixed-
effects model was applied. Begg’s test was used to detect 
potential publication bias (Begg and Mazumdar, 1994). All 
statistical analyses were conducted by using Stata version 12.0 
(Stata Corporation, College Station, TX, USA). A two-sided 
p < 0.05 was considered statistically significant.

RESULTS

Study Selection
Initial literature search identified 925 records. After removal of 
duplicate records, 668 studies remained for further evaluation. 
Then, 631 recorded were excluded by scanning title and/or abstract. 
Thirty-seven studies were screened by full-text examination, and 
26 studies were excluded for following reasons: 20 studies did 
not provide sufficient for analysis, 2 studies recruited overlapped 
patients, 2 studies were reviews, 1 study did not focus on PD-L1, 
and 1 study did not use IHC method for PD-L1 detection. 
Ultimately, 11 studies (Nakanishi et al., 2007; Boorjian et al., 
2008; Wang et al., 2009; Xylinas et al., 2014; Bellmunt et al., 2015; 
Wu et al., 2016; Noro et al., 2017; Li et al., 2018b; Pichler et al., 
2018; Owyong et al., 2019; Wang et al., 2019) were included in this 
meta-analysis. The flow diagram is shown in Figure 1.

Study Characteristics
The main characteristics of eligible articles are listed in Table 1. The 
studies were published from 2007 to 2019. Three studies (Wang et al., 
2009; Li et al., 2018b; Wang et al., 2019) were conducted in China, 
three were performed in United States (Boorjian et al., 2008; Xylinas 
et al., 2014; Bellmunt et al., 2015), two were in Japan (Nakanishi 
et al., 2007; Noro et al., 2017), and one each in Taiwan (Wu et al., 
2016), Austria (Pichler et al., 2018) and Egypt (Owyong et al., 2019). 
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The total sample size was 1,697, ranging from 50 to 318. All studies 
were a retrospective study design. Regarding clinical outcomes, 
eight studies reported clinicopathological factors (Boorjian et al., 

2008; Wang et al., 2009; Xylinas et al., 2014; Bellmunt et al., 2015; 
Wu et al., 2016; Li et al., 2018b; Owyong et al., 2019; Wang et al., 
2019), eight studies reported OS (Nakanishi et al., 2007; Boorjian 

FIGURE 1 | Flowchart for selection of studies.

TABLE 1 | Basic characteristics of included studies.

Author Year Country/
region

Study design Duration No. of 
patients

Sex 
(M/F)

Age Survival 
analysis

Detection 
method

NOS 
score

Nakanishi 2007 Japan Retrospective 1996–2005 65 47/18 NA OS, CSS, RFS IHC 6
Boorjian 2008 USA Retrospective 1990–1994 318 259/59 69 (37–90) OS, CSS, DFS IHC 7
Wang 2009 China Retrospective 2000–2002 50 40/10 61.7 (42–78) OS IHC 7
Xylinas 2014 USA Retrospective 1988–2003 302 244/58 65.9 OS, CSS, RFS IHC 8
Bellmunt 2015 USA Retrospective NA 160 NA NA OS IHC 6
Wu 2016 Taiwan Retrospective NA 120 NA NA OS, DFS IHC 6
Noro 2017 Japan Retrospective 2004–2014 102 82/20 60 (43–84) CSS, DFS IHC 8
Li 2018 China Retrospective 2009–2011 98 76/22 NA OS IHC 7
Pichler 2018 Austria Retrospective 2006–2015 83 62/21 69 (36–87) RFS IHC 8
Owyong 2019 Egypt Retrospective 1997–2004 151 98/53 52 (36–74) CSS, RFS IHC 8
Wang 2019 China Retrospective 2006–2012 248 214/34 63 (14–94) OS, RFS IHC 7

NA, not available; OS, overall survival; CSS, cancer-specific survival; DFS, disease-free survival; RFS, recurrence-free survival; IHC, immunohistochemical staining; NOS, Newcastle-
Ottawa Scale.
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et al., 2008; Wang et al., 2009; Xylinas et al., 2014; Bellmunt et al., 
2015; Wu et al., 2016; Li et al., 2018b; Wang et al., 2019), five studies 
described RFS (Nakanishi et al., 2007; Xylinas et al., 2014; Pichler 
et al., 2018; Owyong et al., 2019; Wang et al., 2019), five studies 
reported CSS (Nakanishi et al., 2007; Boorjian et al., 2008; Xylinas 
et al., 2014; Noro et al., 2017; Owyong et al., 2019), and three studies 
presented DFS (Boorjian et al., 2008; Wu et al., 2016; Noro et al., 
2017). Furthermore, all studies were with NOS score ≥ 6, indicating 
that the studies were of high quality.

Impact of PD-L1 on OS, RFS, CSS, and DFS
Eight studies (Nakanishi et al., 2007; Boorjian et al., 2008; 
Wang et al., 2009; Xylinas et al., 2014; Bellmunt et al., 2015; 
Wu et al., 2016; Li et al., 2018b; Wang et al., 2019) reported 
data on PD-L1 and OS in bladder cancer. As shown in 
Figure 2 and Table 2, high PD-L1 was associated with poorer 
OS (HR  =  1.83,  95%  CI  =  1.24–2.71,  p  = 0.002). Because of 

significant heterogeneity (I2 = 62%, p = 0.01), a random-
effects model was applied. Five studies (Boorjian et al., 2008; 
Xylinas et al., 2014; Pichler et al., 2018; Owyong et al., 2019; 
Wang et  al., 2019) showed the relationship between PD-L1 
and RFS. The pooled results were HR = 1.43, 95% CI = 0.89–
2.29, p = 0.134, with significant heterogeneity (I2 = 69.6%, p = 
0.011) (Table  2, Figure 2). The pooled data from five studies 
(Nakanishi et al., 2007; Boorjian et al., 2008; Xylinas et al., 2014; 
Noro et al., 2017; Owyong et al., 2019) suggested nonsignificant 
association  between PD-L1 and CSS in bladder cancer  
(HR =  1.51, 95%  CI  = 0.80–2.87, p =  0.203; I2 = 73.8%, p = 
0.004, Table 2, Figure 2). Moreover, three studies reported the 
correlation of PD-L1 and DFS (Boorjian et al., 2008; Wu et al., 
2016; Noro et al., 2017). The random-effects model was applied 
because there was significant   heterogeneity (I2 = 63.3%,  p  = 
0.066) across the  studies. The pooled HR and 95%CI were 
HR = 1.53, 95% CI = 0.88–2.65, p = 0.013 (Table 2, Figure 2), 
suggesting PD-L1 was not correlated to worse DFS.

FIGURE 2 | Forest plots describing the association between PD-L1 expression and (A) OS, (B) RFS, (C) CSS, and (D) DFS of patients with bladder cancer.

TABLE 2 | Meta-analysis of PD-L1 and prognosis in bladder cancer.

Survival 
analysis

No. of 
studies

No. of patients Effects model HR (95% CI) p Heterogeneity

I2 (%) p

OS 8 1,361 Random 1.83 (1.24–2.71) 0.002 62 0.01
RFS 5 849 Random 1.43 (0.89–2.29) 0.134 69.6 0.011
CSS 5 938 Random 1.51 (0.80–2.87) 0.203 73.8 0.004
DFS 3 540 Random 1.53 (0.88–2.65) 0.13 63.3 0.066
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PD-L1 and Clinicopathological Features
Eight studies (Boorjian et al., 2008; Wang et al., 2009; Xylinas 
et al., 2014; Bellmunt et al., 2015; Wu et al., 2016; Li et al., 
2018b; Owyong et al., 2019; Wang et al., 2019) explored 
the association between PD-L1 and clinicopathological 
characteristics. The pooled data demonstrated that high 
PD-L1 was significantly correlated with higher tumor stage 
(OR = 3.9, 95%  CI = 2.71–5.61, p  <  0.001) and distant 
metastasis (OR = 2.5, 95%  CI  =  1.22–5.1, p =  0.012). 
However, PD-L1 overexpression was not correlated with 
other clinicopathological factors including sex (OR = 
0.88, 95%  CI = 0.65–1.21, p = 0.433), tumor grade (OR  = 
1.19, 95%  CI = 0.46–3.09, p =  0.72), lymph node status 
(OR = 1.16, 95% CI = 0.63–2.15, p = 0.631), and multifocality 
(OR = 0.77, 95% CI = 0.5–1.18, p = 0.226). The correlation 
between PD-L1 and clinicopathological parameters is 
presented in Table 3.

Publication Bias
The assessment of the publication bias was carried out by using 
Begg’s funnel plot test. Begg’s p values for OS, RFS, CSS, and DFS 
were 0.063, 0.086, 0.221, and 0.602, respectively. Begg’s funnel plot 
was found to be symmetrical (Figure 3), indicating no significant 
publication bias in this meta-analysis.

DISCUSSION

In the present study, we collected information from 11 recent studies 
with 1,697 patients and combined the data. The results showed 
that elevated PD-L1 expression was associated with poorer OS. In 
addition, PD-L1 overexpression was also connected with higher 
tumor stage and distant metastasis. There was no obvious evidence 
of publication bias. The results suggested that PD-L1 expression 
may be associated with tumor progression and metastasis and 
could be used as a potential prognostic biomarker. To the best of 

TABLE 3 | Association of PD-L1 and clinical factors in bladder cancer.

Clinical factors No. of 
studies

No. of 
patients

Effects 
model

OR (95% CI) p Heterogeneity

I2 (%) p

Tumor stage (T2–T4 vs Ta–T1) 8 1,447 Fixed 3.9 (2.71–5.61)  < 0.001 0 0.733
Sex (male vs female) 7 1,287 Fixed 0.88 (0.65–1.21) 0.433 13.8 0.325
Tumor grade (high vs low) 6 969 Random 1.19 (0.46–3.09) 0.72 86.5  <0.001
Lymph node status (positive vs negative) 5 1,139 Random 1.16 (0.63–2.15) 0.631 71.7 0.001
Multifocality (multifocal vs unifocal) 4 799 Fixed 0.77 (0.5–1.18) 0.226 0 0.659
Metastasis status (M1 vs M0) 3 466 Fixed 2.5 (1.22–5.1) 0.012 0 0.842

FIGURE 3 | Begg’s funnel plot for publication bias test including PD-L1 expression and (A) OS, (B) RFS, (C) CSS, and (D) DFS in bladder cancer patients.
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our knowledge, this is the first pointed meta-analysis investigating 
the prognostic value of PD-L1 in patients with bladder cancer.

PD-1 and its ligands, PD-L1 and PD-L2, overexpressed in the 
tumor microenvironment (Riley, 2009). The interaction of PD-1/
PD-L1 can inhibit T-cell activation and proliferation, cytokine 
production, and cytolytic function (Riley, 2009). In addition, 
PD-L1 can also stimulate IL-10 production in T cells to mediate 
immune suppression (Dong et al., 1999). PD-L1 was found to 
be overexpressed in multiple solid tumor types to generate an 
immunosuppressive tumor microenvironment (Iwai et al., 2002; 
Blank et al., 2005; Wang et al., 2017). In the present study, we 
found the association of PD-L1 and higher tumor stage and 
distant metastasis, which implied the role of PD-L1 in tumor 
development. A recent study showed that PD-L1 played a critical 
role in promoting epithelial-to-mesenchymal transition (EMT) 
phenotype of esophageal cancer (Chen et al., 2017). Another 
study also suggested that PD-L1 expression was a significant 
risk factor for nodal metastasis in cutaneous squamous cell 
carcinoma (Garcia-Pedrero et al., 2017). The activation of IL-6/
STAT3/PD-L1 pathway was found to be involved in the EMT 
process in bladder cancer (Zhang et al., 2019).

A number of previous studies also reported the prognostic 
significance of PD-L1 in various cancers. A recent meta-analysis 
including 2,005 patients showed that high PD-L1 expression was 
associated with a poor prognosis (HR = 2.04, 95% CI = 1.18–3.54, 
p = 0.01) in non-Hodgkin lymphoma (Zhao et al., 2018). Li’s study 
showed that PD-L1 overexpression could foresee worse OS and 
DFS in hepatocellular carcinoma (Li et al., 2018a). In addition, 
another meta-analysis comprising a total of nine studies with 993 
patients demonstrated that elevated PD-L1 expression was related 
with poor OS (HR = 1.63, 95% CI = 1.34–1.98, p < .001) and CSS 
(HR = 1.86, 95% CI = 1.34–2.57, p < .001) in pancreatic cancer 
(Hu et al., 2019). High PD-L1 expression was also correlated with 
poor OS in breast cancer (Zhang et al., 2017). The results of our 
study were in line with previous studies, suggesting the prognostic 
value of PD-L1 in bladder cancer. Furthermore, we also found 
the connection between PD-L1 and distant metastasis in bladder 
cancer, which may be explained by the role of PD-L1 in EMT 
process (Zhang et al., 2019). Recently, many studies also reported 
the effectiveness and patient-reported outcomes in clinical trials 
of PD-L1 inhibitors. Madore et al. showed that PD-L1 expression 
in melanoma showed marked heterogeneity within and between 
patients, which supported the therapeutic strategies of melanoma 
patients in a PD-L1-based manner (Madore et al., 2015). In 
addition, stage III melanoma patients with negative PD-L1 
expression is associated with worse survival and immune response 
(Madore et al., 2016). A recent meta-analysis demonstrated that 
PD-L1 expression was significantly associated with mortality and 
clinical response to anti-PD-1/PD-L1 antibodies in metastatic 
melanoma patients (Gandini et al., 2016). The health-related 
quality of life was also better in advanced cancer patients receiving 
PD-1/PD-L1 inhibitors than in those receiving standard-of-care 
therapy (Nishijima et al., 2019). Those studies suggest that the 
clinical management of PD-1/PD-L1 inhibitors is complex and 
should be adjusted in the individual patient level.

Notably, age is also a risk factor for bladder cancer patients. In 
the included studies, five studies (Xylinas et al., 2014; Wu et al., 2016; 

Li et al., 2018b; Owyong et al., 2019; Wang et al., 2019) provided the 
data on age in PD-L1 (+) and PD-L1 (−) groups. However, three 
studies (Xylinas et al., 2014; Wu et al., 2016; Owyong et al., 2019) 
presented age in the format of median (range). One study (Li et al., 
2018b) reported the number of patients in PD-L1 (+) and PD-L1 (−) 
groups using 65 years as threshold. One study used 60 years (Wang 
et al., 2019) to divide patients. Therefore, the quantitative analysis 
of PD-L1 expression and age could not be performed because of 
different cutoff values of age (65 and 60 years). In spite of this, we 
can find that patients with PD-L1 (+) expression are older than 
patients with PD-L1 (−) expression in four studies (Xylinas et al., 
2014; Wu et al., 2016; Li et al., 2018b; Wang et al., 2019). All five 
studies (Xylinas et al., 2014; Wu et al., 2016; Li et al., 2018b; Owyong 
et al., 2019; Wang et al., 2019) reported nonsignificant association 
between age and PD-L1 expression (all p  >  0.05). Moreover, in 
the analysis of association between PD-L1 expression and clinical 
factors, heterogeneity was found on sex, tumor grade, and lymph 
node status (Table 3). Because different studies may select patients 
with various criteria, the heterogeneity among studies may be 
inherent and may exist. In this occasion, we applied different effects 
model according to different heterogeneity.

Some limitations need to be mentioned in this meta-analysis. 
First, the determination of high expression of PD-L1 might vary in 
the studies because of different cutoff values, which may introduce 
potential bias. Second, the sample size was relatively small. Only 11 
studies with 1,697 patients were included for analysis. For example, 
for CSS and DFS analysis, only five and three studies were included; 
the small study may compromise the credibility of the results. Third, 
although we did not find publication bias in the meta-analysis, the 
publication bias and selection bias could possibly exist. As we know, 
studies with significant results are inclined to be published (Koletsi 
et al., 2009). Therefore, the results should be treated with caution.

CONCLUSION

In summary, the findings of this meta-analysis suggest that elevated 
PD-L1 expression is associated with poor survival, higher tumor 
stage, and distant metastasis in bladder cancer. PD-L1 may be 
useful in the future as a novel prognostic factor in bladder cancer. 
Nevertheless, due to some limitations, well-designed, multicenter 
randomized controlled trials should be performed.
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The programmed death-1 (PD-1, CD279) receptor with its ligands, programmed death

ligand 1 (PD-L1, CD274, B7-H1), and programmed death ligand 2 (PD-L2, CD273,

B7-DC), are the key players of one of the immune checkpoint pathways inhibiting

T-cell activation. PD-L1 and PD-L2 are expressed in different cancer cells and their

microenvironment, including infiltrating immune cells. However, their prognostic value

is still debated and their role in the tumor microenvironment has not been fully

elucidated yet. Considering the importance that cancer immunotherapy with anti-PD-1

and anti-PD-L1 antibodies gained in several tumor types, in this review article we aim to

discuss the role of the PD-1/PD-L1/PD-L2 axis in gynecological cancers. PD-1 ligands

have been detected in ovarian, cervical, vulvar and uterine cancers, and correlation

with prognosis seems dependent from their distribution. About PD-L2, very few reports

are available so far in gynecological malignancies, and its role is still not completely

understood. Clinical trials using anti-PD-1 or anti-PD-L1 antibodies, but not anti-PD-L2,

are currently ongoing, in all types of gynecological cancers. They have shown good safety

profiles in a certain cohort of patients, but response rates remain low and many aspects

remain controversial. In this review, we propose possible solutions to enhance the clinical

efficacy of PD-1 axis targeting therapies. Regarding PD-L2, it might be useful to better

clarify its role in order to improve the efficiency of immunotherapy in female malignancies.

Keywords: PD-L2, PD-L1, PD-1, ovarian cancer, endometrial cancer, cervical cancer, immunotherapy

INTRODUCTION

PD-1 and Its Ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC)
Programmed death-1 (PD-1, CD279) receptor and its ligands, programmed death ligand 1 (PD-L1,
CD274, B7-H1) and programmed death ligand 2 (PD-L2, CD273, B7- DC), play crucial roles in one
of the immune checkpoint pathways responsible for the inhibition of T-cell activation (1).

PD-1 receptor belongs to the CD28 family and is mainly expressed on the cellular surface of
activated T and B cells, monocytes, natural killer (NK), and dendritic cells (DCs), with a role in
the induction and maintenance of peripheral tolerance and for the maintenance of the stability and
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the integrity of T cells (2–5). PD-1 ligands are glycoproteins,
members of the B7 family, with 40% homology in amino acids
sequence, but have quite distinct expression patterns, being
expressed by a wide variety of immune and non-immune cells
(1, 3, 4).

PD-L1 is a type I transmembrane glycoprotein with a single
N-terminal immunoglobulin variable (IgV)-like domain sharing
21–33% sequence identity with CTLA-4, CD28, and ICOS, about
20 amino acids that separate the IgV domain from the plasma
membrane, a transmembrane domain and a cytoplasmic tail
(4). It is constitutively expressed on activated T and B cells,
DCs, macrophages, mesenchymal stem cells, and bone marrow-
derived mast cells (4, 6). Additionally, it is expressed on a
wide variety of non-hematopoietic cells including the vascular
endothelium, fibroblastic reticular cells, keratinocytes, lung, non-
parenchymal cells of the liver, mesenchymal stem cells, pancreatic
islet cells, astrocytes, and neurons (4, 5, 7). PD-L1 expression
on human T cells is induced by common γ chain cytokines
(IL-2, IL-7, and IL-15), whereas PD-L1 expression on B cells
is stimulated by IL-21 (4). In cancer cells, PD-L1 expression
is regulated by the MAPK and PI3K/AKT pathways, as well
as by HIF-1α, STAT-3, NF-κB and epigenetic mechanisms via
microRNAs (8). PD-L1 also exists in a soluble form (sPD-L1)
that originates from the cleavage of membrane-bound PD-L1 by
matrix metalloproteinases. Such PD-L1 soluble isoform, mainly
produced by myeloid-derived cells, retains the IgV-like domain,
necessary for the interaction with PD-1, and it is able to suppress
T-cell activation. However, its physiological role is still unknown.
Interestingly, sPD-L1 has been found in several human cancer
cell lines, including H1299 non-small cell lung cancer cells, U-
937 lymphoma cells, HO8910 ovarian carcinoma cells, SPCA-
1 lung adenocarcinoma cells and U251 glioblastoma cells. In
addition, high plasma levels of sPD-L1 have been associated with
metastasis and poor prognosis in breast cancer and diffuse large
B-cell lymphoma (8).

PD-L2 is a type I transmembrane protein containing an
IgV-like domain and an immunoglobulin constant (IgC)-like
domain in its extracellular region (9). PD-L2 expression is
mainly restricted to antigen-presenting cells (APCs), including
macrophages and myeloid DCs (6, 7), and non-hematopoietic
tissues, such as the lung (10), human umbilical vein endothelial
cells, and fibroblasts (1, 5). Three isoforms of PD-L2 have been
described that might influence the outcome of the immune
response (9). The most common splice variant contains all 6
exons. In humans, an alternative variant with a spliced-out exon
3, resulting in a protein lacks the IgC-like domain and with a
shorter—extracellular region has been reported. A third isoform
misses the transmembrane domain, because exon 3 is spliced out
to an alternative acceptor site within exon 4, and the protein
is secreted as a soluble form. This evidence underscores the
importance of post-transcriptional regulation in the expression
and function of PD-L2. He et al. suggested that isoforms II and
III should be able to interact with PD-1, but further confirmation
is needed (9).

Exposure to IL-4, IFN-γ, IL-2, IL-7, IL-15, IL-21, and
toll-like receptor ligands induces PD-L2 upregulation in DCs
and macrophages (1). Additionally, IL-4, in the presence of

respiratory syncytial virus infection, stimulates PD-L2 expression
in alveolar epithelial cells (1, 10).

Stimulation by tumor necrosis factor alpha (TNF-α) and
interferon gamma (IFN-γ) enhances the constitutive expression
of PD-L2 on endothelial cells from human umbilical vein in vitro
(1). The NF-κB and the STAT-6 pathways are twomajor signaling
reported to regulate PD-L2 expression (1).

Different molecular mechanisms dictate PD-Ls binding to
PD-1, as demonstrated by the crystallographic structures of
the complexes, showing that PD-Ls cross-compete and that the
concurrent presence of both ligands might modify the functional
outcome of the binding (11). Specifically, PD-L1 binding to PD-
1 requires complex conformational changes of the ligand, while
PD-L2 directly interacts with PD-1, explaining its reported 2 to 6-
fold higher affinity for the receptor (1). Consequently, when both
ligands are expressed at similar levels, PD-L2 would be expected
to outcompete PD-L1 for binding to PD-1. However, PD-L2 is
generally expressed at lower levels in physiological conditions,
such as during maturation of DCs by LPS, when PD-L1 acts as
the main ligand of PD-1. A known exception is Th2 responses,
where PD-L2 is predominant (1, 11).

Regarding the PD-1/PD-L1 and PD-1/PD-L2 pathways
involved in T cell immune evasion, different reports have been
published, mainly regarding the biochemical signaling regulated
by the PD-1/PD-L1. It was reported that the binding of PD-
L1 to PD-1 may cause T cell apoptosis, anergy, exhaustion,
and interleukin-10 (IL-10) expression, suggesting that PD-L1
can act as a defender for PD-L1+ cancer cells from CD8+ T
cell–mediated lysis (12, 13) (Figure 1).

Regarding the PD-L2/PD-1 signaling pathways, it may not
be biologically identical, since Repulsive Guidance Molecule B
(RGMb) is also a binding partner for PD-L2 (14). Thus, the PD-
L2 blockade may evocate different cellular responses, depending
on the binding partner interaction, which can lead to potential
varied biological outcomes. Up to now, in human anti-tumor
immunity, the relationship between PD-1, PD-L1, and PD-
L2 in their cellular expression profile and regulation, potential
interactions and biological is considered not completely defined.

PD-1 Ligands in the Tumor
Microenvironment Influence the
Anti-tumor Response
PD-L1 and PD-L2 are expressed in different cancer cells and
in their microenvironment (4, 8), including infiltrating immune
cells (15, 16). However, their prognostic value is still debated
and the role they might play when expressed in the tumor
microenvironment has not be fully elucidated yet (17).

Previous evidence shows that PD-L1 expression by cancer
cells correlates with poor prognosis (18), while PD-L1 expression
by tumor-infiltrating immune cells is associated with improved
overall survival (OS) (16). Furthermore, it seems that PD-
L1 expressed by APC, rather than cancer cells, is essential
for the response to immune checkpoint blockade therapy
(19). Specifically, survival analysis showed that the presence of
PD-L1 on macrophages had a protective role and enhanced
the prognosis of patients with hepatocellular carcinoma.
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FIGURE 1 | PD-1/PD-Ls pathways in cancer. PD-L1 is a type I transmembrane glycoprotein with a single N-terminal IgV-like domain and exists also in a soluble form

sPD-L1 that retains the IgV-like domain. PD-L2 is a type I transmembrane protein containing an IgV-like domain and an IgC-like domain and three isoforms of PD-L2

have been described that might influence the outcome of the immune response. It is suggested that isoforms II and III should be able to interact with PD-1, but further

confirmation is needed. During TCR cross-linking, PD-1 by interacting with its ligands, causes inhibition of PI3K/Akt/mTOR and Ras/MAPK/Erk pathways, leading to

down-regulation of T cells metabolism, and exhausted T cells.

Macrophages are involved in maintaining an active immune
microenvironment, with high numbers of infiltrating CD8+ T
cells and high immune-related gene expression levels (15).

Sepesi et al. investigated PD-L1 expression in surgically
resected stage I non-small cell lung cancer and, in contrast,
demonstrated that lower PD-L1 expression in the tumor, but
also in tumor-infiltrating macrophages, was associated with
significantly better OS (20).

The existence of conflicting reports about PD-L1 and−2
prognostic value can be generally attributed to technical
disparities (e.g., variations in staining protocols across individual
laboratories and use of different primary antibody clones
to identify PD-Ls in tumor tissue), as well as different
clinical features of the analyzed samples (site and size
of cancer, treatments, follow-up time, etc.). Moreover,
PD-L1 and−2 are dynamic markers that can be up- or
downregulated over time, making their evaluation complicated
(17, 21).

Direct activation of the PD-1 axis by cancer cells leads to
a potent inhibitory signal in T lymphocytes resulting in anti-
tumor immunity impairment and tumor cells ability to escape
immunosurveillance (4, 19). Specifically, it has been shown
that PD-1 activation inhibits glucose consumption, cytokine
production, proliferation and survival in T lymphocytes, thus
preventing the expression of transcription factors associated
with effector T cell functions, such as GATA-3, T-bet, and
Eomesodermin (Eomes) (4). PD-1/PD-Ls binding attenuates
TCR-mediated signaling, thus impairing PI3K/Akt and
Ras/MEK/Erk pathways, both required for T-cell activation (4).

PD-Ls are expressed in several solid tumors (8, 22), and
immune checkpoint inhibitors, such as anti-PD-1 and anti-PD-
L1 antibodies, showed efficacy in cancers with high mutational
load, including lung cancer, melanoma, and microsatellite
instable (MSI) tumors (23). It was shown that this efficacy is
linked to the presence of tumor specific neoantigens that induce
a Th1/CTL response that is counterbalanced by overexpression
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of multiple immune checkpoints such as PD-1/PD-L1 (23).
In addition, PD-1/PD-L1 axis blockade might activate tumor-
specific T lymphocytes to kill tumor cells by inducing TNF-α and
IFN-γ (22).

For gynaecologic malignancies, the expression of PD-1 ligands
has been reported in ovarian (17, 21, 22, 24–31), uterine (5–
7, 32–38), cervical (23, 32, 39–50), and vulvar (32, 51–54) cancers,
which we describe in detail in the next section.

PD-1 AND PD-LS EXPRESSION IN
ENDOMETRIAL CANCER

In normal endometrium the role of the immune system is
extremely complex, since it must prevent sexually transmitted
infections but should also be able to help the growth of
an allogenic fetus during pregnancy (23). So far, few reports
characterized PD-1 and its ligands’ expression in gynecological
cancer and data are quite controversial. The expression profile of
these immune checkpoints has been analyzed predominantly by
immunohistochemistry, in biopsies obtained from both healthy
subjects and cancer patients.

PD-1 in Endometrial Cancer
The PD-1 receptor has been found almost exclusively in immune
cells infiltrating the tumor (32, 37, 38), and not in normal
endometrium (5). Additionally, a deep analysis performed on 183
patients showed that high expression of PD-1 within and at the
margins of a tumor, with a high PD-1/CD8+ ratio in the center,
was associated with favorable OS (35).

Additional reports found a correlation between PD-1
expression in intraepithelial and peritumoural lymphocytes
with DNA polymerase ε (POLE) mutation and MSI status
of the patients (32, 37, 38). Specifically, it has been reported
that PD-1 expression in tumor-infiltrating immune cells was
more frequently found in moderately, poorly differentiated
endometrial cancers, non-endometrioid type II (serous, clear cell,
mucinous) endometrial cancers (5, 35, 36), and POLE and MSI
subgroups (32, 37, 38).

PD-L1 in Endometrial Cancer
Regarding PD-1 ligands, all data concordantly showed that
PD-L1 is expressed in most of the analyzed specimens (5–
7, 32–35, 37), predominantly located in the cytoplasm (5–7).
Several studies showed that PD-L1 was expressed in a similarly
high percentage of samples in both normal endometrium and
endometrial tumors (5–7).

PD-L1 expression in cancer cells correlates with post-
menopausal status, high histological grade (grade 3), deep
myometrial invasion (≥1/2), lymphovascular invasion, adjuvant
therapy, and MSI status (35). High PD-L1 immuno-reactivity
on immune cells, and not on tumor cells, is an independent
predictor of adverse progression-free survival (PFS) in all
patients, including the microsatellite stable (MSS) subgroup (35).
In addition, some reports evidenced that PD-L1 expression in
intraepithelial immune cells was significantly more frequent in
POLEmutant andMSI tumors, compared toMSS tumors (32, 37,
38), while PD-L1 expression in tumor cells did not differ between
POLE mutant, MSI and MSS patients (32).

However, data regarding PD-L1 expression in cancer cells are
controversial: one study showed that only 1 out of 116 tumors
expressed PD-L1 on tumor cells, but this under-estimation
could be linked with the use of tissue microarrays, since PD-L1
expression is known to be heterogenous (37).

Another study regarding gynecological samples, in 47 uterine
sarcoma samples, found that PD-L1 expression was upregulated
in comparison with normal endometrium, suggesting that this
protein is a potential target for immunotherapy (7), while Bregar
et al., using a smaller number of samples (10 patients), found that
PD-L1 is expressed in only 30% of specimens (34).

PD-L2 in Endometrial Cancer
For PD-L2 very few data are available so far, and its expression
seems to differ from PD-L1, with no significant difference
between normal endometrium and tumor (5–7).

High PD-L2 expression was shown in 30% of primary
endometrial carcinoma patients and 16% of uterine sarcoma
patients, demonstrating the potential of PD-L2 blockade in
a limited proportion of uterine cancer patients (7). It has
been shown that PD-L1 and PD-L2 expression was more
frequent in moderately, poorly differentiated, non-endometrioid
endometrial cancer and seems to be correlated with POLE and
MSI status (5, 33, 36). Type II endometrial cancer and poorly
differentiated histological features are generally associated with
worse prognosis and, in addition, PD-1 axis expression suggests
that it may cause immunosuppression to favor tumor growth,
thus negatively affecting patients’ survival (5).

EXPRESSION OF PD-1, PD-L1, AND PD-L2
IN OVARIAN CANCER

Ovarian cancer is the most lethal disease among
gynecological cancers (17, 22, 29–31) and is known to be
an immunogenic tumor.

PD-1 and PD-L1 in Ovarian Cancers
Some reports showed that PD-L1 expression is found in epithelial
ovarian cancers (EOC) (17, 20, 21, 24–26, 30), especially in serous
ovarian cancers (SOC) (28, 29), ovarian clear cell carcinomas
(OCCC) and in malignant ascites (31), a sign of peritoneal
carcinomatosis derived from ovarian cancer (22).

In a cohort of 122 patients with OCCC, Zhu et al. showed that
55 cases (44.7%), classified as having high PD-L1 expression (PD-
L1high), were significantly associated with advanced stages (III–
IV) (22). Cases with high PD-L1 and PD-1 expression showed
significantly poorer PFS and OS, compared to those with low
PD-L1/PD-1 expression (22, 24, 28, 29). In subgroup analysis,
PD-L1high was associated with poorer prognosis compared to
PD-L1low in platinum-resistant and advanced stages (III–IV)
patients (22). Drake et al. analyzed 55 ovarian cancer biopsies
and showed that PD-1 was detected in 87% of the tumors in
both stroma and epithelium, while PD-L1 was only present
in 33% of patients, exclusively in high-grade tumors (17).
Additionally, they found that low density of PD-1 and PD-
L1 expressing cells in tumor tissue was significantly associated
with advanced disease, failing to show any significant association
between survival and PD-1 or PD-L1 expression in ovarian
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cancer (17), while patients with recurrent tumors and increased
infiltrating PD-1+ immune cells had longer OS (21). The
correlation of PD-1 and PD-L1 expression with high-grade
tumors and stage IV International Federation of Gynecology
and Obstetrics (FIGO) disease has also been confirmed by other
studies (28, 29).

Wieser et al. showed that, in a cohort of 158 patients
with high-grade serous ovarian cancers, BRCA1/2 mutated
tumors were characterized by high PD-1 expression, and
that PD-L1 was observed mainly in BRCA1/2 and TP53
mutated cancers (29). Xiao et al. reported that PD-1 is
expressed in tumor infiltrating lymphocytes and PD-L1 in
tumor cells and in intratumoural immune cells, but there was
no significant difference of PD-1+ intratumoural immune
cells in tumors with different mismatch repair (MMR)
status (30). MSI ovarian cancers exhibited a significantly
higher number of PD-L1+ intratumoural immune cells
compared to MSS ovarian cancers, while PD-L1 expression
was not different in tumors, irrespectively from their MMR
status (30).

In addition, no significant difference regarding PD-L1
expression in tumor cells and tumor infiltrating lymphocytes,
and PD-1 expression in infiltrating lymphocytes, has been found
between primary and recurrent disease (21).

PD-L2 in Ovarian Cancers
So far, only few studies investigated the expression of PD-
L2 in ovarian cancer. An analysis on 70 patients showed
that PD-L2 expression was not related to patient prognosis
or other clinical variables, but negatively correlated with the
number of FOXP3+ T regulatory cells (Tregs) (24). Imai
et al. analyzed the expression of PD-L1 and PD-L2 on tumor
cells and APCs in malignant ascites from epithelial ovarian
cancer patients (31), and found differential PD-L1 expression
in tumor cells between patients with high or low PD-1-
expressing CD4+ T cells (43.9 and 27.3%, respectively), while
no difference in PD-L1 expression was observed between
patients with high and low PD-1 expression on CD8+ T
cells (34.1 and 27.3%, respectively). Between 2.3 and 3.2%
of the patients with high or low PD-1 on CD4+ T cells
and CD8+ T cells also expressed PD-L2. No correlation was
found between PD-L1/2 expression and clinical variables or
outcomes (31).

To support a potential role of PD-1 and PD-L1/ PD-L2
axis as targets in ovarian cancer, it has been reported in
syngeneic orthotopic mouse model of epithelial ovarian cancer,
that treatment with anti-PD-1 or anti-PD-L1 antibodies resulted
in tumor rejection in 75% of the treated-mice, while mice treated
with anti-PD-L2 antibody did not reject tumors (25). These data
can be explained considering the selected models that expressed
lower levels of PD-L2 than PD-1 and PD-L1. Additionally, PD-1
and PD-L1 blockade significantly increased the CD8+ to Tregs
and CD4+ to Tregs ratios within the tumor, while, on the
contrary, there was no significant change in the CD8+ or CD4+

to Tregs ratios (25).

EXPRESSION OF PD-1, PD-L1, AND PD-L2
IN OTHER GYNECOLOGICAL CANCERS

Cervical cancer is the third most common gynecological
malignancy in Europe (23). Little information is available, up to
now, regarding the expression of PD-1 ligands (23, 32, 39, 43–47).

A report from Howitt et al. showed that cervical cancer is
a potential candidate for clinical trials testing PD-1 blockade
(23, 32, 39). In fact, using FISH analysis on 48 Formalin-
Fixed Paraffin-Embedded (FFPE) tissue specimens of cervical
squamous cell carcinoma, they observed co-amplification
or co-gain of PD-L1 and PD-L2 in 32 out of 48 cases
(67%). Immunohistochemical staining for PD-L1 revealed high
expression in 95% of the tumors with membranous staining
pattern (32).

Persistent infection with human papilloma virus (HPV) is
an essential step in the development of most cervical cancers
(40). Some studies hypothesized that HPV may activate
PD-1/PD-L1 to evade host immune responses, resulting
in persistence of the cervical intraepithelial neoplasia (41).
The identification of HPV as an etiological factor leads to
antigen production and presentation, thereby making cervical
cancer immunogenic (42). Recently, the role of the PD-1/PD-
L1 axis in HPV associated head and neck squamous cell
cancer (HPV-HNSCC) creating an “immune-privileged” site
for initial viral infection and subsequent adaptive immune
resistance suggests a rationale for therapeutic blockade of
this pathway in patients with HPV-associated tumors (43).
Significant PD-L1 expression in cervical carcinoma has been
confirmed in several studies (44–47). As a consequence, this
immunogenic disease requires a highly immunosuppressive
microenvironment to progress and metastasize (48, 49)
which has been demonstrated in tumor-positive lymph nodes
where high Treg levels, low CD8+ T cell/Treg ratio and
high levels of PD-L1+ and HLA-DR+ myeloid cells were
found (50).

Regarding another gynecological malignancy, vulvar cancer,
the clinical relevance of PD-L1 expression has not been
completely studied so far (32).

Although rare, incidence rates of vulvar cancer are increasing
and, in locally advanced, metastatic or recurrent disease,
prognosis is poor and new treatment modalities are needed (51).
Screening of 23 vulvar squamous cell carcinomas revealed 6
cases (26%) with co-amplification of PD-1 ligands, 4 cases (17%)
showed co-gain, 6 cases (26%) showed polysomy, and 7 cases
(30%) showed disomy. Immunohistochemical staining for PD-
L1 across all cases revealed the highest median PD-L1 protein
expression in cases with co-amplification of PD-L1 and PD-
L2, and decreasing values with decreasing genetic complexity
(32). Previous studies showed that PD-L1 is expressed in the
majority of vulvar squamous cell carcinoma samples (51–54),
in both cancer cells and peritumoural immune cells (52–54).
Additionally, its expression was related with several components
of immune system (CD3+, CD20+, and CD68+ intra-tumor
immunocytes) (51, 54), while a significant correlation with
immunosuppressive cell populations (FOxP3+ Treg cells) was
reported only by Sznurkowski et al. (54). Data analyzing the
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TABLE 1 | Ongoing immunotherapy clinical trials for patients with endometrial cancer.

ClinicalTrials.gov identifier Status Interventions/alone or in combination Phase

NCT02630823 Active, not recruiting Pembrolizumab (anti-PD-1) + Paclitaxel/Carboplatin/Radiation (standard of care) I

NCT02725489 Active, not recruiting Durvalumab (anti-PD-L1) II

NCT02728830 Active, not recruiting Pembrolizumab (anti-PD-1) Early I

NCT02646748 Active, not recruiting Pembrolizumab (anti-PD-1) + itacitinib/INCB050465 I

NCT02914470 Active, not recruiting Atezolizumab (anti-PD-L1) + cyclophosphamide/Carboplatin I

NCT02521844 Active, not recruiting Pembrolizumab (anti-PD-1) + ETC-1922159 I

TABLE 2 | Ongoing immunotherapy clinical trials for patients with ovarian cancer.

ClinicalTrials.gov identifier Status Interventions (alone or in combination) Phase

NCT02608684 Active, not recruiting Pembrolizumab (anti-PD-1) + Gemcitabine/Cisplatin II

NCT02728830 Active, not recruiting Pembrolizumab (anti-PD-1) Early I

NCT03287674 Active, not recruiting Nivolumab (anti-PD-1) + Cyclophosphamide/Fludarabine/TIL infusion/Interleukin-2/Ipilimumab I/II

NCT03277352 Active, not recruiting Pembrolizumab (anti-PD-1) + INCAGN01876/Epacadostat I/II

NCT03312114 Active, not recruiting Avelumab (anti-PD-L1) II

NCT02674061 Active, not recruiting Pembrolizumab (anti-PD-1) II

NCT03029598 Active, not recruiting Pembrolizumab (anti-PD-1) + Carboplatin I/II

NCT02335918 Completed Nivolumab (anti-PD-1) + varlilumab I/II

NCT02915523 Active, not recruiting Avelumab (anti-PD-L1) + entinostat I/II

NCT02452424 Completed Pembrolizumab (anti-PD-1) + PLX3397 I/II

NCT02644369 Active, not recruiting Pembrolizumab (anti-PD-1) II

NCT03073525 Active, not recruiting Atezolizumab (anti-PD-L1) II

NCT02526017 Active, not recruiting Nivolumab (anti-PD-1) + FPA008 I

NCT02580058 Active, not recruiting Avelumab (anti-PD-L1) + PLD III

NCT03365791 Active, not recruiting PDR001 (anti-PD-1) + LAG525 I

NCT02764333 Active, not recruiting Durvalumab (anti-PD-L1) + TPIV200 II

NCT02431559 Active, not recruiting Durvalumab (anti-PD-L1) + Pegylated Liposomal Doxorubicin I/II

NCT02914470 Active, not recruiting Atezolizumab (anti-PD-L1) + carboplatin, cyclophosphamide I

NCT02725489 Active, not recruiting Durvalumab (anti-PD-L1) II

NCT01975831 Active, not recruiting MEDI4736 (anti-PD-L1) + Tremelimumab I

NCT03038100 Active, not recruiting Atezolizumab (anti-PD-L1) + Carboplatin/Atezolizumab/Bevacizumab III

NCT01772004 Active, not recruiting Avelumab (anti-PD-L1) I/II

NCT03574779 Active, not recruiting TSR-042 (anti-PD-1) + Niraparib/Bevacizumab II

NCT02521844 Active, not recruiting Pembrolizumab (anti-PD-1) + ETC-1922159 I

clinical impact of PD-L1 expression in vulvar cancer reveal
that it is not clear whether its expression correlates with
clinicopathological parameters.

In summary, no significant associations were observed

between PD-L1 presence and typical clinicopathological factors

(51), except for tumor stage as reported by Sznurkowski et al.

(54), and PD-L1 expression occurs more often in high risk HPV-
negative samples (51). Regarding survival analysis, it is reported

that PD-L1 expression did not influence the OS (51, 53), but

patients with primary tumors positive for immune cells-PD-L1

expression had improved OS compared to negative ones (54).
The presence of PD-L1 also seems to be an independent

prognostic factor for recurrence free survival (51).

ONGOING IMMUNOTHERAPY CLINICAL
TRIALS IN GYNECOLOGICAL
MALIGNANCIES

Several clinical trials are ongoing at the moment, according
to the ClinicalTrials.gov database [accessed July 06, 2019],
testing anti-PD-1/PD-L1 blockade alone or in combination in
patients with endometrial, cervical, vulvar and ovarian cancer,
while there are no ongoing clinical trials using anti-PD-L2
(Tables 1–3).

Clinical trials data were collected from ClinicalTrials.gov
database, selecting only completed trials or in “Active, not
recruiting” status.
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TABLE 3 | Ongoing immunotherapy clinical trials for patients with cervical cancer.

ClinicalTrials.gov Identifier Status Interventions phase

NCT01975831 Active, not recruiting MEDI4736 (anti-PD-L1) + Tremelimumab I

NCT02914470 Active, not recruiting Atezolizumab (anti-PD-L1) + Carboplatin/Cyclophosphamide I

NCT02725489 Active, not recruiting Durvalumab (anti-PD-L1) II

NCT02921269 Active, not recruiting Atezolizumab (anti-PD-L1) + Bevacizumab II

NCT02257528 Active, not recruiting Nivolumab (anti-PD-1) II

NCT03073525 Active, not recruiting Atezolizumab (anti-PD-L1) II

Endometrial Cancer
Regarding endometrial cancer, 6 clinical trials are ongoing
(Table 1). Most of them are Phase I clinical trials and
preliminary results, reported by the American Society of Clinical
Oncology (asco.org), showed that atezolizumab (anti-PD-L1),
and pembrolizumab (anti-PD-1) might be promising agents for
endometrial cancer treatment.

Most relevant results showed that in a phase I study, 15
patients eligible based on PD-L1 status (>5% of positivity in
tumor-infiltrating immune cells) were treated with atezolizumab
and evaluated for safety and efficacy. Results showed that
atezolizumab had a favorable safety profile and 13% (2/15) of
patients showed a reduction in tumor size. A trend for higher
PFS and OS has been observed in patients with high levels
of tumor-infiltrating immune cells. Clinical benefit appeared
to increase with higher PD-L1 expression, suggesting a link
between PD-L1 status and response to atezolizumab. In addition,
hypermutation, and/or high immune infiltration may be linked
to response to PD-L1 blockade (Clinical trial information:
NCT01375842) (55).

In a different phase I clinical trial, pembrolizumab was
administered in 24 patients with endometrial carcinoma
(excluding sarcomas), failure of prior systemic therapy,
and PD-L1 expression in ≥1% of tumor or stromal cells.
A reduction in tumor size was confirmed in 13.0% of
the patients, while 3 patients achieved stable disease.
PFS and OS rates were 19.0 and 68.8%, respectively. In
conclusion, Pembrolizumab demonstrated an acceptable safety
profile and anti-tumor activity (Clinical trial information:
NCT02054806) (56).

Ovarian Cancer
For ovarian cancer 22 clinical trials are ongoing, 2 of which
are completed (Table 2). Some of the early-phase clinical
trials of anti-PD-1 or anti-PD-L1 antibodies have shown good
safety profiles and durable anti-tumor response in certain
patient population(s). However, their response rates remain
between 10 and 15% (31, 57). Available interim reports from
some of the trials show promising objective response rates
(ORR) for the treatment of ovarian cancer with nivolumab
(anti-PD-1) (ORR of 15%, n = 20 patients), pembrolizumab
(ORR 11.5%, n = 49), or avelumab (anti-PD-L1) (ORR 10%,
n = 124) (17, 58, 59). Preliminary data presented at the
annual ASCO meeting in 2016 of a phase I trial evaluating

durvalumab (anti-PD-L1) in combination with olaparib (PARP
inhibitor), showed a disease control rate (DCR) of 67% for
the doublet olaparib - durvalumab in a cohort including
BRCA wild type triple negative breast cancer and EOC
cases (23).

In the KEYNOTE-28 trial, which explored the activity of
pembrolizumab in several solid tumors, outcome of ovarian
cancer was ORR of 11.5%, and only 23.1% showed tumor
shrinkage from baseline (57).

Cervical Cancer
For cervical cancer, 6 clinical trials are ongoing (Table 3).
Most relevant findings showed that in a phase Ib study
with 24 patients affected by advanced cervical squamous cell
cancer and PD-L1 expression in ≥1% of tumor or stromal
cells, pembrolizumab was well-tolerated and showed promising
anti-tumor activity (Clinical trial information: NCT02054806)
(60), while its clinical benefit was investigated in the phase
2 KEYNOTE-158 trial. Pembrolizumab administration has
been also investigated in a single cohort trial enrolling 98
patients with recurrent or metastatic cervical cancer, expressing
PD-L1 with a positive ratio of the number of all PD-L1–
expressing cells (tumor cells, lymphocytes, macrophages) to
the number of all tumor cells, or a Combined Positive Score
(CPS) ≥1. The ORR in 77 patients was 14.3% (95% CI: 7.4,
24.1), including 2.6% complete responses and 11.7% partial
responses. No responses were observed in patients with tumors
negative for PD-L1 expression (CPS <1). Serious adverse
reactions occurred in 39% of patients (Clinical trial information:
NCT02628067) (61).

On June 12th 2018, pembrolizumab was approved by
Food and Drug Administration (FDA), for treatment
of patients with recurrent or metastatic cervical cancer,
expressing PD-L1 (CPS ≥1) as determined by an FDA-
approved test, with disease progression on or after
chemotherapy1.

In conclusion, since in all gynecological cancers ORR is
around 10–15%, this emphasizes the need for combination
treatments to improve efficacy of immune checkpoint (Figure 2).

1Merck & Co. Press Release Details. https://investors.merck.com/news/press-

release-details/2018/FDA-Approves-Mercks-KEYTRUDA-pembrolizumab-for-

Previously-Treated-Patients-with-Recurrent-or-Metastatic-Cervical-Cancer-

Whose-Tumors-Express-PD-L1-CPS-Greater-Than-or-Equal-to-1/default.aspx
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FIGURE 2 | Immunotherapy against PD-1/PD-Ls in gynecological cancers. Blocking the PD-1/PD-L1 immune checkpoint pathway by anti-PD-1 or anti-PD-L1

antibodies suppresses cancer cell survival and enhances the antitumor responses of T cells, leading to tumor regression and rejection. Actually, several clinical trials

are ongoing testing anti-PD-1/PD-L1 blockade alone or in combination, in patients with endometrial, cervical, vulvar, and ovarian cancer, while there are no ongoing

clinical trials using anti- PD-L2. In all gynecological cancers ORR is around 10–15%, argues for combinatorial treatments are taken in consideration.

FUTURE DIRECTIONS FOR IMMUNE
CHECKPOINT INHIBITORS (ICIS)
COMBINATION THERAPIES

Albeit ICIs therapies have been shown to induce durable
responses and long-term remission in several cancer types, many
patients fail to respond, develop resistance over the time or show
immune-related adverse effects (62–65). The unresponsiveness
or the toxicity of ICIs represents a strong rationale for the
combination of ICIs with other treatments to increase the
response rate of non-immunological tumors. For example,
therapeutic approaches that induce the release and presentation
of tumor antigens could be able to foster a de novo anti-tumor
T cell response. In this regard, candidates for a combination
therapy with ICIs could be cancer vaccines, oncolytic viruses,
radiation, or low-dose chemotherapy (66).

Another potential combination approach with ICIs could be
with bispecific antibodies, which recruit patient’s T cells or NK
cells against cancer cells expressing tumor-associated antigens.
An example came from hematologic malignancies, wherein a

bispecific antibody targeting both CD3 and CD123 (67, 68) was

used but showed benefit in only a small fraction of patients. A

major mechanism limiting the therapeutic efficacy was T cell

anergy and exhaustion driven by ICIs pathways (mainly PD-
L1/PD-1) (69). Inspired by this inhibitory role of ICIs pathway,
combining ICIs with bispecific antibodies showed enhanced T
cell proliferation and IFN-γ production (70).

One more possibility to improve ICI efficacy might be
combination with cytokine therapy. The cytokine IL-2 has
been approved for the treatment of metastatic renal cell

carcinoma and advanced melanoma but is accompanied by
severe side effects (71). However, modified IL-2 formulations

such as bempegaldesleukin (NKTR-214) have an improved
safety profile and have shown capabilities of enhancing

the proliferation and activation of CD8+ T cells and
NK cells without increasing the number of Tregs (72).
Recently, the PIVOT-02 trial (combination of NKTR-214
and nivolumab) has shown that this combination is safe and
efficacious (ORR 48% in 23 patients) in metastatic urothelial
carcinoma (73).
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In addition, a recent study has demonstrated that DC-derived
IL-12 is necessary for successful anti-PD-1 cancer therapy,
suggesting that IL-12 and ICIs could be rationally combined (74).

Finally, there is strong rationale to combine anti-angiogenic
therapies with ICI’s, since anti-angiogenic therapies induce a
normalization of the tumor vasculature, which leads to enhanced
infiltration of T lymphocytes in the tumor.

CONCLUSION

Cancer immunotherapy is emerging as a promising component
for cancer therapy. The most promising immunotherapy that
showed good results involves antibodies targeting inhibitory
immune checkpoint molecules (75).

Results obtained for patients with non-small cell lung
cancer, renal cancer, and melanoma are evident and
encouraging. However, in gynecological malignancies
many aspects remain controversial in preclinical
and clinical studies (23). Uncertain is the selection
of patients because objective response rates remain
low and retrospective analysis on biopsies showed
opposing results for OS and PFS in patients with
similar pattern of expression of PD-1 and its ligands
(15, 17, 20–22, 24, 28, 29, 32, 34).

Regarding the second ligand PD-L2, it is needed to better
clarify its role inside tumor microenvironment, together with
the evaluation of other biological markers, in order to improve
the efficiency of immunotherapy malignancies of the female
genital tract.
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Background: Immune checkpoint inhibitors (ICIs) are now an important option for more
than 14 different cancers. Recent series case reports have described that ICIs are
associated with new-onset diabetes in patients, yet the definitive risk is not available.
We thus performed a meta-analysis of randomized controlled trials (RCTs) to assess the
incidence and risk of developing new-onset diabetes following the use of ICIs.

Methods: The PubMed, EMBASE, Cochrane Library databases, and ClinicalTrials.gov for
RCTswere searched. Statistical analyses were performed using STATA 15 and R language.
Fifty-two RCTs were included, and 12 did not report any events of ICI-associated diabetes.

Results:Ameta-analysisof40 trialswasperformed,which reportedat leastonediabetes-related
event among 24,596 patients. Although specific diabetes-related events were rare, compared
with theplaceboorother therapeuticstrategies, theratesofserioushyperglycemia (OR2.41,95%
CI 1.52 to 3.82), diabetes (3.54, 1.32 to 9.51), all-grade T1D (6.60, 2.51 to 17.30), and serious-
grade T1D (6.50, 2.32 to 18.17) were increased with ICI drugs. Subgroup analysis according to
the typeof control, typeof ICIs, and the combinationmodesuggested that ICIs plus conventional
treatments significantly decreased the risks of diabetes and serious-grade hyperglycemia. There
was little heterogeneity across the studies in all results except hyperglycemic events, which in
part was attributable to data from everolimus-based control group.

Conclusions: New-onset diabetes is uncommon with ICIs but the risk is increased
compared with placebo or another therapeutic strategy. However, more studies are
warranted to substantiate these findings across ICIs.

Keywords: immune checkpoint inhibitors, diabetes, hyperglycemia, meta-analysis, safety outcomes
INTRODUCTION

Immune checkpoint inhibitor (ICI)-based treatments that block molecules such as programmed cell
death protein 1 (PD-1), PD1 ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen 4
(CTLA-4) have emerged as powerful weapons in a growing number of cancers (Temel et al., 2018).
Currently, nine ICIs have been approved for the treatment of different cancers: anti-PD-1 (nivolumab,
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pembrolizumab, toripalimab, sintilimab, and cemiplimab); anti-
PD-L1 (atezolizumab, avelumab, and durvalumab); and anti-
CTLA-4 (ipilimumab). Immune checkpoint molecules play an
important role in maintaining immunological tolerance to self-
antigens and preventing autoimmune disorders (Pardoll, 2012).
Consequently, their blockade in cancer therapy not only promotes
T cell-mediated immune destruction on tumor cells but may also
facilitate autoimmune activity that affects various organ systems
(Johnson et al., 2018). Thus, ICIs frequently cause toxicities related
to the mechanism of action that are generally referred to as
immune-related adverse events (irAEs) (Postow et al., 2018).

Among these irAEs, new-onset diabetes is receiving increased
attention, as more evidence suggests the recognition of diabetes-
related adverse events in patients with cancers who are treated
with ICIs. A marked increase in reporting diabetes has also been
seen since 2017 by analyzing the World Health Organization’s
database of individual case safety reports (Wright et al., 2018).
These observations raised concern as to whether ICI treatments
could be associated with an increased risk of diabetes in patients
with cancer. However, there has been no report of a meta-
analysis of the incidence or risk of ICI-associated diabetes among
the different ICIs in different tumor subtypes.

Given the dramatic growth in the number of clinical trials
testing ICI agents and their clinical benefits in the increasing list
of cancer types and negative influence on life quality caused by
diabetes if not promptly recognized, we performed a meta-
analysis of randomized controlled trials (RCTs) with ICIs in
patients with cancer and evaluated the incidence and risks of
diabetes-related adverse events compared with placebo or
another therapeutic strategy.
METHODS

Search Strategy and Selection Criteria
Scientific literature searches were performed in three databases
(PubMed, EMBASE, and Cochrane Central Register of
Controlled Trials) from the inception of all searched databases
to March 2019. Relevant text words and medical subject headings
that consisted of terms including ‘phase’ and the individual drug
names (details in Supporting Information Table S1) were
searched. The search was limited to RCTs and English
language. We also performed a manual search using reference
lists from trials and review articles to identify any other relevant
data. The ClinicalTrials.gov website was searched for RCTs that
were labeled as ‘completed’ with available results. This meta-
analysis was performed in adherence with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
guidelines (Moher et al., 2009).

Study Selection
We included RCTs that were performed in adults with cancer and
compared ICI treatment to another treatment strategy. The
exclusion criteria were as follows: observational and retrospective
studies; studies published in a meeting abstract without published
full text original articles; quality of life studies; studies with only
Frontiers in Pharmacology | www.frontiersin.org 2122
pediatric patients; 10 or fewer patients in any group; single dosing;
cost effectiveness analyses; and those that could not assess the effect
of ICI, such as when the control group was a different dose of the
same ICI or another type of ICI. Two authors independently
screened all titles and abstracts (HM and JZ). Two of three
authors reviewed and discussed the potential full text. Any
disagreements were resolved by consensus with all three (JL, HM,
and JZ).

Data Extraction and Quality Assessment
Data from each study that met the inclusion criteria were
independently extracted by two of the three authors (JL, HM, and
YL). Any disagreement was resolved by consensus with all three.
The retrieved data included author name, year of publication, trial
characteristics (registry number, whether it was an international
study, countries involved, study sites, and study phase), patient
characteristics (sex, age, and performance status), the sizes of the
intervention and control groups, ICI treatment, dose, and the
outcomes of interest. We detected new-onset diabetes following
treatment with ICIs using the following terms: hyperglycemia,
diabetes mellitus (DM), type 2 diabetes (T2D), and type 1
diabetes (T1D). For data extracted from ClinicalTrials.gov,
adverse events were reported as either serious or other; for data
from published reports, we identified grades 3–5 as serious and
grades 1–2 as other, according toCommonTerminology ofClinical
Adverse Events categorization. If data were available for both
sources, we prioritized data from sources where the data were
more complete. If a published study did not report diabetes-related
adverse events, and the corresponding registry trial from
ClinicalTrials.gov reported did, we included the registry report.
For multiple reports of the same trial, only the most completely
reported data were used. The quality of the included studies was
independently assessed using the Cochrane Risk of Bias Tool. We
considered all trials at unclear risk of incomplete outcome data and
selective reporting bias as these studies were not designed primarily
to assess adverse events.

Data Synthesis and Analysis
The estimated event rates in the intervention group are calculated as
the total number of patients with a given adverse event divided by
the total number at risk. Datawere transformedusing the Freeman-
TukeyDouble Arcsine transformation to calculate event rates. This
statistical analyses were performed using R statistical software
(package meta, R Foundation). For risk outcome, we pooled trials
and calculated odds ratios (ORs) and their associated 95%
confidence intervals (CIs) in the intervention group compared
with the control group based on the number of patients with a
given adverse event and sample size. Given the low rates of adverse
events,weusedPeto’smethod topool effect estimates across studies.
The I² statistic and P value were used to examine heterogeneity
across trials for eachoutcome.An I² statistic of 0–25%, 26–75%, and
76–100% was regarded as indicating low, moderate, and high
heterogeneity, respectively. A P value of less than or equal to 0.05
was defined as significant heterogeneity. If a study included more
thanone interventiongroup (e.g. differentdosesordifferent typesof
ICI), we separately compared each intervention group with the
control group,where the numberof patients or events in the control
December 2019 | Volume 10 | Article 1453
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group would be doubled. Sensitivity analyses were performed
excluding an everolimus-controlled study, which was known to
cause diabetes-related adverse events, to understand the reasons for
the high likelihood of differences.We conducted subgroup analyses
to examine studies according to the type of control group
(chemotherapy vs. immunosuppressive drug vs. targeted therapy
vs. placebo), the mode of intervention treatment (monotherapy vs.
add-on therapy), and the type of ICI (PD-1 vs. PD-L1 vs. CTLA4 vs.
combination of ICIs). Evidence of publication bias was assessed
using Egger’s and Begg’s test in addition to funnel plots, and
significant publication bias defined as a P < 0.1. All statistical
analyses were conducted with STATA, version 15.
RESULTS

Study Search
Our search from the PubMed, EMBASE, and Cochrane Central
Register databases yielded a total of 8,596 potentially relevant
reports (Figure 1). After screening and eligibility assessment, we
retrieved 67 reports for full text screening. We also identified
117 reports with results from ClinicalTrial.gov. After our formal
search, three additional large clinical trials were published.
Frontiers in Pharmacology | www.frontiersin.org 3123
We therefore also included these three studies. After further
section, a total of 52 studies (7 from the trial registry and 45 from
journals) were eligible. The included articles were published
(online) between August 2010 and April 2019.

Study Characteristics
All studies except one (Chih-Hsin Yang et al., 2019) were
international multicenter studies. All studies were funded by the
pharmaceutical industry, with sample sizes of the ICI intervention
group ranging from12 to636patients. Twenty-twowere completed
in patients with non-small-cell lung cancer, eight in melanoma, six
in renal cell carcinoma, three in small-cell lung cancer, three in
gastric and gastro esophageal junction cancer, two inhead andneck
squamous cell carcinoma, two in urothelial cancer, two in prostate
cancer, two in breast cancer, one in colorectal cancer, and one in
mesothelioma. Among these, patients in the intervention arm
received nivolumab as monotherapy in ten studies,
pembrolizumab in seven studies, atezolizumab in five studies,
durvalumab in three studies, avelumab in one study,
tremelimumab in three studies, combination therapy with anti-
PD-1/PD-L1/CTLA-4 plus chemotherapy/radiotherapy in thirteen
studies, combination therapy with anti-PD-1/PD-L1 plus anti-
CTLA4 in three studies, combination therapy with anti-PD-1/
PD-L1/CTLA-4 plus targeted therapy in seven studies, and
combination therapy with ipilimumab plus vaccine in one study.
All studies except one (Kang et al., 2017) had adverse event data on
ClinicalTrials.gov. Key characteristics of these included trials are
shown in Table 1.

Quality of the Included Studies
Table S2 shows the risk of bias assessment of the included
studies for meta-analysis. All studies were RCTs with adequate
reported randomization, and all studies were funded by the
pharmaceutical industry with a high risk of sponsorship bias.
Of the 40 included studies for meta-analysis, 26 (65%) were open
labels with a high risk of blinding participants and personnel.
None of the included studies specifically stated blinded
assessment or collection of diabetes-related adverse events. We
classified all trials at unclear risk of incomplete outcome data and
selective reporting bias.

Incidence of Diabetes-Related Adverse
Events
Of the 52 clinical controlled trials assessing the effects of ICIs, 40
trials described ICI-associated diabetes events during the course
of study. Hyperglycemia events were described in 32 studies; 303
cases of all-grade hyperglycemia and 55 serious-grade
hyperglycemia events occurred in 10,393 patients. Pooling the
data showed that the rates of all-grade and serious-grade
hyperglycemia events were 2.26% (95% CI, 1.28 to 3.48) and
0.28% (95% CI, 0.16 to 0.42), respectively. The rates of
hyperglycemia events differed by the type of ICI and tumor. In
particular, patients treated with ICI combination therapy were
more likely to report hyperglycemia: 3.37% for all-grade
hyperglycemia events, 0.47% for serious-grade hyperglycemia.
Patients with RCC showed a trend toward higher rates of both
all-grade and serious-grade hyperglycemia, with rates of 6.82%
FIGURE 1 | Flow diagram of study selection.
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TABLE 1 | Characteristics of controlled trials of ICI treatment in patients.

f
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Age
Median
(range)

No (%)
Male

Tumor type

NR NR NSCLC

NR NR

NR NR
69

(47–86)
399 Prostate

cancer
67.5 (45–86) 400

61
(37–84)

151 (52) NSCLC

64
(21–85)

168 (58)

62
(39–85)

111 (82) NSCLC

64
(42–84)

97 (71)

51
(20–84)

296 (62) Melanoma

52
(18–78)

293 (62)

62
(23–88)

315 (77) RCC　

62
(18–86)

304 (74)

62
(15–87)

104 (58) Melanoma

60
(27–89)

109 (60)

63
(27–87)

114 (64)

64
(18–86)

121 (57.6) Melanoma

66
(26–87)

125 (60.1)

59
(23–88)

176 (65) Melanoma

62
(29–85)

85 (64)

62
(42–82)

93 (65) NSCLC
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(36–84)

76 (53)
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NCT00527735
(Reck et al., 2013)　

Yes 8 NR Phase 2 CTLA4 Ipilimumab
Paclitaxel/carboplatin

10 113

CTLA4 Ipilimumab
Paclitaxel/carboplatin

10 109

Control Paclitaxel/carboplatin / 109
NCT00861614
(Kwon et al., 2014)

Yes 26 191 Phase 3 CTLA4 Ipilimumab
Radiotherapy

10 399

Control Placebo radiotherapy / 400
NCT01673867
(Borghaei et al.,
2015)

Yes 22 NR Phase 3 PD-1 Nivolumab 3 292

Control Docetaxel / 290

NCT01642004
(Brahmer et al., 2015)

Yes 20 NR Phase 3 PD-1 Nivolumab 3 135

Control Docetaxel / 137

NCT00636168
(Eggermont
et al., 2015)

Yes 19 91 Phase 3 CTLA4 Ipilimumab 10 475

Placebo Placebo / 476

NCT01668784
(Motzer et al., 2015)

Yes 24 146 Phase 3 PD-1 Nivolumab 3 410

Control Everolimus / 411

NCT01704287
(Ribas et al., 2015)

Yes 12 73 Phase 2 PD-1 Pembrolizumab 2 180

PD-1 Pembrolizumab 10 181

Control Carboplatin/paclitaxel
Dacarbazine
Temozolomide

/ 179

NCT01721772
(Robert et al., 2015)

Yes 16 80 Phase 3 PD-1 Nivolumab 3 210

Control Dacarbazine / 208

NCT01721746
(Weber et al., 2015)

Yes 14 90 Phase 3 PD-1 Nivolumab 3 272

Control Dacarbazine/carboplatin/
paclitaxel

/ 133

NCT01903993
(Fehrenbacher et al.,
2016)

Yes 13 61 Phase 2 PD-L1 Atezolizumab 1,200 mg/dose 144

Control docetaxel / 143

124
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TABLE 1 | Continued

No. of
patients

Age
Median
(range)

No (%)
Male

Tumor type

240 59
(29–83)

197 (82.1) HNSCC

121 61
(28–78)

103 (85.1)

344 63
(56–69)

212 (62) NSCLC

346 63
(56–69)

213 (62)

343 62
(56–69)

209 (61)

60 62.5 (54–70) 22 (37) NSCLC

63 63.2 (58–70) 26 (41)
478 62

(39–85)
371 (66) SCLC　

476 63
(36–81)

326 (68)

154 64.5 (33–90) 92 (59.7) NSCLC

151 66
(38–85)

95 (62.9)

613 NR 378 (61.7) NSCLC

612 NR 379 (61.9)

476 64
(31–84)

334 (70.2) NSCLC

237 64
(23–90)

166 (70)

399 NR 100 Prostate
cancer

199 NR 100
270 67

(29–88)
200 (74.1) Urothelial

carcinoma

272 65
(26–84)

202 (74.3)

271 63
(32–89)

184 (68) NSCLC
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NCT02105636
(Ferris et al., 2016)

Yes 15 NR Phase 3 PD-1 Nivolumab 3

Control Cetuximab/
methotrexate/docetaxel

/

NCT01905657
(Herbst et al., 2016)

Yes 24 202 Phase 2/
3

PD-1 Pembrolizumab 2

PD-1 Pembrolizumab 10

Control Docetaxel /

NCT02039674
(Langer et al., 2016)

Yes 2 26 Phase 2 PD-1 Pembrolizumab
Carboplatin/pemetrexed

200 mg/dose

Control Carboplatin/pemetrexed /
NCT01450761
(Reck et al., 2016a)

Yes 34 224 Phase 3 CTLA4 Ipilimumab
Etoposide/cisplatin/
carboplatin

10

Control Placebo
Etoposide/cisplatin/
carboplatin

/

NCT02142738
(Reck et al., 2016b)

Yes 16 142 Phase 3 PD-1 Pembrolizumab 200 mg/dose

Control Paclitaxel/carboplatin/
pemetrexed/cisplatin/
gemcitabine

/

NCT02008227
(Rittmeyer et al.,
2017)

Yes 31 194 Phase 3 PD-L1 Atezolizumab 1,200 mg/dose

Control Docetaxel /

NCT02125461
(Antonia et al.,2017)

Yes 26 235 Phase 3 PD-L1 Durvalumab 10

Control Placebo /

NCT01057810
(Beer et al., 2017)

Yes 24 NR Phase 3 CTLA4 Ipilimumab 10

Control Placebo /
NCT02256436
(Rogers et al., 2017)

Yes 120 29 Phase 3 PD-1 Pembrolizumab 200 mg/dose

Control Paclitaxel/docetaxel/
vinflunine

/

NCT02041533
(Carbone et al.,
2017)

Yes 26 NR Phase 3 PD-1 Nivolumab 3
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TABLE 1 | Continued

No. of
patients

Age
Median
(range)

No (%)
Male

Tumor type

270 65
(29–87)

148 (55)

479 NR NR NSCLC

477 NR NR

330 62
(54–69)

229 (69) GEJ

163 61
(53–68)

119 (73)

382 66
(60–72)

283 (74.1) Mesothelioma

189 67
(61–73)

151 (79.9)

467 67
(33–88)

357 (76) Urothelial bladder

464 67
(31–84)

361 (78) cancer

396 64
(58–69)

269 (67.9) NSCLC

396 63
(57–69)

273 (68.9)

514 54
(19–88)

324 (63) Melanoma

505 54 (19–83) 304 (60.2)
410 65

(34–84)
254 (62) SCLC　

206 63.5 (34–84) 109 (52.9)
550 NR NR RCC　

546 NR NR
278 65

(29–87)
220 (79.1) NSCLC

281 65
(36–88)

235 (83.6)
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Control Gemcitabine/cisplatin
Carboplatin/paclitaxel/
pemetrexed

/

NCT01285609
(Govindan et al.,
2017)

Yes 34 233 Phase 3 CTLA4 Ipilimumab
Paclitaxel/carboplatin

10

Control Placebo
Paclitaxel/carboplatin

/

NCT02267343
(Kang et al., 2017)

Yes 3 49 Phase 3 PD-1 Nivolumab 3

Control Placebo /

NCT01843374
(Llombart-Cussac
et al., 2017)

Yes 19 105 Phase
2b

CTLA4 Tremelimumab 10

Control Placebo /

NCT02302807
(Powles et al., 2018)

Yes 29 217 Phase 3 PD-L1 Atezolizumab 1,200 mg/dose

Control Vinflunine/paclitaxel/
docetaxel

/

NCT02395172
(Barlesi et al., 2018)

Yes 31 173 Phase 3 PD-L1 Avelumab 10

Control Docetaxel /

NCT02362594
(Eggermont et al.,
2018)

Yes 23 123 Phase 3 PD-1 Pembrolizumab 200 mg/dose

Control Placebo /
NCT02578680
(Gandhi et al., 2018)

Yes 16 126 Phase 3 PD-1 Pembrolizumab
Pemetrexed/cisplatin

200 mg/dose

Control Pemetrexed/cisplatin /
NCT02231749
(Motzer et al., 2018)

Yes 28 175 Phase 3 PD-1/CTLA4 Nivolumab
ipilimumab

3
1

Control sunitinib /
NCT02775435
(Paz-Ares et al.,
2018)

Yes 17 137 Phase 3 PD-1 Pembrolizumab
Paclitaxel/nab-paclitaxel/
carboplatin

200 mg/dose

Control Paclitaxel/Nab-paclitaxel/
Carboplatin

/

126
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TABLE 1 | Continued

of
nts

Age
Median
(range)

No (%)
Male

Tumor type

62.5 (54–70) 202 (68) GEJ　

60.0 (53–68) 208 (70)
60.0 (55–66) 207 (84) HNSCC

60.0 (54–66) 205 (83)

58
(51–67)

107 (58) Colorectal cancer

56
(51–64)

59 (66)

59
(52–66)

51 (57)

63
(56–69)

450 (71) NSCLC

63
(57–69)

452 (71)

60
(27–78)

236 (78) NSCLC

60
(38–78)

134 (81)

56
(41–78)

6 (50) NSCLC

65
(41–80)

4 (24)

NR NR GEJ　

NR NR
NR 74 (73.3) RCC　

NR 77 (74.8)

NR 79 (78.2)

NR NR NSCLC

NR NR

NR 42 (67.7) NSCLC

NR 115 (66.1)

NR 48 (75.0)

NR 73 (62.4)
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NCT Author (year) International
study

No. of countries
involved

No. of
study sites

Phase Group type Drug Dose of ICI
(mg/kg)

No.
patie

NCT02370498
(Shitara et al., 2018)

Yes 30 148 Phase 3 PD-1 Pembrolizumab 200 mg/dose 29

Control Pacitraxel / 29
NCT02252042
(Cohen et al., 2019)

Yes 20 97 Phase 3 PD-1 Pembrolizumab 200 mg/dose 24

Control Methotrexate Docetaxel/
cetuximab

/ 24

NCT02788279
(Eng et al., 2019)

Yes 11 73 Phase 3 PD-L1 Atezolizumab
Cobimetinib

840 mg/dose 18

PD-L1 Atezolizumab 1,200 mg/dose 90

Control Regorafenib / 90

NCT02220894
(Mok et al., 2019)

Yes 32 213 Phase 3 PD-1 Pembrolizumab 200 mg/dose 63

Control Platinum / 61

NCT02613507
(Wu et al., 2019)

Yes 3 32 Phase 3 PD-1 Nivolumab 3 33

Control Docetaxel / 16

NCT02454933
(Chih-Hsin Yang
et al., 2019)

No 1 1 Phase 3 PD-L1 Durvalumab
Osimertinib

10 mg/kg 12

Control Osimertinib / 17

NCT01585987
(Squibb, 2012)

Yes 12 NR Phase 2 CTLA4 Ipilimumab 10 mg/kg 57

Control Fluoropyrimidine / 57
NCT01984242
(Roche, 2014)

Yes 9 NR Phase 2 PD-L1 Atezolizumab
Bevacizumab

1,200 mg/dose 10

PD-L1 Atezolizumab 1,200 mg/dose 10

Control Sunitinib / 10

NCT02367781
(Roche, 2015b)

Yes 36 NR Phase 3 PD-L1 Atezolizumab
Nab-paclitaxel/
carboplatin

1,200 mg/dose 48

Control Nab-paclitaxel/
carboplatin

/ 24

NCT02352948
(AstraZeneca, 2015)

Yes NR 82 Phase 3
subA

PD-L1 Durvalumab 10 62

PD-L1/CTLA4 Durvalumab
Tremelimumab

20
1

17

Yes NR 143 Phase 3
subB

Control Eerlotinib/gemcitabine/
vinorelbine

/ 64

PD-L1 Durvalumab 10 11

127
6

6
7

8

3

6

5

8

6

1

3

1

3

0

4
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TABLE 1 | Continued

of
nts

Age
Median
(range)

No (%)
Male

Tumor type

NR 39 (65.0)
NR 81 (68.6)
NR NR RCC

NR NR

55.6a 247 (61.3) Melanoma

56.8a 81 (59.1)
57.4a 73 (53.7)
57.5a 152 (60.8) Melanoma

56.4a 149 (59.1)
NR NR NSCLC　

NR NR

NR NR
57a 190 (58) Melanoma

56a 182 (56)

NR NR PD-L1
expression≥1%

NSCLC
NR NR
NR NR
NR NR PD-L1 expression

NR NR <1% NSCLC　

NR NR
64 (28-90) 129 (64.2) SCLC　

64 (26-87) 132 (65.3)

55 (20-82) 3 (0.7) Breast cancer

56 (26-86) 1 (0.2)
63 (31-89) 240 (60.0) NSCLC

NR NR

63 (31-90) 239 (59.8)

62 (29-83) 316 (71.5) RCC
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NCT Author (year) International
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No. of countries
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No. of
study sites

Phase Group type Drug Dose of ICI
(mg/kg)

No.
patie

CTLA4 Tremelimumab 10 60
Control Gemcitabine/vinorelbine / 11

NCT02420821
(Roche, 2015a)

Yes 21 NR Phase 3 PD-L1 Atezolizumab
Bevacizumab

1,200 mg/dose 45

Control Sunitinib / 44

NCT00094653
(Hodi et al., 2010)

Yes 13 125 Phase 3 CTLA4 Ipilimumab
gp100

3 40

CTLA4 Ipilimumab 3 13
Control gp100 / 13

NCT00324155
(Robert et al., 2011)

Yes NR 25 Phase 3 CTLA4 Ipilimumab Dacarbazine 10 25

Control Dacarbazine / 25
(Lynch et al., 2012) Yes NR NR Phase 2 CTLA4 Ipilimumab

Paclitaxel/carboplatin
10 70

CTLA4 Ipilimumab
Paclitaxel/carboplatin

10 68

Control Paclitaxel/carboplatin / 66
NCT00257205
(Ribas et al., 2013)

Yes 24 114 Phase 3 CTLA4 Tremelimumab 15 32

Control Dacarbazine/
temozolomide

/ 32

NCT02477826
(Hellmann et al.,
2017)

Yes 36 NR Phase 3 PD-1/
CTLA4

Nivolumab/ipilimumab 3
1

39

PD-1 Nivolumab 240 mg/dose 39
Control Platinum / 39
PD-1/CTLA4 Nivolumab/ipilimumab 3

1
18

PD-1 Nivolumab 360 mg/dose 17
Control Platinum / 18

NCT02763579 (Horn
et al., 2018)

Yes 21 106 Phase 3 PD-L1 Atezolizumab
Carboplatin/etoposide

1,200 mg/dose 20

Control Carboplatin/etoposide / 20

NCT02425891
(Schmid et al., 2018)

Yes 41 246 Phase 3 PD-L1 Atezolizumab Nab-
paclitaxel

840 mg/dose 45

Control Placebo nab-paclitaxel / 45
NCT02366143
(Socinski et al., 2018)

Yes 26 240 Phase 3 PD-L1 Atezolizumab
Bevacizumab/
barboplatin/paclitaxel

1,200 mg/dose 40

PD-L1 Atezolizumab
Carboplatin/paclitaxel

1,200 mg/dose 40

Control Bevacizumab/
carboplatin/paclitaxel

/ 40

NCT02684006
(Motzer et al., 2019)

Yes 21 144 Phase 3 PD-L1 Avelumab
Axitinib

10 44
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and 0.66%, respectively. High dose of ICIs was not associated
with high rates of hyperglycemia events (Table 2).

Due to the smaller number of other ICI-associated diabetes
events, no statistical inferences of the rates were made. Overall,
13 cases of DM occurred in 5,655 patients (raw event rate 0.23%),
five cases of T2D occurred in 3,117 patients (raw event rate
0.16%), and 17 cases of all-grade T1D occurred in 3,899 patients
(raw event rate 0.44%), and 15 cases of serious-grade T1D events
occurred in 3,603 patients (raw event rate 0.42%).

Risk of Diabetes-Related Adverse Events
To assess the relative rate of ICI-associated diabetes compared
with those in control arms, we calculated the OR of developing
diabetes in the RCTs. Pooling the data of these studies showed
that patients treated with ICIs were at higher risk for serious-
grade hyperglycemia (OR 2.41, 95% CI 1.52 to 3.82, Figure 2),
DM (OR 3.54, 95% CI 1.32 to 9.51, Figure 3), all-grade T1D (OR
6.60, 95% CI 2.51 to 17.30, Figure S1), and serious-grade T1D
(OR 6.50, 95% CI 2.32 to 18.17, Figure 4) than those treated with
other regimens. ICIs showed a trend toward an increased risk of
all-grade hyperglycemia (OR 1.38, 95% CI 1.15 to 1.66, Figure
S2), but no increased risk of T2D (OR 0.92, 95% CI 0.24 to 3.52,
Figure S3). Excluding the study in which the control group was
everolimus, a drug known to cause diabetes, the risk of ICI-
associated diabetes events were also higher than the control: OR
4.42 for DM, OR 1.75 for all-grade hyperglycemia, OR 2.81 for
serious-grade hyperglycemia (Figures S4–S6).
TABLE 2 | Incidence of hyperglycemia events in patients treated with immune
checkpoint inhibitors. Values are percentages (95% confidence intervals).

Characteristic All-grade
hyperglycemia

Serious-grade
hyperglycemia

Total 2.26 (1.28, 3.48) 0.28 (0.16, 0.42)
ICI type
PD-1 inhibitors 4.86 (2.86, 7.32) 0.49

(0.26, 0.78)
PD-L1 inhibitors 0.81 (0.07, 2.06) \
CTLA-4 inhibitors 0.52 (0.09, 1.18) 0.06 (0.00, 0.28)
Combination therapy 3.37 (0.00, 21.49) 0.47 (0.00, 2.01)

Tumor type
NSCLC 2.54 (1.10, 4.43) 0.22

(0.06, 0.45)
Melanoma 1.75 (0.31, 4.15) 0.35

(0.09, 0.73)
RCC 6.82 (2.00, 14.05) 0.66 (0.27,

1.18)
Prostate cancer 0.12a 0.12a

Colorectal cancer 0.37a /
GEJ 0.57a 0.53a

HNSCC 5.42a 0.42a

Mesothelioma 0.52a 0.52a

SCLC 0.63a 0.63a

Dose
High dose 1.33 (0.27, 2.99) 0.22 (0.00, 0.80)
Normal dose 2.52 (1.32, 4.03) 0.28 (0.15, 0.44)
December 2019 | Volume
GEJ, gastric and gastroesophageal junction cancer; HNSCC, head and neck squamous
cell carcinoma; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma; SCLC,
small-cell lung cancer.
High doses: including Ipilimumab 10 mg/kg and pembrolizumab 10 mg/kg.
aRaw event rate.
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FIGURE 2 | Risk of serious-grade hyperglycemia following the use of ICIs versus control treatment, stratified by the type of control group.
FIGURE 3 | Risk of diabetes mellitus following the use of ICIs versus control treatment, stratified by the type of control group.
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Subgroup analysis for these outcomes was stratification by the
type of control, the mode of treatment, and type of ICI.
Regarding the type of control, there were apparent differences
across subgroups for the risk of ICI-associated diabetes events.
Within the placebo-controlled group, ICIs were associated with a
higher risk in hyperglycemia (OR 5.81). Subgroup analysis based
on the mode of treatment (monotherapy vs. add-on therapy)
suggests that add-on therapy decreased the risk of ICI-associated
diabetes, with OR 1.77 for DM, 1.31 for serious-grade
hyperglycemia, 0.58 for T2D, and 5.83 for T1D (Figures S7–
S11). The subgroup analysis by the type of ICI suggests the risk
of these events was increased in the subset of trials in which anti-
PD-1 or anti-PD-L1 was combined with anti-CTLA-4, with OR
7.35 for DM, 2.51 for all-grade hyperglycemia, 4.18 for serious-
grade hyperglycemia (Figures S12–S17).

The funnel plot and statistical test showed no evidence of
publication bias for DM (Egger’s test P = 0.994), all-grade
hyperglycemia (Egger’s test P = 0.128), serious-grade
hyperglycemia (Egger’s test P = 0.325), T2D (Egger’s test P =
0.310), all-grade T1D (Egger’s test P = 0.300), and serious-grade
T1D (Egger’s test P = 0.334) (Table S3, Figures S18–S23). We
noted no heterogeneity in the effects of ICI on DM, serious-grade
hyperglycemia, T2D, all-grade T1D, and serious-grade T1D (I² =
0.0%). However, we noted substantial heterogeneity for the
outcome of all-grade hyperglycemia (I² = 88.2%), which was
considerably reduced in the analyses of data excluding the
everolimus-controlled study (I² = 8.0%).

DISCUSSION

We completed a systematic analysis of new-onset diabetes
following treatment with ICIs versus other therapeutic
Frontiers in Pharmacology | www.frontiersin.org 11131
regimens to further our understanding of the safety of these
agents. We used data from 40 RCTs that included 13,787 patients
treated with ICIs, and also extracted data from the
ClinicalTrials.gov results database to supplement the published
studies. To our knowledge, this is the largest and most
comprehensive meta-analysis on the incidence and risk of ICI-
associated diabetes events following the use of ICI regimens
published to date, although previous case series analyses showed
that there is an increased reporting of rapidly progressive ICI-
associated diabetes (Wright et al., 2018; Kotwal et al., 2019;
Perdigoto et al., 2019). This meta-analysis shows that the risk of
serious-grade hyperglycemia, DM, and T1D following ICIs is
significantly higher compared with patients treated with other
regimens, but provides no support that ICI treatment is
associated with an increased risk of all-grade of hyperglycemia.
Among patients on each different ICI regimens, patients on
combination therapy were more likely to develop hyperglycemia.

Although the incidence was low, T1D has emerged as the
highest risk associated with ICI therapy compared with other
diabetes-related adverse events. The pathogenesis of T1D in the
populations of patients receiving ICIs is not currently well
understood. Several case reports have shown that the presence
of autoantibodies before ICIs-based therapy might be at risk of
developing diabetes, particularly in treated with anti-PD-1/anti-
PD-L1 (Gauci et al., 2017; Usui et al., 2017; Way et al., 2017).
Further support for autoimmune-based mechanism has been
shown by Clotman et al. (2018), who overviewed the reported
cases and demonstrated that approximately half of the tested
cases of ICI-associated T1D had detectable diabetes-related
autoantibodies. Other studies have shown that anti-PD-1
resulted in a rapid progression of autoimmune diabetes in
patients with a high underlying genetic predisposition to T1D
FIGURE 4 | Risk of serious-grade type 1 diabetes following the use of ICIs versus control treatment, stratified by the type of control group.
December 2019 | Volume 10 | Article 1453

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Lu et al. Immune Checkpoint Inhibitor-Associated Diabetes
(Mellati et al., 2015), raising the concern for genetic factors as a
possible mechanism in patients with diabetes-prone HLA
genotypes. Similar to what has been described in humans, the
study demonstrated that PD-1 or PD-L1 blockade rapidly
precipitated diabetes in prediabetic nonobese diabetic (NOD)
mice (Ansari et al., 2003). Taken together, these studies reveal a
potential mechanism of ICI-associated T1D that involves in both
diabetes-related immunologic and genetic factors.

The subgroup analysis showed that the risk of ICI-associated
T1D was different among the different type of ICIs. One possible
explanation for this would be the mechanistic link to each target.
Unlike the PD-1 pathway, which modulates effector cells, CTLA-
4 functions in early immune responses during T cell priming and
activation (Topalian et al., 2016). As such, the distinct function of
the PD-1 and CTLA4 potentially contributed to different rates of
T1D following the use of ICIs. In NOD mice, CTLA-4 blockade
negatively physiologically regulated diabetes in only the early
stages of life compared with the PD-1 pathway (Ansari et al.,
2003). Additionally, there was strong PD-L1 expression in the
inflamed islets of NOD mice, which suggested that the PD-1-
mediated regulation of autoreactive immune cells played an
important role at the site of islet inflammation (Ansari et al.,
2003). However, this finding should be interpreted cautiously;
more data are needed for definitive conclusions given the low
absolute number of T1D in patients receiving ICIs.

ICIs plus conventional treatments have been tested in multiple
solid tumors, which achieved synergetic effects and overcame the
resistance to immunotherapy (Yanet al., 2018).Whenwecombined
all non-ICI therapy into one control category, the ICI-based
regimens substantially increased the risk of ICI-associated
diabetes compared with control group. However, this magnitude
was reducedwhen ICIs were used as an add-on therapy. The risk of
DM was 200% lower in the add-on therapy than in the ICI
monotherapy. There was also a substantial reduction (over 175%)
in ICI-associated serious-grade hyperglycemia in the setting of
conventional treatments. These results consistently suggested that
compared with ICI therapy, ICIs plus traditional therapy could
result in a decreased risk of diabetes-related adverse events.

We found little heterogeneity across studies for all results
except hyperglycemia, which strengthens the primary conclusion
that ICIs increased risks of diabetes events. A sensitivity analysis
identified that everolimus-based control group is responsible for
this heterogeneity. Everolimus is an mTOR inhibitor, which is
known to influence insulin signaling pathway in peripheral
tissues and insulin secretion in pancreatic b cells (Tuo and
Xiang, 2018). It has described that mTOR inhibitors resulted
in a 5-fold increase in the risk for severe hyperglycemia in
patients with cancer (Verges, 2018). Thus, when everolimus
was presented separately, the heterogeneity was reduced.

There are several limitations in the present study.We conducted
this analysis in study-level, rather than individual patient data. It is
not possible to assess potential risk factors that are associated with
higher risk of new-onset diabetes, due to the lack of detailed clinical
data such as sex, diabetes-prone HLA genotypes, presence of
autoantibodies, and islet function in patients receiving ICIs
therapy. Secondly, subgroup effects could not be evaluated when
Frontiers in Pharmacology | www.frontiersin.org 12132
there were less than two trials in each subgroup, which could not
allow assessing whether the rates of ICI-associated diabetes are
varied based on the type of tumor and the dose of ICIs. Our results
showed that high dose of ICIs did not contribute to high rates of
hyperglycemia events, while the type of tumor showed association
of treatment effects. However, regarding other diabetes symptoms,
we pooled data across studies together, which might result in the
missed difference in dose-dependent and tumor-dependent effect
on the risk for these adverse events. Thirdly, whether the increased
risk of hyperglycemic events were caused, at least partly, by the use
of corticosteroids for the management of irAEs is unclear.
Moreover, the results of the present analysis are unable to address
potential associations between the incidence of new-onset diabetes
and other irAEs in the individual-level. Lastly, only very recent
publications have noted T1D after ICI therapy; our study therefore
may have underestimated the prevalence of ICI-associated diabetes
with only a focus on clinical trials. As emerging case reports that
described new-onset diabetes were seen in clinical practice (Hughes
et al., 2015; Martin-Liberal et al., 2015; Wright et al., 2018), these
adverse events may become more accurately diagnosed and
recorded in future trials.

In summary, the use of ICIs compared with placebo or other
treatment strategies was associated with an increased risk of new-
onset diabetes, especially autoimmune diabetes, although the
overall event rates remained low. In contrast, compared with the
control group, the risk of T2D was not increased. As the
widespread awareness of these events increases, additional
large, well-designed randomized trials are needed to
definitively determine the risks of new-onset diabetes following
the use of ICIs.
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Objective: Combination therapy with programmed cell death protein-1 (PD-1) and

programmed cell death ligand-1 (PD-L1) inhibitors might be viewed as a promising

therapeutic strategy for resistant lung cancer, and it is becoming common that a second

PD-1/PD-L1 inhibitor might be used following progression on previous PD-1/PD-L1

inhibitor. However, a subgroup of patients will experience various autoimmune toxicities,

termed as immune-related adverse events (irAEs), that occur as a result of on-target and

off-tumor inflammation.

Materials and Methods: In this report, we presented a patient with small cell lung

cancer who received different PD-1/PD-L1 inhibitors during the course of disease

progression. This patient experienced radiation-related pneumonitis, immune-related

pneumonitis, as well as concomitant bacterial pneumonia.

Results: In particular, this patient developed immune-related pneumonitis with a second

PD-1 inhibitor when she had a progressive disease on previous PD-L1 inhibitor. This

patient was initially responsive to steroid treatment, but rapidly develop more severe

pneumonitis and concomitant bacterial pneumonia with no response to antibiotics

and steroid treatment. Finally, this patient got a good clinical response when receiving

additional immunosuppressive medications infliximab and mycophenolate mofetil.

Conclusions: Patients with a history of radiation-induced pneumonitis and treated with

sequential different PD-1/PD-L1 inhibitors have a relative high risk to develop high-grade

or steroid-resistant pneumonitis, and additional immunosuppressive medications should

be used earlier when severe pulmonary toxicity occurs.

Keywords: immune-related adverse event, programmed cell death 1 inhibitor, programmed cell death ligand 1,

pneumonitis, immune checkpoint inhibitor
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INTRODUCTION

Immune checkpoint inhibitors works by disrupting the PD-1 and
PD-L1 direct interactions in the tumor microenvironment (1, 2).
In clinical practice, anti-PD-1/PD-L1 antibodies have resulted in
durable tumor remission and changed the treatment landscape
in a variety of advanced cancers including small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). Several PD-
1 inhibitors (nivolumab, pembrolizumab, and avelumab) and
PD-L1 inhibitors (atezolizumab and durvalumab) have been
approved by US Food and Drug Administration (FDA) for
treating multiple human solid tumors, based on improvements
in survival outcomes.

Unlike cytotoxic chemotherapy, PD-1/PD-L1 inhibitors are
usually manifested as tolerable agents, but 10–15% patients
will develop grade 3–5 toxicity in non-target organs known
as immune-related adverse events (irAEs) (3). Of these irAEs,
pulmonary toxicity is one of the most dangerous side effects
of PD-1/PD-L1 inhibitors, with a frequency of 5–10% in
patients with lung cancer (4, 5). Pneumonitis associated with
immunotherapy are generally uncommon but potentially fatal
or life-threating (6). Generally, pneumonitis is more frequent in
patients treated with anti-PD-1/PD-L1 antibodies compared to
anti-CTLA-4 antibodies (7, 8), and more PD-1/PD-L1 inhibitor-
related pneumonitis is observed in patients with lung cancer
than those with melanoma (8). At present, combination therapy
with PD-1/D-L1 inhibitors and other therapies is developing as
a promising therapeutic strategy for advanced or metastatic lung
cancer, and it is also becoming common that a second PD-1/PD-
L1 inhibitor might be used following the disease progression on
previous PD-1/PD-L1 inhibitor (9). These therapeutic strategies
increase the frequency of an occurrence of irAEs including
pneumonitis. Patients with pneumonitis related to PD-1/PD-L1
inhibitors may present clinically with drug cough, dyspnea, fever
and chest pain, but radiologic findings often are non-specific (4,
5). Published guidelines or consensus can help clinically diagnose
and manage irAEs, but general recommendations procedures are
insufficient to resolve or relieve severe or complexed pulmonary
toxicity (10–12). Here, we report a case with severe and rapidly
developed reoccurred pneumonitis that occurred in the course of
sequential use of PD-L1/PD-L1 inhibitors (Figure 1).

CASE PRESENTATION

In April 2018, a 44 year old woman was admitted to our hospital.
She was initially diagnosed with localized SCLC (T2N1M0)
through fiberoptic bronchoscopy in a local hospital. She did not
experience other causes of obstructive lung disease, autoimmune
disease, organ transplant, smoke inhalation, or medications.

Abbreviations: ALK, Anaplastic lymphoma kinase translocations; CT,

Computerized tomography; CTLA-4, Cytotoxic T-lymphocyte-associated protein

4; EGFR, Endothelial growth factor receptor; FDA, United States Food and

Drug Administration; irAEs, Immune-related adverse events; IVIG, Intravenous

immunoglobulin; NCCN, National Comprehensive Cancer Network; NSCLC,

Non-small cell lung cancer; PD-1, Programmed cell death protein-1; PD-L1,

Programmed death ligand-1; SCLC, Small cell lung cancer; SVCS, Superior vena

cava obstruction syndrome.

Molecular mutation analysis showed that the tumor did
not harbor any driver gene alterations. Immunohistochemical
staining of tumor tissue showed that PD-L1 expression was
found in <1% of tumor cells. The tumor was located in right
hilum of the right lung with multiple mediastinum lymph
node metastasis. This patient received 2 cycles of first-line
chemotherapy of etoposide (100 mg/m2 days 1–3, every 3 weeks)
and cisplatin (100 mg/m2 every 3 weeks). Unfortunately, she
subsequently presented with aggravated dry cough and dyspnea.
Tumor regrowth in mediastinum lymph nodes was observed,
and a diagnosis of superior vena cava obstruction syndrome
(SVCS) was made. In June 2018, she was administrated with
thoracic radiotherapy followed by two cycles of chemotherapy
with irinotecan (120 mg/m2 days 1, 8, every 3 weeks) and
carboplatin (area under the curve of 5 mg/ml/min, every 3
weeks) as a second-line treatment and symptoms were improved
significantly. In September 2018, this patient experienced dry
cough and shortness of breath again. At that time, a computed
tomography (CT) scan of the chest was performed and revealed
new patchy ground-grass opacities in bilateral lobes of the lung,
and small right pleural effusions, without new pulmonary tumor
lesions (Figure 2A). She was not found to be hypoxic. Bacterial
pneumonia was excluded through negative blood and sputum
culture, and progressive disease was not confirmed through
fiberoptic bronchoscopy. Based on her clinical presentations
and radiotherapy history, radiation-induced pneumonitis was
diagnosed, and she initiated systematic steroid treatment and
reported symptomatic improvement gradually (Figures 2B,C).

In January 2019, this patient had an extensive disease
progression, including multiple bone and supraclavicular
lymph node metastases. Third-line nab-paclitaxel chemotherapy
(200mg days 1, 8, every 3 weeks) was started, but her tumor was
not responsive to this regimen. She switched to an anti-PD-L1
antibody atezolizumab (1,200mg every 3 weeks) therapy and
local radiotherapy on lymph nodes and bone was subsequently
planed and completed. In June 2019, after receiving her six
cycles of immunotherapy with atezolizumab, this patient
developed new liver and brain metastases. At that time a flat
dose of nivolumab 240mg every 2 weeks was started, along with
further local treatment with liver and brain lesions. Just 1 week
later, she experienced slight dry cough and acute new-onset
fever without shortness of breath. A CT scan showed new
patchy ground-grass opacities in the lung bilaterally, with a
small right pleural effusion that was not present 1 month ago
(Figures 3A,B). Blood and sputum culture did not reveal any
causative microbial organism, and she was thought to develop
immunotherapy-related pneumonitis, of grade 2 severity.

She received intravenous methylprednisolone (2 mg/kg every
day for 5 days) and sequent treatment and inflammation was
improved on day 15 (Figure 3C). But on day 24, she was
presented with reoccurred fever, aggressive cough and dyspnea
on exertion, with a low oxygen saturation of 88%. An additional
CT scan showed obvious reoccurred pneumonitis of the bilateral
lungs, of grade 3 severity (Figure 3D). After multidisciplinary
discussion, high-dose intravenousmethylprednisolone treatment
(2 mg/kg every day) restarted but this did not alleviate
her symptoms within 5 days, with a low oxygen saturation
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FIGURE 1 | Time axis of anti-tumor treatment and intervention on pneumonitis. Line graph illustrating disease progression, anti-tumor therapy, pneumonitis and

intervention from April 2018 to August 2019. IVIG, Intravenous immunoglobulin; SVCS, Superior vena cava obstruction syndrome.

FIGURE 2 | Radiation-induced pneumonitis. (A) After receiving three-dimensional thoracic radiotherapy, a CT scan showed new patchy opacity developed in the

irradiated area of hilum of the right lung, which did not occur outside the irradiated area. (B) This patient initiated steroid treatment, pneumonitis was partially resolved

within 1 month, with a significantly clinical improvement. (C) Pulmonary inflammation disappeared 2 months later. White arrow indicates inflammatory lesions.

of 84–88%. At that time, she was firstly diagnosed with
concomitant bacterial pneumonia with Klebsiella pneumoniae,
but the use of specific antibiotics did not improve her symptoms
(Figure 3E). She was continuously treated with steroid and
received immunosuppressive agents including infliximab (5
mg/kg), mycophenolate mofetil (1 g twice every day), as well
as intravenous immunoglobulin (IVIG; 2 g/kg every day for 5
days). After treatment with combination immunosuppression,
fever, dry cough and dyspnea on exertion were relieved
significantly and oxygen saturation returned to a normal level,
with a significant radiographic improvement of pulmonary
inflammation (Figure 3F). Unfortunately, subsequent CT scan
demonstrated progressive disease in the liver.

DISCUSSION

Generally, both diagnosis and therapy are challengeable in
identifying and managing cancer patients who may be potential
PD-1/PD-L1 inhibitor-related pneumonitis. Pneumonitis can
develop at any time before or after initiation of anti-PD-1/PD-L1
therapy in patients with metastatic lung cancer. Pulmonary
toxicitymay be a radiation recall limited to previously areas of the
lung where radiation was applied. Radiation-induced lung injury
including pneumonitis and fibrosis may present within several

months or years following radiation therapy (13). Furthermore,
unusual opportunistic infections including pneumonia can
develop in patients with prolonged immune suppression which is
used to treat irAEs (14, 15). Data from a single institution showed
that serious infections occurred in 7.3% of advanced melanoma
patients who received ipilimumab, either alone or in combination
with nivolumab. The most common opportunistic infections
were bacterial infection, others were viral, fungal, and parasitic
(14). Thus, immune-related pneumonitis is viewed as a diagnosis
of exclusion, and other completing causes for similar clinical
presentation should be considered or excluded, including lung

infection progressive disease in the lungs. Sometimes immune-
related pneumonitis could present with concurrent infection

and/or disease progression, which presents as a complication in
clinical practice. In fact, preexisting pulmonary damage from

inflammation, radiation, idiopathic pulmonary diseases, previous

use of taxanes, gemcitabine and tyrosine kinase inhibitors, as well
as increased tumor burden may increase the risk of developing

immune-related pneumonitis (4, 5).
Currently, combination therapy strategies have been

developed to improve PD-1 blockade efficacy in various tumor
types. These include combinations with checkpoint inhibitors,
radiation therapy, chemotherapy, small molecular inhibitors and
several other existing cancer treatments (7, 9). It is becoming
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FIGURE 3 | Immune-related pneumonitis. (A) A CT scan showed no any inflammatory lesions in the lungs following the treatment with first PD-L1 inhibitor

atezolizumab. (B) Nivolumab was started when this patient progressed on atezolizumab treatment. A CT scan indicated new patchy ground-grass opacities in the

bilateral lungs, with a small left pleural effusion. Immune-related pneumonitis was identified when blood and sputum culture did not reveal a causative microbial

organism. (C) After treatment with corticosteroid for 1 week, this patient’s symptom improved significantly, with a radiologic complete resolution of the ground-glass

opacities and the pleural effusion. (D) Ten days later, a CT scan showed reoccurred pneumonitis, of grade 3 severity. (E) High-dose intravenous corticosteroid therapy

did not alleviate her symptoms within 5 days, with worsening radiographic findings. (F) After she received immunosuppressive agents including infliximab,

mycophenolate mofetil and human immunoglobulin, fever, dry cough, and dyspnea were relieved significantly, with a significant improvement of pulmonary

inflammation. White arrow indicates inflammatory lesions.

common that a second PD-1/PD-L1 inhibitor might be used
following disease progression on previous PD-1/PD-L1 inhibitor.
However, PD-1/PD-L1-based combination therapy leads to
relatively high incidence of treatment-related adverse events.
For example, the combination of osimertinib and durvalumab
was associated with high incidence of interstitial lung disease
(38%), leading to termination of further patient enrollment
(16). Even severe irAEs also occurred frequently in endothelial
growth factor receptor (EGFR)-mutant NSCLC patients who
received sequential PD-1/PD-L1 inhibition and osimertinib
treatment (17). In CheckMate 370 trial, 38% of anaplastic
lymphoma kinase translocation (ALK)-positive NSCLC patients
treated with nivolumab plus crizotinib developed severe hepatic
toxicities, leading to the discontinuation of the combination and
enrollment was closed earlier (18). An anti-CTLA-4 antibody
in combination with an anti-PD-1 antibody increases both
incidence and severity of irAEs. The overall incidence of
pneumonitis for patients with anti-PD-1/PD-L1 combination
therapy is 6.6% compared to 1.6% for those with monotherapy
(5). These toxicities including fatal side effects also tend to be
present earlier in the course of combination immunotherapy
treatment and evolve rapidly compared with immune checkpoint
inhibitor alone. The median time to the onset of fatal toxic event
is about 14.5 days for patients with combination immune
checkpoint therapy, compared to about 40 days for those
treated with monotherapies (19). Although recurrent irAEs

are mild and manageable, and a subgroup of patients were
responsive to retreatment with previous immunotherapy, it
remains unclear whether it is safe and efficacious when a
patient switches to a different PD-1/PD-L1 inhibitor because
of progression on the treatment with previous PD-1/PD-L1
inhibitor (Table 1) (22–24).

In our case, this patient developed serious interstitial lung
disease after sequential use of atezolizumab and nivolumab.
To the best of our knowledge, this is the first case report
involving immune-related pulmonary toxicity due to sequential
therapy with different PD-1/PD-L1 inhibitors. Another
similar case report mentioned that severe pneumonitis and
myocarditis were identified in a patient with lung squamous cell
carcinoma who received nivolumab followed by atezolizumab
monotherapy treatment (21). Furthermore, although retreatment
is plausible rationale and there are several ongoing trials that
allow prior treatment with a PD-1/PDL1 inhibitor, there
is insufficient clinical data to support the treatment with
another PD-1/PD-L1 inhibitor after progression on previous
PD-1 pathway blockade (20). Therefore, caution is needed in
patients receiving combinational or sequential application of
PD-1/PD-L1 inhibitors. Although the mechanism of action
underlying sequential use of PD-L1/PD-1 inhibitor remains
unknown, syngeneic tumor-bearing mice model suggested that
combination of anti-PD-1 and anti-PD-L1, either sequentially or
simultaneously administered, caused fulminant cardiotoxicity,
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TABLE 1 | Summary of reported cases documenting sequential treatment with different PD-1/PD-L1 inhibitors.

Authors First PD-1/PD-L1

inhibitor

Second PD-1/PD-L1

inhibitor

Regimen targets Tumor type Causes of switching

therapy

Outcomes

Martini et al. (20) PD-L1 inhibitor Nivolumab PD-L1 + PD-1 RCC PD PD

Martini et al. (20) PD-L1 inhibitor Nivolumab PD-L1 + PD-1 RCC PD PD

Martini et al. (20) Pembrolizumab Nivolumab PD-1 + PD-1 Melanoma PD PD

Liu et al. (21) Nivolumab Atezolizumab PD-1 + PD-L1 NSCLC PD Death caused by severe

pneumonitis and myocarditis

Lepir et al. (22) Nivolumab Pembrolizumab PD-1 + PD-1 Melanoma PD CR

CR, complete response; PD, progressive disease; PD-1, programmed cell death protein-1; PD-L1, programmed cell death ligand-1; NSCLC, non-small cell lung cancer; RCC, renal

cell carcinoma.

and this effect is associated with infiltrating leukocyte but not
CD8+ T cells accumulation in the hart. The administration of
the PD-L1 inhibitor alone prior to the PD-1 inhibitor did not
cause leukocytic infiltration of the myocardium (21).

Therapy and follow-up of immune-related pneumonitis
remain a major challenge in the clinical practice. Treatment
of pneumonitis is often determined by organizations and
practice settings. For example, several guidelines or consensus
for the management of irAEs in patients treated with immune
checkpoint inhibitor therapy have been published (10–12).
Immunotherapy teaching and monitoring tools have been
developed by the National Comprehensive Cancer Network
(NCCN) and can be utilized by patients and providers to

monitor different irAEs related to immune checkpoint inhibitors
(25). However, no prospective clinical trials have been identified
that determine an optimal treatment approach for management
of pneumonitis and other serious irAEs. Diagnostic evaluation
and management appear to be empirical. In the majority of

patients, pulmonary toxicity secondary to anti-PD-1/PD-L1
therapy can be resolved with the use of corticosteroid alone.
However, a subgroup of patients cannot improve initially or
completely and require additional suppressive medications
because of steroid-refractory situation. In our case, this patient
received high-dose corticosteroid and improve clinically after
the onset of nivolumab-related pulmonary toxicity, but she
rapidly developed a resistance to steroid treatment. According
to published guidelines, if patients do not improve after 48 h
of steroid treatment 1–2 mg/kg/d), addition of infliximab 5
mg/kg or mycophenolate mofetil intravenous 1 g twice a day
or IVIG for 5 days or cyclophosphamide should be considered.
Previous case report showed that single immunosuppressive
medication was not insufficient (26). We considered that
rapidly recurred pneumonitis was steroid refractory and used
different immunosuppressive medications with infliximab
and mycophenolate mofetil. In the meantime, intravenous
immunoglobulin dosed at 2 g/kg was also administered.
She got a good clinical response when receiving additional
immunosuppressive medications. Thus, patients receiving
combinational or sequential use of immune checkpoint
inhibitors have a relative high risk to develop high-grade
or steroid-resistant pneumonitis. Previous report showed
that the addition of IVIG to high-dose corticosteroid could
be viewed as an alternative therapy for steroid-refractory
immune-related pneumonitis (27). Here, additional suppressive

medications might be used earlier when pulmonary toxicity
occurs following the combinational or sequential use of PD-
1/PD-L1 inhibitors. Additionally, pulmonary infection was
identified, and use of antibiotics did not produce good clinical
response. However, infection screening is very important to
exclude the presence of infections before considering PD-1/PD-
L1-related pulmonary toxicity, regardless of a history of prior
corticosteroid administration. Moreover, prospective study
of early use with steroid and immunosuppressive agents in
the treatment of serious immune checkpoint inhibitor-related
pneumonitis is needed to establish best clinical practice in the
field of immune-oncology.

CONCLUSIONS

Combination therapy based on PD-1/PD-L1 inhibitors might
be viewed as a promising therapeutic strategy for resistant lung
cancer, and it is becoming common that a second PD-1/PD-L1
inhibitor might be used following the progression on previous
PD-1 pathway blockade. These patients have a relative high
risk to develop high-grade or steroid-resistant pneumonitis, and
additional suppressive medications should be used earlier when
severe pulmonary toxicity occurs. In the meantime, pulmonary
infections should be excluded before considering PD-1/PD-L1-
related pulmonary toxicity, to avoid a situation of misuse with
corticosteroids for immune-related pneumonitis, which would be
an important consideration for oncologists and immunologists.
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Background: Although combination therapy with immune checkpoint inhibitors (ICIs)
provides a promising efficacy in multiple cancers, their use is facing challenges for a high
incidence of adverse effects. This meta-analysis was conducted to compare the risks of
organ-specific immune-related adverse events (IRAEs) associated with ICI monotherapy
versus combination therapy among cancer patients.

Methods: Electronic databases were systematically searched to include eligible
randomized controlled trials (RCTs). Any-grade and 3-5 grade IRAEs (colitis,
pneumonitis, hepatitis, hypothyroidism, hyperthyroidism, and hypophysitis) were
extracted for meta-analysis. Two reviewers independently assessed the methodological
quality. The RevMan 5.3.5 software was used for meta-analysis.

Results: A total of 10 studies involving 8 RCTs with 2716 patients were included in this
study. The most common any-grade adverse event was colitis (14.5%), followed by
hypothyroidism (13.8%), hepatitis (10.4%), hypophysitis (10.0%), hyperthyroidism (9.3%),
and pneumonitis (4.6%). Meta-analysis showed that ICI combination therapy significantly
increased the risks of any-grade IRAEs in colitis [relative risk (RR), 3.56; 95% confidence
interval (CI), 1.56–8.12; p < 0.05], pneumonitis (RR, 2.31; 95% CI, 1.54–3.45; p < 0.05),
hepatitis (RR, 2.54; 95% CI, 1.65–3.91; p < 0.05), hypothyroidism (RR, 2.17; 95% CI,
1.71–2.76; p < 0.05), hyperthyroidism (RR, 3.13; 95% CI, 2.08–4.70; p < 0.05), and
hypophysitis (RR, 3.54; 95% CI, 2.07–6.07; p < 0.05) compared with ICI monotherapy, as
well as 3-5 grade IRAEs in colitis (RR, 2.50; 95% CI, 1.62–3.86; p < 0.05), pneumonitis
(RR, 1.99; 95% CI, 1.00–3.93; p = 0.05), and hepatitis (RR, 2.70; 95% CI, 1.29–5.63;
p < 0.05).
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Conclusions: This meta-analysis demonstrated that, compared with ICI monotherapy,
patients receiving ICI combination therapy significantly increased organ-specific IRAEs in
colitis, hypothyroidism, hepatitis, hypophysitis, hyperthyroidism, and pneumonitis. The
incidence and severity of organ-specific IRAEs were drug and dose independent.
Keywords: immune checkpoint inhibitor, combination immunotherapy, organ specific, adverse events,
meta-analysis
INTRODUCTION

Immune checkpoint inhibitors (ICI) have shown remarkable
efficacy in the therapy of multiple cancers, such as non-small cell
lung carcinoma, renal cell carcinoma, head and neck squamous
cell carcinoma, and melanoma (Mellman et al., 2011; Luke et al.,
2017; Proto et al., 2019). The most widely used ICIs include
cytotoxic T lymphocyte-associated protein 4 (CTLA4) and
programmed death-1/ligand-1 (PD-1/PD-L1) inhibitors. These
inhibitors block the agent interaction with the key immune
regulatory pathways, thereby increasing the antitumor
immunity (Johnson et al., 2017). Representative drugs of
CTLA-4 (ipilimumab), PD-1 (nivolumab, pembrolizumab),
and PD-L1 (avelumab, atezolizumab, and durvalumab) have
been approved by the Food and Drug Administration (FDA)
for malignant tumors.

In recent years, the combined use of PD-1 and CTLA-4
inhibitors has attracted increasing attention for the promising
efficacy in the treatment of advanced melanoma, lung cancer,
and sarcoma (Larkin et al., 2015; D’angelo et al., 2018; Hellmann
et al., 2018a; Hellmann et al., 2018b). In patients with advanced
melanoma, combination therapy with nivolumab and
ipilimumab had significantly improved clinical outcomes with
prolonged progression-free survival (PFS) and higher objective
response rate (ORR) compared with ipilimumab alone (Postow
et al., 2015; Hodi et al., 2016). Four clinical trials (CheckMate
012/032/227/568) demonstrated a durable response associated
with ICI combination therapy among patients with lung cancer
(Antonia et al., 2016; Hellmann et al., 2017; Hellmann et al.,
2018b; Ready et al., 2019). Although ICI combination has
become a significant breakthrough in cancer therapeutics, their
use was associated with toxic effects resulting from unbalanced
activation of the immune system. To distinguish from other
treatment-related side effects, these toxic effects caused by
immune activation were specifically termed as immune-related
adverse events (IRAEs) (Postow et al., 2018).

IRAEs may occur in almost any organ, such as the colon,
lungs, liver, muscle, and thyroid. According to the published
study (Baxi et al., 2018), IRAEs were classified into three
categories: organ-specific IRAEs (colitis, hepatitis, pnemonitis,
etc.), general IRAEs (fatigue, diarrhea, and rash) and
musculoskeletal IRAEs (arthritis, arthralgia, back pain, etc.).
They demonstrated that the general adverse events are more
prevalent, but the organ-specific IRAEs are more clinically
important. Yang et al. (Yang et al., 2019) also suggested that
oncologists should focus on the organ-specific IRAEs, which are
more meaningful in clinical practice. Therefore, the organ-
in.org 2143
specific adverse event has been a new challenge in the
treatment of cancers (Baxi et al., 2018; Martins et al., 2019).

Currently, although several meta-analysis have evaluated the
efficacy and safety of ICIs (Wang et al., 2017; Barroso-Sousa
et al., 2018; Ma et al., 2018; Wang et al., 2018; You et al., 2018),
most studies included chemotherapy as the control group for the
analysis, and few studies specifically assessed the safety of ICIs. A
published meta-analysis by Wang et al. in 2018 reported fatal
toxic effects associated with ICIs. They demonstrated that the
organ-specific IRAEs were the most common causes for death:
colitis for CTLA-4 (70%, 135/193 deaths), pneumonitis (35%,
115/333 deaths) for PD-1 or PD-L1 inhibitors, and colitis (37%,
32/87) for the combination PD-1 and CTLA-4 (Baxi et al., 2018).
However, they failed to provide the detailed data about the
incidences of low-grade and high-grade adverse events.

A comprehensive understanding of the epidemiology of the
organ-specific IRAEs is essential for clinicians to balance the
benefits and risks of ICI combination during cancer treatment
(Martins et al., 2019). Therefore, we conducted this meta-
analysis based on randomized controlled trials (RCTs) aiming
to compare the organ-specific IRAEs of ICI monotherapy versus
combination therapy among cancer patients.
MATERIALS AND METHODS

This study was performed based on the preferred reporting items
for systematic reviews and meta-analyses (PRISMA) statement.

Inclusion and Exclusion Criteria
The following inclusion criteria were used in this study: (1). types
of included studies: randomized controlled trials (RCTs); (2).
types of participants: patients over 18 years of age diagnosed with
malignancies regardless of region, racial, and gender; (3).
interventions: patients received the intervention treatment of
either ICI monotherapy or combined therapy with CTLA-4/PD-
1/PD-L1 antibodies; (4). types of outcomes: colitis, pneumonitis,
hepatitis, hypothyroidism, hyperthyroidism, and hypophysitis.
The severity of adverse events were graded according to the
National Cancer Institute Common Terminology Criteria for
Adverse Events version (CTCAE) 4.0, and grade ≥3 were
evaluated as high grade or severe grade.

The exclusion criteria were: (1). types of studies: ongoing
trials, quasi-RCT, non-RCT, reviews, commentaries, conference
paper, and quality of life studies; (2) interventions: patients
treated with placebo, chemotherapy, or chemotherapy
plus immunotherapy.
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Data Sources and Searches
A literature search was conducted to identify RCTs comparing
ICI monotherapy versus combination therapy among cancer
patients. Without the restriction on language and publication
status, the databases of MEDLINE, EMBASE, and Cochrane
databases and ISI Web of Knowledge were searched to determine
potentially eligible studies up to May 30, 2019. The following
search terms were used: CTLA-4, ipilimumab, tremelimumab,
PD-1, nivolumab, pembrolizumab, PDL-1, atezolizumab,
avelumab, durvalumab, and checkpoint inhibi tors .
Additionally, the reference lists of identified studies and
Google scholar were checked for other potentially eligible trials.

Data Collection and Quality Assessment
Two blinded authors (Da and Teng) independently extracted
data according to a standardized extraction form. Any
discrepancy was resolved by discussion with a third author. If
insufficient data was reported, efforts were made to contact the
authors for the additional information. The methodological
quality of the eligible studies was evaluated using the following
items recommended by the Cochrane Collaboration:
randomization, allocation concealment blinding of participant,
blinding of outcome assessors, incomplete outcome data,
selective reporting, and other bias (Higgins et al., 2011).

Statistical Analysis
Meta-analysis was conducted using the software Review
Manager 5.3.5. Risk ratio (RR) and 95% confidence interval
(95% CI) were calculated to estimate the event rates for
dichotomous outcomes. Heterogeneity was tested using I2

index and the Cochran Q statistic (I2 > 50% indicating
significant heterogeneity, and I2 ≤ 50% indicating no
significant heterogeneity). If no heterogeneity (I2 ≤ 50%) was
presented in the meta-analysis, a fixed-effect model was used to
estimate the pooled odds ratio and 95% confidence interval,
otherwise, a random-effect model was used. Subgroup analyses
were performed to explore the sources of heterogeneity
according to the different tumors types.
RESULTS

Figure 1 showed the flow chart of literature screening. A total of
2,279 records were yielded in the initial search from the database.
After removing duplicates, 1,352 studies were assessed for
abstract and full-text review. Finally, 10 studies involving eight
RCTs were included in this meta-analysis (Larkin et al., 2015;
Postow et al., 2015; Antonia et al., 2016; Hodi et al., 2016;
Wolchok et al., 2017; D’angelo et al., 2018; Hellmann et al.,
2018b; Long et al., 2018; Omuro et al., 2018; Sharma et al., 2019).
The Characteristics and Quality
Assessment of Included RCTs
The detailed characteristics of included RCTs were shown in
Table 1. A total of 2,716 patients (monotherapy group, 1,315;
combination group, 1,401) were included in the analysis. In the
Frontiers in Pharmacology | www.frontiersin.org 3144
combination group, all the patients received intervention with
nivolumab and ipilimumab. Three studies compared the efficacy
of two different doses of drug combinations: nivolumab 3 mg/kg
plus ipilimumab 1 mg/kg (N3I1), or nivolumab 1 mg/kg plus
ipilimumab 3 mg/kg (N1I3) (Antonia et al., 2016; Omuro et al.,
2018; Sharma et al., 2019). In the monotherapy group, patients
received intervention with either ipilimumab (Larkin et al., 2015;
Postow et al., 2015; Hodi et al., 2016; Wolchok et al., 2017) or
nivolumab alone (Larkin et al., 2015; Antonia et al., 2016;
Wolchok et al., 2017; D’angelo et al., 2018; Hellmann et al.,
2018b; Long et al., 2018; Omuro et al., 2018; Sharma et al., 2019).
The included RCTs involved five kinds of tumors: lung cancer in
two studies (Antonia et al., 2016; Hellmann et al., 2018b),
melanoma in three studies (Larkin et al., 2015; Postow et al.,
2015; Hodi et al., 2016; Wolchok et al., 2017; Long et al., 2018),
metastatic sarcoma in one study (D’angelo et al., 2018),
urothelial carcinoma (Sharma et al., 2019), and recurrent
glioblastoma in one study (Omuro et al., 2018). All the
included RCTs used the CTCAE 4.0 to evaluate the severity of
IRAEs. The publication date of the included studies was between
2015 and 2018. Additionally, two updated RCTs were included in
this meta-analysis without duplicate counting of the sample
(Hodi et al., 2016; Wolchok et al., 2017).

Table 2 showed the methodological quality of the included
studies. The randomization was reported in all the studies, and
blinding of outcome assessment was reported in six studies.
However, few studies described the allocation concealment and
the blinding of participants during trial.

Incidences of Organ-Specific IRAEs
Regarding any-grade organ-specific IRAEs associated with
combination therapy, the most common adverse event was
colitis (14.5%), followed by hypothyroidism (13.8%), hepatitis
(10.4%), hypophysitis (10%), hyperthyroidism (9.3%), and
pneumonitis (4.6%). While for 3-5 grade adverse events with
FIGURE 1 | PRISMA flowchart of literature screening.
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monotherapy, the most common incidences were colitis (11.9%),
hepatitis (3.7%), pneumonitis (1.7%), hypophysitis (1.1%),
hypothyroidism (0.4%), and hyperthyroidism (0.4%).

Outcomes of Meta-Analysis
The outcomes of meta-analysis were presented in Table 3, and
the forest plots of meta-analysis were attached in
Supplementary Materials.

Meta-Analysis of Any-Grade and 3-5 Grade Colitis
Five studies involving 1390 patients were included for meta-
analysis (Antonia et al., 2016; Hodi et al., 2016; Wolchok et al.,
2017; Long et al., 2018; Omuro et al., 2018). The incidences of
any-grade colitis were 14.5% (85/587) vs 5.6% (45/803) in the
combination vs monotherapy group; and 3-5 grade were 11.9%
(70/587) vs 5.1% (41/803) in the combination vs monotherapy
group. A random-effect model was used in the meta-analysis for
significant heterogeneity among studies (I2 > 50%). The results of
Frontiers in Pharmacology | www.frontiersin.org 4145
the meta-analysis showed that patients treated with ICI
combinations had significantly higher incidences of any-grade
and 3-5 grade colitis when compared with the monotherapy
group. The RR was 3.56 (95% CI, 1.56–8.12; p < 0.05) and 2.5
(95% CI, 1.62–3.86; p < 0.05) for any-grade and 3-5 grade
colitis, respectively.

Meta-Analysis of Any-Grade and 3-5 Grade
Pneumonitis
All the included studies involving 2716 patients reported any-
grade and 3-5 grade pneumonitis. The incidences of any-grade
pneumonitis were 4.6% (64/1401) vs 2.1% (27/1314) in the
combination vs monotherapy group; and 3-5 grade were 1.7%
(24/1401) vs 0.7% (9/1314) in the combination vs monotherapy
group. A fixed-effect model was used in the meta-analysis for no
significant heterogeneity among studies (I2 < 50%). Meta-
analysis showed significantly high incidences in any-grade and
3-5 grade pneumonitis in the ICI combination group. The RR
TABLE 1 | The characteristics of included studies.

Study Year Study design Histology Age
(years)

No. of patients
(Male/Female)

Groups NO. of Lost to
Follow-up

CTCAE
Version

Antonia et al., 2016 2016 Phase I/II RCT;
Check Mate 032

SCLC 63 (57-
68)

98 (61/37) NIVO(3 mg/kg q2w) 0 4.0

61 (56-
65)

54 (32/22) NIVO (3 mg/kg q3w) + IPI
(1 mg/kg q3w)

0

66 (58-
71)

61 (35/26) NIVO (1 mg/kg q3w) + IPI
(3 mg/kg q3w)

0

Hellmann et al., 2017 2017 Phase III RCT;
Check Mate 227

NSCLC 64
(median)

396 (273/123) NIVO(3 mg/kg q2w) 5 4.0

64
(median)

583 (391/192) NIVO (3 mg/kg q2w) + IPI
(1 mg/kg q6w)

7

Larkin et al., 2015/
Wolchok et al., 2017

2015/
2017

Phase III RCT;
Check Mate 067

Melanoma 59 (25-
90)

316 (202/144) NIVO(3 mg/kg q2w) 3 4.0

61 (18-
89)

315 (202/113) IPI (3 mg/kg q3w) 2

59 (18-
88)

314 (206/108) NIVO (1 mg/kg q3w) + IPI
(3 mg/kg q3w)

3

Postow et al., 2015/ Hodi
et al., 2016

2015/
2016

Phase III RCT;
Check Mate 069

Melanoma 67 (31-
80)

47 (32/15) IPI (3 mg/kg q3w) 1 4.0

64 (27-
87)

95 (63/32) NIVO (1 mg/kg q3w) + IPI
(3 mg/kg q3w)

1

Long et al., 2018 2018 Phase Ib RCT;
KEYNOTE-029

Melanoma 63 (52-
74)

25 (19/6) NIVO (3 mg/kg q2w) 0 4.0

59 (53-
68)

35 (29/6) NIVO (1 mg/kg q3w) + IPI
(3 mg/kg q3w)

0

D’angelo et al., 2018 2018 Phase III RCT;
Alliance A091401

Sarcoma 56 (21-
76)

43 (22/21) NIVO (3 mg/kg q2w) 0 4.0

57 (27-
81)

42 (19/23) NIVO (3 mg/kg q3w) + IPI
(1 mg/kg q3w)

0

Omuro et al., 2018 2018 Phase I RCT;
CheckMate 143

Glioblastoma 58.5
(42-73)

10 (5/5) NIVO (3 mg/kg q2w) 0 4.0

60 (27-
73)

20 (14/6) NIVO (3 mg/kg q3w) + IPI
(1 mg/kg q3w)

0

57 (37-
68)

10 (6/4) NIVO (1 mg/kg q3w) + IPI
(3 mg/kg q3w)

0

Sharma et al., 2019 2019 Phase I/II RCT;
CheckMate 568

Urothelial
Carcinoma

65.5
(31-85)

78 (54/24) NIVO (3 mg/kg q2w) 0 4.0

63.0
(39-83)

104 (81/23) NIVO (3 mg/kg q2w) + IPI
(1 mg/kg q2w)

0

64.0
(38-83)

92 (74/18) NIVO (1 mg/kg q2w) + IPI
(3 mg/kg q2w)

0

January 20
20 | Volume 10 |
NIVO, nivolumab; IPI, ipilimumab; No., number; CTCAE, Common Terminology Criteria for Adverse Events version; RCT, randomized controlled trials; NA, not available.
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was 2.31 (95% CI, 1.54–3.45; p < 0.05) and 1.99 (95% CI, 1.00–
3 . 9 3 ; p = 0 . 0 5 ) f o r a n y - g r a d e a n d 3 - 5 g r a d e
pneumonitis, respectively.

Meta-Analysis of Any-Grade and 3-5 Grade Hepatitis
Four studies involving 1441 patients were included for meta-
analysis (Hodi et al., 2016; Hellmann et al., 2018b; Long et al.,
2018; Sharma et al., 2019). The incidences of any-grade hepatitis
were 10.4% (94/901) vs 7.1% (24/340) in the combination vs
monotherapy group; and 3-5 grade were 3.7% (33/901) vs 2.1%
(7/340) in the combination vs monotherapy group. No
significant heterogeneity was found among studies (I2 < 50%).
Meta-analysis demonstrated that, the ICI combination group
had significantly higher any-grade and 3-5 grade hepatitis than
the monotherapy group. The RR was 2.54 (95% CI, 1.65–3.91;
p < 0.05) and 2.70 (95% CI, 1.29–5.63; p < 0.05) for any-grade
and 3-5 grade hepatitis, respectively.

Meta-Analysis of Any-Grade and 3-5 Grade
Hypothyroidism
All studies reported the incidence of hypothyroidism. The
incidences of any-grade hypothyroidism were 13.8% (194/
1401) vs 7.2% (95/1315) in the combination vs monotherapy
group; and 3-5 grade were 0.4% (5/1401)vs 0.1% (1/1315) in the
combination vs monotherapy group. There was no significant
heterogeneity among studies (I2 < 50%). Compared with the
monotherapy group, the combination group showed significant
higher risks in any-grade hypothyroidism, and the RR was 2.17
Frontiers in Pharmacology | www.frontiersin.org 5146
(95% CI, 1.71–2.76; p < 0.05). However, no difference was found
in 3-5 grade hypothyroidism (RR, 2.36; 95% CI, 0.55–10.13;
p = 0.25).

Meta-Analysis of Any-Grade and 3-5 Grade
Hyperthyroidism
Five studies involving 1524 patients were included for meta-
analysis (Antonia et al., 2016; Wolchok et al., 2017; Long et al.,
2018; Omuro et al., 2018; Sharma et al., 2019). The incidences of
any-grade hyperthyroidism were 9.3% (64/689) vs 3.0% (25/835)
in the combination vs monotherapy group; and 3-5 grade were
0.4% (3/689) vs 0% (0/835) in the combination vs monotherapy
group. The heterogeneity was not significant among studies (I2 <
50%). Meta-analysis showed that patients receiving ICI
combination therapy had significantly higher risk in any-grade
hyperthyroidism than those receiving monotherapy, and the RR
was 3.13 (95% CI, 2.08–4.70; p < 0.05), but no difference was
found in 3-5 grade hyperthyroidism (RR, 7.05; 95% CI, 0.86–
57.43; p = 0.07).

Meta-Analysis of Any-Grade and 3-5 Grade
Hypophysitis
Three studies involving 1137 patients reported the incidence of
hypophysitis (Hodi et al., 2016; Wolchok et al., 2017; Long et al.,
2018). The incidences of any-grade hypophysitis were 10.0% (44/
442) vs 2.4% (17/695) in the combination vs monotherapy group;
and 3-5 grade were 1.1% (5/442) vs 1.6% (11/695) in the
combination vs monotherapy group. No significant
TABLE 2 | Risk of bias in included studies.

Study Random
Sequence
Generation

Allocation
Concealment

Blinding of
Participants

Blinding of
Outcome

Assessment

Incomplete
Outcome Data

Selective
Reporting

Other
Bias

Antonia et al., 2016 Yes
a

Unclearb Noc Yes Yes Unclear Unclear
Hellmann et al., 2017; Hellmann et al.,
2018a; Hellmann et al., 2018b

Yes Unclear No Yes Yes Unclear Unclear

Larkin et al., 2015/Wolchok et al., 2017 Yes Unclear Yes Yes Yes Unclear Unclear
Postow et al. 2015/Hodi et al., 2016 Yes Unclear Yes Yes Yes Unclear Unclear
Long et al., 2018 Yes Yes Yes Yes Yes Unclear Unclear
D’angelo et al., 2018 Yes Unclear Unclear Unclear Yes Unclear Unclear
Omuro et al., 2018 Yes Unclear Unclear Unclear Yes Unclear Unclear
Sharma et al., 2019 Yes Unclear No Yes Yes Unclear Unclear
January 2020 | Vo
lume 10 | Artic
aYes, low risk of bias; bUnclear: unclear or unknown risk of bias; cNo: high risk of bias.
TABLE 3 | Meta-analysis of any-grade and 3-5 grade IRAEs between the ICI combination group and the monotherapy group.

Outcomes Studies Any Grade 3-5 Grade

Effect Estimate, RR (95% CI) Overall Effect Heterogeneity (I2) Effect Estimate,
RR (95% CI)

Overall Effect Heterogeneity (I2)

Colitis 5 2.84 (1.42–5.65) p = 0.003 I2 = 59% 3.71 (1.37–10.08) p < 0.001 I2 = 55%
Pneumonitis 8 2.24 (1.52–3.32) p < 0.001 I2 = 9% 1.96 (1.00–3.85) p = 0.05 I2 = 0%
Hepatitis 4 2.16 (1.50–3.12) p < 0.001 I2 = 24% 2.56 (1.27–5.16) p = 0.009 I2 = 0%
Hypothyroidism 8 2.00 (1.61–2.48) p < 0.001 I2 = 36% 2.34 (0.57–9.65) p = 0.24 I2 = 0%
Hyperthyroidism 5 2.91 (1.98–4.29) p < 0.001 I2 = 33% 6.98 (0.86–56.55) p = 0.07 I2 = 0%
Hypophysitis 3 3.60 (1.31–9.86) p = 0.01 I2 = 58% 0.45 (0.16–1.25) p = 0.13 I2 = 11%
RR, risk ratio; CI, confidence interval.
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heterogeneity was found among studies (I2 < 50%). Meta-
analysis showed that the combination group had significant
high risks in any-grade hypophysitis, and the RR was 3.54
(95% CI, 2.07–6.07; p < 0.05). No difference was found in 3-5
grade hypophysitis (RR, 0.45; 95% CI, 0.16–1.23; p = 0.12).

Meta-Analysis of Total Treatment-Related
Adverse Events
A total of 2,716 patients were included in 10 studies with 1315 in
the monotherapy group (nivolumab, 958; ipilimumab, 357) and
1,401 in the combination group (nivolumab and ipilimumab). A
random-effect model was used for the outcome of total 3-5 grade
adverse events due to significant heterogeneity among studies
(I2 > 50%). When compared with the monotherapy group, meta-
analysis showed that patients in the ICI combination group had
significantly higher risks for total treatment-related adverse
events in any and 3-5 grade. The RR was 1.68 (95% CI, 1.35–
2.08; p < 0.05) and 2.99 (95% CI, 2.00–4.46; p < 0.05) for total
any-grade and 3-5 grade hepatitis, respectively.

Subgroups Analysis
Different Types of Tumors
As for the insufficient number of included studies on lung cancer,
glioblastoma, urothelial carcinoma, and sarcoma, only one
subgroup analysis was performed on melanoma. Meta-analysis
showed that, the combination therapy significantly increased the
risks of total 3-5 grade organ-specific IRAEs (RR, 1.70; 95% CI,
1.25–2.30; p < 0.05) in melanoma patients, but no difference was
found in the incidences of total any-grade IRAEs between both
groups (RR, 1; 95% CI, 0.99–1.01; p = 0.77).

Different Drug Doses
The incidences of IRAEs based on drugs (nivolumab alone,
ipilimumab alone, and nivolumab plus ipilimumab) were
summarized in Table 4. In the combination group, three
studies included two different doses of drug combinations:
nivolumab 3 mg/kg plus ipilimumab 1 mg/kg (N3I1), or
nivolumab 1 mg/kg plus ipilimumab 3 mg/kg (N1I3) (Antonia
et al., 2016; Omuro et al., 2018; Sharma et al., 2019). The
subgroups analysis showed that there was no difference in the
incidence of total any-grade organ-specific IRAEs between N3I1
and N1I3 groups (RR, 0.99; 95% CI, 0.89–1.09; p = 0.84), but the
incidence of the total 3-5 grade IRAEs was significantly higher in
the N1I3 group (RR, 1.70; 95% CI, 1.25–2.30; p < 0.05).
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Publication Bias
The funnel plot was used to explore the potential publication
bias. All the included studies showed a symmetric distribution on
the funnel plots. No significant publication bias was found in this
meta-analysis.
DISCUSSION

In this study, 10 literatures involving 8 RCTs with 2716 patients
were included for meta-analysis. The most important finding of
this study is that the use of ICI combination (nivolumab and
ipilimumab) significantly increased the risks in any-grade IRAEs
in col i t is , pneumonitis , hepat it is , hypothyroidism,
hyperthyroidism, and hypophysitis, as well as the 3-5 grade
IRAEs in colitis, pneumonitis, and hepatitis.

The rapid development of ICIs has dramatically changed the
therapeutic options in numerous cancers. Compared with ICI
monotherapy, ICI combination therapy has become a more
popular therapeutic way for its superior clinical efficacy.
However, few studies are focused on the organ-specific IRAEs.
Although a previous meta-analysis by Wang et al. (2018) had
assessed the toxic effects caused by ICIs, the authors only
reported the mortality related to the ICI toxicity (122 deaths in
19,217 patients). Nevertheless, for a prompt recognition and
management of adverse events, we should not only know the
epidemiology regarding the fatal events, but also for moderate
and severe adverse effects (Martins et al., 2019). Therefore, we
designed this study to compare the risks of any-grade and 3-5
grade adverse effects associated with ICI combination therapy
with monotherapy.

In our study, colitis and hepatitis were included as ICI-
induced gastrointestinal and hepatic injury. The most frequent
IRAE associated with combination therapy was colitis (any
grade, 14.5%; 3-5 grade: 11.9%), with a significantly higher
incidence than that in the monotherapy group (any grade:
5.6%; 3-5 grade: 3.5%). Hepatitis induced by ICI was less
frequent compared to colitis, occurring in approximately 10.4%
of patients receiving ICI combination therapy, with 3.7% above
grade 3. Meta-analysis showed that ICI combination therapy
significantly increased risks of colitis and hepatitis than ICI
monotherapy. Of note, the increased colitis in the combination
therapy group might be mainly contributed to the use of anti-
CTLA-4 drugs. Earlier studies demonstrated a higher incidence
TABLE 4 | Incidence of the organ-specific IRAEs by drug (%).

Drugs Colitis Pneumonitis Hepatitis Hypothyroidism Hyperthyroidism Hypophysitis

Any
grade

Grade
3-5

Any
grade

Grade
3-5

Any
grade

Grade
3-5

Any grade Grade
3-5

Any
grade

Grade
3-5

Any
grade

Grade
3-5

Nivolumab +
Ipilimumab

a

14.5 (85/
587)

11.9 (70/
587)

4.6 (64/
1401)

1.7 (24/
1401)

10.4 (94/
901)

3.7 (33/
901)

13.8 (194/
1401)

0.4 (5/
1401)

9.3 (64/
689)

0.4 (3/
689)

10.0 (44/
442)

1.1 (5/
442)

Nivolumab 1.6 (7/
446)

0.7 (3/
446)

2.3 (22/
957)

0.8 (8/
957)

4.9 (24/
294)

1.4 (7/
294)

7.8 (75/958) 0.1 (1/
958)

4.0 (21/
524)

0 (0/
524)

0.6 (2/
338)

1.5 (5/
338)

Ipilimumab 10.6 (38/
357)

10.6 (38/
357)

1.4 (5/
357)

0.3 (1/
357)

0 (0/46) 0 (0/46) 5.6 (20/357) 0 (0/357) 1.3 (4/
311)

0 (0/
311)

4.2 (15/
357)

1.7 (6/
357)
January 2020 | Vol
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aIncludes both two different doses of drug combinations: Nivolumab 3 mg/kg plus Ipilimumab 1 mg/kg (N3I1), nivolumab 1 mg/kg plus ipilimumab 3 mg/kg.
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of gastrointestinal adverse events associated with CTLA-4
inhibitors alone compared with anti-PD-1 therapy. In a large-
sample phase-3 study with 945 patients, Larkin et al. (2015)
compared the safety of nivolumab alone, ipilimumab alone, and
nivolumab plus ipilimumab. The results showed that colitis of
any grade occurred in 0.6% of the patients in the nivolumab
group, 7.7% of those in the ipilimumab group, and 8.3% of those
in the nivolumab-plus-ipilimumab group, respectively. This
result was consistent with our subgroup analysis, which
showed that patients receiving ipilimumab alone (10.6%) more
likely experienced any-grade and serious colitis than those who
received nivolumab alone (1.6%). Currently, the related
pathogenesis of colitis initiated by ipilimumab still remains
unclear. Histopathologic features might be related with an
increase in intraepithelial lymphocytes for CTLA-4 inhibitors
(Gupta et al., 2015; Weidner et al., 2015).

For the organ-specific IRAEs in thyroid dysfunction, we
included the outcomes of hypothyroidism and hyperthyroidism
in this study. Meta-analysis showed that the combination group
had significant high risks in any-grade hypothyroidism and
hyperthyroidism compared with the monotherapy group. In
terms of 3-5 grade adverse events, prior studies demonstrated
that ICI therapy rarely resulted in serious thyroid dysfunction
(Morganstein et al., 2017; Zhang et al., 2018). This study revealed
that only 3 (0.4%, 3/1401) patients had serious hypothyroidism in
combination therapy group, while 1 (0.1%, 1/958) and 5 (0.4%, 5/
958) patients had serious hyperthyroidism in nivolumab and
combination groups, respectively. Meta-analysis showed no
differences between the monotherapy and combination groups.
Hypophysitis was regarded as the most frequent endocrine
dysfunction caused by ICI therapy. Notably, we found that the
variation tendency of hypophysitis was similar with that of
thyroid dysfunction, which showed that the combination group
had statistically higher incidence in all-grade events, but no
difference in serious events between two groups. A possible
explanation was that the thyrotropin hormone was affected by
hypophysitis, thus resulting in thyroid disorders (Barroso-Sousa
et al., 2018; Zhang et al., 2018).

Pneumonitis was a relatively rare adverse event during
checkpoint inhibition therapy, which appeared more prevalent
in lung cancer patients (Spain et al., 2016). Low-grade
pneumonitis was commonly manageable with treatment
discontinuation, but serious pneumonitis is potentially life-
threatening (Martins et al., 2019; Rahouma et al., 2019). In this
study, meta-analysis revealed that ICI combination therapy was
associated with a significantly higher risk of pneumonitis
compared with monotherapy. Subgroup analysis revealed that
the rates of all-grade pneumonitis were 4.6%, 2.3% and 1.4% in
patients receiving nivolumab plus ipilimumab, nivolumab alone,
and ipilimumab alone, respectively. Interestingly, unlike colitis,
pneumonitis was more frequent among patients receiving anti-
PD-1/PD-L1 therapies as opposed to those receiving anti-CTLA4
therapies (Martins et al., 2019). Analysis based on the drug types
also showed that patients receiving anti-PD-1 inhibitors
(nivolumab) experienced more high-grade pneumonitis than
those receiving anti-CTLA4 inhibitors (ipilimumab), and the
Frontiers in Pharmacology | www.frontiersin.org 7148
incidences were 0.8% and 0.3%, respectively. Moreover, 1 (1.1%)
case and 3 cases (2.3%) of pneumonitis-related death associated
with nivolumab were reported by Postow et al. (2015) and
Gettinger et al. (2015), respectively. Therefore, despite a
relatively low incidence of pneumonitis, this adverse effect
should be closely followed up by clinicians, in particular when
anti-PD-1/PD-L1 inhibitors are being used.

For the subgroup analysis, we found that the organ-specific
IRAEs appeared to be drug- and dose-dependent. Regarding the
drug dependent, the risks of colitis and hypophysitis appeared to
be more related to the CTLA-4 antibodies (ipilimumab); the
pneumonitis and hepatitis appeared to be more related to the
PD-1 antibodies (nivolumab). Regarding the dose dependent, we
compared two different doses in drug combinations (nivolumab
3 mg/kg pus ipilimumab 1 mg/kg versus nivolumab 1 mg/kg plus
ipilimumab 3 mg/kg). The result showed that nivolumab 3 mg/
kg plus ipilimumab 1 mg/kg significantly increased the total 3-5
grade IRAEs.
STUDY STRENGTHS AND LIMITATIONS

The most important strength of this study is that all the included
studies are RCTs with detailed registration information in
ClinicalTrials.gov. Meanwhile, there are also several limitations
in this study. First, the number of the included RCTs was small
(10 studies involving 8 RCTs and 2,716 patients), which limited
us to perform subgroup analysis. Further high-quality RCTs with
large sample sizes are needed to verify our conclusion. Second,
some definitions of adverse events were not uniform. For
example, immune-related hepatitis was reported as hepatitis or
increased aspartate transaminase/alanine transaminase, and
immune-mediated colitis was reported as colitis or diarrhea,
which might lead to incomplete data collection. This should be
standardized in the future study. Third, patients with various
cancers were included, which might have bias in the incidence of
some adverse effects. For example, lung cancer was related with a
high risk of developing pneumonitis from previous lung disease,
radiotherapy, and smoking history. Subgroup analysis was not
done based on different types of cancers due to the insufficient
studies on lung cancer, sarcoma, glioblastoma, and urothelial
carcinoma. Fourth, heterogeneity was found in the outcomes of
colitis and total adverse events among the included studies. The
heterogeneity might have resulted from the differences of cancer
types, follow-up time, drug dose, and so on.
CONCLUSIONS

This meta-analysis demonstrated that, compared with ICI
monotherapy, combination therapy with ICI drugs significantly
increased the risk of organ-specific IRAEs in colitis,
hypothyroidism, hepatitis, hypophysitis, hyperthyroidism, and
pneumonitis. The incidence and severity of organ-specific IRAEs
were drug- and dose-independent. Although the incidence of
January 2020 | Volume 10 | Article 1671
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high-grade organ-specific IRAEs was relatively low, clinicians
should be aware of these adverse effects so that patients can be
promptly managed.
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The tumor immune microenvironment (TIME) plays a pivotal role in tumor development,

progression, and prognosis. However, the characteristics of the TIME in diffuse

astrocytoma (DA) are still unclear. Leveraging mass cytometry with a panel of 33

markers, we analyzed the infiltrating immune cells from 10 DA and 4 oligodendroglioma

(OG) tissues and provided a single cell-resolution landscape of the intricate immune

microenvironment. Our study profiled the composition of the TIME in DA and confirmed

the presence of immune cells, such as glioma-associated microglia/macrophages

(GAMs), CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and natural killer

cells. Increased percentages of PD-1+ CD8+ T cells, TIM-3+ CD4+ T cell

subpopulations, Tregs and pro-tumor phenotype GAMs substantially contribute to

the local immunosuppressive microenvironment in DA. DAs and OGs share similar

compositions in terms of immune cells, while GAMs in DA exhibit more inhibitory

characteristics than those in OG.

Keywords: diffuse astrocytoma, oligodendroglioma, CyTOF, immune profiling, microenvironment

INTRODUCTION

Diffuse astrocytomas (DAs) account for 10% of all adult primary brain tumors (1). They are
diffusely infiltrating World Health Organization (WHO) grade II brain neoplasms, and DA
patients have a median survival in the range of 5–7 years (2). Even with a combination of
available therapeutic modalities, including surgery, radiotherapy, and chemotherapy, the invasive
growth and resistance to therapy exhibited by these tumors result in their recurrence, malignant
transformation, and almost invariable progression to high-grade glioma in most patients (3). These
challenges underscore the need for novel strategies to improve the outcomes of patients with
low-grade glioma (LGG) (4).

Immunotherapy is an emerging breakthrough approach that promises the possibility of highly
specific and less toxic treatment compared to conventional chemotherapy (5); this approach aims
to induce an adaptive immune response that specifically targets and kills tumor cells without
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affecting normal cells. Thanks to advances in the fields
of neuro- and cancer-immunology, a wide range of
immunotherapies for WHO grade IV glioblastoma are now
undergoing development, including antibodies, adoptive
cell transfers, vaccines, virally-based treatments and
immune checkpoint blockade (6–9). However, the efficacy
of immunotherapy for the treatment of DAs is still controversial.

The infiltration of diverse immune cell populations has been
reported in various cancer types, and the cooperation between
tumor cells and tumor-infiltrating immune cells drives tumor
development (10). Glioma cells secrete numerous cytokines,
chemokines, and growth factors that promote the infiltration
of a range of immune cells, such as resident microglia,
peripheral macrophages, CD4+ T cells, CD8+ T cells, and
regulatory T (Treg) cells, into the tumor (11–13), and these non-
neoplastic cells play crucial roles in cancer growth, metastasis,
and response to treatment. Therefore, sound knowledge of
the immune microenvironment of DA will aid the design
of effective therapeutic strategies and provide a foundation
for the success of immunotherapy (14). In previous studies,
histopathological analysis, immunohistochemistry, and flow
cytometry were utilized to reveal the immunological features of
the glioma immune microenvironment (15, 16). To the best of
our knowledge, immune changes in themicroenvironment of DA
have rarely been reported, and a comprehensive understanding of
the phenotypic characterization of immune cells in the DA tumor
microenvironment at the protein level is highly needed.

To this end, we utilized mass cytometry (CyTOF) to examine
the TIME of DAs and paired peripheral blood mononuclear cells
(PBMCs). We also collected specimens of oligodendroglioma
(OG) to compare the TIME in DAs and OGs. CyTOF enables
the simultaneous measurement of more than 30 parameters
per single cell using metal isotope-conjugated antibodies
with minimal overlap, which maximizes the information
obtained from each individual sample (17). By addressing the
cellular and molecular complexity of the immunosuppressive
microenvironment, our data provide a detailed dissection of
the DA immune cell types and reveal immunosuppressive
changes in glioma-associated microglia/macrophages (GAMs)
and T cell exhaustion in DA lesions. Our data show that
immunosuppressive programs are present in early stages in
LGG and likely compromise antitumor immunity. Our study
suggests that neoadjuvant immunotherapy strategies targeting
innate immune cells in DA lesions have the potential to
reactivate the TIME and transform the tumor response to affect
checkpoint blockade.

MATERIALS AND METHODS

Human Specimens
Blood and LGG tissues were obtained from patients with WHO
grade II DA and OG undergoing craniotomy surgery at Beijing
Tiantan Hospital (Beijing, China) from June 2018 to April 2019.
All patients were diagnosed with WHO grade II diffuse DA
or OG, which was confirmed by histopathology. None of the
patients used glucocorticoids before sampling.

Ethics Approval and Consent to Participate
This study was approved by the Institutional Review Board
and Ethics Committee of Beijing Tiantan Hospital, Capital
Medical University. Written informed consent was obtained
from each patient.

Glioma Tissue Single Cell Dissociation
DA or OG tissues were washed with ice-cold Dulbecco’s
phosphate-buffered saline (DPBS, without Mg2+ and Ca2+,
catalog no. D8537, Sigma-Aldrich) immediately after surgery.
Briefly, the DA or OG tissues were dissociated using type
IV collagenase (catalog no. 17104019, GIBCO) for 10min at
37◦C. Then, the samples were washed with Dulbecco’s modified
Eagle medium (DMEM, catalog no. D5796, Sigma-Aldrich) and
centrifuged at 300 g for 4min at 18◦C with minimal braking. The
samples were then filtered through a 40mm cell strainer with
DPBS and washed with red blood cell (RBC) lysis buffer (catalog
no. 555899, BD Biosciences). The dissociated cell suspension was
then washed twice with DPBS. The cell pellet was resuspended
in staining buffer (DPBS containing 5% fetal bovine serum, FBS;
catalog no. 0500, ScienCell).

Blood Sample Single Cell Dissociation
Fresh blood samples were collected into
ethylenediaminetetraacetic acid (EDTA) anticoagulation tubes
and then centrifuged at 800 g for 5min with minimal braking
to remove the plasma. Then, the samples were transferred into
SepMate PBMC isolation tubes containing Ficoll (catalog no.
86450, STEMCELL Technologies) and centrifuged at 1,200 g for
10min with minimal braking. The cells were washed with RBC
lysis buffer. Then, the cells were washed twice with DPBS and
resuspended in staining buffer.

Mass Cytometry
A panel of 33 antibodies designed to distinguish a broad range
of immunocytes was used. Antibodies were either purchased
in a pre-conjugated form from Fluidigm or purchased in a
purified form from Biolegend and conjugated in-house using
the Maxpar R© X8 Multimetal Labeling Kit (catalog no. 201300,
Fluidigm) according to the manufacturer’s recommendations.
The antibodies and reporter isotopes are listed in Table S1.
Briefly, the cell samples were rewarmed rapidly. Cells from
glioma tissue were stained with anti-CD45 antibody conjugated
with 156Gd, while cells from PBMCs were first stained with anti-
CD45 antibody conjugated with 89Y. Then, glioma and PBMC
cells were mixed together and stained with cell surface antibodies
for 30min at room temperature. Subsequently, the samples were
permeabilized overnight at 4◦C and stained with intracellular
antibodies for 30min at room temperature. The antibody-labeled
samples were washed and incubated in 0.125 nM intercalator-Ir
(catalog no. 201192B, Fluidigm) diluted in phosphate-buffered
saline (PBS, catalog no. 806544, Sigma-Aldrich) containing 2%
formaldehyde and stored at 4◦C until CyTOF examination.
Before acquisition, the samples were washed with deionized
water and then resuspended at a concentration of 1 × 106

cells/mL in deionized water containing a 1:20 dilution of EQ Four
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Element Beads (catalog no. 201078, Fluidigm). The samples were
then examined by mass cytometry (Fluidigm).

CyTOF Data Analysis
Data were obtained as.fcs files. The addition of EQ Four Element
Beads allowed us to use a MATLAB-based normalization
technique utilizing bead intensities as previously described
(18). The CyTOF data were analyzed with Cytobank (www.
cytobank.org). The cell types were identified based on the
following parameters: T cells, CD45+ CD3+; natural killer
(NK) cells, CD45+ CD3-CD16+ CD56+ (10, 19); B cells,
CD45+ CD19+; monocytes, CD45+ CD14+ CD16+ (20);
macrophages or microglial cells, CD45+ CD11b+ CD3-CD19-
CD66b- (15); Tregs, CD45+ CD4+ CD25+ CD127- (21), and
granulocytes, CD45+ CD66b+. Monocytes and macrophages
constitute mononuclear phagocytes (22). Manual gating was
applied to indicate the cell types as previously reported (23).
ViSNE (24) algorithms were used on the indicated gated cells.
The viSNE analysis of T cells or GAMs was performed for
patients with samples with more than 500 cell counts for
both PBMCs and tumor lesions. Then, the automatic cluster
gate functionality was used for the hierarchical cluster analysis.
Heatmaps were generated by R software (version 3.4.0).

Heatmap Data Normalization
For Figures 3D, 4C, the log10-scaled values were used.

For Figures 3E,F, we calculated the ratio of the value of each
T cell cytokine or marker to that of the paired PBMC T cells in
each patient and then calculated the log10-scaled ratio to obtain
the normalized values.

Immunohistochemistry and
Immunofluorescence
DA samples were fixed overnight at 4◦C in 4% formalin
and embedded in paraffin blocks to obtain paraffin sections.
Immunohistochemical staining was performed as previously
reported (25). For immunofluorescence, 3µm paraffin sections
were washed twice in PBS (catalog no. 806544, Sigma-Aldrich)
for 15min, permeabilized in 0.2–0.5% Triton X-100 (catalog
no. T8200-100, Solarbio) and blocked in 5% normal donkey
serum (catalog no. 017-000-001, Jackson Lab) for 1 h and
stained with primary antibody overnight. The primary antibodies
were detected using fluorescent-conjugated secondary antibodies
(catalog no. PV-6000, ZSGB-BIO). Sections were mounted with
fluorescence mounting medium (catalog no. S3023, Dako). As
previously reported (26), the Opal 4-Color Manual IHC Kit
(catalog no. NEL810001KT, Perkin Elmer) was used for the
analysis of the formalin-fixed paraffin-embedded DA sections
according to the manufacturer’s protocol. Fluorescent images
were acquired with a Zeiss LSM880 NLO microscope. The
primary antibodies were anti-CD45 (catalog no. AB40763,
Abcam), anti-CD11b (catalog no. 21851-1-AP, Proteintech),
anti-TNFα (catalog no. 60291-1-Ig, Proteintech), and anti-IDO
(catalog no. 86630S, CST).

TABLE 1 | Basic characteristics of all patients.

No. Histopathology Age Gender IDH1 IDH2 1p19q TERT promoter

0759 DA 39 Male Mut Wt Noncodel Wt

0884 DA 41 Male Mut Wt Noncodel Wt

1827 DA 52 Female Mut Wt Noncodel C228T

8974 DA 67 Female Mut Wt Noncodel C250T

9144 DA 38 Male Mut Wt Noncodel C250T

9852 DA 38 Female Wt Wt Noncodel Wt

1837 DA 36 Male Mut Wt Noncodel Wt

5189 DA 34 Male Mut Wt Noncodel Wt

5749 DA 52 Female Mut Wt Noncodel Wt

7684 DA 28 Male Mut Wt Noncodel Wt

9203 OG 36 Male Mut Wt Codel Wt

7541 OG 49 Male Wt Wt Codel C250T

2948 OG 30 Male Mut Wt Codel C228T

5749 OG 52 Female Mut Wt Codel Wt

DA, diffuse astrocytoma; OG, oligodendroglioma; IDH, isocitrate dehydrogenase; TERT,

telomerase reverse transcriptase; Wt, wild type; Mut, mutation, Codel, codeletion.

Statistics
For the CyTOF experiments, 10 DA samples and paired PBMCs
and 4 OG samples were analyzed. The Wilcoxon matched-pair
signed rank test and Mann–Whitney test were used accordingly
to analyze the statistical significance. The statistical analysis was
performed using GraphPad Prism (version 7.00). P < 0.05 were
considered statistically significant.

Data Availability
The raw CyTOF data used and analyzed in the current
study are available from the corresponding author upon
reasonable request.

RESULTS

Single-Cell Profiling of the Diffuse
Astrocytoma Immune Microenvironment
We obtained 10 WHO grade II DAs and paired peripheral
blood samples as well as 4 OG tumor tissues. The baseline
characteristics of all patients are summarized in Table 1.

We simultaneously mapped the immune compartments of
DA, OG lesions, and PBMCs (Figure 1A). The initial gating
strategies used for CD45+ cells are provided in Figure 1B,
and the gating strategies used for the indicated immune
cells are summarized in Table S2. The ViSNE map of CD45
+ cells collected from all DA samples showed differential
abundances of infiltrating immune cell populations in the DA
immune microenvironment compared to those in peripheral
blood (Figure 1C).

Mononuclear Phagocytes and T Cells
Dominate the Diffuse Astrocytoma Immune
Microenvironment
We analyzed the distributions of the different immune cell
lineages that accumulated in DAs and paired PBMCs in
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FIGURE 1 | Analysis of the immunosuppressive microenvironment of DA using mass cytometry. (A) Schematic defining the immune composition of DAs and OGs.

Glioma tissues and paired PBMC samples were collected from patients. Samples were processed and stained with antibodies conjugated to metal isotopes. CyTOF

single cell data were used to identify the immune features of patients. (B) All ungated events were sequentially gated in Cytobank to identify CD45+ cells. (a) EQ3

beads and EQ4 beads were used to identify cells. (b) Single living cells were identified by gating the cells negative for 195Pt and positive for 193Ir. (c) CD45+ cells

from LGG PBMCs were obtained from living single cells. (C) ViSNE plots of complete immune systems according to the relative expression of CyTOF markers in all

samples. The cell populations are also indicated (left). Five hundred immune cells per sample were included in the viSNE analysis.

patients. The most abundant immune cells in the DA immune
microenvironment were mononuclear phagocytes (70.02%) and
T lymphocytes (20.86%). Compared with that in PBMCs,

the proportion of mononuclear phagocytes was significantly
increased in DAs (p < 0.01), while the proportions of T
cells and B cells were significantly decreased (p < 0.01),
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FIGURE 2 | Immunosuppressive changes in the DA microenvironment. (A) Composition of the CD45+ compartment showing the average frequencies of the major

immune lineages in each tissue. (B) Bar plots showing the frequencies for each DA patient and paired PBMC sample (by Wilcoxon matched-pair signed rank test). Bar

plots show the mean with the SEM (NS, no significance; **p < 0.01).

and the proportions of NK cells and granulocytes were
similar (Figures 2A,B).

T Cells Are Exhausted, and Tregs Are
Increased in the Diffuse Astrocytoma
Immune Microenvironment
Compared with that in PBMCs, the percentage of CD4+ T
cells (p < 0.01) was decreased, while that of CD8 + T cells
(p< 0.01) was increased in DAs. Specifically, the Treg proportion
in the DA lesions was significantly increased in all patients (p
< 0.05) (Figure 3A). Programmed cell death protein 1 (PD-1)-,
T cell immunoglobulin domain and mucin domain-3 (TIM-3)-
or lymphocyte activation gene 3 (LAG-3)-positive T cells are
recognized as exhausted subsets (27–29). Compared to those in
PBMCs, the proportions of TIM-3+CD4+ T cells (p< 0.05) and
PD-1+CD8+T cells (p< 0.01) were remarkably higher in tumor
sites (Figure 3A).

The dimensionality reduction tool viSNE (24) was employed
to convert the high-dimensional CyTOF data from each sample
into a two-dimensional map. Among the 10 DA patients, four
patients had more than 500 T cells in both the tumor lesions and
the PBMCs, and viSNE analysis was performed for these patients.
In the viSNE map, T cells in tumor sites displayed similar
distributions to those in PBMCs (Figure 3B). A hierarchical
cluster analysis of the T cells using the automatic cluster gate
functionality was performed to fully capture the heterogeneity
of the T cell compartment. According to the surface markers,
the T cells were subdivided into 16 subgroups (Figure 3C). The
expression profiles of the T cell clusters were visualized in a
heatmap (Figure 3D). This approach led to the identification
of seven CD4+ phenotypes, seven CD8+ phenotypes and two
CD4+/CD8+ double-negative phenotypes.

Although the CD8+ T cell proportion was elevated in tumor
sites, their ability to secrete the antitumor cytokines interferon
γ (IFNγ), tumor necrosis factor β (TNFβ), T-bet and granzyme
B was reduced compared to that of the CD8+ T cells in the
PBMCs, while PD-1 was more frequently expressed on CD8+ T

cells in PBMCs (Figure 3E). Compared to those on CD4+ T cells
in PBMCs, the expression levels of antitumor (TNFβ, T-bet, and
granzyme B) and protumor (PD-1 and IL-10) markers on CD4+
T cells in tumor sites were commonly higher (Figure 3F).

Glioma-Associated
Microglia/Macrophages Were Clearly
Distinguishable From Mononuclear
Phagocytes in PBMCs
Previous studies showed the extensive infiltration of gliomas
with peripheral macrophages and resident microglia (30), which
are collectively termed GAMs. In the current study, GAMs
were the most enriched population in DA lesions. Five patients
had more than 500 GAM cells or mononuclear phagocytes
in both tumor sites and PBMCs, and viSNE analysis was
performed on these cells. The ViSNE plot showed that GAMs
were clearly distinguishable from mononuclear phagocytes in
PBMCs (Figure 4A). According to the surface markers, GAMs or
mononuclear phagocytes could be subdivided into 17 subgroups,
with 6 subgroups mainly resident in DA lesions, 8 subgroups
mainly resident in PBMCs, and 3 existing in both tumor sites and
PBMCs (Figure 4B). The expression profiles of the GAM clusters
were visualized in a heatmap (Figure 4C).

The viSNE map showed the elevated expression of both
the anti-tumor marker tumor necrosis factor α (TNFα) and
the pro-tumor markers transforming growth factor β (TGFβ),
vascular endothelial growth factor (VEGF), programmed death-
ligand 1 (PD-L1), CD206, indoleamine-pyrrole 2,3-dioxygenase
(IDO), and IL10 in GAMs compared with those in mononuclear
phagocytes in PBMCs (Figure 4D). A subgroup of GAMs
represented in cluster M-8, which mainly existed in DA lesions,
displayed high levels of VEGF and PD-L1 expression. GAMsmay
promote T cell apoptosis through expressing PD-L1 (31, 32). By
secreting VEGF, GAMs might differentiate into a pro-angiogenic
and immunosuppressive phenotype (26). Meanwhile, certain
GAM subgroups (M-7) could coexpress antitumor (TNFα) and
protumor (IDO and PD-L1) markers.
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FIGURE 3 | Exhausted T cell compartment in DA lesions. (A) Bar plots showing the frequencies of T cell subgroups in tumor sites and PBMCs from patients with DA

(by Wilcoxon matched-pair signed rank test). Bar plots show the mean with the SEM (NS, no significance; *p < 0.05, **p < 0.01). (B) ViSNE map, colored by sample

type (left) or sample source (right), displaying T cell subgroups in 4 patients. (C) ViSNE map, colored by clusters, displaying T cell subgroups in 4 patients.

(D) Heatmap showing the normalized expression of the indicated markers for 16 T cell clusters identified in the 4 patients. (E,F) Heatmap showing relative marker

expression levels in four DA patients. The relative marker expression levels were determined by the ratios of the indicated marker expression levels of T cells in tumor

sites to those in PBMCs.
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FIGURE 4 | Characterization of GAM phenotypes in DA. (A) ViSNE map, colored by sample type (left) or sample source (right), displaying GAM subgroups in five

patients. (B) ViSNE map, colored by clusters, displaying the GAM subgroup distribution in DA lesions and PBMCs. (C) Heatmap showing the normalized expression

(Continued)
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FIGURE 4 | of the indicated markers for 17 GAM clusters identified in five patients. (D) Normalized expression of the indicated markers on the viSNE map. Bar plots

show significant differences in the expression levels of the indicated markers between PBMCs and DA lesions (by the Mann–Whitney test). Bar plots show the mean

with the SEM (**p < 0.01; ****p < 0.0001; NS, no significance). (E) Representative DA tissue stained for CD11b (green), CD45 (red), IDO (cyan), and TNFα (blue).

Costaining of CD45 and CD11b (upper) indicated that most CD45+ immunocytes in DA were CD11b+ cells. Costaining of CD11b, IDO, and TNFα (lower)

demonstrated that GAMs could coexpress TNFα and IDO (arrows).

FIGURE 5 | Cytolytic NK cells are dysregulated at the tumor site. Bar plots showing CXCR4, granzyme B, and IFNγ expression in NK cells from patients with DA and

paired PBMCs (by the Wilcoxon matched-pair signed rank test). Bar plots show the mean with the SEM (*p < 0.05; **p < 0.01; NS, no significance).

We revealed mononuclear macrophage infiltration in DA
lesions using immunohistochemical and immunofluorescence
costaining and verified the finding that antitumor (TNFα) and
protumor (IDO) markers were coexpressed in certain GAM
subgroups (Figure 4E).

Natural Killer Cells Are Not Cytolytic in
Diffuse Astrocytoma Lesions
NK cell proportions were not significantly increased at the tumor
site compared with those in the peripheral blood of patients,
although the NK cells that infiltrated into the tumor lesions
expressed higher levels of CXCR3 (p < 0.01) (Figure 5), which
is a molecule reported to be required for NK cell infiltration (33).
Moreover, the NK cells that remained at the tumor site showed
lower levels of cytolytic activity, as these cells expressed similar
levels of IFNγ and lower levels of granzyme B compared to those
in peripheral blood (Figure 5).

The Tumor Immune Microenvironment of
Diffuse Astrocytoma Exhibits More
Inhibitory Characteristics Than That of
Oligodendroglioma
The composition of immune cell subsets was similar in the
DAs and OGs (Figures 6A,B). The proportions of the T cell
subpopulations in DAs and OGs were also similar, and T cells
in DAs and OGs demonstrated comparable exhaustion trends
(Figure 6C). The pro-tumor markers TGFβ and VEGF were
more strongly expressed by GAMs in DAs than in OGs, while
IL10, PD-L1, CD206, and IDOwere similarly expressed by GAMs
in DA and OGs (Figure 6D).

DISCUSSION

The TIME in DAs plays essential roles in tumor development,
progression, and prognosis. Comprehensive profiling of the

intricate milieu and its interactions remains lacking, and single-
cell technologies such as CyTOF provide unique opportunities
for this task. Utilizing the CyTOF approach, we analyzed the
infiltrating immune cells from DA surgical tissues based on
a panel of 33 markers and provided a single cell-resolution
overview of the intricate DA immune microenvironment. Our
study characterized the TIME in DAs, which is composed of a
variety of immune cells, such as GAMs, CD8+ T cells, CD4+
T cells, Tregs, and NK cells. The enrichment of exhausted
T cell subpopulations, recruitment of Tregs, and the strong
pro-tumor phenotype of GAMs together contribute to the
immunosuppressive microenvironment in DAs. DAs and OGs
have been shown to share similar components and distributions
of immune cells. However, the GAMs of DAs exhibit more
inhibitory characteristics than those of OGs.

Historically, the central nervous system has been defined
as “immunologically privileged” (34) and has been considered
distinct relative to other organs due to the presence of the
blood-brain barrier (BBB), which prevents the migration of
immunocytes and cytokines into the brain (35). In LGG, the
normal vascularization and the function of the BBB remain
mostly intact and resemble that under normal conditions (36). In
our study, the most abundant immune cells in DA were GAMs
(70.02%) and T lymphocytes (20.86%). Compared with their
counterparts in the paired PBMCs, the proportion of GAMs was
significantly increased in DA lesions, while the proportions of T
cells and B cells were significantly decreased, and the proportions
of NK cells and granulocytes were similar. Our data suggest that
although the BBB in DA lesions is fairly intact, certain immune
cell populations can migrate across the BBB and infiltrate into
the tumor, which might make them an adequate substrate for
immunological antitumor therapies.

Inhibitory immune checkpoints are responsible for the
dampening of antitumor immune functions (37). The
development of immune checkpoint blockade therapies,
including anti-PD-1 and anti-CTLA4 therapies, has provided
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FIGURE 6 | The TIME of DA shows more inhibitory characteristics than that of OG. (A) The frequencies of DA and OG immunocytes. Composition of the CD45+

compartment showing the average frequencies of the major immune lineages in each tissue. (B) Bar plots showing the frequencies for each DA patient and OG

patient (by the Mann–Whitney test). Bar plots show the mean with the SEM (NS, no significance). (C) Bar plots showing the frequencies of T cell subgroups in DA and

OG (by the Mann–Whitney test). Bar plots show the mean with the SEM (NS, no significance). (D) Bar plots of pro-tumor marker expression in GAMs in DA and OG

(by the Mann–Whitney test). Bar plots show the mean with the SEM (*p < 0.05; **p < 0.01; NS, no significance).
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new avenues for cancer treatment (38). Our results demonstrated
that in the DA immune microenvironment, CD8+ T cell
populations are highly enriched but express higher levels of
PD-1 than those in the blood, and the expression level of
antitumor-related factors is generally reduced. The increase in
the quantity of exhausted CD8+ T cells in DA indicates that
checkpoint blockade approaches that promote the antitumor
effects of these immune cells may benefit immunotherapy of DA.

With the 2016 update of the WHO classification of tumors
of the central nervous system (39), WHO grade II DA and OG
tumors have been subcategorized according to distinct molecular
markers. Patients with WHO grade II DAs and OGs were found
to have statistically significant differences in progression-free
survival (PFS), with OG patients having a statistically better
PFS than DA patients (40). Little is known about how the
microenvironment differs between DAs and OGs. Our study
found that the immune cell composition of DA and OG was
similar, and T cells in both diseases showed similar exhaustion
characteristics. However, GAMs inDAs expressed higher levels of
VEGF and TGFβ and exhibited more adverse immune-inhibitory
characteristics than OGs.

Finally, while our study has presented useful resources and
novel insights into the cellular composition and functions of the
TIME in DAs, a limited number of cases have been collected
in this pilot study. Future validation in a larger collection
of patients would further support our conclusions and better
characterize the prognostic values of immune components
for DA.
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Combined inhibition of programmed death-ligand 1 (PD-L1) and transforming growth

factor-β (TGF-β) displayed additive anti-tumor response in a subgroup of cancer

patients, highlighting the importance of understanding the multifaceted roles of TGF-β

in immunity and fibrosis. In the present research, we show that TGF-β signaling pathway,

controlled by miR-20a-5p and transforming growth factor-β receptor 2 (TGFBR2), alters

the inflammation and fibrosis processes in liver. We performed integrated analysis

of differently expressed miRNA (DEM) associated with liver fibrosis and screened

miR-20a-5p out as a key regulator in inflammation-driven liver fibrosis. We subsequently

conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis of the genes targeted by miR-20a-5p. And the result showed that 12

target genes were significantly enriched in TGF-β signaling pathway. Further study

showed that miR-20a-5p was down-regulated and involved in inflammation during liver

fibrosis in human and mouse samples, indicating that miR-20a-5p and inflammation

are functionally linked during liver fibrosis progression. To uncover the underlying

pro-inflammatory mechanism of miR-20a-5p in liver fibrosis, we selected and verified

TGFBR2, which is a key functional receptor in TGF-β signaling pathway, as a direct

target gene of miR-20a-5p. The downregulation of miR-20a-5p in liver fibrosis resulted in

TGFBR2-activated TGF-β signaling pathway, followed by the activation of macrophage

and extracellular matrix (ECM) production by hepatic stellate cell (HSC). Our results

identify the miR-20a-5p/TGFBR2 axis as a key regulator of TGF-β signaling, and highlight

the critical role of miR-20a-5p in the development of liver fibrosis.

Keywords: miR-20a-5p, liver fibrosis, TGF-β signaling pathway, inflammation, TGFBR2

INTRODUCTION

Therapeutic antibodies against the programmed death-1 (PD-1)/programmed death-ligand 1
(PD-L1) axis has been approved to treat multiple tumors, but only not effective in all patients (1). It
is well-known that transforming growth factor-β (TGF-β) is of importance in resistance to immune
checkpoints inhibitors. Recently, M7824 (MSB0011359C), a bifunctional fusion therapeutic
antibody against human PD-L1 fused to the extracellular domain of human transforming
growth factor-β receptor 2 (TGFBR2) showed enhanced preclinical antitumor activity through
simultaneously blocking the PD-L1 and TGF-β signaling pathways (2, 3). These results prompt
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us to understanding the multifaceted roles of TGF-β signaling
pathway in immunity and fibrosis. Liver fibrosis is an essential
pathological process that may deteriorate into liver cirrhosis
and liver cancer, making it one of the leading causes for
the high mortality and morbidity around the globe (4).
Regardless of origins and etiologies, liver fibrosis developed from
viral infection, alcohol, non-alcoholic steatohepatitis (NASH),
and autoimmune diseases, featuring chronic, and pathological
process (5). Relying on the studies of underlying liver injury,
several evidences highlighted the important role of immune
reactions (6). Liver cell damage tends to induce the secretion
of pro-inflammatory factors, such as tumor necrosis factor-α
(TNF-α), tumor necrosis factor-β (TNF-β), nuclear factor kappa-
B (NF-κB), Interleukins (ILs), which sequentially stimulate the
infiltration of inflammatory cells (7). Subsequently, excessive
infiltration of inflammatory cells would render the liver more
vulnerable to damage by preying upon liver cells and thus
initiating fibrogenesis. An in-depth understanding about the
underlying mechanism of liver fibrosis is the cornerstone to
research the effective therapies for chronic liver diseases.

MicroRNAs (miRNAs) are endogenous, small non-coding
RNA molecules that play essential part in various biological
functions and numerous processes, such as immune response,
cell proliferation, and apoptosis, through the post-transcriptional
regulation of gene expression in cells (8). Increasing evidence
indicated that aberrant expression of miRNAs are closely related
to numerous types of cancer, as well as liver fibrosis (8–12). It’s
frequently reported that miRNA expression level in the serums
or liver tissues of liver fibrosis patients is dominantly changed
(13–15). Normally, miRNAs exacerbates liver fibrogenesis by
incomplete matches with their host genes that are related to
hepatic stellate cells (HSCs) activation, immune cell sensitization,
as well as hepatocytes apoptosis (16, 17).

In our study, we demonstrated that the level of inflammatory
cytokines in serum was upregulated in CCl4-treated mice,
suggesting that inflammation is accompanied by liver fibrosis.
Many previous studies reported that miRNAs drove liver
fibrogenesis by regulating inflammation response.We performed
integrated analysis of differently expressed miRNA (DEM)
associated with liver fibrosis and screened miR-20a-5p out
as a key regulator in inflammation-drove liver fibrosis. We
subsequently conducted Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of the genes
targeting by miR-20a-5p. The result showed that 12 target genes
were significantly enriched in TGF-β signaling pathway, which
participated in the development of liver fibrosis. Further study
indicated that miR-20a-5p was down-regulated and related to
inflammation during liver fibrosis in human and mouse samples,
indicating that miR-20a-5p and inflammation are functionally
linked during liver fibrosis progression. To reveal the pro-
inflammatory mechanism of miR-20a-5p in liver fibrosis, we
selected and verified TGFBR2, a key functional receptor in
TGF-β signaling pathway and a target gene of miR-20a-5p.
The downregulation of miR-20a-5p in liver fibrosis resulted
in TGFBR2-activated TGF-β signaling pathway, followed by
the activation of macrophage and extracellular matrix (ECM)
production by HSC. Our results highlight a critical function

of miR-20a-5p in the development of liver fibrosis, and the
reintroduction of miR-20a-5p provides a promising therapeutic
strategy for clinical intervention of liver fibrosis.

MATERIALS AND METHODS

Patients and Animal Model
Liver fibrosis specimens have been collected from 26 patients
who were seeking treatment in our hospital and from 19
patients with liver diseases, except liver fibrosis. The published
and well-acknowledged clinical guidelines were applied as the
clinical diagnostic criteria for liver fibrosis. Written informed
consent was obtained from the participants of this study and all
participants were above 16 years old (Table S1).

CCl4-induced liver fibrosis mouse model was established
by conducting intraperitoneal injection of carbon tetrachloride
(CCl4; 0.6 mL/Kg body weight) in 8-week-old mice twice a week.
The intraperitoneal injection lasted for 8 weeks. Male C57BL/6
mice were obtained from Shanghai SLAC Laboratory Animal Co.,
Ltd. All animals were treated humanely according to protocols
approved by the Fudan University Committee on Animal Care
and Use.

Cell Lines and Cell Transfection
Immortalized mouse hepatocyte cell lines Hepa1-6 and
macrophage cell line Raw264.7 were obtained from the Shanghai
Institute of Biochemistry and Cell Biology, Chinese Academy
of Sciences (Shanghai, China). Cells were grown in DMEM
supplemented with 10% fetal bovine serum, 2mM L-glutamine,
and 100 units/ml penicillin/streptomycin. The miRNA mimics
and negative control were transfected into Hepa1-6 cell line
by using LipofectamineTM 2000, in strict accordance with the
manufacturer’s instruction.

Quantitative-PCR (qPCR) Analysis
Total RNAs were extracted from Hepa1-6 cell line and liver
fibrosis specimens using Trizol (Invitrogen, CA, USA) and all
total Nucleic Acid Isolation Kit (Ambion Inc., USA), following
the manufacturer’s instruction. miRNAs primers for reverse
transcription were purchased from Huada Co. Ltd (Beijing,
China). The experiment was performed three times using SYBR
Premix Ex Taq (cat#RR420A, TaKaRa, Japan) to quantify the
mean values of delta Ct and SD (standard deviation). miRNA
expression level was normalized to the relative quantities of U6 to
investigate fold change. The primers used for miRNA andmRNA
quantification were listed in Table S2.

FACS
Flow cytometry assay (using BD LSR Fortessa II) was carried out
on hepatic non-parenchymal cells which are composed of the
total profile of hepatic leukocyte population. The experiments
were performed as published (18). The following pre-conjugated
antibodies were used: CD11B (552850, BD bioscience), CD45
(553083, BD bioscience). Briefly, Hepatic macrophages were
defined as viable CD45+ CD11B+ F4/80+ cells from digested
livers and used to identify macrophage subsets. Subsets were
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expressed as proportions of total hepatic macrophages or CD45+
cells. And we collected 10,000 cells every time.

Immunohistochemistry (IHC),
Immunofluorescence (IF), and Western
Blotting (WB)
Human and mouse liver tissues were processed for IHC,
IF, and WB. Antibodies used in the present study are α-
SMA (19245, CST), DESMIN (5332, CST), TGFBR2 (ab186838,
abcam), p-Smad2 (18338T, CST), p-Smad3 (9520, CST), GAPDH
(30201ES20; Yishen). Images were acquired using Olympus
FV1000 confocal system with a 10X objective. The fluorescence
was imaged using 552 nm/408 nm for mCherry /DAPI.

ELISA
Mouse IL-6 (VAL604, R&D), TNF-α (VAL609, R&D), Mouse IL-
18 (7625, R&D) ELISA kits were used following the directions of
the manufacturer. Conditioned medium (100 µl) was collected
from triplicate samples.

Cell Viability Analysis
Cell viability was monitored using the Cell Counting Kit 8
(CCK8) method. Cells were inoculated onto a 96-well plate. Each
well-contained 10,000 cells, and 6 repeats were used for every
treatment. After 24 h, cellular proliferation was detected using
a cell counting kit-8 (CCK-8, Yisheng). The effect on Hapa1-6
proliferation was evaluated by analyzing EC50 curves according
to absorbance of cells (OD450).

Determination of the Levels of miRNAs
Related to Liver Fibrosis
The microarray file of liver miRNomes GSE40744 obtained
from GEO database (http://www.ncbi.nlm.nih.gov/geo/) was
referred to investigate miRNAs expression levels in our collected
human fibrotic liver tissues and healthy controls. This miRNA
microarray based on the platform of GPL14613 (Affymetrix
microarray chip platforms) contained 18 fibrotic liver samples
and 19 normal liver samples. GEO2R (19) is an interactive
online tool and often used for gene expression analysis of
microarray data through the GEO query and limma packages
(20) available in R. The protocol was performed to investigate
DEMs between normal, mild fibrotic, and advanced fibrotic liver
samples. Adjusted p value of no >0.05 in combination with a
|log2 (fold change) | of >1 were set as the threshold for the
identification of DEMs.

Prediction of Target Genes
The potential target genes of miR-20a-5p were analyzed by
miRDB (21), TargetScan (22), and miRTarBase (23). The
genes predicted by miRDB, TargetScan, and miRTarBase
simultaneously were identified as the targets of DEM.

Functional Enrichment Analysis and
miRNA-gene Network Construction
The database that can be used for annotating, visualizing
and integrated discovering of the predicted genes (DAVID
6.8, https://david.ncifcrf.gov/) was applied in performing the

KEGG pathway enrichment analysis (24, 25). FDR of <0.05 was
considered as statistically significant.

The target genes enriched in KEGG pathways were mapped
to the STRING database (https://string-db.org/) to evaluation
the intricate functional associations amongst target genes (26),
and the miRNA-gene network was constructed and visualized by
Cytoscape software (Version 3.6.0).

Luciferase Activity Analysis
The partial sequences of TGFBR2 3′UTR which contained the
wild or mutant binding sites of miR-20a-5p were amplified and
then cloned into the pGL3-Basic luciferase vector (Promega,
W.I.) with the aim of constructing pGl3-TGFBR2 (WT) and
pGl3-TGFBR2 (Mut). Primers used in plasmid construction
were as follows: forward 5′-CAGGCTGGGCCATGTCCAAA-
3′ and reverse 5′-GTCAAATGCTAATGCTGRCATG-3′. The
two plasmids were, respectively, co-transfected with miR-
NC, miR-20a-5p mimic, anti-miR-NC, and anti-miR-20a-5p
(Genomeditech). Forty eight hours later, the luciferase activity
analysis was conducted on the Dual-Luciferase Reporter assay
system (Promega,W.I.), in strict accordance with the instructions
of the manufacturer.

Statistical Analysis
The data of the present study were presented in the form of mean
± SD (standard deviation). Unpaired/paired Student’s t-test was
used to analyze the significance of miRNA diversity between the
two groups. A P value of<0.05 (two-tailed) was set as a threshold
to distinguish statistically significant difference. Linear regression
was performed using Graphpad Prism 7 (GraphPad Software
Lnc, USA).

RESULTS

Inflammation Is Accompanied by Liver
Fibrosis
CCl4-induced liver injury in mice is a most commonly used
animal model of liver fibrosis that features hepatocyte injury and
the activation of HSCs. In our study, 16 eight-week-old mice
were randomly divided into two groups. The CCl4 group was
conducted intraperitoneal injection of oil-dissolved CCl4 twice
a week, and the oil group was set as control. We first used
immunofluorescence, RT-PCR, and ELISA to characterize the
pathological features. The macroscopic appearance of the liver
revealed almost significant amount of collagen accumulation
in the CCl4 treatment groups after 8 weeks, whereas the
oil group was still normal (Figures 1A,B). Immunochemical
staining exhibited that the α-SMA and DESMIN increased
with liver fibrosis progression and other fibrosis-related genes
were also remarkably enhanced (Figure 1C). Subsequently, the
markers of liver injury in the serum were measured, along with
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) levels, given that AST and ALT are expected to abundantly
distribute in injured hepatocytes and that the excessive release
of these two enzymes into the serum can indicate the degree
of hepatocyte injury. As illustrated in Figure 1C, AST and
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FIGURE 1 | Inflammation is accompanied by liver fibrosis. (A) Macroscopic analyses of the murine liver fibrosis model in C57BL/6 mice by 8 week of two times per

week i.p. CCl4 injection. Comparisons were made with control (injured oil) animals. (B) Histological characterization of hepatic fibrosis and myofibroblast activation by

α-SMA and DESMIN immunohistochemistry. (C) Serum ALT and AST levels and other fibrosis protein levels (n = 10). (D) Whole-liver protein levels of Il-1β, Ccl2, Ccl3,

and Cxcl2 measured by RT-PCR assay. (E) Supernatants were assayed for IL-6, TNF-α, and IL-18 levels by ELISA. (F) Flow cytometric analysis comparing expression

of stated marker between inflammatory CD45+/CD11bhighF4/80mid hepatic macrophages. All data shown as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.

ALT levels increased dramatically, along with the notably up-
regulated secretion and expression of inflammatory cytokines
after CCl4 treatment (Figures 1D,E). In addition, our study also
clarified its possible association with the aberrantly changed
hepatic macrophage subsets. The total hepatic macrophages were
assayed and detected as CD45+, CD11B+, and F4/80+ cells
from the non-parenchymal cell (NPC) fraction after in situ
perfusion of the hepatic portal vein and flow cytometry assay.
Importantly, coinciding with fibrosis severity, liver resident
macrophages, which often called Kupffer cells and detected as
F4/80high CD11Bintermediate, were predominant in the control
group (uninjured). Lowered proportion of resident macrophages
was observed during the process of stimulated inflammation
and fibrogenesis; CD11Bhigh F4/80intermediate subset signifies a
monocyte-derived recruited macrophage population that has
increased progressively during fibrogenesis (Figure 1F). In
summary, our data suggested that an initial cell injury can trigger
inflammation to give rise to worsened liver fibrosis.

miRNAs and Pathways That Are Correlated
With Liver Fibrosis
To identify DEMs of GSE40744 downloaded fromGEO database,
GEO2R tool was employed to perform the differential expression
analysis following the protocol introduced in Materials and
Methods section. Eighty nine miRNAs in total (62 up-regulated
and 27 down-regulated) were ascertained to show significantly
different expression in liver fibrosis biopsy specimen, reaching

as high as two-fold aberration in comparison with normal ones
(Figure 2A and Table S3). To ensure clearer visualization, the
top 10 up-regulated and top 10 down-regulated miRNAs were
selected as Figure 2B. As the most down-regulated miRNA,
miR-20a-5p was picked for further analysis. 1381, 1384, and
1071 genes were detected as potential targets of miR-20a-
5p through miRDB, TargetScan and miRtarbase, respectively.
Three hundred and ninety three overlapping genes were
identified as the targets of miR-20a-5p (Figure 2C and Table S4).
Subsequently, enrichment analysis through KEGG database was
carried out to identify the main pathways of these targets. Twenty
nine significantly enriched KEGG pathways were identified
(Figure 2D), including TGF-β signaling pathway, Bladder cancer,
and Pancreatic cancer, et al. It was reported that TGF-β signaling
pathwaywas of importance in liver fibrosis development (27).We
hypothesized that miR-20a-5p played a part in the development
of liver fibrosis by regulating TGF-β signaling pathway.

miR-20a-5p Was Down-Regulated and
Associated With Inflammation During Liver
Fibrosis
To validate whether miR-20a-5p is a modulator in liver fibrosis,
the expression level of miR-20a-5p was measured through
qRT-PCR assay in liver tissues collected from patients, CCl4-
induced mice model and healthy controls. In agreement with
our assumption, miR-20a-5p expression level was significantly
reduced in both tissue specimens of patients and CCl4-induced
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FIGURE 2 | Global properties of miRNAs and pathways correlated with liver fibrosis. (A) Volcano plot of the DEMs (adjust P < 0.05 and |logFC| ≥ 2 were set as the

cut-off criteria). (B) Heat map of the top 20 DEGs (top 10 up-regulated and 10 down-regulated genes). (C) Venn diagram of target genes predicted by miRDB,

TargetScan, and miRtarbase. (D) KEGG pathway enrichment analysis of target genes of miR-20a-5p. The red lines represent gene count and the histogram represent

–log2 (P value).

mice (Figure 3A). These results prompted us to further explore
the function of miR-20a-5p in liver fibrosis. We built an in-
vitro cell model to simulate the complex process of fibrosis
(Figures 3B,C). Hepa1-6 cells were transfected with miR-20a-5p

mimic followed by CCl4 treatment. Forty eight hours later, the
culture supernatant was collected to treat Raw264.7 cells. ELISA
assays showed that impaired-hepatocyte caused inflammation
was blocked by restored miR-20a-5p, which was further
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FIGURE 3 | MiR-20a-5p was down-regulated and associated with inflammation during liver fibrosis. (A) miR-20a-5p expression in the clinical samples from normal

(n = 10) or liver fibrosis patients (n = 20) were analyzed by qRT-PCR. (B) The schematic of the in-vitro cell model. (C) The concentration-response curves of CCl4 for

hepatocyte injury model. (D) The cytokine levels of IL6, TNF-α, and IL-18 were determined in control cells and CCl4-cells transfected with miR-20a-5p or their

respective NCs by ELISA and qRT-PCR. *p < 0.05, **p < 0.01, ***p < 0.001, ###p < 0.001, respectively. *Compared with CCl4 plus miR-NC and #compared with

the control.

confirmed by the other cytokines expression, e.g., CD11b, CD45,
and INF-γ, the key markers widely accepted for inflammation
test (Figure 3D, Figure S1). Our data indicate that miR-20a-5p
expression is functionally related to inflammation during the
onset and progression of liver fibrosis.

miR-20a-5p Alleviated Liver Fibrosis
Through TGF-β Signaling Pathway
After binding to its receptors, TGF-β1 can activate the
transcription factor downstream the pathway, Smad 2 and

Smad3, to mediate fibrosis, and the signaling is negatively
mediated by Smad7.

It is abundantly clear that TGF-β/Smad pathway is a major

signal that activates HSCs and mediates fibrosis triggering

downstream Smad 2 and Smad3 by TGF-β1. We have

showed that TGFBR2 is one of the miR-20a-5p targets by

searching the miRNA interactome dataset (Figure 2D). Thus,

we initially investigated the expressions of TGFBR2 in liver

fibrosis samples from patients. Immunofluorescence staining
indicated that TGFBR2 expression level was notably enhanced

in specimen collected from patients than that from healthy
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FIGURE 4 | miR-20a-5p alleviated liver fibrosis through TGF-beta signaling pathway. (A) Immunohistochemical staining of TGFBR2 in human tissues from healthy

controls and patients. (B) The protein levels of fibrosis markers and TGF-beta pathway makers. (C) The correlation between TGFBR2 and CD11b, CD45 mRNA

expression level in liver fibrosis patients. (D) The TGFBR2 mRNA levels in human and mouse models. (E) The interaction between miR-20a-5p and TGFBR2 3′UTR.

Luciferase activity was determined in cells co-transfected with different luciferase reporter vectors and miRNAs. All data shown as mean ± SEM. *P < 0.05,

**P < 0.01, ***P < 0.001.

controls (Figures 4A,B). Analogously, the expression levels of
both phosphorylated-Smad2 and phosphorylated-Smad3 were
notably higher than those in normal tissues, suggesting the
activation of TGF-β signaling pathway (Figure 4C). Because we
demonstrated miR-20a-5p alleviated liver fibrosis may through
lighten inflammation, we sought to evaluate the relevance
between TGFBR2 and inflammation. As expected, the TGFBR2
expression exhibited significantly correlation with CD11b and
CD45 (GSE80601, r2 = 0.9201 and 0.9786, respectively; both P
< 0.0001) (Figure 4D). Finally, the 3′UTR sequence of TGFBR2
mRNA was cloned into the pGL3-Basic plasmid, in an attempt
to ascertain the possible regulatory role of miR-20a-5p in the
expression of TGFBR2 via binding to the predicted site. Our
data demonstrated that miR-20a-5pmimics induced significantly
inhibited luciferase activities of pGL3-TGFBR2 (WT), but no
effect was observed on pGL3-TGFBR2 (Mut) (Figure 4E).
Collectively, our data strongly suggests that miR-20a-5p down-
regulation reinforce TGF-β signaling, at least in part, through
alleviating to target TGFBR2 mRNA, leading to inflammation
during liver fibrosis progression.

DISCUSSION

Aberrant hepatocyte death and persistent liver inflammation
are recognized as drivers of liver fibrosis that in a chronic
setting can promote HCC development (28). In the present
study, we reported peripheral macrophage population
accumulates during fibrosis. Besides, using microarray
data of liver miRNomes, we measured the whole-genome

miRNA expression of human liver fibrosis tissues and
determined miR-20a-5p as a key modulate miRNA. The
TaqMan probe-based qRT-PCR was performed to verify the
predominance of miR-20a-5p through in both mouse and
human samples. Furthermore, the present study demonstrated
that lower level of miR-20a-5p exacerbates inflammation,
whereas up-regulation of miR-20a-5p suppresses the releasing
of cytokines.

Macrophages are “keystones” of liver architecture in both
homeostasis and disease. Several studies have corroborated the
central role played by macrophages in mediating inflammation
and tissue fibrogenesis in several organ systems, but the
progress is reverse (18, 29). Given the urgency and necessity
to discover or develop an effective therapy for liver fibrosis,
an increasing number of studies focus on analyzing miRNA
mechanisms in fibrotic diseases, shedding light on the biological
role of miR-21, miR-132, miR-155, miR-26a, and so forth.
Previous studies demonstrated the elevated miR-155 expression
in Kupffer cells after prolonged alcohol uptake, and that
TNF served as a miR-155 target gene to give rise to liver
inflammation (30, 31). miR-20a is one of miR-17/92 cluster
members, which are located in the 13q31.1 region, which
is largely involved in inflammatory. Overexpression of miR-
20a could reduce the activity of inflammasome NLRP3 by
mediating targeting thioredoxin-interacting protein (TXNIP)
(32). Furthermore, miR-20a was reported to be beneficial
to human aortic endothelial cells derived from Ox-LDL-
induced inflammation through mediating TLR4 and TXNIP
signaling (33). Moreover, miR-20a was also reported to
regulate signal-regulatory protein α (SIRPα), resulting in
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macrophage infiltration, phagocytosis, and pro-inflammatory
cytokine secretion (34). The exact part played by miR-20a-5p in
the progression of liver fibrosis is yet to be elucidated. Herein, our
data have shown that miR-20a-5p was distinctly decreased with
advanced fibrosis and we develop a novel cell model to simulate
the macrophage activation during fibrosis. Notably, restoration
of miR-20a-5p suppresses inflammations caused by inhibited
hepatocyte injury.

Since miR-20a-5p suppressed inflammation in vitro, exploring
its underlying mechanism relevant to the disease process
of fibrosis is necessary. We further observed the level of
TGFBR2 up-regulated in patients compared to normal liver.
In addition, miR-20a-5p could regulate TGFBR2 expression
by directly binding to its 3′-UTR, while TGF-β pathway
contributes to hepatotoxicity which influences macrophage
activation. Among the multiple causative factors, it’s well-
known that TGF-β/Smad pathway is essential for liver fibrosis
development (35, 36). Connection of TGF-β and its receptors,
including TGFBR1 and TGFBR2 could endow it with the
serine threonine kinase activity. TGF-β is always recognized
as a pro-fibrogenic cytokine in TGF-β signaling pathway due
to its function in HSC activation and ECM production (37–
39). Recently, it has been revealed that TGF-β is essential
for the development and critical features of multiple tissue-
resident macrophages. What’s more, TGF-β is required for
the maintenance of expression pattern of the macrophage-
specific homeostatic genes (40–42). Our data verified the
contributions of TGF-β signaling pathway in hepatocytes to
macrophage activity.

Together, our results highlight a critical function of miR-
20a-5p in the liver fibrosis development, and provide the first
evidence that miR-20a-5p maintains the survival of hepatocyte
via TGF-β signaling pathway and that inhibits inflammation
occur. Moreover, the reintroduction of miR-20a-5p enlightens
a promising therapeutic strategy for the clinical intervention of
liver fibrosis.
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Immunotherapy. A Tumor-Intrinsic or
Tumor-Extrinsic Phenomenon?
Luisa Chocarro de Erauso1, Miren Zuazo1, Hugo Arasanz1,2, Ana Bocanegra1,
Carlos Hernandez1, Gonzalo Fernandez1,2, Maria Jesus Garcia-Granda1, Ester Blanco1,
Ruth Vera2, Grazyna Kochan1* and David Escors1*

1 Oncoimmunology Group, Navarrabiomed-UPNA, IdISNA, Pamplona, Spain, 2 Department of Medical Oncology, Complejo
Hospitalario de Navarra CHN-IdISNA, Pamplona, Spain

Cancer immunotherapies targeting immune checkpoints such as programmed cell-death
protein 1 (PD-1) and its ligand programmed cell-death 1 ligand 1 (PD-L1), are
revolutionizing cancer treatment and transforming the practice of medical oncology.
However, despite all the recent successes of this type of immunotherapies, most
patients are still refractory and present either intrinsic resistance or acquired resistance.
Either way, this is a major clinical problem and one of the most significant challenges in
oncology. Therefore, the identification of biomarkers to predict clinical responses or for
patient stratification by probability of response has become a clinical necessity. However,
the mechanisms leading to PD-L1/PD-1 blockade resistance are still poorly understood. A
deeper understanding of the basic mechanisms underlying resistance to cancer
immunotherapies will provide insight for further development of novel strategies
designed to overcome resistance and treatment failure. Here we discuss some of the
major molecular mechanisms of resistance to PD-L1/PD-1 immune checkpoint blockade
and argue whether tumor intrinsic or extrinsic factors constitute main determinants of
response and resistance.

Keywords: immune checkpoint blockade, programmed cell-death protein 1, programmed cell-death 1 ligand 1,
immunotherapy, tumor-intrinsic resistance, tumor-extrinsic resistance, biomarkers
INTRODUCTION

Cancer immunotherapies aim at stimulating the immune system of patients to reactivate its anti-
oncogenic activities (Escors, 2014). The most successful anti-cancer immunotherapies are currently
those based on immune checkpoint blockade with antibodies (ICIs). Under normal physiologic
conditions, immune checkpoints function as regulators of excessive inflammation following T-cell
activation, and mechanisms to prevent auto-reactive responses. Unfortunately many cancer cells
exploit these T-cell inhibitory mechanisms by up-regulating the expression of immune checkpoint
molecules that will bind their ligands on activated T cells leading to their inactivation. It is thought
that ICI therapies act primarily on the reactivation of T lymphocytes to exert cytotoxic activities
over cancer cells. The emergence of ICI therapies over the last decade has transformed to the core
cancer treatments, as they show good efficacies, and less toxicity than conventional chemotherapy or
in.org April 2020 | Volume 11 | Article 4411171
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targeted therapies. However, for most cancer types only a subset
of all patients effectively respond to these therapies, which is a
major clinical, economic, and ethical problem (Topalian et al.,
2011; Nishino et al., 2017; Prasad et al., 2017; Kamada et al.,
2019; Martins et al., 2019). It is often said that ICI therapies have
revolutionized oncology, although their efficacy is still limited.
But, what do we mean when we claim that ICI therapies have
caused a revolution?

Before the success stories of ipilimumab (Hodi et al., 2008), and
before the publication of the results from the first clinical trials of
PD-L1/PD-1 blockers (Brahmer et al., 2012; Topalian et al., 2012),
immunotherapies were not seriously considered as viable
therapeutic options by most oncologists and pharmaceutical
companies. Most of their efforts were directed towards the
development of small molecule inhibitors for targeted therapies,
or novel chemotherapies. And even though targeted therapies
showed good efficacies, they were largely limited to patients with
tumors harboring the targeted mutations. So, what did ICI
treatments truly change? The truly astonishing result is that with
only a single drug, objective responses were obtained in a very large
number of cancer types largely independent of their ontogeny.
Moreover, these drugs are not even directed towards the cancer cell.
For example, the anti-PD-1 antibody pembrolizumab has achieved
objective responses in cancers as different asmelanoma, lung cancer,
head and neck, urothelial, gastric cancer, mesothelioma, and
Hodgkin lymphoma, among others.

The inhibitory co-receptors that modulate the activation of T
cells are generally associated with the T-lymphocyte receptor
(TCR) complex at the immunological synapse. These molecules
constitute major control points and serve as targets to enhance
antitumor immune responses. Some examples expressed in T
cells are programmed cell-death protein 1 (PD-1), T-cell
immunoglobulin and mucin domain-containing protein 3
(TIM-3), cytotoxic T-lymphocyte antigen 4 (CTLA-4), or
lymphocyte-activation gene 3 (LAG-3) (Saito et al., 2010; Chen
and Flies, 2013; Esensten et al., 2016; Schildberg et al., 2016;
Lichtenegger et al., 2018). Several ICI antibodies targeting
CTLA-4 or the PD-L1/PD-1 axis are approved for use by the
Frontiers in Pharmacology | www.frontiersin.org 2172
Food and Drug Administration (FDA) and European Medicines
Agency (EMA) for treatment of different cancer types. These
antibodies have demonstrated clinical efficacy, with durable
clinical responses. Due the success of blockade strategies of
CTLA-4 and PD-1 pathways, several antibodies targeting other
immune checkpoints are now at different stages of development.
Moreover, several combination strategies with ICIs are under
evaluation in clinical trials, emerging as new opportunities to
enhance anti-tumor immunity (Table 1) (Pardoll, 2015).

Since 2012, antibodies blocking PD-1/PD-L1 interactions are
demonstrating very promising results (Brahmer et al., 2012;
Topalian et al., 2012), demonstrating their efficacies and safety.
Truly, these results have no precedent in the history of cancer
treatments due to their wide range of activities and the durability of
responses. To date, six immune checkpoint inhibitors blocking the
PD-L1/PD-1 axis are approved by the FDA and the EMA: three
PD-1 inhibitors (nivolumab, pembrolizumab, and cemiplimab), and
three PD-L1 inhibitors (atezolizumab, durvalumab, and avelumab).
Most of them have also been approved by the Chinese National
Medical Products Administration (NMPA), and by the
Pharmaceuticals and Medical Devices Agency (PMDA) in Japan.
Additionally, the NMPA has recently approved the use of four more
PD-1 inhibitors (toripalimab, tislelizumab sintilimab, and
camrelizumab) in China. These drugs are indicated for the
treatment of several cancer types such us melanoma, non–small
cell lung cancer (NSCLC), renal cell carcinoma, head and neck
squamous cell carcinoma, urothelial carcinoma, microsatellite
instability–high colorectal cancer and metastatic cutaneous
squamous cell carcinoma.

However, despite these successes the majority of patients in
many cancer types do not truly benefit from PD-L1/PD-1 blockade
therapies and show resistance, either intrinsic resistance when the
treatment directly fails, or acquired resistance where a proportion of
responders will also develop resistance. Other patients show some
response in the form of stable disease, or acceleration of disease in
the form of hyperprogression (Zuazo et al., 2018). Still, the specific
mechanisms of resistance and response remain to be elucidated.
Therefore, the understanding of the basic mechanistic pathways of
TABLE 1 | Clinical trials targeting the PD-L1/PD-1 axis and combinations.

PD-1/PDL-1 clinical trials Targets NCT identifier

PD-1/PD-L1 monotherapy PD-1/PD-L1 axis NCT03936959, NCT03013101, NCT03167853, NCT03142334,
NCT02853344, NCT02702414, NCT02838823, NCT02836795,
NCT03010176, NCT03219775, NCT03692442, NCT02358031

Combination
therapies with
PD-1/PD-L1
blockade

with other
immunotherapies

PD-1/PD-L1 axis and CTLA-4, LAG-3,
OX40, TIM-3, GITR, CD20 mAbs, IL2R,
IL12, IL7R, IL1B, CD19, CD40, CD38,
41BB

NCT03179007, NCT03615313, NCT03190811, NCT03732547,
NCT03970382, NCT03527251, NCT03894215, NCT01968109,
NCT02658981, NCT03680508, NCT04198766, NCT04215978

with targeted therapies PD-1/PD-L1 axis and VEGF/VEGFR, ERK1/
2, RAF, AMPK, EGFR, FGFR, MEK, RAF
pathways

NCT03851614, NCT04010071, NCT02133742, NCT04152356,
NCT03955354, NCT04303741, NCT04014101, NCT03722875,
NCT03394287, NCT03359018, NCT02873390, NCT03182816

with chemotherapy PD-1/PD-L1 axis and direct cancer cell
cytotoxicity

NCT03903887, NCT03311789, NCT03737123, NCT04152889,
NCT03041181, NCT03515629, NCT03701607, NCT03409614,
NCT04225364, NCT02220894, NCT02819518, NCT03221426

Other combinations
(radiotherapy,
chemoradio, multi-way
combo, others)

PD-1/PD-L1 axis and direct cancer cell
cytotoxicity

NCT02821182, NCT04017897, NCT03898895, NCT03557411,
NCT03984357, NCT03671265, NCT03984357, NCT03619824,
NCT03474094, NCT02992912, NCT02434081, NCT02525757
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resistance and the identification of predictive biomarkers of
response have become a clinical necessity. Here, we review the
current knowledge on resistance to PD-L1/PD-1 blockade therapies
and discuss whether tumor intrinsic or extrinsic factors are the main
determinants of response and resistance.
PROGRAMMED CELL DEATH PROTEIN 1
(PD-1) AND PROGRAMMED CELL-DEATH
1 LIGAND 1 (PD-L1) AXIS

PD-1 (CD279) is a type 1 transmembrane glycoprotein from the
B7-CD28 immunoglobulin superfamily discovered in 1992 for
which Prof Honjo received the Nobel Prize (Ishida et al., 1992).
This protein is encoded by Pdcd1 gene on the human chromosome
2, and it is composed of a short signal sequence, an extracellular
IgV-like domain, a stalk region, a transmembrane domain, and an
intracellular cytoplasmatic tail containing the two tyrosine-based
signaling motifs; the immunoreceptor tyrosine-based inhibitory
motif (ITIM) and the immunoreceptor tyrosine-based switch
motif (ITSM) (Figure 1). These two motifs contribute to the
inhibitory functions of PD-1. PD-1 has two main ligands, PD-L1
(B7-H1, CD274) and PD-L2 (B7-DC, CD273) (Dong et al., 1999;
Freeman et al., 2000; Latchman et al., 2001; Tseng et al., 2001) (16–
19). PD-L1 is a type I transmembrane protein encoded by the
Cd274 gene on the human chromosome 9 discovered in 1999 as an
additional member of the B7 family. PD-L1 is composed of a signal
sequence, an IgV-like domain, an IgC-like domain, a
transmembrane domain, and a highly conserved short
intracellular region with intracellular signal transduction capacities
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(Pascolutti et al., 2016; Gato-Canas et al., 2017; Escors et al., 2018)
(Figure 1). The intracellular domain presents three highly
conserved sequence motifs, two of which are required for
regulating interferon-mediated cytotoxicity (RMLDVEKC and
DTSSK) (Gato-Canas et al., 2017; Escors et al., 2018). PD-L2 is a
type I transmembrane protein encoded by the Pdcd1lg2 gene was
discovered in 2001 (Latchman et al., 2001; Tseng et al., 2001) and
exhibits a similar molecular oganization than PD-L1.

After engagement with PD-L1, PD-1 inhibits T cell functions
through direct and indirect pathways (Arasanz et al., 2017)
(Figure 2). Direct pathways are dependent on the recruitment
of SHP-1 and SHP-2 phosphatases phosphatases to PD-1 ITIM
and ITISM motifs following their tyrosine phosphorylation by
Lck (Plas et al., 1996; Chemnitz et al., 2004; Sheppard et al., 2004;
Hui et al., 2017). SHP phosphatases inhibit ZAP70 and PI3K
activities by dephosphorylation, and thus ending the TCR-CD28
signal transduction and its downstream dependent intracellular
pathways (ERK and PKCq). PD-1 also inhibits T cell activities
through indirect pathways. After engaged with PD-L1, PD-1
leads to increased expression of CBL E3 ubiquitin ligases, which
ubiquitylate components of the TCR leading to its internalization
and degradation (Karwacz et al., 2011; Karwacz et al., 2012;
Liechtenstein et al., 2014). Also, an indirect pathway of PD-1-
dependent inhibition of TCR signal transduction is caused when
PD-L1 engages to PD-1 by inhibiting the transcription of CK2
through an unclear mechanism, resulting in de-phosphorylated
PTEN that will in turn de-phosphorylate PI3K and terminating
in this way downstream pathways (Patsoukis et al., 2013;
Arasanz et al., 2017).

In physiological conditions PD-L1/PD-1 interactions keep T
cell tolerance toward autoantigens (Latchman et al., 2004).
FIGURE 1 | Molecular structures of PD-1 and PD-L1. The domain organization of PD-1 is shown on top, with each domain indicated. The domain organization of
PD-L1 is shown below, with each domain indicated.
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Conversely, in pathological conditions these inhibitory receptors
lead to regulation of T-cell effector functions in autoimmunity
and infection (Barber et al., 2006; Sharpe et al., 2007). Tumor
survival can depend on the PD-L1/PD-1 pathway to attenuate
immunogenicity and facilitate resistance to anti-apoptotic
stimuli (Hirano et al., 2005; Azuma et al., 2008; Keir et al.,
2008; Gato-Canas et al., 2017; Escors et al., 2018). PD-L1 is
overexpressed in many tumor types to evade the immune attack
and its expression generally (but not always) correlates with
progression (Gato-Canas et al., 2017; Escors et al., 2018;
Bocanegra et al., 2019; Kattan et al., 2019). PD-1 is expressed
in T lymphocytes and interferes with their activation when
bound with their ligands PD-L1, inhibiting the effector phase
and thus dampening the ability of these T cells to kill cancer cells
(Keir et al., 2008; Gato-Canas et al., 2017; Zuazo et al., 2019).
MECHANISMS OF RESISTANCE TO
PD-L1/PD-1 IMMUNOTHERAPY

PD-L1/PD-1 blockade immunotherapy demonstrates longer
duration of responses, and it is better tolerated than traditional
therapies. However, despite the recent successes, a large number
of patients do not respond to the therapy. This fact indicates
intrinsic (or primary) resistance. In addition, a percentage of
responder patients end up progressing through mechanisms of
acquired resistance. Primary and acquired resistances are
important barriers in terms of benefit to the patient (Pitt et al.,
2016; Restifo et al., 2016; Sharma et al., 2017; O’Donnell
et al., 2019).

Some of the patients treated with PD-L1/PD-1 immunotherapy
show hyperprogressive disease, characterized by an unexpected
drastic acceleration in tumor growth after the initiation of the
therapy with fatal consequences (Champiat et al., 2017; Kato et al.,
2017; Saada-Bouzid et al., 2017; Champiat et al., 2018; Ferrara et al.,
2018; Zuazo et al., 2018; Kim et al., 2019). Moreover, a certain
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percentage of responder patients show an apparent progression of
neoplastic lesions caused by massive tumor infiltration by immune
cells. This response has been termed pseudoprogression, and it is a
confounding factor for evaluation of responses by standard
techniques such as computerized tomography (Onesti et al., 2019).
These variety of atypical responses have prompted the development
of immune-related response criteria (irRC) to better characterize the
distinct types of responses associated to immunotherapies (Wolchok
et al., 2009), in contrast to conventional evaluation criteria by
Response Evaluation Criteria in Solid Tumors (RECIST).
Nonetheless, the techniques and biomarkers currently integrated in
clinical practice are not sufficient to identify responses. A deeper
understanding of themechanisms leading to resistance to PD-L1/PD-
1 blockade is required.

In addition, every patient is unique as a result of genetic and
clinical backgrounds. Hence, the mechanisms leading to clinical
response or resistance are highly complex and might differ not
only according to tumor type but also to patient-specific factors.
Therefore, the contribution of tumor-cell intrinsic and patient-
specific extrinsic factors needs to be elucidated. In the context of
immunotherapies, it is unclear which ones are the main
determinants of response and resistance.

Tumor-Intrinsic Factors and Resistance to
PD-L1/PD-1 Blockade Therapies
A number of intrinsic characteristics of the patients are
prognostic markers. In principle, we will disregard these
general characteristics and focus on more specific factors
contributing to immunoresistance. Without any doubt, tumor-
intrinsic factors definitely contribute to response or progression
in immune checkpoint blockade (Sharma et al., 2017; Chowell
et al., 2018; Kalbasi and Ribas, 2020).

Tumor-intrinsic factors that contribute to primary and
acquired resistance to PD-L1/PD-1 immunotherapy conform a
genetic and signaling landscape that prevents immune cell
infiltration in the tumor microenvironment (TME) (Figure 3).
FIGURE 2 | PD-1 signaling pathways in T cells. The figure schematically summarizes the direct and indirect T cell inhibitory signaling mechanisms as indicated.
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Resistance to PD-1 blockade immunotherapy is often associated
with insufficient tumor antigenicity, constitutive PD-L1
expression, defects in IFN signal transduction within cancer
cells and alterations in the regulation of oncogenic pathways
(Escors, 2014; Sharma et al., 2017).

The loss of tumor antigenicity is a major escape mechanism
for many tumor types (Escors, 2014). This is mainly caused by
cancer immunoediting, a process by which the immune system
exerts a strong and sustained selective pressure over the most
immunogenic cancer cell variants (Schreiber et al., 2011). Hence,
recognition of tumor-specific antigens by effector T cells is
crucial for cancer immunoediting (DuPage et al., 2012).
Effector T cells will eliminate the most immunogenic cancer
cells and control tumor progression for some time (Restifo et al.,
2016; Sharma et al., 2017). However, the less immunogenic
cancer cell variants will overgrow and progress. Therefore,
tumor immunoediting does constitute a strong mechanism of
acquired resistance to immunotherapies. The resulting surviving
cancer cells usually show a strong decrease in tumor antigen
expression (Matsushita et al., 2012; Escors, 2014), or a down-
modulation of molecules involved in antigen presentation such
as lack of MHC I or beta-microglobulin expression (Gubin et al.,
2014). In this context, ICI therapies will fail simply because no
endogenous T cell responses can be raised against these tumors.
It has to be noted that immunoediting as a mechanism of
immunological escape has been relatively well studied in
immunotherapies other than ICIs (Schreiber et al., 2011; Teng
et al., 2015; O’Donnell et al., 2019). Therefore, the real extent of
the impact of immunoediting over resistance to ICI treatments
has not yet been systematically quantified. The detection of less
immunogenic variants in samples from patients before the start
of immunotherapies may provide the means for adequate patient
selection. For instance, characteristics such as genomic instability
or epigenetic alterations in pre-existing tumor cell variants, may
enable these cancer cells to evade ICI therapies. And these may
even facilitate tumor grown, immune evasion, and tumor escape.
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These escape variants are likely to be naturally selected especially
if potent immunostimulatory therapies are applied (Khong and
Restifo, 2002). For example, the loss of functional b2
microglobulin from tumor cells, a structural component of the
major histocompatibility complex (MHC) 1, confers resistance to
tumor-specific CD8 T cells (Restifo et al., 1996). In addition,
acquired homeostatic resistance has been described in which
tumor cells alter gene expression profiles in response to
interactions with the immune system (Pardoll, 2015).

We could include within these mechanisms the adaptive up-
regulation of PD-L1 expression as a response to interferons
produced during the anti-tumor attack (Garcia-Diaz et al.,
2017; Gato-Canas et al., 2017; Escors et al., 2018). Cancer cells
with up-regulated PD-L1 would not only inactivate PD-1-
expressing T cells, but will also show increased resistance to
IFN-mediated apoptosis through reverse signaling by PD-L1
within cancer cells (Gato-Canas et al., 2017; Jalali et al., 2019).
It has been known for some time that PD-L1 had intrinsic
signaling properties in cancer cells that protected that protected
them from a range of apoptotic stimuli, and that its intracellular
domain was required for this protection (Azuma et al., 2008).
Moreover, PD-L1 was also shown to stimulate cancer cell growth
by modulating the activity of AKT/mTOR, autophagy, and
glycolysis (Chang et al., 2015; Clark et al., 2016; Gupta et al.,
2016). The intracellular part of PD-L1 contains three non-
classical signaling motifs; The “RMLD,” “DTSSK,” and
“QFEET” motifs (Figure 1). The RMLD sequence is required
for the anti-apoptotic activities of PD-L1 through the inhibition
of STAT3 expression and alternative phosphorylation. The
DTSSK motif has regulatory properties, and when it is
removed or mutated, PD-L1 molecules exhibit hyperactivated
signaling (Gato-Canas et al., 2017). The QFEET motif has been
recently shown to be the docking site for the de-ubiquitinase
USP22 (Huang et al., 2019).

Inhibition of STAT3 by PD-L1 intrinsic signaling ensures the
abrogation of interferon-mediated apoptosis (Gato-Canas et al.,
FIGURE 3 | Schematic summary of cancer-intrinsic characteristics influencing clinical responses to PD-L1/PD-1 blockade therapies. The figure depicts the
interaction of a T cell with a cancer cell, highlighting cancer cell intrinsic factors that can inactivate T cell activities, as indicated by the arrows.
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2017), stimulates the inflammasome pathway in cancer cells
(Theivanthiran et al., 2020), and directly inhibits PD-L1-positive
T cells (Diskin et al., 2020). PD-L1-regulated inflammasome
activation triggers a series of signaling cascades that end up with
the recruitment of granulocyte myeloid-derived suppressor cells
(MDSC) in the tumor environment. This accumulation of MDSCs
contribute to resistance to PD-L1/PD-1 blockade strategies.
Therefore, PD-L1 expression by cancer cells regulates several pro-
carcinogenic mechanisms that can contribute to resistance: First,
PD-L1 as an inhibitor of T cell effector activities; second, PD-L1 as
an anti-apoptotic shield; and third, PD-L1 as a recruiter of MDSCs
into the tumor microenvironment. In agreement with this, it is not
surprising that human carcinomas with inactivating mutations in
the DTSSK motif of PD-L1 can be selected by immunoediting
(Gato-Canas et al., 2017), as these mutations increase the signaling
capacities of PD-L1.

Hence, PD-L1 expression in tumors could be considered a
tumor-intrinsic factor of resistance. PD-L1 up-regulation in
tumor cells is generally associated with tumor progression,
proliferation and invasion, antiapoptotic signaling, and T cell
inhibitory activities via engagement with PD-1 (Escors et al.,
2018). PD-L1 expression on tumor cells seems to be sufficient for
immune evasion and inhibition of CD8 T cell cytotoxicity
(Juneja et al., 2017). Therefore, PD-L1 expression is a
recognized biomarker for patient stratification in PD-L1/PD-1
blockade immunotherapy. Some immunohistochemistry assays
to quantify PD-L1 expression are currently FDA-approved such
as Dako 28-8, Dako 22C3, Ventana SP142, and Ventana SP263.
However, the systems of detection are not currently
standardized, as different immunochemistry assay and scoring
system offer different classifications for tumor PD-L1 status
(Arasanz et al., 2018; Bocanegra et al., 2019). Additionally, PD-
L1 expression can be highly variable and heterogeneous. Some
patients with PD-L1-negative tumors may still benefit from anti-
PD-L1/PD-1 therapies as PD-L1 is also expressed by many other
cell types including myeloid antigen-presenting cells (Karwacz
et al., 2011; Motzer et al., 2015; Horn et al., 2017; Bocanegra et al.,
2019). Because of these limitations, PD-L1 expression as a
predictive biomarker for responses is still under debate.
Nevertheless, the application of radioactively-labeled probes
specific for PD-L1 and in vivo PET visualization of labeled
tumors, and their metastasis is very likely going to solve many
of these issues. First, detection of PD-L1 expression levels
without the need of obtaining a limited amount of tumor
tissue. Second, sensitive detection of “silent” metastases. Third,
discrimination of true progression from pseudoprogression, at
least for cancers that are PD-L1 positive. So far, several different
approaches have been applied in pre-clinical models and in
cancer patients. For example, by using PD-L1-specific
nanobodies labeled with technetium-99m (Broos et al., 2017),
PD-L1-specific cyclic peptides labeled with Gallium (De Silva
et al., 2018), and radio-labeled anti-PD-L1 antibodies (Heskamp
et al., 2015; Niemeijer et al., 2018).

Several other approaches based on intrinsic tumor characteristics
have been established for patient selection. From these, the tumor
mutational burden (TMB) has gained popularity as a potential
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predictive biomarker associated with response to ICI therapies.
TMB provides a quantification of the number of mutations per
megabase of genomic DNA within the tumor encoding genome. It
is thought that “high” TMB tumors may have increased expression
of neoantigens and enhanced immunogenicity (Alexandrov et al.,
2013; Yuan et al., 2016). Neoantigen load is associated with response
and has some predictive value on long-term clinical benefit of PD-
L1/PD-1 blockade therapies. The mutational load before the start of
immunotherapies seems to be associated to a higher
nonsynonymous mutation burden in tumors, higher neoantigen
expression, and mutations within the DNA repair pathways (Gubin
et al., 2014; Le et al., 2015; Rizvi et al., 2015; Schumacher and
Schreiber, 2015). A reflection of this is exemplified by mismatch
repair deficiency in cancers, which predicts response to PD-1
blockade for some tumor types such as colon cancer (Le et al.,
2015; Le et al., 2017). Therefore, the FDA approved in 2017 the PD-
1 inhibitor pembrolizumab for treatment of progressive mismatch-
repair deficient solid tumors, consolidating mismatch repair
(MMR) defect as a clinically applicable biomarker.

Tumor-Extrinsic Factors and Resistance
to PD-L1/PD-1 Blockade Therapies
ICI immunotherapies differ substantially from conventional
therapies in which the target is the immune system. Therefore,
it is fair to assume that tumor extrinsic factors linked to the
immune system will be associated to response or resistance to ICI
therapy. So far, a variety of such factors have been associated to
resistance. These include irreversible T cell exhaustion,
expression of additional immune checkpoint molecules and
their ligands (CTLA-4, TIM-3, LAG-3, TIGIT, VISTA, and
BTLA), differentiation and expansion of immunosuppressive
cell populations, and release of immunosuppressive cytokines
and metabolites both systemically and within the TME (IL-10,
IL-6, IL-17, IFNg, CSF-1, tryptophan metabolites, TGF-b, IDO,
increased adenosine production) (Figure 4) (Fridman et al.,
2017; Sharma et al., 2017; Fares et al., 2019).

One of the oldest prognostic immune biomarkers is the
quantification of the type, location, and density of immune
cells that infiltrate the TME (O’Donnell et al., 2019). Anti-
neoplastic treatments and not only immunotherapies are most
efficacious in patients with increased tumor-infiltrating
lymphocytes (TILs) in biopsies. This is also true for ICI
therapies, and the use of TIL quantification together with PD-
L1 tumor positivity is generally associated to good responses
(Taube et al., 2012; Bindea et al., 2013). Indeed, there is a positive
correlation of TIL infiltration with PD-L1 expression by cancer
cells. There are several ways to quantify TIL infiltration, but one
of the most successful at least for colon cancer is the so-called
“immunoscore” (Galon et al., 2014; Pages et al., 2018; Angell
et al., 2020). This biopsy scoring system is a powerful prognostic
tool based on the quantification of CD3 and CD8 T lymphocytes
on the tumor center and at the tumor invasive margins.

Not surprisingly, TIL infiltration correlates with good
prognosis and objective responses to ICI therapies. Oligoclonal
TILs are expanded in the tumor tissues of responders to anti-PD-
1 blockade. These T cells show enhanced helper T cell type 1
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(Th1) cellular immunity (Inoue et al., 2016). Patients can be
stratified into four different types according to the characteristics
of the TME tumor based on TILs and PD-L1: type I or adaptive
immunoresistant (PDL1(+), TIL(+)), type II or immunologically
ignorant (PD-L1(-),TIL(-)), type III (PD-L1(+), TIL(-)), and type
IV or immune-tolerant (PD-L1(-), TIL(+)) (Teng et al., 2015).
This stratification may provide a means for therapy selection.
However, other factors contribute to efficacious responses. For
instance, the TILs/PD-L1 ratio can be altered according to the
expression of oncogene drivers in cancer cells as well as the
anatomical location of the neoplastic lesions.

Recent studies demonstrate that ICI therapies do also alter the
dynamics and characteristics of systemic immune cell
populations. Interestingly, some of these studies highlight the
CD28-CD80 costimulation signaling pathway as a major
contributor to efficacious responses to ICI (Hui et al., 2017;
Zuazo et al., 2019). Indeed, several studies show a key role for IL-
12-expressing dendritic cells with cross-presentation capacities
for good responses to immunotherapies (Kerkar et al., 2011;
Liechtenstein et al., 2014; Goyvaerts et al., 2015; Berraondo et al.,
2018; Garris et al., 2018; Etxeberria et al., 2019). These results
reinforce the idea that a systemic functional immunity is very
likely a required factor for the efficacy of immunotherapies. This
was elegantly shown in murine models (Spitzer et al., 2017) as
well as in human patients undergoing PD-L1/PD-1 blockade
therapies (Kamphorst et al., 2017; Zuazo et al., 2019). A systemic
expansion in peripheral blood of a population of CD28+ PD-1+
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CD8 T cells was shown in melanoma patients responding to anti-
PD-1 therapy (Kamphorst et al., 2017). Patients with non-small
cell lung cancer undergoing ICI therapies that presented systemic
dysfunctional CD4 T cells that strongly co-expressed PD-1 and
LAG-3 failed to respond to therapies (Zuazo et al., 2019).
Interestingly, these CD4 T cells did not lose their capacities for
multi-cytokine production following in vitro stimulation, albeit
with a strong Th17-type of responses. These results suggested
that these T cells could not be considered exhausted. However,
they showed a degree of proliferative dysfunctionality that was
indicative of some type of anergy. Importantly, these patient
cohorts were enriched in hyperprogressors, suggesting a key role
for T cell dysfunctionality in hyperprogressive disease (Zuazo
et al., 2019). These results highlighted the up-regulation of LAG-
3 as a major escape mechanism to PD-1/PD-L1 monoblockade
strategies. Very similar results were obtained in two other
independent studies by Kagamu and collaborators, and Julia
and collaborators (Julia et al., 2019; Kagamu et al., 2020). In the
study by Zuazo et al. responders had a high percentage of highly
differentiated CD27− CD28− memory CD4 T cells before starting
immunotherapies, and could be used as a predictive biomarker.
Similarly, Kagamu et al. identified this population as CD62Llow

CD4 cells, while Julia et al. described this population as central
memory CD4 T cells.

The expansion of immunosuppressive immune cell populations
systemically or infiltrating the TME also contributes to extrinsic
factors of resistance. Regulatory T cells (Tregs) strongly suppress
FIGURE 4 | The figure schematically represents tumor-extrinsic mechanisms contributing to response or resistance to PD-L1/PD-1 blockade therapies. The figure
depicts on top a T cell interacting with a cancer cell, and the effects caused by the tumor microenvironment (TME) are boxed below. These include the recruitment of
immunosuppressive cells as indicated, the expression of immunosuppressive metabolites and the induction of alternative immune checkpoints on the T cell.
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tumor-specific T cell functions and disrupt effector T cell function.
The mechanisms of Treg-mediated immune suppression are varied
and include direct cell-to-cell contact and secretion of potent
immunosuppressive cytokines such us L-10, IL-35 or TGF-b
(Viehl et al., 2006; Sakaguchi et al., 2008; Arce et al., 2011). Some
of these cytones will differentiate naïve T cells into inducible Tregs
especially in the context of antigen presentation from tolerogenic
DCs (Arce et al., 2011). It is increasingly clear the negative impact
that the expansion of myeloid-derived suppressor cells have not
only in immunotherapy, but also in conventional therapies.
Although there is some controversy on their ontogeny and
nature, MDSCs englobe a collection of myeloid populations with
potent immunosuppressive activities. Tumor infiltrating MDSCs
promote angiogenesis, tumor cell invasion, and establish distal
metastatic niches (Srivastava et al., 2012; Meyer et al., 2013;
Liechtenstein et al., 2014; Dufait et al., 2015; Gato-Canas et al.,
2015; Ibanez-Vea et al., 2017). A special case of immunosuppressive
myeloid cells constitutes tumor associated macrophages (TAMs).
Tumor infiltration with TAMs usually correlates with poor
prognosis, particularly with M2 macrophages characterized by
high production of immunosuppressive cytokines. Therefore,
tumor infiltration with M2 macrophages over M1 macrophages
has an impact on tumor angiogenesis, invasion, metastasis, and
immunosuppression (Chanmee et al., 2014; Gato et al., 2016;
Ibanez-Vea et al., 2018). The recruitment of M2 macrophages
seems to lead to immunotherapy resistance, and recent reports in
murine models of cancer treated with PD-L1/PD-1 blockade
therapies link macrophages with hyperprogressive disease by
removing therapeutic antibodies through interactions with their
Fc receptors (Lo Russo et al., 2019).

Othermore subtlemechanismsmay also contribute to resistance. In
recent years it has been shown that long non-coding RNAs (lncRNAs)
constitute systemic regulators of many biological functions including
cancer (Schmitt and Chang, 2016). Interestingly, some immune-related
lncRNAs regulate immunosuppressivemechanisms leading to immune
evasion and resistance to immunotherapy. Some examples include loss
of antigen presentation, PD-L1 overexpression, regulation of T-cell
exhaustion, and MDSC and Treg differentiation and expansion (Zhou
et al., 2019; Zheng et al., 2019).

Finally, recent metagenomic studies have shown that
abnormal gut microbiome affects antitumor immunity,
influencing on the response to PD-1-based blockade (74, 75).
For example, the abundance of Bifidobacterium spp. in the gut
microbiome enhances anti-PD-L1 therapy efficacy and improves
antitumor immunity by affecting dendritic cells (Sivan et al.,
2015). Responders to immunotherapy showed abundant
Bifidobacterium longum and adolescentis , Collinesella
aerofaciens, Parabacteiodes merdae, and Fecalibacterium spp.
on their microbioma, while non-responders had increased
abundance of Ruminococcus obeum and Roseburia intestinalis
(Gopalakrishnan et al., 2018; Matson et al., 2018). A large
presence of Akkermansia muciniphila and A. muciniphila
contributes to the immunogenicity of PD-1 blockade, and its
abundance was correlated with clinical responses. Fecal
microbiota transplantations restore the efficacy of IL-12-
dependent anti-PD-1 blockade (Routy et al., 2018). These
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observations are not restricted to PD-L1/PD-1 blockade, as the
presence of Bacteroides spp in the gut microbioma was required
for anticancer immunity in anti-CTLA-4 therapy (Vetizou
et al., 2015).
DISCUSSION AND CONCLUSIONS

It is undisputed that ICI therapies are currently leading the way
for the development of efficacious anti-neoplastic treatments.
Nevertheless, it is yet unclear which mechanisms are driving
resistance to ICI treatments and how to tackle them. The relative
contribution of tumor cell intrinsic and extrinsic factors to
primary, adaptive, and acquired resistance is currently highly
confusing. A deeper understanding of the mechanisms
underlying the complex immunological pathways in cancer
and the molecular mechanisms underlying the PD-L/PD-1
blockade will provide insight into the subject.

Considering all the current evidence, we propose that
performing highly detailed systemic immunological profiling is
right now a requirement for any study involving ICIs. Not only
to identify potential responders, but also to monitor the “real time”
performance of ICI therapies by quantifying the dynamic changes of
immune cell populations. An increasing number of clinical studies
are addressing this particular issue by quantification of the relative
abundance of distinct immunological populations in peripheral
blood. Nowadays, flow cytometry panels composed of more than
10 markers are routinely used for immunological profiling without
the need of setting up CyTOF technologies. In a recent study
published by our group, quantification of the relative proportion of
highly differentiated CD27- CD28- CD4 T cells before the start of
immunotherapies was sufficient to identify a cohort of NSCLC
patients with a high probability of response to PD-L1/PD-1 blockers
(Zuazo et al., 2019). More specifically, responder patients had high
percentages of central and effector memory CD4 T cells. This
analysis relied on a panel of 8 markers to stain T cells from a
small blood sample by standard flow cytometry. Importantly, our
study was validated by the results from two similar studies which
used other alternative T cell markers. The first study correlated the
high baseline frequency of central memory CD4 T cells with
response to immunotherapy in NSCLC and renal cancer patients
using flow cytometry (Julia et al., 2019). In the second study,
NSCLC patients with high baseline percentages of CD62Llow

effector CD4 T cells quantified by CyTOF had a high chance of
responding to PD-L1/PD-1 blockade (Kagamu et al., 2020). The
dynamics and behavior of these CD4 T cell subsets were identical to
those from highly-differentiated memory CD4 T cells in our study,
strongly suggesting that we were all monitoring the same CD4 T cell
subsets but with different markers. Cytotoxicity assays performed
with peripheral T cells have also been shown to have predictive
capabilities for nivolumab efficacy (Iwahori et al., 2019), as well as
the quantification of PD-1+ CD8 T cells in peripheral blood after
administration of PD-1 blockers (Kamphorst et al., 2017).
Therefore, all these studies including our own demonstrate that
simple analytical techniques can be effectively applied in clinical
April 2020 | Volume 11 | Article 441
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practice for defining an immunological profile based on systemic T
cell subsets without the need of obtaining a tumor biopsy sample.

In addition, the dynamic changes of the immune populations
in peripheral blood provides invaluable clinical information.
Changes in T cell compartments have been recently shown by
others and us to correlate with progression and even
hyperprogression. The study by Kagamu and collaborators
showed that a decrease in peripheral CD62Llow CD4 T cells
right after therapy correlated with acquired resistance (Kagamu
et al., 2020). In our particular NSCLC cohort, a low baseline
percentage of memory CD27- CD28- CD4 T cells correlated with
intrinsic resistance (Zuazo et al., 2019). Moreover, a sudden
increase in highly differentiated CD4 T cells (CD4 THD burst)
following the first cycle of immunotherapy was indicative of
hyperprogressive disease (Zuazo et al., 2018; Arasanz et al.,
2020). The identification of hyperprogressors is also of the
outmost importance, as these patients deteriorate very quickly
with fatal outcomes. Hence, we propose that the generation of a
“systemic immunological file” containing the relative
percentages of at least T cell subsets before and after the first
cycle of immunotherapies will provide the means to identify
patients according to probabilities of response and provide useful
information to the clinician.

Considering the most recent evidence, we do think that an
“immunological file” on each patient provides information over
immediate responses to immunotherapy. However, cancer cells can
select several mutations that interfere with the specific molecular
pathways stimulated by ICI therapies. For example, mutations in
JAK1, JAK2, and beta2-microglobulin in cancer cells abrogate
interferon-mediated apoptosis and prevent PD-L1 up-regulation
by interferons (Zaretsky et al., 2016; Garcia-Diaz et al., 2017;
Sharma et al., 2017; Shin et al., 2017). Some mutations in the
DTSSK domain of PD-L1 present in human carcinomas enhance
the capacities of PD-L1 to counteract IFN-cytotoxicity by interfering
with STAT3 expression and its alternative phosphorylation (Gato-
Canas et al., 2017). Moreover, this inhibition of STAT3 has been
recently shown to activate the inflammasome in cancer cells leading
to the recruitment of granulocytic MDSCs to the tumor and causing
acquired resistance to immunotherapy (Theivanthiran et al., 2020).
The molecular characterization of cancer cells, particularly focusing
on genetic traits and mutations, will identify patients with high risk
of acquired resistance. New generation sequencing is currently on
the increase in clinical oncology, with panels that cover the major
oncogenic and driver mutations. In ICI therapies, it is likely that
new panels covering mutations affecting immunological signaling
pathways and immune checkpoints will be of relevance in the near
future. Currently, this is an expanding research subject that will
surely play a key role in the future oncology.

By a better understanding of the key pathways involved in these
processes, we will develop treatments to effectively counteract
resistance. The identification of truly predictive and prognostic
biomarkers of response is currently a top priority in clinical
practice. Some therapeutic strategies to overcome resistance could
include the modulation of the TME to increase immunogenicity,
overcome T-cell exhaustion, enhance tumor infiltration, and
modulate epigenetic regulation. The incorporation of the
Frontiers in Pharmacology | www.frontiersin.org 9179
“immunological file” to be included in the clinical profile of each
patient could be a practical example. NSCLC patients with
dysfunctional CD4 systemic immunity before starting
immunotherapies have intrinsic resistance (Julia et al., 2019;
Kamada et al., 2019; Zuazo et al., 2019; ; Kagamu et al., 2020). A
closer analysis of these patients uncovered a high co-expression of
PD-1 and LAG-3 (Zuazo et al., 2019), TIM-3 up-regulation (Julia
et al., 2019), or an expansion of Tregs (Kamada et al., 2019). These
patients could therefore be selected on the basis of their “systemic
immunological profile” for combination therapies with anti-PD-1/
anti-LAG-3, anti-PD-1/anti-TIM-3 or anti-PD-1/anti-CTLA4
antibodies. In addition, minimizing immunological escape and the
onset of resistance will be likely achieved by combination therapies
with targeted therapies. Other combinations such as with
chemotherapy, radiotherapy, CAR-T cells, or the application of
additional immune checkpoint blockade agents targeting LAG-3,
TIM-3, CSF1R, IDO, GITR, or CD134 could be the key to achieve
long-lasting clinical responses.
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