Colloidal Semiconductor Nanocrystals: Synthesis, Properties, and Applications

  • 14k

    Total downloads

  • 71k

    Total views and downloads

About this Research Topic

Submission closed

Background

Colloidal semiconductor nanocrystals (or quantum dots) have evolved during the last few decades from fundamental theoretical concepts to real commercial products (one recent example is a line of Samsung QLED TVs in which quantum dots are employed as color converters), owing to intensive efforts by a plethora of research groups worldwide. These nanomaterials benefit on the one hand from their unique size-dependent optoelectronic properties, based on quantum confinement. On the other hand, their solution-based synthesis is a remarkably simple process that can be implemented in nearly any chemistry lab. Both these factors greatly promote investigation of semiconductor nanocrystals, making this field truly interdisciplinary. Among the main players involved are chemists, physicists, biologists, material researchers, and engineers.

Despite its simplicity, the colloidal synthesis of nanoparticles in its current state allows us to prepare nanocrystals from a wide variety of semiconductors, mainly of the II-VI, IV-VI, III-V, I-III-VI, I-II-IV-VI and I-IV-VII families (corresponding examples are CdSe, PbS, InP, CuInS2, Cu2ZnSnS4, CsPbBr3). Furthermore, manipulating the conditions of synthesis makes it possible to tune the size of these particles, their shape, and their crystal structure. Moreover, one can combine two or more semiconductors with different designs—such as alloys and heterostructures (core/shell, Janus-type, segmented particles)—within one nano-object. The surface chemistry of these nanocrystals can also be adjusted by means of post-synthetic functionalization and ligand exchange. The first is very important for the biomedical application of nanoparticles; the latter is of paramount importance for their integration into optoelectronic devices. Thus, complex chemistry and physics undergird these apparently simple materials. Being soluble objects, these nanomaterials can be processed via common solution-based techniques, such as drop-casting, spin- and spray-coating, and inkjet-printing. Most of their optoelectronic applications, e.g. in light-emitting diodes, solar cells, photodetectors, and field-effect transistors, involve nanocrystals in the form of solid thin films.

Another important aspect of research on semiconductor nanomaterials is found in computational studies that seek to explain their unique properties observed in experiments, as well as to predict novel properties that can be achieved through the manipulation of size, composition, and structure.

Among current trends in the field of semiconductor nanoparticles, one can define 2D nanomaterials with two typical representatives: CdSe nanoplatelets and MoS2 nanosheets, as well as perovskite-type nanocrystals, made of alkylammonium/cesium lead halides. Accounting for the fact that many semiconductor compounds contain toxic elements, particularly metals such as Cd, Pb and Hg, researchers are seeking more environment-friendly alternatives. Restrictions imposed on the emission of toxic metals into environment have stimulated investigation into semiconductor nanocrystals based on InP, CuInS2 and Cu2ZnSnS4. Now, as nanoparticles march toward commercialization, they assume an ever greater importance in large-scale synthesis methods developed by chemists in close collaboration with engineers, as processes of mass- and heat-management of reaction mixtures become very significant in large volumes or in continuous production schemes.

This Research Topic welcomes contributions from different research areas related to colloidal semiconductor nanocrystals including, but not limited to, theoretical simulations, synthesis, post-synthetic processing, characterization, assembly, and the application of these materials.

Keywords: Semiconductor nanocrystals, quantum dots, colloidal synthesis, properties, application

Important note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Frequently asked questions

  • Frontiers' Research Topics are collaborative hubs built around an emerging theme.Defined, managed, and led by renowned researchers, they bring communities together around a shared area of interest to stimulate collaboration and innovation.

    Unlike section journals, which serve established specialty communities, Research Topics are pioneer hubs, responding to the evolving scientific landscape and catering to new communities.

  • The goal of Frontiers' publishing program is to empower research communities to actively steer the course of scientific publishing. Our program was implemented as a three-part unit with fixed field journals, flexible specialty sections, and dynamically emerging Research Topics, connecting communities of different sizes and maturity.

    Research Topics originate from the scientific community. Many of our Research Topics are suggested by existing editorial board members who have identified critical challenges or areas of interest in their field.

  • As an editor, Research Topics will help you build your journal, as well as your community, around emerging, cutting-edge research. As research trailblazers, Research Topics attract high-quality submissions from leading experts all over the world.

    A thriving Research Topic can potentially evolve into a new specialty section if there is sustained interest and a growing community around it.

  • Each Research Topic must be approved by the specialty chief editor, and it falls under the editorial oversight of our editorial boards, supported by our in-house research integrity team. The same standards and rigorous peer review processes apply to articles published as part of a Research Topic as for any other article we publish.

    In 2023, 80% of the Research Topics we published were edited or co-edited by our editorial board members, who are already familiar with their journal's scope, ethos, and publishing model. All other topics are guest edited by leaders in their field, each vetted and formally approved by the specialty chief editor.

  • Publishing your article within a Research Topic with other related articles increases its discoverability and visibility, which can lead to more views, downloads, and citations. Research Topics grow dynamically as more published articles are added, causing frequent revisiting, and further visibility.

    As Research Topics are multidisciplinary, they are cross-listed in several fields and section journals – increasing your reach even more and giving you the chance to expand your network and collaborate with researchers in different fields, all focusing on expanding knowledge around the same important topic.

    Our larger Research Topics are also converted into ebooks and receive social media promotion from our digital marketing team.

  • Frontiers offers multiple article types, but it will depend on the field and section journals in which the Research Topic will be featured. The available article types for a Research Topic will appear in the drop-down menu during the submission process.

    Check available article types here 

  • Yes, we would love to hear your ideas for a topic. Most of our Research Topics are community-led and suggested by researchers in the field. Our in-house editorial team will contact you to talk about your idea and whether you’d like to edit the topic. If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. 

    Suggest your topic here 

  • A team of guest editors (called topic editors) lead their Research Topic. This editorial team oversees the entire process, from the initial topic proposal to calls for participation, the peer review, and final publications.

    The team may also include topic coordinators, who help the topic editors send calls for participation, liaise with topic editors on abstracts, and support contributing authors. In some cases, they can also be assigned as reviewers.

  • As a topic editor (TE), you will take the lead on all editorial decisions for the Research Topic, starting with defining its scope. This allows you to curate research around a topic that interests you, bring together different perspectives from leading researchers across different fields and shape the future of your field. 

    You will choose your team of co-editors, curate a list of potential authors, send calls for participation and oversee the peer review process, accepting or recommending rejection for each manuscript submitted.

  • As a topic editor, you're supported at every stage by our in-house team. You will be assigned a single point of contact to help you on both editorial and technical matters. Your topic is managed through our user-friendly online platform, and the peer review process is supported by our industry-first AI review assistant (AIRA).

  • If you’re an early-stage researcher, we will offer you the opportunity to coordinate your topic, with the support of a senior researcher as the topic editor. This provides you with valuable editorial experience, improving your ability to critically evaluate research articles and enhancing your understanding of the quality standards and requirements for scientific publishing, as well as the opportunity to discover new research in your field, and expand your professional network.

  • Yes, certificates can be issued on request. We are happy to provide a certificate for your contribution to editing a successful Research Topic.

  • Research Topics thrive on collaboration and their multi-disciplinary approach around emerging, cutting-edge themes, attract leading researchers from all over the world.

  • As a topic editor, you can set the timeline for your Research Topic, and we will work with you at your pace. Typically, Research Topics are online and open for submissions within a few weeks and remain open for participation for 6 – 12 months. Individual articles within a Research Topic are published as soon as they are ready.

    Find out more about our Research Topics

  • Our fee support program ensures that all articles that pass peer review, including those published in Research Topics, can benefit from open access – regardless of the author's field or funding situation.

    Authors and institutions with insufficient funding can apply for a discount on their publishing fees. A fee support application form is available on our website.

  • In line with our mission to promote healthy lives on a healthy planet, we do not provide printed materials. All our articles and ebooks are available under a CC-BY license, so you can share and print copies.

Impact

  • 71kTopic views
  • 53kArticle views
  • 14kArticle downloads
View impact