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Editorial on the Research Topic

Human-Like Advances in Robotics: Motion, Actuation, Sensing, Cognition and Control

HUMAN-LIKE ADVANCES IN ROBOTICS

Robots have significantly contributed to the quality of human lives by alleviating exhausting,
repetitive and monotonous industry jobs in untidy and risky environments. They have increased
the efficiency of logistics in warehouses and factories. Inspection of infrastructures has been
advanced by robotics. Just now, robots contribute to state-of-the-art surgery, rehabilitation, and
medical diagnostics. However, one of the robotics markets with greatest growth expectations—
home and service robotics (Litzenberger, 2018), apart for specialized devices such as cleaning robots
or cooking assistants, is still struggling to find and adopt a robot which could respond to most
challenges and demands in our homes. Our homes are unstructured, with space- and time- variant
environments adapting to human needs and commodity. In order to fit such designed human-
centered environment, service robots of tomorrow might be human-like machines. Such service
robots could not only look like humans, but move and behave like humans which means that
they also have to sense and act in a human manner. To that end, understanding biomechanics
and sensorimotor control of humans has been a subject of scientific research for centuries. Making
an artificial human is a dream of humanity even longer. In modern history this is demonstrated,
as an example, by the Mechanical Turk, a human-like machine developed in 1770 by Wolfgang
von Kempelen at the House of Habsburg which apparently was automatedly playing chess but was
actually operated, through elegant mechanisms, by a chess master hidden inside. The Mechanical
Turk has been a source of inspiration for scientists, popular culture, and the business sector,
as confirmed by the Amazon Mechanical Turk web-based crowd work platform. This dream to
reproduce human capabilities, combined with market needs, in the last few decades, resulted in
the rapid progress of humanoid robotics as a scientific discipline. Consequently, bionics of human
sensing capabilities, humanmotion performances, and human behavior patterns, is perceived as an
essential part of robotics research.

Working in the field of humanoid robotics we all face typical questions:

• Could we design engineering counterparts for corresponding body parts which have been
mastered through human evolution?
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FIGURE 1 | Clustering of the papers published within the Research Topic on human-like robotics.

• Do we really need to strive for faithful engineering replicas of
a human body, the way it moves and behaves, or we could just
undertake engineering design of robot parts which resemble
key functionalities of humans?

THE RESEARCH TOPIC ON HUMAN-LIKE
ROBOTICS

This Research Topic brings theoretical and experimental findings
and outlines guidelines to research activities in the field of
human-like robotics. It aims at giving insights in the latest
related scientific investigations and at presenting some samples
of the current level of developed technologies importing those
concepts in robotics with a science for robotics and robotics for
science methodology (Yang et al., 2016). The main research lines
addressed are:

• Biomechanics and actuation mechanisms: robot actuation
units which are fully designed to copy the structure of human
muscle-tendon unit (Wittmeier et al., 2013) or actuators
which resemble human actuation functionality by adjusting its
mechanical impedance to specific tasks (Wolf et al., 2016); the
papers of the Research Topic mainly pertaining to this cluster
present an arm-exoskeleton (Petrič et al.), an actuator with
variable stiffness for biped robots (Rodriguez-Cianca et al.)
and a robot leg with series elastic actuator (Lee and Oh).

• Sensing and perception systems: biomimetic transducers
and associated neurocomputational architectures inspired by
physiological models for humanoid robotics (Dahiya et al.,
2010) or for replacing lost sensory functions in bionic
prostheses (Oddo et al., 2016); the papers of the Research
Topic mainly pertaining to this cluster present a system for
classification of upper limb posture and force for prosthetics
(Leone et al.), tactile sensorization of a robust gripper for
precise manipulation tasks (Massari et al.), and a study on
manipulation of delicate objects under different sensory
feedback strategies and variable grasp stiffness (Haas et al.).

• Cognition and behavior patterns of humans: as the most
complex system to be engineered which cannot distinguish
and separate the morphological shape, experience and
intelligence (Pfeifer and Bongard, 2006), but to do
comprehensively research and investigation on how to
define and develop the “brain” for future robots through the
interaction of perception, control, learning, and cognition
as summarized in the work of Li et al. (2019); the papers of
the Research Topic mainly pertaining to this cluster present
a neurocomputactional architecture for spike-based tactile
encoding-decoding of surface features (Rongala et al.), a path
planning and walking strategy for humanoids (Raković et al.),
and a central patter generator with Hebbian plasticity for
human-robot interaction (Jouaiti et al.).

According to these categories, a possible clustering of the
papers published within the present Research Topic is proposed
in Figure 1.

CONCLUDING REMARKS

The elaborated topics will lead us to a current answer on
how far away state of the art humanoids are from humans in
terms of mechanics, intelligence, and communication (Fukuda
et al., 2001). Papers presented in the Research Topic depict
useful pieces of research toward an ultimate goal of all
roboticists: to build a fully functional autonomous robot which
matches shape and performance of a human in a human-
centered stochastic and unstructured environment. Since the
Research Topic spans through numerous scientific disciplines,
multidisciplinary research activities and variety of engineering
and scientific issues, it is not possible to gather all results
which will give a comprehensive insight into it. However, we
should remember the words of Isaac Asimov in his novel
Robots of Down: “A knotty puzzle may hold a scientist up
for a century, when it may be that a colleague has the
solution already and is not even aware of the puzzle that it
might solve.”
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Hebbian Plasticity in CPG Controllers
Facilitates Self-Synchronization for
Human-Robot Handshaking

Melanie Jouaiti 1*, Lancelot Caron 2 and Patrick Hénaff 1,2
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It is well-known that human social interactions generate synchrony phenomena which

are often unconscious. If the interaction between individuals is based on rhythmic

movements, synchronized and coordinated movements will emerge from the social

synchrony. This paper proposes a plausible model of plastic neural controllers that allows

the emergence of synchronized movements in physical and rhythmical interactions.

The controller is designed with central pattern generators (CPG) based on rhythmic

Rowat-Selverston neurons endowed with neuronal and synaptic Hebbian plasticity. To

demonstrate the interest of the proposed model, the case of handshaking is considered

because it is a very common, both physically and socially, but also, a very complex act in

the point of view of robotics, neuroscience and psychology. Plastic CPGs controllers are

implemented in the joints of a simulated robotic arm that has to learn the frequency

and amplitude of an external force applied to its effector, thus reproducing the act

of handshaking with a human. Results show that the neural and synaptic Hebbian

plasticity are working together leading to a natural and autonomous synchronization

between the arm and the external force even if the frequency is changing during the

movement. Moreover, a power consumption analysis shows that, by offering emergence

of synchronized and coordinated movements, the plasticity mechanisms lead to a

significant decrease in the energy spend by the robot actuators thus generating a more

adaptive and natural human/robot handshake.

Keywords: physical human robot interaction, hebbian learning, central pattern generator (CPG), adaptive behavior,

handshaking, plasticity, neural oscillators

1. INTRODUCTION

For humans, physical and social interpersonal interactions induce gestural and verbal/non-verbal
communications based on rhythmic mechanisms and rhythmic movements. These mechanisms
and the associated synchronization phenomena (limit cycles and clamping) could play a
fundamental role in physical and social interpersonal interactions (Troje et al., 2006; Yonekura
et al., 2012) and could be an emergent feature of the physical and social interactions between
humans who adapt to each other and learn from each interaction, generating synchronization
phenomena and creating conscious or unconscious links between people (Delaherche et al., 2012).
Scientists assume that emotional and social interactions involve a coupling between individuals
which is achieved thanks to neural structures with similar properties as those implicated in

7
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the neural control of movements. For example, coordination
of oscillatory motions between two individuals (two distinct
brains) obeys the same rules as for inter-limb coordination
within a single individual (single brain) (Schmidt et al., 1990;
Tognoli et al., 2007). Thus, distinct individuals can spontaneously
interact and successfully perform coordinated actions through
an exchange of information by means of their sensorimotor,
cognitive and social underpinnings.

In humans and animals, rhythmic movements rely on
universal sensory-motor mechanisms (Cruse et al., 1998; Cattaert
and Le Ray, 2001; Zehr et al., 2004) and result from learning
processes implying chaotic neural oscillators in central pattern
generators (CPGs). CPGs endowed with plasticity rules allowing
for synchronization with the control body (Shadmehr, 2010), are
also implied both in the generation of discrete and rhythmic
movements (Grillner, 2006).

In human interactions, handshaking is an important and
universally social function allowing social introduction in
various contexts, regulating and maintaining human interactions
(Schiffrin, 1974; Hall and Spencer Hall, 1983; Bernieri and
Petty, 2011; Giannopoulos et al., 2011) but it can also provide
information on the health and emotional state of a person
(Chaplin et al., 2000), which could be useful for assistive robotics.
It is a multimodal physical interaction, socially common but
complex to reproduce with a humanoid robot because it involves
fine and complex movement coordination which engages the
body and gaze throughout the act: from the preparation to the
contact, the locking, the rhythmic and synchronized movement
until the withdrawal of the hands (Walker et al., 2013). How
synchronized motion of two humans arms is established and
maintained is still an open question but some aspects have been
studied in the movement science and neuroscience fields, such as
reaching hands (Lee, 1976; Bastin et al., 2006) and interpersonal
synchronization tasks (Oullier et al., 2008; Dumas et al., 2014).

From a neuroscience point of view, handshaking implies
interpersonal motor coordination and recent research showed
that it also induces the synchronization of the brain activity
of both partners Tognoli et al. (2007). Therefore, it can be
considered as a paradigm for social and physical interactions,
in particular because its multimodality is based on physical
and social clamping of rhythmic movements. Consequently, if
we want humanoid robots to be able to interact properly with
humans, i.e., in a socially acceptable way, shaking hand with
humans like a human is an interesting challenge (Der and
Martius, 2017). It is then necessary to design bio-inspired robot
controllers able to produce rhythmic movements and trigger the
emergence of a synchronization in an interaction such as the
handshaking gesture. One possible way to achieve this consists
in designing robot controllers which are intrinsically rhythmic,
such as CPGs, but which also incorporate synchronization
learning abilities similarly to the plasticity mechanisms involved
in the human motor nervous system for rhythmic movement
production.

Several models of CPGs have been proposed for many years
in order to understand human and animal motor control mostly
aiming at locomotion control in robotics (Ijspeert, 2008; Yu
et al., 2014; Nachstedt et al., 2017). CPGs are neuronal structures

located in the spinal cord and able to generate rhythmic and
discrete activities that can be initiated, modulated and reset by
different kinds of signals: descendant signals from high level
structures located in the MLR (mesencephalic locomotor region)
(Grillner, 2006; Rossignol et al., 2006; Harris-Warrick, 2011)
or afferent sensory feedbacks coming from low levels of the
body (proprioceptive) or from the environment (exteroceptive)
(Marder and Calabrese, 1996; Pearson, 2004). Different levels
of CPG modeling exist from the microscopic level (called also
biophysical model) that takes into account many details in the
biophysical operation of the neurons like the famous Hodgkin-
Huxley model (Hodgkin and Huxley, 1952), to the macroscopic
level that tries to reproduce the functionality of a population
of neurons using non-linear oscillators like Van der Pol (Rowat
and Selverston, 1993; Low et al., 2006), Rayleigh (Mottet and
Bootsma, 1999), or Hopf (Righetti and Ijspeert, 2006; Nachstedt
et al., 2017).

Between the microscopic and macroscopic levels of modeling,
there exists an intermediary level, called mesoscopic level, which
takes a more realistic biological inspiration but is sufficiently
simplified to study the sensorimotor couplings, oscillation
properties and learning mechanisms involved in the control of
rhythmic tasks. These models are usually based on a pair of
two mutually inhibitory oscillating neurons thus creating a CPG,
called half-center (Grillner and Wallen, 1985), divided into two
parts controlling the extensor and flexor muscles.

The model of half-center CPG for mammal locomotion by
McCrea and Rybak (Rybak et al., 2006) takes inspiration from
biological structures, such as the rhythmic layer, modulating
layer, interneurons, sensory neurons, etc. Its architecture is
divided into three layers: Rhythm Generator layer (composed
of an inhibitory pair of oscillatory neurons), Pattern Formation
layer (composed of inter-neurons) andMotor layer (composed of
Motoneurons). It also takes afferent (proprioceptive) and efferent
(exteroceptive) sensory feedbacks into account. While this model
has been widely used for locomotion (Amrollah and Henaff,
2010; Spardy et al., 2011; Nassour et al., 2014; Danner et al., 2016;
Nachstedt et al., 2017), very few works apply it to the control of
upper limbmovements: to our knowledge, only Teka et al. (2017)
used it to study the reaching movement.

Non-linear oscillator models (also called relaxation-
oscillators) can be used for oscillating neurons in CPGs
because they can synchronize effortlessly with an external signal
provided the frequency of this signal is not too different from the
intrinsic frequency of the oscillator (Pikovsky et al., 2003; Petrič
et al., 2011). Thus, non-linear oscillators are suitable models to
explain and reproduce the synchrony phenomena that emerge in
interpersonal coordination, especially if they are implemented at
the rhythmic level of a CPG. In this case, by acting like a dynamic
attractor, they facilitate the self-synchronization of the CPG with
the dynamic of the limb controlled by the CPG.

During the production of movement coordination, the
Matsuoka oscillating neuron model (Matsuoka, 1987) exhibits
the behavior of a non-linear oscillator and self-synchronization.
This model has been used extensively in robotic locomotion or
human motor control modeling (Taga et al., 1991; Taga, 1998;
Kasuga and Hashimoto, 2005; Degallier and Ijspeert, 2010; Yu
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et al., 2014; Avrin et al., 2017a,b). However, the main problem
of the Matsuoka model is that it cannot produce discrete as
well as rhythmic activities as mentioned in Degallier and Ijspeert
(2010). Indeed, it is now known that, in motor control, discrete
and rhythmic movements are generated by networks of spinal
neurons (Grillner, 2006; Degallier et al., 2011). Consequently,
in order to be biologically plausible, a CPG model must be
able to produce both discrete and rhythmic activities, just
like what has been observed in biological neurons implied in
locomotion production (Marder and Bucher, 2001). Therefore,
CPGs must include oscillating neurons able to operate in discrete
and rhythmic modes depending on one or several parameters.
Unfortunately, although the Matsuoka model is a non linear
oscillator, its nonlinearity is not controllable, meaning the model
doesn’t have a nonlinear parameterizable function allowing
different nonlinear behaviors.

The Rowat-Selverston oscillating neuron model (Rowat and
Selverston, 1993) is able to produce discrete and rhythmic
activities depending of two parameters as it has been
demonstrated in Amrollah and Henaff (2010) and Nassour
et al. (2014). However, only a few studies make use of it (Arikan
and Irfanoglu, 2011). The Rowat-Selverston oscillating neuron is
a generalized Van der Pol oscillator and consequently all known
properties of the Van der Pol can be applied to it, especially the
dynamic Hebbian learning of frequency introduced by Righetti
et al. (2006).

The first originality of this article is to implement Hebbian
mechanisms proposed by Righetti et al. (2006), in a bio-inspired
CPG, which we previously used for biped locomotion (Nassour
et al., 2014), enabling it to learn to synchronize with an external
signal. The second originality resides in using this plastic CPG to
control a simulated robotic armwhich has to learn to synchronize
its oscillatory movements with the frequency of an external force
applied to its effector, thus reproducing the act of handshaking
with a human.

In the first part, we explain how dynamic plasticity is
integrated in our CPGs and present the design of our robot
controller. In the second part, we validate our model by applying
it to the command of a robotic arm interacting physically
rhythmically in simulation. We show that the controller learns
to synchronize with the imposed rhythm in a given frequency
range matching the usual frequencies of handshaking. We also
demonstrate the importance of plasticity to achieve fast and
stable coordination. In the fourth part, we discuss our results and
future prospects.

2. MATERIALS AND METHODS

This section presents the plasticity mechanisms implemented in
the neurons of the CPG and finally, the design of the CPG-based
controller.

2.1. Dynamic Plasticity in CPGs Based on
Rowat-Selverston Neurons
As mentioned above, a non-linear oscillator has the property of
self-synchronization with an oscillating external signal applied as

its input, provided the frequency of this signal is close enough to
the intrinsic frequency of the oscillator. Implementing frequency
learning mechanisms inside a CPG would allow to synchronize
its rhythmic activity with the external signal even if the frequency
of this signal is significantly different from the intrinsic one of
the CPG (Ijspeert, 2008; Yazdani et al., 2017). Therefore, the CPG
could synchronize with themovements, triggering the emergence
of a global coordination between the limbs (Degallier and
Ijspeert, 2010). Righetti et al. (2006) proposed such a frequency
learning model for a Van der Pol oscillator called Dynamic
Hebbian learning. This section demonstrates the application of
this idea to the Rowat-Selverston oscillating neuron model.

2.1.1. Recall of Righetti’s Model for Dynamic Hebbian

Learning Into Van der Pol Oscillators
The free form (i.e., without any input signal applied) of the Van
der Pol oscillator can be written as :

ẋ = y

ẏ = −α
(

x2 − p
)

y− ω2x
(1)

where y is the output of the oscillator, p amplitude of y, α controls
the degree of nonlinearity of the system and ω mainly influences
the frequency of the oscillator.
When the Van der Pol oscillator is forced by an oscillating input
signal F(t) the model can be written as:

ẋ = y+ ǫF

ẏ = −α
(

x2 − p
)

y− ω2x
(2)

where ǫ can be seen as a gain or a weight.
In order to synchronize the oscillator with the input F(t) (see

Righetti et al., 2006 for details), proposed to learn the frequency
of the oscillator following a Hebbian learning rule :

ω̇ = ǫF
y

√

x2 + y2
(3)

They showed that this rule allows the oscillator to change its
intrinsic frequency to synchronize with the oscillating signal F(t).
The oscillator preserves the learned frequency, even after the
input signal is cut. It has been applied to the Hopf oscillator and
the Fitzhugh-Nagumo oscillator.

2.1.2. Van der Pol Form of Rowat-Selverston Neuron
The free form of the Rowat-Selverston model of a cellular neuron
is described by the equations (see Rowat and Selverston, 1993 for
details):

τmV̇ + V − Af tanh

(

σf

Af
V

)

+ q = 0 (4a)

τsq̇ = −q+ σsV (4b)

with V being the cellular membrane potential, q the slow
current, τm the time constant of the cellular membrane, τs is the
time constant of slow current activation (τm ≪ τs), σs and σf
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represent respectively the conductance of slow and fast currents,
Af influences the amplitude of V .
Because Rowat-Selverston is a generalized Van der Pol oscillator,
its equations can be rewritten in a Van der Pol form such as in
Equation (1). To do that, Equation (4a) can be differentiated, and
q̇ replaced by the expression given in Equation (4b).
We can thus obtain a new expression of the unforced Rowat-
Selverston oscillator. In order to identify a Righetti learning rule
in the Rowat-Selverston neuron model, we must liken this model
to a Van der Pol oscillator expressed by Equation (1). To do that,
we approximate the tanh function to a linear one, tanh(x) ≈ x,
thus yielding:

τmV̈ +
(

τm

τs
+ 1− σf +

σ 3
f

A2
f

V2

)

V̇ +
1+ σs

τs
V −

σf

τs
V = 0 (5)

We’re well aware that approximating tanh(x) to x may seem far-
fetch and exceedingly inaccurate. Here, we are only trying to
identify a Hebbian rule and experiments validate our attempt.
It may very well be that, other rules, based on other far-fetched
assumptions, are valid too.
By setting, V̇ = y, we can transform the model into the following
unforced Van der Pol form see the Appendix for the detailed
calculations:

V̇ = y

ẏ =
−σ 3

f

τmA
2
f

(

V2 −
A2
f
(σf τs − τm − τs)

τsσ
3
f

)

y−
1+ σs − σf

τsτm
V

(6)

By comparing this equation to Equation (1), we can finally
identify the Van der Pol parameters ω, α and p of the unforced
Rowat-Selverston oscillating neuron:

ω =

√

1+ σs − σf

τsτm
; α =

σ 3
f

τmA
2
f

;

p =
A2
f
(τs(σf − 1)− τm)

τsσ
3
f

;with σf < 1+ σs (7)

2.1.3. Implementing Dynamic Hebbian Learning Into

the Rowat-Selverston Neuron
When an external signal F(t) is applied to the Rowat-Selverston
oscillating neuron, the neuron potential V becomes:

V̇ = y+ ǫF (8)

where the gain ǫ can be considered like a synaptic weight. Thus,
the principle of Hebbian dynamic rule proposed by Righetti et al.
(2006) can be applied on the parameters of the Rowat-Selverston
model to learn the frequency of F(t).

As shown in Rowat and Selverston (1993), the frequency of
the neuron oscillations depends only on τm, τs, σf , and σs: if σf
is fixed above a given threshold θf = 1 + τm

τs
≈ 1 (τm ≪ τs),

σs controls two modes depending on another threshold θs. If
σs < θs, there are no oscillations [intrinsic mode called “plateau

potentials” in Marder and Bucher (2001)]. On the other hand, for
σs > θs, the neuron produces a rhythmic signal [intrinsic mode
called “endogenous bursting” in Marder and Bucher (2001)]
whose frequency depends on τm, τs, and σs.

Following the idea of Righetti et al. (2006), we propose
to implement dynamic Hebbian learning of the oscillations
frequency by learning σs depending on the signal F(t) applied
to the neuron and weighted by ǫ. Thus, neural plasticity for
frequency learning can be obtained by deriving the expression of
ω2 from 7 :

σ̇s = 2ω̇ωτmτs = 2ω̇
√

τmτs

√

1+ σs − σf (9)

By applying the dynamic Hebbian learning rule proposed by
Righetti et al. (2006) to Equation (3), we obtain :

σ̇s = 2ǫF
√

τmτs

√

1+ σs − σf
y

√

V2 + y2
; σf < 1+ σs

(10)
We can see that this learning rule depends on the CPG time
constants. The presence of σs on the right side of the equation,
makes it a closed loop ensuring that the end value of σs does not
depend on its initial value.

2.1.4. Plasticity for Afferent and Efferent Signals
Additionally, to improve the control realized by the CPG, we
propose to learn the amplitude of neuronal oscillations by
learning Af depending on F(t), and to maintain the strength of
sensitivity of F(t) efficient enough with a learning mechanism
of ǫ.

2.1.4.1. Neuronal Plasticity for Amplitude Learning
Af determines the amplitude of the output of the CPG (efferent
signal) and thus the amplitude of velocity orders applied to the
motors.WhenAf is high, σs will oscillate globally before reaching

stability. In Equation 4, the expression Af tanh(
σf
Af
V) influences

the amplitude of V and consequently the CPG output. If the
amplitude is too big, the CPG becomes unstable due to the rapid
switchings of the sigmoid function of interneurons located in the
pattern formation layer, and if it is too small, the output of the
CPG doesn’t have enough energy. Adapting the amplitude of the
neuron oscillations in accordance with the applied signal F(t)
could solve that. One solution consists in minimizing the error
between the quadratic values of F(t) and the argument of tanh()
in equation 4 to match the amplitude of V with F(t) :

Ȧf = −µ





(

ν
σfV

Af

)2

− F2



 (11)

where ν is a scale factor and µ a learning step.
The presence of Af in the equation makes it a closed loop,

guarantying the same end value for Af no matter the initial value.
Empirically, we found that 20 was the best value for ν. Since Af is
not a constant any more, its derivative should appear in equation
5. This case was studied and the same result with an additional

term
V3σ 3

f

A3
f

Ȧf was obtained. Ȧf being extremely small, this last

term can be neglected and thus, yields the same result. So this
case won’t be detailed here any further.
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2.1.4.2. Synaptic Plasticity for Sensitivity Learning
ǫ acts like a learning step for σs (local oscillation) and determines
how much σs will oscillate when a new input signal is applied
before reaching stability. As a consequence, a small ǫ will allow
for a more robust and stable learning but will require more time
to reach stability, if the interaction doesn’t last long enough, it
may never be reached. On the other hand, a large ǫ will lead
to a more unstable learning but the final σs may be reached.
The parameter ǫ also acts as a synaptic weight to the afferent
signal F(t) that feedbacks to the CPG. In Equation 10, we’re really
only interested in the frequency of F(t) and its magnitude is not
relevant.

So, ǫ can be considered as a synaptic weight that could enable
the CPG to better sense the external signal F(t) by normalizing it
to magnitude 1. Besides, it was empirically determined that if ǫF
is too small (< 1), σs changes are too slow and may never reach
a stable final value and when ǫF is too big (> 1), σs becomes
unstable. Optimal results are obtained when the amplitude of
product ǫF equals 1. From there, a learning equation of ǫ can be
based also on an error of quadratic values pondered by a variable
gain that limits extreme values of F(t):

ǫ̇ = λ tanh(ξF)
(

1− (ǫF)2
)

(12)

with ξ an empirically determined gain ensuring that the term
inside the tanh is big enough (in our case, ξ = 100 yields good
results). This term guaranties that learning occurs only when F(t)
is not zero.

Here, it could be argued that there is no need for learning
ǫ, that manually determining the optimal value of ǫ beforehand
would be sufficient. By all means, this could be done but the
system would be less versatile and this would be ignoring the
fact that the amplitude of the input varies over time. Even if the
amplitude seldom varies so drastically, so that the ǫ wouldn’t
be valid any more, it isn’t the optimal value for ǫ and the
system could be performing better, especially if the input signal
varies over time. In that case, ǫ would be suitable for a range

of frequencies but if the frequency becomes too low or too
high, the system won’t behave as expected, thus requiring an
adaptive ǫ.

2.2. Designing the CPGs-Based Controller
An architecture based on CPGs is designed, according to
the McCrea and Rybak model, to control a robot interacting
physically with a human partner. The robot is a Mico robotic
arm from Kinova company (Figure 1). One CPG controls the
joint motor by applying velocity orders (efferent signals) and
receives proprioceptive feedbacks (afferent signals) from the
joint: torque and velocity (Figure 1). The equations for the
generic CPG are the following, with i ∈ N, designating the
joint id.

For the coupled Rhythm Generator cells:

V̇i{E,F} = yi{E,F} −Winhib

yi{E,F}

1+ e
−4yi{F,E}

+ ǫi{E,F}Fi (13)

ẏi{E,F} =
1

τm

(

σf −
τm

τs
− 1− σf tanh

2

(

σf

Afi

Vi{E,F}

))

yi{E,F}

−
1+ σsi{E,F}

τsτm
Vi{E,F} + (14)

Afi{E,F}

τsτm
tanh

(

σf

Afi{E,F}

Vi{E,F}

)

The term in Winhib models the mutual inhibition between the
rhythmic cells for the extensor and the flexor.

The terms σsi{E,F}
, Afi{E,F}

, and ǫi{E,F} are defined by Equations

(10–12) respectively.
Inter-neurons of pattern formation layer (neuron PF), sensory

neurons (neuron SN) for afferent feedbacks and motoneurons
(neurons MN) for efferent signals, are defined as a sigmoid
function (Debnath et al., 2014; Nassour et al., 2014):

FIGURE 1 | Principle and details of the CPG architecture for controlling the robotic arm. (Left) Simulation of the robot arm that interacts physically with a “virtual

human hand” simulated by a ball in motion. Each CPG controls one joint motor velocity. (Right) Generic CPG for one joint and its afferent feedbacks from the robot.
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FIGURE 2 | (Left) Evolution of σs2E , σs2F , σs3E , and σs3F for various values ofW. The initial value is 10 for each σs. (Right) Evolution of σs3E and σs3F for various initial

values (in red, 10; in blue, 100; in green, 300). The σs have not been distinguished because we’re only interested in the tendency and not in the individual behaviors.

PF(Vi{E,F} ) = PFi{E,F} =
1

1+ e
−Vi{E,F}

2

(15)

SNs(vmesi ) = SNi,s =
1

1+ eαsvmes
(16)

MN(PFi{E,F} , SNi,s) = MNi{E,F} =
1

1+ e
αm

(

PFi{E,F}−SNi,s

) (17)

With αs = −0.061342 and αm = 3. These coefficients were
chosen to match the parameters of the robot. For instance, the
sigmoid slope of the sensory neuron is determined by the range
of values of the speed.

3. SIMULATION OF HUMAN-ROBOT
HANDSHAKING: RESULTS

In this section, we will first present our results with a handshake
simulation, then we will study the parameters influence and
finally, we will demonstrate the importance of neuronal and
synaptic plasticity.

The simulations have been run in the V-REP Simulation
software with the Kinova Mico robotic arm. The V-REP
simulator cannot realistically compute grasping with a human
hand, so we simulate the handshaking gesture with a ball placed
inside the gripper. The ball is defined as a static object not
subjected to gravity that, unless stated otherwise, moves up and
down according to a 2Hz sinusoidal signal of amplitude 0.16 m.
This frequency is coherent for handshaking according to previous
experiments dedicated to the study on handshaking between
humans (Tagne et al., 2016). Since both objects are collidable, the
ball exerts a force on the fingers of the gripper, forcing the arm
to move along (see Figure 1). Reaching and grasping details are
irrelevant to this work and won’t be detailed here.

The Mico arm has seven degrees of freedom, but Tagne et al.
(2016) showed that arms are moving in the sagittal plan. In the
current setup, only the shoulder and elbow (joints 2 and 3 of
the Mico robot) are controlled for handshaking simulation, the
five other joints are hence locked and unable to move. At the
beginning of the simulation, the robot isn’t subjected to any
external force (other than gravity). The robotic arm raises toward
the ball and grasps it. Then, by applying a sinusoidal signal to
the ball, it must move in the vertical plane, thus applying a
perturbation to the robotic arm. Finally, the ball is released and
the interaction stops.

In all simulations here, the robotic arm raises toward the ball
between t = 0 and t = 0.68s, then the interaction starts. The
length of the interaction varies depending on the test conducted.
Finally, when the ball is released, the behavior of the robotic
arm is observed during ten more seconds before the simulation
stops. Sensory feedbacks are taken into account during the whole
process and are fed as an input to the CPG.

3.1. Role of Feedbacks and Mutual
Inhibition on Plasticity
The choice of the parameters is a crucial step, when
inappropriately chosen, the system may not behave as expected
or the results may be subpar. So, in order to select the best
parameters for the CPG, the role and influence of each parameter
were studied.

To have an oscillating system, Rowat and Selverston (1993)
determined that σf > 1 + τm

τs
and a ratio τm/τs of at least

10 is required. Actually, because of our newly derived learning
rule (Equation (10)), we also require σf < 1 + σs, and best
results are now achieved with σf = 1. For greater σf , the
system is too unstable, and for smaller values, the learning
of σs slows down because the neurons are in non-rhythmic
behavior.
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FIGURE 3 | Comparison of different efferent articular signals to the CPG during handshaking: position (Left), velocity (Middle), and torque (Right). Evolution of σs
(top) (σS2E (blue), σS2F (red), σS3E (purple) and σS3F (green)), F (t) in red (middle and bottom), and articular velocity in blue.

3.1.1. Inhibition Influence on Plasticity
We previously stated that the natural frequency of the oscillator
is determined by τm, τs, σf and σs only. However, the natural
frequency also depends on W. The higher W, the lower the
frequency, hence the higher σs needs to be to compensate.
Figure 2 shows that the value of W influences the final value of
σs and below W = 0.05, the result is roughly the same. We can
observe a slight demarcation for W = 0.05 and above. For W ≥
1, the system isn’t able to oscillate (Rowat and Selverston, 1997).

The initial value of σs doesn’t change the final value reached
(see Figure 2). For very high or very low values, the final σs may
never be reached if the interaction does not last long enough.

3.1.2. Effect of Afferent Sensory Feedbacks on

Plasticity
Tests were carried out to determine which articular sensory
information is best suited to our purpose and yields the best
result in term of synchronization. Figure 3 shows the comparison
between articular position, articular velocity and articular torque
as feedback. Position and velocity feedback offer very bad results.
Both are neither able to adapt nor synchronize in spite of
our best attempts to find better parameter values. Finally force
feedback shows the best results. Furthermore, handshaking is
a social gesture and as such, provides information about the
interaction partner: firmness of grip, strength, vigor. This data
can be used to infer personality traits (Chaplin et al., 2000) and
can only be sensibly obtained from force feedback. So, the torque
measured in the joint will be the afferent input of our CPG for
synchronization.

3.2. Analyze of the Simulated Handshake
The simulation lasts 50 s. The interaction starts at t = 0.68s and
lasts until t = 40s when the gripper opens and releases the ball.

In this case, only frequency adaptation (σs learning) is enabled, ǫ
and Af remain constant. The parameters used for the simulation
are as follows: ǫ = 0.02 for the shoulder CPG (joint 2), ǫ = 0.03
for the elbow CPG (joint 3), τm = 0.35, τs = 3.5, W = 0.005,
σf = 1.0 and Af = 0.05.

3.2.1. Emergence of Synchrony in Handshaking
The simulated act of handshaking can be divided into four phases
among which two specific phases appear showing the emergence
of synchronization of movement during contact :

• Preparation phase. We won’t dwell on this phase, as it offers
nothing of interest to this work. At t = 0s, the arm is at rest.
Between t = 0 and t = 0.68s, the arm raises toward the ball
which places itself inside the gripper.

• Transitory phase: contact and learning synchronization.

When the interaction starts, i.e., when the ball starts moving
up and down, we can observe, in Figure 4, a massive increase
in the torque measured in the joints (200 N.m for joint 2
and 120 N.m for joint 3). The magnitude stays the same for
roughly 7 s, while the intrinsic frequency of the oscillator
changes until it matches the input frequency. This can be
further evidenced by observing the speed command s sent to
the joints, or even the evolution of σs (see Figure 5). When
the interaction starts, they start increasing, all following the
same direction, though some are slightly slower than others,
they finally catch up around t = 20 s. This phase offers two
distinctive behaviors: when the force is saturated and the σs
increase rapidly; when the force exerted has decreased but F
and s still aren’t synchronized and the σs slow down, hinting at
stabilization.

• Locking phase:mutual synchronization.When the transitory
phase is over, the force exerted on the arm decreases and F and
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FIGURE 4 | Evolution of torque Fi (input of the CPG i) and si control speed, for each joint during the human-robot handshake.

FIGURE 5 | On the left, evolution of σS2E (blue), σS2F (red), σS3E (purple) and σS3F (green). Note that the two σs for each joint are completely merged, so only one is

clearly visible on the plot. On the right, evolution of φ3E and φ3F during the experiment for the extensor and flexor of the second joint.

FIGURE 6 | (Left) Phase portrait in the (V, y) plan for each CPG. (Right) Phase portrait (velocity vs position) of the second and third articulations, during the same

simulation. The red dot indicates the start and the green one, the end of the experiment.
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FIGURE 7 | Here, σs doesn’t learn and remains constant at 10. Top figure represents the evolution of σs, frequency of F and φ. Below are the force applied on the

joint in red and send velocity in blue, and at the bottom, the mechanical work provided by each joint.

s can be observed to be perfectly synchronized and in phase
(Figure 4). From then onwards, the torque amplitude stays
mainly stable at 50 N.m for joint 2 and 25 N.M for joint 3,
this shows that the arm learned the movement, it oscillates at
the right frequency on its own and the ball isn’t forcing on it so
much. Besides, we can observe that the σs also reach stability,
from t = 12s onwards (by considering a response time at 5%
of the final value). The σs for both joints are now completely
merged and stable around 192.

• Withdrawal phase. Finally the interaction stops at t = 40s
and the ball is released so there isn’t any force exerted on
the arm. We can see that the arm goes on oscillating at
the frequency learned during the interaction, though with a
smaller amplitude. The σs also remain stable, showing that the
new value has indeed been learned. This oscillation could be
stopped by setting the value of σf below 1.

3.2.2. Inter-limb Coordination
Inter-limb coordination can be observed thanks to φE and φF

which represent the phase difference of the flexor and extensor
motoneuron output, respectively of both CPGs (see Figure 5):

φ{E,F} = θ(V2{E,F} , y2{E,F})− θ(V3{E,F} , y3{E,F}) (18)

with θ(V , y) the phase of the CPG:

θ(V , y) = sign(V) acos(
−y

√

V2 + y2
) (19)

Both φ start at t = 0. Similarly, to our previous observations,
during the transitory phase, φ3E increases while φ3F decreases.
After that, the φ reach stability around π and −π , from t = 20s
onwards and retain the same value after the interaction stops at
t = 40s.

3.2.3. Dynamic Stability of Synchronization
Dynamic stability of synchronization can be observed through
the phase portrait of the CPGs (V-y) and robot articulations
(angular velocity-angular position). On the CPG output phase
portraits (see Figure 6), three different cycles can be observed.
First, the starting cycle (most inner circle), when the rhythmic
cells oscillate at their own intrinsic frequency. Then, the
interaction cycle (most outer circle) when the human and the
robot are interacting. Finally, the middle circle is the end cycle.
On the other hand, on the position-velocity phase portraits we
can clearly distinguish two cycles. The outer cycle corresponds to
the interaction part, while the inner cycle is the “arm released”
part. The cycle does not change in shape, but changes in size (due
to the amplitude decreasing) when the arm is released. This cycles
apparition shows that the system is stable, and thus the frequency
is learned.

3.3. Plasticity Leads to Frequency
Adaptation
In this study, the frequency of the ball movement varies
following Heaviside functions simulating different types of
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FIGURE 8 | σs learns. Top figure represents the evolution of σs, φ and frequency of F. Below are the torque measured on the joint (red) and send velocity (blue), and

at the bottom, the mechanical work provided by each joint.

FIGURE 9 | On the left, the simulation without plasticity. On top, the evolution of σs and φ. On the bottom, in red the force exerted on each joint and in blue the

command velocity.

human handshakes: 2Hz between 0.68 and 35 s, then 1Hz
between 35 and 70 s, then 2Hz between 70 and 100 s, finally
2.5Hz between 100 and 120 s. To demonstrate the importance of

frequency adaptation for synchronization, a first simulation was
run without learning σs (σs would thus remain constant at 10),
while a second was run with σs learning enabled.
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FIGURE 10 | The simulation with neuronal plasticity. On top, the evolution of σs and φ, below the evolution of Af and ǫ. On the bottom, in red the force exerted on

each joint and in blue the command velocity.

Results show that the GPG controller which doesn’t learn σs
synchronizes with the perturbation signal thanks to its property
of natural synchronization, but since it doesn’t learn the new
frequency, it doesn’t reach stability, i.e. the system oscillates at
the right frequency, but only because the interaction forces it to.
The signals F and s are neither in phase nor in anti-phase, which
would be stable regimen. This leads the system to always provide
maximum effort throughout the whole interaction, and the force
to be constantly saturated. This can be observed on the bottom
of Figure 7 by the important mechanical work provided by the
joints.

On the contrary, when the system learns σs, we can see that
σs indeed adapts to each new frequency and we can observe
that the torque and CPG output are synchronized and in phase
(Figure 8). The decrease in force, which we previously witnessed
in our simple handshaking experiment, occurs here too. In this
case, the mechanical work provided by the joints (see bottom
of Figure 8) is consequently much less important since the force
happens to be saturated only during the transition phases.

3.4. Plasticity Decreases the Energy Spend
by the Robot
It is interesting to study the role of neuronal plasticity (σs and
Af ) and synaptic plasticity (ǫ), on the energy spend by the robot
for synchronization. Since last section has shown the positive
effects of learning σs on the mechanical work provided by the
motors, this section won’t talk about σs learning any more, which
will be always enabled. So when employing the terms without
plasticity, the reader shall understand without any plasticity (Af

nor ǫ learning) but σs learning.
Again, the frequency of the ball movement varies throughout

the interaction: 2Hz between 0.68 and 35 s, then 1Hz between 35

and 70 s, then 2Hz between 70 and 100 s, finally 2.5Hz between
100 and 120 s. The parameter values are the same as in section
3.2.

Moreover, for the first simulation (without plasticity), Af =
0.05, ǫ = 0.01 for joint 2 and ǫ = 0.02 for joint 3. For the second
simulation (with neuronal plasticity), λ = 2.10−3, µ2 = 5.10−6

and µ3 = 8.10−6.
Results from simulations are evaluated first energetically

and second by synchronization time. To calculate the power
consumption of the system, we compute the work provided by
each joint with following equation:

W =
∑

t

|Ft1θt| (20)

The synchronization time is defined by the 5% response time for
both σs to reach the stability value, for each different frequency
value.

First, it should be noticed from Figure 9 that the system
without plasticity doesn’t do too well in the lower frequency
1Hz. Indeed, after decreasing, the force increases again and the
σs of the different joints never merge. These two phenomena,
which by the way are also to be found in the simulation with
only Af plasticity, are due to the value of ǫ which, while
suitable for the other frequencies, is too small to get good results
at 1Hz.

We can also see that the force applied on the joints
of the system is much lower when plasticity is applied
(Figure 10). The force also decreases faster, this can be correlated
with the evolution of the σs which is steeper during the
transitions but slows down a little before reaching the new
stability value. Those observations suggest that, although the
synchronization times may appear similar in the Table 1, the
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TABLE 1 | Comparison table for various simulations with or without neuronal

plasticity.

Frequency → 2Hz 1Hz 2Hz 2.5Hz

Plasticity τ1 (s) τ2 (s) τ3 (s) τ4 (s) W2 (J) W3 (J)

None 12.82 25 6.3 6.5 4,144.69 3,683.31

Af 12.82 25 6.3 7 3,459.06 3,553.71

ǫ 6.82 30 5.7 8.5 2,744.99 2,041.26

Af + ǫ 6.82 32 5.5 8 2,101.04 1,737.47

τi is the time required so that σs stabilizes at the i
th frequency change.

transitory phase might be shorter, and hence synchronization
faster, with plasticity. Furthermore, let us remark that, although
the synchronization time appears much smaller without ǫ

plasticity for 1Hz, the validity of the measure for the
other two cases could be discussed, since the σs never
merge.

In Table 1, Wi represents the sum of the mechanical work
provided by joint i during the simulation (synchronization times
have been already explained so we won’t dwell on the subject any
further). We can see that learning the amplitude Af decreases the
work noticeably for joint 2, but only slightly for joint 3. Besides,
learning ǫ alone decreases the work further and the artifacts
mentioned before disappear. Finally the association of both ǫ and
Af learning yields the best results by virtually halving the original
work value.

4. DISCUSSION AND CONCLUSION

In this paper, we implemented Hebbian mechanisms in a bio-
inspired CPG, thus enabling it to learn to synchronize with an
external signal. Furthermore, we used this plastic CPG to control
a simulated robotic arm which had to learn to synchronize its
oscillatory movements to the frequency of an external force
applied on its effector.

We also underlined the relevance of force feedback, which
not only yields much better results than velocity and position
feedback but is also able to provide useful information, such
as firmness of grip, strength, vigor. Such data, as evidenced in
Chaplin et al. (2000) can be used to assess personality traits of the
handshaking partner. This knowledge would allow the robot to
adapt to different personalities (introvert, extrovert...), and thus
make the interaction more enjoyable.

The analysis of synchronization phenomena clearly shows two
main phases: the transitory phase where the system adapts and
learns and the permanent phase where the system has retained
the learning and is stable. Our best synchronization time is 6.82
s which is quite long for a handshake. Let us underline that we
did not put the system in the best conditions to achieve faster
coordination, the initial σs (10, 0.44Hz) being quite different
from the final value (192, 2Hz). Our main concern here was to
show the capacity of the CPG to adapt even to very different
frequencies from its own. , the Mico robot is not compliant
and thus offers too much resistance to any perturbation. As
a matter of fact, most robots are not designed for such tasks:

lacking force/torque sensors, and the robot controllers can also be
inadequate, providing only position control. So, putting the CPG
in better initial conditions and using a more compliant robot
would undoubtedly lead to a much faster synchronization.

Moreover, we demonstrated the importance of neuronal
and synaptic plasticity which leads to a natural, global
synchronization and adapts the neuronal architecture to a wider
range of arm dynamics in physical interaction. On the one
hand, we showed that learning σs is paramount to have an
adaptive system robust to frequency changes. On the other
hand, this system can be improved further by learning the
amplitude Af and the synaptic weight ǫ and hence considerably
decreases the power consumption. We showed that local
plasticity mechanisms trigger the emergence of a global adaptive
stable behavior. In conclusion, it is our belief that plasticity
is essential in designing a versatile and reliable bio-inspired
controller.

Concerning the methodology followed in this work, it could
obviously be argued that a single neuron can simply be used for
each joint instead of a whole CPG. Let us answer that we wish
to be as biologically close as possible, so our approach uses a
mesoscopic model based on Rybak and McCrea’s work (Rybak
et al., 2006). Apart from that, a CPG offers more possibilities than
a simple neuron due to its structure that creates a more robust
and stable attractor.

Furthermore, the CPG model used for the rhythmic arm
movement during physical interaction is the same as for walking,
proving its versatility. On top of that, it should be noted that
no dynamic model of the robot was used to control it. The
dynamic control of the rhythmic movements relies solely on the
natural synchronization abilities of the CPG. This makes the
CPG-based control particularly interesting since it can very easily
be adapted to another set of joints. Indeed, our simulation was
only concerned with handshaking but this plastic CPG model
could be applied to any rhythmic movements: walking, waving,
cleaning, drumming.

Here, we use the well-known slave-master paradigm
where one actor of the interaction imposes its frequency
upon the other but we’re also interested in studying how
two robots would adapt to each other. In the future, we plan
on extending the CPG architecture to more than two joints.
Using a simulator obviously entails its share of limitations
and our oversimplified handshake oversees a lot of subtleties
present in human-robot interactions. Our controller will
be validated with a real compliant robotic arm interacting
with a human. Additionally, in order to better understand
handshaking and hence, better reproduce it with robots, we
will continue our study of handshaking, its synchronization
phenomena and societal impact by performing human
psychological/physiological studies.
Our code can be found at http://doi.org/10.5281/zenodo.1222100
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APPENDIX

Mathematical Details for Section 2.2.2
Let us recall the Rowat Selverston equations:

τmV̇ + V − Af tanh

(

σf

Af
V

)

+ q = 0 (21a)

τsq̇ = −q+ σsV (21b)

Equation (21a) can be differentiated, yielding:

τmV̈ + V̇ − σf

(

1− tanh2

(

σf

Af
V

))

V̇ + q̇ = 0 (22)

and q̇ replaced by the expression given in equation (21b):

τmV̈+ V̇−σf

(

1− tanh2

(

σf

Af
V

))

V̇+
1

τs
(σsV−q) = 0 (23)

Then we replace q by its expression from equation (21a):

τmV̈ + V̇ − σf

(

1− tanh2

(

σf

Af
V

))

V̇ +
σs

τs
V +

1

τs
V +

τm

τs

V̇ −
Af

τs
tanh

(

σf

Af
V

)

= 0 (24)

and group the terms:

τmV̈ +
(

τm

τs
+ 1− σf + σf tanh

2

(

σf

Af
V

))

V̇ +
1+ σs

τs
V −

Af

τs
tanh

(

σf

Af
V

)

= 0 (25)
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Application areas of robotic grasping extend to delicate objects like groceries. The

intrinsic elasticity offered by variable-stiffness actuators (VSA) appears to be promising

in terms of being able to adapt to the object shape, to withstand collisions with the

environment during the grasp acquisition, and to resist the weight applied to the fingers

by a lifted object during the actual grasp. It is hypothesized that these properties

are particularly useful in the absence of high-quality sensory feedback, which would

otherwise be able to guide the shape adaptation and collision avoidance, and that in

this case, VSA hands perform better than hands with fixed stiffness. This hypothesis

is tested in an experiment where small-fruit containers are picked and placed using a

newly developed variable-stiffness robotic hand. The grasp performance is measured

under different sensory feedback conditions: full or impaired visual feedback, full or

impaired force feedback. The hand is switched between a variable-stiffness mode

and two fixed-stiffness modes. Strategies for modulating the stiffness and exploiting

environmental constraints are observed from human operators that control the robotic

hand. The results show consistently successful grasps under all stiffness and feedback

conditions. However, the performance is affected by the amount of available visual

feedback. Different stiffness modes turn out to be beneficial in different feedback

conditions and with respect to different performance criteria, but a general advantage

of VSA over fixed stiffness cannot be shown for the present task. Guidance of the fingers

along cracks and gaps is observed, which may inspire the programming of autonomously

grasping robots.

Keywords: soft manipulation, variable impedance, variable stiffness, grip stiffness, surface electromyography

(sEMG), force feedback (FF), visual feedback (VF), environmental constraints

1. INTRODUCTION

Online grocery sales are an intensively growing field with growth rates of more than 25% year-over-
year in the USA (Springer, 2017). Some online supermarkets have their own warehouses, where
the groceries are packed into delivery totes before they can be distributed to the customers. The
consignment of food is partly done in cold storage rooms to preserve their freshness, which makes
the working environment un-alluring for human workers. Letting robots do the task might be one
solution. However, automated food grasping is still ambitious.
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Robotic grasping and manipulation of grocery items in an
online supermarket warehouse poses the challenge of having
to deal with thousands of items of different size, shape, or
rigidity (Burgess, 2017). Furthermore, some of the items are
very delicate but should not be damaged to avoid complaints by
customers. To save some of the cost and complexity of perception
systems, it is desirable that the robotic systems are able to fulfill
their tasks even when high-fidelity sensory feedback is lacking or
even missing.

Solutions to these problems are investigated within the
European project Soft-bodied intelligence for Manipulation
(SOMA). It focuses on the development of manipulation systems
with simple, robust, and efficient robotic hands with embodied
compliance, which both endure and require the exploitation of
environmental constraints like surfaces and edges for guiding
their motion.

Concepts for embodied compliance include series-elastic
actuators (SEA, Pratt and Williamson, 1995), variable-stiffness
actuators (VSA, Vanderborght et al., 2013, Wolf et al., 2015)
and other concepts such as pneumatics in combination with
continuously deformable material (Deimel and Brock, 2015).
While SEA systems and the pneumatic system by Deimel and
Brock exhibit fixed relationships between their applied force and
grip stiffness, VSA systems are equipped with additional motors
to change their stiffness characteristics.

Robotic systems with embodied compliance yield various
advantages over mechanically rigid systems with sensor-based
actively controlled compliance: shock absorption and energy
storage for cyclic or explosive movements. Active compliance
control also introduces a controller-dependent delay which
can lead to potential damage because of peak loads during
impacts (Haddadin et al., 2007) whereas the inherent elasticity of
SEA and VSA can be used without delay. Furthermore, embodied
mechanical compliance might even be realized at a lower cost
than actively controlled compliance because of the eliminated
need for stiff torque sensors, which are expensive.

Whenever lack of sensory feedback disables a closed-loop
control of forces and positions, compliance, i.e., low stiffness,
remains as a possibility to guide the robotic hand along
environmental constraints and to shape the grip around objects,
increasing possible contact points which in return boost the
chances of a successful and efficient grasp (Eppner et al., 2015).
On the other hand, high stiffness is still required for withstanding
the weight of an object during lifting and yields lower positional
errors. Since VSA are able to provide both low and high stiffness,
we hypothesize that in the absence of high-fidelity sensory

Abbreviations: DIP, distal interphalangeal (joint); DoF, degrees of freedom; DLR,

Deutsches Zentrum für Luft- und Raumfahrt, German Aerospace Center; EC,

environmental constraints; FAS, Flexible Antagonistic Spring (VSA mechanism);

FF, force feedback; GFM, Grip Force Master (grip position control and force

feedback device); GP, grasping phase; HS, high stiffness; LS, low stiffness;

MANOVA, multivariate analysis of variance; MCP, metacarpophalangeal (joint);

MVC, maximum voluntary contraction; PIP, interphalangeal (joint); SEA, series-

elastic actuator; sEMG, surface electromyography; SOMA, Soft-bodied Intelligence

for Manipulation (EU project); SP, searching phase; VF, visual feedback; VF+FF,

full feedback (visual and force feedback); VS, variable stiffness; VSA, variable-

stiffness actuator; WHISG, Wearable Hand to Investigate Stiffness in Grasping

(robotic hand).

feedback, VSA systems are particularly useful and perform better
than SEA systems with a fixed stiffness. To test this, we design
a manipulation task where visual and force feedback can be
switched on and off.

In this paper, a VSA robotic hand prototype—the DLR
Wearable Hand to Investigate Stiffness in Grasping (WHISG)—
is presented and its performance in a particular grocery
manipulation task—picking small-fruit containers from storage
boxes—is examined.

The WHISG bases its VSA technology on the one of the DLR
Hand Arm System (Friedl et al., 2011) and aims to provide decent
force and speed at low cost and light weight.

The present study aims at testing the hypothesis that variable
stiffness helps better to compensate lack of sensory feedback
than fixed stiffness, i.e., that VSA systems suffer less performance
deficits than SEA system when sensory feedback is reduced.
Furthermore, it aims at answering the questions how in VSA
systems stiffness should be modulated and how environmental
constraints can guide the robotic hand to a successful grasp
position.

For the comparison of VSA and SEA, the manipulation
task is attempted with three different stiffness modes of the
WHISG hand: variable stiffness, fixed low stiffness, and fixed high
stiffness. Please note: even if the underlying mechanism is always
a VSA, the hand is exactly used as SEA hand for the two fixed
stiffness modes.

To initially save programming effort and learn from human
manipulation strategies, instead of being positioned by a robotic
arm and controlled by a computer, the robotic hand is positioned
and controlled by human operators. For the positioning, the
robotic hand is physically attached to the operator’s forearm.
For the control, the desired robotic hand opening angle is
electronically mapped from the operator’s hand opening angle.
Additionally, in the variable-stiffness mode, the robotic hand
stiffness is electronically mapped from the operator’s grip
stiffness.

The operator’s grip stiffness is acquired using surface
electromyography (sEMG) of intrinsic hand muscles according
to Höppner et al. (2017), a method which is known in
literature as “teleimpedance.” One of the most prominent studies
focusing on teleimpedance was conducted by Ajoudani et al.
(2012) who teleoperated the Cartesian stiffness of a lightweight
robot during a peg-in-hole and a ball-catching task using
sEMG of eight arm muscles and visual feedback. Both tasks
were performed better with the teleimpedance control (i.e.,
reduced positional errors and less force exertion) compared to
a constantly low- or high-stiffness control, which demonstrates
the effectiveness of this method for impedance-controlled robotic
arms.

Teleimpedance using sEMG has also been studied for VSA
hands (Hocaoglu and Patoglu, 2012; Godfrey et al., 2013;
Ajoudani et al., 2014). In these studies, the sEMG signal was
acquired from the extrinsic hand muscles in the forearm.
Godfrey et al. (2013) found that adding impedance control and
vibrotactile feedback to a teleoperation setting improved the user
experience and reduced the physical and mental effort when
grasping objects. Laghi et al. (2017) investigated the role of
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force feedback, visual feedback and communication delay in a
teleimpedance approach, as well. The aim of their study was to
verify the usefulness of a combined teleimpedance mode with
force feedback in comparison to standard control modes. They
found their newly introduced method to be working even when
in the presence of a communication delay.

The present study builds upon the existing teleimpedance
studies, but differs in some aspects. Firstly, the sEMG signals of
intrinsic instead of extrinsic hand muscles are measured, as they
have been shown to provide a more accurate estimate of grip
stiffness (Höppner et al., 2017). The better signal may be due to
lower electrical resistance and less cross-talk from other muscles,
which both lead to a better signal-to-noise ratio.

Secondly, grip forces are fed back to the operator as grip forces
instead of vibrotactile stimuli. We assume that this more intuitive
feedback enables the operators to better adjust the stiffness more
effectively. Thirdly, the hand is positioned in space by the human
arm via an attached beam instead of via a robotic arm. This is
mainly done to simplify the experiment setup.

Like the robotic VSA hand, the human hand can be considered
a variable-stiffness mechanism (Höppner et al., 2011, 2017).
Generally speaking, a higher contractile muscle force will result
in a higher stiffness. Through co-contracting antagonistic muscle
parts the human is able to decouple force from stiffness and to
increase stiffness without changing joint torque (McIntyre et al.,
1996; Perreault et al., 2002, 2004) by about 20% for the human
hand (Höppner et al., 2017).

Because of this familiarity with variable stiffness and since
humans are known to adapt very well to new situations, we
assume that in the present task—after trials of learning—the
human operators will outperform any existing robotic controller.
Hence, the research questions are focused not primarily on the
controller, but on the robotic hand hardware, the stiffness mode
and the level of sensory feedback.

Section 2 describes the experiment materials and methods.
It introduces the design of the WHISG hand—a new soft
robotic hand based on VSA technology—, briefly describes the
acquisition of sEMG signals for teleoperating the robotic hand
stiffness and explains the experimental and statistical design
in detail. In section 3, the results are listed. The influence
of the factors force and visual feedback as well as stiffness
mode on the three metrics—duration to complete one trial,
number of single grasping actions and required thumb torque—
is presented. Finally, section 4 discusses the results in the context
of the research question, i.e., the effect of stiffness modes and
sensory feedback modes on grasp performance and on the
stiffness modulation strategy and draw possible conclusions and
implications for soft robotics.

2. MATERIALS AND METHODS

The comparison of SEA and VSA grasping under different levels
of sensory feedback entailed the design of a suitable robotic hand,
interfacing it to the human operators, setting up the experimental
environment and measuring the grasping performance during
different experimental conditions.

2.1. Design of the WHISG Hand
The WHISG hand, at only 500 g, is light enough to be hand-
held or mounted on a lightweight robot or, as is the case in the
present study, on the forearm of an operator (see Figure 1 and
Video 1). The hand is designed to study grasping a broad variety
of delicate groceries, such as cucumbers, mangoes, small-fruit
containers, salad etc. However, for this first version the kinematic
design is roughly estimated rather than based on a detailed
kinematic analysis. It is a three-fingered hand with inherent
compliance due to elastic elements between motor and joint
(see Figure 2), enabling shape adaptation and safe interaction
with the environment. We choose three instead of two fingers in
order to increase the grasp stability as well as to ensure a more
evenly distribution of applied object forces. The housing parts are
3D-printed from polylactic acid filament. Motor control is done
with two Arduino Leonardomicro-controllers that communicate
using their serial peripheral interface.

The hand contains two types of fingers: one thumb-like
main finger with four degrees of freedom (DoF) and two
underactuated fingers with two DoF each, which oppose the
thumb. The two thumb DoF closest to the base constitute
the metacarpophalangeal (MCP) joint. It allows sideways
(adduction/abduction) and bending (flexion/extension)
movement. TheMCP is followed by the proximal interphalangeal
(PIP) and distal interphalangeal (DIP) joints with one
flexion/extension DoF each. The opposing fingers contain
only one PIP and one DIP joint each.

For adjusting the stiffness of the joints, the Flexible
Antagonistic Spring (FAS; Friedl et al., 2011) mechanism of
the DLR Hand Arm System (Grebenstein et al., 2011) is
used (Figure 2). The joint is connected to two tendons, each
of which can move it in one of two opposing directions
(e.g., flexion and extension). The tendons each run to electric
servo motors via elastic elements with non-linear force-
displacement characteristics, where the force is a convex,
increasing function of the displacement. The convexly increasing
force-displacement characteristics cause the stiffness of the
elastic element to rise when the tendon force increases. Due
to the antagonistic arrangement of the tendons, the stiffnesses
of both tendons add up while the forces cancel each other.
Thereby, the stiffness of the joint can be varied independently
from the joint torque. The difference in the actuation of the
motors defines whether position or stiffness of the joint is
changed. Motion at the joint can be achieved by moving
both servos in the same direction, changing the stiffness by
moving in opposite directions. The maximum joint torque
is limited by the maximum motor torque because each
motor can only apply forces in one direction (Grebenstein,
2012).

Figure 3 shows the mechanical design of the elastic elements
and how the change of the angles between the tendons and
the lever lead to the convexly increasing force-displacement
characteristics. Initial stiffness depends on the position of the
spring and its constant as well as on the distance between winder
and spring pulley (Friedl et al., 2011). Tensioning the tendon by
actuating the winder increases the spring deflection angle φ. Said
angle is measured by hall sensors (iC-MP sensors by iC-Haus)
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FIGURE 1 | DLR WHISG hand mounted on the forearm of the operator with a supporting splint and two sEMG electrodes placed on two intrinsic hand muscles. Top

left: a better view on the Grip Force Master.

FIGURE 2 | Schematic illustration of the FAS mechanism. Antagonistic

actuation mechanism with two motors, non-linear elastic elements, and a joint

link. The angle θi denotes the motor position, k(φ) is the spring stiffness

depending on the spring deflection φ, q is the joint angle. With kind permission

of Grebenstein (2012).

and custom-made magnets, and is used to calculate Fs, the force
exerted on the spring pulley.

Having two motors per DoF (2N, where N is the number of
DoF) allows setting the stiffness of each joint separately from the
other joints. This concept is followed, e.g., in the DLR Hand Arm
System. To reduce weight and cost, the WHISG hand uses less
than 2N motors.

The four-DoF thumb is actuated by four Bluebird BMS 385
servo motors (Figure 4). The PIP joint and the DIP joint share
one set of tendons and move differentially, i.e., only the sum of
the movement can be controlled. The DIP joint is equipped with
an extension spring so that in the absence of external forces only
the PIP joint moves. The DIP joint only comes into play when
the PIP joint comes into contact with an object and cannot move
any further, therefore ensuring a hook-like grip on the object. A
change in stiffness affects all four thumb joints at the same time,
i.e., the whole thumb can be made stiffer or softer, but not single
joints. The number of motors is thus N = N − 1 + 1, where −1
stands for the underactuation of the PIP and DIP joints and +1
stands for the ability to vary one common stiffness value. The four

motors each provide a maximum torque of 0.45Nm resulting in
a maximum force at the fingertip of around 10N.

The resulting stiffness behavior at the thumb tip is exemplarily
shown in Figure 5 for a linear excursion of the thumb tip from a
posture of 30◦ flexion of the MCP joint and 60◦ flexion of the
PIP and DIP joints. Increasing the pretension of the antagonistic
tendons of the joints leads to a shift in the force-stiffness
relationship.

The two fingers with two DoF each are even more
underactuated by only two (N/2 − 1 + 1) Bluebird BMS
390 DMH servo motors together (Figure 6). Each servo motor
actuates one of the differential winders, each of which in
turn differentially actuates one movement direction of both
fingers, thereby dividing the required number of motors by two.
Furthermore, one motor is saved by the combined actuation of
PIP and DIP. For tuning the common stiffness of the two fingers,
an additional motor is used.

2.2. Interfacing the Robotic Hand to the
Human Operator
For positioning and moving around the WHISG hand, it was
physically attached to the right forearm of the human operator
via a beam and a splint (Figure 1).

The gripper opening angle was controlled by the operator’s
thumb and index finger via the Grip Force Master (GFM) by
Force Dimensions (Figure 1 top left). It basically consists of a
small lever arm tendon-coupled to an electrical motor, which
sets the distance between human index finger and thumb. Force-
control is achieved by measuring the motor current. In the force
feedback mode, the GFM could feed back the grip force of the
WHISG hand to the human hand.

In the variable-stiffness mode, the pretension of the WHISG
thumb and fingers, and thereby their stiffness behavior, was
controlled via the operator’s grip stiffness, which was acquired
via sEMG signals from intrinsic hand muscles according to
Höppner et al. (2017). To measure the sEMG signals, wireless
Trigno Standard Sensor electrodes from Delsys Inc. were used
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FIGURE 3 | (A) Non-linear elastic element of the WHISG FAS consisting of a guide pulley, a leg spring, a lever, and a spring pulley. (B) Soft configuration. (C) Stiff

configuration. An increase of 1l of the tendon excursion leads to an increase of the spring angle φ, which leads to a higher spring force Fs acting on the spring pulley

via the lever. The relationship between spring force Fs, bearing reaction force Fr and tendon force F results from an equilibrium around the spring pulley. As the spring

angle φ increases, the portion of the tendon forces F that points radially to the center of the spring pulley decreases and therefore the forces increase progressively to

keep counteracting the spring and bearing reaction forces.

FIGURE 4 | Tendon routing and motor functions of the WHISG thumb (viewed

from the palmar side).

in connection with a Trigno Lab base station. These electrodes
comply with the requirements put forth by the Medical Device
Directive 181 93 / 42 / EEC, and the experiment complied with
their intended use. The sEMG signals were processed on a
custom-designed low-cost analysis box based on an Arduino
Duo microcontroller board. The signals were band-pass filtered
by a Butterworth 2nd order filter with a cutoff frequency
of 20–500Hz, rectified by root mean square and smoothed
using a moving-average filter with a window size of 75ms.
Furthermore, the signals were calibrated to the individual
operator by subtracting the baseline noise (recorded while resting
the muscles) and divided by a signal recorded during maximum
voluntary muscle contraction. The sum of the calibrated sEMG
signals was mapped to the range of available pretension levels of
the WHISG joints, which modify its stiffness behavior.

FIGURE 5 | Stiffness behavior of the thumb tip as a result of the flexible

antagonistic spring mechanisms in the thumb joints and their pretension.

A block diagram depicting the connections between the
subsystems is shown in Figure 7 (bottom). The sEMG electrodes
send continuously analog data (yellow arrow) to the low-cost
analysis box. The calculated stiffness is send to the Linux PC
using the serial port of the Arduino microcontroller. The Linux,
the GFM, and the WHISG hand are connected to a Linux
real-time PC running Matlab Simulink which ensures a proper
synchronization between sEMG electrodes, force feedback device
and robotic hand (green arrows demonstrate real-time signals).
The grip force is measured using the deflection of the springs
of the WHISG hand and fed back to the GFM. Subjects noticed
higher grip forces through an increased resistance for pressing
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FIGURE 6 | Mechanical design of the WHISG fingers including actuation.

the GFM lever arm. The lever arm position was sent back to
the WHISG hand for controlling its grasp width. An increase in
stiffness results in an overall pretension of all 6 FAS elements of
thumb and fingers (see section 2.1).

2.3. Experimental Setup
Six healthy subjects, all male, five right-handed and one left-
handed, age 24–30, all naive to the experiment, took part as
operators and performed the experimental protocol described
below. The whole procedure lasted between 60 and 75 min per
participant. Oral and written descriptions of the experiment
were provided to the subjects. After all questions were answered
a written consent form was signed by all participants. These
experiments are compliant with the World Medical Association’s
Declaration of Helsinki, regarding the ethical principles for
medical research involving human subjects, last version, as
approved at the 59th WMA General Assembly, Seoul, October
2008. Necessary approvals for the subject studies were received
from the organization-wide works council of the German
Aerospace Center as well as its institutional board for data
privacy. A physician is part of the works council. The collection
and processing of experimental data were approved by both
committees.

2.3.1. Task: Object Grasping With Different Stiffness

Settings
Operators were asked to grip one out of eight tightly packed
small-fruit containers (LxWxH: 140mm x 90mm x 75mm) out
of a cardboard box (LxWxH: 400mm x 300mm x 90mm) using
the WHISG hand (see Figure 7 and Video 1). The fruits were
replaced with water-filled plastic bags to simulate their weight,
125 g. The cardboard box was placed on a waist-high table and
fixed with adhesive tape such that no movement of the box was
possible. One single grasping action was conducted as follows:
The operator started approximately two steps away from the table

to hinder learning of the optimal, initial grasping position. The
WHISG hand was held on the right side of the operator’s body,
pointing downwards. With the start signal of the experimenter,
the operator walked up to the table upon which data acquisition
started and the operator began acquiring a grasp of the container.
After successfully grasping the container, operators were asked
to lift it up and place it right next to the box. After placing
it, operators had to take two steps back and return to the
starting position, which was the trigger to end data acquisition.
Afterwards the plastic box was placed back into the cardboard
box by the experimenter before the next grasping action will be
performed.

2.3.2. Trials With Different Combinations of Force

Feedback, Visual Feedback and Stiffness Mode
Each participant conducted 60 grasping trial in total: 12 were
training trials to minimize learning effects for the remaining 48,
which were used for statistical analysis. Every 12 trials, operators
were asked if they wanted to take a small break to minimize
fatigue. In each of the 12-trials sub blocks, all combinations of
stiffness modes and feedback modes were tested.

The stiffness modes consisted of variable stiffness (VS),
low fixed stiffness (LS), and high fixed stiffness (HS). VS
corresponded to the range of 0 to 55% pretension of the FAS
mechanisms, LS to 5% pretension and HS to 55% pretension.
Each subject was assigned a different permutation of stiffness
modes to reduce effects of learning or fatigue on the results.

Within each stiffness mode, the following feedback modes
were tested:

• visual feedback (VF) only: the operator had an unimpaired
view of the experiment area and the force generation of the
GFM was switched off;

• no feedback (NF): the visual feedback was impaired by altered
welding goggles and the force generation of the GFM was
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FIGURE 7 | (Upper left) Experimental setup with the fastened WHISG hand and the placed electrodes on the back of the operator’s hand as well as the cardboard

box placed on the table. (Upper right) Single plastic boxes arranged in the cardboard box; middle cardboard box marked with “x” had to be grasped (black border

retroactively inserted). (Bottom) Block diagram representing signal flow within the experimental setup.

switched off; the welding visor glasses were replaced with
plastic disks which were processed with sandpaper and an
added adhering plastic sheet; objects and their outlines seen
through these glasses were blurred;

• full feedback (VF+FF): the operator had an unimpaired view
of the experiment area and the force generation of the GFM
was switched on;

• force feedback (FF) only: the visual feedback was impaired and
the force generation of the GFM was switched on.

A questionnaire (5-point Likert scale) was filled about the
usefulness of the different stiffness modes, about exploiting the
environment to get a secure grasp on the object and about the
helpfulness of obtaining force feedback.

2.4. Statistical Design
To answer the research questions and evaluate the hypotheses
of the study, several types of data were collected and analyzed
during the trials.

For investigating the effects of stiffness and feedback modes
on the grasp performance and for evaluating the hypothesis that
variable stiffness helps to compensate lack of sensory feedback
better than fixed stiffness, four performance measures were
recorded:

• the grasp success rate; a grasp was counted as successful
whenever the small-fruit container was grasped, lifted, and
placed on the table next to the cardboard box within the time
limit of 2 min; the grasp success rate was calculated for each

experimental condition (i.e., for each combination of stiffness
and feedbackmodes) as the number of trials with grasp success
divided by the total number of trials within this experimental
condition over all operators and repetitions;

• the task completion time of each trial, i.e., in case of successful
grasps, the time it took to complete the task, and otherwise, the
2 min after which the trial was aborted;

• the number of grasping attempts for each trial, i.e., the number
of times that the commanded gripper opening angle crosses a
certain threshold and thereby starts a gripping phase;

• the mean thumb gripping torque for each trial, i.e., the mean
torque of the thumb joints during the last gripping phase
before placing the container on the table.

For the grasp success rate, 12 values for twelve the experimental
conditions were recorded, while the other three recorded
performance measures contained 288 values for 288 trials.

The three latter performance criteria were analyzed with a
linear mixed regression model,

yijkmn = β0 + βstiffness_mode,i + βvisual_feedback,j

+βforce_feedback,k + βstiffness_mode×visual_feedback,ij

+βstiffness_mode×force_feedback,ik

+βvisual_feedback×force_feedback,jk

+βstiffness_mode×visual_feedback×force_feedback,ijk

+mβtrial_numberǫoperator,n + ǫmn, (1)
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where yijkmn is the response variable, i.e., any of the three
above-mentioned performance measures—task completion time,
number of grasping attempts or mean thumb gripping torque—
, i is the stiffness mode, j denotes the presence of unimpaired
visual feedback, k denotes the availability of gripping force
feedback, m is the within-operator trial number, n is the
operator number, β0 is the intercept, which is a constant
term, βstiffness_mode,i is the fixed effect of the stiffness mode,
βvisual_feedback,j is the fixed effect of visual feedback, βforce_feedback,k

is the fixed effect of force feedback, βstiffness_mode×visual_feedback,ij,
βstiffness_mode×force_feedback,ik, βvisual_feedback×force_feedback,jk, and
βstiffness_mode×visual_feedback×force_feedback,ijk are the fixed effects of
their interactions, mβtrial_number is the trial-number-dependent
fixed effect of learning or fatigue, ǫoperator,n is the operator-
specific random effect and ǫmn is the residual random error. The
random effects are assumed to follow normal distributions as
follows:

ǫmn
i.i.d.∼ N(0, σ 2) and (2)

ǫoperator,m
i.i.d.∼ N(0, τ 2). (3)

How operators experienced the helpfulness of the different
stiffness modes and the availability of force feedback was
measured using a questionnaire (5-point Likert scale) with three
questions for the stiffness modes and one question for force
feedback. The answers were grouped into positive, neutral, and
negative groups and reported summarily over all operators.

For the analysis of the stiffness modulation strategies in the
variable-stiffness mode, the mean normalized stiffness values in
the searching phase and the grasping phase were recorded.

They were analyzed using the following mixed regression
model:

Kmean,jklmn = β0 + βvisual_feedback,j + βforce_feedback,k + βphase,l

+ βvisual_feedback×phase,jl + βforce_feedback×phase,kl

+ ǫoperator,n + ǫmn, (4)

where Kmean,jklmn is the response variable, i.e., the mean
normalized stiffness, l denotes the phase (searching or gripping
phase), βphase,l its fixed effect on the response variable,
βvisual_feedback×phase,jl and βforce_feedback×phase,kl its interactions
with the feedback modalities and the other variables as in
Equation (1).

The parameters of the mixed models were fitted to the
measured outcome measures using the lmer function of the lme4
library (Bates et al., 2015) of the R statistics software (R Core
Team, 2015).

The exploitation of environmental constraints was observed
by the experimenter, classified and reported summarily. The
response of operators to the questionnaire whether they used the
environment to obtain a secure grasp on the object was reported
summarily.

3. RESULTS

The main results of the experiments consist of (a) the effects
of stiffness and feedback modes on the grasp performance
and user experience, (b) in the case of the variable-stiffness

mode, observations of stiffness modulation strategies, and
(c) observations of strategies for exploiting environmental
constraints.

The effect of the trial number, which can account for learning
or fatigue, is two to three orders of magnitude smaller than the
effects of stiffness and feedback.

3.1. Effects of Stiffness and Feedback
Modes on the Grasp Performance
The grasp performance is measured by four criteria: grasp success
rate, task completion time, number of grasp attempts, and mean
gripping torque.

The grasp success rate is 100% for all stiffness and feedback
modes.

For the other three grasp performance measures—task
completion time T, number of grasp attempts Nga, and mean
gripping torque τmean—, the absolute measurement values at
the different combinations of stiffness and feedback modes are
shown as samples and box plots in Figure 8. The task completion
time ranges from 4 to 63 s, the number of grasping attempts
from 1 to 11 and the mean thumb gripping torque from 0.07
to 0.86Nm, plus one outlier at 3.67Nm, which could not be
explained and remained in the data set for the analysis. For all
three measures, low values are desirable: lower task completion
times enable higher productivity, a lower number of task attempts
indicates higher reliability and lower gripping torques indicate
gentler handling of the manipulated goods.

How these three measures are affected by the presence or lack
of sensory feedback and by the variable or fixed grip stiffness
modes is shown in Figures 9, 10 as 95% confidence intervals of
the results of the fitted mixed model of Equation (1). Whenever
the confidence interval does not include zero, the effect is
statistically significant at a significance level of α = 0.05. In
some cases of a slight overlap between the confidence interval
and the zero level we carefully speak of tendencies. Since the
significance level is not corrected for multiple comparisons, the
confidence intervals are interpreted in conjunction with each
other as aggregate results, rather than independently as separate
results.

The distributions of the residuals of the mixed models of
task completion time and number of grasping attempts were
somewhat positively skewed compared to a normal distribution,
but still unimodal and smooth. While the method is robust
to deviations from the normal distribution, this adds some
uncertainty to the results.

The effect of the sensory feedback is shown in Figure 9.
Different sensory impairments are compared against the baseline
of full sensory feedback (VF+FF). Taking away the grip force
feedback leaves visual feedback (VF) remaining. Conversely,
impairing the visual feedback leaves grip force feedback (FF)
remaining. Taking away both the force feedback and impairing
the visual feedback leads to the “no-feedback” (NF) mode,
where the remaining feedback is actually limited to blurred
visual feedback as well as auditory feedback and some direct
force feedback via the splint on the forearm, which are
present in all feedback conditions. Lack of visual feedback
deteriorates all performance measures in the low-stiffness mode
(1T ≈ +11 s . . .+15 s, 1Nga ≈ +2 . . .+3, 1τmean ≈
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FIGURE 8 | Measured values (samples and box plots) of task completion time T (Top), number of grasping attempts Nga (Middle) and mean thumb gripping torque

τmean (Bottom) of all operators and trials with low (red), high (green), and variable stiffness (blue). One extreme sample of τmean of 3.7Nm lies outside the plotting

range.

+0.1Nm . . .+0.2Nm; Figures 9A–C left column, FF and NF)
and shows a tendency of slightly deteriorating them in the
other two stiffness modes (1T ≈ +4 s . . .+5 s, 1Nga ≈
+0.2 . . .+0.8, 1τmean ≈ +0.04Nm . . .+0.1Nm; Figures 9A–C
middle and right columns, FF and NF). Lack of force feedback
shows a tendency to deteriorate the gripping torque (1τmean ≈
+0.08Nm . . .+0.15Nm; Figure 9C VF and NF). In the absence
of visual feedback and when using the low-stiffness mode,
lack of force feedback shows a slight tendency to improve the
performance criteria (1T ≈ −3 s, 1Nga ≈ −1, 1τmean ≈
−0.05Nm; Figures 9A–C left column, NF vs. FF).

Figure 10 shows the effect of the stiffness modes on the
grasping performance. The fixed-stiffness modes low stiffness
(LS) and high stiffness (HS) are compared against the baseline
of variable stiffness. In the absence of visual feedback, low fixed
stiffness increases the task completion time on average by about
6 to 10 s (Figure 10A) and the number of grasp attempts by
about 1.1 to 1.8 (Figure 10B). High fixed stiffness shows a
slight tendency to increase the gripping torque by about 0.02
to 0.08Nm (Figure 10C HS), while low fixed stiffness shows a
tendency to reduce the gripping torque by about 0.06 to 0.08Nm,
except in the presence of force feedback only (Figure 10C LS).

In the questionnaire, operators gave one neutral and five
negative responses for the low stiffness, five positive and one
neutral for the high stiffness and four positive and two neutral
for the variable stiffness setting. Four out of six operators found
the presence force feedback helpful.

3.2. Observations of Stiffness Modulation
Strategies
To answer the question how the operators adjust the stiffness
in the variable-stiffness mode during the course of the trial, it
is interesting how the stiffness changes between the searching

phase and the grasping phase and how it is affected by the
sensory feedback mode. Figure 11 compares the grasping phase
to the baseline of the searching phase. In the grasping phase,
the mean normalized stiffness is about 0.2 units higher than in
the searching phase. This difference between searching phase and
grasping phase occurs during all sensory feedback conditions.

The effect of sensory feedback itself on the mean normalized
stiffness is shown in Figure 12. In the grasping phase (diagram
on the right), lack of force feedback leads to a decrease in mean
normalized stiffness by about 0.08 units (VF), lack of visual
feedback to an increase by about 0.04 units (FF), and lack of
both feedback modalities to a decrease by about 0.04 units (NF).
While not evident from the mean stiffness data, subjects reported
to increase grip stiffness in the searching phase under conditions
of sensory impairment in order to generate higher contact forces
which could be felt at the lower arm via the splint. For exemplary
time series of stiffness tuning and feedback force under different
sensory conditions please see the Appendix.

3.3. Observations of Strategies for
Exploiting Environmental Constraints
In the questionnaire, five out of six operators reported using the
environment to get a secure grasp on the object.

Figure 13 shows a comparison of different strategies that
were used to grasp the object. Red dots depict the placement of
the WHISG fingers whereas the green dot is the placement of
the WHISG thumb. All strategies show a distinct exploitation
of the environment: in the upper left, one finger was moved
along the crack between two boxes to find the free space. By
rotating the operator’s arm and therefore the WHISG hand,
the second finger was placed in the space above, before the
thumb was placed in the space opposite of the fingers, ensuring
a secure three-fingered grasp. However, in 94% of all grasp
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FIGURE 9 | (A) Effect of sensory feedback modes on the time T (s) to complete the task. (B) Effect of sensory feedback modes on the number Nga of grasp attempts.

(C) Effect of sensory feedback modes on the mean thumb torque τmean(Nm). The effect of the sensory feedback modes on the outcome measures (estimates and

95% confidence intervals from fitting the mixed model). Visual feedback only (VF), force feedback only (FF), and no feedback (NF) are compared to the baseline of full

feedback (visual+force feedback, VF+FF). For all outcome measures, low values are desirable.

trials, operators placed one finger on top of the box and fixed
the object between thumb and one finger (see Figure 13 upper
right). In most trials, operators reported to have trouble seeing
the lower of the two fingers. The bottom two strategies show
three finger grasps with higher contact forces because either the
upper or lower WHISG finger had to be placed in the crack
between two boxes which required more force than placing the
fingers in the free spaces. This sometimes led to squashing the
lid of the box and therefore potential damage to the object
content.

4. DISCUSSION AND CONCLUSIONS

In this study, picking and placing of small-fruit containers
from a tightly packed set by the variable-stiffness WHISG
robotic hand was investigated under different stiffness modes and
different levels of sensory feedback. The hand was positioned
and controlled by human operators as proxies for a robotic arm
and a control computer. It was shown that the WHISG hand
is suitable for consistently performing the task well within the
time constraint of 2 min even when the controller received only a
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FIGURE 10 | (A) Effect of stiffness modes on the time T (s) to complete the task.(B) Effect of stiffness modes on the number Nga of grasp attempts.(C) Effect of

stiffness modes on the mean thumb torque τmean(Nm). The effect of the stiffness modes on the outcome measures (estimates and 95% confidence intervals from

fitting the mixed model). Fixed low stiffness (LS) and fixed high stiffness (HS) are compared to the baseline of variable stiffness (VS). For all outcome measures, low

values are desirable.

limited amount of sensory feedback. However, it was also shown
that the task could even be completed by a mechanically simpler
hand with a fixed stiffness behavior.

Regarding the influence of sensory feedback on the grasping
performance, it was shown that high-quality visual feedback
tends to decrease task completion time, number of grasping
attempts, and gripping torques. The influence of force feedback
was less decisive, with a tendency of increasing task completion
time, number of grasping attempts, and gripping torques when
using a low-stiffness hand in the absence of visual feedback,
but slightly decreasing gripping torques otherwise. This matches
the result of Laghi et al. (2017) that visual feedback plays a
more significant role in contact recognition than force feedback.

Regarding the further result of Laghi et al. (2017) that the
presence of force feedback decreases the influence of visual
feedback, our results show a confirming tendency under some
experimental conditions and a contradicting tendency under
other experimental conditions.

Despite the lack of clear benefit on the measured grasping
performance, the majority of operators reported in the
questionnaire that they found force feedback helpful. This is
similar to the findings of Godfrey et al. (2013), where subjects
reported lower physical and mental effort when vibro-tactile
feedback was present.

The hypothesis that variable stiffness can better compensate
lack of sensory feedback than fixed stiffness could not be
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FIGURE 11 | Differences between searching phase (SP) and grasping phase (GP) (estimates and 95% confidence intervals from fitting the mixed model). The

searching phase is the baseline.

FIGURE 12 | The effect of the feedback modes on the mean stiffness (estimates and 95% confidence intervals from fitting the mixed model).

confirmed comprehensively. Under conditions of impaired visual
feedback, high fixed stiffness tended to provide the lowest
task completion times and least number of grasping attempts.
When high-quality visual feedback was given, low fixed stiffness
tended to perform at similar speed and number of attempts
as the high-stiffness and variable-stiffness hands, but tended to
apply somewhat lower gripping forces, which may be beneficial
for the handling of delicate goods. Variable stiffness tended
to provide a compromise between high and low stiffness
when both visual and force feedback were lacking. While
under these conditions it performed similarly fast and with
a similar number of grasping attempts as high fixed stiffness
and faster and with less attempts than low fixed stiffness, it
tended to apply somewhat lower gripping torques than high
fixed stiffness but higher gripping torques than low fixed
stiffness.

The grasp success rate was 100% under all stiffness and
feedback modes, which we found surprising. Apart from proving

the suitability of the WHISG hand for the given task, this also
shows that a more difficult taskmight have been needed for better
discovering possible benefits of variable stiffness in situations of
sensory deprivation. In future studies, the task could be made
more difficult by tightening the time constraint, by graspingmore
delicate objects without hurting them and by positioning the
robotic hand by a robotic arm to eliminate the inadvertent force
feedback on the operator’s forearm via the splint.

The investigation of stiffness variation strategies showed
that operators apply higher stiffness in the grasping phase
than in the searching phase and somewhat higher stiffness
in the presence of force feedback than in its absence. The
higher stiffness in the grasping phase corresponds to the
presumption that the fingers need to withstand the weight of
the object during lifting. The higher stiffness in the presence
of force feedback could be explained by the fact that the
stiffness of the robotic hand is not only a function of the
robotic grasping force, but also of the sEMG-controlled FAS
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FIGURE 13 | Overview of used strategies to exploit the environment in order to successfully grasp the object: (Upper left) motion along the crack between two

boxes (red arrow) before placing the WHISG fingers (red dots) and thumb (green dot), (Upper right) two finger grasp, (Lower left / right) three finger grasps with

higher contact forces.

pretension level, which is in turn influenced by the contraction
and cocontraction of the operator’s muscles. In the absence
of force feedback, no forces are applied to the operator’s
fingers, hence the operator can only modulate the stiffness
by cocontraction. When force feedback is turned on, the
operator additionally contracts to counteract the forces on the
finger, which further increases his grip stiffness and the sEMG
signals. This is actually more an artifact of the teleimpedance
setup than an insight into an optimal stiffness modulation
strategy.

The observation of environmental constraint strategies
yielded four distinct grasping patterns, one of which enjoyed
a striking preference by being used in 94% of the trials.
Interestingly, this pattern, which exploits gaps between the
containers near their corners, places only two fingers in grasping
positions, as opposed to the other patterns, which place three
fingers and exploit the cracks between the containers in addition
to the gaps. One possible explanation lies in the fact that subjects
had difficulties to see the second finger that often ended up
unused. A further possible explanation is that forcing the fingers
in the crack between the containers required more force and
was therefore harder to realize than the placement in the corner
gaps.

In conclusion, the study showed that the VSA WHISG
hand is suitable for the task of picking and placing small
fruit containers from a tightly packed set but that the

task may also be done with a simpler SEA hand with
fixed stiffness. Furthermore, it showed operators’ strategies
of exploiting the cracks and gaps between containers to
guide compliant fingers to relevant grasp contact points,
which may also be useful for autonomously operated
robots.
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Supplementary Figure 1 | Grasping action with VF but without FF; black line:

raw sEMG signals for the first and second dorsal interossei muscle (MID1, MID2),

blue line: commanded stiffness, red dashed line: GFM position, green dashed line:

normalized feedback force, black dashed line: maximum WHISG stiffness.

Supplementary Figure 2 | Grasping action with VF and FF; black line: raw sEMG

signals for the first and second dorsal interossei muscle (MID1, MID2), blue line:

commanded stiffness, red dashed line: GFM position, green dashed line:

normalized feedback force, black dashed line: maximum WHISG stiffness.

Supplementary Figure 3 | Grasping action without VF and FF; black line: raw

sEMG signals for the first and second dorsal interossei muscle (MID1, MID2), blue

line: commanded stiffness, red dashed line: GFM position, green dashed line:

normalized feedback force, black dashed line: maximum WHISG stiffness.

Supplementary Figure 4 | Grasping action without VF but with FF; black line:

raw sEMG signals for the first and second dorsal interossei muscle (MID1, MID2),

blue line: commanded stiffness, red dashed line: GFM position, green dashed line:

normalized feedback force, black dashed line: maximum WHISG

stiffness.
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APPENDIX

A1 Stiffness Tuning Process
The necessary time to tune the stiffness is dependent on two
factors: the sampling rate of the finger stiffness of the WHISG
hand (100Hz) and the small latency of the motors to get in the
commanded position. Overall it takes less than 150ms to go
from the lowest to the highest stiffness setting, assuming that
the muscular activity is at or above the determined MVC level
(see e.g., Supplementary Figure 2 at around 5.8 s). The stiffness
tuning process is independent of the handled object and is only
dependent on the muscular activity of the human operator.
Assuming the hand of the operator is not perturbed, external
disturbances don’t affect the finger stiffness of the WHISG
hand.

A2 Stiffness Tuning and Feedback Force
Under Different Sensory Conditions
The following figures show four trials with sEMG-based variable

stiffness and different sensory conditions, all performed by

operator 5. In all figures, raw sEMG signals for both electrodes
are shown in black. MID1 denotes the activity of the first dorsal

interossei muscle, MID2 of the second dorsal interossei muscle.

Superimposed in red dashed lines is the commanded position of
the GFM, in green dashed lines the feedback force normalized to

the maximum feedback force over all trials of the operator (both
lines percentaged to each particular scale). The black dashed line

shows the maximum finger stiffness of the DLRWHISG hand.
Supplementary Figure 1 depicts a trial with VF but without

FF available to the operator. The first 2.75 s are spent searching

for the open space between the boxes, before the grasp is finally

initiated. Due to the VF being intact, the delayed feedback force

doesn’t matter for the grasping action. With FF disabled, the
operator almost used the full range of the GFM which in return,
with the high stiffness, resulted in a big feedback force.

In Supplementary Figure 2, both VF and FF was available.
In total, two grasping actions were needed for a successful
grasp of the object. After the first failed attempt, the operator
voluntarily increased finger stiffness and was able to grasp the
object—despite the lowered GFM position in comparison to the
first attempt. The feedback force is considerably lower than in
Supplementary Figure 1 despite the commanded stiffness being
equally high which is a result from the lowered GFM position.

With both VF and FF unavailable to the operator (see
Supplementary Figure 3), the operator required the full range of
the GFM to grasp the object. The low commanded stiffness could
be a result of no sensory information available, which would
protect the robotic hand in case of unforeseen impacts with the
environment. Feedback force is low due to the lower stiffness
despite the increased GFM position.

In Supplementary Figure 4, the operator increased the
stiffness before initiating the grasp. With the increased feedback
force, it was possible to detect the open space even without the
visual information. Due to the reduced GFM position, feedback
force overall is lowered even though the commanded stiffness is
high.

A3 VIDEO

The video attached to this submission exemplary shows the
difference between the low and high stiffness setting of the
WHISG hand as well as the inherent compliance when handling
soft objects, e.g. fruits. Additionally the experimental procedure
with and without visual feedback is presented.
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Tactile sensing is an instrumental modality of robotic manipulation, as it provides

information that is not accessible via remote sensors such as cameras or lidars. Touch is

particularly crucial in unstructured environments, where the robot’s internal representation

of manipulated objects is uncertain. In this study we present the sensorization of an

existing artificial hand, with the aim to achieve fine control of robotic limbs and perception

of object’s physical properties. Tactile feedback is conveyed by means of a soft sensor

integrated at the fingertip of a robotic hand. The sensor consists of an optical fiber,

housing Fiber Bragg Gratings (FBGs) transducers, embedded into a soft polymeric

material integrated on a rigid hand. Through several tasks involving grasps of different

objects in various conditions, the ability of the system to acquire information is assessed.

Results show that a classifier based on the sensor outputs of the robotic hand is

capable of accurately detecting both size and rigidity of the operated objects (99.36

and 100% accuracy, respectively). Furthermore, the outputs provide evidence of the

ability to grab fragile objects without breakage or slippage e and to perform dynamic

manipulative tasks, that involve the adaptation of fingers position based on the grasped

objects’ condition.

Keywords: robotics, manipulation tasks, fiber bragg gratings, tactile sensors, sensorized hand

INTRODUCTION

The sense of touch is a key sensory modality of prehensile manipulation. Through tactile
perception, humans can perceive object properties such as size, hardness, temperature, contour, etc.
Information arises from the multiple receptors available within the human skin, especially across
hand and fingers (Johansson and Vallbo, 1979; Johansson et al., 1982). During manipulation, the
hand partially occludes the object from sight. Tactile sensing enables measurements to be obtained
in areas that are inaccessible through vision. Prior behavioral studies have demonstrated the tactile
reliance of human manipulation, for both simple grasping and dexterous manipulation (Johansson
and Flanagan, 2009). In the last few years, the field of robotics has expanded toward more complex
environments (Dahiya et al., 2010), including dangerous and unaccessible scenarios such as nuclear
meltdown disasters and space missions to other planets, where robots are demanded to take
over human jobs. The successful automation of complex human-like manipulative tasks depends
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on robot’s perception capabilities, including through a tactile
sensor, to characterize the relation between the operated objects
and the robotic manipulator (Tegin and Wikander, 2005; Hoshi
and Shinoda, 2006; Yousef et al., 2011). Although the human
hand represents a point of inspiration for many prehensile
robotic hardware (Bicchi, 2000; Murray, 2017), the field of
artificial tactile sensing covers a large spectrum of underlying
principles (Chi et al., 2018). The literature, for instance, shows
relative success with capacitive, piezoelectric, piezoresistive, and
resistive sensors. Such sensing systems rely on changes in the
measured variable (i.e., capacitance, electrical charge, resistance,
etc.) that involve different advantages and disadvantages.
Capacitive sensors consist of two conductive plates interfaced by
means of a compressible dielectric material (Golpaygani et al.,
2009; Wong et al., 2012; Vogt et al., 2013). The transduction
principle relies on the capacitance variations that occur when,
during the loading phase, the gap between the plates changes.
Such transducers entail high sensitivity and frequency response
but are susceptible to electro-magnetic noise, tend to be non-
linear and to have hysteresis. Capacitive sensors are extensively
used in robotic applications for tactile feedback, (Romano et al.,
2011; Schmitz et al., 2011; Heyneman and Cutkosky, 2012; Jara
et al., 2014). Piezoelectric sensors depend on the electrical charge
generation in the quartz crystal, as it deforms by applying a load.
Such sensors are frequently employed for dynamic sensing, due
to a very high frequency response and can be used to build flexible
tactile sensors (Sirohi and Chopra, 2000; Cutkosky et al., 2008;
Qasaimeh et al., 2009; Chuang et al., 2013; Seminara et al., 2013;
Canavese et al., 2014; Kim et al., 2014; Acer et al., 2015). On the
other hand, piezoelectric sensors suffer temperature sensitivity
and are generally fragile (Dahiya and Valle, 2008). Piezoresistive
sensors rely upon the electrical changes in resistance occurring to
the material during load/pressure application (Girão et al., 2013;
Ma et al., 2015; Oddo et al., 2016). Such sensors are widely used
as they are relatively easy to produce and can be flexible (Someya
and Sekitani, 2014). The main drawbacks of these transducers
refer to the low repeatability, fragility to shear forces, non-linear
response and hysteresis. Among all the technologies, the use of
optical fibers as transducers for tactile sensors is spreading due
to the multiple advantages such as: electromagnetic immunity,
flexibility, high sensitivity, multiplexing capability, and lightness
(Polygerinos et al., 2010; Udd and Spillman, 2011; Wang
and Wolfbeis, 2012). Several studies promote such sensors for
different fields of application such as: automotive (da Silva
et al., 2010), medicine (Silvestri and Schena, 2011) and smart
textile (Massaroni et al., 2015) among the others. Depending on
the working principle, fiber optic based sensors entail different
ways of operation: micro and macro bending (Heo et al.,
2007; Pirozzi, 2012), interferometry (Liu et al., 2012), hybrid
optoelectronics (Ascari et al., 2007) and Fiber Bragg Grating
(FBG) (Liang et al., 2018). In parallel to the development of tactile
sensors, the robotics community has produced a vast amount of
research on hand design. Hand design is typically application-
driven, leading to different arrangements ranging from simple
two-finger grippers to complex contraptions that mimic the
mechanics of the human hand (Eusebi et al., 1994; Ramos
et al., 1999; Townsend, 2000; Butterfaß et al., 2001). This paper

presents the case of a four-finger under-actuated hand (Cam-
Hand) that endows Jet Propulsion Laboratory’s (JPL) quadruped
RoboSimian robot with both manipulation and versatile mobility
capabilities (Hebert et al., 2015; Karumanchi et al., 2018). This
robot uses its limbs for mobility and manipulation such as
grasping. Each seven degree of freedom limb consists of a set of
three elbow assemblies and an actuator mechanically linked to
the main body. The limbs end with a six-axis force sensor which
interfaces the Cam-Hand (Figure 1A). The hand consists of an
aluminum body and four aluminum fingers configured for many
uses including being used as a gripper tool. The chosen design,
conceived for use in scenarios that require robust manipulation,
resulted in a system that enhances grip strength and robustness
over dexterity and flexibility. Not being designed to prioritize
complex manipulation tasks or handling fragile objects limits
the variety of tasks the robot is able to perform. The present
work is aimed at overcoming these limitations and enhancing
safety and control during interaction with the surrounding
environment. The RoboSimian Cam-Hand has been redesigned
by sensorizing the artificial fingers to enable tactile feedback.
New sensorized robotic fingers have been devised, embedding
optical fiber sensing technologies, to gain information on grasped
object properties as well as the contact conditions. The choice
of the robotic hand sensorization was based on some crucial
requirements such as (i) the ability to provide information about
the contact (i.e., intensity), (ii) the ability to provide information
about the grasped objects (i.e., size, rigidity, etc.), and (iii)
the ability to perform manipulation tasks (i.e., estimation of
grasp stability) (Kappassov et al., 2015). Moreover, it is worth
mentioning that the robotic hand presents additional constraints
related to the physical integration of the sensors. The adopted
technology has to meet the requirements imposed by the robotic
hand layout and design. Hence, the sensorization needs to be
achieved without affecting the dexterity of the hand, i.e., without
drawbacks in terms of bulkiness and encumbrance. Considering
the aforementioned physical and tactile requirements, FBG
technology was chosen to realize the sensor due to its adaptability
to the design of the artificial hand, for its reliability in strain
measurements and for the multiplexing capabilities that entail
a high spatial resolution without an overwhelming amount of
wires (Supplementary Material Video 4). State-of-art regarding
applications adopting FBGs as transducers provide evidence of
tactile sensors used in different scenarios. Compared to related
works (i.e., soft tactile sensors embedding FBGs) (Heo et al.,
2006; Saccomandi et al., 2015; Song et al., 2015; Jiang and Xiang,
2017; Negri et al., 2017; Li et al., 2018; Pedroso et al., 2018), the
present sensor shares the concept of encapsulating the optical
fiber in a soft matrix. Such cover not only protects the fiber from
mechanical ruptures but also affects the transduction of the signal
by mediating the transmission of pressure to the buried FBGs. In
comparison to previous studies embedding FBGs in prototypical
matrices (e.g., parallelogram bricks), the location of our FBGs
were based on the design of the robotic hand, expressly functional
to gripping tasks. One common elastomer used as encapsulating
material is PDMS (Heo et al., 2006; Saccomandi et al., 2015;
Song et al., 2015; Jiang and Xiang, 2017), while in this study a
soft Dragon Skin silicone (20 medium, Smooth-on, USA) was
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FIGURE 1 | (A) Cam-Hand. (B) Inset of the sensorized finger. The red lines represent the FBGs. Each optical fiber houses 6 FBGs (8mm length).

used, due to its higher flexibility and lower delamination between
layers. Further details on the adopted elastomer, are given in the
Materials and Methods section.

The scope of the present study goes beyond the development
of a soft and flexible tactile sensor. The novelty of the work
also relies in the demonstration of a closed-loop control
strategy for fine manipulation (Fragile Task), and in extracting
features of manipulated objects, whereas in state of the art
studies FBG wavelength variations were used to estimate several
quantities (e.g., pressure, force, hardness) but within an open-
loop scheme, without affecting the control variable. The work is
organized as follows: Section Materials and Methods describes
the transduction principle of the FBG transducers as well
as the Cam-Hand design, the fabrication process and the
control system. Furthermore, the same section reports about
the experimental protocols and the data analysis. Results are
presented in section Results, followed by the discussion and
conclusion in section Discussions and Conclusions.

MATERIALS AND METHODS

Fiber Bragg Grating Transduction Principle
An FBG is a reflector, formed by systematic variation of
refractive index, inscribed in the core of an optical fiber. This
resonant microstructure acts as a narrow band filter. When light
propagates along the optical fiber, and reaches the etched FBGs,
part of the source is reflected. This reflected signal is called Bragg
Wavelength (λB) and it depends on the grating spatial period
(1B) and the effective refraction index (ηeff) of the optical fiber
as in Equation (1):

λB = 2 · ηeff · 3B (1)

Strain conditions and temperature variations imparted on
the FBGs lead to variation of λB resulting in changes of
the grating spatial period (3B), or effective refraction index

(ηeff). In the present work the contribution of temperature is
negligible, since the whole experimental session was performed
at room temperature.

Sensorized Robotic Hand Design
The Cam-Hand body houses the driving electronics and
three brushed DC motors (Maxon precision motor, Sachseln,
Switzerland). The finger geometry follows a cam profile on the
outside and a hook style shape on the inner profile. The system
is comprised of two outer fingers slaved together and two inner
fingers that are independent. Through continuous rotation of
the fingers the Cam-Hand is able to achieve a huge number of
configurations and grasping angles.

The Cam-Hand includes four fingers and the inner fingers
were sensorized due to their independent actuation. Optical
fibers (Technica Optical Components, Atlanta, GA, USA) that
exhibit a diameter of 80µm (100µm with polyimide coating)
were chosen as small diameters allow for low bending radius
configurations. The fibers house 6 FBGs, each grating is 8mm
long and located at a distance of 10mm, center-to-center,
from the adjacent FBG. Table 1 provides further details about
the chosen technology. The optical fibers were encapsulated
in a soft polymeric material integrated into the rigid artificial
finger. According to previous works (Massari et al., 2018),
Dragon Skin (20 medium, Smooth-on, USA) was chosen as
soft material for encapsulating the optical fibers. This polymer
shows remarkable physical properties such as high elongation
at break and high flexibility (Cai et al., 2013). Moreover, during
grasping, silicone mediated the transmission of pressure to the
buried FBGs, applied by the grasped object to the robotic finger.
Maintaining the same design of the previous Cam-Hand, new
customized fingers were developed, in aluminum, with a notch
to allow the insertion of the soft material and the relative optical
fibers (Figure 1B). Such a groove held an irregular shape that
followed the curvature of the robotic fingers. Both sides of
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TABLE 1 | Datasheet of the optical fibers integrating FBG transducers.

Reflectivity Coating Wavelengths SLSR* FWHM**

OPTICAL FIBER SPECIFICATION

>70% Polyimide 1535:5:1570nm >15db 0.5nm

*SLSR, Side Lobe Suppression Ratio. **FWHM, Full Width Half Max.

the finger presented the groove and were connected by means
of a series of holes (3.5mm diameter) whose purpose was to
hold the polymer in a fixed position. Approximately, the notch
resulted 62mm in length, 4.4mm in width and 2.5mm in height
(Supplementary Figure 1). The liquid polymer was casted to fill
the notch and thus filling out the shape of the artificial finger
when not sensorized. The final design includes two optical fibers
located at each side of the finger. The sensitive area of the finger
is approximately 60mm, which corresponds to the front part
of the finger, namely the area responsible for the grip. Several
iterations of molds were created to realize the polymeric filling
and fabrication process. This involves three consecutive steps:

i) Development of the first layer of silicone with a groove to
insert the optical fiber

ii) Insertion of the optical fiber in the right position
iii) Development of the second layer of silicone to cover and

protect the optical fiber

In step (i) and (iii) silicone was degassed to minimize air bubbles
and cured at room temperature until solidification was reached.

Cam-Hand Controller
The movements of the Cam-Hand were piloted by means of a
DC voltage supply (HMC804x Power Supply, Rohde & Schwarz,
Munich, Germany), a relays circuit (4-channel 5V USB Relay
Module, SainSmart, USA) and an optical interrogator (Hyperion
si155, Micron Optics, GA, USA), that was reading the FBGs
output. A Graphical User Interface was realized in LabVIEW
(National Instruments, TX, USA) to control the previous units
and for data acquisition (Figure 2). A positive voltage was applied
to the DC motor to close the hand and vice versa a negative
voltage applied to open it. At constant load, higher voltage values
entailed higher motor speed (rpm) and consequentially faster
movements of the fingers. Through the power supply, the voltage
flow was regulated to set the velocity and the relays were switched
on/off to close/stop/open (+V/0/-V) the fingers. The initial
configuration, also called free configuration corresponded to a
condition where the fingers were open and ready to perform the
grasp, while the grasp configuration matched with the condition
of the fingers closed around the objects. Two controllers were
developed: (i) static controller and (ii) dynamic controller. In the
first case a fixed voltage equal to 13.5V was given to the motor,
thus allowing the fingers to close or open at constant speed.
Depending on the FBGs output and through switching the relays,
the static controller achieved the action of closing, stopping and
opening the fingers. Two thresholds, lower and upper, were set
on the mean of all FBGs wavelength variation. Enabling the static
controller to activate the transition from the free configuration to

FIGURE 2 | Block diagram of the experimental setup. The blue line shows the

static controller while the red line shows the dynamic controller.

the grasp configuration.When themean wavelength variation was
lower than the first threshold, the controller allowed the flow of a
positive voltage and the corresponding closing movement. When
the mean wavelength variation trespassed such threshold, due
to the higher pressure applied from the object to the sensorized
finger and the consequentially higher strain suffered by the
optical fiber, and entered in the grasp configuration, the controller
disabled the voltage flow and stopped the hand. Opening the
hand, thus giving negative voltage, took place when the mean
wavelength variation raised over the upper threshold. In the
second controller, instead, the given voltage was not constant
but function of the mean wavelength variation. Through a PID
controller (Proportional—Integrative—Derivative), in a closed
loop, different values of voltage (based on the mean wavelength
variation) were given to maintain a steady grab condition.
A desirable value was established for the mean wavelength
variation, corresponding to a certain grab condition, hereafter
called set point. The controller was aimed at regulating the
voltage values and switching the relays on/off in order to reach
this value and sequentially tomaintain it. Scope of such controller
was to respond, dynamically, with different voltages to changes
in size of the grasped object without slipping or breaking
(Supplementary Material Video 3).

Experimental Materials and Protocols
The performance of the proposed version of the Cam-
Hand was evaluated through different tasks that involved
the action of grabbing several objects in various conditions
(Supplementary Figure 2). Within this work, four tasks were
performed: (i) Size Task, (ii) Material Task, (iii) Fragile Task,
and (iv) Dynamic Task. The first and second tasks assessed
the capability of the sensorized fingers to estimate mechanical
properties of grasped object, namely size and rigidity. The third
task, representing a qualitative test, evaluated the ability of the
system to grab fragile objects without slipping or breaking them,
thus obtaining a measure of the sensitivity of the Cam-Hand
(Supplementary Material Videos 1, 2). The last task measured
the Cam-Hand capacity to dynamically adapt its position based
on objects that could change size (Supplementary Figure 3).
For the Size Task 5 plastic cylinders, 3D printed in ABS, with
varying diameter from 10mm to 50mm with step of 10mm
were realized. The height of such cylinders was constant and
equal to 150mm (Figure 3A). For the Material Task 4 cylinders,
30mm in diameter and of 150mm height, realized in different
materials were used. Such cylinders had increasing Young
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FIGURE 3 | Representation of the used objects for the different tasks. (A) Material task: 5 ABS 3D printed cylinders with increasing diameter ranging from 10 to

50mm with 10mm step. (B) Material task: 4 cylinders with fixed diameter of 30mm, but with different and increasing Young Modulus ranging from ≈200 kPa to ≈70

GPa. (C) Fragile task: Nachos used to test the sensitivity of the Cam-Hand. (D) Dynamic task: mechanical jack with variable length.

Modulus: Dragon Skin E≈ 0.34 MPa, Vytaflex E≈ 2 MPa (60A,
Smooth-on, USA), ABS E ≈ 2.2 GPa and Aluminum E ≈ 70GPa
(Figure 3B). For the Fragile Task commercial nachos were used,
that can be considered to be very fragile objects (Figure 3C).
The Dynamic task involved the realization of a mechanical jack
composed by two concentric cylinders, 29mm and 23mm in
diameter and 40mm and 28mm in height, respectively. These
objects were realized in ABS with a 3D printer and the top and
bottom part were covered by a thin layer (5mm) of Dragon
Skin 20. The mechanical jack was attached to a motorized linear
stage (A-LST0500B-C, Zaber Technologies Inc., Vancouver,
Canada) that could control its length by moving backwards and
forwards (Figure 3D).

For the first three tasks the procedure consisted of performing
a grasp with the Cam-Hand piloted by the static controller. The
sample was manually held between the robotic fingers in free
configuration. Then, by enabling voltage flow, the Cam-Hand
started closing its fingers until reaching the grasp configuration.
After a few seconds of grasping, the robotic hand was manually
released and brought back to the free configuration. Each trial of
the first two tasks was executed 10 times for repeatability, thus
having 50 tests for Size Task and 40 tests for Material Task. For
the Fragile Task, 20 repetitions were achieved. For the first and
the second task, the lower threshold was set to 0.01 nm, while
for the Fragile Task it was set to 0.16 nm. In the Dynamic Task
a grasp of the mechanical jack was performed with the Cam-
Hand piloted by the dynamic controller. The set-point was set
to 0.16 nm, this value was reached after enabling voltage flow
and passing from free configuration to grasp configuration. After
the grasping action, random values of travel range (from −25 to
25mm) and velocity (from 0.5 to 3mm/s) were given to the linear
motorized stage. Consequentially, the mechanical jack linked to
the stage started to move with different random velocity into a
different random position. The Cam-Hand adapted its position,
with a velocity proportional to the velocity of the stage, based
on the mean wavelength variation (Figure 4). Moreover, another
test was performed in which random values of travel range were
given, but the values of velocity were increasing, starting from
0.5 mm/s and increasing by 0.1 mm/s each 0.75 s. After reaching
the destination the velocity was reinitialised to 0.5 mm/s. To
measure the force required to break the commercial nachos, an
experimental task was performed. Fifteen nachos were brought to

FIGURE 4 | (A) Experimental setup for the dynamic task. (B) Cam-Hand with

mechanical jack at minimum extension. (C) Cam-Hand with mechanical jack

at maximum extension.

fracture by applying a compressing force using a robotic platform
composed by a load cell (Nano 43, ATI Industrial Automation,
Apex, NC, USA) and a motorized vertical stage (8MVT120-25-
4247, STANDA, Vilnius, Lithuania). During the experiments,
the motorized stage was commanded with a speed of 2.5 mm/s
until breakage of the nachos samples was achieved, while the
load cell was tracking the applied load force. We thus estimated
the sensitivity of the FBG sensor as the ratio between the peak
wavelength variation measured during grasping and the load
breaking the nachos.

Data Analysis
The Neural Network Pattern Recognition App, developed within
the Neural Network Toolbox in Matlab (MathWorks, Inc., MA,
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FIGURE 5 | Confusion matrix showing the accuracy (99.36%) of a classifier for

size discrimination of the grabbed sample. 5 cylinders with different size were

tested. ten trials were performed per each sample. Eight out of 10 trials were

used for training, 1 out of 10 for validation and 1 out of 10 for testing. To

improve generalization we applied the “leave one out cross validation” method.

The numbers in brackets represent the experimental data processed by

the classifier.

USA) was employed to predict the diameter and the rigidity
of the grasped objects from the FBGs wavelength variation, in
the Size Task and in the Material Task, respectively. In the Size
Task, the proposed classifier comprised 12 input neurons, namely
all the FBGs reflected the wavelength exerted during the grab,
while in the Material Task there was 1 input neuron, namely
the slope of the wavelength variation function of time (1λ/1t)
tracked during the grab. Both the neural network comprised 10
hidden neurons and 1 output neuron, which was the cylinder
diameter value in mm in the first task and the material rigidity
in the second task. The neural networks were trained using the
conjugate gradient backpropagation method. The experimental
data were divided into three complementary subsets: (i) training
set, (ii) validation set, and (iii) testing set. For each class (i.e.,
diameter), 10 repetitions were performed and 8 trials were
used for training, 1 trial for validation and 1 trial for test.
To reduce variability, multiple rounds of cross-validation, using
different partitions, were performed. The “Leave-one-out cross-
validation”method was adopted, which used one observation as a
test set (and one as a validation set) and the remaining as training
set. This partition was repeated, each time changing the test set
and consequentially the other two subsets, until all the 10 trials
were considered one time as test set. The results of the different
cross-validation were combined (i.e., averaged) to assess the
neural network’s predictive performance by means of a confusion

FIGURE 6 | Box plot of the FBGs 1λ/1t (slope of the signal) for the different

materials. From left to right the Young Modulus is increasing. Boxes represent

interquartile ranges; blue lines show the median value and black dashed lines

show the complete range across samples.

matrix. Within the Fragile Task, the ability of the Cam-Hand to
deal with fragile objects was assessed by calculating the number of
broken samples during grasps. To assess the performance of the
Cam-Hand to follow the changes in the grasped objects (Dynamic
Task) the Root Mean Square Error (RMSE), the Normalized
RMSE (NRMSE) and the NMRSE calculated for the data included
in the interquartile range (NRMSE(IQR)) were calculated as
expressed in Equations (2–4).

RMSE =

√

∑N
n=1

(

x1,n − x2,n
)2

N
(2)

NRMSE = RMSE/x (3)

NRMSE(IQR) = RMSE(IQR)/x(IQR) (4)

RESULTS

Through different tasks, the capability of the proposed FBGs-
based robotic hand was assessed to provide tactile feedback. By
evaluating the performance of the proposed classifier for size
recognition of different grasped objects, an overall accuracy of
99.36% was achieved. Individual accuracy values were calculated
for each diameter: 99.3% for 10mm, 99.4% for 20mm, 99.6%
for 30mm, 98.5% for 40mm and 99.9% for 50mm. Moreover,
it is relevant to observe that misclassification, within the different
classes, happenedmainly with their relative neighbors (Figure 5).
Physical properties of grasped objects strongly affected the
FBGs wavelength variation. The slope of the wavelength
variation function of time (1λ/1t) increased monotonically
with increasing Young Modulus across the different materials
(Figure 6). High repeatability was achieved across all trials: the
median value of the slope was 0.87 ± 0.02 nm/s for Dragon Skin
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FIGURE 7 | Picture showing the fragile test performed by grasping a

commercial nacho.

20, 1.61 ± 0.04 nm/s for Vytaflex, 2.48 ± 0.05 nm/s for ABS
and 3.54 ± 0.12 nm/s for Aluminum (Figure 6). Furthermore,
the classifier used to predict the rigidity showed an accuracy
of 100% for all the classes. Within the Fragile Task, when
performing a grasp on the nachos, only one sample among
the 20 executed trials was broken (Figure 7). The results of
the Dynamic Task presented similar performances in the two
experimental conditions, both in the experiments with constant
velocity (Figure 8) and in those where velocity increased from
one position to the next (Figure 9). Error values were: RMSE
= 0.019 nm, NRMSE = 12% and NMRSE(IQR) = 1.2% for
the first condition and RMSE = 0.014 nm, NMRSE = 9% and
NMRSE(IQR) = 2.2% for the second condition. The mean force
value needed to break the sample was experimentally estimated
to be 9.49N ± 3.13N. Combining this result with the FBG
wavelength variations recorded in the fragile task turns out in a
sensitivity estimation of at least 139 pm/N.

DISCUSSIONS AND CONCLUSIONS

The results obtained through the different tasks had very high
precision in identifying relevant properties of grasped objects
(Size Task, Material Task and Fragile Task) as well as the
contact conditions (Dynamic Task). Within the Size Task, the
sensorized hand allowed recognition of the diameters of the

FIGURE 8 | Graph showing the dynamic task results. In the upper plot, the

red line represents the set point value equal to 0.16 nm, the blue line

represents the process variable, namely the wavelength variation of the mean

of the FBGs. In the bottom plot the blue line represents the position of the

motorized translational stage.

FIGURE 9 | Graph showing the dynamic task results. In the upper plot, the

red line represents the set point value equal to 0.16 nm, the blue line

represents the process variable, namely the wavelength variation of the mean

of the FBGs. In the bottom plot the blue line represents the position of the

motorized translational stage.

cylinders from Bragg wavelength variations, using the proposed
neural network for pattern recognition (99.36% accuracy). Since
the trials of the Material Task were performed using the
static controller, thus selecting a constant velocity for fingers
movements, such condition also allowed for estimation of the
hardness of the different materials via the temporal variation
of the Bragg wavelength (100% accuracy using the proposed
classifier). Our hypothesis relied on the evidence that, at constant
speed, harder material involved faster Bragg wavelength signal
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variation. Within the Fragile task, observations made on several
grabbed samples (nachos) allowed for the reliability of the
sensorized finger to be evaluated in handling such kind of
fragile objects. The achieved experimental results are quite
generalized, since each nacho had a different shape and size.
The scope of the task was to understand qualitatively the
sensitivity of the sensor. The results of the Dynamic Task
provided evidence for the capability of the sensorized finger
to adapt its position based on the variation of the length
of a mechanical jack. Furthermore, it is clear that in both
the performed conditions and during the entire travel range,
the difference between the set point and the process variable
was very low as demonstrated from the NRMSE(IQR) values.
However, the results presented some peaks related to the phase
of inversion of the motion of the stage, as highlighted from
the NRMSE values, which were based on the entire raw dataset
and not only the interquartile range. When the stage reached
a position, it moved immediately into another position and
therefore direction. Consequentially, the robotic finger passed
from the action of closing to the action of opening (or vice
versa) that caused an error of the controller in maintaining
constant grasp conditions. Although the PID controller was
not always accurate, the maximum and minimum values of
wavelength variation were acceptable for keeping a good grasp
without breaking or slipping the object. We believe that the
peaks encountered in the task are not related to the sensor
performance but instead related to the used motor drivers (relays
circuit). The scope of the work was mainly centered around
the evaluation of the proposed tactile sensorization and not
around the realization of a perfect controller. Furthermore,
the mechanical jack linked to the motorized stage through
a long steel bar could have influenced the presented results.
Future work will address the integration of the sensorized
Cam-Hand in a robotic arm, thus bypassing the issues of the
controller, since the actuation part will be managed by the
motor controllers of the arm. Moreover, further investigations
will carry out experimental tasks with other shapes (not only
cylinders) but will also evaluate wider ranges of diameters and
rigidity to increase the variety of the grasped samples. Further
studies will also deal with the calibration of the system in order
to estimate the relationship between the wavelength variation
and the applied pressure to the robotic finger. A limitation
of the present study is related to temperature compensation
ability. FBGs directly respond to strain and temperature changes.
Such intrinsic sensitivity to both physical variables requires a
compensation method to split the contribution of mechanical
actions from the contributions of possible temperature changes.
Considering that the environmental conditions of the laboratory
were stable within the performed experiments, the temperature
contribution was not considered. Future studies will aim at
introducing temperature compensation solutions, for example
by means of dummy FBGs not being affected by strain but by
temperature changes only.

The present paper introduced a robotic hand sensorized
with optical fibers, embedding FBGs transducers, to convey

tactile feedback in robotic manipulative tasks. To the best of
our knowledge this is the first study that demonstrates the

application of FBG technology in a robotic hand, in order
to achieve fine object manipulation and features extraction

based on closed-loop control. The choice to sensorize such a
gripper with optical fibers is based on their flexibility in the
integration process, but also on their high sensitivity in strain
measurements. Thanks to this integration of tactile sensors,
the new Cam-Hand design targeted the following abilities: (i)
estimation of the grasped object size, (ii) detection of a value
related to the Young modulus of the grasped objects (iii)
grasping of objects with different mechanical properties (i.e.,
fragile, deformable, stiff) without their slippage or breakage, and
(iv) dynamic adaptation of the fingers in order to maintain
constant wavelength variation, independent of the shape of the
objects. We believe that multiple advantages of FBG technology,
demonstrated throughout the paper, can move forward the
current state of the art. Beyond the aforementioned advantages,
optical fibers ensure light weight solutions and distributed sensor
capabilities. Another interesting advantage of using such a
technology is the multiplexing capability. Multiple FBGs can be
housed along one single optical fiber by means of just minor
arrangements, hence improving the sensing capabilities without
drawbacks in terms of complexity and bulkiness. Finally, FBGs
pave the way for RoboSimian to operate in those application
scenarios that require electromagnetic immunity, where most of
the conventional sensors are unsuitable.
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The mass-spring system-like behavior is a powerful analysis tool to simplify human

running/locomotion and is also known as the Spring Loaded Inverted Pendulum (SLIP)

model. Beyond being just an analysis tool, the SLIP model is utilized as a template for

implementing human-like locomotion by using the articulated robot. Since the dynamics

of the articulated robot exhibits complicated behavior when projected into the operational

space of the SLIP template, various considerations are required, from the robot’s

mechanical design to its control and analysis. Hence, the required technologies are

the realization of pure mass-spring behavior during the interaction with the ground

and the robust position control capability in the operational space of the robot. This

paper develops a robot leg driven by the Series Elastic Actuator (SEA), which is a

suitable actuator system for interacting with the environment, such as the ground. A

robust hybrid control method is developed for the SEA-driven robot leg to achieve the

required technologies. Furthermore, the developed robot leg has biarticular coordination,

which is a human-inspired design that can effectively transmit the actuator torque to the

operational space. This paper also employs Rotating Workspace (RW), which specializes

in the control of the biarticulated robots. Various experiments are conducted to verify the

performance of the developed robot leg with the control methodology.

Keywords: biarticular actuator coordinate, series elastic actuator, rotating workspace, leg force control,

impedance control

1. INTRODUCTION

Humans and animals’ dynamic walking has been attracting many engineers’ and scientists’
attention, and the dynamic walking of a robot itself has been a very prominent research topic for
robotic engineers.

Researches on dynamic walking can be categorized into two groups: an engineering approach
and a scientific approach. The engineering approach aims to build legged robots and to find a
control algorithm that can realize the dynamic walking of the robot walk. Various research aiming
to build biped robots and quadruped robots (Boaventura et al., 2013; Englsberger et al., 2014; Hutter
et al., 2016; Kuindersma et al., 2016; Jung et al., 2018) is considered to be within this approach.
Walking algorithm theories such as Zero Moment Point stabilization are also categorized into
this research approach, whereas the scientific approach attempts to analyze actual human walking
and then derive a walking dynamic model (Seyfarth et al., 2002; Geyer et al., 2006). Medical
researchers, physical therapists and even zoologists are becoming more involved in this research
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(Farley et al., 1993; Ferris et al., 1998; Zajac et al., 2002, 2003).
Moreover, the advances in motion measurement technologies
boost the demand for better algorithms of these approaches.
There also are attempts to integrate the two approaches—the
realization of dynamic walking using an actual legged robot based
on dynamic characteristics.

The Spring Loaded Inverted Pendulum (SLIP) model is a
promising dynamic model based on a scientific approach that
can explain humans’ dynamic walking and running in a simple
formulation (Poulakakis and Grizzle, 2009), which is different
from the complicated engineering approach. In the SLIP model,
it is assumed that a (robotic) leg behaves as a pure spring. Still,
building an actual robot leg that can exhibit the pure dynamic
characteristics of a spring is challenging (Oh and Kong, 2014).
Most recent studies have focused on ‘utilizing SLIP dynamics for
locomotion/hopping’ after the work of Raibert (1986). Raibert
has developed a mechanical leg design that is a combination of
a linear actuator for the interaction and a rotary actuator for
the leg swing motion. This mechanism is intuitively matched to
the motion of SLIP dynamics, thus enabling a successful SLIP-
based locomotion. The other straightforward mechanical design
that has been designed is called ‘clock-actuated SLIP’ (Altendorfer
et al., 2001; Seipel and Holmes, 2007). The mechanism also
matches motions the mechanical characteristics of the SLIP
dynamics. Even though the mechanisms have successfully
realized SLIP-based running/locomotion, they are still different
from the real human- or animal-like leg. Therefore, these
approaches can be utilized only for their respective application.

Furthermore, some researchers have intensively analyzed
this problem and came up with control algorithms that can
address the realization of dynamic motion based on robot
dynamics (Yamaguchi et al., 1999; Khatib et al., 2008; Tsagarakis
et al., 2013; Koolen et al., 2016; Oehlke et al., 2018). For instance,
Hutter et al. (2010) claimed that the problem is caused by the
inherent dynamics of the articulated robot in the operational
space and proposed an operational space dynamics control.
However, this research is still in a bottleneck because the method
does not utilize any feature of the articulated leg or the specific
workspace. Therefore, the method needs improvement of the
dynamic modeling, with additional complexity coming from
the modeling based on the Cartesian workspace. However, it
can be said that there is still a large discrepancy between the
two approaches. Therefore, the previously proposed walking
dynamics still cannot be applied to the actual robot, because the
dynamic behavior of the actual robot is quite different from the
theoretical model, especially during fast and dynamic motions.
Moreover, there is no recent significant finding after (Hutter
et al., 2010) to provide the solution for enabling pure SLIP
dynamics of the articulated leg.

The other significant issues due to the discrepancy are the
difference of the dynamic model disturbed by external forces
and the nominal dynamic model, and as a result, it is more
difficult to control. Specifically, in the dynamic reaction of
a robot walking, the ground reaction force affects the robot

Abbreviations: DOB, Disturbance Observer; SEA, Series Elastic Actuator; SLIP,

Spring Loaded Inverted Pendulum.

continuously. Hence, force control is applied to the leg to render
the dynamic response of a robot leg against external force.
Nowadays, many humanoid robots have employed a force/torque
control platform (Englsberger et al., 2014; Hyon et al., 2017).
However, force control of a robot leg has various challenges such
as friction and noise in the force sensors. To solve this problem,
a robot leg that is fully driven by two Series Elastic Actuators
(SEAs) is developed in this research.

Since SEAs enable high-performance force control,
the proposed robot leg exploits this high-performance
force control to realize ideal SLIP dynamics. There are
remarkable studies which equip SEAs for the biped robot called
“ATRIAS” (Rezazadeh et al., 2015; Martin et al., 2017). However,
the main difference with this paper is that ATRIAS utilizes
the SEAs as a velocity source to regulate the ground reaction
force under the SLIP-based high-level controls and switches the
control method depending on the gait phase (flight/stance). In
this paper, the SEAs are focused on a realization of pure SLIP
dynamics based on their force controllability.

In addition to the employment of SEAs, the introduction of
the biarticular actuation mechanism is applied to facilitate the
realization of SLIP dynamics of the articulated robot leg. The
biarticular actuation is known for its specific functionalities and
roles in human motions (van Ingen Schenau et al., 1987; Zajac
et al., 2002, 2003). Also, many biomimetic robots have employed
this mechanism for jumping and running (Hurst et al., 2010;
Niiyama et al., 2010). Taking into consideration this advantage
of the biarticular actuation mechanism, the proposed robot leg
is designed based on this mechanism. The dynamic analysis
of joint-space motion is conducted based on the biarticular
actuator coordination.

The approaches above are considered as mechanical
contributions to realizing SLIP dynamics using an articulated
robot. Contribution from software can be seen in the
development of Hybrid Control (HC). HC is a combination of
impedance control for the realization of spring dynamics and
position control for attack angle control of the SLIP dynamics.
To implement this controller, suitable operational space—which
is called Rotating Workspace (RW)—is employed (Oh and
Kong, 2014). The dynamic behavior of the developed robot leg
in the RW is analyzed to improve the performance of HC. This
paper proposes a serial and systematic procedure to achieve
SLIP dynamics by fully utilizing the advantage of the biarticular
mechanism as well as the employment of SEAs and HC
in RW.

2. MATERIALS AND METHODS

2.1. Design of Series Elastic
Actuator-Driven Robot Leg
Figure 1 illustrates the force-controllable robot leg which is
developed in this research. The development of the robot leg is
2-fold: the introduction of the biarticular actuator mechanism
and the application of the Series Elastic Actuator. The following
subsections provide the advantages of these design components
and methodologies of force control.
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FIGURE 1 | Developed series elastic actuator-driven biarticular robot leg including force controller.

FIGURE 2 | Representative biarticular muscles in the human lower extremity.

2.1.1. Design Motivation of Bio-inspired Robot Leg

Using Biarticular Actuator Mechanism
In the musculoskeletal system, biarticular muscles are muscles
that cross two joints to generate torque at both joints. Most of the
human muscles that generate a large amount of force or power
are usually biarticular muscles, such as the rectus femoris at
the front thighs, and the hamstring at the back thighs as shown
in Figure 2.

In the human locomotion mechanism, biarticular muscles
play a vital role to link the movement of muscles in the
limb (Zajac et al., 2002, 2003). When a joint is locked by

the co-contraction of a pair of monoarticular muscles, the
associated biarticular muscles act as powerful monoarticular
muscles that actuate the whole extremity. Also, the length
change of the biarticular muscles is much smaller than that
of the monoarticular muscles for generating normal human
motion (van Ingen Schenau et al., 1987).

Consequently, the biarticular muscle mechanism enables the
high efficiency and performance of the human lower extremity
movement. This high efficiency has been theoretically (Oh et al.,
2011) analyzed and evaluated through experiments (Choi et al.,
2016; Roozing et al., 2018).

2.1.2. Implementation of Biarticular Actuator

Mechanism
Muscle coordination is known to play an essential role in various
multi-joint humanmotions (Zajac, 1993). Similar to this concept,
the actuator coordination of a robot is also to be well-designed
to enhance the performance of actuators in a system. Figure 3
illustrates possible actuator coordinations to configure a two-
link robot. Figure 3A is the conventional serial type two link
robot, each joint of which is equipped with an actuator. Oh et al.
(2011) has shown the inefficiency of this actuator coordinate
in terms of torque/force generation. Moreover, the actuator is
located on each link in this configuration which imposes the
weight of the actuator on every link. It is also noticeable that
this configuration needs to utilize the relative joint coordinates
to describe its motion.

Figures 3B,C illustrates the biarticular actuator coordination
in a two-link robot, where the belt/wire in Figure 3B and
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the linkage in Figure 3C are utilized to transmit the torque
of one actuator in the proximal joint to the distal link. This
transmission enables the biarticular actuator coordination in
a robotic system (Choi et al., 2016; Roozing et al., 2016). As
this mechanism can locate the actuators on the proximal joint,
the weight of the distal link is reduced, which is considered as
another advantage.

This research adopts the link mechanism in Figure 3C to
employ the biarticular actuator coordination as well as to
guarantee large force transmission along with robustness against
an impact from the environment.

Figure 4 shows the details of the developed SEA-driven
biarticular robot leg. Two SEAs are connected on the body
to provide mono- and biarticular torques. The torques are

transmitted to the links through the timing belts, which have a
gear ratio of 2:1. For simplicity of the dynamics, both mono-
and biarticular-side links are designed to be equal to 0.3 m. The
specifications of the parameters are summarized in the table on
the right-hand side of Figure 4.

2.1.3. Actuator Design: Transmission Force Sensing

Type Series Elastic Actuator
SEA of Pratt and Williamson (1995) utilizes a spring as a part
of its transmission to measure and control the interacting force
between the motor and the load. As explained in section 1, SEA
is employed as the actuator system in this research since it can
provide high-fidelity torque/force while it is robust against the
impact due to its inherent compliance.

FIGURE 3 | Various configurations of a two link robot. (A) series configuration, (B) biarticular configuration (wire/belt-driven), (C) biarticular configuration

(linkage-driven).

FIGURE 4 | Details of the developed SEA-driven biarticular robot leg: top view, front view and specifications of the robot.
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There are various types of SEA configurations (Lee et al.,
2017) such as the direct force sensing type (FSEA) (Pratt and
Williamson, 1995), the reaction force sensing type (RFSEA)
(Paine et al., 2014; Park et al., 2018) and the transmission force
sensing SEA (TFSEA), Lee and Oh (2016). TFSEA is utilized as
the actuators for the proposed robot leg.

Figure 5 shows the TFSEA utilized in this research, where
the spring is located between the ring gear of the planetary
gear and the ground. This configuration allows the measurement
of the absolute transmission force by using a single encoder
and the robustness against the dead zone caused by gear
backlash. The details of the configuration of TFSEA are described
in Lee and Oh (2016).

The SEA in Figure 5 developed for the robot leg consists of
a current/torque-controlled BLDC motor with a servo driver
(Maxon motor, EC 4-pole 48V and ESCON70/10), a harmonic
gear (Harmonic Drive R©, CSF-11), a torsional spring (custom-
made), and two encoders (incremental type motor-side encoder
is 5,000 count/turn resolution and absolute type spring deflection
encoder is 19-bit resolution). The maximum continuous torque
of the SEA is 55.2 Nm (peak: 686 Nm), and the maximum
permissible velocity is 80 rpm. The stiffness of the spring is

FIGURE 5 | Developed transmission force sensing type series elastic

actuator (TFSEA).

128 Nm/rad, which leads to a high force sensing resolution of
0.3835 mN-m/tick with a 19-bit absolute encoder. Note that
these specifications including output stiffness are obtained in the
biarticular joint coordinates after timing belts and gears as shown
in Figure 4.

2.1.4. Robust Torque Control for the Developed SEA

to Provide Ideal Torque Source
To achieve high-performance force control of the cPEA in the
proposed robotic leg, model-based force control developed by
Oh and Kong (2017) is applied in this research.

To design the model-based force control, the general
dynamics of the SEA is derived from the free-body diagram in
Figure 6 as follows:

Jmθ̈j = τj − τs − Bjθ̇j,

Jlθ̈l = τs − Blθ̇l,

τs = Ksθs, (1)

where Jj and Jl are the moment of inertias of the motor and the
load, Bj and Bl are the joint damping coefficients of themotor and
the load, and θj and θl are the joint position of the motor and the
load. θs is the spring deflection. τj is the torque generated by the
motor and τs is the torque transmitted through the spring. Ks is
the spring stiffness.

From the dynamics of the SEA in Equation (1), the transfer
function from themotor torque τj to the SEA transmission torque
τs can be obtained as follows.

Ps(s) =
τs

τj
=

Ks(Jls+ Bl)

(Jls+ Bl)(Jjs2 + Bjs)+ Ks{(Jl + Jj)s+ (Bl + Bj)}
(2)

The actuator dynamics of SEA is basically linear. However, the
value of the load-side moment of inertia Jl is subjected to varying
joint angle conditions, particularly in a multi-link robot like
the proposed robotic leg. Therefore, a robust torque controller
is required to provide an ideal torque source to the proposed
robotic leg regardless of the joint angle.

To that end, a Disturbance Observer (DOB)-based robust
torque controller is applied for the torque control of two

FIGURE 6 | Free body diagram of the SEA. The black-colored arrows indicate motor, load position and spring deflections, and the red-colored arrows denote motor,

spring forces and friction force.
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SEAs. The overall control scheme of the SEA torque control
is illustrated in Figure 7. In Figure 7, P−1

sn (s) indicates the
inverse model of the nominal transmission dynamics in
Equation (2), and Q(s) is the second-order Q-filter of
DOB. Cfb(s) and Cff (s) are the feedback and feedforward
controller, respectively.

DOB can nominalize the dynamics of SEA in a specific
frequency bandwidth determined by the Q-filter, leading to a
robust force control against varying load conditions. Cff (s) is
designed as the inverse model of the nominalized SEA dynamics,
with a low-pass filter that can enhance fast-tracking performance.

The performance of the torque control algorithm is verified
using the closed-loop frequency response measurements.
To investigate the robustness of the torque control, these
experiments were conducted with two different load conditions:
with free-load, which means no additional load is attached to
the SEA, and with the fixed-load environment. To analyze the
performance of the frequency responses in these load conditions,
a chirp-type excitation signal is applied with frequencies of
0.1–100 Hz. The output torques of SEA are measured by a
torque sensor, and the experiments were conducted ten times to
calculate the average frequency responses.

Note that the performance of the closed-loop response of
the SEA torque control depends on the magnitude of the
torque reference. This concept is called Large Force Bandwidth
(LFB) (Hutter et al., 2016). Figure 8 shows the characteristics
of the torque-controlled SEA in this paper as well as the
bandwidth variance regarding the magnitude values of the
reference.Moreover, 5 Nm (red-colored) is the critical magnitude

value before the safety protection of the motor driver is enabled
(safety stop has occurred at the high-frequency region with
6 Nm magnitude reference). Therefore, 5 Nm is chosen as the
magnitude of the reference torque for the evaluation of the
robustness of the SEA torque control.

FIGURE 8 | Large force bandwidth characteristics of torque-controlled SEA.

FIGURE 7 | Block diagram of SEA dynamics with Disturbance Observer-based robust torque control.
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FIGURE 9 | Frequency responses of the proposed force control of the TFSEA. (A) force control with free load condition, and (B) with locked-load condition.

The experimental results for the robustness evaluation are
shown in Figure 9, where the plots in Figure 9A are the responses
with the free-load, and the plots in Figure 9B are the responses
with the fixed-load. The gray-colored lines are the results of ten
repetitions, and the red-colored lines are the averaged response.
The responses are matched with second-order low-pass filters:

1
0.0052s2+0.004s+1

and 1
0.00452s2+0.003s+1

. The bandwidths are 32

and 35 Hz, respectively, which can be calculated from the
filter models.

The results verify that the SEA with the model-based force
control can provide high-fidelity force generation with small
performance variation (8.57%). It can also be validated that the
closed-loop frequency bandwidth of the force generation is up to
32 Hz regardless of the load condition.

2.2. Theoretical Analysis of Biarticular
Actuator Coordination
For the realization of SLIP dynamics using SEAs, the kinetic
characteristics of the robot are analyzed in the joint space.
Since the developed robot incorporates the biarticular actuator
coordination, the kinematic and dynamic characteristics should
be formulated in this coordination.

2.2.1. Kinematics and Statics Analysis of Biarticular

Coordination
The basic actuator configurations of a two-link robot are
illustrated in Figure 10 where Figure 10A is the conventional
serial link with two independent (monoarticular) actuators
(which generate torques τ1 and τ2), and Figure 10B is the
proposed configuration with onemonoarticular actuator and one
biarticular actuator (which generate torques τm and τb).

The kinematics of the conventional serial robot configuration
shown in Figure 10A is given as

Px = l cos θ1 + l cos (θ1 + θ2)

Py = l sin θ1 + l sin (θ1 + θ2), (3)

FIGURE 10 | Basic configuration of a two-link system with two types of

actuator coordination. (A) conventional serial actuator coordinates, and (B)

biarticular actuator coordinates.

where Px and Py are the end effector position in the
Cartesian coordinate system, and θ1 and θ2 represent the
angles of two joints. l is the length of links. Note that
the length of the first and second links are the same as l
in this paper.

On the other hand, the kinematics of the biarticular
actuator-coordinated link (in Figure 10B) is described using the
monoarticular joint angle θm and the absolute biarticular joint
angle θb, which are related to the conventional joint angles θ1 and
θ2 as follows.

θm = θ1,

θb.r = θ2,

θb = θ1 + θ2 = θm + θb.r (4)
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where θb.r is relative angle between the links of themonoarticular
and biarticular joints.

Based on this relationship, the end effector position Px and
Py can be re-described using the biarticular coordination θm and
θb as follows.

Px = l cos θm + l cos θb

Py = l sin θm + l sin θb (5)

The Jacobian matrix for the biarticular coordination
can be derived by utilizing the partial differentiation of
Equation (5) as follows:

[

Ṗx
Ṗy

]

= l

[

− sin θm − sin θb
cos θm cos θb

] [

θ̇m
θ̇b

]

= Jb

[

θ̇m
θ̇b

]

, (6)

where Jb is Jacobian for the biarticular coordination. The statics
of the biarticular coordination can also be derived utilizing this
Jacobian Jb as follows.

[

τm
τb

]

= JTb

[

Fx
Fy

]

= l

[

− sin θm cos θm
− sin θb cos θb

] [

Fx
Fy

]

(7)

This statics can be reorganized as follows, which verifies that the
biarticular torque τb works on the first joint and the second joint
at the same time.

[

τ1
τ2

]

=
[

1 1
0 1

] [

τm
τb

]

(8)

2.2.2. Dynamics of Two-Link Robot With Biarticular

Actuator Coordination
Equation (9) describes the dynamics of a two-link robot
with the conventional actuator coordination, which has two
independent torque inputs τ1 and τ2 shown in Figure 10A,
where θ̈1 and θ̈2 are the accelerations of two joints. g is
the acceleration of gravity, lic is the distance from the center
of a joint i to the center of the mass point of the link
i, mi is the weight of the link i and Ii is the moment
of inertia.

[

I1 + I2 +m2l
2 + 2m2l2cl cos θ2 I2 +m2l2cl cos θ2

I2 +m2l2cl cos θ2 I2

] [

θ̈1
θ̈2

]

+
[

−m2l2cl sin θ2(θ̇
2
2 + 2θ̇1θ̇2)

m2l2cl sin θ2θ̇
2
1

]

+
[

g(m1l1c +m2l) cos θ1 + gm2l2c cos(θ1 + θ2)

gm2l2c cos(θ1 + θ2)

]

=
[

τ1
τ2

]

(9)

This dynamics description can be rewritten utilizing the
biarticular coordinates with θm, θb, τm and τb. Equation (10)
represents the relationship between the biarticular
coordinates and the conventional coordinates θ1, θ2, τ1
and τ2.

[

θ1
θ2

]

=
[

1 0
−1 1

] [

θm
θb

]

,

[

τm
τb

]

=
[

1 −1
0 1

] [

τ1
τ2

]

(10)

Utilizing this relationship, the dynamics description in
Equation (9) can be rewritten as in Equation (11), which is the
dynamics description in the biarticular coordinates.

[

τm
τb

]

=
[

Im Ic(θb.r)
Ic(θb.r) Ib

] [

θ̈m
θ̈b

]

+
[

τm.c(θb.r , θ̇b)

τb.c(θb.r , θ̇m)

]

+
[

τm.g(θm)
τb.g(θb)

]

, (11)

where the inertia is reformulated as

Im = I1 +m2l
2

Ib = I2

Ic(θb.r) = m2l2cl cos θb.r = CI cos θb.r , (12)

Coriolis force and gravity effect in the biarticular coordinate are
reorganized as follows:

τm.c(θb.r , θ̇b) = −m2l2cl sin θb.r θ̇
2
b = −CI sin θb.r θ̇

2
b ,

τb.c(θb.r , θ̇m) = m2l2cl sin θb.r θ̇
2
m = CI sin θb.r θ̇

2
m. (13)

And

τm.g(θm) = g(m1l1c +m2l1) cos θm = Gm cos θm,

τb.g(θb) = gm2l2c cos θb =
g

l
CI cos θb = Gb cos θb. (14)

Notice that Coriolis torques τm.c(θb.r , θ̇m), τb.c(θb.r , θ̇b) and gravity
effects τm.g(θm), τb.g(θb) consist of sole physical values. Namely,

Coriolis torque τm.c is proportional only to θ̇2
b
, and τb.c is also

proportional only to θ̇2m. Moreover, the gravity terms τm.g and τb.g
are also proportional to cos θm and cos θb, respectively.

Furthermore, the common coupling coefficient CI appears in
many equations including Coriolis torque in (13) and the gravity
effect Gb in (14), which are basically constant coefficients. In
other words, the coupling coefficient and the gravity effects can
be identified in a simple way with these biarticular coordinates.

2.3. Bio-inspired Leg Interaction Control to
Realize SLIP Dynamics Using SEA-Driven
Robot Leg
This section introduces the control algorithm to realize human
locomotive characteristics by using SLIP dynamics. As shown in
Figure 11, the section includes four subsections as follows:

• Section 2.3.1:The control approach and its required technique
are obtained to achieve the SLIP dynamics, which describes
bio-inspired locomotion such as a running human.

• Section 2.3.2: The hybrid control methodology is proposed
for the realization of SLIP dynamics, and the SLIP-oriented
coordination of the biarticular robot leg, which is called
Rotating Workspace, is defined concerning the hybrid
controller implementation.

• Section 2.3.3: The kinematics, statics and dynamics of the
biarticular robot leg are analyzed in the Rotating Workspace,
and the reasons and problems that require the joint-space
sub-control techniques for better hybrid control performance
are explained.
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FIGURE 11 | Organization and classification of contents in section 2.3. (A) Desired SLIP dynamics to realize human-like locomotion. (B) Hybrid Control strategy to

achieve SLIP dynamics. (C) Rotating Workspace coordination for Hybrid Control. (D) Joint space control for better control performance.

• Section 2.3.4: The joint-space controllers are designed to
improve the performance of hybrid control for pure SLIP
behavior of the developed biarticular robot leg.

2.3.1. Introduction of SLIP Model Based on

Characteristic of Human Locomotion
Due to the recent improvements in the anthropometric
techniques, human motions can be measured and analyzed in
a theoretical way more than ever. One of the most simplified
and well-formulated approaches to deriving the dynamic model
of human walking and running focuses on the spring-like
interaction of the leg with the ground during the stance phase
and the free motion of the leg during the swing phase. The
model that is developed to describe this feature is the Spring
Loaded Inverted Pendulum model (Blickhan, 1989). Since the
SLIP model simplifies the description and analysis of human
locomotion, it is becoming a powerful template to realize human-
like locomotion using various types of robots.

As described in Figure 11A, the main requirements to realize
stable and periodic running of a robot are the realization of
spring dynamics and attack angle control. These correspond
to the SLIP model-based locomotion as 2-fold: a pure mass-
spring behavior during the ground interaction or stance phase
is rendered, and the correct attack angle with regards to the
momentum of themass at the landingmoment or incidence angle
of the leg is required.

One successful engineering approach to achieve the SLIP
model-based running of a robot is a combination of a linear
actuator for the interaction and a rotary actuator for the leg
swing motion (Raibert, 1986). In this approach, the robot can
realize SLIP model-based running even if the configuration of
the robot is far from a human-like design. The robot is not

developed to mimic the human muscular-skeletal configuration
but to realize SLIP dynamics.

Articulated robot legs, such as the proposed robot leg,
are realized by using the scientific approach to meet human-
like locomotion specification. However, the conventional
approach suffers from a technical bottleneck since the
operational coordinate system of articulated robots differs
from the operational space of SLIP dynamics, even though the
configuration of the robot leg is derived from a bio-inspired
design. Therefore, it is challenging to implement SLIP dynamics
of the articulated robot directly.

The novel point of this paper is the transformation of the
operational coordinate to develop a complementary coordinate
for SLIP motion. In other words, the operational coordinate
system of the articulated leg has to be transformed to include
the interactive operational and swing operational axes for the
SLIP dynamics. In this perspective, the newHybrid Control (HC)
described in Figure 11B is designed in the Rotating Workspace
(RW) described in Figure 11C to match the articulated robot
with the operational space of SLIP dynamics. The overall control
structure to realize SLIP dynamics is described in Figure 12. The
proposed robust Rotating Workspace Hybrid Control (RWHC)
algorithm consists of three layers, which are HC, Rotating
Workspace transformation and joint-level controllers, and is
shown as a dashed square in Figure 12. In the following sections,
the details of these control parts are designed and analyzed.

2.3.2. Proposed Approach to Realize SLIP Dynamics:

Hybrid Control in Rotating Workspace
This subsection introduces the HC method, which is a control
method to realize SLIP dynamics. HC refers to the simultaneous
control of θ- and r-directions as shown in Figure 11B. These
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FIGURE 12 | Overall control structure of the Robust RWHC for biarticular robot.

directions are the operation directions in RW and are required
for realizing attack angle control and impedance control of the
spring dynamics of SLIP in Figure 11A. As shown in Figure 11B,
both the position controller with respect to θ-direction for
the attack angle control and impedance control with respect
to r-direction for the spring dynamics are implemented to
accomplish HC in RW.

A robust position controller is chosen to overcome the
influences of inherent coupling dynamics of the robot leg and
external disturbances and to achieve precise attack angle control.
For this requirement, the DOB-based two-DoF controller is
adopted once more, but it uses a different dynamic model
with the case of SEA torque control in section 2.1.4. The
basic concept of this control approach has been proposed
in Oh and Kong (2014).

The nominal inverse model of DOB is obtained based on a
dynamic relationship between the θ-directional motion and the
θ-directional force of the robot leg in the RW. In the viewpoint of
the implementation, the statics and kinematics are also obtained
to transform from the measured joint angles θm and θb to
θ-directional motion and to generate the appropriate torques
through the joint actuators. The coordinate transformation
(kinematics) is required to project the reference position from
the attack angle to the joint position.

On the other hand, the realization of the spring dynamics
requires impedance control with respect to r-direction in the
RW. The impedance control method enables rendering of desired

dynamic behavior between the plant and the environment, e.g.,
the interaction of a second-order spring-mass system with the
ground. There are two typical ways to render the mechanical
impedance of the robot: position-based admittance control and
force-based impedance control. The former needs a position-
controlled robot system and end-effector force sensor, and the
latter requires a force-controlled actuator system and joint
position sensors. Since the proposed robot leg does not have
an end-effector force sensor but includes force-controlled SEAs
with measurable joint positions, the force-based impedance
control is utilized to realize spring dynamics of the SLIP
model with respect to r-direction in the RW. Moreover, in
this the force-based impedance control, the inherent coupled
dynamic behavior also appears on the closed-loop system in
the RW. Therefore, the dynamics of the robot leg in the
RW is analyzed for the proper rendering of the desired
spring dynamics.

The r-directional impedance control law consists of the
r-directional position displacement as a feedback signal and
the reference impedance model. The r-direction position
displacement can be calculated by using the kinematic
relationship between the biarticular joint space angles and
the r-directional motion, and the reference impedance model is
defined based on the desired spring model of SLIP dynamics.
Furthermore, the r-direction position displacement is multiplied
by the reference impedance model to calculate the required
r-directional force. The statics of the robot leg is required to
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generate the appropriate torques in the joint-space for rendering
the reference impedance.

In summary, for the implementation of the proposed
RWHC in the low-level joint control, workspace coordination—
including the derivations of kinematic and statics—is required.
Furthermore, the dynamics of the proposed robot leg in the RW
is necessary for realization of the DOB-based position control
and analysis of the behavior of the impedance-controlled system.

2.3.3. Analysis of the Developed Robot Leg in

Rotating Workspace for Hybrid Control
A novel operational space that is suitable for the coordination of
the robot leg and the realization of spring dynamics and control
of attack angle is needed to implement SLIP dynamics. The
coordination that can perfectly match the biarticular joint space
and the demands of SLIP dynamics is RW transformation, unlike
the conventional workspace dynamics and its control which are
designed in the Cartesian coordinate system.

In this section, the Jacobian, the statics, kinematics and
the dynamics are defined in the RW, which conforms with
the implementation of SLIP dynamics of the biarticular robot
leg as follows:

• Kinematics: a kinematic relationship between the measured
joint angles (θm and θb) in the biarticular coordinate
system and the inputs (θ- and r-directional motions) of
HCler is obtained by using the positions in the reference
coordinate system (and is utilized for RW control and
Jacobian derivation).

• Jacobian:the coordinate relationship between the joint angular
velocities (θ̇m and θ̇b) and end effector velocities (ẋR and ẏR) is
derived from a differentiation of kinematics (and is employed
for RW dynamics derivation and statics derivation).

• Statics: force transmission from the joint actuator torques
(τm and τb) to end effector forces (FRx and FRy ) is derived
from the Jacobian (and is employed for RW control and
dynamics derivation).

• RW dynamics: The dynamic relationship between the
biarticular joint torques and RW motion is obtained
by utilizing Jacobian, statics and joint space dynamics
in Equation (11) (and is utilized for analysis of the
dynamic behavior and performance improvement of Rotating
Workspace HC).

The RW is first introduced by Oh and Kong (2014). The paper
provides the whole procedure for obtaining the transformation
mathematics in detail and briefly shows the procedure for better
understanding the controller design based on a RW formulation.

The kinematics between RW and biarticular joint-space is
represented by a coordinate system that is rotated by the angle θ

as shown in Figure 11B. The angle θ is the relative angle between
the reference coordinate system and the robot endpoint position
r, which are given by

r =
√

P2x + P2y = 2l cos
1

2
(θb − θm),

θ = tan−1 Py

Px
=

1

2
(θb + θm) (15)

The physical representations of the coordinates in the RW can
be exactly matched with the SLIP motion. The r-directional
movement of the robot end effector corresponds to ground
interactive motion and θ-directional movement corresponds to
leg swing motion, i.e., determination of the attack angle of
the SLIP dynamics.

The Jacobian is obtained by considering the end effector
velocities in the RW, which is given by

ẋR = ṙ (16)

ẏR = rθ̇r (17)

where ẋR denotes r-directional velocity and ẏR represents θ-
directional velocity as shown in Figure 11C. The velocities can
be described also by multiplication of the rotation matrix and
biarticular Jacobian matrix Jb, and this yields the RW Jacobian
JR as follows:

[

ẋR

ẏR

]

=
[

cos θ sin θ

− sin θ cos θ

]

Jb

[

θ̇m
θ̇b

]

= l

[

sin
θb.r
2 − sin

θb.r
2

cos
θb.r
2 cos

θb.r
2

]

[

θ̇m
θ̇b

]

= JR

[

θ̇m
θ̇b

]

(18)

By using the obtained RW Jacobian JR, the static force
relationship between the biarticular joint space torques and the
RW forces can be described as follows:

[

τm
τb

]

= JTR

[

FRx
FRy

]

= l

[

sin
θb.r
2 cos

θb.r
2

− sin
θb.r
2 cos

θb.r
2

]

[

FRx
FRy

]

(19)

where FRx and FRy indicate r-directional and θ-directional
forces. The derived kinematics in Equation (15) and statics in
Equation (19) enable the RW coordinate transformation in the
middle layer of Figure 12 to realize RWHC. Using these, the
leg dynamics in the RW is also derived for the analysis of the
coupling behavior with inherent dynamic characteristics.

In order to obtain the dynamics of the robot leg in the RW, the
coordinate description of accelerations ẍR and ÿR is obtained. The
acceleration relationship of two operational spaces can be derived
by time differentiation and rearrangement (from JR to J

−1
R ) of

Equation (18) as follows.

[

θ̈m
θ̈b

]

= J
−1
R

[

ẍR

ÿR

]

− J
−1
R J̇R

[

θ̇m
θ̇b

]

(20)

where J̇R denotes a time differentiation of the RW Jacobian.
RW dynamics of biarticular actuator mechanism can be derived
by using the inverse of Equation (19) and the Equation (20)
as follows:

JTR

[

FRx
FRy

]

=
[

τm
τb

]

=
[

Im Ic(θb.r)
Ic(θb.r) Ib

] [

θ̈m
θ̈b

]

+
[

τm.c(θb.r , θ̇b)+ τm.g(θm)

τb.c(θb.r , θ̇m)+ τb.g(θb)

]

,

[

FRx
FRy

]

= (JTR)
−1

[

Im Ic(θb.r)
Ic(θb.r) Ib

]

J
−1
R

([

ẍR

ÿR

]

− J̇R

[

θ̇m
θ̇b

])
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+ (JTR)
−1

[

τm.c(θb.r , θ̇b)+ τm.g(θm)

τb.c(θb.r , θ̇m)+ τb.g(θb)

]

(21)

Based on Equation (21), it can be concluded that the RW
coordinate corresponds kinematically to SLIP motion. However,
the dynamics is complicatedly coupled in the RW coordinate.
Because of these dynamic characteristics (dynamics coupling
and gravity effect), the motions in the RW, xR and yR, which
are to be controlled, adversely affect each other. Therefore, the
performance of HC is deteriorated as shown in Figure 13. The
next section shows how to remove the dynamic coupling effect
and improve its performance effectively.

2.3.4. Joint Space Dynamic Decoupling to Improve

Performance of Robust Rotating Workspace HC
As described above, the attack angle control for the SLIP
dynamics can be implemented using the high gain feedback
without consideration of dynamics behavior in the RW.However,
for the realization of the spring behavior of SLIP dynamics, it
is not straightforward to render the desired dynamic behavior
without considering the influence of mechanical characteristics
such as inertia coupling and gravity effect. In this section,
systematic dynamic decoupling methods in the joint space are
designed to enhance the performance of the proposed RWHC
based on the structural advantage of the biarticular robot leg.

A study on dynamics modification such as dynamic
decoupling for a general multi-link robot has been first proposed
in Khatib (1987). Khatib has developed the ‘Operational Space
Nonlinear Dynamic Decoupling’ method to directly modify the
robot’s dynamic characteristics based on an identification of
the coupling and gravity terms appearing in the workspace
without using the structural features. The method requires
correct identifications of complicated inertia coupling, Coriolis
and gravity terms; hence, it is not effective to directly apply
Khatib’s approach to the biarticular robot leg.

In order to decouple the dynamics of the leg effectively, a
systematic approach is required based on a structural advantage
of the biarticular robot leg. In section 2.2.2, the structural
advantage was found to be that the robot legs on the biarticular
coordinate system are configured to be identified easily.
Therefore, the proposed method utilizes joint level identification
and decoupling in the biarticular coordinate to simplify the
complex dynamics in Equation (21) (detailed in section 2.3.4.1).
Furthermore, inertia control is applied to the simplified joint
space dynamics to achieve better HC performance in the RW
(detailed in section 2.3.4.2).

2.3.4.1. Compensation of Inherent Dynamics - Inertia

Decoupling and Gravity Compensation
As mentioned before, because of the torque control,
measurement capabilities of the SEA and biarticular actuator
mechanism, the identification and compensation of the gravity,
Coriolis and inertia torque in the joint space are simpler than in
RW. Hence, the compensation of inherent dynamic coupling is
performed in the joint space.

The controller for inertial and gravity compensation is
designed based on the joint-space dynamics derived in

Equations (12)–(14). Based on these equations, required
compensation torques τ cm and τ c

b
are obtained as follows:

τ cm = CI cos θb.r θ̈b − CI sin θb.r θ̇
2
b + Gm cos θm

τ cb = CI cos θb.r θ̈m + CI sin θb.r θ̇
2
m + Gb cos θb (22)

θm and θb are measured by position sensors of each joint SEA
and θb.r is calculated by Equation (4). θ̇m, θ̇b, θ̈m and θ̈b can
be calculated by numerical differentiation of θm and θb. Three
coefficients, Gm, Gb and CI , are required to implement this
compensation; however, the gravity term of biarticular-side joint
Gb includes the common coupling coefficient CI as derived in
Equation (14). Therefore, simple identification of Gm and Gb

enable this compensation. Note that the identificationmethod for
Gm and Gb is described in section 3.3.

This compensation results in a fully decoupled joint-space
dynamics in the biarticular coordinate system as follows:

[

τm − τ cm
τb − τ c

b

]

=
[

Im 0
0 Ib

] [

θ̈m
θ̈b

]

= Ibi

[

θ̈m
θ̈b

]

, (23)

where Ibi is the diagonal inertia matrix. τm − τ cm and τb − τ c
b

are the new torque references for the closed loop system with
the proposed compensation in Equation (22). Because of the
compensation, the dynamics of the joint-space are decoupled
and simplified.

In order to analyze the effect of the compensation in RW,
the modified dynamics is obtained in a similar way as in
Equation (21).

[

FR∗x
FR∗y

]

= (JTR)
−1IbiJ

−1
R

([

ẍR

ÿR

]

− J̇R

[

θ̇m
θ̇b

])

=
[

Im
l−l cos θb.r

0

0
Ib

l+l cos θb.r

]

([

ẍR

ÿR

]

− J̇R

[

θ̇m
θ̇b

])

(24)

where FR∗x and FR∗y are the new force reference regarding the RW
coordinates with the proposed compensation in Equation (22).
(JTR)

−1IbiJ
−1
R indicates operational space inertia (Khatib, 1987).

Even though the inertial compensation is achieved in
Equation (24), the diagonal components of the inertia matrix
vary with θb.r . These variations deteriorate the performance of
RWHC. In particular, the variation of the first inertia term

Im
l−l cos θb.r

, which is the projected inertia with respect to r-

direction, affects the realization of spring behavior of SLIP
dynamics. In order to solve this phenomenon, the first inertia
term should be controlled as a fixed inertia by adding a separate
inertia control.

2.3.4.2. Inertia Control for Robust Rotating Workspace

Hybrid Control
In this subsection, the additional inertia control is designed to fix
r-directional inertia for better performance of RWHC.

In order to fix the first term Im
l−l cos θb.r

in an operational space

inertia matrix, Im should be modulated to include the term l −
l cos θb.r . Therefore, the goal of inertial control can be defined as
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modulating the joint-space inertia Im asMR
d
(l − l cos θb.r), where

MR
d
is the desired inertia (mass) of the SLIP model.

The result of the compensated dynamic system in the
biarticular actuator coordinates is linear and is simple enough as
shown in Equation (23). Hence, the inertia control can be easily
implemented in the biarticular joint-space. The required joint

torques τmm and τm
b
to modulate the inertia Im asMR

d
(l− l cos θb.r)

are given by

[

τmm
τm
b

]

=
[

MR
d
(l− l cos θb.r)− Im 0

0 MR
d
(l− l cos θb.r)− Ib

] [

θ̈m
θ̈b

]

,(25)

Note that the second term of inertia control can be designed in
another way; however, this paper chooses MR

d
(l − l cos θb.r) − Ib

for simplicity.
By applying the inertia control to fix the r-directional inertia,

the dynamics in Equation (24) can be reformulated in the RW by
utilizing the RW Jacobian and statics in Equations (18) and (19)
as follows:

[

FR∗x
FR∗y

]

=
[

MR
d

0

0 MR
d
tan2

θb.r
2

] [

ẍR

ÿR

]

+
1

2

[

MR
d
(cos θb.r − 1)θ̇b.r 0

0 MR
d
(1− cos θb.r)θ̇b.r

] [

ẋR

ẏR

]

(26)

Even though the closed-loop dynamic behavior in Equation
(26) with respect to r-direction contains the damping-like term
1
2M

R
d
(cos θb.r−1)θ̇b.r , the inertia is fixed and decoupled as desired

inertia MR
d
. For the perfection of spring behavior of SLIP model,

the r-directional impedance model of HC can be redesigned to

compensate the remaining damping-like effect as

FR∗x = −KR
d x

R −
1

2
MR

d (cos θb.r − 1)θ̇b.rẋ
R (27)

where desired spring constant KR
d
and mass MR

d
are given by

the desired SLIP model. This redesigned RWHC with joint level
controls including decoupling control, gravity compensation
and inertia modulation renders pure mass-spring behavior with
respect to r-direction.

Interestingly, the θ-directional inertia in Equation (26) is

also simplified as MR
d
tan2

θb.r
2 . Considering that the leg posture

is mainly placed in a common position, i.e., θb.r ≈ π
2 , the

term tan2
θb.r
2 in the inertia can be regarded as 1. Therefore,

the nominal inverse model in the DOB in Figure 13 can be
defined as MR

d
s2. Even though the r-directional motion driven

by impedance control of HC causes variation of θ-directional
dynamic behavior (because of θb.r), dynamics variation and
unmodeled terms can be actively rejected as a disturbance by
the ability of DOB. Therefore, the developed SEA-driven robot
leg with the proposed RWHC, including two-axes controllers,
realizes SLIP dynamics robustly.

The overall structure of the Robust HC in the RW for
biarticular robot leg is described in Figure 14.

3. RESULTS

3.1. Experimental Realization of Robust
Rotating Workspace Hybrid Control
Experiments are conducted using the developed SEA-driven
robot leg to verify the following points:

FIGURE 13 | HC in the RW for biarticular robot leg.
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FIGURE 14 | Robust HC in the RW for biarticular robot leg. The final form of the controller consists of inertia decoupling, gravity control and inertia control.
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1. Hardware part: the developed SEA-driven robot leg takes full
advantage of SEA and the biarticular mechanism in terms
of ease of parameter identification, force transmissibility and
Rotating Workspace coordination.

2. Software part: Robust Rotating Workspace Hybrid Control
consisting of the decoupling control, inertia modulation,
impedance control and DOB-based position control is
effectively applied to a robot leg.

The experiments are conducted by way of the following four steps
to systematically verify the contribution points above.

Section 3.3 System identification using motor position control
of SEA
Section 3.4 Verification of Statics using gravity compensation
and Rotating Workspace force control of the robot leg
Section 3.5 Verification of inertia decoupling control using
decoupling control in the biarticular coordinate
Section 3.6 Performance verification of Robust Rotating
Workspace Hybrid Control investigating the effectiveness of
inertia modulation in the biarticular coordinate, impedance
control and position control in the Rotating Workspace

3.2. Experimental Setup
The experiments for the verifications are set in two ways: the
dynamic experiment and static experiment. The experimental
setups are shown in Figure 15.

The setup for the dynamic experiment in the left-hand
side of Figure 15 is utilized for the system identification and
performance verification of proposed HCwith joint level control.
Then, the robot leg moves according to the control algorithms.
Note that the system identification in section 3.3 uses this
experimental setup for a variety of leg postures. However, the
actual experimental behavior can be more properly described as
‘quasi-static’ than ‘dynamic’ (detailed experimental protocol is
given in section 3.3).

The setup for the static experiment in the right-hand side of
Figure 15 is utilized for verification of the force transmissibility

from SEAs to the end effector through the biarticular mechanism
and Rotating Workspace transformation. For this purpose, the
endpoint of the leg is connected to a load cell through a universal
joint, which distresses any unexpected kinematic constraint in
the setup. A single axis (vertical direction) load cell is chosen to
measure the vertical force exerted from the endpoint. The load
cell (CAS, SBA-50L) used in this setup has a resolution that can
measure up to 0.02 N of force with low-pass filtering (100 Hz).
In this setup, the body position and the load cell position can
be adjusted with respect to the vertical guide and the horizontal
guide to change the leg posture.

3.3. System Identification of SEA-Driven
Robot Leg With Biarticular Actuator
Coordination
As explained in section 2.2.2, the coefficients Gm and Gb of
the gravity terms in (Equation 14) are characteristic parameters,
which also include the inertia coupling coefficient CI . The
identification of the gravity coefficient is a vital identification
process for the whole system. Moreover, the SEA in the proposed
robotic leg enables measurement of the interacting torques
and gravitational torques by the link weights for the system
identification. Taking advantage of these two points, the system
identification of the robotic leg is proceeded as follows (in
Figure 16); the motor-side angle (θj in Figure 7) is controlled to
be constant, and the spring torque (τs in Figure 7) is measured
after the system becomes steady state. Then, the load angle θl
in Figure 7 is utilized as the mono and biarticular joint angle
values of θm and θb, and the measured spring torque τs is
utilized as the mono and biarticular gravitational torques τm.g

and τb.g . This measurement process has been conducted with
several different angles of θjs, and Figure 17 shows the results of
the measured torques τs and angles θl. Two results are plotted as
the measurement results using two SEAs: one for monoarticular
joint and the other for the biarticular joint.
The plots show the relationship between θl(= θm, and = θb)
and τs(= τm.g , and = τb.g) and exhibit a cosine function pattern,

FIGURE 15 | Experimental setups. Dynamic experiment: fixed body and freely moving leg. Static experiment: fixed body and leg with load cell.
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FIGURE 16 | System identification procedure of the robot leg by utilizing the force, position measurement and position control capabilities of SEA.

FIGURE 17 | Gravity coefficient identification result. (A): relationship between θm and τm.g, and (B): Relationship between θb and τb.g.

which corresponds to the derived relationship in Equation (14).
By fitting the curves with appropriate scale selection, the gravity
coefficients Gm and Gb can be identified. In this case, the
coefficient of monoarticular joint gravity term Gm is identified
as 3.15 Nm, and the biarticular joint coefficient Gb = g

l
CI is

identified as 0.33 Nm. Therefore, the coupling inertia term CI

is calculated as 0.01 N
m/s2

based on the parameter values g =
9.81m/s2 and l = 0.3m.

3.4. Statics Verification of the Proposed
Robot Leg With Biarticular Actuator
Coordination
The statics for the biarticular actuator torque coordinate and
the force in the Rotating Workspace given in Equation (19) are
verified through experiments. The joint torques τm and τb are
provided by SEA torque control, and the end effector force is
measured by the load cell. The relationship between the provided
joint torques and the measured end effector force is compared
to verify Equation (19). Various poses of the robot leg are set as
shown in (a–g) of Figure 18. Notice that the gravitational force is

compensated in the following experiments utilizing the identified
Ĝm and Ĝb.

Statics is verified through the force tracking at the end
point where step-wise force references are given in the Rotating
Workspace, and these references are converted to the required
torque references for SEAs. The required torques are generated
by SEA torque control, and the force generated at the end-point
by these SEA torques are measured by the load cell and compared
with the initial references.

Figure 18 shows the results of the force tracking and thus the
statics verification. Various force references are given changing
directions as shown in the right graphs of Figure 18. The black-
solid lines in the right plots are the reference signals, and the
dash-colored lines indicate the sensor measured forces.

The rise time, which measures the rate of the rise from 10 to
90% of the steady-state response, is calculated and averaged based
on the measured data sets, and the result is 6.1 ms. The averaged
root mean square error (RMSE) is also calculated, and the result
is about 0.15 N. Note that the responses appear negligible steady-
state errors in most cases; however, case (f) indicates about 1 N
of steady state error, and this may be caused by misalignment
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FIGURE 18 | Verification of Static with various robot postures. (A) robot leg postures, and (B) end point force tracking performance.
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between load cell and leg in the experimental setup with respect
to critical posture of the leg.

The results imply that the force of the endpoint in the Rotating
Workspace can be controlled using statics in Equation (19) and
the high-performance torque control of SEAs. In particular, the
results show that the torque control of the SEA can guarantee the
stability and fast response time for the step-wise reference with a
stiff environment.

3.5. Performance of Decoupling Control in
the Biarticular Coordinate
Dynamics of the robotic leg with the biarticular actuator
coordination can be decoupled as Equation (23) by applying
decoupling control (Equation 22). The performance of this
decoupling control is examined in this experiment.

The experimental setup and protocol are given as follows:
a sinusoidal torque reference is provided to only one SEA to
generate only one torque input τm or τb, and the dynamic
behavior of all joint angles θm and θb are examined with and
without decoupling control (Equation 22).

A sinusoidal torque with an amplitude of 5 Nm and a
frequency of 3 Hz is generated by a SEA of the specific joint
(τm or τb) as an excitation. In addition to this excitation
torque, additional decoupling control torques designed as in
Equation (22) are added to both SEAs, and all the joint angular
velocities θ̇m and θ̇b are measured under this condition. After
several seconds (1.5 s in the following experiments) of excitation,
the decoupling control torques are turned off, and the change of
the joint angular velocities are measured and compared with the
behavior of the decoupling control.

Figure 19 shows the results of the decoupling control. The
upper graphs are the angular velocities θ̇m of the monoarticular
joint, and the bottom graph is the angular velocity θ̇b of the
biarticular joint. The left result in Figure 19A is when the
excitation signal is given to the monoarticular SEA τm, and
the right result in Figure 19B is when the excitation signal is
given to τb.

The comparison of the unexcited joint velocities
before and after 1.5 s shows that unexcited joints in the
both cases are not affected by the motion of the other
joint. This result verifies that the proposed decoupling
control can successfully decouple the effect from the other
joint torque.

3.6. Robustness and Tracking Performance
Verification of Rotating Workspace Hybrid
Control for Realization of SLIP
The performance of the proposed Rotating Workspace Hybrid
Control to realize SLIP template-based movement is verified
through experiments. To assess the performance in detail, the
following points are investigated.

1. Impedance control performance of the robot leg in the radial
direction

2. High fidelity position tracking in the tangential direction
3. Robustness of radial directional impedance control during

high accuracy tangential control

For this purpose, two types of experiments are designed.
Firstly, the leg is dragged and released in the radial direction to

examine the controlled impedance against external perturbation.
The results of dynamic behavior of the leg are compared with
the theoretic solution that is analytically calculated based on
the reference impedance model. The several types of reference
impedance models implemented on the leg vary with the stiffness
and damping values, which are 100, 150, and 250 N/m (low,
mid and high stiffness with mid damping), and 5, 15, 25 Ns/m
(low, mid, and high damping with mid stiffness). This varying
stiffness and damping setting enables verification of the anti-
inertia variation effect of the inner-loop inertia modulation
control in the biarticular coordinate. The desired inertia MR

d
in

Rotating Workspace is set to 1.5 Kg, the length of the leg in the
radial directional is set to 0.4 m, and the end point is dragged by
a hand as far as 0.25 m.

FIGURE 19 | Performance verification of the proposed decoupling control. (A) excitation signal on monoarticular actuator, and (B) excitation signal on

biarticular actuator.
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FIGURE 20 | Dynamic response of the end point with different impedance setting. (A) various stiffness settings, and (B) various damping settings.

Figure 20 is the result of the drag-and-release test, which
shows the behavior of the end point in the radial direction.
The graph in Figure 20A shows the result with varying stiffness
conditions, and the graph in Figure 20B shows the result
with varying damping conditions. The red-, green- and blue-
colored lines indicate low, mid and high stiffness/damping
cases, respectively. The solid lines are the theoretical responses,
and the dashed lines are the measured responses. Most of
the experimental results match well with theoretical responses
except the low damping case, which suffers from the nonlinear
behavior after first oscillation. Even though the magnitude of the
response is different from the theoretical model in this case, the
natural frequencies are still well matched with the response of
theoretical models.

Second, the dynamic response in the radial direction is
investigated while the motion in the tangential direction is
controlled. To examine the dynamic behavior of the end point, it
is pushed in the radial direction, and the response in the radial
direction against this pushing perturbation is measured and
investigated. During this push and recovery process in the radial
direction, the end point is position-controlled in the tangential
direction. The reference for this motion is a sinusoidal pattern
with 2 Hz frequency and 0.2 rad magnitude. The reference
stiffness and damping for the radial direction impedance are
set to 75 N/m and 10 Ns/m. In this experiment, the end
point is pushed and recovered two times. In the first push-
recovery process, the inertia modulation and the decoupling
control are turned off, and it is turned on in the second
push-recovery process.

Figure 21 is the result of this experiment. The upper graph
shows the position of the end point in the radial direction, while
the bottom graph shows the position in the tangential direction.
The end point is pushed at 4 s at first, and it is pushed again at 13
s. Even though the endpoint recovers after the first push, tt can
be verified in that the radial motion suffers from the coupling by
the tangential motion up to 10.4 s.

At 10.4 s, the decoupling control and inertia modulation
control are switched on, and the coupling in the radial

FIGURE 21 | Robustness and tracking performance verification of Rotating

Workspace Hybrid Control.

motion decreases dramatically. The radial motion exhibits
the dynamic response designed by the radial impedance
control against the second push. While the two pushing
perturbations work in the radial direction, the tangential
motion is not affected by the perturbation in the radial
direction, which validates the robustness of the tangential
position control.

4. DISCUSSION AND CONCLUSION

4.1. Discussion for Contribution Points of
the Paper
The paper proposed a mechanical design analysis of SEA-driven
robot leg and controller design to realize the SLIP dynamics. The
discussions for the contribution of this paper are categorized as
shown in the following subsections.
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4.1.1. Advantage of SEA-Driven Robot
The SEA, utilized in this paper, is one emerging actuator system
in the robotics field. The benefits of the SEA are the torque
control capability based on a spring deflection measurement.
This paper has analyzed the dynamics of SEA and designed
the DOB-based torque controller based on the dynamics. The
robustness has been examined with regards to the variation of
the load inertia. This is a significant feature when the SEA is used
in multi-joint robots such as the robot leg in this paper, since
the inertia varies continuously under the dynamic condition.
The other advantageous feature of SEA is that the SEA can be
used as an identification tool with a specific mechanical design
such as the biarticular mechanism in this paper. SEA has various
output states; namely, it is a multi-output system. In this paper,
the motor side position control has been utilized to identify the
physical parameters of the robot leg. This enables the dynamic
parameter identification without any extra-measurement of link
mass or center of mass, and it allows an accurate dynamics-based
control including gravity compensation, inertia decoupling and
inertia modulation.

4.1.2. Benefits of Biarticular Mechanism and Rotating

Workspace Coordination in Terms of SLIP Dynamics

Realization
This paper has developed the SEA-driven articulated robotic leg
with the biarticular actuation mechanism taking advantage of
biarticular muscles in their design. The design has complemented
the robot actuator coordination and human musculoskeletal
system. In addition, the RW, which is suitable to the coordinate
system of the SLIP model, has been utilized and analyzed in the
operation of the biarticular actuator-coordinated robot to satisfy
the requirement for human-like locomotion.

Taking advantage of biarticular actuator coordination, a
systematic strategy was shown to compensate for the complex
dynamic behavior of the robot leg in the Rotating Workspace
within bio-inspired coordination. Based on this, the RWHC has
been developed to enable the biarticular mechanism to realize
SLIP behavior robustly.

4.1.3. Control Performance of the Proposed Hybrid

Control in Rotating Workspace
The experiments have verified the performance of the proposed
Rotating Workspace Hybrid Control: impedance control
performance of the robotic leg in the interactive direction
and robust position tracking in the tangential direction, and
robustness of radial directional impedance control during high
accuracy tangential control. It has been shown through the
experimental results that the developed SEA-driven robot leg
with the proposed RotatingWorkspaceHybrid Control including
two-axes controllers could realize the SLIP dynamics robustly.

The dynamic performance depends on the body state; hence,
this approach cannot be generalized for every legged robot.
For example, the dynamic reaction of the body of quadrupeds
and bipeds are totally different. Therefore, the theory and
experiments have been analyzed and performed in a given fixed
body condition. In order to extend the proposed approach, the
dynamics with the unfixed body condition should be considered
and compensated, even though the controller performs well in a
given condition.

4.2. Conclusions and Future Work
Human locomotion leads to a simple result of moving the body
position; however, the dynamical operation, which is realized
in the human leg, is complicated. In order to analyze human
locomotion, an analytical tool that can make descriptions from
the viewpoint of being outside of human motions as simple as
possible is required, rather than a complex neuromuscular
analysis approach that considers all the muscles’ coordination
from a vantage point inside the human body. Robotics,
which has been developed mainly from the perspectives of
engineering, now starts to turn to humans and nature. The bio-
inspired actuation and coordination systems and their insights
obtained through the observation on the human and nature
will provide a new perspective to establish fundamentals for
bio-inspired robotics.

In this article, biarticular actuator coordination for designing,
analyzing and controlling robotic systems has been investigated.
This paper showed a serial procedure to realize the SLIP
dynamics for the articulated robot. Based on the realized SLIP
dynamics, the foundation for extending the robot leg to various
locomotion such as running, gaiting and so on has been
discussed. Such mechanical design and control technology is
an underlying technology that can be applied to bipedal and
quadrupedal walking robots. Therefore, the future work of this
research is to utilize the proposed technique in hopping and
walking motions of the robot leg and to extend the technique to
a quadruped robot.

AUTHOR CONTRIBUTIONS

CL contributed to literature writing and review, fabrication of
the robot, controller design and experiments. SO developed
workspace coordinates and supervised the project overall, and
contributed to data analysis and writing the paper.

ACKNOWLEDGMENTS

This work is partly supported by Korea government through the
National Research Foundation (NRF-2016R1A2B4016163) and
the Ministry of Trade, Industry & Energy (10080547).

REFERENCES

Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, H., McMordie,

D., et al. (2001). Rhex: a biologically inspired hexapod runner. Auton. Rob. 11,

207–213. doi: 10.1023/A:1012426720699

Blickhan, R. (1989). The spring-mass model for running and hopping. J. Biomech.

22, 1217–1227. doi: 10.1016/0021-9290(89)90224-8

Boaventura, T., Medrano-Cerda, G. A., Semini, C., Buchli, J., and Caldwell,

D. G. (2013). “Stability and performance of the compliance controller of

the quadruped robot hyq,” in 2013 IEEE/RSJ International Conference on

Frontiers in Neurorobotics | www.frontiersin.org 20 May 2019 | Volume 13 | Article 1766

https://doi.org/10.1023/A:1012426720699
https://doi.org/10.1016/0021-9290(89)90224-8
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Lee and Oh SEA-Driven Robotic Leg

Intelligent Robots and Systems (Tokyo), 1458–1464. doi: 10.1109/IROS.2013.

6696541

Choi, H., Oh, S., and Kong, K. (2016). Control of a robotic manipulator in the

polar coordinate system using a biarticular actuationmechanism. Int. J. Control

Autom. Syst. 14, 1095–1105. doi: 10.1007/s12555-014-0343-6

Englsberger, J., Werner, A., Ott, C., Henze, B., Roa, M. A., Garofalo, G., et al.

(2014). “Overview of the torque-controlled humanoid robot toro,” in 2014

IEEE-RAS International Conference on Humanoid Robots (Madrid), 916–923.

Farley, C. T., Glasheen, J., andMcMahon, T. A. (1993). Running springs: speed and

animal size. J. Exp. Biol. 185, 71–86.

Ferris, D. P., Louie, M., and Farley, C. T. (1998). Running in the real world:

adjusting leg stiffness for different surfaces. Proc. Biol. sci. R. Soc. 265, 989–994.

doi: 10.1098/rspb.1998.0388

Geyer, H., Seyfarth, A., and Blickhan, R. (2006). Compliant leg behaviour explains

basic dynamics of walking and running. Proc. Biol. sci. R. Soc. 273, 2861–2867.

doi: 10.1098/rspb.2006.3637

Hurst, J., Chestnutt, J., and Rizzi, A. (2010). The actuator with

mechanically adjustable series compliance. Rob. IEEE Trans. 26, 597–606.

doi: 10.1109/TRO.2010.2052398

Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., et al.

(2016). “Anymal-a highly mobile and dynamic quadrupedal robot,” in 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Daejeon), 38–44.

Hutter, M., Remy, C. D., Höpflinger, M. A., and Siegwart, R. (2010). “Slip running

with an articulated robotic leg,” in 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems (Taipei: IEEE), 4934–4939.

Hyon, S., Suewaka, D., Torii, Y., and Oku, N. (2017). Design and experimental

evaluation of a fast torque-controlled hydraulic humanoid robot. IEEE/ASME

Trans. Mechatron. 22, 623–634. doi: 10.1109/TMECH.2016.2628870

Jung, T., Lim, J., Bae, H., Lee, K. K., Joe, H., and Oh, J. (2018). Development of the

humanoid disaster response platform drc-hubo+. IEEE Trans. Rob. 34, 1–17.

doi: 10.1109/TRO.2017.2776287

Khatib, O. (1987). A unified approach for motion and force control of robot

manipulators: the operational space formulation. IEEE J. Rob. Autom. 3, 43–53.

doi: 10.1109/JRA.1987.1087068

Khatib, O., Sentis, L., and Park, J.-H. (2008). A Unified Framework for Whole-

Body Humanoid Robot Control With Multiple Constraints and Contacts. Berlin;

Heidelberg: Springer Berlin Heidelberg, 303–312.

Koolen, T., Bertrand, S., Thomas, G., de Boer, T., Wu, T., Smith, J.,

et al. (2016). Design of a momentum-based control framework and

application to the humanoid robot atlas. Int. J. Humanoid Rob. 13, 1650007.

doi: 10.1142/S0219843616500079

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter,

F., et al. (2016). Optimization-based locomotion planning, estimation, and

control design for the atlas humanoid robot. Auton. Rob. 40, 429–455.

doi: 10.1007/s10514-015-9479-3

Lee, C., Kwak, S., Kwak, J., and Oh, S. (2017). Generalization of series elastic

actuator configurations and dynamic behavior comparison. Actuators 6, 1–26.

doi: 10.3390/act6030026

Lee, C., and Oh, S. (2016). “Configuration and performance analysis of a compact

planetary geared elastic actuator,” in IIndustrial Electronics Society IECON

2016-42nd Annual Conference of the IEEE (Florence: IEEE), 6391–6396.

Martin, W. C., Wu, A., and Geyer, H. (2017). Experimental evaluation of

deadbeat running on the atrias biped. IEEE Rob. Autom. Lett. 2, 1085–1092.

doi: 10.1109/LRA.2017.2658020

Niiyama, R., Nishikawa, S., and Kuniyoshi, Y. (2010). “Athlete robot with applied

human muscle activation patterns for bipedal running,” in Humanoid Robots

(Humanoids), 2010 10th IEEE-RAS International Conference on (Nashville,

TN), 498 –503.

Oehlke, J., Beckerle, P., Seyfarth, A., and Sharbafi, M. A. (2018). Human-like

hopping in machines. Biol. Cybern. 112, 1–12. doi: 10.1007/s00422-018-0788-4

Oh, S., and Kong, K. (2014). “Realization of spring loaded inverted pendulum

dynamics with a two-link manipulator based on the bio-inspired coordinate

system,” in 2014 IEEE International Conference on Robotics and Automation

(ICRA) (Hong Kong), 310–315.

Oh, S., and Kong, K. (2017). High-precision robust force control of

a series elastic actuator. IEEE/ASME Trans. Mechatron. 22, 71–80.

doi: 10.1109/TMECH.2016.2614503

Oh, S., Salvucci, V., Kimura, Y., and Hori, Y. (2011). “Mathematical and

experimental verification of efficient force transmission by biarticular muscle

actuator,” in proceedings of theWorld Congress of the International Federation of

Automatic Control (IFAC) (Milano), 13516–13521.

Paine, N., Oh, S., and Sentis, L. (2014). Design and control considerations for

high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19,

1080–1091. doi: 10.1109/TMECH.2013.2270435

Park, Y., Paine, N., and Oh, S. (2018). Development of force observer in series

elastic actuator for dynamic control. IEEE Trans. Ind. Electron. 65, 2398–2407.

doi: 10.1109/TIE.2017.2745457

Poulakakis, I., and Grizzle, J. (2009). The spring loaded inverted pendulum as the

hybrid zero dynamics of an asymmetric hopper. Autom. Control IEEE Trans.

54, 1779–1793. doi: 10.1109/TAC.2009.2024565

Pratt, G. A., andWilliamson,M.M. (1995). “Series elastic actuators,” in Proceedings

1995 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Human Robot Interaction and Cooperative Robots, Vol. 1 (Pittsburgh, PA:

IEEE), 399–406.

Raibert, M. H. (1986). Legged Robots That Balance. Cambridge, MA:Massachusetts

Institute of Technology.

Rezazadeh, S., Hubicki, C., Jones, M., Peekema, A., Van Why, J., Abate, A., et al.

(2015). “Spring-mass walking with atrias in 3d: Robust gait control spanning

zero to 4.3 kph on a heavily underactuated bipedal robot,” in Proceedings of the

ASME 2015 Dynamic Systems and Control Conference (Columbus, OH).

Roozing, W., Li, Z., Medrano-Cerda, G. A., Caldwell, D. G., and Tsagarakis,

N. G. (2016). Development and control of a compliant asymmetric antagonistic

actuator for energy efficient mobility. IEEE/ASME Trans. Mechatron. 21, 1080–

1091. doi: 10.1109/TMECH.2015.2493359

Roozing, W., Ren, Z., and Tsagarakis, N. G. (2018). “Design of a novel 3-dof leg

with series and parallel compliant actuation for energy efficient articulated

robots,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA) (IEEE), 1–8.

Seipel, J., and Holmes, P. (2007). A simple model for clock-

actuated legged locomotion. Regular Chaotic Dyn. 12, 502–520.

doi: 10.1134/S1560354707050048

Seyfarth, A., Geyer, H., Günther, M., and Blickhan, R. (2002).

A movement criterion for running. J. biomech. 35, 649–655.

doi: 10.1016/S0021-9290(01)00245-7

Tsagarakis, N. G., Morfey, S., Cerda, G. M., Zhibin, L., and Caldwell, D. G.

(2013). “Compliant humanoid coman: Optimal joint stiffness tuning for modal

frequency control,” in 2013 IEEE International Conference on Robotics and

Automation (Karlsruhe), 673–678.

van Ingen Schenau, G. J., Bobbert, M. F., and Rozendal, R. H. (1987). The unique

action of bi-articular muscles in complex movements. J. Anatomy 155, 1–5.

Yamaguchi, J., Soga, E., Inoue, S., and Takanishi, A. (1999). “Development of a

bipedal humanoid robot-control method of whole body cooperative dynamic

biped walking,” in Proceedings 1999 IEEE International Conference on Robotics

and Automation (Cat. No.99CH36288C), Vol. 1 (Detroit, MI).

Zajac, F. E. (1993). Muscle coordination of movement: a perspective. J. Biomech.

26, 109–124. doi: 10.1016/0021-9290(93)90083-Q

Zajac, F. E., Neptune, R. R., and Kautz, S. A. (2002). Biomechanics and

muscle coordination of human walking. Part I: introduction to concepts,

power transfer, dynamics and simulations. Gait Posture 16, 215–232.

doi: 10.1016/S0966-6362(02)00068-1

Zajac, F. E., Neptune, R. R., and Kautz, S. A. (2003). Biomechanics

and muscle coordination of human walking: part II: lessons from

dynamical simulations and clinical implications. Gait Posture 17, 1–17.

doi: 10.1016/S0966-6362(02)00069-3

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Lee and Oh. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 21 May 2019 | Volume 13 | Article 1767

https://doi.org/10.1109/IROS.2013.6696541
https://doi.org/10.1007/s12555-014-0343-6
https://doi.org/10.1098/rspb.1998.0388
https://doi.org/10.1098/rspb.2006.3637
https://doi.org/10.1109/TRO.2010.2052398
https://doi.org/10.1109/TMECH.2016.2628870
https://doi.org/10.1109/TRO.2017.2776287
https://doi.org/10.1109/JRA.1987.1087068
https://doi.org/10.1142/S0219843616500079
https://doi.org/10.1007/s10514-015-9479-3
https://doi.org/10.3390/act6030026
https://doi.org/10.1109/LRA.2017.2658020
https://doi.org/10.1007/s00422-018-0788-4
https://doi.org/10.1109/TMECH.2016.2614503
https://doi.org/10.1109/TMECH.2013.2270435
https://doi.org/10.1109/TIE.2017.2745457
https://doi.org/10.1109/TAC.2009.2024565
https://doi.org/10.1109/TMECH.2015.2493359
https://doi.org/10.1134/S1560354707050048
https://doi.org/10.1016/S0021-9290(01)00245-7
https://doi.org/10.1016/0021-9290(93)90083-Q
https://doi.org/10.1016/S0966-6362(02)00068-1
https://doi.org/10.1016/S0966-6362(02)00069-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


ORIGINAL RESEARCH
published: 17 May 2019

doi: 10.3389/fnbot.2019.00020

Frontiers in Neurorobotics | www.frontiersin.org 1 May 2019 | Volume 13 | Article 20

Edited by:

Kosta Jovanovic,

School of Electrical Engineering,

University of Belgrade, Serbia

Reviewed by:

Vincent Bonnet,

Université Paris-Est Créteil Val de

Marne, France

Stefan S. Groothuis,

University of Twente, Netherlands

Veljko Potkonjak,

Belgrade Metropolitan University,

Serbia

*Correspondence:

David Rodriguez-Cianca

david.rodriguez.cianca@vub.be

Received: 23 January 2019

Accepted: 17 April 2019

Published: 17 May 2019

Citation:

Rodriguez-Cianca D, Weckx M,

Jimenez-Fabian R, Torricelli D,

Gonzalez-Vargas J,

Sanchez-Villamañan MC, Sartori M,

Berns K, Vanderborght B, Pons JL

and Lefeber D (2019) A Variable

Stiffness Actuator Module With

Favorable Mass Distribution for a

Bio-inspired Biped Robot.

Front. Neurorobot. 13:20.

doi: 10.3389/fnbot.2019.00020

A Variable Stiffness Actuator Module
With Favorable Mass Distribution for
a Bio-inspired Biped Robot
David Rodriguez-Cianca 1,2*, Maarten Weckx 1, Rene Jimenez-Fabian 1, Diego Torricelli 2,

Jose Gonzalez-Vargas 2,3, M.Carmen Sanchez-Villamañan 2, Massimo Sartori 4,

Karsten Berns 5, Bram Vanderborght 1, J. Luis Pons 2 and Dirk Lefeber 1

1 Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel (VUB) and Flanders Make, Brussels, Belgium,
2Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain, 3Ottobock GmbH, Duderstadt, Germany,
4Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands, 5 Robotics Research Lab,

University Kaiserslautern, Kaiserlslautern, Germany

Achieving human-like locomotion with humanoid platforms often requires the use

of variable stiffness actuators (VSAs) in multi-degree-of-freedom robotic joints. VSAs

possess 2 motors for the control of both stiffness and equilibrium position. Hence, they

add mass and mechanical complexity to the design of humanoids. Mass distribution of

the legs is an important design parameter, because it can have detrimental effects on the

cost of transport. This work presents a novel VSA module, designed to be implemented

in a bio-inspired humanoid robot, Binocchio, that houses all components on the same

side of the actuated joint. This feature allowed to place the actuator’s mass to more

proximal locations with respect to the actuated joint instead of concentrating it at the

joint level, creating a more favorable mass distribution in the humanoid. Besides, it

also facilitated it’s usage in joints with centralized multi-degree of freedom (DoF) joints

instead of cascading single DoF modules. The design of the VSA module is presented,

including it’s integration in the multi-DoFs joints of Binocchio. Experiments validated the

static characteristics of the VSA module to accurately estimate the output torque and

stiffness. The dynamic responses of the driving and stiffening mechanisms are shown.

Finally, experiments show the ability of the actuation system to replicate the envisioned

human-like kinematic, torque and stiffness profiles for Binocchio.

Keywords: variable stiffness actuator, bio-inspired biped robot, mass distribution, muti-DoFs joints, human-like

locomotion

1. INTRODUCTION

Creating bipedal robots that can walk stably and efficiently as humans has been an open
challenge since long time in robotics research (Vukobratović and Borovac, 2004). Traditional
approaches focus on multiple degree-of-freedom (DoF) platforms controlled by classic control
paradigms that ensure quasi-static stability, e.g., the Zero-Moment Point (ZMP) (Vukobratović,
1975; Vukobratović and Borovac, 2004). Despite their good performance on flat terrain,
most of these robots show important limitations, such as high energetic costs, slow walking
motion, poor robustness on uneven terrains, and unnatural kinematic patterns (Torricelli et al.,
2016). Different from this approach, the “dynamic walking” principle emerged to improve the
human-like properties of bipeds, realizing natural, and efficient motion with little or no actuation
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(McGeer, 1990; Collins et al., 2005; Hobbelen and Wisse,
2005). These solutions, while minimizing kinematic and control
complexity, show poor stability, versatility and controllability
in realistic environments. Compliant actuation has been
proposed to narrow the gap between these two approaches.
In humans, the intrinsic compliant properties of joints and
muscles are at the basis of robust, energy efficient, and
versatile locomotion. Humans modulate the stiffness of the
joints through the co-contraction of agonist and antagonist
muscles, producing large ranges from rigid to highly compliant
behaviors (Sartori et al., 2015). These mechanisms are central
for adapting to a large variety of terrains (Ferris et al., 1998)
and for naturally adjusting to biomechanical and energetic
demands (Farley and Gonzalez, 1996).

Series Elastic Actuators (SEAs) introduce compliance to
humanoid robotics, resulting in safer human-robot interaction,
shock absorption, and greater energy efficiency compared to stiff
actuators (Vanderborght, B. et al., 2013). However, modulation of
joint stiffness can only be achieved through impedance control of
the SEAs (Kim et al., 2012; Tsagarakis et al., 2013; Paine et al.,
2014; Pierce and Cheng, 2014; Negrello et al., 2016). Variable
Stiffness Acuators (VSAs), on the other hand, can inherently
change the mechanical compliance of a humanoid’s joints, having
positive outcomes in terms of energy efficiency, robustness
against disturbances and similarity with human motions due to
their inherent compliant behavior. Previous research regarding
the application of VSAs in humanoids showed modulation of
walking velocity and step length in passive dynamic walkers
(Huang et al., 2013), and the postural control of a biped
(Hettich et al., 2011). Currently, only few examples of bipeds
with VSAs can be found: Veronica (Huang et al., 2013), Lucy
(Vanderborght et al., 2008), and BLUE/miniBLUE (Enoch and
Vijayakumar, 2015). Several working principles for actuators
with variable-stiffness capabilities have been proposed for various
robotic applications. Examples of these are the Compliant
Asymmetric Antagonistic Actuator (Roozing et al., 2015), vsaUT-
II (Groothuis et al., 2014), AwAS-II (Jafari et al., 2012), Variable
Torsion Stiffness Actuator Schuy et al. (2013), Mechanically
Adjustable Compliance and Controllable Equilibrium Position
Actuator (MACCEPA) (VanHam et al., 2007), and ARES (Cestari
et al., 2015). Because of the importance of multi-DoF joints in
the human body, bio-inspired robotic applications often require
multi-DoF actuated joints (Mizuuchi et al., 2007; Potkonjak
et al., 2011; Nakanishi et al., 2012). In these applications,
nonetheless, no variable stiffness capabilities were implemented.
Instead, the compliance of such actuators was fixed. The research
on multi-DoF actuators with variable stiffness is, therefore,
still limited. Generally, cascades of single-degree of freedom
actuators are used (Catalano et al., 2011). One of the few
examples that follows a more integrated approach is the multi-
DoF actuator with variable stiffness based on two antagonistic
setups of ANLES actuators (Koganezawa et al., 2012). Another
example, based on the MACCEPA concept, is proposed in
Weckx et al. (2014). VSAs bring about increased mechanical
complexity and weight since generally two motors are required
for the independent control of both equilibrium position and
stiffness. Mass distribution of the legs is an important design

parameter, because it can have detrimental effects on the cost of
transport. It is reported that the net metabolic cost of walking
increases with more distal location of increased load mass.
Hence increased load mass at the foot has greater effect on
the metabolic cost than at the thigh (Browning et al., 2007;
Schertzer and Riemer, 2014). Added mass to lower extremities
also increases the swing leg’s moment of inertia about the
hip joint, resulting in higher moments at the knee and ankle
compared to normal walking (Royer and Martin, 2005). This
in turn leads to heavier motors in a humanoid’s legs. Mass and
the distribution of mass are therefore key aspects in the design
of humanoids.

This work presents a novel VSA module designed to be
implemented in the sagittal DoFs of the legs of Binocchio,
a bio-inspired humanoid robot designed as platform for the
validation of biomimetic controllers and the understanding of
the neuromechanical processes of human movement, including
the role of compliance during walking. The presented VSA
module places both motors, the driving and the stiffening
motor, on the same side of the actuated joint, previously not
possible with existing concepts, and in-line with the housing
link. This feature allows to place the actuator’s mass to more
proximal locations with respect to the actuated joint instead
of concentrating it at the joint level, creating a more favorable
mass distribution in the design of the humanoid’s leg . Besides,
it also facilitates it’s usage in joints with centralized multi-
DoFs joints instead of cascading single DoF modules . These
innovations have been illustrated with the implementation of
the VSA module in the compliant multi-DoF joints of the
humanoid biped Binocchio. The requirements for the VSA
module, it’s overall working principle, mechanical design and
first prototype are presented in section 2. Section 2.5 shows
the integration of the proposed actuator in the multi-DoFs
joints of Binocchio. Subsequently, the static characteristics of
the VSA module, the dynamic responses of the driving and
stiffness modulation mechanisms and the ability of the actuator
to follow human-like kinematics, torque and stiffness profiles are
experimentally validated in section 3. Discussion of the presented
results and conclusions from this work are given in sections
4 and 5.

2. A NOVEL VSA MODULE FOR A
BIO-INSPIRED HUMANOID ROBOT

2.1. Requirements
Figure 1A shows the defined joint actuation scheme for the
Binocchio biped, based on a study of the key principles of
human locomotion with a special focus on the relevance of
lower limb joints’ compliance during walking (Torricelli et al.,
2016). The actuator presented in this paper is aimed at being
implemented in all the biped’s sagittal joints, i.e., waist, hip,
knee and ankle as, based on the previous work, variable stiffness
seems to play a bigger role in these DoFs during ground-level
human locomotion. We therefore used modeling and simulation
approaches in combination with evidence from human studies
in order to define the actuation requirements. We employed a
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FIGURE 1 | Actuation requirements for Binocchio. (A) Kinematic and actuation concept, (B) Estimates of human stiffness modulation for the human ankle and knee

sagittal joints. (C) Kinematic and actuation profiles derived from the human-like B4LC simulator.

simulated biomimetic biped, called B4LC (Luksch and Berns,
2010), i.e., Bio-inspired Behavior-Based Bipedal Locomotion
Control, to generate realistic estimates of human-like kinematic
and torque patterns based on the biped’s weight (35 kg) and
height (170 cm) for level ground walking at a cadence of 1.4
s/stride (Figure 1C). As all the VSA actuators were meant to
have the same specifications, we based the requirements on
the maximum values observed in the simulations. We defined
a maximum required range of motion (ROM) of 90◦ and a

maximum torque of 40 Nm. As for the requirements on the joint
stiffness modulation, we used a model, developed by Sartori et al.
(2015), to predict stiffness changes in the joints throughout the
gait cycle for the knee and ankle joints (Figure 1B). Based on
this model we defined a required stiffness range between 0 and
5 Nm/deg. As for the hip joint, we defined the same stiffness
range as in agreement with the results presented in Shamaei et al.
(2013). Since no evidence was available on the stiffness variation
in the waist, the same stiffness range was defined.
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2.2. Conceptual Development
The VSA actuator presented in this work is based on the
MACCEPA concept (Van Ham et al., 2007). In the original
concept (Figure 2A), the spring is housed on the output link,
which means both the mechanisms used to drive the lever arm
and the one to change the pre-compression on the spring, P, are
housed on different links of the joint (namely input and output
link, respectively). In contrast, the novel MACCEPA concept
presented in this paper (Figure 2B) allows both mechanisms to
be housed in the input link. This represents an advantage since
the actuator’s mass can be placed in more proximal locations to
reduce the inertia of the output link. Besides, since the actuator’s
components are housed on the same link of the joint (the input
link), the remaining link (the output link) can house a second
actuator to drive a second DoF by means of a universal joint,
where each of the actuators drive one of the axis of the 2 DoFs
joint. A strap is attached to the output link (OL) at a distance
D from the axis of rotation, denoted by O in the diagram. The
strap is subsequently guided through the lever arm (LA). The
strap is guided through the joint’s axis of rotation O to a linear
spring housed on the input link, to which it is rigidly attached.
The effective length of LA, B, is defined as the distance between
the axis of rotation and the point where the strap makes initial
contact with LA. When LA and OL are aligned, the force exerted
by the strap, due to the initial deformation of the spring, or
initial pre-compression, is aligned and no torque is exterted on
OL. When α is different from zero, an additional deformation
is added to the strap, which exerts a force on the spring FS. The
exerted force is no longer aligned with OL, resulting in a torque
determined by the perpendicular component of FS with respect
to the OL at a distance D from the joint’s center of rotation. By
changing the initial pre-compression force P in the spring, the
actuator’s output stiffness can be adjusted. One of the practical
features of the proposed design is that the actuator’s output
torque and stiffness characteristics (or quasi-stiffness Rouse, E.J.
et al., 2013) can be easily and accurately predicted using only
the deviation angle α, and the force in the strap, FS(t), or the
spring linear deformation, p(t), induced by the compression, or
stiffening mechanism. The torque-angle relationship is given by

T = T(α, p) = D · fS

= k
(

A(α)+ B+ p(t)− D
) BD

A(α)
sin(α) (1)

or

T = T(α, FS) = FS(t)
BD

A(α)
sin(α) (2)

where FS(t) is the force in the strap and

A(α) =
√

B2 + D2 − 2BD cos(α) (3)

is the length between the attachment points of the strap at the
output link and the lever arm. T = T(α, FS) can be used to
improve the torque prediction if FS is directly measured, which is
convenient in situations when the spring stiffness k is unknown
or non-linear. The force in the strap and the deformation

FIGURE 2 | Schematics of the MACCEPA: (A) conventional design showing

the elastic element spanning the actuated joint and (B) novel concept showing

the elastic element housed in the reference body (Link 1).

of the spring induced by the compression mechanism are
related through

p(t) =
1

k
FS(t)− A(α)− B+ D. (4)

When p(t) = p is held constant, the force in the spring due to it’s
initial deformation is P = k · p = FS(0) when the actuator is at
equilibrium position (α = 0).

This relatively simple representation, given by (1)–(4), can
effectively be used to estimate the actual output torque for design
purposes as well as in closed-loop feedback schemes. The partial
derivative of (1) with respect to α yields the output stiffness S
of the actuator (or quasi-stiffness) as a function of α for a given
initial spring deformation p:

S = S(α, p) =
dT(α, p)

dα

= k
(

A(α)+ B+ p(t)− D
)

×
BD

A(α)

[

cos(α)−
(

BD sin2(α)

A(α)2

)]

+ k

(

BD sin(α)

A(α)

)2

(5)

or

S = S(α, FS) =
dT(α, FS)

dα
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= FS(t)×
BD

A(α)

[

cos(α)−
(

BD sin2(α)

A(α)2

)]

+ k

(

BD sin(α)

A(α)

)2

(6)

if the force in strap is available.
When the system is at it’s equilibrium position, S accounts

for the apparent stiff reaction of it’s output link to external
perturbations producing a deviation angle from the equilibrium
position, as in the case of a passive torsional spring.

2.3. Mechanical Design
Figure 3A shows the mechanical design of the proposed actuator
based on the previously explained concept. The system consists of
twomechanisms: the drivingmechanism (DM) and the stiffening
mechanism (SM), connected by means of a Kevlar R© strap.

The driving mechanism defines the position of the lever arm,
and as such the position where the actuator does not generate
any torque, i.e., the equilibrium position. The purpose of the
stiffening, or pre-compression, mechanism is 2-fold: On the one
hand, it transforms any deviation angle between the lever arm
and the output link into a deformation of the spring during
the operation of the actuator. On the other hand, the stiffening
mechanism is able to set the initial deformation on the spring
to adjust the level of compliance, or stiffness, of the output link
when interacting with the environment. Figure 4 illustrates the
working principle of the actuator.

FIGURE 3 | (A) CAD drawing of the VSA actuator design. (B) Prototype of the

VSA.

2.3.1. Driving Mechanism
The driving mechanism consists of a custom-made inverted
slider-crank configuration that drives the lever arm (Figure 3A).
A motor (EC-4pole 22, 200 W, 24 V, Maxon motor) in
combination with a ball spindle drive (GP 32S Maxon motor,
1 : 1 transmission ∅10 × 2 mm ball) acts as the slider. The
spindle’s nut is connected to the crank, allowing it to rotate
with respect to the nut. The crank itself is rigidly connected to
the lever arm. The motor-spindle-drive combination is hinged
with respect the input link so that the slider’s length equals
the distance between the crank-nut connection and the hinge
point. The angle between the crank and the lever arm, the
length of the crank, and the relative position of the hinge to the
axis of rotation can be used to tune the transmission between
spindle drive and the lever arm. When the spindle drive rotates,
it transforms the rotational movement of the motor into a
translation of the nut. When the position of the nut changes
along the spindle screw, the length of the slider changes. This,
in turn, changes the configuration of the inverted slider-crank
and alters the angular position of LA. The linear force exerted
by the spindle drive, therefore, is transformed into torque on
the lever arm. A strap is fixed to the free end of the OL and
enters the LA through a pair of pulleys. It exits the LA through
a second pair of pulleys that guides it through the joint’s axis
of rotation to avoid parasitic torques. To accommodate this, the
axis of rotation is not a continuous axle, but rather two axles,
one on each side of the lever arm. The strap is subsequently
guided toward the stiffening mechanism where it is attached to
the shuttle.

FIGURE 4 | Illustration of the working principle of the actuator. In the top

figure, the actuator is shown in a neutral position with no deviation angle and

no pre-compression. The force exerted by the strap on the OL, due to an initial

spring pre-compression, is aligned with it and no torque is produced. In the

bottom figure the module is shown with a deviation angle α and an initial

pre-compression. The strap pulls the shuttle over the SM nut, compressing

the spring. The force exerted by the strap is no longer aligned with the OL and

produces a torque around the axis of rotation that tends to re-align the LA and

the OL. The pre-compression nut can be moved toward the pre-compression

motor to give an initial compression to the spring and, as a consequence,

modify the stiffness of the actuator.
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2.3.2. Stiffening Mechanism
The stiffening mechanism uses a carriage system to transform a
deviation angle α into a deformation of the spring. A motor (EC-
4pole 22, 200 W, 24 V, Maxon motor) directly connected in-line
with a trapezoidal spindle drive (Spindle Drive GP 32 S, Maxon
motor, 4.1 : 1 transmission TR ∅10 × 2 mm) is attached to the
input link. The spindle’s screw is centrally positioned through a
carriage system. The spindle’s nut is located on the far end of the
motor side. As indicated in Figure 3A, the shuttle consists of a
set of clamps, Platform A, and Platform B. The shuttle is centered
around the spindle and is able to translate linearly relative to it. A
clamp rigidly attaches the strap to the shuttle through platformA.
A die spring (68.68 N/mm, Lesjöfors) is placed around the screw
and is held in place by Platform B on one end and the spindle’s
nut on the other end. By changing the position of the nut with
the stiffening motor while the shuttle is kept in-place, the initial
compression of the spring is changed. When a force, parallel to
the screw and directed away from the motor side, is applied to
the shuttle, the spring compresses against the nut.

2.4. Prototype
Figure 3B shows the mechanical construction of the first
prototype. The driving and the stiffening mechanisms are
attached to different sides of an aluminum H profile. As
for the materials, we employed aluminum 7,075 for most of
the actuator’s parts except for the joint’s center of rotation,
where we chose stainless steel. The DM includes two 14-bit
magnetic encoders (AS5048A, Austriamicrosystems), to measure
the deviation angle between LA and OL (α) and the angular
position of the output link with respect to the input link. The
shuttle accommodates a donut compression load cell (SS1108
4448N, Toledo Transducers) between the spring and Platform
B to measure the force acting on the strap (FS) and derive the
output torque. The actuator has a total weight of 1.2 kg excluding
the weight of the H-profile and can generate a maximum torque
of 40.0 Nm. The maximum spring compression is 21.7 mm,
resulting in a maximum force in the strap of around 1, 500 N. The
main configuration parameters of the actuator are summarized in
Table 1. These values were the result of an optimization process

TABLE 1 | Main actuator parameters.

Parameter Nomenclature Nominal value

Strap length change A(α) –

Effective length of lever arm B 46.7 mm

Effective length of fixed link D 56.0mm

Spring stiffness k 68.7 N/mm

Spring deformation p(t) –

Force in the spring FS(t) –

Spring pre-compression P –

Deviation angle α(t) –

Lever arm angle ϕ(t) –

Output link angle θ (t) –

to minimize the lever arm energy requirements for the specified
torque trajectories.

2.5. Integration in the
Two-Degree-Freedom Joints of Binocchio
A common approach to construct multi-DoF joints in robotics
is cascading single-DoF joints. This approach can become bulky
and complex when VSAs are implemented due to the required
extra motor and stiffening mechanism. A Cardan centralizes 2
DoFs in one joint and therefore is an excellent alternative to
reduce the complexity and size of multi-DoFs joints. It consists
of two axes rigidly and orthogonally connected to each other in
the center of the joint. The 2-DoFs joints of the biped are driven
by Cardan, or universal, joints. Each of the axes drives either the
saggital or the frontal DoF of the joint. As shown in Figure 5,
an H-shaped and a U-shaped structural profile are connected by
means of bearings to the sagittal and frontal axis, respectively,
of the Cardan. The VSA module is housed on the custom-
made H-profile, driving the sagittal axis while a MACCEPA-
based SEA module, presented in Rodríguez-Cianca et al. (2015),
is housed on the U-profile, driving the frontal axis. Figure 5
shows a magnified view of the biped’s 2-DoF ankle joint and an
illustration showing the construction of the Cardan joint. This
modular construction is used in the entire biped for the ankle, hip
and trunk joints. This results in a mass-wise human-like, tapered
leg with one SEA housed on the ankle, one VSA in the shank,
2 VSAs in the thigh, one SEA on the hip, and one VSA in the
trunk (Figure 6).

3. EXPERIMENTS

3.1. VSA Characterization
The actuator’s output torque and compliant behavior is a function
of the initial spring pre-compression P and deflection angle α.We
carried out two static tests in order to characterize this behavior

FIGURE 5 | Binocchio’s 2 DoFs ankle joint with a magnified view of the

construction of the Cardan joint.
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FIGURE 6 | The Binocchio biped with the VSA module implemented in it’s

sagittal DoFs.

and compare it with the theoretical models. We attached both
the actuator and the output link to an external rigid frame, while
varying the α angle by acting on the driving mechanism. We
recorded the resulting torque Text by means of a bidirectional
load cell (LSB200 445 N, FUTEK) placed between the output
link and the external frame. We repeated the experiment for
different values of initial compressions: 50 , 250 , 500, and 750 N,
corresponding to percentages of the maximum pre-compression
values of 3.3, 16.6, 33, and 50%, respectively. The readings of
the internal and external load cells, as well as the lever arm
encoder, where captured at a sample frequency pf 1 kHz by
a real-time data-acquisition (DAQ) system (PCI-6229 National
Instruments DAQ board on an Intel Core2 Duo 2.16 GHz
C5102 Beckhoff Automation industrial computer running under
MathWorks Real-Time Windows Target R© 4.2 and Simulink R©

8.1 on Microsoft Windows R© XP). Each of the actuator’s motor
was driven by a commercial motor drive (ESCON 70/10 700W,
Maxon motor) set in velocity control mode commanded by a
proportional-integral- derivative (PID) force controller, in the
case of the SM motor, and a proportional (P) position controller,
in the case of the DM motor, with external reference inputs
commanded by the DAQ system. Figure 7A shows the output
torque as a function of the deflection angle α for different
constant values of the initial compression force P in the spring
using a sinusoidal angular displacement command for the lever
arm with a 10◦ amplitude at 0.5-Hz. A comparison is made

FIGURE 7 | Experimentally validated characteristics of the proposed actuator:

(A) torque-angle characteristic and (B) stiffness-angle characteristic.

between the externally measured torque Text with respect to
the theoretical approximations provided by (1) and (2). Using
T(α, p), the root mean square error (RMSE) is 7.0%, with a
maximum normalized error of 21.5%. Using T = T(α, FS), the
RMSE is reduced to 6.1% with a maximum normalized error of
20.7%, possibly thanks to some dynamic effects captured by the
internal load cell, errors when measuring the spring deformation
or due to the fact that the spring constant k might not be
perfectly lineal.

Figure 7B compares the output stiffness estimation using (5)
and (6) for different values of the initial spring deformation.
The comparison is also made against the instantaneous
approximation of the derivative of Text(t) with respect to
α(t) using finite differences, denoted by Sext. This numerical
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approximation of S depicts a tendency similar to that obtained by
the analytical estimation, showing a stiffening behavior as both
the initial spring deformation (P) and deviation angle (α) values
increase. The lack of accuracy of Sext, specially at higher values of
P, could be explained by numerical errors due to the presence of
noise in the input signals and possibly due to very small errors on
the angle measure, which induces larger output torque estimation
errors at higher pre-compression values.

3.2. Closed-Loop Frequency Response
3.2.1. Driving Mechanism
The torque control of the actuator is carried out by means of the
driving mechanism. Similar to former MACCEPA designs, the
frequency response of this mechanism depends on the level of
initial deformation applied to the actuator’s spring. In order to
determine this influence, we set the torque controller to follow
a chirp trajectory with a peak amplitude of 10 Nm centered
around 0 Nm in a frequency range between 0.05 to 10 Hz during
40 s for three different levels of initial spring compression P
of 250 N (16% of Pmax), 500 N (33%) and 750 N (50%), while
the output link was kept locked. The torque controller used the
approximation T = T(α, FS) to estimate the output torque based
on the position of the lever arm, α, measured by a magnetic
encoder, and the force in the strap, FS, measured by a load cell
placed in series with the spring. The lever arm was controlled by
the DM motor, which was set in velocity control mode with a
nested limiting current controller using a proportional-integral
closed loop controller using the torque estimation as feedback.
The system is able to exhibit different frequency-response
characteristics as a function of the initial pre-compression force,
as can be seen in Figure 8. The controller presented a bandwidth,
calculated as the cutoff frequency at an attenuation of −3 dB, of
5.27 , 6.36, and 6.53 Hz for initial pre-compression values of 250
, 500, and 750 N, respectively.

3.2.2. Stiffening Mechanism
The stiffening mechanism of the actuator is responsible of the
output stiffness variation. Actuator’s output stiffness is estimated
using the approximation S = S(α, FS) by measuring the linear

FIGURE 8 | Frequency response of the driving mechanism.

force in the strap FS and the lever arm deviation angle α. The
bandwidth of this mechanism was calculated in the absence of
any external perturbance, i.e., α = 0. By modulating the force
in the strap, therefore, the passive stiffness of the system can
be modified. We used a simple proportional control loop to
regulate the force in the Kevlar strap FS by means of the driving
mechanism motor while set in velocity control mode. The force
controller was set to follow a chirp signal with a frequency swept
from 0.05 Hz to 10.00 Hz in 40 s and an amplitude of 350.0 N
centered around 400.0 N, corresponding to an output stiffness
in the range [0.25-3.68] Nm/deg. The frequency response of the
stiffening mechanism is shown in Figure 9. For the specified
force command, the mechanism presents an average bandwidth
of 2.23 Hz.

3.3. Human-Like Profiles Tracking
The third set of experiments aimed at testing the ability of the
VSA actuator to replicate the human-like torque, kinematics, and
stiffness profiles defined in section 2.1. Results on the human-like
performance of the actuator for the biped’s hip, knee and ankle
joints are reported in Figure 10.

To reproduce the human-like joint angle characteristics
(Figure 10, left), the output link of the actuator was left free to
move. The output angle was measured by means of a magnetic
encoder (AS5048, AMS) with 14-bit of resolution, and used
as feedback in a PID controller. In order to cancel the effect
of gravity, the actuator was placed horizontally. Experiments
were performed for two conditions: in the presence and in the
absence of an external load, and repeated for hip, knee and ankle
reference trajectories. The output load consisted of a mass of
2.5 kg attached at a distance of 15 cm from the actuator’s axis
of rotation, generating an inertia of 0.05625 kg m2. All tracking
experiments were performed at a fixed pre-compression value of
200 N. PID values were manually tuned for each condition so
that overshoot was limited to 5%, and data were collected for 15
consecutive cycles, which were segmented offline to get the mean
and standard deviation values.

At the hip joint the actuator can follow the desired kinematic
trajectory with a RMSE of 2.71 ± 0.41◦, representing a

FIGURE 9 | Frequency response of the stiffening mechanism.
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normalized error of 5.89 %. In the presence of an external load,
the RMSE increased to a value of 6.71± 0.32◦ (14.59%). The knee
shows an RMSE of 1.43± 0.45◦ (2.86 %) without the presence of
any load, and of 7.18 ± 0.34◦ (14.33 %) in the presence of an
external load. At the ankle joint, RMSE values were 1.41 ± 0.40◦

(4.33 %) and 5.51 ± 0.22◦ (16.96 %), without and with external
load, respectively.

To test the output torque tracking performance for hip, knee
and ankle joints, the generated output torque was estimated by
T = T(α, FS) and used as feedback to a PI controller. The
actuator could accurately follow the desired torque trajectories
for the three different joints (Figure 10, center). It generated a
maximum torque of 40 Nm, with peak to peak values of 65
Nm at the specified gait frequency. The maximum RMSE was
5.89 ± 0.47 Nm (9.14 %), at the hip joint. The knee and ankle
joint showed an RMSE of 2.98 ± 0.24 Nm (10.37 %), and 1.62
± 0.14 (6.90 %) respectively. These results show the actuator
is able to accurately follow the desired trajectories with small
tracking errors.

To generate the human-like stiffness modulation profiles
(Figure 10, right), we imposed a stiffness trajectory provided
by simulation (Sartori et al., 2015) on human stiffness during

walking for a speed of 1.4 s/stride. The stiffness trajectory was
then converted into a desired force in the strap (FS) using the
approximation provided by (6) and used as setpoint for the
stiffening controller. For this experiment, the angle α was kept
constant at 0◦. Experiments show a mean error of 1.036 ± 0.001
Nm/deg (26.61 %) for the knee and 0.424 ± 0.017 Nm/deg
(10.14 %) for the ankle joint. In these experiments, the maximum
required force in the spring (FS) was 790 N and 870 N for the
knee and ankle, respectively. Hip measurements could not be
performed due to the lack of human reference data on this joint.

4. DISCUSSION

Experiments showed that the theoretical model of the actuator
provides a good approximation of it’s output torque and
stiffness (Figures 7A,B), which suggests that the actuator
can be controlled using a real-time model-based approach
instead of relying on load cells, as done by most torque-
controlled humanoids, with also direct advantages onmechanical
complexity. The frequency response of the driving and variable
stiffness mechanisms showed an average bandwidth of 6 and 2
Hz respectively (Figures 8, 9). In practical terms, the system can

FIGURE 10 | Human-like performance of the actuator, in terms of kinematics, torque, and stiffness profiles in comparison with those generated by the B4LC biped

simulator.
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go from an initial output stiffness of 0 to 5 Nm/deg in about
0.5 s in the absence of external perturbations. It is important to
note that these results strongly depend on the used controller
and that the main purpose of the tests was to show the ability
of the system to change it’s frequency response as a function of
the stiffness settings. Other control strategies are currently being
explored in order to achieve a better performance. However,
with the current control strategy, the actuator could effectively
modulate it’s output position, torque and stiffness in the same
range, amplitude and frequency as human joints during walking
based on our simulations, as it can be concluded from the
small tracking errors observed in Figure 10. The actuator could
generate a maximum torque of 40 Nm, with peak to peak values
of 65 Nm at the specified gait frequency.

This, in combination with the high position, torque and
stiffness control accuracy, suggests the actuator could perform
the desired function when implemented in the robot. However,
in the current state of the research, these results not yet allow
for a conclusive assessment of the biped’s performance given the
tracking accuracy of the actuator, and other additional higher
level control strategies might be required to compensate for the
existence of tracking errors.

As presented in section 2.5, the current design only allows
to implement 2 compliant actuators (2 VSAs, 2 SEAs or 1 VSA
and 1 SEA) into one centralized joint using a cardan. If a third
DoF is required, for instance, it becomes necessary to cascade a
third actuator connected to the 2-DoF module (see Figure 6), as
it’s done in the case of the hip and the waist of Binocchio (see
Figure 1A). However, based on an analysis done in a previous
study from the same authors providing an overview of the key
principles of human bipedal walking (Torricelli et al., 2016),
we believe it is fair to say that the maximum required amount
of DoFs per joint is limited to 3 in order to achieve human-
like biped locomotion, including walking under unperturbed and
perturbed conditions, and mostly at the hip and waist level.
Finally, due to the lack of data for the human waist, we assumed
that the same stiffness range as for the rest of the joints applied,
which is not necessary correct. However, from the authors point
of view, this is a question related to the design choices of the biped
robot itself, and not on the design and performance of the VSA,
which is the main focus of this study. Therefore, in the authors
opinion, the answers to these questions are out of the scope of this
paper, and will have to be further investigated in a future study.

Currently, compliance in humanoid robots is mostly used
with the goal of improving torque control and/or ensuring
safety to shocks, rather than truly replicating human-like joint
functions. Our results show that the presented VSA can span
from a rigid configuration, up to 5 Nm/deg, to values very
close to zero, resulting in a passive behavior of the joint useful
when the limb should move freely under inertial or gravitational
effects, e.g., during the swing phase. Besides, the actuator presents
a stiffening effect with respect to the deviation angle, which
has been found beneficial for locomotion (Seyfarth et al., 2006;
Vanderborght et al., 2011). Finally, in a previous study the
authors demonstrated the ability of the proposed VSA to reduce
it’s electrical energy consumption online during the execution
of repetitive tasks (Jimenez-Fabian et al., 2018). These results
suggest that the presented actuator could also reduce the energy

requirements of the Biped for walking due to the repetitive nature
of this task, which would highly reduce it’s cost of transport.

5. CONCLUSIONS

The understanding of human locomotion has led to usage of
VSAs in humanoids due to their inherent advantages. Striving
toward a more accurate biologically inspired robotic counterpart
of humans, these VSAs have to be implemented in mechanical
multi-DoF joints to replicate the rich variety of movements
human present. Furthermore, distribution of the extra mass
that these VSAs bring forth, due to the required additional
motors, is paramount for minimizing the cost of transport of
humanoids. However, research toward multi-DoF VSAs is still
scarce. This work presented and tested a novel VSA concept
designed to be implemented in the sagittal DoFs of the legs
of a bio-inspired humanoid robot designed as platform for the
validation of biomimetic controllers and the understanding of the
neuromechanical processes of human movement, including the
role of compliance during walking. The presented actuator allows
to place the motors of the VSA in-line with the actuated link and
house both motors on the same side of the actuated joint. This
not only places the actuator’s mass to more proximal locations
to create a more favorable mass distribution in the design of the
humanoid’s leg, but also facilitates it’s usage in multi-DoFs joints.
The construction of the VSA module, it’s main mechanisms, and
overall working principle have been explained. The equations
necessary to determine it’s characteristics have been derived
and experimentally validated. The experimental results confirm
the functionalities expected from the proposed concept and
the accuracy of it’s mathematical description. These innovations
have been finaly illustrated with the implementation of the VSA
module in the multi-DoF joints of the biped Binocchio.

Under a neuroscientific perspective, Binocchio represents a
biorobotic test bench that may serve in the future to understand
the biomechanical mechanisms of walking performance. The
replication of biological joint stiffness dynamics is an emerging
and largely unexplored issue that may produce significant
step changes in robots operating in real-life environments.
This has important implications in robotics, enabling to
experimentally validate the hypothesis that stiffness modulation
is a determinant for robust and efficient walking, providing
invaluable understanding of the neuro-mechanical processes
of human movement. Binocchio represents an advanced
mechatronic platform that can allow new biologically-motivated
walking and standing control algorithms to be directly validated
in real-life environment. Besides, beyond humanoid applications,
our work has also potential impact in the field of rehabilitation
and assistive robotics, where the role of variable compliance has
been recently identified as a key factor for the achievement of
truly human-like behavior.

AUTHOR CONTRIBUTIONS

DR-C, MW, MS-V, and DL conceptualization. DR-C, MW, RJ-F,
JG-V, and DT methodology. DR-C and RJ-F software. DR-C
and RJ-F validation. DR-C formal analysis. DT, BV, JP, and DL

Frontiers in Neurorobotics | www.frontiersin.org 10 May 2019 | Volume 13 | Article 2077

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rodriguez-Cianca et al. A VSA Module for a Bio-inspired Biped Robot

resources. DR-C and MW writing original draft preparation.
DR-C, MW, RJ-F, DT, JG-V, MS-V, MS, KB, BV, JP, and DL
writing review and editing. JP and DL funding acquisition.

FUNDING

This work was funded by the European Commission under
the FP7 project H2R Integrative Approach for the Emergence
of Human-Like Robotic Locomotion under grant no. 600698.

DR-C is a FWO-SB fellow of the Research Foundation -
Flanders (FWO).

ACKNOWLEDGMENTS

The authors would like to thank all researchers participating
in the H2R project, who contributed directly or indirectly
to the discussions leading to the design and development
here presented.

REFERENCES

Browning, R., Modica, J., Kram, R., and Goswami, A. (2007). The effects of adding

mass to the legs on the energetics and biomechanics of walking.Med. Sci. Sports

Exe. 39, 515–525. doi: 10.1249/mss.0b013e31802b3562

Catalano, M., Grioli, G., Garabini, M., Bonomo, F., Mancinit, M., Tsagarakis,

N., et al. (2011). “Vsa-cubebot: a modular variable stiffness platform for

multiple degrees of freedom robots,” in IEEE International Conference

on Robotics and Automation (ICRA) (Shanghai: IEEE), 5090–5095.

doi: 10.1109/ICRA.2011.5980457

Cestari, M., Sanz-Merodio, D., Arevalo, J.C., and Garcia, E. (2015). An adjustable

compliant joint for lower-limb exoskeletons. IEEE/ASME Trans. Mech. 20,

889–898. doi: 10.1109/TMECH.2014.2324036

Collins, S., Ruina, A., Tedrake, R., and Wisse, M. (2005). Efficient bipedal

robots based on passive-dynamic walkers. Science 307, 1082–1085.

doi: 10.1126/science.1107799

Enoch, A., and Vijayakumar, S. (2015). Rapid manufacture of novel variable

impedance robots. J. Mech. Robot. 8, 1–14. doi: 10.1115/1.4030388

Farley, C., and Gonzalez, O. (1996). Leg stiffness and stride frequency in human

running. J. Biomech. 29, 181 – 186.

Ferris, D., Louie, M., and Farley, C. (1998). Running in the real world: Adjusting

leg stiffness for different surfaces. Proc. R. Soc. Lond B Bio. Sci. 265:989–994.

Groothuis, S., Rusticelli, G., Zucchelli, A., Stramigioli, S., and Carloni,

R. (2014). The variable stiffness actuator vsaut-ii: mechanical design,

modeling, and identification. IEEE/ASME Trans. Mech. 19, 589–597.

doi: 10.1109/TMECH.2013.2251894

Hettich, G., Fennell, L., andMergner, T. (2011). “Double inverted pendulummodel

of reactive human stance control,” inMultibody Dynamics (Brussels).

Hobbelen, D. G., and Wisse, M. (2005). “Ankle joints and flat feet in dynamic

walking,” in Climbing and Walking Robots (Berlin; Heidelberg: Springer),

787–800.

Huang, Y., Vanderborght, B., Van Ham, R., Wang, Q., Van Damme, M.,

Guangming, X., et al. (2013). Step length and velocity control of dynamic

bipedal walking robot with adaptable compliant joints. IEEE/ASME Trans.

Mech. 18, 598–611. doi: 10.1109/TMECH.2012.2213608

Jafari, A., Tsagarakis, N., Sardellitti, I., and Caldwell, D. (2012). A new actuator

with adjustable stiffness based on a variable ratio lever mechanism. IEEE/ASME

Trans. Mech. 19, 1–9. doi: 10.1109/TMECH.2012.2218615

Jimenez-Fabian, R., Weckx, M., Rodriguez-Cianca, D., Lefeber, D., and

Vanderborght, B. (2018). Online reconfiguration of a variable-stiffness actuator.

IEEE/ASME Trans. Mech. 23, 1866–1876. doi: 10.1109/TMECH.2018.2841193

Kim, J., Lee, Y., Kwon, S., Seo, K, K. H., Lee, H., and Roh, K. (2012). Development

of the lower limbs for a humanoid robot. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (Vilamoura), 4000–4005.

Koganezawa, K., Takami, G., and Watanabe, M. (2012). “Antagonistic control of

multi-dof joint.” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (Vilamoura), 2895–2900.

Luksch, T., and Berns, K. (2010). “Control of bipedal walking exploiting postural

reflexes and passive dynamics,” in IEEE International Conference on Applied

Bionics and Biomechanics (ICABB) (Venice). Available online at: http://agrosy.

informatik.uni-kl.de/fileadmin/Literatur/Luksch10a.pdf

McGeer, T. (1990). Passive dynamic walking. I. J. Robotic Res. 9, 62–82.

doi: 10.1177/027836499000900206

Mizuuchi, I., Nakanishi, Y., Sodeyama, Y., Namiki, Y., Nishino, T., Muramatsu,

N., et al. (2007). “An advanced musculoskeletal humanoid kojiro,” in 2007

7th IEEE-RAS International Conference on Humanoid Robots (Pittsburgh, PA:

IEEE), 294–299.

Nakanishi, Y., Asano, Y., Kozuki, T., Mizoguchi, H., Motegi, Y., Osada, M.,

et al. (2012). “Design concept of detail musculoskeletal humanoid “kenshiro”-

toward a real human body musculoskeletal simulator,” in 2012 12th IEEE-

RAS International Conference on Humanoid Robots (Humanoids 2012) (Osaka:

IEEE), 1–6. doi: 10.1109/HUMANOIDS.2012.6651491

Negrello, F., Garabini, M., Catalano, M. G., Kryczka, P., Choi, W., Caldwell,

D. G., et al. (2016). “Walk-man humanoid lower body design optimization for

enhanced physical performance,” in IEEE International Conference on Robotics

and Automation (Stockholm), 1817–1824. doi: 10.1109/ICRA.2016.7487327

Paine, N., Oh, S., and Sentis, L. (2014). Design and control considerations for high-

performance series elastic actuators. IEEE/ASME Trans. Mech. 19, 1080–1092.

doi: 10.1109/TMECH.2013.2270435

Pierce, B., and Cheng, G. (2014). “Realising herbert: an affordable design

approach of an anthropometrically correct compliant humanoid robot,” in

IEEE-RAS International Conference on Humanoid Robots (Madrid), 7–12.

doi: 10.1109/HUMANOIDS.2014.7041310

Potkonjak, V., Svetozarevic, B., Jovanovic, K., and Holland, O. (2011).

“Anthropomimetic robot with passive compliance-contact dynamics and

control,” in 2011 19th Mediterranean Conference on Control & Automation

(MED) (Corfu: IEEE), 1059–1064. doi: 10.1109/MED.2011.5983000

Rodríguez-Cianca, D., Weckx, M., Torricelli, D., Gonzalez, J., Lefeber, D., and

Pons, J. L. (2015). “A compliant 2-dof ankle-foot system for a biologically

inspired humanoid robot,” in 2015 IEEE-RAS 15th International Conference on

Humanoid Robots (Humanoids) (Corfu: IEEE), 264–269.

Roozing, W., Li, Z., Medrano-Cerda, G., Caldwell, D., and Tsagarakis, N.

(2015). Development and control of a compliant asymmetric antagonistic

actuator for energy efficient mobility. IEEE/ASME Trans. Mech. 21, 1080–1091.

doi: 10.1109/TMECH.2015.2493359

Rouse, E.J., Gregg, R.D., Hargrove, L.J., and Sensinger, J.W. (2013). The difference

between stiffness and quasi-stiffness in the context of biomechanical modeling.

IEEE Trans. Biomed. Eng. 60, 562–568. doi: 10.1109/TBME.2012.2230261

Royer, T., and Martin, P. (2005). Manipulations of leg mass and moment of

inertia: effects on energy cost of walking. Med. Sci. Sports Exe. 37, 649–656.

doi: 10.1249/01.MSS.0000159007.56083.96

Sartori, M., Maculan, M., Pizzolato, C., Reggiani, M., and Farina, D. (2015).

Modeling and simulating the neuromuscular mechanisms regulating ankle and

knee joint stiffness during human locomotion. J. Neurophysiol. 114, 2509–2527.

doi: 10.1152/jn.00989.2014

Schertzer, E., and Riemer, R. (2014). Metabolic rate of carrying added mass: a

function of walking speed, carried mass and mass location. Appl. Ergonom. 45,

1422–1432. doi: 10.1016/j.apergo.2014.04.009

Schuy, J., Beckerle, P., Faber, J., Wojtusch, J., Rinderknecht, S., and von

Stryk, O. (2013). “Dimensioning and evaluation of the elastic element in a

variable torsion stiffness actuator,” in IEEE/ASME International Conference on

Advanced Intelligent Mechatronics (AIM) (Wollongong), 1786–1791.

Seyfarth, A., Geyer, H., Blickhan, S., Lipfert, S., Rummel, J., Minekawa, Y., and

Iida, F. (2006). “Running and walking with compliant legs,” in Fast Motions

in Biomechanics and Robotics, vol 340, eds M. Diehl and K. Mombaur (Berlin;

Heidelberg: Springer), 383–401.

Frontiers in Neurorobotics | www.frontiersin.org 11 May 2019 | Volume 13 | Article 2078

https://doi.org/10.1249/mss.0b013e31802b3562
https://doi.org/10.1109/ICRA.2011.5980457
https://doi.org/10.1109/TMECH.2014.2324036
https://doi.org/10.1126/science.1107799
https://doi.org/10.1115/1.4030388
https://doi.org/10.1109/TMECH.2013.2251894
https://doi.org/10.1109/TMECH.2012.2213608
https://doi.org/10.1109/TMECH.2012.2218615
https://doi.org/10.1109/TMECH.2018.2841193
http://agrosy.informatik.uni-kl.de/fileadmin/Literatur/Luksch10a.pdf
http://agrosy.informatik.uni-kl.de/fileadmin/Literatur/Luksch10a.pdf
https://doi.org/10.1177/027836499000900206
https://doi.org/10.1109/HUMANOIDS.2012.6651491
https://doi.org/10.1109/ICRA.2016.7487327
https://doi.org/10.1109/TMECH.2013.2270435
https://doi.org/10.1109/HUMANOIDS.2014.7041310
https://doi.org/10.1109/MED.2011.5983000
https://doi.org/10.1109/TMECH.2015.2493359
https://doi.org/10.1109/TBME.2012.2230261
https://doi.org/10.1249/01.MSS.0000159007.56083.96
https://doi.org/10.1152/jn.00989.2014
https://doi.org/10.1016/j.apergo.2014.04.009
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Rodriguez-Cianca et al. A VSA Module for a Bio-inspired Biped Robot

Shamaei, K., Sawicki, G. S., and Dollar, A. M. (2013). Estimation of quasi-

stiffness of the human hip in the stance phase of walking. PLoS ONE 8:e81841.

doi: 10.1371/journal.pone.0081841

Torricelli, D., Gonzalez, J., Weckx, M., Jiménez-Fabián, R., Vanderborght,

B., Sartori, M., et al. (2016). Human-like compliant locomotion: state

of the art of robotic implementations. Bioinspir. Biomimet. 11:051002.

doi: 10.1088/1748-3190/11/5/051002

Tsagarakis, N., Morfey, S., Medrano Cerda, G., Zhibin, L., and Caldwell, D.

(2013). “Compliant humanoid coman: optimal joint stiffness tuning for

modal frequency control,” in IEEE International Conference on Robotics and

Automation (Karlsruhe), 673–678.

Van Ham, R., Vanderborght, B., Van Damme,M., Verrelst, B., and Lefeber, D.

(2007). MACCEPA, the mechanically adjustable compliance and controllable

equilibrium position actuator: Design and implementation in a biped robot.

Robot. Auton. Syst. 55, 761–768. doi: 10.1016/j.robot.2007.03.001

Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni,

R., et al. (2013). Variable impedance actuators: a review. Robot. Auton. Syst. 61,

1601–1614. doi: 10.1016/j.robot.2013.06.009

Vanderborght, B., Tsagarakis, N., Van Ham, R., Thorson, I., and Caldwell, D.

(2011). Maccepa 2.0: Compliant actuator used for energy efficient hopping

robot chobino1d. Auton. Robots 31, 55–65. doi: 10.1007/s10514-011-9230-7

Vanderborght, B., Van Ham, R., Verrelst, B., Van Damme, M., and Lefeber,

D. (2008). Overview of the lucy project: dynamic stabilization of a biped

powered by pneumatic artificial muscles. Adv. Robot. 22, 1027–1051.

doi: 10.1163/156855308X324749
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This paper introduces a novel control framework for an arm exoskeleton that takes into

account force of the human arm. In contrast to the conventional exoskeleton controllers

where the assistance is providedwithout considering the human arm biomechanical force

manipulability properties, we propose a control approach based on the arm muscular

manipulability. The proposed control framework essentially reshapes the anisotropic force

manipulability into the endpoint force manipulability that is invariant with respect to the

direction in the entire workspace of the arm. This allows users of the exoskeleton to

perform tasks effectively in the whole range of the workspace, even in areas that are

normally unsuitable due to the low force manipulability of the human arm. We evaluated

the proposed control framework with real robot experiments where subjects wearing

an arm exoskeleton were asked to move a weight between several locations. The

results show that the proposed control framework does not affect the normal movement

behavior of the users while effectively reduces user effort in the area of low manipulability.

Particularly, the proposed approach augments the human arm force manipulability to

execute tasks equally well in the entire workspace of the arm.

Keywords: exoskeleton control, manipulability analysis, robot assistance, arm exoskeleton, human-robot

interaction

1. INTRODUCTION

To date, many exoskeleton systems have been designed and controlled to either assist or resist
the human motion depending on the application type. These systems enclose either a larger part
of the human body or just individual joints. Most of the control methods here are focused on
augmenting the effectiveness of the users in terms of joint motion or joint torque. To enable safe
interaction between the exoskeleton and the user, a common approach is to use an impedance or
admittance controller (Tsagarakis and Caldwell, 2003; Marchal-Crespo and Reinkensmeyer, 2009),
where the interaction forces are controlled through a mass-spring-damper system (Hogan, 1985).
Contrarily, in power augmentation tasks the exoskeleton needs to provide additional joint torques
to augment the existing body capabilities. Heremovement intentions of the user and corresponding
joint torques are obtained by either direct force/torques measurements (Pratt et al., 2004; Kong
and Jeon, 2006) or muscle activity measurements (Petrič et al., 2011). The most common approach
for measuring the muscle activity in exoskeleton control methods is the use of electromyography
(EMG) (Fleischer et al., 2005). Different methods can be used to map muscle activities into the
joint torques, such as biomechanical models (Rosen et al., 2001; Fleischer and Hommel, 2008),
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proportional mapping (Ferris et al., 2006; Lenzi et al., 2012; Koller
et al., 2017; Toxiri et al., 2018) or machine learning algorithms
(Peternel et al., 2016).

Many of these power augmentation methods are design to
amplify the force evenly regardless of the limb configuration
and the desired direction of movement. However, the force
capability of the user’s limb endpoint is heavily dependent on
its current configuration and the direction of movement. A
common approach to evaluate the biomechanical performance
of a limb endpoint is to use manipulability measure that
was initially derived for analysis of anthropomorphic robots
(Yoshikawa, 1985). Manipulability is a measure that describes the
relationship between joints and limb endpoint with respect to
velocity (Yoshikawa, 1985; Vahrenkamp et al., 2012), acceleration
(Chiacchio and Concilio, 1998; Yokokohji et al., 2009) or force
(Bicchi et al., 1997; Gravagne and Walker, 2002; Tanaka et al.,
2015). These measures are used to evaluate the effects of
instantaneous variation in joints on the variation at the endpoint,
and is usually represented by a spheroid around the endpoint.
The distance from the endpoint to the spheroid surface in a given
direction represents the maximal feasible velocity, acceleration or
force capacity in that direction.

A few studies explored how to exploit manipulabilitymeasures
for human motion augmentation. In a study (Petrič et al., 2016),
we proposed a control approach that compensates the anisotropic
property of the kinematic manipulability related to the human
arm. Similarly, in Shen et al. (2017), the control approach was
improved by incorporating endpoint loading conditions into
the modified manipulability models. In Kim et al. (2010), the
dynamic manipulability was used to generate an energy efficient
gait pattern. However, these control methods (Kim et al., 2010;
Petrič et al., 2016; Shen et al., 2017) were only based on human
limb kinematics without considering also biomechanical specifics
of human arms, i.e., muscles. In contrast to typical robotic
actuators with gears and motors, the human joints are actuated
by sets of antagonistically coupled muscles. The force generation
capacity is configuration dependent and the relationship between
the muscle forces and joint torques is nonlinear.

Many studies in human biomechanics already thoroughly
analyzed the relationship between the joint torque and joint
angle in lower limbs (Anderson et al., 2007), upper limbs
(Leedham and Dowling, 1995; Kentel et al., 2011) and whole
body (Millard et al., 2013). Analysis of the human force
manipulability was introduced in Jacquier-Bret et al. (2012); Yu
and Liang (2012), but without consideration of the specifics of
the human actuators. Nevertheless, a detailed study which would
address the relationship between joint torques and forces at the
limb endpoint in terms of movement or force capabilities was
still missing. The quantitative evaluation of force generation
at the endpoint was reported in Sasaki et al. (2010), where
manipulability models were developed using the human joint
torque characteristic. To properly account for the effect of specific
characteristics of human joint on endpoint manipulability, a
study recently derived a manipulability model of the endpoint via
human muscle forces (Ohta et al., 2014).

To address the limitations of the control method in Kim
et al. (2010); Petrič et al. (2016); Shen et al. (2017), we

propose a novel control method for an upper body assistive
device which takes into account the human arm muscular
force manipulability (Ohta et al., 2014). The proposed method
derives from biomechanical studies to account for configuration
dependent force capabilities of the human arm and selectively
augments the user endpoint force capabilities based on the
current arm configuration and motion direction. As a result, the
exoskeleton provides more support to the arm in configurations
and directions of motion where the force manipulability is
smaller, and vice versa, less support to arm in configurations and
directions of motion where the force manipulability is high. As
a consequence, the proposed exoskeleton controller effectively
maintains a spherical endpoint forcemanipulability of the human
arm in the entire workspace.

To analyze the effects of the controller on the human
motion, we hypothesize that the proposed control approach will
reduce the human effort without diverting from the normal
unassisted motion trajectory. To validate the proposed approach
and hypothesis, we performed an experimental study on nine
subjects, who were wearing a two degrees-of-freedom (DoF) arm
exoskeleton. Their task was to move a 4 kg weight between two
different target locations. We used a surface EMG to measure the
effort of each subject during the task execution.

A preliminary study was presented at 2017 IEEE International
Conference on Robotics and Automation (Goljat et al., 2017),
where the method was introduced and evaluated only on a single
subject. The specific contributions of this paper are: an extended
evaluation based on data from nine naive subjects supported
with a statistical analysis, an extended method formulation with
a more in-depth explanation, a more thorough overview of the
related work, and an additional discussion of novel results.

FIGURE 1 | Illustrated representation of proposed method using a muscular

manipulability model (Goljat et al., 2017). The human arm is modeled as a

two-segment rigid-body mechanism that is actuated by ten muscles: three

shoulder muscle (sternal and clavicular part of Pectoralis major and Deltoid

muscle), two bi-articular muscles (Triceps long head and Biceps short head),

and five elbow muscles (Triceps lateral and medial head, Biceps long head,

Brachialis and Brachioradialis). The red ellipse represents the human arm

muscular force manipulability, and the blue circle shows the resultant force

manipulability of the combined system of human arm with assistive device.
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2. FORCE MANIPULABILITY

Manipulability is defined by the kinematics of the mechanism,
where the joint angle variations are propagated into the endpoint
variations (Yoshikawa, 1985). The arm manipulability can be
expressed with an ellipsoid around the endpoint whose radius
represents the capacity of movement in different directions of
Cartesian space. Orthogonally to the manipulability ellipsoid
is the force ellipsoid, whose radius represents the capacity of
exerting a force in different directions. The direction of the largest
force capacity is also the direction where the robot is the least
sensitive to the actuator errors (Gravagne and Walker, 2002).

The classic manipulability measures assume that the joints
are driven by the actuators (e.g., motors) that can produce
equal joint torque in both directions, independently of the
configuration. However, human arm is driven by muscles, whose
torque production characteristics change with the configuration
of the arm. Therefore, the classic manipulability measures need
to be updated to account for these properties. In literature, the
models that can account for such human specifics are called
muscular manipulability models (Tanaka et al., 2005; Ohta et al.,
2014). In this paper, we extended the muscular manipulability
model of the arm (Ohta et al., 2014) to used it for controlling
an arm exoskeleton. The main goal of the control concept is to
augment the human motion using the muscular manipulability
model. As a result, the human arm force manipulability becomes
spherical throughout the entire workspace. The conceptual idea
is illustrated in Figure 1.

The following sub-sections first provide the mathematical
formulation of the classical manipulability measure and then its
extension toward the muscular manipulability model. For the
sake of clarity, the method is explained on a planar case, where
ellipsoids are reduced to ellipses. Nevertheless, the method is
general and operates in the 3D space.

2.1. Force Manipulability
The Jacobian matrix J describes the relationship between the
joint velocities and endpoint velocities, while J−T describes the
relationship between the joint torques and endpoint forces.
In case of a non-redundant mechanism, eigenvalues and
eigenvectors of either matrix define manipulability ellipse and
force manipulability ellipse, respectively. In a general case when
mechanism has redundant DoFs, the ellipse can be derived by
mapping all possible variables in joint space, contained within a
unit circle, into the endpoint variables in the Cartesian space. A
set of all joint toque variables contained within the unit circle is
described by:

||τ ||2 = τ
T
τ ≤ 1, (1)

where τ is joint torque vector. In general, the transformation
from the joint torques to the endpoint forces is given by:

τ = JT(q)F, (2)

where F is the endpoint Cartesian force/torque vector and q is the
joint angle vector. By inserting (2) into (1) we get:

||JTF||2 = FT(JJT)F ≤ 1, (3)

where the inner product JJT = Mv is used to compute the
manipulability and (JJT)−1 = MF is used to compute the force
manipulability. Using singular value decomposition (SVD) ofM,

M = U6V∗, (4)

where U is a unitary matrix, 6 is a diagonal matrix with non-
negative real numbers on the diagonal, V is unitary matrix,
and V∗ is the conjugate transpose of V, we can obtain the
singular vectors, which correspond to the minor and major
axes of the manipulability ellipse (Yoshikawa, 1985). Minor and
major axes represent the directions in which the lower and the
higher forces can be generated respectively. Even though this is a
kinematic-based metric, it has still been used in several studies
of human motion (Sabes and Jordan, 1997; Hara et al., 1998;
Tanaka et al., 2005).

FIGURE 2 | Example of four different arm configurations and their

corresponding muscular force manipulability ellipses.

FIGURE 3 | Block diagram of the proposed control concept. The force

generated by the user Fu is used to calculate the desired supporting force of

the exoskeleton Fe. This is then used as a force reference for the exoskeleton.
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2.2. Muscular Force Manipulability
To account for the forces that are generated by the muscles acting
on the joints, we derive the muscular manipulability measure,
which describes the transformation between the muscle forces
and the endpoint forces. First, the transformation of the muscle
forces to the joint torques is governed by:

τ = JTm(q)Fm, (5)

where Jm is the muscle Jacobian matrix that maps muscle forces
Fm into joint torques. Jm matrix also represents the muscle
moment arms for each joint. The moment arms for the extensor
muscles were defined as the shortest distances between the
centers of the joints and the lines connecting the origins and
the insertions of the muscles. The parameters for the origin and
insertion points of the muscles were selected from the literature
(Wood et al., 1989). By merging the (Equations 2, 5) we get
the relationship between the muscles forces and the endpoint
forces as:

F = J−TJTmFm. (6)

To account for the muscular activation levels we use the Hill’s
muscle model. The relationship between muscle forces and
endpoint forces now derives into:

F = J−TJTmFhα, (7)

where Fh is the diagonalmatrix of theHill’s muscle force equation
and the muscular activation levels are bounded to ||α|| < 1. Note
that muscle activation is greater than 0 at rest and less than 1
at max. In the same manner as in (3), by using (7) we get the
expression that determines the muscular manipulability

Mm = (J−TJTmFh)(J
−TJTmFh)

T . (8)

Similarly as before, we use a singular value decomposition ofMm

to obtain singular vectors that correspond to theminor andmajor
axes of the muscular force manipulability ellipse.

3. EXOSKELETON CONTROL

In this section, we describe the proposed exoskeleton control
method based on the muscular force manipulability model.
The anthropometric data for the arm, muscles, muscle-tendon
lengths andmoment arms were obtained from Langenderfer et al.
(2004); Holzbaur et al. (2005). The muscle force was modeled
with Hill-type representation (Hill, 1938; Zajac, 1989) given by:

Fm,i = (f0,ifl,ifv,iα + Fp,i)cos(φ), (9)

where i is the i-th muscle, fl is the active force-length relationship,
α is the activation level, φ is the muscle-tendon pennation
angle, f0 is the optimal muscle force and fv is the force-
velocity relationship. We neglected the passive part since its force
contribution is low due to the constant muscle activation during
the motion (Jo, 2011). The normalized tendon slack lengths
are also small, therefore we assume that tendons are stiff and

have a negligible effect on the generated force (Zajac, 1989).
Furthermore, all human arm muscles have a pennation angle
smaller than 20:

Fm,i = f0,ifl,ifv,iα. (10)

Here the product of the parts f0,i, fl,i and fv,i is equal to the
diagonal matrix of the Hill’s muscle force Fh used in (8). The
detailed parameters of the optimal muscle length, maximal
muscle force, and tendon slack can be found in Ning Lan
(2002); Buchanan et al. (2004); Colacino et al. (2012). In our
model we have included a total of ten muscles: three shoulder
muscle (sternal and clavicular part of Pectoralis major and
Deltoid muscle), two bi-articular muscles (Triceps long head and
Biceps short head), and five elbow muscles (Triceps lateral and
medial head, Biceps long head, Brachialis and Brachioradialis),
as shown in Figure 1. To compute the muscle Jacobian Jm
we used the parameters of muscle origins and insertions from
Wood et al. (1989). By inserting the Jacobian Jm in (8), we
computed themuscular manipulability matrixMm. Furthermore,

FIGURE 4 | Illustration of experimental setup. The image shows the subject

coupled with the exoskeleton where the arm is strapped to the subject arm

with straps. The subject is holding a weight in the arm and was instructed to

do a periodic lifting motion between designated targets. The lifting period was

controlled by a metronome.
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by using the singular value decomposition we got the minor
and major axes of the muscular manipulability. The minor
axis represents the direction in which the ability to produce
the endpoint force is low, while the major axis represents
the direction in which the ability to produce the force is
high. Examples of the muscular force manipulability ellipses
for the two DoF arm model are shown in Figure 2. Note that
for computing the muscular force manipulability ellipsoids we
do not need to record or capture any EMG data, i.e., it si
computed based on a model whose input is the configuration
of the arm.

The proposed control method augments the human motion
in a way that the force manipulability shape of the human arm
endpoint results in a circle, i.e., human force production capacity
is equal in all directions throughout the entire workspace. Note
that the level of support is not discrete but varies continuously
based on the calculated muscular manipulability at any sample
time in online manner. To do so, the arm exoskeleton device
scales the user endpoint force based on the force manipulability
model. The illustration of the scaling is illustrated in Figure 1.
The supporting force Fe that the exoskeleton produces is
governed by:

Fe = K(Mm, Fu)Fu, (11)

where K(Mm, Fu) is a function that is computed based on the
muscular manipulability model in the direction of user’s force
and is defined as:

K(Mm, Fu) =
λm

F̂u
− 1, (12)

FIGURE 5 | Different configurations of arm and their corresponding muscular

manipulability ellipses for the two motions. (A) Motion in the high manipulability

region (B) Motion in the low manipulability region. Green arrows point into the

current direction of motion and their size correspond to the current

manipulability.

where λm = max(diag(6)) is the maximal singular value ofMm.
Here F̂u is the force manipulability capacity in the direction of
user’s force Fu and is defined as:

F̂u = Mm
Fu

||Fu||
, F̂u ∈ (0, λm]. (13)

As a result, the exoskeleton provides a supportive force Fe,
which is based on the muscular manipulability model in the
direction of the user’s force. Note that with this approach the
exoskeleton provides no supportive force when the direction
of the user’s force is aligned with the major axis of muscular
manipulability ellipse. In this case, the supporting force of
the exoskeleton as define in (11) results in Fe = 0. In all
other cases, the exoskeleton will provide a supportive force to
compensate for the difference between major manipulability and
the manipulability in the direction of movement as illustrated
in Figure 1. The block diagram of the control concept is shown
in Figure 3.

4. EVALUATION

4.1. Subjects
Nine healthy male subjects participated in this study with an
average age of 29.4 years (SD = 2.02 years), weight of 70.8 kg (SD
= 2.01 kg) and height of 175.9 cm (SD = 1.29 cm). Prior to their
participation, the subjects were informed about experimental
procedures, potential risks and the aim of the study. The study
and the informed consent signed by subjects was approved
by Advanced Telecommunication Research Ethics Committee
(Nos. 730, 731).

4.2. Experimental Setup
The proposed method was evaluated on a pneumatically actuated
arm exoskeleton as illustrated in Figure 4. Nevertheless, the
proposedmethod is general and can be used with any exoskeleton
that has force/torque sensing capabilities. The exoskeleton was
developed at the Department of Brain Robot Interface, ATR,
Japan (Noda et al., 2014). For evaluating the manipulability-
based assistance, the motion was limited to a sagittal plane and
we used only shoulder and elbow joints. The human arm was

modeled as a planar two-segment serial mechanism. In this
model the first joint represent the shoulder and the second joint

represent the elbow. Note that we considered the wrist as a part

of the forearm. The arm configuration and endpoint force were
measured in real-time by encoders in exoskeleton joints and a
force sensor, respectively.

4.3. Experimental Protocol
Each subject was wearing the arm exoskeleton and was holding
a 4 kg weight in their hands as shown in Figure 4. They were
asked to move toward two different targets from the same
starting position, at which the posture of the subject’s arm
was aligned with the body. Both targets, the starting position,
the initial arm pose and the final arm pose are illustrated
in Figure 5. To accentuate the differences, the motion paths
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were selected so that the most part of the motion toward the
target A is in the area of high muscular manipulability and
the motion path toward the target B is mostly in the area
of low muscular manipulability. Note that along the path the
muscular manipulability characteristics are not constant and
the proposed method adaptively assisted the human motion
accordingly. The length of the path for both motions was the
same and about 70 cm.

The experiment was divided into four sessions:

• High-Unsupported: high manipulability motion without
exoskeleton support.

• Low-Unsupported: low manipulability motion without
exoskeleton support.

• High-Supported: high manipulability motion with
exoskeleton support.

FIGURE 6 | Left plot shows trajectory area for all four sessions and all subjects. Results show that was no significant difference (⋄) between sessions with or without

exoskeleton support for a low manipulability sessions and for a high manipulability sessions. Right plot shows iEMG for all subjects and sessions. Results show that

only low-unsupported motion was significantly different (∗) with others. Note that there was no significant difference (⋄) between low-supported and high-supported

motion.

FIGURE 7 | Left-hand side plot shows the average hand trajectories of supported motion (orange) and unsupported motion (blue). A denotes the target for the

trajectories during the high-manipulability motion and B denotes the target for the trajectories during the low-manipulability motion. Right-hand side plot shows gain

K(Mm, Fu), i.e., how much the user force Fu was amplified, from the Start to the Goal position. The shaded area represents standard deviation from the mean of all

subjects. As an example, the dotted lines show gain values for one subject.
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FIGURE 8 | Traces of the muscular activity measured by EMG during the

low-manipulability motion (top graphs) and during high-manipulability motion

(bottom graphs). Muscular activity during the unsupported motions are

represented on the left-side panes while the muscular activity during the

supported motions using the proposed controller are represented on the

right-side pane.

• Low-Supported:low manipulability motion with exoskeleton
support.

Note that in the cases without the exoskeleton support we
consider that the exoskeleton was only compensating its own
mass and did not provide any additional support to the user,
and in the cases with the exoskeleton support we consider that
the arm exoskeleton was compensating its own mass and at the
same time providing an additional support for the user based on
the manipulability controller. Each session lasted for about 60
s, which resulted in 20 cycles of motion. The movement period
of motion was maintained by asking the subjects to follow the
rhythm of a metronome.

4.4. Data Processing
In each session, we collected motion data with the sampling
frequency of 100 Hz and EMG data with the sampling frequency
of 1kHz. The motion variation was assessed by the deviation of
movement with respect to the straight line between the starting
position and the target position. The deviation was quantified as
the unsigned area between the actual movement and the straight
line and is denoted as trajectory area.

The human effort required to perform the motion was
assessed by measuring and analyzing the EMG signals of Biceps
long head and Pectoralis minor muscles. These two muscles are
among the most dominant arm flexors for the arm motion in
the sagittal plane. Each EMG signal was rectified and filtered
with a second-order low-pass filter with a cut-off frequency
of 3 Hz. To obtain the muscular activation, we normalized
the processed EMG signal by the EMG measured during the
maximum voluntary contraction of the respective muscle. To
quantify the human effort, the processed and normalized EMG
signal was integrated over time. From now on, the muscular
activity will be denoted as 0 ≤ EMG ≤ 1 and its time integral
as iEMG.

The statistical analysis was performed using Statistics
and Machine Learning Toolbox in MATLAB. We calculated
average movement times required for the motion, trajectory
area, and iEMG during each of the four sessions for each
subject. We then used these average values of each subject
for statistical analysis. We investigated the effects of the
exoskeleton device with the proposed controller on the
movement times, movement variations and human effort
using two-way repeated-measures ANOVA with independent
variables [controller(2) × targets(2)]. The differences between
the trajectory areas and the differences between the iEMGs
were tested with post-hoc t-tests with Bonferroni correction.
The level of statistical significance used was .05 for all
statistical tests.

4.5. Results
Analysis of variance showed no significant effects of the
exoskeleton device on the movement times between both high
and low manipulability motion [F(1, 8) = 2.47, p = 0.15] and
supported and unsupported motion [F(1, 8) = 1.36, p < 0.28].
There was no significant interaction [F(1, 8) = 0.06, p = 0.93]
between the effects of low and high manipulability motion, and
the supported and unsupported motion on the time to reach
the target.

Analysis of variance showed significant effects of the
exoskeleton device on the both high and low manipulability
motion [F(1, 8) = 3.23, p = 0.01] and supported and unsupported
motion [F(1, 8) = 108.12, p < 0.01] on the trajectory area. There
was no significant interaction [F(1, 8) = 1.26, p = 0.29] between
the effects of the exoskeleton device on the low and high
manipulability motion and supported and unsupported motion
on the trajectory area. Post-hoc t-tests showed that trajectory
area of the Low- Unsupported and Supported is statistically
different from the trajectory area of the High- Unsupported
and Supported [t(9) = 9.33 − 12.58, p < 0.01]. There
is no difference between trajectory areas of Low-Unsupported
and Low-Supported, and trajectory areas of High-Unsupported
and High-Supported. The left diagram in Figure 6 shows the
means and standard errors (SEM) of the trajectory areas for all
supported and unsupported motions.

Average motion paths and their standard deviations are
shown in Figure 7, where we can see a negligible difference
between the unsupported motion and the supported motion
paths. Right plot on Figure 7 shows the gain K(Mm, Fu) and their
standard deviations with respect to the path for High and Low
manipulability targets.

Analysis of variance showed significant effects of the
exoskeleton device on both high and low manipulability motion
[F(1, 8) = 7.22, p = 0.03] and supported and unsupported motion
[F(1, 8) = 48.12, p < 0.01] on the iEMG activities. There was no
significant interaction [F(1, 8) = 2.09, p = 0.19] between the effects
of exoskeleton device on low and highmanipulability motion and
supported and unsupported motion on the iEMG activities. Post-
hoc t-tests showed that iEMG activities of the Low-Unsupported
motion is statistically different from any of the others [t(9) =
3.52 − 5.64, p < 0.01]. The right diagram on Figure 6 shows
mean values for all supported and unsupported motions.
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A trace of the EMG signal for one subject is shown in Figure 8,
where we can see a significant reduction of human effort for low-
supported motion compared to the low-unsupported motion,
but there is no difference between others (high-unsupported,
high-supported and low-supported).

5. DISCUSSION

The goal of this study was to introduce a novel exoskeleton
control approach that selectively augments the performance
of the human user. This study also evaluate the impact
of the controller on user motion and effort with multi-
subject experiments. We hypothesized that the proposed control
approach will reduce human effort without diverting from the
normal unassisted motion trajectory.

It is evident from the results that by exploiting the anisotropic
effect of the controller, the human effort remains similar for
the low-supported case compared to the high-supported and
high-unsupported case, i.e., there was no significant statistical
difference between these three. In effect, the human effort
of subjects wearing the exoskeleton device with the proposed
method became equal for both motions. On the basis of the
results we assume that the approach would generalize for
arbitrary motion in the entire workspace.

In addition, it is also evident from Figures 6, 8 that the
unsupported motion in the low-manipulability area requires
considerably more muscular effort than the unsupported motion
in the high-manipulability area. The results of the supported
motion indicate that the proposed method was able to effectively
reduce the human effort for the motion in the low-manipulability
area. Results also showed that the level of the human effort
in the low-manipulability area with the proposed controller is
comparable to the motion in the high-manipulability area.

By augmenting the human end-point force capabilities
considering the instantaneous arm configuration and the
direction of motion we showed that a spherical end-point
force manipulability can be effectively maintained throughout
the entire workspace of the human arm. We also found out
that the proposed control approach did not alter user motion
trajectory (Figures 6, 7), since the difference between the two
was statistically insignificant. This suggests that the method can
augment the force manipulability without affecting the normal
movement characteristics of the exoskeleton users.

In the analysis we were interested in normal human behavior
therefore we used healthy subjects. The goal of the paper was
to a design controller aimed at power-augmentation scenarios.
Rehabilitation scenarios include disabilities and abnormal
human behavior, and were therefore not in the scope of this
paper. However, the results obtained within the scope of this
paper are the basis for our future research, where we will be

interested to see if this method can be applied in rehabilitation
scenarios for subjects with disabilities.

The proposed manipulability-based power-augmentation
method fundamentally differs from assist-as-need methods
usually employed in rehabilitation scenarios. Assist-as-needed
controllers (Wang et al., 2010; Pehlivan et al., 2016; Shahbazi

et al., 2016; Li et al., 2017; Luo et al., 2019) basically provide an
exoskeleton assistance when the user is not able to follow the
therapy-based predefined trajectories, i.e., the level of assistance
is based the error between the desired motion and the actual
motion. On the other hand, the proposed controller employs
no predefined trajectories and the user is free to perform the
movements as desired, while the the level of assistance is based
on the measured manipulability in a given configuration at any
given sample time. The main advantage of the assist-as-needed
rehabilitation methods is that the the controller can operate
with predefined desired trajectories, which is paramount for
various therapy programs. The main advantage of the proposed
manipulability-based power-augmentation method is that the
controller does not take any predefined reference trajectories and
therefore the users can define the motion themselves.

The proposedmethod was tested on two DoF arm exoskeleton
that was available to us at the given time. In future, we will
develop more complex exoskeletons and test the proposed
method on more DoF.
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Petrič et al. Exoskeleton Control Based on Manipulability

moments and movements from measurements of neural command. 20, 367–

395. doi: 10.1123/jab.20.4.367

Chiacchio, P. and Concilio, M. (1998). “The dynamic manipulability ellipsoid

for redundant manipulators,” IEEE International Conference on Robotics and

Automation (Leuven), 95–100.

Colacino, F. M., Emiliano, R., and Mace, B. R. (2012). Subject-

specific musculoskeletal parameters of wrist flexors and

extensors estimated by an EMG-driven musculoskeletal model.

Med. Eng. Phys. 34, 531–540. doi: 10.1016/j.medengphy.2011.

08.012

Ferris, D. P., Gordon, K. E., Sawicki, G. S., and Peethambaran, A. (2006). An

improved powered ankle-foot orthosis using proportional myoelectric control.

Gait Post. 23, 425–428. doi: 10.1016/j.gaitpost.2005.05.004

Fleischer, C., and Hommel, G. (2008). A human–exoskeleton interface

utilizing electromyography. IEEE Trans. Robot. 24, 872–882.

doi: 10.1109/TRO.2008.926860

Fleischer, C., Reinicke, C., and Hommel, G. (2005). “Predicting the intended

motion with EMG signals for an exoskeleton orthosis controller,” in 2005

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS

(Edmonton, AB), 3449–3454. doi: 10.1109/IROS.2005.1545504
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Mirko Raković 1,2*, Srdjan Savić 1, José Santos-Victor 2, Milutin Nikolić 1 and
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The focus of research in biped locomotion has moved toward real-life scenario

applications, like walking on uneven terrain, passing through doors, climbing stairs

and ladders. As a result, we are witnessing significant advances in the locomotion of

biped robots, enabling them to move in hazardous environments while simultaneously

accomplishing complex manipulation tasks. Yet, considering walking in an unknown

environment, the efficiency of humanoid robots is still far from being comparable with the

human. Currently, bipeds are very sensitive to external changes and they have severe

constraints for adaptation of walk to conditions from such a complex environment.

Promising approaches for efficient generation and realization of walking in a complex

environment are based on biological solutions that have been developed for many years

of evolution. This work presents one such human-inspired methodology for path planning

and realization of biped walk appropriate for motion in a complex unfamiliar environment.

Path planning results in calculating clothoid curves that represent well the human-like

walking path. The robot walk is realized by the composition of parametric motion

primitives. Such an approach enables on-line modification of planned path and walk

parameters at any moment, instantly. To establish the relationship between high-level

path planner and the low-level joint motion realization, we had to find a way to extract

the parameters of the clothoid paths that can be linked with the parameters of the walk

and consequently to motion primitive parameters. This enabled the robot to adopt its

walking for avoiding the obstacles and for a smooth transition between different paths. In

this paper we provide a complete framework that integrates the following components: (i)

bio-inspired online path planning, (ii) path-dependent automatic calculation of high-level

gait parameters (step length, walking speed, direction, and the height of the foot sole),

and (iii) automatic calculation of low-level joint movements and corresponding control

terms (driving motor voltage) through the adaptation of motion primitives which realize

walking pattern and preserves the dynamic balance of the robot.

Keywords: humanoid robot, bipedal locomotion, motion primitives, path planning, clothoid, walk realization
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1. INTRODUCTION

We are witnessing that jobs which were in the past exclusively
handled by humans, spanning from the care of patients in
hospitals to playing musical instruments, are now possible to be
carried out by robots. One of the reasons for this achievement
lies in the fact that biomechanics of human activity (including
walk) has been deeply studied and explored (Winter, 2009; Lin
and Pandy, 2017; Young et al., 2017). The processing power of
the computer has increased to the extent where it is possible to
adopt a complex control algorithm for the real-time whole body
control of the robot with numerous DOFs (Degrees Of Freedom)
(Moro and Sentis, 2019). The focus of biped locomotion research
has moved toward real-life scenario applications, like walking
on uneven terrain, passing through doors, climbing stairs, and
ladders, etc. This is mainly motivated by the Fukushima disaster
and the DARPA Robotics Challenge (Krotkov et al., 2017).
As a result, numerous robots have been rapidly developed to
become machines that can move in unknown environments,
simultaneously accomplishing complex tasks (Schwarz et al.,
2016; Tsagarakis et al., 2017; Asfour et al., 2019).

Humanoid robot walk is usually evaluated against human
walking performance. However, humans develop the walking
skills since the very first year of their life, with constant extensive
improvements and adaptation to the changes in the kinematics
and dynamics of their body. Walking, as time goes by, becomes
so perfected and automated that we are not aware of the
complexity of the underlying sensory-motor control system.
Most humans can seamlessly perform various types of walk,
compensate for external disturbances, adapt to different complex
ground structures, and simultaneously perform other tasks
while communicating with others, manipulating objects etc. In
combination with perception (mainly vision), humans can easily
cope with an unknown surrounding, and reach their goal while
avoiding and/or overcoming various obstacles, stairs, doors,
and other objects commonly found in the human environment
(Smulders et al., 2012).

Development of humanoids with such skills is obviously a
challenging task. Humanoids should be able to plan the path
online and adapt the walk realization in order to follow the
path close enough. This task is accompanied by the need to
constantly prevent the robot from falling, i.e., to preserve its
dynamic balance. The well-known concept of Zero Moment
Point (ZMP) introduced by Vukobratović and Borovac (2004),
defines the conditions to preserve a dynamic balance of bipeds
(Vukobratovic et al., 2012). One of the most recurring ZMP
based approaches for walk synthesis is ZMP preview controller
introduced by Kajita et al. (2003). In this method used by
Morisawa et al. (2007) and Perrin et al. (2012) among others, the
robot needs to predefine the position of footprints, calculate the
trajectory of the ZMP, themotion of the center of mass and finally
the motion of the rest of the system.

However, humans do not plan and define the footprints on the
ground before they start to walk. If it is expected from the robots
to operate in the human everyday environment, the walking skills
of the robot have to be as close as possible to those of humans.
The possibility to adapt to the current state of the environment

(to modify the online walking path and adapt gait parameters)
is a necessity. Also, due to the always present disturbances,
the control system has to be robust, fast, and responsive in
order to successfully compensate for them. In addition, path
generation (approaching, avoiding, and going around obstacles)
should be inspired by the way humans perform this. Thus, the
system for motion synthesis has to offer a biologically inspired
online modification of planned path and walking parameters
and be supported by a robust motion control system that can
compensate disturbances while constantly preserving dynamic
balance. Path planner introduced by Dornbush et al. (2018)
decomposes the task into a sequence of smaller tasks and focuses
the planning efforts to reason over much smaller search spaces.
We find this is a human-like approach were local obstacles should
be treated first, but always working on solving the main task.
Kumagai et al. (2018) proposed an efficient footstep planning for
the robot to traverse an unknown narrow space in a human-like
manner. Although the robot is demonstrating the ability to move
in highly cluttered space, the algorithm that does not require the
footstep planning should be considered.

Taking into consideration adaptability, responsiveness, and
robustness without the need for precise trajectory execution, a
methodology that enables synthesis of online modifiable walk
based on reconfigurable adaptive motion primitives (RAMPs)
is introduced in Raković et al. (2014). The RAMP is a
parametric movement with the relationship established between
its parameters and the walking characteristics. We find that
this approach offers an intuitive interface for integration with
higher level path planning algorithms. Thus, any requirement for
modification of characteristics of walking (for example, speed,
stride, direction etc.) will instantly influence the change in
RAMPs and as a result, a modified gait will emerge. RAMPs
are inspired by neurological studies (Giszter et al., 1993)
that showed the synergistic motion of leg joints caused by
electrical microstimulation. The experiment showed that the
same stimulation drives the leg toward the equilibrium point
irrespective of the initial position. The motion of the foot
corresponds to a vector field that was convergent toward an
equilibrium point characterized by the location and intensity of
stimulation (Mussa-Ivaldi et al., 1994). The same approach is
embedded in the properties of RAMPs.

The use of primitive movements as building blocks for
generating more complex movements is not a unique approach.
In the last decade, several motion primitive methodologies
have been defined. Hauser et al. (2008) introduced a library
of steps, where each different step is one primitive. Zhang
et al. (2008) used recordings of the human to segment the
movement of the leg into motion primitives. Moro et al.
(2014) introduced kinematic movement primitives derived with
principal component analysis from recorded human movements
that can be combined to define a complex motion applicable
for the realization of the robot walking. Ijspeert et al. (2002)
and Schaal (2006) defined most known motion primitive
methodology called Dynamic Movement Primitives. It models
the robotic joint or end-effector trajectories as a combination of
nonlinear dynamical systems. Statistical learning techniques are
used to learn how to combine these primitive movements to code
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basic rhythmic or discrete behavioral patterns. In Gams et al.
(2014), extended Coupling Movement Primitives are presented
to model the interaction of robot with objects and humans.

In this paper, the RAMPs methodology for walk realization is
augmented with the biologically inspired on-line path planning
algorithm. The path planning algorithm is developed, that is
inspired by the behavior of humans walking in an unknown
environment. It enables the robot to avoid obstacles in a human-
like manned in a cluttered environment. Simulation results show
that the biped can adapt its walking path and gait parameters
online. The path can be re-planned when needed, depending
on the localization of the objects, i.e., obstacles on the robot’s
way toward the goal position. The proposed approach searches
for the transitory goal position in close robot’s surrounding and
generates a path that is far enough from the obstacles. The
parameters of the path are linked with the parameters of the walk
(speed, direction, step length) that are thus driving the robot to
adapt to a new path geometry.

The contribution of this work is the framework for online
human-like path planning and walking that integrates (i) the
human-inspired path planning algorithm, (ii) the link between
the parameters of the walk and the RAMP parameters for
defining joints motion, and (iii) the dynamic balance controller
that compensates for disturbances and ensures the dynamic
balance of the robot. The developed planning and control ensures
that the robot follows the online generated walking path and
preserves its balance. The automatic calculation of the walking
parameters with respect to the geometry and current position
of the robot is proposed. In section 2.1 the motivation and
a brief overview of the methodology for generating an online
modifiable walk based on primitives are presented. Afterward, in
section 2.2, the algorithm for the path generation and calculation
of walk parameters are introduced, followed by the description
of the algorithm for path planning, given in section 2.3. To
show the abilities of the framework, section 3 presents the
simulation results of the biped walking in the environment with
different obstacles. The simulation involves a complete dynamic
robot model with many degrees of freedom. The results show
that the robot can realize dynamically balanced walk while on-
line changing the path and modifying the walking parameters.
Examples show hot the robot avoids static and moving obstacles
in order to reach the goal position while following the human-like
shape of the walking path. The paper concludes and proposes the
direction for further research in section 4.

2. MOTIVATION, APPROACH, AND
METHODS

2.1. Motivation for Composing the Walk
From Motion Primitives
Let us suppose that the robot has the task to go to the other part
of the unknown room to pick an object. The task a robot needs to
solve is similar to what the human is solving. The humanwill scan
for the obstacles and make a plan for avoiding one obstacle at a
time (Erni and Dietz, 2001). The common approach for solving
this task in humanoid robotics is based on the use of well-known

planners to generate the safe path toward the goal (Kuindersma
et al., 2016), usually followed by the foot placement algorithm and
precise realization of generated trajectories. Other approaches,
such as Zaytsev et al. (2015), propose that the planner should
focus on local tasks, and plan only a few steps ahead. This
approach is more biologically inspired since it does not require
precise execution of the preplanned foot placements and precise
realization of calculated joint trajectories.

Reconfigurable Adaptive Motion Primitives is the
methodology that enables the realization of complex motion
such as walking that does not require the programming of joint
trajectories for a full step in advance. The realization of motion
is defined with the set of parameters that are defining the goal
position of the end of the kinematic chain with respect to the base
coordinate frame of the robot. The result is the simultaneous
motion of joints that are driving the end-effector (foot, head, or
hand) toward parametric equilibrium point. These parameters
can be changed at any time instant. In Borovac and Raković
(2011), different methods based on model learning and inverse
kinematics are presented.

The shape of the motion of the kinematic chain is smooth,
including migration between the execution of the consequent
primitives. The smoothness is achieved by a gradual change in
the velocities of end-effectors toward the new equilibrium. An
example of a primitive that is a part of a walking cycle is leg
stretching (Figure 1) that incorporates the simultaneous motion
of leg joints. It is followed by the completion of leg bending, with
the smooth transition of the foot velocity toward the new end
goal position.

The velocity of foot ṡA is determined from the
following equation:

ṡA (ti) =
(

1− b (ti)
)

· ṡ0A + b (ti) ·
[

vint · porte

ωint · oorte

]

(1)

where porte and oorte are the unit vectors of the error of position
and orientation of the foot with respect the end-goal position.
The coefficient b ensures the smooth transition in intensity and
direction of the heel velocity.

FIGURE 1 | Continuation of leg stretching after bending is completed with

possible trajectories of the foot that depends on the initial velocity at the

moment when stretching starts.

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2019 | Volume 13 | Article 3692

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
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FIGURE 2 | Decomposition of the walk into the phases that can be realized by motion primitives (Raković et al., 2014).

The basic walk (i.e., walking on a flat surface) can be
decomposed into simple movements, similar to the previously
described leg stretching (Figure 2).

Altogether five different primitives have been identified for leg
movement, as well as one for the trunk and one for the arms. The
legs can perform: (i) leg bending, (ii) leg stretching, (iii) inclining
the robot forward during single support phase, (iv) making the
foot surface contact after the heel strike, and (v) transferring the
body weight onto the subsequent supporting leg during double
support phase. Two additional primitives are the (vi) primitive
for maintaining the trunk in the upright posture and the (vii)
arm swing primitive, that represents natural motion opposing the
leg motion. Arm swinging reduces the angular momentum of the
body, compensates the rotational motion caused by the legs and
contributes to the preservation of dynamic balance.

A critical segment in walk realization is the preservation of
dynamic balance. Each motion primitive ensures an appropriate
shape of the end-effector trajectories and smooth transition from
the previous primitive, but it does not ensure the preservation
of dynamic balance. To fulfill these requirements, from path
planning to execution of motion on a joint level, we adopted
a cascade controller (Figure 3) that consists of four blocks: (i)
block for path planning, (ii) block for tying motion primitives,
(iii) dynamic balance controller, and (iv) joint motion controller.

The input to the control system is a goal position that the
robot should reach. The first block calculates the path toward
the goal or transitory position in case of obstacle avoidance.
The second block determines the desired joint angular velocities
based on a set of tied-up primitives. Since motion primitives
do not consider the dynamic balance of the system, the third
block is introducing the corrections of desired joint velocities
taking into consideration current position of ZMP and projection
of the center of mass to ensure the preservation of dynamic
balance. Finally, the fourth block is calculating the joint control
values. Since the humanoid robot is highly non-linear and
highly coupled system, the fourth block is composed of feedback
linearization, sliding mode control and disturbance estimator.

Walk synthesized in this way can be changed online, meaning
that overall motion parameters are introduced: walk speed

WSpeed, the height of the leg during the swing phase WHeight ,
step lengthWLength and walking directionWDir. The relationship
between these parameters and parameters of the primitives is
established which causes an immediate and automatic change
of the parameters of the primitives with the change in the
parameters of the walk. An example of the simulated biped walk
where the robot is changing the parameters of the walk online,
in order to pass between the tables and step over the bar on the
ground, is shown in Figure 4.

2.2. Path Generation With Clothoid Curves
The automatic calculation of four walking parameters (WSpeed,
WDir, WHeight , and WLength) can be determined from the
geometry of the path. Thus, an approach for generating the
path, and for the calculation of the walking parameters based
on its geometry is introduced. Several problems were addressed
in our analysis. An important question is whether the four
walking parameters are independent or is there some relationship
established among them. Another important question concerned
the shape of the human walking path. Some insights from
physiology and biomechanics were used in our research to
tackle these problems and to achieve biologically inspired,
anthropomorphic robot walk. In Arechavaleta et al. (2008),
possible strategies were investigated, focusing on the formation
of a walking path with given goal position. The assumption was
that the path is chosen according to some optimization principle.
The results in Arechavaleta et al. (2008), have shown that the
cost function to be minimized is a variation (time derivative) of
the path curvature which implies that clothoid arcs are a good
approximation of a walking path. This conclusion was adopted
and clothoid arcs have been chosen for path shape in our path
planning algorithm.

Having defined the coordinates of initial (i.e., current)
position of the robot and the desired goal position1 of the robot,
a G1 fitting (Bertolazzi and Frego, 2015) with clothoid curve

1Initial and goal position refer to both position (i.e., x and y coordinates) and

orientation (i.e., rotation about z-axis denoted by ϕ) of the robot’s base coordinate

frame in the pelvis.
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FIGURE 3 | Cascade walking controller composed of the modules for path planning, motion generation with RAMPs, dynamic balance preservation, and joint motion

control.

can be used to fit between these two coordinates. This way, it
is possible to set a new goal point at any time instant and to
fit a new clothoid arc between the current position and the new
goal position. This enables online modification of a walking path
in case of unpredicted or dynamic obstacles while ensuring the
smooth path transition.

In this paper, forward goal-oriented locomotion without
backward and side steps has been considered. In this case, robot
locomotion can be simply approximated with a nonholonomic
unicycle model which implies the dependency between the
walking direction and the tangent to the walking trajectory. This
dependency is used to calculate one of the walk parameters, i.e.,
walking direction. In each time instance, a minimal distance
is calculated from the clothoid curve to the coordinate system
attached to the robot pelvis. When the point, with the minimal
distance from the robot base, is determined, the tangent on the
curve in that point is calculated. The idea is to maintain the
current orientation of the x-axis of the robot base frame (xpelvis)
and the x-axis of the frame in the nearest point (xdes), determined
by the path tangent in that point (Figure 5).

The angle between the curve tangent (xdes) and x0 axis of the
global coordinate frame, is denoted as ϕtangent . If we imagine
that the robot started with some initial offset from the desired
path, the robot would walk parallel to the path, keeping the
initial offset. Therefore, it is necessary to include some corrective,
feedback term, which would return the robot on the desired path
if it gets off the track. This feedback term is given with the second
term in the equation:

WDir = ϕtangent + KP · arctg
(

d

l

)

(2)

where ϕtangent is the angle of the path tangent, KP is proportional
gain, d is the distance from the path and l is the step length.

When the robot base frame crosses the path curve, the sign
of the proportional gain KP changes. This sign is determined

on the basis of the sign of the cross product of the path
tangent vector, in the point with minimal distance from the
robot, and the vector pointing from the robot base frame toward
the nearest point on the path. This feedback term tends to
minimize the distance between the path and the robot base
frame and it has only a proportional gain KP which depends
on the distance from the current to the goal position. If the
robot is far from the goal this gain is smaller, and the robot
gradually compensates the offset from the desired path. If the
robot is close to the goal this gain is higher and the robot
acts more rapidly in order to get on the desired course on
time. This simple controller actually behaves like a bang-bang
controller and causes the robot to walk zig-zag around the
desired path. Of course, this zig-zag motion is very small,
cannot be noticed and does not disturb the dynamic balance.
To the human eye, the robot appears to follow the desired
path accurately.

Recent studies in the field of gait physiology and biomechanics
(Egerton et al., 2011) confirms that there exists a relationship
between stride length and cadence which contributes to the
automatic gait control mechanism. Stride length is defined as the
distance between one heel strike to the next of the same foot in
the walking plane. It has been proven that this relationship is
linear when the subjects are walking at the self-selected speed.
So the faster walking implies longer steps to a certain boundary,
which is called the breakpoint. Breakpoint happens at cadences
greater than 150 steps/min. At this point, stride length starts
to decrease with a quadratic relationship and a further increase
in cadence. This is an extreme case which is not considered
in this paper. Thus, the linear relationship (y = b1 · x + b0)
between stride length and cadence, with the slope b1 = 0.01 and
the intercept b0 = 0.54 is adopted. Since walking speed is the
product of cadence and stride length, the relationship between
two walking parameters, Wspeed and WLength, is provided. It is
sufficient therefore to define just one of them while the other can
be calculated.
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FIGURE 4 | Stick diagram, footprints, and trajectory of ZMP (red cross) and PCM (blue circle) for on-line adaptation of walking direction and speed while avoiding

obstacles (Raković et al., 2014).

Another result provides the relationship between the path
curvature and walking speed. This relation, known as the 1/3
power law, is given with the following equation:

WSpeed = K · Rβ (3)

whereK is the velocity gain factor, R is the radius of the curve and
β is the power (having the value of 1/3). Velocity gain factor K is
calculated as WDes

Speed
· (1/2)β , where WDes

Speed
is speed of straight

walking. In this case, if the radius of the curve is 2 m, the walking
speed is equal to WDes

Speed
, if the radius is >2 m, the speed will

increase, and if it is <2 m the speed will decrease. Additionally,
theminimum andmaximum speeds are introduced as 0.5·WDes

Speed

and 2 ·WDes
Speed

respectively.

Although this relationship was considered to be valid for a
long period of time, recent studies (Olivier and Cretual, 2007)
have shown that this coupling between velocity and curvature
is not general. In Olivier and Cretual (2007), authors studied
the velocity/curvature relationship during a single turning task.
Their results have shown that power law does not apply to this
situation where subjects are free to choose a walking trajectory.
However, power law has been proven to be valid for predefined
paths and long-term control of the turning task. Also, it was
shown that the value of the power is not always 1/3 and that
it depends on the geometry of the path. Since the path in
our algorithm is predefined, in the form of the clothoid, and
there is no final, unambiguous conclusion on this issue—the
1/3 power law has been adopted as the relationship between
path curvature and walking speed. The fourth walking parameter
WHeight is independent of other parameters and depends only on
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FIGURE 5 | Calculation of WDir according to the path geometry.

the estimated value of the obstacle’s height if there is an obstacle
to be stepped over.

In Figure 6, the robot is walking on a path that is generated
according to a previously described procedure. The path is
generated first to reach the goal position with coordinates x =
1.5 m, y = 2 m, and ϕ = π/2 (orange line). In randomly selected
time instants the path is re-planned with the goal position x =
3.5 m, y = 1.5 m, and ϕ = 0 (purple line). Again, nearly before
reaching the second goal position, the third goal position x = 6.5
m, y = 0 m, and ϕ = −π/2 is selected (green line) and a path
is generated for the third time. For all three paths, as a starting
point either the nearest point on the existing path is selected, or
the current position of the pelvis in the case when the path is not
generated. Figure 6 shows the robot’s online change in walking
direction, as well as in walking speed and step length to comply
with the generated paths.

2.3. Online Path Planning Algorithm
The inputs for generating the clothoid curves are the current
position of the robot, given with coordinates x, y, and ϕ, and the
desired goal position given with coordinates xdes, ydes, and ϕdes. If
there is an obstacle between the current and the goal position [see
Figure 7 (left)], an algorithm for finding via points for avoiding
obstacles is needed. In this section, an approach is described,
for determining the coordinates of the intermediate desired goal
positions for generating the clothoid curves, in order to avoid the
obstacles and to reach the final goal position.

The algorithm first tries to generate the shortest clothoid
between current and goal position. When the clothoid is
generated it is checked whether the path will ensure minimum
clearance between the robot and the obstacles. The clearance
value takes into account the minimum desired margin between
the robot and the obstacle2. If the clearance is satisfied, the

2The robot is modeled to have the distance between the left and right shoulder joint

36 cm. The clearance in the simulation examples in this papers is set to 30 cm and

thus the margin between the robot and the obstacle is 12 cm, which is considered

to be enough to avoid the collision with the obstacle.

FIGURE 6 | Online modification of walking parameters for walking on a path

consisted of three clothoid curves: (top) stick diagram for the robot, (bottom)

path, footprints, ZMP, and PCM trajectories.

clothoid is generated, and the robot starts to follow the path.
If not, the procedure for finding two intermediate targets is
executed. These intermediate targets provide two possible paths
for bypassing the obstacle. This procedure takes into account,
the current position of the robot and visible part of the obstacles
[see Figure 7 (right)]. These positions are used to calculate the
convex surface. As a result, three points (current robot position
and two points on the obstacle) constitute the corners of the
convex surface.

Current position of the robot and two points are used to

calculate vectors Ed1 and Ed2. The vectors Ed1 and Ed2 are the unit
vectors perpendicular to the line that connects the current robot’s
position and two possible target positions [Target 1 and Target
2 in Figure 7 (right)]. Initial values of two target positions are
actually two points on the obstacle. The target positions are
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FIGURE 7 | Illustration of the path that requires to be re-planed to avoid the obstacle (left) and illustration of the path finding for the obstacle avoidance (right).

iteratively modified by shifting them in the direction determined

by the corresponding unit vectors Ed1 and Ed2. The modified target
positions are used to generate two clothoid curves for which it
is checked if they are satisfying the clearance from the obstacles.
If there is sufficient clearance the clothoid is generated and the
procedure is stopped. The second condition for stopping the
procedure is that the orientation of the target positions is more
than 180o from the current orientation, which means the target
points are on the back side of the robot. If this situation for both
points occurs, the robot is surrounded by obstacles and it is not
possible to find intermediate points to calculate the clothoid path.

Out of the first clothoid curve that has a clearance of two
possible intermediate goal positions, the one that is closer to the
robot’s final position is selected. This algorithm is executed for
every obstacle in the scene that is in the visible range3. Generated
clothoid path to the goal target has to fulfill the minimum
clearance constraint for each obstacle. In the case of multiple
possible targets, the one with a minimal distance from the robot’s
current position is chosen.

Our path planning algorithm, based on clothoids, has been
compared with another path planning algorithm, based on
particle swarm optimization (Poli et al., 2007; YarpizPSO,
2019). Particle Swarm Optimization (PSO) has been reported
in literature many times for robot path planning in dynamic
environment (Raja and Pugazhenthi, 2012). However, our focus
is on the comparison of geometrical properties of the paths,
generated by the two aforementioned approaches. Therefore, we
considered that, without loss of generality, static environment
with static obstacles is sufficient for such comparison. Figure 8
shows the comparison of the two paths, generated between the
starting position (yellow square) and the goal position (green
star), avoiding a set of static obstacles (blue circles).

To geometrically compare the two paths, a curvature of each
path has been calculated as the inverse of the path radius at
each point. The comparison of the two curvatures is shown in
Figure 9. It can be seen that the clothoid path, generated with
our approach, has smaller curvature values, compared to the
path generated by the PSO-based approach. According to the

3This range is set to 5 m in this simulation experiment and can be changed to meet

different requirements.

FIGURE 8 | Comparison of the paths generated using PSO (black line) and

using clothoids (red line). Blue circles represent static obstacles.

Equation (3), this implies that our approach, due to a smaller
curvature, may provide higher walking speeds, then the approach
based on PSO. However, it should be noticed that the clothoid
path has the sharper changes of the curvature, meaning that
its derivative would have higher peaks, compared to the PSO-
based path. It means that PSO algorithm provides smoother
changes in the curvature, but at the cost of higher values of this
curvature, leading to the less intensive change in the direction of
the walk, but limiting the walking speed, while our approach does
the opposite.

The time to generate path using PSO took 13.3349 s,
whereas the time to generate the path using clothoids took
0.0233 s [on Intel(R) Quad Core(TM) i5-4590 CPU at
3.30 GHz]. This significant difference emphasizes the main
contribution of our approach and qualifies clothoid path
planning algorithm as suitable for online path planning. We
have shown that our path planning approach is computationally
less expensive then the approach based on particle swarm
optimization, while providing the minimum curvature of the
generated path.
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FIGURE 9 | Curvature of the paths generated using PSO (red line) and using clothoids (blue line).

FIGURE 10 | Kinematic structure of the robot model: (left) the trunk and the arms; (right) the legs.

FIGURE 11 | Walking in the environment with the different obstacle configurations: Stick diagram of robot motion (top) and robot footprints (down) with projections

of ZMP (red cross) and PCM (blue circle).
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Raković et al. Human-Inspired Robot Path Planning

3. SIMULATION MODEL AND RESULTS

The concept of a free-flying mechanism has been used for
robot modeling. The model can have multiple kinematic chains,
composed of links with one rotational degree of freedom. Multi-
DOFs, like hip or shoulder, are modeled with a series of one-DOF
joints. More details about the used simulation software can be
found in Vukobratović et al. (2007). The whole robot has 46
links and 52 DOFs since there are six additional DOFs for the
free-flying base link. Kinematic structure of the robot is given
in Figure 10.

The foot is not a single rigid object, but a two segment foot
with a sole link and a fingers link. Both links were chosen in the
form of trapezes and the contact between the foot and the ground
is described by six points (four on the sole and two on the fingers).
Each foot link was modeled as a rigid, nondeformable body
with a thin, deformable visco-elastic layer of negligible mass.
The visco-elastic layer was modeled as an isotropic Kelvin-Voigt
material (Nikolić et al., 2014, 2018). Without loss of generality,
all actuators were assumed to be the same, and modeled as DC
motors with permanent magnets.

In order to verify the proposed bioinspired motion planning
algorithm, simulation case studies have been conducted,
demonstrating the robot’s ability for online path planning
and walk realization in an unstructured environment. In all
simulations, the above-described model of humanoid robot
was used.

3.1. Walking Around Walls
Simulation scenarios cover three different obstacle
configurations, chosen to test the performance of the
path planning algorithm. In simulation results, obstacles
configuration and stick diagram of the robot motion are given.
Additionally, footprints of the robot and projections of ZMP and
CoM for the full path are plotted, which shows that dynamically
balanced walk has been achieved, with successful obstacle
avoidance. In each simulation, the goal of the robot is to reach a
goal position given the coordinates x = 8 m and y = 0 m and the
orientation φ = 0o.

In the first simulation experiment, the robot was supposed to
walk from the starting point to the goal point in the environment
which includes two parallel, nonplanar, overlapping walls. The
results of the first simulation are shown in Figure 11 (left). The
robot first tries to calculate the clothoid path directly from the
starting point to the goal point and checks for the obstacles
in the visible range. Since there is an obstacle in front of the
robot (blue wall) robot finds an intermediate target point, in
order to avoid the obstacle. A convex surface is calculated using
three points, the robot’s current position and two corners of
the wall. Following the path planning algorithm, described in
the previous chapter, two intermediate targets are calculated,
since the obstacle may be circumvented from the left or from
the right. The right target, which is closer to the shortest
path without the obstacles, is chosen and the clothoid path
is generated.

Each time when the robot starts new phase (see Figure 2), it
recalculates a clothoid path, following the algorithm described in

section 2.3. At this point a new obstacle (green wall) in front of
the robot becomes visible. Since it is not possible to calculate a
clothoid path directly to the goal point, because of the obstacle,
the path planner calculates another path for obstacle avoidance.
The path is calculated, which ensures the robot to bypass the
green wall. When the robot avoids the second wall, the goal
position becomes visible and the clothoid path toward the final
goal position is generated.

The second simulation has a setup similar to the first one.
There are also two parallel, nonplanar walls in the scene and the
robot has to walk between the walls to reach the goal point. The

FIGURE 12 | Robot is walking toward the goal position and turns left to avoid

the obstacle: Stick diagram of robot motion (top); footprints and projections of

ZMP (red crosses) and PCM (blue circles) (down).

FIGURE 13 | Robot first turns left and then turns right to avoid the obstacle

with the shorter clothoid path around the obstacle toward the goal: Stick

diagram of robot motion (top); footprints and projections of ZMP (red crosses)

and PCM (blue circles) (down).
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major difference, compared to the first simulation scenario is that
the robot, after circumventing the first wall has a clear sight to the
goal position. Only one obstacle had to be avoided. The results of
the second simulation are shown in Figure 11 (middle).

In the third simulation scenario, the robot is searching for
the path in the scene with two parallel, non-planar walls. At
the beginning of the simulation, the second wall (green one)
is completely hidden behind the blue wall. Since there is an
obstacle between the robot and the goal position, an intermediate
target is calculated, to bypass the obstacle. Robot chooses the
intermediate target on the right corner of the convex surface since
it is closer to the robot’s current position. After avoiding the first
wall, another obstacle (green wall) is on the robot’s path toward
the goal position. Thus, a new convex surface is calculated and
two intermediate targets, which fulfill the clearance condition are
calculated. The closer target is chosen as an intermediate goal for
the clothoid generation and the robot circumvents the second
wall. When the robot avoids the second obstacle, the clothoid
path which leads the robot to the goal point is found. The results
of the third simulation are shown in Figure 11 (right).

3.2. Avoiding Moving Obstacle
For illustrating the possibility of the robot to plan the path online
and adapt its walking parameters to follow the path, the following
simulation scenarios are prepared. The robot’s goal position is the
same as in previous examples, i.e., x = 8 m, y = 0 m, φ = 0o. The
obstacle, represented as a blue box that is moving from the right
side of the robot, crosses the robot’s path. The transparent blue
trace represents the path of the obstacle. Same as is the section
3.1, the figure shows the stick diagram of the robot, the footprints
and the projections of the ZMP and CoM of the robot.

The first example (Figure 12) shows the simulation of the
robot walking toward the goal position, and the obstacle is
crossing its path. The obstacle stops in front of the robot. The
robot’s path planning algorithm finds the point to generate the
clothoid and turns left to avoid the obstacle. The obstacles
stopped at the position in which the closest path to avoid the
obstacle is always on the same side of the obstacle.

The second example (Figure 13) shows the simulation of
the robot walking toward the same goal position. The obstacle
stops in front of the robot but in this case, the end position

of the obstacle is such that the robot first finds the path to
turn left, and then switches to turn right. The reason for this
switch is that at one moment, the path to avoid the obstacle
is shorter if the robot turns right. The sequence of the figure
shown in Figure 14 illustrates the significant output of the path
planning algorithm.

The last example (Figure 15) shows the simulation of the
robot when the moving obstacle crosses its path, but instead
of stopping in front of the robot, it continues to move and
eventually clears the way for the robot to pass. In this example,
we introduced the rule to slow down the walking speed when
the obstacle is crossing the robot’s shortest path toward the goal.
When the obstacle crosses the robot’s path, the robot will slow
down and plan to turn left in order to avoid the obstacle. When
the obstacle is out of the robot’s path, the robot calculates the new

FIGURE 15 | Robot slows down the walking speed, turns left and then turns

right when the obstacle crosses the robot’s path. After the obstacle is not

crossing the path, the robot continues with normal speed toward the goal

position following the shortest clothoid path: Stick diagram of robot motion

(top); footprints and projections of ZMP (red crosses) and PCM (blue circles)

(down).

FIGURE 14 | Sequence of figures illustrating the online path planing for obstacle avoidance.
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path toward the goal and speeds up to normal walking speed4.
The link to the simulation experiment video of the robot avoiding
the obstacles can be found in Supplementary Material.

4. CONCLUSION

This paper presented a novel methodology for biped walk path
planning and walk synthesis based on motion primitives and
neurological observations of human behavior. The presented
approach showed the capacity for online modification of walk
in an unknown environment. The first simulation showed how
the robot can modify its walking parameters online, in order to
avoid obstacles and walk between them. Results from Figure 11

highlighted the path planning algorithm that finds a transitory
position, and illustrated how a walk is modified without upfront
calculation of reference foot placements, joint trajectories, and its
execution. Simulation examples given in Figures 12–15 showed
the ability of a path planning algorithm to change the walking
path online and adapt the high-level walking parameters. The
framework for online path planning and walk realization showed
the potential when the surrounding environment is unknown
and dynamically changing.

The algorithm for walk synthesis was interfaced to the
algorithm for biologically inspired, human-like path planning
based on clothoid arcs. The algorithm for path planning
prescribes an automatic change of parameters of walk based on
the shape of a generated path. The outcome parameters of walk
change over time and the realized walk changes simultaneously
to comply with the laws derived from physiological studies and
clinical research.

The proposed path planning approach, based on clothoid arcs
smooth concatenation, was compared with another approach
based on particle swarm optimization. It was shown that our
approach provides a path with a smaller curvature, but a higher
curvature derivative, i.e., sharper change of curvature, thus

4The video simulations of the robot avoiding the obstacle can be found

on the following link: https://youtu.be/WBCesxnep0s, and the source

code with the software for general modeling tool and the simulation

examples from this paper can be found at https://github.com/rakovicm/

Online_Planning_Walking_Unknown_Environment

leading to the sharper change in walking direction, but higher
possible walking speeds.

In future work, we plan to take into account the derivative of
the path curvature, beside the curvature itself, as another cost
function for optimization, in order to obtain smoother changes
of the walking direction. Also, we plan to analyze how ascending
and descending stairs can be integrated into our path planning
algorithm in order to avoid obstacles on the stairs. The focus will
be on the analysis of a human approaching the stairs with static
and dynamic obstacles and transition of the human-like behavior
onto the biped humanoid robot.
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Nikolić, M., Branislav, B., and Raković, M. (2014). “Walking on slippery surfaces:

generalized task-prioritization framework approach,” in Advances on Theory

and Practice of Robots and Manipulators, eds M. Ceccarelli and V. A. Glazunov

(Cham: Springer), 189–196.

Olivier, A.-H., and Cretual, A. (2007). Velocity/curvature relations along

a single turn in human locomotion. Neurosci. Lett. 412, 148–153.

doi: 10.1016/j.neulet.2006.11.005

Perrin, N., Stasse, O., Lamiraux, F., Kim, Y. J., and Manocha, D. (2012). “Real-

time footstep planning for humanoid robots among 3d obstacles using a

hybrid bounding box,” in 2012 IEEE International Conference on Robotics and

Automation (ICRA) (Saint Paul, MN: IEEE), 977–982.

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm

Intell. 1, 33–57. doi: 10.1007/s11721-007-0002-0

Raja, P., and Pugazhenthi, S. (2012). Optimal path planning of mobile robots: a

review. Int. J. Phys. Sci. 7, 1314–1320. doi: 10.5897/IJPS11.1745
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Surface electromyography (sEMG) signals represent a promising approach for decoding

the motor intention of amputees to control a multifunctional prosthetic hand in a

non-invasive way. Several approaches based on proportional amplitude methods or

simple thresholds on sEMG signals have been proposed to control a single degree of

freedom at time, without the possibility of increasing the number of controllable multiple

DoFs in a natural manner. Myoelectric control based on PR techniques have been

introduced to add multiple DoFs by keeping low the number of electrodes and allowing

the discrimination of different muscular patterns for each class of motion. However, the

use of PR algorithms to simultaneously decode both gestures and forces has never

been studied deeply. This paper introduces a hierarchical classification approach with

the aim to assess the desired hand/wrist gestures, as well as the desired force levels

to exert during grasping tasks. A Finite State Machine was introduced to manage and

coordinate three classifiers based on the Non-Linear Logistic Regression algorithm. The

classification architecture was evaluated across 31 healthy subjects. The “hand/wrist

gestures classifier,” introduced for the discrimination of seven hand/wrist gestures,

presented a mean classification accuracy of 98.78%, while the “Spherical and Tip force

classifier,” created for the identification of three force levels, reached an average accuracy

of 98.80 and 96.09%, respectively. These results were confirmed by Linear Discriminant

Analysis (LDA) with time domain features extraction, considered as ground truth for the

final validation of the performed analysis. AWilcoxon Signed-Rank test was carried out for

the statistical analysis of comparison between NLR and LDA and statistical significance

was considered at p < 0.05. The comparative analysis reports not statistically significant

differences in terms of F1Score performance between NLR and LDA. Thus, this study

reveals that the use of non-linear classification algorithm, as NLR, is as much suitable as

the benchmark LDA classifier for implementing an EMG pattern recognition system, able

both to decode hand/wrist gestures and to associate different performed force levels

to grasping actions.

Keywords: pattern recognition, surface electromyography, hand gestures recognition, prostheses, gestures

classifier, force classifiers, non-linear logistic regression, linear discriminant analysis
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1. INTRODUCTION

The use of surface electromyography (sEMG) allows the non-
invasive extraction of pattern information useful to control
active prosthetic hands. In the last 70 years, several solutions
have been proposed to extract gestures information from sEMG
(Ciancio et al., 2016, 2017); the most simple were based on
on-off (Scott and Parker, 1988), on Agonist/Antagonist (Popov,
1965) and Proportional Control (Fougner et al., 2012). Targeted
Muscle Reinnervation (TMR) enabled amputees with shoulder
disarticulation or transhumeral amputation to control motorized
prosthetic devices with multi-DoFs (Aszmann et al., 2015) in a
natural way. Pattern recognition methods enabled performance
improvements to reach an intuitive and coordinated control (Li
et al., 2018). Moreover, these techniques allowed the increasing
of the number of controllable Degree of Freedoms (DoFs)
(Ciancio et al., 2016). Different classification algorithms have
been proposed in literature, including Euclidean Distance,
Non-Linear Logistic Regression, k-Nearest Neighbors (kNN),
Hidden Markov Model (HMM), Artificial Neural Network
(ANN), Support Vector Machine (SVM), Linear Discriminant
Analysis (LDA) (Chowdhury et al., 2013). However, different arm
positions (Geng et al., 2012), electrode shift (Young et al., 2012a),
signal non-stationarity (Lorrain et al., 2011) and force variation
(Scheme and Englehart, 2011) can affect the pattern-recognition
accuracy and robustness. In addition, physiological factors as
motor unit (MU) recruitment, MU firing rate and contraction
type (e.g., isometric, isotonic, concentric, or eccentric) make
difficult the extraction of sEMG-force relationship due to non-
linear factors (Farina et al., 2007; Disselhorst-Klug et al., 2009;
Staudenmann et al., 2009).

In literature two main approaches have been proposed to
find a relationship between muscular activation and force:
mathematical models and machine learning techniques.
Force estimation, based on surface electromyographic
measurements, was determined through a sEMG-force
mathematical relationship, by applying Non-linear Wiener
Hammerstein (NLWH) and Spectral Analysis Frequency
Dependent Resolution (SPAFDR) models (Potluri et al., 2013).
Buchanan et al. (2004) presented a computational neuro
musculoskeletal model of the human arm with the aim to
estimate muscle forces, joint moments and joint kinematics
from neural signals. Moreover, “crosstalk risk factors” (CRF),
as the dependency of the relationship between the sEMG
signals, muscle length and isometric contraction force, had to
be quantified to understand the effectiveness of the muscular
co-ordination in generating force (Disselhorst-Klug et al., 2009).

Related to machine learning techniques, Srinivasan et al.
(2012) proposed a method for estimating forces from surface
electromyography (sEMG) signals with Artificial Neural
Network (ANN). Wu et al. (2017) proposed a force estimation
method employing a Regression Neural Network (GRNN)
trained with sEMG and force signals. In the most recent study,
Ren et al. (2017) divided force signals in different grades from 0
N to 16 N, expressed as percentage of the Maximum Voluntary
Contraction (MVC). They used SVM to establish non-linear
regression relationship between sEMG and force. Lv et al. (2017)

used Linear Discriminant Analysis (LDA) to classify five finger
gestures at two different levels of force (i.e., 10% MVC and
50% MVC), by using EMG and accelerometer signals. Li et al.
(2018) proposed a method based on deep neural network to
derive sEMG-force regression model for force prediction at eight
different force levels. Al-Timemy et al. (2016) reported that force
level variations negatively affected the performance of PR system
and caused the increase of the classification error rates. However,
an increasing of 6 − 8% in the classification performance can
be reached by applying Time-Dependent Power Spectrum
Descriptors (TD-PSD) features extraction to four classifiers [
i.e., LDA, Random Forest (RF), Naive Bayes (NB), k-Nearest
Neighbor (kNN)] and training with all forces across nine trans-
radial amputees. In order to investigate the performance of PR
system in presence of variations in force, Scheme and Englehart
(2011) evaluated a LDA classifier with Time-Domain (TD)
features extraction, by using data of 10 classes performed at 20%
and 80% of the strongest and reproducible contraction, except
for the tenth class of no motion. The LDA classifier performed
an error rate equals to 17% when trained and tested using data
of 11 healthy subjects at all force levels. The error increased at
31− 44% when trained at one force level and tested with all force
levels. Subsequently, the effect of contraction strength on pattern
recognition based control was studied in Scheme and Englehart
(2013). By using a LDA classifier trained with dynamic ramp
data of 10 healthy subjects, the classification error significantly
improved (11.16± 0.54%).

Different strategies have been developed by combining the
above techniques to make the control most fluid and intuitive
for the user. Two proportional control algorithms were used
to obtain a robust and proportional velocity commands that
could improve the usability of PR (pattern recognition) based
control (Scheme et al., 2014). Fougner et al. (2014) presented
a novel pattern recognition system with mutex on-off control
or proportional control of a commercial prosthetic hand and
wrist. In Young et al. (2012b) three classification strategies were
introduced and compared in order to provide simultaneous
DoFs control. The first classification approach used a single
linear discriminant analysis (LDA) classifier to discriminate both
discrete and combined motions. All the discrete and combined
gestures were considered as separated classes. The second
proposed approach was based on a hierarchical classification
strategy and consisted of a hierarchy of LDA classifiers. The
highest classifier in the hierarchy determined a motion class
for a single DoF by using both discrete and combined motion
data. The output of this classifier determined which classifier
of the second level could be used for discriminating the
motion class of a second DoF. Finally, the parallel classification
strategy employed one LDA classifier for each DoF and the
decision of the single classifier is independently defined. The
parallel classification strategy was presented also to either
allow the simultaneous control of three-digits of a monkey
(Baker et al., 2010) or to control the elbow and hand/wrist
movement of an active myoelectric transhumeral prosthesis
(Boschmann et al., 2011). No hierarchical strategy has ever
been proposed to simultaneously identify desired gestures
and forces.
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This work aims at proposing and testing a hierarchical pattern
recognition strategy to contemporary identify desired hand/wrist
gestures and force levels. In details, a Finite State Machine (FSM)
scheme (Figure 2) is introduced to manage desired hand/wrist
gestures and force levels, following a hierarchical approach.

Differently from Young et al. (2012b) the hierarchical
classification system is used to discriminate simultaneously
hand/wrist gestures and desired force levels. In details, the
highest NLR classifier, i.e., the “hand/wrist gestures classifier,”
is devoted to identify the desired hand/wrist class among seven
gestures. The output of this classifier determines the next
classifier used in the hierarchy. If the output of this classifier
is “Spherical” motion class, then the “Spherical force classifier”
is used to determine the desired force level to exert on an
object. This second classifier is conditioned on the decision of
the first classifier. The same strategy is adopted if the output of
the first classifier is “Tip” motion class. In this case, the “Tip
force classifier” lower in the hierarchy is used to determine the
desired force levels. Thus, the classifiers of the second level of
the hierarchy discriminate the force levels applied during the
related grasping class. If, instead, the output of the first classifier
is any hand/wrist gestures different from “Spherical” or “Tip”
gesture, no force classifiers are activated. Hand and wrist gestures
are classified by using the single “hand/wrist gestures classifier.”
When the “Spherical” or “Tip” state is chosen, the “Spherical
force classifier” or the “Tip force classifier” is respectively
activated in a hierarchical way to discriminate between three
different force levels (i.e., Low, Medium, and High). The FSM
use allowed the two classifiers of different grades of the hierarchy
to work simultaneously. Until the “Spherical” or “Tip” state is
classified by “hand/wrist gestures classifier,” the “Spherical force
classifier” or the “Tip force classifier” intervenes to discriminate
force levels.

TheNLR and LDA algorithms are employed for implementing
the hierarchical classification approach, since LDA and NLR
retained statistically similar value for F1Score performance and
computational burden, despite LDA has the fewest number of
classification parameters (Bellingegni et al., 2017). The number
of gestures is increased from five (Bellingegni et al., 2017)
to seven and the classification is extended to three different
force levels, by using the same number of sensors. Force
information is provided only for the two grasping classes
(i.e., “Spherical” and “Tip”) in which an object interaction is
expected. Seven hand/wrist gestures (i.e., Rest, Spherical, Tip,
Platform, Point, Wrist supination, and Wrist pronation) had
been discriminated by using a Non-linear Logistic Regression
(NLR) algorithm. When the “Spherical” or the “Tip” class
are identified, a second NLR-algorithm-based classifier, i.e.,
respectively, “Spherical force classifier” or “Tip force classifier”
is activated simultaneously in order to discriminate three force
levels (i.e., Low, Medium, and High).

The same hierarchical pattern recognition strategy was
implemented with three linear classifiers (“hand/wrist
gestures classifier,” “Spherical force classifier” and “Tip
force classifier”), based on LDA with time domain features
extraction. The performance of each algorithm (NLR and
LDA) were measured by means of F1Score value and statistical

analysis had been based on the Wilcoxon Signed-Rank test,
which had been shown to be appropriate for comparing
different classifiers in common datasets (Demšar, 2006). A
comparative analysis among NLR and LDA with features
extraction was implemented in order to define the most
suitable classification algorithm for the realization of a
gestures and forces classification architecture to control of
a prosthetic device. Thus, in literature, several studies have
been considered the LDA classifier with features extraction
as ground truth (Simon et al., 2011; Young et al., 2014) and
it can be used for the online control of prosthetic devices
(Resnik et al., 2017) that is commercially available by COAPT
(https://www.coaptengineering.com).

The performance of the proposed approach are evaluated
during an experimental session involved 31 healthy subjects. The
users are asked to perform seven hand/wrist motions and to
replicate three different force levels during the “Spherical” and
“Tip” grasps.

The paper is organized as follows. Section II describes
the proposed force/gesture classification approach and the
experimental setup used to collect sEMG and force data. Section
III reports the results in terms of F1Score and accuracy of each
classifier trained with both NLR and LDA algorithms. Section IV
discusses the achieved results and then it reports the comparative
analysis among NLR and LDA classifiers in terms of F1Score. The
last section draws the conclusion, including some considerations
regarding the comparative analysis between NLR and the LDA
benchmark classifier, limits and future works.

2. MATERIALS AND METHODS

2.1. Forces/Gestures Classification
Approach
A hierarchical pattern recognition strategy was proposed
for the classification of the desired hand/wrist gestures
and force levels from muscular signals (Figure 1). The
FSM coordinated the hierarchical activation of the three
classifiers implemented both with NLR and LDA algorithms
for doing a comparison in terms of F1Score performance.The
highest classifier in the hierarchy was a single classifier
able to discriminate seven discrete hand/wrist motion
classes. The output of this classifier determined the desired
hand/wrist gesture and, in case of “Spherical” or “Tip”
class, the force classifier, lower in the hierarchy, to be
activated. Thus, the force classifiers were activated for force
levels recognition.

The described hierarchy was implemented adopting NLR
algorithm for both gesture and force classifiers. The same
hierarchy was then reproduced using LDA algorithm in order
to perform a comparative analysis. The Linear Discriminant
Analysis (LDA), using time domain of the EMG signal, was
frequently employed in literature because it was considered
an efficient algorithm, simple to train and with an optimal
compromise in terms of computational burden (Young et al.,
2014). The Wilcoxon Signed-Rank test applied to the F1Score
values was performed with significance threshold set to 0.05.
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FIGURE 1 | Hierarchical classification strategy. “Hand/wrist gestures classifier” allowed the identification of the desired motion class among seven different gestures.

“Tip force classifier,” lower in the hierarchy, allowed the classification of three force levels for “Tip” gesture. “Spherical force classifier,” lower in the hierarchy, allowed

the classification of three force levels for “Spherical” gesture.

FIGURE 2 | Finite State Machine (FSM) strategy for the classification of seven

different hand/wrist gestures and three force levels: the blue circle states

indicated the hand gestures and wrist motions and they were all classified

through the “hand/wrist gestures classifier.” Three force levels (Low, Medium,

and High) can be classified through the “Spherical or Tip force classifier” if the

“hand/wrist gestures classifier” discriminated respectively the “Spherical” or

“Tip” state. If the “Spherical” or “Tip” state was classified, the hierarchical

classification strategy was adopted.

The FSM coordinated the three classifiers activation (i.e.,
one for hand/wrist gestures and two for force levels). The FSM
approach was characterized by the following key features:

• The FSM can only be in a fixed set of states.
• The FSM can only be in one state at a time.
• A sequence of inputs was sent to the FSM.

The proposed classification system was characterized by three
different classifiers (Figure 2):

• The “hand/wrist gestures classifier” was able to discriminate
seven states, corresponding to seven hand and wrist gestures
(blue circle states in Figure 2). This classifier was always active
and it was the highest classifier in the hierarchy (Figure 2).

• The “Spherical force classifier” was able to discriminate three
force levels (i.e., Low, Medium, and High Level shown in

Figure 2 in the red box). It was active if the “Spherical" gesture
was identified and it was lowest in the hierarchy (Figure 2).

• The “Tip force classifier” was able to discriminate three force
levels (i.e., Low, Medium, and High Level shown in Figure 2 in
the red box). It was active if the “Tip" gesture was identified
and it was lowest in the hierarchy (Figure 2).

FSM determined the following different scenarios: a single
classification approach used “hand/wrist gestures classifier”
to recognize seven discrete hand/wrist motion classes; the
classification approach become hierarchical when the output of
this classifier was the “Spherical” or “Tip” motion class. In this
case, a second classifier (force classifier) was activated. Until the
FSM system remained in one of these two states (i.e., “Spherical”
or “Tip”), the output of the FSM system provided hand/wrist
gestures and the force levels information. Otherwise, if the FSM
system was in a different state from the “Spherical” or “Tip,” only
the single “hand/wrist gestures classifier” was activated and the
gesture information was supplied.

The force classifiers managed only a three classes classification
problem related to three different force levels ( i.e., Low, Medium,
and High).

The raw sEMG recording for the six EMG channels, related
to all the seven performed movements of a single acquisition
session, was reported in (Figure 3). In details, the enveloped
EMG signal was acquired at 1 KHz to create three Datasets,
used for both the NLR and LDA algorithms (Figure 4). For
the NLR classifiers, the “raw” sEMG signals were used as input
features in order to speed up the training and cross validation
of the NLR algorithm (Figure 4A). On the other hand, for
the LDA classifiers, five commonly used time domain features
were extracted: Mean Absolute Value (MAV), Root Mean Square
(RMS), Slope Sign Change (SSC), Waveform Length (WL) and
Variance (σ 2) (Figure 4B). In this case, the features extraction
avoided the generation of large-scale-dataset without performing
the downsampling step and the time to complete the training
is not too long. The TrainingSet of the “hand/wrist gestures
classifier” was composed by sEMG signals related to all the
seven states of FSM. This TrainingSet included the recording
of Spherical and Tip gestures performed at three different
force levels in order to correctly classify gestures independently
from muscular contraction changes due to force variations.
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FIGURE 3 | Plot of the raw sEMG recording for the six EMG channels, related to all the seven performed movements of a single acquisition session from one of the

subjects who was involved into the experiment. The plot of raw sEMG recording of “Spherical” and “Tip” classes are related to muscular activations performed at

medium force level.

The TrainingSets of “Spherical and Tip force classifiers” were
composed only by sEMG data expressing different muscular
contraction levels for these gestures. The NLR and LDAmachine
learning algorithms and dataset organization are provided below.

2.2. NLR Classification Algorithm and
Dataset Organization
In each subject’s acquisition, the sEMG data were organized in
a 84000 ∗ 6 dimensions matrix. Each column of the matrix
was coupled with an EMG sensor. Firstly three-way data split
approach (Ripley, 2007) was applied to the dataset (84000 ∗ 6
sEMG data) and the Training Set (TR), the Cross Validation
Set (CVS) and the Test Set (TS) were set to contain 60, 20, and
20% of the data, respectively. A random shuffle was implemented
for filling these subsets with a proper proportion of all classes
samples distribution.

The unique operation done on sEMG data was the scaling:
it consists of subtracting the mean value to each signal and
dividing the result by the range, as done in Bellingegni et al.
(2017).Then,downsampling (with a step = 10, 100 Hz) was
applied to reduce the data dimensions and training process.

The scaled “raw” sEMGdata were directly used as input for the
NLR model, without performing any features extraction. The use
of only “raw” sEMG signals allowed a significant reduction of the
classification time and of the response time without loss of system
performance (Nazarpour, 2005; Dohnalek et al., 2013; Benatti
et al., 2014). Moreover, the use of “raw” scaled sEMG signals
(Figure 3) as input features approximated the class evaluation
time and system readiness to the sampling time (Bellingegni

et al., 2017). The discarded data rising from the downsampling
process (90% of initial data) composed a new set of data called
Generalization Set (GS) used as a second test to obtain an
estimation of the generalization capability of each classifier. The
three way data split approach was applied on the data coming
from downsampling process (10% of initial data): TR, CVS, and
TS were set to contain 6, 2, and 2% of the data, respectively. The
TR and CV were used to train and cross validate the classifiers
and the TS and GS were employed to test the performance of
the classifiers. In details, the TR was used to train the supervised
classification algorithm by minimizing a specific cross-entropy
error cost function:

J(θ , θ0) = −
1

m

[

m
∑

i=1

y(i) · ln g
(

θT · x(i) + θ0

)

]

−
1

m

[

m
∑

i=1

(

1− y(i)
)

· ln
(

1− g
(

θT · x(i) + θ0

))

]

(1)

where m is the number of samples of TrainingSet, y(i) is the
known class membership of the i-th sample, θ and θ0 are the
classification parameters and g(·) is the logistic function. Resilient
Backpropagation (RProp) was chosen as minimization algorithm
(Baykal and Erkmen, 2000; Bellingegni et al., 2017) for the NLR.
Each single classifier was iteratively trained with all possible
configurations of its internal parameters that had an appropriate
range of values (Bellingegni et al., 2017).

To avoid overfitting and explore the best model, the
CV was used to evaluate the performance of classifiers
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for each set of internal parameters (Bellingegni et al.,
2017). In this study, the goodness of the classification
was evaluated in terms of F1Score because it was
considering more robust, in lieu of accuracy, to assess

the performance (Powers, 2011). Once the optimal
classification model had been chosen, TS was used to
evaluate the performance of classifier when new features
were introduced as input.

FIGURE 4 | Block diagram of classification system for the creation of three different TrainingSet for obtaining the relative output classes. (A) For the NLR classifiers,

the raw sEMG signals are used as input features in order to speed up the training and cross validation of the NLR algorithm. (B) For the LDA classifiers, five commonly

used time domain features were extracted: Mean Absolute Value (MAV), Root Mean Square (RMS), Slope Sign Change (SSC), Waveform Length (WL), and Variance

(σ2).

FIGURE 5 | The experimental setup was composed by: (i) a sEMG elastic bracelet, (ii) NI DAQ USB 6002, (iii) a conditioning circuit, and (iv) glove equipped with Force

Sensitive Resistors (FSR), Model 402 by Interlink Electronics.
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The NLR algorithm calculated the class membership
probability by using the following logistic function:

P(1 | x, θ) =
{

g(θT · x) = 1

1+e−(θT ·x+θ0)

1− P(y = 0 | x, θ)
(2)

where θ and θ0 are, respectively, the classification parameters
vector and bias term, while g(·) is the logistic function. Additional
polynomial features (e.g., x1, x2, x1 ∗ x2, x

2
1, x

2
2) were introduced

to make non-linear this logistic regression model. The prediction
of class labels hθ for the NLR algorithm was achieved by
comparing the probability distribution P(y|x) with a decision
threshold (TH):

hθ =
{

P(1 | x, θ) ≥ TH → 1

P(1 | x, θ) < TH → 0
(3)

2.3. LDA Classification Algorithm and
Dataset Organization
In order to create linear classifiers able to provide accurate
movement classes and force levels recognition, a proper features
set needs to be chosen to represent the sEMG signals (Hargrove
et al., 2007). In our study, for each of the three LDA classifiers,
five time-domain (TD) features (Mean Absolute Value (MAV),
Root Mean Square (RMS), Slope Sign Change (SSC), Waveform
Length (WL) and Variance (σ 2) were extracted from the
corresponding channels of “raw” EMG data (Figure 3), in each
analysis windows of 150 ms with an overlap of 100 ms (Smith
et al., 2011). Since the LDA classifiers don’t required the setting
of internal parameters (Bellingegni et al., 2017), the training and
test rely on a two ways data split approach (Ripley, 2007). Thus,
the initial dataset was divided in this way: the TrainingSet (TR)
contains 70% of the data and the test set contains the remaining
30% of the data. The training of the classifiers was performed
by using the Equations (4,5). The subset were iteratively filled

FIGURE 6 | Subject positioning and data acquisition during experimental

validation of the proposed approach. The subject was sitting in a comfortable

chair in front of a PC monitor and was asked to perform six repetitions of each

hand/wrist gesture. The subject performed “Spherical” and “Tip” gestures

during the grasping of a rectangular object and executed three force levels.

Written informed consent for the publication of this image was obtained.

trough a random shuffle in order to obtain a configuration
with proportionated class number (Bellingegni et al., 2017).
The downsampling step wasn’t necessary because the features
extraction avoided the generation of large-scale-dataset and
guaranteed a short time for the training of the classifiers. In
details, the Linear Discriminant Analysis (LDA) with features
extraction is a binary supervised machine learning algorithm able
to transform the features into a lower dimensional space, which
maximizes the ratio of the between-class variance to the within-
class variance. This guarantees the maximum class separability
(Welling, 2005). The following decision function is used to
discriminate between only two different classes and to assign class
label 1 or 2 to unknown data:

hβ (x) =
{

(βT · x+ β0) ≥ 0 → 1

(βT · x+ β0) < 0 → 2
(4)

where β and β0 are, respectively, the classification parameters
vector and the bias term. In details, the classification parameters
can be evaluated in this way:

{

β = 6−1 · (µ1 − µ2)

β0 = −βT ·
(

µ1+µ2
2

)

+ ln
(

51
52

) (5)

where 6 is the pooled covariance matrix, µ1, µ2, 51, 52 are
the mean vectors and the prior probabilities of class 1 and
2, respectively. Since LDA is a binary algorithm a one vs. all
approach was implemented to solve the multi-class classification
problem. The class label (c) is predicted as following:

hβ (x) = max
c

(

cβ
T · x+ cβ0

)

and

{

cβ = 6−1 · (µc)

cβ0 = −cβ
T ·

(

µc
2

)

+ ln (5c)

(6)
where cβ and cβ0 are the classification parameters vector and the
bias term of c class, respectively. An ad hoc developed software
was implemented in Matlab for the construction of the three
LDA classifiers.

The performance were evaluated through F1Score values and
aWilcoxon Signed-Rank test at p < 0.005 had been employed for
comparing NLR and LDA classifiers in common datasets (Ortiz-
Catalan et al., 2014). The LDA were trained and tested at 1KHz
(without downsampling step) and for this reason the NLR model
was evaluated considering the F1score on GS for the comparative
analysis of the performance.

2.4. Experimental Setup
Thirty-one healthy participants (age: 28 ± 7.6 years) were
involved in the experiments. Six commercial active sEMG
sensors (Ottobock 13E200 = 50, 27mmX18mmX9.5mm) were
equidistantly fixed on an elastic adjustable bracelet and then were
placed on the forearm of the able-bodied subjects in order to
acquire sEMG signals (Figure 5).

The bracelet was located about 5cm below the subjects elbow,
in line with the positioning of the electrodes, commonly used
to control a prosthetic hand (Riillo et al., 2014). This type
of electrodes output an enveloped signal of the “raw” signal
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FIGURE 7 | Normalized confusion matrix of the “hand/wrist gestures classifier” obtained with NLR algorithm (A) and LDA algorithm (B). The confusion matrices are

normalized with respect to the number of data belonging to the “GS” for the NLR classifier and to the “TS” for the LDA classifier. On the main diagonal the cardinality

of the correct classifications is reported; in the top left dial and bottom right dial, the cardinality of the misclassified data related to the 7 output classes representing

the hand gestures are reported.

FIGURE 8 | Normalized confusion matrix of the “Spherical force classifier” obtained with NLR algorithm (A) and LDA algorithm (B). Normalized confusion matrix of the

“Tip force classifier” obtained with NLR algorithm (C) and LDA algorithm (D). The confusion matrices are normalized with respect to the number of data belonging to

the “GS" for the NLR classifier and to the “TS” for the LDA classifier. The cardinality of the correct classifications is reported on the main diagonal; in the top left dial

and bottom right dial, the cardinality of the misclassified data related to the 3 output classes that represented the force levels are reported.
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(after amplification, filtering and rectification). The number of
sEMG sensors was chosen equal to six because it was considered
the highest number that was possible to place into the socket
(Riillo et al., 2014). Moreover, it allowed to reduce the data
dimensionality and complexity (Bellingegni et al., 2017). The
EMG sensors operated in the range 0 − 5V with a bandwidth
of 90− 450Hz and a common rejection ratio higher than 100dB.

Five Force Sensitive Resistors (FSR), Model 402 by Interlink
Electronics, were placed on a glove to verify the effective forces
executed by the subjects. The relationship between the FSR
voltage value V and the force value F was established with a

statistically characterization as explained in Romeo et al. (2015).
The relation between voltage and force is described trough the
following mathematical expression:

F = p1V
5 + p2V

4 + p3V
3 + p4V

2 + p5V + p6 (7)

obtained with the polynomial model:

y =
n+1
∑

i=1

pix
(n+1−i) (8)

TABLE 1 | Mean value and standard deviation of F1Score and Accuracy of the “hand/wrist gestures classifier” calculated for 31 healthy subjects with NLR and LDA

algorithms.

Hand/Wrist gestures classifier

NLR classifier LDA classifier

F1_Score Accuracy F1_Score Accuracy

Classes Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std

Rest 98.25 4.05 99.50 1.24 97.62 4.31 99.05 3.55

Spherical 95.63 6.22 98.71 1.94 94.28 7.58 93.89 7.76

Tip 95.56 4.93 98.69 1.55 94.25 6.14 93.68 7.56

Platform 95.97 6.58 98.86 1.84 94.60 6.32 95.96 5.25

Point 92.69 9.25 97.63 3.58 93.52 6.02 92.38 7.67

Wrist supination 95.70 6.70 98.64 2.26 95.57 6.18 95.27 7.36

Wrist pronation 98.20 4.93 99.41 1.7 98 3.53 97.66 4.41

The classification performance for the NLR classifiers are evaluated on “GS,” while LDA classifiers are tested on “TS,” with data sampled at 1 KHz (without downsampling).

TABLE 2 | Mean value and standard deviation of F1Score and Accuracy of the “Spherical force classifier” calculated for 31 healthy subjects with NLR and LDA algorithms.

Spherical force classifier

NLR classifier LDA classifier

Classes F1_Score Accuracy F1_Score Accuracy

Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std

Low 97.49 4.84 98.35 3.13 98.49 2.62 98.7 2.76

Medium 97.43 4.21 98.25 2.86 98.43 2.46 98.05 3.35

High 99.69 1.2 99.80 0.78 99.47 1.33 99.48 1.81

The classification performance for the NLR classifiers are evaluated on “GS,” while LDA classifiers are tested on “TS” with data sampled at 1 KHz (without downsampling).

TABLE 3 | Mean value and standard deviation of F1Score and Accuracy of the “Tip force classifier” calculated for 31 healthy subjects with NLR and LDA algorithms.

Tip force classifier

NLR classifier LDA classifier

Classes F1_Score Accuracy F1_Score Accuracy

Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std

Low 91.54 8.61 94.46 5.42 97.11 3.46 97.79 4.34

Medium 91.56 8.24 94.36 5.14 96.31 4.17 96.36 5.46

High 99.03 1.96 99.26 1.31 99.16 2.03 98.66 3.77

The classification performance for the NLR classifiers are evaluated on “GS,” while LDA classifiers are tested on “TS,” with data sampled at 1 KHz (without downsampling).
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where n+ 1 represents the number of fitting coefficients, while n
(1 ≤ n ≤ 9) is the degree of the polynomial. The Anderson loop
was used as signal conditioning circuit (Anderson, 1998).

The EMG and force data were simultaneously acquired at 1
KHz using a suitable software on Labview platform by DAQ USB
6002 device. The PC (Samsung Intel(R) Core (TM) i7-4500U

CPU @ 1.80 GHz 2.40 GHz) and DAQ communicated by means
of an USB port.
The subject was sitting in front of a monitor (Figure 6) and
was asked to perform the following seven hand gestures: Rest
(hand relax), Spherical (hand with all fingers closed), Tip (hand
with thumb and finger touching as if picking a small object),

FIGURE 9 | (A) Average F1Score values calculated on 30 healthy subjects using NLR “hand/wrist gestures classifier” algorithm, tested on “GS,” and LDA “hand/wrist

gestures classifier” with 5 time domain features, tested on “TS.” (B) Average F1Score values calculated on 30 healthy subjects using NLR “Spherical force classifier”

algorithm, tested on “GS,” and LDA “Spherical force classifier” with 5 time domain features, tested on “TS.” (C) Average F1Score values calculated on 30 healthy

subjects using NLR “Tip force classifier” algorithm, tested on “GS,” and LDA “Tip force classifier” with 5 time domain features, tested on “TS.” Statistical

non-significance is indicated by “ns”.

FIGURE 10 | Force sum average values are obtained, by FSR measurements, for 31 healthy subjects during, respectively, the “Spherical” and “Tip” gestures,

performed six times: the blue, red and black values represent the mean value and standard deviation of respectively low, medium, and high force values performed by

each subject.
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TABLE 4 | Misclassification error rates of the “hand/wrist gestures classifier"

calculated with NLR and LDA algorithms.

Misclassification error rates (%)

Hand/Wrist gestures classifier

Classes NLR classifier LDA classifier

Rest 1 1

Spherical 6 11

Tip 5 12.7

Platform 5 7

Point 9 11.3

Wrist Supination 5 7

Wrist Pronation 2 4

Platform (hand completely open and stretched), Point (handwith
all fingers closed except for the index finger), Wrist Supination
and Wrist Pronation. The participants were asked to produce
each of these gestures for six times and hold it for 2 s with an
interval of rest state about 2 s between each repetition.

In a initial phase before the training, each subject was asked to
produce maximum muscle contractions in order to perform the
highest peak of force, while grasping a stiff object of rectangular
shape (weight 66 g, dimensions 50 × 100 × 17 mm) with
“Spherical” and “Tip” grasps. The object was used also during the
training session.

Three force thresholds were established at 30% (low), 60%
(medium), and 90% (high) of the sum of all force contributions
recorded from FSR sensors. Three force bands were defined as
follows to reduce the difficult to perform a punctual value of
force: the low level was fixed between the ±15% of the lowest
threshold (i.e., 30%), the medium level was fixed as ±15% of the
medium threshold (i.e., 60%), while the high level starts from
−15% of the highest threshold (i.e., 90%) and continued until
the maximum value. These bands were used to give a visual
feedback to the subject during the recording of “Spherical” and
“Tip” gestures.

3. RESULTS

The results of the “hand/wrist gestures classifier” are reported
in Table 1 in terms of the average accuracy and F1Score for
NLR and LDA algorithms. The results of LDA classifiers with
time domain features extraction were obtained with data sampled
at 1 KHz (without downsampling). Thus, for the comparative
analysis, we reported the results of NLR classifiers tested on “GS”
because they represent the behavior of the classifiers when data
sampled at 1 KHz are provided as input (Bellingegni et al., 2017).
To this purpose, the Wilcoxon Signed-Rank test applied to the
F1Score values was performed with significance threshold set
to 0.05. Average classification accuracy for the NLR “hand/wrist
gestures classifier,” the NLR “Spherical force classifiers” and “Tip
force classifiers” are respectively equals to 98.78, 98.80, and
96.09%. The LDA “hand/wrist gestures classifier” reaches an
average classification accuracy equals to 95.41%, while the LDA

“Spherical force classifiers” and “Tip force classifiers” show an
average classification value of 98.74 and 97.60%, respectively.

The results of the two force classifiers, “Spherical force
classifier” and “Tip force classifier” are shown, respectively, in
Tables 2, 3, in terms of the average F1Score and accuracy for the
NLR and LDA classifiers. The average classification accuracy of
the NLR “Spherical force classifier” is 98.35% for the low force
level, 98.25% for the medium force level and 99.80% for the high
force level.The LDA “Spherical force classifier” shows an average
classification accuracy of 98.7% for the low force level, 98.05% for
the medium force level and 99.48% for the high force level. The
average classification accuracy of the NLR “Tip force classifier” is
94.36% for the low force level, 94.46% for the medium force level
and 99.26% for the high force level. The LDA “Tip force classifier"
shows an average classification accuracy of 97.79% for the low
force level, 96.36% for the medium force level and 98.66% for the
high force level.

Figure 7 shows the average confusion matrix when testing
the NLR and LDA “hand/wrist gestures classifier” on “GS” and
“TS,” respectively. In details, Figure 7A reports the normalized
confusion matrix for the NLR “hand/wrist gestures classifier,”
while Figure 7B is related to the LDA “hand/wrist gestures
classifier.” Figure 8 shows the average confusion matrices when
testing the NLR “Spherical force and Tip force classifiers” on
the “GS” (Figures 8A,C) and the LDA “Spherical force and Tip
force classifiers” on “TS” (Figures 8B,D). As shown in Figure 9

the NLR and LDA “hand/wrist gestures classifier” were able
to identify seven hand gestures with an average F1Score of
96.01% and 95.41% respectively (Figure 9A). The “Spherical
force classifier” identified the force level reaching an average
F1 score of 98.75 and 98.79% with NLR and LDA classifiers,
respectively (Figure 9B). The “Tip force classifier” was able to
define the force level with an average F1 score of 94.04 and
97.53% with NLR and LDA classifiers, respectively (Figure 9C).
The Wilcoxon Signed-Rank test applied to the F1Score values
points out no statistically significant difference (‘ns") between
NLR and LDA algorithms (at p < 0.05).

In Figure 10 the average values of the sum of all the
FSR measurements for 31 healthy subjects are showed. The
misclassification error rates are presented in Tables 4, 5 for
both the NLR and LDA “hand/wrist gestures classifier”. The
NLR “hand/wrist gestures classifier” performed the highest
misclassification errors (i.e., 9%) with “Point” class, while the
LDA “hand/wrist gestures classifier” performed misclassification
errors greater than 10% (i.e., 11, 12.7, and 11.3%) for the
“Spherical, Tip and Point” classes, respectively. The NLR
and LDA “Spherical force classifier” reached the maximum
misclassification error (i.e., 3 and 8%, respectively) for the
“Medium" force level. The “Tip NLR and LDA force classifier”
presented the same maximum misclassification error (i.e., 8.5%)
for the “Medium” force level.

4. DISCUSSION

As shown in Table 1 and Figure 9 the NLR and LDA “hand/wrist
gestures classifier" were able to identify seven hand gestures
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TABLE 5 | Misclassification error rates of Spherical and Tip Force Classifier calculated with NLR and LDA algorithms.

Misclassification error rates (%)

NLR classifier LDA classifier

Classes Spherical force classifier Tip force classifier Spherical force classifier Tip force classifier

Low 2 8 4 4

Medium 3 8,5 8 8.5

High 1 2 4 4

with an average F1Score of 96.01 and 95.41% respectively. The
“Spherical force classifier” identified the force level reaching
an average F1 score of 98.75 and 98.79% with NLR and LDA
classifiers, respectively (Table 2). The “Tip force classifier" was
able to define the force level with an average F1 score of
94.04 and 97.53% with NLR and LDA classifiers, respectively
(Table 3). These results seem to be very promising if we consider
that similar values of average F1Score have been achieved only
for gesture classification (Duan et al., 2016; Bellingegni et al.,
2017). The comparative analysis betweenNLR and LDA classifier,
applied to F1Score values, reported no statistically significant
difference (p < 0.05) between them.

Confusion matrices, reported in Figures 7, 8, confirmed the
positive results of the accuracy parameter. The cardinality of
the correct classifications on the main diagonal underlined the
high classification accuracy even if some misclassified data out
of the main diagonal suggested a bit minus performance of
“Tip force classifier” respect to “Spherical force classifier.” This
is due to the major difficulty encountered by few subjects to
modulate between low and medium force levels during a Tip
grasp. The high force levels were always well discriminated at 99%
of average accuracy for both the NLR and LDA force classifiers.
In Table 4, the LDA “hand/wrist gestures classifier” obtained
a greater misclassification error rates than NLR “hand/wrist
gestures classifier” ranging from 1% to maximum 12, 7% for
discriminating seven hand/wrist gestures classes by using data
including different muscular activations related to desired force
levels. This may due to the fact that linear classifiers, with
straight line or plane decision boundary, could not be the
most appropriate method for a seven multi-class problem with
features not linearly separable at all. In comparison to the results
presented in Scheme and Englehart (2011), the misclassification
error values, obtained for the “Spherical” and “Tip” classes with
the LDA “hand/wrist gestures classifier,” were lower than 17%
and, thus, it can be considered an effective result. Moreover,
the misclassification error values, obtained for the “Spherical”
and “Tip” classes with the NLR “hand/wrist gestures classifier”
were, respectively, equals to 6 and 5% and these results can be
considered positive for an usable system (< 10%) (Scheme and
Englehart, 2011). Finally, the misclassification error rates for the
“Spherical and Tip force classifiers” are similar (Table 5), ranging
from 1% tomaximum 8, 5% for both theNLR and LDA classifiers.

Almost all healthy subjects were able to modulate the force
levels and fall into the range displayed by the visual feedback,

without generating high variance values, as shown in Figure 10.
Fewer subjects difficulty reproduced the force values within the

force intervals, despite the visual feedback as reference. For
instance, in Figure 10, the subjects 25 and 3 were not able to
well differentiate between medium and high force levels during
Tip grasp (represented as red and black points), while subject 28
performed the three force levels too closed during Tip grasp. This
depended on the subject’s difficulty to maintain the applied force
within the force intervals.

These results are also more appreciable if we take into
account that NLR, used for the classification of both hand/wrist
gestures and force levels, was trained and tested using only raw
scaled sEMG signals as input features. On the other hand, the
LDA algorithm employed the minimum number of classification
parameters and computational burden. However, the use of time
domain features extraction based on time windowing, make the
class evaluation time equals to the window shift and the system
delay approximates to the time window length (Bellingegni
et al., 2017). Furthermore, the same number of sensors were
adopted to classify seven gesture classes respect to the previous
five (Bellingegni et al., 2017) and to identify three levels of
force during the execution of “Spherical" and “Tip" grasps. The
proposed hierarchical classification architecture permitted to
decode the user’s motion intention and desired force levels with
high reliability. Despite the proposed PR approach was tested
only on healthy subjects, the reported results are promising for
future developments on trans-radial amputees. The proposed
hierarchical pattern recognition approach has obtained effective
results with both NLR and LDA algorithms that have been
demonstrated to be suitable for discriminating both hand/wrist
gestures and force levels applied during grasping tasks. Moreover
online performance will be evaluated for controlling a multi-
functional prosthetic device.

5. CONCLUSION

In this study a hierarchical classification approach was developed
and tested to discriminate both hand/wrist gestures and force
levels applied during grasping tasks. The proposed PR system,
implemented with both NLR and LDA classifiers, was tested on
31 healthy subjects by using 6 commercial sEMG sensors and
five FSR placed on a glove. The method employed three different
classifiers to discriminate both desired gestures and forces.
To this purpose, the NLR and LDA algorithms were adopted
for implementing the hierarchical classification approach and
a comparative analysis among the performance of these two
algorithms was done. The statistical analysis based on the
Wilcoxon Signed-Rank test, applied to the F1Score values,

Frontiers in Neurorobotics | www.frontiersin.org 12 June 2019 | Volume 13 | Article 42114

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Leone et al. sEMG Classification of Wrist/Hand Gestures and Forces

revealed no statistically significant difference between NLR and
LDA. The NLR classifiers exhibited excellent results in terms of
accuracy both for gestures (i.e., 98.78%) and forces (Spherical
98.80%, Tip 96.09%). In particular, the force classifiers were able
to robustly discriminate the same class of movement performed
at different muscle contractions because they were trained with
data containing the modulation of different force levels. Also the
LDA classifiers achieved effective results in terms of accuracy
both for gestures (i.e., 95.41%) and forces (Spherical 98.74%, Tip
97.60%). The misclassification errors of the NLR classifiers was
limited to a maximum values of 9% for the “hand/wrist gestures
classifier,” 3% for the “Spherical force classifier” and 8.5% for the
“Tip force classifier.” On the other hand, the misclassification
errors of the LDA classifiers reached the maximum values
at 12, 7% for the “hand/wrist gestures classifier,” 4% for the
“Spherical force classifier" and 8.5% for the “Tip force classifier.”
In particular, the results of misclassification values obtained
by the NLR and LDA “hand/wrist gestures classifier” for the
“Spherical” and “Tip” classes, were particularly noteworthy and
promising. Based on these outcomes, a new potential strategy
should be introduced for mitigating the effect of different exerted
forces within a given movement class. Another innovative
contribution is represented by the use of FSM theory for the
management of three classifiers. This control strategy avoids to
face a more seven multi-class problem using a single classifier
and make the system controllability less complex by activating
the force classifiers only when the “hand/wrist gestures classifier”
returns an output class belonging to a closure hand gesture. This
classification approach, implemented both with NLR and LDA
algorithms, have obtained positive results and seems to be very
promising for identifying simultaneously desired gestures and
force levels.

In conclusion, the proposed method allowed to extract from
EMG signals all the valuable information regarding not only
muscle contractions related to hand/wrist motions but also the
changes of muscle activation patterns depending on the influence
of different force levels. This approach will allow to improve the
performance of the currently adopted prosthesis EMG control
architectures thanks to the possibility to manage desired gestures
and force levels in amore natural way. The ultimate goal will be to
produce an intuitive controlled hand prosthesis integrating force
regulation. Although the type of the recruited subjects did not
allow to verify the performance in a real application scenario,
this study permitted to provide a general indication about the
performance of the proposed approach. Future works will be
focused on the validation of the presentedmethod on trans-radial
amputees controlling multi-fingered hand prostheses. Moreover,

online performance will be evaluated in real application scenario.
After reaching an advanced grade of real time accuracy, an
embedding version of this classification system will be developed
to control a prosthetic device. Measures of system robustness
and reliability will be performed testing the proposed approach
during the control of prosthetic devices. Advanced control
strategies (Ciancio et al., 2015; Barone et al., 2016) will be
adopted to allow force regulation and slippage management
during grasping (Cordella et al., 2016).
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Mario Milazzo 1, Luca Massari 1,2, Gastone Ciuti 1, Stefano Roccella 1, Paolo Dario 1 and

Calogero Maria Oddo 1*
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Studies, Ca’ Foscari University of Venice, Venice, Italy

Generalization ability in tactile sensing for robotic manipulation is a prerequisite to

effectively perform tasks in ever-changing environments. In particular, performing

dynamic tactile perception is currently beyond the ability of robotic devices. A biomimetic

approach to achieve this dexterity is to develop machines combining compliant robotic

manipulators with neuroinspired architectures displaying computational adaptation. Here

we demonstrate the feasibility of this approach for dynamic touch tasks experimented

by integrating our sensing apparatus in a 6 degrees of freedom robotic arm via a soft

wrist. We embodied in the system a model of spike-based neuromorphic encoding

of tactile stimuli, emulating the discrimination properties of cuneate nucleus neurons

based on pathways with differential delay lines. These strategies allowed the system

to correctly perform a dynamic touch protocol of edge orientation recognition (ridges

from 0 to 40◦, with a step of 5◦). Crucially, the task was robust to contact noise and was

performed with high performance irrespectively of sensing conditions (sensing forces and

velocities). These results are a step forward toward the development of robotic arms able

to physically interact in real-world environments with tactile sensing.

Keywords: force and tactile sensing, neuro-robotics, conduction delays, mechanoreceptors, cuneate neurons,

biologically-inspired robots, spiking neural networks

INTRODUCTION

As robots becomemore accepted to be part of our daily social and work environments, the research
focus has taken a diversion toward more human centric design and learning paradigms. Many
research studies in recent time have taken inspiration from nature and its evolutionary principles,
to exploit the robustness and low computational costs in performing a dynamic task in un-trained
surroundings (Ijspeert, 2014).

In the last few decades several neurophysiological studies inmammals focused on understanding
the role of the various families of mechanoreceptors (sensory receptors that are sensitive to
mechanical distortions) spread across the human skin, and their role in projecting information
about external world to brain (Johansson and Flanagan, 2009; Abraira and Ginty, 2013). Such
studies, subsequently led to enhanced understanding of the profile of sensory information,
that neuronal circuits receive during simple object manipulation tasks. These studies describe
the nature of spatiotemporal information (spiking responses) in tactile sensory afferents.
Further, there is evidence that tactile feature extraction can happen already at afferent
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stages (Johansson and Flanagan, 2009; Gollisch and Meister,
2010; Weber et al., 2013), complementing with central
information processing in the sensory cortex (Bensmaia
et al., 2008a; Hsiao, 2008). Explicit studies on the effects of
geometric features such as edge orientations (vertical line
tilted in an angle, Figure 1C) on sensory afferents reported
about information processing at peripheral stages of sensory
perception (Pruszynski and Johansson, 2014). In alike manner,
in the present study our research focuses on developing a robust
tactile perception for robots, based on bioinspired paradigms.
Toward this goal, we aimed at reproducing the intelligence
embodied in the connectivity of the peripheral human tactile
sensory system. By reproducing this connectivity structure in
our robotic system we mimicked the hardwired architecture that
has been hypothesized in humans (Johansson and Flanagan,
2009). In particular, we captured the features of the conduction
delays along the neural pathways from peripheral to the central
processing stages, to allow the tactile processing of geometric
features such as edge orientations.

Many research studies in recent time have created neuro-
robotic systems by combining computational models based
on various neurophysiological data (Saal et al., 2017) along
with tactile sensors to reconstruct tactile afferent like responses
(Lee et al., 2017; Rongala et al., 2017; Osborn et al., 2018).
Recently, biomimetic computational models of peripheral tactile
perception were extended to take into account the second
neuronal layer of decoding (Bologna et al., 2013; Rongala et al.,
2018a,b) and this feature was also used for edge detection (Hay
and Pruszynski, 2018). Some robotic studies have also focused
on geometric feature extraction techniques, where Ruben and
colleagues (Ponce Wong et al., 2014) studied edge orientation

FIGURE 1 | Methods. (A) Robot setup with finger and compliant wrist

integration. Insert demonstrates the integration of tactile sensor onto robot

end effector with the help of a compliant wrist. (B) Illustration of the active

touch protocol, where the finger is moved across the stimuli (red dotted line).

(C) Representation of all the 9 ridge stimuli (3D printed with a height and width

of 0.5 × 0.5mm, with placement of three ridges).

with similar approach of robotic-arm based exploration and
classification. They used support vector regression methods to
learn and classify the stimuli, which requires offline training.
One other study from Hernandez and colleagues (Martinez-
Hernandez et al., 2013) conducted static edge perception
experiments by tapping the stimuli with tactile sensor to
demonstrate passive tactile perception for contour following.
This approach used a probabilistic classifier based on Bayesian
formalism for tactile perception. The edge detection was done
only on right angles (0◦, 90◦, 180◦, 270◦) with controlled
sensing force.

One characteristic feature (Ijspeert, 2014) of all the
aforementioned studies is that they were conducted under
controlled sensing conditions. However, in order to build
biomimetic devices that are able to process tactile information
in the real world, we need to capture the way this process is
robust to varying sensing conditions. Therefore, here we adopted
a neuro-inspired paradigm to create a tactile feature extractor
and verified it to be an effective information decoding strategy.
Combining a two-layer neurocomputational model based on
discrete events and delays, along with soft robot interfaces led
us to develop a functional tactile system, that was able to deliver
effective decoding of geometric edge orientations under varying
sensing conditions (sensing forces and velocities). We have also
assessed that our system performance was robust to variation in
sensing forces.

MATERIALS AND METHODS

Tactile Sensor
For this research study we used a tactile fingertip, with a core
element of MEMS (Micro Electro-Mechanical System) sensor.
This sensor comprises of 2 × 2 piezoresistive sensor array
(Figure 2A), arranged with 2.36 mm pitch [SensorPitch (SP)
in Equation (1)]. Each sensor array comprises of four sensory
channels (four piezoresistors, with cross-shape arrangement),
constituting for a total of 16 sensory-channels in a 22.3 mm2

area (Beccai et al., 2005; Oddo et al., 2011). This tactile sensor
demonstrated sensitivity for both tangential and normal forces
(Oddo et al., 2011) and precision and repeatability in the
neuromorphic encoding-decoding of a varied range of stimuli
that include ridges (Oddo et al., 2016) and naturalistic textures
(Rongala et al., 2017). In this research study we consider data
from 2 sensory channels [sensory channel 8 (SC8) and sensory
channel 11 (SC11), Figure 3A], that are sensitive to the tangential
force arising along the stimulus sliding direction. These channels
are also space shifted along same axis with respect to the
stimulus direction, which makes them appropriate to validate the
conductional delay hypothesis. We convert this analog sensory
information to neuromorphic spikes (event-based representation
of data alike in neurons) using neuron models that are described
in further sections of this article.

Compliant Wrist
A compliant wrist was assembled on a rigid end effector of a
6 DoFs anthropomorphic robot (Comau Racer-7-1.4) through
a loadcell (6-axis Nano 43, ATI Industrial Automation, Apex,
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FIGURE 2 | Two-layer neuron architecture. (A) (Left) fingertip structure and arrangement of 16-sensory channels. The data from two sensory channels (8 and 11) are

injected as input current into the Izhikevich neuron model (1st order neurons), that deliver mechanoreceptor-like spike trains. (Below) representative illustration of

mechanosensors responses [MS1 and MS2 (corresponding to SC8 and SC11 respectively)] to ridges having an angle of −45◦, 0◦, and 45◦ relatively to the direction

orthogonal to stimulus-finger relative motion. (Right) schematic diagram of second order neuron implementation for edge orientation processing. Two different

mechanosensors inputs (green and red spike trains, MS1, and MS2) for a single stimulation sequence converge to the same cuneate nucleus neuron (CNi, 2nd order

neuron), through specific conduction delays along the pathway. In the illustrated example, CN1 generates output spikes (blue spike trains) only when it receives MS

inputs that coincide. (B) The other CNs (CN2 and CN3) respond to different angle stimuli, depending on the set of conduction delays and subsequent temporal

relations formed between the inputs.

USA). Whereas, the other end of compliant wrist carries the
tactile sensor (Figure 1A). The design of the wrist was aimed at
realizing a soft joint, enabling adaptation upon contact (between
the fingertip and the external surfaces). Such a compliant element
also prevents damage to the tactile sensor without affecting its
sensitivity. The structure of the compliant wrist was shaped
as a cylinder with a diameter and height of 40 × 60mm.
Moreover, the soft wrist was realized with helicoidally flextures
to increase its flexibility. The joint was manufactured through
molding of a polymeric viscous material, namely Dragon Skin
(10 medium, Smooth-on, USA). Two metallic plates were used
on the top and bottom surfaces of the cylinder, as a mechanical
interface between the robot end-effector and the tactile sensor.
Under the typical loads for this specific application (in the
order of 1N), analyses with a finite element model (COMSOL
Multiphysics, COMSOL Inc., USA) showed a compressive
stiffness of 2.5 N/mm and a stiffness of 0.14 N/mm along the
tangential directions (Figures 3A,B).

Stimuli
We used 9 rectangular shaped ridges as stimuli with dimension of
0.5 × 0.5mm (height and width). Each of this ridge is fabricated
with an inclination angle, ranging from 0 to 40◦ angles with
a step of 5◦ (Figures 1C, 4A). These ridges were fabricated
using 3D printing technology. For these experiments, we printed
three ridges with consecutive angles onto a single stimuli bar,
resulting in total 3 stimuli bars bearing the 9 stimuli (as shown in
Figure 1C). As these ridges are printed on three different stimuli
bars, they have slightly varied physique because of different
bending and other small deformations that occur in stimuli
due to the 3D printing technology. This further pose additional
challenges in the generalization abilities of the developed neuro
bioinspired architecture.

Experimental Protocol
We adopted an active touch protocol, where the stimuli are

kept fixated on a rig and the robot end-effector (hooked
with tactile fingertip) is maneuvered across the surface of

the stimuli (as illustrated with blue arrows in Figure 1A;

Supplementary Video). The robot is controlled using a real-time

industrial controller (IC3173, programmed with NI LabVIEW,

LabVIEW Real-Time and LabVIEW FPGA, along with C5G
COMAU robot controller), that received position control

commands. The robot default home position was put just above

(along z-axis of the robot) the surface of the tactile stimuli.
Further, the robot end-effector was moved along its z-axis

(toward the stimuli), until a reference sensing force (force exerted

between the tactile fingertip and stimuli) of ∼200 mN was
reached. This is considered as the initial z-axis position (Z1, in
Figure 3C) for all the stimuli.

Once the “Z1” position reached, keeping the z-axis of the robot

locked, the fingertip was slid across the surface of stimulus (robot

end-effector translated in cartesian space) for a length of 15mm
with a fixed sliding velocity, covering the whole surface of the

ridged stimuli. The fingertip was held still for 1 s in this position,

at the end of sliding. Finally, the fingertip was retracted away
from the stimulus along the z-axis. This trajectory (Figure 1B,

red dotted line) was maintained across all the ridges. Once the

sliding was finished across all three ridges, the robot was brought

back to the home-position. The robot was progressed 0.5mm in

z-axis (toward the stimulus) from the previous z-axis position
(Z1–4) to generate varied sensing/contact forces, but without

implementing precise force-feedback control. This experimental

protocol was repeated 5 times across each stimulus, in-order to
assess the repeatability of the system. In the following study we

have presented and validated the neuro-inspired architecture for
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FIGURE 3 | Normal and shear stiffness of the compliant wrist and resulting

sensing force between the tactile sensor and stimuli. (A) Tangential stiffness

(across x-axis) of the compliant wrist displacement as the function of applied

force. (B) Compressive stiffness (across z-axis) of the compliant wrist

displacement as the function of applied force. (C) Sensing forces recorded

during finger contact with all stimuli (1–9) associated to the different z-axis

positions of the robot (Z-positions 1–5). The z-positions are obtained with a

progressive increase by a step of 0.5mm toward the stimuli from home

position (as described in Methods). The boxplot illustrates the range of force

across 5 mechanical repetitions and all 9 stimuli. The forces are recorded using

a loadcell that is placed between the compliant wrist and the robotic arm.

five different sensing forces (Figure 3C, with P < 0.001, using
ANOVA test) and five different sensing velocities (5, 10, 15, 20,
and 25 mm/s).

Neuron Model (Mechanoreceptors, 1st
Order Neurons)
The tactile sensor analog data was fed as virtual current input
(Iinput) to a custom implementation of the Izhikevich neuron
model (Izhikevich, 2003) to generate the mechanosensors-
like spatiotemporal spike responses (Figures 3A, 4B, 1st order
neurons). The Izhikevich neuron model was chosen in order
to reproduce the adaptation dynamics, which is an important

TABLE 1 | Izhikevich neuron model parameters.

A B C Cm a b c d

0.04s−1V−1 5 s−1 140 Vs−1 1F 0.02 s−1 0.2 −65mV 8 mV

characteristic that is observed in mechanoreceptors (Johansson
and Flanagan, 2009). The basic Izhikevich neuron model was
defined by the following nonlinear differential equations, where
v is membrane potential and u is the adaptation variable.

v̇ = Av2 + Bv+ C − u+
Iinput

Cm

u̇ = a(bV − u) (1)

When the membrane potential reached the spike threshold of 30
mV, an output spike was produced followed by a reset,

if V ≥ 30mv, then

{

v ← c
u ← u+ d

(2)

A, B, C are the standard Izhikevich model parameters, whereas
the a, b, c, and d parameters were chosen as specified in Table 1,
to reciprocate regular spiking behavior.

Neuron Model (Cuneate Neurons, 2nd
Order Neurons)
The cuneate neurons (CNs) were also modeled as regular spiking
Izhikevich neurons, based on the similar differential equations
described above (Equations 1, 2). Whereas, the input current
(Iinput)to the CNs was modeled as the summation of current-
based post-synaptic potential(PSPtot , Equation 4) (Cavallari et al.,
2014) from mechanosensor neurons along with addition of
specific differential conduction delays (1T) (Figure 3). At each
given spike time of mechanosensor output (t∗i ) is converted to a
single PSPi, who’s kernel was given by Equation (3).

PSPi =
τl

τd − τr
×

[

exp

(

−
t − τl − t∗i

τd

)

− exp

(

−
t − τl − t∗i

τr

)]

(3)

PSPtot =
∑

i ∈pre
PSPi (4)

The parameters, decay time (τd), rise time (τr) and latency time
(τl) defines the shape of the PSPi kernel. The basic configuration
values τd = 12.5ms, τr = 4ms, and τl = 21ms (constant to
calculate the ratio) are chosen based on the previous assumptions
of calcium concentration induced in the synapse as presented
in our previous work (Rongala et al., 2018b). t∗i gives the input

spike-time from ith mechanosensor.

Conduction Delays
A conduction delay is the time step (1 T) that was added
to the whole output spike-train of mechanoreceptors (1st
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FIGURE 4 | Processing stimuli orientation. (A) Representation of all 9 stimuli, with ridge angles ranging from 0 to 40◦ with a step of 5◦. (B) Artificial mechanosensors

spike train responses (MS1 and MS2, 1st order neurons) encoded using Izhikevich neuron model based on the tactile sensor data input (MS1 and MS2 responses

associated to the analog data from sensory channel 8 and 11, SC8 and SC11 from Figure 1). The five spike train responses for each mechanoreceptor, show the 5

experimental repetitions for each stimulus. (C), Cuneate neurons (CNs, 2nd order neurons) responses for all 9 stimuli (S1–9), across a range of differential conduction

delays varying between 175 and −700ms, with a step of 1ms. The illustrated responses of MSs and CNs are for a single sensing force (Z1 from Figure 3C) and

sensing velocity (5 mm/s) of the experimental protocol.

order neurons) along the afferent pathway. These delays
bear a resemblance to the conduction times in nerves that
connects tactile afferents (in hand) to the cuneate neurons (in
brainstem) of humans (Johansson and Flanagan, 2009). We
tested differential conduction delays ranging from 175ms (MS1
ahead of MS2) to −700ms (MS2 ahead of MS1) with a step of
1ms, constituting for 876 conduction delays.

Classification Algorithm
Given the characteristics of the data we have chosen a linear
discrimination method trained with supervised learning. The
classifier was trained and tested using a 5-fold cross-validation,
which was repeated for 100 iterations to ensure the robustness of
the classifier and training procedure. We have taken advantage of
the inbuilt MATLAB R© functions to perform this computation.

A probability density of the CN spike responses is calculated
using the histogram function in MATLAB R©, with a binsize
of 10. Further, the median of this probability distribution was
chosen as an input vector to the above described classifier
(one-dimensional input). While considering single force-based
decoding (Figures 5B, 7B, 10A), the input vector data is binned
as 9 classes, representing all the 9 stimuli. The same followed for
generalized decoding (Figures 6B, 8, 10B), the input vector data
was binned as 9 classes (9 stimuli), irrespective of sensing forces.

RESULTS

To explore the possibility and the efficacy of a biomimetic
approach to tactile sensing, we developed an experimental set-up
comprising a biomimetic tactile sensor (Oddo et al., 2011) linked

FIGURE 5 | Classification of CNs responses across all 9 stimuli for fixed

sensing force. (A) Boxplot illustrating the spiking probability for CNs responses

(Figure 4C) across all the nine stimuli for a given force. The boxplot

demonstrates a gradual shift in the CNs spiking respective to the stimuli angle

and conduction delay. The spiking probability is calculated across 5

experimental repetitions of each CN. (B) Confusion matrix demonstrates a

decoding performance achieved across all the 9 stimuli (for a fixed sensing

force (Z1) and sensing velocity (5 mm/s)) based on CNs responses, using

supervised linear discrimination classifier. The decoding accuracy was 100%

across 5 stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9), and 88.2%

with a step size of 5◦.

to a customized soft wrist and 6 degree-of-freedom robotic arm
(Figure 1A). This interaction led to the efficient classification of
stimuli containing 9 angle ridges selected in a range from 0◦ to
40◦ with a step of 5◦ (Figure 1C) based on the contact with the
biomimetic fingertip (Figure 1C).
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FIGURE 6 | Classification of CNs responses irrespective of sensing forces. (A) Spiking probability across all the nine stimuli and five different sensing forces

(Figure 3C), for each conduction delays. These CNs responses are for a single sensing velocity (5 mm/s). This plot clearly demonstrates almost similar spiking

probability, robust to the variation of the sensing force, thus supporting generalization ability of the proposed approach. (B) Confusion matrix illustrating the decoding

performance achieved by CNs irrespective of forces (labeling stimuli irrespective of sensing force), across all the 9 stimuli. The decoding accuracy was 100% across 5

stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9), and 94.5% with a step size of 5◦.

FIGURE 7 | Processing stimuli orientation with noise. (A) Raster plot illustrates the responses of CNs (2nd order neuron) for all 9 stimuli (S1–9), across a range of fixed

conduction delays varying between 175 and −700ms, with a step of 1ms. The responses illustrated are for fixed sensing force and sensing velocity. Each CN model

is simulated for 5 experimental repetitions with an addition of 19 noise repetitions each, constituting a total of 100 repetitions for each CN configuration. The noise was

generated by a gaussian distribution with σ = 10ms. The continuous plot alongside each raster plot illustrates the density of spiking for that respective differential

conduction delay. The green line illustrates the theoretical value (Equation 5) of conduction delay. The median value of the density is indicated in red dot. The red line

across stimuli illustrates the linear shift of spiking probability across different conduction delays. (B) Confusion matrix illustrating the decoding performance that is

achieved by CNs across all the 9 stimuli (for a single sensing force and sensing velocity), using supervised linear discrimination classifier. The decoding accuracy was

100% across 5 stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9), and 91% with a step size of 5◦.

A two layer neuro-computational model was used in
processing these tactile sensory information. In the first layer
we make use of the Izhikevich neuron model to convert
the output of the 16-channel tactile sensor data to multiple
neuron spiking responses (Figure 2A) (Rongala et al., 2017).
This allowed mimicking the response properties of human
mechanosensors (MSs). In the second layer, we emulate cuneate
neurons (CNs), again as regular spiking Izhikevich neurons. The
inputs to CNs were modeled as summation of current based post-
synaptic potentials from the MSs (see Methods). The key of the
decoding mechanism is the connectivity between the two layers.
This connectivity embodies a model of event-based encoding
of tactile responses (Figure 2A), emulating the discrimination
properties of cuneate neurons (CNs) based on pathways with
differential delay lines (Figure 2A). The CN is considered in

this model as a coincidence detector (Johansson and Flanagan,
2009), meaning that a specific CN responds when there is a
superimposition of input mechanosensor spike timing. Based on
this hypothesis, each CN encodes a specific angle, depending on
the match of the stimulus-driven delay between the activation
of the MSs with the difference between their conduction delays,
which results in a synchronized and thus effective stimulation
of the appropriate CN recipient (Figure 2A). Thanks to this
mechanism, the probability of each CN to respond to a certain
stimulus depends of the combination of specific conduction
delays connecting it to its presynaptic MSs (Figure 2A).

To validate this approach, initially we conducted the
experimental protocol across all the 9 stimuli with a single
sensing force (Z1, Figure 3C) and a single sensing velocity
(5 mm/s, V1). Two sensory channels data (SC8 and SC11,
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FIGURE 8 | Classification of CNs responses with noise, irrespective of sensing

forces and for a given sensing velocity (5 mm/s). The confusion matrix

illustrating the generalized decoding performance achieved by CNs

irrespective of sensing force, across all the 9 stimuli. The decoding accuracy

was 100% across 5 stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9),

and 94.7% with a step size of 5◦.

Figure 2A, see Material and Methods for details) were selected as
inputs to the neuronal processing to emulate mechanosensors-
like responses (MS1 and MS2, Figure 4B). These spike trains
were then fed into CNs, with a given conduction delay time
(1T). The second layer was constituted by 876 different cuneate
neurons, each identified by a specific conduction delay between
the inputs received from MS1 to MS2. The conduction delays
are ranged from 175 to −700ms with a step size of 1ms.
Figure 4C show the responses of CNs based on the MS1 and
MS2 inputs for a given differential conduction delay, across all
stimuli. The CNs responses demonstrated in Figure 4C (raster
plots) are for all 5 experimental repetitions. Further, in order
to test the effectiveness of the designed system we analyzed the
spike distribution probability across all the CNs for each stimulus
(Figure 5A). The spiking distribution illustrated in Figure 5A,
are based on the CNs responses shown in Figure 4C. We found
a gradual shift in the median of the spiking probability across
the range of conduction delays, as a function of the stimuli
ridge orientation (Figure 5A). This shift in probability illustrates
that certain CNs respond more to a specific stimulus, i.e., those
whose differential conduction delay tends to compensate the
theoretical latency (TTheory) between the spiking activation of the
related MSs.

TTheory = SP ×
tan (RA)

V
(5)

Where, SP denotes the Sensor Pitch (see Methods), RA denotes
the Ridge Angle (edge orientation angle of the stimuli), and

V defines the sensing velocity. This relationship suggests that
it might be possible to invert the process and decode the
presented orientation, looking at the distribution of firing across
the CNs population. This decoding strategy was inspired by that
hypothesized in humans (Johansson and Flanagan, 2009), where
the vast amount of information from 10,000’s of tactile afferents
across the hand is reduced into a small and useful sensory
dimension, and then further transmitted to higher level cognitive
processing. For validation of the information content in CN
responses we used a linear classification technique (see Methods
for details), which yielded 88.2% accuracy in decoding across all
the 9 stimuli (Figure 5B, chance level 11.1%). As demonstrated in
the confusion matrix (Figure 5B), in some cases only consecutive
stimuli are confounded, which is also contributed by the
little angle difference between two stimuli along with dynamic
sensing conditions in real time robot operation. Whereas, we
achieved 100% correct classification (for all 5 sensing forces)
restricting the decoding across five stimuli, with stimuli angle
variation of 10◦ (S1, S3, S5, S7, and S9). This led us concluding
that the actual accuracy of our device is better than 10◦

ridge identification.
In the real world the sensing conditions might change,

hence we wanted to test that the performance of our device
was not restricted to a particular force of contact. For this
generalization test we conducted experiments similar to the one
described above, but with 5 different levels of target sensing
forces and a fixed sensing velocity (5 mm/s, V1). To further
stress the generalization ability, these 5 target force levels were
not generated by precise force-feedback control, but by setting
5 different z-axis positions of the robot end-effector (Figure 3C,
see Methods for details). We then computed the CNs spiking
probability across all the 9 stimuli and 5 forces (Figure 6A).
We grouped then across all the forces the median of spiking
probability belonging to same stimulus and used it as the feature
vector for classifier to validate the CNs responses across all
stimuli irrespective of sensing forces. We attained 94.5% correct
decoding across all the nine stimuli (Figure 6B), with a stimuli
angle variation of 5◦. This shows that high level of accuracy
can be achieved independently of the variations of the sensing
force. This highly-generalized decoding performance proves our
encoding strategies to be robust to varying sensing forces, thanks
to an architecture mimicking the intelligence embodied in the
neural pathways from periphery to the brain.

To further stress the robustness of our neuromorphic device,
we introduced temporal jitters (with a gaussian noise of σ =
10ms) in each experimental repetition. This contributed 100
repetitions of each CN encoding for each stimulus and sensing
force level. Figure 7A shows the responses of CNs to these 100
repetitions, along with the spiking density for each conduction
delay (continuous plot beside raster plot). We observed a
coherent phenomenon of gradual shift in spiking intensity across
the range of conduction delays for each stimulus (Figure 7A,
red dot depicting the mean of spiking intensity) even with
additional temporal noise. We also observed that the mean
spiking intensity across each stimulus (Figure 7A red dotted
line) fell near to the theoretically estimated conduction delays
(Figure 7A green dotted line) based on Equation (5). We then
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FIGURE 9 | Processing stimuli orientation across varying sensing velocity for a fixed sensing force (Z1, Figure 3C). (A) Artificial mechanosensors (MS1 and MS2, 1st

order neuron) spike train responses for all 9 stimuli, across 5 different sensing velocities. (B) Boxplot illustrates the probability of spiking across all the stimuli for 5

varying sensing velocities, for a range of conduction delays. The spiking probability is calculated on the CNs responses. Each CN model is simulated for 5 experimental

repetitions with an addition of 19 noise repetitions each (gaussian distribution with σ = 10ms), constituting a total of 100 repetitions for each CN configuration.

yielded a high decoding accuracy for these CN responses across
all the 9 stimuli, even in the presence of the introduced temporal
noise in MS spiking activity. In this condition with added spike
jitter we attained a correct decoding between 91% and 100%
across nine stimuli, for individual sensing force and fixed sensing
velocity (Figures 7B, 10A). Further, we attained a decoding
accuracy of 94.7% irrespective of sensing forces and fixed sensing
velocity (Figure 8).

Further, we have also tested our system for five different
sensing velocities (5, 10, 15, 20, and 25 mm/s) for a given
sensing force. The mechanosensor spike responses (MS1 and
MS2) demostrate a gradual shift in their spike timing with respect
to the stimuli, along with homogenous transformation of total

spike time with respect to the sensing velocities (Figure 9A).

Further we analyzed the spiking probability of CNs responses

for each stimulus and given sensing velocity (Figure 9B). We

found a gradual shift in the median of the spiking probability
across the range of conduction delays (Figure 9B), showing that
some CNs are sensitive to a specific stimulus, under an optimal
sensing velocity.

In order to evaluate the effect of these dynamic sensing
conditions on our neuromorphic device, we have performed

stimulus classification based on the CNs responses (with
additional temporal jitter in the MSs) for a combination of all
5 sensing forces and 5 sensing velocities. We achieved more than
90% correct decoding in 20 out of 25 experimental conditions
(Figure 10A). A low decoding performance was observed at
high sensing velocities with high sensing forces, where the
spiking probability boundaries overlap. Further, we attained a
high decoding performance irrespective of sensing force, for
each sensing velocity (Figure 10B). This high decoding accuracy
proved that the proposed architecture was highly robust to noise
and dynamic sensing conditions.

DISCUSSION

We developed an artificial tactile system, with a bioinspired
tactile sensor mounted onto a traditional 6 degrees-of-freedom
industrial robot using a compliant wrist, that allowed adaptation
to irregular sensing dynamics present in the surrounding tactile
world. Further, we used a neuroinspired two-layer architecture to
process the tactile sensory information. Thanks to such a synergy,
we achieved an excellent orientation decoding performance
(100% for 10◦ and 94.9% across 5◦ orientation step, for
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FIGURE 10 | Effect of sensing dynamics on decoding. (A) The decoding

performance achieved by CNs neurons across all the 9 stimuli, for a given

combination of sensing force and sensing velocity. The confusion matrix for

each given decoding performance is illustrated in Supplementary Figure 1.

(B) Generalized decoding performance (irrespective of sensing force),

achieved by CNs for a given sensing velocity. The decoding accuracy was

presented across all 9 stimuli (S1–S9) with a step size of 5◦, and across 5

stimuli with a step size of 10◦ (S1, S3, S5, S7, and S9).

stimuli ranging from 0◦ to 40◦). This is an excellent result as
compared to the state-of-art orientation detection in robotic
applications (Martinez-Hernandez et al., 2013; Ponce Wong
et al., 2014). Taking advantage of the precisions in existing
tactile sensors and computational systems, and combining them
with biomimetic architectures can lead to building functional
systems that are more capable in sensing when compared
to the psychophysical studies that report about 20◦ angular
perceptual threshold in humans (Bensmaia et al., 2008b). Further,
exploiting neuromorphic hardware systems to build spiking
neuronal networks across the population of sensors enabled a
computationally efficient implementation of a functional tactile
system. Moreover, we were able to capture another peculiarity of
human tactile detection, i.e., to perform decoding in a way largely
irrespective of sensing forces, across different sensing velocities.

The multiple experimental sensing conditions, the
irregularities of 3D printed stimuli, the intrinsic limitations
in robot precision along with soft compliance in wrist,
created a versatile sensing condition that generated a variety
of sensory responses. The tactile system presented in this
research, capable to cope with such realistic variability
in experimental conditions, plays a keen role in robotic
applications. Such biomimetic approach will allow the robots to
adapt and perform effectively irrespective of the continuously
changing environments.

Note that in this research study we considered nerve
conduction delays that are larger thanwhat have been observed in
mammals (Johansson and Flanagan, 2009). In this study what we
were interested into was to reproduce the principle of differential
delay matching the encoding of the stimulus orientation. As the
pitch of our tactile sensors was much larger than in humans,
where each hand is densely populated with 10,000s of tactile
sensors afferents, we used proportionally larger conduction
delays coherently with the prediction of Equation (5). Anyway,
the used sensor density allowed achieving a high decoding
across the varied set of stimuli considered, providing evidence
that robotics technology can benefit of neuroscientific advances
and in turn robotics science can contribute to investigating
neurophysiological hypotheses (Yang et al., 2016).
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