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Editorial on the Research Topic

Smarter Farming: New Approaches for ImprovedMonitoring, Measurement andManagement

of Agricultural Production and Farming Systems

There is considerable interest and investment in the information that can be derived from
new technologies and data to support enhanced monitoring, measurement and management
of farming systems for more sustainable food production. At the farm level, information on
aspects associated with animals, plants, soil, water, and the farm environment must be in a
useful format to enhance management. For example, identifying changes to improve production
efficiency (increased outputs and reduced inputs) and profitability of food products is of great
interest to farmers, and also has the ability to confer efficiency savings by potentially reducing
the environmental impact of production. Nutrient losses from agricultural land negatively impact
water and air quality. The papers of Comber et al., McNunn et al. and Preza Fontes et al. discussed
tools for enhanced landmanagement to assist with managing nutrient losses from agricultural land.
Agriculture is a significant source of water and air pollution. In addition to the environmental
benefits of improved nutrient management, the efficacy of any agricultural application is severely
reduced if poorly timed and it washes from the crop or the field into watercourses. This reduced
efficacy leads to risks of reduced output (i.e., crop yields) and increased input costs (i.e., sprays and
fertilizer). McNunn et al. suggest that managing cropping systems for the economic optimum will
likely lead to improved environmental outcomes when modeling nitrogen losses from cropping
systems. Preza Fontes et al. showed that remote sensing vegetation indices were correlated with
nitrous oxide emissions, indicating that new technologies (e.g., unmanned aerial vehicle platform)
could represent an integrative tool for linking sustainability outcomes with improved agronomic
efficiencies; with lower vegetation index values associated with poor crop performance and higher
nitrous oxide emissions. The authors also discovered that the use of an unmanned aerial vehicle
to evaluate water quality was limited due to the timing of nutrient losses, which happened prior
to early-season crop growth and image collection. Comber et al. provided a modeling framework
that can be used to identify hotspots within fields and watercourses, with the aim of supporting
informed on-the-ground catchmentmanagement by environmental agencies and water companies.
Tools that can enhance productivity and reduce environmental impact are of great importance to
policy makers and wider society.
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Information and data from real-time and automated systems
can also help early detection and improve awareness of poor
performance, thereby allowing farmers to make timely and
informed interventions and changes in practice to enhance
the efficiency and sustainability of production. As financial
pressures on farmers increase, each farm worker will be expected
to allocate their time effectively and toward the tasks that
need their attention most. However, the potential usefulness
of new technologies, their integration into decision support
tools and how such systems may complement other or existing
information for food production is still being understood.
Bell and Tzimiropoulos discussed how production efficiencies
associated with resource utilization and monitoring of animal
traits have reduced the environmental impact of cattle systems.
Papers of Bell et al. and Miller et al. demonstrate promising
imaging technologies to estimate dairy cow body condition
(particularly identify low or high body fat) and beef cattle
liveweight and carcass characteristics, respectively. Camera
monitoring systems have the benefit of providing objective
information and not relying on human intervention, transponder
attachments, or invasive equipment (e.g., boluses, collars).
This can be particularly important for the accuracy of body
condition scoring, with digital imaging providing more accuracy
compared to manual and subjective scoring methods in cows
with a low body condition (Bell et al.). Images can provide
lots of opportunities for information (e.g., animal and plant
health) at a relatively low cost. Combining tools and sources of
digital information may ultimately provide more complete and
enhancedmonitoring systems for farm use, such as developments
in pasture cover (using mobile measures of plant biomass)
and pasture nutrient concentrations (using mobile near-infrared
spectroscopy)measured in real-time as shown in the paper of Bell
et al. Changes in pasture nutrients are typically not monitored
but doing so may help land managers improve how effectively
they manage forage, which is an important source of nutrients
for ruminant livestock and biodiversity in our rural landscape.

While it is acknowledged that there are increasing
opportunities to use smart farming technologies and data-driven
decision making for improved management of food production
systems, the papers of Ingram and Maye, and Eastwood and
Renwick, highlighted that we need to better understand the
wider issues affecting a farmer’s uptake of such smart farming
technology and information. Ingram and Maye discussed the

“fourth agricultural revolution” of digital agriculture and the
implications of digitalization for agricultural knowledge. Digital
applications and platforms have the potential to dramatically
change the way knowledge is processed, communicated,
accessed and utilized as farming processes become increasingly
data-driven and data-enabled. The authors proposed that
this raises critical questions about how digital agriculture will
require new capabilities, support decision-making and interact
with, and potentially disrupt, established modes of knowledge
processing between people and organizations in thesemulti-actor
knowledge networks i.e., Agricultural Knowledge Innovation
Systems. An understanding of the implications of new digital
information are important for effective implementation, from
support for farmers to data analytics and the linkages between
actors. Eastwood and Renwick investigated the impact of
innovation uncertainty on adoption of automatic milking
systems (AMS) and showed that minimizing the uncertainty
around the innovation can influence its success. Eastwood and
Renwick highlighted the potential impact of negative experiences
associated with new technologies from farmers who struggle
with the adaptation process, as such occurrences may act to stall
the uptake of smart farming technologies. The authors propose
that if public policy organizations are to realize the desired
impacts of smart farming technology, there needs to be greater
focus on understanding where (and which) technologies can
have an actual impact on farm, and greater public and private
R&D collaboration is required to foster knowledge development
and exchange.
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Improvements in production efficiencies and profitability of products from cattle are

of great interest to farmers. Furthermore, improvements in production efficiencies

associated with feed utilization and fitness traits have also been shown to reduce the

environmental impact of cattle systems, which is of great importance to society. The

aim of this paper was to discuss selected novel monitoring systems to measure dairy

cattle phenotypic traits that are considered to bring more sustainable production with

increased productivity and reduced environmental impact through reduced greenhouse

gas emissions. With resource constraints and high or fluctuating commodity prices the

agricultural industry has seen a growing need by producers for efficiency savings (and

innovation) to reduce waste and costs associated with production. New data obtained

using fast, in some cases real-time, and affordable objective measures are becoming

more readily available to aid farm level monitoring, awareness, and decision making.

These objective measures may additionally provide an accurate and repeatable method

for improving animal health and welfare, and phenotypes for selecting animals. Such new

data sources include image analysis and further data-driven technologies (e.g., infrared

spectra, gas analysis), which bring non-invasive methods to obtain animal phenotypes

(e.g., enteric methane, feed utilization, health, fertility, and behavioral traits) on commercial

farms; this information may have been costly or not possible to obtain previously.

Productivity and efficiency gains often move largely in parallel and thus bringing more

sustainable systems.

Keywords: cattle, phenotypes, technology, objective assessment, sustainability

INTRODUCTION

New systems that provide automated and real-time information to monitor cattle are being
adopted to make meat and milk production more sustainable due to economic, social, and
environmental pressures. Changes that improve production efficiencies and profitability of
products from cattle are of great interest to farmers, with the added benefit of efficiency
savings helping to reduce the environmental impact of production (Bell et al., 2011),
which has social importance e.g., air and water quality (Gunton et al., 2016). Increasing
animal welfare standards, better quality of life for farm workers, enhanced traceability, and
consumer confidence in livestock production are all important social considerations that
new technologies can help address for high and low input systems. New tools, technology,
and information can provide continuous and repeatable methods for monitoring individual
animals, rather than just groups of animals, which may also improve farmer awareness,
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be used for farm assurance schemes and provide a reliable
phenotype measurement for selecting animals. Early detection
and awareness of poor health, fertility, and animal welfare will
allow farmers to make informed decisions and changes.

The livestock industry has made large improvements to
efficiencies over the past 60 years because of changes in breeding,
nutrition, and management. However, inefficiencies still exist,
for example in dairy cows genetic selection has historically
favored production (e.g., milk) rather than fitness traits (e.g.,
fertility, lameness, mastitis) and ultimately impacting on survival
(Pryce et al., 1999; Dillon et al., 2006). Cows bred for high
yields are known to mobilize body fat for production in early
lactation as they cannot consume enough food to meet the rapid
increase in energy demands caused by the onset of lactation,
resulting in negative energy balance. While a dilution in animal
maintenance requirements with increased average milk yields
per cow has reduced greenhouse gas emissions per unit milk
(Bell et al., 2011), there is little evidence that improvements
in health (e.g., lameness and mastitis) and fertility have been
made during the same period (FAWC, 2009); therefore, there
is potential to enhance health, fertility, and welfare leading to
reduced resource use, input costs, and emissions intensity of
production.

Increasing standards for health and welfare of livestock
has led to considerable research activity into ways to monitor
and measure a wide range of traits (e.g., associated with
fertility, legs/feet, metabolism, udder, birth, feeding, behavior,
milk composition, body composition) that can be used
for management and genetic selection purposes, as well as
parameters of public interest (Eggar-Danner et al., 2015). Bell
and Wilson (2018) found that regional differences in longevity
of cows exists within UK dairy herds, with cows having a shorter
life (averaging 2.6 lactations) in the region with the highest milk
yields and longest interval between calvings (associated with poor
fertility), compared to other regions studied (about 2.8 lactations
on average) with lower milk yields and calving intervals; the
average number of lactations across the UK was still below
three lactations when cows are expected to reach their mature
and optimum level of productivity. Ultimately maintaining
healthy animals will enhance production, particularly later in
life from increased lifetime performance (Bell et al., 2015).
Therefore, management and breeding policies should be directed
toward not only increasing production but decreasing the
causes of involuntary culling (fertility, lameness, and udder
health) (Bell et al., 2010). Survival within a herd influences the
number of replacement animals needed, which in turn influences
the productivity and profitability of the herd, as at a high
replacement rate the costs are high but at too low a rate the
production, reproduction, or genetic improvement of the herd
may be impaired (Hadley et al., 2006). In dairy cows, several
countries around the world (France, Italy, Germany, Switzerland,
Belgium, Australia, United States, UK, Nordic countries, Ireland,
The Netherlands) now give fitness traits more emphasis and
weighting in their total economic merit index for ranking cattle
for genetic selection purposes (Eggar-Danner et al., 2015) and
less weighting than other countries toward milk production traits
(milk, fat, and protein yield) at <50% weighting in the index

with The Netherlands being the lowest at about 25% weighting
on production traits. Therefore, with more weighting given
to fitness traits rather than production traits, the health, and
fertility of animals is expected to improve in the future. Although
heritabilities of fitness traits in cattle can be low compared
to production traits, the large coefficient of genetic variation
for traits such as mastitis (33%) and lameness (45%) suggests
there is considerable potential for breeding (Pritchard et al.,
2012) with the effect being permanent and cumulative. Pritchard
et al. (2012) found the coefficient of genetic variation to range
from 11 to 13% for moderately heritable milk production traits,
but to be as little as 3% for calving interval (an indicator of
fertility).

As financial pressures on farmers increases (Defra, 2018),
each stockperson will be expected to look after more animals.
Tools that can assist farmers in monitoring individual animals
or groups will be beneficial to the animal and farmer. Enhanced
monitoring tools will enable available farm labor to be targeted
toward those animals that need it. For example, management
at calving plays an important role in the subsequent health
and reproductive performance of cattle during their lifetime
(Bell and Roberts, 2007). A difficult birth can lead to tissue
damage and introduce infectious microorganisms into the uterus
leading to a uterine infection (Lewis, 1997; Kim and Kang,
2003). The development of precision monitoring of individual
animals that are non-invasive, automated, and produce results
in real-time, such as digital image applications and online
measurements, are becoming more available as “machine
learning” technologies develop and the cost of implementation
on farms reduces. Such technologies have the potential to allow
welfare and health issues to be detected quickly for more
animals compared to more manual methods currently used, thus
improving animal health and welfare outcomes. More intensively
monitored production systems can provide data to capture a
large number of phenotypic measures to manage animals and
their environment (e.g., climate, plant, soil) (Figure 1). The data
can potentially be combined to create monitoring systems that
describe animal “wellbeing” or identify abnormal patterns by
linking production (e.g., live weight, body composition change,
growth rate, milk yield, and composition), fitness or functional
(e.g., fertility, lameness, survival, conformation), and behavior
(e.g., activity) data. The challenge to society, scientists, and
farmers is to improve efficiency of food production by better
matching available and appropriate resources to requirements,
to optimize profit, production, and minimize pollution (from
waste).

The objective of this paper was to discuss selected
novel monitoring systems to measure phenotypic traits
associated with dairy cows that are considered to bring
more sustainable production with increased productivity and
reduced environmental impact through reduced greenhouse
gas emissions. Bell et al. (2018) identified the phenotypic traits
of feed utilization, enteric methane emissions, body condition,
health, fertility, and overall survival of dairy cows as important
traits for more sustainable production on commercial farms.
Novel objective ways to monitor these traits was the focus of this
review.
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FIGURE 1 | Data sources used to monitor and manage cows and their environment.

PRODUCTION TRAITS

Feed Utilization

With resource constraints and high or fluctuating commodity
prices the agricultural industry has seen a growing need by
producers to make savings in inputs costs (i.e., feed, health, and
fertility). Feed inputs can account for 70% of variable input costs
associated with cattle enterprises (Redman, 2015), and with feed
intake being high and positively correlated with animal enteric
methane emissions (Bell and Eckard, 2012), there has been
considerable interest in phenotypic measurements of feed intake
(Berry and Crowley, 2013; Pryce et al., 2014) and enteric methane
emissions on commercial farms. Improvement in feed efficiency
in non-ruminant livestock systems has been remarkable, for
example, in broiler chickens the meat produced per ton of feed
has nearly doubled from 85 kg/t in the 1960 s to 170 kg/t in
2005 (van der Steen et al., 2005). Optimizing the utilization of
available food and its quality is important to the profitability
of any production system, as well as helping to minimize the
proportion of nutrients consumed by the animal that are lost
to the environment. In cattle, about 35% of energy consumed
in the diet can be lost in the form of enteric methane, feces, or
urine and 77% of nitrogen consumed can be excreted in feces or
urine (Bell et al., 2015). Measuring feed intake or feed utilization
efficiency (such as residual feed intake, which is the difference
between an animal’s actual feed intake and its expected feed
intake based on its size and growth over a defined period) for a
large number of cattle is more costly than for pigs or poultry, due
to the equipment needed to measure intakes of a mixed ration.
Nieuwhof et al. (1992) found that feed efficiency in growing

animals was correlated with feed efficiency in mature breeding
and lactating animals, which is important when measuring feed
efficiency as younger animals have lower feed intakes and feed
consumed is largely used for maintenance and growth.

When formulating a diet to be fed to livestock, the
conventional approach is to determine the least-cost ration
depending on the estimated nutrient requirement of the average
animal in the group based on infrequent determination of diet
nutrient concentrations. This means that some animals will be
underfed, and others overfed. Typically nutrient concentrations,
delivered via concentrate feeds, in the diet are held constant
and dependent on how often the feed is analyzed, for example
frequency of forage analysis. In reality, considerable temporal
variation can exist in quality of feed ingredients and diets, and
among animals, and more precise determination of nutrient
availability delivered at the level of the individual animal offers
considerable productive, financial, and environmental benefits.
Specifically, the overall benefits of more precise allocation of
nutrients to animals would be to (1) improve production
system sustainability by increasing feed utilization efficiency, (2)
improve performance of individual animals and the herd, and
(3) reduce the environmental impact of food production through
less nutrient waste. Near-infrared reflectance (NIR) spectroscopy
has been shown to provide a fast and reliable analytical method
for analyzing feed and products of digestion (Decruyenaere
et al., 2009). Such an approach could provide not only real-
time nutrient concentrations in feed and excreta but a prediction
of feed intake for housed and grazing animals. Furthermore,
poor quality food can impair the production and wellbeing
of the animal which leads to an inability to achieve desired
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intakes of food, therefore resulting in increased land required and
reduced nutrient efficiency. Improved utilization of feed by one
kilogram per year over a dairy cow’s lifetime would amount to
about £324,000 in increased profit to the dairy industry per year
(assuming a population of 1.8 million cows in the UK), together
with a potential reduction of 1.3 kg carbon dioxide equivalent
emissions produced per cow per year (Bell et al., 2015).

Enteric Methane Emissions
The emissions of enteric methane from ruminant animals follow
a diurnal pattern (Crompton et al., 2011; Manafiazar et al.,
2017; Bell et al., 2018), with a peak in emissions after feeding
followed by a decline until the next consumption of feed.
The diurnal pattern is affected by feed allowance and feeding
frequency (Crompton et al., 2011), and does not appear to
change over time or with a change in diet (Bell et al., 2018).
Historically most studies assessing methane emissions from
cattle have been done using respiration chambers (Ellis et al.,
2007; Yan et al., 2009, 2010), which is impractical for large-
scale estimation of methane emissions by individual animals
on commercial farms. Approaches to measure enteric methane
emissions from individual dairy and beef cattle on commercial
farms are being developed (Garnsworthy et al., 2012a,b; Lassen
et al., 2012; Manafiazar et al., 2017) due to the availability of more
portable gas analysis equipment and the considerable interest in
the possibility of identifying high and low methane emitters for
benchmarking farms, improving national emissions inventories
and/or genetic selection. The frequent “spot” sampling of breath
methane emissions when an animal is at a feed bin can
provide repeated measurements to allow assessment of between-
cow, within-cow, diet, and temporal effects on emissions when
sampled over several days. The duration of sampling needed
to assess variation among individual animals is dependent on
the frequency of spot measurements and visits to the sampling
location (Cottle et al., 2015). Garnsworthy et al. (2012a),
showed that estimates of methane made during milking were
correlated with total daily methane emissions by the same cows
when housed subsequently in respiration chambers. Quantifying
enteric methane emissions from peaks in concentration whilst
feeding (Figure 2) has been demonstrated to provide repeatable
phenotypic estimates of emissions (Garnsworthy et al., 2012a,b;
Lassen et al., 2012).

As with NIR spectra for feed analysis, mid-infrared reflectance
(MIR) spectra have gained considerable interest for identifying
biomarkers in milk. Standard milk components such as fat,
protein, urea, and lactose contents are routinely obtained using
MIR spectroscopy. However, the potential exists for a wide range
of biomarkers to be monitored using the technique (e.g., fatty
acids, lactoferrin, minerals, acetone, and β-hydroxybutyrate)
(Gengler et al., 2016). The calibration process for MIR spectra
estimates the amount of biomarker based on specific data points
within the spectra (Figure 3) (Vanlierde et al., 2016). The use
of MIR spectra to estimate methane emissions is based on the
relationship between changes in rumen fermentation and milk
composition. As methane synthesis increases with an increase
in the ratio of butyrate to propionate in the rumen, such as
with increased forage intake in the diet, this causes a decrease
in milk lactose content and an increase in fat content (Miettinen

FIGURE 2 | Concentration in parts per million of (A) methane and (B) carbon

dioxide during a single milking showing peaks in breath (Bell et al., 2014).

and Huhtanen, 1996). Machine learning on large datasets such
as spectral data, accelerometer, or breath sampling can process,
refine, or classify, and generate predictions from raw analytical
data based on predetermined algorithms to create meaningful
outputs for real-time decision making.

Body Condition
Body condition scoring has traditionally been done by manual
scoring of the amount of body fat reserves associated with a live
animal at a given time. The scoring method provided a simiple
means for farmers to manually assess the body fat of animals
rather than rely on more specialized ultrasound equipment to
more accurately measure body fat. This is a subjective scoring
measure with potential differences in human interpretation
leading to reduced reliability and repeatability. Body condition
is scored using a variety of scales and approaches (Bewley et al.,
2008a), but typically on a scale of extremely thin (1) to very fat
(5 or 9 depending on scale adopted) in quarter intervals. The
measure gained prominance as a means of monitoring changes in
body fat reserves, which can alter depending on the animal’s stage
of production (e.g., at calving, conception, and when dried off).
Also, in dairy cows, low fat levels and the mobilizing of body fat
reserves for milk production has been found to have a deleterious
effect on the health and fertility of the cow (Pryce et al., 1999)
and lifespan. Modern high milk yielding dairy cows have a high
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FIGURE 3 | Mid-infrared spectra for milk (Sivakesava and Irudayaraj, 2002) with arrows indicating the three regions of the spectra for estimating enteric methane

emissions.

genetic potential for mobilizing body energy reserves for milk.
Automated image analysis can be used to objectively assess the
body condition (e.g., fat depth) of individual animals in real-time
(Bewley et al., 2008b; Halachmi et al., 2008; Azzaro et al., 2011).

FITNESS TRAITS

New technologies are developing that provide new ways to
measure fitness traits associated with farmed animals (Day,
2005; Berckmans, 2008; Wathes et al., 2008). A number of
sensor technologies (Wathes et al., 2008; Neethirajan, 2017)
that can be used on animals exist such as accelerometers, GPS,
rumen boluses, and temperature sensors. Other technologies
are emerging such as image analysis and online data sources
such as spectral data. These technologies benefit from not
relying on human intervention, transponder attachments, or
invasive equipment (e.g., boluses, collars), and may provide
more information compared to other monitoring systems at a
relatively low cost. Also, some existing movement or activity
sensors, such as accelerometers, are calibrated using video
image material. Accelerometers provide information on both
body posture (standing, lying, walking) and activity, which
are used as descriptors to define behaviors, which can now
also be done using live video footage. Accelerometers have
provided a useful tool to help farmers to identify estrus
activity in cows (Wathes et al., 2008). Data can be acquired
from animals when they visit a common location such as
milking station, feed, and/or water trough. A disadvantage of
video image monitoring is that it is more suited to housed
animal environments. Such phenotypes of interest include breath
concentrations of biomarkers such as methane (energy lost
from rumen fermentation) and carbon dioxide (energy lost by
respiration) gasmentioned above (Bell et al., 2014), milk (Gengler
et al., 2016), conformation or locomotion (Stock et al., 2017),
and behavior recognition (Cangar et al., 2008) systems which
filter large amounts of data to produce real-time results. Not
only is milk composition affected by the genetic background of
cows (e.g., breed), but also the diet they are fed, their health, and

environment—therefore providing a means to monitor the status
of the animal and potentially subclinical cases such as udder
health.

Animal Health and Welfare
The annual cost of common health and welfare challenges in
the dairy industry is considerable. With rapid developments
in camera surveillance technology, machine learning and
processing, and computer vision techniques, new objective
methods to monitor animals are possible that can help improve
early detection of health, fertility, and welfare problems.
The combination of sensors i.e., images with transponder
technologies, may ultimately provide a more “complete”
approach to monitoring animal wellbeing but further research
is needed to determine this. Using camera images to monitor
animal behavior manually has been used for decades and
automated monitoring of group housed pig and poultry systems
is available (Wathes et al., 2008). While still developing, the
automatic prediction of individual animal behavior and welfare
of animals may be useful for farm assurance schemes as a
repeatable, reliable and objective measure across different farm
environments. As a management tool, the monitoring of cows at
calving is essential to determine if there is a need for intervention,
which can be hazardous for the cow, calf and stockperson.
Alterations in behavior, such as standing, lying, head, and tail
movements, can give an indication of the need for assistance
(Hyslop et al., 2008).

Recent technological advances in the field of computer vision
based on the technique of deep learning (Krizhevsky et al., 2012;
Girshick et al., 2014) have emerged which now makes automated
monitoring of video feeds feasible. Deep neural networks can
be used for a number of animal monitoring tasks such as
recognizing the type of animals (recognition), detecting where
the animals (and any other objects of interest) are located in
the image (detection), localizing their body parts, and even
segmenting their exact shape (silhouette) from the image. See
Figure 4 for an example. Furthermore, adaptations of neural
networks for analyzing video can be used for a number of
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FIGURE 4 | Cow whilst calving with location of the cow, its body parts and the configuration of the cow body (shown in terms of bounding boxes and lines) identified

by computer vision from video surveillance.

high level analysis tasks such as recognition of specific animal
behaviors (Gkioxari et al., 2015).

A major benefit of automated image analysis is that it
allows continuous monitoring for long-periods of time which
is not possible for a stockperson, and can complement existing
surveillance video footage accessed remotely. Image analysis can
not only detect and track individuals but also groups of animals
(i.e., herd, flock, or mother with offspring), which is not possible
using other monitoring methods.

COMBINING DATA SOURCES

Precision management systems that recognize the needs of
individual animals could potentially contribute to significant
reductions in feed costs and nutrients wasted, but techniques
to do this require development. This approach offers increased
efficiency in the use of input resources such as feed, by improved
predictive capabilities and tools that allow variability among
animals to be managed. Farm data, modeling, and computer
programs can be integrated (Figure 5) to create a real-time
system for precise allocation of food (Pomar et al., 2010). The
need for testing and practical application of such an approach has
been identified by others (Wathes et al., 2008; Pomar et al., 2011),
before being implemented on farms. Precision feeding aims to
provide a diet tailored to the requirements of an individual
animal to enhance overall performance and nutrient utilization.
In theory, collated real-time farm information should allow the
quantity and composition of the diet to be adjusted daily to the
needs of each animal on the farm. Computer-based methods of
processing these data will aid the automation of feeding.

In the short-term, recording systems that obtain new
information and phenotypes may provide a benchmarking or
decision support system for the farmer to improve awareness and
management. In the medium to long-term, recording systems
may provide customized animal selection indices (Bell et al.,
2013, 2015) for herd management or breeding. customized

FIGURE 5 | Flow-chart showing animal model used to predict nutrient

requirements.

selection indices are appropriate for fitness traits with low
heritability (Cottle and Coffey, 2013) or largely influenced by
farm environment. A reduction in greenhouse gas emissions per
unit product from dairy cows of about 1% per annum has been
estimated over the last few decades because of genetic selection
alone (Bell et al., 2015), with no change found in the emission
intensity of beef cattle (Jones et al., 2008). Due to increasing
production per animal over this same period, the emissions
per cow are estimated to increase by 1.0% (Bell et al., 2015).
Selection on body maintenance requirements (or live weight as
an approximation for maintenance) or feed efficiency/methane
could help reduce the increase in emissions per cow and per unit
product.

Furthermore, automated and objective farm level recording
systems may capture the effect of environment and its interaction
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with the genetic background of the animal. Evaluating progeny
for production and fitness traits across breeds and environments
fails to fully account for the effect of environment on different
genotypes, and therefore there is potential for better genetic
progress to be made within different production systems using
customized indices. Strandberg et al. (2009) found a genotype
by environment interaction for fertility traits, with days to first
insemination and calving interval explaining the majority of the
genotype by environment variation observed. It could be that
these objective fertility traits are more accurately acquired than
traits that rely on a subjective pregnancy diagnosis. Haskell et al.
(2007) studied Holstein-Friesian herds and found production
intensity (age at first calving, kilograms milk, milk fat, and
protein production) and climate (temperature and rainfall) were
the factors explaining the majority of the variation seen in
production systems across the UK. Several of these variables were
also common variables identified in a study on Holstein-Friesian
cows across countries by Zwald et al. (2003). Zwald et al. (2003)
found climatic temperature, herd size, sire for milk, percentage
of North American Holstein genes, peak milk yield, fat to protein
ratio in milk, and standard deviation of milk yield to be the
main variables explaining the majority of variation between a
genotype and its environment. Sires vary in the sensitivity of
their daughters to different farm environments, with a small
proportion of sires producing daughters that are less affected by
their farm environment (Haskell et al., 2007) i.e., more robust
animals. Therefore, identifying progeny that are more robust
to a certain production system or farm environment would be
beneficial to the efficiency of the system.

CONCLUDING REMARKS

This study discussed selected novel monitoring systems
that have the potential to increase productivity and reduce

the environmental impact of commercial cattle systems.
Improvements in the production efficiency and utilization of
resources needed to produce meat and milk from cattle is of great
interest to farmers, policy makers, and society. New technologies
are providing opportunities to objectively monitor and measure
phenotypes using non-invasive methods associated with cattle
that were previously seen as difficult or costly to obtain (e.g.,
enteric methane, feed utilization, and behavioral traits). This
potentially brings new information or data sources for enhanced
farm level monitoring, awareness, and decision making. For any
new monitoring system it needs to easily integrate into the farm
system, as well as be accurate and reliable for longevity of use.
Adoption by the farmer is reliant on the perceived benefits and
investment needed, which may be influenced by the production
system i.e., high versus low input system. Whatever the farmers’
needs might be depending on their production system, new ways
of monitoring performance can complement the existing work
of the farmer, especially with regard to traits that are difficult to
continually monitor (e.g., feed utilization, methane emissions,
body condition, animal behavior, health, and welfare).
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Changes in pasture nutrients over the growing season are typically not monitored but

doing so may help farmers improve how effectively they utilize forage. The aim of

this research was to assess the use of real-time near-infrared spectroscopy (NIRS) for

monitoring seasonal changes in nutrient concentrations of different pasture types used

for grazing and silage production. Three permanent pastures and three temporary ley

pastures (3 years old) grazed by cattle or sheep and/or used for silage production were

monitored weekly for 20 weeks from April to August 2017 in the UK. Five pasture samples

per field were obtained per week for NIRS analysis and estimation of fresh and dry matter

herbage cover (both kg per hectare). Herbage height was also measured each week.

Permanent pastures included a diverse range of native UK grass species, and temporary

ley pastures were predominantly perennial ryegrass (Lolium perenne) with either white

(Trifolium repens) or red clover (Trifolium pretense). Effects of pasture type (permanent

or temporary), phase of production (grazed or rested for regrowth) and month of year

(April to August) on pasture nutrients [dry matter, crude protein, acid detergent fiber

(ADF), neutral detergent fiber (NDF), water soluble carbohydrate (WSC), ash, digestible

organic matter (DOMD), and dry matter digestibility (DMD)] were assessed by fitting a

linear mixed model. Considerable variation was observed in pasture production and in

the concentrations of dry matter, crude protein andWSC in pastures. This study suggests

that grazing pastures to a mean height of below 7 cm results in a significantly reduced

concentration of crude protein, DOMD, and DMD, which may be detrimental to the grass

intake and protein intake of the grazing animal. The DOMD and DMD of pasture were

positively correlated with herbage height and herbage cover crude protein concentration.

An approach of real-time nutrient monitoring will facilitate more timely adaptive pasture

management than currently feasible for farmers. This should lead to productivity gain.

Keywords: grasslands, technology, spectral data, predictions, management

INTRODUCTION

Grassland is the dominant agricultural land use type in the UK, covering 12.3 million ha (66%
of total agricultural area). The UK grassland area can be subdivided into 1.4 million ha of
temporary grassland, 5.8 million ha of permanent pasture, and 5.1 million ha of rough grazing
(Defra, 2018). The diversity of grasslands and their spatial arrangement within a farm, and
the landscape, have major importance for the sustainability of the environment and ruminant
livestock systems (Gibon, 2005). Grass provides a cheap and affordable source of nutrients for
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FIGURE 1 | Total rainfall and average daily temperatures for the months January to December during the years 2007 to 2016 (solid column and line respectively) and

during the study year of 2017 (dashed column and line respectively). Standard error bars are ahown for months during years 2007 to 2016.

ruminants, with pasture providing approximately 70% of the
42 million tons of forage dry matter consumed by ruminants
(Wilkinson, 2011). Furthermore, feed costs can represent as
much as 70% of the variable costs of livestock production
(Redman, 2016), and therefore ways to manage forage efficiently
will enhance the use of this valuable resource. Grazed pasture
can supply over half of the protein and energy needed by
ruminants (Waghorn and Clark, 2004; Hopkins and Wilkins,
2006). Understanding seasonal changes in pasture nutrient
concentrations can enhance ruminant production systems and
management. The poor matching of nutrient supply with animal
requirements can reduce livestock performance (Dillon, 2006),
increase the demand for land and reduce nutrient use efficiency.
Timely information on supply and nutrient concentrations of
pasture, and its associated variability, will allow farmers to better
match nutrient supply with animal demand.

Tools that measure herbage height and cover have been
used for a long time, such as a rising plate meter or cut and
weigh methods (French et al., 2015). The value of pasture is
a combination of not only pasture production but its nutrient
quality. The maximizing of forage utilization in ruminant
production systems is associated with reduced operating costs,
such as inputs of supplementary feed asmentioned above (Dillon,
2006; Ramsbottom et al., 2015). In recent years the principal
method of wet chemistry analysis in the laboratory for obtaining
nutrient levels in forage has been replaced by NIRS analysis
(Stergiadis et al., 2015), which is calibrated using wet chemistry
data. The NIRS technique measures the spectrum of infrared
energy reflected from a sample illuminated by white light. This
approach to estimating nutrient levels in products has reduced
the time taken for analysis (from about 16 h to less than aminute)
and its cost (Stuth et al., 2003). Even with this quicker and
lower cost approach, forage analysis is often done infrequently
by farmers. Developments in NIRS devices that are smaller and

more mobile (Malley et al., 2005; Pullanagari et al., 2012) with
data processing and storage, now allow real-time analysis on
farms. The benefit of this mobile approach is that the technology
allows frequent nutrient analysis and timelier decision making
at a lower cost to sending samples for laboratory analysis, which
should encourage more adoption on farms.

The objective of this study was to assess the use of real-time
NIRS for monitoring seasonal changes in nutrient concentrations
of different pasture types used for grazing and silage production.
During this study, three permanent pastures and three temporary
ley pastures were monitored during spring and summer months
in the UK.

MATERIALS AND METHODS

Field Data
The study was carried out at the University of Nottingham farm
at Sutton Bonington over a 20-week period from April to August
2017. During the study, the lowest amount of rainfall (13mm)
and lowest average daily temperatures (9◦C) were in April, and
highest amount of rainfall (90mm) and highest average daily
temperatures (17◦C) in July (17◦C; Figure 1). During the study
the average daily temperatures in May and June were noticeably
higher than the average for the same months during the previous
10 years from 2007 to 2016. Total rainfall was also noticeably
lower in April and higher in July during the study compared to
the previous 10 years.

Grassland at the farm consisted of permanent and temporary
ley pastures used for cattle or sheep grazing and/or silage
production. Six fields were selected for this study, with three
being permanent pastures and three being temporary ley
pastures. The permanent pastures (Fields A, B and C; Table 1)
have never been cultivated and contain a diverse botanical
composition of native UK grass species of perennial ryegrass
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TABLE 1 | Characteristics of fields assessed in the study.

Field Pasture type Soil type Predominant pasture species Nutrient applications Use during study

A Permanent and

never cultivated

Sandy loam Perennial ryegrass, timothy, Yorkshire

fog, cocksfoot, common bent and

meadow grass

1 × 30m3/ha (0.7 kg N/m3)

of dirty water

Cattle grazing

B Permanent and

never cultivated

Sandy loam Perennial ryegrass, timothy, Yorkshire

fog, cocksfoot, common bent and

meadow grass

1 × 30m3/ha (0.7 kg N/m3)

of dirty water

Cattle grazing

C Permanent and

never cultivated

Sandy loam Perennial ryegrass, timothy, Yorkshire

fog, cocksfoot, common bent and

meadow grass

None Sheep grazing

D Temporary ley, 3

years old

Sandy loam Perennial ryegrass and white clover Inorganic fertilizer (50 kg of

ammonium nitrate of 34%

N: 0% P:0% K) plus 3 ×

30m3/ha (0.7 kg N/m3) of

dirty water

Sheep grazing and silage harvested

E Temporary ley, 3

years old

Clay loam Perennial ryegrass and red clover Inorganic fertilizer (60 kg of

ammonium nitrate of 34%

N: 0% P:0% K) plus 3 ×

30m3/ha (0.7 kg N/m3) of

dirty water

Silage harvested

F Temporary ley, 3

years old

Sandy loam Perennial ryegrass and white clover Inorganic fertilizer (50 kg of

ammonium nitrate of 34%

N: 0% P:0% K) plus 1 ×

30m3/ha (0.7 kg N/m3) of

dirty water

Sheep grazing and silage harvested

(Lolium perenne), timothy (Phleum pretense), Yorkshire fog
(Holcus lanatus), cocksfoot (Dactylis glomerata), common bent
(Agrostis capillaris), and meadow grass (Poa annua). The
temporary ley pastures were part of a crop rotation and are
cultivated after 3 to 5 years of production. The temporary leys
consisted of predominantly perennial ryegrass, with either white
clover (Trifolium repens, Fields D and F; Table 1) or red clover
(Trifolium pretense, Field E).

Prior to commencement of the study all six fields were rested
for four or more weeks, as prior to this fields were intermittently
grazed by sheep over the winter months. During this period the
temporary pasture fields of D, E and F received an application
of inorganic fertilizer, and fields A and B received dirty water,
which is produced after removing solid organic material from
cattle slurry (the amount of nutrient inputs are shown inTable 1).
Field C didn’t have any nutrients applied during the study. Fields
D, E and F had dirty water applied after each harvest of silage,
and during this week no grass measurements were taken. During
the study, ewes and their lambs intermittently grazed fields C and
F and dairy heifers grazed fields A and B. Management of each
field during the weeks of the study are shown in Table 2, with
periods highlighted when pasture is rested for regrowth, grazed
and harvested for silage.

MEASUREMENTS

The herbage height, fresh and dry matter herbage cover and
nutrient concentrations of each field were measured during
the study. No grass measurements were taken during weeks
when silage was harvested and dirty water was applied, as the

application of dirty water prevented accurate NIRS analysis
of nutrient concentrations. Grass measurements avoided dung,
urine and dense weed patches when taken.

Pasture Sampling
Pasture measurements were conducted on the same day each
week. In each field 5 grass samples were cut to ground level and
within a 36 cm diameter wire ring (0.1m2) randomly placed on
the ground. To ensure representative coverage of each field, the
5 grass samples were taken in a W-pattern (Wilkinson et al.,
2014). The total weight (grams) of pasture within the ring was
multiplied by 100 (i.e., 1 hectare = 10,000m2) to estimate the
fresh herbage cover (kg fresh weight/hectare). The fresh pasture
cover value was then multiplied by the percentage of dry matter
measured by NIRS to derive the dry matter herbage cover (kg
DM/hectare).

A rising plate meter (F400; Farmworks Precision Farming
Systems Ltd, Feilding, NZ) was used to measure sward height
(Figure 2). The pasture height of each field was estimated from
the average of 30 “spot” measurements taken in a W-pattern
across the field.

Nutrient Analysis
A mobile NIRS device (NIR4; Aunir, Towcester, UK) was used
to scan cut pasture samples for their nutrient concentrations
(Figure 2). The NIR4 takes four replicate scans, consisting of a
spectrum of infrared energy reflected from the pasture sample
illuminated by the scanner, from which nutrient concentrations
are estimated from the average of the four scans. The scan
results are uploaded to a tablet and secure server for further
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TABLE 2 | Illustration showing periods of pasture regrowth (black), grazing (gray), and silage harvest (white) for each field (A to F) during the 20 weeks of the study.

Month/week of study

April May June July August

Field 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

B

C

D

E

F

FIGURE 2 | Pasture measurement devices of (A) Tablet near-infrared

spectroscopy scanner and tablet for nutrient analysis and (B) rising plate

meter for herbage height.

analysis. The nutrient concentrations measured were: dry matter,
crude protein, acid detergent fiber (ADF), neutral detergent
fiber (NDF), water soluble carbohydrate (WSC), ash, digestible
organic matter (DOMD), and dry matter digestibility (DMD; all
expressed as grams per kilogram of dry matter).

Statistical Analysis
The mean value for the 5 weekly measurements of herbage
cover and nutrient concentrations per field was used for further
analysis. This produced a total of 112 weekly records for all fields
(20 weeks × 6 fields with the 8 weekly values when silage was
harvested not included). Data were analyzed using a linear mixed
model in Genstat software (version 18.1; VSN International
Ltd., Hemel Hempstead, UK). Equation (1) was used to assess
the effect of pasture type (permanent or temporary), phase of
production (grazed or rested for regrowth) and month of year
(April to August) on pasture nutrients:

yijkl = µ +Mi × Pj × Sk + Fl + eijkl (1)

where yijkl is the dependent variable; µ = overall mean; Mi =

fixed effect of month of year (i = April to August); Pj = fixed

effect of pasture type (j = permanent or temporary); Sk = fixed
effect of phase of production (k= grazed or regrowth); Fl = fixed
effect of field (l = A to F); eijkl = random error term.

Equation (1) was also used to assess differences in fresh
pasture cover, dry matter cover and herbage height without
the fixed effect of field. Predicted means for pasture type
(permanent or temporary), phase of production (grazed or rested
for regrowth), month of year (April to August) and field (A to F;
for analysis of nutrient concentrations) and pasture type× phase
of production were presented. The interaction between pasture
type× phase of production and month of year are not presented
since influenced by field management (i.e., grazing, silage cut or
regrowth;Table 2). Pearson correlation coefficient (r) was used to
test the association between herbage height, herbage cover (fresh
and dry matter per hectare) and pasture nutrient concentrations.
Significant differences were attributed at P < 0.05.

RESULTS

Differences in Pasture Height, Herbage
Cover, and Pasture Nutrients
There was considerable variation in herbage height (coefficient
of variation = 46%), and fresh and dry matter herbage cover
(coefficient of variation = 78 and 71%, respectively) across
fields studied (Table 3). For pasture nutrients, there was more
variability in measured dry matter, crude protein and WSC
concentrations in pasture (coefficient of variation ranging
from 18 to 23%) than observed for NDF, DOMD and DMD
concentrations (coefficient of variation ranging from 2 to 5%).

On average, herbage height and cover (fresh and dry matter)
were lower during periods of grazing (all P < 0.001) and
declined from April/May to June/July/August (P < 0.05 or
greater; Table 4). An interaction was found between temporary
ley pastures that were grazed, with lower herbage height and
cover (fresh and dry matter) than other combinations of pasture
type × phase of production (all P < 0.05). There was no effect
of pasture type on herbage height and herbage cover (both
P > 0.05).

Permanent pastures were associated with significantly higher
concentrations of dry matter, WSC (both P < 0.001) and NDF (P
< 0.05) but lower crude protein, ADF (both P < 0.05) and ash
(P < 0.001) than temporary ley pastures (Table 5). Periods when
pastures were grazed were associated with higher dry matter,
NDF and WSC (all P < 0.001) but lower crude protein, ash
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TABLE 3 | Average pasture height, herbage cover, and nutrient concentrations

across fields, and weeks of the study.

Variable Units Mean (s.d) Range Coefficient of

variation (%)

Pasture height cm 8.6 (4.0) 3.3–24.3 46

Herbage cover kg FW/ha 7416 (5784) 780–30400 78

Herbage cover kg DM/ha 1413 (1000) 136–5073 71

Dry matter g/kg DM 205 (48) 118–390 23

Crude protein g/kg DM 198 (39) 45–247 20

ADF1 g/kg DM 267 (28) 219–444 10

NDF1 g/kg DM 431 (21) 382–565 5

WSC1 g/kg DM 74 (13) 49–137 18

Ash g/kg DM 90 (12) 47–110 13

DOMD1 g/kg DM 710 (17) 615–745 2

DMD1 g/kg DM 758 (20) 645–800 3

1ADF is Acid detergent fiber, NDF is neutral detergent fiber, WSC is water soluble

carbohydrate, DOMD is digestible organic matter and DMD is dry matter digestibility.

(all P < 0.001), DOMD, and DMD (both P < 0.05). During
July, the concentrations of dry matter, ADF and NDF were at
their highest and concentrations of crude protein, DOMD and
DMD at their lowest, and significantly different to the months
of April/May (all P < 0.001). The concentrations of WSC varied
from April to August (P < 0.05). With adjustment for fixed
effects, the permanent pasture fields of B and C had higher
ash concentrations, and Field C had lower DOMD and DMD
compared to other fields (all P < 0.05). An interaction was
found between temporary ley pastures that were grazed, which
had a higher mean NDF concentration (P < 0.001) and lower
DOMD and DMD concentrations (both P < 0.05) than other
combinations of pasture type× phase of production.

Relationship Between Pasture Height,
Herbage Cover, and Pasture Nutrients
Fresh and dry matter herbage cover were highly correlated (r =
0.969) and both were highly correlated with pasture height (r =
0.870 and 0.842 respectively, both P < 0.001; Table 6). Pasture
height and fresh herbage cover were positively correlated with
concentrations of crude protein, ash (both P < 0.05), DOMD
and DMD (both P < 0.001), and negatively correlated with
concentrations of dry matter (P < 0.001), ADF, NDF (both P <

0.05) and WSC (P < 0.05 for pasture height only). Dry matter
herbage cover was positively correlated with DOMD and DMD
concentrations (both P < 0.001), and negatively correlated with
ADF concentration (P < 0.001). The correlation between fresh
herbage cover, pasture height and different pasture nutrients
were of similar magnitude. The concentration of dry matter
in the pasture was positively correlated with ADF, NDF and
WSC, and negatively correlated with crude protein, ash, DOMD
and DMD (all P < 0.001). The concentration of crude protein
in the pasture was positively correlated with ash, DOMD and
DMD, and negatively correlated with ADF, NDF and WSC (all
P < 0.001). Concentrations of ADF and NDF were positively
correlated (P < 0.001), and both were negatively correlated

TABLE 4 | Effect of pasture type (permanent or temporary), phase of production

(grazed or rested for regrowth), and month of year (April to August) on herbage

height, and fresh weight (FW) and dry matter (DM) herbage cover.

Herbage

height

Herbage

cover

Herbage

cover

Variable cm kg FW/ha kg DM/ha

Type Permanent 9.2 6757 1498

Temporary 8.3 6759 1169

SED3 0.7 1012 183

P value 0.926 0.173 0.469

Phase Grazed 6.6 4866 1019

Regrowth 10.9 8650 1648

SED3 0.7 1012 183

P value <0.001 <0.001 <0.001

Month2 April 10.1a 11705a 2148a

May 9.8a 8600b 1643a

June 8.1ab 5017c 1055b

July 7.9b 4860c 1050b

August 7.8b 3608c 772b

SED3 1.1 1588 288

P value <0.05 <0.001 <0.001

Permanent2 Grazed 7.8b 6262bc 1383a

Regrowth 10.6a 7252b 1613a

Temporary Grazed 5.3c 3470c 655b

Regrowth 11.3a 10048a 1684a

SED3 1.0 1428 259

P value <0.05 <0.05 <0.05

1ADF is acid detergent fiber, NDF is neutral detergent fiber, WSC is water soluble

carbohydrate, DOMD is digestible organic matter and DMD is dry matter digestibility.
2Means for month of year and pasture type × phase of production and within a column

and with different superscript letters differ significantly.
3SED means standard errors of differences.

with DOMD and DMD (which are highly correlated; all P <

0.001). The concentration of WSC was positively correlated with
concentration of ADF (P < 0.05) and negatively correlated with
concentration of ash (P < 0.001).

DISCUSSION

Precision Monitoring
As shown in this study, the use of real-time data on pasture
dry matter concentration measured by NIRS can be combined
with a measure of pasture production to determine the dry
matter herbage cover. The alternative would be to dry the pasture
samples in a microwave or oven to calculate the mass of dry
plant material. Removing pasture samples from the field may
allow the plant material to degrade and affect analysis results,
as well as taking additional time to process the sample. The
analysis of other pasture nutrient concentrations is typically done
in the laboratory after being sent in the postal system, with
results received after the grazing event. Unlike ensiled forages
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TABLE 5 | Effect of pasture type (permanent or temporary), phase of production (grazed or rested for regrowth), month of year (April to August) and field (A to F) on

pasture nutrient concentrations.

Dry matter Crude protein ADF1 NDF1 WSC1 Ash DOMD1 DMD1

Variable g/kg DM g/kg DM g/kg DM g/kg DM g/kg DM g/kg DM g/kg DM g/kg DM

Type Permanent 235 177 262 437 79 80 714 763

Temporary 183 206 282 429 67 97 700 746

SED3 14 14 10 7 5 4 5 6

P value <0.001 <0.05 <0.05 <0.05 <0.001 <0.001 0.104 0.104

Phase Grazed 221 178 279 440 76 86 701 748

Regrowth 197 205 264 426 71 91 713 761

SED3 8 8 6 4 3 3 3 4

P value <0.001 <0.001 0.054 <0.001 <0.001 <0.001 <0.05 <0.05

Month2 April 189b 214b 251c 421b 73ab 92 723a 773a

May 195b 205b 253c 429b 70b 91 717a 767a

June 227a 168a 288ab 444a 72ab 87 698b 744bc

July 232a 166a 297a 449a 78a 88 691b 736c

August 201b 204b 271b 424b 73ab 85 705b 753b

SED3 11 11 8 6 4 3 4 5

P value <0.001 <0.001 <0.001 <0.001 <0.05 0.058 <0.001 <0.001

Field2 A 214 185 271 433 75 86b 707a 755a

B 201 196 273 434 73 95a 706a 754a

C 204 215 283 444 67 96a 694b 739b

D 214 185 271 433 75 86b 707a 755a

E 199 183 274 428 70 84b 709a 757a

F 223 185 260 428 78 84b 718a 767a

SED3 15 16 11 8 5 5 6 7

P value 0.232 0.343 0.451 0.595 0.246 <0.05 <0.05 <0.05

Permanent2 Grazed 241a 169 269 434b 82 78 710a 758a

Regrowth 228ab 184 256 432b 76 82 718a 768a

Temporary Grazed 201b 186 290 447a 70 95 693b 737b

Regrowth 166c 226 273 420b 65 99 707a 755a

SED3 14 15 10 8 5 5 6 7

P value <0.05 0.168 0.374 <0.001 0.702 0.569 <0.05 <0.05

1ADF is Acid detergent fiber, NDF is neutral detergent fiber, WSC is water soluble carbohydrate, DOMD is digestible organic matter and DMD is dry matter digestibility.
2Means for month of year, field and pasture type × phase of production within a column and with different superscript letters differ significantly.
3SED means standard errors of differences.

both oxidative degradation of carbohydrates and hydrolysis of
peptides continues post-harvest in fresh grass (Binnie et al.,
1997; Dale et al., 2016). Dale et al. (2016) suggested nutrient
analysis should occur within 24 h to minimize degradation to
plant material and changes in nutrient concentrations. This is
unlikely to occur within a small country such as the UK, let alone
larger countries, where the distance to analytical laboratories
may be greater. Therefore, for perishable plant material, the
implementation of real-time NIRS is better suited.

Monitoring Pasture Variability
Temporal and spatial changes in nutrient concentrations of
pasture are important to the productivity of grazing animals and

forage production (Miller et al., 2001; Wilkins and Humphreys,
2003; Colmenero and Broderick, 2006). Herbage digestibility
(DOMD and DMD) has a major effect on herbage intake,
with early-season management one of the overriding factors
determining herbage digestibility (Ferris, 2007). Poor nutrient
intake can impair the production and wellbeing of the animal,
due to an inability to achieve required nutrient intakes.

As shown in this study on a small number of fields used
for grazing and silage production and observed by others
studying thousands of pasture samples from farms across the
UK (Wilkinson et al., 2014), considerable temporal and spatial
variation in quality and quantity of pasture biomass exists, which
is currently poorly understood particularly in the case of nutrient
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concentrations in different pasture types. In the current study,
the coefficient of variation for fresh herbage cover was 78% and
dry matter herbage cover was 71% across fields and weeks of the
study (Table 3). The nutrient concentrations of dry matter, crude
protein andWSC showedmore variability across fields and weeks
(coefficient of variation ranging from 18 to 23%) than other
nutrient concentrations (coefficient of variation ranging from 2
to 13%). The mean and range of pasture nutrient concentrations
observed in the current study were similar to values in other
studies in the UK (Wilkinson et al., 2014). Wilkinson et al. (2014)
found similar coefficients of variation for nutrient concentrations
of dry matter, crude protein and WSC in pre-grazed pasture
ranging from 22 to 27%, but greater variability in ADF and NDF
(coefficient of variation ranging from 14 to 19% compared to 5 to
10% in the current study). Several factors can influence pasture
quality including sward management (Curran et al., 2010; Crosse
et al., 2015), maturity and season (Binnie et al., 1997; Frame
and Laidlaw, 2011; Wilkinson et al., 2014), grass variety, sward
botanical composition and soil properties (Frame and Laidlaw,
2011). During the wettest and warmer summer month of July
(Figure 1), the concentrations of dry matter, ADF and NDF
were higher and concentrations of crude protein, DOMD and
DMD lower compared to the driest and coolest spring month
of April. Seasonal changes in climate, pasture production and
sward maturity may explain the seasonal changes observed for
the majority of pasture nutrients measured; no seasonal effect
on ash concentration was observed. Frame and Laidlaw (2011)
reported no seasonal effect on ADF, NDF and WSC in the cooler
and wetter climate of Northern Ireland for a dairy grazing system.

The use of real-time nutrient analysis in the current study
allowed differences in pasture nutrients to be assessed under
different management practices. Grazed pastures, and a decline
in herbage height and cover, were associated with lower
concentrations of crude protein, DOMD and DMD as the
composition of the sward is more stem and residual plant
material than vegetative leaf material. The seasonal decline in
crude protein and digestibility are consistent with other studies
over the same months (Frame and Laidlaw, 2011; Wilkinson
et al., 2014). The current study found grazed (mean height of
6.6 cm) and temporary ley pastures that were grazed (mean
height of 5.3 cm) had significantly lower DOMD and DMD
and higher NDF concentrations than non-grazed and other
combinations of pasture type× phase of production respectively.
The higher mean herbage height of 7.8 cm for grazed permanent
pastures (6.2 tons fresh herbage and 1.4 tons of dry matter
herbage cover) had no significant impact on pasture digestibility
(DOMD or DMD). This finding is supported by Hodgson
(1990) who found the dry matter intake of cattle and sheep was
reduced below about 7 cm, presumably due to similar changes
in pasture digestibility. In the current study, due to availability
of grazing for cattle and sheep at the farm studied it was
not possible to assess differences between pastures grazed by
different livestock species due to the lack of replication in the
design of the study. Even with reduced nutrient intake due
to herbage height (e.g., Hodgson, 1990), physical differences
in muzzle size, mechanics of their bite, and body size mean
that sheep are better able to graze shorter sward heights than

cattle (Frame and Laidlaw, 2011) and therefore sheep grazing
systems may benefit more from real-time nutrient analysis.
Intensive grazing management has been found to reduce crude
protein and DOMD concentrations (Hopkins and Holmes, 2000;
McDonald et al., 2011). A review by Ferris (2007) highlighted
that a number of studies have advocated grazing swards to a
residual height of below 6 cm, which the current study suggests
would be detrimental to pasture quality and animal performance
due to a potentially restricted nutrient intake for intensively
grazed systems. Further, research could use real-time NIRS
to explore within-day variability in pasture species nutrients,
timing of optimum grazing for cattle and sheep, and silage
management. Orr et al. (2001) observed that dairy cows grazing
after evening milking had a significantly longer evening meal
compared to when grazing after morning milking, which they
attributed to a higher dry matter (197 vs. 178 g/kg) and WSC
(204 vs. 175 g/kg DM) concentration in herbage grazed in the
evening. However, the authors found no overall improvement
in milk production. Younger and genetically superior temporary
pastures are supposed to bemore productive, with better nutrient
qualities and greater persistency than older pastures (Miller
et al., 2001; Shalloo et al., 2011). The younger temporary ley
pastures in the current study had higher crude protein, ADF
and ash concentrations than permanent pastures, which had
higher concentrations of dry matter, WSC and NDF. The higher
concentrations of crude protein and minerals in the temporary
ley pastures is possibly due to the presence of clover, which is rich
in protein (due to its ability to fix atmospheric nitrogen into the
soil) and minerals, and clover also helps increase these nutrients
in the grass (Frame and Laidlaw, 2011). Surprisingly, there was no
difference in overall digestibility (i.e., DOMD or DMD) between
the predominantly perennial ryegrass temporary ley pastures and
the permanent pastures, as perennial ryegrass is known to have a
higher digestibility than grass species in the permanent pastures
(e.g., timothy and cocksfoot), especially as they mature (Frame
and Laidlaw, 2011). This lack of difference is presumably due to
the grazing management of the pasture types. Reseeding is used
to improve the overall productivity from grasslands, with fields
selected for reseeding based typically on poor grass production
or low perennial ryegrass quantity (Shalloo et al., 2011). Pastures
containing high sugar grass varieties have become increasingly
common, and were present in the temporary ley swards studied
(Fields D to F), but interestingly the permanent pastures had a
significantly higher mean concentration ofWSC. The aim of high
sugar varieties is to increase pasture palatability (with a reduced
ADF content; Table 6) and overall animal productivity, which
has been found to have variable success and this may be due to
a marginal increase in actual overall WSC concentrations in the
pasture (Ferris, 2007).

When formulating a diet to be fed to livestock, the
conventional approach is to determine the least-cost ration
depending on the estimated nutrient requirement of the average
animal in the group based on infrequent determination of diet
nutrient concentrations. This means that some animals will be
underfed, and others overfed. As highlighted in this study, in
reality considerable variation can exist in quality of forage, and
more precise and current determination of nutrient availability
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offers considerable productive, financial and environmental
benefits from this timely information. Adoption of pasture
NIRS analysis will presumably be greater if done on farms, and
help improve pasture nutrient management, reduce production
costs and reduce the potential for waste at the farm level with
better practice. For ruminants, about 35% of energy consumed
in the diet is lost in the form of enteric methane, feces or
urine and 77% of nitrogen consumed is excreted in feces or
urine (Bell et al., 2015). More precise feeding of animals to
meet their requirements will improve utilization of consumed
forage resources from available land, leading to less nutrients
lost per unit product (Bell et al., 2015). The use of NIRS has
been shown to provide a fast and reliable analytical method for
analyzing forages, products of digestion and potentially provide
a prediction of feed intake in grazing situations (Decruyenaere
et al., 2009). Eastwood and Dela Rue (2017) found the important
factors for adoption of grazing software by farmers were (1) the
alignment of data for monitoring key performance indicators,
(2) using data for benchmarking and reporting and (3) enabling
farm team communication. Eastwood et al. (2013) proposed that
the value proposition for farmers of using precision farming
tools needs to be clear to encourage farmers to invest time and
money toward the equipment and learning how to use the new
information effectively. It is envisaged that the reduced analytical
cost, speed, improved reliability of current NIRS analysis should
encourage greater uptake of pasture analysis with more timely
information for farm level decision making. Potentially, you
could obtain 20 times more NIRS nutrient analysis results for
the equivalent cost of forage wet chemistry nutrient analysis
(assuming £0.60 per sample for NIRS and £12 per sample for wet
chemistry analysis). Mobile NIRS offers not only the potential
of more frequent analysis for farmers to monitor a wide range
of key nutrients in forage when they need the information, but
also soil and manure nutrients within a soil-plant-animal system.
While aerial imaging can provide useful information on biomass
production and nutrient concentrations of crude protein and

metabolisable energy of grassland (Pullanagari et al., 2018), the
proposed ground level analysis in the current study can be used to
measure spatial and temporal variation in biomass and nutrient
concentrations of dry matter, crude protein, fiber, WSC, ash, and
the digestibility of pasture. Detailed information on the diversity
in botanical composition of swards and replication in grazing
livestock species would add to the study and provide further
practical insight for adaptive management of pastures. This study
assessed the use of mobile NIRS analysis for monitoring pasture
nutrients in real-time. Considerable variation existed in herbage
production and concentrations of dry matter, crude protein and
WSC in pastures studied. When combined with a measure of
herbage height or herbage cover, the measured real-time NIRS
nutrient concentrations can help identify temporal (i.e., seasonal)
or spatial (i.e., within or between fields) changes that may
impact on grazing or silage production. Pastures grazed to a
height of below 7 cm had significantly lower concentrations of
crude protein, DOMD and DMD compared to taller and greater
herbage covers, which may be detrimental to the productivity
of the land. More precise monitoring of pastures will (1)
improve production system sustainability by enhancing feed

utilization efficiency, (2) improve productivity of livestock and
conserved forages and (3) reduce the potential for wasted
resources.
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Dairy cows are known to mobilize body fat to achieve their genetic potential for milk

production, which can have a detrimental impact on the health, fertility and survival of

the cow. Better monitoring of cows with poor body condition (low or high body fat)

will lead to improvements in production efficiencies and less wasted resources when

producing milk from dairy cows. The aim of this study was to compare different methods

for monitoring the body condition (body fat) of dairy cows. The methods used to measure

body condition were: ultrasound scanner, manual observation, and a still digital image

of the cow. For comparison, each measure was expressed as a body condition score

(BCS) on a scale of extremely thin (1) to very fat (5) in quarter intervals. A total of 209 cows

at various stages of lactation were assessed. Lin’s concordance correlation coefficient

(CCC) and the root mean square prediction error (RMSPE) were used to compare the

accuracy of methods. The average BCS across cows was 2.10 for ultrasound, 2.76 for

manual and 2.41 for digital methods. The study found that both manual (r = 0.790) and

digital (r = 0.819) approaches for monitoring cow body condition were highly correlated

with ultrasound BCSmeasurements. After adjusting correlation coefficients for prediction

bias relative to a 45◦ line through the origin, the digital BCS had a higher CCC of 0.789

when compared to the ultrasound BCS than the manual BCS with a CCC of 0.592.

The digital BCS also had a lower prediction error (RMSPE = 28.3%) when compared

with ultrasound BCS than the manual BCS (RMSPE = 42.7%). The prediction error

for digital and manual BCS methods were similar for cows with a BCS of 2.5 or more

(RMSPE = 20.5 and 19.0%, respectively) but digital BCS was more accurate for cows

of <2.5 BCS (RMSPE = 35.5 and 63.8%, respectively). Digital BCS can provide a more

accurate assessment of cow body fat than manual BCS observations, with the added

benefit of more automated and frequent monitoring potentially improving the welfare and

sustainability of high production systems.

Keywords: cattle, body fat, objective assessment, health, wellbeing

INTRODUCTION

Originally body condition scoring was developed for management in sheep during the 1960s,
before being adopted for use with cattle in the 1970s (Earle, 1976; Bewley and Schutz, 2008).
The approach was developed to help farmers monitor the body fat composition of animals at key
stages in production i.e., parturition, mating, lactation. Furthermore, assessment of animal body
condition is used to inform decisions on appropriate feed allocation at an animal’s given stage of
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production (Keady et al., 2005). This is therefore a valuable tool
to manage animal productivity and feed utilization (Roche et al.,
2009).

Garnsworthy (2007) suggests that cows have a physiological
target level for body reserves in early lactation, and cows will try
to reach a target BCS of 2.5 at around 12–15 weeks post-partum.
Target BCS is influenced by genetics. Given the importance
of body condition at different stages of production and their
physiological target, a reliable phenotypic measure of BCS would
be extremely beneficial. Typically, body condition is managed
by appropriate nutrition, and Garnsworthy and Jones (1987)
proposed that cows with low BCS (2.0) should be fed a high
protein diet which maintains BCS by using excess protein for
gluconeogenesis rather than body reserves, whereas fatter cows
(BCS 3.5) had a greater loss of condition. Alternatively, high
BCS cows can be fed a low fiber, high starch diet to reduce BCS
loss, and this type of diet will also increase BCS in cows with a
low BCS (Garnsworthy and Jones, 1993). The need to frequently
monitor changes in body condition and prevent excessive body
condition loss (more than 0.5 BCS) is further supported by
studies highlighting associations with poor health, fertility, and
ultimately survival. Research has shown that cows with a (high)
BCS of 3.5 are twice more likely to develop ketosis than cows
with a (low) BCS of 2.0 (Reid et al., 1986); and a 2–4 times
higher risk of having ketosis in the next lactation (Rasmussen
et al., 1999). Other health risks include increased chance of a
retained placenta and/or metritis, and oestrus not being observed
if cows have a low BCS (Markusfeld et al., 1997). It is estimated
that conception rate decreases by 10% for every 0.5 BCS lost
(Butler, 2005) and cows losing >1.0 BCS post-partum take on
average 11 days longer to conceive than those that maintained
or only lost a 0.5 BCS (Lopez-Gatius et al., 2003). Oestrus
in cattle occurs when they are also lactating. For high milk
yielding dairy cows this can pose a challenge, as the metabolic
demands of milk production, and the mobilizing of body fat to
produce milk, tend to take priority over reproduction, and can
lead to conception failure due to a low negative energy balance
(Collard et al., 2000). Therefore, monitoring individual cow
body fat and maintaining adequate body condition is essential
to maintain a productive animal that has appropriate nutrition
and fertility, whilst also producing acceptable amounts of milk.
While Holstein dairy cows are a popular breed for producing
high volumes of milk, they are also characterized by having lower
body condition score (BCS), and reduced fertility and survival
compared to other breeds (Dillon et al., 2006). Bell and Wilson
(2018) identified body condition as an important phenotypic
trait, along with feed utilization, enteric methane emissions,
health, fertility, and survival, associated with more sustainable
milk production in UK dairy herds. The authors found that
the cost of poor fertility in the UK (each day over the optimal
calving interval length of 365 days) is about £2.80 per day with
an associated increase in emissions of greenhouse gases for each
extra day of about 15 kg of carbon dioxide equivalent (CO2-eq.)
emissions per cow and 23 kg CO2-eq. emissions per kilogram
milk solids. Ultimately poor health and fertility can lead to poor
survival. The cost of poor survival in the UK (each percentage
increase in cows culled or died within a herd) is estimated at
about £13.50 per percentage of cows lost from a herd, with each

percentage change resulting in an increase in CO2-eq. emissions
of about 50 kg per cow and 91 kg per kilogram milk solids due
to resources required by replacement animals (Bell and Wilson,
2018).

The most widely used and traditional method of body
condition scoring is by manual observation and/or physical
examination of the animal to form an assessment of overall body
condition (Edmonson et al., 1989; Roche et al., 2004). Body
condition is scored using a variety of scales and approaches
(Bewley and Schutz, 2008), but typically on a scale of extremely
thin (1) to very fat (5 or 9 depending on scale adopted) in
quarter intervals. To reduce the subjective nature of scoring,
manual observers require training to ensure a consistent, and
reliable measure. The approach also requires labor time and is
therefore generally done once per week or only at key stages
of production, if at all. The scoring method provides a simple
means for people to manually monitor the body fat of animals.
In recent years the expectation has been for each stockperson to
look after more animals, as input costs (such as labor and feed)
have increased. Also, finding skilled farm workers has become
more difficult. With these developments has come new and
more mobile technologies such as ultrasound for measuring body
composition (fat andmuscle) and digital image analysis software.
These new technologies provide the potential to produce more
objective measures for monitoring body condition (body fat) of
livestock. While the use of ultrasound scanners requires a trained
operator and can be an expensive device, the opposite is true of
camera surveillance systems with digital image analysis software.
Rather than rely on more specialized ultrasound equipment
to accurately measure body fat and obtain a BCS (Domecq
et al., 1995; Hussein et al., 2013; Singh et al., 2015), digital
camera systems provide the opportunity for continuous and
automated monitoring in real-time and potentially requires no
prior training by the user other than interpreting the output.
Several commercially available digital BCS tools exist (Bewley
et al., 2008; Halachmi et al., 2008; Azzaro et al., 2011) and take
images from above the animal to relate body shape angles around
the hook bones and caudal area to BCS. Due to the images being
taken from directly above the animal, the curvature around the
hook bones has proved more useful in predictions than when
including the tail head (Bewley et al., 2008). However, this is
partly a function of the camera angle used to obtain the digital
image. Also, the body curvature around the hook bones can be
influenced by gut fill and pregnancy, and stage of production.

The objective of this study was to compare three different
methods formeasuring the body condition of dairy cows using an
ultrasound scanner, manual observation, and a still digital image
of the cow. An objective measure (i.e., still digital image) may
provide a more accurate approach to identify animals that are
too thin or too fat compared to a subjective measure (i.e., manual
observations).

MATERIALS AND METHODS

Approval for this study was obtained from the University of
Nottingham animal ethics committee before commencement of
the study.
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Data
Data were obtained from a total of 209 cows from two Holstein
dairy herds, with 87 cows from Farm A, and 122 cows from Farm
B. The cows used in this study represented a range of stages
of production from early, mid and late lactation, and prior to
calving. Farms were visited betweenMay and July 2017, and cows
were randomly selected from each herd. Lactating cows at Farm
A were milked twice per day using a traditional herringbone
parlor and had access to grazing, whereas cows at Farm B used an
automatic milking station and were housed throughout lactation.
Whilst lactating, cows at Farm Awere grouped and fed according
to stage of production (i.e., early, mid, or late lactation), whereas
at Farm B cows were of various stages of production within a
group of about 40 cows allocated to three automatic milking
stations and fed the same diet. Both farms had a similar average
daily milk yield of 30.1 L/day at FarmA and 32.1 L/day at Farm B.

Body Fat and Body Condition
Measurements
There were three methods used to measure the body condition
of each cow, which were (1) manual observation, (2) ultrasound
scanner, and (3) a still digital image. The body condition and
fat depth measurements for all cows were assessed by the same
operator with experience and training in assessment of body
condition and ultrasound measurements. For the purpose of
comparing different BCS methods, all measurements were taken
in the same caudal area.

Manually Observed Body Condition
A combination of a visual observation and physical examination
of the cow’s body fat around its tail head was carried out following
the condition scoring method of Edmonson et al. (1989). The
amount of subcutaneous fat of each animal is assessed by a
combination of manual palpation by hand of the tail head and
observing from directly behind the cow the shape of the loins
(e.g., spinous processes), pelvis (e.g., hook and pin bones), and
tail head (e.g., tail and depression beneath the tail) areas. Based
on the assessment an overall BCS was then attributed on a scale of
extremely thin (1) to very fat (5) in quarter intervals (Edmonson
et al., 1989).

Ultrasound Fat Depth
After the manual body condition assessment, an Easy-scan 4
(BCF, Livingstone, UK) ultrasound scanner was used to measure
body fat on the rump of each cow, as illustrated in Figure 1. The
rump of the cow was cleaned, and ultrasound gel was applied
to the area prior to obtaining an ultrasound image (Figure 2)
showing skin, subcutaneous fat, and muscle depths. The scanner
has a linear multi-frequency (4.5–8.5 MHz) probe, and the body
composition mode with inbuilt manual caliper function was
used to measure subcutaneous fat depth in millimeters. The
examination site was specifically located in front of the tuber
ischia (pin bone) and following a line to the tuber coxae (hook
bone). This location has been found by others to be the most
appropriate (Schroder and Staufenbiel, 2006) and also ensuring
suitable contact between the ultrasound probe head and the cow’s
body for better image quality.

FIGURE 1 | Example of a digital image taken of the caudal area of the cow

showing annotation for measurement of tail head width (solid line), distance

between hook bones (dotted line), and pin bones (dashed line), and location of

manual observed body condition and ultrasound measurement.

FIGURE 2 | Example of an ultrasound image used to measure subcutaneous

fat depth (mm) between the red lines.

Digital Photo Measurements
After obtaining the manual score and ultrasound measurement,
a handheld 5 megapixel camera (Vodafone Smart Tab 4G,
Newbury, UK) of 2,592 × 1,944 pixel resolution was used
to obtain a still digital photo of the caudal area of each
cow (Figure 2), and the area where manual and ultrasound
measurements had been obtained. The image photo was taken
from directly behind the cow at a 10◦ angle above the tail
head and from 2m behind the cow. No adjustment for lighting
was required. Digital software (Inkscape 0.91, Boston, US) was
subsequently then used to measure the tail head width distance,
distance between the hook bones and distance between the pin
bones of each cow. The distances were measured in pixels and
the width of the tail head was expressed as a percentage of the
distance between the pin bones or the distance between the hook
bones.

The ultrasound body fat measurement was used to test the
accuracy of manual and digital body condition measures. The
ultrasound fat depth measurement was converted to a linear BCS
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from 1 to 5 with quarters by attributing the fat depth value to one
of 17 categories, as shown in Figure 3.

Statistical Analysis
Pearson correlation coefficient (r) was multiplied by Lin’s bias
correction factor (Cb), which determines how far the best-
fit line deviates from the 45◦ line through the origin, to
derive the concordance correlation coefficient (CCC) (Lin, 1989).
The coefficient CCC was used to test the association between
ultrasound BCS and manual or digital BCS. Ultrasound (Oi) and
manual or digital BCS (Pi) were also compared by their overall
prediction error, and prediction error associated with cows <2.5
BCS and cows 2.5 BCS ormore, using the square root of themean
square prediction error (RMSPE) expressed as a percentage of
the observed mean ultrasound BCS. The mean square prediction
error (MSPE) was calculated (Equation 1) for all 209 observations
(n):

MSPE =

∑n

i=1
(Oi− Pi)2/n (1)

RESULTS

Farm Data
On average cows at FarmA had less body fat (5.28mm) than cows
at Farm B (11.32mm) (Table 1). The coefficient of variation for
measured fat depth was greater at 81% for Farm A compared to
68% for Farm B.

For the analysis, the data from both farms was combined into
a single dataset with animals of BCS from extremely thin (1) to
very fat (5).

Body Condition Score Measures
The ultrasound BCS was compared to the digital measurements
of tail head to pin bones and hook bones dimensions. There was a
strong positive relationship between ultrasound BCS and the tail
head to pin bones width (Figure 4). There was a poor relationship
between the ultrasound BCS and the tail head to hook bones
width (Figure 5).

FIGURE 3 | Classification of ultrasound body fat depth into 17 body condition

scores (BCS).

Given the relationship between the tail head to pin bones
width and ultrasound BCS (Figure 4), the values for tail head
to pin bones (ranging from 22.2 to 63.2%) were converted to
a linear digital BCS with 17 classifications for comparison with
other scoring methods, as shown in Figure 6.

The manual BCS had a high and positive correlation with
the ultrasound BCS (r = 0.790) and had a high Lin’s bias
correction factor (Cb = 0.749), resulting in a moderate CCC
of 0.592. However, the manual BCS tended to over predict the
body fat of cows when compared to the ultrasound fat depth
measure (Figure 7), and particularly at lower body condition
scores. The manual BCS had a relatively high prediction
error (RMSPE = 42.7%) when compared with the ultrasound
BCS, with the error being lower for cows of 2.5 BCS or
more (RMSPE = 19.0%) compared to cows of <2.5 BCS
(RMSPE= 63.8%).

The digital BCS had a high and positive correlation with
the ultrasound BCS (r = 0.819) and had a high Lin’s bias
correction factor (Cb = 0.964), resulting in a high CCC of
0.789. The prediction error of the digital BCS was moderately
low (RMSPE = 28.3%) when compared with the ultrasound
BCS (Figure 8) and was even lower for cows of 2.5 BCS
or more (RMSPE = 20.5%) compared to cows of <2.5 BCS
(RMSPE= 35.5%).

DISCUSSION

The current study compared manual observations of BCS and
digital BCS methods with detailed body fat depth measurements
using an ultrasound scanner, taken in the same caudal area for
each cow. The dataset provided the necessary range of animals
with body condition scores from extremely thin (1) to very
fat (5) for the analysis and comparison of scoring methods
(Edmonson et al., 1989; Schroder and Staufenbiel, 2006). The
linear classification of ultrasound measured subcutaneous fat
into 17 BCS categories from 1 to 5, and subcutaneous body
fat values ranging from 0.9 to 33.2mm, was comparable in
the current study (Figure 3) to that found by Schroder and
Staufenbiel (2006). Both herds used in the current study consisted
of high milk yielding Holstein dairy cows, with a similar average
daily milk yield (30.1 L/day at Farm A and 32.1 L/day at Farm B),
however, the herds were managed differently with cows at Farm
A grouped and fed according to stage of production whereas
at Farm B cows were of various stages of production within
a group using an automatic milking station. The difference in
management meant that at farm B the cows had a higher average
body fat (11.3mm) than the cows at Farm A (5.3mm). The
methods assessed all measured subcutaneous fat depth, expressed
as a BCS, and assumed that this provided an appropriate
assessment to the animal’s subcutaneous fat and overall body
fat reserves (Domecq et al., 1995; Schroder and Staufenbiel,
2006; Hussein et al., 2013). The data obtained in the current
study would suggest that optimum BCS of 2.5 at about 50 days
postpartum to 3.0 at calving and toward the end of lactation
(Chagas et al., 2007) is often not achieved for modern high milk
yielding dairy cows. This is considered the optimum range, with
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TABLE 1 | Mean (s.d.) body fat depth, tail head to pin and hook bone widths, ultrasound, manual, and digital body condition scores at Farm A and B and across farms.

Farm

A B

Farm Units Mean (s.d.) Range Mean (s.d.) Range Overall

Fat depth mm 5.28 (4.25) 1.01–23.02 11.32 (7.69) 0.91–33.20 8.81 (7.12)

Tail head to pin bonesa % 32.56 (6.06) 24.04–47.40 38.91 (9.18) 22.15–63.22 36.67 (8.74)

Tail head to hook bonesa % 23.78 (4.25) 15.87–34.71 21.22 (4.53) 13.16–30.62 22.12 (4.59)

Ultrasound BCS 1–5 1.60 (0.59) 1.00–4.00 2.45 (1.05) 1.00–5.00 2.10 (0.98)

Manual BCS 1–5 2.40 (0.68) 1.00–4.50 3.02 (0.69) 1.25–5.00 2.76 (0.75)

Digital BCS 1–5 1.99 (0.64) 1.00–3.50 2.63 (0.95) 1.00–5.00 2.41 (0.91)

aThe width of the tail head was expressed as a percentage of the distance between the pin bones or the distance between the hook bones.

an acceptable change of 0.5 BCS, so dairy cows can minimize
the impact of mobilizing body reserves for milk production
and negative energy balance on health, fertility, and well-being,
whilst still allowing cows to achieve adequate milk production
(Roche et al., 2009). Across all cows, the manual BCS produced
the highest average BCS of 2.76, compared to 2.41 for digital
BCS and 2.10 for ultraound BCS. The ultrasound and digital
methods were below the recommended “ideal” range of 2.5–3.0
(Chagas et al., 2007). On average, the manual BCS overpredicted
body condition when compared to ultrasound measurements
by 31%. This over prediction of manual BCS was greater in
low BCS cows at 57% higher than ultrasound measurements
(Figure 7). A limitation of visual assessment of body condition
is that it is unlikely to accurately detect subtle changes in body
composition change at a BCS of <2.5 (low), which equates
to a subcutaneous fat depth of <13mm (Figure 3). Also, at
very low subcutaneous fat depths, the decrease in BCS may
represent protein loss and not changes in body fat reserves
(MacDonald et al., 1999). The cows in the current study had
high genetic potentials for milk, which is known to result
in greater loss of BCS over a longer period postpartum and
a failure to repartition significant amounts of energy toward
body reserves until later in lactation or when lactation ceases
(Roche et al., 2006). The main benefit of better monitoring of
cow body condition is to improve awareness of animals that
are too thin or too fat, and consequently of higher risk from
poor health, fertility, and survival (Reid et al., 1986; Markusfeld
et al., 1997; Lopez-Gatius et al., 2003). There is little evidence
to suggest that improvements have been made with regard to
health and fertility in recent decades (Farm Animal Welfare
Council (FAWC), 2009), and therefore supporting the case for
enhanced monitoring of animals and their body condition. With
less wastage of resources such as feed, a 1-kg improvement in
feed utilization per cow per year would mitigate 1.3 kg of CO2-
eq. emissions each year, which for the UK dairy cow population
of 1.8 million cows would equate to a reduction of 2,340 t CO2-
eq. emissions and more profit of £324,000 to the dairy industry
(Bell et al., 2015). Improving health, fertility, and survival of cows
will increase profitability and reduce greenhouse gas emissions
intensity of milk production (Bell and Wilson, 2018), leading to
more sustainable milk production systems.

FIGURE 4 | Relationship between the tail head to pin bones width and

ultrasound body condition score (BCS).

FIGURE 5 | Relationship between the tail head to hook bones width and

ultrasound body condition score (BCS).

To address the need for better and frequent monitoring
of cow body condition, there has been considerable interest
in the use and application of digital technologies to predict
body condition. Taking digital images of the rear or caudal
area has also been shown to provide a reliable measure of
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FIGURE 6 | Classification of digital measure of tail head to pin bones width

into 17 body condition scores (BCS).

FIGURE 7 | Relationship between manual observed and ultrasound body

condition score (BCS). Root mean square prediction error (RMSPE) expressed

as a percentage of the observed mean for ultrasound BCS and Lin’s

concordance correlation coefficient (CCC) are shown, and the 45◦ line through

the origin.

body condition (Ferguson et al., 2006). Therefore, the current
study focused on measuring caudal subcutaneous fat and body
condition, which are not influenced by gut fill or pregnancy or
stage of production and have been shown to provide a reliable
measure of body fat (Schroder and Staufenbiel, 2006). In the
current study a digital BCS of cows was also estimated from
the tail head to pin bones width, which had a similar accuracy
to manual BCS for cows of 2.5 BCS or more (RMSPE of 20.5
and 19.0%, respectively) but higher accuracy for thinner cows
of <2.5 BCS (RMSPE of 35.5 and 63.8%, respectively). This
suggests that digital images from tail head dimensions can be
used to monitor cows with a broad range of body conditions.
The accuracy of the digital BCS prediction can be further
refined using computer vision techniques to automatically extract
image measurements and can also be estimated by Equation (2)
(Figure 4):

Ultasound BCS (1to5) = −1.27+ 0.09× tail head to pin bones (%)

(2)

FIGURE 8 | Relationship between digital and ultrasound body condition score

(BCS). Root mean square prediction error (RMSPE) expressed as a

percentage of the observed mean for ultrasound BCS and Lin’s concordance

correlation coefficient (CCC) are shown, and the 45◦ line through the origin.

There are several factors that can reduce the reliability of
digital BCS predictions and therefore need to be considered.
The current study supports the finding of Ferguson et al. (2006)
that the image photo needs to be taken at a 0–20◦ angle above
the tail head to get an optimum image for assessment. Also,
the influence of changing light, cow posture and color, and
tail movement may be causes of error, however, they were
not a problem when conducting measurements in the current
study.

If an accurate method was developed that could detect low
body fat changes and monitor animals frequently, then impacts
on the well-being of a cow can be minimized and managed
better than current practice. The different methods (ultrasound,
manual, or digital) assessed can all provide an easy, quick, and
practical measure for monitoring body condition on farms. For
large numbers of animals, the use of an ultrasound scanner can
bemore time consuming thanmanual or digital cameramethods.
Ultrasound measurements are more expensive, but accurate, and
can be used for other tasks such as pregnancy diagnosis of
animals. Both ultrasound and manual BCS methods can be done
infrequently whilst performing other routine animal husbandry
tasks, while automated digital analysis may provide the “ideal”
cow BCS profile based on frequent measurements.

The methods assessed all provide a useful and easily
implemented tool for monitoring cow BCS on commercial
farms to improve farm level decision making and awareness of
cow body condition. The approaches compared offer different
levels of complexity to monitoring cow body condition, with
manual and ultrasound methods requiring operator training,
whereas digital photos require minimal user input and provide
an automated objective measure. Across a wide range of BCS,
digital BCS was found to provide a more accurate assessment
of cow body condition than manual BCS observations when
compared to ultrasound body fat measurements. The digital BCS
can remove operator error and provide frequent monitoring to
allow detection of short-term changes in body condition, which
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will ultimately improve cow performance and well-being, and
enhance the sustainability of high milk production systems.
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Nitrogen (N) losses from cropping systems in the U.S. Midwest represent a major

environmental and economic concern, negatively impacting water and air quality. While

considerable research has investigated processes and controls of N losses in this region,

significant knowledge gaps still exist, particularly related to the temporal and spatial

variability of crop N uptake and environmental losses at the field-scale. The objectives of

this study were (i) to describe the unique application of environmental monitoring and

remote sensing technologies to quantify and evaluate relationships between artificial

subsurface drainage nitrate (NO3-N) losses, soil nitrous oxide (N2O) emissions, soil N

concentrations, corn (Zea mays L.) yield, and remote sensing vegetation indices, and

(ii) to discuss the benefits and limitations of using recent developments in technology to

monitor cropping system N dynamics at field-scale. Preliminary results showed important

insights regarding temporal (when N losses primarily occurred) and spatial (measurement

footprint) considerations when trying to link N2O and NO3-N leaching losses within

a single study to assess relationship between crop productivity and environmental

N losses. Remote sensing vegetation indices were significantly correlated with N2O

emissions, indicating that new technologies (e.g., unmanned aerial vehicle platform)

could represent an integrative tool for linking sustainability outcomes with improved

agronomic efficiencies, with lower vegetation index values associated with poor crop

performance and higher N2O emissions. However, the potential for unmanned aerial

vehicle to evaluate water quality appears much more limited because NO3-N losses

happened prior to early-season crop growth and image collection. Building on this work,

we encourage future research to test the usefulness of remote sensing technologies

for monitoring environmental quality, with the goal of providing timely and accurate

information to enhance the efficiency and sustainability of food production.

Keywords: nitrogen dynamics, nitrous oxide emissions, nitrate leaching, remote sensing, environmental

monitoring, sustainable food production
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INTRODUCTION

The installation of artificial subsurface drainage (tile drainage)
played an important role in the development of the U.S.
Midwestern Corn Belt, with the drainage improved in this way on
more than 17 million ha across the region today (USDA-NASS,
2012). This region is one of the most productive agricultural
areas in the world. In 2017, the states of Illinois, Indiana,
Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin
produced ∼232 million metric tons of corn (Zea mays L.) on
19.4 million ha of land (USDA-NASS, 2018), accounting for
∼35% of the world’s total corn production (USDA-ERS, 2018).
As global demand for food, fiber, and energy is expected to
continue increasing throughout the second half of the twenty
first century (Godfray, 2014), agricultural producers are facing
the dual challenge of further increasing crop production while
conserving natural resources and enhancing environmental
sustainability. Nitrogen (N) fertilizer inputs, in particular, are
essential to maximize production and sustain soil quality
in high-yielding cropping systems (Mueller et al., 2012; EU
Nitrogen Expert Panel, 2015). However, applied N fertilizer is
susceptible to environmental losses, with approximately only
half of N inputs recovered by harvested crop products globally
(Lassaletta et al., 2014; Zhang et al., 2015).

In the U.S. Midwest, N losses from croplands represent
a major environmental and economic concern, negatively
impacting water and air quality. The naturally N-rich soils
in this region are extremely well-suited for highly productive
cropping systems, but these soils also require artificial tile
drainage to meet productivity potential. The combination of
cropping systems composed of annual row crops, some of which
are N-intensive, naturally N-rich soils, and tile drainage is a
key driver of elevated nitrate (NO3-N) concentrations in the
upper Mississippi River Basin (David et al., 2010). High N loads
from this region contribute significantly to the seasonal hypoxic
zone (oxygen-depleted area) in the Northern Gulf of Mexico
each year (USEPA, 2007). Meanwhile, soil nitrous oxide (N2O)
emissions are a potent greenhouse gas (GHG) contributing
to stratospheric ozone depletion (Ravishankara et al., 2009).
In 2016, soil management activities (including N fertilizer
application) accounted for 77% of the total anthropogenic N2O
sources in the U.S., with the agriculture sector contributing
around 9% of total GHG emissions overall (USEPA, 2018).
A recent economic analysis estimated N losses (air/deposition,
surface freshwater, groundwater, and coastal zones) related to
agricultural N use in the U.S. have corresponding environmental
damage costs of $157 billion year−1 (Sobota et al., 2015).

Management of N fertilizer to meet both production and
environmental goals is challenging, in part because cropping
system N dynamics are based on complex relationships that are
difficult to monitor and cannot be easily predicted. Ammonium
(NH4-N) andNO3-N are themain forms of inorganic soil N, with
NH4-N being rapidly converted to NO3-N through the process of
nitrification in warm, well-aerated soil (Norton, 2008). However,
NO3-N is susceptible to losses through leaching (the downward
movement of dissolved nutrients through the soil profile with
flowing water) (Mulla and Strock, 2008) and denitrification (the

biological reduction of NO3-N into N2O gas under anaerobic
conditions andmicrobial respiratory metabolism) (Coyne, 2008).
Due to interactions among weather, soil properties, crop growth,
and soil N transformations, the fate of applied N fertilizer is
highly variable and there are unanswered questions about how
much N not recovered by the crop is susceptible to N leaching
and gaseous losses (Scharf, 2015). Adding to this complexity is
that relationships between soil N availability, crop N uptake,
and environmental losses vary across temporal and spatial
scales. While considerable research has investigated processes
and controls of N losses in this region, individual studies are often
focused on only one or two components of the system, leading
to an incomplete understanding. Thus, significant knowledge
gaps still exist, particularly related to how the spatial and
temporal variability of soil-plant-water relationships collectively
drive environmental N losses at the field-scale.

The ability to simultaneously measure crop N dynamics
and environmental loss pathways using recent developments
in monitoring technologies could be an important step in
improving crop production efficiencies to maximize grain yields
while reducing N losses. For instance, it is well-documented in
separate studies that increased N inputs correspond to greater
N2O and tile drainage N losses in corn-based systems, especially
when the N rate exceeds plant N demand (Decock, 2014;
Christianson and Harmel, 2015a). Therefore, one would expect
that conditions leading to high N leaching losses would also
result in high N2O losses. However, a recent meta-analysis
evaluating the effects of N fertilizer management practices on
corn yields and N losses highlighted the lack of paired N2O
emission and drainage N leaching data collected from the same
fields in the same cropping year (Eagle et al., 2017b). With only
one study out of 27 in the U.S. and Canada measuring both
N2O and N leaching losses, these authors concluded the lack of
information is impeding our understanding of N cycling tradeoffs
and synergies (Eagle et al., 2017b). Similarly, understanding
potential tradeoffs between crop productivity and environmental
N losses is a key issue in reducing the N footprint of agriculture
(Zhang et al., 2015). Nevertheless, few studies have evaluated
whether increased crop yields and N uptake within a field
correspond with lower N2O emissions and N leaching losses,
likely because individual studies are often focused on only limited
parameters due to disciplinarily of researches often combined
with funding limitations.

Investigating the potential usefulness of enhanced monitoring
technologies requires field-scale research approaches to identify
benefits and limitations for specific crop production contexts.
In addition to spatial variability of N cycling processes within
a field, there is also variation between different measurement
methods. Nitrous oxide emissions are often measured following
the static closed-chamber method in small areas (∼0.7 × 0.4m)
(Parkin and Venterea, 2010). This observational footprint is
significantly smaller thanmany drainage studies where the nature
of drainage hydrology integrates N leaching losses over several ha
(Christianson et al., 2016). Crop response to N fertilizer has also
been shown to be highly variable within-field due to differences
in soil properties (Scharf et al., 2005; Schmidt et al., 2011). At
broader spatial scales, remote sensing technologies [e.g., satellite
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imagery, unmanned aerial vehicles (UAV)] have increasingly
been used for crop monitoring and yield forecasting in the
recent decades (Rembold et al., 2013). These new technologies
allow improved data collection capability over large areas with
finer temporal and spatial resolution, and these technologies
are becoming more readily available at the farm-level to aid
monitoring, awareness, and decision-making (Atzberger, 2013;
Bell and Tzimiropoulos, 2018). However, we are unaware of
efforts to combine recently available technologies with the goal
of shedding new insights into how fundamental N cycling
processes are correlated at the field-scale, while also exploring the
limitations of such approaches.

The objective of this investigation was to describe the unique
application of environmental monitoring and remote sensing
technologies to quantify cropping system N dynamics (i.e.,
artificial subsurface drainage N losses, soil N2O emissions, soil
N concentrations, corn yield, and remote sensing vegetation
indices) at a new research site established in central Illinois, U.S.
The purpose of this manuscript was to interpret preliminary
results from 2017 (corresponding to the baseline year of a
long-term field experiment) to illustrate how this research
approach can help inform the development of high-yielding crop
production systems with a low environmental footprint.

MATERIALS AND METHODS

Site Description and Experimental Design
Sixteen individually subsurface drained plots (hydrologically
isolated using border tiles) were established in fall 2016 at the
University of Illinois Dudley Smith Farm in Christian County,
IL, U.S. (39◦ 27’ N, 89◦ 6’ W). Each plot was approximately
0.85 ha, containing three tile laterals at 18m spacing (Figure 1).
The drainage system was design using a drainage design
coefficient of 9.5mm day−1 (i.e., the rate at which water is to
be removed from the field). The soils were generally silty clay
loam and silt loam series, classified as somewhat poorly drained
(Herrick, Oconee, and Oconee-Darmstadt-Coulterville series),
poorly drained (Virden series), and moderately well-drained
(Harrison series) (Web Soil Survey, 2018). The region has a
hot humid continental climate (Köppen Climate Classification
System: Dfa), with long term annual rainfall of 1,043mm and
annual mean temperature of 11.6◦C (30-year average). Daily
temperature and precipitation were recorded using an on-site
weather station (HOBO RX3000, Onset Computer Corporation,
Bourne, MA, U.S.) (Figure 2).

Drainage Water Monitoring
Each plot drained to an inline control structure (AgridrainTM,
Adair, IA, U.S.). Beginning in late spring 2017 (April/May),
flow was continuously monitored using a water level data logger
(HOBO U20L-04, Onset Corporation, Bourne, MA, U.S.; water
depth recorded every 15min) at six of the 16 plots (plots 3,
7, 9, 10, 13, and 15). These initial six plots were selected from
across the site to trial potential monitoring equipment during
this baseline year; all plots were eventually instrumented during
the treatment period (data not presented here). Drainage flow
rates were calculated using a calibrated v-notch weir equation or

a compound weir equation at greater flow depths (AgriDrainTM,
personal communication; Chun and Cooke, 2008). Drainage
water samples (∼100mL) were collected weekly from all 16
plots, filtered within 24 h (0.45µm, S-Pak R© Membrane Filters,
Millipore Sigma, Darmstadt, Germany), and stored frozen until
analysis for NO3-N (within 20 days; method 10-107-106-1-J,
Lachat QuickChem 8500 series, Loveland, CO, U.S.). Nitrate-
N loads for this period were estimated by multiplying NO3-N
concentrations by discharge volumes for each sampling event
and summing across the growing season. Yield-scaled NO3-N
leaching losses (YSNO3, in kg NO3-N per Mg of grain) were
estimated by dividing NO3-N loads by grain yield for each plot.

Soil N2O Emission and Inorganic N

Measurements
Measurements of N2O were performed following the closed-
static chamber method according to USDA-ARS GraceNET
Project Protocols (see details in Parkin and Venterea, 2010).
The chamber consisted of two parts: a chamber base (67.3 cm
length × 40.6 cm width × 14 cm height) and a vented closed
chamber lid (same dimensions as base) that was covered with
reflective double bubble foil insulation (Ecofoil, Urbana, IA,
U.S.) to minimize temperature changes during gas sampling.
The lids also contained a layer of weather stripping (Lundell
Manufacturing Corporation, Minneapolis, MN, U.S.) lining the
connection between lids and base to create an air-tight seal
during gas sampling and prevent ambient mixing. The chamber
bases were inserted 5 cm into the soil on May 15, ∼4.5m
beside the center tile lateral to obtain representative drainage
conditions. This location was the midpoint between the plot
area furthest from the lateral (9m) and directly over the lateral.
Chamber bases were left in place during the entire growing
season (Figure 1).

Gas samples were collected weekly from side-dress N
application until August, and twice a month thereafter. On
each sampling date, the chamber lid was placed on top of
the chamber base and secured in place with clamps. Each
chamber lid had an airtight septum at the top through which
samples were withdrawn. Individual gas samples of 20mL were
taken at 0, 16, 32, and 48min following chamber deployment
using a 20mL syringe. After withdrawing a sample, 5mL of
gas was ejected, and 15mL was immediately transferred into a
10mL previously evacuated glass vial sealed with butyl rubber
stoppers (Voigt Global Distribution Inc., Lawrence, KS, U.S.).
Rubber stoppers were covered with clear RTV silicone adhesive
sealant (Dow Corning, Midland, MI, U.S.) to prevent leakage.
Gas samples were stored in glass vials until analyzed by gas
chromatography (Shimadzu GC-2017, Canby, OR, U.S.). Nitrous
oxide fluxes were calculated from the linear increase in gas
concentration in the chamber headspace vs. time, as described
by Parkin and Venterea (2010). Cumulative area-scaled N2O
emissions (cN2O) were estimated using trapezoidal integration
of flux vs. time, as described by Venterea et al. (2011). Yield-
scaled N2O emissions (YSNE, in kg N2O per Mg of grain) were
estimated for each plot by dividing cN2O by the respective grain
yield (van Groenigen et al., 2010).
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FIGURE 1 | Experiment and drainage design layout at the University of Illinois Dudley Smith Farm, Illinois, U.S.

FIGURE 2 | Daily maximum and minimum air temperatures and precipitation during the corn growing season in 2017 at Dudley Smith Farm, Illinois, U.S. (N, nitrogen;

PM, physiological maturity).

Soil samples for NO3-N and NH4-N determination were

taken following procedures described by Graham et al.
(2018). Briefly, composite samples were obtained from five

equally spaced soil cores across the inter-row area along
a transect running perpendicular to the crop row. Samples

were collected to 20 cm depth near gas chambers in each
plot using a 2 cm diameter probe. Soil inorganic N was

extracted within 24 h using 2M KCl and NO3-N and NH4-
N concentrations were determined using a Smartchem 170
discrete wet chemistry auto-analyzer (Unity Scientific, Milford,
MD, U.S.).

Corn Management and Aerial Imagery

Collection
Corn was grown with uniform management across all 16 plots
in 2017. Following pre-plant tillage to prepare the seed bed (S-
tine field cultivator 2210 John Deere, Moline, IL, U.S.), corn
was planted on April 26 2017 at 80,000 seeds ha−1 and 76 cm
row spacing. Nitrogen fertilizer management consisted of a pre-
plant application (April 25 2017; 168 kg N ha−1) and a side-
dress application (June 14 2017; 135 kg N ha−1), both as liquid
urea ammonium nitrate (UAN) (28-0-0, N-P2O5-K2O) using a
coulter applicator (BLU-JET AT6020, Thurston Manufacturing
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Company, NE, U.S.) that injected the liquid fertilizer between
crop rows at a depth of 3.5 cm below the soil surface.

Aerial imagery was collected using a UAV (3DR R© Drone
Site Scan, Berkeley, CA, U.S.) equipped with a multi-spectral
sensor (Parrot Sequoia R©, Paris, France) on June 14 2017
and July 12 2017 (corn approximately at growth stages V6
and R1, respectively). The images were taken at an altitude
of 100m, with spatial resolution of 10 cm. The Normalized
Difference Vegetation Index (NDVI) and Normalized Difference
Red Edge Index (NDRE) were calculated from the reflectance
measurements in the Red, Red Edge, and Near Infrared
(NIR) portion of the spectrum, according to the following
equations (Gitelson, 2011):

NDVI =
NIR − Red

NIR + Red

NDRE =
NIR − Red Edge

NIR + Red Edge

A total of 20 locations over the site were randomly selected
to collect plant biomass samples after the drone flight on
June 14 2017. The sample areas (0.76 m2) were georeferenced
using a Global Position System (GPS) (Geo 7X handheld
GeoCollectorTM, Trimble R©, Wesminster, CO, U.S.). The plants
were clipped at ground level, dried at 60◦C in a forced-air oven
for 7 days, ground to pass through a 2mm screen (Wiley Mill,
Arthur H. Thomas Co., Philadelphia, PA, U.S.), and analyzed for
N via combustion on an elemental analyzer (Brookside Labs, New
Bremen, OH, U.S.).

After corn physiological maturity (growth stage R6), grain and
biomass N concentration was determined following a standard
research protocol in this region (Kitchen et al., 2017). A total of
six whole plants were taken near the gas chambers within each
plot and separated into ear and stover (stems+ leaves) fractions.
The dried stover was ground to pass through a 2mm screen using
theWileyMill. Corn grain was shelled from ears using an Almaco
ECS (Nevada, IA, U.S.). Grain moisture and test weight were
measured with a grain analyzer (Model GAC 2000, DICKEY-
John Corp., Springfield, IL, U.S.). Grain yields were corrected to
155 g kg−1 moisture content. To calculate total aboveground N
uptake, N concentration for both grain and stover samples were
determined by Brookside Labs as described above.

Corn was harvested on October 17 2017 using a John
Deere Combine equipped with a GREENSTARTM Yield Monitor
System and YieldMapping System (JohnDeere,Moline, IL, U.S.).
Grain yield was recorded every 3 s along with GPS location.
Grain yield data consisted of 21,647 points (observations) for
the entire field (41.5 ha). For each point, N content in grain
was estimated using the average N concentration from the hand-
harvested samples (1.4%). Nitrogen balance was estimated as
an indicator of environmental loss, and was calculated by the
difference between N input (fertilizer) and N output (N removed
in grain) (McLellan et al., 2018).

Data Processing and Analysis
After each drone flight, aerial images were processed and
analyzed using Pix4D Software (Pix 4D S.A., Switzerland).

A raster image file with a spatial resolution of 10 cm was created
for bothNDVI andNDRE of corn at both growth stages. All maps
were created using ArcGIS (version 10.5, ESRI R©, Redlands, CA,
U.S.) Geospatial Analyst tool.

The pixel values from the raster files were extracted and
averaged based on the measurement scale at which the different
observational data were collected. For instance, the NDVI and
NDRE values were extracted and averaged within each plant
biomass sampling area (0.76 m2) to make inferences regarding
the relationship between remote sensing indices and in-season
plant N status and biomass production. Following the same
logic both NDVI and NDRE values were extracted and averaged
across the sampling area comprising the gas chamber (1.5 m2)
in order to evaluate the relationship between N2O emissions and
remote sensing indices. Average NDVI and NDRE values were
also obtained for each plot (∼0.85 ha) to evaluate the relationship
between NO3-N loads and remote sensing indices.

Before yield map analysis, grain yield data was filtered
to remove the extreme outliers [i.e., values outside of the
mean ± 3 standard deviation (Schwalbert et al., 2018)] due
to common inherent errors when the combine changed speed
and direction (Simbahan et al., 2004). The final data set was
normally distributed and comprised 97% of the original data
(mean 13.2Mg ha−1, standard deviation 2.15Mg ha−1). A grain
yield map was created in raster format by spatial interpolation
of point measurements using the Inverse Distance Weighted
method. A grid-cell size of 12.2 × 12.2m was selected to reflect
the width of the combine’s head used for harvesting.

Correlation analyses were conducted using PROC CORR of
the SAS R© Software (version 9.4, SAS Institute, Cary, NC, U.S.)
to evaluate the degree of association among remote sensing
vegetation indices, crop, air, and water quality data. Correlations
were considered significant at p < 0.1.

RESULTS

Weather Conditions
Compared to the 30 years average for the region, monthly
precipitation in 2017 was high early in the growing season (April
and May) and low throughout the remainder of the season
(except July) (data not shown). Precipitation amounts in April
andMaywere 47.7 and 18.2mmgreater than the 30 years average.
Total precipitation in August and September was 9.3 and 2
compared to 71 and 82mm for the 30 year average, respectively.
In addition, a period of high daily precipitation was observed
from late April to early May, with daily precipitation totals
ranging from 4.5 to 41mm (Figure 2).

Soil N2O Emissions, Tile Drainage NO3-N

Concentrations, and Soil Inorganic N

Concentrations
The overall pattern of daily N2O fluxes (dN2O) during the
growing season was similar among plots, despite differences in
magnitude (Figure 3A). There were clear signals of increased
N2O fluxes on May 23, June 19, and July 25. For example, 5 days
after UAN side-dress application (June 19), dN2O increased from
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FIGURE 3 | Daily nitrous oxide fluxes (dN2O) (A), tile drainage nitrate

concentration (B), soil nitrate (NO3-N) (C), and ammonium (NH4-N)

concentration (D) during the 2017 corn growing season.

4.9 and 4.3 to 72.3 and 81.7 g N2O-N ha−1 day−1 on plots 1 and 2,
respectively. Similarly, dN2Owere above 90 gN2O-N ha−1 day−1

for both plots 7 and 16 on that date. Spikes in dN2O were also
seen later in the growing season (July 25), particularly on plots 1,
2, 8, and 9.

Whereas, trends in N2O emissions were relatively consistent
across plots, tile drainage NO3-N concentrations showed much
greater variability (Figure 3B). While there was a similar
decreasing seasonal trend in NO3-N concentrations over the
growing season, the coefficient of variation (CV) of daily
NO3-N concentration was above 40%, despite the similar soil
types, weather patterns, and consistent drainage design for this
experimental site. For instance, on the first sampling date (May
2), NO3-N concentration ranged from 2.9 (plot 11) to 16.6mg

NO3-N L−1 (plot 5), highlighting the within-field temporal
and spatial variation. Elevated NO3-N concentration also were
observed during the last 2 weeks of May (May 17–30) on plots 8
and 13. Tile drainage flow stopped from July 27 to October 11,
due to zero precipitation during this period (Figure 2), resulting
in no samples being collected.

The temporal behavior of soil NO3-N and NH4-N
concentrations were somewhat different from each other.
Throughout the growing season, temporal variability was lower
in soil NO3-N (CV ranged from 42 to 60%) compared to NH4-N
concentration (CV ranged from 52 to 94%) (Figures 3C,D).
Before UAN side-dress, soil NO3-N concentration was greater
(<70 ppm) in all plots compared to NH4-N (<20 ppm). Yet,
NH4-N concentration rapidly increased in most of the plots
after the second N fertilization event, with several spikes (>20
ppm increase) in NO3-N concentration also being observed. For
instance, NH4-N concentration increased from approximately 5
to more than 150 ppm on plots 2, 8, and 13. In addition, NH4-N
concentration was above 50 ppm in all plots (except 7, 12, 15, and
16). Except for plot 1, soil NO3-N and NH4-N concentrations
were lower toward the end of the growing season.

In-season Corn NDVI and NDRE
In general, higher spatial variability of both NDVI and NDRE
were seen at V6 compared to when corn was at growth stage R1
(Figure 4). Across the entire field, the CV of NDVI and NDRE
were 29 and 23% at V6 compared to 8 and 11% at R1, respectively.
When averaged within plots, the CV ranged from 10 (plot 13) to
28% (plot 12) for NDVI at V6 compared to the range of 1 (plot 9)
to 7% (plot 4) at R1. Similarly, higher CV was found on NDRE at
V6 (ranging from 13 to 22%) than at R1 (ranging from 4 to 8%).

The linear regression models relating plant biomass and N
content with both NDVI and NDRE showed a highly significant
relationship (p < 0.001) (Figure 5). At growth stage V6, the
variation in plant biomass was more strongly correlated with
NDVI (R2 = 0.67) compared to NDRE (R2 = 0.40). Similar
trends were seen when plant N content was plotted against NDVI
and NDRE, with NDVI accounting for a larger proportion of
variation in plant N content.

Corn Yield and N Balance
Corn grain yield was found to be highly variable both within-field
and within-plots (Figure 6A). Across the entire field, mean grain
yield was 13.2Mg ha−1 and the CV was 16%. When averaged
within-plots, grain yield ranged from 12.8 (plot 4) to 15Mg ha−1

(plot 8), and the CV ranged from 5 (plot 7) to 17% (plot 14).
As the end-of-season N balance was estimated from grain

yield and grain N concentration, the spatial variability of N
balance followed a similar but inverse trend to yield. That is, areas
in the field with low and high values of N balance corresponded
to areas with high and low grain yields, respectively (Figure 6B).
The average N balance across the whole field was 145 kg ha−1

with a CV 14%. Despite high grain yields in portions of the field,
there were no negative values for N balance, which ranged from
75 to 242 kg ha−1.
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FIGURE 4 | Normalized Difference Vegetation Index (NDVI) (A,B) and Normalized Difference Red Edge (NDRE) (C,D) of corn at growth stage V6 and R1 during the

2017 corn growing season.

FIGURE 5 | Relationships of plant biomass (A) and nitrogen (N) uptake (B) with both Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red

Edge (NDRE) at growth stage V6.

Relationship Between Remote Sensing

Vegetation Indices, Crop, Air, and Water

Quality Data
Overall, few significant relationships were observed between
vegetation indices and crop, air, and water quality data. However,

NDVI at growth stage V6 was negatively correlated with N2O

losses (p < 0.1) (Table 1). Also, the correlation coefficient

(R) between NDVI and N2O losses increased as the season

progressed (R = −0.44, −0.56, and −0.66 for cN2O at growth

stage V6, R1, and seasonal cN2O, respectively). Early- and
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FIGURE 6 | Corn grain yield (A) and nitrogen (N) balance (B) at the end of the 2017 growing season.

mid-season remote sensing vegetation indices were significantly
correlated with corn grain yield and end-of-season N balance.
Corn grain yield and N balance was positively and negatively
correlated with both NDVI and NDRE at both growth stage V6
and R1.

DISCUSSION

The lack of studies evaluating multiple pathways of N loss
limits our overall understanding of, and ability to optimize, N
management to achieve both crop production and environmental

goals, particularly in highly productive tile-drained landscapes.
In this study, we used recent developments in technologies to
evaluate the variability and potential correlations between N
cycling processes within 16 separate experimental units in a
field. As noted above, 2017 corresponds to the baseline year of
a long-term field experiment and no treatments were imposed.
We also acknowledge that definitive relationships cannot be
determined based on 1 year of data, and thus, preliminary
results are interpreted with the goal of highlighting the type of
knowledge gained using this unique approach and the benefits
and limitations for developing strategies to mitigate N losses and
enhance crop production sustainability.
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TABLE 1 | Pearson’s correlation coefficient of correlations analysis between remote sensing vegetation indices, crop, air, and water quality data.

cN2O V6 cN2O R1 cN2O R6 YSNE NO3-N load YSNO3 NDVI V6 NDVI R1 NDRE V6 NDRE R1 Grain yield N balance

cN2O V6 –

cN2O R1 0.89*** –

cN2O R6 0.44* 0.60** –

YSNE 0.45* 0.58** 0.98*** –

NO3-N load −0.25 −0.28 0.55 0.65 –

YSNO3 −0.26 −0.33 0.45 0.63 0.99*** –

NDVI V6 −0.44* −0.56** −0.66** −0.61** −0.37 −0.43 –

NDVI R1 −0.56 −0.19 −0.16 −0.08 −0.04 −0.12 0.49* –

NDRE V6 0.21 0.09 −0.14 −0.17 −0.67 −0.66 0.22 0.44* –

NDRE R1 0.07 0.07 −0.30 −0.22 0.11 0.06 0.12 0.76*** 0.47** –

Grain yield 0.05 0.15 0.17 0.00 −0.50 −0.54 0.45* 0.73*** 0.79*** 0.74*** –

N balance 0.20 0.13 0.01 0.07 0.53 0.57 −0.46* −0.67** 0.85*** −0.63*** −0.97*** –

cN2O, cumulative N2O emissions at corn growth stage V6, R1, and R6; YSNE, yield-scaled N2O emissions; YSNO3, yield-scaled nitrate load; NDVI, normalized difference vegetation

index; NDRE, normalized difference red edge.
*p < 0.1, **p < 0.05, ***p < 0.001.

Relationship Between Crop Productivity

and N Losses
One common theory for minimizing the risk of N losses is
to increase crop productivity per unit of applied N (Snyder
et al., 2009; van Groenigen et al., 2010; McLellan et al.,
2018). Yet, surprisingly few studies have evaluated within-field

relationships between crop yield and both N2O emissions and
N leaching losses, perhaps because these parameters are not

often collected or reported for the same experiment (Omonode
et al., 2017). In this study, growing season N2O emissions and
NO3-N loads were not significantly correlated with grain yield
(Table 1). While this finding is not consistent with the theory that
higher yields correspond with lower environmental N losses, it
nonetheless illustrates the benefits of this experimental approach

for simultaneously evaluating of agronomic and environmental
performance in this region.

The need to identify potential tradeoffs between crop
productivity and N losses is also important from a policy
perspective. There is increasing emphasis on improving N

use efficiency by reducing N balance, which is proposed as a
robust index of potential N losses because it is a measure of

anthropogenic N supply that exceeds crop N demand (McLellan
et al., 2018). As the majority of crop N uptake is concentrated

in grain at the end of the season, large N balances are generally
associated with high N rates and/or low yields. In this study,
relatively large N balances resulted from an N rate well above
regional recommendations, suggesting that a greater portion of
applied N fertilizer was susceptible to losses. However, similar
to yield, correlations between N balance and N2O and NO3-
N leaching losses were not significant (Table 1). This finding
differs from McLellan et al. (2018) who found a significant
relationship between N balance and yield-scaled N losses using
data from published studies andmodeling efforts in the U.S. Corn
Belt. In another meta-analysis assessing N2O emissions in North
America’s corn production systems, Omonode et al. (2017) found
a strong and positive relationship between N2O losses and N
balance, suggesting that management systems achieving low N

balance (<60 kg N ha−1) would possibly increase N use efficiency
and decrease cN2O. Generating additional empirical evidence
through field-scale experiments under commercial production
conditions should help scientists further evaluate and strengthen
these relationships, especially if N balance is to be used in
developing policies or incentive programs.

Relationship Between N2O Emissions and

NO3-N Leaching Losses
Evaluating patterns in N losses throughout the season may
help elucidate potential relationships between N2O emissions
and NO3-N leaching losses. In theory, N2O and NO3-N
leaching losses should be related via soil N pools (Denk et al.,
2017). Nitrogen fertilization is a major factor controlling N2O
production in agricultural soils because of its direct impact on
soil mineral N availability (NH4-N + NO3-N) (Snyder et al.,
2009), and N2O emissions have been found to increase both
linearly and non-linearly with N fertilizer rate (Kim et al.,
2013; Decock, 2014; Shcherbak et al., 2014). In 2017, notable
spikes in soil N2O emissions occurred on several dates, with
dN2O increasing from 8 to 50 g N2O-N ha−1 day−1 right after
UAN side-dress application (Figure 3A). However, spikes did
not always correspond with N application events, fluxes were
also correlated with soil moisture (R = 0.55, p < 0.001, n =

80) and to a lesser extent soil temperature (R = 0.25, p =

0.028, n = 80). Following a similar logic as N2O emissions,
due to the high mobility of NO3-N in the soil, tile drainage
NO3-N concentration is expected to increase after N fertilizer
application, particularly if the N fertilizer source contains N
in the form of NO3-N and in years with high precipitation.
However, in our study, only three plots showed an increase
in tile drainage NO3-N concentrations following the second
N application event, whereas NO3-N concentration remained
relatively constant on the remaining plots (Figure 3B).

Soil N transformations following fertilizer N application
events could help explain trends in N2O and NO3-N leaching
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losses. While there was a clear signal of increased soil NH4-
N after N side-dress application, this did not occur for
NO3-N concentrations (Figures 3C,D). In agricultural soils,
NH4-N concentration is generally low because it is rapidly
converted toNO3-N through the process of nitrification (Norton,
2008), as evidenced by the lower concentrations of NH4-N
compared to NO3-N before UAN application events. Soil NO3-
N concentrations may not have increased because crop N uptake
started to occur during the period of nitrification, which also
corresponded with relatively few plots having increased NO3-N
concentrations in drainage following the second N application
event. Several studies have emphasized the importance to
synchronize soil N supply with crop N demand to improve N
use efficiency and reduce N losses in croplands (Robertson and
Vitousek, 2009; Snyder and Fixen, 2012). Often this corresponds
to a split-application of N fertilizer: generally at planting (to
ensure initial N supply) and right before the period of rapid crop
growth and N uptake, which in corn is roughly between growth
stages V8 and R1 (Sawyer et al., 2006). In the long-term, the
unique approach in this experiment for monitoring N fluxes at
the field-scale will provide a better understanding of how specific
management practices (e.g., timing of N fertilizer application)
may influence soil N availability, and in turn, the potential
for either enhanced N2O emissions or NO3-N leaching losses
depending on weather variability and crop growth patterns,
among other factors.

Relationships between N loss pathways can also be compared
across the growing season. Preliminary data from 2017 indicate
that both daily (R = 0.08, p = 0.327, n = 133) and seasonal (R
= 0.55, p = 0.259, n = 6) N2O and NO3-N leaching losses were
not significantly correlated. While these results are only based on
1 year, they provide some important insights regarding temporal
and spatial considerations when trying to link N2O and NO3-N
leaching losses within a single study. First, there was an important
temporal disconnect when N2O vs. NO3-N losses primarily
occurred. On average, ∼96 and 86% of the seasonal NO3-N
leaching and N2O losses occurred between April and May, and
between May and August, respectively. This is consistent with
other subsurface drainage work showing that the largest drainage
volumes occur in the March-May timeframe (e.g., Jin and Sands,
2003), which is often a period of high precipitation coupled
with N fertilizer application in corn-based cropping systems. Our
results are also relatively consistent with the period of highest
N2O emissions in the Midwest, with approximately 50–80% of
the seasonal cN2O occurring within 30–40 days following N
application early in the growing season (Omonode et al., 2017),
when plant N uptake is relatively low and excess N becomes
available for nitrification and denitrification. In our study,∼42%
of the seasonal cN2O occurred within 40 days after UAN side-
dress on June 14.

In this sense, the lack of a relationship between N2O and
NO3-N leaching losses is not surprising due to the temporal
difference of when these losses were occurring and the soil
and climate conditions influencing those losses. However, in
other years where warm, wet springs are followed by cool, dry
summers, it would not be surprising if this resulted in high
NO3-N losses but low N2O emissions. It is also important to

highlight that the seasonal N losses measured here correspond to
the corn growing season (April–October), and therefore do not
reflect annual losses. To account for these limitations mentioned
above, both N2O and NO3-N leaching losses will be monitored
throughout the year in all 16 experimental units, which will also
lead to better estimations of total N losses. Drainage events and
N2O fluxes during the winter by freeze/thaw cycles have been
shown in separate studies to contribute significantly to the total
N losses in certain locations and years (Christianson and Harmel,
2015b; Wagner-Riddle et al., 2017).

Beyond the temporal disconnect discussed above, there is
an important spatial disconnect (i.e., measurement footprint)
that may pose challenges in trying to develop quantitative
relationships between N2O and NO3-N leaching losses. The
different scale of measurements between N2O and NO3-N,
and the within-plot variability that is likely observed for N2O
emissions in large-scale research, complicates any assessment
of the relationship between these two variables. It has long
been recognized that there is large spatial variability in soil
N2O emissions. Recent studies have shown that hotspots of
N2O emissions within field can account for as much as 30%
of the cumulative emissions (Turner et al., 2016). While new
measurement techniques are available to analyze emissions in
large plots [e.g., see methods in Hensen et al. (2013)], they are
considerably more expensive and may not support replicated
treatment comparisons. Hence, new approaches may be needed
to strengthen our ability to capture the spatial variability in soil
N2O emissions, specifically for plot sizes typical for assessing tile
drainage nutrients concentrations. Recently there have been calls
for not only additional field studies where multiple types of N
loss pathways are simultaneously evaluated, but also for better
data reporting to enhance future agro-ecosystem data syntheses
and meta-analyses (Eagle et al., 2017a). A great deal of research
activity is being directed toward addressing this knowledge gap,
thus we encourage others to consider these temporal and spatial
methodology points when evaluating both N2O and NO3-N
leaching losses in the same study.

Remote Sensing Technologies for

Monitoring Both Crop and Environmental

Performance
Despite the rapid growth of UAVs in agriculture, little work
has explored the potential for new technologies to directly link
sustainability outcomes with improved agronomic efficiencies.
The value in the present research is not only being able to assess
these relationships after harvest, but also earlier in the growing
season when adaptive N management decisions could still be
made. To date, we are unaware of any effort to assess the degree
to which in-season measurements of crop performance or N use
efficiency may correspond with environmental N losses.

Our results from one growing season show that UAV images
collected at corn growth stage V6 may be an indicator of
N2O losses, but not for NO3-N leaching losses (Table 1).
Vegetation indices such as NDVI have been extensively used
to make inferences of in-season plant N status and biomass
production, and generally, greater leaf area and greener plant
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biomass result in higher NDVI values (Rembold et al., 2013)
(Figure 5). In theory, areas in the field with low early-season
NDVI values correspond to areas with poor crop establishment
and consequently low N uptake, and with more N accumulating
in soil, it becomes susceptible for losses through denitrification.
This rationale could help explain the strong and negative
relationship between early-seasonNDVI andN2O losses found in
this study. In addition, the correlation coefficient between early-
season NDVI and N2O losses increased as the season progressed
(R = −0.44, −0.56, and −0.66 for cN2O at growth stage V6, R1,
and seasonal cN2O, respectively). On average, ∼27 and 44% of
the total N2O losses had already occurred at growth stage V6
and R1, respectively. These results indicate that UAV platforms
could represent an integrative tool for linking crop performance
and air quality outcomes, but further research is necessary.
Agricultural monitoring systems that provide timely and accurate
information are of great interest to agricultural producers,
allowing them to make in-season management decisions to
enhance the efficiency of production. If relationships between
N2O emissions and NDVI were consistent under a wide range
of conditions, such an approach could have the co-benefit of
enhancing the sustainability of food production.

The correlation between remote sensing vegetation indices
and NO3-N leaching losses was not significant at any time
throughout the growing season (Table 1). In fact, due to the
temporal disconnect discussed above (i.e., 73% of the seasonal
NO3-N leaching losses occurred before crop emergence), this
correlation was not expected to be significant. However, there
might be cases where this relationship is observable, particularly
if excess rainfall affects crop growth and losses during the
period of crop growth contributing significantly to seasonal
NO3-N loads. In theory, it is possible that in years with
significant flooding events, crop emergence/establishment would
be poor (which is associated with NDVI/NDRE) and NO3-
N leaching losses would he high. Following similar logic as
N2O emissions discussed above, being able to link agronomic
and environmental performance early in the growing season
would provide enhanced and timely information for monitoring,
measurement, and management to achieve both production and
environmental goals. Nonetheless, because the majority of NO3-
N leaching on an annual basis occurs before UAVs are used
to map early season crop N status, there are likely inherent
limitations in using remote sensing technologies as an indicator
of water quality outcomes.

CONCLUSION

Reducing the N footprint of high-yielding cropping systems in
the U.S. Midwest has become of great interest to agricultural
producers, policy-makers, and society. Understanding potential
tradeoffs between crop productivity and environmental pollution
is key to advancing the sustainability of N fertilizer use in
this region. In this study, preliminary results from 2017 were
used to (i) assess correlations between crop N dynamics and
environmental losses and to (ii) discuss the benefits and
limitations of using recent developments in technologies to

monitor cropping systems N dynamics at the field-scale. There
is a common consensus in the literature that enhancing crop
yields and N use efficiency will result in lower environmental
N losses. While growing season N2O emissions and NO3-
N loads were not correlated with grain yield in this study,
results illustrate how an integrated field-scale research approach
can help further evaluate and strengthen current theories
relating crop N dynamics to environmental losses. Despite the
assumption that N2O and NO3-N leaching losses should be
correlated with each other, our results showed that both daily
and seasonal N2O emissions and NO3-N were not significant
correlated, mainly due to a temporal disconnect when N2O vs.
NO3-N losses primarily occurred. Hence, this is an important
aspect that needs to be considered when trying to link N2O
and NO3-N leaching losses in future research. With recent
developments in UAV systems, remotely-sensed data at high
temporal and spatial resolutions have become more affordable
at the farm-level. While the results shown here are only
based on 1 year, there are indications that remote sensing
technologies could help early detection of poor cropping system
performance, with lower NDVI values associated with higher
N2O emissions. However, the potential for UAVs to evaluate
water quality appears much more limited because NO3-N
losses happened prior to early-season crop growth and image
collection. Building on this work, we encourage future research to
test the usefulness of remote sensing technologies for monitoring
environmental quality, with the goal of providing timely and
accurate information to enhance the efficiency and sustainability
of food production.
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Selection of finishing beef cattle for slaughter and evaluation of performance is currently

achieved through visual assessment and/or by weighing through a crush. Consequently,

large numbers of cattle are not meeting target specification at the abattoir. Video

imaging analysis (VIA) is increasingly used in abattoirs to grade carcasses with high

accuracy. There is potential for three-dimensional (3D) imaging to be used on farm to

predict carcass characteristics of live animals and to optimise slaughter selections. The

objectives of this study were to predict liveweight (LW) and carcass characteristics of live

animals using 3D imaging technology and machine learning algorithms (artificial neural

networks). Three dimensional images and LW’s were passively collected from finishing

steer and heifer beef cattle of a variety of breeds pre-slaughter (either on farm or after

entry to the abattoir lairage) using an automated camera system. Sixty potential predictor

variables were automatically extracted from the live animal 3D images using bespoke

algorithms; these variables included lengths, heights, widths, areas, volumes, and ratios

and were used to develop predictive models for liveweight and carcass characteristics.

Cold carcass weights (CCW) for each animal were provided by the abattoir. Saleable

meat yield (SMY) and EUROP fat and conformation grades were also determined for

each individual by VIA of half of the carcass. Performance of prediction models was

assessed using R2 and RMSE parameters following regression of predicted and actual

variables for LW (R2
= 0.7, RMSE = 42), CCW (R2

= 0.88, RMSE = 14) and SMY

(R2
= 0.72, RMSE = 14). The models predicted EUROP fat and conformation grades

with 54 and 55% accuracy (R2), respectively. This study demonstrated that 3D imaging

coupled with machine learning analytics can be used to predict LW, SMY and traditional

carcass characteristics of live animals. This system presents an opportunity to reduce a

considerable inefficiency in beef production enterprises through autonomous monitoring

of finishing cattle on the farm and marketing of animals at the optimal time.

Keywords: finishing beef cattle, 3D imaging, carcass characteristics,machine learning, precision livestock farming
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INTRODUCTION

In 2017, 51% of prime beef carcasses in the UK did not
meet target fat and conformation grades: 40% had poor
conformation and 15% were too fat (AHDB, 2018a). The cost
to UK producers of sending over-finished cattle to slaughter has
been estimated at £8.8 million per year (AHDB, 2018b). For
example Roehe et al. (2013) estimated that for an increase in
EUROP grade from R4L to R4H for an intensively fed steer
of a medium sized breed, a loss of £11.37 would be made in
feeding costs alone. Furthermore, processors set weight limits on
carcasses and penalise producers for sending overweight cattle,
despite them being otherwise to specification. Sending cattle to
slaughter too lean equally results in a loss due to the lower price
paid for the carcass. Identifying the optimum slaughter point to
meet market specifications for beef cattle has economic benefits
(Roehe et al., 2013), and reduces the environmental impact
of cattle production (de Vries and de Boer, 2010). Therefore,
to improve sustainability in the beef production sector it is
important for farmers to be able to predict carcass value in the
live animal.

Some equations exist for the prediction of carcass
characteristics in live animals (Realini et al., 2001; Greiner
et al., 2003; Afolayan et al., 2006; Lambe et al., 2008; Minchin
et al., 2009; Pogorzelska-Przybylek et al., 2014) but they generally
rely on obtaining manual measurements of body dimensions,
body condition or tissue depth using ultrasound scanners.
Obtaining these measurements is time consuming, may require
a level of training and skill, and they can be stressful and
potentially dangerous for both animals and handlers.

As imaging technologies become more advanced and
affordable it is now economically feasible to implement them
on commercial farms. Ozkaya et al. (2016) demonstrated that
body measurements of cattle (body length, wither height, chest
depth. and hip height) can be accurately determined from
2-dimensional (2D) digital image analysis (90–98% accuracy).
Applications for 2D imaging have included estimating liveweight
(LW) of broiler chickens (Mollah et al., 2010), pigs (Kashiha
et al., 2014; Wongsriworaphon et al., 2015; Shi et al., 2016)
and beef cattle (Ozkaya et al., 2016), and LW (Tasdemir
et al., 2011), body condition score (Bewley et al., 2008), and
lameness (Viazzi et al., 2014) in dairy cows.

Using both Limousin or Aberdeen Angus crossbred steers
managed under typical UK conditions Hyslop et al. (2008,
2009) used 2D digital imaging to estimate LW and carcass
characteristics. Successful prediction of slaughter parameters
included LW (R2 = 0.81, RMSE = 15.7); cold carcass weight
(CCW) (R2 = 0.81, RMSE = 10.4); killing out proportion (R2 =
0.91, RMSE = 5.3), sirloin weight (R2

= 0.58, RMSE = 2.1) and
proportions (R2 = 0.61, RMSE = 5.1) along with fat (R2

= 0.81)
and conformation (R2 = 0.81) gradings.

Advances in imaging technology have allowed for the use

of three-dimensional (3D) imaging in the livestock sector with

applications in estimating LW (Mortensen et al., 2016) and lying

behaviour (Aydin, 2017) in broiler chickens and body condition

scoring (Weber et al., 2014; Fischer et al., 2015; Kuzuhara et al.,
2015), LW (Kuzuhara et al., 2015), milking traits (Kuzuhara et al.,
2015), and lameness (Van Hartem et al., 2014; Viazzi et al., 2014)

in dairy cows. 3D imaging is also successfully used in estimating
LW in pigs (Wang et al., 2008). There are no known reports
where 3D imaging has been applied in estimating both LW and
carcass characteristics of beef cattle.

Whilst multiple 2D cameras have been investigated (Hyslop
et al., 2009), it was concluded that a “top down” camera view
rather than the addition of side and rear view 2D cameras was
sufficient for accurate prediction. Application of a 3D camera
suspended above the animal would extend the range of potential
“top down” predictor variables and refine prediction models
further, with the continued advantage of equipment being kept
away from animals and potential damage as well as being
accessible for both installation and maintenance.

Increasingly, video image analysis (VIA) is being used to grade
carcasses in the abattoir, improving the consistency of grading by
removing subjective differences in visual assessment by trained
graders (Craigie et al., 2012). However, many producers still
subjectively select animals for slaughter by visual assessment of
fat and condition score and by weighing manually through a
crush. This is a clear inefficiency in the beef market. 3D imaging
technology has the potential to provide predictions of carcass
characteristics from live animals on farm, allowing farmers to
send cattle to slaughter as soon as they are within the parameters
specified by the abattoir. Havingmore animals slaughtered within
specification increases the profit to the producer, improves the
uniformity of the products produced for down-stream customers
and reduces the environmental impact per kg of product
produced (i.e., lower greenhouse gas emissions and reduced
water use).

The objectives of this study were to use live animal body
measurements automatically extracted from 3D images to
build machine learning algorithms to predict LW and carcass
characteristics of finishing beef cattle.

METHODS

Ethics Statement
The animal trials described below were approved by the
Animal Experiment Committee of SRUC and were conducted in
accordance with the requirements of the UK Animals (Scientific
Procedures) Act 1986.

Measurements—Live Animals
The 3D cameras used were Basler Time-of-Flight near infra-
red cameras (Basler Inc., Exton, PA). The camera specifications
are as follows: 640 × 480 pixels, 20 frames per second, 57◦

horizontal × 43◦ vertical angular field of view, accuracy of +/–
1 cm. Eighteen measurements (5 widths, 6 lengths, 5 heights,
and 2 diagonals, Figure 1) were extracted from each 3D image
and 20 ratios, 11 areas, and 11 volumes were calculated, giving a
total of 60 potential predictor variables available for evaluation.
Measurements were extracted in real time from 3D images using
algorithms developed by Innovent Technology Ltd. using Halcon
software (MVTec Software GmbH, München, Germany).

Live animal data was gathered from a range of sources:
including both commercial and research farms and from an
abattoir lairage.
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FIGURE 1 | Measurements acquired from 3D images. W, width; L, length; D, diagonal; H, height; S, shoulder; M, middle; R, rump, T, tail.

Farm Trials

Five automatic Beef Monitor weigh crates (Ritchie Ltd, Turriff,
UK) fitted with Tru-test weigh heads and electronic ID (EID)
readers (Tru-Test Corporation Ltd., Auckland, New Zealand)
were installed on four commercial finishing units throughout
Scotland and two were installed at SRUC’s Beef Research Centre
near Edinburgh. The crates were the sole water source for up
to 50 steers or heifers in group pens. All animals behind the
system were allocated low frequency EID ear tags to allow
individual identification and automated weight recording. Three
dimensional cameras were suspended from custom made frames
3m above each crate. Liveweight and 3D images were recorded
at every visit to the water trough. Variables were automatically
linked to the EID and LW recorded by the Beef Monitor crate
and immediately uploaded to a database. Data extracted from
images which had poor animal outlines (determined visually)
or where the automatically calculated variables were 0 (i.e., a
height, width etc. cannot be 0) were removed from the analysis.
Poor outlines were generally caused by strong direct sunlight
below the camera, a second animal’s head against the rear of
the animal being measured or the animal leaning against the
side of the crate or race. Across the five farms, 17127 LWs were
collected from 674 animals (see Table 1 for a breakdown of sexes
and breeds).

Abattoir Trial

A ten day data collection trial was undertaken in a commercial
abattoir in Scotland. This allowed a large number of individual
animal data points from a variety of breeds, sexes, and animal
types with a range of conformation and fat grades to be
obtained rapidly. A weigh platform was placed between two
sliding gates in the race leading up to the stun box and a
3D camera was secured 3m above the platform. This allowed
individual animals to be held for a short time immediately
pre-slaughter to record UKID and LW and to capture a 3D
image. Liveweights and clear images were recorded for 1,484 beef
animals. A summary of animal numbers by breed and sex are
shown in Table 1.

TABLE 1 | Summary of cattle used in the development of

liveweight prediction algorithms.

AA (x) LIM (x) SIM (x) CH (x) Other Total

Total 909 556 300 225 168 2158

FARM TRIALS

Total 88 253 139 118 76 674

Steers 5 203 99 91 34 432

Heifers 83 50 40 27 42 242

ABATTOIR TRIAL

Total 821 303 161 107 92 1484

Steers 436 190 93 52 59 830

Heifers 385 113 68 55 33 654

AA, Aberdeen Angus; LIM, Limousin, SIM, Simmental; CH, Charolais.

Measurements—Slaughter Data
Cattle were stunned by captive bolt, exsanguinated and their
hides were removed. Carcasses were split down the midline
and dressed as per normal abattoir practice. Conformation class
and fatness class were visually assessed for each carcass by
trained abattoir staff (according to the abbreviated EUROP grid
commonly used in UK abattoirs). VIA technology (VBS 2000,
E+V GmbH, Germany) was operated on-line to predict fat and
conformation grades on both the 15 point scale and the EUROP
grid (7 fat and 8 conformation grades). Cold carcass weight,
saleable meat yield (SMY) estimated by VIA along with visually
assessed EUROP fat and conformation grades were provided
by the abattoir. Carcass characteristics data for a total of 1649
carcases from both the abattoir and on-farm trial datasets were
matched to clear pre-slaughter 3D images, see Table 2 for a
breakdown of breeds and sexes.

Statistical Analysis and Development of
Predictive Models
Data from all abattoir and on-farm sources were combined into
one dataset. For the LW predictions the abattoir data consisted
of a single LW per animal taken immediately pre-slaughter. The
commercial and SRUC on-farm trial data consisted of multiple
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TABLE 2 | Summary of cattle used in the development of carcass characteristics

prediction algorithms.

AA(x) LIM(x) SIM(x) CH(x) Other Total

Total 842 395 175 131 106 1649

Farm Trials 22 92 15 24 14 167

Steers 0 77 3 11 2 93

Heifers 22 15 12 13 12 74

FAT GRADE

1 28 31 13 12 10 94

2 373 194 103 69 38 777

3 339 112 43 35 38 567

4L 85 50 15 15 14 179

4H 17 8 1 0 6 32

5L 0 0 0 0 0 0

CONFORMATION GRADE

–P 0 0 0 0 1 1

P+ 24 2 1 0 6 33

–O 286 41 25 7 46 405

O+ 395 118 95 51 38 697

R 127 146 47 59 14 393

–U 10 83 7 14 1 115

U+ 0 5 0 0 0 5

E 0 0 0 0 0 0

See Table 1 for breakdown of animal breeds and sexes from the abattoir trial. Fat and

conformation grades as predicted by VIA. AA, Aberdeen Angus; LIM, Limousin; SIM,

Simmental; CH, Charolais.

weights per animal across the finishing period. For the fat grade,
conformation grade, CCW and SMY predictions, only the final
LW recorded in the beef monitor crates on farms was used
alongside the LWs collected in the abattoir trial. No 5L or 5H
fat grades and no E and insufficient U+ conformation grades (n
= 5) were recorded and so these grades could not be included in
the prediction model. A summary of the breeds, sexes, fat grades
and conformation grades are shown in Table 2.

Sex was included as a factor in the model. Cattle were
categorised as either native type (smaller, quick finishing breeds
such as Aberdeen Angus) or continental type (larger breeds
such as Charolais) (see Supplementary Table 1 for categorisation
of breeds), and this was also included as a factor in the
model. From the commercial farm trials, the final measured LW
from the weigh crate was included as a predictor variable for
carcass characteristics.

Artificial neural networks (ANNs) were selected for this
study as they can be used for both regression and classification
problems and are capable of handling complex non-linear
relationships between large numbers of variables. ANNs
comprise a framework of “neurons” which are connected by
weighted links (Agatonovic-Kustrin and Beresford, 2000). ANNs
can be used for regression and classification problems and
have many applications in financial forecasting, machine vision,
game theory, medicine and ecology to name only a few. ANNs
were developed using the caret package in R (version 3.4.1,
R Core Team, 2017). To optimise neural network training,
continuous input variables were standardised using a Gaussian

transformation (subtracting the mean and dividing by one
standard deviation) and min-max scaling between −0.9 and
0.9. The data was then randomly split into training (70%) and
validation (30%) subsets.

In this study ANNs were developed through supervised
training by backward propagation. The model was presented
with the training set and known target values. Weights and
biases were automatically randomly initialised to non-zero values
(between 1 and −1) by the ANN software and during the
training phase the model adjusted the weighted connections by
feeding back the error and optimising the weights to decrease the
difference between target and output values. Repeated training
iterations (three repeats of 10-fold repeated cross validation)
further reduced the model error. Models were regularised to
prevent overfitting to the training data subset by applying a
penalty (a weight decay value) to weights which became relatively
much larger than others in the model. Parameter estimation
(model size and weight decay values) were optimised after testing
100 potential models (10 possible values per parameter). Several
topographies (number of hidden layers and nodes in each layer)
were tested for each ANN. The topography which produced the
best performance results without overfitting to the training data
sub-sets was selected for each ANN. All of the ANNs had one
hidden layer with five nodes, except the fat grade classification
ANN which only had one node in the hidden layer. The model
was then tested on the validation data subset. Model performance
was assessed by R2 and RMSE for regression (LW, CCW, and
SMY). Classification accuracy for fat and conformation grades
were assessed by way of confusion matrices. A confusion matrix
is a table summarising the number of validation sub-set data
points in each class and the predicted classes, and the sensitivity
(Equation 1) and specificity (Equation 2) for each class.

sensitivity = true positive/true positive+ false negative (1)

specificity = true negative/true negative+ false positive (2)

Where for any class (x), a true positive is a data point that is
correctly predicted to be within class x, a false negative is a data
point incorrectly predicted to not be in class x, a true negative is
a data point which is correctly predicted to not be in class x and
a false positive is a data point which is incorrectly predicted to be
in class x.

Stepwise linear regression models were also created for the
continuous variables (LW, CCW, and SMY) using the same
training and validation data subsets as were used to create
the ANNs and were cross validated using the same method.
Summary results (R2 and RMSE) are reported alongside the
ANN results.

Finally, the importance of each predictor variable to the
overall ANN was assessed using the VarImp function in R.
This function calculates the influence each input variable has
on the output by using the connection weight between the
input and each hidden neuron and apportioning the connection
weights between each hidden neuron and the output between
each input variable (based on the method described in Gevrey
et al., 2003). Connection weights are analogous to coefficients
in a linear model (although the number of connection weights
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in an ANN is excessive compared to coefficients in a linear
model) and so dictate the influence any variable has on the
hidden nodes and ultimately on the output e.g., variables with
low weights are suppressed and so have little importance and
those with large weights are influential and have high importance.
Variable importance was scaled from 100 to 0 with 100 being
the predictor variable with the highest calculated influence and
0 being redundant. The following calculations below are quoted
from Gevrey et al. (2003).

1. For each hidden neuron, divide the absolute value of the
input-hidden layer connection weight by the sum of the
absolute value of the input-hidden layer connection weight of
all input neurons, i.e.,

For h= 1 to nh, and for i= 1 to ni

Qih =
|Wih|∑ni
i=1 |Wih|

2) For each input neuron i, divide the sum of the Qih for each
hidden neuron by the sum for each hidden neuron of the sum
for each input neuron of Qih, multiply by 100. The relative
importance of all output weights attributable to the given
input variable is then obtained.

For i= 1 to ni

RI (%) =

∑nh
h=i Qih

∑nh
h=i

∑ni
i=1 Qih

x 100

Where Q is the proportional influence an input neuron has on a
hidden neuron, h is a hidden neuron, i is an input neuron, W is a
weight and RI is the relative influence of an input neuron (%).

RESULTS AND DISCUSSION

3D Image Collection
A total of 18,134 3D images were collected during this trial. Of the
16,100 3D images collected on commercial and research farms
1,292 (8%) of images were removed due to a poor outline being
obtained. From the abattoir trial 550 of 2,034 3D images (27%)
were removed from the analysis. The more stressful environment
in the abattoir lairage led to a higher proportion of 3D images
being removed from the analysis. Animals were more likely to be
agitated and so a good quality 3D image was difficult to obtain.
Removal of images from the on-farm data sets is not deemed to
be a concern for commercial implementation as multiple images
are collected per animal per day; therefore not all images of each
individual animal are required to provide a prediction to the
end user.

Prediction of Liveweight, Cold Carcass
Weight, and Saleable Meat Yield
Pre-slaughter LW’s ranged from 341 to 774 kg and the mean
weight at slaughter was 608 ± 57 kg. The mean CCW was 339
± 39 kg and mean SMY was 223± 32 kg.

In this study LW was predicted for a wide variety of breeds,
both steers and heifers, with an R2 of 0.70 (RMSE = 42, n

= 4443, Figure 2). The performance of the stepwise linear
regression for LW was much poorer than the ANN (R2

= 0.54,
RMSE= 51). Ozkaya et al. (2016) used multiple linear regression
of measurements extracted from lateral 2D digital images of
Limousin cattle to predict LW with an R2 of 0.89. Although
sex and breed type had low importance (3 and 0, respectively,
Table 3), to investigate the performance of sex and breed specific
models the ANN was trained only using the Aberdeen Angus
steers data subset (n = 441, Table 1). The model performance
increased to R2 = 0.77 (RMSE = 37), suggesting that the further
development of this system may benefit from breed and sex
specific models. As LW had the highest importance (100) for the
prediction of CCW, SMY and fat grade, and the importance of
sex (CCW: 51, SMY: 29, conformation grade: 1, fat grade: 11) and
breed type (CCW: 32, SMY: 15, conformation grade: 18, fat grade:
32) are generally of higher importance for prediction of carcass
characteristics (Table 3), breed and sex specific LW models
should also improve prediction of these carcass characteristics.

Carcasses which are over a defined weight face a penalty at
the abattoir. Being able to predict CCW in the live animal would
allow producers to ensure that animals are sent to slaughter
before they grow beyond the weight limit. The ANN predicted
CCW with R2 = 0.88 (RMSE = 14, n = 449, Figure 3) and
SMY with R2 = 72 (RMSE = 14, n = 448, Figure 4). The
stepwise linear regression models predicted CCW with R2 =

0.83 (RMSE = 16) and SMY with R2 of 0.63 (RMSE = 16).
LW was of most importance in the ANNs for CCW and SMY
in this study (Table 3). LW has previously been shown to have
a strong linear relationship with CCW (Minchin et al., 2009),
hot carcass weight (Pogorzelska-Przybylek et al., 2014), and SMY
(Realini et al., 2001; Greiner et al., 2003). However, predictor
variables extracted from the 3D images still had significant
influence over the ANN model outputs (Table 3), and the ANNs
had improved performance over the stepwise linear regression

FIGURE 2 | Measured liveweights plotted against liveweights predicted using

an artificial neural network.
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TABLE 3 | Relative importance (scaled from 100 to 0 where 100 is most influential

in the model and 0 is redundant) of the 5 predictor variables with highest influence

[and liveweight (LW), sex and breed type if not already included], for each ANN.

ANN Predictor variable Scaled relative importance

LW

Height (S) 100

Height (R) 80

Diagonal (RM) 79

Length ratio (RM/MS) 75

Width ratio (R/RM) 71

Sex 3

Breed “type” 0

CCW

LW 100

Sex 51

Breed “type” 32

Volume (MS) 24

Height (M) 18

SMY

LW 100

Diagonal (MS) 30

Sex 29

Width (RM) 27

Length ratio (RM/MS) 26

Breed “type” 15

CONFORMATION GRADE

Height (M) 100

Width (M-S) 79

Width Ratio (R/M) 78

Diagonal (MS) 78

Length (TM) 78

LW 30

Breed “type” 18

Sex 1

FAT GRADE

LW 100

Height (M) 68

RateA_TR_RM 49

Height (R) 36

VolumeTR 35

Breed “type” 32

Sex 11

See Figure 1 for definition of predictor variables.

models. Greiner et al. (2003) found that when LW was used
as a single predictor for SMY their regression model had an
R2 of 0.66 for a more limited range of animals (534 cross-
bred steers) than used in the present study, demonstrating the
potential of 3D imaging to provide more accurate predictions of
carcass characteristics.

Prediction of Fat and Conformation Grades
Farmers in the UK are currently paid for their animals on both
carcass weight and fat and conformation grades. ANNs were

FIGURE 3 | Measured cold carcass weight (CCW) plotted against CCW

predicted using an artificial neural network.

FIGURE 4 | Measured saleable meat yield (SMY) plotted against SMY

predicted using an artificial neural network.

developed for fat and conformation grade using the abbreviated
EUROP scale in operation at the abattoir. The accuracy of the
classification ANNs for the validation data subset were 54.2%
for fat grade and 55.1% for conformation grade. The confusion
matrices are shown for the fat (Table 4) and conformation grades
(Table 5), along with the sensitivity (ability of the model to
correctly classify a data point to that particular grade) and
specificity (ability of the model to correctly identify a data
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TABLE 4 | Confusion matrix for the fat grade classification artificial neural network

and the sensitivity and specificity of the model to each grade.

VIA predicted fat class

ANN predicted fat class 1 2 3 4L 4H

1 0 0 0 0 0

2 24 191 98 16 1

3 3 40 62 25 1

4L 0 0 9 12 7

4H 0 0 0 0 0

Sensitivity 0 0.83 0.37 0.23 0

Specificity 1 0.46 0.78 0.96 1

Observations in validation dataset 27 231 169 53 9

TABLE 5 | Confusion matrix for the conformation grade classification artificial

neural network and the sensitivity and specificity of the model to each grade.

VIA predicted conformation class

ANN predicted

conformation class

P+ –O O+ R –U U+

P+ 0 0 0 0 0 0

–O 5 58 37 2 0 0

O+ 4 61 146 50 10 0

R 0 2 23 55 13 0

–U 0 0 1 11 11 1

U+ 0 0 0 0 0 0

Sensitivity 0.00 0.48 0.71 0.47 0.32 0.00

Specificity 1.00 0.88 0.56 0.90 0.97 1.00

Observations in

validation dataset

9 121 207 118 34 1

point as not belonging to that particular grade) of the model to
each grade.

The majority of carcasses were classed as fat grade 2 (47%) or
3 (34%) (Table 2). The fat grade model had a sensitivity of 0.83
for grade 2, but a specificity of 0.46 (Table 4). This low specificity
was due to the tendency of the algorithm to classify the grade
3 carcasses as grade 2. The model classified all of the grade 1
carcasses in the validation subset as grade 2 and most of the 4H
carcasses as 4L. It did not correctly classify to either grade 1 or
4H (sensitivity equal to 0, Table 4), this was likely due to there
being insufficient data points in the training set for these two
grades. The specificity of the conformation grade classification
ANN model to both P+ and U+ was 1 (Table 5). There were
also only a small number of data points collected for carcases of
these grades. There was a tendency for the model to classify the
O- and R carcases as O+ (O+ had a specificity of 0.56), likely
due to the relatively large number of data points in the training
data set which were grade O+. It is anticipated that increasing the
number of data points in the less desirable grades would improve
the predictive performance of these models.

Lambe et al. (2010) used ultrasound measurements of
tissue depth in live finishing beef steers and heifers to
predict conformation and fat grades using linear regression.
The predictions in their study were slightly more accurate

(R2 = 0.60) for fat grade and similar (R2
= 0.56) for

conformation class than in the present study, however their
models performed poorly on validation data sets (fat class:
R2 = 0.39–0.46, conformation class: R2 = 0.07–0.24). SMY
has also been successfully (R2

= 0.80) predicted using
similar ultrasound measurements (Realini et al., 2001). No
literature could be found where a classification model had
been used to predict fat and conformation grade of beef
carcases. The advantage of a 3D imaging system over manual
measurements such as ultrasound are the reduction in stress
caused by handling of animals and the automated system can
passively provide multiple estimates per animal per day at
minimal cost.

In this study LWwas found to be themost important predictor

of fat grade (weighted importance of 100, Table 3), and was less

important, but not redundant (weighted importance of 30) for

conformation grade. Minchin et al. (2009) found that LW was
not a significant predictor of fat or conformation grade for cull

cows from either dairy or beef sired lines. This is likely due to
the generally lower body condition and fat cover of cull cows

compared to finished beef heifers and steers.

CONCLUSIONS

This study has shown that there is potential to use 3D

imaging technology to automate the process of selecting cattle

for slaughter at the correct specification, so improving the

efficiency and profitability of beef enterprises through marketing
of animals at the optimal time. Further work to improve

the prediction of fat and conformation grades in the live

animal is required. Particularly more data needs to be collected
from animals with carcass grades out with the desirable target

grades. Addressing this imbalance of carcass grades in the

dataset will allow the model to better distinguish between
grades. Further development of this technology also requires the

development of breed and sex specific algorithms for LW and
carcass characteristics.
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This paper describes the development and application of a novel and generic framework

for parsimonious soil-water interaction models to predict the risk of agro-chemical

runoff. The underpinning models represent two scales to predict runoff risk in fields and

the delivery of mobilized pesticides to river channel networks. Parsimonious field and

landscape scale runoff risk models were constructed using a number of pre-computed

parameters in combination with live rainfall data. The precomputed parameters included

spatially-distributed historical rainfall data to determine long term average soil water

content and the sensitivity of land use and soil type combinations to runoff. These were

combined with real-time live rainfall data, freely available through open data portals and

APIs, to determine runoff risk using SCS Curve Numbers. The rainfall data was stored

to provide antecedent, current and future rainfall inputs. For the landscape scale model,

the delivery risk of mobilized pesticides to the river network included intrinsic landscape

factors. The application of the framework is illustrated for two case studies at field and

catchment scales, covering acid herbicide at field scale and metaldehyde at landscape

scale. Web tools were developed and the outputs provide spatially and temporally explicit

predictions of runoff and pesticide delivery risk at 1 km2 resolution. The model parsimony

reflects the driving nature of rainfall and soil saturation for runoff risk and the critical

influence of both surface and drain flow connectivity for the risk of mobilized pesticide

being delivered to watercourses. The novelty of this research lies in the coupling of live
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spatially-distributed weather data with precomputed runoff and delivery risk parameters

for crop and soil types and historical rainfall trends. The generic nature of the framework

supports the ability to model the runoff and field-to-channel delivery risk associated with

any in-field agricultural application assuming application rate data are available.

Keywords: big data & analytics, spatial data integration, pesticides, metaldehyde, web-based model, R, API

(application program interface), United Kingdom

INTRODUCTION

Rainfall-induced surface and subsurface runoff mobilizes
and transports the chemicals used for in-field agricultural
applications (fertilizers, herbicides, and pesticides) from land
to receiving freshwaters. Agriculture is therefore a significant
source of water pollution, affecting drinking water quality and
treatment costs. In England, for example, water companies spent
£92 million in 2008–09 removing pollutants from water supplies
to meet drinking water standards (National Audit Office,
2010). However, for some pollutants, such as metaldehyde,
there are currently no cost-effective methods of removal,
although the UK’s first treatment plant has recently been
constructed at significant cost to the water company in question1

Concentrations of such agrochemicals above safe limits in
surface and groundwaters creates not only environmental risk,
but also a risk to human health.

Agricultural applications can enter surface water via a
number of pathways. Spills, spray-drift and illegal disposal are
generally managed by best practice guidance and prosecution.
Surface and subsurface runoff can transport agrochemicals in
dissolved and particulate form, from the field to watercourses.
The proportion that is removed in solution relative to that
attached to mobilized soil particles depends on the intrinsic
soil properties, topography/slope and the characteristics of the
agrochemicals such as pesticides, including their sorption and
solubility properties (Guo et al., 2000; Louchart, 2001; Newell-
Price et al., 2011).

The biggest driver of surface and subsurface runoff is
precipitation and the timing and characteristics of the first
rainfall event after application are very important. Antecedent
weather determines the wetness of the soil and therefore the
degree to which the chemical is “held” by the soil. Applications
made to wet soil (at field capacity or wetter), or just before
heavy rainfall, are more likely to be lost in surface runoff or
by-pass flow to field drains, with negative environmental and
water quality impacts as they are transferred to surface or
groundwater (Mitchell et al., 2005; Gao et al., 2008; Lapworth
et al., 2012), although the propensity for mobilized pollution to
reach watercourses also depends on additional factors affecting
delivery (e.g., the status and maintenance of field drains, the
topology of the landscape, distance to watercourses). Thus,
water pollution risk is enhanced by poor timing of applications
in relation to weather events which can result in pollutant

1https://wwtonline.co.uk/features/project-focus-hall-claims-uk-first-in-water-

treatment.

concentrations in surface waters that exceed drinking water
standards (Pretty et al., 2003).

In addition to the environmental benefits, the efficacy of any
agricultural application is severely reduced if runoff washes it
from the crop or the field. For the farmer, the reduced efficacy
leads to risks of reduced yields (income) and/or increased costs
(and thereby lower gross margins) if the treatment has to be
re-applied to protect the crop. The annual cost to farmers of
agricultural runoff has been estimated at £238m (Jacobs UK
Ltd, 2008) a significant part of which can be attributed to the
impact of runoff losses associated with compromised pesticide
and herbicide effectiveness. There are additional environmental
(damage) costs and, in future, there may be financial penalties
for pesticides and herbicides being washed into watercourses.
Preventing agro-chemicals reaching surface and groundwaters by
imparting source control measures is more cost-effective than
water treatment and some initial research has identified a benefit-
to-cost ratio of 65:1 for prevention over treatment (Defra, 2013).

Direct detection of the source of pesticides and herbicides
carried by runoff is difficult due to the diffuse nature
and temporal variability of the sources and the high cost
of instrumentation (Meyer et al., 2019) and with some
pollutants, the length of time taken to analyse water samples
makes real-time risk mapping impractical. Consequently,
modeling water pollution risk is the only practical option in
most cases.

This paper describes the development of two decision tools
operating over different scales of decision making. The tools
provide interfaces to two parsimonious soil-water runoff models;
one supporting on-farm decisions at the field scale and another
supporting landscape scale management. Both include inputs
and outputs at a1 km2 spatial scale, but their aims are very
different and their outputs should be interpreted in very different
ways. The field scale tool provides the end-user with point-based
information of runoff risk derived from a model operating over
each 1 km2 independently. It uses a meta-model to forecast
surface runoff risk for a given land use on a given soil from recent
recorded and forecast rainfall alone. It aims to support farmers
and land managers to better manage pesticide applications. The
catchment scale model also uses a 1 km2 scale (in part because
most of the data available to support such analyses and models
are at best at 1 km2 resolution). However, the inputs and
outputs do not describe processes that operate independently
over each 1 km2. Rather, the inputs describe landscape processes
that are topologically connected such as field drain and surface
flows as well as landscape connectivity between fields and
watercourses. In this case, the outputs provide Tier 1 screening
to identify hotspots requiring further investigation, with the aim
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of supporting informed on-the-ground catchment management
by environmental agencies and water companies.

BACKGROUND

This research is informed by two limitations arising from
previous work: the difficulties of determining antecedent soil
water status (and thereby the potential for soil to hold water)
and the temporally static nature of many landscape scale decision
support tools in this domain.

Modeling Runoff
The SCS Curve Number (CN) method (USDA SCS, 1972) is
commonly used to model surface runoff depth from rainfall
amount, soil surface characteristics and antecedent wetness. It
is also used to predict runoff and infiltration (USDA, 2004). It
is applicable to small catchments (≤ 6,500 ha) (NRCS, 2002)
and has been implemented in models to estimate agrochemical
transport to water (e.g., SWAT—Arnold et al., 1998; PRZM—
Carsel et al., 2003; APEX—Williams et al., 2006; CREAMS—
Knisel, 1980) and has been shown to be robust for a range
of climates, soil types and land uses (e.g., Gassman et al.,
2007). It has been found to perform better than an infiltration
model in modeling runoff in an agricultural catchment in
England (Kannan et al., 2007). Many CN models predict
runoff depths for individual weather events using an empirical
relationship between direct runoff depth, rainfall amount, soil
surface characteristics and antecedent wetness (USDA, 2004).
The rainfall amount at which runoff starts depends on the
maximum potential retention, which in turn, depends on land
use and soil type. The CN approach provides a widely used
and effective method for estimating direct runoff due to rainfall.
Despite its simplicity, and the availability of CNs for various
land use and soil type combinations (Chow et al., 1988; Pilgrim
and Cordery, 1993; USDA, 2004), operationally it can be difficult
to estimate the antecedent soil moisture conditions. Although
the antecedent soil water status has been estimated from 5-
day antecedent rainfall (e.g., Mishra et al., 2005), this has been
shown to be poorly correlated with maximum potential retention
(USDA, 2004).

Decision Support Tools
User-facing decision tools started to emerge with the advent
of easily programmable GISs with graphical user interfaces.
These were developed to support farming compliance under
newly legislated environmental directives, such as the Water
Framework Directive (WFD Water Framework Directive, 2000)
in Europe, and sought to minimize the externalities of
agricultural activity on waterbodies. Decision tools, for use
by both farmers and policy makers, were developed over a
range of spatial scales: nationally, at typical scales of 1, 5,
and 10 km2 and Europe-wide at scales of 10, 20 and 50
km2. Examples of UK models include those of Webb and
Misselbrook (2004), Chadwick et al. (2005), Chambers et al.
(1999), Davison et al. (2008), Lord and Anthony (2000) and
Lord (1992) many of which are summarized in Anthony et al.
(2008). At the European scale, similar models include PyCatch

(Schmitz et al., 2017) and the FOOTPRINT (Functional Tools
for Pesticide Risk Assessment and Management) framework
which integrates pesticide use information with a physically
based field scale soil water model (Jarvis et al., 2000) for
drainage and leaching pathways and PRZM (Suarez, 2005)
for runoff and erosion pathways. Hydrological modeling
frameworks have also been used to simulate agrochemical
runoff (Kannan et al., 2006; Ficklin et al., 2013; Bannwarth
et al., 2014; Zhang et al., 2018). A key and unavoidable
characteristic of existing landscape process-based models is
that their outputs and the scales they report over are spatially
and temporally incompatible with the expectations and needs
of land managers. Here, a key limitation is the fact they
are underpinned by highly static, spatially and temporally
aggregated data by way of model inputs such as underlying
soil types, drainage, land use, climate, terrain characteristics and
farming practice.

Research Aims
The critical gap, common to SCN models and decision support
tools, regardless of scale, is that they do not incorporate live
and dynamically updated data on soil condition or rainfall. Very
detailed and precise predictionmodels for soil water balances and
associated runoff, leaching and pollution risks (e.g., Pullan et al.,
2016; Morselli et al., 2018) require specific, local information that
cannot be obtained from generalized GIS layers, often requiring
in situ parameterisation and measurement. This is because data
may not be freely available (e.g., soils data), are dis-aggregates of
coarser scale data (e.g., agricultural land use) or are themselves
modeled outputs (e.g., landscape connectivity data). A further
key issue across scales and model types is that they commonly
suffer from poor performance when evaluated using monitoring
data despite being very heavily parameterized (Bieger et al., 2014;
Gassmann et al., 2014; Zeiger and Hubbart, 2016). For this
reason, recent research has explored the use of parsimonious
tools for pesticide risk (e.g., Gaßmann et al., 2013; Steffens et al.,
2015; Pullan et al., 2016).

It is against this background, that this paper describes the
development of two decision tools providing real-time, spatially-
explicit and temporally-dynamic field runoff and field-to-channel
pesticide delivery risk information for supporting decisions
regarding pesticide application (field scale) or management of
surface water withdrawal for public water supply (catchment
scale). These are demonstrated for two example agro-chemical
applications in two differing environmental settings in the
UK. The tools incorporate parsimonious field runoff and
field-to-channel delivery models that combine real-time data
of antecedent, current and predicted rainfall obtained from
a national meteorological institute API. Both tools generate
real-time predictions of current and future agro-chemical
field runoff or field-to-channel delivery risk over a 5-day
window. A key distinction is that the field scale tool has
a focus on quantifying runoff risk, whereas the catchment
scale tool focuses on quantifying the risk of delivery to
the channel network—i.e., pesticide delivery risk rather than
runoff risk.
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METHODS AND NEW MODELS

Two case-study catchments were selected. TheWissey catchment
in eastern England is dominated by arable cropping and has
a potential risk of metaldehyde in waterbodies. Metaldehyde is
used to treat slugs on oil seed rape, potatoes and horticultural
crops and was responsible for 23% of failures to meet drinking
water standards in the 4th quarter of 2016 in England and Wales
(Defra, 2017a). Metaldehyde also topped the list of pesticides
which breached the 0.1 µg/l drinking water safety limit between
2013 and 2015 (Defra, 2017b). In contrast, the Teifi catchment
in mid-Wales, is dominated by grassland used for livestock.
Here, acid herbicide applications for managing weeds in pastures
represents a risk for drinking water quality. Field and landscape
(catchment) scale models were developed for both case studies
using the methods described below. For illustration in this paper,
the results present the application of the field model and tool for
runoff risk in the Teifi catchment in Wales, and the landscape
scale model and tool for metaldehyde delivery risk in the Wissey
catchment in England.

Field Scale Model
Overview

The aim of the field scale model was to provide location specific
information of current and predicted future (5 day) runoff risks,
at a 1 km2 grid cell scale representing the field. It sought to
support on-farm decisions about agro-chemical applications and
to provide forecasts of whether any surface runoff is expected
at the field scale. Although a soil water balance model could be
used to antecedent soil water conditions and the CN method
(USDA, 2004) to assess potential field runoff in real-time, data
and computational requirements are an important limitation. In
addition, fully parameterized soil water balance models require
a known starting condition and are prone to cumulative errors,
particularly during periods of low rainfall. From an operation
point of view, using a soil water balance model to estimate
antecedent soil water conditions also requires the user (farmer)
to collect and process rainfall data even during periods when
runoff risk forecasts are not required. To overcome this, a
meta-modeling approach was used to estimate antecedent soil
conditions from soil type, long-term average soil water content
for the day of year, recent recorded rainfall and short-term
forecast rainfall. An overview of the field scale model is shown
in Figure 1.

Data and Model

The soil water balance model, WaSim (Hess and Counsell, 2000),
was used to estimate daily soil water condition (θ) using the
approach described by Hess et al. (2010) and Holman et al.
(2011). It used a long time-series (1961 to 2015) of daily rainfall
and reference evapotranspiration data at 1 km2 resolution from
the CEH CHESS dataset (Robinson et al., 2016, 2017) for each
of the 28 hydrology of soil type (HOST) (Boorman et al.,
1995) classes found in England and Wales, and three land
cover classes.

WaSim is a daily soil water balance model that simulates
changes in root zone soil water content and water table position

in response to weather and water management. It estimates
changes in soil water content by combining data on rainfall,
crop specific evapotranspiration, soil characteristics and field
drainage. It estimates daily surface runoff using a CN approach
based on the soil water content using the approach of Hawkins
et al. (1985) and Garen (1996).

The water content of the upper (0–0.15m) layer (θ0) is
estimated from daily effective rainfall, evapotranspiration and
drainage to a lower layer. The proportion of the soil water stored
above field capacity (θFC) that is released from a saturated soil
increases from zero at θFC to a maximum at saturation (θSAT)
following an exponential function (Raes and van Aelst, 1985)
dependent on the texture of the upper soil layer. Validation
of predicted field-scale runoff is difficult due to the paucity of
field-scale runoff data for a sufficient range of soil, crop and
climate conditions for national application. However, Holman
et al. (2011) evaluated partitioning of hydrologically effective
rainfall between slow and quick flow-paths in the WaSim model
by upscaling to the catchment scale across all of England and
Wales. For 27 out of the 29 HOST soil classes (Boorman
et al., 1995) (peat soils excepted). The WaSim estimates of
baseflow index (BFI) were within the 95% confidence intervals
of the national-average BFI , suggesting that the model is
adequately capturing the effect of soil type and wetness on
runoff generation.

Using linear regression on a subset of the data (1961–2000),
the daily soil water condition was modeled from the 10 previous
days’ accumulated rainfall (P10), the number of days since the
last day with rainfall>2mm (P2) and long-term averagemodeled

daily soil water condition (θi) for each the day of the year, i. The
resulting linear regression models were shown to fit well to the
soil water conditions modeled by the soil water balance model for
an independent timeseries (2001-2015), summarized in Section
Model Validation and as described in Comber et al. (2018). The
parameterized regression model was then used with recent and
short-term forecast rainfall data to forecast runoff, R, using the
CNmethod of Hawkins et al. (1985) and Garen (1996) as follows:
for rainfall, P (mm d−1), greater than a threshold value, I (mm),
direct runoff, R (mm d−1), is estimated from:

R =
(P − λS)2

(P + (1− λ) S)
for P > λS (1)

R = 0 for P≤λS (2)

where S is the maximum retention, mm and the threshold I is
defined as

I = λS (3)

Note that λ (dimensionless) is an empirical value that represents
the proportion of rainfall on a soil at average antecedent
conditions that can fall without generating runoff, and is typically
set to 0.2.

On a particular day, S was estimated from the retention at dry
antecedent conditions, S1 (mm), the relative saturation of the top
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FIGURE 1 | The field scale runoff risk model.

0.15m of the soil, fs (dimensionless) and two weighting factors,
W1 andW2 for retention (Hawkins et al., 1985):

S = S1

[
1−

fs

fs + exp
(
W1 −W2fs

)
]

(4)

fs =
θi

θs
(5)

W1 = ln

[
1

1− S3
S1

− 1

]
+W2 (6)

W2 = 2

[
ln

(
0.5

1− S2
S1

− 0.5

)
− ln

(
1

1− S3
S1

− 1

)]
(7)

The retention, Sn (mm), at dry (n = 1), average (n = 2) and
wet (n=3) antecedent conditions, is estimated from the curve
number, N2 (dimensionless) at average antecedent conditions
(Garen, 1996).

Sn = 250

(
100

Nn
− 1

)
(8)

N1 =
N2

2.281− 0.01281N2
(9)

N3 =
N2

0.427+ 0.00573N2
(10)

Model Validation

Hess et al. (2010) used a continuous water balance model,
WaSim (Hess and Counsell, 2000) to model daily soil water
content and estimate daily surface runoff using a CN approach.
WaSim is a one-dimensional, field-scale layered soil-water

balance model that operates on a daily timestep. The water
content of the upper (0–0.15m) layer, θ0 (dimensionless), is
estimated from daily effective rainfall (P - R), evapotranspiration,
E (mm d−1) and drainage to a lower layer, D (mm d−1).
D increases with θ0 from zero at field capacity, θFC, to a
maximum at saturation, θSAT , following an exponential function
(Raes and van Aelst, 1985):

D = τ (θ0 − θFC)
e(θ0−θFC)

− 1

e(θSAT−θFC) − 1
150 (11)

Where τ (d−1) is the proportion of the soil water
stored above field capacity that is released from a
saturated soil in 1 day and is dependent on the soil
texture, and 150 (mm) is the thickness of the upper
soil layer.

Three linear regression models, M1 to M3, were calibrated
against θ0 for each soil and climate combination in each of the
two study areas:

• M1 is a simple linear regression of θ0 against the 5-day
accumulated antecedent rainfall, P5 under the expectation that
for a given location and soil type, θ0 will be correlated with the
antecedent rainfall;

• M2 considered the 10-day accumulated antecedent rainfall,
P10, and the number of days since the last rainfall
>2mm, JP >2;

• M3 considered the 10-day accumulated antecedent rainfall,
P10, the number of days since the last rainfall >2mm,
JP>2 and also considers the long-term average value of

θ0 for the day of the year, (θi). This assumed that the
effect of antecedent rainfall on θ0 may vary with seasonal
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variation in θ0. For example, a small P10 on at a time
of year when the soil is generally wet would result in
wetter antecedent conditions than at a time when the soil is
generally drier.

Each model is summarized in Table 1 and was calibrated
against the WaSim continuous model and then used to
estimate θ0.

Table 2 shows the coefficient estimates of the three locally
calibrated linear models to estimate antecedent soil moisture
conditions, adjusted for each site and soil type. It also includes
the root mean squared error (RMSE), mm d−1, between
upper layer soil water content from a continuous model and
the three meta-models for the calibration (1961-2000) and
validation (2001-2015) periods. For the two models relying
only on antecedent rainfall (M1 and M2) the intercept is
the most important coefficient of the model, taking values
close to the volume water fraction at field capacity. The M3
coefficients demonstrate the importance of including average
soil moisture conditions and the major difference between
parameters is driven by weather conditions rather than by soil
type. Similarly the validation results show that M3 achieves the
best results for both soil types and both climates. Moreover,
the results suggest that introducing the daily average soil
moisture content has an important impact on the quality
of the model.

Landscape Scale Model
Overview

The landscape scale model provides spatially distributed
information on pesticide delivery risk. The overarching aim was
to identify field-to-channel delivery risk hotspots to support and
inform catchment management and on-the-ground follow up
by environmental agencies and water companies. It therefore
identifies locations of high risk that may require further
investigation. The landscape scale tool generates a spatially-
distributed field-to-channel delivery risk surface to inform
drinking water abstraction decisions. The output predicts the
spatial pattern of mobilized pesticide loadings delivered to
receiving watercourses. The parsimonious approach combines
layers of intrinsic landscape scale factors, runoff and pollutant
transfer, national historical daily rainfall data from the CEH
Gridded Estimates of Areal Rainfall dataset (Keller et al., 2015), as
well as live data of current and antecedent rainfall, as summarized
in Figure 2.

A source-mobilization-delivery-impact model of the water
pollutant transfer continuum (Lemunyon and Gilbert, 1993;
Haygarth et al., 2005; Zhang et al., 2017b) was adopted. In
this framework, runoff following rainfall is the key mobilization
force and the proportion of pesticide load available for
mobilization into the runoff moving down the soil profile to
field drains or downslope across the land surface is assumed
to be the same as the ratio of runoff amount to event
rainfall total. Pesticides are therefore partly absorbed by the
soil and non-binding pesticides are mobilized in runoff. This
multiplicative correction approach is similar to that used by
Verro et al. (2002). The landscape model recognizes that

rainfall can reach watercourses via different delivery pathways
(e.g., surface runoff, drain flow) and measures of hydrological
connectivity between agricultural fields and the river channel
network influence the propensity for mobilized pollution (e.g.,
pesticides) to reach the watercourses. In the case of the latter,
surface runoff connectivity is calculated using distance to river
channel and the downslope average slope gradient using a
high resolution digital elevation model (DEM) and channel
network data layer (Prosser and Rustomji, 2000; Walling and
Zhang, 2004), whereas drain flow connectivity uses farm-type
specific estimates based on recent surveys of drain maintenance
associated with the upkeep of the permeable backfill or drain
freeboard, as well as the frequency of supportive mole plowing
(Zhang et al., 2016).

Data and Model

Data at 1 km2 resolution were assembled for each case study area.
The proportions of different land use including crop types in each
grid cell (Comber et al., 2008) were matched with freely available
data on pesticide application rates to determine pesticide
loadings to farmed land. The land use data described in Comber
et al. (2008) uses advanced spatial disaggregation methods to
robustly allocate agricultural census data from the June Survey
of Agriculture and Horticulture (JAS). JAS data are reported at
coarse spatial units (such as Parish level) and the disaggregation
is to finer spatial units such as 1 km2. This data underpins
many tools supporting national level policy support. Garthwaite
et al. (2013, 2014, 2015) describe pesticide usage on different
agricultural land uses and spatially distributed pesticide loadings
to agricultural land were estimated by linking the land use
proportions of each 1 km2 to the reported pesticide usage for that
land use.

The loadings from all applications to agricultural land
are then modified to estimate the loading susceptible to
runoff mobilization and delivery from field-to-channel by
the soil sorption capacity for the pesticide in question,
which is modeled as a function of known pesticide
behavior and soil organic carbon content (% OC).
Accordingly, the proportion of chemical loading susceptible
to mobilization and runoff loss with rainfall, K is calculated
as follows:

K =
1

1+ Koc × OC/100
(12)

where Koc is a measure of the tendency of a chemical to bind to
soils (an adsorption coefficient) set at 67 in the Wissey and 20 in
the Teifi study catchments.

Runoff was estimated using the Mishra-Singh model (Mishra
et al., 2005), a modified CN method, that accounts for event
rainfall and antecedent soil moisture conditions. To estimate
runoff (R, mm), event rainfall (P, mm) and the antecedent
5-day rainfall (P5,mm) are required, as well as an estimate
of storage depth (S, mm), initial abstraction (Ia) and an
intermediary term,M:
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TABLE 1 | A summary of the different models that were evaluated.

Model

Coefficients

Model 1 (M1) Model 2 (M2) Model 3 (M3)

X1 Accumulated 5-day antecedent rainfall, P5 Accumulated 10-day antecedent rainfall, P10 Accumulated 10-day antecedent rainfall, P10

X2 Number of days since the last rainfall >2 mm, JP>2 Number of days since the last rainfall >2 mm, JP>2

X3 Long-term average value of θ0 for the day of the

year, (θi )

TABLE 2 | Coefficients of the three linear models and the root mean squared error (RMSE), mm d−1, for the calibration (1961–2000) and validation (2001–2015) periods.

Case study Soil type Model Coefficients RMSE

Intercept X1 X2 X3 Calibration Validation

Teifi Clay Loam M1 0.376 0.002 0.030 0.031

M2 0.393 0.001 −0.004 0.027 0.029

M3 0.126 0.001 −0.004 0.675 0.024 0.025

Sandy Loam M1 0.266 0.002 0.033 0.033

M2 0.284 0.001 −0.004 0.030 0.031

M3 0.090 0.001 −0.004 0.664 0.026 0.026

Wissey Clay Loam M1 0.351 0.003 0.035 0.032

M2 0.361 0.002 −0.002 0.031 0.028

M3 0.029 0.002 −0.002 0.875 0.023 0.020

Sandy Loam M1 0.241 0.004 0.033 0.033

M2 0.252 0.002 −0.003 0.030 0.031

M3 0.027 0.002 −0.002 0.833 0.026 0.026

S =
25400

CN
− 254 (13)

Ia = λS (14)

M = −

(
(1+ λ)

2

)
S+

√
(1− λ)2S24P5S (15)

R =

(
(P − Ia) (P − Ia+M

P − Ia+M + S

)
(16)

where λ is an empirical value which typically set to 0.2. The CN
values for different soil types, land use and surface conditions are
based on Hess et al. (2010) using the UK Hydrology of Soil Type
(HOST) classification (Boorman et al., 1995). These weremapped
into four hydrological soil groups (A, B, C, D) to reflect the
minimum rate of rainfall infiltration for bare soil after prolonged
wetting and the transmission rate within the soil profile, under
five land use types; grass, row crops, small grains, semi-naturals
and woodlands (Table 3).

The JAS classes were linked to pesticide survey usage
categories and, in turn, the CN categories in Hess et al. (2010).
Hess et al. (2010) proposed appropriate CNs for each unique
combination of grouped soil type and land cover, dependent
upon the surface condition which is classified as either “good”
or “poor”. A CN of 0 represents maximum storage, whilst a
score of 100 suggests zero storage (i.e., a totally impermeable
soil). The hydrological soil groups reflect the minimum rate
of rainfall infiltration for bare soil after prolonged wetting and
the transmission rate within the soil profile. Group A soils are
characterized by low runoff potential and high infiltration rate

even when wetted, with a transmission rate of >7.6 mm/hr.
Group B soils have a moderate infiltration rate and are typified
by moderate to well drained soils with transmission rates of 3.8–
7.6 mm/hr. Group C soils have low infiltration rates and are
typified by moderately fine to fine texture and a layer impeding
downward water movement, yielding transmission rates of 1.3–
3.8 mm/hr. Finally, group D soils have high runoff potential
and very low infiltration rates, typifying clay soils with very low
transmission rates of 0–1.3 mm/hr. CN values recommended by
Hess et al. (2010) are presented in Table 4.

Finally, hydrology outputs from a process-based model
developed for national policy support, namely PSYCHIC (Collins
et al., 2007, 2009; Collins and Anthony, 2008; Davison et al.,
2008; Stromqvist et al., 2008; Comber et al., 2013; Collins and
Zhang, 2016; Phosphorus and Sediment Yield CHaracterisation
In Catchments), were used to derive monthly soil runoff
partitioning between surface and drain flow pathways for each
1 km2. The PSYCHIC model runs use a combination of baseline
climate conditions (1961 to 1990) and 2010 JAS.

Model Validation

The validation of a landscape scale model predicting 1 km2 risk
surfaces, i.e., providing information to support Tier 1 screening
of risk, is inherently difficult. The model reported here provides
information on landscape scale risk and empirical pesticide data,
collected at an appropriate resolution, simply does not exist at
appropriate scales for validating the modeled patterns of spatial
risk. However, previous research (e.g., Collins and Anthony,
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FIGURE 2 | The parsimonious landscape scale model. OM, organic matter.

2008; Stromqvist et al., 2008; Collins and Zhang, 2016; Collins
et al., 2016; Zhang et al., 2017a,b) has evaluated the catchment
and broader scale spatial patterns predicted for aggregated diffuse
pollution (nutrients and sediment, not pesticides) delivery to
watercourses using the underlying algorithms from PSYCHIC
that are incorporated in the landscape model, using available
local (i.e., original PSYCHIC model research project) or strategic
monitoring data in the form of 1991-2010 PARCOM (Neal
and Davies, 2003) reporting and the Harmonized Monitoring
Scheme (https://data.gov.uk/dataset/b17a2efa-bdd6-4740-8030-
fb87f7f2bcff/historic-uk-water-quality-sampling-harmonized-
monitoring-scheme-detailed-data) at 33 stations for the period
1980-2010. Paris Commission (PARCOM) monitoring is
undertaken as part of the 1992 OSPAR (Oslo–Paris) Convention
which combined the 1972 Oslo Convention on dumping waste
at sea and the 1974 Paris Convention on land-based sources
of marine pollution. PARCOM monitoring is undertaken to
report the delivery of terrestrial pollutants to the maritime area
in accordance with the OSPAR Convention. The Harmonized
Monitoring Scheme is a long-term water quality scheme in the
UK that was initiated by the Department of the Environment
in 1974.

RESULTS

The field and catchment scale models were coded in R and
interactive web tools with an Open Street Map front end
were created in RMarkdown using the leaflet, flexdashboard,
shiny, sp, dygraphs and reshape2 R packages. Recent and short-
term forecast rainfall was recognized as a critical input for
each scale in order to determine field runoff and field-to-
channel delivery risk. For each study catchment, live weather
data and precipitation forecasts from the Meteorological Office

(the UK’s national weather service) DataPoint API (The Met
Office, 2018) were downloaded for each day, interpolated
into a 1 km2 grid and stored in raster stack. These were
used to serve the online models with antecedent, current and
predicted rainfall data for each 1 km2. The online web tools
are dynamic, calculating field runoff or field-to-channel delivery
risk at each location from the live precipitation data and the
user inputs. A zoomable OpenStreetMap layer provided the
background mapping.

Field Scale Tool
The intention of the field scale tool was that it would be
used by farmers and farm managers to inform their day-to-
day decision making around agricultural chemical applications.
The web interface asks users to enter a postcode, and then
to click on an individual 1 km2 grid cell. For the purposes
of the models demonstrated here, the interface in Wales
assumes an Acid herbicide application decision and in the
East of England a Metaldehyde application (only the Wales
tool is illustrated). The runoff risk for the selected grid cell
for the next 5 days is shown in text format below the
map and there are a number of tabs containing additional
information. A screen grab of the catchment scale tool is
shown in Figure 3. Here rainfall and runoff risk are not
quantified, they are simply stated if predicted to be present at
the selected location for the selected time period +5 days, as
described above.

Catchment Scale Tool
The catchment scale tool was aimed at land and environmental
managers with catchment / sub-catchment and watershed remits,
including local water companies. Runoff and pesticide field-to-
channel delivery risk is mapped and indicates locations with
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TABLE 3 | Pesticide usage and Curve Number (CN) groups for different land

use categories.

June agricultural

census

description1

Pesticide usage

group2
CN group3

Wheat Cereals Row crops

Early potatoes Potatoes Row crops

Late potatoes Potatoes Row crops

Sugar beet Beet crops Row crops

Leguminous forage

crops

Other fodder crops Row crops

All Other crops for

stockfeeding

Other fodder crops Row crops

Root crops, brassicas

& fodder beet

Vegetable brassicas Row crops

Winter barley Cereals Row crops

Borage Other arable crops Row crops

Field beans Peas & beans Row crops

Peas for harvesting dry Peas & beans Row crops

Maize Maize & sweetcorn Row crops

Maize—grain Maize & sweetcorn Row crops

Maize—fodder Maize & sweetcorn Row crops

Winter oilseed rape Oilseeds Row crops

Spring oilseed rape Oilseeds Row crops

Linseed Other arable crops Row crops

Spring barley Cereals Row crops

All Other crops Other arable crops Small grains

Bare fallow Set aside Semi-natural

Short rotation coppice Other arable crops Row crops

Miscanthus Other arable crops Row crops

Crops for aromatic or

medicinal use

Other arable crops Row crops

Oats Cereals Row crops

Mixed corn Other arable crops Small grains

Rye Other arable crops Small grains

Triticale Other arable crops Small grains

Other peas and beans Other outdoor vegetables Row crops

Culinary plants for

human consumption

(e.g., herbs)

Lettuce & other leafy salads Row crops

All other veg and salad

including carrots and

onions

Lettuce & other leafy salads Row crops

Vining peas for

processing

Other outdoor vegetables Row crops

Orchards commercial Top fruit & hops Row crops

Wine grapes Other soft fruit Small grains

All other small fruit Other soft fruit Small grains

Orchards

non-commercial

Top fruit & hops Row crops

Orchards Top fruit & hops Row crops

Strawberries Strawberries Small grains

Raspberries Other soft fruit Small grains

Blackcurrants Other soft fruit Small grains

Temporary Grass Grassland Grass

(Continued)

TABLE 3 | Continued

June agricultural

census

description1

Pesticide usage

group2
CN group3

Woodland Woodland Woodland

Land used for outdoor

pigs

Set aside Semi-natural

Other non-agricultural

land

Set aside Semi-natural

Permanent Grass Set aside Grass

Rough Grazing Set aside Semi-natural

1The June Survey of Agriculture and Horticulture (JAS) is an annual survey which

collects detailed information on arable and horticultural cropping activities, land usage,

livestock populations and farming labor force figures—https://data.gov.uk/dataset/

june_survey_of_agriculture_and_horticulture_uk.
2The pesticide usage group reflects the key groups used in surveys reporting publicly

available data on pesticide applications (e.g., Garthwaite et al., 2013, 2014, 2015.)
3Taken from Hess et al. (2010).

varying risk, given current and antecedent rainfall conditions,
with the aim of supporting drinking water abstraction operations.
The on-line tool asks users to indicate the agro-chemical they are
interested in, the status of the soil and the date for which they
require field-to-channel delivery risk estimates. For this proof
of concept tool, the choices for agro-chemicals are limited to
“Metaldehyde” and “Acid Herbicide,” and the choices for soil
status to “Good” or “Poor.” The runoff risk is R (mm) from
Equation 15 was categorized into 4 classes of risk:Nonewhen R=

0, Low when 0 < R <= 0.02, Moderate when 0.02 < R <= 0.05
and High when R > 0.05. In contrast to the field scale tool, the
aim here was to provide users with landscape and catchment scale
policy responsibilities with some information about the degree of
pesticide delivery risk across the 1 km2 grid cells comprising the
study area. The user can pick any date between current date and
October 2017 with the aim of allowing users to explore known
runoff events and the degree to which the tool predicted any
locally observed runoff and this is supported by an interactive
(dy)graph of the mean rainfall in this period for this area. When
the user selects a date, the current and previous 5-day rainfall
for each 1 km2 are extracted and the model is run generating a
surface of predicted pesticide delivery risk. The boxplots show
the rainfall for the previous 5 days and the date being queried.
A screen grab of the catchment scale model application to the
Wissey catchment is shown in Figure 4.

CONCLUDING REMARKS

The effective use of agrochemicals in modern agriculture
contributes to sustained crop yields and quality. However,
agrochemicals are less effective when they “run off” into surface
and groundwaters soon after they are applied. The risk of this
happening increases when agrochemicals are applied to wet
(saturated) soils and when rainfall occurs soon after application.
Runoff and associated pollutant delivery from field-to-channel
also has negative impacts on environmental and drinking
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TABLE 4 | Curve Numbers (CN) for surface runoff generation based on

Hess et al. (2010).

Hydrological Vegetation Surface condition

soil group type Good1 Poor2

A Grass 39 68

A Row crops 65 72

A Small grains 61 65

A Semi-natural 39 68

A Woodland 30 45

B Grass 39 79

B Row crops 65 81

B Small grains 61 76

B Semi-natural 39 79

B Woodland 30 66

C Grass 74 86

C Row crops 82 88

C Small grains 81 84

C Semi-natural 74 86

C Woodland 70 77

D Grass 80 89

D Row crops 86 91

D Small grains 85 88

D Semi-natural 80 89

D Woodland 77 83

1Good soil structure, limited management activities (e.g. contour plowing) to reduce runoff

transmission from the field.
2Degraded soil structure resulting in enhanced runoff generation, plus evidence

of management activities increasing runoff transmission (e.g. downslope tramlines,

compaction due to livestock trampling or use of heavy farm machinery, fine seed beds).

water quality when agrochemicals are transferred to surface
or groundwater.

This paper describes a novel, generic and parsimonious
modeling framework that integrates dual-scale soil water
interaction models with real-time weather data. It addresses
a number of impediments to the use of existing runoff
risk models to inform on-farm management decisions and
catchment management.

i) Most soil-water interactionmodels have high data and input
parameter requirements to generate daily time-step simulations
of processes related plant and crop growth.

ii) Consequently they require in-depth knowledge about input
process parameters.

iii) They frequently require data which may not be available,
for example to non-academic or non-research organizations, or
to farmers and commercial companies.

iv)Many of thesemodels perform poorly when compared with
observed monitoring data (e.g., Zeiger and Hubbart, 2016).

v) Finally, because of these issues, existing models are not
easily integrated into tools able to quantify the real-time field
runoff and field-to-channel delivery risks which are required to
support more reactive and effective agrochemical management
decisions on the ground.

The dynamic, real-time decision tools developed in this
research do not address all of these issues (there remain

difficulties in validating the detailed spatial patterns predicted by
any catchment scale model, for example). However, the provision
of spatially- and temporally- explicit runoff and pesticide delivery
risk information using parsimonious models is novel. We have
demonstrated their applicability for two spatial scales of decision
making: on-farm and catchment. The individual components of
the parsimonious tools are not new: field and catchment scale
models of pesticide and herbicide runoff have existed for a long
time. But, critically, existing tools fail to provide timely and
thereby useful information to managers. There are many live
and location specific weather forecasting websites, smartphone
apps and tools. As yet, however, real-time forecasting and soil
water models have not been linked in an accessible and user-
friendly way. In most decision tools, the model data inputs are
relatively static (e.g., cropping systems, soil conditions, measures
of catchment scale field drainage, etc) and do not support
location- and time-specific queries. The result is that the modeled
soil-water interactions and pesticide persistence represent some
kind of generalized overall runoff trend rather than a specific local
runoff measure.

There are a number of areas of potential future work emerging
from this research for the further development of this modeling
framework. The field and catchment scale models are very
much proofs of concept and demonstrate how parsimonious
but sensitive runoff risk models could be included in such
frameworks. The utility of the tools and the interfaces from the
end user perspective could be enhanced and the scope of the tools
could be expanded in a number of ways. In our generic approach
for both field and catchment scales, the critical variables driving
field runoff and field-to-channel delivery risk are those related
to antecedent, current and forecast rainfall in combination with
fundamental intrinsic controls. In previous models, these have
been assumed under a suite of potential scenarios that the user
has to choose from. However, the ability to link to spatially-
and temporally- explicit data for the rainfall variables through
APIs offers a new avenue for enhancing the wider application
and utility of soil-water-connectivity models. The future ability
to serve many different types of geo-spatial data in this way
via distributed data portals will only increase, reducing the
dependency on locally held data. The landscape scale tool could
be expanded to include nested watershed, catchment and sub-
catchment scales and any corresponding aggregation associated
with instream transfer processes. A further area for development
would be to account for “noise” in runoff from agricultural
applications, not least of which are point pollution due to poor
on farm practice (incidental spillages, etc), runoff from domestic
and managed green space applications as well as pesticide spray
drift. A final and critical area of further work in the context
of the approaches described is the inclusion of high accuracy
rainfall data. This project used publicly available rainfall data
served through the UK Met Office’s API and interpolated over
a 1 km2 grid. Higher quality data is not provided for free.
As the models inherently depend on rainfall (to parameterise
the soil wetness factors through antecedent rainfall, to model
current risk and determine future risk projections), the greatest
influence on the quality of the model outputs is driven by
this data.

Frontiers in Sustainable Food Systems | www.frontiersin.org 10 June 2019 | Volume 3 | Article 4263

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Comber et al. Generic Parsimonious Runoff Risk Models

FIGURE 3 | A screenshot of output from the Teifi catchment field scale runoff risk model at https://github.com/lexcomber/saric.

FIGURE 4 | A screenshot of output from the Wissey catchment scale field-to-channel delivery risk model at https://github.com/lexcomber/saric.

In summary, the tools developed in this research provide
user interfaces to stripped down, parsimonious soil-water-
connectivity models that take advantage of the availability of

live rainfall data. Their components reflect the importance
of knowledge of past and current rainfall as drivers of
field runoff and field-to-channel delivery. To this end, each
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model pre-computed long-term water content for different
soil types and crops, was linked to a live rainfall data
feed and requested a very small amount of information
from users (date, soil status, crop type) from which field
runoff and field-to-channel delivery risk was computed using
antecedent and current rainfall. The wider applicability of
this research is underpinned by the generic nature of the
parsimonious modeling framework. Assuming the availability
of relevant mechanistic understanding and information on
application doses, the models could easily be extended to
predict risks to water quality and the wider environment for
any agricultural application at the farm decision scale or at
the landscape management scale. Future work will develop a
more strategic and commercial framework for a wider suite of
parsimonious models.
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A key goal of precision agriculture is to achieve the maximum crop yield while minimizing

inputs and loses from cropping systems. The challenge for precision agriculture is that

these factors interact with one another on a subfield scale. Seeding density and nitrogen

(N) fertilizer application rates are two of the most important inputs influencing agronomic,

economic and environmental outcomes in cropping systems including yield, return on

investment (ROI), and nitrate (NO3
−) leaching. Here a cropping system model framework

is used to predict site-specific subfield optimum seeding density and (N) fertilizer

application rates based on publicly available data sources. The framework is used

estimate differences in yield, ROI, NO3
− leaching, and N2O emissions corresponding

with economic optimum (maximum ROI) and agronomic optimum (maximum yield)

inputs. The framework couples the process-based APSIM cropping system model

with the SSURGO soils database, Daymet weather data service, land grant university

estimates of crop production costs and commodity price estimates, and the R statistics

software. Framework performance was evaluated using multiple years of precision yield

monitor data obtained from a conventionally managed continuous maize (Zea mays L.)

cropping system field located in north central Iowa on which varying N-fertilizer rates

were applied. Subfield model estimates of crop yield were sensitive to initial conditions

related to historical management of the field and had an r2 = 0.65 and a root mean

square error of 1645.0 kg ha−1. A site-specific application of the framework comparing

economic optimum seeding density and N-fertilizer rates with agronomic optimum values

estimated an average ROI benefit of 7.2% as well as an average NO3
− leaching and

N2O emissions reductions of 2.5 and 7.6 kg ha−1, respectively. However, in a minority of

cases NO3
− leaching was greater at the economic optimum, indicating that managing

to maximize ROI rather than yield may not always reduce environmental impacts.

Our results suggest that managing cropping systems for the economic optimum is

plausible using publicly available data with our framework and will likely lead to improved

environmental outcomes.

Keywords: economic optimum nitrogen, economic optimum seeding, nitrate leaching, APSIM, model framework
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INTRODUCTION

Optimizing the use of input resources in agricultural land
management is critical to maintaining sustainable and profitable
cropping systems. However, farm fields are characterized
by subfield variability linked to soil properties, topography,
competition with pests and weeds, as well as other factors
that directly or indirectly influence plant health. This spatial
variability leads to over- and under-fertilization in different parts
of the field when using uniform seeding densities and nitrogen
(N) fertilizer rates. Areas where N-fertilizer is applied in excess
of crop demand are often correlated with higher susceptibility
to nitrate (NO3

−) leaching, nitrous oxide (N2O) emissions, and
other environmental losses, while under-fertilized areas may
result in limited crop productivity, lost opportunity for profit,
and decreased economic return (Link et al., 2006; Basso et al.,
2016). Variable rate technology (VRT) provides a mechanism for
varying the allocation of input resources. In maize (Zea mays
L.) cropping systems seed density and N-fertilizer are two of the
most important decision criteria influencing yield, profitability,
and nutrient losses to the environment (Licht et al., 2017; Morris
et al., 2018). Yet, making informed subfield seeding and N-
fertilizer decisions that maximize return on investment (ROI)
and minimize environmental impacts is often difficult without
an abundance of site-specific data spanning multiple years and
weather conditions (Morris et al., 2018). Consequently, modest
increases in ROI are reported from the use of VRT and adoption
has remained relatively limited (28% of US maize hectares)
compared to other precision agriculture technologies such as
yield monitors and GPS guidance systems (70 and 54% of US
maize hectares, respectively, Schimmelpfennig, 2016).

A number of approaches have been used to predict
economically optimal N-fertilizer application rates (EONR)
including yield goal assessments, pre-plant and pre-sidedress
soil NO3

− tests, crop canopy sensing, and maximum return
to N calculators based on regionally specific empirical N-
fertilizer rate trials (Sawyer and Nafziger, 2005; Puntel et al.,
2016, 2019; for a review see Morris et al., 2018). Additionally,
studies have also attempted to quantify optimum site-specific
seed densities (Licht et al., 2017), which may represent a
more economically impactful management change in many
cropping systems compared to changes in nutrient applications.
Variable rate zones defining different application rates have been
generated using precision agriculture data sources including
yield monitor maps (Adamchuk et al., 2004; Basso et al., 2016;
Maestrini and Basso, 2018), remotely sensed data (Hong et al.,
2006; Basso et al., 2016; Gao et al., 2018; Jin et al., 2019), gridded
soil sampling (Fleming et al., 2000), digital soil maps (Bobryk
et al., 2016), topography (Long et al., 2015; Walters et al., 2017),
and real-time optical sensors (Raun et al., 2002; Tremblay et al.,
2009; Kitchen et al., 2010; Stefanini et al., 2018).

However, large uncertainty and financial risk exists with the

prediction of EONR and economic optimum seed rate (EOSR)

across multiple years, particularly at field-to-subfield spatial

scales (Licht et al., 2017; Puntel et al., 2018). Uncontrollable
factors impacting N-cycle dynamics and crop uptake, including
temperature and precipitation event timing and intensity, make

accurate EONR and EOSR difficult. Additionally, crop yields
are not linearly related to seeding densities due to inter-plant
interactions and competition which has been demonstrated to
decrease yields beyond certain plant population (i.e., plants m−2)
rates (Woli et al., 2014). This warrants a systems-based approach
for determining economically optimum seeding densities and
N-fertilizer rates that are capable of predicting crop yields,
N-dynamics, and environmental losses based on the complex
interaction between crops, weather conditions, soil properties,
and land management practices (Banger et al., 2017).

Simulation models have previously been used to predict
spatially-explicit nutrient losses (Paz et al., 1999; Holland
and Schepers, 2010; Solie et al., 2012) as well as EONR and
EOSR. Commercial tools offering prescription management
recommendations and in-season N-fertilizer recommendations
such as Adapt-N (http://www.adapt-n.com), Encirca (https://
www.pioneer.com/home/site/us/encirca/), and Climate
FieldView (https://climate.com) incorporate real-time data
as well as local soil and crop management factors. However,
these models and tools are typically conceived for in-season
N-management decisions during crop growth based on historical
and predicted weather data. Such tools have been demonstrated
to improve resource use-efficiency and yield (Sela et al., 2016),
but rely on non-publicly available data and algorithms.

The goal of this study was to develop an automated predictive
framework for estimating site-specific, subfield-scale economic
optimum combinations of seeding densities and N-fertilizer rates
using publicly available, spatially-explicit data and models. The
Agricultural Production Systems sIMulator (APSIM; Holzworth
et al., 2014) crop model was coupled with the SSURGO soils
database, Daymet weather data service, and public financial data
to create a spatially explicit modeling framework for estimating
yield and ROI responses based on varying combinations of
seeding densities and N-fertilizer rates for a given cropping
system field. Outputs of the APSIM analyses for all seeding
and N-fertilizer combinations are then aggregated and processed
using the R statistical package to identify the agronomic and
economic optimum input combinations as well as corresponding
differences in environmental outcomes such as NO3

− leaching
and soil N2O emissions. Therefore, the framework may be used
in making more informed subfield seeding and N-management
decisions by weighting corresponding economic outcomes with
potential environmental risks. The specific objectives of this
study were to: (1) Evaluate the accuracy of the model simulations
at a subfield spatial scale; (2) Evaluate modeled subfield
ROI responses to variable management conditions based on
experimental observations; and (3) Quantify differences in ROI,
NO3

− leaching, and soil N2O emissions between agronomic and
economic optimum inputs.

METHODS

Integrated Modeling Approach
The model framework couples APSIM (Holzworth et al.,
2014) with the SSURGO soils database and Daymet weather
data service to simulate subfield soil-specific, cropping system
processes for a user defined field (Figure 1; Table 1). Historical
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FIGURE 1 | Data flow through the model framework, which automates the parameterization of the APSIM model for all SSURGO soils within a specified cropping

system field boundary and estimates economic and environmental responses to varying management combinations for each soil.

crop production cost estimates and commodity prices obtained
from Iowa State University Extension and Outreach Ag Decision
Maker Historical Costs of Crop Production (Johanns and
Plastina, 2019) were added to the framework for converting
predicted yields to profit and ROI. Based on a geospatial
field boundary, the framework identifies all subfield SSURGO
soils within the field, retrieves daily historical weather data,
and executes APSIM to simulate multiple seeding density
and N-fertilizer rate combinations. Output from APSIM is
then aggregated to a centralized database and processed using
an R script to identify both the economic and agronomic
optimum (defined as the maximum ROI and yield, respectively)
combinations of input resources for all subfield soil types.

APSIM Cropping Systems Model
The APSIM model is composed of several modules that
enable the simulation of agricultural systems based on plant,
animal, soil, climate, and management interactions. In this case,
the framework incorporated APSIM version 7.7 modules for
maize growth, soil water dynamics, soil and surface organic
matter dynamics, and crop management rules (Holzworth
et al., 2014). The maize crop growth module simulates maize
growth and development of different cultivars on a daily
time-step based on temperature, precipitation, solar radiation,
water and nitrogen availability, soil properties, and land
management practices. The model separates crop phenology
into several phases, the duration of each dependent on
daily temperature, water availability, N stress, and carbon
(C) availability. Daily biomass increases are calculated as the

TABLE 1 | Framework components and data sources.

Component Description References

APSIM Cropping

system model

http://www.apsim.info/

Soil Survey

Geographic Database

(SSURGO)

Soil database https://websoilsurvey.sc.egov.usda.

gov/App/HomePage.htm

Daymet Weather Data Weather

database

https://daymet.ornl.gov/

Ag decision maker Extension

database

https://www.extension.iastate.edu/

agdm/

R Statistics

software

package

https://www.r-project.org

minimum of two model estimates representing light-limited
and water-limited productivity conditions, respectively. Daily
biomass gain predicted by the model is partitioned into root,
stem, leaf, and grain components depending on the plant stage of
growth. In addition to the impact of N-fertilizer application rates
on plant N availability within the soil profile, seeding density,
and depth influence simulated leaf area index and subsequent
biomass production and grain yield. APSIM has previously been
used and validated in several studies similar to our cropping
system to estimate crop productivity responses to varying levels
of N-fertilizer rates (Puntel et al., 2016, 2018; Martinez-Feria
et al., 2018).
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Model Inputs and Data Sources
The SSURGO soils database contains geospatially explicit soil
types and corresponding physical soil properties across U.S.
territories. To identify soils within a specific field, the field
boundary is intersected with the SSURGO map unit polygon
data layer stored in a PostgreSQL (www.postgresql.org) database
with Post-GIS (www.postgis.net) extension. Vertical horizons
data corresponding with the dominant component of each
identified SSURGO soil map unit is used to define the initial
soil condition within the APSIM model. The process requires
several parameters to be derived from the available SSURGO soil
properties (Table 2).

Daily maximum and minimum temperature, precipitation,
and solar radiation estimates are obtained from the Daymet
weather data service (Thornton et al., 2018) based on the
geospatial coordinates of the field centroid and the specific
years of the analysis (Figure S1). Weather attribute values from
the incoming data stream from Daymet are converted to the
appropriate units and used to generate the daily weather input
file (.met), native to APSIM. To analyze cropping system fields
where financial data is unavailable, modeled and measured yield
values are converted to a profit and ROI basis using annual crop
production cost estimates and commodity prices generated by
Iowa State University Extension and Outreach (Plastina, 2018;
Johanns, 2019). These costs represent typical input costs and
grain prices specific to Iowa (Table 3). Similarly, alternative
financial data from other land grant universities could be added
to the framework to increase the scope of the tool beyond Iowa.

Subfield Analysis of Continuous Maize
System
To evaluate the ability of the framework to differentiate subfield
differences in crop productivity and corresponding ROI, it
was applied to model a continuous maize field located in
Butler County, Iowa, U.S. (Table S1). Subfield simulations were
created by executing APSIM for each of the identified SSURGO
soil types such that field scale management was repeated for
each polygon. The simulation spanned the 2012–2017 growing
seasons during which manure was the primary source of N,
excluding commercial N-fertilizer applied during anN-treatment
study in 2015 and 2016. From 2012 to 2014, land management
operations included a fall manure application with a total target
N-application rate of approximately 224.5 kg ha−1, and an early
spring urea ammonium nitrate (UAN) fertilizer application
equivalent to 28.1 kg ha−1 of N. Prior to planting, a cultivator
tillage pass was typically used to condition the seed bed for
planting. Additionally, a tillage pass with a chisel plow was used
to incorporate a portion of the surface residue remaining in
the field following maize harvests. During the 2015 and 2016
seasons N-management practices were altered and commercial
N-fertilizer was applied. Following the 2014 harvest, a fall
anhydrous ammonia application equivalent to 252.6 kg ha−1 of
N was applied using a 12-row knife applicator. Similar to the
previous years, a uniform spring UAN application of 28.1 kg ha−1

was then applied in the spring of 2015. After the 2015 harvest, a
uniform fall manure application (168.4 kg ha−1 of N) was applied

followed by a spring 2016 UAN application of 112.3 kg ha−1 of N.
Crop production cost estimates for each year of the analysis were
adjusted to represent the annual seeding density, manure, and N-
fertilizer application rates. Manure amendments were modeled
using manure storage pit analysis values obtained from Sawyer
and Mallarino (2008) for C to N ratio and C to Phosphorus (P)
ratio values required by the APSIM model. Use of the maximum
grain price documented for each modeled year was based on the
assumption that the grain would be stored on site and sold at an
economically advantageous time. For years in which manure was
applied, associated manure application costs were obtained from
organic maize production budgets, and N-fertilizer costs were
adjusted accordingly. Modeled yield estimates corresponding
with each subfield soil type were compared with multiple years
(2012–2017) of precision yield monitor data averaged to each
unique soil boundary.

Evaluating Simulated Subfield Yield
Response to Variable Inputs
The framework was used to model multiple combinations of
input resources against the various soil types identified within
the continuous maize system field. In addition to uniform
field rates, varying seeding densities and N-fertilizer rates were
simulated in an effort to find the agronomic and economic
optimum combination of input resources. Seeding density
varied from 1 to 15 seeds m−2 and N-fertilizer rates were
varied based on a percentage of the field-scale application
rate during 2015 and 2016. N-application rates ranging from
0 to 150% of the field-scale N-fertilizer rates were modeled
for the Fall 2014 and Spring 2016 applications. In addition
to estimating the economic benefit, model outputs were used
to estimate and soil N2O emissions and NO3

− leaching
(below 2m; which exceeds the expected maize rooting depth;
Ordóñez et al., 2018) associated with the economically optimum
management rates compared to the agronomically optimum
rates. Simulated 2015 and 2016 yields and ROI were compared
with observations obtained from six subfield zones (97.5m
× 36.6m) within the field (Figure 2). Each zone was divided
into eight strips on which randomized N-fertilizer treatments
were applied during the fall of 2014 and spring of 2016
including 0, 50, 100, and 125% of field-scale application rates
(224.5 and 112.3 kg ha−1, respectively). Zones were identified
using mean yield monitor data from 2013 and 2014. Data
from 2012 was excluded from the zone classification process
due to drought conditions that resulted in abnormally low
crop productivity.

Each of the zones were divided into eight equal (12.2m ×

36.6m) strips on which one of four N-fertilizer treatments were
applied (one replication per treatment). To prevent disrupting
normal field operations, plot positions were constrained to be
in line with one another. This allowed the N-treatments to be
applied during normal field operational passes using a two-
rate applicator system, in which one rate was set to the field-
scale baseline and the other to the specific plot treatment rate.
The secondary application rate was switched on and off by the
operator at the boundaries of each N-treatment strip.
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TABLE 2 | Derivation of APSIM soil properties from available SSURGO soil attribute data.

APSIM parameter SSURGO

parameter

SSURGO units Conversion factor APSIM units

Bulk density of the soil for each layer (BD) dbThirdBar_r g cm−3 1 g cm−3

Volumetric water content for air dry soil in each

layer (AirDry)

wFifteenBar_r % 0.5 * wFifteenBar_r at depth <= 15 cm

wFifteenBar_r at depth > 15 cm

mm3 mm−3

Volumetric water content for each layer

corresponding to a soil potential of 15 bar (LL15)

wFifteenBar_r % 0.01 * wFifteenBar_r mm3 mm−3

Volumetric water content at drained upper limit

for each soil layer (DUL)

wThirdBar_r % 0.01 * wThirdBar_r mm3 mm−3

Volumetric water content at saturation for each

soil layer (SAT)

wThirdBar_r % 1 – (wThirdBar_r/2.65) mm3 mm−3

Drainage rate from soil layer when the soil water

is above saturation (KS)

ksat_r 0.001 * 3600 * 24 * ksat mm day−1

Soil organic carbon content of soil layer (OC) om_r om_r/1.724 %

TABLE 3 | Annual crop production cost estimates and maize grain price.

Year Seed price

($ 1,000 seed−1)

N price1

($ kg−1)

Land rent

($ ha−1)

Max. grain price

($ bu−1)

Min. grain price

($ bu−1)

Mean grain price

($ bu−1)

Total budget w/o N

and seed

($ ha−1)

2012 3.40 1.39 705.6 7.89 5.99 6.67 1573.85

2013 3.64 1.28 756 7.13 4.32 6.23 1610.06

2014 3.78 0.97 787.2 4.76 3.51 4.13 1636.49

2015 3.86 1.03 748.8 3.86 3.53 3.67 1595.09

2016 3.70 0.88 710.4 3.75 3.08 3.40 1492.10

2017 3.43 0.68 648 3.43 3.14 3.30 1355.78

Reflects costs of commercial N-fertilizer per unit applied. For our case study the N-fertilizer cost was $0 in 2012, 2013, 2014, and 2017 because N was applied only in the form of

manure.

Yield monitor data from 2015 and 2016 was geospatially
intersected with the zone and sub-zone plot boundaries to
estimate the mean observed yield and ROI associated with each
N-treatment. The model results for each plot were derived by
using the area-weighted average results corresponding with the
different soil types intersecting each plot.

RESULTS

Objective 1: Evaluation of Subfield Model
Results Against Observations
Linearly regressing simulated yield predictions against spatially-
averaged yield monitor observations corresponding with all soil
types resulted in an r2 = 0.48 and a root mean square error
of 2171.8 kg ha−1, or 27.1% ROI (Figure 3; Table 4; Table S2).
The largest modeling errors were associated with overestimates
that occurred for limited-area soils located near the field borders
includingMukey 403446 (Yield RMSE 4524.0 kg ha−1, area= 0.5
ha), Mukey 403397 (Yield RMSE 2468.1 kg ha−1; area = 1.9 ha),
and Mukey 403398 (Yield RMSE 1917.2 kg ha−1; area = 0.2 ha;
Table S3). Excluding these soils from the results (4% of the field
area) improved model fit (r2 = 0.65; Figure 3) and reduced yield
RMSE 1645.0 kg ha−1 and ROI RMSE to 21.5% (Table 4).

Low yields observed in the southwest corner of the field
(Mukey 403351) were reportedly caused by topographical effects

and a broken drainage tile, which over several years had
limited infiltration and increased susceptibility to ponding and
soil compaction (Figure 2; Table S4, personal communication
with land manager). Interannual variation in simulated yield
and ROI due to varying weather conditions, crop production
costs, and maize prices were found to be consistent with
observations (Figure 4). Low yields and corresponding ROI
estimates observed in 2012 due to drought conditions were
reflected in modeled outputs as well as the relatively high yields
and economic return observed in 2013. However, the range of
model estimates associated with 2015–2017 was found to be
consistently high.

Objective 2: Evaluation of Simulated
Subfield ROI Response to Variable
Management
Model results were compared with corresponding experimental
plot yields obtained from spatially averaged yield monitor data
(Figure 2). Model outputs associated with the two highest N
treatments tended to over-estimate observed crop productivity
and corresponding ROI (Figure 5). Overall, the plot based yields
had an RMSE of 2490.6 kg ha−1 (12.1% ROI) and 3075.2 kg
ha−1 (15.4% ROI) in 2015 and 2016, respectively (Table S5).
However, similar to observations, simulated 2015 yields showed
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FIGURE 2 | Average 2013 and 2014 ROI map of field used to identify spatial economic zones in which N-fertilizer rate trials were performed in 2015 and 2016.

SSURGO soil mapunit polygons are overlayed and labeled with unique Mukey identifier (e.g., 403442). Each soil polygon was modeled independently to determine an

optimum management for that area. Boundaries defining the identified economic zones (gray areas) include two “no-cost” zones defined by an average ROI of

−15.0% or less; two “cost-limited” zones with a mean annual ROI between −15.0 and 15.0%; and two “revenue” zones with a mean annual ROI >15.0% (Google

imagery 2017, DigitalGlobe).

FIGURE 3 | Modeled yield and ROI values fit to observations obtained from spatially averaged precision yield monitor data. Gray data points represent data removed

from soils with small areal extent located near the field boundary.

little response to N-fertilizer applications beyond the 50% of
the field application rate. Contrastingly, modeled 2016 yields
responded positively to increases in the early Spring N-fertilizer

application (Figure 6). Observations in 2016 showed the highest
N application rate (125% of field-scale N application) resulted
in lower yields than the 50 and 100% field-scale treatments
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indicating the secondary spring application, following the fall
manure application in 2015, may not have been necessary to
maximize yield. Consequently, the highest N treatment resulted
in lower observed economic return when compared with the 50
and 100% application rates, particularly in 2015 (Figures 5, 6).

Simulated yield and ROI were found to have a positive
response to increasing N application rates during the spring
of 2016. The modeled outputs showed the yield and ROI to
be more proportional to the incremental increases between N-
treatments. Variance associated with the predicted yield and
ROI values was found to decrease as N fertilizer rates increased
to a maximum. The decreased variance across the maximum
simulated N treatment plots indicated the increasing N-fertilizer
rates were adequate to overcome any insufficient source of initial
plant available N that is based on soil type.

The largest modeling errors were found to correspond
with N treatment simulations representing plots located

TABLE 4 | Mean annual yield and ROI error estimates generated by the APSIM

model framework based on spatially averaged precision yield monitor data.

Group Sample

size

Yield

RMSE (kg

ha−1)

Yield

NRMSE

(%)

ROI

RMSE (%)

All Soils 66 2171.8 21.0 27.1

Excluding 403446,

403397, and

403398

48 1645.0 15.5 21.5

in areas with historically low productivity and economic
return. Yield in “No-cost” zones were found to have an
RMSE of 4313.6 kg ha−1 (21.3% ROI) compared to 1449.6 kg
ha−1 (7.1% ROI) and 1667.6 kg ha−1 (8.4%) associated
with “Expense-limited” and “Revenue” zones, respectively
(Figure 7; Table S6).

Objective 3: Simulated Environmental and
Economic Impacts Associated With
Variable Rate Seeding and N Fertilizer
Multiple seeding and N-fertilizer rate combinations were
simulated across all subfield soils within the North-central Iowa
field during 2015 and 2016 to identify combinations of seed and
N-fertilizer inputs predicted to result in agronomic and economic
optimums. A total of 4774 APSIM simulations were processed to
estimate yield and ROI responses across a management decision
space of 1–15 seeds per square meter and 0–150% of the field-
scale N-fertilizer rate. Simulations showed a range of variability in
maize yield and ROI estimates across the different soil types and
years (data not shown). Modeled yield and ROI response surfaces
were generated, and agronomic and economic optimums were
identified from the different combinations of seeding density and
N-fertilizer rates (e.g., Figure 8).

Modeled annual crop productivity estimates for 2015 and
2016 ranged from 2812.4 to 14055.2 kg ha−1 across all
plots, seeding densities, and N-fertilizer rate combinations.
The range of yields corresponded with a minimum ROI
of −75.3% and a maximum of 1.6% (data not shown).
Initial soil conditions set using SSURGO data were found

FIGURE 4 | Distribution of annual modeled and observed yield monitor data for each year of analysis. Filled boxes represent the interquartile range (IQR), end caps

represent maximum and minimum and dots are outliers defined as >1.5 times the IQR.
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FIGURE 5 | Scatter plot of simulated and spatially averaged yield monitor data corresponding with each experimental N-treatment plot located in the northcentral

Iowa field.

FIGURE 6 | Modeled and observed yield data associated with the four N-fertilizer treatments corresponding with 0, 50, 100, and 125% of the field-scale N-fertilizer

rate applied during the fall of 2014 and the spring of 2016. Two replicates of each N-treatment were applied in randomized adjacent plots within the six zones located

in an Iowa field (see Figure 2).

to directly influence the magnitude of the simulated maize
yields, particularly at lower N-fertilizer rates (0 and 50% of
field-scale). Due to relatively high input costs and low commodity

prices during 2015 and 2016, a majority of modeled yield
values were estimated to result in an ROI below break-even
(0% ROI).
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FIGURE 7 | Range of ROI values within each experimental zone during 2015 and 2016. No-cost zones were found to have the greatest range of variability resulting

from the alternative N-treatments within each zone. Revenue zones were found to have the least variability compared to the No-cost and Cost-limited zones.

FIGURE 8 | An example of modeled yield and ROI response to variable seeding density and N-fertilizer rate combinations applied in 2015 and 2016. Data associated

with the area-dominant subfield soil type within the North-central Iowa field is shown (Mukey 403374; 5.5 ha; see Figure 2).

In 2015, maximum yield estimates consistently corresponded
with the highest seeding density (15 seedm−2) and N-application
rate (150% of field-scale rate; 336.8 kg ha−1) for all soil types (data
not shown). The economic optimum seeding density (EOSD)
was also consistent across a majority of soils ranging from 8 to

9 seeds m−2 (Figure 9). Economic optimum N-fertilizer rates
(EONR) in 2015 showed increased variability across the field
ranging from 110 to 180 kg ha−1. Although the EONR varied
across the field, the maximum predicted ROI potential associated
with the different soils was found to be relatively consistent,
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varying by 4.1%. Similar to 2015, maximum crop yields in 2016
corresponded with the greatest N-fertilizer rate (150% of field-
scale rate; 168.4 kg ha−1) considered within the decision space
for the spring application. However, the agronomic optimum
seeding rates in 2016 were more variable than 2015, ranging from
9 to 14 seeds m−2. This indicated higher seeding rate scenarios
were likely N-limited at the 150% field-scale application rate.
As in 2015, the predicted 2016 EOSD was consistent (8–9 seed
m−2) and showed little variation from EOSD predictions from
the previous year. N-fertilizer rates were again shown to be the
main regulating input for maximizing ROI across the field.

ROI, NO3
− leaching, and N2O emissions differences between

the agronomic and economic optimum seeding density and
N-fertilizer rate scenarios were calculated to determine the
range of economic and environmental outcomes that separate
maximum economic return and maximum yield potential. Yield
differences between the economic and agronomic maximums
associated with each subfield soil polygon ranged from 423.1
to 830.5 kg ha−1 in 2015 and from 99.5 to 897.1 kg ha−1

in 2016. The yield differences corresponded with ROI gains
ranging from 10.0 to 12.1% in 2015 and 0.3 to 8.0% in 2016,
respectively (Figure 10). The yield and ROI differences between
the agronomic and economic optimums were found to be driven
by both changes in seeding density as well as N inputs. In
cases where seeding density was the main factor separating the
agronomic and economic optimum management scenarios, the
shift in ROI was minor. These relatively small shifts in ROI
from changes in seeding density were primarily the result of
a reduced yield impact compared to the simulated changes
in N-fertilizer. Additionally, the relative cost savings from the
reduced seed density were minimal compared to the cost of
N. An average reduction of 5 seeds m−2 in 2015 equated to
reduced input cost of $44.40 ha−1. In terms of N, a reduction
of 43.0 kg ha−1 would be needed to achieve an equivalent
cost reduction, however, proportionally larger differences in N-
fertilizer rate were estimated. An average N-fertilizer difference of
157.3 kg ha−1 was predicted to separate economic and agronomic
optimum managements in 2015 ($161.99 ha−1 in cost savings
based on the average N-price in 2015), followed by an estimated
19.5 kg ha−1 ($20.13 ha−1) difference in N-fertilizer in 2016. The
economic optimum combination of inputs was found to have an
average decrease NO3

− leaching across all soils with an average
reduction of 3.7 and 1.4 kg ha−1 in 2015 and 2016, respectively
(Figure 11). In addition to NO3

− leaching, N2O emissions
showed a relative decrease when comparing the seeding and N-
fertilizer rates associated with maximum yield to those associated
with maximum ROI. In 2015, differences between the optimum
management scenarios accounted for an average change in N2O
emissions of 14.8 kg ha−1. In 2016, the N2O emissions difference
between economic and agronomic optimum scenarios was 0.5 kg
ha−1 (Figure 11).

DISCUSSION

Optimizing the use of input resources within cropping systems
is critical to improving sustainability and increasing economic

returns from farm fields. However, predicting how to best
allocate input resources such as seed and N-fertilizer to maximize
ROI is difficult due to many dynamic factors influencing crop
productivity and variability within the cropping systems (Scharf
et al., 2005; Jaynes et al., 2011; Dhital and Ruan, 2016). As a result,
subfield seeding density and N-fertilizer application guidance
is needed prior to upcoming cropping seasons. However, pre-
season methods of determining the EONR and EOSD, such as
a yield-goal approach, rely heavily on historical data and often
involve estimates of interdependent factors (Sela et al., 2017).
Regional MRTN tools that incorporate N-fertilizer prices and use
empirical data to predict yield response to variable N-fertilizer
rates provide field-scale approximations of optimums, but do
not provide site-specific subfield recommendations or adjust for
year-to-year variability (Sawyer et al., 2006).

Cropping system models such as APSIM are capable of
predicting such site-specific subfield yield responses, however
determining how these models can best be applied to provide
land managers with actionable information to use within their
existing management operations is difficult. The framework
presented here was developed to determine if a cropping
system model, coupled with publicly available data sources,
could be used as a decision support tool for estimating site-
specific subfield economic optimum seeding density and N-
fertilizer rates. Ultimately to be adopted, the framework will
need to be practical to use, requiring further development of a
user-friendly interface that may need to be catered to specific
regions. This study was focused on maize grown in the Midwest
U.S., a region where the adoption of precision agriculture
has spread rapidly (Schimmelpfennig, 2016), and hence a
logical initial focus for framework development. However, the
SSURGO and Daymet data sources provide coverage across the
conterminous U.S. allowing the framework to be applied to a
variety of cropping system locations with varying weather and
soil conditions. Extending beyond our study region, there are
analogous tools such as Yield Prophet (Hochman et al., 2009;
McCown et al., 2009) which have been successfully implemented
in wheat, barley, canola, and oat cropping systems in Australia.
Additionally, alternative data sources which provide alternate
global weather and soil characteristics could be integrated with
the framework to further extend its use in different regions
(e.g., the European Centre forMedium-RangeWeather Forecasts
Reanalysis (ERA) products and the European Soil Database).

The framework was applied to determine subfield EONR and
EOSD combinations for a Butler, County, Iowa, U.S. cropping
system field in continuous maize and demonstrated the ability
of the tool to capture subfield variability of yield and ROI across
multiple years (2012–2017) and weather conditions (Figures 2,
3). The initial demonstration of the framework required making
some assumptions about the farming operations (e.g., selling
grain at peak annual price) that could be incorporated into
the user interface as customizable settings. Results of the
Butler County field analysis showed fair agreement with annual
subfield soil-based observations obtained from area-averaged
yield monitor data for the 2012–2017 growing seasons. The
greatest sources of modeling error corresponded with several
small-area soils along the field boundary (Figure 2). Yields and
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FIGURE 9 | Estimated economic optimum seeding density (EOSD) and economic optimum N-fertilizer rates (EONR) for 2015 and 2016. Management zones defined

by one or more soil types sharing the same optimal combination of inputs are shown.

FIGURE 10 | Yield and ROI changes associated with a shift from agronomic optimum inputs to economic optimum inputs. Data points represent changes

corresponding with each subfield soil types during 2015 and 2016 (Table S7).

ROI associated with these soils were all over-estimated compared
to the observations derived from yield monitor data. Plant
stresses from non-simulated factors (e.g., standing water and
soil compaction) could explain model over estimation in these
areas. However, due to the small size (4% of field area) and the
proximity of the soils to the field boundary the increased error

might be expected. Furthermore, yield monitor measurements
may be artificially low near field borders (Luck and Fulton, 2004).
Excluding the identified soils improved model fit to observations
associated with the remaining 96% of the field area (r2 =

0.48 to r2 = 0.65) and reduced yield RMSE from 2171.8 to
1645.0 kg ha−1.
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FIGURE 11 | NO3
− leaching and N2O emission changes associated with a shift from managing for maximum yield (agronomic optimum inputs) to managing for

maximum ROI (economic optimum inputs). Data points represent changes corresponding with each subfield soil type during 2015 and 2016 (Table S7).

Normalizing the RMSE by the mean observed yield resulted
in a relative RMSE (RRMSE) of 15.5% (Table S2), which was
similar in magnitude to a previous study examining the ability
of the APSIM cropping system model to capture yield response
to variable N-fertilizer rates in an Iowa maize system (Puntel
et al., 2016). The RRMSE between 15 and 30% represents
moderate model performance based on Yang et al. (2014).
However, it is important to note the framework simulation
approach was characterized by a high degree of difficulty
as it runs a continuous simulation between 2012 and 2017,
avoiding re-initialization of the soil data to capture year-on-year
impacts on N-cycle dynamics (Constantin et al., 2011; Basso
and Ritchie, 2015) related to the variable weather conditions
and prior management practices. Such a modeling approach
may propagate and accumulate error associated with a particular
year during the full simulation period (Salo et al., 2016;
Puntel et al., 2018). Based on this high level of difficulty and
the resulting model performance, we believe the ability of
the framework to capture subfield-scale patterns outside of a
calibrated experimental setting indicates the framework to be a

viable basis for an assessment tool when using public soils and
weather data.

The model outputs corresponding with varying combinations
of seeding density and N-fertilizer rates showed, in addition
to increased ROI, managing for maximum economic return
vs. maximum yield, likely provides an environmental co-
benefit by reducing N-losses from NO3

− leaching and N2O
emissions. Daily outputs from the analysis showed modeled
N2O emissions were driven by interannual conditions that
resulted in several periods during the growing season each year
in which conditions favored denitrification (data not shown).
Alternatively, the daily outputs showed a majority of NO3

−

leaching to have occurred during the fall of 2015 into the
spring of 2016. This indicated the fall manure application
in 2015 was susceptible to high rates of NO3

− leaching.
The economic and environmental co-benefit associated with
strategically targeting management practices to subfield zones
supports similar findings in Muth (2014) and Brandes et al.
(2016), which have noted a correlation between environmental
and economic performance in cropping systems. Such a
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relationship presents a financial incentive for adopting the
economically optimum inputs, even at the cost of potential
yield. A comparison of the predicted economic and agronomic
optimums performed in this analysis showed the importance of
managing the balance between seeding density and reduced N-
fertilizer rates. The dual benefit of increased economic return and
reduced environmental impacts may be sufficiently appealing
to incentivize adoption by land managers, especially relative to
regulatory actions by governments (Arbuckle, 2013; Kalcic et al.,
2014).

The modeled relationship between maximum yield and
maximum ROI was shown to reinforce aggregated empirical
findings that are used in MRTN tools such as the Corn Nitrogen
Rate Calculator (CRNC) (Sawyer et al., 2006). A small yield
response was observed in 2015 when the primary source of N
to the field was varied (224.5 kg ha−1 in the Fall 2014) indicating
that some N-stress occurred at the lower rates of 0 and 50% of the
field-scale N application. The long history of manure amendment
prior to the 2012 start of the analysis has likely resulted in a
large stock of organic N sources within the soil profile of the
North-central Iowa field. A calibration approach, such as the one
used in Puntel et al. (2016), based on previous knowledge of the
system including the C:N ratio of the crop residues could be
used to improve the predictive capability of the framework for
future years.

The accuracy and usefulness of the tool could also be
improved with more information and site-specific data sources.
For example, relatively low yield observations in the southwest
corner of the Iowa maize field were reported by the land manager
to be the result of a broken tile drain and water infiltration issues
(personal communication). Such information was not captured
in the simulations when using only the public data sources to
drive predictions. As a result, the variable N-treatment zone
(No-cost 1) located in this area was found to correspond with
the greatest modeling errors [yield and ROI RMSE of 4313.6 kg
ha−1 and 21.3%, respectively (Table S6)], compared to the other
variable N-treatment zones. For example, expense-limited zones
showed the least error with a yield RMSE of 1449.6 kg ha−1 and
ROI RMSE of 7.1%. Therefore, a real world application of the
framework could be improved with some familiarity with the
field being analyzed beyond crop, weather, and soil conditions.
Calibration of the framework using historical precision yield data
and initialization of simulated soil properties including initial
NO3

− and NH+

4 concentrations would also likely improve model
performance. Such calibrations could be used to account for
residual N within the soil in amounts adequate to offset any N-
limitations that may occur in lower N-treatment plots. However,
the ability andmotivation of the landmanager to take the steps to
obtain the necessary site-specific measurements may not be likely
in some cases (Schimmelpfennig, 2016). In practice, there will be
a range of potential users of the framework with varying levels of
access to site-specific data and precision equipment/technology.
Further calibration of the framework to provide more accurate
predictions may represent a second phase in the analysis
process after initially using the framework to highlight areas
of the field that are not likely to respond to changes in

management practices (e.g., “No-cost” zones). The second
“calibrated” phase would then focus on areas of field where the
model has shown to provide a yield response similar to historical
observations. We envision the framework being applied in the
following manner:

(1) Perform initial baseline assessment of field using historical
management practices (i.e., seeding rate, N-fertilizer rates,
tillage), public soils data, and public weather data.

(2) Compare predicted baseline yield values to historical
precision yield data to identify areas of the field where
the framework provides satisfactory agreement with
observations (e.g., NRMSE ≤ 30%).

(3) Use framework to determine optimum seeding density
and N-fertilizer application rates to the areas identified
as satisfactory in Step 2 (standard management for
remaining areas).

The result of this second phase would then be used to
guide subfield management of seeding and N-fertilizer
rates for the sub-field areas that have not been excluded
in the “No-cost” zones. These zones should be prioritized
for the enrollment of conservation programs or targets
for perennial energy crops (Brandes et al., 2016). Further
testing on additional independent sites will strengthen the
predictive ability of the framework for supporting future
application decisions.

CONCLUSIONS

Optimizing the use of input resources within cropping
systems is critical to reducing nutrient losses improving
sustainability, and increasing economic return from cropping
system fields. However, predicting how to best allocate input
resources within a field is difficult due to the spatial and
temporal variability of weather, soils, and management practices
within the systems. By leveraging publicly available field-to-
subfield data sources, cropping system models may provide
a valuable decision support tool for predicting site specific
yield, ROI, and environmental impacts on which farmers
could base management decisions. The developed framework
provides a basis for a subfield decision support tool for
estimating economically optimum seeding densities and N-
fertilizer rates. An application of the framework to predict
annual yield and ROI outcomes in a maize cropping system
found the framework effectively captured subfield variability
of the observed crop productivity. These results support
that this framework could potential be used to increase
both economic and environmental performance in relatively
well performing zones. Our analysis also indicated that
poor performing zones are unlikely to be profitable at any
realistic combination of the key inputs studied, suggesting that
these areas may be targets for alternative cropping systems
(e.g., perennial grasses). NO3

− leaching and N2O emissions
differences between economic and agronomic optimum yields
reinforces a correlation between maximum profitability and
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improved environmental performance. Further development of
the integrated modeling approach to simulate perennial grasses
and utilize more site-specific data may increase the accuracy and
robustness of the framework. Integrating the use of additional
precision agriculture data layers including as-applied nutrient
applications, as-planted seeding data, gridded soil sampling,
elevation data, and remote sensed layers could provide the
necessary increase in spatial resolution needed to extend the
process-based modeling framework as a more practical decision
making resource.
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There are increasing opportunities to use smart farming technologies for improved

management of farming systems. However, there is limited understanding of how the

potential can be translated into effective use in the farming sector. Previous studies

have highlighted the role that uncertainty plays in technological innovation systems. In

this paper, we present the results of an international survey investigating the impact

of innovation uncertainty on adoption of a smart farming technology, automatic milking

systems (AMS). The objective of this study was to review adoption of AMS internationally

and propose lessons for developing institutional knowledge and effective networks of

practice in emerging smart farming innovation systems. We used an online survey of

AMS experts globally and received 81 completed survey responses. The main countries

represented were Canada, The Netherlands, USA, Denmark, and the UK. Respondents

identified a range of adoption trends in their country and some of the reasons behind

these adoption profiles were suppression of uptake due to low milk prices, financial

markets, and issues with early installations and perceptions of these issues by other

farmers. In terms of the impact of uncertainty, technological uncertainty was historically an

important issue around the early development of AMS, with decommissioning occurring

in some cases due to perceived technology issues. Political uncertainty also impacted

adoption, with implications of food safety regulations or rules around herd testing

systems. Our study highlighted the potential impact of negative experiences associated

with new technologies from farmers who struggle with the adaptation process as such

occurrences may act to stall the uptake of smart farming technologies. If public policy

organizations are to realize the desired impacts of smart farming technology, there

needs to be greater focus on understanding where (and which) technologies can have

an actual impact on farm as opposed to technologies that only create greater farmer

distrust and uncertainty. Our study highlights that to reduce uncertainty with emerging

smart technologies, greater public and private R&D collaboration is required to foster

knowledge development and exchange.
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INTRODUCTION

There are increasing opportunities to use smart farming
technologies for improved management of farming systems
(Shepherd et al., 2018). Potential management improvements are
related to enhanced collection of data to manage animals, plants,
and the wider farming environment (Eastwood et al., 2017a).
However, there is limited understanding of how the potential
can be translated into widespread adoption in the farming sector,
which has been slow to date (Gargiulo et al., 2018). The uptake
of smarter farming approaches often represents more than a
“plug and play” process for farmers (Jago et al., 2013). Successful
use of these new tools depends on aspects of technology fit-
for-purpose, on-farm adaptation, learning about data-driven
decision-making, and social learning within a farmer’s network
of practice (Eastwood et al., 2012; Rose et al., 2016; Higgins et al.,
2017; Klerkx et al., 2019). To turn the opportunity of smarter
farming into a reality on-farm, we need to better understand
the wider issues affecting a farmer’s investment decision making
(Rutten et al., 2018).

Previous studies have highlighted the role that uncertainty
plays in the functioning of technological innovation systems.
For example, Meijer et al. (2007b) identified the importance
of technological, resource, competitive, supplier, consumer,
and political uncertainty. The use of farm system-changing
smart farming technologies such as automatic milking systems
(AMS) [see Rodenburg (2017) for a description of AMS
technology] requires not only a reconfiguration of farming
practice, but also in the systems that operate around the farmer,
for example, knowledge of veterinarians on how to maintain
reproductive performance under AMS or structural changes
to herd testing protocols (Svennersten-Sjaunja and Pettersson,
2008; Hansen, 2015; Rodenburg, 2017). The success of an
innovation system can depend on minimizing the uncertainty
around the innovation (Meijer et al., 2007b; Kuehne et al.,
2017). Poor or haphazard innovation system reconfiguration
can increase the uncertainty that farmers or their advisors
have about a technology and impact on its successful uptake
and implementation.

Within this context, the objective of this current study was
to understand drivers for adoption of AMS internationally
and propose lessons for developing institutional knowledge
and effective networks of practice in emerging smart farming
innovation systems. In this paper, we present the results of
an international survey investigating the impact of innovation
uncertainty within AMS support networks across different
institutional environments. First, we outline the conceptual
framework based around innovation uncertainty, and then
we present the methods and results of the survey and
discuss them in relation to the conceptual framework. The
novel contribution of this paper is 2-fold: first, it adds to
knowledge of the specific factors influencing farmer adoption
of smarter farming technologies such as AMS, and second,
it adds to the limited literature that empirically explores
the role of various factors of uncertainty in technological
innovation systems.

CONCEPTUAL FRAMEWORK

Adoption of agricultural technologies has been extensively
studied and perspectives vary from a diffusion of innovations
perspective (Rogers, 1962) to the more holistic concepts of
agricultural innovation systems (Klerkx et al., 2010). The
agricultural innovation systems (AIS) approach considers the
role of institutional change within agricultural innovation and
potential benefits from different ways of organizing within such
systems (Morriss et al., 2006; Klerkx et al., 2010). Successful
agricultural innovations depend on factors such as technology
development, institutional change, supply chain reorganization,
market development, and creating societal acceptance (Klerkx
et al., 2010). The AIS concept has value as an analytical
framework to “improve everyday innovation capacity” (Spielman
and von Grebmer, 2006). One feature of AIS is the role of
uncertainty in the uptake and use of technologies. Meijer et al.
(2007b) identify six forms of uncertainty that might occur:
technological, resource, competitive, supplier, consumer, and
political. Individuals (including farmers or service providers)
within AIS may have little ability to influence the uncertainty
existing around an innovation. Uncertainty within innovation
systems can potentially reduce the uptake of a technology, affect
its integration into the farm system or industry, and can prevent
some actors from engaging in the innovation system (Meijer
et al., 2007b).

While the sources of uncertainty cited by Meijer et al.
(2007b) focus on the formation of innovation projects, and in
particular the impact on entrepreneurial action, the framework
could be applied to the actions of farmers and advisors in
respect to new system-changing innovations such as AMS. An
ongoing process of AMS innovation could therefore be viewed
as dependent on not just the technology or its developers,
but also the farmers, distributors, milk companies, researchers,
consultants, and regulatory agencies that also operate in the
AMS space. Through the AIS approach, the actors involved in
an innovation system can be identified, along with possibilities
for different ways of organizing the actors. Innovation systems
analysis can highlight the development of agency in actors and
the reduction of uncertainty in the environment in which the
actors operate.

Uncertainty surrounding a smart farming innovation can
occur during the early development phase, including uncertainty
related to available support and finance, and around best practice
when using the technology. While innovation developments are
rarely associated with low uncertainty, too much uncertainty
can cause stagnation in respect to the ongoing innovation
process, or lead to “failure” of an innovation (Kuehne
et al., 2017). Meijer et al. (2007b) describes a framework
for analyzing “perceived uncertainty” in the early stage of
an innovation (Figure 1). Few empirical studies have applied
the innovation uncertainty framework to case studies (Meijer
et al., 2007a; Roper and Tapinos, 2016); therefore, the
novelty of our study is in relation to both the empirical
survey of uncertainty factors and explaining longitudinal
adoption trends.
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FIGURE 1 | How the primary processes are linked to six sources of uncertainty (adapted from Meijer et al., 2006).

ADOPTION OF AMS IN DIFFERENT DAIRY
FARMING COUNTRIES

AMS involve the milking of dairy cows without human labor
and are based on robotics and sensor technology. Since the first
commercial AMS units were installed on a dairy farm in The
Netherlands in 1992, there has been a range of adoption rates
across different dairy farming countries. No single organization
maintains statistics of the milking installations across different
countries, and the information is held tightly by AMS retailers;
however, some publications have provided data on installations
over the last two decades (de Koning, 2010; Barkema et al., 2015;
Tse et al., 2017). By 2015, there was up to 25,000 dairy farms
using AMS worldwide, with the technology most popular in The
Netherlands and Scandinavia (Rodenburg, 2017).

In the current paper, we focus on the “box-type” AMS rather
than the robotic rotary systems that are also commercially
available. In Table 1, we present data drawn from several
sources to highlight the AMS adoption trends in dairy-producing
countries where there were sufficient data from 2002 to 2018.
Through to 2018, Iceland and Sweden had the greatest percentage
of farms using AMS, at around 30% of farms, followed by another
cluster of countries between 20 and 25% including Denmark, The
Netherlands, Norway, Belgium, and Switzerland (Hogenkamp,
2018; Sigurdsson et al., 2019; Vik et al., 2019). Less data are
published for other dairy countries; however, Canada (7% of
farms) has seen a steady increase in installations (Tse et al., 2017).
Limited data are available for the UK and USA; however, it is
estimated that around 7% of farms in the UK (Hogenkamp, 2018)
and 3% of farms in USA were using AMS by 2018 (Reed, 2018).
There are few farms using AMS in Australia or NZ (<1% of
farms). Interestingly, the data show that, in recent years, the
percentage of farms using AMS in Denmark has peaked and is
now declining, in part due to increasing farm sizes making other
milking parlors more cost-effective (Sigurdsson et al., 2019).

METHODS

An online survey was designed to capture processes around
AMS uptake, through three phases of the adoption process:
(1) when farmers are initially thinking of investing in AMS,

TABLE 1 | Automatic milking system adoption rates from 2002 to 2018 in several

dairy producing countries (% of total farms in each country, rounded to nearest

0.5%).

Country 2002 2006 2010 2014 2018 Increase since

2010 (%)

Denmark 2.2 8 22.5 24 22 −2

The Netherlands 2 4 11 18 23 109

Germany ∼0 0.5 2 6.5 15 650

Norway ∼0 1 6.5 13.5 23 254

Sweden 1 5 13 23 30 131

Canada ∼0 0.5 2 5 11.5 475

Sources: Barkema et al. (2015), Hansen (2015), Tse et al. (2017), CDIC (2019), and Vik

et al. (2019).

(2) when farmers have made the decision to invest, and (3)
after they have installed and are using the AMS. The survey
was conducted online via the SurveyMonkeyTM platform. Closed
questions were primarily used, with the number of open-ended
questions limited to minimize survey length (Bryman, 2001).
There were 116 questions, including demographic questions and
questions on the role of the respondents and their organization in
AMS development and extension, respondents’ experience with
AMS adoption, and patterns of AMS adoption in their country.
In the current paper, we focus on a subset relevant to innovation
uncertainty. The questions were developed based on AMS-
related studies that had been published prior to survey design
(Meskens et al., 2001; Shephard, 2004; Svennersten-Sjaunja and
Pettersson, 2008; de Koning, 2010; Khanal et al., 2010). Below, we
discuss the drivers for selecting AMS-related questions for each
of the innovation uncertainty factors. The survey respondent
answers to the questions are then listed in Table 2.

Technological Uncertainty
Uncertainty around the characteristics of an innovation, related
infrastructural implications, the level of adaptation required, and
the impact on future options are all aspects of technological
uncertainty (Meijer et al., 2007b; Klerkx et al., 2010; Tomy and
Pardede, 2018). Relevant factors to AMS could be the support
available to farmers when making investment decisions, the
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TABLE 2 | Survey questions asked in relation to the six forms of uncertainty within innovation systems [adapted from Meijer et al. (2007b)].

Uncertainty factor

(Meijer et al., 2007b)

Explanation Potential factors associated with

AMS (from literature review)

Relevant statements in survey

Technological uncertainty - Characteristics of the innovation (costs

and performance)

- Relation between the innovation and the

infrastructure in which it is embedded

- Uncertainty to what extent adaptations

to the infrastructure are needed

- Possibility of choosing alternative

(future options)

- Technological lock-in (impact on

ability to expand herd)

- Transition time for cows to adapt to

the new system

- Farmers are well-supported when making an AMS

investment decision

- Farmers understand the challenges specific to

farming with AMS

- Farmers understand the implications of expanding

their herd size in an AMS farming system

- Technological development of AMS includes a

feedback loop to capture knowledge gained

by farmers

Resource uncertainty - The amount and availability of raw

material, human and financial resources

- How to organize the innovation process

(in-house or external R&D?)

- Obtaining finance for AMS when

banks are unsure of the technology

- Uncertainty around future milk price

- Pricing of secondhand AMS units,

and ability to sell on a

secondhand market

- Farmers understand the issues involved with

reverting from AMS back to conventional milking

(CMS)

- Farmers are confident about the process for getting

finance to invest in AMS

- Farmers can easily determine the depreciation value

for AMS units

- There is certainty around the potential secondhand

value of AMS units

- Farmers can be confident in choosing a milk price

value to use in budgets for AMS investment

- It is easy to find people (staff) who suit an AMS farm

- Farmers are aware of potential changes to farm

staff roles and skills in an AMS farm

Competitive uncertainty - Behavior of (potential or actual)

competitors and the effects of

this behavior

- Impact of competition between

AMS dealers

- How companies describe a

competitor’s product

- Ability of farmers to obtain

independent advice

- When deciding which AMS units to purchase,

farmers can obtain sufficient knowledge about

features of different AMS products from company

sales staff

- Farmers can easily obtain independent advice prior

to an AMS investment

- Support is available for farmers through industry

extension programs

Supplier uncertainty - Actions of suppliers (timing, quality, and

price of delivery)

- Access to quality and timely service

- An understanding of ongoing costs

associated with AMS

- There is a ready supply of AMS units to supply

market demand

- Farmers are aware of the after-sales technical

service they will receive from their AMS supplier

(e.g., breakdowns)

- Farmers are aware of the after-sales learning

support they will receive their AMS supplier (i.e., how

to run a dairy farm using AMS)

- Farmers are aware of where to go for advice on

running their AMS farm

Consumer uncertainty - Consumer preferences with respect to

the innovation

- Consumer characteristics

- Long-term development of the demand

over time

- Understanding the type of farmer

who matches well with AMS

farming systems

- Clarity on the long-term demand

would help other manufacturers

invest in AMS

- The types of farmers suited to AMS are well-known

by the industry

- The future pattern of AMS adoption is certain

- Technological development of AMS is well-matched

with farmer requirements

- The capacity of farmers to succeed with AMS is

considered in the sale process

Political uncertainty - Current policy (interpretation or effect of

policy, lack of regulation), future changes

in policy, reliability of government

- Regulation over milk quality and

food safety

- General public support for AMS

- Not so much political as

agri-food regulatory

- Current regulations (e.g., milk quality, food safety)

act to make farming with AMS easier

- Farmers are aware of regulations that specifically

relate to use of AMS

- Farmers know how to comply with regulations

relevant to AMS

- Public sector financial incentives have increased

AMS adoption

- Public sector learning support has helped farmers

learn to use AMS

- The dairy community is well-aware of potential

future regulations related to AMS
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degree of technological lock-in (including the ability to expand
herd sizes), and the specific challenges of adapting farming
systems to AMS.

Resource Uncertainty
This factor focuses on the availability of resources, such
as human, financial, and material, and also encompasses
organization of the process of innovation (Meijer et al.,
2007b). The uncertainty around forecasting resources and capital
required for the innovation involves factors such as availability of
knowledge and skills, required R&D expenditure, and potential
revenue streams (Tomy and Pardede, 2018). In an AMS context,
resource uncertainty could relate to the ability to get finance
for the AMS investment, uncertainty around milk price and its
impact on viability, along with other factors such as uncertain
pricing of secondhand AMS technology and how to revert to
previous milking methods.

Competitive Uncertainty
The behavior of competitors in the innovation system can
affect its success (Meijer et al., 2007b). Factors behind this
uncertainty can include level of market share, the impact of
leading competitors, and the type of competition in the market
(Tomy and Pardede, 2018). This relates to the competition
between retailers of AMS technology (i.e., is there sufficient
competition in a market dominated by two main players?)
and how each competitor might refer to each other’s product.
We assessed this by asking questions around the availability
of independent advice on technology, the adequacy of advice
provided by technology retailers, and what industry support was
available to farmers.

Supplier Uncertainty
This source of uncertainty relates to perceptions around the
reliability of the supplier (Meijer et al., 2007b). In respect to AMS,
we asked questions around the availability of AMS technology
(was there sufficient supply to match demand), the access that
farmers had to back-up service for both technical and learning
support, and whether farmers knew where to access advice about
farming with AMS.

Consumer Uncertainty
Consumer uncertainty concerns the preferences consumers
might have for an innovation, the characteristics of consumers,
and the development of demand for the technology (Meijer
et al., 2007b). It also includes factors associated with knowledge
of consumer acceptance of the technology, and the potential
changes in demographics of the target population and therefore
potential market size (Tomy and Pardede, 2018). These features
are more applicable to entrepreneurs looking to work with
consumers (farmers) rather than the consumers themselves.
Therefore, for this factor, we asked industry-related questions
such as uncertainty around future patterns of AMS adoption,
the nature of technological development, whether farmer ability
to succeed was included in the design and sale process, and the
fit of AMS with farmer typologies. This is one aspect of the

framework that potentially has less applicability when taking the
farmer perspective in an AMS innovation system.

Political Uncertainty
The policy environment can have a major impact on the
innovation process, for example, the interpretation of policy,
existence of regulations, and uncertainty regarding government
and policy changes (Meijer et al., 2007b). It also includes the
potential impact of government support for the innovation, the
impact of exchange rates, and taxation that may relate to the
innovation (Tomy and Pardede, 2018). In respect to AMS, this
may include the implications of milk quality and food safety
regulations, general political and community support for AMS,
the awareness of regulations, and the existence of incentives.

The survey design incorporated the framework derived from
Meijer et al. (2007b) and Klerkx et al. (2010) to assess the impact
of uncertainty in the AMS innovation system. For each of the
uncertainty factors, a series of statements were developed by the
project team (Table 2), and participants were asked to indicate to
what extent they agreed or disagreed with each statement, based
on a five-point Likert scale from 1 = strongly disagree to 5 =

strongly agree.
A pilot of the survey was run with five experienced

AMS researchers from New Zealand, The Netherlands, USA,
England, and Australia. Feedback from the pilot group was
incorporated into the final survey design. Participants in the
full survey were chosen to represent a range of those in the
network of practice of AMS farmers internationally including:
AMS researchers, technology developers, and sales/support
representatives. Actors in the research and service/support
sectors were targeted primarily due to language differences across
the countries surveyed. The project team decided that people
from these sectors were more likely to engage and complete
the extensive English-based survey. The survey was therefore
designed for these actors to use their knowledge of both farmer
experiences, and innovation system-wide issues, to answer the
questions posed.

Contacts were sourced initially through researcher networks,
and then a snowball method was used (Bryman, 2001). The
study was approved by the University of Melbourne Human
Research Ethics Committee (HREC), and a plain language
statement outlining the project aims, funders, use of data, and key
contacts was provided on the opening survey page. If participants
consented to participate, they were invited to click “next” to enter
the survey.

The survey weblink was sent out twice to those on the
contact list. Results were exported as a.csv file and imported
into Microsoft ExcelTM Data were reviewed for quality and
completeness and any erroneous responses were removed. The
data were analyzed for interactions using multivariate statistics,
but no strong associations were found; therefore, we focused the
analysis on counts and summary statistics.

RESULTS

In this section we outline the key results, beginning with
an overview of the survey participant demographics, their
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experience and opinions related to AMS, and finally the results
of questions related to the uncertainty factors.

Survey Participants
There were 84 survey responses of which three were removed
due to incomplete responses; therefore, 81 responses were used
in the analysis. The major countries represented were Canada
(24), The Netherlands (14), USA (10), Denmark (7), and the
UK/Ireland (6). Other countries represented were Germany (4),
Sweden (3), Israel (2), Norway (2), and Switzerland (2). There
was one representative from each of Finland, France, Ireland,
New Zealand, India, Iceland, and Japan. The respondents were
primarily male (89%) and 63% were aged 35–54.

There was a range among respondents when it came to their
day-to-day experience with AMS farmers with 27 stating it was
“a major part of my job,” 27 said it was “often part of my job,” and
26 a “small part of my job.” There was a similar mix in respect
to years of experience that respondents had with AMS farms and
farmers with 27 having over 10 years’ experience, 27 had 5–10
years’ experience, and 27 had <5 years’ experience. There were
36 respondents from AMS retailers and 45 respondents not from
AMS retailers (36 from public or industry funded research and
advisory organizations, and 9 from privately funded advisors or
consultants). In answering the survey questions, the respondents
drew from experience that ranged from working with 1 farm to
1,000 farms. Most respondents interacted with between 20 and
100 farmers. The responses for each country, grouped by role
(retailer vs. non-retailer) and experience, are shown in Table 3.

Of non-retailer respondents who were in a publicly funded
research/advisory position, or identified as consultants, most
were aligned with research. Many also provided general farm
management advice to farmers and to a lesser extent helped
farmers before and after AMS installation. Providing technical
support was generally a small part of their role.

Survey Responses
How Respondents Perceived Their Role in the AMS

Innovation System
The AMS retailer representatives who completed the survey
primarily described their role as helping farmers learn to use
AMS, along with providing technical support. A smaller part of
their jobs in general was actively selling AMS or installing the
equipment. They indicated that the organization they worked
for had a wider role from installing equipment, providing pre-
sale and after-sales support. In terms of their AMS skill base,
the company representatives indicated they learned slightly more
through practical experience and interacting with farmers than
via specific training. They were generally happy with their skill
levels but felt they could learn more about farm management.
The roles of non-retailers were less focused on technical
support, and more on delivering AMS-related research and
development knowledge, providing farmers with support prior
to AMS investment, and providing general farm management
advice. Few non-retailers (22%) had been specifically trained in
supporting farmers using AMS, compared to 77% of retailers.
Around half of non-retailers (49%) agreed that they were happy
with their skills and knowledge related to AMS, compared to

71% of retailers. Both cohorts agreed they learned through
interacting with AMS farmers (non-retailers 86% and retailers
91%). Additionally, they also agreed that they needed to learn
more about farm management associated with AMS (non-
retailers 67% and retailers 71%).

Respondents were asked about their opinions of the impact
and future role of AMS in the dairy sector (Table 4). Most
(87%) agreed that AMS required farmers to make significant
changes to their farm systems, and responses were relatively
consistent between retailers and non-retailers. Respondents also
agreed (80%) that AMS represented the biggest transformation
in dairy farming in the last 50 years. When asked if AMS
would become the dominant milk harvesting method, most
agreed (69%), and more retailers strongly agreed (53% compared
with 30%).

Perceptions on AMS Investment, Past, and Future
Themost significant reasons for past AMS investment by farmers
were identified as reducing total farm labor, reducing hours
spent milking, more family time, and to reduce physical work.
Improving milk quality, increasing production, and sustaining
the farm business were not seen as overly important. Main
reasons for farmers not investing were identified by respondents
to be the cost of technology and to a lesser extent issues
around herd expansion, difficulty obtaining finance, fit with farm
system, and experiences of other farmers. Less of an issue were
farmer perceptions of management issues during transition and
availability of advice for farmers during the investment decision.

Respondents noted some decommissioning of AMS farms,
although most respondents classified it as a “rare” occurrence.
Countries where more than 10 decommissioned AMS farms
had been observed included Denmark, The Netherlands, and
the UK but this needs to be viewed in the context of the total
number of AMS units in these countries and their position as
sites of early adoption in the 1990s before the technology was
mature. Reasons for decommissioning suggested by respondents
included economic factors leading to bankruptcy (farm or
company), initial lack of knowledge about using AMS and
availability of support, initial technology issues (mostly in the
1990s), need for large herd flexibility, and lack of fit with
farmers (incompatible expectations or skills). Specific comments
of respondents highlighted the range in adoption trajectories
in the first 10–15 years of AMS use (i.e., up to 2010). Below,
we outline comments of respondents from The Netherlands (a
mature market) and Canada (an emerging market) in relation to
the adoption trajectories.

In The Netherlands, a mature AMS market at the time of
surveying, respondents identified that in the early installations,
there were technical problems and skepticism among farmers
that automated milking was possible. Factors that led to greater
uptake were more trust in the technology, a period of higher
milk prices, the ability to have increased work flexibility, and
more understanding among farmers of how to run AMS-based
farm systems. There were up to five different AMS suppliers in
The Netherlands. Comments made by some respondents were
as follows:
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TABLE 3 | Number of respondents by country where they are primarily based compared to role and years of experience with AMS.

Canada USA The Netherlands Denmark UK/Ireland Other Total

Role

Retailer 21 8 5 0 2 0 36

Non-retailer 3 2 9 7 5 19 45

Total 24 10 14 7 7 19 81

Years of experience working with AMS

Less than 5 10 3 6 1 3 4 27

5 to 10 12 5 2 3 1 4 27

More than 10 2 2 6 3 3 11 27

Total 24 10 14 7 7 19 81

TABLE 4 | Respondent opinions regarding the impact of AMS on dairy farming. Results are presented as percentages, with retailer, non-retailer in brackets, respectively.

Strongly disagree Disagree Neutral Agree Strongly agree

Impact of AMS on dairy farming

Requires farmers to make significant farming system changes 0 (0,0) 7 (11,5) 6 (3,9) 28 (31,25) 59 (55,61)

AMS is the biggest transformation in dairy farming in the last 50 years 1 (0,2) 11 (8,14) 8 (11,5) 33 (28,37) 47 (53,42)

I expect AMS to become the dominant method of harvesting milk 1 (3,0) 14 (8,18) 16 (22,11) 29 (14,41) 40 (53,30)

TABLE 5 | Respondent opinions regarding the future adoption of AMS from 2011 to 2015, presented as percentages.

All respondents All retailer All non-retailer Canada USA The Netherlands Denmark UK/Ireland

Decreasing 1.3 0 2.3 0 0 0 14.3 0

Steady at current rate 13.0 5.9 18.6 8.7 0 16.6 28.6 14.3

Increasing 62.3 58.8 65.1 60.7 50 66.7 57.1 57.1

Rapidly increasing 23.4 35.3 14.0 30.4 50 16.7 0 28.6

“At the moment approximately 1 out of 2 new [milking] machines

is an AMS, quite popular among the family farms. Larger farms

(>200 cows) often decide to have a rotary parlor or large rapid exit

side by side or herringbone parlors.” (Netherlands, non-retailer)

“In the first 5–10 years, AMS was bought mainly by

early adopters, sometimes farmers who were very interested in

the technology. In the recent decade this changed to farmers

interested in optimizing individual cow management by using this

technology.” (Netherlands, non-retailer)

In Canada, an emerging AMS market at the time of surveying,
respondents noted a pattern of some installations, then a
“tapering off” or some deinstallation, followed by a more rapid
increase around the time of the survey. This was for a variety of
reasons including after-sales service quality, poor understanding
of the farm systems (in particular feeding) changes required,
and farm economic issues. There were three different AMS
suppliers in Canada. Comments made by some respondents were
as follows:

“In the beginning we did not understand robotic milking correctly in

Canada. We had to learn how to be successful. Robots were pulled

out and this slowed the sales process for about three years. Robot

knowledge then became better and the units themselves continued

to progress. We now know that robotics work. We also know that it

only works with some farmers and we have to be very careful who

we sell to.” (Canada, retailer)

“The first robots were pulled out because we did not understand

robotic milking fully. A learning curve had to happen and feeding

strategies in Canada needed to be implemented to make sure the

robots ran successfully” (Canada, retailer)

We also asked questions about predictions for future adoption
and the predicted adoption trajectories are presented in Table 5.
Across all respondents, 62% of respondents thought AMS uptake
in their country would increase over the next 5 years, and
another 23% thought it would rapidly increase. There was more
confidence in the level of increased AMS adoption among
retailers in comparison to non-retailers, with 35 and 14%
expecting a rapid increase, respectively. Expectations of a rapid
increase were also greater in the emerging markets of Canada
and USA, when compared with the more mature markets of
Denmark and The Netherlands. Increased labor costs were seen
as a major future driver, along with increased confidence in AMS.
Possible factors holding back AMS use was incompatibility with
increased herd size and fluctuations in milk price or the farm
economic environment.

Comments of respondents from The Netherlands (mature
market) indicated that future adoption would be driven by
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higher farm labor costs, a desire to maintain family farming,
and well-being factors. One limitation to adoption identified in
The Netherlands was farm expansion, with herds of over 200
cows seen as a point where farmers considered other milking
technologies such as a rotary or herringbone parlor. Canadian
respondents felt that there would be more installations in the
future. The reasons behind this were related to generational
change on farm (younger farmers would invest in AMS to have
more social time), it has becomemore reliable and trusted among
farmers, and a lack of available agricultural workforce. One
respondent noted that “With new anti-expansion quota policies
several larger dairies are now considering robots as well.”

Role of Innovation Uncertainty on AMS Adoption

Trends
Responses to survey questions related to different uncertainty
factors are summarized in Table 6 and displayed in Figures 2–4.
The results are summarized across all respondents, by role, and
by country. The countries listed represent those with the most
responses in the survey, and show mature AMS markets (The
Netherlands, Denmark) and emerging markets (UK/Ireland,
USA, Canada). Below, each individual factor is numbered and we
refer to them in the text from F1 to F28.

Technological uncertainty
There were four questions related to technological uncertainty.
Retailers were more positive when scoring these factors (average
3.9), compared with non-retailers (3.4), with the most divergence
regarding whether farmers were well-supported when deciding
to invest in AMS. The most agreement between these groups was
in relation to farmers understanding the farm system challenges
associated with AMS, with both cohorts being less positive for
this factor (3.2 and 3.4). In terms of responses from different
countries, respondents from The Netherlands and Canada had
the most positive responses (4.0 and 3.8, respectively) with a 3.0
average for UK respondents. The UK respondents did not agree
that farmers were well-supported inmaking investment decisions
(2.3) or that farmers understood the challenges of AMS (2.8)—
particularly compared with Dutch responses to these factors, 3.8
and 4.0, respectively.

Competitive uncertainty
Retailers and non-retailers provided the same average responses
to the competitive uncertainty factors (3.2), but there was
divergence among the individual factors, for example F6 where
retailers agreed (4.5) that farmers can obtain sufficient knowledge
about different AMS features, whereas non-retailers were more
neutral (3.3). Conversely for F7, retailers (2.0) did not think
support was available through industry extension initiatives,
while non-retailers were more neutral (2.7). In respect to
responses by country, UK respondents again were less positive
on average (2.6), with The Netherlands most positive (3.8). The
mature markets (The Netherlands 4.3, Denmark 4.3) agreed
that farmers could easily obtain independent AMS advice (F5),
compared with neutral responses from emerging markets (UK
2.7, USA 2.7, Canada 3.1). There was a similar trend for F7 on
industry extension initiatives.

Consumer uncertainty
Retailers were more positive about the two consumer uncertainty
factors (F8 and F9) than non-retailers, particularly in relation
to whether the capacity for farmers to succeed with AMS was
considered in the sale process. Additionally, respondents from
countries in mature AMS markets provided overall neutral (3.0)
responses while emerging markets showed a higher level of
agreement with both factors (USA 4.2, Canada 3.6).

Resource uncertainty
There were seven factors related to resource uncertainty, and
the average response for all respondents was neutral (3.1), with
limited difference in the average between non-retailers and
retailers. Dutch respondents (3.6) were slightly more positive
than respondents from other countries. In terms of the individual
factors, retailers (3.9) and non-retailers (2.5) differed most about
whether farmers could confidently choose a milk price for their
budgets. Overall, there was most disagreement (2.7) that farmers
understood about reverting back to conventional milking, with
respondents from UK/Ireland providing a rating of 2.3. Dutch
respondents agreed most strongly that farmers were confident
about getting finance (3.9), could determine depreciation values
(4.0), were certain around secondhand AMS markets (4.0), and
were aware of staff roles with AMS (4.0). Respondents from
Denmark (1.6), UK/Ireland (1.8), and USA (2.0) most strongly
disagreed that farmers could be confident on milk prices for
their budgeting.

Supplier uncertainty
Retailers agreed more strongly with the factors related to supplier
uncertainty, with an average rating of 4.2 compared with 3.4 for
non-retailers. There was most divergence about whether farmers
were aware of after-sales service by AMS suppliers (retailer
4.5, non-retailer 3.6) and the learning support they will receive
from AMS suppliers (retailer 4.0, non-retailer 2.7). UK/Ireland
respondents provided the lowest average rating (3.1) to supplier
factors and, along with Dutch respondents, gave a low rating for
farmer knowledge of learning support they would receive from
AMS providers (2.8 UK/Ireland, 2.6 Netherlands). The most
agreement for individual factors were from Danish respondents
who felt there was a ready supply of AMS units (4.7) and Dutch
respondents who agreed strongly that farmers were aware of the
technical service they would receive (4.8).

Political uncertainty
The factors associated with political uncertainty were rated the
lowest of all the uncertainty areas at an average rating of 2.5.
There was little difference between retailers (2.4) and non-
retailers (2.6). The lowest rated individual factor was F26, that
public sector financial incentives have increased AMS adoption.
On average, respondents from most countries disagreed that
current regulations acted to make farming with AMS easier
(F23), in particular USA (1.7) and UK/Ireland (2.5). Respondents
across role and different countries were all neutral as to whether
farmers were aware of regulations relating to AMS use (F24).
While respondents from Denmark agreed (3.6) that the dairy
community was aware of future regulations related to AMS (F28),
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TABLE 6 | Average responses to questions for the six innovation uncertainty categories, by role and country (scale of 1–5 where 1 = strongly disagree, 5 = strongly

agree).

All Responses by role Responses by country

Retailer Non-retailer The Netherlands Denmark UK/Ireland USA Canada

All factors (“F1-28”) 3.8 3 3.5 3.1 2.8 3.1 3.3

Technological uncertainty

1. Farmers are well-supported when making a decision

about AMS investment

3.6 4.3 3.2 3.8 3.6 2.3 3.6 4.2

2. Farmers understand the challenges specific to farming

with AMS

3.3 3.2 3.4 4.0 3.3 2.8 2.9 3.2

3. Farmers understand the implications of expanding

their herd size in an AMS farming system

3.7 4.0 3.5 4.2 3.1 3.3 3.5 4.1

4. Technological development of AMS includes a

feedback loop to capture knowledge gained by farmers

3.8 4.1 3.7 3.9 4.0 3.3 4.4 3.6

Average for factor 3.6 3.9 3.4 4.0 3.5 3.0 3.6 3.8

Competitive uncertainty

5. Farmers can easily obtain independent advice prior to

an AMS investment

3.4 3.1 3.6 4.3 4.3 2.7 2.7 3.1

6. When deciding which AMS units to purchase, farmers

can obtain sufficient knowledge about features of

different AMS products from company sales staff

3.8 4.5 3.3 4.3 2.6 3.2 4.4 4.4

7. Support is available for farmers through industry

extension programs

2.5 2.0 2.7 2.8 3.7 2.0 2.0 2.0

Average for factor 3.2 3.2 3.2 3.8 3.5 2.6 3.0 3.2

Consumer uncertainty

8. The capacity of farmers to succeed with AMS is

considered in the sale process

3.3 3.8 2.9 2.8 2.7 3.8 4.2 3.4

9. The future pattern of AMS adoption is certain 3.4 3.9 3.1 3.3 3.3 3.2 4.2 3.7

Average for factor 3.4 3.9 3.0 3.0 3.0 3.5 4.2 3.6

Resource uncertainty

10. Farmers understand the issues involved with

reverting from AMS back to conventional milking (CMS)

2.7 2.7 2.6 2.6 3.1 2.3 3.0 2.7

11. Farmers are confident about the process for getting

finance to invest in AMS

3.1 3.4 3.0 3.9 2.6 2.3 2.1 3.8

12. Farmers can easily determine the depreciation value

for AMS units

2.8 3.1 2.7 4.0 2.9 3.5 2.8 2.6

13. There is certainty around the potential secondhand

value of AMS units

3.1 3.0 3.1 4.0 2.7 3.8 2.7 2.8

14. Farmers can be confident in choosing a milk price

value to use in budgets for AMS investment

3.0 3.9 2.5 3.2 1.6 1.8 2.0 4.5

15. It is easy to find people (staff) who suit an AMS farm 3.0 3.0 2.9 3.8 2.6 2.2 2.6 3.0

16. Farmers are aware of potential changes to farm staff

roles and skills in an AMS farm

3.8 4.0 3.7 4.0 4.0 3.8 3.7 3.9

Average for factor 3.1 3.3 2.9 3.6 2.8 2.8 2.7 3.3

Supplier uncertainty

18. There is a ready supply of AMS units to supply

market demands

4.1 4.4 3.9 3.9 4.7 3.3 4.2 4.3

19. Farmers are aware of the after-sales TECHNICAL

SERVICE they will receive from their AMS supplier

3.9 4.5 3.6 4.8 3.3 3.2 4.2 4.4

20. Farmers are aware of the after-sales LEARNING

SUPPORT they will receive from their AMS supplier

3.2 4.0 2.7 2.6 3.4 2.8 3.4 3.9

21. Farmers are aware of where to go for advice on

running their AMS farm

3.7 4.1 3.4 4.1 3.7 3.0 3.9 3.9

Average for factor 3.7 4.2 3.4 3.9 3.8 3.1 3.9 4.1

Political uncertainty

23. Current regulations (e.g., milk quality, food safety) act

to make farming with AMS easier

2.4 2.5 2.3 2.7 3.3 2.5 1.7 2.6

(Continued)
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TABLE 6 | Continued

All Responses by role Responses by country

Retailer Non-retailer The Netherlands Denmark UK/Ireland USA Canada

24. Farmers are aware of regulations that specifically

relate to use of AMS

2.9 2.9 2.8 3.0 2.9 3.0 2.9 2.9

25. Farmers know how to comply with regulations

relevant to AMS

2.9 2.9 2.9 3.4 2.6 2.8 2.9 3.1

26. Public sector financial incentives have increased

AMS adoption

2.1 1.8 2.3 2.8 1.7 1.8 1.4 2.1

27. Public sector learning support has helped farmers

learn to use AMS

2.3 2.1 2.5 2.9 2.4 1.8 2.0 2.3

28. The dairy community is well aware of potential future

regulations related to AMS

2.5 2.3 2.6 2.4 3.6 2.5 2.0 2.4

Average for factor 2.5 2.4 2.6 2.9 2.7 2.4 2.2 2.5

FIGURE 2 | Average factor scores for the six uncertainties across all

responses (scale of 1–5 where 1 = strongly disagree, 5 = strongly agree).

respondents from all other countries disagreed (2.0–2.5). On
average, respondents from USA disagreed the most (2.2) with the
factors related to political uncertainty.

DISCUSSION

In this paper, we aimed to understand the impact of innovation
uncertainty adoption of AMS internationally and propose lessons
for developing institutional knowledge and effective networks of
practice in emerging smart farming innovation systems.

Major Themes Associated With Predicted
AMS Adoption
Survey responses in this current study indicated a range of
influences on potential AMS adoption. While historical adoption
had been negatively influenced by financial factors such as low
milk prices and the 2008 financial crisis, there were examples
of technological uncertainty affecting early installations and
perceptions of these issues by other farmers. Respondents
identified some examples of decommissioning, which created a
level of uncertainty in the local farming population about the

FIGURE 3 | Average factor scores for the six uncertainties across roles (retailer

and non-retailer) (scale of 1–5 where 1 = strongly disagree, 5 = strongly

agree).

FIGURE 4 | Average factor scores for the six uncertainties across countries

(scale of 1–5 where 1 = strongly disagree, 5 = strongly agree).

suitability of AMS. Farmers in early adopting countries (e.g., The
Netherlands and Denmark) had some issues with learning to use
AMS successfully, in some cases farmer skills and perceptions did
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not fit with AMS. The historical adoption factors associated with
AMS identified in our study, such as reducing total farm labor,
reducing hours spent milking, more family time, and reducing
physical work, are supported by several authors (de Koning, 2010;
Jacobs and Siegford, 2012; Hansen, 2015; Rodenburg, 2017; Vik
et al., 2019).

In our study, we examined the predicted AMS adoption
and the potential reasons for this among a group of experts.
Almost all respondents predicted increased AMS adoption, with
almost a quarter predicting a rapid increase. Understandably, this
expectation of a rapid increase was higher among those selling
AMS technology. Analyzed by country, respondents expected a
slower adoption rate in Denmark and The Netherlands, when
compared with Canada and USA. The data presented in Table 1

mostly agree with these predictions. Danish AMS installations
have not increased from 2010 to 2018, and in recent years have
actually decreased. However, installations in The Netherlands
and Sweden doubled from 2010 to 2018, and there have been
dramatic increases in countries such as Germany (650%), Canada
(475%), and Norway (250%)—albeit off a relatively low 2010
base. Of the emerging markets in our survey, USA still shows
a low level of adoption, with an estimated 3% of farms. This
could be primarily due to the farm system types and sizes
employed there, and relatively low labor costs. The number
of large farms has previously been highlighted as a barrier to
AMS adoption in USA by Jacobs and Siegford (2012), and
increased farm size is also having an impact in countries such
as Denmark and Norway (Sigurdsson et al., 2019; Vik et al.,
2019). However, the information presented in our survey adds
weight to the need for alternative automated milking approaches
for larger farm systems, such as robotic rotaries and stand-alone
robotic cup attachment systems that work in rotary parlors. We
further explore the potential reasons for the different adoption
trajectories in section The Impact of Uncertainty on AMS
Adoption below.

The Impact of Uncertainty on AMS
Adoption
Respondents were most positive toward factors associated with
technological and supplier uncertainty. This indicates that at the
time of the survey, the AMS technology was relatively mature and
reliable, but in some countries, the knowledge associated with
AMS use in different farm systems was not so developed. In this
study, respondents felt that farmers were well-supported when
making AMS investment decisions but were not always certain
of the implications AMS had on farm systems challenges such
as expanding their herd size, or reverting back to a conventional
milking system (Hansen, 2015). The survey results therefore
provide insights into the development and potential future
adoption of AMS, including the need for greater certainty around
issues of technological lock-in (where farmers face difficulties
reversing technology investment decisions) and the forms of
after-sales support required (for example, managing the farm
systems changes related to AMS use).

There was most potential uncertainty around political factors,
with ratings lowest among USA respondents. The political

environment can have a large impact on innovations such as
AMS through even apparently minor regulations or policies.
One example highlighted in comments by respondents was
food safety regulations in Europe requiring a person to be
present at milking, which was not feasible under the 24 h
milking cycle of AMS. Altering these regulations can take
considerable effort and can act to discourage farmers. Other
institutional arrangements can also be affected, for example, herd
test protocols that require two milk samples at 12 h intervals
have had impacts on the ability of AMS farmers to participate
in herd improvement schemes (Eastwood et al., 2017b). Political
factors have also been highlighted as driving industry structural
change that can impact smart farming adoption such as AMS
(Vik et al., 2019).

Respondents perceived a lack of awareness among farmers
as to future regulations that may have an impact on AMS use
and felt that farmers were moderately aware of the current
regulations that are related to AMS use. There was a strong
perception that current regulations did not act to make farming
with AMS easier. There was also a perception that financial
incentives at an industry level had not played a role in the
uptake of AMS. In terms of the role of public and industry
good organizations, respondents identified a lack of industry-
level extension programs related to AMS use but perceptions
were mixed as to whether there was a role for the dairy
industry or public organizations in the learning support space.
Smart farming technology is dominated by commercial interests,
which has been shown to have implications for private and
public R&D roles in terms of supporting adoption (Eastwood
et al., 2017b; Klerkx et al., 2019). This tension was also
highlighted by respondents in factors related to competitive
uncertainty, with an indication that sourcing independent advice
on AMS technology was difficult for farmers in the emerging
markets of Canada, USA, and the UK. Farmer uncertainty
about adopting AMS and the lack of service providers for
technical support were also found to be an issue in USA by
Jacobs and Siegford (2012).

Responses related to supplier uncertainty highlighted
differences between retailers and non-retailers. Retailers were
much more positive that farmers were receiving good technical
and learning support. The ratings showed that while farmers
could be certain about the extent of technical support they will
receive, they may be less aware of the learning support available
from their retailer. This retailer focus on technical support is
common in the smart farming domain (Eastwood et al., 2016).
However, this can be compensated by farmers having access to
AMS farming system advice from other agents in the innovation
system, but these skills take time to build. For example, a network
of farm system advisors took two decades to develop in The
Netherlands, primarily because a certain AMS market size was
needed to make it worthwhile for advisory firms to upskill
(Eastwood et al., 2017b).

When investing in smart farming technology, farmers need
a clear value proposition and business case, which in turn
requires more transparent sharing of financials and robot
performance by farmers and retailers (Rojo-Gimeno et al.,
2019). In terms of our factors related to resource uncertainty,
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respondents perceived relative certainty for farmers accessing
finance for AMS, but that ascertaining the depreciation value
of the technology was more difficult. This was more of an
issue in the emerging markets, as the mature markets had
more knowledge of AMS performance, and potentially more
experience with use of secondhand AMS units. Additionally,
in some countries, the uncertainty around future milk prices
could impair the ability to create robust investment cases for
smart technologies. It is interesting to note that AMS retailers
indicated much more confidence in predicting milk prices than
non-retailers, potentially indicating undue optimism in the
sales process.

Usefulness of the Perceived Uncertainty
Framework
The framework of Meijer et al. (2007b) provided a good lens
with which to look at the AMS issues internationally. While
most of the factors of uncertainty were relevant to the “farmer
as entrepreneur” perspective adopted in our analysis, some of the
factors relate better to other actors in the network. For example,
consumer uncertainty relates more to technology providers and
their uncertainty of the farmers’ needs or to consultants and their
uncertainty whether there is a business case for them to become
involved. Use of the framework highlighted clear differences
between technology retailers in specific aspects, and therefore, the
framework could be used with other smart farming technologies
to assess where potential issues occur between retailer and non-
retail actors.

Difficulties we encountered with an empirical investigation
using the framework factors involved first determining robust
factors that related to each area of uncertainty. While we
developed these within the research team, and tested them in a
pilot, they would benefit from further refinement subsequent to
this study. Additionally, with such survey methods in a niche
research area, achieving sufficient responses is difficult. In our
study, we concentrated on results from countries with the most
respondents, but further empirical studies using this framework
would benefit from greater targeting of respondents.

Implications for Minimizing Uncertainty
Related to Smart Technologies in
Agriculture
This current study indicates some lessons for the configuration
of smart farming innovation systems. In the case of AMS, the
dominant forms of uncertainty uncovered across all respondents
were in the resource and political domains, a finding supported
by another study of uncertainty in technological start-ups (Tomy
and Pardede, 2018). In particular, we identify a need for further
discussion regarding the role of private providers of advice to
farmers, and the related role of public or industry good AMS
support programs. Our study indicates that development of
commercial roles for consultants in providing advice to AMS
farmers took some time to occur in the established markets
in Europe, a finding supported by Eastwood et al. (2017b). In
relation to smart farming technologies generally, the potential

role of farm advisors in reducing innovation uncertainty has been
highlighted in other studies (Ayre et al., 2019; Eastwood et al.,
2019). There exists a significant opportunity for farm advisors
to support farmers, so they get the most from their technology
investments, requiring more focus from public R&D in the smart
farming domain.

Our survey results highlighted a difference in perceptions
between technology retailers and other actors in the technological
innovation system, particularly around factors related to supplier
and consumer uncertainty. The smart farming domain is
dominated by private R&D (Eastwood et al., 2017b; Klerkx
et al., 2019) and therefore the pressures of being first to
market, providing a return on agtech venture capital, and
achieving sufficient sales in a niche market can lead to
ambitious marketing. This may result in development of smart
technologies without a full understanding of market (farmer)
needs (i.e., consumer uncertainty) and lack of focus on after-
sales service that helps farmers integrate the technology into
their farming system context (i.e., supplier uncertainty). It
is therefore vital that commercial interests, farm advisors,
and public R&D actors foster a collaborative approach to
development and support of smart farming technologies (Ayre
et al., 2019; Phillips et al., 2019). The need for collaborative
approaches is especially the case where technologies are brought
together in platforms (e.g., via artificial intelligence) to solve
dynamic and complex agricultural problems (Hermans et al.,
2019).

We identified an impact of immature AMS technology being
marketed to farmers, and AMS technology being sold to farmers
who did not have the capability or mindset to adapt their farm
systems to suit. This resulted in instances of decommissioning,
or reverting to conventional milking technology, and had
a subsequent impact on farmer (and advisor) confidence
in the technology. This experience highlights an important
consideration for smart farming innovation uncertainty.
Agricultural NGOs and governments are increasingly viewing
smart farming as a tool for improvements in productivity and
sustainability of agriculture. However, our study highlighted the
potential impact of negative experiences associated with new
technologies from farmers who struggle with the adaptation
process as such occurrences may act to stall the uptake of
smart farming technologies. If public policy organizations are to
realize the desired impacts of smart farming technology, there
needs to be greater focus on understanding where (and which)
technologies can have an actual impact on farm (Shepherd et al.,
2018), as opposed to technologies that only create greater farmer
distrust and uncertainty (Jakku et al., 2018; Klerkx et al., 2019).

Limitations of the Approach
The approach used in this paper involved an online survey with
a targeted snowball method where domain experts were first
identified and then asked to distribute the survey among their
networks. The target population (researchers and professionals
with knowledge of AMS) was relatively small and dominated
by commercial technology and service providers who are often
difficult to access in research projects.
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This research represented an exploratory approach to use the
innovation uncertainty framework to describe major influences
on AMS adoption in different countries. The questions were
developed by the project team, and tested in a pilot survey, and
therefore represent a best design of the appropriate questions.
However, the questions could be open to interpretation of
individual participants.

CONCLUSIONS

In this paper, the concept of perceived uncertainty in innovation
systems was used to examine the adoption of automated milking
systems, a smart farming technology. The major drivers for
farmers adopting AMS included reducing total farm labor,
hours spent milking, and the amount of physical work, while
also having more family time. Adoption was perceived to
be negatively impacted by the cost of technology and issues
around future herd expansion, difficulty obtaining finance, fit
with farm system, and negative experiences of other farmers.
This study adds to limited literature focused on empirical
analysis of the role of uncertainty in using factors associated
with perceived uncertainty; we were able to analyze the AMS
innovation system across different countries and institutional
contexts and use this to determine implications for smart farming
technology adoption. We highlighted perceived impacts of
political uncertainty, and the impact of technological uncertainty
around not only immature smart farming technologies but
also the on-farm adaptation that such technologies can
require. We also suggest that to reduce uncertainty with
emerging smart technologies, greater effort is required to
foster knowledge development and exchange. In emergent
markets for smart farming technologies, there is a public or
industry-good role in delivering broad knowledge development
and capability building programs focused on key actors such as
nutritionists, veterinarians, banking finance representatives, and
agricultural consultants.
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In this perspective paper we consider the implications of a digital transformation for

agricultural knowledge, a subject which hitherto has received limited attention. We

raise critical questions about how digital agriculture will intersect with established

modes of knowing and decision-making. We also consider the implications for the

wider Agricultural Knowledge and Innovation System (AKIS), specifically the roles and

capabilities of those who provide advice to farmers, as well as those responsible for

data analytics, and the organizations and institutions that link and support them. We

conclude that new data driven processes on farm, as well as the changing AKIS dynamic

under digital agriculture, bring new demands, relations and tensions to agricultural

decision-making, but also create opportunities to foster new learning by harnessing

synergies in the AKIS.

Keywords: digital agriculture, agricultural knowledge and innovation system, knowledge, smart farming, farmer,

big data

INTRODUCTION

It is generally agreed that digital agriculture1 will deliver a step change in efficiency, productivity
and sustainability at the farm level and across the value chain (Aubert et al., 2012; Wolfert et al.,
2017). Sensing systems and associated analytics can provide producers with better information
to make more timely decisions with more predictable outcomes, while automating tasks using
sensing technologies and machine learning can increase reliability. Rapid developments in the
Internet of Things (IoT), cloud computing, robotics and Artificial Intelligence are accelerating the
transition to smart farming and the promotion of big data and precision agriculture to improve
agri-food sustainability. The expectation is that smart farming approaches will ultimately improve
knowledge about an individual enterprise, or via efficient sharing and learning from data from
multiple enterprises (Robertson et al., 2018).

However, although this “fourth agricultural revolution” brings the promise of multiple gains,
it also brings with it technical, social, economic, ethical and practical questions, with significant
implications for how commercial agriculture is structured, practiced and governed. Research to
date is only just exploring the full ramifications of this so called “disruptive innovation” in relation
to these aspects (Bronson and Knezevic, 2016; Jakku et al., 2016; Carolan, 2018; Klerkx et al.,
2019; Rotz et al., 2019). One question that is not being fully addressed, however, is: what are the
implications of digitalisation for agricultural knowledge?

1Digital agriculture typically involves both the collection and analysis of data to improve both on-farm and off-farm decision

(Leonard et al., 2017), although here we refer to different forms of digitalisation in agricultural production systems.
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Digital applications and platforms have the potential
to dramatically change the way knowledge is processed,
communicated, accessed and utilized. For farmers, digital
applications will provide decision-making capabilities that were
previously not possible, potentially leading to radical changes
in farm management (Sonka, 2014; Wolfert et al., 2017). As
smart machines and sensor networks increase on farms and farm
data grow in quantity and scope, farming processes will become
increasingly data-driven and data-enabled (Wolfert et al., 2017).
This raises critical questions about how digital agriculture
will require new capabilities, support decision-making and
interact with, and potentially disrupt, established modes of
knowledge processing.

There are significant implications for the whole Agricultural
Knowledge and Innovation System (AKIS)2, specifically
the roles and capabilities of farmers, those who provide
advice to farmers, as well as those responsible for data
analytics, and the organizations and institutions that link and
support them.

These considerations are important if we are to enable digital
agriculture to be effectively implemented.

DIGTIAL AGRICULTURE AND
KNOWLEDGE PROCESSES

Our understanding of knowledge in agriculture has evolved from
regarding it as a transferable commodity to something more
diffuse emerging out of technical and social interactions. This
understanding underpins the AKIS concept and the multiple
knowledge generation, exchange and utilization processes
operating interactively between the heterogenous actors involved
(Klerkx et al., 2012). Analysis of the potential impact of
digital agriculture on the AKIS to date has tended to follow
a supply-orientated narrative, examining, for example: digital
services in extension (Steinke et al., 2020), social media
usage, digital literacy and access (Bronson and Knezevic,
2016); and adoption of technologies (Pierpaoli et al., 2013;
Barnes et al., 2019; Lowenberg-DeBoer and Erickson, 2019).
Whilst these perspectives are insightful, we argue that digital
agriculture requires us to fundamentally rethink these knowledge
processes and to reflect on the consequences of a shift toward
data-driven processes.

This perspective piece refers especially to conventional
agricultural systems and draws on research primarily from
developed countries. In this brief discussion inevitably we have
to use shorthand terms for the different AKIS actors: farmers,
advisers, researchers, etc. We acknowledge that these groups are
not homogeneous and we know that farmers’ interactions with,
and access to, digital agriculture differs significantly depending
on multiple farm, farmer and wider enabling factors (Barnes
et al., 2019; Vecchio et al., 2020).

2The AKIS concept refers to complex arrangements and interactions between

actors, knowledge organizations (agricultural research, extension, and education

organisations) as well as the informal networks of heterogeneous actors (supply

chains, policy makers etc).

DIGITAL AGRICULTURE, FARMER
KNOWLEDGE, AND DECISION-MAKING

Decision Support - Analytical Capabilities
Digital agriculture offers the ability to utilize technology to
convert precise data into actionable knowledge to drive and
support complex decision-making on-farm and along the
value chain. The promise is that, whilst past sources of
knowledge were based on general knowledge often derived
from research experiments, smart technologies will be able
to offer on-farm, local-specific information to farmers (Poppe
et al., 2015). As such, digital agriculture reflects a shift from
generalized management of farm resources toward highly
optimized, individualized, real-time, hyper-connected and data
driven management (Van Es and Woodard, 2017).

Of the three pillars of digital agriculture: robotics, sensors,
and Big Data analytics platforms, the latter is critical. The large
amounts of data being currently generated on farms by, for
example, yield monitors, are of little value unless they can be
turned into useful decision support tools for farmers (Janssen
et al., 2017; Weersink et al., 2018).

However, some scholars suggest that our capacity to collect
large amounts of data outstrips our ability to convert it into
usable information. Data analytics3 and decision support are
fundamental for fully-enabled digital agriculture, but to date the
interpretation and use of data from smart technologies is not
matching expectations (Leonard et al., 2017; Weersink et al.,
2018) and the capability to effectively analyse these data to
achieve promised improvements is limited.

Whilst there is evidence of uptake of GPS technologies that
simplify the work (e.g., auto-steer systems) or passively collect
data (e.g., yield monitors) (Lowenberg-DeBoer and Erickson,
2019), they signify “embodied-knowledge technologies” (Griffin
et al., 2017) that require no additional skills to capture their
value; in other words, they rely on the knowledge that farmers
already possess regarding how to operate their machinery. This
is distinct from the information-intensive technologies which
use data collected from the farm as input into a decision
support system that generates a prescription for the variable
inputs. This distinction, some argue, explains the low uptake
of variable-rate (VR) technologies which require new skills and
decision-making models compared to the widespread adoption
of GPS automated steering systems, yield monitors, and grid soil
sampling (Weersink et al., 2018). Barnes et al. (2019) for example
in a recent European survey noted this distinction in adoption
patterns. Capalbo et al. (2017) point to the many cases where
VR application of nutrients continues to be based on simple
rule-of-thumb or empirical approaches.

Overall, it is felt that the difficulty of constructing,
maintaining, analyzing, and sharing such data limits the
opportunity to derive effective decision rules with high
information value to producersWeersink et al. (2018). Given this,
there is still a heavy reliance on the user to interpret the data.
Studies have also found an increased learning load for farmers
from using digital agriculture tools and the need to invest in

3Analytics is the capability available to analyse data (Shepherd et al., 2018)
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human capital (Van Es and Woodard, 2017; Eastwood et al.,
2019).

Apart from the difficulty of providing decision support,
farmers, advisers and researchers are finding it hard to manage,
interpret, or make use of their data as a result of their volume
and complexity (Van Es and Woodard, 2017). Typically farmers
do not need high frequency and precise data for every decision
(Robertson et al., 2018) and have limited capacity to deal with
data complexity (Lioutas et al., 2019).

Despite these challenges, there are multiple examples
of technologies available, from farm management software
solutions (e.g., AGERmetrix and FieldViewTM in USA and Agrivi
in UK) to decision support tools (e.g., FieldNETAdvisorTM in the
USA) (Kamilaris et al., 2017; Saiz-Rubio and Rovira-Más, 2020),
that show how analytic capabilities are advancing.

However, limited decision support continues to reduce
farmers’ ability to meet the new demands of digital agriculture
and can present significant adoption hurdles (Pierpaoli et al.,
2013; Knierim et al., 2018). Whilst we cannot characterize the
complex implementation problems of digital agriculture as solely
due to limited capabilities in analytics and data use (Lowenberg-
DeBoer and Erickson, 2019), it is evident that the optimism for
digital agriculture is not yet matched by analytic capability within
the AKIS.

Disruptions To Farmer Knowledge and
Decision-Making
Although there is a suggestion that skilled agricultural workers
have the highest probability of automation compared to other
workers (Nedelkoska and Quintini, 2018), the extent to which
this will support or replace decisions in farming depends on
the technology. Sensors provide raw data (e.g., weather data),
and smart devices (robotic vehicles, drone mounted cameras)
will allow sophisticated farm management advice (Walter et al.,
2017), while smart systems have the capability to execute
autonomous actions (Budaev et al., 2019). For the former, human
interpretive skills for decision making are still important, but
for the latter the role of humans in analysis and planning is
increasingly assisted by machines.

The nature and extent to which the human role shifts in
the “sense–analyse–act” cycle in achieving actionable knowledge
is debated. Whilst many agree that farmers’ knowledge is not
about to be replaced by algorithms, it is suggested that their
involvement will be at a much higher intelligence level, leaving
most operational activities to machines (Wolfert et al., 2017).
This distinction between strategic and tactical action releases
the farmer from mundane day-to-day monitoring although it
also removes the opportunity for observational knowledge which
contributes to experiential learning.

There is a perceived risk of increasing reliance on technical
experts and the technology resulting in a loss of tacit knowledge if
the cognitive processing of information is delegated to machines
or algorithms (Jago et al., 2013; Shepherd et al., 2018). Arguably
the farmers’ experiential knowledge acquired over the years is at
risk (Moschitz and Stolze, 2018). However, the opportunity for
farmers to acquire a better knowledge of their production sites

and thus gain greater certainty when making decisions increases
(Rösch and Dusseldorp, 2007). The use of digital technologies,
such as sensors for monitoring animal behavior, can arguably
also replace the lost knowledge of older generations (Moschitz
and Stolze, 2018). Furthermore, new systems are expected to
support handling a higher complexity as well as an increased
local adaptation which may be beyond individual experiential
knowledge (Aubert et al., 2012).

More fundamentally, decision-making and experiential
processing commonly applied on farm have been supported
in the past with descriptive and diagnostic tools and models
explaining what and why things have happened. Digital
agriculture heralds an era where these learning opportunities
will be potentially diminished, in which the “what is known” is
prioritized over the “capacity to know.”

With respect to decision making, new sources of data are seen
to create the opportunity to inform and drive a change in decision
making from one that is typically characterized as being highly
intuitive to one that is data driven and processed in real-time
(Xin and Zazueta, 2016). This, many argue, requires a change
in the mode of working for many farmers, transitioning from
experiential decision-making to data-driven processes (Eastwood
and Kenny, 2009; Nuthall and Old, 2018). However, in reality
many farmers have been transitioning toward more data-driven
decision-making processes for some time, integrating different
information sources and drawing on different levels of analysis,
using, for example, precision agriculture and DSS.

Insights from studies of DSS, reveal that they largely support,
rather than replace, the decision maker; that farmers use DSS,
not in a deterministic way to provide specific answers, but as
learning tools (McCown, 2001; Baars, 2011; Lindblom et al.,
2017). Experience with participatory design of DSS suggests
that, a better appreciation of how farmers build tacit knowledge,
the mind’s store of decision rules and background information
through repeated experience, may improve decision support
for digital agriculture. In particular, understanding how this
experiential processing can combine with analytical processing,
where information is obtained through statistical description
(Marx et al., 2007); Hansen et al. (2019), can help to overcome
difficulties at the interface between data and decision-making.
Working with farmers in developing technologies can also
address the limited opportunities product developers have to
ground truth information (Kamilaris et al., 2017). Although
there are few examples yet of co-created digital technologies
there is acknowledgment that farmmanagement and information
systems require a user-centric approach (Fountas et al., 2015; Van
Es and Woodard, 2017).

THE CHANGING AKIS DYNAMIC UNDER
DIGITAL AGRICULTURE

Farmers draw on multiple sources of knowledge and innovation
support services in the AKIS (regulators, supply chain actors,
conservation experts, NGOs, policy makers), however, for many,
farmer networks and farm advisers remain key. Evidence to date
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of the impacts of digital agriculture suggest potential shifts in
these knowledge relationships.

Enabling or Disrupting Farmers’
Knowledge Networks
Informal networks, between farmers and often including other
actors, are one of main knowledge exchange mechanisms in
farming communities which lead to learning and innovation
(Leeuwis and Aarts, 2011; Ingram, 2015). The extent to
which digital agriculture will disrupt or enable these network
processes is an important consideration. Proposed smart systems,
which promise to take and learn the best practices from
advanced precise farmers, formalize and transfer their knowledge
and support to other farmers in everyday decision making
(Budaev et al., 2019) could arguably replace interpersonal
networks. However, the potential for digital technologies
to support collaborative knowledge creation has also been
identified (Eastwood et al., 2012). ICT enables farmers to
exchange information, benchmark their production against
others, establish cooperation and peer review, and maybe even
develop informal information systems that can complement
more formal information systems (Wolfert et al., 2017). Many
farmers have started to mobilize and organize themselves (e.g.,
in cooperatives, online communities) to create and share know-
how, technologies and experiences, and big data understanding
(Kamilaris et al., 2017; Carolan, 2018). Distributed sensing
systems can form the basis for knowledge platforms for social
learning (Robertson et al., 2018).

Innovation Support Services
With respect to support services, farm advisers have always
been important as interpreters of data and information. The
digitalisation of expert knowledge into decision support tools
or via artificial intelligence has the potential to disrupt advisory
services and change the adviser’s role (Wolfert et al., 2017).
Digital agriculture tools can provide farmers with analytical
power and access to information previously unavailable (Ayre
et al., 2019). This may mean advisers need to reassess their
capabilities, practices, services and skills as they respond to new
demands (Eastwood et al., 2017; Rijswijk et al., 2018). They may
also need to create new networks with technology providers and
R & D (Lundström and Lindblom, 2018). Although there is a
potential role for technology suppliers to take on greater advisory
support for farmers and act as knowledge “translators,” they can
often lack the farm systems expertise or knowledge networks
to adequately support on-farm use (Eastwood et al., 2016). To
address this problem, researchers propose a co-development
approach for building the capability to use digital agriculture
tools (Eastwood et al., 2019).

New Entrants and Changing Roles
The emergence of new suppliers of equipment, software and
services, business models and networks creates a new dynamic
within the incumbent AKIS. The public and private sector
generally operate together to establish a wide variety of
data, knowledge and institutional arrangements that together
constitute “a decision making infrastructure” that supports

management in agriculture (Capalbo et al., 2017). This is
evolving under digital agriculture with new disruptive entrants
(e.g., digital technology companies) and various models of
development and investment appearing, including new business
models that challenge incumbent forms (Phillips et al., 2019).
The changing roles of old and new software suppliers and
the emerging landscape of data-driven initiatives, with the
prominent role of big tech and data companies and research
universities has been observed (Keogh and Henry, 2016; Van Es
and Woodard, 2017; Wolfert et al., 2017). The dynamic between
the new and established players is often framed by discussions
of private-public data accessibility, ownership and governance
(Bronson and Knezevic, 2016; Jakku et al., 2016); however, issues
of knowledge are also key, and are redefining AKIS boundaries.
The tensions and synergies between these new entrants and
those in public bodies and universities are of particular interest.
The former have limited understanding of agronomic principles
but excellent market access, while the latter have the expertise
and institutional learning which has provided the foundations
for understanding the processes driving agricultural systems,
through decades of experimental research and sophisticated
modeling (enabling diagnostic understanding).

The opportunities for combining their different analytics are
highlighted by Antle et al. (2017, p. 258) who point to synergies
between the modeling community, which is strong on analytical
capability, and the developers of user-related farm-level products.
Harnessing big data and the analytical powers of models can also
lead to what Capalbo et al. (2017) referred to as a virtuous circle
which builds on both and will allow a new generation of models
and decision support.

At a more fundamental level the arrival of new analytics
raises the questions about knowledge and data-driven processes.
Established R&D institutions applied analytical techniques
associated with descriptive and diagnostic analytics which led
to the effective application of what Sonka (2014) calls “Small
Data.” An important question for Sonka is: “how can the best
aspects of the Small Data system be linked to the application of
Big Data technologies?”Whilst he acknowledges that knowing, at
increasing levels of precision, “what” happened in the field or in
animal facilities does have value, he argues that knowing “why” is
also key to agricultural applications.

This shift in analytics also has the potential to significantly
impact the AKIS in other ways, moving us from “hindsight”
to “foresight” (Shepherd et al., 2018). Digitizing agriculture
will take these systems to predictive (what will happen) and
prescriptive (how can we make it happen) analytics, which are
future focused. This development again raises questions about
where our understanding of the mechanisms underpinning these
predictions and prescriptions lies.

CONCLUSION

New data-driven processes on farm as well as the changing AKIS
dynamic under digital agriculture brings new demands, relations
and tensions. However, there is also great potential to both build
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on established ways of knowing and to foster new learning by
harnessing synergies.

Morakanyane et al. (2017, p. 437) defined digital
transformation “as an evolutionary process that leverages
digital capabilities and technologies to create value.” We would
argue that these capabilities are crucial and extend beyond the
digital domain per se to the knowledge capabilities of all actors
in the AKIS. Enhancing capabilities at every level, from the farm
and adviser level, to new technology and software providers and
established researchers, will be important if digital technologies
are to achieve their full value. Equally facilitating opportunities
for combining different analytic approaches and capabilities
should be supported. Fostering co-learning and collaboration in

implementing new technologies should be an important strand
for future development and research.
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