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Editorial on the Research Topic

Recent Advances in the Genetics of Osteoporosis

INTRODUCTION

The last few years have seen considerable advances in our understanding of the genetic factors
influencing osteoporosis, driven by a range of break-throughs. The seven papers comprising this
Research Topic together provide a timely update, describing new insights into the genetic
architecture of osteoporosis, application of genetic findings to study causal inference, and state-
of-the-art approaches to functional genomics, paving the road for multi-omic applications.
GENETIC ARCHITECTURE OF BONE MASS AND BONE
FRAGILITY

The genetic architecture of osteoporosis comprises mutations affecting single genes responsible for
rare monogenic causes of osteoporosis, and common genetic variants representing genetic
susceptibility factors for osteoporosis in the wider population. Makitie et al. discuss how recent
advances in genetic methodology have led to a rapid increase in identification of monogenic causes
of osteoporosis and related conditions associated with low bone mass and/or increased bone
fragility. Osteogenesis Imperfecta (OI), the most common monogenic cause of bone fragility, is due
to a defect in bone extracellular matrix, with 85% of cases harboring a mutation in type I collagen.
Many other genes are now recognized to cause an OI-like skeletal disorder. Some of these perturbate
type I collagen function, such as cartilage-associated protein (CRTAP), while others may act by
impairing bone mineralization, as proposed for Plastin 3 (PLS3). There has also been considerable
interest in the discovery of mutations which impair osteoblast differentiation and function, not the
least since these may also prove useful therapeutic targets for osteoporosis in the wider population.
These include genes involved in WNT signaling, which has an important role in skeletal
homeostasis, such as WNT1, and the WNT inhibitor frizzled-related protein 4 (SFRP4);
mutations in both these genes being implicated in rare monogenic cases of osteoporosis.

The paper by Gregson and Duncan provides a comprehensive review of disorders associated
with high bone mass (HBM). Even having excluded secondary causes such as degenerative changes,
unexplained HBM is not uncommon (prevalence approximately 0.2%). Several very rare mutations
underlying HBM have been described, which cause a generalized increase in bone mass as a result of
n.org March 2021 | Volume 12 | Article 65629814
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increased bone formation, and a reduction in bone fragility and
fracture risk. These mainly arise from mutations leading to
increased activation of the WNT/b-catenin signaling pathway.
Sclerosteosis, van Buchem’s disease, LRP4 HBM, LRP5 HBM,
and LRP6HBM are all thought to involve this mechanism. Other
signaling pathways may also contribute to HBM, as exemplified
by HBM arising from a mutation in SMAD9, part of the TGF-b
superfamily. Several monogenic HBM conditions are also
recognized where increased bone mass arises from defective
bone resorption, and is associated with increased bone fragility,
such as osteopetrosis. In the great majority of HBM cases, no
underlying monogenic disorder is evident. Although cases of
unexplained HBM were found to be enriched for common high
BMD alleles identified in GWASs, this does not exclude a role of
rarer mutations yet to be discovered. Given the successful
translation from identification of the genetic basis of
sclerosteosis to new therapy in the case of Romosozumab (1,
2), further genetic dissection of HBM cases may provide
additional benefits for human health.

In terms of polygenic disease risk in osteoporosis, the paper
by Koromani et al. describes recent advances in our
understanding of the genetic architecture of fracture risk,
focusing on common variants as identified from genome wide
association studies (GWAS). The article reviews genetic factors
found to be associated with fracture risk, after comparing
individuals with and without a history of fracture, as well as
endophenotypes related to fracture risk including bone mineral
density (BMD) measured by DXA scans, and BMD estimated
from heel ultrasound (eBMD). To date, the majority of
susceptibility loci for fracture have also been implicated in
BMD. The authors anticipate that further progress will be
helped by improved phenotyping. For example, whereas the
great majority of GWAS fracture studies combine all fracture
types, fractures at specific sites, like the spine, may have a specific
genetic architecture. Progress may also be achieved in extending
GWAS to endophenotypes other than BMD. A number of
advanced imaging methods have been developed which are
capable of ascertaining detailed components of bone structure,
which may also have a specific genetic architecture, though a
challenge is to assemble large enough study samples to conduct
well powered GWASs.
STUDIES OF CAUSAL INFERENCE

The paper by Zheng et al. discusses the application of common
susceptibility loci to examine causal inference using Mendelian
Randomization (MR). It provides a number of examples where
MR has been applied to examine risk factors for osteoporosis,
using either BMD or fracture risk as the outcome. This paper also
reviews the main limitations and assumptions involved in MR,
such as horizontal pleiotropy, whereby the genetic instrument is
related to the outcome via a separate pathway to the exposure. A
number of methods are discussed to exclude pleiotropy,
including the use of bi-directional analyses. If bi-directional
causal effects are observed, these usually reflect pleiotropy, for
Frontiers in Endocrinology | www.frontiersin.org 25
example as a result of genetic correlation between the exposure
and outcome due to shared genetic instruments resulting from
common biological pathways. That said, instances of true bi-
directional pathways may exist, such as a proposed positive effect
of BMD on sclerostin, whereas sclerostin also exerts a negative
effect on BMD, possibly as part of a negative feedback loop. As
well as examining causal relationships for associations initially
identified in conventional epidemiological studies, more recent
applications of MR are also discussed, such as hypothesis-free
approaches to examine causal effects of a given risk factor on a
range of outcomes, and application of MR for target validation
and drug discovery.
FUNCTIONAL GENOMICS STUDIES

Three articles in this Research Topic discuss recent advances in
functional studies aiming to provide a basis for translation of
human genetic studies into new treatments for osteoporosis.
Maynard and Ackert-Bicknell discuss the availability of data
from mouse models, as well as other online resources such as
tissue expression panels and expression quantitative trait loci
(eQTLs). The authors point out that over 500 susceptibility loci
have been identified for osteoporosis, however these causative
variants nearly all act to alter gene expression rather than
representing the actual causative gene. Identifying the genes
responsible for mediating the effects of genetic susceptibility
loci on BMD is a prerequisite for identifying potential drug
targets for new osteoporosis treatments, remains a major goal of
functional genomic studies. Mouse models have proven
enormously helpful in this regard, by providing a means of
characterizing the function of candidate genes through studying
the skeletal phenotype of mice where these have been deleted.
The repertoire of mice with specific gene knockouts has
increased massively over recent years, due to the work of the
International Mouse Phenotyping Consortium (IMPC), which
ultimately aims to making embryonic stem cells carrying a
knockout allele for all protein coding genes. Mice generated
from this program undergo phenotypic screens including limited
assessment of skeletal phenotype, with more detailed skeletal
phenotyping undertaken by BoneBase, and the Origins of Bone
and Cartilage Disease (OBCD) projects, based in the US and
UK respectively.

Bergen et al. review the emerging use of zebrafish as an animal
model in functional follow up studies of osteoporosis. Zebrafish
are vertebrates which show strong similarities in their skeletal
physiology to mammals, and are highly suited to genetic studies
since constructs which modify the genome can be directly
injected into embryos at the single cell stage. Bone formed in
zebrafish has the same skeletal cell types and modes of regulation
as higher vertebrates, making them suitable for studying
processes involved in osteoporosis, which can be carried out
dynamically and imaged in vivo, for which a range of fluorescent
reporter constructs are available. Several imaging methods have
been applied to zebrafish which together enable highly detailed
assessment of skeletal morphology. A number of zebrafish with
March 2021 | Volume 12 | Article 656298
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mutations in skeletally relevant genes have been studied which
re-capitulate a range of skeletal disorders, including osteoporosis
and OI. As well as helping to identify causative genes by
evaluating the effect of their deletion on the skeleton using
methods such as CRISPR/Cas9 editing, zebrafish can be
applied to osteoporosis genetics research by providing high
throughput assays for compounds which target these genes,
based on harvesting and culture of osteoblasts from
elasmoid scales.

The final article covers proceedings from a workshop held by
the Royal Osteoporosis Society in the UK to review opportunities
and challenges in functional genomics research in osteoporosis
(Tobias et al.). One of the main conclusions from the workshop
is that whereas many promising genetic signals have been
identified for osteoporosis, to date it has only been possible to
interrogate a small fraction of them in functional studies.
Whereas financial and manpower resources remain an
important limiting factor, functional studies in osteoporosis
Frontiers in Endocrinology | www.frontiersin.org 36
genetics will benefit from an expanding repertoire of on-line
resources, such as the IFRMS knowledge portal which aims to
bring together all relevant functional data (https://msk.hugeamp.
org/). In addition, a number of multi-omic resources are
available which, with the application of causal inference
methods described above, can be applied to identify causative
genes responsible for genetic association signals. The paper
concludes that a roadmap of functional assessments needs to
be established, aiming to integrate multi-omic resources with
datasets from human genetics and animal models, in order to
translate the wealth of genetic discoveries into new therapies
for osteoporosis.
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Zebrafish as an Emerging Model for
Osteoporosis: A Primary Testing
Platform for Screening New
Osteo-Active Compounds
Dylan J. M. Bergen 1,2, Erika Kague 1 and Chrissy L. Hammond 1*

1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol,

United Kingdom, 2Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead
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Osteoporosis is metabolic bone disease caused by an altered balance between bone

anabolism and catabolism. This dysregulated balance is responsible for fragile bones

that fracture easily after minor falls. With an aging population, the incidence is rising and

as yet pharmaceutical options to restore this imbalance is limited, especially stimulating

osteoblast bone-building activity. Excitingly, output from large genetic studies on people

with high bone mass (HBM) cases and genome wide association studies (GWAS) on the

population, yielded new insights into pathways containing osteo-anabolic players that

have potential for drug target development. However, a bottleneck in development of new

treatments targeting these putative osteo-anabolic genes is the lack of animal models

for rapid and affordable testing to generate functional data and that simultaneously can

be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly

used in functional genomics and drug screening assays which resulted in new treatments

in the clinic for other diseases. In this review we outline the zebrafish as a powerful

model for osteoporosis research to validate potential therapeutic candidates, describe

the tools and assays that can be used to study bone homeostasis, and affordable

(semi-)high-throughput compound testing.

Keywords: zebrafish, screening, genetic mutants, osteoblast, osteoclast, osteoporosis, drug development, animal

model

INTRODUCTION

Osteoporosis (OP) is a degenerative bone disease that affects around 27.6 million people over
the age of 50 in the 27 European Union (EU27) countries alone (1). As average life expectancies
increase, it is predicted that the annual cost of treating OP in the EU will rise from e37 billion
in 2010 to e46.5 billion by 2025 (2). OP is characterized by a reduction in bone mineral density
(BMD), reduction of bone mass (BM), and a decrease in the trabecular volume of long bones;
resulting in brittle bones that are more prone to fracture (3). The underlying mechanism behind
OP is a dysregulation of bone homeostasis; with decreased bone anabolism (decreased activity
of osteoblasts and osteocytes) and increased catabolism (enhanced osteoclast activity). Successful
treatment of OP should therefore increase bone anabolism and decrease catabolism to reinstate
the equilibrium in bone homeostasis (4, 5). While therapeutic options are increasing, all but one
available therapies aim to reduce bone resorption. However, as osteoclast and osteoblast activity
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are coupled, anti-resorptives can negatively affect anabolic
osteoblast activity and may not fully restore bone architecture
(6). The only injectable osteoanabolic compound, teriparatide,
is an analog of the parathyroid hormone (7). However, it is not
an ideal long-term therapy option as, not only is it expensive,
long term exposures in rat increase susceptibility to osteosarcoma
(8, 9) limiting treatment duration (currently 2-years) in OP
patients (10). Thus, an ideal treatment plan should focus on
both strengthening bones using an osteoanabolic compound,
combined with use of an anti-resorptive treatment (also ideally
non-invasive) to maintain bone integrity (5), few such options
exist. Currently, a major bottleneck in the development of new
pharmaceuticals is the collection of primary functional data on
new biological drug targets with osteo-anabolic capacities.

The twinning of genetic information with mechanistic data is
key for development of new treatments. For example, familial
studies on high bone mass (HBM) cases led to the discovery
of mutations in SOST (Sclerostin). Further mechanistic data
generated in model systems showed that SOST acts negatively
on the WNT signaling pathway and led to the development of
a novel antibody treatment Romosozumab (approved in 2018
for clinical use), which blocks SOST activity (11–13). With the
advent of genome-wide association studies (GWAS), and efficient
whole-genome/exome sequencing (WGS/WES) data mapping
there has been a sizeable increase in availability of human
genetic data from cohort studies for musculoskeletal conditions
including OP, high bone mass (HBM), and osteoarthritis (OA)
(14–20). Recent large cohort studies, such as UK-Biobank,
have identified many new loci that contain novel osteogenic
factors. For example, the UK-Biobank (21) data yielded 518
loci associated with changes in BMD using heel ultrasound data
(16, 19). Currently, there is a substantial gap in translating
these human genetic findings to model systems (22) in which
the mechanism by which these genes act on the skeleton can
be defined, where hypotheses can be tested, and ultimately
define new putative drug targets that can be assessed with
pharmacological agents. Because the skeletal system involves
complex interactions between different cell and tissue types,
genes and mechanical stimuli it is difficult to recapitulate
features of OP in a petri dish. However, traditional rodent
models are expensive to genetically manipulate. Zebrafish (Danio
rerio) could therefore bridge this gap by offering fast genetic
manipulation and complex tissue interactions required to model
complex diseases such as OP.

Zebrafish are vertebrates and show strong similarities in their
skeletal physiology to mammals (23). They are highly fecund and
a single pair of fish can lay up to 300 eggs a week, which develop
externally and are translucent (24). They show conservation of
70% of all genes and 85% of disease genes with humans (25, 26).
However, the main advantage of zebrafish for functional genetic
studies is their genetic tractability, as constructs that modify the
genome can be injected directly into embryos at the single cell
stage. This has allowed the generation of transgenic lines that
allow dynamic imaging of all the cells of the developing skeletal
system in live larvae (27–29) (Table 1) and in more recent years
allowed genome editing strategies to be employed. In this review
we set-out these different approaches and how developing and

adult zebrafish can be used to study bone mineralization, bone
content formation, and osteoblast-osteoclast interactions in a
whole animal context. We also discuss future prospects for drug
screening pipelines in zebrafish which may confer advantages
over other pre-clinical model systems.

FLEXIBLE GENETIC MANIPULATION IN
THE ZEBRAFISH

Zebrafish are genetically high amenable and new ways to
manipulate the genome are constantly being added to the
zebrafish genetic toolbox, which includes knockout, knock-
down and, DNA insertion strategies. The external development
of the embryos allows tools targeting genes of interest to
be microinjected directly in embryos at the 1-cell stage and
hundreds of embryos can readily be injected in a morning.
Acute knockdown of gene expression can be achieved either
by targeting mRNA with antisense RNA morpholino (MO)
molecules that stably bind the target mRNA to block translation
or splicing through steric hindrance (41). MOs offer a rapid
method to assess the phenotype of a gene of interest during
early development. However, they can only be used to study
developmental processes occurring over the first 4 or 5
days of development, which limits their utility in skeletal
studies as mineralization occurs from 4 days of development.
While concerns have been raised about MO veracity as
morphants frequently show more severe phenotypes than stables
mutants generated for the same gene (42, 43). This is due to a
transcriptional compensation response for chronic loss of a gene
as has been shown in mouse, cultured human cell lines, plants,
and zebrafish models (44–51). Thus, while MOs have a role,
their use has been largely supplanted by use of genome editing
strategies.

Traditionally, zebrafish mutant lines have been generated
by forward genetic screening; using mutagens [e.g., N-ethyl-
N-nitroso urea (ENU)] to induce random point mutations
in offspring that were then screened for phenotypes of
interest (52–56). The expansion of the zebrafish genetic toolkit
with zinc-finger nucleases (ZFN), Transcription Activator-
Like Effector Nucleases (TALEN) (57, 58), and Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9
(59) reverse genetic strategies, which, in combination with
a fully sequenced genome (25), allow tailored gene-specific
mutagenesis in the zebrafish. Gene function can be studied
in genetic knockouts by generating insertion/deletion (indel)
mutations leading to premature stop codons, deleting whole
exons containing important protein domains and generate new
stable mutant lines (Figure 1A). Moreover, the CRISPR/Cas9
protocol is so efficient that the F0 injected fish (crispants) can
be used to study loss of gene function in these crispants, despite
them carrying mosaic mutations (i.e., not every cell carries a
mutation and more than one mutation may be present) (23, 60)
(Figure 1B). Single base gene editing (knock ins) using modified
Cas9 enzymes or supplying a DNA template for the endogenous
homologous recombination machinery initiated by a double
stranded break allows to introduce specific genetic changes to
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TABLE 1 | Common transgenic lines to study musculoskeletal system in small teleostei.

Gene/pathway Cell type(s) Description Transgenic line Citation

BMP pathway BMP transcriptionally activated cells Reporter—21 BMP responsive elements (BMPRE) from

X. laevis

Tg(5xBMPRE-Xla.Id3:GFP) (30)

collagen10a1a Osteoblasts (juvenile) Reporter—BAC containing zebrafish collagen10a1a

promoter

TgBAC(col10a1a:Citrine) (29)

collagen2a1 Chondrocytes Reporter—BAC containing zebrafish collagen2a1

promoter

Tg(Col2a1aBAC:mCherry) (29)

ctsk Osteoclasts Reporter—BAC containing zebrafish ctsk promoter TgBAC(ctsk:Citrine) (27)

entpd5a Mineralizing osteoblasts Reporter—BAC containing zebrafish entpd5a promoter TgBAC(entpd5a:Citrine/YFP) (27)

fli1a Vasculature/neural crest Reporter —BAC containing fli1a promoter Tg(fli1a:EGFP) (31)

Hedgehog

pathway

Gli transcriptionally activated cells Reporter—8 Gli responsive elements driving egfp or

mCherry

Tg(Gli-d:gfp/mCherry) (32)

Osteocalcin Osteoblasts (mature) Reporter—3.7 kb upstream osteocalcin promoter from

Medaka driving gfp expression

Tg(Ola.osteocalcin:EGFP) (33)

rankl Osteoclast-osteoblast interaction Conditional—Heat shock inducible (HSE) ubiquitous

simultaneous expression of rankl and cfp in medaka

Tg(rankl:HSE:CFP) (34)

runx2 Osteoblasts (juvenile) forming new

bone

Reporter—557 bp intronic human RUNX2 enhancer

(Hsa), regulating RUNX2, conserved in multiple species,

driving gfp expression

Tg(Hsa.RUNX2-

Mmu.Fos:EGFP)

(33)

sox10 Mesenchymal chondrocytes Reporter—4.9 kb of sox10 promoter driving egfp Tg(−4.9Sox10:EGFP) (35)

sp7 (osx) Osteoblasts Reporter—BAC containing zebrafish sp7 promoter Tg(sp7:EGFP) (36)

sp7 (osx) Osteoblasts Reporter—Medaka sp7 regulatory elements driving

nls-gfp or mCherry

Tg(sp7:nuGFP/mCherry) or

Tg(Ola.sp7:NLS-GFP)

(37)

sp7 (osx) Osteoblasts Reporter—BAC sp7 promoter driving luciferase

expression

Tg(Ola.sp7:luciferase) (38)

sp7 (osx) Osteoblasts (ablation) Conditional—Chemical ablation of osteoblasts by E. coli

enzyme Nitroreductase (NTRo) activity

Tg(osterix:mCherry-

NTRo)pd46

(39)

WNT - β-catenin

pathway

β-catenin activated cells Reporter—T-cell factor enhancer (TCF) promoter

containing 7 beta-catenin binding sites

Tg(7xTCF.XlaSiam:nlsGFP) (40)

BAC, bacterial artificial chromosome; bp, base pair; kb, kilobase.

model specific human disease mutations in zebrafish orthologs
(62, 63).

SIMPLE ASSESSMENT OF ZEBRAFISH
BONES DURING DEVELOPMENT AND
ADULTHOOD

Zebrafish in common with higher vertebrates, have both
dermal/intramembranous ossification, in which bone is formed
de novo directly by osteoblasts, and chondral/endochondral
ossification in which bone forms by progressively replacing a
cartilaginous template. Although zebrafish have thinner bones
than terrestrial vertebrates, with fewer embedded osteocytes
and little trabeculation, all of the relevant skeletal cell types
and modes of regulation are conserved between zebrafish and
higher vertebrates. This, importantly for the study of OP,
includes osteoblast and osteoclast coupling and regulation of
bone remodeling (64, 65).

A major advantage of using zebrafish to probe the mechanism
of bone homeostasis is that cell behavior can be visualized
dynamically in vivo. Zebrafish larvae are translucent and develop
rapidly (24), and early skeletal processes can be dynamically
visualized in the living fish through use of fluorescent transgenic
reporter lines marking these cell types (see Table 1 for examples).

Formation of the craniofacial skeleton occurs early, with the
first cartilaginous structures of the jaw forming by 2 days post
fertilization (dpf) (66), the first skeletal joints are formed and
mobile by 3 dpf (60), by 5 dpf, hypertrophic chondrocytes,
marked by col10a1a, are seen in some elements from 5 dpf
(29), and first osteoblasts surrounding the cartilage and forming
bone matrix by 7 dpf (67). The first intramembranous bones,
such as the cleithrum, anterior notochord, and operculum, are
visible in the craniofacial skeleton from 72 hpf (66). While
skeletal development occurs early, true remodeling through
the combined activity of osteoblasts and osteoclasts does not
commence until the second week of development as osteoclasts
(marked by Cathepsin-K (Ctsk) or TRAP) are not formed until
day 10–12. Unlike mammals, mononucleated osteoclasts as well
as multinucleated cells are present and actively resorb bone
(65, 67).

There are many transgenic lines available to mark

musculoskeletal tissues, these include reporter lines which
label cells or signaling pathway activation by driving expression

of proteins in the cytoplasm, targeted to the nucleus, or plasma

membrane, and lines that tag proteins (28, 68). Reporter lines
mark cell types by using a tissue specific promotor, responsive

elements from a signaling pathway, or transcription factor

binding sites controlling expression of a fluorescent protein
(Table 1). For example, to study bone homeostasis, osteoblasts
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FIGURE 1 | Rapid and efficient mutagenesis using CRISPR/Cas9 genome editing in zebrafish. (A) To generate a stable mutant line, F0 CRISPR/Cas9 injected

individuals carrying mosaic mutations (defined by fin-clipping, B) should be outcrossed to wildtype fish to allow selection of a single germline mutation. Out-crossing

the founder to wildtype will establish a stable F2 mutant line. Note that the F1 can have multiple founders with damaging mutations, incrossing these will result in F2

homozygotes (for recessive alleles) for functional analysis. When performing incrosses from F2, it will take another 2 months of breeding time. (B) This rapid protocol

can be used to generate mutations in a gene of interest using CRISPR/Cas9 RNA or protein with gRNAs targeted against the gene from custom made gRNA oligos (i).

Micro-injection of CRISPR/Cas9 RNA or protein and gRNAs specific to gene of interest into embryos at the single cell stage (ii) generating double stranded breaks

during the first few rounds of cell divisions. The repair machinery is prone to errors and those cells will carry a different type of mutation giving a range of insertion and

deletion (indel) mutations (spectrum of mutations, mosaicism). The overall mutagenic efficiency is typically high (around 80% with fragment analysis) allowing larval

skeletal phenotypes to be assessed in the injected (F0) population (60). After imaging an Alizarin Red S (AR) stained individual in a transgenic background (here

osteoblast marker sp7:gfp)(iii), mutagenesis assessment such as fragment analysis will determine a quantified mutagenesis rate (61) which can be correlated to a

phenotype (iv). Note that mosaic mutants (crispants) can also be grown up to see the effect on the adult skeleton.
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and osteoclasts can both be labeled in vivo, using osteoblast
reporters such as sp7, and osteoclast reporters such as ctsk, so
that their numbers, location and activity monitored in living
bone tissue either longitudinally, in response to drug treatment,
genetic mutation, or environmental stimuli (Table 1). Relevant
to research into OP, osteoclasts can be specifically temporally
activated by use of a heat shock promoter driving RANK ligand
(rankl) expression; such that following a period of immersion
in water at 39◦C, osteoclast activity, labeled with the blue
fluorescent protein (CFP), is increased resulting degradation of
the bone matrix and in an osteoporotic phenotype of low BMD
(34). A simple Alizarin Red S (AR) staining, whichmarks calcium
phosphate crystals and fluoresces strongly in the red channel
(580 nm wavelength), allows a rapid assessment of ossified
elements in live or fixed fish. In combination with transgenic
lines, endochondral ossification in the lower jaw (Figure 2A) and
intramembranous bone formation in the operculum (Figure 2B)
can be easily visualized compared to traditional rodent models.

IMAGING THE ADULT SKELETON FOR
ASSESSING MINERALIZATION

The zebrafish adult skeleton is relatively complex and once fully
formed by around 2 months is composed of 74 ossified cranial

elements (compared with 22 in humans), 28–31 vertebrae; 4
cervical, 10–11 thoracic vertebrae, and 15–16 separated vertebrae
in the tail region and fins (pectoral, dorsal, anal (ventral), and
caudal) (69). As in larvae, live AR and Calcein staining, or use
of transgenic lines, allows easy detection of superficially located
calcified elements in the skull, elasmoid scales, and fins using
a simple fluorescent microscope. Deeper tissues can be imaged
by multiphoton microscopy in small juveniles. However, bones
located more internally (e.g., vertebrae and ribs) in large adults
are difficult to visualize using this method. Post-mortem staining
of bone (AR) and cartilage [Alcian blue (AB)] is a cost-effective
way to analyse these structures for adult skeletal abnormalities
(Figure 3A) and has been used in forward genetic screens to
obtain detailed skeletal morphology information (56, 70, 71).

Recent advances in X-ray based imaging: radiographs, micro-
computed tomography (µCT), and synchrotron equipped µCT
technologies (SR-µCT), and their subsequent downstream
imaging processing, opened avenues to assess the adult zebrafish
skeleton. The major advantage of using these X-ray imaging
techniques is that they are non-destructive and can be used
in the intact fish, allowing the samples to be used for other
purposes, such as histology. Radiographs give two-dimensional
(2D) images of the zebrafish skeleton at relatively low resolution
(Figure 3B), permitting the visualization of bone elements and
a broad evaluation of changes in the skeleton, radiographs can

FIGURE 2 | Ossified elements in the cranial region during early development. (A) Ventral view of a 7 days live Alizarin Red S (AR) labeled larval jaw showing dermal

ossification of cleithrum (CL), and ossification of the cartilaginous ceratohyal (CH). Arrow indicates the CH which undergoes endochondral ossification. Slow muscle

transgene reporter in green (smych:gfp). Image taken on a Leica lightsheet microscope. (B) Lateral view of a 6 days old larva live labeled with Alizarin Red S (red) and

carrying GFP under the control of the osteoblast promoter s7/osterix (green; sp7:gfp) allowing visualization of mineralized elements (red) and osteoblasts (green) in a

living individual. Insets show the cleithrum (i) and operculum (ii) with osteoblast enrichment at the distal ends of these elements (gray arrows). Image taken on a

confocal microscope. Wildtype strains AB/TL in both panels. Ossified elements: BR, branchiostegal ray; CH, ceratohyal; CL, cleithrum; MC, Meckel’s cartilage; MX,

maxilla; OP, operculum; PBC, posterior basicranial commissure; PQ, palatoquadrate. Scale bars = 100µm.
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be used to image live anesthetized fish permitting longitudinal
analysis of the skeleton over time (70). Higher resolution
(2µm voxel size) and three-dimensional (3D) assessment
of the zebrafish skeleton can be achieved by using µCT
(Figures 3C–E). As fish bone, like that of mammals, is composed
of hydroxyapatite crystals, quantification of BMD can be
performed by comparison to phantoms, which are samples of
known hydroxyapatite content (72). Additionally, treatment with
agents to improve contrast such as silver nitrate (AgNO3) or
iodine, allow detection of juvenile (less dense) bone and of soft
tissues such as muscle and cartilage (72).

Very detailed data on bone micro-architecture can be
achieved with SR-µCT (73, 74). This technique can yield a
spatial resolution of 100 nanometres on tissue samples and
visualize fine bone structures at a cellular level including the
vasculature in mineralized bone, osteoclast resorption pits, and
osteocyte lacunae (75). As the size and resolution of data sets
increase, the bottleneck in the process is frequently data analysis.
Commercially available software packages such as “boneJ” are
tailored for CT data analysis, and recently open source user
friendly software have become available to process µCT data
from zebrafish scans. For example, the “FishCut” software
processes whole-body µCT scan datasets and applies semi-
automated analysis algorithms. The current version segments
the axial skeleton, then generates values for the surface area
of vertebrae and centrae, and calculates BMD and mineralized
thickness in a semi-automated fashion (76).

ZEBRAFISH MUTANTS OF BRITTLE OR
THIN BONES

An increasing number of zebrafish genetic mutants in skeletally
relevant genes have been shown to recapitulate human bone
disease. These have provided insight into the dynamic regulation
of bone formation, mineralization, and remodeling. We have
included a list of zebrafish skeletal mutants in Table 2. While
there are currently few models for OP, there are various
zebrafish mutant lines that accurately model human skeletal
dysplasias, including collagenopathies and forms of osteogenesis
imperfecta, which are characterized by brittle bones and frequent
low-impact bone fractures. Autosomal dominant mutations
COL1A1 and COL1A2 genes predominantly affect glycine-X-
Y (Gly-X-Y) repeat domains that result in collagen α1(I) and
α2(I) heterotrimer maturation defects (119), causing fragile
bone matrix and insufficient mineralization (120). The Gly-
X-Y mutations lead to impaired hydroxylation and defects
in collagen maturation in the endoplasmic reticulum (ER),
which is also conserved in zebrafish (121–123). The autosomal
dominant chihuahua (chi) zebrafish mutant, was identified
in a forward genetic screen using radiography (70). Linkage
mapping identified a mutation causing a glycine to aspartate
amino acid substitution in a conserved Gly-X-Y repeat of
col1a1a (zebrafish col1a1 is duplicated). Note that in contrast
to mammals, zebrafish type-I collagen is constituted by three
different α chains [α1 (col1a1a), α3 (col1a1b), α2 (col1a2)] due to
duplication (124). chi/+ zebrafish display phenotypes resembling

FIGURE 3 | Examples of visualization and quantification of mineralized bone in

zebrafish. (A) Wholemount Alizarin Red S (AR) and Alcian Blue staining of 3

months fixed fish. (B) Radiograph of 1-year old live fish showing whole body:

endo- and exoskeleton. (C) Low resolution µCT images acquired with a 20µm

voxel size of a 3 months old fish. Note that pixel intensity can be used to

determine BMD; represented on the color coded pixel intensity bar. (D,E) High

resolution (5µm voxel size) µCT images of vertebral column with anal fin rays

(D) and caudal fin rays (E). Vertebral centrae have higher density at their edges

(solid arrow) than the center (dashed arrow). In the fin rays, a higher density

(solid arrow) is observed in older segments within the proximity to the body in

comparison to younger segments located more caudally showing lower pixel

intensity (dashed arrow). The same pixel intensity color coding as (C) applies.

All fish and their insets are depicted from a lateral view in an anterior-posterior

(left-right) orientation. Scale bars = 50µm in (A,B); and 100µm in (C–E).

those seen in humans, including a shortened axial skeleton,
with irregular radiodensity, uneven mineralization, and brittle
bones that fracture easily (especially ribs). Transmission electron
microscopy revealed that chi/+ fish show signs of ER stress (70).
The ER trapping of insufficiently hydroxylated oligotrimerized
α1(I)/α2(I)/α3(I) collagen leads to lower extra-cellular collagen
maturity, abnormally shaped and thinner vertebrae bodies, areas
of higher calcium content, different local mechanical properties,
and reduced osteocyte number (84). Osteogenesis imperfecta has
a broad disease spectrum in the clinic, and recent comparative
studies of multiple mutant alleles for col1a1a, col1a1b, col1a2, and
also bmp1a (described later) and plod2 described a diversity of
skeletal phenotypes (Table 2) with brittle bones as the common
feature (85).

The zebrafish sp7/osterix mutant has been shown to
model human osteogenesis imperfecta caused by recessive
damaging mutations in SP7 (125). This mutant showed uneven
mineralization, severe fractures caused by minimal impact, and
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TABLE 2 | Zebrafish mutants, transgene insertion mutants, and morphants showing altered skeletal mineralization.

Human gene Zebrafish name BMD

effect

Primary defect/effect Fish modeling Human skeletal

phenotype

Citation

ABCC6 gräte + ATP hydrolysis defects causing (ectopic)

increased mineralization in spine and soft

tissues

N/A Pseudoxan-thoma

elasticum

(77)

ATP6V1H atp6v1h – Increased osteoclast activity by

upregulated mmp9 and mmp13

Osteoporosis Familial osteoporosis

with short stature

(78)

BMP1 frilly fins, welded – Fibrillar collagen processing affecting bone

matrix integrity

Osteogenesis

imperfecta

Osteogenesis

imperfecta; high BMD

(in vertebrae) but weak

bones

(72, 79, 80)

C-FMS

(CSF1R/CD115)

panther, csfr1a + Reduced osteoclast number and immune

cell mobility causing stenosis

Osteopetrosis N/A (72, 81, 82)

COL11A2 col11a2 + Collagen triple helical stability; dominant

effect

OA: Stickler syndrome Stickler Syndrome (83)

COL1A1 chihuahua,

microwaved,

dmh13, dmh14,

dmh15, dmh29

– Collagen triple helix stability; dominant

effect leading to brittle bones in axial and

fin skeleton.

Osteogenesis

imperfecta and

Ehlers-Danlos

syndrome (chuhuahua

and microwaved)

Osteogenesis

imperfecta and

Ehlers-Danlos

Syndrome

(56, 70, 79, 84–86)

COL2A1 dmh21 (?),

dmh27, dmh28,

dmh30 (?)

= Collagen triple helical stability; dominant

effect. Notochord and vertebra

deformations.

Spinal deformations Stickler syndrome (56)

CTSK ctsk *U + Depletion of pre and mature osteoclasts Osteopetrosis Osteopetrosis (87)

CX43 (GJA1) stoepsel,

short-of-fin

– (?) Brittle vertebrae anomalies due to loss of

function hemichannel (Ca2+) activity

N/A Oculodento-digital

dysplasia

(88, 89)

CYP26B1 stocksteif, dolphin,

cyp26b1

+ Hyper-mineralization and fusion of the

vertebrae and joints due to altered

intracellular retonic acid metabolism

Retonic acid

processing

Craniosynostosis,

craniofacial anomalies,

fusions of long bones

(37, 90, 91)

DKK1 (DICKKOPF) hs:dkk* – When heat-shocked, Dkk1 is expressed

and blocks Wnt/Beta-catenin signaling.

Impaired elasmoid scale and ray fin

outgrowth.

N/A Osteolytic bone lesions

in multiple myeloma

patients

(92)

EDA and EDAR nackt (eda), finless

(edar), fang (edar),

topless (edar)

– Absence and deformation of dermal bone

structures such as lepidotrichia, elasmoid

scales, and skull

Ectodermal dysplasia,

impaired teeth

Hypohidrotic

ectodermal dysplasia 1

(X-linked); Tooth

agenesis

(93)

ENPP1 dragonfish + Ectopic hyper-mineralization in axial

skeleton due to altered phosphate

metabolism

Arterial calcification of

infancy

Arterial calcification

/hypophosphatemic

rickets

(94, 95)

ENTPD5 no bone – Does not mineralize bone due to altered

phosphate metabolism

N/A N/A (94)

GBA1 gba1 – Impaired osteoblast differentiation due to

altered Wnt signaling

Osteoporosis, Gaucher

disease

Osteoporosis, Gaucher

disease

(96)

GLI2 hs:gli2-DR* – Heat-shock (hs) initiates expression of

dominant repressive Gli2. Impaired scale

calcification.

N/A Culler-Jones syndrome;

holoprosencephaly

(92)

GOLGB1 (giantin) golgb1 + Ectopic mineralization in spine and soft

tissues by transcriptionally down regulating

galnt3 and changed cilia morphology

N/A GOLGB1

unknown–GALNT3

mutations cause

tumoral calcinosis

(49, 50)

IHH ihha – Loss of mineralization due to blocked

osteoblast differentiation in endochondral

bone. Irregular operculum and scale

morphology with reduced AR stain

Endochondral bone

repair and dermal

ossification

Acrocapitofemoral

Dysplasia,

Brachydactyly Type A1

(67, 97–99)

ITGA10

ITGBL1 #

itga10 ($)

itgbl1 ($)

– Focal adhesion Integrin A/B subunits.

Downregulated in prednisolone larvae.

Osteoporosis N/A (100)

(Continued)
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TABLE 2 | Continued

Human gene Zebrafish name BMD

effect

Primary defect/effect Fish modeling Human skeletal

phenotype

Citation

LGMN lgmn ($) + Legumain (secreted cysteine protease)

inhibits osteoblast activity by degradation

of fibronectin

Osteoporosis Osteoporotic–

upregulated in OP

bone

(101)

LRP4 lrp4 MO – (?) Malformed pectoral and tail fin and

deformed craniofacial skeleton with kidney

cysts

Cenani-Lenz

syndactyly

Cenani-Lenz

syndactyly,

osteoporosis,

Sclerosteosis

(102)

MEF2C mef2ca + Ectopic bone formation of neural crest

derived ligament due to altered DNA

methylation

N/A Unknown (103, 104)

N/A bone calcification

slow

– Non-mapped mutation causing delayed

ossification and increased Cyp26b1

expression

N/A Unknown (105)

PANX3 panx3 MO – Altered Ca2+ channel activity reducing

endochondral ossification

N/A N/A (106)

PLS3 pls3 MO – Reduced larval operculum mineralization Osteoporosis X-linked osteoporosis (107)

PTCH1, PTCH2 ptch1 (ptc2),

ptch2 (ptc1)

+ Increased mineralization in endochondral

bone

N/A Holoprosencephaly (67)

PTH4 # pth4* – Neuronal regulation of phosphate

metabolism

N/A PTH4 is absent in

terrestrial animals

(108)

PTHrP / PTHLH /

PTH3

pthlha/pthlhb MOs + Premature ossification during larval stage

under control of sox9

N/A Brachydactyly;

mutation in promoter

(109)

RANKL rankl U* – Induces osteoclast activity Osteoporosis Osteoporosis (34)

RPZ # rapunzel + Increased BMD in craniofacial and spinal

column elements

N/A None–Teleost specific

gene

(110)

SLC10A7 slc10a7 MO – Secretory pathway defect N/A Decreased BMD;

skeletal dysplasia

(111)

SP7 (OSX, osterix) sp7 (osx, osterix) – Decreased mineralization, skull sutures

defects, impaired teeth formation,

increased BMP signaling, and reduced

differentiation, but increased proliferation,

of osteoblasts. Homozygous mutant

adults are viable

Osteogenesis

imperfecta,

osteoporosis (?)

Osteogenesis

imperfecta

(112, 113)

SP7 (OSX, osterix) sp7 (osx, osterix)

U

– Decreased mineralization of endochondral

bone and vertebrae. Reduced osteoblast

number. Homozygous lethal at 14 dpf

Osteogenesis

imperfecta

Osteogenesis

imperfecta

(114, 115)

SPP1 spp1

(osteopontin)$

– Reduced AR staining in 5 dpf craniofacial

skeleton. Absent in whale shark genome

N/A N/A (116)

TGFB3 tgfb3 MO – Reduced calcification of juvenile bone N/A Oral clefting (117)

TSHR opallus + Mutation causes a constitutive active Tshr

leading to hyperthyroidism causing high

BMD

Hyperthyroidism Hyperthyroidism (76)

TWIST and TCF12 twist1b and tcf12 +/= Frontal skull sutures due to increased

osteoblast proliferation. Mineralization

normal.

Saethre-Chotzen

syndrome

Saethre-Chotzen

syndrome

(118)

$Mosaicism; MO, Morpholino; #No clear ortholog; (?) Indicated / implied; *Transgene affecting gene; UMedaka.

misshapen bones. Moreover, rare craniofacial characteristics
caused by impaired SP7 function, such as wormian bones,
reported in human patients carrying mutations in SP7 were also
observed in zebrafish (112).

Another example of a zebrafish mutant that recapitulates
patient phenotype is the bmp1amutant frilly fins (frf ). In humans
a damagingmissense mutation in the BMP1 signal peptide causes
brittle bones in an osteogenesis imperfecta pedigree (79). frf

mutants showed normal osteoblast number, but pericellular
pro-collagen processing (C-pro-peptide removal) defect
leading to mineralization defects in the axial skeleton and fin
rays (79).

Collagenopathies, such as Stickler Syndrome, have also been
successfully modeled in zebrafish. We have recently reported a
col11a2 zebrafish mutant showing specific traits of the human
disease which include thicker collagen fibers and degradation of
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FIGURE 4 | Fin regeneration and fracture assay to visualize and quantify live bone formation and repair. (A) Schematic representation of a zebrafish with a standard

fluorescent stereomicroscope image of a live Alizarin red S (AR) pre-amputation caudal fin (inset). (B) Schematic representation of bone regeneration after fin

amputation showing the (simplified) cascade of events that follow after fin amputation to regenerate bone (a single ray depicted here). This allows studying de novo

bone formation by newly formed osteoblasts (orange cells) and differentiated osteoblasts (green cells) and subsequent remodeling by osteoblasts and osteoclasts

(purple cells) in an adult fish. Note that during osteogenesis that there is a gradient of mineralization. (C) Live images of the tail fin labeled with Alizarin red (red) prior to

amputation (i, ii) and Calcein (green) post-amputation (iii, iv) taken on a fluorescent dissecting microscope. All images in panel come from the same fish. Seven days

post-amputation showing regrowth of new bone (green). Note that intense Calcein staining is visible distally from the amputation site (white dotted line). (D) The

fracture healing assay involves applying pressure on a fin ray bone element to induce a small fracture to one segment of the fin ray (i), which is visible with life AR

staining (ii). Green Calcein labels the new bone formed in the fracture callus by 7 days (iii and iv). The white arrow indicates the fracture site. Scale bars = 500µm, 3

months old wildtype TL/EKK females.

type-II collagen in zebrafish larvae leading to compromised jaw
shape, mechanical properties and movement of the jaw leading
to premature OA (83). In many skeletal dysplasias zebrafish
not only model the human condition but allow mechanistic

insight into how genetic changes lead to the cellular changes that
underpin the disease symptoms. As such zebrafish offer exciting
prospects for delivering functional studies in new osteoporotic
genetic loci.
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FIGURE 5 | Zebrafish elasmoid scale structure and bone cell types. (A) Single scale from the flank of a 3 months old fish carrying the sp7:gfp osteoblast reporter

transgene (green) and stained for Alizarin Red S (AR, red). Whole scale is shown in bright field (i) and gray scale images for AR (ii) and GFP (iii) in the top panels. The

brightfield image (i) depicts the anterior anchor region (A, black dotted line boundaries), the lateral circuli (L, green dotted line boundaries, white arrow), central region

(C, surrounded by black, green, and light blue dotted lines), and central region covered by epidermis (C+E, light blue dotted line, with grooves by green arrow) with

enhanced mineralization. (B) Confocal images showing a merge image of osteoblasts (sp7:gfp transgenic fish, green) abundantly distributed over the freshly harvested

scale and AR staining (red). Individual channels are depicted in gray scale images. Note increased mineralization at the edge of the scale corresponding increased

GFP presence (blue arrows). Insets focus on the lateral circulus and note osteoblast cytoplasmic protrusions (pink arrows). (C) Confocal images visualizing osteoclasts

with cathepsin K (ctsk) YFP reporter expression (green), mineralization by AR (red), and brightfield (gray). Note that YFP positive cells were predominantly seen in the

central region with epidermis (C+E) and distal edges of the central region (C). (D) Multiphoton forward scattering (second harmonic generation (SHG), 880 nm

wavelength) visualizes collagen fibrils in an ethanol fixed scale. Inset (i) shows the organization of collagen fibrils in a plywood structure. Wildtype strains (panel):

TL/EKK (A), TL (B), AB/TL (C). Scale bars 100µm.

ASSAYS OF CAUDAL FIN REGENERATION
AND FRACTURE REPAIR TO ASSES
DE NOVO BONE MATRIX FORMATION

Zebrafish are capable of regeneration many tissues and organs
including the heart, lens, and pancreas. They also show
regeneration of skeletal tissues following amputation of the tail
fin (lepidotrichia) or removal of elasmoid scales (126, 127). As

the fins and scales are translucent, and readily imaged they allow

cells and their calcified matrix to be visualized in detail using

standard fluorescent microscopes (Figure 4A). After amputation

of a ray fin (typically a caudal fin), a wound healing response

results in the formation of an epimorphic blastema which

regenerates all affected tissues of the amputated organ, including
bone, in a controlled fashion (128). Following this inflammation
response, osteoblasts undergo dedifferentiation and proliferate to
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contribute to the blastema (33, 129). These juvenile osteoblasts
then secrete matrix with intermediate properties between
cartilage and bone and are later remodeled as mature bone by
matured osteoblasts and recruited osteoclasts (Figure 4B) (33,
128). These fins can also be injured via cryo-injury by placing
a −196◦C knife perpendicularly to the caudal fin rays allowing
to study the bone resorption response (130). These techniques
offer great perspectives to compare bone formation and bone
remodeling, in an adult context.

Using transgenic lines and in vivo staining methods, such
as AR (fluoresces red, 545 nm excitation, 580 nm emission) and
Calcein (fluoresces green, 495 nm excitation, 515 nm emission),
which binds to calcified matrix, the dynamics of bone formation
can be visualized by using a fluorescent stereomicroscope in a
regenerating caudal fin of a living fish. This allows longitudinal
analysis by following regeneration rate and volume, since AR
stains fully mineralized bone and Calcein binds to newly
deposited bone matrix (Figure 4C).

The utility of fin regeneration assays to test bioactive
compounds has been demonstrated by treating regenerating
fins with the glucocorticoid prednisolone. Following treatment
bone formation was reduced, and furthermore, both osteoblast
number and subsequent bone deposition and osteoclast
recruitment was reduced in these fins (131). Interestingly,
skull injury repair is less affected following prednisolone
treatment (131), this is similar to mammals. Treatment of fins
with Botulinum toxin (Botox) leads to a reduction in bone
mineralization and regeneration following amputation (132),
comparable to the situation in mammals where fracture repair is
impaired following Botox induced paralysis (133, 134).

A major issue with OP is increased fracture risk due to weaker
bone structure, and therefore identification of therapeutics
that can improve fracture healing is desirable. Zebrafish
show a fracture healing response, including callus formation
(Figure 4D), with strong similarities to that of mammals.
Fractures can be induced in zebrafish fins using simple pressure
applied externally to the fin (131, 135). As the fin has around 300
bony rays, multiple fractures can be induced in a single fin. A
fracture callus is formed and de novo bone formation is initiated
2 days post-injury accompanied by an increased expression
of osteoblast genes such as runx2 and sp7/osx (131, 135). As
the fin is flat, the fracture repair process can be dynamically
tracked at cellular resolution using transgenic lines (Table 1) or
by labeling bone formation with AR and Calcein (Figure 4D).
As for regeneration, it is possible to add pharmacological agents
to the regenerating tissue (131), allowing potential osteoanabolic
compounds to be tested for beneficial effects in fracture repair in
vivo (136).

SKELETAL ASSAYS USING ELASMOID
SCALES

The body of zebrafish is covered with elasmoid scales made
of calcified dermal bone harboring osteoblasts and osteoclasts
(Figures 5A–C). The calcified matrix is composed of a plywood
structure of collagen fibrils (137), which are easily visualized with

second harmonics generationmicroscopy (Figure 5D). Scales are
embedded in, and grow from, the dermis and shed and replace
naturally throughout life of the fish (138). As scales are part of
the exoskeleton they are easy to collect from an anesthetized fish.
Each flat scale is subdivided in four regions by its morphology:
anterior, lateral, central, and central with epidermis (Figure 5A)
(139). The anterior region is attached to the skin and does not
grow or form new bone. The lateral area is characterized by
its curved ridges (circuli), whereas the central area has linear
trenches. Within the lateral circuli and central grooves newly
mineralized matrix is formed by osteoblasts (139) and degraded
by osteoclasts (140). The posterior area has increased osteoblast
number and bone is continuously deposited (Figures 5A,B).
Osteoblasts in different regions of the scale express different
markers of maturity (97). As the scale contains living cells,
including nerve and vascular endothelial cells, their use offers an
opportunity to study bone cell behavior in a mature context.

PHARMACOLOGICAL MANIPULATION OF
BONE TISSUE AND CHEMICAL GENETIC
SCREENING

As larvae are small and develop in water, it is possible to grow
larvae in multi-well format with the addition of water-soluble
compounds to their growth media for easy uptake. Zebrafish
have been used extensively for high-throughput screening using
larvae and now drugs are used in clinical studies that were first
identified in zebrafish. A great example is the identification of the
kinase inhibitor dorsomorphin (BMP type-1 receptor (BMP1R)
antagonist) to treat lymphoma which was discovered in an early
embryogenesis phenotype screen using 7,500 small-molecules
(141, 142). Another example used semi-automated imaging
strategy of Calcein stained larvae exposed to a small-compound
library identifying 6 catabolic and 2 anabolic compounds that
alter notochord mineralization (143) (Table 3). Thus, when
fluorescent compounds are twinned with fluorescent reporters
for osteoblasts (e.g., sp7:gfp with AR) (Figure 2B), it will allow
assessment of osteoblast number and activity in a semi-high
content setting using plate imaging microscopy (162). When
these assays are combined with high efficiency CRISPR/Cas9
genome engineering strategies, it will open avenues to test
compounds of interest that could alter disease causing mutations
deteriorating effects. Thus, this comprehensive approach will
also offer opportunities to develop compounds for personalized
medicine. For OP research it may be more advantageous to
focus on adult skeletal assays to allow assessment of osteoclast
activity (bone catabolism) simultaneously with an assessment of
osteoblasts (bone anabolism). An example of pharmaco-genetics
improving brittle bones, is when type-I collagen secretion in the
bone matrix is ameliorated by treating chi/+ mutants with 4
phenyl butyrate (4PBA) compound (86).

Zebrafish elasmoid scales are bony plates that are
small and contain bioactive osteoblasts and osteoclasts
(Figures 5B,C). These therefore offer huge potential as a primary
pharmacological screening tool for skeletal compounds. The
scales can be cultured for 72-h post-harvesting during which they
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TABLE 3 | List of compounds, diets, and exercise that alter ossification in zebrafish larvae, adults, and/or adult elasmoid scales.

Treatment Gene/pathway BMD effect Primary effect Part of compound

screen?

Life stage Citation

4PBA HSP47–ER

protein/fibrillar

collagen folding

+ Increased mineralization in both WT and chi/+

fish due to better clearing of type-I collagen

from ER

No Adult larval (86)

Alendronate /

etidronate

Alendronate/etidronate

therapies

(bisphosphonates)

+ Counteracts the negative effects of GIOP on

scales. Reduced TRAP and increased AL

activities.

No Adult larval (144, 145)

BGJ398 FGF-receptor

kinase inhibitor

– Reduced sp7 positive osteoblasts in elasmoid

scales resulting in impaired scale growth

No Adult (92)

BML-2832 library Alkaline

phosphatase

inhibitors

+/– Six catabolic and two anabolic compounds

affect larval mineralization of the vertebral

region.

Yes Larval (143)

BMP-2a BMP pathway + Increased sp7:luciferase activity on cultured

scales

No Adult (38)

Botulinum toxin Botox muscle

paralyzes

– Lower BMD and bone deposition in fin ray

bones due to muscle paralysis. Impaired

osteoblast differentiation.

No Adult (132)

Cobalt chloride Down-regulation

of stem cell

markers

– Reduced number of osteoblasts and

subsequent mineralization of the operculum,

without affecting its size.

No Larval (146)

Cyclopamine and

BMS-833923

Hedgehog

pathway

– Smaller scales and fins during regeneration.

Scales show a lower number of osteoblasts.

No Adult (97, 147)

Dexamethasone Glucocorticoids – Glucocorticoid pathway inducing osteoporosis

(GIOP) by inhibiting osteoblast activity

No Adult larval (148)

DMP-PYT BMPII-R–

SMAD1/5/9

+ Increased BMP (pSMAD1/5/8(9)) and WNT

signaling in 6–7 dpf larvae exposed for 4 days.

Yes, C2C12 cells Larval (149)

Dorsomorphin BMPI-R–

SMAD1/5/9

– Reduced BMP (pSMAD1/5/8(9)) and ALK

activity, reducing osteogenesis by inhibiting

osteoblast activity.

Yes, compound

libraries

Embryo

Larval

(141)

Ferric ammonium

citrate

Radical Oxygen

Species

– Iron overload down regulating osteogenic

markers which can be rescued with hepcidin1

overexpression

No Adult larval (150, 151)

High fat diet Obesity risk factor

for OP

– Increased osteoclast activity in elasmoid scales No Adult (152)

High glucose diet Hyperglycemia OP

risk factor

– Increased osteoclast activity and peripheral

bone degradation in elasmoid scales

No Adult (153)

Hyper-gravity Increased loading + Enhanced mineralization after exposure to 3 g

in a large diameter centrifuge

No Larval (154)

Niclosamide,

Riluzole, Genistein

WNT pathway + Increased sp7:luciferase activity on cultured

scales

Yes, WNT compound

library

Adult (38)

N-LLEL and

anandamide

Long-chain fatty

acids binding

cannabinoid type

receptors

+ Higher alkaline phosphatase activity and

protecting effect on the alteration of bone

markers induced by GIOP

Yes, on scales Adult (155)

Oligosaccharides A. bidentata

oligosaccharides

+ Dried root extract of Asian medicinal herb

reducing osteoclast and increasing osteoblast

activities

No Larval (156)

Omega-6

Arachidonic acid

Omega-6

derivative

– Stimulating matrix metalloproteinase activity

Enhanced bone turnover by increased

osteoclast activity in the scale.

No Adult (157)

Prednisolone Glucocorticoids – Glucocorticoid pathway inducing osteoporosis

by inhibiting osteoblast activity

Yes, used as OP

control

Adult larval (100, 140)

R115866 Cyp26

antagonist–retonic

acid metabolism

+ Hyper-mineralization of axial skeleton and

phenocopying of stockteif mutant phenotype

No Larval (37)

(Continued)

Frontiers in Endocrinology | www.frontiersin.org 12 January 2019 | Volume 10 | Article 618

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Bergen et al. Zebrafish Osteoporosis

TABLE 3 | Continued

Treatment Gene/pathway BMD effect Primary effect Part of compound

screen?

Life stage Citation

Retonic acid Cyp26b1 and

collagen

deposition

+ Altered collagen deposition due to increased

activity of Cyp26b1

No Larval (37, 158)

RU486 Glucocorticoid

receptor

antagonist

+ Used as prednisolone specificity/toxicity

control–reverses its catabolic effect

No Larval (145)

SD-134 Inhibits legumain

(LGMN) protease

domain

+ Increase in larval vertebrae mineralization after

4 days of exposure (7 dpf)

No Larval (101)

Sodium

metasilicate

Silicate ion + Silicate ion stimulating osteoblast function No Larval (159)

SU5402 FGF-1 receptor

antagonist

– Impaired osteoblast proliferation in amputated

fins

No Adult (33)

Swimming

exercise

Bone loading + Zebrafish performed controlled exercise in a

tunnel have a higher vertebrae BMD compared

to non-exercising fish

No Adult (160)

Tanshinol D(þ)b-3,4-

dihydroxyphenyl

lactic acid

+ Herbal extract reducing oxidative stress and

reduction of glucocorticoid induced

osteoporosis phenotype.

No Larval (148)

Teriparatide Teriparatide

(parathyroid

hormone)

+ Human osteoporosis treatment increases

mineralization in GIOP fish.

No Larval (161)

Vitamin D3 Cholecalciferol

and calcitriol

+ Enhanced mineralization in prechordal sheet

and cleithrum due to altered calcium uptake.

No Larval (146, 161)

can arrayed in multi-well plates and exposed to pharmacological
compounds. As the scale is thin, osteoblasts are accessible to
osteogenic factors, and have been demonstrated to react in a
dose dependent manner to BMP-2 (38). To model an OP-like
phenotype, individuals can easily be exposed to prednisolone
/ dexamethasone (glucocorticoid pathway) (140, 148), ferric
ammonium citrate (150, 151), or metabolically with a high
fat or glucose diet (152, 153), see also Table 3. In the context
of glucocorticoid induced OP (GIOP), the bisphosphonate
Alendronate reverses the effects of prednisolone on ex vivo
cultured elasmoid scale bone, which showed a reduction in
osteoclast activity (measured by TRAP) and an increase in bone
anabolism (measured by alkaline phosphatase activity) (144); the
same response as in mammals (163, 164). As fat metabolism has
been implicated with OP, a small fatty acid derivative library was
used on GIOP adult fish. Biochemical assays on scales derived
from these fish showed that cannaboid receptor 2 binding
anandamide and N-linoleoylethanolamine (N-LLEL) fatty acids
drive osteogenesis by stimulating alkaline phosphatase (ALK)
activity (155).

AWNT-pathway compound library was tested to identify new
osteo-anabolic compounds using an assay in which luciferase
was expressed under control of the sp7 promoter allowing
a quantitative readout of osteoblast activity (Figure 6). This
screen identified three osteo-anabolic (Table 3) and 15 osteo-
catabolic compounds from 85 trial compounds (38). This library
contained five previously published compounds tested in vivo,
and nine tested in vitro mammalian bone progenitor cell lines.
Strikingly, this scale luciferase assay was able to reproduce the

effect of all in vivo tested compounds and about half of all
in vitro tested compounds (38). These studies demonstrate the
exciting potential that scale assays represent for testing of skeletal
compounds relevant to OP in a cost-effective manner.

POTENTIAL DRUG DISCOVERY PIPELINE
FOR OSTEOPOROSIS

Recently, there has been a substantial expansion in the quantity
of high-quality genetic data from large-scale human genomic
and transcriptomic studies that contain potential osteo-anabolic
factors. Here we describe a potential screening pipeline that
makes use of the genetic tractability and imaging in zebrafish to
offer a relatively low cost, high-throughput option compared to
traditional in vitro and in vivomodels (Figure 7).

After identification of several candidate genes/drug targets
from human genetic studies, the pipeline consists of two
experimental arms that can be carried out simultaneously to
generate primary pre-clinical data to validate the putative drug
targets. Using genome editing, loss-of function studies can be
performed in transgenic backgrounds to test the effect of the gene
of interest on the developing skeleton or on mineralization, and
simultaneously allowing safety testing for deleterious effects on
other tissues or organs. For example, using CRISPR/Cas9 editing,
it is possible to generate hundreds of mosaic zebrafish mutants
within 3–4 weeks (includes the generation of the targeting
reagents), which is difficult to achieve in other available systems,
such as cultured chondrocytes and osteoblasts (differentiation of
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FIGURE 6 | Schematic representation to show how osteoblast activity can be quantified from scales. Scales from sp7:luciferase transgenic reporter fish are harvested

from the lateral flanks of a fish, then cultured in multi-well plates with DMEM culture medium (orange wells) at 28◦C for 24 h. Compounds of interest can then be

added (red wells) to the scales and incubated prior addition of a luciferin cocktail (green wells) and measurement of luciferase activity with a luminescent (yellow

sparks) plate reader. Based on text from de Vrieze et al. (38).

these takes multiple weeks). With CRISPR/Cas9 editing it is also
feasible to study the specific human diseasemutation in zebrafish,
as long as it is in a conserved coding region. These fish can be
grown to adulthood and germline mutations identified allowing
more detailed studies on the mature skeleton to be performed
(Figure 7).

In addition to genetic studies, pharmacological assessment of
the identified putative drug target can be performed. By using
water-soluble compounds, or lipid soluble compounds dissolved
in DMSO, screens in a multi-well format can be performed
using ex vivo culture of elasmoid scales. As a single adult fish
has around 200 scales (138), this assay allows testing of many
compounds, including control compounds (e.g., osteo-anabolic
(alendronate) and -catabolic (prednisolone), on scales harvested
from a single individual, reducing intra-individual variation
(38). Therefore, this technique offers a platform to generate
a primary read-out of novel osteo-active compounds in the
context of homeostasis in a mature tissue. Additionally, this ex
vivo technique will reduce the number of (potentially harmful)
compounds being exposed to living fish, therefore contributing

to ethical refinement and reduction of experimental animal use,
but also reducing associated costs. As this scale assay reduces the
number of putative osteogenic compounds substantially, these
positive compounds can be further validated (along with safety
testing) on developing transgenic larvae. These larvae would
be plated out at 3 larvae per well and the compounds added
from 3 days of development, with high-content imaging used
for preliminary assessment of the effects of each compound and
more detailed analysis including dose response followed up for
validated positive hits. Further downstream tests, such as fin
regeneration or fracture assays, can further reduce the number
of compounds as such that only high-confidence compounds will
be assessed in tetrapod pre-clinical studies (Figure 7).

If desired, the two experimental arms can be performed
simultaneously, so that stablemutants are being generated during
the compound testing phase. This opens the possibility to
perform pharmacogenetic experiments in a relatively short time
frame to validate the effects of putative drugs on specific disease
mutations to see if they can “rescue” the disease phenotype
(Figure 7). Together, zebrafish offer the potential in future to
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FIGURE 7 | Proposed pipeline using zebrafish as a primary testing platform to address bottleneck for fast and affordable translation of human genetic findings. Two

experimental arms using the genetic and pharmacological toolboxes allow simultaneous drug target validation. The blue reversed triangle depicts the reduction in

number of putative osteo-anabolic compounds (along with an increase in confidence) when testing the compounds using the skeletal assays available.

bridge the gap between human genetic hits, and fast functional
validation.

PROSPECTS FOR ZEBRAFISH IN
OSTEOPOROSIS RESEARCH

The zebrafish is a well-established increasingly used animal
model for studying various diseases including (congenital)
metabolic bone diseases (165). As zebrafish have historically been
mainly used for its fast-embryonic development properties to
better understand disease onset, zebrafish aging studies have only
recently been conducted to model age-related diseases such as
OA and OP. OP is an emerging field in zebrafish modeling and
more research is needed to fully establish an OP-like phenotype

as it was previously determined in its teleost cousin medaka (34).
The advantageous properties as set-out in this review should be
further exploited to benefit drug development for OP. Zebrafish
show the appropriate response to increased mechanical loading,
where the cellular (transcriptional) response initiates increased
bone formation and mineralization in the loaded bone elements
that are easily quantified (154, 160). However, since zebrafish
and mammalian bone morphology show some differences (64), a
pharmacological assay should particularly focus on the complex
tissue and osteoblast-osteoclast interactions that underpin OP
pathology. As traditional rodent and in vitro co-culture both
have limitations to pursue large-scale drug discovery in a genetic
context, zebrafish can take the place as a primary testing platform
and therefore opening avenues to work toward gene specific
compound discovery that have been identified as risk factors
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in human genetic studies. After primary safety testing, these
identified compounds can be further tested in mammalian
OP models to determine the effect on BMD, bone strength,
and trabeculation. Fully exploiting these opportunities by using
zebrafish as a primary screeningmodel will open exciting avenues
to perform pharmacogenetics for OP on a larger scale.
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Osteoporosis, characterized by deteriorated bone microarchitecture and low bone

mineral density, is a chronic skeletal disease with high worldwide prevalence.

Osteoporosis related to aging is the most common form and causes significant morbidity

and mortality. Rare, monogenic forms of osteoporosis have their onset usually in

childhood or young adulthood and have specific phenotypic features and clinical

course depending on the underlying cause. The most common form is osteogenesis

imperfecta linked to mutations in COL1A1 and COL1A2, the two genes encoding type

I collagen. However, in the past years, remarkable advancements in bone research

have expanded our understanding of the intricacies behind bone metabolism and

identified novel molecular mechanisms contributing to skeletal health and disease.

Especially high-throughput sequencing techniques have made family-based studies an

efficient way to identify single genes causative of rare monogenic forms of osteoporosis

and these have yielded several novel genes that encode proteins partaking in type I

collagen modification or regulating bone cell function directly. New forms of monogenic

osteoporosis, such as autosomal dominant osteoporosis caused by WNT1 mutations

or X-linked osteoporosis due to PLS3 mutations, have revealed previously unidentified

bone-regulating proteins and clarified specific roles of bone cells, expanded our

understanding of possible inheritance mechanisms and paces of disease progression,

and highlighted the potential of monogenic bone diseases to extend beyond the skeletal

tissue. The novel gene discoveries have introduced new challenges to the classification

and diagnosis of monogenic osteoporosis, but also provided promising new molecular

targets for development of pharmacotherapies. In this article we give an overview of the

recent discoveries in the area of monogenic forms of osteoporosis, describing the key

cellular mechanisms leading to skeletal fragility, the major recent research findings and

the essential challenges and avenues in future diagnostics and treatments.

Keywords: early-onset osteoporosis, Wnt signaling, osteogenesis imperfecta, PLS3, bone metabolism

27

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2019.00070
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2019.00070&domain=pdf&date_stamp=2019-02-25
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:outi.makitie@helsinki.fi
https://doi.org/10.3389/fendo.2019.00070
https://www.frontiersin.org/articles/10.3389/fendo.2019.00070/full
http://loop.frontiersin.org/people/574449/overview
http://loop.frontiersin.org/people/529959/overview
http://loop.frontiersin.org/people/651965/overview
http://loop.frontiersin.org/people/651162/overview
http://loop.frontiersin.org/people/535471/overview


Mäkitie et al. Insights to Monogenic Osteoporosis

INTRODUCTION

Bone Health
Bone is a rigid connective tissue composed mainly of organic
components (90% type I collagen, the rest other non-collagenous
structural proteins and cells) and inorganic minerals (mostly
calcium hydroxyapatite). These combined give bones their
sturdiness to withstand an individual’s weight and the elasticity to
enable movement and resist fractures. Bone comprises dense and
compact cortical bone and cancellous, loosely-webbed trabecular
bone, and serves as a reservoir for minerals, growth factors,
cytokines, and fat. Bone also functions as an endocrine organ by
secreting several systemic hormonal factors (1).

Bone is all but a quiescent tissue—it undergoes active
renewing and remodeling throughout life. By coupled, successive
processes of bone resorption and bone formation, together
called “bone turnover,” old or damaged bone is eroded and
replaced by new bone to maintain healthy and strong bone tissue.
Throughout childhood and adolescent growth, the period of
bone mass accrual, bone turnover is formation-favoring, until
the highest amount of bone mass, termed “peak bone mass,”
is attained by young adulthood. Thereafter, bone mass remains
fairly constant until bone resorption begins to dominate by the
age of menopause and bone mass slowly declines.

Factors that impede skeletal growth in childhood or accelerate
bone loss later in adulthood, such as long-term or chronic
illnesses, glucocorticoid treatment and other medications,
hypogonadism and menopause, other endocrine disorders and
cancers, impose a great risk for low bone mass and osteoporosis
(1–3). In childhood, especially glucocorticoids play a major role
in secondary osteoporosis. Studies on patients receiving systemic
steroids for acute lymphoblastic leukemia (4), juvenile idiopathic
arthritis (5, 6), Duchenne muscular dystrophy (7) or asthma (8)
all indicate increased peripheral and vertebral fracture rates.

Osteoporosis
Osteoporosis is a chronic skeletal disease with high prevalence
and mortality worldwide. It is characterized by low bone
mass and bone mineral density (BMD), and by destructed
bone microarchitecture that often results from imbalanced
bone formation and resorption or from abnormal matrix.
Impaired bone quality leads to compromised bone strength
and high propensity to low-energy fractures in long bones
and vertebrae (9). Osteoporosis, with frequent fractures, pain
and physical limitations, causes significant human suffering and
burdens the health care system (9). BMD is considered to
define osteoporosis and risk of fractures. It is assessed using
dual-energy X-ray absorptiometry (DXA), where reduction of
more than 2.5 standard deviations from the normal mean for
young adults (T-score) is diagnostic of osteoporosis. Of note,
osteopenia (T-score 1.0 to −2.5) together with a high probability
of fractures, or a fragility fracture without another metabolic
bone disease and independent of BMD are also clinically
indicative of osteoporosis. Pediatric osteoporosis requires more
than mere DXA-determined low BMD, as variation in growth
and pubertal maturation make interpretation of BMD values
challenging. Therefore, age-, gender-, and body size–adjusted

DXAmeasurements (Z-scores) must be considered together with
fracture history. A pathologic fracture history entails (i) ≥2
clinically significant long bone fractures by age 10 years, (ii) ≥3
clinically significant long bone fractures by 19 years, or (iii) one
or more vertebral compression fractures in the absence of high-
energy trauma,meaning a≥20% loss in vertebral anterior, middle
or posterior height. However, a vertebral compression fracture
alone suffices for the diagnosis of pediatric osteoporosis even in
the presence of normal BMD (2, 9–12).

GENETICS IN BONE HEALTH

Genetics in Bone Health
Genetics play a substantial role in determining an individual’s
skeletal strength, bone microarchitectural properties and risk
of osteoporosis. BMD is known to be a highly heritable trait
and twin studies have shown genetic factors to determine up
to 80% of its variance (13, 14). Genetic factors influence bone
health in a polygenic manner and multiple gene variants, or
single nucleotide polymorphisms (SNPs), in several different
genes each contribute to the overall risk for compromised
bone health. Recent research, especially large-scale genome-wide
association studies in large cohorts, has elucidated the complexity
of genetic networks that are important for bone metabolism but
also evidenced limitations in our current knowledge. On the
other hand, significant scientific advances have been made by
studying rare monogenic forms of osteoporosis in which one
mutation in a single gene with a major role in bone metabolism
dominates and is alone sufficient to cause osteoporosis. Technical
advancements in research methods, especially high through-
put sequencing techniques, have made family-based studies an
efficient way to identify new genes relevant to osteoporosis. Such
studies have enabled recognition of novel molecular mechanisms
and given leeway to understanding the intricacies behind bone
metabolism (13, 14). In this article we only briefly summarize
GWAS methodology and recent advancements while the main
focus is on discoveries made from family-based research on
patients and families with monogenic forms of osteoporosis.

Genome Wide Studies to Identify
Contributing Genetic Factors
Genome wide association studies (GWASs) have proven
successful and robust in deciphering the genetic mechanisms
underlying complex diseases, including osteoporosis (14, 15).
As mentioned, single nucleotide variants (SNVs) in several
different genomic sites all contribute to bone quality and
strength and risk of osteoporosis but are often very common
in the general population and, by themselves, have only a
minor effect (16). The current GWAS catalog, released in
September 2018, comprises 55 separate studies focusing on
bone properties, fractures or osteoporosis. Together they report
425 different lead SNVs, in 118 different genomic regions,
that associate with some aspect of bone on a genome-wide
significant level (Figure 1). From these, altogether 144 different
genes are reported to be directly linked to, or plausible candidate
effectors, for the identified signals. Of note, this catalog is
not entirely up to date due to the extensive curation required
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FIGURE 1 | Manhattan plot displaying all lead SNPs independently associated with bone-related traits reported to the GWAS catalog as of September 2018. The

associated SNPs highlight genomic regions important to bone. However, they each have only a minor effect on an individual’s skeletal qualities and risk of

osteoporosis and hence have limited use in clinical practice.

before publication in the GWAS catalog. Recently, Kemp et al.
undertook a colossal genome-wide search for genetic factors
correlating with BMD, estimated from quantitative ultrasound
of the heel (eBMD) (17). The GWAS is the largest to date,
encompassing a total of 142,487 individuals from the UK
Biobank. The authors were able to identify 203 loci, of which
153 were novel, to be associated with eBMD. These together
explained about one third of the total variance in eBMD (17).
Although highly successful, none of the previous GWA-studies
with DXA-derived BMD have been as successful as the study
by Kemp et al.

Despite these great advances, thus far, only <10% of the
total estimated genetic variance in BMD can be explained by
the results of the performed GWA-studies (18–21). Further,
GWASs have predominantly been successful in identifying
common variants with a small effect size (Figure 1), which,
while giving insight into bone biology, have no clear or direct
clinical relevance. However, recent GWASs utilizing whole
genome sequencing (WGS) data have been able to identify
variants with larger effect sizes. In the largest DXA-derived
GWAS to date, Zheng et al. showed that rs11692564, a
non-coding SNP around 50 kb downstream of EN1, had an
estimated effect size of +0.20 SD for lumbar spine BMD (19).
Leveraging the Icelandic sequencing initiative withWGS data for
>2,000 individuals, rare variants can be imputed and assessed.
These data have enabled low frequency variants with large
effect sizes for BMD in COL1A2 and LGR4 to be identified
(22, 23). Several genomic loci, identified through common
genetic variation, have also been linked to genes known to
underlie monogenic forms of skeletal pathology. In a large
meta-analysis on BMD conducted by Estrada et al. (18), the

authors were able to identify 60 genes likely to underlie the
association signals. Of these, 13 genes (22%) had been implicated
in monogenic skeletal disorders and 27 genes (45%) had a
corresponding knockout mouse with a skeletal phenotype (14,
18). This demonstrates that even though the signals picked up
by GWASs might indicate a weak effect from the measured
variation, it is likely that rare and more damaging genetic
variations in the same genomic locus might have a large effect.
The genomic areas implicated in these GWASs are therefore
likely to be of greater importance than the individual signal
divulges (24).

While considering the great success of GWASs, the results
need to be interpreted in light of the studied trait. Fracture
is the most clinically relevant outcome measured, while BMD
represents perhaps the best proxy as it is still considered the
main determinant for bone strength, and the main diagnostic
measurement for osteoporosis (10, 25). BMD measured by
quantitative ultrasound (QUS) of the heel (eBMD) can
be used as a cost-effective alternative for BMD and is
also independently associated with fractures (ISCD Official
positions, 2015). The correlation between BMD and eBMD
is, however, not very strong (17, 26). Even the DXA-derived
BMD is a blunt measurement for bone health and fracture
prediction and needs to be considered with other diagnostic
parameters when clinically evaluating a patient’s skeletal
health (27).

Recent Advances in Genetic Research
As mentioned, several monogenic forms of osteoporosis have
been described. Osteogenesis imperfecta (OI) is the best-
known form of monogenic osteoporosis and comprises a
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heterogeneous family of different heritable bone dysplasias
with skeletal fragility (28). Parallel to new developments in
genetic methodology, new gene discoveries in variable forms of
monogenic osteoporosis have been made and, to date, the list
of genetic causes of OI and monogenic primary osteoporosis
comprises altogether 19 genes (Table 1). The novel genetic
findings have considerably enhanced our understanding of the
complexities of bone metabolism and uncovered new molecular
pathways that regulate bone metabolism and contribute to
skeletal pathology. They span beyond the collagen-related
pathways to include signaling cascades regulating bone cell
function and the extracellular matrix, as described in detail
below. The great variability in clinical features and inheritance

patterns emphasize the importance of a molecular diagnosis in
these patients.

PATHS TO MONOGENIC OSTEOPOROSIS

Defects in Bone Cell Function and Bone
Remodeling
Normal osteoblast and osteoclast functions are key to sustaining
healthy bone tissue. Bone resorption by osteoclasts and
formation by osteoblasts are tightly linked in successive
repetitive cycles at specific bone sites and the processes
are meticulously controlled by several locally produced and
circulating systemic factors (29). Communication between the

TABLE 1 | Different molecular mechanisms and genes underlying osteogenesis imperfecta.

Pathophysiological

mechanism

Gene Protein Inheritance Number of

known

mutations

OMIM (Phenotype MIM number)

Defects in collagen type I

synthesis, structure, folding,

post-translational

modification, processing

and cross-linking

COL1A1 Collagen alpha-1(I) chain AD >1,000* 166200; 166210; 259420; 166220

COL1A2 Collagen alpha-2(I) chain AD; AR◦ >600* 259420; 166210; 166220

CRTAP Cartilage-associated protein AR 32* 610682

PPIB Peptidyl-prolyl cis-trans isomerase B;

cyclophilin B

AR 17* 259440

P3H1 Prolyl 3-hydroxylase 1 AR 69* 610915

FKBP10 Peptidyl-prolyl cis-trans isomerase

FKBP10

AR 38* 610968

PLOD2 Procollagen-lysine,2-oxoglutarate

5-dioxygenase 2

AR 10* 609220

SERPINH1 Serpin H1 AR 9* 613848

BMP1 Bone morphogenetic protein 1 AR 11* 614856

Defects in other proteins

leading to abnormal bone

mineralization

SPARC SPARC; osteonectin AR 2* 616507

SERPINF1 Pigment epithelium-derived factor

(PEDF)

AR 38* 613982

IFITM5 Interferon induced transmembrane

protein 5

AD 2* 610967

PLS3 Plastin 3 XLD 17 300910

Defects in osteoblast

differentiation and function

TMEM38B Trimeric intracellular cation channel

type B

AR 6* 615066

WNT1 Proto-oncogene Wnt-1 AR 35* 615220

SP7 Transcription factor Sp7; osterix AR 2* 613849

CREB3L1 Cyclic AMP-responsive

element-binding protein 3-like protein

1

AR 3* 616229

MBTPS2 Membrane-bound transcription factor

site-2 protease

XLR 2 301014

Unknown TENT5A (also

known as

FAM46A)

Terminal nucleotidyltransferase 5A AR 3 617952

AD, autosomal dominant; AR, autosomal recessive; XLD, X-linked dominant; XLR, X-linked recessive.
◦Seen only in a few consanguineous families.
* Information taken from the Osteogenesis imperfecta & Ehlers-Danlos syndrome variant databases.
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osteoclast and osteoblast is crucial for balanced bone turnover
and defects in either cell’s function can jeopardize bone health.
Osteoblasts express the receptor activator of nuclear factor
kappa-B ligand (RANKL), which binds to its conjugate receptor
RANK on osteoclast cell surface (Figure 2) (30, 31). This
activates osteoclastogenesis and osteoclastic bone resorption.
Osteoblasts also secrete osteoprotegerin (OPG) that serves as a
decoy receptor for RANKL to inhibit RANKL-RANK–binding,
therefore downplaying RANKL’s osteoclastogenesis-promoting
effect and, as its name implies, protecting bone from over-
resorption (Figure 2) (30, 31). Recently, RANK was also noted
to relay back by vesicular trafficking from mature osteoclasts
to osteoblasts to promote bone formation by reverse signaling
(32). The significance of the RANK-RANKL–communication
is portrayed in several monogenic conditions with abnormal
bone mass resulting from defective RANK-RANKL-OPG–axis:
osteoclast-poor osteopetrosis with excessive bone formation due
to mutated RANKL, juvenile Paget’s disease with osteopenia and
progressive skeletal deformity from mutated OPG, and familial
expansile osteolysis (FEO) with osteolytic lesions and increased
bone remodeling from mutated RANK (33–35).

Alongside osteoblasts and osteoclasts, osteocytes have
emerged as key regulators of bone turnover, mineral homeostasis
and hematopoiesis (36). Osteocytes are terminally differentiated
osteoblasts embedded throughout the mineralized matrix.
They communicate with each other and other cells through an
extensive network of long cytoplasmic dendritic processes and
are thought to orchestrate the interplay between osteoblasts
and osteoclasts in bone modeling and remodeling by sensing
mechanical loading and responding to endocrine factors,

and blood calcium and phosphate concentrations (37).
Osteocytes express a range of proteins, such as dentin
matric protein 1 (DMP1), phosphate-regulating neutral
endopeptidase on chromosome X (PHEX), and matrix
extracellular phosphoglycoprotein (MEPE), that are crucial
for local matrix mineralization (38). Osteocytes are the primary
source of sclerostin, RANKL, and fibroblast growth factor
23 (FGF23), through which osteocytes exert their endocrine
functions in bone (Figure 2) (36, 38).

The WNT pathway has a key role in all aspects of bone
health—from fetal skeletal development to childhood bone
mass accrual to adult bone homeostasis and microarchitectural
sustenance (39). WNTs act locally by activating adjacent cells’
WNT signaling in a paracrine manner: in developmental
stages to partake in the cross-talk between osteoblasts and
hematopoietic stem cells (HSCs) in bone marrow and promote
bone cell development, differentiation and proliferation, and
later in mature adult bone, to induce osteoblastic bone
formation (39). WNTs can also act by autocrine means by
regulating cells of the same osteoblast or osteoclast lineage
(40). The activated pathway is anabolic to bone, leading
to increased bone formation and decreased bone resorption.
Three different WNT pathways are recognized: the canonical
pathway (WNT/β-catenin pathway), the non-canonical planar
cell polarity pathway, and the non-canonical WNT/Ca2+

pathway. While the latter two, also known as the β-catenin-
independent pathways, participate in a range of development
process and in bone metabolism, the canonical WNT/β-catenin
pathway is considered the predominant pathway maintaining
skeletal health (41).

FIGURE 2 | Schematic overview of bone cells and extracellular matrix components involved in regulating bone homeostasis. Receptor activator of nuclear factor

kappa-B ligand (RANKL) binds to its conjugate receptor RANK on osteoclast cell surface to stimulate osteoclast differentiation and activity. Osteoprotegerin (OPG)

inhibits RANK/RANKL-binding to inhibit bone resorption. WNT signaling pathway stimulates osteoblast function and bone formation. Sclerostin (SOST) and dickkopfs

(DKK1), produced by the osteocytes, are two WNT antagonists that promote osteoclasts differentiation. Osteonectin, produced by the osteoblasts, binds calcium,

hydroxyapatite and collagen type I and thus regulates bone mineralization. Plastin-3 (PLS3), expressed by the osteocytes, may also be involved in the mineralization of

the extracellular matrix but its role in osteoprogenitors and other bone cells is yet to be confirmed.
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Dysregulated WNT/β-catenin signaling leads to various
skeletal disorders of both high and low bone mass. This
was first recognized in 2001 when mutations in low-density
lipoprotein 5 (LRP5), encoding a coreceptor for WNT ligands,
were found to lead to low bone mass in the autosomal recessive
osteoporosis pseudoglioma syndrome (OPPG, MIM 259770),
characterized by early-onset severe osteoporosis and blindness
(42, 43). The LRP5 mutations inhibit normal WNT signaling
and lead to reduced osteoblast proliferation and function and
subsequently decreased bone formation (43). Since then, many
other mutations in LRP5 have been shown to cause OPPG (44).
In addition, functionally significant SNPs in LRP5 have been
linked to adolescent bone mass accrual and peak bone mass
(45, 46), and genome-wide searches have found common LRP5
polymorphisms that contribute to population-based variance in
BMD, confirming its significant role in osteoporosis risk also
in the general population (14, 18). The molecular mechanisms
by which these missense mutations in LRP5 decrease WNT
signaling, however, remain largely unknown (46, 47). Conversely,
inadequate WNT inhibition from mutations or deletions in the
sclerostin-encoding SOST results in high bone mass phenotypes
sclerosteosis (MIM 269500) and van Buchem disease (MIM
239100), respectively (48, 49). In the absence of sufficient
sclerostin, WNT signaling is unrestrained, leading to continuous
bone formation.

All in all, 19 different WNT proteins are known and
together they initiate several intracellular signaling cascades
to regulate organogenesis, cell fate determination, primary
axis formation, and stem cell renewal (39). Several of the
WNT proteins are expressed in bone tissue and regulate
bone health at various phases during skeletal growth,
development, and e.g., osteoporosis pathogenesis (50). For

example, WNT16 is considered an important ligand in
bone WNT signaling and has been shown to mediate its
bone-specific actions via both canonical and non-canonical
WNT pathways (51). Although the specifics behind its
mechanisms are unclear, GWASs show that polymorphisms
of the WNT16 locus associate with cortical bone thickness,
BMD, and osteoporotic fracture risk in large observational
studies and variations in WNT16 may also impact individual
peak bone mass (18, 52, 53). These findings are echoed in
in vivo studies as Wnt16 KO mice have reduced cortical
thickness and bone strength leading to spontaneous peripheral
fractures (54).

In 2013, several groups identified WNT1 as a key ligand
to the WNT pathway in bone; heterozygous WNT1 mutations
were reported to cause autosomal dominant osteoporosis, and
homozygous mutations, a more severe osteogenesis imperfecta
(55). Since then, various other mutations have been found
worldwide, all reporting skeletal morbidity with frequent and
childhood-onset peripheral and vertebral compression fractures
and successive changes in spinal stature (55–61). In our
comprehensive clinical analyses of a large cohort of 25 WNT1
mutation-positive subjects with the same heterozygous missense
mutation p.C218G, the aberrant WNT1 signaling results in a
severe skeletal pathology (62). In addition to prevalent fractures,
long bone modeling is altered and BMD low in affected children,
while vertebral compression fractures are very common later
in adulthood and result in severe kyphotic deformity and loss
of adult height soon after the age of 50 years (Figure 3).
Bone biopsy histomorphometry demonstrated low-turnover
osteoporosis with scarce and inactive bone cells and stagnant
bone turnover. Noted extra-skeletal traits included changes
in spinal cartilaginous structures, namely vertebral endplate

FIGURE 3 | Spinal magnetic resonance images of four WNT1 p.C218G mutation-positive subjects. (A) Thoracic spine of a 17-years-old female showing multiple

Schmorl nodes (arrow). (B) Thoracic spine of a 44-years-old female showing exaggerated thoracic kyphosis. (C) Thoracic spine of a 76-years-old male showing

several compressed vertebrae, kyphotic stature, and Schmorl hernia (arrow). (D) Lumbar spine of a 74-years-old female showing several compressed vertebrae and

enlarged intervertebral discs (arrows). Reprinted from Mäkitie et al. (63) with permission from Elsevier.

Frontiers in Endocrinology | www.frontiersin.org 6 February 2019 | Volume 10 | Article 7032

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Mäkitie et al. Insights to Monogenic Osteoporosis

deterioration and frequent Schmorl nodes, and increased
reticulin and early-phase–shifted granulopoiesis as signs of
abnormal bone marrow function (63, 64).

The latest finding of dysregulated WNT signaling in
monogenic osteoporosis is SFRP4 mutations in Pyle’s disease
(65). Frizzled-related protein 4 (SFRP4) acts as an WNT
inhibitor and biallelic, truncating mutations in its encoding
gene SFRP4 result in aberrant regulation of WNT signaling,
osteoblasts and osteoclast function and bone remodeling
(65). The patients’ clinical phenotype is predominated by
cortical-bone thinning and fragility and expanded metaphyseal
trabecular bone, resulting in limb deformity and high propensity
to fracture. Correspondingly, Sfrp4-null mice present with
increased trabecular bone, decreased cortical bone and failure in
bone modeling (65).

Despite their important functions, known monogenic forms
of bone diseases stemming from osteocyte defects are rare
and often relate to defective mineral metabolism, especially
hypophosphatemia due to disturbed FGF23 regulation. One of
the most recently identified monogenic forms of osteoporosis
is caused by mutations in the PLS3 gene (66–70), encoding the
actin binding, actin bundling protein plastin 3. This X-linked
form of primary early-onset osteoporosis is characterized
by low BMD, frequent peripheral fractures and vertebral
compression fractures, and subsequent severe thoracic kyphosis.
Due to its X-chromosomal inheritance, male patients are more
severely affected, usually presenting with severe childhood-
onset osteoporosis. Clinical manifestations in females with
heterozygous PLS3 mutations are variable ranging from
subclinical osteopenia to a more severe phenotype resembling
that of males’ (68). The total number of diagnosed patients is still
scarce and hence the comprehension of the clinical and genetic
spectrum, the disease progression and appropriate treatment
is limited.

While the role of PLS3 in bone fragility is yet unknown,
one theory presumes PLS3 to alter osteocyte function through
abnormal cytoskeletal microarchitecture. Plastins, in general,
are Ca-dependent actin binding and bundling proteins and as
such, are involved in cytoskeletal arrangements and partake in
regulating cellular morphology, motion, and adherence (71).
Despite lack of systematic studies, plastin 3 (also called T-
plastin) is supposedly expressed in all solid tissues and through
indicated functions in other tissues, such as spinal muscle,
inner ear stereocilia, and periodontal ligaments, is suggested
to be involved in bone mechano-transduction (72–74). This is
supported by the high expression of plastin 3 in chicken osteocyte
dendrites, especially during dendrite formation (Figure 2) (75–
77). Although this is supported by clinical investigations from
biochemical and bone biopsy findings indicating that osteocytes
appear affected in PLS3 mutation-positive subjects (78), the
observation remains mostly theoretical.

Another suggested role for PLS3 in bone is involvement in
mineralization. This is collectively supported by the patients’
low BMD and their bone biopsies’ histology. We have reported
accumulation of non-mineralized osteoid in trabecular bone in
patient biopsies (69, 70, 78, 79) and shown that biochemical
markers of bone turnover, although not directly echoing

the mineralization process, are normal despite altered bone
formation (68). The detailed mechanisms of bone tissue
mineralization are still debated, but extracellular mineral
deposition through budding off of intracellular microvesicles
has emerged as one part of the process (80). This process
requires dramatic changes in the cell membrane through a
complex and well-orchestrated process involving the actin
cytoskeleton. Thouverey et al. (81) and Piehl et al. (82)
have demonstrated congruently that plastin 3 is involved
in the formation of extracellular vesicles. It can thereby be
speculated that PLS3 mutations could have deleterious effects
on the mineralization process in bone through defective
microvesicle formation, although the details behind this too
remain undisclosed.

Lastly, a recent experimental animal study presented new
findings suggesting involvement of osteoclast malfunction as
part of pathophysiology in PLS3 osteoporosis (83). In vivo
and in vitro studies using Pls3 knockout and overexpressing
mice confirmed the osteoporotic phenotype in the former
and thickening cortical bone in the latter. In vitro studies of
osteoclasts derived from the animals demonstrated a regulatory
role of PLS3 in osteoclastogenesis. Additionally, a dysregulation
of osteoclast activity was found in cells from Pls3 knockouts,
likely connected to impaired podosome organization due to
decreased actin regulation (83). These findings are yet to be
confirmed in humans.

Defects in Bone Extracellular Matrix
In addition to bone cells, reduced bone strength and various
skeletal disorders can also stem from defects in the extracellular
matrix (ECM). The ECM is primarily composed of different
collagenous proteins, non-collagenous proteins (in particular
glycoproteins and proteoglycans), lipids, minerals and water
(84, 85). The most abundant protein is the type I collagen,
made of two alpha-1 and one alpha-2 chains intertwined in
a triple helical structure. Mutations in the encoding genes,
COL1A1 and COL1A2, respectively, lead to qualitative or
quantitative defects in the protein and give rise to osteogenesis
imperfecta (OI), a skeletal dysplasia characterized by low BMD
and enhanced bone fragility, and often extra-skeletal features,
such as blue sclerae, dentinogenesis imperfect, and hearing
loss (86, 87). Heterozygous glycine substitutions that affect
the Gly-Xaa-Yaa pattern in the triple helix are the most
common mutations and can cause mild to lethal OI (87).
However, multiexonic deletions or deletion of an entire allele
have been sporadically found (88–91). Interestingly, mutations
that lead to a reduced amount of normal protein give rise
to a milder phenotype than missense mutations affecting the
primary structure of the triple helix (dominant negative effect)
(87). Furthermore, homozygous glycine substitutions in COL1A2
have been identified in a handful of consanguineous families
(92–95). Surprisingly, the patients harboring biallelic COL1A2
mutations have a moderate to severe phenotype whereas the
mutation carriers are only mildly affected or free from any
obvious skeletal impairment. On the other hand, homozygous
COL1A1 mutations are likely to be lethal since they have
never been reported in humans. Furthermore, some previous
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reports have indicated that when the COL1A1 or COL1A2
mutation involves the C-propeptide cleavage site, the phenotypic
manifestations may include high BMD and mild skeletal fragility
(96). A recent study on such cleavage site variants showed
that the mutations lead to a distinctive OI phenotype with
variable expression, mild to moderate disease severity, moderate
fracture rate, high bone mass and increased bone mineral
density (97).

Although COL1A1 or COL1A2 mutations are detected in
∼85% of OI cases, to date, mutations in altogether 17 other
genes are also known to cause OI-like skeletal disorders (Table 1).
Some of these genes play a role in the post-translational
modification of type I collagen while some are key regulators of
osteoblast differentiation and function and/or lead to abnormal
bone mineralization (Table 1). One example of severe autosomal
recessive OI caused by a mineralization defect is linked to
mutations in SPARC (98). The encoded protein Secreted Protein
Acidic and Cysteine Rich, better known as osteonectin, is a
glycoprotein that is mainly expressed by osteoblasts during bone
formation and binds calcium, hydroxyapatite and collagen type
I and other proteins in the ECM (Figure 2). Null mutations in
SPARC lead to reduced accumulation of type I collagen in the
ECM (99). Furthermore, the osteonectin-type I collagen complex
is suggested to sequestrate calcium and phosphate in order to
initiate bone mineralization (100). An impairment of two other
proteins expressed by the osteoblasts, the pigment epithelium-
derived factor (encoded by SERPINF1) and the interferon-
induced transmembrane protein 5 (encoded by IFITM5),
respectively, can also compromise bone mineralization and
lead to OI (86, 87, 101, 102). Most recently, mutations in
FAM46A, encoding the terminal nucleotidyltransferase 5A, have
been detected in four patients with OI. However, the molecular
function of this protein and the pathophysiological mechanism
by which the mutations lead to OI are not yet known (103).

Besides OI, there are several other skeletal syndromes that
feature osteoporosis and are caused by defects in the ECM. For
example, mutations in XYLT2 lead to spondyloocular syndrome
characterized by childhood-onset osteoporosis, cataract, cardiac
defects and hearing impairment (104–106). The mutated
protein xylosyltransferase 2 is involved in the biosynthesis
of glycosaminoglycan chains and plays an important role
in endochondral ossification and chondrocyte differentiation
and maturation. Proteoglycans are also important for other
tissues and organs, including brain, heart, and retina, which
could explain why the clinical manifestations of spondyloocular
syndrome are not only restricted to the skeleton (106).

In addition to causing autosomal recessive OI, inadequate
folding and post-translational modification of type I collagen can
result in another skeletal syndrome characterized by congenital
contractures, named Bruck syndrome. Homozygous mutations
in FKBP10 and PLOD2 result in Bruck syndrome 1 and
2, respectively (107–110). FKBP10 encodes the immunophilin
FKBP65, a molecular chaperon of type I collagen and PLOD2
encodes the procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2,
which catalyzes the hydroxylation of lysyl residues in type I
collagen. Mutations in both FKBP10 and PLOD2 can also cause
autosomal recessive OI (Table 1).

TOOLS FOR DIAGNOSING MONOGENIC
OSTEOPOROSIS

Uncovering the Genetics
As discussed, to make the diagnosis of osteoporosis in children

two criteria need to be met; (1) low BMD or BMC (Z-score

≤ −2.0 SD) and (2) a clinically significant fracture history. A

vertebral fracture indicates severely compromised bone strength
and suffices alone for the diagnosis (12). The diagnosis of primary
osteoporosis in children can be made when potential causes
of secondary osteoporosis, such as other underlying illnesses
or medical treatments, have been excluded (2). Most forms of
childhood-onset primary osteoporosis are termed osteogenesis
imperfecta, although the diagnosis is vague and merely appoints
the disease to belong to a heterogeneous group of skeletal
disorders with diverse clinical presentation (86, 87). As indicated
earlier, the genetic background of OI is heterogeneous and
the phenotypic and genetic variability have complicated OI
classification. As of yet, there is no consensus indicating which
genotype-phenotype combinations should be classified under the
umbrella of OI and which should not. The current classification
of OI is based on phenotypic features, but the molecular cause is
often the key factor determining clinical prognosis, appropriate
treatment approach and recurrence risk in the family, and
should therefore be emphasized (28). A molecular diagnosis also
facilitates the refinement of future treatment and clinical care
protocols (87, 111). Although more than 85% of OI cases can still
be traced to pathogenic variants in either of the two collagen type
I–coding genes COL1A1 or COL1A2 (112, 113), the several other
genes identified over the past 12 years in OI or monogenic forms
of primary osteoporosis need to be kept in mind (92, 114, 115).

While most clinicians begin by screening COL1A1 and
COL1A2 possibly in combination with MLPA, proceeding to
a full OI gene panel using massive parallel sequencing is
recommended (87). A sequencing-based gene panel will not only
capture sequence variants but also possible structural variations
including larger deletions and duplications. Although the surge
of new genetic findings has facilitated interpretation of sequence
variants, deep intronic splice variants or splice variants masked
as synonymous variants are still difficult to correctly annotate.
Transcriptome analysis using RNA sequencing together with
DNA sequencing has proven successful in increasing the
diagnostic yield and assessing functional impact of variants
that are otherwise hard to interpret (116). This, however,
requires that the disease in focus has a readily accessible proxy
tissue, where the gene expression reflects the expression in
the affected tissue. Unfortunately, tissue accessibility is very
difficult in bone diseases and the method cost-restricted in
clinical settings.

Regarding structural variants, WGS has provided an
advantage in assessing structural variants compared to exome
sequencing or other capture-based protocols. However, all short-
read sequencing technologies have shortcomings in their ability
to detect and identify structural variants, and, as concluded by
Telenti et al. (117), after sequencing 10 000 human genomes
the interpretation of structural variants on an individual level
still remains challenging. Older methods to indirectly detect
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structural variations, such as array-based comparative genomic
hybridization (array-CGH), are still applicable in specific
cases and can help clinicians in their search for a molecular
diagnosis (91).

Clinical Characterization
Owning to the wide spectrum of genetic causes, the clinical
presentation of different OI and primary osteoporosis forms
is unsurprisingly miscellaneous (87). The diseases vary in
their primary skeletal traits, age-at-onset, natural progression,
sensitivity to treatment, and presence and spectrum of extra-
skeletal characteristics. Although severely compromised bone
strength is usually a unifying finding, the DXA-derived
BMD, bone biopsy findings, prevalence and type of fractures,
and radiographic findings are inconsistent. The phenotypic
severity can vary from mild to severe and disease onset
from childhood to early adulthood—at times provoked by
pregnancy-related calcium loss. Presentation may vary between
patients with different mutations and even between family
members with identical mutations (87). Classical OI-related
extra-skeletal findings include blue sclerae, increased joint
laxity, dentinogenesis imperfecta and impaired hearing (28,
87, 118). Mutations in proteins affecting the collagen-related
pathways all seem to exhibit similar traits; only the severity and
array of affected skeletal sites vary. Some typical presentations
include popcorn epiphyseal plates in CRTAP, calcifications of
interosseous membranes and hyperplastic callus formation in
IFITM5, and skull ossification defects in SEC24D-related OI
(Table 1) (86, 87, 118). The extra-skeletal manifestations of
bone cell-related forms are still incompletely defined; with
monoallelic WNT1 mutations patients have changes in spinal
cartilaginous structures (63) and mild abnormalities in bone
marrow hematopoiesis and reticulin formation (119), while in
biallelic mutations the phenotype is more severe and OI-like
but no bone marrow defects have been reported (55). However,
central nervous system manifestations have been reported in
some patients with homozygous WNT1 mutations (55, 61).
Patients with PLS3 mutations do not exhibit any apparent extra-
skeletal traits, though this is still scantily explored.

Novel Biomarkers
In addition to DXA and plain radiography, several factors
can be measured from systemic circulation and urine when
diagnosing and monitoring patients’ disease state, progression
and treatment response. The conventional metabolic markers
reflect bone turnover and consist of enzymatic and proteinaceous
by-products; the most widely used resorption markers include
mainly by-products of collagen breakdown, [urinary collagen
type 1 cross-linked N-telopeptide (NTX), urinary/serum collagen
type 1 cross-linked C-telopeptide (CTX), and collagen fragments
from matrix-metalloproteases (ICTP)], and formation markers
procollagens from collagen synthesis [serum amino-terminal
propeptide (PINP) and carboxyl-terminal propeptide (PICP)] or
osteoblast-related proteins (serum osteocalcin (OC) and serum
bone isoenzyme of alkaline phosphatase (ALP) (120, 121).
While these markers are commonly used and easily analyzed in
automated routine laboratories, they do lack specificity and are

easily confounded by other patient-related (e.g., body adiposity,
inflammation, blood glucose level, time of sampling) and
analytical factors. Furthermore, they often respond inadequately
to bisphosphonate treatment and correlate poorly with BMD
and bone histomorphometric parameters (55, 120–125). None of
the monogenic forms of osteoporosis have a specific biomarker
profile and these conventional markers are of little value in
differentiating between the various genetic forms of osteoporosis.

The limitations of the conventional bone markers have fueled
a field-wide search for new potential biomarkers. Zooming into
smaller cell-released particles, small microRNAs (miRNAs), as
one, have attained much attention and are proposed to hold
promise in future diagnostic and treatment in skeletal disorders.
These small, non-coding fragments of RNA are highly conserved
and comprise, on estimate, 1% of our genome (126, 127). They
alter gene expression by RNA silencing and post-transcriptional
regulation; each miRNA is predicted to regulate hundreds of
different target genes, thus serving important functions in many
tissues and biological processes (127, 128). While their exact
function in gene regulation is still largely unknown, miRNAs
are thought to mediate intercellular communications in various
metabolic processes and diseases and a unique imprint of
differentially expressed miRNAs is observed in e.g., certain
cancers, metabolic diseases and viral infections. In bone, miRNAs
contribute to homeostasis and their dysfunctional expression
relays to progression of skeletal disorders (129, 130). Their
expressions change in result of low BMD, frequent fractures, or
menopausal osteoporosis (129, 130).

These findings have encouraged researchers to explore the
clinical potential of miRNAs in disease diagnostics and follow-
up. Several clinical studies have evaluated miRNA expression
in osteoporotic patients and distinguished specific miRNAs
correlating with the degree of osteoporosis (131). miR-133a was
significantly elevated in postmenopausal Caucasian women with
low BMD (132), and miR-194-5p and miR-21-5p negatively
correlated with BMD in Chinese osteoporotic women (133,
134). Seeliger et al. (135) also identified miR-21-5p, in addition
to four other miRNAs (miR-23a-3p, miR-24-3p, miR-100-5p,
and miR-125b-5p) to be differentially expressed in serum and
upregulated in bone tissue in patients with osteoporotic fractures.
In vitro studies have observed miRNAs that interact with known
key regulators of bone metabolism, such as miR-152-3p and
miR-335-3p with Dickkopf-1 (136, 137), miR-30e-5p with Lrp6
(138), and the aforementioned miR-133 with Runx2 (139).
Furthermore, Anastasilakis et al. (140) reported that serum
levels of miRNAs changed in response to anti-osteoporotic
treatment. While different studies pinpoint to varying miRNAs
depending on cohort size, demographic or other factors, a clear
congruency is echoed that a unique miRNA signature is observed
in osteoporosis.

We have reported altered miRNA pattern in patients
with WNT1 osteoporosis, with two upregulated and six
downregulated miRNAs, as compared with age and sex-matched
mutation-negative controls from the same family (119). While
specific miRNA alterations may be recognized in certain
monogenic forms of osteoporosis, the role of miRNAs in
complementing or substituting genetic testing remains to be
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explored in future studies. Further, the utilization of miRNA
assessments in clinical practice demands further methodological
development but based on present data, they hold great potential
for future diagnosis and follow-up, including monogenic forms
of osteoporosis.

OPTIONS FOR TREATMENT

Conventional Osteoporosis Drugs and
Implications for Treatment
Conventional osteoporosis drugs, namely bisphosphonates, have
been the mainstay of pharmacological treatment in classical,
type I collagen-related OI forms. These typically have high
bone turnover and thus the osteoclast-targeting and resorption-
decreasing bisphosphonates have proven effective in increasing
BMD, reducing fractures, and improving VCFs in patients (141–
143). Contrary to collagen I-related OI, bisphosphonates have
proven insufficient in improving BMD or fracture tendency in
several new forms of primary osteoporosis (55, 57, 60). These
OI forms often present with low-turnover osteoporosis and
hence the benefits of anti-catabolic treatment are not optimal.
We have also shown that patients with prior bisphosphonate
treatment have abnormal and apoptotic osteocytes, suggesting
adverse effects of bisphosphonates in WNT1 osteoporosis (63).
However, our longitudinal study on the effects of teriparatide-
treatment in WNT1 osteoporosis indicated that exogenous
PTH may be efficient in increasing bone formation and BMD
during a 24-months-long treatment in adults; however, there
may be simultaneous increase in bone marrow adiposity (79).
Thus far, the efficacy of anti-sclerostin antibodies have been
experimented in mice only; subcutaneous administration of
Scl-Ab to the murine model of WNT1 OI Wnt1sw/sw mice
significantly improved fracture rate and increased bone mass that
seemed to result from increased osteoblast activity (144).

BesidesWNT1-related skeletal pathologies, even less is known
about the optimal treatments in other new forms of primary
osteoporosis andOI, such as PLS3 and XYLT2 (105, 145). Efficacy
of bisphosphonates in PLS3 osteoporosis has been evaluated in
a handful of cases and indicate positive response (66, 67, 70).
Our above-mentioned clinical study on teriparatide also included
PLS3 mutation-positive subjects and they showed congruent,
although slightly lesser, improvement in bone parameters in
24-months follow-up, as compared with patients with WNT1
osteoporosis (79). Patients with XYLT2 mutations seem to
benefit from pamidronate treatment with increase in BMD and
improvement in vertebral morphology (104, 105).

Clinical care of OI patients, including both classical and newer
forms of OI and monogenic osteoporosis, is often complex and
challenging. Means of treatment and pace of clinical follow-up
are dependent on the patient’s age, clinical manifestations, and
degree of impairment, and should be individually tailored and
regularly evaluated. Bisphosphonates are still the main treatment
option for pediatric patients and are often used to prevent greater
decrease in BMD and enable maximum yield in bone mineral
throughout childhood and adolescent bone mass accrual. The
overall benefits of bisphosphonate treatment in most cases of
OI are non-negligible (146). Variable treatment protocols exist.

Clinical care and follow-up are advised to be centered in special
health care units with abilities to provide multidisciplinary care
and expertise.

Novel Target-Drugs
Discoveries through rare, monogenic forms of skeletal disorders
have provided new information on the biology of bone health
and revealed previously unidentified proteins that take part in
key regulatory pathways. Naturally, these proteins also present
as appealing target molecules for development of new treatment
modalities. In early 2000s, inhibition of RANKL by a monoclonal
antibody denosumab brought a novel approach for treatment of
osteoporosis (147). The drug has been used to improve skeletal
health in some forms of OI. Particularly patients with SERPINF1
mutations show a modest increase in BMD in response to
denosumab whereas treatment outcomes with bisphosphonates
are poor (148). Due to the coupled nature of osteoblast-
osteoclast–activity, blocking osteoclastogenesis through RANKL
is also unfavorably accompanied by reduced osteoblast function.
The previously mentioned discovery of RANKL reverse signaling
could offer a novel solution to avoid this problem (32).
Also, inhibition of cathepsin K, an osteoclast-derived lysosomal
enzyme, seemed promising due to its coupled bone formation-
favoring action, but its development was later discontinued due
to increased risk of cardiovascular complications (149). As of
recently, the effects of anti-TGF-β antibodies have been studied
in Crtap−/− and Col1a1frt/− mice with varying results; while
the Crtap−/− showed great improvements in bone mass and
biochemical qualities, Col1a1frt/− mice did not show significant
changes in bone quality or strength (150).

Along with the discovery of van Buchem disease and
sclerosteosis, two human models of sclerostin inhibition,
fueled the development of a new anabolic target drug named
romosozumab—a monoclonal anti-sclerostin antibody targeting
the WNT pathway (151, 152). Its efficacy has been evaluated
in several clinical trials with promising results; a placebo-
controlled, multicenter, phase II study on 419 postmenopausal
women with osteoporosis treated with subcutaneous injections
of romosozumab at 3-months intervals showed significant, and
superior to those attained by alendronate and teriparatide,
increase in areal BMD and a tilt in BTMs reflective of increased
bone formation (151), and another phase III study reported a
reduction in fracture risk in 7,180 postmenopausal osteoporotic
women (153). Anti-DKK1 antibodies act similarly to oppose
WNT signaling and are potent as osteoanabolic agents. However,
administration of anti-DKK1 is only mildly efficacious as the
WNT-neutralizing effect is compensated by upregulation of
sclerostin, although the opposite is not seen when given only
anti-sclerostin antibodies. Thus, the benefits of anti-DKK1
antibodies manifest only when given in conjunction with anti-
sclerostin (154).

Another target of interest for new drug development is
Notum. It is a secreted enzyme that inhibits WNTs by removing
the palmitoleic acid group that is essential for binding of
WNTs to Frizzled receptors, thereby inhibiting WNT signaling.
Interestingly, experimental studies in rodents have shown
that inhibiting Notum through either knockout, or by oral
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administration of molecular inhibitors or neutralizing antibodies
increase cortical bone formation and strength, but do not affect
trabecular bone mass (155, 156).

Possible undesired adverse and extra-skeletal effects of new
drugs are inevitable as many of the targeted proteins have tissue-
wide expression and key roles in various biological processes.
Side effects can be latent and subtle but also challenging and
life-threatening. Knowing the WNT pathway’s fundamental role
in embryonic development, tumorigenesis and pathogenesis of
other systemic or chronic diseases, romosozumab has been
under careful scrutiny for its clinical safety. In mice receiving
different doses, no malignancies were noted over a 98-weeks
follow up (157). However, along with the robust and positive
skeletal effects, use of romosozumab has been associated with
cardiovascular and cerebrovascular events, and the drug is
currently under FDA review (Amgen and UCB).

MicroRNAs
Recently, researchers have acknowledged the opportunities in
targeting miRNA pathways to develop new therapeutic means
and genome editing approaches (128, 158). A few groups
have pursued clinical trials to evaluate efficacy of miRNAs in
disease target treatment: an on-going clinical trial evaluates
the anticancer effect of miRNA lethal-7 in binding to Kirsten
rat sarcoma viral oncogene homolog (KRAS) gene in patients
suffering from stage III colon cancer, and miR-122 in hepatitis
C (159, 160). Bone-specific miRNAs have not been evaluated
clinically, but analyses have shown that for example in vitro
miR-21 could promote osteogenesis in bone marrow stem cells,
and systemic administration of miR-214 induced BMD increase
and miR-92a enhance fracture healing in mice (161–163). In
fracture healing, also angiogenesis is vital to the repair process
and Li et al. (164) were able to demonstrate that implantation
of MSCs transfected with an angiogenesis-involved anti-miR-
26a showed good bone repair. Further, anti-miR-31-transfected
MCSs efficiently repaired bone defects by increasing BMD and
new bone volume (165). These findings and the efficacy, safety
and possible side effects need to be confirmed and carefully
evaluated in clinical settings in vivo.

CONCLUSIONS

Recent advances in genetic methodology have resulted in several
new discoveries relating to the genetic architecture of bone
homeostasis. Not only have the basic clinical and genetic pillars
of classical OI been refined, but several new forms of monogenic
osteoporosis have also been identified that have pinpointed
novel molecular mechanisms contributing to skeletal health and
disease. The clinical presentation, inheritance mode, natural
course and response to conventional osteoporosis drugs are
diverse, often variable and logically dependent on the affected
protein. Although uncovering the limitations in our current
diagnostic and treatment modalities, they have also provided
new signaling pathways that hold promise in new targeted drug
development. Future research will hopefully continue expanding
the genetics andmolecular mechanisms behind bone metabolism
and increasing our understanding of the specific skeletal and
extra-skeletal characteristics of monogenic osteoporosis, while
finding new avenues for improved diagnosis and treatment of
patients with severe bone diseases.
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Osteoporosis is a complex genetic disease in which the number of loci associated with

the bone mineral density, a clinical risk factor for fracture, has increased at an exponential

rate in the last decade. The identification of the causative variants and candidate genes

underlying these loci has not been able to keep pace with the rate of locus discovery.

A large number of tools and data resources have been built around the use of the

mouse as model of human genetic disease. Herein, we describe resources available

for functional validation of human Genome Wide Association Study (GWAS) loci using

mouse models. We specifically focus on large-scale phenotyping efforts focused on

bone relevant phenotypes and repositories of genotype-phenotype data that exist for

transgenic and mutant mice, which can be readily mined as a first step toward more

targeted efforts designed to deeply characterize the role of a gene in bone biology.

Keywords: osteoporosis, mouse models, genetics, bone, functional validation

INTRODUCTION

The NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy
defined this disease as, “a skeletal disorder characterized by compromised bone strength predisposing
a person to an increased risk of fracture” wherein bone strength was defined as the combination of
bone mineral density (BMD) and quality (1). In the year 2000 it was estimated that there were 8.9
million osteoporotic fractures worldwide (2) and existing data suggests that, on average, half of all
women and 20% of all men will experience a facture in their adult life (3). The economic burden
of osteoporosis is immense, resulting in up to $22 billion in direct health care costs per year in
the U.S (4) and e37 billion annually in the European Union (3). Further, osteoporotic fractures
are associated with increased morbidity and mortality (5). Bone mineral density, as measured by
Dual X-Ray Absorptiometry (DXA), is inversely correlated with fracture risk. For this reason, BMD
remains the method used to diagnose this disease clinically. It is estimated that over 50% of the
variation in BMD is attributed to genetic factors (6), but importantly in humans, fracture risk is
also heritable (7).

Since the first genome wide association study (GWAS) for BMD in 2007 (8), there has been an
explosion in the number of loci found to be associated with BMD, bone structure and fracture risk.
The largest GWAS conducted to date suggests that there are over 1,000 conditionally independent
genetic signals in 515 discrete loci associated with the phenotype of estimated bone mineral density
(eBMD) (9). Fracture is inherently a more complicated phenotype, and 14 significant loci were
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identified in this same study (9). In a second large meta-
analysis GWAS, 15 loci were identified as associated with fracture
incidence, but all of these loci had been previously found to
be linked to traditional DXA derived BMD (10). These data
highlight the incredible complexity involved in the genetic
regulation of BMD and the difficulties associated with accounting
for the genetic regulation of clinically important phenotypes such
as fracture incidence.

THE CAUSAL VARIANT VS. THE
CANDIDATE GENE

Despite the identification of this astonishing number of loci,
these 515 eBMD loci only account for only 18% of the trait
variance (9), suggesting that there may yet be more loci to
be discovered. Further, one must remain cognizant of the fact
that a locus does not equal a mechanism of action. Much of
the focus of the so-called “post-GWAS era” is on identifying
the underlying gene or genes, pin pointing the causative
variant(s) and determining the hows, the whats, the whys, and
the whens by which these loci act and interact to cause a
phenotype (11). Ideally, every nucleotide in every person would
be examined in a GWAS for association between genotype and
phenotype. In practice, this is rarely possible due to cost, and
fortunately, it is not completely necessary. Over short distances,
single nucleotide polymorphisms (SNPs) are often in linkage
disequilibrium (LD) with other nearby SNPs (12). It is common
practice in GWAS to select representative SNPs or “tagging
SNPs” for genotyping, which in turn are used to represent a
haplotype (13–15). This tagging genotyped SNP is a proxy for
the causative variant and may or not have any functional role
in disease.

Overwhelmingly, the causative variant for a given genetic
locus is not located within the coding region of a gene, and
even more rarely is the causative variant one that leads to
an altered protein product. Rather, causative variants are often
located in intergenic regions and are thought to modify the
expression of one or multiple genes (16). Thus, the term
“causative variant” is not to be confused with, nor is it
synonymous with, the term “causative gene” (11). Understanding
the nature and mechanism of action of the causative variant
is critical for understanding the etiology of disease. A case
in point is the comparison of two Mendelian conditions: Van
Buchem disease and Sclerosteosis Type I. In both of these
conditions, a thickening of the cortical bone, narrowing of
the medullary canal of the long bones and thickening of the
mandible are observed (17, 18). However, gigantism is seen
in Sclerosteosis (17), but not in Van Buchem disease. In Van
Buchem disease, a 52Kb deletion occurs in an intergenic region
on human Chromosome (Chr) 17q21.3 (19) and putatively
impacts expression of two genes: MEOX1 and SOST (20). For
Sclerosteosis, up to 10 homozygous loss-of-function mutations
in the coding region of the SOST gene have been identified
(21). Thus, in both of these diseases, there is a common
gene impacted, but clinically the presentation is different,
in part because the causative variant(s) leads to disease in
differing ways.

Following this same theme, functional validation of GWAS
candidate genes is not to be confused with the identification
of the functional variant(s). The functional validation of a
candidate gene means to determine if that gene could plausibly
be associated with the phenotype of interest. Both functional
validation of a candidate gene and determination of the causative
variant are of value for understanding human disease especially
when there are one or more uncharacterized genes in the locus
(22). To be a candidate, a gene must fulfill two straightforward
criteria. First, the gene must be expressed in the appropriate
tissue(s) and at an appropriate time point to influence the
phenotype of interest. Second, the gene must play a role in a
biological process relevant to the phenotype of interest (11). For
many diseases, the first criteria can be used to remove a surprising
number of candidate genes and is therefore an easy first pass
filter to narrow down to genes of interest. However, for bone,
what constitutes an appropriate tissue or appropriate time point
is less easy to define, yet is critical for the design of experiments
to determine function (11). The reasons for this are that bone
turnover, bone size and geometry, BMD and even fracture risk,
are impacted indirectly by a number of other organ systems such
as the digestive tract (23), brain (24), kidney (25), and skeletal
muscle (26), and processes occurring during development that
have lasting impacts on the adult skeleton (27). That said, the
majority of validated GWAS genes impacting BMD appear to be
expressed in bone tissue (9, 28). The second criteria, namely that
the candidate gene plays a role in a relevant biological system,
can be a little harder to ascertain, especially for uncharacterized
or understudied genes for which there is little known about
function. It is here that the mouse has proven to be invaluable
(22), and indeed, the bulk of functional validation has been
accomplished by so called reverse genetic approaches in mice.

THE GENOME OF MICE AND MAN

Mice have been used for over 100 years to study the genetic
regulation of physiology, development and disease (29). Like
other animal models, mice fill two specific needs particularly
well: they can be used to collect phenotype data that cannot
be collected from human subjects, and they can be used to
study single factors (i.e., diets, alleles, ages) in isolation. The
mouse genome, while smaller than the human genome, is highly
conserved for protein coding genes (22). At the gene level,
∼17,094mouse protein coding genes have a known direct human
ortholog (http://www.informatics.jax.org, accessed Oct 2018),
and overall organization of the mouse and human genomes
is remarkably syntenic despite 75 million years of evolutional
distance between the two species (30). Thus, genetic findings
in mice are often concordant with genetic findings in humans
(31). However, with the refinement of GWAS and improved
annotation of the human genome, data is accumulating to suggest
that long non-coding RNA genes also play a role in human
disease (32) and not surprisingly, these non-coding genes have
been found at GWAS loci for bone phenotypes (33). While
homologs for long non-coding RNA genes have been found in
mice for human genes (34), generally, these genes are poorly
conserved (35).

Frontiers in Endocrinology | www.frontiersin.org 2 May 2019 | Volume 10 | Article 27743

http://www.informatics.jax.org
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Maynard and Ackert-Bicknell Functional Analysis of Osteoporosis GWAS

DIFFERENCES BETWEEN MOUSE AND
MAN IN BONE

The physiologic and anatomic similarity between mice and
humans has long been appreciated, and, given the high degree
of genome homology, is not surprising (31). Regardless, there are
differences in the skeletal system that should be considered in a
functional validation experiment. In mammals other than mice,
lamellar bone is organized into Haversian systems or secondary
osteons in which lamellar bone is arranged in concentric rings
around a central cavity (36) whereas in mice, a Haversian system
of organization is not seen (37). There are also subtle differences
between mouse and human bone growth during aging. In
humans, the epiphyses fuse shortly after puberty resulting in a
halt in long bone growth. In mice, epiphyseal fusion either never
completes or is delayed until old age (depending on the strain),
and thus some strains of mice can continue to experience some
degree of long bone growth to at least 2 years of age (37). In both
men and women, cortical bone gain has essentially stopped in
early adulthood, and a steep loss in cortical bone volume begins
at menopause in women and after the age of 75 years old in
men. In contrast, trabecular bone loss begins in early adulthood,
irrespective of sex (38). In mice, cortical bone volume increases
out to at least 7 and possibly 12 months of age (depending on
strain), in part due to the increases in skeletal size that arise from
continued growth (39, 40). Decreases in trabecular bone amount
occur far sooner in mice than in humans. In fact by weaning,
inbred mice have already begun to lose trabecular bone (41)
and in outbred mice, a complete lack of trabecular bone volume
in the distal femur was observed as young as 6 months of age
(42). In comparison to humans, this would be the equivalence
of bone loss beginning in toddlers to the point of complete loss
of trabecular bone in some anatomic sites as young adults. The
aggregate peak femoral volumetric BMD in mice (cortical and
trabecular) is generally accepted to happen at about 16 weeks of
age, but this varies by mouse strain (39). This does not mean that
mice are inappropriate for the functional validation of human
bone GWAS loci, but rather that experiments must be designed
to ensure that appropriate comparisons in bone are being made.
Justifying an age for mice in a functional validation experiment is
not as simple as scaling chronological age relative to lifespan and
calling it equivalent.

REVERSE GENETICS

Reverse genetics simply means to reverse engineer the function
of a gene in a biological system. In contrast, forward genetics
approaches such as GWAS move from a disease or phenotype
to find the genetic cause. Thus, reverse and forward genetics
are inseparable for the study of human disease (22). The mouse
genome is easily modified, and 62,025 targeted alleles in 16,947
genes are listed in the Mouse Genome Database (http://www.
informatics.jax.org/, accessed October 2018). This means that for
some genes, multiple targeted alleles have been constructed and
at least partially characterized but for a fraction of protein coding
genes, we as of yet have no direct evidence of function gleaned

from genetically engineered mouse models. The methods for
generating these targeted mouse models are described in detail
elsewhere (43), but what these models are and where to find
both the mice and the phenotype data available for these mice
is described in greater detail in the sections below.

Both global and tissue specific models have been used to
functionally validate bone GWAS loci. An elegant example using
both global and cell type specific models in mice is the work
conducted to confirm the WNT16 gene as a candidate gene for
bone mass and fracture risk (44). In this study, the authors used
both global and cell lineage specific knockout mouse models to
show thatWNT16, a secreted factor, is produced by the osteoblast
and acts on the osteoclast precursor to inhibit osteoclastogenesis.
In addition, this WNT also acts on the osteoblast to inhibit the
formation of the osteoclastogenesis inhibitor Osteoprotogerin
(OPG). As a result, the loss of the Wnt16 gene globally in
mice or in the osteoblast lineage only results in an increase
in osteoclast-mediated bone resorption leading to reductions in
cortical bone mass, but interestingly not loss of trabecular bone.
Further, these mice present with spontaneous fractures of the
long bones, a phenotype rarely seen in laboratory mice. Thus,
this study confirmed thatWNT16 is indeed a bona fide bone gene
and was able to demonstrate the mechanism of action by which
fracture risk was increased.

A global knock out may not be desirable or plausible for
the study a gene in adult bone biology. A case in point is the
global Runx2 knockout mouse, which dies shortly after birth
presumably due to breathing difficulties (45). As is outlined in the
Wnt16 example, conditional knockouts and inducible knockouts
allow one to restrict gene loss to a cell type of interest and/or
after, critical developmentmilestones have beenmet. Such studies
require an appropriate Cre-diver strain wherein expression of
Cre-recombinase is restricted to a desired cell type and/or time
point in cell maturation. Ideally, this allows excision of the gene of
interest in only the cell type of interest. Some of these Cre-drivers
are inducible, meaning that the timing of Cre-induction can be
carefully controlled. A summary of many of the bone relevant
Cre-Driver strains for musculoskeletal tissues and cells that have
been described in the literature are summarized here [reviewed
in Elefteriou and Yang (43)]. In addition, several Cre-databases
are available online which provide more up to date information
about where the Cre-driver is expressed (Table 2). It is important
to remember that Cre-drivers may be expressed in undesired
tissues as well as the desired location.

PHENOTYPED MOUSE MODELS

The nascent stages of the identification of mouse models of
human disease relied on the identification of outliers in a colony
of mice, followed by breeding to determine heritability of the
observed phenotype (46). With advances in technology, the
process of finding the mutation(s) causing the phenotype has
changed, but finding spontaneous mutations in mice remains
a valuable source of human disease models. Many spontaneous
mutations are not gene ablation models and may more closely
mimic human disease than a knockout mouse (46). Relevant
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to bone biology are models such as the oim mouse, which was
discovered in a breeding colony at the Jackson Laboratory in
1985. In this mouse, a single base pair deletion in the Col2a1 gene
results in a truncated protein product (47), and phenotypically
this mouse mimics aspects of Osteogenesis Imperfecta Type
III (48).

A second method to generate mouse models of human disease
is chemically induced mutagenesis via delivery of compounds
such as Ethylnitrosourea (ENU) (46). This forward genetics
approach, while successful in that many models for various
diseases were generated, is laborious and inefficient as the
location of the mutation(s) is random in the genome and
therefore genes impacting the phenotype of interest will not be
specifically targeted. While it is possible to identify recessive
traits in an ENU protocol, it is much faster to restrict a screen
to find traits acting in a dominant fashion. Typically, so-called
Generation-0 (G0) male mice are treated with ENU to induce
mutations. The G0males are bred to wildtype females to generate
so called G1 offspring, which are then screened for phenotypes
of interest. Approximately 2–4% of these G1 mice will carry
mutations yielding a phenotype (49). Several models relevant to
bone biology have been identified this way (50–54). For example,
we recently described the tvrm111Bmutantmouse strain wherein
an inactivating mutation in Lrp5 was identified. As expected,
thesemice havemild decreases in bonemass, abnormalities in the
retinal vasculature and other eye phenotypes, and are a model of
osteoporosis pseudoglioma (OPPG) (55).

With the completion of the first draft sequence of the mouse
genome in 2002 (30), sights were set on determining the function
of all of the known and newly discovered genes. By this time,
generating genetically engineeredmice was common practice and
becoming increasingly more efficient (49). This resulted in the
development of two “mouse clinics” pilot programs to make new
models of human disease: the Mouse Genetics Project (MGP) at
Sanger in the UK and the multi-site European Mouse Disease
Clinic (EUMODIC) program (56). In short, de novo transgenic
knockout mouse models were generated, and this was coupled
with the employment of high throughput, comprehensive and
cost effective phenotyping pipelines to characterize these new
strains. These projects largely were designed to be hypothesis
free in that the genes of interest were not pre-screened to be
involved in a specific disease. The goal of these clinics was 2-
fold: (1) to identify new models of human disease and (2) catalog
the function of protein coding genes in the mouse. These mouse
clinics enjoyed economy of scale allowing for more phenotypes
to be captured per animal than was previously possible in a single
laboratory working in isolation (57).

The mouse clinic method identified weaknesses in the
gene-by-gene study approach that had been the mainstay of
determining mammalian gene function. From these preliminary
proof-of-concept mouse clinics it became apparent that
pleiotropy is very common, yet commonly new mouse models
were only being phenotyped for traits relevant to the interests
of the group making the model. This observation of pleiotropy
led to the concern that incomplete information was being
generated in the historical gene-by-gene approach. Further, there
was concern that that inconsistent data was being collected, as

the gene-by-gene approach was not held to any standardized
methods for data collection (56). In contrast, the application
of a systematic and high-throughput phenotyping pipeline
overcame these issues wherein only “some” types of data were
collected per strain and allowed enforcement of data collection
standard operating procedures (SOPs) (56). Another major
issue with the gene-by-gene approach is that mouse models
were generated and/or maintained on a wide variety of genetic
background strains, precluding straightforward comparison of
one model to another because of strain background differences.
Further, breeding of one model to another created the risk of
passenger mutation effects (58). With all of this in mind, the
“second generation mouse clinics” were carefully designed with
standardized and validated SOPs developed for both animal
model generation and for capturing the phenotype data. The
phenotyping pipelines and the SOPs for collecting data are
reviewed extensively elsewhere (59), but below some of the pros
and cons of the largest of these data collections are described in
the context of validating GWAS loci for bone phenotypes and
disease. Table 1 summarizes these data collections.

International Mouse Phenotyping
Consortium (IMPC)
The International Knockout Mouse Consortium (IMKC) began
in 2003 with the goal of making embryonic stem cells carrying a
knockout allele for all protein coding genes. Indeed, embryonic
stem cell (ESC) lines carrying mutant alleles were generated for
18,500 genes (60). This effort was conducted by numerous sites
and programs internationally, including the Knockout Mouse
Program (KOMP) in the United States. The vast majority of
these mutant alleles are knockout–first and conditional-ready,
meaning that by employing appropriate breeding strategies, both
global gene ablation can be achieved or genes can be knocked
out in a temporal or cell/tissue specific manner (61). It must
be noted, though, that not all genes were knocked out in this
fashion. A smaller fraction of the ESC cell lines are knockout-
only (22). There many impressive aspects of this ambitious and
highly successful project, but the one that is perhaps not as well
appreciated by non-mouse geneticists is that all of these cell
lines were created on a single genetic background, C57BL/6N
(60). As a result, when animated into live mice, double- and
triple-knockouts can be generated without the time consuming
and costly step of breeding all lines onto a uniform genetic
background before interbreeding (58). In 2011, the International
Mouse Phenotyping Consortium (IMPC) was formed to conduct
high-throughput, multi-systems phenotyping on the IMKC
generated mice. In 2015, the efforts of the IKMCwere folded into
that of the IMPC, and, under the umbrella of the IMPC, mouse
model generation continues. It should be noted that the use of
CRISPr/Cas9 is becoming more widely adopted by the IMPC,
producing global gene disruption including conditional and lacZ
reporter lines. However, like the previous mutant alleles, these
new models are being made on the C57BL/6N background (59).

Currently, the IMPC is comprised of 19 research institutions
located in 11 countries and was funded by five national funding
organizations. For the 10 year span that the IMPC was funded
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TABLE 1 | Selected repositories of phenotyping data for mouse genetic models.

Title URL Content

BoneBase http://bonebase.org In-depth bone specific phenotype data for selected IMPC generated mice.

International Mouse Phenotyping

Consortium

http://www.mousephenotype.org/ The website of the IMPC, including SOPs, data, and resources for ordering IMPC mice

and targeted ES cells.

Origins of Bone and Cartilage Disease http://www.boneandcartilage.com/ In-depth bone specific phenotype data for selected IMPC generated mice.

Mouse Genome Database http://www.informatics.jax.org/ The international resource database for the mouse. Includes genomic, phenomic and

gene function information.

Infrafrontier https://www.infrafrontier.eu Access to mouse models and data collected by mouse clinics in Europe and Canada.

House the European Mouse Mutant Archive (EMMA).

to operate (2011 to 2021), five goals were laid out: (1) create
a consortium capable of generating targeted mutations for
20,000 mouse genes, (2) conduct high-throughput, standardized
phenotyping of these knockout lines, (3) determine the biological
function of these genes, (4) create a network of secondary
phenotyping consortia that can conduct additional phenotyping
to enrich the primary data set, and (5) provide the means and
support for free and unrestricted data disseminations for all
IMPC generated data (56).

At the heart of the IMPC is the phenotyping pipeline
(https://www.mousephenotype.org/impress/). This pipeline can
be divided into four sections. In the first part, lines are assessed
for viability and fertility in the homozygous global knockout
state. Approximately one third of all IMPC knockout lines
generated to date were found to be embryonically lethal (no
homozygous knockout mice found after screening 28 pups
from a heterozygous by heterozygous mating) or sub-viable
(less than half of the homozygous knockout mice survive to
weaning) (62). In recognition of this high number of non-viable
lines, an embryonic pipeline is currently in development. This
pipeline is envisioned to collect the duration of viability post
fertilization, and histopathology and gross morphology data at
multiple time points during development. In the third part of
the pipeline, a robust set of phenotype data is collected covering
most body systems. This adult phenotyping pipeline has been
applied largely, but not exclusively, to homozygous knockout
mice. This pipeline is conducted using a rigid schedule of tests
starting when the mouse is 9 weeks of age and extends until the
animal is euthanized at 16 weeks of age. This test battery consists
of a core set of 15 tests that are conducted at all phenotyping
sites using carefully developed SOPs, as well as a set of optional
tests that are collected at some, but not all, of the phenotyping
centers. Lastly, at euthanasia, biological specimens are collected
and analyzed. Like for the in vivo testing, there is a core of data
collected on all mice as well as optional collection SOPs (56, 59).
For example, all sites must collect data regarding heart weight at
death, but only some of the sites bank tissues and embed them for
histopathology (59).

There are two sets of data collected on mice in the IMPC
pipeline that are of primary interest to bone biologists: body
composition and skeletal dismorphology (56). Body composition
traits, including bone mineral content (BMC), bone area (BA),
bone mineral density (BMD), lean mass and fat mass, are
collected. All of these phenotypes are collected on the whole body

sans the head via Dual X-ray Absorptiometry (DXA) onmale and
female mice at 11 weeks of age. At the same time, a simple 2D
whole-body X-ray is collected, and a very comprehensive list of
bone sites are examined for malformations and dismorphologies
(57). The way this pipeline is set up, data is collected on each
line until 7 males and 7 females per line have been examined
for body composition and at least 5 males and 5 females have
had X-ray images captured (https://www.mousephenotype.org).
Control mice of the C57BL/6N line are run through the pipeline
such that a new cohort of control mice is started through the
pipeline every week and therefore, there is always concurrent
control data collected for every mutant strain. The data for each
mutant strain is compared to the aggregate collection of control
data using a statistical analysis protocol designed to be robust to
the imbalance of group sizes between the cases (mutants) and
controls (63). The data is presented on the IMPC web-portal and
can be screened in a number of ways. For example, an investigator
can look specifically for the BMC data for their favorite strain
only, search for all lines with significantly higher BMD and they
can download the raw data for their own analyses.

There are many advantages of using these data for functional
validation of GWAS loci. As of data release 8.0, which was
announced on July 16th of 2018, phenotype data for 5,115 genes
were available, which is just over 20% of all known protein coding
genes in the mouse genome (https://www.mousephenotype.org).
This data is freely available for use by anyone at any time
and is presented in an easy-to-interpret format on the IMPC
website. Further, this data can be downloaded and queried in
bulk allowing one to quickly search their list of GWAS candidate
genes for those with a known bone mass phenotype. At the
time of writing this review, just under 300 lines (6.4% of all
those tested) were annotated to have an abnormal BMD or BMC
phenotype (http://www.mousephenotype.org, accessed October,
2018). Equally important, this list can be screened to eliminate
genes that were tested and found not to impact any of the bone
phenotypes examined. This latter step can be critical when more
than one candidate exists for a single locus. Lastly, the mouse can
be ordered from the IMPC to conduct additional phenotyping
should an investigator choose.

There are many caveats and cautions that must be considered
when using this data for functional validation. In the 7
years since the start of the IMPC, technology has advanced.
There is now data available in the IMPC database from
multiple different DXA scanners that range in resolution from
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∼180µm spatial resolution for the older (and now no longer
commercially available) PIXImus scanners made by GE-Lunar R©

to ∼50µm spatial resolution for the newer instruments from
Faxitron R©. While both instruments have been validated against
bone ash weight standards, the superior resolution of the
newer instruments may provide increased fidelity in BMD via
refinement in accuracy of projected area measured (64). As
a result, there will be less noise in measures such as bone
area, which may or may not affect achievement of statistical
significance for any mutant line.

DXA BMD in a mouse is different than that collected
usually for GWAS purposes in humans. Even with the
superior resolution of the newer DXA machines, in mice, these
instruments are not able to discriminate between cortical and
trabecular regions of interest without specialized analysis (65).
It has been estimated for long bones that three quarters of
the bone mass is contributed by the cortical compartment
primarily in the diaphyses (66). The majority of the attenuation
of the X-ray in DXA imaging for the whole body of a
mouse is achieved by the cortical compartments (65). However,
BMD for clinical purposes is measured in the lumbar spine,
which is largely trabecular, as well as in the hip, which is
proportionally more trabecular than the femoral diaphysis.
While anatomic site-specific region of interest (ROI) data
can be captured on the mouse DXA instruments, this data
is not typically available in the IMPC database. Phenotypes
that impact bone in subtle ways, such as only in the
trabecular compartment or in only one anatomic site, may be
missed by the IMPC screen. In this scenario, the mouse line
could be mistakenly annotated as having no abnormality in
bone mass.

All of the bone phenotyping in the IMPC pipeline is collected
on 11 week old animals. From a sexual maturity point of view,
this represents an adult animal, but from a skeletal growth point
of view, these mice are still in the bone acquisition phase. As was
outlined earlier, cortical bone volume can increase far past this 11
week age point (40). Thus, these 11 week old mice would likely
be the equivalent of an adolescent human. It could reasonably
be argued that the trends leading to lower/higher adult BMD or
smaller/larger adult skeletal size will be well established by 11
weeks of age, but one should remain cognizant of what these data
represent when using it to interpret and functionally validate a
human GWAS locus.

While Quantitative Ultrasound (QUS) phenotypes do
moderately correlate with areal BMD (67), bone architecture,
and mechanical properties in humans and large animals (68),
there is no directly measurable equivalent phenotype in mice for
speed of sound (SOS) or Broad Ultrasound Attenuation (BUA).
Because of the relationship between estimated BMD (eBMD)
as determined from ultrasound measures and areal BMD from
DXA (67), it is assumed that the same advantages and caveats for
using IMPC data for functional validation of areal BMD GWAS
loci also apply to eBMD loci. Similarly, IMPC does not contain
equivalent data such as trabecular bone volume and other
compartment-specific phenotypes like those captured by the
ultra-high-resolution CT machines. Therefore, while the IMPC
is a rich source of data, it may not have utility for functional
validation for some GWAS.

As mentioned previously, the IMPC mice are generated on
a C57BL/6N (N) genetic background (62). This strain is related
to, but is not genetically the same as the more commonly used
C57BL/6J (J) strain or other C57BL/6 strains available from
other vendors. Over 200 generations of breeding have occurred
since the J and the N lines were originally separated in 1951
and during that time, almost 700,000 genetic differences have
accumulated between these two strains including 51 coding
variants (69). It is not surprising that phenotypic differences
between these strains have been observed including differences
in behavior, blood pressure, metabolism and immune function.
In direct comparisons of the two, it was observed that the N
males and females have higher body fat whereas the J strain
has increased lean body mass. The male J mice trend toward
increases in whole-body BMD, but no differences in trabecular
bone mass or bone turnover markers were observed for either
sex (69). It is well understood that changing genetic background
can modify the phenotype of knockout and transgenic mice due
to modifier genes, complicating the interpretation of the impact
of a gene on a phenotype (70). Direct comparisons on a uniform
genetic background takes multiple generations of backcrossing
to avoid effects from segregating modifiers (71). This matters
for functional validation of GWAS loci as segregating modifiers
present on a mixed genetic background can mask or alter
the phenotypic presentation of the allele of interest, leading
to inappropriate conclusions about a gene’s involvement in a
biological system of interest.

BoneBase
Two programs are expanding the skeletal phenotypic data
available for IMPC mice. The first of these, BoneBase, is located
in the US. This program received live breeder mice from The
Jackson Laboratory IMPC production site to conduct in-depth
skeletal phenotyping. It should be noted that this program was
not part of the IMPC and received independent funding but
did work with the IMPC data coordinators. Like the IMPC,
this program was designed to be hypothesis-free in that lines
were not a priori selected because of evidence suggesting a role
in bone biology. All lines that were viable, fertile and free of
profound pathologies (i.e., early renal failure, spontaneous early
cancers, etc.) were accepted for this program. This program was
designed to add on to, but not replicate, the data generated by the
IMPC (72).

Like the IMPC, homozygous animals were used for
phenotyping. Group sizes of at least 8 male and 8 female mice
were phenotyped at 12 weeks of age. Two main phenotyping
mechanismswere used:microCT analysis of the lumbar vertebrae
and the femur, and dynamic cryo-histomorphometry (73) of
adjacent lumber vertebrae and the contralateral femur. The
pipeline (Figure 1) was set up such that if a phenotype at either
anatomic site or in either sex was found, cryo-histomorphometry
was conducted and this data is not available for all lines. In
this manner, a wide-ranging set of data was collected capturing
information on cortical bone size and shape, trabecular bone
mass and architecture, bone formation, and osteoblast and
osteoclast number. Also like the IMPC, rigorous SOPs were
implemented at all stages of animal breeding, tissue collection,
and analysis to ensure that data was collected in an unbiased
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FIGURE 1 | The data collection pipeline for the BoneBase.org phenotyping project. This is one of two specialized high throughput phenotyping pipelines that is

conducting auxiliary, bone specific phenotyping of mice generated by the IMPC. The Bonebase.org logo is used with permission from the database owners.

and rigorous fashion. Also like the IMPC protocol, this group
collected data from C57BL/6Nmice at regular intervals to ensure
that concurrent controls existed for every line, however, these
controls were collected monthly, not weekly (72).

For illustration purposes only, the data for a single gene
examined in the BoneBase pipeline (Figure 2). The data
presented here, which is freely available at the BoneBase web
portal (Bonebase.org, accessed Oct, 2018), is for the gene
Osteoclast stimulatory transmembrane protein (Ocstamp), which
is not a known GWAS candidate gene. This gene is part of
a growing list of genes shown to be required for the fusion

of pre-osteoclasts into mature multinucleated and functional
osteoclasts (74). A substantial increase in bone volume fraction
(BV/TV) in the femur (Figures 2A,B) was observed in the
female but not male mice (data not shown). A substantial
increase in the amount of TRAP staining per unit bone surface
(TRAP/BS, Figures 2C,D) but no change in bone formation rate
(BFR, Figure 2E) was noted. Collectively, these data suggest an
involvement of the osteoclast, but not the osteoblast. From this
simple example, it is readily apparently how this is a valuable
resource for functional validation of GWAS loci as information
is available to provide confirmation that a gene impacts bone
biology. In addition, putative mechanistic information is also
available to provide a first tier of evidence about how a candidate
gene at a locus acts to impact bone biology without the costly
investment in de novomodel construction.

It is interesting to note that while the IMPC found that 6.4%
of lines presented with a bone phenotype by DXA alone (www.
mousephenotype.org), the Bonebase protocol found that ∼15%

of all lines presented with an increase or decrease in bone mass as
determined by microCT. There was little overlap between those
determined to be bone genes by the IMPC and those found
by the BoneBase protocol (72). Given that whole body areal
BMD obtained from DXA is largely a cortical and bone size
driven phenotype (65) and that microCT can be used specifically
to look only at the trabecular bone, this is not an unexpected
finding. This is further supported by evidence that suggests
that trabecular and cortical bone are controlled by independent
genetic signals (75–77).

All of the data generated by the Bonebase project can be
queried at any time via a webportal (www.bonebase.org). To
date, 220 lines have been analyzed and the data for these lines
is available both as summary statistics for a line (separated by
sex) and as raw data available for each individual mouse (as is
presented in Figure 2). It is interesting to note that far more
anatomic site-specific effects (i.e., only in the spine or only in the
femur) and sexually dimorphic effects (i.e., only in males or only
in females) were found than that which has been noted for genetic
loci in GWAS. This may reflect differences in mice vs. humans, or
may reflect that subtle effects could bemore easily detected in this
repeated measures study design.

Origins of Bone and Cartilage Disease
Project
The Origins of Bone and Cartilage Disease (OBCD) project
is the second of two programs expanding skeletal phenotype
data (57, 78) and is very similar in philosophy to that of the
BoneBase project. Like BoneBase, this project is designed to
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FIGURE 2 | Bone Phenotype of female mice lacking Ocstamp. Representative data as collected via the BoneBase pipeline for Ocstamp null female mice.

(A) Reconstructions of the distal femoral trabecular compartment for Ocstamp+/+ (left) and Ocstamp−/− mice. (B) A significant increase in bone volume over total

volume (BV/TV) was observed in the null vs. control animals (*p < 0.001). (C) Staining for tartrate resistant acid phosphatase (TRAP), a marker of osteoclast

cells (yellow) in Ocstamp+/+ (left) and Ocstamp−/− mice. (D) An increase in the number of TRAP positive cells per unit bone surface observed in the null vs. control

animals (*P = 0.001), but no difference in bone formation rate (BFR) was seen (E).

expand on the phenotype data collected on IMPC generated
mice. This project uses mice generated by the Welcome Trust
Sanger Institute (WTSI) IMPC phenotyping pipeline and, to date,
data is available for 733 lines. The summary data is available
for all lines examined by the OBCD and is provided in a
straightforward web portal (http://www.boneandcartilage.com/
index.html). Unlike the Bonebase project, OBCD was able to
collect bone samples from the same mice that went through the
primary IMPC phenotyping pipeline and these mice are 16 weeks
of age at phenotyping. A primary difference between these two
programs is that only data from female mice are available for
the traits of interest for bone and osteoporosis research in the
OBCD, but data exists for males and females in Bonebase. Since
the OBCD collected samples directly from the WTSI pipeline,
data is available for some lines in a heterozygous state (57).
This may be a better reflection of what is captured by GWAS,
as many GWAS loci do not negate expression or alter protein
function. The haploinsufficient state may more closely mimic
what is expected to be the consequence of many GWAS loci.

There is some overlap in the types of data collected by

these two projects, but each project has a different focus with
regards to the kind and purpose of the data collected. Both
groups conducted microCT-based imaging of the distal femur
and femoral midshaft and both groups report data on trabecular
bone mass and architecture, as well as cortical size and geometry

(57, 72). However, the OBCD group collects two types of data
that are unique to this program. First, they collect digital X-ray
microradiography on the femur and caudal vertebrae to collect
bone mineral content (BMC) data. This method overcomes some
of the limitations already outlined regarding the IMPCDXA data
(57). This method is site specific, has higher resolution than the
older DXA machines, and there are no concerns about artifacts
arising from extra-osseous calcification. Second, measures of
bone strength and stiffness are collected by the OBCD via
mechanical testing of the femur (via three point bending) and
the caudal vertebrae (via compression). In addition to the bone
data described above, this group has plans to collect a plethora
of data related to the knee joint which may be informative for
osteoarthritis (79). This arm of the project uses the male mice
generated by the WTSI pipeline, but data for only 29 strains is
currently available.

Lexicon Pharmaceuticals Inc.
Between 2000 and 2008, Lexicon Pharmaceuticals Inc. embarked
on an ambitious project to generate and phenotype ∼5,000
knockout mice via a high throughput pipeline. The overarching
goal of this project was to identify novel avenues of therapeutic
intervention for a wide variety of diseases. The choice of
genes for interrogation was enriched for enzymes, receptors,
and secreted proteins (80). To find genes of interest, their
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phenotyping protocol was designed to capture information on
behavior, cardiology, immunology, metabolism, oncology, and
ophthalmology. Of note for bone biology, three types of data were
collected: (1) DXA imaging, including whole body and region
of interest (ROI) analysis of the femur and spine, (2) microCT
imaging of the fifth lumbar vertebrae and femoral midshaft and
(3) static histological analysis of the long bones (80). In total,
bone relevant data was collected for 3,762 genes; however, the
complete DXA and microCT analysis was not conducted on all
lines. This program did identify and name 10 novel genes that
are involved in the regulation of bone. An additional three genes
were identified as having a role in bone biology, but as of yet the
names of these genes are being withheld. Lastly, they confirmed
the role in bone biology for an additional 23 genes (80). A subset
of the data generated by this project can be found on the MGI
webpage (http://www.informatics.jax.org/knockout_mice/).

Mouse Genome Database
Themouse genome database (MGD) is maintained at the Jackson
Laboratory (http://www.informatics.jax.org (81), and is a central
part of the largerMouse Genome Informatics (MGI) consortium.
The MGD is an incredible resource for the study of the mouse
as a model of human disease and serves as the repository
for information regarding mouse genes, gene function(s), and
mouse strain information. At present, it contains a summary
of the phenotype(s) associated with over 50,000 mutant alleles
in over 12,000 genes (http://www.informatics.jax.org, accessed,
Oct, 2018) Unlike the resources listed above, the MGD is not,
in and of itself, making and phenotyping new mice. Rather, the
data contained in the MGD comes primarily from the literature
and is entered by expert curators. However, data from other
sources such as the IMPC is captured. All of the data presented
in the MGD is linked to the primary references and to other
mouse model resources. A summary page for each mouse gene
is provided and included on this page are: the human homolog,
any human diseases associated with that gene, a brief synopsis of
the phenotype of knockout mice or mice carrying mutations in
that gene, and a visual presentation of the physiological systems
affected by mutations in this genes (81). In addition, the MGD
and the parent MGI project (82) have built an ever-increasing
toolbox formining this data collection.While it is possible to bulk
query this data set for terms such as “decreased trabecular bone
mass,” more complete information is obtained by searching for
each gene individually when looking to validate GWAS candidate
genes. In Table 2, the links for selected search engines and
databases useful for finding mouse strains are provided.

TRANSCRIPTOMICS

The integration of –omics data such as transcriptomics has been
highly successful in many areas of research for identification of
the causative variant(s) as well as for interpreting the role of a
causative variant and/or candidate gene in the disease process. It
is difficult to collect large numbers of specimens from humans
for bone research, which limits the number of sizeable expression
resources available for human tissue (57). Further, extracting
quality RNA from bone and cartilage is laborious and technically

TABLE 2 | Selected resources for locating inbred, transgenic and mutant mouse

strains and targeted ES cells.

Name URL

International Mouse Strain Resource http://www.findmice.org/index.jsp

Australian Phenomics Facility http://pb.apf.edu.au/phenbank/

homePage.html

Canadian Mouse Mutant Repository http://www.cmmr.ca/

European Mouse Mutant Archive https://www.infrafrontier.eu/

International Mouse Phenotyping

Consortium

http://www.mousephenotype.org/

Riken Bioresource http://mus.brc.riken.jp/en/

Charles River https://www.criver.com/

The Jackson Laboratory www.jax.org

Taconic Bioscience https://www.taconic.com/

Envigo https://www.envigo.com/

NIH Aged Rodent Colonies https://www.nia.nih.gov/research/

dab/aged-rodent-colonies-

handbook

International Gene Trap Consortium https://igtc.org/

MGI Cre portal http://www.informatics.jax.org/

home/recombinase

NCBI guide to mouse genome resources https://www.ncbi.nlm.nih.gov/

genome/guide/mouse/

challenging (83). A large number of databases containing raw
and processed gene expression data exist. The largest of these are
described below and summarized in Table 3.

Tissue Expression Panels
Expression data can provide information about when and
where a gene is expressed. Fortunately for bone, there are
excellent resources from mouse that can be used to assess
tissue distribution and cell type expression. BioGPS is a gene-
annotation portal that houses such data for 8 different species
(84). Like many web portals, BioGPS contains a plethora of
tools for easy access of the data featured. Included therein is
a tissue expression panel collected by the Novartis Research
Foundation. In this panel, expression of protein coding genes
was assessed in a large number of primary mouse tissues
from male and female C57BL/6 mice, and also from selected
mouse cell lines (85), GEO Series: GSE10246). All samples were
run on the Affymetrix mouse MOE430 microarray chip (GEO
platform accession: GPL1261), and this data is freely available
for download. Relevant to bone biology, this data set includes
expression in the following cultured mouse cells from three
time points post differentiation (days 5, 14, and 21), primary
calvarial osteoblasts, primary cultured osteoclasts, the MC 3T3
pre-osteoblast cell line (86), the C3H10T1/2 pluripotent mouse
embryonic fibroblast line, and the RAW264.7 macrophage cell
line. The C3H10T1/2 cell line is considered to have mesenchymal
stem cell characteristics and, if appropriately treated, these cells
can be induced to become osteoblast-like, chondrocyte-like or
adipocyte-like cells (87). The RAW264.7 cell line can be induced
to form multinucleated, TRAP positive osteoclast-like cells (88).
Thus, these three cell lines may model some features of bone
stem cells. The caveat with this data is that it is microarray data,
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TABLE 3 | Selected resources for gene expression and localization in the mouse.

Title URL Description

BioGPS biogps.org Gene portal containing tissue distribution and eQTL data for 8 species

Gene Expression Ominbus www.ncbi.nlm.nih.gov/geo/ NCBI repository for microarray and RNAseq data

Gene Paint www.genepaint.org/ Tissue distribution of gene expression in the mouse embryo as determined by in situ

hybridization. This includes data from the Eurexpress project.

Gene Expression Database (GXD) www.informatics.jax.org/

expression.shtml

Repository of gene expression in the mouse collected via a variety of methods

EMBL-EBI Expression atlas https://www.ebi.ac.uk/gxa/home Gene expression abundance and localization in multiple species including human and mouse

GeneNetwork www.genenetwork.org/ A web service for systems genetics that includes mouse bone eQTL data and phenotype data

from a large number of inbred mouse strains.

and differentiating between a lack of expression and a lack of
sensitivity by the probe on the array is difficult (89). In addition
to establishing that a gene is putatively expressed in bone, these
data can be used to differentiate between systemic expression that
would be expected for a housekeeping gene, and tissue enriched
expression. Housekeeping genes are defined as genes that control
basal cellular functions in most tissues and are less likely to
be disease-causing genes (90). Conversely, tissue enriched genes
may be informative for disease and the patterns of tissue-enriched
expression may be helpful in establishing the biological role of a
poorly characterized gene (91).

Newer resources for bone include data collected via next

generation RNA sequencing (RNAseq). Both whole-tissue and

cell type-specific expression data sets have been deposited in
the public domain. Two of these data sets have been used for
functional validation of GWAS loci. In the first, gene expression
across osteoblastogenesis was profiled by RNAseq. In this study,
primary calvarial cells were isolated from neonatal C57BL/6J
mice carrying an allele whereby cyan florescent protein (CFP)
expression was driven by the Col3.6 promoter (92). These cells
were then sorted by FACS to remove the cells not expressing
CFP and were therefore considered non-osteoblast-like. The
remaining cells were placed into culture and differentiated into
osteoblasts using standard protocols (93). Gene expression was
measured in this osteoblast-enriched population in a dense time-
course series from the pre-osteoblast to mature osteoblast stages
of maturation. This is a valuable dataset for determining if a
candidate gene plays a role in osteoblast maturation. Indeed this
data was used to show that Engrailed 1 (EN1), a candidate gene
for a bone mass GWAS locus, is expressed in a relevant cell type
and at an appropriate time point to impact the phenotype of
interest [Zheng et al. (93), GEO Series: GSE54461]. This data
has been subsequently used in a number of GWAS to screen
putative candidate genes (28, 33, 94, 95). The second data set was
not originally created for the purpose of functionally validating
GWAS loci. RNAseq data for cultured bone marrow derived
mouse osteoclasts has been deposited in the Gene Expression
Onmibus (GEOAccession Number: GSM1873361), and this data
has been used in concert with the above osteoblast data to
determine if GWAS candidate genes are expressed in relevant
bone cells [28. 33]. The most abundant cell in bone tissue is
the osteocyte (96) and a variety of gene expression data sets
profiling expression in the osteocyte have been collected.Much of

these data have not been used extensively as of yet for functional
validation of human GWAS loci. Some of these data sets are
so called “enrichment signature” meaning that expression is
not necessarily unique to the osteocyte, but rather is higher
in cells sorted based on a known osteocyte marker (97), or in
a tissue type known to contain largely osteocytes (9). Using
one of these data sets, Morris et al showed that eBMD GWAS
candidate genes were highly enriched among genes showing a
4-fold higher expression in tissues high in osteocyte number as
compared to bonemarrow, suggesting that genes expressed in the
osteocyte play a significant role in the genetic regulation of bone
mass (9).

Expression QTLs
QWAS loci overwhelmingly are thought to be caused by variants
in non-coding regions (16) andmay be involved in the regulation
of gene expression. These variants may affect the level of
transcription of the gene(s) leading to the phenotype of interest
(98), or impact the post-transcriptional processing of one or
more genes (99). The expression level of a gene can be used
as a phenotypic trait for genetic mapping to determine if there
are local alleles controlling expression. Such a locus is referred
to as a cis expression Quantitative Trait Locus [eQTL, (100)].
Limited eQTL data exists for isolated human osteoblasts (101)
and for iliac crest biopsy samples (102), but both of these data
sets have low power for mapping. Use of data from other tissue
types as a surrogate for expression in bone for eQTLs has
yielded mixed results. This is not a unique problem for bone
and, indeed, analysis of the 44 tissues collected as part of the
GTEX project suggested that the distribution of the number
of tissues in which a cis-eQTL is found is bimodal. Namely,
there are a large number of eQTL found in nearly all tissues
and there is an equally large number showing a high degree
of selectivity in that they are found in one to three tissues
only (103).

There is accumulating evidence suggesting a high degree
of evolutionary conservation of patterns of gene co-expression
between mice and humans in many tissues. In particular, the
degree of conservation in bone is among the highest (104).
Further, co-expression of pathways associated with metabolic
disease, cell adhesion, and the cell cycle are also highly conserved
between the species (104), suggesting conserved mechanisms of
regulation. In other diseases and tissues, strong concordance for
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eQTL identified in mice and humans has been observed (105,
106). Collectively, this suggests that, in bone, the examination
of eQTL and gene co-expression in mice would be highly
informative for human bone disease and provide valuable
information toward functional validation of GWAS loci. One set
of data exists in the public domain that can be used for eQTL
mapping in mice (GEO series number: GSE27483). This data
set is comprised of long bone (sans marrow) gene expression
as obtained by microarray from male mice from the Hybrid
Mouse Diversity Panel (HMDP) (107). This panel of mice, which
has been described in detail elsewhere (108), is comprised of 29
inbred strains, as well as 71 recombinant inbred strains of mice
wherein each strain is genetically distinct. Whole body, femoral,
and spinal BMD data are also available for these same strains of
mice. By leveraging the genetic diversity present in this panel, loci
can be mapped for both traditional and expression phenotypes
(107). These phenotypic and expression data for the HMDP
have been deposited in the GeneNetwork repository (http://www.
genenetwork.org/). GeneNetwork is a toolbox for facilitating
systems genetics (109). Deposited in the GeneNetwork repository
are collections of phenotype, expression and genotype data
for a number of species including mouse, rat, non-human
primates, and humans. This repository is coupled to tools that
facilitate analyses within a single data set or across multiple
datasets. Built into GeneNetworks is the ability to conduct
correlation analyses on the HMDP phenotype and genotype data,
map eQTLs, and to conduct pair-scans to look for gene-gene
interactions (109).

Co-expression Networks
Network-assisted analysis of GWAS data has proven to be a
powerful way to select candidate genes and provide possible
mechanisms of biological action (110). The principal behind this
approach is the understanding that genes function as part of
larger pathways and that the allelic differences leading to complex
genetic disease act on members of these pathways to mediate
biological function (111). In other words, genes important for a
complex disease are functionally related at some level (112). In
practice, an unbiased biological network is constructed, such as a
gene co-expression network (113), and the genes found in GWAS
loci aremapped onto this network to identify pathways of interest
and causal genes (107, 114–116). For example, bone resorption
by the osteoclast is a biological function that may be perturbed
in osteoporosis. There are multiple signaling pathways that
control the formation and function of the osteoclast. By creating
a co-expression network from bone, gene expression modules
associated with this biological function of bone resorption can
be identified. All genes in GWAS loci can then be overlaid to
find the subset of genes that are members of these biologically
relevant modules. In this manner, causal genes can be pinpointed,
and biological mechanism of action is putatively determined. The
important part of this method is that the networks are created in
an unbiased manner as opposed to a curated or directed manner,
and therefore novel discoveries can be made. Because of the
conservation of co-expression between mouse and human for
bone (104), network-assisted analysis of GWAS is an powerful

way to augment and direct functional validation efforts for bone
disease. This was elegantly demonstrated by Calbrese et al. (111).
In this paper, the authors examined the 64 loci identified in
the GEFOSII meta-analysis GWAS published in 2012 (117). By
integrating all genes located in these 64 human loci with a gene
co-expression network constructed using femoral expression
data from the mouse (118), these authors were able to predict
the causal gene and infer their function in bone biology for 30
of these loci. They then went on to use traditional experimental
approaches to validate that two of these genes were involved in
the predicted biological process and were indeed bone genes. In
total, network-assisted analysis of GWAS loci is a powerful and
efficient method to prioritize genes for functional validation and
direct functional validation experimental design.

CONCLUSIONS

The power of the mouse to elucidate the cause of human
disease has been recognized for over 100 years. Data on gene
function is being collected using mouse models at a pace
and in a scope that could only be dreamed of a decade
ago. In the not so distant future, a transgenic or mutant
mouse model will exist for every protein coding gene in the
mouse genome and with a few key strokes, any researcher,
anywhere will have access to reliably collected data regarding
what loss of function of that gene does to the bone and
many other physiological systems. By marrying this functional
data with GWAS, an unparalleled level of understanding of
human disease is not over the horizon, but rather practically on
our doorsteps.

The challenge moving forward will be to make sense
of the function of each gene in the context of all other
genes and all of the various physiological systems. Very
soon it will not be adequate to write out a cell-signaling
pathway as if it acted in isolation and was the sole driver
of disease. As we develop new tools and methods for
network analyses we are better able to comprehend and
define the complex interactions leading to skeletal development,
maintenance and decline. Our ultimate goal must be to
determine how to leverage this new-found knowledge in the
context of each person’s physiology to predict, prevent or
treat skeletal disease in manner that is safe and effective for
that patient.
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Genetic susceptibility, together with old age, female sex, and low bone mineral density

(BMD) are amongst the strongest determinants of fracture risk. Tmost recent large-scale

genome-wide association study (GWAS) meta-analysis has yielded fifteen loci. This

review focuses on the advances in the research of genetic determinants of fracture

risk. We first discuss the genetic architecture of fracture risk, touching upon different

methods and overall findings. We then discuss in a second paragraph the most recent

advances in the field and focus on the genetics of fracture risk and also of other

endophenotypes closely related to fracture risk such as bone mineral density (BMD).

Application of state-of-the-art methodology such as Mendelian randzation in fracture

GWAS are reviewed. The final part of this review touches upon potential future directions

in genetic research of osteoporotic fractures.

Keywords: genetics, osteoporosis, fracture risk, genome-wide association studies, review, family, single

nucleotide polymorphism, copy number variation

GENETIC ARCHITECTURE OF FRACTURE RISK

Bone fractures are considered the most relevant clinical sequelae of osteoporosis. Genetic
susceptibility, together with old age, female sex, falls (1) and low BMD are amongst the strongest
determinants of fracture risk. A positive family history is a risk factor for osteoporosis and fractures
thus reinforcing the role of genetics in the basis of liability to osteoporotic fractures (2). Moreover,
parental hip fracture has been incorporated as a risk factor in the FRAX clinical assessment
algorithm in the last decade. Heritability studies have reported estimates for bone mineral density
(BMD) and fractures of up to 66 and 46%, respectively (3, 4). A parental history of fracture has been
related to any-type of fracture risk (risk ratio (RR) for any-type of fracture 1.17, 95% CI 1.07-1.21),
and hip fracture (RR 1.49, 95% CI: 1.17-1.89) (5). These previous findings are at the background of
further genetic investigations.

Different types of genetic changes may underlie diseases; structural variations, including
deletions or base pair changes, vary from mutations of larger stretches of genetic material
to single nucide polymorphisms (SNPs) and mutations affecting 1 base pair together
with structural variation comprising insertions and deletions of different size across the
genome. As discussed elsewhere in this journal issue, there are a multitude of genetic
mutations known to cause relatively infrequent monogenic conditions presenting with bone
fragility including familial forms of osteoporosis, osteogenesis imperfecta and other bone
disorders, for example: COL1A1 (6), COL1A2, LRP5 (7), WNT1 (8), LGR4 (9), PLS3 (10),
CRTAP, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1 and SP7 (11), summarized
in Table 1. One human genome contains roughly 3 billion (3,000,000,000) nucleotides,
which are the building blocks of the genome in the form of the letters A, T, G,
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TABLE 1 | An overview of monogenic bone disorders and the genes involved in

their pathology.

Disease Gene Locus References

Autosomal dominant

Osteopetrosis type II

CLCN7 16p13 (12)

Autosomal dominant

hypophosphataemic rickets

FGF23 12p13.32 (13)

Early-onset osteoporosis WNT1 12q13.12 (8)

Familial hypocalciuric

hypercalcaemia (FHH)

CASR 3q21.1 (14)

GNA11 19p13.3 (15)

AP2S1 19q13.3 (16)

Hereditary hypophosphataemic

rickets with hypercalciuria

SLC34A3 9q34.3 (17)

Hypophosphatasia TNS/ALPL 1p36.12 (18)

Juvenile Paget disease TNFRSF11B 8q24.12 (19)

Osteogenesis imperfecta (OI) COL1A1 17q21.33 (6)

COL1A2 7q21.3 (7)

IFITM5 11p15.5 (20)

SERPINF1 17p13.3 (11)

CRTAP 3p22.3 (11)

PRH1/LEPRE1 1p34.2 (11)

WNT1 12q13.12 (8)

Pseudohypoparathyroidism GNAS 20q13.3 (21)

Sclerostosis SOST 17q21.31 (22)

LRP4 11p11.2 (23)

Vitamin D-dependent rickets CYP3A4 7q22.1 (24)

CYP27B1 12q14.1 (24)

VDR 12q13.11 (25)

X-linked hypophosphatemic

(XLH) rickets

PHEX Xp22.11 (11)

X-linked osteoporosis PLS3 Xq23 (11)

and C.When a SNP in the sequence is swapped for another letter,
this is called a mutation and considered a SNP when occurring
relatively frequent, i.e., with a minor allele frequency (MAF)
>0.5% in the population). Technologies for SNP genotyping
include enzyme-based methods (e.g., polymerase chain reaction
[PCR]-based), hybridization-based methods (e.g., microarrays)
and next-generation sequencing.

Genome-wide screening, as applied in genome-wide
association studies (GWAS), tests for associations between
genetic markers (SNPs and traits of interests in a hypothesis
-free manner. This approach can add onto a priori knowledge
about the physiological, biochemical or functional aspects of
possible candidates (26). On the other hand, genome-wide
genotyping is unbiased in the sense that by surveying the whole
genome in a hypothesis-free manner, involvement of unexpected
candidates or even loci with unknown function could be revealed
(27). Meta-analyses are an appropriate way for follow-up in
candidate gene studies of top loci and genes prioritized by
GWAS, and use of existent GWAS for look-ups of functional
biological hypotheses.

It has been shown that SNPs underlie differences between
people, including the variability in disease susceptibility, and
recent GWAS have vastly expanded our knowledge in this

area (28). Apart from developing our understanding of disease
etiology, expectations are that these genetic markers will be useful
in disease diagnostics and prediction, form potential drug targets
and potentially modulate treatment response (9).

Fracture is the most clinically relevant endpoint of
osteoporosis and its etiology is complex. Similarly to other
traits strongly related with old age, the heritability of fracture
risk decreases with age. Studying correlated endophenotypes
that are associated with fracture risk, such as BMD, lean mass
and hand grip strength might be a good alternative to study the
genetic basis of fracture risk. GWAS for various osteoporosis-
related traits have shown that targeting these quantitative
endophenotypes with excellent measurement properties (root
mean square standard deviation expressed as coefficient of
variation of 1.0–1.2% for the spine and 1.1–2.2% for the femoral
neck by DXA)(29) is efficient in the number of loci discovered.
The earliest GWAS of DXA-BMD identified 24 loci that influence
DXA-BMD variation explaining ∼3% of trait variance (30–36)
of which several variants have also been nominally associated
with fracture risk (37, 38). A breakthrough was the meta-analysis
by the genetic factors for osteoporosis (GEFOS) and genetic
markers for osteoporosis (GENOMOS) consortia (39), where
the top-associated BMD markers explaining ∼6% of BMD
variance were also tested for fracture risk (31,016 cases and
102,444 controls), where 14 out of 56 BMD loci were associated
at Bonferroni corrected significance level with fractures, of
which six loci at genome-wide significant level. An alternative
measurement method for DXA is total body BMD, as is more
commonly applied in childhood and adolescence, where GWAS
recently reported more than 80 loci explaining 10% of the
variance (40). This same publication examined these SNPs in an
independent fracture study, where a decrease of one standard
deviation in genetically determined total body BMD resulted
in 56% higher odds of fracture. Another endophenotype is
BMD estimated from quantitative heel ultrasound, where in this
GWAS 12 out of the associated 307 SNPs were also associated
with fracture risk, newly adding the AQP1 and SLC8A1 loci as
potential fracture genetic determinants (41).

BMD is among the quantitative traits for which GWAS have
been effective in discovering high numbers of loci (42, 43). On the
other end, GWAS for dichotomous disease as a direct outcome
have yielded relatively lower numbers of loci discovered (42),
probably due to study power issues. This might concern the
studies for osteoporotic fractures as well. Further, identifying the
specific genetic determinants contributing to the risk of fracture
has been difficult due to its multifactorial nature and occurrence
late in life. High phenotype heterogeneity and ascertainment bias
reduce the power to detect association,making the genetic studies
evenmore difficult. Endophenotypes may be nearer to the coding
DNA in the chain of events at the basis of multifactorial diseases,
and, homogeneous determination of endophenotypes may be
simpler than defining certain diseases. Indeed, hypothesis-free
genome-wide screens have shown that the most prominent and
consistently replicating genetic loci associated with fracture risk
are also associated with BMD, which serves as proof of BMD
being a very powerful endophenotype for fracture prediction
(44). This also implies that an underlying fragility component
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mediated through genetic predisposition seems to form a major
part of the basis for fracture risk.

At the beginning of the GWAS era, the genomics field was
dominated by the common disease-common variant hypothesis,
which states that common diseases are caused by common
genetic variants (45). Yet, the list of rare genetic variants
influencing common disease is growing (46). In between these
two categories are SNPs with minor allele frequency (MAF)
of 0.5–5%.

RECENT ADVANCES IN THE GENETICS OF
OSTEOPOROTIC FRACTURES

Several GWAS specifically aimed at fracture risk, have been
performed to date, as discussed below and summarized inTable 2
and Figure 1.

GWAS for Fracture Risk and DXA-BMD
With regard to the allele frequencies, osteoporotic fracture risk
has been shown to be associated with common, uncommon
and rare variants. In a study of structural variation in relation
to fracture risk (5,178 Dutch individuals of which 809 fracture
cases), the proportion of fracture cases with at least one deletion
was significantly higher compared to controls and a 210 kb
deletion located on chromosome 6p25.1 was associated with
fracture risk (OR=32.58, 95% CI 3.95 to 1488.89). An in
silico meta-analysis in four studies with copy number variation
microarray data found similar results for the association with
fracture risk (OR 3.11, 95% CI 1.01 to 8.22). Notably, this
variant was absent in samples from several countries; indicating
geographic diversity.

Nevertheless, this study indicates that the study of rare CNVs
deserves follow-up (49). Also, another effort in the GEFOS
and GENOMOS consortium encompassing for the first time a
sequencing-based GWAS meta-analysis has discovered EN1 as a
determinant of bone density and fracture (rs11692564(C) allele
OR= 1.18) (52). Further, deCODE investigators have discovered
common sequence variants in PTCH1 (53) (MAF= 11.4–22.6%)
and less frequent (MAF = 0.14%−0.18%) variants in LGR4 (9)
associated with BMD and fractures (OR= 1.09 and OR= 3.12).

The first two published GWAS for fracture risk identified the
SVIL gene locus in African American populations (50) and the
MECOM gene locus in Korean and Japanese populations (48),
respectively. It should however be noted that access to larger
sample sizes is still limited for samples of non-European descent,
as reflected in a lack of a replication meta-analysis for the African
American fracture GWAS. The second GEFOS GWAS meta-
analysis for BMD assessed the identified loci for their relation
with fracture (39). The recently published large scale GWAS
meta-analysis for fracture in 25 cohorts from all over the world
with genome wide genotyping and fracture data (discovery in
37,857 fracture cases and 227,116 controls; replication in up
to 147,200 fracture cases and 150,085 controls) identified 15
loci (44), of which all were also associated with bone mineral
density. Relative to the previous DXA-BMD GWAS–fracture
association study (39), we confirmed the 2p16.2 (SPTBN1),

7q21.3 (SHFM1), 10q21.1 (MBL2/DKK1), 11q13.2 (LRP5), and
18p11.21 (FAM210A) loci, and observed an increased signal at
SOST, CPED1/WNT16, FUPB3, DCDC5, RPS6KA5, STARD3NL,
and CTNNB1. Additionally, we added the 6q22.33 (RSPO3),
6q25.1 (ESR1), 7p12.1 (GRB10/COBL), and 21q22.2 (ETS2) loci
to the list of novel fracture loci. The signals mapped to genes
clustering in pathways known to be critical to bone biology (e.g.,
SOST,WNT16, and ESR1) or novel pathways (FAM210A,GRB10,
and ETS2). These variants explain approximately 2% of variance
in fracture risk (unpublished data).

As reviewed elsewhere (54), several Mendelian randomization
(MR) studies in relation to fracture risk have been published.
One of the first publications in this field was an exploration of
the association between C-reactive protein levels and increased
fracture risk, where we did not find evidence for a causal effect
(55). Nevertheless, particularly for proving negative associations
well-powered meta-analyses are required. The largest MR study
to date was conducted on behalf of the GEFOS/GENOMOS
consortium and the 23andMe research teams (44). In this
study, SNPs that had been previously reported in GWAS were
used as instrumental variables, representing 15 risk factors for
fracture including: BMD (femoral neck and lumbar spine),
age of puberty, age at menopause, grip strength, vitamin
D, homocysteine, thyroid stimulating hormone level, fasting
glucose, type 1 diabetes, type 2 diabetes, rheumatoid arthritis,
inflammatory bowel disease, coronary artery disease, and the
lactose intolerance marker (rs4988235) as a surrogate to assess
long term differences in dairy derived calcium intake. SNPs
influencing BMD were strongly and inversely correlated with
odds of fracture (for femoral neck BMD SNPs genetic correlation
−0.59; and for lumbar spine BMD SNPs genetic correlation
−0.53). By contrast, of the remaining clinical risk factors
evaluated, only homocysteine was shown to be genetically
correlated with fracture risk (genetic correlation >0.2 or <-
0.2, and surpassing the threshold for statistical significance
for multiple testing), but this should be interpreted with
caution as the confidence interval is wide. In the subsequent
Mendelian randomization analysis, again, only the BMD SNPs
were significantly associated with fracture risk. This implies
a causal effect of these SNPs through BMD on fracture risk,
without any evidence for pleiotropic effects as the Mendelian
randomization-Egger regression intercepts centered around zero.
By contrast, despite high statistical power, none of the other
tested and well-accepted risk factors had evidence for a major
causal effect on fracture risk. These results should be interpreted
with caution as reviewed elsewhere (56). Still study power is
limited in spite of the large sample sizes and the LD score
regression method used. Potentially existing pleiotropy or non-
linear relationships (e.g., threshold effects and extremes of the
population) may be subjects of future research. Another very
recent study (57) extensively assessed genetic determinants of
osteoporosis, combining the UK Biobank and 23andMe cohorts
(57). The authors, first identified 518 genome-wide significant
loci (of which 301 novel) associated with heel BMD and then
identified 13 loci associated with fractures across 1.2 million
individuals (all also associated with heel BMD). Furthermore,
they identified target genes known to influence bone density and
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TABLE 2 | Findings of fracture risk genome wide association studies.

Sample size

fracture cases

vs. controls

Type of fracture Ethnicity Type of genetic variation References

A. PUBLISHED FRACTURE RISK GENOME WIDE ASSOCIATION STUDIES

329 vs. 2,666 Vertebral (radiographic) Caucasian Single nucleotide polymorphism Oei et al. (47)

288 vs. 1,139 Any Asian Single nucleotide polymorphism Hwang et al. (48)

809 vs. 4,369 Any Caucasian Copy number variation Oei et al. (49)

540 vs. 10,305 Any African-American Single nucleotide polymorphism Taylor et al. (50)

1,553 vs. 4,340 Vertebral (clinical) Caucasian Single nucleotide polymorphism Alonso et al. (51)

37,857 vs. 227,116 Any Caucasian Single nucleotide polymorphism Trajanoska et al. (44)

References Variant Effect allele Effect allele

frequency

Alternate

allele

Odds ratio 95% Confidence

interval

Locus Candidate

gene

B. GENETIC VARIANTS FOUND ASSOCIATED IN THE FRACTURE RISK GENOME WIDE ASSOCIATION STUDIES

Oei et al. (47) rs11645938 C 9.65% T 1.06 0.98–1.14 6p25.1 FOXC2

Hwang et al. (48) rs784288 A 25% G 1.39 1.24–1.56 3q26.2 MECOM

Oei et al. (49) 210 kb deletion N.A. 0.14% N.A. 3.11 1.01–8.22 6p25.1 PECI

Taylor et al. (50) rs12775980 A 3% C 2.12 1.61–2.79 10p11.23 SVIL

Alonso et al. (51) rs10190845 A 4.9% C 1.74 1.06–2.06 2q13 FBLN7

Trajanoska et al. (44) rs4233949 G 61% C 1.03 1.02–−1.04 2p16.2 SPTBN1

rs430727 T 45% C 1.03 1.02–1.04 3p22.1 CTNNB1

rs10457487 C 51% A 1.05 1.04–1.06 6q22.33 RSPO3

rs2982570 C 58% T 1.04 1.03–1.05 6q25.1 ESR1

rs2908007 A 60% G 1.06 1.05–1.07 7q31.31 WNT16

rs6465508 G 34% A 1.04 1.03–1.05 7q21.3 C7orf76

rs6959212 T 34% C 1.03 1.02–1.04 7p14.1 STARD3NL

rs1548607 G 32% A 1.03 1.02–1.05 7p12.1 GRB10

rs7851693 G 35% C 1.04 1.03–1.05 9q34.11 FUBP3

rs11003047 G 11% T 1.09 1.07–1.10 10q21.1 MBL2

rs3736228 T 15% C 1.06 1.05–1.08 11q13.2 LRP5

rs1286083 T 82% C 1.05 1.04–1.07 14q32.11 RPS6KA5

rs2741856 G 92% C 1.10 1.07–1.11 17q21.31 SOST

rs4635400 A 36% G 1.04 1.03–1.05 18p11.21 FAM210A

rs9980072 G 73% A 1.04 1.03–1.05 21q22.2 ETS2

strength and performed a rapid throughput skeletal phenotyping
of 126 knockout mice with disruptions in predicted target genes.
They found an increased abnormal skeletal phenotype frequency
compared to unselected lines and a further in depth analysis
on gene DAAM2 showed a disproportionate decrease in bone
strength relative to mineralization.

Another Mendelian randomization study is the report on
a causal effect of serum estradiol concentrations (interestingly
in men) and an increased risk of any fracture (OR 1.35, 95%
CI, 1.18-1.55), non-vertebral major osteoporotic fractures (OR
1.75, 95% CI, 1.35-2.27) and wrist fractures (OR 2.27, 95% CI,
1.62-3.16) (58).

Although most genetic studies on fracture risk have pulled
together fracture information of any type, without discrimination
of site, there are two major efforts on vertebral fracture GWAS
that have been published. The first genome-wide association
study for radiographic vertebral fractures in the Rotterdam
Study, found a marker on chromosome 16q24 as genome-wide

significantly associated (59). Although the 16q24 locus was found
associated with BMD and vertebral defects at birth before, the
association with vertebral fracture risk could not be replicated
by de-novo genotyping across 15 studies worldwide, likely due
to the heterogeneity underlying the different fracture definitions.
A subsequent publication focusing on clinical vertebral fractures
(i.e., those presenting with clinical manifestations) identified and
replicated a locus tagged by rs10190845 on chromosome 2q13
where differential expression of the positional candidate genes
TTL and SLC20A1 was shown (51).

Recent GWAS for Heel BMD and
Other Endophenotypes
The most recent study by Morris et al. (57) identified 518
genome wide significant loci (of which 301 novel) across 426,824
individuals of UK-Biobank which altogether explain around 20%
in heel BMD variance. Earlier in 2017, Kemp et al. had identified
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FIGURE 1 | Number of loci discovered in fracture genome-wide association studies (Y-axis) plotted by fracture cases sample size (X-axis).

across a subsample of UK-Biobank (N = 142,487) 203 loci, of
which 153 novel at the time of publication (41).

Lean mass and hand grip strength have been associated with
fracture risk (60) and may provide a possible endophenotype
for potential genetic studies to elucidate fracture risk. It is
thought that this relationship may be because of an inverse
relationship between muscle strength and balance and thus
fall risk. A study by Zillikens et al. (61) found five SNPs
in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for
total body lean mass across 101767 individuals and three SNPs
in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean
mass among 73,420 individuals. Karasik et al. (62) additionally
identified a novel LM locus (TNRC6B).

Hand grip strength GWAS by Willems et al. was associated
with 16 new loci. Furthermore, in the same study, the authors
found evidence of shared genetic etiology of BMD and lean mass
with grip strength and moreover a suggestive causal role for
higher grip strength and lower risk of fracture (63). Similar results
were found for the potential causal relationship between hand
grip strength and fracture risk, but could not be replicated with a
multiple testing significance threshold in the study by Trajanoska
et al. (44).

POTENTIAL FUTURE DIRECTIONS IN
GENETIC RESEARCH OF
OSTEOPOROTIC FRACTURES

Increasing Sample Size
A minimum sample-size threshold needs to be reached in
GWAS, from where the number of discovered loci increases
along with growing sample sizes as study power improves
(42). Mega-sized biobanks, such as 23andMe and UK Biobank,
including hundreds of thousands of participants with GWAS

are increasingly becoming available (64, 65). A drawback from
such Mega-GWAS is that phenotype data tends to be of variable
quality and less accurate. However, there is a trade-off where
the huge numbers may boost study power tremendously and
overcome measurement error to a certain extent. In addition,
the success rate of unraveling underlying genetic mechanisms
may be influenced by the complexity of the genetic architecture
of the trait of interest, including imperfect penetrance, allelic
heterogeneity, and gene-environment and epigenetic effects (42,
43). The discovery of rare variants is hindered by the large sample
sizes required to attain sufficient study power, where research
consortia and Mega-GWAS with even larger sample sizes prove
their worth through ever-increasing sized meta-analyses. Larger
imputation reference panels and sequencing-based genotyping
are becoming progressively available, facilitating more accurate
examination of lower-frequency SNPs and other type of genetic
variants such as indels and larger deletions (66).

Furthermore, it has been proposed that the missing
heritability for human height and body mass index is likely
to be small after estimating the genetic variance from all imputed
variants (67); this will likely be the case for a (quantitative) trait
such as BMD as well. Until now, rare variant association studies
have found variants with larger effects where each explains
only a tiny proportion of the phenotypic variance, because the
heritability explained is dependent on the effect size and allele
frequency (68). Therefore, arguments can be found to study both
common and rare variants in the occurrence of common diseases
(68), as also confirmed by our experiences in the bone field.

Increasing Phenotyping Quality
More detailed phenotyping is believed to be of value for
scrutinizing skeletal-site specific effects for fracture risk, for
example cortical vs. trabecular bone, which justifies separate
GWAS efforts for specific fracture types. This thinking comes
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from the observations that heritability of BMD varies across
skeletal sites due to a mixture of shared and specific genetic
and environmental influences as quantified by the genetic
correlations (69), which supports the findings that some genetic
loci display skeletal-site specific effects (32). Furthermore, it has
been hypothesized that using stricter phenotype definitions and
taking into account fracture mechanisms may increase study
power. Yet, a major drawback is the decreasing sample size.
Results for radiographic (59) and clinical vertebral fractures (51)
have been published, as described above, efforts for hip and wrist
fractures are underway, but struggle with attaining sufficient
study samples to enable discoveries. Therefore, the all-type of
fracture GWAS approach seems the starting point to attain
maximum sample size for power to perform the first screening
for genetic variants that contribute to osteoporotic fracture
risk in general. Other even more specific subjects of clinical
studies could be atypical (femoral) fractures or fracture healing,
which could yield insight into differences in natural healing
mechanisms and efficacy of medical treatment between patients.

The tough start of the fracture GWAS may be rooted in
the complex phenotype definition and heterogeneity of the
trait and its underlying genetics. A better understanding of the
genetic architecture seems necessary. More clarity is needed
which fracture phenotypes should be studied together because
they have a joint genetic etiology, and which do not and thus
should be analyzed separately; for example vertebral vs. non-
vertebral fractures are distinguished clinically and probably also
genetically. Then robust selection criteria should be defined for
an optimal fracture phenotype definition of interest. Research
ideas include data enrichment for cases that have a known family
history for osteoporosis, having fractured at relatively young
age or having sustained multiple fractures. This because the
heritability of osteoporotic fractures at younger age is higher (4).
Nonetheless, the osteoporotic fracture incidence at young age
is lower, which may limit study sample sizes. Theoretically, it
has been speculated that perhaps further exclusion criteria need
to be established for cases that are thought to be caused by
arguably non-genetic mechanisms (e.g., non-genetic secondary
osteoporosis, high-trauma, old age, malnourishment, etc.), where
refinement and automatization of measurements may enhance
the richness, quality and quantity of research data available.
However, until now in practice, bigger seems better to efficiently
identify genes; then one should take these discoveries and bring
them in a candidate-gene context and look across rich sets of
detailed phenotypes that help understand the underlying biology.
Combination intomultivariate GWAS ofmultiple disease-related
traits could further exploit the detection of pleiotropic effects (70)
and novel statistical methods may be able to better utilize the
richer phenotype information that will become available (71, 72).

Additionally, richer phenotyping of endophenotypes may
yield more insight. Dual energy X-ray absorptiometry still
misses 80% of patients who will fracture (73). One of the
underlying reasons is that it generates two-dimensional scans
and does not sufficiently appreciate bone microarchitecture,
an important determinant of bone strength (74). Areal
BMD does appreciate bone size and in part the internal
architecture; the trabecular bone score (TBS) which can also

be derived from DXA data will be worth further investigations
(75). Further improvements require more advanced imaging
than dual energy X-ray absorptiometry, principally by direct
three-dimensional radiological imaging investigations, such
as computed tomography or magnetic resonance imaging,
to directly visualize microstructure, differentiate cortical and
trabecular bone, and model bone strength biomechanically
(76). Second, the contribution of the mineral phase to bone’s
mechanical properties has dominated scientific thinking, while
bone is composed of three different phases (by volume: mineral
42%, collagen matrix 35%, and water 23%) (77). Novel imaging
techniques that can quantify this bone composition are coming
up (78), and genetic studies into these endophenotypes are yet
to come.

Finally, it could be argued that bone geometry and its genetics
should be studied. Intriguingly, taller persons are at increased
risk of fractures in spite of having larger bones with more mass
(79, 80). This may be caused by a different distribution of bone
mass by periosteal apposition (81). Further, loci implicated in
the GWAS of human stature are enriched for genes important
for skeletal growth (82). And more specifically, a GWAS meta-
analysis for hip shape was published very recently and found
17q24.3 and ASTN2 as associated in lookups in hip fracture
GWAS (unpublished data) (83).

Richer Genotyping
However, some of the measurement methods with respect
to both genotyping and phenotyping currently available are
simply too expensive or invasive to apply on a population
level at present. Yet, current limits are being challenged,
with the very first successful large-scale applications of whole-
genome sequencing and deep imputation using sequencing-
based reference panels in the osteoporosis research field (52).
The Haplotype Reference Consortium (HRC) and the Trans-
Omics for Precision Medicine (TOPMed) Program have created
large reference panels of human haplotypes by combining
together sequencing data from multiple cohorts. Further studies
of copy number and structural variations should be performed.
However, the genome may be too distant in the cascade from the
disease of interest to detect clinically relevant patterns, therefore,
screening the transcriptome, epigenome, metabolome, proteome
and even microbiome at perhaps multiple time points may
prove necessary. This may be applied to clinical fracture patient
studies as well as population-based cohorts, where subgroups
could be studied including for example individuals with multiple
fractures, persons with fractures at young age, and elderly
individuals free of fractures. The osteoporosis field has started to
explore epigenetic regulation for instance: microRNA (84, 85),
long non-coding RNA (86), gene expression (87), and DNA
methylation (88).

Functional Follow-Up
Oftentimes the function of genes contained in the associated loci
are not (completely) known. Functional follow-up studies are
needed, yet, the development of animal knock-out-models may
take years. Establishment of multi-disciplinary research consortia
worldwide may be beneficial to efficiently take GWAS discoveries
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to functional follow-up in a harmonized research pipeline. Also,
publicly available databases are being launched to enhance
interpretation of genomic sequence information, promoting
mutual data sharing between expert consortia, professional
organizations, health care providers, and patients. An inventory
of the GWAS catalog in 2009 revealed that 88% of the GWAS
associations are in either intergenic or intronic regions (28),
regions of the genome we still understand little about, but to
which GWAS has contributed by indicating regulatory sites (89).
Moreover, the GWAS association signal in the radiographic
vertebral fracture GWAS did not lie within a gene (59), and
the same was true for some of the signals in the BMD and
all-type of fracture GWAS (44). The Encyclopedia of DNA
Elements (ENCODE) project, aiming to identify all functional
elements in the human genome, has drastically enriched our
comprehension about regions outside of the exome and showed
that many GWAS SNPs overlap transcription-factor-occupied
regions or DNase I hypersensitive sites and are particularly
enriched in the segmentation classes associated with enhancers
and transcription start sites (90). A striking finding is that
obesity-associated noncoding sequences within the FTO locus
are associated with expression of the homeobox gene IRX3 at
megabase distances, but not with expression of FTO itself; (91)
this association seems to be driven by a topologically associated
domain (TAD) structure encompassing the FTO and IRXB genes
cluster (92). Such genomic explorations remain to be performed
for osteoporosis-related traits.

Pharmacogenomics
So far, therapies used to increase bone strength in individuals
with osteoporosis are mainly based on antiresorptives (93).
Bisphosphonates are the most widely used first-line because of
their effectiveness, reasonable safety, and a low cost price (94).
However, in practice, no single antiresorptive therapy is currently
appropriate for all patients, as a subgroup of patients on anti-
fracture medication responds suboptimally, e.g., small gain in
bone mass or new fractures occur in spite of treatment, or
negative side-effects such as osteonecrosis of the jaw or atypical
femoral fractures (AFF) among others (95). To our knowledge
no large-scale pharmacogenetic GWAS studies examining these
phenomena in osteoporosis have been published to date, though
initial case studies on the genetics of AFF and an accompanying

systematic review have been published (96). In the future,
results from pharmacogenomic studies may aid in assigning
the most effective therapy to specific patient groups and it has
been hypothesized that genetic biomarkers can be identified
to pinpoint those patients most vulnerable to side-effects of
certain agents. Nevertheless, because interaction studies tend to
involve more parameters, up to four times as many subjects
are needed (97); unless extremely large effects are in place, as
we have witnessed for a few pharmacogenomic successes, such
as anticoagulant dosing according to VKORC1 haplotypes and
HLA-B∗5701 screening for the risk of hypersensitivity reaction to
abacavir in HIV (98). Until now in genetic osteoporosis research,
solely candidate gene studies have been performed investigating
genetically-based variation in treatment response to raloxifene,
teriparatide, and bisphosphonates (99). One of the reasons for
this is that the coverage of pharmacogenomics variants was
limited on GWAS genotyping platforms (100, 101), but this is
improving with novel microarrays becoming available.

CONCLUSION

GWAS is the study design necessary to further investigate the
complex phenotypic and genetic architecture of osteoporotic
fracture risk. Although fractures can be considered a complex
trait, so far, the majority of susceptibility loci for fractures are
also associated with bone mineral density. Hopefully, novel
discoveries in the genetics of fracture risk will increasingly be
translated clinical practice, with genotyping increasingly being
successfully applied providing access to previously unknown
information that may change the diagnostics and treatment of
patients with bone diseases including osteoporosis with increased
fracture risk in the future.
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Epidemiological studies have identified many risk factors for osteoporosis, however

it is unclear whether these observational associations reflect true causal effects, or

the effects of latent confounding or reverse causality. Mendelian randomization (MR)

enables causal relationships to be evaluated, by examining the relationship between

genetic susceptibility to the risk factor in question, and the disease outcome of interest.

This has been facilitated by the development of two-sample MR analysis, where the

exposure and outcome are measured in different studies, and by exploiting summary

result statistics from large well-powered genome-wide association studies that are

available for thousands of traits. Though MR has several inherent limitations, the field

is rapidly evolving and at least 14 methodological extensions have been developed to

overcome these. The present paper aims to discuss some of the limitations in the MR

analytical framework, and how this method has been applied to the osteoporosis field,

helping to reinforce conclusions about causality, and discovering potential new regulatory

pathways, exemplified by our recent MR study of sclerostin.

Keywords: bone mineral density (BMD), fractures - bone, pleiotropy, sclerostin, GWAS - genome-wide association

study

INTRODUCTION

Osteoporosis is a common disorder leading to skeletal fragility and increased fracture risk. This
condition is strongly influenced by age and sex, as well as genetic factors. Establishing which risk
factors play a causal role in osteoporosis is helpful in unraveling pathogenic mechanisms, and
in identifying potential new preventative and treatment strategies. Epidemiology studies in the
osteoporosis field have examined relationships between putative risk factors and fracture risk, the
main clinical consequence of osteoporosis. Investigations have also studied risk factors for bone
mineral density (BMD) as measured by DXA, which is a strong predictor of fracture risk (1).
Traditional observational studies have reported that a range of potentially modifiable risk factors,
including sex-steroid deficiency, low body mass index (BMI), physical inactivity, smoking, heavy
alcohol consumption, and low calcium and vitamin D, are related to BMD and fractures. However,
studies of this type suffer from confounding and reverse causality (2, 3). Randomized controlled
trials (RCTs) are the gold standard for inferring causality, because they are unaffected by these
issues if performed correctly. However, RCTs are expensive, resource-intensive, time consuming,
and may have important ethical limitations.
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MR is a statistical method for inferring causality which
is analogous to an RCT, except that genotypes are used
to randomize participants into different levels of the
exposure/treatment. MR can be implemented as a form of
instrumental variables analysis, where genetic variants, normally
single nucleotide polymorphisms (SNPs), are used as proxies
(“instruments”) for the exposure of interest (see Figure 1) (4, 5).
According to Mendel’s Laws of Inheritance, alleles segregate
randomly when passed from parents to offspring. According
to his (second) Law of Independent Assortment, which forms
the foundation of MR, the inheritance of one pair of factors
(genes) is independent of the inheritance of the other pair.
Thus, offspring genotypes are unlikely to be associated with
confounders in the population. In addition, since germ-line
genotypes are determined at conception, they precede outcomes
being investigated, and so observed associations cannot be
explained by reverse causation. However, unlike RCTs which
generally involve relatively short term interventions, genetic
influences exert their effects from conception onwards, and so
causal effects estimated fromMR represent life-long exposures.

MR was initially developed in the form of one-sample MR,
which relies on access to individual level data (Figure 1A). One
limitation of this method is that most individual cohorts do not
have many traits measured simultaneously. Two sample MR was
subsequently developed to overcome this issue by using summary
level data derived from independent cohorts that collectively have
many exposures and outcomes measured (Figure 1B). GWAS
data is now available on thousands of plausible osteoporosis risk
factors which can be leveraged by two sample MR. The extensive
opportunities to explore causal influences on bone phenotypes
using the MR approach is summarized in two recent reviews
(2, 5).

Though previous MR studies have contributed to our
understanding of causal factors involved in the etiology of
osteoporosis, as discussed below, MR has a number of inherent
assumptions and limitations, for which a range of sensitivity
analyses have been developed (6–8). MR analyses may also be
subject to several sources of bias (9). For example, if individuals
with a certain disease outcome are drawn from a population
with distinct ancestry to disease-free controls, this may lead
to differences in frequency of genetic variants between those
with and without disease, and hence spurious associations
with genotypes related to putative risk factors. Furthermore,
dynastic effects need to be considered for many traits, including
BMD, whereby effects of genetic variation in the offspring are
partly mediated by shared parental genetic influences acting
via early life environment (10). The present paper aims to
discuss how MR has been applied to the osteoporosis field,
including the approaches taken to address limitations in the MR
analytical framework.

OSTEOPOROSIS OUTCOMES

Consistent with epidemiology studies of osteoporosis in general,
the majority of MR studies in osteoporosis have utilized DXA-
measured BMD as the outcome, which is widely used clinically

as the gold standard for diagnosing osteoporosis. As well as
being predictive of the clinical consequence of osteoporosis,
namely fractures (1), BMD has a major heritable component,
making it a highly suitable outcome for MR analyses (11, 12).
Initial studies utilized summary statistics from GWASs, such as
those based on the GEnetic Factors for OSteoporosis Consortium
(GEFOS, http://www.gefos.org/), which made GWAS findings
for DXA-measured BMD publicly available for a range of sites
including the lumbar spine (LS) and femoral neck (FN) (13).
Whereas, GEFOS has the advantage of providing BMD GWAS
data for multiple skeletal sites, a potential disadvantage is that
the latter GWAS adjusted for weight. The justification for this
is that areal BMD measured by DXA is influenced by body
size, which is partly accounted for by adjusting for weight.
However, this can have unintended consequences, such as the
introduction of spurious genetic associations as a consequence of
collider bias (14). In addition, by using BMD summary statistics
corrected for weight, subsequent MR analysis may be biased
as effects on BMD mediated by weight may not be accurately
estimated. Moreover, as described below, use of GWAS outputs
that were adjusted for weight and/or height may complicate
interpretation when applying these data inMR studies examining
relationships between BMI and BMD. The latter relationship is
thought to be relatively complex, involving both a mass effect
leading to greater loading acting via the mechanosensor, and
shared endocrine pathways.

Recently published GWASs for estimated BMD (eBMD)
derived from heel ultrasound in UK Biobank (11, 12) have
the advantage that both unadjusted and adjusted summary
statistics are available on request, enabling sensitivity analyses
to be performed. Moreover, the large sample size provides
a significant advance in terms of power, which is one of
the major limitations of MR studies. Ultrasound derived
BMD does not involve radiation, is quick and cheap, and is
therefore well-suited to population studies involving hundreds
of thousands of people. The limitation is that estimated
BMD is not well-understood and we are not entirely sure
how well it proxies BMD. That said, eBMD and DXA-BMD
measures are reasonably highly correlated genetically (r =

∼0.5), as are eBMD and fractures (r = ∼0.5) (11), and
ultrasound-derived measures have previously been reported to
predict subsequent fractures with similar accuracy to DXA
BMD (15–18).

BMD is an intermediary phenotype; low BMD is only of
pathological significance as a result of its causal relationship with
fracture. However, since many risk factors for osteoporosis act
via BMD, their relationship with BMD is somewhat stronger
than that with fracture, with the result that MR studies using
fracture as the outcome tend to be underpowered. That said,
in a large MR study of fractures based on discovery set of
37,857 fracture cases and 227,116 controls, with replication
in 147,200 fracture cases and 150,085 controls, Trajanoska
et al. found that higher BMD had an expected causal
effect in reducing fractures (19). Moreover, Morris et al.
identified 13 bone fracture loci in approximately 1.2 million
individuals, all of which were associated with eBMD (12). It
may also be possible to extend MR studies in osteoporosis
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FIGURE 1 | One-sample and two-sample Mendelian randomization study designs. (A) One-sample Mendelian randomization is based on a population where both

exposure and outcome have been measured. (B) In two-sample Mendelian randomization, exposures and outcomes are measured in non-overlapping populations.

SNP-exposure is derived in Sample 1, and SNP-outcome in Sample 2.

to examine causal effects on other phenotypes relevant to
osteoporosis. BMD is not the sole causal determinant of
fracture, and GWAS signals have recently been identified for
several geometric parameters derived from hip DXA, which
are also thought to be related to fracture risk (20). GWAS
efforts are also underway for osteocalcin and CTX, offering
opportunities for MR studies to examine causal pathways
for other outcomes contributing to fracture risk, such as
bone turnover.

OSTEOPOROSIS RISK FACTORS

A range of risk factors for osteoporosis identified in
epidemiological studies have been examined in MR studies
intended to explore their causal effects, using BMD as the
outcome, the majority of which have yielded no or weak
evidence of causality (see Table 1). For example, studies using
BMD as an outcome did not find support for a causal effect
of vitamin D (21–23) or genetically determined calcium
intake as reflected by lactase persistence genotype (24). Guo
et al. found no evidence to suggest a causal effect of alcohol
consumption on BMD whereas smoking status was found
to be causally related to lower BMD (25); however, it should
be noted that smoking (exposure) and eBMD (outcome)
instruments were derived from the same sample population
which could result in biased estimates (8). In a subsequent study,
genetic predisposition to smoking initiation was associated
with fracture risk, but not eBMD; genetic liability to alcohol
dependence was also associated with fracture and lower eBMD,

whereas no association was seen for genetically predicted
alcohol intake (26). However, this study also included UK
Biobank participants in exposure and outcome instruments
which could lead to bias. Other studies exploring the effect of
serum urate (27, 28), inflammatory markers (29) and thyroid
stimulating hormone (30) found no evidence for association
with FN or LS BMD. Rather than a risk factor, MR analysis
suggests that lowering LDL-C levels and statin therapy improve
BMD (31).

In terms of constitutive factors, a causal association was

observed between later age at menarche and reduced FN and
LS BMD in adults (32), and reduced LS BMD in adolescents

(33). A study in children found a causal association between

BMI/adiposity and BMD (34). A previous study in adults using

summary data from GWASs in Europeans found no evidence
of a causal effect of BMI (based on 77 SNPs) on FN or LS

BMD, however since FN and LS BMD were corrected for
weight prior to the GWAS, the variation in BMD attributable

to BMI may not be adequately captured by MR analysis (35). In

contrast, a one-sample MR in Koreans using 13 BMI-associated
SNPs identified in a GWAS of east Asians was suggestive of

a causal effect of BMI on BMD on weight bearing sites in
men and pre-menopausal women (36). Observation studies have

implicated several diseases in the development of osteoporosis,

however MR has subsequently found no causal effect of type 2
diabetes (T2D) and coronary heart disease (CHD) on eBMD (37).
Another study reported a weak association between increased
T2D risk and increased FN BMD, whereas no association was
seen with LS BMD (35). In terms of other constitutional factors,
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TABLE 1 | Examples of studies investigating causal associations between risk factors and BMD.

Exposure Sample source for

exposure

Genetic

variants (n)

Outcome Sample size and data

source for outcome

Method Evidence of

causal effect

(Yes/No)

References

Vitamin D Chinese populations 10 LS BMD Postmenopausal Chinese

women, N = 1,824

One-sample No (21)

10 FN BMD

10 Total hip BMD

10 LS BMD

10 FN BMD

10 Total hip BMD

Vitamin D Europeans,

N = 79,366

6 TB BMD Individuals from Europe

(86%), America (2%) and

Australia (14%), N = 66,628

Two-sample (IVW) No (22)

Vitamin D Europeans,

N = 42,274

(SUNLIGHT

consortium)

5 DXA FN BMD Europeans, N = 32,965

(GEFOS Consortium)

Two-sample (weighted

median)

No (23)

5 DXA LS BMD

5 eBMD Europeans, N = 142,487

(UK Biobank)

Milk intake Lactase persistence

SNP in the MCM6

gene, based on

previous studies

1 Forearm BMD Europeans, N = 53,236

(GEFOS Consortium)

Two-sample (Wald

estimate)

No (24)

1 FN BMD

1 LS BMD

Alcohol

consumption

Europeans 6 FN BMD Europeans, N = 32,735

(GEFOS Consortium)

Two-sample (IVW) No (25)

6 LS BMD Europeans, N = 28,498

(GEFOS Consortium)

6 Forearm BMD Europeans, N = 8,143

(GEFOS Consortium)

5 Heel BMD Europeans, N = 445,921

(UK Biobank)

Smoking status Europeans (including

UKBB results)

142 FN BMD Europeans, N = 32,735

(GEFOS Consortium)

Two-sample (IVW) No

142 LS BMD Europeans, N = 28,498

(GEFOS Consortium)

139 Forearm BMD Europeans, N = 8,143

(GEFOS Consortium)

142 Heel BMD Europeans, N = 445,921

(UK Biobank)

Two-sample (IVW) Some

evidence but

could be

biased

Smoking initiation Europeans (including

UKBB results)

1 FN BMD Europeans, N = 32,735

(GEFOS Consortium)

Two-sample (IVW) No

1 LS BMD Europeans, N = 28,498

(GEFOS Consortium)

1 Forearm BMD Europeans, N = 8,143

(GEFOS Consortium)

1 Heel BMD Europeans, N = 445,921

(UK Biobank)

Two-sample (IVW) Some

evidence but

could be

biased

No. of cigarettes

smoked per day

(CPD)

Europeans (Tobacco

and Genetics

Consortium)

3 FN BMD Europeans, N = 32,735

(GEFOS Consortium)

Two-sample (IVW) Very weak

evidence

3 LS BMD Europeans, N = 28,498

(GEFOS Consortium)

Two-sample (IVW) No

3 Forearm BMD Europeans, N = 8,143

(GEFOS Consortium)

No

3 Heel BMD Europeans, N = 445,921

(UK Biobank)

No

(Continued)
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TABLE 1 | Continued

Exposure Sample source for

exposure

Genetic

variants (n)

Outcome Sample size and data

source for outcome

Method Evidence of

causal effect

(Yes/No)

References

Smoking initiation Europeans

N = 1,232,091

(including UK Biobank)

376 eBMD Europeans, N = 426,824

(UK Biobank)

Two-sample (IVW) No (26)

DXA derived BMD Europeans N = 32,965

(GEFOS Consortium)

Two-sample (IVW) No

Genetically

predicted alcohol

intake

Europeans

N = 941,280

(including UK Biobank)

96 eBMD Europeans, N = 426,824

(UK Biobank)

Two-sample (IVW) No

DXA derived BMD Europeans N = 32,965

(GEFOS Consortium)

Two-sample (IVW) No

Genetic liability to

alcohol dependence

Europeans

N = 46,568 (11,569

cases and 34,999

controls)

1 eBMD Europeans, N = 426,824

(UK Biobank)

Two-sample (IVW) Yes

1 DXA derived BMD Europeans N = 32,965

(GEFOS Consortium)

Two-sample (IVW) No

Serum urate Europeans 5 LS BMD 1,322 postmenopausal

women and elderly men

from Shanghai

One-sample No (27)

5 FN BMD

5 Total hip BMD

Serum urate Europeans 3 Total hip BMD Generation 3 cohort in the

Framingham Heart Study

(N = 2,501)

One-sample No (28)

3 FN BMD

3 LS BMD

Inflammatory

markers - hsCRP

Europeans 16 Forearm BMD Europeans, N = 32,965

(GEFOS Consortium)

Two-sample (IVW) No (29)

16 FN BMD

16 LS BMD

Thyroid Stimulating

Hormone

Europeans,

N = 26,420

20 FN BMD Europeans, N = 28,498

(GEFOS Consortium)

Two-sample (IVW) No (30)

20 LS BMD

Low LDL-C levels Global Lipids Genetics

Consortium

N = 188,577

76 TB BMD Populations from America,

Europe and Australia

N = 66,628

Two-sample (IVW) Some

evidence

(31)

Multivariable IVW No

76 eBMD Europeans, N = 142,487

(UK Biobank)

Two-sample (IVW) Yes

Multivariable IVW Yes

Gene encoding

molecular target of

LDL-C-lowering

therapy (HMGCR)

Global Lipids Genetics

Consortium

N = 188,577

3 TB BMD Populations from America,

Europe and Australia

N = 66,628

Two-sample (IVW) Yes

3 eBMD Europeans, N = 142,487

(UK Biobank)

Two-sample (IVW) Yes

AAM European women

ReproGen Consortium

N = 182,416

116 LS BMD GEFOS Consortium (N =

53,236) (both males and

females)

Two-sample (IVW) Yes (32)

116 FN BMD

AAM on aBMD in

adolescent girls

ReproGen Consortium 331 LS BMD aBMD in childhood/

adolescence (BMDCS)

Two-sample (FE

meta-analysis)

Yes (33)

331 FN BMD No

331 Distal radius No

AAM on aBMD in

adult women

ReproGen Consortium 309 LS BMD GEFOS Consortium Two-sample (FE

meta-analysis)

Yes

309 FN BMD Yes

309 Distal radius No

AVB on aBMD in

adolescent boys

ReproGen Consortium 43 LS BMD aBMD in childhood/

adolescence (BMDCS)

Two-sample (FE

meta-analysis)

No

43 FN BMD No

43 Distal radius No

AVB on aBMD in

adult men

ReproGen Consortium 42 LS BMD GEFOS Consortium Two-sample (FE

meta-analysis)

Yes

42 FN BMD Yes

42 Distal radius No

(Continued)
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TABLE 1 | Continued

Exposure Sample source for

exposure

Genetic

variants (n)

Outcome Sample size and data

source for outcome

Method Evidence of

causal effect

(Yes/No)

References

BMI Europeans 32 SK-BMD Europeans, N = 5,221

(ALSPAC cohort)

*N = 4,223 for SK-BMD

One-sample No (34)

32 UL-BMD Yes

32 LL-BMD Yes

32 SP-BMD Yes

32 PE-BMD Yes

Fat mass Europeans 32 SK-BMD Europeans, N = 5,221

(ALSPAC cohort)

*N = 4,223 for SK-BMD

One-sample No

32 UL-BMD Yes

32 LL-BMD Yes

32 SP-BMD Yes

32 PE-BMD Yes

Fat mass Europeans 32 SK-BMD Europeans, N = 5,221

(ALSPAC cohort)

*N = 4,223 for SK-BMD

One-sample

multivariable MR

No

32 UL-BMD No

32 LL-BMD Yes

32 SP-BMD Yes

32 PE-BMD Yes

Lean mass Europeans 32 SK-BMD Europeans, N = 5,221

(ALSPAC cohort)

*N = 4,223 for SK-BMD

One-sample

multivariable MR

No

32 UL-BMD Yes

32 LL-BMD Yes

32 SP-BMD No

32 PE-BMD Yes

BMI GIANT consortium 77 FN BMD Europeans, GEFOS 2012 Two-sample (IVW) No (35)

77 LS BMD No

BMI East Asian populations 13 Weight-bearing

bones

Men, N = 1,110 One-sample Yes (36)

13 Non–weight-bearing

bones

Yes

13 Skull No

13 Weight-bearing

bones

Premenopausal women,

N = 1,015

One-sample Yes

13 Non–weight-bearing

bones

No

13 Skull No

13 Weight-bearing

bones

Postmenopausal women,

N = 32

One-sample No

13 Non–weight-bearing

bones

No

13 Skull No

T2D DIAGRAM: 26,676

T2D cases and

132,532 controls

94 eBMD ∼150,000 UK Biobank

participants

Two-sample (IVW) No (37)

CHD CARDIoGRAMplusC4D 52 eBMD ∼150,000 UK Biobank

participants

Two-sample (IVW) No

T2D DIAGRAM consortium 32 FN BMD GEFOS, N = 83,894 Two-sample (IVW) Weak

evidence

(35)

32 LS BMD No

Metabolites Europeans 481 blood

metabolites

Hip BMD 2,286 unrelated white

subjects for the discovery

samples

Pearson correlation Associations

between BMD

and 54 blood

metabolites

(38)

Total serum calcium Europeans (discovery

cohort N = 39,400,

replication cohort

N = 21,676)

7 eBMD Europeans, N = 426,824

(UK Biobank)

Two-sample (IVW) No (39)

LS, lumbar spine; FN, femoral neck; TB, total body; eBMD, estimated bone mineral density; AAM, age at menarche; AVB, age at voice break; UL, upper limbs; LL, lower limbs; SP,

spine; PE, pelvis; IVW, inverse-variance weighted; T2D, type 2 diabetes; CHD, coronary heart disease; BMI, body mass index; FE, fixed-effects.
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genetic predisposition to increased calcium levels was recently
found to be unrelated either to eBMD or fracture risk in UK
Biobank (39).

Several MR studies have examined osteoporosis risk factors
with fracture as the outcome (Table 2). In the study based
on UK Biobank from Trajanoska et al. (19), while confirming
the expected protective effect of higher BMD on fractures,
there was little evidence to suggest a causal effect of dietary
factors (vitamin D levels and calcium intake), early menopause,
late puberty and range of diseases (including type 1 and 2
diabetes, CHD and inflammatory bowel disease) on risk of
fracture. These findings are consistent with results from the
above MR studies based on BMD. However, the study did
provide some evidence for causal effect of decreased grip strength
on fracture risk. A study in 97,811 Danish individuals failed
to provide evidence for a relationship between calcium intake
and hip fracture (40). Interestingly, an MR study investigating
the causal effect of height with 50 diseases reported that one
SD increase in genetically determined height was associated
with increased risk of hip fracture (41). In terms of the effect
of serum hormones, a previous MR study in men reported
lower levels of estradiol to be causally related to increased
risk of fracture (including all self-reported fractures, major
non-vertebral osteoporotic fractures and wrist fractures), whilst
there was no evidence for causal association between serum
testosterone and fracture risk (42). Furthermore, using a genetic
risk score for CRP levels in a Rotterdam study, there was
no evidence to support a causal effect of CRP on fracture
risk (43).

Some MR studies have set out to test hypothesized causal

effects of BMD on other outcomes. For example, in a study which

used summary statistics from the first release of the UK Biobank

data (N = 11,650), the authors reported some evidence for a
causal effect of eBMD on T2D, CHD, HDL-c, and HOMA-IR,
testing reciprocal associations for two traits (T2D and CHD), for
which there was no evidence of a causal effect on BMD (37). The
most recent study in 426,824 UK Biobank participants identified
518 loci associated with eBMD, explaining 20% of its variance
(12), meaning that many powerful and robust instruments for
MR analyses examining causal effects of eBMD will be available.

ADDRESSING PLEIOTROPY

Key points:-

1. Vertical pleiotropy, when the genetic variant has an effect
on two or more traits that both influence the outcome via
the same biological pathway, is usually not problematic for
MR analyses

2. In contrast, horizontal pleiotropy, when a genetic variant
is associated with two traits which influence the outcome
via independent biological pathways, violates one of the key
MR assumptions

3. Several methods have been developed that relax the strict
requirement that genetic instruments exhibit no horizontal
pleiotropy yet still produce consistent causal effect estimates

4. Where genetic instruments are known to be pleiotropically
associated with multiple correlated phenotypes, it may be
possible to examine independent effects through exclusion of
certain SNPs, or use of multivariable MR.

One of the main assumptions of MR is that genetic instruments
are only associated with the interest via the exposure being
tested. This is known as the “no pleiotropy” assumption or
the “exclusion restriction criterion.” When performing an MR
study, it is usually unclear whether such an assumption holds.
Therefore, various sensitivity analyses are applied to detect the
existence of pleiotropy, and to estimate the un-biased causal effect
of the exposure on the outcome. Vertical pleiotropy (i.e., a genetic
variant has an effect on two or more traits that both influence
the outcome via the same biological pathway) is not generally
an issue for MR analysis (Figure 2A) (8). However, this can be
this can be problematic in situations where the exposure variable
is mis-specified i.e., the genetic instrument is biologically related
to an intermediate or outcome, but has been identified as being
related to the exposure by virtue of the latter’s correlation with the
biologically related trait (4), termed correlated pleiotropy (44).
For example, although a locus in FTO was initially identified
in relation to type II diabetes, this was subsequently found
to primarily influence BMI with secondary effects on type II
diabetes (45), leading to difficulties in interpreting MR studies
where FTO variation is used as instrumental variable for type
2 diabetes.

In contrast, horizontal pleiotropy (i.e., a genetic variant
is associated with two traits which influence the outcome
via independent biological pathways) violates the exclusion
restriction criterion (Figure 2B). GWAS identify genetic
instruments purely on statistical grounds. Even if instrumental
variables used in MR studies intersect genes with plausible
pathways to the exposure it’s not possible to be sure whether they
mediate the causal effect being evaluated. Therefore, potential
horizontal pleiotropy as a result of unknown pathways needs to
be excluded if MR studies are to reach robust conclusions about
causality. One simple method to limit the impact of horizontal
pleiotropy is leave-one-out as a sensitivity analysis to ensure
that the causal effect is not mediated by an outlier effect of one
specific locus (46).

Over the last few years, several methods have been developed
that relax the strict requirement that genetic instruments exhibit
no horizontal pleiotropy yet still produce consistent causal effect
estimates (7). One such approach is MR-Egger regression (47),
where given a set of genetic variants that proxy an exposure
variable of interest, a regression is performed between estimates
of the SNP-outcome association and SNP-exposure association
(this can be performed in both one and two-sample MR
analyses). Unfortunately, Egger regression is limited by very poor
power. Weighted median and weighted mode approaches have
since been developed to derive causal estimates based on the
relationship between the strength of the association between the
SNP and the outcome, and the strength of the association of the
SNP with the exposure, which are more robust to violation of
horizontal pleiotropy by a substantial proportion of instruments
(48, 49). Several additional methods now exist which assume
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TABLE 2 | Examples of MR studies using fracture as an outcome.

Exposure Sample source for

exposure data

Genetic

variants (n)

Outcome Sample size and data

sources for the outcome

data

MR method Evidence of

causal effect

(Yes/No)

References

Decreased FN

BMD

Europeans 43 Fractures at any skeletal

site confirmed by medical,

radiological, or

questionnaire reports

147,200 cases and

150,085 controls (primarily

of European ancestry)

Two-sample (IVW) Yes (19)

Decreased LS

BMD

40 Yes

Earlier

menopause

54 No

Rheumatoid

arthritis

30 No

Inflammatory

bowel disease

19 No

Type 1 diabetes 151 No

Decreased THS 20 No

Homocysteine 13 No

Decreased Grip

strength

15 Yes

Late puberty 106 Some evidence

Fasting glucose 35 No

Coronary heart

disease

38 No

Type 2 diabetes 38 No

Vitamin D 4 No

Dairy calcium

intake

1 No

Lactase

persistence

LCT-13910 C/T

genetic variant

Northern Europeans 1 Hip fracture 97,811 Danish individuals Fixed effects

meta-analysis

No (39)

Height Europeans,

N = 253,288 (GIANT)

697 Hip fracture 2,451 fracture cases of

417,434 individuals from

UK Biobank

Two-sample (IVW) Yes (40)

Serum estradiol Europeans 2 All self-reported fractures Europeans, N = 17,650

(UK Biobank)

Two-sample (IVW) Yes (41)

2 Major nonvertebral

osteoporotic fractures

(N = 4,379; wrist, arm, and

hip)

2 Wrist fractures (N = 2,637)

Testosterone Europeans 3 All self-reported fractures (N = 17,650) No

3 Major nonvertebral

osteoporotic fractures

(N = 4,379; wrist, arm, and

hip)

3 Wrist fractures (N = 2,637)

Serum CRP

levels

Europeans 29 Any fracture 6,386 participants (59%

women), of whom 1,561

sustained a fracture

One-sample No (42)

Smoking

initiation

Europeans

N = 1,232,091

(including UK Biobank)

377 Any fracture (excluding

skull, face, hands and

feet, pathological fractures

due to malignancy,

atypical femoral fractures,

periprosthetic, and healed

fracture) and any

self-reported fractures

Europeans N = 426,795

(53,184 cases and

373,611 non-cases) (UK

Biobank)

Two-sample (IVW) Yes (26)

Genetically

predicted

alcohol intake

Europeans N =

941,280 (including UK

Biobank)

99 Any fracture (excluding

skull, face, hands and

feet, pathological fractures

due to malignancy,

atypical femoral fractures,

periprosthetic, and healed

fracture) and any

self-reported fractures

Europeans N = 426,795

(53,184 cases and

373,611 non-cases) (UK

Biobank)

Two-sample (IVW) No

(Continued)
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TABLE 2 | Continued

Exposure Sample source for

exposure data

Genetic

variants (n)

Outcome Sample size and data

sources for the outcome

data

MR method Evidence of

causal effect

(Yes/No)

References

Genetic liability

to alcohol

dependence

Europeans N =

46,568 (11,569 cases

and 34,999 controls)

2 Any fracture (excluding

skull, face, hands and

feet, pathological fractures

due to malignancy,

atypical femoral fractures,

periprosthetic, and healed

fracture) and any

self-reported fractures

Europeans N = 426,795

(53,184 cases and

373,611 non-cases) (UK

Biobank)

Two-sample (IVW) Some evidence

LDL-C levels N = 188,577 (GLSC) 76 Fractures at any skeletal

site confirmed by medical,

radiological, or

questionnaire reports

147,200 cases and

150,085 controls (primarily

of European ancestry)

Two-sample (IVW) No (32)

Gene encoding

molecular target

of

LDL-C-lowering

therapy

(HMGCR)

N = 188,577 (GLSC) 76 Fractures at any skeletal

site confirmed by medical,

radiological, or

questionnaire reports

147,200 cases and

150,085 controls (primarily

of European ancestry)

No

Total serum

calcium

Europeans (discovery

cohort N = 39,400,

replication cohort N =

21,676)

6 Fracture 76,549 cases and 470,164

controls from GEFOS,

EPIC-Norfolk study and UK

Biobank

Two-sample (IVW) No (38)

OR, Odds ratio; IVW, inverse-variance weighted; HR, hazard ratio; THS, thyroid stimulating hormone; LS, lumbar spine; FN, femoral neck.

FIGURE 2 | Vertical and horizontal pleiotropy. (A) Vertical pleiotropy, which does not violate the MR assumption; (B) Horizontal pleiotropy, which violates the

MR assumption.

that only a certain proportion of the genetic instruments have
a horizontal pleiotropic effect. These methods aim to reduce
heterogeneity by removing SNPs that contribute to heterogeneity
disproportionately, based on the standard errors of the Wald
ratios. Such outlier removal strategies are applied in the MR-
PRESSO (50), and generalized summaryMR (GSMR) approaches

(51). One of the issues in applying MR methods that are robust
to pleiotropy is that in order to detect causal effects these require
large sample sizes (49). Another issue concerns the number of
SNPs used as IVs; significant numbers of SNPs are required to
provide sufficient data points for meaningful analysis. However,
an advantage is that these approaches often rely on different
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sets of assumptions, and if consistent, conclusions can be drawn
regarding causality with reasonable confidence.

The recent review by Lawlor et al. provides a useful
summary of the various methods and extensions of Mendelian
Randomization (52). Some of these more advanced MR analysis
methods have been applied in relatively recent studies examining
causal inference in osteoporosis. For example, in their study
examining causal relationships between blood lipids and eBMD,
Cherny et al. found broadly similar inverse associations between
LDL-C and eBMD as assessed by inverse-variance weighted
(IVW), MR-Egger, weighted median and weighted mode
estimates (53). Similarly, in our recent study, MR-Egger, IVW
and weighted median estimates showed similar causal effects of
BMD on sclerostin (54). That said, the statistical evidence against
the null for the MR-Egger estimates was somewhat lower, in both
these papers, reflecting the lower statistical power of this test (48,
49). However, these types of sensitivity analyses have been lacking
in many of the MR analyses in osteoporosis, including those
analyzing a range of metabolites for which genetic influences
could well-exert pleiotropic effects via unknown pathways (38).

It may be hard to exclude pleiotropy where the genetic
instruments comprise just one or two SNPs, however there
are exceptions to this. For example, we recently performed an
MR study to examine the causal relationship between sclerostin
levels and eBMD, based on results of a sclerostin GWAS
where we identified just two loci. However, we were able to
establish a causal relationship between sclerostin and eBMD
using co-localization analysis, which interrogates LD structure at
a single locus, in this case the gene encoding B4GALNT3 (54).

Several analysis methods have been developed to explore
causal pathways in those situations where genetic instruments are
pleiotropically associated with multiple correlated phenotypes.
For example, in studying the causal relationship between
genetically determined BMD (reflected by eBMD) and OA,
Funck-Brentano et al. observed a strong causal effect of BMI on
knee and hip OA, suggesting that if any eBMD SNPs are shared
with BMI, this may influence OA via pathways other than BMD,
which will violate the 3rd MR assumption (horizontal pleiotropy).
The authors established that genetically determined BMD also
has a causal effect on OA after excluding pleiotropic pathways
involving BMI, by removing SNPs from their eBMD polygenic
risk score that were related to BMI (55). Similarly, Cousminer
et al. excluded SNPs for height and BMI in their MR analysis of
the causal role of pubertal age on BMD (33).

An alternative method of accounting for pleiotropy where
genetic variants are pleiotropically associated with multiple
correlated phenotypes, is to perform multivariable MR. The
latter aims to address this limitation by using instruments
associated with multiple exposures to jointly estimate the
separate causal effect of individual risk factors on the outcome
(34, 56–58). For example, Kemp et al. used a one-sample
multivariable method to show that BMI SNPs acted via
both lean and fat mass to increase BMD (34). In an MR
analysis of relationships between plasma lipids and BMD, we
observed a strong inverse association between LDL cholesterol
and forearm BMD in multivariate MR analyses adjusting for
HDL cholesterol and triglycerides, which was not evident

in univariate analyses involving only LDL cholesterol (59).
This indicates that complex relationships may exist between
the causal effects of different lipids and BMD, which MR
analyses need to account for, and may help to explain
the conflicting results from different MR analyses examining
relationships between lipid levels and eBMD in the UK
Biobank (53, 59, 60).

DISTINGUISHING GENETIC CORRELATION
FROM CAUSALITY

Key points:-

1. Traits which are correlated as a result of shared underlying
biology are likely to have shared genetic influences, leading to
a positive signal in MR studies

2. MR signals arising from genetic correlation between two traits
are expected to be bidirectional; true causal effects generally
produce a positive MR signal in one direction only (i.e.,
exposure to outcome as opposed to outcome to exposure)

3. In bidirectional MR, it may be helpful to use methods such as
Steiger filtering to restrict SNPs to those which have strongest
effects on the outcome as opposed to the exposure being tested

4. Though rarer, bidirectional causal effects may exist,
exemplified by a positive causal effect of BMD on sclerostin
levels, and a negative causal effect of sclerostin on BMD.

It’s common for two related traits to share a proportion of
their heritability, as quantified by genetic correlation, implying
some form of shared underlying biology. Bidirectional MR can
help distinguish causality from correlation by first testing the
associations in one direction (i.e., “exposure” to “outcome”),
and then performing these in the opposite direction (i.e.,
“outcome” to “exposure”), using SNPs found to be associated
with each trait in different GWASs. In those instances where
certain SNPs are common to GWASs for both the exposure and
outcome, methods such as Steiger filtering are recommended
to remove these SNPs to ensure they are used correctly as
instruments for analyses in one direction only (61). Bidirectional
MR assumes that the underlying causal association works in
a single direction. Where there is evidence for “bidirectional
causality,” this may simply reflect genetic correlation arising
from a common genetic pathway affecting both the exposure
and outcome. That said, bidirectional Mendelian randomization
can identify causal effects that do work in both directions;
for example, smoking reduces BMI and higher BMI increases
smoking (62). In the case of bidirectional causality where
evidence is stronger in one direction, although the main
causal pathway may be in this direction, findings may
reflect misspecification of the exposure variable as described
above. Alternative strategies to MR, such as latent causal
variable analysis, have been developed to distinguish correlation
from causality (63).

Certain biomarkers and risk factors for osteoporosis may be
unlikely to show strong genetic correlations with BMD, and to
be influenced by common biological pathways, nevertheless it’s
still good practice to perform bidirectional MR. For example,
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in the case of factors such as smoking, which was found to be
genetically related to lower heel BMD (25), in the absence of
bidirectional MR, it’s not possible to exclude reverse causality,
which is not inconceivable given the casual effect of BMI
(which is known to influence BMD) on smoking (62). In
recent studies examining relationships between panels of blood
metabolites and BMD, where the direction of the causal effect is
unclear, whereas one study reported findings from bidirectional
analysis (64), a further one did not (38). In addition, genetic
correlation as a consequence of shared biological pathways
could conceivably explain relationships between BMD and other
disease phenotypes such as osteoarthritis (OA). For example, a
previous study revealed significant genetic correlation between
LS BMD and hip and/or knee OA, suggesting common genetic
influences, exemplified by the SMAD3 locus found to affect
both OA risk and BMD (65). Shared genetic influences on
BMD and OA could also explain recent findings that genetic
instruments for eBMD are associated OA (55); whereas the
authors interpreted this as indicative of a causal effect of eBMD
on OA, bidirectional MR is required to prove such a causal
pathway exists, as opposed to common biological mechanisms
contributing equally to both traits.

One of the challenges in performing bidirectionalMR between
two variables which are highly correlated genetically is that the
two traits are likely to share one or more SNPs in common.
This is particularly an issue when using results derived from
large GWAS studies that generate many signals. For example,
in our recent study of relationships between eBMD and lipids,
a bidirectional effect for eBMD on LDL-C was investigated using
404 eBMD associated SNPs as genetic instruments (12). Steiger
filtering was used to identify SNPs that had stronger effects on
the outcome (LDL-C) compared to the exposure (BMD). This
analysis suggested that 394 of 404 SNPs exerted their primary
effect on BMD as opposed to LDL-C levels. IVW MR, weighted
median MR and MR-Egger regression results showed some
evidence that eBMDmight influence LDL-C, and the association
remained unchanged after Steiger filtering to remove those SNPs
that primary affected LDL-C levels (59).

As well as selectively removing SNPs to assist interpretation
of bidirectional analyses, this approach may also be helpful in
examining the role of specific biological pathways involved in
mediating causal effects. For example, in the above MR analysis
of the effects of plasma lipids on eBMD, we were able to confirm
that the inhibitory effect of LDL cholesterol on eBMD which
we observed was not solely mediated by SNPs intersecting the
HMGR locus which is the target for statin therapy, since similar
results were obtained when SNPs at this locus were removed
from the polygenic risk score. Similarly, SNPs can be stratified
into relevant/specific biological pathways and their association
with outcomes of interest tested. For example, although not a
formal MR analysis, Warrington et al. used genetic risk scores
constructed from SNPs belonging to specific biological pathways,
and showed that genetic risk scores comprising variants that
belonged to the RANK-RANKL-OPG pathway, themesenchymal
stem cell differentiation functional pathway and the WNT
signaling function pathway were associated with bone measures
at age 13, but only mesenchymal stem cell differentiation and the

WNT pathway SNPs showed associations with rate of change in
BMD between 9 and 17 years (66).

It’s a reasonable assumption that correlated variables as a
result of shared biology show equivalent “causal” effects on
bidirectional MR, whereas for a true causal relationship, an effect
is just observed in one direction. However, we recently observed
a further pattern in our study exploring the relationship between
circulating sclerostin levels on eBMD, namely bidirectional
causal pathways in opposite directions (54).We found that higher
levels of serum sclerostin were causally related to lower FN BMD,
lower eBMD and higher fracture risk. In contrast, greater BMD
was causally related to higher sclerostin levels, using BMD SNPs
identified in the GEFOS BMD GWAS (54). This finding aligned
with the observational relationship between BMD and sclerostin
we reported in the same paper and may be a reflection of a
previously unsuspected negative control feedbackmechanism for
BMD (see Figure 3). However, the exact mechanisms involved
remain unclear and functional validation of such a pathway is
still needed.

POWER CONSIDERATIONS

In contrast to conventional epidemiological studies where the
exposure variable comprises the population variance of the
trait of interest, in MR, genetic instruments only capture a
small proportion of trait variance (not infrequently <1%). As
a consequence, the strength of the relationship between an
instrumental variable used for MR, and the outcome of interest,
will only be of a small fraction of that seen for the measured
exposure variable. Therefore, limited power is a common
problem for MR analyses, and a frequent explanation of null
findings, and needs to be an important consideration particularly
when the findings fail to support other well-established lines of
evidence. Limited power is even more problematic for some of
the more recent extensions to MR, such as multivariable MR.

In any given MR study, the major factors governing the power
are the sample size, the strength of the genetic instruments
available, the strength of the underlying causal relationship being
evaluated, and the type I error rate. Recent availability of very
large datasets, such as the UK Biobank, have facilitated well
powered MR studies, as have the increasing number of GWAS
signals available for any given trait. Nonetheless, even where
a large sample is available, MR may be uninformative where
available instruments are lacking, or if there is a weak underlying
relationship. These considerations are particularly important
when null associations are obtained, where it is helpful to report
power calculations to illustrate the strength of any underlying
relationship which would have been detectable, and how this
compares with that seen in observational studies (67).

A related issue is weak instrument bias. In one-sample MR,
using weak instruments may bias the causal association toward
the observational association between the exposure and outcome,
whereas in two-sample MR, weak instruments may bias MR
estimates toward the null (68). Therefore, it is important to
avoid such bias by evaluating instrument strength at the outset
of the study. For most human phenotypes, common genetic
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FIGURE 3 | Proposed feedback pathway between BMD and sclerostin.

Greater BMD is proposed to increase circulating levels of sclerostin, which then

feeds back to inhibit bone formation, and hence limit further gains in BMD.

variants only explain a limited proportion of the variance of
the phenotypes; combining small effects across these common
variants into a score (known as the polygenic risk score) may
increase instrument strength (69). Another relevant concept is
the “NoMeasurement Error” (NOME) assumption of MR, which
assumes the association between a given genetic instrument and
the exposure is estimated without measurement error (70). This
is particularly important when weak instruments are estimated
fromGWASwith small sample sizes. In an IVW setting, themean
F-statistic can be used to assess whether instruments violate the
NOME assumption, a value below 10 implying a high likelihood
of weak instrument bias (71). In an MR-Egger setting, the I2
statistic (between 0 and 1) can be used to quantify violation of the
NOME assumption, a lower value indicating greater likelihood
that this assumption has been violated (48).

In the majority of instances of null findings reported in recent
MR studies of osteoporosis risk factors, genetic instruments have
been identified based on genome-wide significant associations
from large scale GWASs, and although instrument strength is not
universally reported, weak instrument bias is less likely to be an
issue under these circumstances (70). However, weak instrument
bias may be an issue in those instances where instruments have
been identified from relatively small GWAS studies. For example,
in a two-sample MR study examining causal relationships
between inflammation and BMD reporting null findings, three of
the genetic instruments for IL-6 were derived from a population
of 1,664 individuals, and had F-statistics ranging from 3 to 8,
indicating high likelihood of weak instrument bias (29).

FUTURE DIRECTIONS

It may be possible to extend MR to identify novel risk
factors for osteoporosis using a hypothesis-free approach. For
example, centralized databases such as MR-Base (46) and UK
Biobank (http://www.nealelab.is/uk-biobank) have harmonized
GWAS summary results for more than 20,000 complex human
traits. Such resources make it feasible to conduct a phenome-
wide MR for osteoporosis, aimed at identifying novel causal
effects on BMD from screening a comprehensive range of
complex traits. In many cases, mega biobanks such as UK
Biobank, provide the richest source of GWAS-linked exposure
or outcome data. Consequently, the issue of overlapping samples
for generating genetic instruments and providing outcome data

in a two-sample MR framework, potentially providing biased
estimates (8), is becoming increasingly problematic. With the
burgeoning opportunities for performingMR analyses, there also
comes the need to ensure these are performed and reported
comprehensively, with thorough exploration of issues such as
pleiotropy, reverse causality and power, to ensure appropriate
conclusions are drawn. STROBE-MR guidelines, intended to
improve the quality of reporting of MR studies, have recently
been produced (72).

MR was initially developed to examine the causal role of
environmental exposures on the outcome of interest. This
method has since been applied to a wide range of research
areas, including drug target validation and prioritization, and
the interpretation of multi-dimensional omics data. Large-scale
GWASs of omics data, such as metabolites, DNA methylation,
gene expression and protein expression provide a timely
opportunity to identify the causal relationship of thousands of
molecular phenotypes with osteoporosis in a MR framework.
Automated tools such as summary-data-based MR (SMR),
Generalized Summary-data-based MR (GSMR) and the two-
sample MR R package make it possible to conduct such large-
scale analyses effectively (46, 51, 73).

For omics studies of osteoporosis, one of the issues that
needs further consideration is tissue specificity. Most molecular
phenotypes to date have been measured in whole blood, for
which the sample size of expression QTLs and methylation
QTLs studies exceeds 30,000 (74) (http://www.godmc.org.uk/)
and protein QTLs studies exceed 6,000 (75, 76). In contrast, the
QTLs measured in bone tissues are limited to several hundreds of
individuals. Whether molecular phenotypes measured in blood
can be used as a proxy for those measured in bone tissues remains
unclear, particularly methylation which shows a high degree of
tissue specificity, in line with emerging trends in tissue specific
MR (77), implying an urgent need for osteoblasts, osteoclasts and
osteocytes and other skeletal cell types to be sufficiently well-
represented in omics resources.

CONCLUSIONS

MR is being increasingly applied to examine causal inference
in osteoporosis, reflecting the increasing availability of large
datasets such as the UK Biobank, and multiple GWASs for
potential risk factors. To date, the most important findings have
been around the lack of causal role of traditional risk factors
such as vitamin D in determining variation within the normal
range of BMD/fracture risk. High-dimensional omics studies,
based on GWASs of metabolites, gene expression and DNA
methylation, offer exciting opportunities for future discovery,
with the emergence of the first MR studies of metabolites in
osteoporosis. However, an important caveat is that MR studies
can be complicated by a number of issues including horizontal
pleiotropy, reverse causality, and lack of power. Several extended
MR methods have been developed to explore these aspects, and
while not always applied consistently, r STROBE-MR guidelines
have recently been produced, intended to support the quality
with which MR studies are reported.
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The phenotypic trait of high bone mass (HBM) is an excellent example of the nexus
between common and rare disease genetics. HBM may arise from carriage of many ‘high
bone mineral density [BMD]’-associated alleles, and certainly the genetic architecture of
individuals with HBM is enriched with high BMD variants identified through genome-wide
association studies of BMD. HBMmay also arise as a monogenic skeletal disorder, due to
abnormalities in bone formation, bone resorption, and/or bone turnover. Individuals with
monogenic disorders of HBM usually, though not invariably, have other skeletal
abnormalities (such as mandible enlargement) and thus are best regarded as having a
skeletal dysplasia rather than just isolated high BMD. A binary etiological division of HBM
into polygenic vs. monogenic, however, would be excessively simplistic: the phenotype of
individuals carrying rare variants of large effect can still be modified by their common
variant polygenic background, and by the environment. HBM disorders—whether
predominantly polygenic or monogenic in origin—are not only interesting clinically and
genetically: they provide insights into bone processes that can be exploited
therapeutically, with benefits both for individuals with these rare bone disorders and
importantly for the many people affected by the commonest bone disease worldwide—
i.e., osteoporosis. In this review we detail the genetic architecture of HBM; we provide a
conceptual framework for considering HBM in the clinical context; and we discuss
monogenic and polygenic causes of HBM with particular emphasis on anabolic causes
of HBM.

Keywords: high bone mass (HBM), osteopetrosis, SOST, LRP5, dual-energy X-ray absorptiometry (DXA), bone
mineral density (BMD), genome-wide association studies (GWAS)
INTRODUCTION

Most people are first introduced to genetics through the gardening career of Gregor Mendel and his
observations regarding various features of the pea plant (flower color, pod shape, etc.). Mendel’s
studies led him to conclude that individual characteristics (i.e., phenotypes) were determined by
discrete units of information (i.e., genes) that came in pairs (i.e., alleles), with one of each pair
inherited by each offspring randomly and independently of the genes determining other
characteristics (1). He also concluded that at any particular locus one allele would be dominant
and the other recessive.
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Mendel’s laws certainly explained the phenotypes observed in
his multigenerational plant breeding experiments; and they
provided an explanation for the inheritance of autosomal
monogenic disorders (2). However, they appeared not to explain
the inheritance of many traits that exhibit continuous distribution
in the population (e.g., height, weight). Initial attempts at
reconciliation proposed that continuously distributed phenotypes
might still be determined by a single locus but with a ‘blending’ of
each parent’s characteristics rather than a pure dominant/recessive
model of inheritance (e.g., a tall mother and a short father would
have children of average height); but ultimately this question was
resolved by the demonstration that continuously distributed (or
quantitative) traits arise from the effect of multiple genetic loci,
each of which individually exhibits Mendelian inheritance (3),
which combine, both additively and interactively, and within a
given environment, to produce the final phenotype.

These concepts are not just of historical interest but highly
relevant when considering the genetic architecture of high bone
mass (HBM)—or indeed any other heritable disease.
WHAT IS GENETIC ARCHITECTURE?

To quote Gratten et al., “genetic architecture refers to the number
of genomic loci contributing to risk, the distribution of their allelic
frequencies and effect sizes, and the interactions of alleles in and
between genes, all of which contribute to the relationship between
genotype and phenotype. Understanding genetic architecture is
the foundation on which progress in dissecting etiology is built
because it dictates which study designs for identifying risk variants
are likely to be most successful.” (4) It is hard to improve upon this
elegant definition and its clear consequences regarding gene
mapping strategies [for an in-depth discussion of this topic, the
reader is referred to an excellent recent review (5)].

In considering the genetic architecture of HBM specifically,
the simplest question that can be asked is whether HBM is
monogenic (due to carriage of a rare variant of large phenotypic
effect) or polygenic (arising from the cumulative effect of
multiple variants, each individually of small effect). However,
even answering this apparently simple question is not straight-
forward, as these are not necessarily mutually exclusive options,
whether considering either the HBM population as a whole or a
particular affected individual.

Monogenic diseases, whether dominant or recessive, autosomal
or X-linked, are due to rare highly penetrant alleles affecting a
single gene. Monogenic diseases generally follow classical
Mendelian inheritance such that the presence or absence of
disease is mathematically predictable, with some leeway for
variable penetrance and expressivity from genetic and/or
environmental modifiers (6). Although individually rare, the
World Health Organization (WHO) estimates that monogenic
disease affect 1% of the worldwide population (7); and there are
many skeletal dysplasias that display classic Mendelian
inheritance, with either high (e.g. osteopetroses) or low (e.g.
osteogenesis imperfecta) bone mineral density (BMD) (8).
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However, this does not mean that all heritable dichotomous
disease states are monogenic. Many common diseases (e.g.,
ankylosing spondylitis, osteoarthritis, breast cancer) are defined
as present or absent according to particular characteristics,
whereas other common diseases (e.g., hypertension, type 2
diabetes) are defined using a threshold value along a
continuously distributed phenotype (i.e., blood pressure and
glycemia). It is perhaps easier to understand how quantitative
disease states may be polygenic in inheritance (3), compared with
qualitative (i.e., dichotomous) common disease states. However,
qualitative diseases may also be polygenic: it is the underlying risk
of disease that is quantitative, with disease manifest once a
particular genetic threshold is reached (3, 9). Indeed, a priori
even diseases that might appear monogenic are more likely to be
polygenic (10). The validity of this concept has been demonstrated
comprehensively by the enormous success of genome-wide
association studies (GWAS), which have identified thousands of
variants associated with a host of common quantitative and
qualitative diseases as diverse as type 1 diabetes to schizophrenia
to prostate cancer (11). The polygenic common variant
‘background’ can also modify the phenotype of persons carrying
rare highly penetrant monogenic variants—such as BRCA1
mutations in breast cancer or carriage of HLA-B27 in
ankylosing spondylitis (12–14). Here, it is worth highlighting
that extreme HBM populations are enriched with common
variant ‘high BMD’ alleles (discussed further later in this
article) (15).

In considering the translational applications of GWAS, it
would be fair to say that at least initially the clinical utility of
polygenic (or genomic) risk scores (PRS) calculated using
genome-wide associated SNPs was underwhelming—certainly
in bone disease. At the time of publication of the second GEnetic
Factors in Osteoporosis Study [GEFOS-2], a study involving tens
of thousands of cases and controls, the PRS derived from variants
associated with femoral neck BMD at genome-wide significance
(i.e., p <5 × 10−8) performed less well in predicting BMD than age
and weight alone (area under receiver-operator characteristics
curve: 0.59 vs. 0.75) (16). This was not really surprising: despite
the large sample size, the identified variants still explained only a
small proportion (<6%) of overall BMD heritability (16). Over
time, ever larger GWAS have been performed (17, 18); and
certainly increasing GWAS population size strongly correlates
(on a log scale) with the number of SNPs identified at genome-
wide significance to be associated with disease (11), capturing a
greater proportion of heritability, and improving PRS utility.
Additionally, adopting a less stringent threshold for SNP
inclusion in PRS also increases the proportion of genetic
variance captured—at the cost of more noise and inclusion of
more false-positive results. There is no fixed formula for the sweet
spot between sensitivity and specificity for PRS (i.e., maximizing
AUCs in ROC analyses or similar statistic). It is disease-specific
(19); and for maximal clinical utility the PRS must also be
interpreted in the context of other disease-specific factors
including disease heritability, prevalence, and prior probability
(19–23). [For further discussion on the calculation and clinical
utility of PRS, the reader is referred to two recent review articles
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(19, 23)]. However, despite these caveats, PRS have reached the
point whereby, to quote Khera et al., “for a number of common
diseases, polygenic risk scores can now identify a substantially
larger fraction of the population than is found by rare monogenic
mutations, at comparable or greater disease risk” (24). For
example, at a population level, the proportion of individuals
who carry a sufficient burden of common variants to place them
at three-fold risk of coronary artery disease is twenty-fold that of
individuals carrying rare highly penetrant LDL-R mutations of
equivalent risk (24). Moreover, common variants can be easily and
cheaply genotyped, without needing whole population whole-
genome sequencing, noting that the choice of technology in this
area is sometimes a political rather than a strictly scientific decision.
USE OF BMD TO DEFINE DICHOTOMOUS
DISEASE STATES OF OSTEOPOROSIS
AND HIGH BONE MASS

Defining a disease state by use of a particular threshold value
within the normal population distribution of a quantitative trait is
a concept extremely familiar to the bone community. The most
commonly employed measure of bone strength is BMD, usually
assessed using dual-energy X-ray absorptiometry (DXA). The
result is then compared against an age, ethnicity and sex-specific
reference population, allowing calculation of T- and Z-scores (the
number of standard deviations (SDs) by which the result differs
from the mean BMD of a young adult or age-matched population,
respectively). Individuals with lower BMD are at higher risk of
fracture, particularly low trauma fractures (25). Reflecting this risk,
in 1999 the WHO used DXA BMD to define osteoporosis and
osteopenia (for osteoporosis, a T-score of ≤−2.5; for osteopenia, a
T-score between −1 and −2.5) (26). These threshold definitions do
not account for other major risk factors for fracture—such as age
and prior fragility fracture, both of which independently increase
future fracture risk (27)—and use of BMD in isolation to define
the real clinical issue (i.e., bone fragility and fracture risk) can lead
to apparent paradoxes, e.g., a woman with osteopenia (according
to BMD) and a previous low trauma fracture is at higher risk of a
fracture than a women with BMD-defined osteoporosis who has
not yet fractured (28). Nevertheless, such thresholds are useful in
identifying a high-risk group of clinical relevance, in whom
intervention might be most clinically- and cost-effective. Further,
fracture risk calculators [e.g., FRAX, Garven (29)] have been
developed to account for key clinical risk factors, as well as
BMD, to circumvent the limitations of BMD alone.

At the other end of the normal distribution for BMD are
individuals with HBM. It is tempting to regard these individuals
simply as phenotypic outliers, with their BMD results of little serious
clinical consequences unless such individuals unexpectedly find
themselves in deep water (non-metaphorically). However,
studying individuals with HBM is of relevance both for their own
sake and for the community more broadly. Firstly, HBM may
indicate an underlying and hitherto-unsuspected skeletal dysplasia
with specific clinical needs (e.g., monitoring of cranial nerve
function, therapeutic choices, and genetic counseling) (30).
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Second, these individuals provide novel insights into the regulation
of bone mass: such discoveries may inform not only therapeutic
approaches to their own HBM condition but also for the opposite,
andmore prevalent, bone phenotype of osteoporosis. In considering
this last point, an important caveat applies.While lowBMD is closely
related to increased fracture risk (25), the converse is not necessarily
true (31). For example, individuals with high BMD due to disorders
of bone resorption (e.g., osteopetroses) or disturbed bone turnover
(e.g., Paget’s disease), can manifest high fracture rates.
HOW HIGH IS HIGH BONE DENSITY?

Epidemiological studies of high BMD are few and definition
thresholds are variable (32, 33). Indeed, the absence of an upper
limit to define ‘normal’ BMD risks those with a pathological
cause for high BMD being missed and labeled as “normal.” In
2005, Michael Whyte proposed a high BMD definition of a Z-
score >+2.5, to alert clinicians to this issue (30). However, until
more recently publications around high BMD were still the
purview of case reports and small case series.

To address this question, we conducted the first systematic
analysis of patients undergoing routine clinical DXA scanning,
encompassing 335,115 DXA scans across 15 UK centers. We first
used a screening threshold T or Z-score ≥+4 at any lumbar/hip
site to identify those with extreme high BMD, in whom we
investigated the potential underlying causes for a high BMD,
trying to identify within this heterogeneous population with high
BMD, a sub-group with unexplained generalized HBM (identified
using a Z-score threshold ≥+3.2) (discussed in detail later) (34).
Overall, within this UK population, scanned by DXA over a
retrospective 20 year period for a wide variety of more-or-less
clinically justifiable indications, we found the prevalence a T or Z-
score ≥+4 to be 0.5%, and within that of unexplained generalized
HBMwith Z-score ≥+3.2 to be 0.18% (34). Interestingly, reflecting
on the mathematics of a normal distribution, four standard
deviations (SDs) would be expected to identify just 0.003% of a
population, while 3.2 SDs equates to 0.069% (35). Taken together,
it seems BMDmight have a marginally bimodal distribution at the
upper tail of its distribution.

While this study was the first to assess the prevalence of high
BMDwithin the general population, the—albeit large—population
composed of individuals referred for DXA scanning for clinical
reasons, rather than selected to represent the general population.
Thus, selection bias is possible. However, as most individuals are
referred for DXA due to a pre-test suspicion of low BMD and/or
osteoporosis (e.g., a history of steroid use), if anything the true
prevalence of high BMD may have been underestimated to date.
Thus, this study provides a minimal prevalence for this condition.
DETECTING HIGH BMD IN CLINICAL
PRACTICE

Incidental high BMD results in clinical practice are relatively
common (34), and we have previously published an approach to
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guide their assessment and investigation (36). The commonest
causes for a high BMD are artefactual, with osteoarthritic
degeneration explaining half of all high BMD measurements
(34) (see Table 1 for list of artefacts). Importantly, identifying the
presence of artefact in someone with apparently high BMD on
DXA does not mean fracture risk is necessarily low; and artefact
is important to recognize as it may mask osteoporosis. For
example, an osteoporotic vertebral fracture with vertebral
collapse will reduce measured bone area while maintaining
bone mineral content, and thus increase calculated BMD.

Interestingly, many artefactual causes of high BMD are
themselves heritable. The most common example is spinal
osteoarthritis with osteophytosis (Table 1). The heritability of
osteoarthritis is approximately 50%, and two large GWAS
published in the last two years have identified association with
96 loci (37, 87). As another example, ankylosing spondylitis [AS] is
highly (>90%) heritable (88), and associated with over 100 loci, in
addition to HLA-B27 (42). AS artefactually elevates BMD through
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syndesmophyte formation at vertebral margins, anterior
longitudinal ligament ossification, and scoliosis (43). It is also
associated with increased fracture risk (89), which may be due to
the rigidity of the axial skeleton, the presence of inflammation, or a
combination of both. A further example is diffuse idiopathic
skeletal hyperostosis (DISH), most commonly seen in older men
and characterized by widespread spinal calcification (38), which is
also heritable (39), though as yet no causative variants have been
published (90). The relationship between DISH and abnormal
phosphate handling, may also carry implications for bone
mineralization, bone strength, and fracture risk, though this has
not been formally assessed. The closely related disease ossification
of the posterior longitudinal ligament (OPLL) is also heritable
(91), with both common and rare susceptibility variants identified
(92, 93)—though as this condition most commonly affects the
cervical spine, a site not routinely screened by DXA, OPLL is less
likely to cause clinical conundrum as an artefactual cause of high
BMD in daily practice.
TABLE 1 | Causes of a high BMD measurement on a DXA scan.

Artefactual causes of raised BMD—no true increase in bone mass Genetic Contribution Refs.

Monogenic Polygenic

Osteoarthritis a Yes (34, 37)
DISH: Diffuse idiopathic skeletal hyperostosis Yes Yes (38–41)
Ankylosing spondylitis Yesb (42, 43)
Vertebral fractures Yesb Yes (17, 34)
Vascular calcification Yes Yes (44–48)
Thalassemia major Yes (49, 50)
Gaucher’s disease (splenomegaly overlies the lumbar spine DXA field) Yes (34, 51)
Abdominal abscesses (52)
Gallstones (53, 54)
Renal calculi Yes (54, 55)
Gluteal silicon implants (56)
Intestinal barium
Surgical metalwork (34)
Laminectomy (57)
Vertebroplasty & kyphoplasty
Acquired causes of true increased bone mass and/or density
Localised Tumors Primary malignanciese.g. osteoblastoma, Ewing’s sarcoma, carcoinoid, hemangioma,

plasmocytoma, Hodgkin’s diseaseSecondary osteosclerotic metastasese.g. prostate,
breast, gastric, colonic, cervical carcinoma

Yes Yes (58)

Chronic infective osteomyelitis
SAPHO (Synovitis Acne Pustulosis Hyperostosis and Osteitis) syndrome Yes (59–61)
CKD-MBD (Chronic Kidney Disease-Metabolic Bone Disorder)c Yes Yes (62–64)
Paget’s disease of Bone (PDB) Yes Yes (34, 65, 66)
Early onset Paget’s like syndromes Yes (67)
X-linked hypophosphatemia (XLH) Yes (68)
Osteogenesis imperfecta associated with mutations affecting the carboxy-terminal-propeptide
cleavage site of the type 1 procollagen chain

Yes (69)

Gnathodiaphyseal dysplasia Yes (70, 71)
Generalized Fluorosis (72–74),

Acromegaly Yes Yes (75, 76)
Hepatitis C-associated osteosclerosis (77–79),
Myelofibrosis Yes Yes (80–82),
Mastocytosis Yes (83–85),
Oestrogen replacement implants (86)
October 2020 | Volume 11 | A
aWhile there are no forms of monogenic OA, there are many monogenic skeletal dysplasias with degenerative joint disease—e.g. spondyloepiphyseal dysplasia tarda, achondroplasias.
bvertebral fractures occur in osteogenesis imperfecta.
cCKD-MBD increases in BMD can also be generalized.
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Calcification of structures anterior to the spine but within the
DXA field can artefactually elevate BMD measurements (Table
1). Although vascular calcification of the abdominal aorta is
common, reported in 43% of patients having lumbar DXA
assessment (mean age 68 years), it is surprising how little
evidence there is regarding the effect of this on lumbar spine
BMD measures (94–97). The relationship between vascular
calcification and low BMD is of particular interest (98), most
evident (though not exclusively) in the chronic kidney disease
population. Abdominal aortic calcification is associated with lower
BMD and vertebral fractures (99); and the extent to which genetic
pleiotropy underpins vascular calcification [itself heritable (44)]
and osteoporosis is the source of active investigation. There are
also monogenic forms of vascular calcification (for example,
pathogenic variants in ABCC8 causing pseudoxanthoma
elasticum (MIM264800) [45–47)].

Beyond artefact, there are a number of other conditions,
usually acquired through life, that cause true increases in bone
mass and density, which may be localized or generalized.
LOCALIZED INCREASES IN BMD

From a clinical perspective, the most important question when
faced with a localized increase in BMD is whether this might
represent a tumor. Tumors causing local increases in BMD may
be benign or malignant, primary or secondary (Table 1); in this
context special mention must be made of breast and prostate
cancer, both of which are associated with osteosclerotic
bony metastases.

Paget’s disease of the bone (PDB) explains 1.4% of incidental
high BMD results (34)—though this figure may fall given the
declining population prevalence of PDB (current UK age-
adjusted prevalence of 2.5% and 1.6% for men and women
respectively) (100). Excessive and disorganized woven and
lamellar bone expands bone size and raises density, causing
focal increases in BMD but also increasing deformity and risk
of fracture. PDB commonly affects the lumbar spine and hips
[after the pelvis, the commonest sites of involvement are lower
lumbar vertebrae (101)] and may be monostotic (e.g., affecting an
isolated vertebra) or polyostotic. PDB is often asymptomatic and
may be present for years before diagnosis. PDB also displays both
monogenic and polygenic inheritance. Mutations in SQSTM1
(p62) account for 40% of familial and 10% of sporadic PDB
(MIM167250) (65); and other monogenic forms of PDB include
the more severe and/or early onset PDB caused by mutations in
ZNF687, FKBP5, and TNFRSF11A (which codes for RANK).
Common variants in loci harboring the genes CSF1, OPTN,
TM7SF4, and RIN3 have also been implicated (65). It is thought
that environmental triggers interact with this genetic architecture
to predispose to disease, with one hypothesized environmental
trigger being zoonotic infections (102).

In additional to classical PDB, a number of rarer Paget’s-like
syndromes have been described with onset early in life that can
also cause localized increases in measured BMD. These include
expansile skeletal hyperphosphatasia, familial expansile osteolysis
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(FEO) (MIM174810), Juvenile Paget’s disease (MIM239000),
early-onset familial Paget’s disease (MIM602080), and
panostotic expansile bone disease (67). Children present with
deafness, dental disorders and on occasion, active focal bone
lesions; and as in PDB alkaline phosphatase levels tend to be
raised. These conditions are due to genetic mutations in the
RANK-NFkappaB signaling pathway [comprehensively reviewed
in (103)].

Mutations affecting the carboxy-terminal-propeptide cleavage
site of the type 1 procollagen chain (COL1A1) cause an unusual
form of osteogenesis imperfecta in which individuals manifest
marked bone fragility while having high BMD, due to
hyperosteoidosis and hypermineralization. Patchy sclerotic
lesions are often evident in the spine and elsewhere; in
particular, these individuals develop unusual fibro-osseous
lesions in the jaw (“cementoma”) (69). There is a clinical
overlap of this condition with gnathodiaphyseal dysplasia (70),
which features also include bone fragility, irregular sclerotic BMD,
and fibro-osseus lesions in the skull and jaw. Gnathodiaphyseal
dysplasia is associated with mutations in ANO5 (71), a gene not
known to be involved in collagen production or processing; and
the overlap in phenotype between these conditions is not fully
understood. However, recent studies have suggested that ANO5
may be involved in osteoclast regulation (104).

SAPHO syndrome (Synovitis, Acne, Pustulosis, Hyperostosis
and Osteitis) is a rare and poorly understood condition, in which
about half the cases manifest spinal involvement including
patchy osteosclerosis, hyperostosis, and para-vertebral
ossification (59, 60). Clustering within families is reported and
a genetic etiology (including an HLA contribution) has been
suggested (61).

Chronic kidney disease-mineral bone disorder (CKD-MBD,
previously referred to as renal osteodystrophy) causes
osteomalacia, secondary hyperparathyroidism, and fracture.
Radiological features of CKD-MBD include bony sclerosis,
particularly of the vertebral body endplates, leading to a ‘rugger-
jersey’ spine appearance (an appearance distinctive for
hyperparathyroidism); or it can be more diffuse (62–64). CKD-
MBD is associated with markedly increased fracture risk (64).
GENERALIZED HIGH BMD

A number of causes of generalized high BMD may be acquired
through life (Table 1). For example, fluoride causes diffuse axial
osteosclerosis with ligamentous calcification, periostitis and
vertebral osteophytosis, and has been associated with excessive
tea and toothpaste consumption (72–74). The increase in BMD led
to fluoride being historically trialed as an osteoporosis therapy—
but it resulted in a higher fracture risk, emphasizing that high
BMD per se does not necessarily equate to stronger bones (105,
106). Other rare acquired causes of generalized high BMD are
listed in Table 1.

However, rarer still, but fascinating are the monogenic causes
of generalized high bone density, known as high bone mass
(HBM) syndromes; these we discuss next.
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MONOGENIC CAUSES OF GENERALIZED
HIGH BMD

Several rare genetic disorders with skeletal effects, collectively
termed osteopetroses and sclerosing bone dysplasias, are
associated with generalized increased BMD. The most recent
(10th) edition of the Nosology and Classification of Genetic
Skeletal Disorders (2019 revision) lists 462 genetic disorders of
the skeleton among which are 45 conditions characterized by
osteosclerosis or osteopetrosis, with the underlying gene(s)
identified in 40 conditions at the time of going to press (8). As
suggested previously (36), and per a recent review paper of de
Ridder et al. (107), an intuitive biological separation can be made
into disorders in which bone formation is enhanced, those in
which bone resorption is depressed, and those with a disturbed
balance between bone formation and resorption. Importantly,
the associated changes in bone structure and quantity in the
various sclerosing bone disorders can have quite different—
indeed, completely opposite—effects on fracture risk (8).

It is not our intention to discuss all 45 osteosclerotic and
osteopetrotic conditions listed in the current edition of the
Nosology (8). Rather, we will focus on cases illustrative of the
differences between types of monogenic high BMD, with a
particular focus on anabolic HBM.
GENETIC CAUSES OF INCREASED BONE
FORMATION AND HIGH BMD

A common feature of anabolic HBM is activation of the Wnt/b-
catenin signaling pathway, with increased signaling through this
pathway underlying the phenotype of sclerosteosis, van
Buchem’s disease, LRP4 HBM, LRP5 HBM, and LRP6 HBM
(all discussed below). For a detailed discussion of Wnt signaling
in bone, the reader is referred to the excellent review of Baron
and Kneissel (108). A brief—and, acknowledged, simplistic—
description of the canonical Wnt/b-catenin signaling pathway is
provided here. Wnt ligands bind to the dual receptor complex
comprising Frizzled and LRP5 or LPR6 [LRP5/6], resulting in
b-catenin escaping phosphorylation by being released from a
multiprotein b-catenin “destruction complex”, leading to
b-catenin accumulation in the cytoplasm and ultimately
translocation to the nucleus to activate target genes. In the
absence of Wnt binding, b-catenin is phosphorylated by GSK-
3b (a component of the “destruction complex”) leading to its
degradation and, consequently, loss of downstream signaling.
Sclerostin inhibits Wnt signaling, by binding to LRP5/6 and
preventing LRP5/6 from forming the dual receptor complex with
Frizzled. LRP4 anchors sclerostin, enhancing sclerostin’s
interaction with LRP5/6, thus facilitating sclerostin’s inhibition
of Wnt/b-catenin signaling (108, 109).

Several human diseases characterized by HBM are associated
with mutations of components of the Wnt/b-catenin signaling
pathway (see Figure 1 and text below). As a corollary, mutations
of other components of this pathway may also cause HBM, with
several such examples evident from mouse genetic studies (108).
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Thus, sequencing efforts in human populations may lead to the
identification of other anabolic HBM conditions in humans.

Sclerosteosis and van Buchem’s Disease
Sclerosteosis (MIM269500) and van Buchem’s disease
(MIM239100) are rare, clinically similar conditions of excessive
bone growth. Loss-of-function SOST mutations cause sclerosteosis,
generally thought the more severe of the two disorders; in contrast, a
52-kb intronic deletion downstream of SOST, thought to disrupt
post-transcriptional sclerostin processing, results in the milder
phenotype of van Buchem’s disease (110, 111). In both disorders,
reduced osteocytic production of sclerostin permits activation of
osteoblastic Wnt signaling, leading to enhanced bone formation,
increased bone strength, and resistance to fracture (110, 112) (Table
2). Understanding the molecular biology of sclerosteosis and van
Buchem’s disease has led to the development of monoclonal
antibodies against sclerostin, which act to suppress the inhibitory
action of sclerostin on Wnt signaling, allowing gains in bone
formation (147, 148). Thus, anti-sclerostin antibodies represent a
new class of anti-osteoporosis therapy; and recently the first-in-class
agent (romosozumab) was approved by the United States Food and
Drug Administration and the European Medicine Agency
(discussed further below).

Sclerosteosis causes a large skeleton (sometimes termed
‘gigantism’, though this term is more usually reserved for
children with excess long bone growth due to growth hormone
excess prior to epiphyseal closure), mandible enlargement, and
torus palatinus and mandibularis which can complicate tooth
extractions (113, 149). Calvarial overgrowth compresses cranial
nerves, particularly facial nerves, sometimes from infancy; in one
series 83% of 63 adults had recurrent facial nerve palsies (113).
Hearing loss and headaches are common; as is raised intracranial
pressure—to the point that craniotomy may be required to
prevent sudden death by coning (113, 150). Cutaneous
syndactyly of fingers (present in 76%) and toes is an important
defining feature, often accompanying dysplastic or absent nails
and camptodactaly (113, 150, 151). Sclerosteosis is progressive,
which may cause bone and back pain, with bony overgrowth
requiring spinal and cranial decompression (113).

Van Buchem’s disease is milder than sclerosteosis,
importantly without syndactyly or “gigantism” (110, 150);
however, cranial nerve impingements and hearing loss remain
common (152). Management is generally limited to surgical bone
removal. However, as tried in Camurati-Engelmann disease
(progressive diaphyseal dysplasia, MIM131300) glucocorticoids
have been used with the aim of reducing high bone turnover, in
an isolated case report (153).

LRP5 High Bone Mass
In 1997, a family with HBM but an otherwise normal phenotype
was reported with the genetic abnormality localized by linkage
analysis to chromosome 11q12–13 (120). The 18-year-old
proband had presented following a road traffic accident,
without bone injury, but with consequent back pain. In the
initial publication, 28 family members were phenotyped, aged 18
to 86 years. Inheritance of the HBM phenotype was autosomal
dominant. Affected individuals were asymptomatic and had never
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fractured; their biochemistry was normal (measured in a subset of 5
affected individuals); and their radiology showed dense bones with
thick cortices and reduced medullary cavity but without consequent
reduction in hemopoietic capacity. Affected individuals had spinal
BMD Z-scores ranging from approximately +3.2 to +7.9; authors
used a case definition threshold of Z-score > +3.0. They concluded
that as HBM affected individuals aged as young as 18 years of age,
the mutation has a role to play in the acquisition of peak bone mass;
similarly, the clinical evaluation of older members of the pedigree
supported a persistent influence throughout life without consequent
disability (120, 121).

Interestingly, around the same time, osteoporosis pseudoglioma
syndrome (OPPG) (MIM259770), was mapped to the same region
(154). OPPG is characterized by osteoporosis, extreme bone
fragility, fracture, and deformity; and although initially considered
autosomal recessive, obligate carrier parents usually have low BMD.
OPPG is due to inactivating mutations in LRP5 (155). OPPG also
leads to visual deterioration at birth or soon after, due to
vitreoretinal degeneration, with multiple consequences including
retrolental masses, retinal detachment, cataract, phthisis bulbi,
microphthalmia, vitreous hemorrhage, secondary glaucoma and
blindness (156). Inactivating LRP5 mutations have also been
associated with familial exudative vitreoretinopathy type 4
(FEVR-4) (MIM601813), with low BMD a common feature of
affected individuals also (157); and it is now recognized that FEVR-4
and OPPG are allelic disorders with overlapping phenotypes.
Notably, other forms of familial exudative retinopathy are
associated with mutations in other genes that affect Wnt
signaling, including LRP4 and FZD4.
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Further genetic analysis of the original HBM family, with
extension of the pedigree to 38 members, identified a mis-sense
LRP5 mutation (c.512G>T, p.Gly171Val), in exon 3. All affected
individuals were heterozygous for this mutation, consistent with
autosomal dominant inheritance (121). HBM affection status in
this kindred-based study was then defined as sum of hip and
spine Z-score > +4.

In contrast to inactivating LRP5 mutations associated with
OPPG, the HBM phenotype results from activating LRP5
mutations which stimulate osteoblastic bone formation (158).
LRP5 has 23 exons, coding for a 1615 amino acid protein, an
essential cell membrane co-receptor key to the Wnt signaling
pathway which regulates osteoblastic bone formation (122). The
majority of the protein constitutes the extracellular b-propellor
which has four domains (1180 amino acids in length). All HBM-
associated LRP5mutations identified to date lie in exons 2, 3 and
4, which collectively code for the 1st b-propellor domain (Figure
1; Table 3); and protein modeling suggests they all lie at the top/
central region of the extracellular protein (163). It is thought that
these mutations reduce binding affinity with sclerostin and Dkk1,
negative regulators of LRP5 signaling (163, 164). No inactivating
mutations in this 1st b-propellor domain have been identified to
date; instead, OPPG-associated mutations have been located
within the 2nd and 3rd b-propellor domains, the binding
domain, and the terminal signaling peptide (123, 165, 166). A
hallmark of increased Wnt signaling in many organs, other than
bone, is the development of malignant tumors (167, 168).
However, fortunately this has not been reported as a feature of
LRP5 HBM.
FIGURE 1 | Schematic diagram of reported mutations affecting osteoblastic Wnt signaling. (1) LRP4 mutations coding for the 3rd b-propellor impair sclerostin
binding; (2) LRP5 and LRP6 mutations coding for the 1st b-propellor impair sclerostin binding; (3) SOST mutations inhibit sclerostin production by osteocytes.
Reductions in the inhibitory effects of sclerostin allows LRP5/6 to interact with Wnt and its co-receptor Frizzled, which prevents phosphorylation of b-catenin allowing
it to accumulate in the cytoplasm of the osteoblast. Translocation of b-catenin to the nucleus activates transcription of target genes. This activation of canonical Wnt/
b-catenin signaling increases osteoblastic bone formation. The intracellular consequences of LRP4-sclerostin binding are less well characterized; however, reductions
in LRP4-sclerostin binding have a similar effect to increase osteoblastic bone formation. LDLR, low-density-lipoprotein receptor. LRP, LDLR related proteins; PPPSP,
Proline, Proline, Proline, Serine, Proline; EGF, epidermal growth factor; NPxY, Aspartate, Proline, any amino acid, Tyrosine; YWTD, Tyrosine, Tryptophan, Threonine,
Aspartate.
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TABLE 2 | Inherited HBM conditions due to enhanced bone formation: gene defects, function, and clinical characteristics.

Function Clinical Features Ref

oblast Wnt signaling
itor

Cutaneous digital syndactyly excessive height. Skull/mandible
thickening, toria, CN palsies (incl. neonatal),. Headaches, raised
ICP, coning. Back/bone pain. Fracture resistance

(110, 113–115)

oblast Wnt signaling
itor

No syndactyly, no excess height. Skull/mandible thickening, toria,
CN palsies. Headaches, back/bone pain. Fracture resistance

(110, 116, 117)

ired sclerostin-
interaction

Syndactyly, dysplastic nails, gait disturbance, facial nerve palsy,
deafness

(118, 119)

oblast cell
brane co-receptor
ating Wnt signaling

Asymptomatic or toria, skull/mandible thickening, CN palsies,
neuropathy, neuralgia, headaches, back/bone pain, spinal
stenosis, reduced buoyancy, craniosyntosis, increased height.
Fracture resistance

(120–139),

oblast cell
brane co-receptor
ating Wnt signaling

Mandible thickening, torus palatinus, teeth encased in bone,
absence of adult maxillary lateral incisors, inability to float.
Fracture resistance. Increased height

(138)

its BMP dependent
tgene transcription
duce osteoblast
ity

Mandible enlargement, broad frame, torus palitinus/mandibularis,
pes planus, increased shoe size, inability to float

(140)

oclast-reactive
olar proton pump

Macrocephaly, cranial hyperostosis CN palsies, wide nasal
bridge, dental overcrowding, craniofacial hyperostosis &
sclerosis, metaphyseal flaring, and high BMD

(141–143),

pholipid
nthesis

Mandible enlargement, generalized hyperostosis, proximal
symphalangism, syndactyly, brachydactyly, cutis laxa,
developmental delay, hip dislocation, marked hypertelorism, and
enamel hypoplasia

(144, 145)

ic protein.
ian population (146).
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Condition MIM Inheritance Gene Mutation Protein
Increased bone formation

Sclerosteosis 269500 AR SOST Loss of function Sclerostin Oste
inhib

Van
Buchem’s
Diseaseb

239100 AR SOSTc Reduced function Sclerostin Oste
inhib

LRP4 HBM 604270 AD & AR LRP4 Loss of function LRP4 Impa
LRP

LRP5 HBM 603506 AD LRP5 Gain of function LRP5 Oste
mem
regu

LRP6 HBM awaited AD LRP6 Gain of function LRP6 Oste
mem
regu

SMAD9 HBM awaited AD SMAD9 Loss of function SMAD9 Inhib
targe
to re
activ

Cranio-
metaphyseal
dysplasia

123000218400 AD ANKH Gain of function Homolog of mouse
ANK

Oste
vacu

AR GJA1 Loss of function Gap junction
protein alph‐1

Lenz‐
Majewski
hyperostotic
dysplasia

151050 SP PTDSS1 Gain of function Phosphatidylserine
synthase 1

Phos
bios

MIM®, Online Mendelian Inheritance in Man; CN, Cranial Nerve; ICP, Intracranial pressure; BMP, bone morphogenet
aTori: Oral exostoses which include torus palatinus & mandibularis; found in approximately 25% of a general Caucas
bInitially known as hyperostosis corticalis generalisata familiaris (116, 117).
cA 52-kb intronic deletion downstream of SOST.
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TABLE 3 | LRP5 mutations and associated clinical and radiological characteristics reported to date.

res other than
ted in at least
in the kindred)

Radiology Biochemistry Refs

NDG NDG (159)

hes, extremity Dense cranium, loss of
diploe, enlarged mandible,
increased cortical
thickness of long bones

NDG (127)

after
ding in the

Increased density of
calvarium, mandible &
endosteal surface of long
bones

Calcium, PO4, bALP
normal

(123)

nt, migraine.
cipital bone in

ropic
.

Increased calvarial and
cortical thickness.
Foramen magnum
stenosis

Osteocalcin normal.
CTX normal in
mother, raised in
daughter

(160)

hes in one
ual

Dense skull bones,
cortical thickening of the
vertebrae and long bones
with normal development

NDG (127)

ne pain, Calvarial thickening.
Restriction of auditory and
optic canals

Calcium, PO4, ALP
normal. PTH mildly
raised.

(161)

All bones of skeleton
radiologically dense, thick
cortices, reduced
medullary cavity, normal
shape

bALP, osteocalcin,
deoxy- & pyridinoline
X-links normal in
subgroup of 5
affected

(120,
121)

other than
g

Thickened mandibular
rami, marked cortical
thickening of long bones,
dense vertebrae but
shape normal

bALP Ca, PO4, PTH,
OPG, RANKL, &
urinary NTX
normal.Osteocalcin,
elevated. All in
subgroup of 4
affected

(124)

dotumor
Chiari

Dense skeleton, marked
thickening of skull, and
skull base, cortical
widening that narrowed
medullary cavity of the
long bones

bALP and
osteocalcin normal

(125)

dividual
ry for spinal
er underwent
t, with difficult
ted to unusual
ne

NDG NDG (126)

had hydromyelia
of type 1 Chiari

NDG NDG (126)

alpable
at tibial tubercle

NDG NDG (159)

teroids. Ear
ression surgery.
ck pain

Severe cortical thickening
of cranial and long bones

P1NP increased.
Calcium, PO4, ALP,
PTH normal

(162)

NDG NDG (126)

(Continued)
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No. of
reported
individualsa

LRP5 base change Amino acid change Exon Country Ethnicity Tori TP
& TM

Mandible Neurological
complications

Fracture
History

(#)

Clinical Feat
HBM (repor
one person

1 c.266A>G p.Gln89Arg 2 UK Caucasian No No Carpel tunnel
syndrome

None Osteoarthritis

1 c.331G>T p.Asp111Tyr 2 Argentina NDG NDG Enlarged
mandible.
Mandibular
pain

Headaches NDG Severe headac
pain

6 of 15 c.461G>T p.Arg154Met 2 USA from
Lithuania

Caucasian Yesb Enlarged
mandible

None None Pain in right hi
prolonged sta
index case

2 of 2 c.509_514dupGGGGTG p.G171_E172insGG 3 Austria NDG No NDG Congenital
deafness, VII
palsy

None Cochlear impla
Removal of oc
one individual.
Hypergonadot
hypogonadism

3 c.511G>C p.Gly171Arg 3 Belgium NDG NDG NDG Headaches NDG Severe headac
affected individ

1 c.511_516delGGTGAG g.69547_69552delGGTGAG 3 NDG Caucasian NDG Thickened
mandible

Hearing
impairment.
Sudden sight
loss aged 16

None Generalized bo
headaches

19 of 38 c.512G>T p.Gly171Val 3 USA Caucasian NDG NDG None Resistant
to #

Asymptomatic

7 of 16 c.512G>T p.Gly171Val 3 Connecti-
cutUSA

Caucasian Yes Wide, deep
mandible,
decreased
mandibular
angle

None None Asymptomatic
difficulty floatin

1 c.512G>T p.Gly171Val 3 Colorado
USA

NDG Yes Wide deep
mandible

Strabismus,
Bells’ palsy,
trigeminal
neuralgia,
headaches,
paraesthesias

NDG Bone painPse
cerebri, type 1
malformation

6 of 13 c.512G>T p.Gly171Val 3 NDG NDG TP in all
but 1
case

Wide deep
mandible

Deafness,
sensorimotor
neuropathy,
dysphonia,
spinal stenosis

None One affected i
required surge
stenosis, anot
hip replaceme
surgery attribu
hardness of b

2 of 2 c.512G>T p.Gly171Val 3 NDG NDG Yes Wide deep
mandible

No detail given None One individual
(a complicatio
malformation)

1 c.518C>T p.Thr173Met 3 UK Caucasian No No Ulna nerve
decompression

2 high
impact

OsteoarthritisP
enthesophyte

1 of 4 c.592A>T p.Asn198Tyr 3 NDG NDG Yes NDG No None HBM despite
canal decomp
Headaches, b

2 of 6 c.593A>G p.Asn198Ser 3 NDG NDG Yes Wide deep
mandible

Deafness,
sensorimotor
neuropathy, &
spinal stenosis

None NDG
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TABLE 3 | Continued

Clinical Features other than
HBM (reported in at least
one person in the kindred)

Radiology Biochemistry Refs

Individuals affected differently
Chest wall prominence Fixed
flexion at elbows Osteotomy of
tibial tubercle (for tendonitis)..:.
HBM despite steroids

Increased calvarial
thickness

Low bone turnover
on Alendronic acid

(159)

Similar phenotype to that
described by Boyden et al.,
2002.

Increased density of
calvarium, mandible and
endosteal surface of long
bones

NDG (127,
134)

Craniosynostosis,
developmental delay, tinnitus,
headaches, prominent
forehead present in >1
member of pedigree

Increased density of
calvarium, mandible,
pelvis & endosteal surface
of long bones

Calcium, PO4, bALP
normal

(129)

Similar phenotype to that
described by Boyden et al.,
2002

Similar to Boyden et al.,
2002.

NDG (127,
130)

NDG Increased density of
calvarium. Mandible and
endosteal surfaces of long
bones

NDG (127,
133–
135)

Osteomyelitis of the jaw,
hearing difficulties due to small
auditory canals in 2 affected
individuals

Increased density of
calvarium, enlargement of
cranial vault

NDG (136)

Renal calculi (in one individual)
Dental overcrowding

NDG Increased bone
turnover at age 21

(159)

Widespread arthralgia, shin
pain & headaches

Increased calvarial
thickness with tightly
packed brain gyri on MRI.
Anterior lumbar
syndesmophytes

NDG (159)

Osteoarthritis NDG NDG (159)

NDG Generalized sclerosis
including calvarium
(obliteration of frontal
sinuses & mastoids),
pelvis & long
bones.Enlargement of
cranial vault

NDG (127,
128,
131,
132)

HBM despite steroids NDG Normal bone turnover (159)

Knee pain, chondrocalcinosis
& OA. Cervical spine pain.
Developed breast cancer

Thickened skull and long
bones on MRI and
phalanges on X-ray.
Increased density of
vertebral bodies without
OA

Calcium, PO4, bALP,
CTX all normal

(137)

rmone; CTX, NTX, C and N-telopeptides cross-links of bone Type I collagen; UK, United
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No. of
reported
individualsa

LRP5 base change Amino acid change Exon Country Ethnicity Tori TP
& TM

Mandible Neurological
complications

Fracture
History

(#)

3 c.593A>G p.Asn198Ser 3 UK Afro-
Caribbean

Yes Enlarged
mandible

None None

? c.640G>A p.Ala214Thr 3 Portland
USA

NDG Yes Elongated
mandible

NDG Resistant
to #

13 of 24 c.640G>A p.Ala214Thr 3 Holland NDG None Prominent
mandible

CN VII palsy in
2 cases

None

1 c.641C>T p.Ala214Val 3 UK NDG NDG Enlarged
mandible

NDG NDG

Family 1:1
of 1Family 2
& 3
unknown

c.724G>A p.Ala242Thr 4 Portland
USA, &
Sardinia

NDG Yes Enlarged
mandible

None in one
case (393). No
detail given in 2
families

Resistant
to #

? c.724G>A p.Ala242Thr 4 France NDG Yes Enlarged
mandible

NDG Resistant
to #

2 of 10 c.724G>A p.Ala242Thr 4 UK Caucasian Yes Enlarged
mandible

None None

1 c.724G>A p.Ala242Thr 4 UK Caucasian Yes Enlarged
mandible

CN V & VII
mildly impaired

None

2 c.724G>A p.Ala242Thr 4 UK Caucasian Yes Enlarged
mandible

Conductive
deafness

None

Family 1:13
of 32Family
2:7 of 16

c.758C>T p.Thr253Ile 4 Fyn,
Denmark

NDG NDG NDG NDG No
increased
# rate

1 c.796C>T p.Arg266Cys 4 UK Caucasian Yes Enlarged
mandible

None None

1 c.844A>G p.Met282Val 4 Belgium NDG Yes None None NDG

# fracture CN Cranial nerve; TP, torus palitinus; TM, torus mandibularis; bALP, bone specific alkaline phosphatise; PO4, phosphate; PTH, parathyroid ho
Kingdom; NDG, No detail given.
aNo. of reported individuals (with pedigree size where reported).
b3 requiring surgical debulking of TP & TM.
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Gregson and Duncan Genetic Architecture of High Bone Mass
Comprehensive description of the clinical phenotype of LRP5
HBM was reported by Boyden et al., in 2002 (124). Seven
individuals from a family of 16 were analyzed after routine
DXA screening detected two related individuals with high
BMD, again due to LRP5 c.512G>T, p.Gly171Val. Again,
radiographic thickening of cortices of otherwise normal bones
was reported, without history of fracture. However, all cases had
deep wide mandibles and torus palitinus. Two of 7 cases reported
difficulty floating; the first-time buoyancy was reported in
association with bone density in humans. Serum calcium,
phosphate, ALP, nf-kB and osteoprotegerin (OPG) were
normal, as was urinary NTX-1. However, unlike the first
family, osteocalcin was elevated threefold (mean 32.3 (SD 7.4)
vs. 9.8 (1.8) ng/mL). This finding was suggestive of a stimulatory
effect on periosteal bone formation, leading to an increase in
cortical thickness, as has been previously reported in transgenic
mice expressing the p.Gly171Val mutation (169).

While Boyden et al.’s large family were asymptomatic of their
HBM trait, in a letter of response two years later Whyte et al.
reported a 37 year old woman with the same pathogenic variant
(LRP5 c.512G>T, p.Gly171Val) but a more severe phenotype,
including congenital strabismus, childhood Bells’ palsy,
trigeminal neuralgia, life-long headaches, bone pain, and
paresthesias (125). She also had a widened and enlarged
mandible; and her osseous tori had required dental
intervention and removal as they had encased her teeth from
an early age. Interestingly, this more extreme case had a normal
osteocalcin level.

In their letter of response Boyden et al. detailed a further three
unrelated families with LRP5 HBM, two with the same LRP5
c.512G>T, p.Gly171Val variant and one with a novel variant in
LRP5 c.593A>G (p.Asn198Ser), also in exon 3 (126) (Table 3).
Among these families, some affected individuals had also reported
deafness, sensorimotor neuropathy and spinal stenosis, all likely due
to bone overgrowth and nerve compression. Contemporaneously,
van Wesenbeeck et al. identified a further six novel LRP5mutations
spread through exons 2, 3 and 4 (127). Cases generally had similar
features of mandible enlargement, fracture resistance, increased
skull thickness and oral tori.

Sixteen activating LRP5 mutations affecting 29 families have
now been reported globally, all in exons 2, 3 and 4 and affecting
the 1st b-propeller domain (Table 3) (120, 121, 123–137, 159–
162). Almost all are missense mutations, with two indels
reported. Half of all cases report osseous tori (see below); and
only one case has experienced fractures (notably, after high
impact). As increasing numbers of individuals are reported, it
is apparent that LRP5 HBM may not be as benign as first
thought, and indeed shares many features with sclerosteosis
and van Buchem’s disease (Table 2)—which is not particularly
surprising given they share a common pathway. In addition to
the adverse clinical features reported by Whyte et al. (detailed
above) (125), Kwee et al. reported a multi-generation family with
an LRP5 c.640G>A, p.Ala214Thr mutation, in whom the
phenotype extended beyond HBM to include craniosynostosis,
developmental delay, and multiple dysmorphic features
including macrocephaly and hypertelorism (129). Premature
Frontiers in Endocrinology | www.frontiersin.org 1192
closure of cranial sutures in one infant reportedly caused raised
intracranial pressure, optic nerve atrophy and visual impairment
(this child also manifest a ventriculoseptal defect); two other
individuals had required craniotomy. Foramen magnum
stenosis, in one case ultimately requiring craniotomy, has also
been reported in association with the only HBM-associated LRP5
insertion reported to date (c.509_514dupGGGGTG,
p.G171_E172insGG) (160). The p.Gly171Val mutation has been
reported twice in association with a type 1 Chiari malformation
(125, 126). Headaches and bone pain are common; bony
compression of the optic and auditory nerves causing loss of
sight and hearing respectively are frequently reported; and
mandibular osteomyelitis, renal calculi and spinal stenosis have
also been reported (126, 136, 159). However, joint disease does not
appear to be a common feature, with osteoarthritis reported only
in some older individuals (159).

Certainly, there will be a bias toward identification of more
severe HBM phenotypes associated with LRP5 mutations, as
these are more likely to be identified clinically and thus reported.
In our own study mentioned earlier, in which we screened
335,115 DXA scans across 15 UK centers, we identified seven
families with LRP5 HBM; two with novel and five with
previously reported mutations (159). The two novel mutations
had milder phenotypes than those reported previously, and
arguably would have been less likely to have been identified
without gene screening. Our findings suggested that the clinical
variability in LRP5 HBM cases may arise from genotype-
phenotype correlation, with our protein modeling suggesting
the severity of high BMD corresponds to the degree of predicted
LRP5 protein disruption (159).

LRP4 High Bone Mass
To date, four cases of HBM associated with pathogenic variants
in LRP4 have been published, with both autosomal dominant
and recessive inheritance reported (109, 118, 119, 170, 171).
Mutations causing LRP4 HBM occur in the central cavity of the
third b-propeller domain of the LRP4 protein, impairing the
interaction between sclerostin and LRP4 (119) (of note
mutations elsewhere in LRP4 are associated with Cenani-Lenz
Syndactyly Syndrome, MIM212780) (Figure 1). In addition to
HBM, clinical features of LRP4 HBM include syndactyly,
dysplastic nails, gait disturbance, facial nerve palsy and hearing
loss (of note, no osseous tori have been reported to date) (Table
2) (119). As the phenotype of LRP4 HBM is very similar to
sclerosteosis, it has been termed sclerosteosis type 2 (118)—
though the clinical course is less severe and arguably more
similar to van Buchem’s disease.

LRP6 High Bone Mass
In 2019 Whyte et al. reported two multi-generational families
with LRP6-associated HBM, identifying two different
heterozygous missense mutations both affecting the first b-
propeller of LRP6 (homologous to LRP5 HBM mutations)
(Figure 1) (138).

The clinical features of LRP6 HBM are highly reminiscent of
LRP5 HBM: generalized osteosclerosis and hyperostosis,
October 2020 | Volume 11 | Article 595653
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Gregson and Duncan Genetic Architecture of High Bone Mass
mandible enlargement, torus palitinus, teeth encased in excessive
bone, resistance to fracture, and an inability to float in water
(Table 2), with an additional phenotypic feature of absence of
adult maxillary lateral incisors in some individuals (observed in
both families). Of note, no signs of osteoarthritis were detected.

Interestingly, not only was LRP6HBM associated with above-
average height, this paper also highlighted increased height in
individuals with LRP5 HBM (who were studied for comparison
with the LRP6 families) (138). Taken together, the phenotypes
suggest increased Wnt signaling seen in all three conditions
affects not only bone density but also skeletal growth in
childhood and adolescence.

Other Forms of High BMD With Increased
Bone Formation, Not Associated With Wnt
Signaling Pathways
SMAD9 High Bone Mass
In 2019 we reported the first pedigree with a segregating SMAD9
mutation, with replication in two further unrelated individuals
with HBM. Based our population size (34), we estimated the
prevalence of SMAD9 HBM as approximately 1 in 100,000, less
common than LRP5HBM (159). As with LRP5HBM, the clinical
phenotype included mandible enlargement, a broad frame and
tall stature, torus palatinus, and a tendency to sink when
swimming; and no adult fractures were reported (Table 2). A
further characteristic, not reported in LRP4, LRP5, or LRP6
HBM, was pes planus. Reassuringly, unlike sclerosteosis and
some cases of LRP5HBM, nerve compression was not seen (159).

SMAD9 (also known as SMAD8, MADH6, and MADH9)
encodes a downstreammodulator of the BMP signaling pathway.
BMPs are members of the TGF-b superfamily, and induce both
bone and cartilage formation (172). Our in-silico protein
modeling predicted the mutation severely disrupted the
structure of the MH1 DNA binding domain of SMAD9,
leading to loss-of-function, such that this inhibitory SMAD
could no longer repress BMP receptor activation and
downstream signaling (173). Our novel findings support the
SMAD9-dependent BMP signaling pathway as a potential novel
anabolic target for future osteoporosis therapeutics.

Craniometaphyseal Dysplasia
Craniometaphyseal dysplasia (MIM123000), which may be
autosomal dominant or recessive, is caused by a mis-sense
mutation in ANKH, which encodes the inorganic pyrophosphate
channel ANK. The phenotype includes macrocephaly, cranio-
facial hyperostosis and sclerosis with cranial nerve palsies, wide
nasal bridge, dental overcrowding, metaphyseal flaring and
marked HBM (the latter predominantly in AR disease) (141–143).

Lenz‐Majewski Hyperostotic Dysplasia
Autosomal dominant gain of function mutations in PTDSS1 are
responsible for Lenz–Majewski syndrome (LMS) (MIM 151050)
(174). This very rare syndrome is characterized cutis laxa, facial
dysmorphism, severe short stature, brachydactyly, intellectual
disability and hyperostotic skeletal dysplasia. Skeletal
characteristics include calvarial thickening, marked sclerosis of
Frontiers in Endocrinology | www.frontiersin.org 1293
the skull base and facial bones, a markedly enlarged mandible
(much more so than is seen in the Wnt signaling HBM
syndromes), dense vertebral bodies, shortened broad ribs,
hyperostotic clavicles, scapulae and iliac wings (144, 145).
Progressive osteosclerosis with “massive thickening of long
tubular bones” is described by the age of 30 years (144).
Bilateral hip dislocation has been reported. PTDSS1 codes for
phosphatidylserine synthase 1 (PSS1), an enzyme involved in
phospholipid biosynthesis, although the mechanism by which
this affects bone metabolism is not yet fully understood (174).

Osseous Tori
Oral exostoses include torus palatinus (TP), torus manibularis
(TM) and, less commonly, torus maxillaris. Their site determines
their nomenclature (with TP lying in the midline of the hard
palate and TM usually in the premolar region of the lingual side
of the mandible). The size and number of tori an individual may
have is highly variable. They are each made up of dense
cancellous bone with a surrounding rim of cortical bone;
occasionally they contain hemopoietic tissue (175). The only
apparent clinical problem associated with tori per se is
obstruction to dentition (including denture fitting); and tori
rarely require surgical de-bulking. Notably, tori are not present
in all cases of LRP5 or LRP6 HBM (Table 3).

Although prevalence estimates have varied widely (between 1
and 64% depending upon the study, definition and population),
overall tori appear to be relatively common (approximately 25%
of a Caucasian population, clearly much higher than the
prevalence of HBM) and appears similar across all ages (146).
Interestingly, two separate studies (one among US (90%
Caucasian) postmenopausal women and another in elderly
Japanese women) have found an association between tori and
higher BMD (176, 177). The US study graded tori size (0 to 5)
and found a strong correlation with BMD Z-score among 469
women; however, they did not find a similar correlation between
age and torus size (176).

Taken together, these data suggesting that torus may reflect
acquisition of peak bone mass in early adult life rather than a
progressive skeletal change. Moreover, tori do not appear to be
sensitive or specific indicators of a monogenic form of HBM but
may simply reflect a general association with higher peak
bone mass.
UNEXPLAINED HBM—A NEW ENTITY?

Mutations in the genes mentioned above are extremely rare within
the general population, and the vast majority of HBM cases
(~97%) remain genetically unexplained (159). Based on our UK
study, LRP5 HBM mutations have an estimated prevalence of
approximately 5 per 100,000 (159). We identified only one
sclerosteosis carrier, who manifested moderately high BMD due
to a novel heterozygous nonsense SOST mutation predicted to
either prematurely truncate sclerostin or cause nonsense-mediated
decay (159). No cases of autosomal recessive sclerosteosis, LRP4
HBM or LRP6HBM have been identified in the UK to date (159).
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Thus there remains a population with generalized raised BMD
(Z-score ≥+3.2 at either L1 or hip), usually identified incidentally
on routine DXA scanning (34, 159), in whom fracture risk is not
increased, with clinical characteristics suggestive of a mild skeletal
dysplasia (associated features of mandible enlargement, extra bone
at the site of tendon and ligament insertions, broad skeletal frame
and larger shoe size, poor buoyancy, as well as an increased BMI)
(34). The population is characterized by increased trabecular BMD
and by alterations in cortical bone density and structure, leading to
substantial increments in predicted cortical bone strength (178).
Neither trabecular nor cortical BMD appear to decline with age in
the tibia of HBM individuals, suggesting resistance to age-related
bone loss in weight-bearing limbs may contribute to their bone
phenotype (178). Furthermore, body composition assessment
suggests that HBM is associated with a marked increase in fat
mass, particularly android fat, in women but not men (179). This
clinical appearance of a mild skeletal dysplasia explains 35% of
incidental identified high BMD on routine DXA scanning, such
that unexplained generalized HBM has a prevalence of 0.18%
among a UK DXA-scanned adult population (34).

Within our cohort with unexplained HBM, 41% have a first-
degree relative with a similar phenotype; thus unexplained HBM
appears to be heritable though this figure has not been formally
calculated (34). As mentioned above, mutations of other
components of the Wnt/b-catenin pathway have been associated
with HBM in murine genetic studies; and it may be these HBM
individuals carry rare variants in genes yet to be identified through
further sequencing efforts. However, this population with
unexplained HBM is enriched for ‘high BMD alleles’ of loci
identified through BMD GWAS in the general population. Thus,
the genetic architecture of unexplained HBM is, at least in part,
explained by common variants (15, 16). This does not exclude the
possibility of rare variants of large effect in other genes in some (or
all) of this cohort; rather, the effect of such variants with large effect
may be modified by their background polygenic architecture.

As higher (i.e., non-artefactually elevated) BMD is associated
with prevalent osteoarthritis in the general population (180–183),
it is perhaps not surprising that individuals with unexplained
HBM have a greater prevalence of radiographic osteoarthritis than
their unaffected family members and general population controls,
along with a higher incidence of joint replacement (184–186).
Interesting, when assessing the individual radiographic sub-
phenotypes of osteoarthritis, be it at the hip, knee or hand,
osteophytes predominate, with some increased subchondral
sclerosis, rather than joint space narrowing (185–187). Taken
together this suggests HBM might be associated with a
hypertrophic ‘bone-forming’ osteoarthritis phenotype (188).
While increased adiposity is also a clinical feature of HBM (with
weight a major contribution to the development of degenerative
joint disease), there remains an association between BMD and
osteophytes, even after adjusting for BMI, at both weight-bearing
(e.g. knee) and non-weight-bearing (e.g. distal interphalangeal
[DIP] and carpometacarpal [CMC] joints of the hand) joints
(186, 187).

More recently, we have been able to follow-up a proportion of
our original HBM cohort eight years after initial assessment. We
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have observed increases in knee osteophytes and joint space
narrowing, as well as knee pain and functional limitation (189);
findings at the hip are similar (A Hartley et al., submitted for
publication). Taken together, these insights from the study of an
extreme HBM population suggest that raised BMD may
contribute to pathogenesis of osteoarthritis.
OSTEOPETROSES AND OSTEOSCLEROTIC
CONDITIONS WITH DISTURBED
FORMATION AND RESORPTION

High BMD due to Osteoclast Dysfunction
The osteopetroses (Greek etymology: “petro”—to turn to stone)
are rare genetic conditions of reduced osteoclastic bone
resorption. Defective bone remodeling during growth induces
skeletal sclerosis and abnormally dense but brittle bones. First
described by the German radiologist Albers-Schönberg as
“marble bone disease,” (190, 191) osteopetrosis is now
classified by clinical severity (Table 4). The worst prognosis is
seen in severe neonatal or infantile forms; a number of
intermediate forms have been identified; and later-onset forms
characterise the other end of the clinical spectrum (8, 237).
Autosomal dominant osteopetrosis (ADO) was historically
subdivided into ADO type I and type II. However, ADO type I
was subsequently identified as high bone mass due to LRP5 (low-
density lipoprotein receptor-related protein 5) mutations (128)
(discussed earlier). As LRP5 HBM is not primarily a disease of
osteoclasts, and is not characterized by bone fragility, we agree
with the most recent edition of the Nosology [compared with the
2015 Nosology (237)] that LRP5 HBM should not be considered
an osteopetroses. LRP5 HBM has now been reclassified within
the group of “other sclerosing bone dysplasias” (8).

Osteopetrosis, Late‐Onset Form Type 2
(OPTA2), Previously Known as Autosomal
Dominant Osteopetrosis II (ADOII)
OPTA2 (MIM166600, eponymously known as Albers-Schönberg
disease) is caused by CLCN7 mutations. CLCN7 functions as a
voltage-gated Cl-/H+ ion channel, and is found in lysosomes and
on the ruffled boarder of osteoclasts. By acid efflux, it facilitates
inorganic bone matrix dissolution (238). Mutations in CLCN7,
therefore, result in decreased osteoclastic bone resorption.
Multiple mutations have been identified throughout the gene, in
association with a range of osteopetrotic phenotypes (239–241).
The prevalence of OPTA2 is estimated between 0.2 and 5.5/
100,000 (242, 243); however, it exhibits both variable penetrance
(60–80%) and expressivity, results in a varied clinical phenotype
including detection as an incidental radiographic finding (244).
The phenotype can include facial nerve palsy, visual loss (in 5–25%),
carpal tunnel syndrome, hip osteoarthritis (in 7%), increased
fracture risk and delayed fracture healing, osteomyelitis (in 10–
13%, particularly in the mandible), dental abscesses (10%) and deep
decay (36%) and, in extreme cases, bonemarrow failure (≈3%) (192,
203–206).
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TABLE 4 | Osteopetrotic conditions and osteosclerotic conditions with disturbed formation and resorption.
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tal osteosclerotic foci (can mimic (192, 210–
214)

adiographic features asymmetric ‘flowing
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TABLE 4 | Continued

n Protein Function Symptoms Ref

Kinase Kinase 1SMAD Family
Member 3

changes (hypertrichosis, fibromas, hemangiomas and
pain): associated with radiographic features in
sclerotome. Contractures can develop

tion Wilms tumor gene on the X
chromosome/APC Membrane
Recruitment Protein 1

Wnt signaling
suppression

Macrocephaly, CN compression, cleft palate, skull/long
bone sclerosis in females. Usually lethal in males

(162, 215)

tion Solute carrier family 29
(nucleoside transporter)
Colony Stimulating Factor 1
Receptor

Osteoclast
differentiation and
function

Neurodevelopmental deterioration, platyspondyly,
cranial nerve compression, abnormal dentition

(216–219)

in of TGFb Cell proliferation,
differentiation,
migration and
apoptosis

Variable phenotype. Thickened diaphyseal cortices, limb
pain, fatigability, muscle weakness, waddling gait.
Variably raised ALP, hypocalcemia & anemia
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tion Thromboxane synthase Modulates RANKL &
OPG expression

Impaired platelet aggregation (steroid-sensitive),
anemia. Similar to Camurati-Engelmann syndrome but
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development

Sparse curly hair, severe dental abnormalities, defective
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Nuclear Factor-Kb Ligand; OPG, Osteoprotegerin; XL, X-linked; ADOII, Autosomal dominant type 2 osteopetrosis.

e Paget’s-like diseases (familial expansile osteolysis, expansile skeletal hyperphosphatasia and early-onset Paget’s disease); (230, 231)
termed Buschke-Ollendorff syndrome (192, 210, 232)
, syndactyly, ocular defects and fat herniation through skin and is known as Goltz Syndrome (233–236).
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Radiographs feature (a) vertebral end-plate thickening
(another cause of ‘rugger-jersey spine’), (b) ‘bone-within-bone’
particularly in the pelvis, and (c) transverse sclerotic bands
within the distal femorae (203, 206). However, the radiological
phenotype is not ubiquitous (≈60–90%) (233, 242). DXA BMD
Z-score ranges from +3 to +15 (203, 205).

OPTA2 highlights that high BMD does not necessarily equate
to lower fracture risk. In one case series of 94 CLCN7 mutation
cases, almost every adult (98%) had experienced a fracture
(including, in half of carriers, their hip), with a third having
fractured more than once (five had >15 fractures) (205). Among
another 42 cases from 10 families, age range 7 to 70 years, the
mean number of fractures per person was 4.4 (205). However,
these case series are not performed systematically; thus, patterns
are difficult to generalise.

Pycnodysostosis
First described in 1962 and said to be the malady of both
Toulouse-Lautrec and Aesop (known for his fables) (234–236),
pycnodysostosis (MIM265800) is caused by defective enzymatic
degradation of organic bone matrix, due to an autosomal
recessive mutation in CATK (coding for cathepsin K) (207). To
date approximately 30 mutations have been reported among
fewer than 200 cases globally (207–209). Secreted by osteoclasts,
cathepsin K cleaves type I collagen (245). The characteristic bone
dysplasia includes skull deformities, under-developed facial bones
with micrognathia, beaked nose, short stature and phalanges,
dental caries, persistence of deciduous teeth and abnormally
dense but brittle bones (192, 207–209, 246). Affected individuals
may also manifest hip fractures indistinguishable clinically from
atypical femoral fractures associated with antiresorptive therapy
(247). Interestingly, particularly in light of the previous statement,
the molecular understanding of pycnodysostosis underpinned
development of a novel class of anti-resorptive therapy (248),
although ultimately this agent did not make it to market
(see below).

b3-Integrin Disorders Associated With
Platelet Dysfunction and Osteopetrosis
b3-integrins act with filamentous actin to facilitate podosome
attachment of osteoclasts to bone. b3-integrin double knock-out
mice develop osteosclerosis, with increased cortical and
trabecular mass, as well as hypocalcemia, due to defective
osteoclast function (249). ITGB3 encodes glycoprotein IIIa
which is the b subunit of the glycoprotein IIb/IIIa cell
adhesion complex. Interestingly this IIb/IIIa complex acts as a
fibrinogen receptor and mediates platelet aggregation; it is this
complex which the widely used cardiological drugs tirofiban and
abciximab target in their anti-platelet action as glycoprotein IIb/
IIIa inhibitors, used at the time of percutaneous coronary
interventions. Hence unsurprisingly, dysfunction of b-integrins
appears to cause defective platelet aggregation and HBM in mice
models (250). Autosomal recessive mutations in ITGA2B lead to
reduced production of either glycoprotein IIb or IIIa, resulting in
Glanzmann thrombasthenia (MIM273800) which is characterized
by excessive bleeding (251). Only one case of Glanzmann
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thrombasthenia has been reported with a bone phenotype, with
generalized and skull base osteosclerosis observed on plain
radiographs of a 5 day old baby (252), termed osteopetrosis and
thought due to impaired osteoclast function (253). A similar
platelet phenotype has been associated with osteopetrosis
(reported in three cases) in the presence of mutations in
Kindlin-3 (MIM612840), coding for Kindlin-3 which also
interacts with b-integrins. The resulting condition is termed
leukocyte adhesion deficiency-3 (LED-3) and predisposes to
bacterial infections and bleeding despite normal platelet counts,
as well as a bony phenotype (199).
OTHER OSTEOSCLEROTIC DISORDERS

Osteopoikilosis and Melorheostosis
Osteopoikilosis (MIM166700; Greek etymology: poikilos-
various) is benign, usually incidental finding characterized
radiographically by multiple small round osteosclerotic foci,
which can cause concern for metastases. When associated with
connective tissue naevi, (dermatofibrosis lenticularis disseminate)
it is termed Buschke-Ollendorff syndrome (BOS) (192, 210, 232).
Melorheostosis, an asymmetric radiographic appearance of
‘flowing hyperostosis’ described as ‘dripping candle wax’ down
the bone, can co-occur with osteopoikilosis. Approximately 200
cases have been described to date. Soft tissue signs and symptoms
(see below) are associated with the radiographic features in a
sclerotome distribution. Hypertrichosis, fibromas, hemangiomas
and pain are sometimes a feature; and contractures and deformity
can develop if limbs can become unequal in length (192,
210–212).

Osteopathia Striata
Osteopathia striata can occur in combination with cranial
sclerosis (MIM300373) or focal dermal hypoplasia (known as
Goltz Syndrome; MIM305600)); both are X-linked dominant
diseases and cause striations visible on bone radiographs,
together with learning difficulties. In the former, which is due
to mutations in AMER1, cranial osteosclerosis can lead to cranial
nerve compression (215). In Goltz syndrome, caused by
mutations in PORCN, the bone features are associated with
skin pigmentation, hypoplastic teeth, syndactyly, ocular defects,
and fat herniation through skin (254–256).

Camurati-Engelmann Disease
Camurati-Engelmann disease (progressive diaphyseal dysplasia)
(MIM131300) results from a gain-of-function mutation in
Transforming Growth Factor Beta-1 (TGFB1), resulting in
thickened diaphyseal cortices, increased BMD, limb pain,
fatigability, muscle weakness and a waddling gait (220). TGF-b
controls cell differentiation, proliferation and apoptosis in many
tissues; and its pivotal role in bone regulation is highlighted by
the number of skeletal diseases associated with abnormal TGF-b
signaling, which include Marfan’s syndrome, Loey-Dietz
syndrome, acromesomelic and geleophysic dysplasias and even
osteogenesis imperfecta (257).
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Ghosal Syndrome
Ghosal syndrome (MIM231095) is a rare autosomal recessive
disorder caused by a mutation in TBXAS1, which encodes
thromboxane synthase, resulting in HBM, impaired platelet
aggregation, and anemia. The phenotype is not dissimilar from
Camurati-Engelmann disease; however, here metaphyses are also
affected (227, 228). This condition has linked platelet function
with the RANKL/OPG pathway in vitro as thromboxane
synthase modulates both RANKL and OPG expression in
osteoblasts (228).

X-Linked Hypophosphatemia
X-linked hypophosphatemia (XLH) (MIM307800), caused by
phosphate-regulating endopeptidase homolog (PHEX)
mutations, has also been reported as a cause of modestly
elevated axial, though not appendicular, BMD, in both children
(258) and adults (68). However, given the high prevalence of
ligamentous calcification and degenerative joint disease in adults
with XLH, interpreting a DXA BMD result is complex.
Individuals with XLH have a high prevalence of pseudo- and
complete fractures, with mean age at first fracture of 26 years
(259). However, pertinent to the point regarding fracture vs.
BMD, these fractures typically affect the lower limbs, noting that
appendicular BMD is not usually increased in XLH; and are
usually attributed to the combination of osteomalacia and
mechanical stress (from rickets and joint mal-alignment).

Neonatal Osteosclerotic Dysplasias
A handful of rare mutations can cause osteosclerosis in the
neonate. Caffey disease (MIM114000), also known as infantile
cortical hyperostosis, is a highly unusual bone disease causing
excessive bone overgrowth (two-three times normal width—to the
point of bone fusion with neighboring bones (e.g. ribs, radius and
ulna)), along with joint and soft tissue swelling—which then
resolves over the following months. To date all cases carry a
single point mutation in COL1A1 (c.3040C>T; p.Arg836Cys)
(260). Mutations in COL1A1 usually cause osteogenesis
imperfecta; and the reason for the differing phenotype in
Caffey’s disease is not known – nor is it known why this
condition settles down over time. Interestingly, a COL1A1
mutation has been identified in an Australian terrier with
canine hyperostosis (261), and mutations in various solute
carrier genes have been described in other cases of canine
calvarial hyperostosis and craniomandibular osteopathies
(which are likely overlapping conditions) (261). Whether
mutations in these genes contribute to human diseases similarly
is unknown.

Other forms of neonatal osteosclerosis include Blomstrand
dysplasia (MIM215045), due to autosomal recessive inactivating
mutations in PTHR1 which codes for the PTH/PTHrP receptor 1,
and which is usually lethal; desmosterolosis (MIM602398), due to
autosomal recessive mutations in DHCR24 which codes for 3‐
beta‐hydroxysterol delta‐24‐reductase, with mutations resulting in
impaired sterol‐metabolism; and Raine dysplasia (MIM259775),
due to autosomal recessive FAM20Cmutations coding for Dentin
matrix protein 4, which can also be lethal.
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POLYGENIC INHERITANCE OF HIGH BMD

GWAS in populations selected due to their high BMD have
identified novel BMD-determining loci relevant not only in the
extreme population but also in the general population. In 2011,
we performed the first extreme truncate selection GWAS of
BMD (33), as the use of extreme cases and/or “super controls,”
drawn from opposite ends of the same population distribution,
maximizes statistical power (262). This was one of the first such
extreme truncate selection GWAS for any phenotype; and such
augmentation of statistical power through analysis of extreme
phenotypes has since been shown to be advantageous in a range
of clinical phenotypes (263–266) and is now an established
approach to investigate the genetic architecture of complex
disease (262, 267). In addition to replicating associations for 21
of the then 26 known BMD loci (identified from analyses of
populations with normally distributed BMD) (268), we identified
six new genetic associations in loci near CLCN7, GALNT3, IBSP,
LTBP3, RSPO3, and SOX4 (33), which subsequently replicated in
larger general population GWAS (17, 18). This project
highlighted the efficiency of extreme-truncated selection for
quantitative trait GWAS design (33).

More recently, we conducted a GWAS of arguably the most
extreme BMD population to date, identifying further two genome-
wide significant SNPs, rs9292469 (48.5kb 3′ of NPR3 with the LD
block including part of this gene) and rs2697825 (within an intron
of SPON1) associated with lumbar spine and hip BMD respectively.
NRP3 regulates endochondral ossification and skeletal growth (269–
272), while SPON1 modulates TGF-b-regulated BMP-driven
osteoblast differentiation (273). SPON1, coding for an extracellular
matrix glycoprotein, had not previously been associated with a bone
phenotype in humans; however interestingly, Spon1 knockout mice
have a skeletal HBM phenotype (274). These novel loci are now
under active investigation as future therapeutic targets.
TRANSLATIONAL POTENTIAL OF
DISSECTING THE GENETICS OF HBM

The working assumption underlying the efforts of ourselves and
others in this field is that understanding the genetic architecture
of skeletal diseases characterized by HBM will elucidate critical
pathways involved in bone growth and regulation, and aid
development of novel therapeutics to increase bone mass
(275). Successful drug targets (i.e., those for whom drugs have
successfully passed through all development steps to an approved
drug indication) are enriched with genes known to be involved in
human disease, whether identified through common or rare
variant analysis (276). Inspiringly for those of us who study
bone, the concordance between disease indication and disease/
pathway association (whether identified through rare or
common variant studies) is strongest for drugs targeting the
musculoskeletal system, compared with all other systems
(including diabetes, autoimmunity, cardiovascular disease and
oncology). Importantly, there is no relationship between
genomic effect size and approved drug status, emphasizing the
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role of studying both rare variants of large effect and common
variants of small effect (276).

The definitive proof-of-concept for this working hypothesis has
been the development of antibodies to sclerostin, a protein only
identified through analysis of HBM families with sclerosteosis and
van Buchem’s disease (110–112), with completion of phase 3 clinical
trials (147, 277) and the first-in-class agent (romosozumab)
approved for clinical use by the US Food and Drugs
Administration. Similarly, genetic dissection of pycnodysostosis
led to the development of Cathepsin K inhibitors and the first-
in-class agent (odanocatib) (207), successful in phase 3 and
extension trials but disappointingly not taken forward into clinical
practice (248). Although we acknowledge wholeheartedly that many
medications currently used in osteoporosis, were not developed as a
direct consequence of genetic studies, it is interesting to reflect that
bisphosphonates, selective estrogen receptor modulators, estrogen,
cathepsin K inhibitors, denosumab, anti-sclerostin antibodies and
PTH and its analogs all target proteins associated with a monogenic
bone condition; and, with the exception of bisphosphonates and
cathepsin-K inhibitors [but with the potential addition of DKK-1
inhibitors, which have shown promise in murine models (278,
279)], all target genes in loci with common variant association with
BMD. We await news of further Wnt pathway agonists, also in
development, as novel anabolic treatments for osteoporosis
(278–281).
CONCLUDING COMMENTS: THE VALUE
OF STUDYING EXTREME PHENOTYPES

In the 17th century William Harvey acknowledged the potential
benefits of studying the natural, but rarely occurring, extreme
cases, in order that they might elucidate systems pertinent to the
general population: “Nature is nowhere accustomed more openly
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to display her secret mysteries than in cases where she shows
traces of her workings apart from the beaten path; nor is there
any better way to advance the proper practice of medicine than
to give our minds to the discovery of the usual law of Nature by
careful investigation of cases of rare forms of disease” (282).

These words summarise the rationale that we (and others)
have used in considering and investigating individuals with high
BMD (15, 33). The genetic revolution—both sequencing and
high-throughput microarray genotyping—has contributed
greatly to the understanding of both common (17, 18) and rare
(8) bone pathologies, with identification of multiple genes and
critical pathways, leading already to the development of novel
therapeutics. We would particularly like to highlight that
progress in this field has been greatly enabled by collaboration
and co-operation between centers and within consortia around
the globe. However, as discussed above, the most common form
of sclerosing dysplasia appears to be the currently unexplained
HBM phenotype, with features suggestive of a mild skeletal
dysplasia. Given past history in this field, it is highly likely that
further genetic dissection of HBM cases will yield further novel
insights into bone regulation; and it is our hope that this work
will contribute to improved health for individuals with HBM and
for other individuals with metabolic bone diseases.
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The discovery that sclerostin is the defective protein underlying the rare heritable bone
mass disorder, sclerosteosis, ultimately led to development of anti-sclerostin antibodies
as a new treatment for osteoporosis. In the era of large scale GWAS, many additional
genetic signals associated with bone mass and related traits have since been reported.
However, how best to interrogate these signals in order to identify the underlying gene
responsible for these genetic associations, a prerequisite for identifying drug targets for
further treatments, remains a challenge. The resources available for supporting functional
genomics research continues to expand, exemplified by “multi-omics” database
resources, with improved availability of datasets derived from bone tissues. These
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databases provide information about potential molecular mediators such as mRNA
expression, protein expression, and DNA methylation levels, which can be interrogated
to map genetic signals to specific genes based on identification of causal pathways
between the genetic signal and the phenotype being studied. Functional evaluation of
potential causative genes has been facilitated by characterization of the “osteocyte
signature”, by broad phenotyping of knockout mice with deletions of over 7,000 genes,
in which more detailed skeletal phenotyping is currently being undertaken, and by
development of zebrafish as a highly efficient additional in vivo model for functional
studies of the skeleton. Looking to the future, this expanding repertoire of tools offers the
hope of accurately defining the major genetic signals which contribute to osteoporosis.
This may in turn lead to the identification of additional therapeutic targets, and ultimately
new treatments for osteoporosis.
Keywords: genome-wide association study, bone mineral density, mouse model, zebrafish, “omics” data
INTRODUCTION

This perspective article provides a viewpoint on the opportunities
and challenges in functional genomics research in osteoporosis,
synthesizing the content of a recent workshop of invited experts.
This was held to provide a blueprint for research and funding
proposals in this area, with the ultimate aim of translating
discoveries from human genetic studies into new therapies for
patients with osteoporosis.

The Need for New Osteoporosis Therapies
Anti-resorptive drugs are the mainstay of treatment in
osteoporosis. Despite being widely used, adherence rates in the
US (1) and UK (2) are decreasing, and these agents have
several limitations including poor tolerability in the case of
oral bisphosphonates, and risk of rare adverse effects including
osteonecrosis of the jaw and atypical femoral fractures. Anabolic
therapies for osteoporosis may offer certain advantages,
including greater efficacy than some anti-resorptives, and lack
of the adverse effects associated with suppression of bone
resorption. However, currently available anabolic drugs are
costly, and need to be given by injection, limiting their use to a
small fraction of patients with osteoporosis. Thus, there is an
urgent need for a low cost, ideally orally active, anabolic therapy
for osteoporosis.

The Potential of Human Genetic Studies
for Drug Discovery in Osteoporosis
Rare Bone Diseases
The heritable condition of increased bone fragility, Osteogenesis
Imperfecta (OI), was the first bone disorder to have the
underlying genetic mutation identified. Linkage analysis
identified the COLIA1 and COLIA2 genes as candidate loci for
the disease and soon after this, various mutations were identified
in both genes as a common cause of OI (3, 4). Many other
mutations underlying OI have since been identified. Though
most of these affect genes which are involved with post-
translational modifications of type 1 collagen, some affect
n.org 2108
osteoblast differentiation and function (5). However, findings
from OI genetics studies are yet to provide tangible opportunities
for developing new osteoporosis treatments.

In contrast, studies of rare bone diseases associated with low
or high bone mass (HBM) have provided the basis for a new
osteoporosis therapy in the form of Romosozumab, following the
discovery that sclerostin – LRP5 regulation of the Wnt signaling
pathway plays a major role in bone biology. Romosozumab is
an anti-sclerostin antibody, which has recently been developed
as anabolic treatment for osteoporosis, and is now widely
available. Sclerostin, encoded by SOST, was initially identified
from the study of patients with the heritable HBM disorder,
sclerosteosis (6). Several other genes underlying HBM have
also been identified, representing possible therapeutic targets
for additional anabolic therapies. These include a recently
identified inactivating mutation in SMAD9, which encodes an
inhibitor of BMP signaling (7). Further analysis of existing case
collections of familial HBM may offer the opportunity to identify
further possible drug targets.

Advances in the understanding of other rare bone diseases
with a genetic component, such as pregnancy associated
osteoporosis (8), might yield targets for new drug design or
re-purposing existing drugs, which if successful might also apply
to treating osteoporosis (9). In considering the pipeline for
similar discoveries, the classification of genetic skeletal disorders
lists 437 genes for 425 different diseases (10). For example,
achondroplasia caused by a mutation in the fibroblast growth
factor receptor 3 gene, a negative regulator of bone growth, now
has an natriuretic peptide receptor 2 (NPR2) agonist (Vosoritide)
developed as treatment (11). Of interest, factors from the C-
type natriuretic peptide signaling pathway have previously been
associated with human stature (12), among which a locus within
the gene encoding NPR3, with which NPR2 complexes, was also
recently identified in a genome wide association study (GWAS)
of extreme high bone mass (13). Rare disorders associated
with impaired osteoclastic bone resorption may also have utility
in treating osteoporosis, exemplified by pycnodysostosis
caused by cathepsin K deficiency (14), for which the inhibitor
February 2021 | Volume 11 | Article 630875
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Odanocatib was developed as a new anti-resorptive treatment
for osteoporosis. In addition, drug-repurposing may provide
novel means of treating rare bone disorders. For example,
palovarotene, a retinoic acid receptor gamma (RAR-g) agonist
developed for use in emphysema, was found to be efficacious
in an animal model of fibrodysplasia ossificans progressiva
(FOP), and is now in phase 3 clinical trials (15). In addition,
Fresolimumab, a human monoclonal antibody directed against
transforming growth factor B2, developed for treating idiopathic
pulmonary fibrosis, is currently being examined to treat OI
(ClinicalTrials.gov identifier NCT03064074).

Genome Wide Association Studies (GWAS)
Many GWAS have been performed for endpoints related to
osteoporosis-related phenotypes, including fractures (16), bone
mineral density (BMD) as measured by DXA (17–19), as well as
estimated by calcaneal ultrasound (eBMD) (20–22). These were
undertaken by the GEnetic Factors for OSteoporosis Consortium
(GEFOS), representing over 30 countries (http://www.gefos.org/).
Whereas BMD represents an overall measure of bone quantity,
GWAS have also been performed of endophenotypes related to
cortical and trabecular bone as measured by peripheral
quantitative computed tomography (pQCT) (23–26), and more
recently high resolution (HR)-pQCT (27). Fracture risk can also
reflect other characteristics such as bone shape and geometry,
which have similarly been examined by GWAS (28, 29). To date,
in contrast to the study of rare monogenic disorders, no GWAS of
common variation in bone phenotypes has led to a new treatment
for osteoporosis. That said, well powered GWAS have only been
available in the relatively recent past, and the above GWAS have
found genome-wide significant variants in genes coding for existing
osteoporosis drug targets, e.g., romosozumab (SOST), denosumab
(RANKL) and raloxifene (ESR1).

GWAS findings can also be helpful in predicting side-effects
arising from the drug target in question having actions outside
the skeleton. For example, a BMD GWAS signal related to SOST
was used to examine potential cardiovascular toxicity of
romosozumab (30). Several open-source data and analytical
platforms, using published and unpublished GWAS summary
datasets, have been developed to interrogate genetic correlations/
causal effects in relation to thousands of traits and diseases,
thereby predicting co-morbidities and extra-skeletal effects using
a hypothesis-free approach. Examples include MR-Base (31), the
polygenic risk score atlas (32), and LD-hub (33). Multiple risk
factors for osteoporosis have also been scrutinized for causal
associations using a Mendelian randomization (MR) framework
(34, 35). For example, the GEFOS GWAS for fracture risk
leveraged the MR approach to demonstrate, that among the
recognized clinical risk factors, BMD is a “causally-related”
determinant of fracture risk implying that targeting to increase
BMD or prevent its loss is likely to be successful in decreasing
fracture risk (16). This MR study also found that genetically-
determined vitamin D levels are not causally related to fracture
risk, supporting conclusions from clinical trials that vitamin D
supplementation in “sufficient” individuals is ineffective in
preventing fractures. Likewise, calcium intake was found to
have no causal effect on fracture risk, suggesting an adverse
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risk/benefit ratio when the associated increased risk of coronary
artery disease is taken into account (36, 37). GWAS findings may
also have potential application as clinical risk prediction tools, as
exemplified by a recent study examining implementation of a
polygenic fracture risk score in combination with FRAX (38).

GWAS have been helpful in predicting the effectiveness of
new drug therapies (39, 40). GWAS have also identified potential
new drug targets in other musculoskeletal conditions. For
example, GWAS in ankylosing spondylitis (AS) and psoriatic
arthritis (PsA) identified IL23R, IL12B, and IL17A as associated
loci, facilitating the development of ustekinumab, an IL12/23
inhibitor used in PsA, and secukinumab, an IL17A inhibitor used
in both AS and PsA (41, 42).

Large well-powered GWAS often yield a multitude of genetic
signals, but a major challenge is to map the association signals to
the causal gene due to the correlated structure of the genome and
to follow up those genetic signals from the point of view of
functional studies. For example, the most recent eBMD GWAS
from the UK Biobank Study, based on the whole cohort of
around 425,000 individuals, identified 1103 independent
association signals mapping to 515 loci (22). Combined with
an earlier eBMD GWAS performed on a subset of the UK
Biobank Study (20), these two studies investigated, and
functionally annotated over 160 mouse lines with deletions of
orthologous genes corresponding to associated GWAS loci,
demonstrating the power of integrating disparate datasets from
human GWAS and animal studies. Nevertheless, little functional
information was obtained in the case of many of the genetic
signals identified, due to lack of an available mouse model. For
example, a signal associated with the SMAD9 locus, described
above, was initially discovered, but not interrogated further, in
the original eBMD GWAS on 150,000 UK participants (20). The
latter GWAS also identified a further signal, B4GALNT3, which
was only later found to influence BMD by altering sclerostin
levels, following a separate GWAS of serum sclerostin (43).
FUNCTIONAL GENOMICS: IN SILICO
STUDIES

As stated above, a major challenge in analyzing outputs of
genetics studies is to identify the gene underlying the genetic
association observed. Several platforms are available to
interrogate outputs from GWAS studies, aiming to identify
causal SNPs and the genes they affect. Different methods are
often applied in parallel to identify potential functional effects
of SNPs, map these to genes and investigate the function of
candidate genes identified in this way. A range of sources of
omic information used for interrogating genetic signals in
relation to skeletal disorders have recently been integrated
within the IFMRS knowledge portal [https://msk.hugeamp.
org/ (44)].

SNP-Based Analyses
Independent signals and lead variants are initially fine mapped
across an identified locus using methods such as FINEMAP (45).
February 2021 | Volume 11 | Article 630875

http://www.gefos.org/
https://msk.hugeamp.org/
https://msk.hugeamp.org/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Tobias et al. Functional Genomics Research in Osteoporosis
Subsequently, identified SNPs are annotated according to
their likelihood of exerting a functional effect. In the case of
monogenic disorders, the underlying genetic variant is expected
to alter protein function, for example as a consequence of a non-
synonymous exon variant. In contrast, in GWAS, the variant is
likely to affect gene expression, for example due to a base change
affecting DNA binding of a transcriptional activating factor
within the promoter region. Several different approaches for
SNP annotation have been developed. For example, ENCODE,
the encyclopedia of DNA elements (https://www.encodeproject.
org/) provides a range of features which can be used to evaluate
potential functional SNPs. Machine learning approaches have
been used to predict functional effects using the most discerning
features from ENCODE and other databases. These algorithms
are trained on disease-causing mutations and assumed neutral
variants, enabling the algorithms to classify SNPs as potentially
deleterious or neutral. In non-coding regions, where most
GWAS SNPs are located, sequence conservation has been
found to be by far the most informative feature (46). However,
such algorithms are not disease-specific, so whether this also
applies to bone related conditions remains to be established.
Besides ENCODE, several other strategies for SNP annotation
have been developed. These include ATAC-seq to study
intersections between SNPs and sites of open chromatin as
previously identified in osteoblast cell lines (22) and mouse
bone tissue (43), and Hi-C to interrogate 3D DNA interactions
as previously characterized in osteoblasts (22).

Gene-Based Analyses
Having identified lead SNP(s), the function of closest protein
coding genes is explored to guide further follow up. Since bone-
specific pathways are thought most likely to underlie skeletal
phenotypes, if a gene is found to be expressed in bone, this is
assumed to increase the likelihood that it underlies a given
osteoporosis genetic association signal. This approach has been
facilitated by description of the “osteocyte signature” (47),
referring to the set of genes expressed preferentially in
osteocytes, which was used to interrogate the genetic signals
identified by Morris et al. (22). As described below, information
from skeletal phenotyping of mouse lines can also help to
identify genes which are likely to underlie genetic association
signals relevant to osteoporosis, as are previous reports that the
gene in question is related to a skeletal disorder in humans. In the
case of genes not previously known to play a role in bone,
methods such as DEPICT can be used to predict function based
on relationships with known pathways (48).

“Omics” Approaches to Map GWAS
Signals to Specific Genes
One approach to mapping genetic signals to specific genes is to
examine causal pathways between the genetic signal and the
phenotype being studied, involving potential molecular
mediators such as mRNA expression, protein expression, and
DNA methylation levels. These molecular quantitative trait loci
(QTLs) are generally classified into cis-acting, where the SNP is
located nearby a gene or site or trans-acting, where the site or
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gene is located more distantly or on another chromosome. Cis-
acting molecular QTLs tend to have larger effect sizes whereas
trans effects have smaller effect sizes and require larger sample
sizes to detect these associations. Large scale initiatives such as
GTEX, eQTLGen (49), Genetics of DNA Methylation
Consortium (GoDMC) (50) and SCALLOP (51) have been
established to identify these small effects that might play a role
in disease etiology.

Co-localization studies across a range of disorders and
phenotypes have been conducted to examine whether
molecular QTLs share genetic variation with GWA signals,
thereby linking a given genetic signal with the function of a
specific gene. Evidence for a number of shared genetic factors
between BMD GWA loci and protein quantitative trait loci
(pQTLs) have been found in blood (52). However, whereas
approaches such as co-localization analyses can be used to
examine shared relationships between a given genetic locus,
phenotype, and intermediary signal, these may not necessarily
represent a causal pathway from the genetic signal to the
phenotype. Approaches such as MR can be used to estimate
causal effects (Figure 1), but require bi-directional analyses to
exclude reverse causation, and in many cases will not exclude
horizontal pleiotropy as an alternative explanation of co-
localization (i.e., the genetic signal influences the phenotype
being studied via an independent pathway to the gene showing
related changes in expression). To improve reliability of MR,
multiple independent genetic variants influencing a molecular
trait can be employed, which should exhibit consistent
causal effects (53). In a recent analysis combining MR and
co-localization analysis to examine GWA with the plasma
proteome, only a minority of associations were found to be
causal, and mainly restricted to cis-associations (52). Similarly,
the GoDMC study estimated the causal relationship between
DNA methylation in blood and 116 complex traits. This study
used multiple cis and trans instruments to evaluate whether the
MR estimates based on the co-localizing signals corresponded
amongst multiple independent methylation quantitative trait loci
(mQTLs). Although many co-localizing putative signals were
found including for BMD traits, the agreement between the
independent mQTLs was very low (50). These results imply that
many of the co-localizing signals were due to horizontal
pleiotropy. Alternatively, other regions or proteins that are
currently not captured by the technology may still have a
causal effect.

There is growing evidence that the same gene expression level
might have many different cis and trans expression quantitative
trait loci (eQTLs) in different cell types and contexts. However,
only a subset of those are active in the disease-relevant cell type
or context and contribute to disease etiology (54). The resources
used to curate eQTLs, pQTLs and mQTLs generally comprise
bulk tissue and exclude bone tissue and cell types. Large scale
QTL datasets derived from blood may still be useful, as
osteoclasts and macrophages/monocytes originate from a
common precursor. That said, the only EWAS study of BMD
performed to date, based on whole blood samples, revealed
negative findings (55). Novel methods to infer cell type specific
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DNA methylation or gene expression from bulk tissue are
currently being developed (56), which may help to identify
molecular signatures related to osteoporosis phenotypes. To
date, osteoblast, and bone tissue eQTL datasets have only been
generated in small sample sizes. However, these are currently
being expanded upon, and the IFRMS knowledge portal
described above is due to be updated with osteoblast-specific
“omics” data in the near future. Alternatively, to gain an
understanding of whether other cell types or tissues underlie
GWAS signals, functional enrichment analyses across cell-type
specific elements on the GWAS summary statistics can be
performed (57).
FUNCTIONAL GENOMICS:
IN VITRO STUDIES

Modeling the functional impact of osteoporosis in vitro offers a
complementary approach to GWAS and in vivo studies,
validating targets and revealing new modes of action on a
cellular and molecular level. Typically, osteoblast and
osteoclast cultures are employed (or precursor cell populations,
e.g., mesenchymal stem cells, monocytes, respectively) to study
the effect of a specific gene on cell formation and function in
osteoporosis. This is achieved for example, by examining the
cellular effect of gene deletion through CRISPR–Cas9 editing of
candidates identified through human GWAS or in silico studies
(58–60). Similarly, the direct use of bone cell screening assays
Frontiers in Endocrinology | www.frontiersin.org 5111
can be used, recording evidence related to growth phenotypes,
live-dead readouts, or bone cell activity and differentiation
which are commonly dysregulated in human osteoporosis.
This includes alkaline phosphatase levels, mineralization
rates, tartrate-resistant acid phosphatase (TRAP) production,
dentine resorption or alterations in key molecular markers
such as Runx2, BMP2, OCN, RANKL, OPG gene expression,
quantified through the use of fluorescent reporter assays, qPCR
or gene array. Combination approaches assessing multiple
readouts simultaneously are being explored to deliver high-
throughput assessments of thousands of potential gene variants
in a single experiment (61).

A major difficulty in modeling human skeletal responses
and disease pathogenesis in vitro centres upon the cellular
heterogeneity of this micro-environment. While bone-forming
osteoblasts and bone-resorbing osteoclasts are most often
targeted in such efforts, the complex multi-cellular bone niche
consists of many more cell types including adipocytes,
osteocytes, fibroblasts, stem cells and a large immune cell
component. Importantly, many cell types have been linked
to the onset and progression of bone disease, including
osteoporosis. More accurate model systems are needed,
capable of mimicking the multicellular bone environment and
where the combined contribution of specific cell types and
impact of genomic alterations can be more fully explored.
Cellular heterogeneity within individual cell populations
is being effectively probed through single cell genomic
approaches, where distinct features captured at the resolution
of individual cells have allowed for a more efficient isolation
FIGURE 1 | Applying a Mendelian randomization (MR) framework to study causal inferences in “omics” data. In conventional MR, a genetic instrument (G) is used as
a proxy for an exposure (X), to study its relationship with a disease outcome (Y). A causal relationship of X on Y exists, if G is related to Y via its effects on X. An
example is the use of genetic polymorphisms related to bone mineral density (BMD) to study the causal relationship between low BMD (X) and fracture risk (Y). When
applied to “omics” data, X represents an intermediate molecular trait (i.e., mRNA, DNA methylation, or protein level) mediating the relationship between genotype (G)
and disease outcome (Y). Since the intermediate trait is gene-specific, finding of a causal relationship is helpful in defining which gene (or regulatory element in the
case of DNA methylation) underlies the association between G and Y. Causal inference using MR relies on the exclusion of horizontal pleiotropy, confounding by
linkage disequilibrium and reverse causality. (i) Causality/vertical pleiotropy: G has a causal effect on intermediate molecular trait X, which in turn has a causal effect
on Y. (ii) Horizontal pleiotropy: G has a causal effect on both X and Y via independent pathways. (iii) Linkage disequilibrium: G has a causal effect on X, but its
relationship with Y is a consequence of linkage disequilibrium with a separate genetic variant causal for Y. (iv) Reverse causality: G has a causal effect on Y which
subsequently alters X.
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and characterization of cell types within the normal and
osteoporotic bone marrow niche (62, 63).

In vitro studies also allow examination of the impact of
multiple causative genomic targets operating in networks within
bone cell populations, which is only beginning to be explored. A
clearer understanding of the intersecting relationships between
genes, and how this may contribute to a cellular osteoporotic
phenotype is necessary. This may be achieved for example, by
systematically analyzing a defined cellular output (e.g., growth,
alkaline phosphatase) of multiple gene-pair combinations, and
where gene interactions are identified by quantifying the
deviation from the expected phenotype of a single-gene
alteration when combined with a second (64). This allows for
clusters of related genes to be characterized which may act
collectively as a genomic circuit in the prevention of aberrant
bone cell biology or trigger for osteoporosis pathogenesis.
FUNCTIONAL GENOMICS: IN VIVO
STUDIES

Mice
Mice are the most widely used animal model to investigate
the functional role of genes identified in human genetic
studies. The International Mouse Phenotyping Consortium
(IMPC) aims to generate knockout mice harbouring deletions
of all protein-encoding genes in a single C57BL/6N genetic
background. To date, broad phenotyping of knockout mice
with deletions of over 7,000 genes has been completed using
the International Mouse Phenotyping Resource of Standardised
Screens (IMPReSS; www.mousephenotype.org/impress/).
Nevertheless, IMPReSS lacks both in depth and functional
analysis of the skeleton and the IMPC thus collaborates with
the Origins of Bone and Cartilage Disease (OBCD) Programme
(65, 66) and the Bonebase Consortium (67) to undertake bespoke
and detailed skeletal phenotyping.

The OBCD Programme uses digital X-ray microradiography,
micro-CT and biomechanical testing in a rapid-throughput
skeletal phenotyping pipeline to determine 19 parameters of
cortical and trabecular bone structure, mineralization and
strength in knockout mice compared to reference ranges
obtained from >350 wild-type C57BL/6N mice. Knockout
mice with abnormal parameters of both bone structure and
strength (defined as >2 standard deviations away from the
wild-type reference mean) are defined as having an outlier
phenotype. Preliminary analysis of 1,000 knockout mice using
this pipeline indicates approximately 10% display outlier
phenotypes, a percentage that is broadly consistent with the
>500 independent loci associated with eBMD in the recent UK
Biobank GWAS (22). About 50% of mice with outlier
phenotypes have deletions of genes that have not been
functionally annotated to the skeleton and are not known to be
related to human skeletal disease. Integration of large scale
mouse phenotype data with GWAS (20, 22) and other cross-
species multi-”omic” datasets (47) thus provide a rich resource
to identify new genes and mechanisms involved in the
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pathogenesis of osteoporosis and monogenic human skeletal
disorders (65, 68, 69).

Zebrafish
More recently, zebrafish have been developed as an animal
model for functional evaluation of genes linked to the skeleton
(70, 71). As well as showing changes in bone density and
microarchitecture (72), gene deletion can lead to bone fragility
as recognized by the accumulation of fractures in the fin (73–75),
and the ribs (76). Zebrafish have several advantages over mice,
making experiments quicker and less expensive: they are highly
fecund, laying up to 300 eggs a week; phenotypes may be evident
at the larval stage (skeletal elements develop by four days);
embryos develop externally, enabling genetic manipulation
at the single cell stage. In addition, larvae are translucent,
allowing dynamic visualization of skeletal cell behavior, for
which several transgenic reporter lines are available (77, 78).
Embryonic lethality is rare with fish able to survive despite
mutations leading to a complete absence of bone tissue, as they
are supported by water as they swim, which limits loading of
malformed skeletal elements (79). As well as generating
knockouts, the CRISPR/Cas9 system has proven highly
efficient in zebrafish, such that a homozygous null phenotype
is already detected in G0s (mosaics, crispants) in larval and adult
skeleton, therefore allowing rapid screening of candidate genes
(80, 81). In addition, fish scales represent a good model for
performing subsequent organ cultures for drug screening (82).
OBSTACLES AND OPPORTUNITIES

GWAS Data Sets
Several historical obstacles to functional evaluation of genetic
signals related to osteoporosis have now been overcome. For
example, we now have well-powered GWAS, through which
hundreds of genetic loci have been robustly identified. That said,
only relatively small GWAS datasets are available relating to
endophenotypes obtained using methods such as HR-pQCT,
which are helpful in determining the mechanisms by which
genetic pathways influence overall bone strength as reflected by
BMD/eBMD. In addition, genetic studies in osteoporosis have
largely been confined to cross sectional analyses, with only
limited studies examining associations with longitudinal
changes, exemplified by a previous look up of adult GWAS
hits in BMD acquisition in adolescents (83), and a recent GWAS
of pediatric bone accrual (84).

Resources to Support Functional Studies
Osteoblast eQTL datasets based on larger samples are being
generated, which will improve the accuracy of, for example,
co-localization studies. The IFMRS knowledge portal is bringing
together all relevant functional data, making it easier to perform
functional annotation of large gene sets. Functional annotation
has been advanced by characterization of the transcriptome of
different cell types including osteocytes, the generation of over
7,000 knockout mouse lines, and the development of zebrafish as
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a rapid-throughput screening tool. However, although homology
across human/mouse/zebrafish is good, there are still gaps, and
difficulty in accessing bone samples to characterise expression in
human tissue remains a challenge. In addition, it is technically
challenging to obtain single cells from mineralized tissues,
hindering evaluation of bone cell transcriptomics in vivo. A
further limitation is that datasets available for in silico analysis
have an inherent bias because it is only possible to analyze and
interrogate genes that have already been annotated or gene
functions/pathways that are already known. Furthermore, it is
difficult to “quality control” the data that is interrogated. For
example, there are several papers that assign different activities to
PLS3 but no clear function for the protein has yet emerged and it
is still unclear whether its major role is in osteoblasts or
osteoclasts or both (85).

Funding
The funding underpinning many of the resources used to
support functional analyses of genetics data is finite, such as
the IMPC consortium and IFMRS knowledge portal (44). In
addition, given the myriad of tools available, and the range of
scientific disciplines involved, the different research groups
working in this area tend to pursue varying approaches.
Functional follow-up of genetic signals is often performed in
the context of specific projects, with the result that analyses are
time- and resource limited. Funding models are generally in the
form of fellowships, PhD studentships or project grants focussed
on initial data collection; in contrast, it can be relatively difficult
to obtain funding to support functional follow-up studies of
previously collected GWAS data. Nevertheless, given the current
pause in new human data collections due to the COVID-19
pandemic, arguably, greater priority should now be given to
analyzing outputs of previous data collections.
FUTURE DIRECTIONS

Given the success of genetic discovery in delivering new
therapies, including anabolic treatments for osteoporosis,
there is a strong case for harnessing this expanding repertoire
of tools to functionally annotate the array of genetic signals
for osteoporosis-related phenotypes that have already been
identified. However, new strategies need to be developed to
fully integrate multi-”omic” datasets with those relating to
human monogenic and complex diseases, and equivalent
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datasets from zebrafish and mice, and potentially other
species. Furthermore, it will be essential to establish large
collaborative groups of experts with the necessary skillsets to
harness these. Ultimately, a roadmap of functional assessments
needs to be established as a coordinated effort, if the emerging
wealth of genetic discoveries is to be successfully translated
into new therapies for osteoporosis. The Genomics of
Musculoskeletal Traits Translational network (GEMSTONE
www.cost-gemstone.eu/) is a leading example of how
investigators in the field from a range of different disciplines
can come together to coordinate functional evaluation across
genes and pathways, promote interactions between experts from
different fields, and limit duplication of efforts across teams.
Whereas the initial focus of GEMSTONE has been to educate
and disseminate through publications and meetings, a similar
approach is needed to construct an effective, multi-disciplinary,
research collaboration, in order to fully exploit the exciting
opportunities for pursuing functional genomics studies
in osteoporosis.
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EWAS epigenome-wide association study
eQTL expression quantitative trait locus; a genetic locus associated with

gene expression (transcript) levels in a particular tissue
GWAS genome wide association study
HR-
pQCT

High resolution peripheral quantitative computed tomography

MicroCT Micro computed tomography
mQTL methylation quantitative trait locus; a genetic locus associated with

DNA methylation levels in a particular tissue
pQCT peripheral quantitative computed tomography
pQTL protein quantitative trait locus; a genetic locus associated with protein

levels in a particular tissue
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