
EDITED BY :  Christophe Chevalier, Cynthia Calzas, Delphyne Descamps 

and Michel Chignard

PUBLISHED IN : Frontiers in Immunology

INNOVATIVE THERAPEUTIC AND 
VACCINE APPROACHES AGAINST 
RESPIRATORY PATHOGENS

https://www.frontiersin.org/research-topics/7602/innovative-therapeutic-and-vaccine-approaches-against-respiratory-pathogens
https://www.frontiersin.org/research-topics/7602/innovative-therapeutic-and-vaccine-approaches-against-respiratory-pathogens
https://www.frontiersin.org/research-topics/7602/innovative-therapeutic-and-vaccine-approaches-against-respiratory-pathogens
https://www.frontiersin.org/research-topics/7602/innovative-therapeutic-and-vaccine-approaches-against-respiratory-pathogens
https://www.frontiersin.org/journals/immunology


Frontiers in Immunology 1 April 2020 | Innovative Vaccines/Therapeutics Against Respiratory Pathogens

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88963-676-1 

DOI 10.3389/978-2-88963-676-1

https://www.frontiersin.org/research-topics/7602/innovative-therapeutic-and-vaccine-approaches-against-respiratory-pathogens
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org


Frontiers in Immunology 2 April 2020 | Innovative Vaccines/Therapeutics Against Respiratory Pathogens

INNOVATIVE THERAPEUTIC AND 
VACCINE APPROACHES AGAINST 
RESPIRATORY PATHOGENS

Topic Editors: 
Christophe Chevalier, Institut National de la Recherche Agronomique (INRA), 
France
Cynthia Calzas, Institut National de la Recherche Agronomique (INRA), France
Delphyne Descamps, INRA Centre Jouy-en-Josas, France
Michel Chignard, Institut Pasteur, France

“Image: SciePro/Shutterstock.com”

Citation: Chevalier, C., Calzas, C., Descamps, D., Chignard, M., eds. (2020). 
Innovative Therapeutic and Vaccine Approaches against Respiratory Pathogens. 
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-676-1

https://www.frontiersin.org/research-topics/7602/innovative-therapeutic-and-vaccine-approaches-against-respiratory-pathogens
https://www.frontiersin.org/journals/immunology
http://doi.org/10.3389/978-2-88963-676-1


Frontiers in Immunology 3 April 2020 | Innovative Vaccines/Therapeutics Against Respiratory Pathogens

05 Editorial: Innovative Therapeutic and Vaccine Approaches Against 
Respiratory Pathogens

Cynthia Calzas, Delphyne Descamps, Michel Chignard and  
Christophe Chevalier

09 The Profile of T Cell Responses in Bacille Calmette–Guérin-Primed Mice 
Boosted by a Novel Sendai Virus Vectored Anti-Tuberculosis Vaccine

Zhidong Hu, Ling Gu, Chun-Ling Li, Tsugumine Shu, Douglas B. Lowrie and 
Xiao-Yong Fan

20 Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and 
Recombinant Hemagglutinin Provide Strong and Broadly Protective 
Immunity Against Influenza Virus Infections

Valentina Bernasconi, Beatrice Bernocchi, Liang Ye, Minh Quan Lê, 
Ajibola Omokanye, Rodolphe Carpentier, Karin Schön, Xavier Saelens, 
Peter Staeheli, Didier Betbeder and Nils Lycke

35 Intranasal Vaccination With Lipoproteins Confers Protection Against 
Pneumococcal Colonisation

Franziska Voß, Thomas P. Kohler, Tanja Meyer, Mohammed R. Abdullah, 
Fred J. van Opzeeland, Malek Saleh, Stephan Michalik, Saskia van Selm, 
Frank Schmidt, Marien I. de Jonge and Sven Hammerschmidt

53 Dual-Isotope SPECT/CT Imaging of the Tuberculosis Subunit Vaccine 
H56/CAF01: Induction of Strong Systemic and Mucosal IgA and T-Cell 
Responses in Mice Upon Subcutaneous Prime and Intrapulmonary Boost 
Immunization

Aneesh Thakur, Cristina Rodríguez-Rodríguez, Katayoun Saatchi, Fabrice Rose, 
Tullio Esposito, Zeynab Nosrati, Peter Andersen, Dennis Christensen, 
Urs O. Häfeli and Camilla Foged

74 Recombinant BCG Vaccines Reduce Pneumovirus-Caused Airway 
Pathology by Inducing Protective Humoral Immunity

Jorge A. Soto, Nicolás M. S. Gálvez, Claudia A. Rivera, Christian E. Palavecino, 
Pablo F. Céspedes, Emma Rey-Jurado, Susan M. Bueno and Alexis M. Kalergis

90 Non-specific Effects of Live Attenuated Pertussis Vaccine Against 
Heterologous Infectious and Inflammatory Diseases

Stéphane Cauchi and Camille Locht

98 Utilization of Staphylococcal Immune Evasion Protein Sbi as a Novel 
Vaccine Adjuvant

Yi Yang, Catherine R. Back, Melissa A. Gräwert, Ayla A. Wahid, 
Harriet Denton, Rebecca Kildani, Joshua Paulin, Kristin Wörner, 
Wolgang Kaiser, Dmitri I. Svergun, Asel Sartbaeva, Andrew G. Watts, 
Kevin J. Marchbank and Jean M. H. van den Elsen

115 Nanoparticle-Based Vaccines Against Respiratory Viruses

Soultan Al-Halifa, Laurie Gauthier, Dominic Arpin, Steve Bourgault and 
Denis Archambault

Table of Contents

https://www.frontiersin.org/research-topics/7602/innovative-therapeutic-and-vaccine-approaches-against-respiratory-pathogens
https://www.frontiersin.org/journals/immunology


Frontiers in Immunology 4 April 2020 | Innovative Vaccines/Therapeutics Against Respiratory Pathogens

126 Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene 
Expression Infection Signatures

Andrés Pizzorno, Olivier Terrier, Claire Nicolas de Lamballerie, Thomas Julien, 
Blandine Padey, Aurélien Traversier, Magali Roche, Marie-Eve Hamelin, 
Chantal Rhéaume, Séverine Croze, Vanessa Escuret, Julien Poissy, Bruno Lina, 
Catherine Legras-Lachuer, Julien Textoris, Guy Boivin and 
Manuel Rosa-Calatrava

143 Evaluation of the Antiviral Activity of Sephin1 Treatment and Its 
Consequences on eIF2α Phosphorylation in Response to Viral Infections

Maxime Fusade-Boyer, Gabriel Dupré, Pierre Bessière, Samira Khiar, 
Charlotte Quentin-Froignant, Cécile Beck, Sylvie Lecollinet, 
Marie-Anne Rameix-Welti, Jean-François Eléouët, Frédéric Tangy, 
Barbora Lajoie, Stéphane Bertagnoli, Pierre-Olivier Vidalain, Franck Gallardo 
and Romain Volmer

155 Neutrophils and Close Relatives in the Hypoxic Environment of the 
Tuberculous Granuloma: New Avenues for Host-Directed Therapies?

Aude Remot, Emilie Doz and Nathalie Winter

165 Drug Repurposing Approaches for the Treatment of Influenza Viral 
Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy

Andrés Pizzorno, Blandine Padey, Olivier Terrier and Manuel Rosa-Calatrava

177 The Role of Pre-existing Cross-Reactive Central Memory CD4 T-Cells in 
Vaccination With Previously Unseen Influenza Strains

Mikalai Nienen, Ulrik Stervbo, Felix Mölder, Sviatlana Kaliszczyk, 
Leon Kuchenbecker, Ludmila Gayova, Brunhilde Schweiger, 
Karsten Jürchott, Jochen Hecht, Avidan U. Neumann, Sven Rahmann, 
Timm Westhoff, Petra Reinke, Andreas Thiel and Nina Babel

188 Therapeutic Synergy Between Antibiotics and Pulmonary Toll-Like 
Receptor 5 Stimulation in Antibiotic-Sensitive or -Resistant Pneumonia

Laura Matarazzo, Fiordiligie Casilag, Rémi Porte, Frederic Wallet, 
Delphine Cayet, Christelle Faveeuw, Christophe Carnoy and 
Jean-Claude Sirard

201 Bifunctional Small Molecules Enhance Neutrophil Activities Against 
Aspergillus fumigatus in vivo and in vitro

Caroline N. Jones, Felix Ellett, Anne L. Robertson, Kevin M. Forrest, 
Kevin Judice, James M. Balkovec, Martin Springer, James F. Markmann, 
Jatin M. Vyas, H. Shaw Warren and Daniel Irimia

214 Systems Immunology Characterization of Novel Vaccine Formulations for 
Mycoplasma hyopneumoniae Bacterins

Anneleen M. F. Matthijs, Gaël Auray, Virginie Jakob, Obdulio García-Nicolás, 
Roman O. Braun, Irene Keller, Rémy Bruggman, Bert Devriendt, Filip Boyen, 
Carlos A. Guzman, Annelies Michiels, Freddy Haesebrouck, Nicolas Collin, 
Christophe Barnier-Quer, Dominiek Maes and Artur Summerfield

233 Attenuation of Human Respiratory Viruses by Synonymous Genome 
Recoding

Cyril Le Nouën, Peter L. Collins and Ursula J. Buchholz

242 Peptide Antiviral Strategies as an Alternative to Treat Lower Respiratory 
Viral Infections

Origène Nyanguile

251 Innovative Mucosal Vaccine Formulations Against Influenza A Virus 
Infections

Cynthia Calzas and Christophe Chevalier

https://www.frontiersin.org/research-topics/7602/innovative-therapeutic-and-vaccine-approaches-against-respiratory-pathogens
https://www.frontiersin.org/journals/immunology


EDITORIAL
published: 17 December 2019

doi: 10.3389/fimmu.2019.02960

Frontiers in Immunology | www.frontiersin.org 1 December 2019 | Volume 10 | Article 2960

Edited and reviewed by:

Denise Doolan,

James Cook University, Australia

*Correspondence:

Christophe Chevalier

christophe.chevalier@inra.fr

†These authors share first authorship

Specialty section:

This article was submitted to

Vaccines and Molecular Therapeutics,

a section of the journal

Frontiers in Immunology

Received: 29 November 2019

Accepted: 03 December 2019

Published: 17 December 2019

Citation:

Calzas C, Descamps D, Chignard M

and Chevalier C (2019) Editorial:

Innovative Therapeutic and Vaccine

Approaches Against Respiratory

Pathogens. Front. Immunol. 10:2960.

doi: 10.3389/fimmu.2019.02960

Editorial: Innovative Therapeutic and
Vaccine Approaches Against
Respiratory Pathogens

Cynthia Calzas 1†, Delphyne Descamps 1†, Michel Chignard 2 and Christophe Chevalier 1*

1 VIM, INRAE, Université Paris-Saclay, Jouy-en-Josas, France, 2 Sorbonne Université, UPMC Univ. Paris 06, INSERM, Centre

de Recherche Saint-Antoine, Paris, France

Keywords: vaccine, therapeutics, innovative delivery system, adjuvant, drug repurposing, antimicrobial peptide,

respiratory pathogen

Editorial on the Research Topic

Innovative Therapeutic and Vaccine Approaches Against Respiratory Pathogens

As recently reported by the Pneumonia Etiology Research for Child Health (PERCH) study group
(1), the diseases responding to the WHO’s definition of pneumonia, including pneumonia of
bacterial or viral origin but also acute and classical bronchiolitis, are the leading killers of children
worldwide (2 million children each year). These infections are usually transitory and can be treated
symptomatically in adults. However, complications can result in superinfections originating in
many cases by an acute viral or bacterial upper respiratory tract infection followed by invasion of
the lower respiratory tract by bacteria, notably in children and in elderly or immunocompromised
individuals. The PERCH study estimated that 61% of pneumonia requiring hospitalization in
children had a primary viral cause. Respiratory syncytial virus (RSV) arrives on top of a list that
also includes rhinovirus, human metapneumovirus (hMPV), parainfluenza virus, and influenza A
virus (IAV). Bacterial pathogens such as Streptococcus pneumoniae, Haemophilus Influenzae, and
Mycobacterium tuberculosis are also represented in that list. The development of new prophylactic
and therapeutic approaches to reduce the morbidity and the mortality associated with these
infections is thus critically needed.

In this Research Topic, a series of original articles and reviews provide some insights
on new molecular and cellular therapeutic targets or innovative vaccine strategies against
respiratory pathogens.

Current licensed vaccines against IAV are mainly inactivated or live-attenuated viruses that
provide only an incomplete protection, most notably for groups at risk. Furthermore, the intranasal
route appears to be a promising strategy of inoculation to fight against IAV directly at the
primary portal of virus entry compared to classical parenteral administration. Calzas and Chevalier
review the development of innovative delivery/adjuvant systems used for intranasal instillation of
inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based
particles, virus-like particles (VLPs), and polymers associated or not with immunopotentiatory
molecules including microorganism-derived toxins, TLR ligands, and cytokines. In their mini
review, Al-Halifa et al. present an overview of the advantages and limitations of the use of
nanoparticle-based vaccines i.e., polymeric, inorganic, and self-assembling protein nanoparticles
(VLPs) against respiratory viruses. The development of these new vaccines highlights the recent
advances in chemical and biological engineering which allow the controlled design of safe
nanoparticles (in size, shape, and functionality) to enhance antigen presentation and strong
immunogenicity. The capacity of these vaccines to trigger specific mucosal and systemic humoral
and cellular responses against respiratory pathogens and their (cross)-protective potential are also

5
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explored in those two reviews. The efficacy of vaccines is
also correlated with the matching between the circulating
and the vaccine strain, notably for IAV or RSV which
are subject to a constant antigenic drift. In their original
research article, Bernasconi et al. describe the development
of a broadly protective universal influenza vaccine based on
porous nanoparticles of maltodextrin incorporating recombinant
self-adjuvanted M2e (ectodomain of the matrix 2 protein
of IAV which is highly conserved among IAV strains) and
hemagglutinin. They demonstrate that the intranasal instillation
of their vaccine enhances immune protection against live
homologous or heterologous IAV infections and decreases the
risk of virus transmission. The protection is mediated by specific
mucosal and systemic humoral and cellular responses. The
outcome of vaccination can also be impacted by the phenomenon
known as the original antigenic sin mostly associated with
pre-existing antibodies against close viral strains that might
impair antibody formation against previously unseen strains.
Nienen et al. elucidate the role of IAV-specific helper T cells
upon vaccination with unexperienced IAV strains in a healthy
adult human cohort. In this original article, authors reveal
that the pre-existing cross-reactive memory T cells provides
sufficient help to naive B cells specific to previously unseen
IAV strains and their baseline quantity directly correlated with
vaccination efficacy.

Another alternative against respiratory pathogens is the
development of anti-viral approaches. The dynamics of
evolution, emergence and resistance of respiratory pathogens
such as IAV highlights the critical need to enlarge the therapeutic
arsenal available. Pizzorno et al. summarize in their review
the state-of-the-art of current antiviral options against IAV
infection and focus on the recent advances of anti-IAV drug
repurposing strategies. The development of new approaches
based on the combined targeting of host cell and the viral
components could constitute effective strategies to avoid the
emergence of resistant IAV mutants as often observed with the
use of conventional antivirals. Many strategies are exploited
to achieve this goal and are well illustrated in the review
with examples ranging from serendipitous observations to in
silico-assisted repurposing. In the original article associated
to this review, Pizzorno et al. present the implementation of
drug repurposing by exploiting in vivo global transcriptomic
signatures of IAV-infected patients to determine the potential
of already marketed drugs with newly identified inhibitory
properties against IAV. Among a list of promising candidates,
they demonstrate that diltiazem, a calcium channel blocker
used to treat hypertension, in combination with oseltamivir
increases antiviral efficacy. In their work, Fusade-Boyer et al.
identify Sephin1, an inhibitor of cellular phosphatase, as an
antiviral molecule against RNA and DNA viruses, and notably
RSV. Nyanguile reviews peptide-based antiviral strategies against
RSV and IAV. Long-acting macrocyclic peptides targeting large
protein-protein interactions could be used to target critical
regions such as the IAV hemagglutinin stalk domain or the
RSV fusion protein to impede virus fusion. Finally, Le Nouën
et al. review synonymous recoding strategies used to attenuate

RSV and IAV: deoptimization of codon or codon-pair usage,
reduction of viral protein expression, increase of the content
of immunomodulatory CpG and UpA RNA dinucleotides and
substitution of codons limiting evolutionary potential of the
virus by increasing the probability of insertion of non-sense
codons. The accumulation of synonymous mutations inserted
to obtain the deoptimized virus should reduce drastically the
risk of reversion while preserving the integrity of viral antigens.
Such deoptimized IAV and RSV viruses have been generated
and their characterization as vaccine candidates is described in
this review.

With the emergence and spread of drug-resistant strains
of M. tuberculosis, there is an urgent need to develop
alternative anti-tuberculosis strategies. The parenteral live
attenuated Bacillus Calmette-Guérin (BCG) vaccine, widely used
during the past decades, protects infants and children against
severe extra pulmonary forms of tuberculosis. However, it is
inconsistently efficient against the most common respiratory
form of the disease (pulmonary tuberculosis), is known
to cause adverse effects in immunocompromised individuals
and does not prevent the establishment of latent persistent
infection. In recent years, a better understanding of the
immunopathogenesis of M. tuberculosis infection allowed the
development of more efficient anti-tuberculosis strategies,
including the generation of more refined subunit vaccines and
host-directed therapies (HDTs).

A proposed effective vaccine strategy is to trigger mucosal
and/or parenteral host immunity with selective recombinant M.
tuberculosis antigens associated with suitable delivery/adjuvant
systems. Hu et al. demonstrate that a prime with BCG vaccine
followed by a boost with a novel intranasal Sendai virus vectored
vaccine encoding M. tuberculosis immunodominant antigens
enhance the generation of specific systemic and lung poly-
functional CD4+ and/or CD8+ T cell responses in mice. The
authors suggest the improved protection against M. tuberculosis
infection subsequent to the prime-boost immunization regimen
is associated with higher levels of recall IL-2-mediated lung
CD4+ and CD8+ T cell responses and a higher frequency
of central memory CD4+ T cells in the lung. Thakur et al.
evaluate for the first time the immunogenicity of a multistage
tuberculosis subunit vaccine combining early antigens and
a latency-associated protein with liposome-based cationic
adjuvant upon parenteral prime and intrapulmonary boost
administration in mice. Stronger systemic and lung antigen-
specific polyfunctional CD4+ T cells and IgA responses are
elicited with this vaccination course in comparison with
parenteral prime-boost vaccination. By using non-invasive
tomography imaging, the authors gain information on the
anatomical biodistribution and pharmacokinetics of the
vaccine, which could help in the development of effective
mucosal vaccines against pulmonary tuberculosis. Finally,
based on structural and functional analyses of domains
III and IV of Staphylococcus aureus immunomodulatory
protein Sbi (Sbi-III-IV), Yang et al. rationally design an auto-
adjuvanted fusion protein vaccine against M. tuberculosis. By
harnessing the alternative complement pathway dysregulating
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function of Sbi-III-IV, the authors improve immune responses
against a M. tuberculosis vaccine antigen administered via
the parenteral route in mice through its coating with C3
breakdown fragments.

Soto et al. demonstrate that the use of the BCG vaccine as
a vector for recombinant expression of heterologous antigens
is an attractive vaccine approach against RSV and hMPV.
Recombinant BCG vaccines expressing either the nucleoprotein
of RSV or the phosphoprotein of hMPV induce a cellular
immune response able to boost the humoral response against
RSV or hMPV antigens beyond those encoded by the vaccines
and prevent the disease caused by both pneumoviruses in mice.
A pathological hallmark of tuberculosis is the formation of
granulomas in the lung, which are organized immunological
structures composed of various innate and adaptive immune
cells containing the pathogen. However, granulomas can
undergo complex structural changes resulting in tuberculosis
progression and attractive HDTs against tuberculosis consist
in targeting granulomas. Remot et al. review and discuss
the role of neutrophils within the tuberculosis granuloma
and the impact of the hypoxic environment encountered
in the tuberculosis granuloma on key neutrophil-released
mediators. The authors highlight the modulation of hypoxia-
induced factors as an attractive innovative HDT against
tuberculosis. Jones et al. also target neutrophils to fight
against Aspergillus fumigatus by using bifunctional compounds
combining moieties that bind to the surface of the pathogen
and moieties that interact with chemoattractant receptors on
human neutrophils. The authors show that these compounds
enhance the activity of neutrophils against Aspergillus fumigatus
in vivo and in vitro, using a zebrafish infection model
and using neutrophils isolated from healthy humans and
immunosuppressed patients, respectively.

Voβ et al. validate that the intranasal vaccination with
lipoproteins is a new protective strategy against nasopharyngeal
colonization by S. pneumoniae. Lipoproteins (PnrA, DacB,
and MetQ) from pneumococcal serotypes, known to act as
adhesins, are abundant at the surface of the pathogen, conserved,
and highly immunogenic in mice. The knowledge of host-
pathogen interactions and of the mechanisms of immune
responses allows proposing innovative immunomodulatory
strategies by targeting innate receptors, such as Toll-like
receptors (TLRs), to selectively boost innate immunity and
therapeutic treatment outcome. In an original research article,
Matarazzo et al. demonstrate that the local delivery in the
respiratory tract of flagellin, a natural agonist of TLR5, is
able to provoke the production of various innate immunity-
related components, including chemokines, inflammatory
cytokines, and antimicrobial peptides. This treatment,
in association with an antibiotic administration, induces
synergistic antibacterial effects against infections caused by S.
pneumoniae in mice. Innovative formulations targeting innate
immune cells are also of great interest to improve vaccine
efficacy. Matthijs et al. compare the immunogenicity of novel

M. hyopneumoniae bacterin formulations associated with a
cocktail of TLR1/2, TLR7, and TLR9 ligands in pigs. In this
original paper, authors adapt the human-based approach of
“blood transcriptional modules” to identify early immune
signatures in the blood related to adaptive responses in
pigs (2).

Traditionally, anti-infectious vaccines aim at targeting
specific microbes by generating potent and long-lasting
antigen-specific adaptive B and T cell immune responses.
However, a growing body of evidence demonstrates that some
vaccines can exhibit non-specific beneficial effects against
heterologous infections. Cauchi et al. review the ability of
a live attenuated pertussis vaccine to protect mice against
heterologous airway infections, such as those caused by
other Bordetella species, likely due the generation of cross-
reactive B or (regulatory) T cells. The vaccine is also efficient
against unrelated pathogens (IAV, RSV) and non-infectious
inflammatory diseases (allergic asthma, contact dermatitis)
and the authors discuss the presumed mechanisms involved in
such protection, including trained innate immunity, as well as
possible mechanisms underlying the anti-inflammatory effect of
the pertussis vaccine.

In summary, the compilation of articles published within
this Research Topic should give an overview of different
innovative preventive and therapeutic approaches to fight
against respiratory pathogens, including the rationale
design of vaccine antigens and delivery/adjuvant systems in
association with the understanding of immune mechanisms
which contribute to vaccine efficacy, drug repurposing, and
peptide therapeutics.
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The Profile of T cell responses in 
Bacille calmette–guérin-Primed 
Mice Boosted by a novel sendai 
Virus Vectored anti-Tuberculosis 
Vaccine
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The kinds of vaccine-induced T cell responses that are beneficial for protection against 
Mycobacterium tuberculosis (Mtb) infection are not adequately defined. We had shown 
that a novel Sendai virus vectored vaccine, SeV85AB, was able to enhance immune 
protection induced by bacille Calmette–Guérin (BCG) in a prime-boost model. However, 
the profile of T cell responses boosted by SeV85AB was not determined. Herein, we 
show that the antigen-specific CD4+ and CD8+ T cell responses were both enhanced 
by the SeV85AB boost after BCG. Different profiles of antigen-specific po T cell subsets 
were induced in the local (lung) and systemic (spleen) sites. In the spleen, the CD4+ 
T cell responses that were enhanced by the SeV85AB boost were predominately IL-2 
responses, whereas in the lung the greater increases were in IFN-γ- and TNF-α-producing 
CD4+ T cells; in CD8+ T cells, although IFN-γ was enhanced in both the spleen and lung, 
only IL-2+TNF-α+CD8+ T subset was boosted in the latter. After a challenge Mtb infection, 
there were significantly higher levels of recall IL-2 responses in T cells. In contrast, IFN-γ-
producing cells were barely boosted by SeV85AB. After Mtb challenge a central memory 
phenotype of responding CD4+ T cells was a prominent feature in SeV85AB-boosted 
mice. Thus, our data strongly suggest that the enhanced immune protection induced by 
SeV85AB boosting was associated with establishment of an increased capacity to recall 
antigen-specific IL-2-mediated T cell responses and confirms this Sendai virus vector 
system as a promising candidate to be used in a heterologous prime-boost immuniza-
tion regimen against TB.

Keywords: tuberculosis, sendai virus, vaccine, T cell responses, prime-boost, il-2

inTrODUcTiOn

Tuberculosis (TB) remains among the most deadly health challenge to humankind. Bacille Calmette–
Guérin (BCG), the attenuated form of Mycobacterium bovis, has been used for over 80  years to 
protect children against severe forms of TB (1). However, its protective efficacy against pulmonary 
TB was found to vary from 0 to 80% in adults (2), hence a more effective vaccine is needed.
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FigUre 1 | Boosting with SeV85AB increased the IFN-γ responses primed by bacille Calmette–Guérin (BCG) vaccination. (a) Immunization and detection schedule. 
Mice primed by BCG were i.n. boosted with SeV85AB or not, and 4 weeks later, they were sacrificed for assays of cellular immune responses. Controls received 
PBS, SeV85AB, or BCG only, at the indicated time points. (B–D) The IFN-γ responses determined by enzyme linked immunospot assay. Representative dot plots 
are shown in (B). Cells from spleen (c) and lung (D) were stimulated for 20 h with Ag85AB peptide pool (5 µg/ml) or PPD (10 µg/ml) in 96-well plates and then the 
IFN-γ-secreting cells were detected and counted. PMA plus Ionomycin stimulation was used as positive control. Data are representative of two independent 
experiments with at least four mice per group. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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T cell responses are regarded as a critical factor in contain-
ment of Mycobacterium tuberculosis (Mtb) infection. After 
phagocytosis, Mtb preferentially resides in phagosomes, where 
its antigens are processed and assembled onto MHC-II mol-
ecules for presentation to CD4+ T cells (3). During the course 
of Mtb-driven differentiation, the T cells can gain the capacity 
to simultaneously produce two or more key cytokines and 
are called poly-functional T cells, which are considered to be 
superior effectors of protective immunity as compared to cells 
that produce only one cytokine (4). Specially, IFN-γ, IL-2, and 
TNF-α secreting CD4+ T cells, which are known as Th1 cells, 
are regarded as crucial for activation of effector functions to 
control intracellular Mtb and are correlated with protection 
(5, 6).

Although the role of CD8+ T cell-mediated immune responses 
against TB infection is less well defined than that of Th1 CD4+ 
T  cells, these cells are also considered to play a crucial role in 
optimal immunity and protection. It was shown that CD8+ T cells 
were essential against Mtb infection in the models of mice (7, 8),  

cattle (9), and macaques (10). Furthermore, vaccine-induced 
antigen-specific CD8+ T  cell responses were found to contrib-
ute to strong or modest immune protection in several studies 
(11–14). Recently, we reported that a novel Sendai virus vectored 
vaccine, SeV85AB, induced robust T cell responses and substan-
tial protection against Mtb infection, which was mainly mediated 
by CD8+ T cells (15).

Insufficient induction of T cell responses by BCG immuniza-
tion might underlie the vaccine’s inadequacies and boosting 
these responses by novel vaccines might be an appropriate vac-
cine strategy (16, 17). However, which kind of T cell responses 
are beneficial for the anti-TB immune protection remains 
controversial (18, 19); notably, the classical marker, IFN-γ, 
was found to play a minor role in, or even be detrimental to, 
the anti-TB immunity (20–22). Although we had shown that 
intra-nasal delivery of the SeV85AB vaccine was able to enhance 
immune protection induced by BCG in a prime-boost model 
(15), the profile of T  cell responses boosted by SeV85AB was 
not determined. Herein, we show that SeV85AB boosting 
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FigUre 2 | Flow cytometric analysis of ICS in the splenocytes of vaccinated mice. Splenocytes were collected 4 weeks after the last inoculation, incubated with 
Ag85AB peptides (5 µg/ml) in the presence of monensin and brefeldin A, and analyzed for cytokine production by ICS assay. CD3+CD4+ cells (CD4+ T cells) and 
CD3+CD4− cells (CD8+ T cells) producing IFN-γ, IL-2, and TNF-α were analyzed. Representative flow cytometric plots of intracellular staining in CD4+ T cells are 
shown in (a), and summary data of single cytokine producing CD4+ T cells (B) and CD8+ T cells (c) are shown with significant differences indicated. Data are 
representative of two independent experiments with at least four mice per group. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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established substantial T  cell responses in the lung that dif-
fered from systemic immunity; there were different profiles 
of antigen-specific poly-functional T  cell subsets in the lung 
compared with the spleen. After challenge by Mtb infection, 
SeV85AB-boosted mice had significantly higher levels of recall 
CD4+ and CD8+ T cell responses, which were mainly mediated 
by IL-2. In contrast, the IFN-γ-producing cells were barely 
boosted by SeV85AB. The proportion of cells with central 
memory phenotype of peptides-responding CD4+ T  cells was 
elevated in SeV85AB-boosted mice after Mtb challenge. Our 
study, therefore, lends strong support to the adoption of Sendai 
virus as a promising vector system to be used in a heterologous 
prime-boost immunization regimen against TB.

MaTerials anD MeThODs

animals and immunization
This study was approved by the Institutional Animal Care and 
Use Committee and was performed according to the guidelines 
of the Laboratory Animal Ethical Board of Shanghai Public 
Health Clinical Center. Specific pathogen-free female BALB/c 
mice aged 6–8 weeks were immunized with BCG subcutaneously 
[s.c., 5 × 106 CFU (colony forming units), in 100 µl PBS] in each 
hind leg and boosted intra-nasally (i.n.) with SeV85AB [1 × 107 
cell infectious units (CIU), in 20 µl PBS]. BCG, SeV85AB single 
immunizations, and PBS were used as controls. For the evaluation 
of primary cellular immune responses, 4 weeks after vaccination, 

11

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 3 | Characterization of poly-functional Ag85AB-specific T cell 
responses in the spleen. T cells producing IFN-γ, IL-2, and TNF-α were 
distinguished by ICS assay as seven subpopulations based on the 
production of these three cytokines in any combination. The percentage  
of subpopulations as components of the total CD4+ (a) or CD8+ (B) T cell 
population and the pie chart analysis (c) are shown. Significant differences  
in frequency of poly-functional T cell subsets are indicated. Data are 
representative of two independent experiments with at least four mice per 
group. *P < 0.05 and **P < 0.01.
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animals were sacrificed, then, the lungs and spleens were aseptically 
removed for antigen-specific T cell immune response assessments. 
For the evaluation of recall immune responses after infection, the 
mice were challenged through a respiratory route by the Mtb 
virulent strain H37Rv 4 weeks after immunization and maintained 
in a level 3 bio-containment animal facility. Five weeks later, the 
mice were sacrificed and lungs sampled to assess recall responses 
by intracellular staining (ICS) as described below.

harvest of splenocytes and lung cells
Spleen was mechanically disrupted and single splenocytes were  
filtered, and then subjected to red blood cell lysis. Lung was gen-
tly minced by scissors and then incubated with DNase I (10 U, 
Thermo) and collagenase IV (1  mg/ml, Invitrogen) in 10  ml 
R10 medium (RPMI-1640 medium containing 10% fetal bovine 
serum and 1% Penicillin and Streptomycin) for 30 min at 37°C. 
The collagenase-digested tissue pieces were filtered through a 
70 µm cell strainer (Fisher Scientific) by gently squashing with 
the plunger of a syringe. The cell suspension was centrifuged 
and red blood cells were lysed. The single splenocytes and lung 
lymphocytes were washed and re-suspended in R10 medium.

iFn-γ enzyme linked immunospot 
(elisPOT) assay
Enzyme-linked immunospot assays were performed according to 
IFN-γ ELISPOT kit protocols (BD Biosciences). Briefly, 96-well 
plates were coated with anti-mouse IFN-γ antibody at 4°C over-
night. Then, they were washed and blocked with R10 medium at 
room temperature for 2 h. Isolated lung cells or splenocytes were 
added at 2 × 105 cells per well with peptide pools (5 µg/ml) or PPD 
(10  µg/ml). PMA (50  ng/ml, Sigma) and ionomycin (1  µg/ml,  
Sigma) stimulation were used as positive controls. The cells were 
stimulated at 37°C for 20  h. The cell suspension was aspirated 
and washed with PBST (PBS containing 0.5% Tween-20), and 
then incubated with anti-mouse IFN-γ biotinylated detection 
antibodies for 2 h. The cell suspension was aspirated and washed 
with PBST and then incubated with streptavidin-horseradish 
superoxidase conjugated anti-biotin antibodies for an additional 
1 h. After washing with PBST and PBS, AEC substrate solution 
was added and incubated for 30 min before rinsing away with 
water. The plates were air-dried and analyzed with Immunospot 
Reader (Champspot III, Beijing Sage Creation Science).

Peptides
The peptides were synthesized by GL Biochem (Shanghai, 
China) with 95% purity. MPVGGQSSF, 70-78aa; TFLTSELPGW-
LQANRHVKPT, 99-118aa; GLSMAASSALTL, 124-125aa and  
YAGAMSGL, 145-152aa were used as an Ag85A peptide pool.  
IYAGSLSAL, 144-152aa; ALLDPSQGMGPSLIG, 151-165aa; GP 
SSDPAWERNDPTQQIP, 181-198aa and HSWEYWGAQLNA-
MKGDLQ, 262-279aa were used as an Ag85B peptide pool.

intracellular staining (ics) and Flow 
cytometry analysis
The splenocytes or lung cells were stimulated with Ag85AB 
peptide pool (5  µg/ml) or PPD (10  µg/ml) in 96-well plates 

at 37°C for 1 or 14 h, respectively. Then, cells were incubated  
for an additional 5 h after the addition of 1 µl/ml Monensin 
and Brefeldin A (BD Biosciences), PMA (50 ng/ml), and inono-
mycin (1  µg/ml) stimulation were used as positive controls. 
After stimulation, cells were washed with wash PBS contain-
ing 2% fetal bovine serum and then incubated on ice with the 
mixture of antibodies for 30 min, then washed and subjected 
to fixation and permeation with fix/perm buffer (BD Bioscience). 
After washing, the cells were incubated with antibodies 
against intracellular cytokines on ice for another 30  min. 
Then, the cells were re-suspended for flow cytometry analysis 
(LSRFortessa, BD Biosciences). At least 50,000 T  cells were  
harvested.

antibodies
The following antibodies were used in this study: CD3-Pacific 
Blue (clone 17A2) from BioLegend, and CD44-FITC (clone IM7), 
CD62L-Percp-Cyanine 5.5 (clone MEL-14), TNF-α-PE-Cyanine 
7 (clone MP6-XT22) from eBioscience, and CD4-Alexa Fluor 647 
(clone RM4-5), IFN-γ-APC-Cyanine 7 (clone XMG1.2), IL-2-PE 
(clone JES6-5H4) from BD Biosciences.
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FigUre 4 | Flow cytometric analysis of ICS in the lung cells of vaccinated mice. Lung cells were collected, stimulated, and analyzed for cytokine production by ICS 
assay as described for splenocytes in Figure 2. Representative flow cytometric data plots from CD4+ T cells (a) and summarized data of single cytokine producing 
CD4+ T cells (B) and CD8+ T cells (c) are shown. The percentages of responding cells were compared as indicated. Data are representative of two independent 
experiments with at least four mice per group. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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statistical analysis
The statistical analysis was performed using GraphPad Prism 6 
software. One-way ANOVA was used to determine the statistical 
significance for comparison of multiple groups, and two-way 
ANOVA was used for the grouped analysis.

resUlTs

Boosting With seV85aB increased the iFn-γ 
responses Primed by Bcg Vaccination
The experiment protocol is shown diagrammatically in Figure 1A. 
Typical IFN-γ ELISPOT results are shown in Figure  1B. As 

expected, SeV85AB vaccination induced Ag85AB-specific 
immune responses, and this effect was significantly greater in 
BCG-primed mice, both in the spleen (Figure 1C) and in the lung 
(Figure  1D). Although PPD-specific cell responses were only 
slightly induced by SeV85AB, mice receiving SeV85AB boost 
secreted higher levels of IFN-γ compared with SeV85AB or BCG 
single immunization (Figures 1C,D).

seV85aB Boost increased systemic  
Poly-Functional T cell responses  
Primed by Bcg Vaccination
At 4 weeks after vaccination, splenocytes were obtained from 
the different vaccination groups and stimulated with the 
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FigUre 5 | Characterizations of poly-functional Ag85AB-specific T cell 
responses in the lung. T cells secreting IFN-γ, IL-2, and TNF-α were 
distinguished as seven distinct subpopulations as described in Figure 3. The 
percentage of subpopulation as components of the total CD4+ (a) and CD8+ 
(B) T cell populations and the pie chart analysis (c) are shown. Significant 
differences in frequency of poly-functional T cell subsets are indicated. Data 
are representative of two independent experiments with at least four mice per 
group. *P < 0.05 and **P < 0.01.
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Ag85AB peptide pool or incubated with medium as control (The 
gating strategy is shown in Figure S1 in Supplementary Material, 
CD4+ T cells were gated as CD3+CD4+ cells and CD8+ T cells were 
defined as CD3+CD4− cells) and the results of flow cytometric 
ICS detection of IFN-γ, IL-2, and TNF-α positive T  cells were 
compared between groups (representative mono-positive dot 
plots are shown in Figure 2A and dual-positive plots are shown 
in Figure S2 in Supplementary Material). Consistent with the 
ELISPOT assay, the production of all three cytokines in CD4+ 
T cells was significantly enhanced by SeV85AB boost (Figure 2B), 
whereas only IFN-γ was increased in CD8+ T cells (Figure 2C). 
The SeV85AB boost induced higher levels of antigen-specific 
poly-functional CD4+ T  cell responses, in which the increased 
percentage of dual-positive IFN-γ+IL-2+ and IL-2+TNF-α+ cells 
were statistically significant (Figures  3A,C). Additionally, the 
mono-positive IFN-γ+CD8+ subset was significantly increased 
(Figures 3B,C).

seV85aB Boost increased Poly-Functional 
T cell responses in the lung Primed by 
Bcg Vaccination
The representative staining results of flow cytometric ICS detec-
tion of IFN-γ, IL-2, and TNF-α mono-producing lung T cells after 
Ag85AB stimulation are shown in Figure 4A and dual-positive 
plots are shown in Figure S3 in Supplementary Material. The 
secretion of all three cytokines was significantly boosted, both 
in CD4+ T and CD8+ T cells (Figures 4B,C). The poly-functional 
T  cell subset analysis further showed that in CD4+ T  cells the 
dual-positive IFN-γ+TNF-α+ and mono-positive IFN-γ+ subsets 
were significantly boosted (Figures 5A,C), whereas in the CD8+ 
T  cells, the IFN-γ+ and IL-2+TNF-α+ subsets were boosted 
(Figures  5B,C). In the spleen, SeV85AB boost dominantly 
increased IL-2 responses in CD4+ T cells (Figure 3A), whereas 
in the lung, the greater increases were in IFN-γ positive CD4+ 
T cells (Figure 5B). In the spleen, the CD8+ T cell responses had 
been only modestly enhanced (Figure 3B), whereas in the lung, 
IL-2+TNF-α+ and IFN-γ+ cells had been significantly increased 
by SeV85AB (Figure 5B). In addition, PPD-specific CD4+ T cell 
responses in the spleen and CD8+ T cell responses in the lung were 
also boosted by SeV85AB (Figure S4 in Supplementary Material). 
These divergences confirmed that the mucosal immunization 
with SeV85AB had a different capacity to establish immune 
memory in the systemic immune system compared with local 
site in the lung, confirming our previous observation (15). Taken 
together, these data demonstrated that SeV85AB boost induced 
higher levels of poly-functional antigen-specific CD4+ and CD8+ 
T cell responses primed by BCG vaccine.

seV85aB-Boosted Bcg-induced immune 
Protection Was associated With recall  
of antigen-specific il-2-Mediated 
responses
We had shown that mucosal boosting of SeV85AB improved the 
protection of BCG vaccination against Mtb challenge in a prime-
boost model (15). In this study, the protective efficacy afforded by 

SeV85AB boost was confirmed (data not shown), and the recall 
T cell responses that occurred upon the Mtb infection were espe-
cially assayed (Figure 6A). IFN-γ ELISPOT results showed that, 
at 5 weeks postinfection, mice that had received SeV85AB boost-
ing before the infection had developed only slight, if any, overall 
increase of Ag85AB- (Figure 6B) and PPD- (Figure 6C) specific 
responses in the lung compared with the response to infection 
after SeV85AB or BCG single vaccination. However, SeV85AB 
boosting resulted in a response to infection that contained a 
higher percentage of Ag85AB-specific poly-functional lung 
T cells, notably CD4+ T cells with the phenotypes IL-2+TNF-α+/
IL-2+, and CD8+ T  cells of phenotypes IFN-γ+IL-2+TNF-α+/
IL-2+ (Figure 7).

seV85aB induced elevated central 
Memory Phenotype of cD4+ T cells
The memory phenotypes of antigen-responding CD4+ T cells that 
secreted at least one of the cytokines IFN-γ, IL-2, or TNF-α were 
further determined (The gating strategy is shown in Figure S5 
in Supplementary Material). As a result, SeV85AB boost led to 
significantly higher levels CD4+ T cells with CD44+CD62+ central 
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memory phenotype compared with other vaccination groups 
(Figure 8). This was paralleled by decrease in CD44+CD62− (effec-
tor memory) among those responding CD4+ T cells (Figure 8). 
Thus, our data strongly suggest that the enhanced immune 
protection induced by SeV85AB boosting was associated with 
establishment of an increased capacity to recall central memory 
CD4+ T cell responses.

DiscUssiOn

Up to now, most successful vaccines against microbial pathogens 
have depended on humoral immunity to achieve protection or 
even sterile eradication. However, as is the case for many intra-
cellular bacteria, Mtb is able to resist most antibody-mediated 
antibacterial effects by growing inside macrophages (23). Thus, 
T cell-mediated immune responses are crucial for the develop-
ment of anti-TB vaccines.

The only available anti-TB vaccine remains the almost 100- 
year-old BCG. The routine administration of BCG to infants 
provides significant protection against miliary and meningeal 
TB. However, the protective efficacy is inconsistent in adults. One 
explanation of BCG’s inadequate protection is a lack of an effec-
tive stimulation of an optimal blend of T cell populations (24). 
Considering that both CD4+ and CD8+ T  cells play important 
roles in protective immunity against Mtb (3, 25, 26), the develop-
ment of efficient memory CD4+ and CD8+ T cell responses is one 
of the main goals of the novel vaccine strategies against Mtb.

Although BCG is a strong inducer of Th1 CD4+ T cell immune 
responses, the incidence of active TB disease increases with 
time after BCG immunization (27), suggesting that a decline of 

immunological memory after BCG vaccination is one of the causes 
of the vaccine’s low protective efficacy. However, the waning of 
BCG protection was not prevented by a BCG revaccination strat-
egy (28). Since the majority of human beings are BCG inoculated, 
and this seems unlikely to change, a prime-boost regimen is an 
attractive strategy to counter the waning immune memory post 
BCG. Heterologous prime-boost vaccination strategy is known 
to be highly effective for enhancing anti-TB T  cell-mediated 
immunity (17, 29). For example, a vaccinia virus-vectored vac-
cine (MVA85A) and two adenovirus-based vaccines (AdAg85A 
and Crucell Ad35) are candidate booster vaccines that are under 
clinical evaluation. Although MVA85A was shown to be effec-
tive in boosting BCG-primed immune protection in a variety of 
Mtb animal infection models, a phase IIb clinical trial indicated 
that MVA85A may not be effective in humans (30). This failure 
suggested that novel anti-TB vaccine platforms or optimized 
delivery systems are urgently needed (31). Improvement would 
benefit from knowing which cellular responses constitute opti-
mum protective immunity. Our analysis of the cells engaged in 
the enhanced protective response in the lungs of Mtb-challenged 
mice after BCG/SeV85AB prime/boost is illuminating.

In Mtb natural infection, T  cells are initially primed in the 
draining lymph nodes of the infected lung, phagocytosis leads to 
the presentation and cross-presentation of Mtb peptide-loaded 
MHC-I and -II complexes, which provides the priming “first 
signal” at the DC surface (32). The “second signal,” a costimula-
tory signal, tunes the T cell responses by decreasing the activa-
tion thresholds of T  cells, and pathogen-specific inflammation 
provides the “third signal” that shapes the maturation of T cells 
(33–36). A deficiency in any of these signals might lead to the 

FigUre 6 | Recall T cell responses against specific stimulation post Mycobacterium tuberculosis (Mtb) challenge determined by IFN-γ Enzyme Linked Immunospot 
(ELISPOT) assay. (a) Immunization and infection schedule. Vaccinated mice were aerosol challenged 4 weeks later with virulent Mtb H37Rv. Five weeks 
postinfection, recall lung T cell responses were determined. (B,c) The IFN-γ responses by ELISPOT assay. Cells from the infected lung were stimulated for 20 h with 
Ag85AB peptide pool (B) or PPD (c) in 96-well plates, respectively. Significant differences in frequency between T cell subsets are indicated. Data are representative 
of two independent experiments with three mice per group. ns, no significant difference.
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FigUre 7 | Continued
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FigUre 8 | Memory phenotypes of recall T cell responses against Mycobacterium tuberculosis challenge. The memory phenotypes in total CD4+ T cells and 
Ag85AB-responding CD4+ T cells were assessed. The responding cells were defined as the cells that secreted at least one of the cytokines IFN-γ, IL-2, and TNF-α 
after Ag85AB peptide stimulation. Central memory T cells (TCM) and effector memory T cells (TEM) were defined as CD44+CD62L+ and CD44+CD62L−, respectively. 
Representative flow cytometric plots (a) and summarized data (B) are shown. Data are representative of two independent experiments with three mice per group. 
*P < 0.05 and **P < 0.01.

FigUre 7 | Recall T cell responses against specific stimulation post Mycobacterium tuberculosis challenge determined by ICS assay. The immunization and 
infection schedule were described in Figure 6a. Lung cells were stimulated ex vivo with Ag85AB peptides in the presence of monensin and brefeldin A and 
analyzed for cytokine production by ICS assay. T cells producing IFN-γ, IL-2, and TNF-α were analyzed and their percentage in CD4+ T cells (a) and CD8+ T cells 
(B) are shown. The percentage of seven subpopulations based on the production of three cytokines in any combination in the total CD4+ (c) and CD8+ (D) T cells 
and the pie chart analysis (e) are shown. Significant differences in frequency of T cell subsets are indicated. Data are representative of two independent experiments 
with three mice per group. *P < 0.05 and **P < 0.01.

inadequate activation of anti-TB T  cell immune memory (37). 
Sendai virus was chosen here to serve as vector of a booster anti-
TB vaccine primarily because it was known that Sendai virus 
treatment matured dendritic cells and led to complete elimina-
tion of tumors cells in vivo (38). In addition, Sendai virus tests 
had demonstrated a potent induction of type I interferon (39) 
and a Sendai virus-derived RNA agonist of RIG-I had been used 
as an adjuvant to enhance vaccine-induced immune responses 
by providing an inflammatory microenvironment (40), thereby 
optimizing antigen-specific CD4+ and CD8+ T  cell responses 
(41). Based on this, we initiated this program of investigation and 
found that the novel Sendai virus vectored vaccine, SeV85AB, did 
indeed induce robust T cell responses and substantial protection 
against Mtb challenge (15).

Bacille Calmette–Guérin is a strong inducer of systematic 
CD4+ T cell immunity but fails to induce efficient CD8+ T cells. 
In contrast, a single immunization of SeV85AB was able to 
establish antigen-specific T  cells responses and CD8+ T  cells 

mediated immune protection (15). Here, we found that the strong 
antigen-specific CD4+ and modest CD8+ T cells primed by BCG 
vaccination were both enhanced by SeV85AB in the spleen. Most 
notably, the weak antigen-specific CD8+ T  cell responses that 
were primed by BCG in the lung were significantly enhanced 
by the SeV85AB boosting. Heterologous prime-boost and 
recombinant protein anti-TB vaccine models have shown that 
the vaccine-induced IL-2-secreting CD4+ T  cell subsets could 
maintain the IL-2-producing ability for at least 26  weeks post 
challenge infection and were associated with enhanced control 
of bacterial growth in mouse models (42, 43). Increased TNF-α/
IFN-γ/IL-2 and decreased TNF-α/IFN-γ responses induced by 
BCG have been associated with protection against bovine TB 
(44). In this study, although the IL-2 response was not domi-
nated in the vaccine-induced primary responses in the spleen, 
IL-2-producing poly-functional T cells were significantly boosted 
by SeV85AB, supporting the protective role of IL-2 in anti-TB 
vaccine-induced protection.
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Moreover, it was shown that the antigen-specific IL-2+CD4+ 
T cell subsets were negative for KLRG1, which is a surface marker 
of terminally differentiated T cells, during Mtb challenge infec-
tion (42). We showed previously that the inadequacy of T  cell 
immunity during chronic human TB infection is associated with 
the less-protective terminally differentiated T cell state marked by 
KLRG1 expression. Furthermore, the blockade of KLRG1 signal-
ing increased CD4+ T cell function through enhancement of Akt 
pathway in human TB infection (45, 46), supporting the protec-
tive role of IL-2 in TB infection. In this study, IL-2-producing 
T cells were significantly enhanced post Mtb infection in the BCG 
prime-SeV85AB boost regimen group, again showing the recall 
of IL-2 responses was associated with protective immunity. IL-2 
enhances competitiveness for survival in CD4+ T cells, thereby 
facilitating the development of a memory population (47). The 
CD4+ T cells that produce IL-2 could be sustained over a pro-
longed period and developed into effector cells following antigen 
stimulation as a result of quick recall response (48). In human 
TB infection, active TB patients had decreased IL-2-producing 
CD4+ T cells compared with latent TB infection, and 6 months of 
anti-TB treatment increased specific IL-2-producing T cells (49). 
In contrast, although also essential for host resistance against 
Mtb, IFN-γ responses do not always correlate with immune 
protection (26). Recently, Barber et  al. also found that IFN-γ 
accounts for only ~30% of the cumulative CD4+ T cell-mediated 
reduction in lung bacterial loads, but increasing the per capita 
production of IFN-γ led to the early death of the host in murine 
TB infection (20). Thus, although it can be regarded as a positive 
marker of vaccine-induced primary T cell responses, the degree 
of infection-induced IFN-γ production might not always be the 
factor limiting immune protection against TB. Instead, our data 
support a key positive role of IL-2 in anti-TB immune protection. 
Thus, perhaps recall IL-2-mediated, instead of IFN-γ-mediated 
T cell responses is the critical factor normally limiting protection 
against TB infection.

Cumulatively, our data suggest that boosting BCG with 
SeV85AB might compensate for the weak induction by BCG of 

IL-2-dependent recall T cell immune responses in the lung. Since 
we showed here that an SeV85AB boost significantly enhanced 
the T cell immune memory induced by BCG vaccination in mice, 
further studies of SeV85AB in other animal models are warranted 
before a clinical trial of safety in humans.
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Due to the high risk of an outbreak of pandemic influenza, the development of a broadly

protective universal influenza vaccine is highly warranted. The design of such a vaccine

has attracted attention and much focus has been given to nanoparticle-based influenza

vaccines which can be administered intranasally. This is particularly interesting since,

contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell

immunity, which have been found to correlate with stronger protection in experimental

models of influenza virus infections. Also, studies in human volunteers have indicated

that pre-existing CD4+ T cells correlate well to increased resistance against infection.

We have previously developed a fusion protein with 3 copies of the ectodomain of

matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus

antigens for a broadly protective vaccine known today. To improve the protective ability

of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous

maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the

combined vaccine vector given intranasally enhanced immune protection against a

live challenge infection and reduced the risk of virus transmission between immunized

and unimmunized individuals. Most importantly, immune responses to NPLs that also

contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme

dependent manner andwe achieved broadly protective immunity against a lethal infection

with heterosubtypic influenza virus. Immune protection was mediated by enhanced levels

of lung resident CD4+ T cells as well as anti-HA and -M2e serum IgG and local IgA

antibodies.

Keywords: mucosal vaccination, influenza A virus, CTA1-DD, maltodextrin nanoparticles, targeted adjuvant, nasal

immunization, Universal vaccine
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INTRODUCTION

The quest for a broadly protective influenza vaccine is ongoing.
Whereas many different strategies have been employed to
design a novel vaccine, a common denominator for these has
been to identify conserved viral epitopes that could serve as
effective vaccine components (1). Attention has been given to
epitopes from the hemagglutinin (HA) stem region in order to
raise neutralizing antibodies against conserved structures of the
protein (2–6). The prevailing idea is that protective antibodies are
largely neutralizing antibodies, but also antibodies acting through
antibody-dependent cell-mediated cytotoxicity (ADCC) could
prevent disease, as shown in experimental models (7–9). To the
latter category of ADCC-acting antibodies we count antibodies
against the ectodomain of the influenza Amatrix protein 2 (M2e),
an ion channel protein which, in fact, is one of the most explored
vaccine subcomponents for a universal influenza vaccine today
(10–13) M2e as part of a virus-like particle or a fusion protein has
been shown to stimulate strong protection against homologous as
well as heterologous influenza virus infections in different animal
models (14–16). Furthermore, clinical studies have indicated that
cell-mediated immune responses, more than antibodies, may be
critical for a broadly protective influenza vaccine and, hence,
not only M2e, but also several internal structural proteins have
been considered for a universal flu vaccine (10, 13). While both
memory CD4+ and CD8+ T cells have been found to correlate
with protection against heterosubtypic influenza virus strains,
experimental evidence in this regard points to a particularly
critical function of lung resident memory T cells for protection
(17–20). Most influenza vaccines are injectable vaccines, but
these are poor inducers of lung resident memory T cells (13, 21).
Therefore, many researchers have focused efforts on mucosal
vaccines, which have been found superior to injectable vaccines
at stimulating lung resident memory T cells, concomitant with
strong secretory IgA (sIgA) and significant systemic IgG immune
responses (22).

We have previously developed a universal influenza vaccine
candidate by incorporating the M2e-peptide into the non-toxic
CTA1-DD adjuvant molecule (16). The CTA1-DD molecule
exploits the full immunomodulating ability of CTA1, which is
the ADP-ribosylating enzyme from cholera toxin (CT), linked
in a fusion protein (FPM2e) that employs the D-fragment
from Staphylococcus aureus protein A as a cell targeting unit

(23–25) CTA1-3M2e-DD was found to strongly protect against a

challenge infection with a heterosubtypic influenza A virus strain
(H1N1/PR8) (26). Our vaccine adjuvant molecule is lacking the
CTB pentamer of CT and cannot bind to the GM1-ganglioside
receptors present on most nucleated cells, including nerve cells
(27, 28). This way, CTA1-3M2e-DD is completely safe and non-
toxic even when given intranasally (i.n) contrary to CT or
other GM1-binding toxin adjuvants that can cause facial nerve
paralysis, also described as Bell’s palsy (29). Interestingly, the
CTA1-3M2e-DD not only stimulated strong M2e-specific serum
IgG and mucosal IgA antibody responses, but we also identified a
critical induction of lung resident M2e-specific memory CD4+

T cells (16, 26). We observed that M2e-specific CD4+T cells
were dominated by Th17 cells, which conveyed protection

against influenza that was independent of anti-M2e-antibodies.
Accordingly, we believe the CTA1-3M2e-DD, generating both
lung resident memory CD4+T cells and M2e-specific antibodies,
is a good candidate for a broadly protective influenza vaccine.

However, to improve vaccine stability and mucosal delivery
of the fusion protein, we sought to explore the combination
of the FPM2e with a nanoparticle (30). We used our well
established technology to incorporate CTA1-3M2e-DD into
porous maltodextrin nanoparticles (NPLs) to further improve
the immunogenicity and disease protective functions of the
vaccine candidate (31). Apart from shielding the protein against
degradation, we speculated that the combined FPM2e:NPL
vaccine formulation would facilitate breaching of the mucosal
membrane barrier and, in this way, augment antigen uptake
in migrating dendritic cells (DC) (32, 33). The positively
charged NPLs used in this work have three main components:
the reticulated maltodextrin, the anionic lipid (DPPG) and
the protein, which are all linked together by non-covalent
interactions (Van derWaals forces and electrostatic interactions).
Hence, the NPL hosts a negative hydrophobic core surrounded
by a positively charged polysaccharide shell (34). We have
reported previously that nasal immunizations with similar
NPL preparations could stimulate significant protection against
Toxoplasma gondii in mice (35, 36). An additional advantage
of the NPL technology is that it allows for loading of multiple
proteins in the same particle. This gave us the opportunity to
explore whether anti-influenza protection could be improved
with NPLs that carry both the CTA1-3M2e-DD and recombinant
HA. Thus, the present study was undertaken to investigate
whether the combined HA:FPM2e:NPL vaccine vector, hosting
the CTA1-3M2e-DD and recombinant HA, stimulated enhanced
protective immunity against influenza virus infections. A special
focus was given to the uptake and antigen-processing of the
combined vector by DCs, which are the essential primers of
CD4+ T cell immunity (37).

MATERIALS AND METHODS

Mice and Immunizations
Age- and sex-matched BALB/c, C57BL/6 or DBA/2 mice were
obtained from Harlan (The Netherlands) or Janvier Laboratories
(France). The Eα-specific T cell receptor transgenic B6.Cg-
Tg(Tcrα,Tcrβ)3Ayr/J mice were obtained from The Jackson
Laboratories (USA). Mice were maintained under specific
pathogen-free conditions at the Laboratory for Experimental
Biomedicine (EBM) (University of Gothenburg, Sweden) or at
the Laboratory of Virology (University of Freiburg, Germany).
Experiments were ethically approved by local committees
regulating animal ethics at the universities of Gothenburg and
Freiburg, respectively. A single or three immunizations with 10
days between immunizations were given intranasally (i.n) to 4–6
weeks old mice. As indicated, an i.n antigen dose of 1 or 5 µg of
protein was given in a volume of 20 µl i.n to each mouse. Mice
were sacrificed after 1–2 weeks following the final immunization
or virus challenge infection and spleens, mediastinal lymph
nodes (mLN), serum, and broncheoalveolar lavage (BAL) were
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collected. Serum and BAL were taken at times indicated and
stored at−20◦C until further analyzed.

Fusion Protein Construction
CTA1(C189A)-3M2e-DD, with enzymatic activity, CTA1(R9K)-
3M2e-DD, the enzymatically inactive mutant, CTA1-DD
and CTA1(C189A)-3Eα-DD were produced in E. coli
by MIVAC Development AB, Sweden, as previously
described (16). The first two constructs carry three copies
of the extracellular domain of the influenza virus M2
protein (SLLTEVETPIRNEWGSRSNDSSD) derived from
the A/Victoria/3/75 (H3N2) virus strain. CTA1(C189A)-
3Eα-DD carries 3 copies of the Eα 52-68 peptide
(ASFEAQGALANIAVDKA). The fusion proteins were routinely
tested for the presence of endotoxin, using the limulus amebocyte
lysate assay (LAL Endochrome TM Charles River Endosafe,
USA) and found to be <100 endotoxin units/mg protein
(EU/mg). The enzymatic ADP-ribosyltransferase activity was
determined by the NAD:agmatine assay (38). Protein analysis
was performed with SDS-PAGE, and concentrations were
determined using the Bio-Rad DC protein assay (Bio-Rad, USA),
according to the manufacturer’s instructions.

Nanoparticle Preparation
Nanoparticles (NPLs) were produced as described by Paillard et
al. (34). Briefly, maltodextrin (Roquette, France) was dissolved in
2N sodium hydroxide by magnetic stirring at room temperature.
A mixture of epichlorohydrin and glycidyltrimethylammonium
chloride (GTMA, a cationic ligand; both from Sigma-Aldrich,
France) was added to the polysaccharide leading to the
formation of a gel. After neutralization by means of acetic
acid, the gel was crushed with a high pressure homogenizer
(Emulsiflex C3, Avestin, Germany). The newly obtained NPLs
were purified by tangential flow ultra-filtration (Centramate
Minim II PALL, France) using a 300 kDa membrane (PALL,
France) to remove oligosaccharides, low-molecular weight
reagents and salts. Purified NPLs were freeze dried. Lyophilized
NPLs were dissolved in water and a 1,2-dipalmitoyl-sn-glycero-
3-phosphatidylglycerol (DPPG) lipid (Lipoid, Germany) was
loaded into NPLs at a temperature above the liquid phase
transition temperature of the lipid.

CTA1-3M2e-DD and HA Loading Into
Nanoparticles
The fusion proteins or trimeric HA were loaded into premade
NPL at a mass ratio 1:5 (protein:NPL), by mixing the
proteins with NPLs followed by incubation for 30min at room
temperature. The recombinant extracellular domain (Met 1-
Gln 528) of the hemagglutinin (HA1+HA2) was derived from
Influenza A Virus H1N1 (A/Puerto Rico/8/34 virus strain) fused
with a C-terminal polyhistidine tag (Sino Biological Inc., China)
was resuspended in 1.98% Empigen R© BB (N,N- Dimethyl-
N-dodecylglycine betaine, Sigma-Aldrich, France) obtaining a
protein concentration of 1 mg/ml. Then HA was incubated
with either NPL or CTA1-3M2e-DD:NPL at r.t. to obtain a
formulation with a mass ratio 1:5 (protein:NPL).

Size, Zeta Potential, and Long Term
Stability
We determined the efficiency of protein incorporation into NPLs
by native polyacrylamide gel electrophoresis (PAGE). Proteins
and NPLs were dissolved in electrophoresis buffer (Tris-HCl
125Mm (pH 6.8), 10% glycerol, 0.06% bromophenol blue) and
run on a 10% acrylamide-bisacrylamide gel. The gel was stained
by silver nitrate to detect unbound proteins. The size and the
zeta potential of the proteins and NPLs were assessed by dynamic
light scattering and electrophoretic mobility with a Zetasizer
nanoZS (Malvern Instruments, France). Proteins or NPLs were
kept in low volume quartz batch cuvettes (ZEN2112, Malvern
Instrument, France) for particle size purposes. For assessments
of zeta potential samples were diluted in water to a final volume
of 750 µl and loaded into a disposable folded capillary cell
(DTS1070, Malvern Instrument, France). The molecular stability
of CTA1-3M2e-DD (FPM2e) or the different NPLs, was assessed
after 3 months, under accelerated (40◦C) or standard (4◦C)
conditions, or after >12 months in 4◦C, “sterile setting.” The
molecular stability was determined by change in size or zeta
potential as measured by dynamic light scattering and laser
doppler velocimetry. The stability of the protein incorporated
into NPLs was evaluated by native PAGE analysis, as described
above. Antigen degradation was assessed by SDS-PAGE, using
a denaturing buffer (Tris–HCL 125mm (pH 6.8), 20% glycerol,
10% SDS, 2.5% β-mercaptoethanol and 0.06% bromophenol
blue). The gels were stained by silver nitrate.

In vitro Antigen Presentation Assays
The D1 cell line, a long-term growth factor-dependent immature
myeloid (CD11b+, CD8α-) DC line of splenic origin derived
from a female C57BL/6 mouse, was generously provided by
prof. P. Ricciardi-Castagnoli (University of Milan-Bicocca, Italy)
(39). The D1 cells were cultured in 24-well plates (Nunc,
A/S Roskilde, Denmark) in Iscove’s medium (Biochrom KG,
Germany), supplemented with 10% heat-inactivated fetal calf
serum (Biochrom KG, Germany), 50µM 2-mercaptoethanol
(Sigma Aldrich, Sweden), 1mM L-glutamine (Biochrom KG,
Germany) and 50µg/ml Gentamycin (Sigma Aldrich, Sweden)
and stimulated for different times with 0. 2µM of CTA1-3Eα-
DD soluble protein or when incorporated into NPLs. To assess
the processing efficiency of fusion protein we determined the cell
surface expression of peptide plusMHC II complex by incubating
D1 cells with anti-Eα(52-68):I-Ab complex-specific Y-Ae biotin-
labeled antibody (eBiosciences, USA). Flow cytometric analysis
was performed after incubation with streptavidin-APC and anti-
CD11c-PE, 7AAD,MHCII-FITC at 4◦C for 30min (eBiosciences,
USA). We analyzed 100,000 events using a BD-FACS LSR II
instrument (BD Bioscience, USA) and the data were analyzed
with FlowJo (TreeStar, USA) software.

Antigen Processing by Migratory DCs and
CD4+ T Cell Priming in vivo
Four to 6 weeks old, age, and sex-matched TCR transgenic B6.Cg-
Tg(Tcrα,Tcrβ)3Ayr/J mice were immunized i.n. with 50 µg of
protein using the fusion proteins alone or incorporated into

Frontiers in Immunology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 206022

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bernasconi et al. Nanoparticle Adjuvanted Mucosal Influenza Vaccine

NPLs. At 24 h after a single i.n administration of fusion protein
or NPLs, mice were sacrificed and the mediastinal lymph nodes
(mLN) were extracted and single cell suspensions were prepared.
To assess the level of Eα loaded MHCII molecules on isolated
migratory DCs we incubated the cells with biotin-labeled Y-Ae
anti-mouse Eα(52-68):I-Ab Mab. In the second step we used
streptavidin-APC, anti-Ly6c-BV605, anti-CD11c-BV421, anti-
MHCII (I-Ab)-FITC, anti-CD11b-APC, anti-CD103-PE, 7AAD
for 30min. at 4◦C (antibodies from eBiosciences, USA). We also
performed adoptive transfer experiments with 2 × 106 TCR
transgenic CD4+ T cells injected i.v into recipient C57BL/6
mice after isolation using a CD4+ T Cell Isolation Kit (Miltenyi
Biotec, Sweden). Prior to transfer the cells were stained with
5µM CFSE and the mice were immunized i.n. with 5 µg
of fusion protein alone or incorporated into NPLs. On days
2,4,6 and 8 after immunizations the mLNs were isolated and
single cell suspensions were prepared followed by labeling
with anti-CD3-efluor 780, anti-CD4-BV711, anti-TCR Vα2-PE,
anti-TCR Vβ6-APC, and 7AAD for 30min at 4◦C (all Mabs
from eBiosciences, USA). Proliferating CD4+TCR Vα2+ Vβ6+

cells were identified by reduced CFSE-staining. Flow cytometry
analysis was performed on 500,000 events using a BD-FACS LSR
II instrument (BD Bioscience, USA) and the FlowJo (TreeStar,
USA) software program.

Virus Transmission and Challenge
Experiments
Female BALB/c mice (index animals) in groups of 10 individuals
were either unimmunized or immunized i.n as described above
and 8 weeks later all mice were infected i.n with 3 × 104

PFU H3N2 Udorn virus (A/Udorn/307/1972 (H3N2)). After
24 h these infected mice were co-housed with unimmunized
uninfected DBA/2 mice (contact animals) and the level of virus
transmission was determined. After 4 days the snouts and lungs
of both index and contact animals were collected and viral loads
were determined by the plaque assay. Briefly, tissue samples
were homogenized in cold PBS using FastPrep R© spheres (MP
Biomedicals, Germany), and centrifuged for 10min at 9,000 rpm
at 4◦C. Sample dilutions were done with OptiMEM (Thermo
Fisher Scientific, USA) supplemented with 0.3% bovine serum
albumin (BSA) and inoculated in 12 well plates with confluent
MDCK cells and incubated for 1–2 h at room temperature. The
number of plaques in the confluent cell layer was counted in the
respective dilution to calculate the virus titer and then given as
plaque-forming units (pfu) per ml.

Influenza virus challenge experiments were performed in
groups of 10 mice at 2 weeks after the last immunization. We
used a lethal i.n dose of 4 × LD50, corresponding to 2.5 ×

103 TCID50, of PR8 A/Puerto Rico/8/34 (H1N1) virus or the
mouse adapted X47 virus (a reassortant between A/Victoria/3/75
(H3N2) and A/Puerto Rico/8/34 (H1N1)). Morbidity (body
weight) and mortality were monitored daily for 2 weeks. Mice
were sacrificed when reaching a weight loss >25–30%.

CD4+ T Cell Immune Responses
We assessed the CD4+ T cell response after immunizations by
two different analyses. The first analysis used flow cytometry and

the PE-labeled M2e-tetramer, specifically designed for the study
by the NIH Tetramer Core Facility (Bethesda, USA) to identify
the CD4+ T cells that specifically recognize and react to M2e in
the context ofMHC class II I-Ab. Briefly, 2 weeks after a challenge
infection lung tissue was treated with a Lung Dissociation Kit
(Miltenyi Biotec Norden AB, Sweden) and single cell suspensions
were prepared. Lung cells were incubated with the specific M2e-
tetramer-PE and labeled with anti-CD4-Alexa700, anti-CD19-
FITC, anti-F4/80-FITC, anti-CD8-APC/Cy7 Mabs and 7AAD
at 4◦C for 30min (all Mabs from eBiosciences, USA). We
collected 100,000 events on the BD-FACS LSR II instrument
(BD Bioscience, USA) and analyzed the data using the FlowJo
(TreeStar, USA) software. The second analysis used in vitro
M2e-peptide recall responses in single cell suspensions from
spleen and mLN from immunized and control mice. Briefly,
2 × 106 cells/ml were cultured in plain medium or together
with 1µM of M2e peptide (Pepscan, The Netherlands) in
triplicates in 96-well microtiter plates (Nunc, Denmark) in
Iscove’s medium (Biochrom KG, Germany), supplemented with
10% heat-inactivated fetal calf serum (Biochrom KG, Germany),
50µM 2-mercaptoethanol (Sigma Aldrich, Sweden), 1mM L-
glutamine (Biochrom KG, Germany) and 50µg/ml Gentamycin
(Sigma Aldrich, Sweden) for 72 h at 37◦C in 5% CO2. After 72 h
we added [3H]-thymidine (PerkinElmer, USA) to the cultures
for the last 6 h and [3H]-thymidine uptake was determined
using a scintillation counter (Beckman, Sweden). Prior to the
addition of [3H]-thymidine we collected supernatants that were
stored at −80◦C for further analysis of cytokine contents. We
assessed IFNy and IL-17 concentrations by ELISA using 96-well
plates (Dynatech Laboratories, Inc., USA) coated with 5µg/ml of
rat anti-mouse IFN-γ or IL-17 (JES5–2A5, PharMingen, USA).
After washing polyclonal rabbit anti-mouse IFN-γ or anti-IL-17
antibodies (PharMingen, Denmark) at 1µg/ml in 0.1% BSA/PBS
were added to each well and the p-nitrophenyl phosphatase
(Sigma Aldrich, Sweden) reaction was visualized using a Titertek
Multiscan spectrophotometer (Labsystems, Sweden) at 450 nm.
The concentrations of cytokines in the supernatants were
expressed in pg/ml, as calculated from plotted standard curves
of serial dilutions of recombinant cytokines.

Antibody Responses
Serum and BAL were collected from individual mice at indicated
time points. M2e- and HA-specific IgG and IgA antibody
determinations were performed by ELISA. Briefly, we used
96-well microtiter plates (MaxiSorp, Nunc, Denmark) coated
with 5µg/ml of M2e or 1µg/ml of recombinant HA (same
as described above) in 50mM sodium bicarbonate buffer pH
9,7 and incubated overnight at 4◦C. Serum or BAL were
diluted 1:25 and 1:2, respectively, in 0.1% BSA/PBS and serial
dilutions 1:3 in corresponding sub-wells were performed. Wells
were then incubated with alkaline phosphatase-conjugated rabbit
anti-mouse IgA or IgG antibodies (Southern Biotechnology,
USA) at 1:1000 dilution overnight. Nitro phenyl (NPP)
phosphatase substrate (1 mg/ml, Sigma Aldrich, Sweden) in
ethanolamine buffer, pH 9.8, was added to each well and
the reaction was read at 405 nm using a Titertek Multiscan
spectrophotometer (Labsystems, Sweden). Log10 titers were
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defined as the interpolated OD-reading giving rise to an
absorbance 0.4 above background, which consistently gave values
on the linear part of the curve.

Statistical Analysis
Analyses of significance were done in Prism (GraphPad Software)
using unpaired t-test. All reported P-values are two-sided and
values of less than 0.05 were considered to indicate statistical
significance. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.005.

RESULTS

Dendritic Cells Effectively Take Up and
Process the Combined Fusion
Protein/Nanoparticle Vector
The fusion protein CTA1-3M2e-DD (FPM2e) has previously
been demonstrated to stimulate strong protective immunity
against challenge with different influenza A virus subtype strains
when administered intranasally (i.n) (26). However, it appeared
that formulating this very effective influenza virus vaccine
candidate in a suitable nanoparticle would increase its efficiency
and stability as a vaccine vector even further (40). Therefore,
we combined the FPM2e with porous NPLs that previously have
been found effective for i.n immunizations (30, 34). Since little is
known about DC uptake and presentation of antigens delivered
with these nanoparticles, we initially focused on the DCs (41).
A panel of formulations with different ratios between loaded
protein and the NPLs was produced and their physico-chemical
properties were characterized. Of this panel, we selected NPLs
with a 1:5 protein:NPL mass ratio (FPM2e:NPL) as the optimal
construct to be used for the continued studies. The FPM2e:NPL
vector consisted of three main components: the maltodextrin
scaffold (NP+), the lipid (DPPG) and the FPM2e, which were
linked together by non-covalent interactions (Figure 1A). The
FPM2e:NPL vector had an average size of 160 nm with a zeta
potential of +45.63 ± 1.65mV, i.e., highly positively charged,
while the FPM2e itself was negatively charged (-19.47± 0.85mV)
(Figure 1B, left and middle panel). We found that most of the
FPM2e had been bound to the NPLs, as shown by the absence of
free FPM2e in the native PAGE analysis (Figure 1B, right panel).
The combination vector was stable at different temperatures for
up to 1 year with no detectable loss of FPM2e and both size and
zeta-potential were kept intact (Supplementary Figures 1, 2).

To analyze antigen uptake and processing, we established an
in vitro screening system based onNPLs carrying a fusion protein
with incorporated Eα-peptide, i.e., CTA1-3Eα-DD, termed FPEα.
The Eα peptide can be detected when bound to MHC class II
surface molecules on DCs by using a labeled Y-Ae antibody
that detects the complex (42). Therefore, the FPEα:NPL vectors
were used to follow uptake and presentation of the Eα-peptide
on the surface of DCs. This way, we could monitor the whole
process from uptake to peptide presentation kinetically and,
hence, determine what the T cell receptor would recognize on
the DC surface. The initial experiments were undertaken using
an immature DC cell line, D1 cells (of C57BL/6 origin), to assess
the ability to present peptides to CD4+ T cells (39). The mean

fluorescence intensity (MFI) of the bound Y-Ae antibody was
assessed by FACS at different time points and from 1 h onwards
we consistently observed a 2–3-fold higher MFI and also MHC
class II-expression on DCs exposed to the combined vector as
opposed to when the FPEα was used alone (Figure 1C, left and
middle panels). Noteworthy, the CTA1-3Eα-DD given alone had
a 2-fold enhancing effect on MHC class II-expression, attesting
to its immunomodulating ability (Figure 1C, right panel). Thus,
the combined FPEα:NPL vector was superior to soluble CTA1-
3Eα-DD alone for MHC class II peptide presentation by DCs in
vitro.

The next experiment evaluated the priming ability of DCs
stimulated by FPEα:NPLs for Eα peptide-specific recognition by
TCR transgenic CD4+ T cells (I-Ab) in vivo. We used the B6.Cg-
Tg(TCRα,TCRβ)3Ayr/J mice, which host TCR transgenic CD4+

T cells that recognize the Eα peptide bound to MHC class II.
First, we determined whether the combined formulation was
taken up by DCs in vivo. Following i.n. administration of 50
µg of the vector or soluble FPEα, we isolated the mediastinal
lymph node (mLN) 24 h later and assessed the presence of
DCs labeled with Y-Ae antibody (Figure 1D, left panel). We
observed strong labeling with antibody in 20% of the migratory
DCs (MHC IIhigh, CD11c+) while resident DCs (MHC IIlow,
CD11c+) did not carry the Eα-peptide and, thus, had not taken
up the vaccine vector that was given i.n (Figure 1D, middle
panel). Migratory DCs were found to carry the Eα peptide also
when the FPEα was given i.n alone and the surface expression
of the peptide/MHC II-complex was similar to that found in
mice receiving the combined FPEα:NPL vector (Figure 1D,
right panel). In an adoptive transfer experiment where B6.Cg-
Tg(TCRα,TCRβ)3Ayr/J CD4+ T cells were injected into wild
type C57BL/6 mice, we followed the expansion of TCR Tg CFSE-
labeled CD4+ T cells on days 2, 4, 6, 8, 10, and 12 after the i.n
immunization. We found that peptide-specific CD4+ T cells in
the mLN, were strongly proliferating in FPEα immunized mice at
the early time points, while mice given the combined FPEα:NPL
vector showed similar proliferation on day 8, which was sustained
until at least day 12 after immunization, when proliferation to
FPEα only was minimal (Figure 1E, upper panel). Hence, peak
CD4+ T cell proliferation to FPEα (80%) was observed on day
8 while FPEα:NPL (80%) immunized mice peaked on day 12
(Figure 1E, lower panel). Thus, the FPEα:NPL vector stimulated
slower but prolonged CD4+ T cell activation in the drainingmLN
after i.n immunizations compared to that stimulated by FPEa
alone.

Enhanced Immunogenicity and Protective
Function of the Combined Fusion
Protein/Nanoparticle Vector
Given that the combined vector effectively primed peptide-
specific CD4+ T cells in vivo, we addressed whether the
FPM2e:NPL vector was also effective at stimulating protective
immunity against infection. We produced FPM2e:NPL vectors
with CTA1-3M2e-DD and determined their immunogenicity
in BALB/c mice. Following i.n immunizations with 5 or 1 µg
of FPM2e or FPM2e:NPL, we assessed the protective efficacy
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FIGURE 1 | Efficient uptake and presentation of the combined NPL vaccine vector by DCs. (A) Schematic representation of the design of the FPM2e:NPL vaccine

vector. (B) FPM2e:NPLs were characterized with regard to particle size (left panel), zeta potential (middle panel) and native-PAGE electrophoresis analysis (right panel).

(C) The uptake, processing and surface presentation of Eα peptide and MHC class II complexes by D1 dendritic cells (DC) at different time points after stimulation with

0. 2µM of FPEa or FPEa:NPL. Surface expression of peptide/MHC II complexes were analyzed by flow cytometry using the mean fluorescent intensity (MFI) of labeled

Y-Ae Mab plotted as means ± SD of 3 experiments (left panel). Representative histograms of Y-Ae MFI after 30min and 24 h stimulation are shown (middle panel). MFI

values of anti-MHC II Mab labeling of the D1 cell surface after stimulation with FPEa or FPEa:NPL are given as means ± SD of 3 experiments (right panel). (D) Gating

strategy used for migratory and resident DCs in the mediastinal lymph node (mLN) (left panel). Representative FACS histograms of Y-Ae MFI in migratory (MHC IIhigh,

CD11c+) and resident (MHC IIlow, CD11c+) DCs 24 h after a single i.n immunization (middle panel). The percentage of Y-Ae+ cells in migratory and resident DC

populations was calculated in 3 independent experiments and given as means ± SD (right panel). (E) Gating strategy used to identify proliferation in Eα-specific

CFSE-labeled TCR Tg CD4+ T cells following i.n immunization (left panel). Representative FACS histograms of proliferating TCRVα2+TCRVβ6+CFSE+ T cells in the

mLN at 4, 6, 8, and 12 days after a single i.n immunization with 5 µg of FPEα or FPEα:NPL in C57Bl/6 mice adoptively transferred on day 0 with 2 × 106

TCRVα2+TCRVβ6+CFSE+ CD4+ T cells (right panel). The percentage of proliferating TCRVα2+TCRVβ6+CFSE+ CD4+ T cells was calculated and given as means

± SD (lower panel). These data are from at least 3 independent experiments giving similar results. Statistical significance was calculated by unpaired t-test and

p-values are given as *p < 0.05 and **p < 0.01.
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against a challenge with 4xLD50 of the X47 virus strain, a mouse
adapted reassortant A/Victoria/3/75 (H3N2) virus strain (43, 44).
Infected mice were monitored for weight loss and survival for
15 days post-infection. We found that mice immunized with the
5 µg/dose of FPM2e:NPL exhibited 100% protection, whereas
mice immunized with FPM2e alone were less well protected
(80%) (Figure 2A). Protection was clearly reduced (50%) in
mice immunized with 1 µg FPM2e or FPM2e:NPL (Figure 2B).
Furthermore, immunogenicity was assessed by M2e-peptide-
recall responses of splenic CD4+ T cells isolated from immunized
mice. Whereas a low dose of FPM2e:NPL (1µg/dose) was more
effective than a comparable dose of FPM2e alone, both the
5 µg and 1 µg doses of FPM2e:NPL gave similar CD4+ T
cell priming (Figure 2C). Importantly, the augmenting effect
of the FPM2e:NPL formulation was dependent on the ADP-
ribosylating ability of CTA1-3M2e-DD, because the combined
vector with the enzymatically inactive CTA1(R9K)-3M2e-DD
preparation was significantly less immunogenic (Figure 2C). The
protective effect of FPM2e:NPL was associated with a strong
CD4+ T cell priming effect for IFN-γ and IL-17 production,
as assessed in culture supernatants ex vivo (Figures 2D,E,
respectively). Finally, the presence of resident memory M2e-
tetramer-specific CD4+ T cells in the lung was similarly high
in mice immunized with the combined FPM2e:NPL vector
or FPM2e alone (Figures 2F, G). In addition, strong and
comparable M2e-specific antibody responses in serum were
found in both FPM2e alone and the combined FPM2e:NPL
vector immunized mice (Figure 2H). However, by contrast,
anti-M2e IgA titers in bronchoalveolar lavage (BAL) were
highest in FPM2e:NPL immunized mice, also with 1mcg doses,
clearly identifying a benefit of the NPL formulation (Figure 2I)
(45, 46).

Protection Against Virus Transmission Is
Effectively Achieved With the Combined
Fusion Protein/Nanoparticle Vector
An effective vaccine against influenza infection should
preferentially also stop virus transmission between individuals.
To this end, we tested the ability of the combined FPM2e:NPL
vector to impair virus transmission between animals. We used a
recently established mouse transmission model (47) with highly
susceptible DBA/2 mice (48) as contact animals. Following
a challenge infection with Udorn virus (H3N2) immunized
and unimmunized Balb/c mice (index mice) were co-housed
with the DBA/2 contact mice for 4 days (Figure 3A). Virus
transmission was assessed by monitoring the influenza virus
titres in the snouts and lungs of both Balb/c index and DBA/2
contact mice. We found lower virus titres in the snouts of
the contact mice co-housed with index mice immunized with
FPM2e:NPL (Figure 3B). However, protection against infection
in the index mice was comparable between FPM2e alone and
FPM2e:NPL (Figure 3B). Of note, unimmunized (PBS) mice or
index mice immunized with CTA1-DD without the M2e-peptide
failed to influence transmission of virus to the contact mice.
The results from the analysis of the virus titers in the lungs
of index or contact mice were less compelling, but also in

the lung we found the least transmission from FPM2e:NPL
immunized mice (Figure 3C). Anti-M2e serum antibody titers
were comparable between index mice immunized with FPM2e
or FPM2e:NPL (Figure 3D). Taken together the combined
FPM2e:NPL vector gave the strongest protection against virus
transmission, although the Balb/c index mice immunized with
FPM2e:NPL or FPM2e alone exhibited comparable virus titers,
suggesting that virus from FPM2e:NPL immunized mice was less
infective, maybe due to local anti-M2e IgA antibodies (49).

Co-incorporated Recombinant HA
Improves the Protective Capacity of the
Combined Fusion Protein/Nanoparticle
Vector
The combined FPM2e:NLP vector was found to be highly
immunogenic and induced strong protection against virus
transmission. However, we asked whether we could improve
the protective ability of the combined vector even further by
incorporating recombinant hemagglutinin (HA) from Influenza
A Virus H1N1 (A/Puerto Rico/8/34) into the vector (Figure 4A).
We formulated NPLs with equal amounts of CTA1-M2e-DD
and HA. The HA:FPM2e:NPL vector had a size of 130 nm
and a zeta potential of +27mV (Figure 4B, left and middle
panels). Noteworthy, the soluble HA protein had a particle size of
around 50 nm and was negatively charged (−10mV) (Figure 4B,
left and middle panels). We found that most of the HA was
incorporated into the FPM2e:NPLs (Figure 4B, right panel).
Mice immunized i.n with the combined HA:FPM2e:NPL vector
were fully protected against a challenge infection with the highly
virulent PR8 virus (A/Puerto Rico/8/34 (H1N1), whereas none
of the HA:NPL, FPM2e:NPL, or FPM2e alone immunized mice
were protected (Figure 4C). Interestingly, i.n. administration of
the NPL formulated CTA1-3M2e-DD (FPM2e:NPL) together
with HA:NPLs still resulted in 100% protection against PR8
challenge, showing that the adjuvant CTA1 component was
effective even if not physically linked to the HA:NPL (Figure 4C).
By contrast, a challenge infection with the H3N2 X47 virus
strain resulted in partial protection in mice immunized i.n with
HA:NPL, and only to achieve 100% protection the adjuvant active
FPM2e was needed (Figure 4D). As seen previously, FPM2e:NPL
and FPM2e alone gave excellent protection against X47 virus
infection (Figures 2A,B, 4D). Noteworthy, the frequency and
absolute numbers of lung resident M2e-tetramer+ CD4+ T
cells were lower in mice immunized with HA:M2e:NPL than
in FPM2e:NPL or FPM2e alone immunized mice (Figure 4E).
Again, we observed that the FPM2e:NPLs with an enzymatically
inactive fusion protein (CTA1(R9K)-3M2e-DD) were poorly
immunogenic, indicating that the performance of the NPL vector
was critically dependent on the ADP-ribosylating ability of the
FPM2e (Figure 4F). In fact, it was clear that the immunogenicity
of the incorporated HA greatly benefitted from the adjuvant
enhancing effects of the HA:FPM2e:NPL vector as anti-HA
serum IgG titers were almost 10-fold higher than in HA:NLPs
without the FPM2e (Figure 4G). Interestingly, though, this effect
was seen only when the FPM2e was in the same particle as
the HA and not when the FPM2e was co-administered in
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FIGURE 2 | Enhanced immunogenicity of the combined NPL vaccine vector. (A,B) Survival and weight loss were monitored in influenza virus challenged Balb/c mice

following three i.n immunizations with 5 µg (A) or 1 µg (B) of FPM2e or FPM2e:NPL. The percent of surviving mice (left panel) and body weight loss (right panel)

following a challenge infection with 4 × LD50 of the mouse adapted X47 virus strain are plotted. (C) Recall responses to M2e-peptide in primed CD4+ T cells

following i.n immunizations with 5 or 1 µg of enzymatically active or inactive mutant FPM2e or FPM2e:NPL or empty NPL w/o FPM2e, as indicated. Mean proliferation

in isolated splenocytes to M2e peptide is given as mean c.p.m ± S.E.M. (D,E) The production of IFN-γ (D) or IL-17A (E) to recall stimulation with M2e-peptide of the

primed CD4+ T cells (as in C) is given in pg/ml ± SD. (F,G) Representative FACS plots of M2e-tetramer+ CD4+ T cells in the lungs of i.n immunized and challenged

mice as indicated (F). The percentage (left panel) and absolute number (right panel) of antigen primed M2e+ tetramer CD4+ T cells (G). (H,I) M2e specific IgG

antibodies in serum (H) or IgA antibodies in BAL (I) were measured by ELISA in Balb/c mice immunized i.n. with FPM2e, FPM2e:NPL or PBS (naïve), as indicated, and

given as mean log10-titers ± SD of 3 independent experiments giving similar results. Statistical significance was calculated by unpaired t-test and p-values are given

as *p < 0.05 and **p < 0.01.

a separate NPL (Figure 4G). The M2e-specific IgG responses
in serum and IgA-responses in BAL were reduced in HA-
containing NPLs as compared to FPM2e:NPLs without the
HA (Figure 4H). Thus, the FPM2e:NPL vector can be further
improved by incorporating additional proteins into the vector
and the HA:FPM2e:NPLs vaccine vector was found to exhibit

superior protective capacity against a virulent PR8 influenza
virus infection, where neither NPLs with HA nor CTA1-3M2e-
DD gave any protection. Importantly, the immunogenicity and
protective capacity of the combined HA:FPM2e:NPL vector was
critically dependent on the enzymatic activity of CTA1 in the
FPM2e.
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FIGURE 3 | Reduction of viral transmission following intranasal immunizations with the combined NPL vaccine vector. (A) A schematic representation of the

experimental protocol used for virus transmission experiments. BALB/c mice (index mice) were immunized three times with 10 days apart with split Udorn virus, 5 µg

per dose of FPM2e alone, FPM2e:NPL, or FP:NPL w/o M2e. Index mice were infected 2–4 weeks after the final immunization with A/Udorn/307/1972 (H3N2) and

co-housed with DBA/2 mice (contact mice). (B,C) The viral titers in snouts (B) or lungs (C) of index (left panel) and contact (middle panel) mice and the mean

percentages of contact mice protected from virus transmissions (right panel) are shown. (D) M2e-specific IgG antibodies in serum were measured by ELISA in index

mice and the results are given as mean log10 titers ± SD. These are representative results from 3 experiments giving similar results and the statistical significance was

calculated using unpaired t-test and p-values are *p < 0.05 and **p < 0.01.

DISCUSSION

The present proof-of-principle study demonstrates that an

effective broadly protective anti-influenza mucosal vaccine
vector can be developed when HA and the enzyme-active

CTA1-3M2e-DD adjuvant are incorporated into NPLs. We
found that the novel combined HA:FPM2e:NPL vector
stimulated strong protective immune responses against
homologous and heterologous infections with significantly
better survival compared to mice immunized i.n with HA:NPL,
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FIGURE 4 | Enhanced immunogenicity and protection by co-incorporation of recombinant HA and FPM2e in the combined NPL vaccine vector. (A) A schematic

representation of the HA:FPM2e:NPL vaccine vector. (B) The combined HA:FPM2e:NPL vector was characterized with regard to particle size (left panel), zeta

potential (middle panel) and native-PAGE electrophoresis analysis (right panel). (C,D) Survival and weight loss was monitored in influenza virus challenged Balb/c mice

following three i.n immunizations with 5 µg of vaccine formulations as indicated. The percent of surviving mice (left panel) and body weight loss (right panel) following a

challenge infection with 4×LD50 of the mouse adapted X47 (C) or PR8 (D) virus strains. (E) Representative FACS plots of M2e-tetramer+ CD4+ T cells in the lungs of

i.n immunized and challenged mice are shown. The percentage and absolute numbers (right panels) of antigen primed M2e+ tetramer CD4+ T cells in the lung. (F)

Recall responses of primed M2e-specific CD4+ T cells in the spleens of immunized mice are given as mean cpm± SD of 3 independent experiments. (G,H) HA- (G)

or M2e-specific (H) IgG antibodies in serum (left panel) and IgA antibodies in BAL (right panel) were determined by ELISA in immunized mice as indicated and the

mean log10-titers± SD are given. These are representative results from three experiments giving similar results and the statistical significance was calculated using

unpaired t-test and p-values are *p < 0.05, **p < 0.01 and ***p < 0.005.
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FPM2e:NPL, or FPM2e alone. The vector hosted some critical
features brought together in a single physical unit, namely the
powerful CTA1 adjuvant, the M2e and recombinant HA for
broad cross-protection and the particle formulation, facilitating
mucosal delivery, stability, and uptake by DCs. These elements
combined contributed to the strong protective immune response
following i.n immunizations that we observed. Whereas many
previous studies have reported on promising mucosal vaccine
candidates against influenza, this is the first to describe the
combination of an enzyme-active adjuvant system incorporated
into nanoparticles (50–52). The NPL incorporation technique
used did not damage the ADP-ribosylating ability of the
CTA1-enzyme.

Several of the mucosal vaccine candidates against influenza
that have been, or are being, tested have explored various
other forms of nanoparticle formulations (53–58). Among the
more successful ones are chitosan nanoparticles, that have been
developed for immunizations of pigs, and which were reported to
stimulate mucosal IgA as well as effector CD4+ T cell immunity
(49, 59). Contrary to our combined vector, these nanoparticles
carried multiple killed swine H1N1 antigens while we explored
only the M2e-peptide and recombinant HA. However, this and
several other studies support the concept of multiple influenza
antigens encapsulated into nanoparticles as a promising way
forward for a broadly protective influenza vaccine (60, 61). In
this context, it is noteworthy that nanoparticles with killed whole-
inactivated virus antigens have consistently been found to be
poor inducers of T cell mediated responses and, hence, have
provided only weak protection against heterologous influenza
strains (62). Our study demonstrates that strong CD4+ T cell
responses can be achieved with the present combined NPL. An
explanation for the weak protection could be that injectable
vaccines give poor lung resident T cell immunity, which is
thought to be critical for a broadly protective influenza vaccine
(4).

The porous NPL technology has been successfully used for
several i.n vaccine formulations in the past, including a vaccine
candidate against toxoplasma infection (31). It has repeatedly
been found that the use of particulate antigens can be more
effective than soluble proteins at stimulating strong immune
responses and affording long-term protection (34, 35, 63–66).
However, previous work with porous NPLs has not explored
adding an independent adjuvant active vaccine component, such
as the CTA1-3M2e-DD molecule. Here, we report that this
greatly augmented the immunogenicity of the NPL vector. We
observed that HA:FPM2e:NPLs achieved a 10-fold stronger anti-
HA IgG serum titer when the HA was co-incorporated into
NPLs with CTA1-3M2e-DD. This enhancing effect is what we
regularly have observed with the CTA1-DD adjuvant in other
systems (23, 24, 28). The augmenting effect required an active
ADP-ribosylating enzyme, because the inactive CTA1(R9K)-
3M2e-DD mutant failed to augment immunogenicity, which
agrees well with results from our previous studies (67). The
latter finding also identified that nanoparticles can achieve much
improved immunogenicity if complemented with adjuvant active
molecules, such as chitosan, flagellin or CTA1-DD (68–70).
Interestingly, this augmenting effect on anti-HA IgG serum
antibodies was not seen when the FPM2e and HA were provided

in separate NPLs, suggesting that this effect required physical
contact between HA and the FPM2e. While excellent protection
was achieved also in vaccine regimens with NPLs where HA
and FPM2e formulations where separated and both protocols
induced comparable M2e-immunity, we can speculate that anti-
HA-specific cell-mediated immunity was responsible for the
improved protection against influenza virus challenge infection.
We did not determine HA-specific T cell immunity in the present
study, but the result is in agreement with a direct effect of
the CTA1-3M2e-DD on the follicular dendritic cells (FDC) in
the germinal center, which could only work if expanding HA-
specific B cells were recruited to CTA1-3M2e-DD exposed FDCs
(71, 72). We have recently found that this effect of the CTA1-DD
adjuvant on FDCs is mediated through an up-regulation of gene
transcription and, in particular, the CXCL13 gene, which encodes
the main chemokine to attract activated B cells to the GC (73).
However, the adjuvant effect on CD4+ T cell priming is likely to
be through enhancing DC functions, which is effectively achieved
with the FPM2e and would not necessarily require that HA and
FPM2e are physically co-formulated in the sameNPL. Additional
studies are required to dissect the detailed mechanisms behind
the strong adjuvanticity that we observed with the combinedNPL
vaccine vector.

A special focus was given to DCs for the binding and
uptake of the combined NPL vector. We observed in vitro
that Eα-peptide in the FPEα incorporated in NPLs was more
efficiently taken up and/or processed and presented by DCs than
when provided as soluble FPEα. The FPEα:NPL formulation
gave up-regulated MHC class II expression and Eα-peptide
presentation on the surface of the DCs. In vivo, we identified
that migratory DCs were the cell subset responsible for Eα

peptide priming of the specific CD4+ T cells in the draining
mLN. With a relatively larger dose (50 µg) of FPEα:NPL
than used for i.n immunizations (5 µg) we could detect Eα-
presenting DC in the draining mLN. Hence, this result provides
strong evidence that migratory DCs are the prime effectors
of the augmented FPEα:NPL response. However, while the
effect in vitro indicated a dramatic improvement of peptide
expression in exposed DCs, the in vivo expression in migratory
DC was comparable between FPEα alone and FPEα:NPL. The
protective ability was similar between FPM2e and M2e:NPL,
which was supported by comparable levels of resident M2e-
specific CD4+ T cells in the lung and IgG-specific M2e-
antibodies in serum. To reconcile these observations, it may
be postulated that NPL formulations are retained in the nasal
mucosa longer than the FPM2e alone and that this leads to a
slower and more prolonged priming of specific CD4+ T cells in
the mLN when FPEa:NPLs are given. Also earlier studies have
observed a depot-effect and retention of CD4+ T cell priming in
draining lymph nodes when NPL formulations were used (74).
Therefore, it may be possible to improve the performance of the
FPM2e:NPL vector further by altering the chemical composition
of the NPL or by adding chitosan or some known component
with an effect on the penetration of the mucosal barrier
(72, 75–77).

In vivo, we found that a higher M2e-specific CD4+ T cell
priming effect was achieved with the lower FPM2e:NPL dose
as compared to an equivalent FPM2e dose. This was evident
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from recall responses to M2e-peptide in isolated splenocytes
from immunized mice. Strong support for the requirement of
an active ADP-ribosylating activity of the CTA1 enzyme was
also found in these experiments. The enhanced response showed
augmented levels of IFN-γ and IL-17 production from the
M2e-specific CD4+ T cells, which are the cardinal features of
strong heterosubtypic protection in themousemodel of influenza
infection (78–82).We could identify the presence of lung resident
M2e tetramer-specific CD4+ T cells in these well protected mice,
which confirms the pattern that we previously identified with
the FPM2e and places emphasis on the very important role of
these tissue resident M2e-specific CD4T cells for heterosubtypic
protection (26). Also, M2e-specific IgA antibody titers in BAL
were higher in mice immunized with the FPM2e:NPL. However,
because both FPM2e alone and FPM2e:NPL induced protection
against virus transmission in immunized mice, albeit slightly
better in FPM2e:NPL mice, the protective role of IgA anti-
M2e antibodies is not clear. Other studies, such as that from
Hervé et al, have suggested that an enhanced anti-M2e IgA
antibody response after i.n immunizations could be protective
(49). Noteworthy, though, is the fact that IgA antibodies are
likely not mediating ADCC reactions and, hence, the role of
local respiratory tract anti-M2e IgA for protection is at present
poorly defined. Nonetheless, mucosal IgA anti-HA following
i.n immunizations with in HA:FPM2e:NPL may well play a
protective role, as suggested in several other studies (52, 83,
84). In addition, our recent study with M2e-specific lung
resident memory CD4+ T cells has clearly pointed to a critical
protective function of these cells, which are only generated after
i.n immunizations (26). Hence, the co-existence of local IgA
and influenza-specific resident memory CD4+ T cells makes
it difficult to identify the relative contribution each of these
elements for protection, but ongoing studies in our laboratory is
attempting to better dissect this question (85, 86).

In the present study we have convincingly shown that co-
incorporation of adjuvant active molecules and influenza specific
target antigens into porous NPLs is more broadly effective
against influenza virus infections than either component used
alone. Hence, we would like to continue developing the NPL
vector with additional components known to exert broad
protection against influenza. In particular, we will test the
addition of the nucleoprotein (NP), which can elicit strong
cytotoxic CD8+ T cells (4). In addition, instead of whole
recombinant HA, we propose to include a stabilized HA
stem region, as recently reported using ferritin nanoparticles,
which stimulated protection against a heterosubtypic challenge
infection in both mice and ferrets (5, 66). In addition, we noticed
that the presence of recombinant HA in the NPL formulation
significantly reduced the anti-M2e antibody and CD4+ T cell
responses, suggesting that we need to increase the FPM2e
component in future combined NPL vectors. This way we may
also achieve improved adjuvanticity for HA-immune responses.
Future studies will reveal if the favorable effects observed with
the combined HA:FPM2e:NPL i.n vaccine vector for broad
protection against influenza can be translated into a human
vaccine.
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Supplementary Figure 1 | FPM2e:NPL vaccine vectors are stable up to 12
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40◦C (middle panel) or after 12 months at 4◦C (right panel). These are

representative experiments out of 3 with similar results.

Supplementary Figure 2 | Size and charge of FPM2e:NPL is stable after 3

months storage. (A) Characterization of the size stability of FPM2e:NPLs after 3

months of storage at 4◦C (left panel) or 40◦C (right panel). (B) Characterization of

the charge stability of FPM2e:NPL after 3 months of storage at 4◦C (left panel) or

40◦C (right panel). These are representative experiments out of 3 with similar

results.
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Streptococcus pneumoniae is endowed with a variety of surface-exposed proteins

representing putative vaccine candidates. Lipoproteins are covalently anchored to

the cell membrane and highly conserved among pneumococcal serotypes. Here, we

evaluated these lipoproteins for their immunogenicity and protective potential against

pneumococcal colonisation. A multiplex-based immunoproteomics approach revealed

the immunogenicity of selected lipoproteins. High antibody titres were measured in sera

from mice immunised with the lipoproteins MetQ, PnrA, PsaA, and DacB. An analysis of

convalescent patient sera confirmed the immunogenicity of these lipoproteins. Examining

the surface localisation and accessibility of the lipoproteins using flow cytometry indicated

that PnrA and DacB were highly abundant on the surface of the bacteria. Mice were

immunised intranasally with PnrA, DacB, and MetQ using cholera toxin subunit B (CTB)

as an adjuvant, followed by an intranasal challenge with S. pneumoniae D39. PnrA

protected the mice from pneumococcal colonisation. For the immunisation with DacB

and MetQ, a trend in reducing the bacterial load could be observed, although this effect

was not statistically significant. The reduction in bacterial colonisation was correlated

with the increased production of antigen-specific IL-17A in the nasal cavity. Immunisation

induced high systemic IgG levels with a predominance for the IgG1 isotype, except for

DacB, where IgG levels were substantially lower compared toMetQ and PnrA. Our results

indicate that lipoproteins are interesting targets for future vaccine strategies as they are

highly conserved, abundant, and immunogenic.

Keywords: Streptococcus pneumoniae, lipoprotein, immunogenicity, colonization, protection

INTRODUCTION

Streptococcus pneumoniae continues to be amajor cause of life-threatening invasive diseases such as
pneumonia, sepsis and meningitis, especially in young children, the elderly and immunodeficient
people (1). Two different types of vaccines are currently recommended by the World Health
Organization (WHO) for the prevention of pneumococcal infections: the 23-valent polysaccharide
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vaccine (PPV23) and the pneumococcal conjugate vaccines
PCV7, PCV10, and PCV13 (2). Despite their proven efficacy
(3, 4), these vaccines have some important limitations, including
restricted serotype coverage, which may facilitate replacement by
non-vaccine serotypes, and high manufacturing costs (5–7). It is
therefore vital to develop a new generation of vaccines, which can
provide serotype-independent protection against pneumococcal
infections, while being affordable for developing countries.

The pneumococcal cell-surface is decorated with a variety of
proteins, which are exposed to the extracellular milieu of the
host and are therefore the most promising targets for future
protein-based vaccines. Consequently, pneumococcal surface
proteins have been extensively studied over the last two decades,
with the majority being characterised as virulence factors.
Promising vaccine candidates, including PspA (Pneumococcal
surface protein), PhtD (Pneumococcal histidine triad), PcpA
(Pneumococcal choline-binding protein), PcsB (Pneumococcal
cell wall separation protein), and StkP (serine/threonine protein
kinase), have already been shown to be safe and immunogenic in
clinical trials (8).

In this study, we particularly focussed on the lipoproteins,
which are embedded in the pneumococcal cell membrane via
a covalently anchored lipid moiety. Lipoproteins are highly
conserved, and many of them influence pneumococcal fitness
and virulence (9–14). Some studies have indicated the protective
potential of lipoproteins against pneumococcal infections,
with the well-characterised lipoprotein pneumococcal surface
antigen A (PsaA), a manganese substrate-binding protein, being
particularly in the research spotlight. PsaA is expressed by all
serotypes of S. pneumoniae and is known to bind to human
E-cadherin, thereby acting as an adhesin (15–19). Moreover,
PsaA is highly immunogenic, as shown by the increased
antibody responses that have been described as a result of
pneumococcal exposure in children (20–22). Using intranasal
challengemodels inmice, PsaA has been shown to protect against
pneumococcal carriage, demonstrated by reduced bacterial loads
in the nasopharynx (23). A multivalent recombinant subunit
protein vaccine containing PsaA, StkP, and PcsB was tested in
a phase I trial (IC47, Intercell AG, Austria, NCT00873431) and
shown to be safe and immunogenic (24, 25), resulting in the
induction of protective antibodies against all three proteins.
Besides PsaA, two other lipoproteins, SP_0148 and SP_2108, have
emerged as promising vaccine candidates. Following intranasal
immunisation, these proteins, which function as substrate-
binding proteins for ABC transporters, showed protective
efficacy in a mouse model of colonisation, which correlated with
the observed elevation in IL-17A levels and depended on Toll-
like receptor 2 signalling (26). Recently, Genocea Biosciences
tested the GEN-004 vaccine (SP_0148, SP_2108 and SP_1912)
using a human challenge model. Although the differences
were not statistically significant, there was a trend in reducing
carriage acquisition by 18–36% vs. the placebo (27), supporting
the further development of GEN-004 and indicating the high
potential of lipoproteins as components of a protein-based
vaccine.

We therefore focused in our study on pneumococcal
lipoproteins, aiming to identify new and promising candidates

for a protein-based and serotype-independent vaccine. We
analysed the immunogenicity of our candidates in mouse
immunisation studies and by screening convalescent patient
sera, while also assessing their abundance on the surface of
pneumococci. It is essential that the antibodies raised by
immunisation can recognise and bind to accessible surface
proteins. Three lipoproteins were identified as the most
promising candidates based on their high levels of conservation,
their immunogenicity and their abundance on the pneumococcal
cell-surface: the L,D-carboxypeptidase DacB (9), the methionine-
binding protein MetQ (12), and the nucleoside-binding protein
PnrA (11). DacB is a cell wall hydrolase and therefore essential for
pneumococcal peptidoglycan turnover and the preservation of
cell shape (9). MetQ and PnrA are substrate-binding lipoprotein
components of the ABC transporters responsible for methionine
or nucleoside uptake, respectively, from the extracellular space
(11, 12). Pneumococcal mutants lacking these lipoproteins were
previously shown to have significantly attenuated virulence in
either systemic or pulmonary mouse infection models, although
there is contradictory information regarding the role of MetQ in
causing systemic infection in mice (9, 11, 12, 28, 29).

In our study, intranasal vaccination with these lipoproteins
resulted in a reduced bacterial load in the nasal cavity, which
correlated with increased nasal IL-17A levels. Humoral immune
responses were characterised by high serum levels of IgG1
and substantial IgG2 levels, with the exception of the DacB
vaccination. Our findings demonstrate the high potential of
DacB and PnrA in particular for use in a future protein-based
pneumococcal vaccine.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted in accordance with
the guidelines of the ethics committee at the University
of Greifswald, the German regulations of the Society for
Laboratory Animal Science (GV-SOLAS) and the European
Health Law of the Federation of Laboratory Animal Science
Associations (FELASA). All experiments were approved by
the Landesamt für Landwirtschaft, Lebensmittelsicherheit und
Fischerei Mecklenburg-Vorpommern (LALLF M-V, Rostock,
Germany) and the LALLF M-V ethical board (LALLF M-V
permit no. 7221.3-1-061/17). All efforts were made to minimise
the discomfort of the animals and ensure the highest ethical
standards.

Bacterial Strains, Culture Conditions, and
Pneumococcal Mutant Construction
Streptococcus pneumoniae wild-type and isogenic deletion
mutants (Table 1) were grown on Columbia blood agar
plates (Oxoid) supplemented with the appropriate antibiotics
(50µg/ml kanamycin, 5µg/ml erythromycin or 10µg/ml
trimethoprim) and cultivated to mid-log phase (A600 = 0.35–
0.40) in THY containing 36.4% Todd-Hewitt broth (Roth)
and 0.5% yeast extract (Roth) at 37◦C and in 5% CO2.
Escherichia coli strains were cultured on solid Luria-Bertani
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(LB) medium plates or in liquid LB medium (Roth) to mid-
log phase (A600 = 0.8) on an environmental shaker in the
presence of kanamycin (50µg/ml), ampicillin (100µg/ml),
and/or erythromycin (250µg/ml) at 30◦C. To generate the
1metQ (sp_0149), 1sp_0191, 1pnrA (sp_0845), 1sp_0899, and
1adcAII (sp_1002) mutants, the loci of the respective genes
and their upstream and downstream flanking sequences were
amplified from S. pneumoniae TIGR4 genomic DNA using
PCR and the primer pairs listed in Table 2. Following the
manufacturer’s instructions, the PCR products were directly
cloned into pGEM R©-T Easy vectors (Promega, Madison, WI,
USA) and transformed into E. coli DH5α competent cells.
The recombinant plasmids p559, p560, p576, p573, and p572
harbouring the desired DNA inserts were purified and used as
templates for inverse PCR reactions with the primer pairs listed
in Table 2. The deleted sequences were replaced with the ermB
resistance gene, which was amplified from plasmid pE89 using
PCR with the primer pair ermB_105/ermB_106 (Table 2). These
recombinant plasmids were used to transform pneumococci, as
described previously (35). The non-encapsulated pneumococcal
mutants D391psaA, D391pspA, D391ppmA, and D391slrA
were generated by transformation with the recombinant plasmid
p873, in which the capsule gene locus is replaced by the aphA3
resistance gene.

Heterologous Expression, Purification of
Recombinant Proteins, and Production of
Polyclonal Antisera
The N-terminally His6-tagged proteins used in this study were
either described previously (Table 2) or were generated by
cloning the PCR products of the target genes metQ, sp_0191,
pnrA, sp_0899, and adcAII, without their signal sequences,
into the pTP1 expression vector (10). PCR reactions were
performed using S. pneumoniae TIGR4 chromosomal DNA
as a template and the primer pairs listed in Table 2. The
primers contained restriction sites (NheI/SacI, NheI/HindIII, or
NdeI/HindIII), which were used to ligate the fragments into
similarly digested expression vectors. The resulting plasmids
(Table 1) were transformed into competent E. coli BL21 (DE3).
For protein production, the recombinant E. coli BL21 (DE3)
were cultured in LB, supplemented with kanamycin (50µg/ml)
or ampicillin (100µg/ml), to an A600 of 0.6–0.8 at 30

◦C. Protein
expression was induced with 1mM IPTG (isopropyl-β-D-1-
thiogalactopyranoside; Hartenstein, Wuerzburg, Germany) and
the cells were cultured for another 3 h. The resulting His6-tagged
proteins were purified using affinity chromatography in a His
TrapTM HP Ni-NTA column (1ml; GE Healthcare, Chicago, IL,
USA) on the ÄKTA Purifier liquid chromatography system (GE
Healthcare), following the manufacturer’s instructions. Purified
proteins were dialysed (12–14 kDa molecular weight cut off)
against phosphate-buffered saline (PBS; pH 7.4). The absorbance
of the proteins was determined at A280 using a NanoDrop

R© ND-
1000 (Thermo Fisher Scientific, Waltham, MA, USA) to calculate
the protein concentrations while considering the extinction
coefficients and molecular weights. After sodium dodecyl
sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the

purity of the proteins was analysed using silver staining and
immunoblotting (Figure 1) with an anti-Penta-His-tag mouse
antibody (Qiagen, Hilden, Germany). The recombinant proteins
were used in intraperitoneal immunisations using ImjectTM Alum
as an adjuvant (Thermo Fisher Scientific). Six- to eight-week-
old female CD-1 mice (Charles River Laboratories, Sulzfeld,
Germany) were vaccinated by intraperitoneal injection with
100 µl of a 1:1 emulsion containing 20 µg recombinant protein
and the adjuvant. The mice received vaccine boosters at days 14
and 28 and were bled after 6 weeks. Serum samples were taken
before each immunisation step (pre-immune, priming, 1st boost)
and 2 weeks after the third immunisation (post-immune) and
stored at−20◦C until use.

Purification of Polyclonal IgG and
Immunoblotting
Polyclonal IgGs were purified from the generated antisera using
protein A-sepharose chromatography. Protein A sepharose CL-
4B columns (GE Healthcare), stored in 20% ethanol at 4◦C,
were equilibrated in binding buffer (50mM Tris-HCl, pH 7.0).
After mixing the antisera with one volume of binding buffer,
the mixture was applied to the column and incubated for
15min at room temperature (RT). The column was washed
with binding buffer until the absorption measured using a
NanoDrop R© ND-1000 dropped below A280 = 0.05. The elution
was performed using 1-ml aliquots of elution buffer (100mM
glycine, pH 3.0) collected in 50 µl phosphate buffer (50mM
K2HPO4, pH 8.5). The IgG concentration of each sample
was determined by measuring the absorption at A280 using
a NanoDrop R© ND-1000. Immunoblots were carried out to
analyse the specificity of the purified polyclonal IgGs. After the
SDS-PAGE-mediated separation of bacterial lysates from late
exponential growth phase cells, the proteins were transferred
onto a nitrocellulose membrane using semidry blotting (Bio-
Rad Laboratories, Hercules, CA, USA). The membrane was
blocked with 5% skim milk (in Tris-buffered saline (TBS), Roth)
overnight at 4◦C. Following an incubation withmouse polyclonal
IgGs (1:1,000 in blocking buffer) recognising lipoproteins or
rabbit anti-enolase serum (1:25,000 in blocking buffer) for 1 h
at RT, the membrane was washed three times with washing
buffer (TBS, 0.05% Tween R© 20). A secondary antibody, goat
anti-mouse IgG (Dianova, Hamburg, Germany; 1:5,000) or
goat anti-rabbit IgG (Dianova; 1:5,000) horseradish peroxidase
conjugate was used for 1 h at RT, then washed three times with
washing buffer. Finally, antibody binding was detected using an
enhanced chemiluminescence reaction (luminol and p-coumaric
acid, Roth).

Antibody Titration of Polyclonal IgGs Using
Enzyme-Linked Immunosorbent Assays
(ELISAs) and the Flow Cytometric Analysis
of Surface Abundance
The antibody titres of polyclonal IgGs were determined using
ELISAs. Microtiter plates (96-well, PolySorp R©, Nunc, Thermo
Fisher Scientific) were coated with equimolar amounts of
pneumococcal proteins (30 pmol/well) overnight at 4◦C. The
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TABLE 1 | Strain and plasmid list.

Strain/plasmid Serotype and relevant genotype Resistance* Source or reference

Streptococcus pneumoniae

SP257 (D39) 2 None NCTC7466

PN111 D391cps Kmr (30, 31)

PN282 D391cps1adcAII (spd_0888) Kmr, Ermr This work

PN279 D391cps1dacB (spd_0549) Kmr, Ermr (9)

PN253 D391cps1etrx1 (spd_0572) Kmr, Ermr (10)

PN281 D391cps1etrx2 (spd_0886) Kmr, Ermr (10)

PN238 D391cps1metQ (spd_0151) Kmr, Ermr This work

PN732 D391cps1ppmA (spd_0868) Kmr, Trmr This work

PN280 D391cps1pnrA (spd_0739) Kmr, Ermr This work

PN301 D391cps1psaA (spd_1463) Kmr, Ermr This work

PN733 D391cps1slrA (spd_0672) Kmr, Ermr This work

PN241 D391cps1spd_0179 Kmr, Ermr This work

PN312 D391cps1spd_0792 Kmr, Ermr This work

PN735 D391cps1pspA (spd_0126) Kmr, Ermr This work

PN278 D391adcAII (spd_0888) Ermr This work

PN275 D391dacB (spd_0549) Ermr (9)

PN246 D391etrx1 (spd_0572) Ermr (10)

PN277 D391etrx2 (spd_0886) Ermr (10)

PN311 D391metQ (spd_0151) Ermr This work

PN093 D391ppmA (spd_0868) Trmr (32)

PN276 D391pnrA (spd_0739) Ermr This work

PN172 D391psaA (spd_1463) Ermr (13)

PN095 D391slrA (spd_0672) Ermr (32)

PN243 D391spd_0179 Ermr This work

PN251 D391spd_0792 Ermr This work

PN031 D391pspA (spd_0126) Ermr (33)

Escherichia coli

DH5α 1(lac)U169, endA1, gyrA46, hsdR17, Φ801(lacZ)M15, recA1,

relA1, supE44, thi-1

None Bethesda Research Labs, Gaithersburg,

U.S.

BL21(DE3) E. coli B, F- dcm ompT hsdS gal λ(DE3), T7 polymerase gene

under control of the lacUV5 promoter

None Novagen, Merck KGaA, Darmstadt,

Germany

Plasmids

pGEM®-T easy TA cloning vector for PCR products Apr Madison, U.S.

p89 pCR2.1Topo with erythromycin (ermB) cassette Apr, Kmr, Ermr (34)

p873 pGXT with capsule locus replaced by aphA3 gene resistance

cassette, flanking genes dex ,and aliA

Apr, Kmr (10)

p572 pGEM-T derivative with sp_1002 (adcAII)

5′ and 3′ flanking region for mutagenesis

Apr This work

p598 pGEM-T derivative with sp_1002 (adcAII)

interrupted by ermB gene resistance cassette

Apr, Ermr This work

p559 pGEM-T derivative with sp_0149 (metQ)

5′ and 3′ flanking region for mutagenesis

Apr (28)

p563 pGEM-T derivative with sp_0149 (metQ)

interrupted by ermB gene resistance cassette

Apr, Ermr (28)

p576 pGEM-T derivative with sp_0845 (pnrA)

5′ and 3′ flanking region for mutagenesis

Apr This work

p646 pGEM-T derivative with sp_0845 (pnrA)

interrupted by ermB gene resistance cassette

Apr, Ermr This work

p560 pGEM-T derivative with sp_0191 (spd_0179)

5′ and 3′ flanking region for mutagenesis

Apr This work

p565 pGEM-T derivative with sp_0191 (spd_0179)

interrupted by ermB gene resistance cassette

Apr, Ermr This work

p573 pGEM-T derivative with sp_0899 (spd_0792)

5′ and 3′ flanking region for mutagenesis

Apr This work

(Continued)
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TABLE 1 | Continued

Strain/plasmid Serotype and relevant genotype Resistance* Source or reference

p577 pGEM-T derivative with sp_0899 (spd_0792)

interrupted by ermB gene resistance cassette

Apr, Ermr This work

pTP1 pET28 expression vector, N-terminal His-tag, TEV protease

cleavage site, induction by IPTG

Kmr, Ermr (10)

p648 pTP1 with TIGR4 sp_1002 (adcAII) for protein production and

mice immunisation

Kmr This work

p652 pTP1 with TIGR4 sp_0629 (dacB) for protein production and mice

immunisation

Kmr (9)

p629 pTP1 with TIGR4 sp_0659 (etrx1) for protein production and mice

immunisation

Kmr (10)

p651 pTP1 with TIGR4 sp_1000 (etrx2) for protein production and mice

immunisation

Kmr (10)

P732 pTP1 with TIGR4 sp_0149 (metQ) for protein production and mice

immunisation

Kmr This work

p264 pET11a with R6 spr0884 (ppmA) for protein production and mice

immunisation

Kmr (32)

p649 pTP1 with TIGR4 sp_0845 (pnrA) for protein production and mice

immunisation

Kmr This work

p653 pTP1 with TIGR4 sp_1650 (psaA) for protein production and mice

immunisation

Kmr This work

p263 pET11a with R6 spr0679 (slrA) for protein production and mice

immunisation

Kmr (32)

p628 pTP1 with TIGR4 sp_0191 (spd_0179) for protein production and

mice immunisation

Kmr This work

p631 pTP1 with TIGR4 sp_0899 (spd_0792) for protein production and

mice immunisation

Kmr This work

p105 pQE30 with PspA (aa 32-289) without choline-binding domain Apr (33, 68)

*Kmr , Kanamycin; Ermr , Erythromycin; Apr , Ampicillin; Trmr , Trimethoprim.

plates were washed three times with washing buffer (PBS, pH
7.4, 0.05% Tween R© 20) and blocked with blocking buffer (PBS,
0.1% Tween R© 20 supplemented with 2% bovine serum albumin)
for 1 h at RT. The wells were washed and incubated for 1 h
at RT with polyclonal IgGs in serial dilutions ranging from
1:750 to 1:24,000 in blocking buffer. Antibody binding was
detected using goat anti-mouse IgG coupled to horseradish
peroxidase (1:1,000, Jackson ImmunoResearch Laboratories,
Inc., Ely, UK) as the secondary antibody (1 h incubation at
RT). For the detection, 0.03% H2O2 and o-phenylenediamine
dihydrochloride (OPD, Agilent Technologies, Santa Clara, CA,
USA) at a final concentration of 0.67 mg/ml were used in a
colorimetric reaction, which was stopped by adding 2M H2SO4.
The absorbance of each sample was measured at A492 using the
FLUOstar Omega Microplate Reader (BMG Labtech, Ortenberg,
Germany). This resulted in hyperbolic titration curves (y =
Bmax·x
Kd+x

, Bmax, maximal binding; Kd, concentration for half the
maximal binding), which were used to calculate the relative IgG
concentrations. The absorbance was therefore set to A492 = 0.3
(y) in the linear dynamic range and the IgG concentrations (x)
were calculated and denoted as the 1× end concentration in the
flow cytometry. The polyclonal IgGs with equal contents of IgGs
specific to the lipoproteins were therefore applied to enable the
comparison of surface abundances.

For flow cytometry, S. pneumoniae wild-type D39, its capsule-
deficient derivative (D391cps) and the isogenic mutants were
cultured in 30ml THY to A600 0.35–0.4. The bacteria were

washed with PBS, then resuspended in 1ml of PBS. To detect
the proteins on the surface of the pneumococci, 2 × 108

bacteria were incubated with mouse polyclonal IgG (1×, 5×,
10×, 20×, and 50× end concentration in PBS) for 45min
at 4◦C. The bacteria were washed with PBS and stained
using secondary antibody goat anti-mouse IgG Alexa-Fluor-
488 conjugate (1:1,000; Thermo Fisher Scientific). After another
45-min incubation at 4◦C, the bacteria were washed with
PBS and fixed with 1% paraformaldehyde overnight at 4◦C.
The flow cytometry was conducted using a FACSCaliburTM

(BD Biosciences, Heidelberg, Germany), and the CellQuestPro
Software 6.0 (BD Biosciences) was used for data acquisition.
The data were analysed using Flowing Software 2.5.1 (by Perttu
Terho, Turku Centre for Biotechnology). The bacteria were
detected and gated as described previously (36).

Intranasal Immunisation and
Pneumococcal Challenge of Mice
Seven-week-old female C57BL/6 mice (n = 12; Charles River
Laboratories) were intranasally immunised three times at 2-
week intervals under anaesthesia (50mg ketamine and 5mg
xylazine per kg mouse weight). The 10 µl vaccine contained
5 µg recombinant DacB, MetQ, PnrA, or PspA proteins in
combination with 4 µg cholera toxin subunit B (CTB; Sigma-
Aldrich, St. Louis, MO, USA) in PBS. Control mice were mock-
treated with an equivalent volume of PBS and adjuvant. Three
weeks after the last vaccination, the mice were infected with
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TABLE 2 | Primer list.

Primer use Primer Sequence (5′-3′)*

INSERTION-DELETION MUTAGENESIS

Amplification of sp_1002 + 5′ and 3′ flanking

region

adcAII_427

adcAII_430

5′-CTACTA GAATTCGATGATGCCGTTGCCTTT-3′

5′-TTCCAAGCTGCAGATCCCTGCTTCCCATTCC-3′

Inverse PCR of sp_1002 + 5′ and 3′ flanking

region (pGEM-T Easy)

adcAII_429

adcAII_428

5′-CTCACTGAAGCTTGACCCACAAAATGACAAGACC-3′

5′-ATCATCGAAGCTTCCCCCAAGCACAAAAGAA-3′

Amplification of sp_0149 + 5′ and 3′ flanking

region

metQ_382

metQ_385

5′-CTACTACTAGAATTCATGCTGAACACACGGACAAC-3′

5′-AACCTTCCAAGCTGCAGCCGCTCCCTCCATGATAAAG-3′

Inverse PCR of sp_0149 + 5′ and 3′ flanking

region (pGEM-T Easy)

metQ_384

metQ_383

5′-ACTCACTCACTGAAGCTTATCGCAGCTTACCACACAGA-3′

5′-ATCATCATCATCGAAGCTTAGCCAAACCTGCGACTGTAG-3′

Amplification of sp_0845 + 5′ and 3′ flanking

region

pnrA_415

pnrA_418

5′-CTACTAGAATTCAAAAAGCTGGGGCTGAC-3′

5′-CCAAGCTGCAGCGGTCAGAAACTGCTCGAAT-3′

Inverse PCR of sp_0845 + 5′ and 3′ flanking

region (pGEM-T Easy)

pnrA_417

pnrA_416

5′-CTCACTGCTCGAGTGGAAGCGTAAAAGTTCCTGA-3′

5′-ATCATCGGTACCGAGCGGTTACCACATGCAG-3′

Amplification of sp_0191 + 5′ and 3′ flanking

region

sp_0191_392

sp_0191_395

5′-CTACTACTAGAATTCATGTAGCGAAAGGGGTAGG-3′

5′-AACCTTCCAAGCTGCAGCTTTGCTCCGTAGGCTTGAC-3′

Inverse PCR of sp_0191 + 5′ and 3′ flanking

region (pGEM-T Easy)

sp_0191_394

sp_0191_393

5′-ACTCACTCACTGAAGCTTATGGCGCGACAGAACAATAG-3′

5′-ATCATCATCATCGAAGCTTAACCAACCAGGACAAAAAGG-3′

Amplification of sp_0899 + 5′ and 3′ flanking

region

sp_0899_419

sp_0899_422

5′-CTACTAGAATTCCCTTGTCTGGGTGGTTCC-3′

5′-CCAAGCTGCAGTGGGACTAGCGCCAGAA-3′

Inverse PCR of sp_0899 + 5′ and 3′ flanking

region (pGEM-T Easy)

sp_0899_421

sp_0899_420

5′-CTCACTGCTCGAGGCGAGGGACTGGCTAA-3′

5′-ATCATCGGTACCCAAGCAGCCAAGCCTAAAA-3′

ANTIBIOTIC CASSETTE AMPLIFICATION

Erythromycin (ermB) ermB_105 5′-GATGATGATGATCCCGGGTACCAAGCTTGAATTCA

CGGTTCGTGTTCGTGCTG-3′

ermB_106 5′-AGTGAGTGAGTCCCGGGCTCGAGAAGCTTGAATTCGTAGG

CGCTAGGGACCTC-3′

RECOMBINANT PROTEIN PRODUCTION

sp_0899 (TIGR4) sp_0899_463

sp_0899_464

5′-GCGCGCTAGCCAACAACAACATGCTACTTC-3′

5′-GGCCGAGCTCTTAAAGTTTAACCCACTTATC-3′

sp_1002 (TIGR4; adcAII) adcAII_451

adcAII_452

5′-GGGCGCTAGCGGTCAAAAGGAAAGTCAGAC-3′

5′-GCGGCCAAGCTTACTTTAATTCTTCTGCTAG-3′

sp_0149 (TIGR4; metQ) metQ_410

metQ_391

5′-AAAGCATATGAGCGGCGAAAACCTGTATTTTCAG

GGCGCTAGCGGAAACTCAGAAAAGAAAGC-3′

5′-CCAACCTTCCAAGCTTACCAAACTGGTTGATCC-3′

sp_0845 (TIGR4; pnrA) pnrA_449

pnrA_450

5′-AAGCGCTAGCGGTAACCGCTCTTCTCGTA-3′

5′-GGGGCCAAGCTTATTTTTCAGGAACTTTTACGC-3′

sp_1650 (TIGR4; psaA) psaA_488

psaA_489

5′-GCGCGCTAGCGGAAAAAAAGATAC-3′

5′-GCGCAAGCTTATTTTGCCAATCCTTCAG-3′

sp_0191 (TIGR4) sp_0191_392

sp_0191_393

5′-TATTTTCAGGGCGCTAGCGGACAGAAAAAAGAAACTGG-3′

5′-CCAACCTTCCAAGCTTATTGTTCTGTCGCGCCATTTG-3′

*Restriction sites used for cloning are underlined.

10 µl PBS containing 3.4 × 106 CFU of S. pneumoniae D39.
Three days after the bacterial challenge, the mice were euthanised
and their blood and nasal tissues were harvested. Nasal tissue
was homogenised in 1ml PBS using a T10 basic blender (IKA,
Staufen, Germany), and serially diluted samples were plated
on blood agar (Oxoid) to quantify the recovered bacteria (log
CFU/ml). Serum samples were taken before each immunisation
step (pre-immune, priming, 1st boost), 2 weeks after the third
immunisation (post-immune) and after the challenge with
pneumococci. They were stored at−20◦C until use.

Detection of Local IL-17A in the
Nasopharyngeal-Associated Lymphoid
Tissue (NALT)
Cytokine production in mouse nasal samples was determined
using a bead-based immunoassay (Bio-Rad Laboratories),

according to manufacturer’s instructions. The assay was
performed using the Bio-Plex ProTM Reagent Kit, the Bio-Plex
ProTM mouse cytokine IL-17A set and the Bio-Plex ProTM mouse
cytokine standard group I, 23-Plex. The concentrations were
calculated using Graph Pad Prism 5.

Local and Systemic Antibody and Isotype
Levels
Local IgG and IgA levels in the nasal tissue and the systemic total
levels of IgG, IgG1, and IgG2a/IgG2c isotype were determined
in the post-immune (Alum immunisation) or post-challenge
sera (CTB immunisation) using an ELISA. PolySorp R© Microtiter
plates (96-well, Nunc, Thermo Fisher Scientific) were coated with
equimolar amounts of pneumococcal proteins (3 pmol/well) and
stored overnight at 4◦C. The plates were washed and blocked
as described above, then the wells were incubated with samples
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diluted in blocking buffer for 1 h at 37◦C. The IgA and IgG
levels in the nasal tissue samples were detected using 1:2 and 1:10
dilutions, respectively. Post-immune (immunisation only) and
post-challenge sera (immunisation and challenge) were serially
diluted ranging from 1:100 to 1:60,000 or 1:50 to 1:10,000,
respectively. The plates were washed and incubated for 1 h at RT
with horseradish peroxidase coupled with rabbit anti-mouse total
IgG (Jackson ImmunoResearch Laboratories, Inc.), rabbit anti-
mouse IgG1 (Sigma-Aldrich), goat anti-mouse IgG2a (Sigma-
Aldrich), goat anti-mouse IgG2c (Abcam, Cambridge, UK), or
goat anti-mouse IgA antibody (Sigma-Aldrich). The protection
study using CTB as an adjuvant was carried out in C57BL/6 mice,
which express IgG2c instead of IgG2a due to a gene replacement
(37). These mice were therefore isotyped for IgG2c rather than
the IgG2a used for the CD-1 mice. Detection was performed
as described above. The antibody titre of each serum specimen
was denoted as the log10 of its reciprocal dilution of the serum
giving twice the average absorbance of the sera derived from the
PBS-treated group.

Monitoring of Antibody Titres Directed
Against Pneumococcal Lipoproteins Using
a FLEXMAP 3D® Analysis
The bead-based flow cytometric technique FLEXMAP 3D R©

(Luminex Corporation) was applied to simultaneously quantify
the antibodies directed against the 12 pneumococcal surface
proteins. This analysis was carried out as described recently (38),
using the same commercially available reagents and instruments.
Purified His6-tagged proteins were covalently coupled to 6.25
× 105 fluorescent FLEXMAP 3D R© MagPlex R© beads. The beads
were protected from light throughout the workflow to avoid
photo bleaching, and all incubation steps were carried out under
agitation (900 rpm). After three washes with 100mMmonobasic
sodium phosphate (activation buffer, pH 6.2) using a magnetic
96-well separator, the carboxyl groups on the surface of the
beads were activated for 20min by a resuspension in activation
buffer (5 mg/ml each of EDC and sulpho-NHS). The activated
beads were washed three times with coupling buffer [50 mmol/l
2-(N-morpholino)ethanesulphonic acid, pH 5.0] followed by a
2-h incubation with 125 µl recombinant S. pneumoniae protein
solution (100µg/ml). The coupled beads were washed three times
with washing buffer (PBS, 0.05% (v/v) Tween R© 20, pH 7.4) and
adjusted to a concentration of 125 beads per µl using blocking-
storage buffer (1% (w/v) bovine serum albumin and 0.05% (v/v)
ProClinTM 300 in PBS, pH 7.4). The beads were stored at 4◦C
until use. A coupling control was applied to validate the coupling
efficiency. Amaster mix of sonicated coupled beads was prepared
by diluting the beads 1:50 in bead buffer [50% (v/v) blocking-
storage buffer and 50% (v/v) LowCross-Buffer R© (LCB)]. After
incubation with the anti-Penta-His tag mouse antibody (final
concentration 10µg/ml) for 45min, the beads were washed
three times with washing buffer and stained for 30min using
R-phycoerythrin (RPE)-conjugated goat anti-mouse IgG (final
concentration 5µg/ml). After another washing procedure, the
beads were resuspended in 100 µl xMAP R© Sheath Fluid and
measured in the Luminex R© FLEXMAP 3D R© system with the

following instrumental setup: sample size 80 µl, sample timeout
60 s, bead count 10,000, and gate settings 7,500–15,000 under
standard PMT (Photomultiplier tube) settings.

A multiplex immunoassay was used to compare differences in
the amounts of anti-pneumococcal antibodies in serum samples
obtained from 22 patients convalescent from pneumococcal
infections. Convalescent-phase sera were kindly provided by
Gregor Zysk, University of Düsseldorf, Germany (39). The
infections included pneumonia (n = 6), meningitis (n = 7),
sepsis (n = 4), and unknown clinical outcomes (n = 5), which
were all caused by different pneumococcal serotypes. In addition,
post-immune sera (2 weeks after the third immunisation) were
obtained from CD-1 mice (n = 6) intraperitoneally immunised
with ImjectTM Alum or C57BL/6 mice intranasally immunised
with CTB as an adjuvant, and were analysed to determine their
antibody titres for the indicated proteins.

For the multiplex assay, serum samples were serially diluted
(1:50, 1:500, 1:1,000, 1:10,000, 1:25,000, 1:50,000 and 1:100,000)
in assay buffer (90% (v/v) bead buffer and 10% (v/v) E. coli
BL21 lysate) and incubated for 20min at RT to block unspecific
binding. A bead master mix was prepared with a bead count of
1,000 per well. A 50-µl aliquot of the diluted sample was added to
the beads and incubated overnight at 4◦C, after which the beads
were washed three times with 100 µl washing buffer. The beads
were incubated with 50 µl RPE-conjugated goat anti-human IgG
(final concentration 5µg/ml) or 50 µl RPE-conjugated goat anti-
mouse IgG (final concentration 5µg/ml) for 1 h at RT. After three
washes with 100 µl washing buffer, the beads were resuspended
in 100 µl xMAP R© Sheath Fluid (InvitrogenTM) and measured
in the Luminex R© FLEXMAP 3D R© system using the following
instrumental setup: sample size 80 µl, sample timeout 60 s, bead
count 100, and gate settings 7,500–15,000 under standard PMT.

The data were analysed as described recently (38). Following
Clark’s theory interaction model, the titration curves were
used to determine the percentage of the half-maximal MFI
(mean fluorescence intensity) for the respective coupling control.
The MFI was multiplied with the reciprocal serum dilution
corresponding to the half-maximal MFI. The resulting MFI
values reflect the antigen binding intensity of antibodies
contained in each serum sample. Calculations were performed
using R (package 3.0.1) or GraphPad Prism version 5.0
(GraphPad Software).

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
version 5.0 (GraphPad Software). The one-way ANOVAKruskal-
Wallis test with Dunn’s post-test was used to compare multiple
groups, while a Mann-Whitney U-test was used to compare two
groups in the analysis of the protection efficacy and IL-17A levels
in the nasal tissues or local/systemic humoral immune responses.

RESULTS

Selection and Purification of
Pneumococcal Lipoproteins
A previous in silico analysis of the pneumococcal genome
(S. pneumoniae strain D39) predicted more than 100
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surface-associated or secreted proteins, including 37 lipoproteins
(40). We selected 11 of these lipoproteins based on the following
criteria: (i) confirmed member of the lipoprotein cluster
(40), (ii) expressed in pneumococci (11, 17, 40), and (iii)
high levels of conservation (>85%, Table 3). The selected
lipoproteins included the four substrate-binding proteins
AdcAII, MetQ, PnrA, and PsaA, which are components of
ABC transporters responsible for the uptake of zinc(II),
methionine, nucleosides and manganese(II), respectively. We
also selected the following non-ABC transporter lipoproteins:
(i) the thioredoxins Etrx1 and Etrx2, which are involved
in pneumococcal resistance to oxidative stress, (ii) the L,D-
carboxypeptidase DacB, (iii) and the peptidyl-prolyl cis/trans
isomerases putative proteinase maturation protein A (PpmA)
and streptococcal lipoprotein rotamase A (SlrA). PpmA and
SlrA have a role in the folding or activation of the surface-
exposed proteins. The two other candidate lipoproteins, SP_0191
and SP_0899, are so far uncharacterised lipoproteins. With
the exception of the uncharacterised lipoproteins SP_0191
and SP_0899, previous studies using in vivo mouse models
have demonstrated that the selected lipoproteins are involved
in virulence (9–11, 14, 28, 32, 41, 42). It can therefore be
hypothesised that blocking these antigens, for example through
the use of specific antibodies, may lead to the attenuation
of virulence and thus confer protection. The lipoprotein-
encoding genes were therefore cloned into a pTP1 vector (10)
and plasmids were transformed into E. coli BL21 for protein
expression. The recombinant proteins were purified using affinity
chromatography, and their quality and purity was confirmed
using the silver staining of an SDS-gel and immunoblotting
(Figure 1). All lipoproteins were shown to be stable in solution,
and no degradation was observed.

Antigen-Specific Polyclonal IgGs and the
Surface Abundance of Pneumococcal
Lipoproteins
Mice were intraperitoneally immunised with the heterologously
expressed lipoproteins to generate antigen-specific antisera.
Purified polyclonal IgGs were used for immunoblot analyses,
which were performed using the whole-cell lysates of non-
encapsulated S. pneumoniae D39 and its isogenic lipoprotein-
deficient mutants. The immunoblots demonstrated that the anti-
lipoprotein IgGs are highly specific; the protein bands were only
detected in wild-type pneumococci but not in the corresponding
isogenic mutants (Figure 2A). Furthermore, under in vitro
growth conditions, the protein levels were highly variable, with
Etrx1, Etrx2, and SP_0899 showing the lowest levels and PnrA,
PsaA, and MetQ the highest levels of expression.

The recognition of pneumococci by the immune system
is vital for the host to clear these pathogens. The binding
of antigen-specific antibodies depends on the expression,

abundance and accessibility of antigens. In order to analyse the
surface abundance and accessibility of the selected lipoproteins,

we determined the relative antibody titres in mice following

immunisation. For this purpose, the recombinant lipoproteins
were immobilised in equimolar amounts and incubated with

FIGURE 1 | Pneumococcal lipoproteins heterologously expressed in E. coli. A

1-µg aliquot of heterologously expressed pneumococcal lipoproteins was

separated using SDS-PAGE and the proteins were detected using silver

staining (A) or with immunoblotting using a monoclonal mouse anti-Penta-His6
antibody and alkaline phosphatase-conjugated goat anti-mouse IgG (B).

serial dilutions of the polyclonal IgGs, and the initial IgG
concentrations were calculated from the resulting hyperbolic

titration curves. The highest IgG titres were measured for MetQ,
AdcAII, and PspA, while the lowest titres were observed for

Etrx1, Etrx2, and SP_0191 (Figure 2B). S. pneumoniae D39
and the non-encapsulated mutant D391cps were incubated

with increasing concentrations of polyclonal IgGs (1×, 5×,
10×, 20×, and 50×) to elucidate the abundance of the 11
selected lipoproteins on the pneumococcal surface using flow
cytometry. The initial IgG concentrations calculated in the
antibody titration study (Figure 2B), enabled the application
of comparable amounts of lipoprotein-specific IgGs in the
flow cytometric analysis. We used anti-PspA IgG as a positive
control, as it is already known that the choline-binding protein
PspA is highly abundant on the surface of these bacteria (43).
Overall, the antigen-specific IgGs bound in a dose-dependent

manner to the surface of pneumococci (Figure 2C, Table S1).
Our data confirm that PspA is probably one of the most
abundant pneumococcal surface proteins (Figure 2C, Table S1).
When using the highest anti-PspA antibody concentrations,
over 80% of the fluorescent pneumococci were detectable. Of
our tested lipoproteins, PnrA, PpmA, DacB, SP_0191, and SlrA

showed the highest surface abundance, with up to 60% positive
fluorescent events, while PsaA and MetQ had lower levels,
with approximately 40% of fluorescent pneumococci detectable.
The lowest surface abundance was observed for thioredoxins

Etrx1 and Etrx2, the putative lipoprotein SP_0899, and the
zinc transport system binding protein AdcAII, the latter two of
which were almost undetectable. Some of the tested proteins
were also accessible for antibody binding when covered by
the capsular polysaccharide. DacB, PpmA, SlrA, and MetQ

Frontiers in Immunology | www.frontiersin.org 8 October 2018 | Volume 9 | Article 240542

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Voß et al. Pneumococcal Lipoproteins Confer Protection

TABLE 3 | Sequence homology of selected lipoproteins among different pneumococcal strains based on protein sequences from S. pneumoniae TIGR4.

S. p. strain AdcAII DacB Etrx1 Etrx2 MetQ PnrA PpmA PsaA SlrA SP0191 SP0899

TIGR4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

D39 100.00 99.16 99.47 98.92 99.30 98.29 99.68 99.68 99.25 98.94 99.31

P1031 99.02 98.32 99.47 98.38 99.30 98.86 99.36 99.68 98.88 100.00 99.31

G54 99.02 96.64 100.00 98.92 98.24 98.57 93.15 99.35 99.25 100.00 98.97

Hungary19A 99.67 89.92 100.00 98.92 99.30 98.86 99.68 99.35 98.88 98.41 98.62

70585 99.34 89.08 99.47 100.00 99.65 98.86 100.00 99.68 99.25 100.00 99.31

JJA 100.00 86.97 100.00 100.00 99.65 98.57 99.68 96.76 99.63 100.00 98.89

Taiwan19F 100.00 86.97 100.00 100.00 99.65 98.57 99.68 99.68 99.25 98.94 99.31

could be detected in the presence of the capsule (Figure 2D,
Table S2). However, as expected, the binding capacity was
strongly diminished and the positive fluorescent events dropped
to 20–30%. Strikingly, the capsule does not block antibody
binding to PspA, confirming its exposure and accessibility for
antibodies (43). To confirm that IgG binding to S. pneumoniae
was antigen-specific, mutants deficient for the lipoproteins were
incubated with the corresponding polyclonal IgGs. We detected
onlyminor non-specific IgG binding for some of the lipoproteins,
indicating that the generated antibodies were overall antigen-
specific (Figure S1).

PnrA, DacB, MetQ, and PsaA Are Highly
Immunogenic
The immunogenicity of the selected lipoproteins was investigated
using multiplex immunoassay technology. Two different types of
sera were analysed: (i) convalescent patient sera and (ii) antisera
from mice intraperitoneally immunised with pneumococcal
antigens using Alum as the adjuvant (Figure 3). Recombinant
proteins covalently coupled to fluorescent MagPlex R© beads
were incubated with serial dilutions of human or mouse sera.
Measurements of convalescent patient sera revealed the highest
IgG levels for PsaA and PnrA, which were both comparable to
those of the positive control, PspA (Figure 3A). DacB, PpmA,
and Etrx1 IgG levels were also high, although they were an
order of magnitude lower than those for PsaA. The titres of
antibodies for Etrx2, AdcAII, MetQ, SP_0191, SP_0899, and
SlrA were comparatively low in randomly selected convalescent
sera. The final antibody titres of mouse sera obtained 2 weeks
after the third and final immunisation ranged from 2.9 × 106

AU (α-PspA) to 1.8 × 108 AU (α-PsaA), and were at least
three orders of magnitude higher than the titres of the pre-
immune sera. The highest antibody titres were measured for
PsaA, MetQ, AdcAII, and DacB. The second boost did not
substantially increase the antibody titres, which were on average
only 2.5-fold higher than the levels measured after the first
booster immunisation. Notably, the changes in antibody titres
for MetQ and DacB were highly similar when compared between
individual mice. However, the antibody titres for the majority
of the other lipoproteins varied substantially. In conclusion,
lipoproteins such as DacB, MetQ, and PnrA represent promising
candidates for the development of a robustly effective and reliable
vaccination.

Intranasal Vaccination With DacB, MetQ, or
PnrA Reduces Pneumococcal Load in the
Nasal Cavity
Based on the previous screenings, three lipoproteins DacB,
PnrA, and MetQ were selected to assess whether their use
in an intranasal vaccination would confer protection against
pneumococcal colonisation. Mice were intranasally immunised
with the protein candidates in combination with CTB as an
adjuvant, and received two booster immunisations. PspA was
included as a positive control, while PBS mock-treated mice were
used as a negative control. Three weeks after the final vaccination,
the mice were intranasally infected with a non-lethal dose of
3.4 × 106 S. pneumoniae D39. Three days post-infection, mice
were euthanised and live pneumococci were recovered from
their nasal tissues. Consistent with previous studies, an intranasal
vaccinationwith PspA induced the strongest reduction (263-fold)
of bacterial load in the nasal cavity when comparing the bacterial
load to mock-treated mice (Figure 4A). PnrA also showed
strong efficacy, causing a 58-fold reduction in the number of
S. pneumoniae in the nasopharynx. Of the mice, which received
the PnrA immunisation, 50% had almost completely cleared the
pneumococci within 3 days post-infection. Immunisation with
DacB and MetQ showed a trend in reducing the bacterial load.
However, reduction was only 14- or 4-fold, respectively, and not
statistically significant.

Protective Immunity Correlates With
Increased Intranasal IL-17A Levels
Immunity to S. pneumoniae infection was shown to be dependent
on the induction of IL-17A-secreting CD4+ T cells, leading
to the recruitment of neutrophils to enable the clearance of
the pneumococci (44–46). To determine the role of IL-17A in
our protection studies, we quantified the levels of this cytokine
in the nasal tissues of mice immunised with DacB, MetQ,
or PnrA 3 days after infection. Significantly increased IL-17A
levels were identified in the DacB- and PnrA-immunised mice
in comparison with the negative control, both reaching IL17A
levels comparable to mice immunised with PspA (Figure 4B).
Importantly, production of nasopharyngeal IL-17A significantly
correlated with the level of protective immunity induced by the
pneumococcal lipoproteins (ρ = −0.3916; p = 0.002), which
was indicated by a Spearman correlation test (Figure S2). These
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FIGURE 2 | Pneumococcal lipoproteins are highly abundant on the pneumococcal surface. (A) In immunoblots, the specificity of antisera derived from intraperitoneal

immunisations of CD-1 mice (n = 6) with recombinant lipoproteins was assessed. Therefore, the wild-type strain S. pneumoniae D391cps and the corresponding

isogenic lipoprotein deficient mutants (2 × 108 bacteria per lane) were used. Enolase was detected with a rabbit anti-enolase serum and served as a loading control.

(B) IgG antibody titrations were performed by incubating equimolar amounts of recombinant proteins with serial dilutions of isolated polyclonal IgGs. Detection was

carried out using a peroxidase-coupled goat anti-mouse IgG followed by incubation with OPD as a substrate and absorbance was measured at 492 nm. Titrations

were performed at least three times and the error bars represent the SEM. (C,D) Using the equation for the hyperbolic regression curve (y [Abs] = Bmax·x
Kd+x

, Bmax,

maximal binding; Kd, concentration for half maximal binding) an initial IgG concentration was calculated in the linear dynamic range. The polyclonal IgGs with equal

contents of IgG specific for each lipoprotein were therefore applied to enable the comparison of their surface abundances. In a flow cytometric approach, D391cps

(C) and D39 (D) were incubated with the appropriate calculated concentration of IgG and concentrations 5-, 10-, 20-, and 50-fold greater to analyse the surface

abundance of the selected lipoproteins. Antibody binding was detected using a goat anti-mouse Alexa Fluor® 488-coupled secondary antibody. The percentage of

positive gated events is depicted in the graphs, thereby indicating the proportion of wild-type bacteria positive for the binding of the respective anti-lipoprotein IgGs.

The mean values of at least three independent experiments are shown, with error bars corresponding to SEM.

results confirm the important role of IL-17A in protecting against
pneumococcal colonisation.

Intranasal Immunisation Only Partially
Induces Local and Systemic
Antigen-Specific Antibodies
Humoral immune responses following intranasal immunisation
with recombinant lipoproteins were investigated by analysis of
antibody kinetics in post-immune antisera and the local antibody
titres in nasal tissues harvested 3 days after infection with
pneumococci. As shown in Figure 5A, intranasal immunisation

with recombinant MetQ, PnrA, and PspA induced strong
systemic antigen-specific antibody responses in all tested mice.
However, a substantial systemic IgG response for recombinant
DacB was only detected in one of the six mice. Three
days after infection, we analysed the local humoral immune
responses in the nasal tissues of all mice used in the model of
colonisation (n = 12) to elucidate whether lipoprotein-specific
immunoglobulins are present in the nasal cavity, which might
contribute to protection (Figures 5B,C). MetQ and PspA were
found to be potent immunogens when administered intranasally,
as demonstrated by the resulting high local titres of IgG,
while the local IgG response for PnrA was significantly lower
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FIGURE 3 | Analysis of convalescent patient sera and mouse sera derived from intraperitoneal immunisations indicate the high immunogenicity of PnrA, DacB, and

MetQ. (A) A total of 22 antisera from convalescent patients who suffered from pneumococcal infections such as pneumonia (n = 6), meningitis (n = 7), sepsis (n = 4),

and unknown clinical outcomes (n = 5) caused by different pneumococcal serotypes were analysed to compare their levels of anti-lipoprotein antibodies. Each symbol

represents a single antiserum, while the different colours indicate the clinical outcome of every patient. (B) The immunogenicity of the lipoproteins was further

demonstrated by analysing the antibody kinetics of intraperitoneally immunised CD-1 mice (n = 6). The mice received three vaccinations with 20 µg antigen and Alum

as the adjuvant, with a 2-week interval between treatments. Before each treatment and 2 weeks after the final immunisation, antisera were collected to enable the

determination of the antibody kinetics. Each individual mouse is depicted in the graphs. All serum samples were serially diluted and measured using the FLEXMAP

3D® system. Response values reflect the levels of antigen-specific IgG for the 11 tested lipoproteins and the positive control PspA.
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FIGURE 4 | Intranasal vaccinations with the lipoproteins MetQ, DacB or PnrA reduce pneumococcal colonisation and increase local IL-17A levels. Bacterial recovery

of S. pneumoniae D39 from nasal tissue (A) and nasopharyngeal IL-17A levels (B) 3 days after the intranasal challenge of C57BL/6 mice (n = 12) with 3.4 × 106 CFU.

Each mouse received three intranasal immunisations with 5 µg of one of the four recombinant proteins, MetQ, DacB, PnrA, or PspA, in combination with 4 µg CTB in

2-week intervals. The data were statistically analysed using a Kruskal Wallis test accompanied by Dunn’s multiple comparison post-test, with all conditions compared

to control mice that received an intranasal treatment with PBS and CTB. Symbols indicate individual mice, bars represent the group median, and the dotted line

indicates the lower limit of detection. **p < 0.01; ***p < 0.001.

(Figure 5B). The local IgG response for DacB was substantially
lower than MetQ and PspA, which was consistent with the
antibody kinetics. Intranasal immunisation with PspA or MetQ
induced considerable levels of local antigen-specific IgA, whereas
nasal IgA for PnrA and DacB were almost too low to be detected
(Figure 5C). Taken together, these data suggest that local and
serum antigen-specific antibody responses might not perfectly
correlate with protection in vivo, as was especially shown for
PnrA and DacB.

Immunisations With DacB, MetQ, or PnrA
Predominantly Induce IgG1 Responses
To shed light on the type of immune response induced
by the intraperitoneal or intranasal vaccinations with our
candidate proteins in combination with Alum or CTB
as the adjuvant, respectively, we determined the IgG1
and IgG2a/IgG2c levels in post-immune sera (Figure 6).
Overall, intraperitoneal immunisation with the lipoproteins
DacB, MetQ and PnrA elicited higher total IgG responses
than intranasal immunisation (Figures 6A,C). Immunising
mice either intranasally or intraperitoneally with the four
pneumococcal antigens predominantly led to high IgG1
and lower but still substantial levels of IgG2, suggesting
a Th2-biased response (Figures 6B,D). The intranasal
immunisation with DacB resulted in a remarkably high
IgG1/IgG2 ratio and a very weak humoral immune response
overall (Figure 6B). In summary, intranasal immunisation
with the lipoproteins DacB, MetQ, and PnrA reduced
pneumococcal colonisation, and the level of protection
correlated with IL-17A levels. However, immunisation only
partially induced local and systemic antigen-specific antibody
responses.

DISCUSSION

Pneumococcal colonisation of the upper respiratory tract is
a prerequisite for invasive disease (47). Higher colonisation
rates facilitate the transmission of this opportunistic pathogen
from host to host, enabling pneumococci to spread within a
population, as was shown in influenza A co-infection mouse
models (48). Protein-based vaccines should therefore include one
or more antigens that reduce nasopharyngeal colonisation to
prevent infectious diseases and the shedding of pneumococci.
In order to elicit serotype-independent protection, conserved
pneumococcal surface proteins are of special interest. Previous
studies have already shown that PsaA, a highly conserved
manganese-binding lipoprotein, provides cross-protection in a
mouse model of colonisation following intranasal immunisation
(23). Here, we selected 11 pneumococcal lipoproteins with high
sequence homology (>85%) and investigated their potential for
use as subunits of such a vaccine.

The expression and surface accessibility of potential vaccine
candidates is important for the host immune system to recognise
and counteract the dissemination of pneumococci to normally
sterile body sites. Under in vitro growth conditions in a rich
medium, the highest surface abundance of lipoproteins was
observed for PpmA, PnrA, and DacB, while AdcAII and the
thioredoxins Etrx1 and Etrx2 were detected at a substantially
lower abundance. The highest surface abundance was shown
for the choline-binding protein PspA, a major virulence
factor of pneumococci known to be highly immunogenic
and abundant on the surface (43, 49). The pneumococcal
capsular polysaccharide (CPS) is known to mask surface-
exposed antigens, thereby blocking opsonisation by inhibiting
antibody binding and consequently limiting pathogen uptake
by professional phagocytes. Indeed, we also indicate that
the detection of surface-localised lipoproteins was decreased
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FIGURE 5 | Intranasal immunisation with lipoproteins induces lower local and systemic humoral immune responses. (A) Six C57BL/6 mice used for the in vivo

colonisation model were randomly selected for the analysis of their antibody kinetics following an intranasal immunisation with the lipoproteins MetQ, DacB, and PnrA.

The mice received three doses with 5 µg antigen and 4 µg CTB as the adjuvant in 2-week intervals. Before each treatment and 2 weeks after the third immunisation,

antisera were collected to determine the antibody kinetics. The data from each individual mouse are depicted for every protein. Antisera were serially diluted and

measured using the FLEXMAP 3D® system. The response values reflect the levels of antigen-specific IgG. (B,C) Three weeks after the final immunisation, the mice

were challenged with S. pneumoniae D39 (3.4 × 106 CFU) and 3 days after infection their nasal tissues were harvested, homogenised and analysed for local

antigen-specific IgG (B) and IgA (C) using ELISA. The IgG and IgA levels were determined using a 1:10 or 1:2 dilution of the nasal homogenate, respectively. The data

were statistically analysed using a Mann-Whitney U-test. Symbols represent individual mice (n = 12) and the bars represent the group median. *p < 0.05; **p < 0.01;

***p < 0.001.

when using the encapsulated strain D39, while the CPS only
marginally diminished antibody binding to PspA, consistent
with the findings of previous studies (43). The presence of
the CPS could not completely inhibit antibody binding to
the surface-exposed lipoproteins, however, as indicated by the
dose-dependent increase of fluorescence intensities in the flow
cytometric analysis. In previous studies, the iron uptake ABC
transporter lipoproteins PiaA and PiuA and the nucleoside-
binding lipoprotein PnrA were shown to be surface accessible.
Indeed, antigen-specific antibodies bound to encapsulated
pneumococci, but cross-reactivity to heterologous strains was
only demonstrated for the PnrA-specific antibodies, suggesting
that PnrA is conserved across pneumococcal serotypes (11, 50).

It was previously reported that anti-PsaA and anti-PpmA failed to
detect PsaA and PpmA on the surface of different pneumococcal
strains (49), in contrast to our findings. The differences in
the accessibilities of the analysed lipoproteins could be due
to the variable capsular structures and expression levels, their
localisation in the cell wall, and especially the different levels
of expression for each lipoprotein gene. The latter point must
be seriously evaluated when searching for a new protein-based
vaccine, because several studies have shown that pneumococcal
gene expression is highly dependent on the strain and the host
compartment in which the pneumococci reside (51–55).

To evaluate the humoral immune responses induced by
the selected pneumococcal lipoproteins, a multiplex bead-based

Frontiers in Immunology | www.frontiersin.org 13 October 2018 | Volume 9 | Article 240547

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Voß et al. Pneumococcal Lipoproteins Confer Protection

FIGURE 6 | Intraperitoneal and intranasal immunisations with DacB, MetQ, or PnrA predominantly induce IgG1 responses. Antigen-specific total IgG, IgG1, and IgG2

titres were monitored using an ELISA in either post-immune sera following an intraperitoneal immunisation with Alum as the adjuvant (A,B) or in post-challenge sera

obtained after intranasal immunisation with CTB as the adjuvant followed by an intranasal challenge with S. pneumoniae D39 (C,D). Antibody titres of each serum

specimen are denoted as the log10 of the reciprocal dilution of the serum giving twice the average absorbance of the sera derived from the PBS-treated group. The

data were statistically analysed using a Mann-Whitney U-test. Symbols represent individual mice (n = 6 for Alum group, n = 12 for CTB group) and bars represent the

group median. *p < 0.05; **p < 0.01; ***p < 0.001.

immunoassay was performed. Our analysis of convalescent
patient sera revealed high antibody titres for the lipoproteins
PsaA, PnrA, PpmA, and DacB. Therefore, we concluded that
these lipoproteins are immunogenic during natural infections.
PspA elicited an exceptionally high humoral immune response,
as also reported previously (36, 56). We further investigated the
immunogenicity of the selected lipoproteins in an immunisation
study using intraperitoneally vaccinated mice. High endpoint
antibody titres were measured for PsaA, DacB, PnrA, MetQ, and
AdcAII. Immunisation with DacB and MetQ was particularly
effective, rapidly increasing the antibody titres in all mice. Inmost
cases the first booster immunisation was sufficient to elicit high
antibody responses, suggesting that a two-dose immunisation
strategy may be sufficient for accomplishing an optimal
humoral immune response. Taken together, these data show that
pneumococcal lipoproteins are generally highly immunogenic.

Lipoproteins are able to elicit humoral immune responses during
natural pneumococcal colonisation or infections, as shown for
PsaA, PnrA, and DacB (20–22, 56, 57), and may also be used in
immunisation to induce a substantial immune response. These
findings are strongly supported by several other studies using
different lipoproteins as vaccine antigens, including PsaA, PnrA,
PiuA, and PiaA (11, 23, 58).

As mentioned above, colonisation is the first step towards
the establishment of pneumococcal infections Hence, protection
against colonisation is a crucial aspect of pneumococcal vaccine
development. Based on the surface abundances, accessibility
and immunogenicity of the lipoproteins, we selected DacB,
MetQ, and PnrA for the assessment of their protective
potential in a mouse model of colonisation. Subcutaneous
immunisation with PnrA was previously shown to induce
protective immunity against an intraperitoneal challenge with
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heterologous S. pneumoniae strains (11). In the present work,
we further confirmed the potential of PnrA as a component
of protein-based subunit vaccines. Its use in the intranasal
immunisation of mice significantly decreased the bacterial loads
in the nasal cavity. Immunization with DacB and MetQ only
tended to reduce bacterial load in the nasal cavity to an
insignificant extent. Basavanna et al. indicated that systemic
vaccination with MetQ does not extend the survival or result
in differences in the progression of fatal infections. Based on a
transcriptome analysis, they reasoned that this lack of protection
might be due to the low expression of metQ in infection-
related niches (12). This might be the critical factor causing
the comparatively low protective effect of MetQ immunisation
against pneumococcal colonisation in our study.

The pro-inflammatory cytokine IL-17, among others secreted
by Th17 cells, is essential for recruitment and activation
of macrophages and neutrophils to the nasopharynx, a
process critical for clearing pneumococci from the host (59).
Th17-mediated immunity is essential for protection against
pneumococcal colonisation, as CD4+ T cell-derived IL-17,
but not IFNγ or IL-4, is required for the clearance of
colonisation (46). Furthermore, intranasal immunisation with
pneumococcal whole-cell antigens or a subunit-protein vaccine
was found to provide IL-17-mediated, but antibody-independent,
protection (45). Here, we monitored that the nasal tissues
of mice vaccinated with DacB, PnrA, and PspA showed
significantly increased IL-17A levels 3 days after infection with
pneumococci that correlated with protection. These elevated
local IL-17A concentrations probably result from recall responses
of immunization-induced memory towards these antigens.
Accordingly, the immunisation of mice withMetQ, which caused
the lowest reduction in bacterial load, provoked only a slight
increase in IL-17A levels. Consistent with our results, strong
correlations between high IL-17A levels and protection against
colonisation have been reported in previous studies, where
increased ex vivo IL-17A was predictive of in vivo nasal IL-17A
levels following vaccination and, furthermore, was an indicator
of protective efficacy (60, 61).

CTB is a potent adjuvant with various immunomodulatory
functions, which are mainly attributed to its ability to bind
to monosialotetrahexosylganglioside (GM1). GM1 is broadly
distributed in a variety of cell types, including the epithelial cells
of the gut and antigen-presenting cells, macrophages, dendritic
cells, and B cells. Therefore, CTB can enhance the immune
responses to bystander antigens, a phenomenon indicated by the
production of effective antigen-specific antibodies at the mucosal
surfaces (62–65). Immunity to pathogens at mucosal surfaces is
especially driven by antigen-specific secretory IgA (sIgA), which
acts as an inhibitor of adherence and inflammation and is able
to neutralise viruses, toxins and enzymes (66–70). Here, we
showed that intranasal immunisation with PspA plus CTB had
the strongest effect on the reduction of pneumococcal load in the
nasal cavity. We could only detect considerable local IgA levels in
a few mice immunised with PspA and CTB, although they were
still significantly higher than those found for DacB and PnrA. In
contrast, substantial amounts of nasal IgGwere detected for PspA
and MetQ, though significantly less DacB- and PnrA-specific

local IgG was identified. After either intranasal immunisation
with CTB followed by a challenge with S. pneumoniae D39
or intraperitoneal immunisation with Alum as the adjuvant,
the systemic humoral immune responses varied depending on
the antigen and route of immunisation. Overall, they were
characterised by a predominance for IgG1 and substantial
IgG2a/IgG2c production, suggesting a primary Th2 response,
which is consistent with previous studies and was attributed to
the use of Alum as adjuvant (63, 71, 72). While intraperitoneal
immunisation with DacB and Alum as an adjuvant led to a
strong systemic antibody response, the intranasal administration
of DacB in combination with CTB induced only marginal
levels of IgG production. The opposite was observed for PspA,
where intranasal immunisation provoked higher antibody titres
compared with the intraperitoneal administration. It is unclear
why PspA is a potent immunogen when administered in
combination with CTB via the nasal route but less immunogenic
in a systemic vaccination using Alum as an adjuvant; however,
our results are in accordance with a previous study using a
different mouse strain and a slightly different immunisation
protocol (73). It has been reported that the efficient induction
of an immune response depends on the adjuvant, the route
of immunisation and the immunogenicity of the antigen itself
(74, 75). Both Alum and CTB represent potent adjuvants, as
the antibody titres for at least two proteins in our vaccinations
were highly elevated. This further indicates that, in principle,
our tested lipoproteins are immunogenic, a fact supported by
the analysis of convalescent patient sera. It therefore seems
likely that the route of immunisation has a profound role on
the magnitude of the immune response. In a vaccination study
where rats were immunised with three structurally different types
of pneumococcal polysaccharide (PPS-3, PPS-4, and PPS-14)
using four immunisation routes, remarkable differences were
observed in both the magnitude of the immune response and
the distribution of the isotypes (76). The authors concluded that,
besides the route of immunisation, the structural features of
the pneumococcal polysaccharides have a pivotal influence on
the elicited immune response. Likewise, structural differences
of the proteins could be one of the reasons for the varying
immune responses in vivo. Although intranasal vaccination
with DacB could not induce high levels of antigen-specific
antibody production, it had a drastic effect on the reduction of
pneumococcal colonisation accompanied by elevated local levels
of IL-17. This suggests that protection is rather characterised by
a cellular immune response mediated by local antigen-specific
CD4+ memory T cells than by a humoral immune response.
Accordingly, in a previous study it was shown that protection
against pneumococcal colonisation by intranasal immunisation
with three pneumococcal proteins (PspC, PsaA, and PdT) was
dependent on CD4+ T cells but independent of antibodies (45).
It therefore remains unclear whether local or systemic antibody
responses, especially towards DacB, result in the protective
effect in the mouse model of colonisation following intranasal
immunisation.

In conclusion, we showed that vaccination of mice with a
monovalent protein-based vaccine containing the lipoprotein
PnrA impairs nasopharyngeal colonisation by pneumococci
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after intranasal challenge with S. pneumoniae D39. There
was a possible protective effect for DacB and MetQ as
vaccine candidates, although it was less pronounced and not
significant. The lipoproteins evaluated here are highly conserved
among pneumococcal serotypes, abundant on the pneumococcal
surface, and immunogenic. These properties mean they are
promising protein antigens for a next-generation subunit
vaccine for the reduction of pneumococcal colonisation, which
could be accompanied by a decline in the transmission of
pneumococcal infections. Future studies are required to elucidate
the mechanisms of protective immunity induced by these
lipoproteins and to identify the optimal route of immunisation
and appropriate adjuvant.
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Pulmonary tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb),

remains a global pandemic, despite the widespread use of the parenteral live

attenuated Bacillus Calmette–Guérin (BCG) vaccine during the past decades. Mucosal

administration of next generation TB vaccines has great potential, but developing a

safe and efficacious mucosal vaccine is challenging. Hence, understanding the in vivo

biodistribution and pharmacokinetics of mucosal vaccines is essential for shaping the

desired immune response and for optimal spatiotemporal targeting of the appropriate

effector cells in the lungs. A subunit vaccine consisting of the fusion antigen H56

(Ag85B-ESAT-6-Rv2660) and the liposome-based cationic adjuvant formulation (CAF01)

confers efficient protection in preclinical animal models. In this study, we devise a novel

immunization strategy for the H56/CAF01 vaccine, which comply with the intrapulmonary

(i.pulmon.) route of immunization. We also describe a novel dual-isotope (111In/67Ga)

radiolabeling approach, which enables simultaneous non-invasive and longitudinal

SPECT/CT imaging and quantification of H56 and CAF01 upon parenteral prime and/or

i.pulmon. boost immunization. Our results demonstrate that the vaccine is distributed

evenly in the lungs, and there are pronounced differences in the pharmacokinetics of

H56 and CAF01.We provide convincing evidence that the H56/CAF01 vaccine is not only

well-tolerated when administered to the respiratory tract, but it also induces strong lung
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mucosal and systemic IgA and polyfunctional Th1 and Th17 responses after parenteral

prime and i.pulmon. boost immunization. The study furthermore evaluate the application

of SPECT/CT imaging for the investigation of vaccine biodistribution after parenteral and

i.pulmon. immunization of mice.

Keywords: H56/CAF01 vaccine, SPECT/CT imaging, dual-isotope 111In/67Ga, pulmonary immunization, T cells,

mucosal immunity, nanomedicine, drug delivery

INTRODUCTION

Mycobacterium tuberculosis (Mtb), which is causing pulmonary
tuberculosis (TB), has infected humans for thousands of years
and it is estimated that about one third of the global population
is latently infected with TB, which continues to infect 10
million and kill more than 1.5 million people every year (1–
3). Increased multi-drug resistance and extensive drug-resistance
against existing antibiotics, and the very slow progress in
developing new types of antibiotics might result in even poorer
prognosis in the future if novel solutions to fight TB are not
found. To date, the only licensed TB vaccine remains the live
attenuated Bacillus Calmette–Guérin (BCG) vaccine developed
from the closely related Mycobacterium bovis, causing TB in
cattle. The BCG vaccine is one of the most widely used vaccines
ever in the world. It is effective against disseminated childhood
TB, but it fails to control pulmonary TB in adolescents and adults
(4, 5). Hence, there is an urgent medical need for designing
novel vaccines and delivery strategies, which can effectively boost
BCG-primed immune responses in adolescents and adults, and
ultimately induce protective immunity against TB (6, 7).

After infection in the lungs, Mtb adopts a variety of immune
evasion strategies, which chiefly includes suppression of an
innate immune response and subsequently delaying T cell
responses in the lungs by approximately 2 weeks (8). These
evasion strategies enable Mtb to proliferate in the lungs (8–
10), eventually explaining the poor efficacy of parenteral BCG
vaccination in humans (8, 11). Therefore, homologous or
heterologous boost immunization strategies aiming at inducing
T-cell immunity in the lungs have the potential to fill this gap
(6, 10, 12). Recent preclinical studies have reported induction
of protective T-cell immunity in the lungs upon mucosal
vaccination via the airways (13–18). Mucosal immunization
in the lungs has been shown to activate local dendritic
cells (DCs) (19) to induce antigen-specific T cells, which
effectively home back to the lung parenchyma, where they
control initial Mtb replication after infection (6, 18). However,
almost all TB vaccine candidates in the global clinical pipeline

Abbreviations: BCG, Bacillus Calmette–Guérin; CAF01, cationic adjuvant

formulation 01; CT, computed tomography; DC, dendritic cell; DDA;

dimethyldioctadecylammonium; DTPA, diethylenetriamine pentaacetic acid; Ga,

gallium; ILN, inguinal lymph node; In, indium; i. pulmon., intrapulmonary; ITLC,

instant thin layer chromatography; MBq, megabecquerels; MLN, mediastinal

lymph node; Mtb, Mycobacterium tuberculosis; NOTA, 1,4,7-triazacyclononane-

1,4,7-triacetic acid; PDI; polydispersity index; PLN, popliteal lymph node; Rf,

retention factor; SPECT, single-photon emission computed tomography; SUV,

standardized uptake value; TB, tuberculosis; TDB, trehalose-6,6’-dibehenate, TLN,

tracheobronchial lymph node; VOI, volume of interest.

are administered parenterally (20). Subunit vaccines based on
adjuvanted, recombinant TB proteins represent an attractive
approach for airway mucosal vaccination (21–23). Besides,
vaccine delivery in lungs through inhalation may circumvent
the potential safety concerns associated with administration of
gene delivery systems, live attenuated organisms, and potentially
neurotoxic adjuvant molecules through the nasal route (24,
25). However, thorough safety assessment of airway mucosal
vaccination is required.

Understanding the biodistribution and pharmacokinetics

of injectable and mucosally administered subunit vaccines is
essential (i) for shaping and orchestrating the desired immune
response and (ii) for optimal spatiotemporal targeting of the

appropriate populations and numbers of effector cells at the site
of infection in the lungs. Molecular imaging assessment of such

low-dose biological medicinal products using for example single-
photon emission computerized tomography (SPECT), allows for
the characterization and quantification of biological processes at

the cellular and subcellular level in intact living subjects with
sufficient spatial and temporal resolution (26). SPECT imaging
is based on the measurement of single photons emitted by γ-
emitting radionuclides, e.g., 99mTechnitium, 111Indium (111In),
and 67Gallium (67Ga). Furthermore, SPECT imaging is non-
invasive and quantitative, permitting uniform and repeated

measurements using a single animal subject, thus exploiting
the statistical power of longitudinal studies and reducing the
required number of animals. In addition, it allows for tracer

multiplexing, where several isotopes of different energies can
be used in the same animal. Hence, this imaging modality is

an effective substitute for conventional ex vivo biodistribution
studies, which usually require a larger number of animals

assessed at multiple time points. In addition, high structural
resolution can be achieved by combining the robustness of
morphological/anatomical [e.g., computer tomography (CT)]
and molecular imaging modalities, which is referred to as
multimodality imaging, such as SPECT/CT (26–28). SPECT/CT
imaging has been successfully applied in many areas of medical
science, but very few reports have been published on SPECT/CT
imaging-based investigations for vaccines.

The TB protein subunit vaccine H56/CAF01, which comprises
the multi-stage subunit TB fusion protein H56 (Ag85B-ESAT-

6-Rv2660c) co-formulated with the liposomal adjuvant referred
to as cationic adjuvant formulation 01 (CAF01), has been

shown to induce protective immunity before and after Mtb
exposure in preclinical models (29, 30). H56 is currently
tested in a clinical phase 2a trial with the IC31 R© (Valneva,
Lyon, France) adjuvant (31). CAF01, which is based on the
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surfactant dimethyldioctadecylammonium (DDA) bromide and
the glycolipid trehalose-6,6′-dibehenate (TDB), has been shown
to deliver antigen to and activate DCs through the Toll-like
receptor (TLR)-independent Syk-CARD9 pathway (32), and
it induces a Th1- and Th17-biased CD4+ T cell response
along with a humoral immune response (33, 34). In clinical
phase I trials, CAF01 has been found safe, well-tolerated
and immunogenic when co-administered with a protein-based
TB antigen (NCT00922363) or a cocktail of HIV-1 peptides
(NCT01141205). In preclinical studies in mice, CAF01 mixed
with H56 has been shown to be safe and immunogenic
following intranasal prime and/or boost immunizations (22).
Thus, H56/CAF01 is a safe and efficacious multi-faceted TB
vaccine.

In this study, we tested for the first time mucosal application
of H56/CAF01 using intrapulmonary (i.pulmon.) administration
in the airways. We also report the first radiolabeling and
preclinical SPECT/CT imaging of the biodistribution and
pharmacokinetics of a subunit vaccine. We provide compelling
evidence that mucosal administration of H56/CAF01 in
the airways induces high levels of antigen-specific lung
mucosal IgA and polyfunctional CD4+ T-cell responses
following intramuscular (i.m.) priming and i.pulmon. mucosal
boost immunization. In addition, strong systemic IgA and
polyfunctional CD4+ T-cell responses are induced, which are
comparable to the systemic responses induced upon homologous
i.m. prime-boost immunization. We show successful dual-
isotope radiolabeling of H56 and CAF01 with 111In and 67Ga and
observe pronounced differences in the pharmacokinetics of H56
and CAF01 following i.pulmon. immunization. Hence, this study
underlines the promising potential of H56/CAF01 as a vaccine
candidate for airway mucosal immunization, and thus provides
the basis for its further preclinical and clinical development as
an inhalable and self-administrable aerosol vaccine.

MATERIALS AND METHODS

Materials
DDA and 18:0 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-diethylenetriaminepentaacetic acid
(ammonium salt) (PE-DTPA) were obtained from Avanti
Polar Lipids (Alabaster, AL, USA), and TDB was purchased
from Niels Clauson-Kaas A/S (Farum, Denmark). S-2-(4-
Isothiocyanatobenzyl)-diethylenetriamine pentaacetic acid
(p-SCN-Bn-DTPA) and 2-S-(4-Isothiocyanatobenzyl)-1,4,7-
triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) were
procured from Macrocyclics (Plano, TX, USA). Recombinant
H56 protein was produced in E. coli as previously described
(35). It was reconstituted in 20mM glycine buffer (pH 8.8),
checked for purity and validated for residual DNA, endotoxins
and bioburden following internal good manufacturing practice
standards. All other chemicals and reagents were of analytical
grade and were acquired from commercial suppliers.

Preparation and Physicochemical
Characterization of Vaccine Formulations
Liposomes were prepared by using the thin film method and
characterized for average intensity-weighted hydrodynamic

diameter (z-average), polydispersity index (PDI), and zeta-
potential using a Malvern Zetasizer Nano-ZS (Malvern
Instruments, Worcestershire, UK) by dynamic light scattering
using photon correlation spectroscopy and Laser-Doppler
electrophoresis, respectively, as previously described (33).
Briefly, weighed amounts of DDA and TDB (5:1, w/w) were
dissolved in chloroform/methanol (9:1, v/v) in a round bottom
flask. The organic solvents were removed by rotary evaporation
under vacuum resulting in the formation of a thin lipid film. The
lipid film was washed twice with 99% (v/v) ethanol and dried
overnight under vacuum to remove trace amounts of the organic
solvents. On the following day, the lipid film was hydrated
with 10mM Tris buffer (pH 7.4), sonicated for 5min using
an ultrasound cleaner (Branson Ultrasonic Cleaner, Danburry,
CT, USA), and heated to 60◦C for 1 h in a water bath with
vortexing every 10th min. In addition, the liposome dispersions
were tip-sonicated 20min after the rehydration for 20 s with
a 150W Branson tip-sonicator to reduce the particle size. The
final concentration of CAF01 was 20/4 mg/mL of DDA/TDB,
corresponding to a molar ratio of 89:11. The H56 solution was
mixed with equal volumes of CAF01 liposome dispersions at
concentrations of 5 and 10µg/mL, respectively, and H56 was
allowed to adsorb to CAF01 by incubation for 30min at room
temperature (36).

Radiolabeling of CAF01 and H56
For radiolabeling of CAF01 liposomes, DDA and TDB were
dissolved in chloroform/methanol (9:1, v/v) with 18:0 PE-
DTPA (10%, w/w), and the liposome dispersions were prepared
in 100mM HEPES buffer (pH 7.0) as described above. All
H56/CAF01 vaccine formulations were radiolabeled as follows:
The 18:0 PE-DTPA (10% w/w) chelated CAF01 liposomes
were purified using 10 kDa centrifugal filters (Amicon R© Ultra
0.5mL, Merck Life Science, Hellerup, Denmark) to remove
excess chelator. For 111In-labeling, 111InCl3 (55.5 MBq, 5 µL
in 0.1M HCl) was added to purified DTPA-CAF01 in HEPES
buffer (175 µL, 100mM, pH 7.0), and the reaction mixture
was stirred (600 rpm) at room temperature for 1 h. Instant thin
layer chromatography (ITLC) showed high labeling efficiency,
and 111In-CAF01was therefore used without further purification.
The collected 111In-CAF01 dispersion was diluted to a final
volume of 275 µL with HEPES buffer, and non-labeled H56 (75
µL, 1 µg/µL) was allowed to adsorb for 30min to the liposomes
before administration.

The H56 protein in 20mM glycine buffer (pH 8.8) was buffer-
exchanged into 100mM sodium bicarbonate buffer (pH 8.3)
using 10 kDa ultracentrifugal filters (Amicon R© Ultra 0.5mL,
Merck Life Science) and incubated on an Eppendorf shaker
for 5 h at 10◦C with p-SCN-Bn-DTPA or p-SCN-Bn-NOTA,
respectively, at a molar ratio of 1:5. After 5 h, unreacted DTPA
or NOTA was removed by centrifugation through 30 kDa
centrifugal filters (Amicon R© Ultra 0.5mL, Millipore, Ontario,
Canada), washed and buffer-exchanged into 100mM HEPES
buffer (pH 7.0). For 111In-labeling, 111InCl3 (148 MBq/200 µg
of H56) was added to H56, and the mixture was incubated
for 1 h on an Eppendorf shaker at room temperature. For
67Ga-labeling, 67GaCl3 (19.5 MBq/70 µg of H56) was added to
H56 and incubated for 1 h on an Eppendorf shaker at room

Frontiers in Immunology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 282555

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Thakur et al. SPECT/CT and Mucosal Immunization of H56/CAF01 Vaccine

temperature. 111In-H56 or 67Ga-H56 was diluted to 500 or 350
µL, respectively, with HEPES buffer and mixed with non-labeled
or 111In-CAF01 liposomes 30min prior to immunization.

Radiolabeling Efficiency and Purity of
111In-H56, 67Ga-H56 and 111In-CAF01
The radiochemical purity and labeling efficiency were measured
by ITLC using a Tec-Control stationary phase (Biodex Medical
Systems, Shirley, NY, USA) and a 0.1M EDTA (pH 4) mobile
phase. The 111In-CAF01 and 111In-H56 or 67Ga-H56 complexes,
which have larger molecular weight, would remain at the
origin, while the free 111In elutes with the mobile phase at
the solvent front [Retention Factor (Rf) (111In-CAF01, 111In-
H56, or 67Ga-H56) = 0, Rf (free 111In3+ or free 67Ga3+) = 1].
The location of the radioactivity was assessed using a Cyclone
Phosphorimager and a photostimulable phosphor plate (Perkin
Elmer, Waltham, MA, USA). A NanoDrop spectrophotometer
(Thermo Fischer Scientific, Waltham, MA, USA) was used
to assess the protein concentration [A280 with E1% set to
20.5 L/(g·cm)] and determine the specific activity. 111In-H56
was analyzed further via 10% native- and SDS-PAGE using
established protocols in the lab.

In vivo SPECT/CT Imaging
The imaging studies, which were conducted at The University
of British Columbia, were performed in accordance with the
Canadian Council on Animal Care (CCAC), and the protocols
were approved by the Animal Care Committee (ACC) of the
University of British Columbia (A16-0150). Five-to 6-week old
healthy female C57BL/6 mice were purchased from Charles River
and allowed free access to food and water. In the first study,
mice were allocated into four groups of three individuals. All
groups were immunized s.c. (at the base of the tail toward
the right) or i.pulmon. with either 10 µg cold H56 adjuvanted
with 111In-CAF01 (125/25 µg DDA/TDB) or 10 µg 111In-
H56 adjuvanted with cold CAF01 (125/25 µg DDA/TDB) in a
total volume of 200 µL or 50 µL, respectively. In the prime-
boost immunization study, mice were distributed into two
groups of three. Two groups were primed s.c. with 200 µL
of either 5 µg cold, unadjuvanted H56 or 5 µg cold H56
adjuvanted with cold CAF01 (250/50 µg DDA/TDB). Two
weeks later, booster immunization was performed by i.pulmon.
administration of either 10 µg unadjuvanted 67Ga-H56 or 67Ga-
H56 adjuvanted with 111In-CAF01 (125/25 µg DDA/TDB) in
a total volume of 50 µL. The i.pulmon. administration was
performed using aMicroSprayer R©/Syringe Assembly (MSA-250-
M, Penn-Century, Inc., Wyndmoor, PA, USA) according to a
previously reportedmethod (37). In brief, mice were anesthetized
by intraperitoneal (i.p.) injection of Ketamine (Ketamin, MSD
Animal Health, Havneholmen, Denmark)/Xylazine (Rompun
Vet, Bayer, Copenhagen, Denmark) 100/5 mg/kg, respectively,
and placed on a rodent tilting work stand at a 45◦ angle by
the upper incisors (Hallowell EMC, Pittsfield, MA, USA). For
the prime-boost immunization study, anesthesia was induced
with 5% isoflurane, the mice were placed on a rodent tilting
intubation stand with an integrated anesthesia facemask (Kent
Scientific, Torrington, CT, USA), and anesthesia was maintained

with 3% isoflurane. A cold light source with a flexible fiber-optics
arm (SCHOTT AG, Mainz, Germany) was used for optimal
illumination of the trachea, which appeared as a white light
spot. A cotton swab was used to open the lower jaw of the
mouse, and the tongue was displaced to the left with a blunted
forceps. A laryngoscope (WelchAllen, NY, USA) fitted with a
41mm intubation specula (Halowell EMC) was used with the
other hand for maximal oropharyngeal exposure. After a clear
view of the trachea, the laryngoscope with the specula was
taken out, and 50 µL of the formulation was administered
intratracheally with the MicroSprayer R©/Syringe Assembly right
above the carina (first bifurcation) to ensure uniform delivery
into both lungs. The tip of the syringe was immediately
withdrawn, and the mouse was taken off the intubation stand.
During SPECT/CT imaging, the mice were anesthetized using
isoflurane (1–3% for maintenance, up to 5% for induction)
and oxygen from a precision vaporizer, and they received
s.c. injection of Lactated Ringer’s solution (0.5mL, B. Braun,
Mississauga, Canada) for hydration prior to the SPECT/CT
imaging scan. The SPECT/CT imaging was performed using a
VECTor/CT preclinical small animal scanner (MILabs, Utrecht,
The Netherlands). The respiratory rate and body temperature
of the mice were monitored continuously during the scans, and
the isoflurane dose and animal anesthesia bed temperature were
adjusted accordingly. All animals recovered after each scan. Mice
were euthanized 144 h post-administration using CO2, the blood
was collected by cardiac puncture, and the tissues were isolated
to quantify the biodistribution.

SPECT/CT Parameters and Image
Reconstruction
Whole-body SPECT 111In and 67Ga data were acquired using an
integrated VECTor/CT preclinical scanner (MILabs) equipped
with an XUHS-2mm mouse multi-pinhole collimator. Dynamic
whole-body scans were acquired in list-mode format over
40min (10 min/frame) post-s.c. or -i.pulmon. administration
to study the biodistribution of the protein and the liposomes
every 10min. Subsequently, static 40min scans were performed
for the 6 and 24 h scans, while longer imaging times of
60 and 90min were performed at subsequent imaging time-
points (96 and 144 h) after vaccine administration to increase
the statistical signal and the quality of the 111In and 67Ga
images. Following each SPECT acquisition, a whole-body CT
scan was acquired to obtain anatomical information, and both
images were registered. For the first imaging study, the 111In
photopeak window was centered at 171 keV with a 20%
energy window width. For assessment of the biodistribution
in the prime-boost immunization study, the 111In photopeak
window was centered at 20 keV with a 60% energy window
width, while the 67Ga photopeak was centered at 96 keV
with a 20% energy window width. For quantitative analysis,
SPECT image reconstructions were carried out using the pixel-
ordered subset expectation maximization (POSEM) algorithm
(38), which includes resolution recovery and compensation
for distance-dependent pinhole sensitivity. Further details are
provided in the Supplementary Section.
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Biodistribution
After the last scan at day 6 (144 h), blood samples were collected
by cardiac puncture, and a complete biodistribution assessment
was conducted by collecting heart, liver, kidneys, lungs, lymph
nodes (LNs), small intestine, bladder, muscle, site of injection,
spleen, stomach, bone, trachea, and pancreas. The organs were
cleaned from blood and weighed, and the radioactivity was
measured using a gamma counter (Packard Cobra II autogamma
counter, Perkin Elmer, Waltham, MA, USA). The calibration
factor for 111In was 163631 cpm and 67Ga was 78395 cpm
(instrument-specific). The total weight of the organs was used to
calculate the administered dose per organ (%AD/organ).

Immunizations
Six-to 8-week old female CB6F1 (BALB/c x C57BL/6, Scanbur,
Karlslunde, Denmark) hybrid mice were acquired and
acclimatized for 1 week before experimental manipulation.
All experimental work related to vaccine immunogenicity
was performed at University of Copenhagen and approved by
the Danish National Experiment Inspectorate under permit
2016-15-0201-01026. The studies were performed in accordance
with the European Community directive 86/609 for the care and
use of laboratory animals. Mice were assigned to five groups
of six individuals, and they were immunized three times using
a dose volume of 50 µL of Tris buffer (pH 7.4) at 2-week
intervals, which is in line with our previous studies showing
that three immunizations are required when applying the
s.c. route of administration for optimal immune stimulation
(29, 39). The immune responses were evaluated 2 weeks after
the final immunization. All vaccine priming was performed by
i.m. administration in the right thigh muscles, while the two
booster immunizations were given i.pulmon. The first group of
mice was primed with saline (n = 3) and 5 µg unadjuvanted
H56 (n =3), respectively, and boosted i.pulmon. with 10 µg
unadjuvanted H56. The second group (250/50 3∗i.m., n = 6)
was primed and boosted i.m. with 5 µg H56 adjuvanted with
CAF01 at a dose of 250/50 µg DDA/TDB. Groups 3–5 (n =

6 each) were all primed i.m. with 5 µg H56 adjuvanted with
CAF01 at a dose of 250/50 µg DDA/TDB. These three groups
were boosted i.pulmon. with 10 µg H56 adjuvanted with CAF01
at a dose of 125/25 (125/25 i.m./2∗i.pulmon.) and 250/50 (250/50
i.m./2∗i.pulmon.) for groups 3 and 4, respectively, and 500/100
µg DDA/TDB (500/100 i.m./2∗i.pulmon.) for group 5. CAF01
alone does not induce immunological responses (40, 41). Hence,
it was not included as a control in this study. In addition, we
have previously shown that there is no difference between s.c.
(29) and i.m. (42) immunization with the H56/CAF01 vaccine in
mice with respect to immunogenicity and protection against TB
infection. Hence, we chose the i.m. route of administration for
evaluation of vaccine immunogenicity.

In vivo Staining
Anti-CD45.2 FITC (clone 104; BD Biosciences, Lyngby,
Denmark) was diluted to 10µg/mL in sterile PBS, and 250 µL
of the diluted antibody was injected (i.v.) via the tail vein 3min
prior to euthanasia of the CB6F1 mice.

Sample Collection and Cell Preparation
Blood samples were taken by cardiac puncture. Serum was
isolated by allowing the blood to clot at room temperature, and
the clot was removed by centrifugation at 2,000 × g for 10min.
Subsequently, serum was collected and stored at −20◦C. The
lungs were aseptically removed from the euthanized mice and
transferred to gentleMACS C tubes (Miltenyi Biotec Norden
AB, Lund, Sweden) containing 2mL of RPMI 1640 (Sigma-
Aldrich, Brøndby, Denmark), 5% (v/v) FCS (Gibco Thermo
Fisher, Hvidovre, Denmark) and 0.8 mg/mL collagenase type
IV (Sigma-Aldrich, St. Louis, MO, USA). They were dissociated
into 1-2mm sized pieces using the gentleMACS dissociator
(Miltenyi Biotec Norden AB). After 1 h incubation at 37◦C,
the lung pieces were dissociated again using the gentleMACS
dissociator and centrifuged at 700 × g for 5min. The lung
supernatants were collected and stored at −20◦C until antibody
detection. The lung cell pellets were homogenized using a
cell strainer (Falcon, Durham, NC, USA) and washed twice
using RPMI-1640 (Sigma-Aldrich). The spleen, the lung-draining
tracheobronchial and mediastinal lymph nodes (TLNs and
MLNs) and lymph nodes draining the site of i.m. injection,
i.e., inguinal (ILNs) and popliteal lymph nodes (PLNs), were
aseptically collected. Single-cell suspensions were obtained from
the spleens and draining LNs by homogenizing the organs
through a nylon mesh cell-strainer (Falcon) followed by two
washings with RPMI 1640. The cells were grown in microtiter
plates (Nunc, Roskilde, Denmark) containing 2 × 105 cells per
well for cytokine assays, or 1 × 106 cells per well for flow
cytometry in 100 µL RPMI-1640 (Sigma-Aldrich) supplemented
with 5 × 10−5 M 2-mercaptoethanol (Gibco Thermo Fisher),
1% (v/v) sodium pyruvate (Sigma-Aldrich), 1% (v/v) penicillin-
streptomycin (Gibco Thermo Fisher), 1%HEPES (Gibco Thermo
Fisher), and 10% (v/v) FCS (Gibco Thermo Fisher).

Antibody Detection
MaxisorpTM plates (Nunc) were coated with 0.5µg/mL of
H56 solution. Serum and lung supernatants were 5-fold or
10-fold serially diluted 8-12 times from a 1:1 dilution with
bicarbonate buffer. IgA, IgG1, IgG2a, IgG2b, IgG2c, and IgM
were detected with HRP-conjugated secondary antibodies
(Supplementary Table S1). 3,3′,5,5′-tetramethylbenzidine
(TMB) Plus2 (Kem-En-Tec, Taastrup, Denmark) was used as
substrate. Non-linear regression analysis was performed on
serum O.D. values to calculate the ELISA mid-point titers, i.e.,
EC50 as previously described (43).

Cytokine Assays
For the IFN-γ and IL-17A assays, lung and spleen cells
were stimulated with 2µg/mL H56 antigen. Wells containing
medium alone or 5µg/mL concanavalin A (Sigma-Aldrich) were
included as negative and positive controls, respectively. The
supernatants were harvested after 72 h incubation at 37◦C/5%
CO2, and the IFN-γ and IL-17A production were quantified
by using a standard ELISA protocol. Briefly, purified rat
anti-mouse IFN-γ and IL-17A (Biolegend, San Diego, CA,
USA) were used as capture antibodies, and biotin-conjugated
rat anti-mouse IFN-γ and IL-17A (Biolegend) were used as
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detection antibodies, followed by HRP-conjugated streptavidin
(BD Biosciences, Kongens Lyngby, Denmark) and TMB Plus2
ready-to-use substrate (Kem-En-Tec). The enzymatic reaction
was stopped at optimal color development with 0.2M H2SO4,
and the absorbance was read at a wavelength of 450 nm.

Flow Cytometry
The isolated lung, spleen and lymph node cells were stimulated
in vitro in media containing 1µg/mL anti-CD28 (37.51; BD
Biosciences) and 1µg/mL anti-CD49d (9C10; BD Biosciences)
without antigen, or in the presence of 2µg/mL H56 for
1 h, followed by incubation for 5 h at 37◦C in the presence
of 10µg/mL brefeldin A (Sigma-Aldrich) and 0.7 µL/mL
monensin/Golgi-stop (BD Biosciences). Following overnight
storage at 4◦C, the cells were washed with FACS buffer [PBS
containing 0.1% (w/v) sodium azide and 1% (v/v) FCS] and
stained for 30min at 4◦C for surface markers using anti-CD4-
APC-eF780 (RM4-5; eBioscience, San Diego, CA, USA) and anti-
CD44-APC (IM7; Biolegend) mAbs. For intracellular staining,
cells were washed with FACS buffer, fixed and permeabilized
using the Cytofix/Cytoperm kit (BD Biosciences) and stained
for 30min at 4◦C for intracellular cytokines using anti-
IFN-γ-PE-Cy7 (XMG1.2; eBioscience), anti-TNF-α-PE (MP6-
XT22; eBioscience), and anti-IL-17A-PerCP-Cy5.5 (eBio17B7;
eBioscience). Cells were twice washed, resuspended in FACS
buffer and analyzed using an LSRFortessa flow cytometer
(BD Biosciences). Gates for the surface markers are based on
fluorescence-minus-one controls. All flow cytometric analyses
were performed using the FlowJo software v10 (Tree Star,
Ashland, OR, USA).

Statistical Analysis
GraphPad Prism software (Graphpad Software Inc, La Jolla,
CA, USA) was used to perform all statistical analyses.
SPECT/CT imaging-based SUVs and ex vivo biodistributions
were compared between the groups by two-way ANOVA and
multiple comparisons were performed by Sidak’s post-test.
Immune responses were compared between the groups by
ANOVA (IFN-γ and IL-17 responses, and antibody responses
measured by ELISA) or two-way ANOVA (polyfunctional T
cells) at a 0.05 significance level, and pair-wise comparison was
performed using Tukey’s post-test. A value of p < 0.05 was
considered significant.

RESULTS

Radiolabeling of CAF01 Liposomes and
H56 Protein Does Not Influence Their
Physicochemical Characteristics
CAF01 was prepared by using the thin film method combined
with ultrasonication as previously described (44). The resulting
unilamellar liposomes had an average hydrodynamic diameter of
approximately 153± 17 nm, a PDI of 0.324± 0.048 (Figure 1A),
and a zeta-potential of 63.6 ± 11.7 (n = 5, results not shown),
which are in accordance with previously reported values for
CAF01 prepared using the same method (44–46). The chelation
with 18:0 PE-DTPA significantly decreased the size of the CAF01

liposomes (average size = 123 ± 11 nm, PDI = 0.270 ± 0.021,
Figure 1A, zeta-potential= 69.9± 8.2, n= 8, results not shown).
However, the subsequent radiolabeling with 111In (average size=
149.8 ± 36 nm, PDI = 0.292 ± 0.092, Figure 1A, zeta-potential
= 55.8 ± 8.52, n = 3, results not shown) had no effect on
the physicochemical properties of CAF01 liposome dispersions
as their hydrodynamic diameter, PDI and zeta-potential are
maintained after radiolabeling (Figure 1A). The radiochemical
purity and labeling efficiency of 111In-CAF01 (Figure 1B), 111In-
H56 (Figure 1C) and 67Ga-H56 (Figure 1D) were measured
using ITLC. 111In-labeling of both CAF01 and H56 using
the 18:0 PE-DTPA and p-SCN-Bn-DTPA chelator, respectively,
was consistently accomplished with labeling efficiencies of
approximately 95% for 111In-CAF01 (Figure 1B) and 80% for
67Ga-H56 (Figure 1C). The average number of bound DTPA
molecules was 5 per molecule lipid molecule in CAF01 and
1 per molecule of H56, and the average number of bound
NOTA molecules was 1 per molecule of H56. 67Ga-labeling of
H56 using the p-SCN-Bn-NOTA chelator resulted in labeling
efficiencies of ∼93% (Figure 1D). The protein concentrations of
the radiolabeled 111In-H56 and 67Ga-H56 were 1 and 0.9 mg/mL,
respectively. Both 111In- (Figure 1E) and 67Ga-labeled H56
protein (Figures 1F,G) displayed their original molecular weight
of 48 kDa (36) determined using SDS-PAGE, suggesting that the
radiolabeling procedure did not cause any major modification of
the overall size of H56. These data suggest that radiolabeling does
not affect the physicochemical properties of CAF01 and H56.

The H56/CAF01 Vaccine Remains in the
Lungs Following i.pulmon. Immunization,
Whereas Un-Adjuvanted H56 Rapidly
Drains to the Local Lymph Nodes
First, we evaluated the biodistribution and kinetics of the
H56/CAF01 vaccine upon pulmonary administration. Mice were
dosed i.pulmon. with cold H56 + 111In-CAF01 or 111In-H56 +

cold CAF01, respectively, and the vaccine biodistribution and
pharmacokinetics were visualized and quantified by SPECT/CT
imaging at designated time points post-injection (Figure 2A).
On day 6, the mice were euthanized, and the remaining activity
was measured in different organs using a gamma counter. The
SPECT/CT images permitted precise anatomical localization
of 111In-CAF01 and 111In-H56 in the animals (Figures 2B,C).
The images clearly reflect pronounced differences in the
pharmacokinetics of H56 and CAF01 following i.pulmon.
administration, and H56 was cleared much faster from the
lungs than CAF01. Initially, the vaccine (H56 and CAF01) was
apparently distributed evenly in the lungs, and it remained in the
lungs during the first 30min post-injection. Administration via
the i.pulmon. route often results in deposition of a certain dose
fraction of the radiopharmaceutical in the back of the mouth,
which is subsequently swallowed (47). Hence, this dose fraction
will redistribute to the stomach and the upper gastrointestinal
tract, as observed in the 6 h scan. By 6 h, H56 as well as
CAF01 were slowly cleared from the stomach and the intestines,
and continued to transit in the gut up to 24 h after dosing.
The H56 protein could only be detected in the animals up to

Frontiers in Immunology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 282558

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Thakur et al. SPECT/CT and Mucosal Immunization of H56/CAF01 Vaccine

FIGURE 1 | Physicochemical properties of radiolabeled CAF01 liposomes and H56 protein. (A) Chelation of DTPA and radiolabeling of CAF01 with 111 In do not

significantly influence the average intensity-weighted hydrodynamic diameter (z-average, circles, left axis) and polydispersity index (PDI) (squares, right axis),

respectively. Statistical analysis: two-way ANOVA and Tukey’s post-test. Bars represent mean values ± s.d., n = 5 (CAF01), n = 8 (CAF01-DTPA), and n = 3

(111 In-DTPA-CAF01). *p < 0.05 and **p < 0.001. (B) Instant thin layer chromatography (ITLC) analysis of 111 In-DTPA-CAF01. Free 111 In3+ migrates with the solvent

front (Rf = 1.0), whereas 111 In-DTPA-CAF01 stays at the origin (Rf = 0). Left is 111 In-DTPA-CAF01 for s.c. injection and right is 111 In-DTPA-CAF01 for i.pulmon.

administration. (C) ITLC analysis of 111 In-DTPA-H56, where free 111 In3+ migrates with the solvent front (Rf = 1.0, left) and 111 In-DTPA-H56 stays at the origin (Rf =

0, right). (D) ITLC analysis of 67Ga-NOTA-H56, where 67Ga-NOTA-H56 stays at the origin (Rf = 0). (E) SDS-PAGE analysis of 111 In-labeled H56 protein. Lane A

represents a protein ladder, lane B is unmodified H56 protein, lane C is 111 In-DTPA-H56 protein, and lane D is 111 In-DTPA-H56 protein showing the phosphorimager

radioactivity signal. (F) SDS-PAGE analysis of 67Ga-labeled H56 protein. Lane 1 represents the protein ladder, lane 2 is NOTA-H56, and lane 3 is 67Ga-NOTA-H56

protein. (G) Phosphorimager radioactivity signal from 67Ga-NOTA-H56 protein.

24 h post administration (Figure 2C), as compared to CAF01,
which remained longer in the lungs and was detectable until
termination of the experiment (day 6), although with a time-
dependent decline in signal intensity (Figure 2B). Quantification
of the in vivo biodistribution (SUV values) supported these
observations (Figure 2D). The activity observed in the lungs
for CAF01 was relatively higher than the activity measured
for H56 during the entire experiment (Figure 2D, upper left).
Both H56 and CAF01 showed very low activity in the trachea,
kidneys and bladder at the designated time-points, except at
the initial 30min, where a high activity was detected. Notably,
a higher activity was also measured in the stomach 6 and
24 h post injection for H56 than for CAF01, although there
was no difference in the intestinal activity at these time points
(Figure 2D, lower right). Whole body activity was measured
on day 6 after euthanizing the animals and compared to the
total administered dose, and the percentage of the administered
dose per organ/tissue was calculated (Figure 2E). The SPECT/CT
image analysis corroborate with the ex vivo biodistribution
data, which showed that the major part of the radioactive

dose was recovered in the lungs (Figure 2E). However, there
was a statistically significant difference between the remaining
activity of H56 and CAF01 in the left lung. For CAF01, a
relatively low dose fraction of the radioactivity was found in the
liver, kidneys and muscle. In contrast, H56 was detectable in
relatively higher amounts in the liver and the kidneys, confirming
a faster metabolism and elimination of H56 than CAF01. A
comparatively higher activity of H56 than CAF01 was also
observed in other organs, including the lung-draining LNs, which
confirms the pronounced differences in the biodistribution and
pharmacokinetics of H56 and CAF01.

The Vaccine Forms a Depot Following
Parenteral (s.c.) Administration
For control and comparative purposes, we examined the
biodistribution of the H56/CAF01 vaccine following parenteral
administration. Mice were injected s.c. with either 111In-CAF01
or 111In-H56 with cold H56 or cold CAF01, respectively, and
the vaccine biodistribution was visualized and quantified by
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FIGURE 2 | The H56/CAF01 vaccine remains in the lungs following i.pulmon. administration, whereas H56 drains to the local lymph nodes. (A) Experimental scheme:

Mice were exposed i.pulmon. to 10 µg cold H56 adjuvanted with 111 In-CAF01 (125/25 µg DDA/TDB) and 10 µg 111 In-H56 adjuvanted with cold CAF01 (125/25 µg

DDA/TDB), respectively. Animals were imaged by dynamic whole-body SPECT/CT scan for the initial 40min (10 min/frame) and after that static 40min scans at 6 and

24 h, 60min scan at 96 h and 90min scan at 144 h were conducted. Animals were euthanized on day 6 after immunization for ex vivo quantification of the

biodistribution using a gamma counter. Representative SPECT/CT images of a mouse dosed i.pulmon. with cold H56 + 111 In-CAF01 (B) or 111 In-H56 + cold CAF01

(C) and imaged over 144 h post-immunization. (D) Organ SUVs in g/mL of the cold H56 + 111 In-CAF01 or 111 In-H56 + cold CAF01 over 144 h post-immunization;

calculated from dynamic and static SPECT/CT images. Statistical analysis: two-way ANOVA and Sidak’s post-test. Data represent mean values ± s.d., n = 3. *p <

0.05, ***p < 0.001, and ****p < 0.0001. (E) Ex vivo organ biodistribution [% administered dose (AD)/organ] of the cold H56 + 111 In-CAF01 or 111 In-H56 + cold

CAF01 on day 6 (144 h) post-immunization. Statistical analysis: two-way ANOVA and Sidak’s post-test. Bars represent mean values ± s.d., n = 3. **p < 0.01.

SPECT/CT imaging at the designated time-points up to 144 h
post-immunization (Figure 3A). Mice were euthanized 144 h
post-injection for ex vivo quantification of the biodistribution.
The SPECT/CT images clearly showed 111In-CAF01 and 111In-
H56, respectively, in the animals at the site of injection
(Figures 3B,C). CAF01 and H56 displayed a highly comparable
biodistribution after s.c. administration, and the major part of
the dose remained at the injection site for the entire duration
of the experiment, suggesting the formation of a vaccine depot
at the site of injection, as previously published (48). However,
the activity of 111In declined during the experiment to a
minimal level 144 h post-injection. A high activity was observed
at the injection site for both CAF01 and H56 (Figure 3D),
which declined until 144 h (Figure 3D, upper left). However, a
significantly lower activity was detected for H56, as compared

to CAF01, up to 30min post-injection. Due to their relatively
large size and cationic charge, CAF01 liposomes stayed at
the injection site as previously published (48), and almost no
activity of 111In-CAF01 was observed in the kidneys and the
bladder post-injection. In contrast, H56 was cleared faster from
the injection site and was subsequently excreted through the
kidneys, which was evident from the 6, 24, and 96 h post-
injection images (Figure 3D, upper right and lower left) and
a correspondingly higher activity for H56 in the bladder than
CAF01 (Figure 2D, upper middle). The initial sharp increase
in 111In activity within 30min post-injection was due to free
111In (Figure 2D, upper middle) in the radiopharmaceutical.
Almost no activity was observed in the stomach and the intestines
following s.c. immunization (Figure 3D, lowermiddle and right).
As expected, most of the radioactivity was detected at the site of
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injection (Figure 3E). For CAF01, a relatively low dose fraction of
radioactivity was found in the liver, kidneys, and muscle, which
was collected from the right thigh close to the site of injection.
In contrast, radioactivity for H56 was observed in several other
organs besides the liver, kidney and muscle. Comparing the
two, the radioactivity in the kidneys was statistically significantly
higher for H56 than for CAF01, which correlates well with the
SPECT/CT image analyses. Hence, the SPECT/CT and the ex
vivo biodistribution data collectively confirm that the major dose
fraction of CAF01 stays at the site of injection following s.c.
injection, while a small dose fraction of H56 is cleared slowly
from the injection site into the blood stream and is subsequently
excreted through the kidneys.

Combined Parenteral (i.m.) Prime and
Airway (i.pulmon.) Boost Immunizations
Increase H56-Specific IgA Titers in the
Airways
With the objective to establish an immunization protocol
that generates strong local IgA responses in the airways,
we compared vaccine-induced lung IgA responses using
two different vaccination strategies; i.m. prime/i.m. boost
and i.m. prime/i.pulmon. boost immunization. Mice were
immunized twice with CAF01-adjuvanted H56 via the i.m./i.m.
or i.m./i.pulmon. administration routes, respectively, using
different doses of CAF01 to determine the optimal adjuvant
dose. Subsequently, we measured H56-specific IgA, IgG1, IgG2a,
IgG2b, IgG2c, and IgM antibodies in the lung homogenate
supernatants, as well as the IFN-γ and IL-17 production by
H56-restimulated lung cells 2 weeks after the last booster
immunization. For the antibody responses, the mid-point
titers were calculated from O.D. values measured by ELISA.
Significantly higher levels of H56-specific IgA responses in the
lungs (Figure 4A) and the serum (Figure 4B) were measured
for the three groups immunized i.m./i.pulmon, as compared
to the levels measured for mice immunized three times i.m.
Similarly, the lung (Figure 4C) and serum IgG1 responses
(Figure 4D) were significantly higher following i.m./i.pulmon.
immunization using the lowest (125/50 µg DDA/TDB) and
the highest CAF01 dose (500/100 µg DDA/TDB) than 250/50
3∗i.m. immunization. For the other IgG isotype responses in
the lungs (Figures 4E,G,I), no difference was observed between
i.m./i.m. vs. i.m./i.pulmon. immunization schedules, except for
the IgG2b responses (Figure 4G), which were higher for the
animals immunized using the i.m./i.pulmon. than for the animals
immunized using i.m./i.m. schedule. However, the lung IgG2a
responses were lower for 500/100 i.m./2∗i.pulmon. as compared
to 250/50 3∗i.m. immunization (Figure 4E). In general, the serum
H56-specific IgG isotype production was higher for all three
groups immunized i.m./ i.pulmon., as compared to the titers
for the group immunized three times i.m. (Figures 4D,F,H,J).
However, the H56-specific IgG2b responses were lower in the
125/25 i.m./2∗sngsjehdlejhdx, ki.pulmon. group (Figure 4H). As
expected, IgM was only detected at low levels in serum and lung
homogenates (Supplementary Figure S1).

Correlating with these findings, i.m./i.pulmon. immunization
induced high IFN-γ levels in the lungs (Figure 4K), and the

IFN-γ levels were significantly higher for mice vaccinated
once i.m. followed by 500/100 i.m./2∗i.pulmon. as compared
to three i.m. immunizations (250/50). On the other hand,
the IL-17 responses in the lungs were significantly lower for
both 250/50 i.m./2∗i.pulmon. and 500/100 i.m./2∗i.pulmon.
than 250/50 3∗i.m. immunization (Figure 4L). However, the
125/25 i.m./2∗i.pulmon. immunization-induced IL-17 responses
were not significantly different from the responses for mice
immunized three times i.m.. In contrast to the local lung
responses, the systemic IFN-γ and IL-17 responses measured
in serum were significantly higher for the mice immunized
three times i.m. (250/50) as compared to all three i.m./i.pulmon.
immunizations (Figures 4M,N). Overall, i.m./i.pulmon.
immunization induced higher local and systemic antibody and
dose-dependent equivalent cytokine responses than 250/50
3∗i.m. immunization.

Parenteral (i.m.) Prime and Airway
(i.pulmon.) Boost Immunization Cause
Localization of H56-Specific Th1 and Th17
Cells in the Lung Parenchyma
Subsequently, we measured in further detail the T-cell
recruitment, which takes place in i.m.-primed animals during
airway mucosal boost (i.pulmon.) immunization, as compared to
animals receiving an i.m. boost (Figure 5A). First, we examined,
if H56-specific T cells were localized in the lung parenchyma
or in the lung vasculature by subjecting immunized mice to in
vivo intravascular staining. A FITC-labeled anti-CD45 mAb was
injected i.v. 3min before euthanizing the animals, which resulted
in FITC staining of all intravascular, but not parenchymal
lymphocytes, as previously described (49). Subsequently, we
identified the i.v. CD45− and CD45+ populations of H56-
specific CD4+CD44+ T cells producing IFN-γ, TNF-α and
IL-17, respectively, 2 weeks after the last immunization by
intracellular cytokine staining. The i.m./i.pulmon. immunization
strategy caused markedly elevated infiltration of CD4+CD44+

T cells in the lungs, as compared to i.m./i.m. immunization
(Figures 5B,C). Most of these cells were localized in the lung
parenchyma, and the percentage of IFN-γ, TNF-α, or IL-17
cytokine-producing i.v.CD45− cells was significantly higher
for 125/25 i.m./2∗i.pulmon. and 250/50 i.m./2∗i.pulmon. than
250/50 3∗i.m. group (Figure 5B). A similar trend was observed
when we examined the frequencies of each of the single
cytokine-producing i.v. CD45−CD4+CD44+ T cells among the
different immunization groups (Supplementary Figure S2A).
The functionality of the antigen-specific CD4+CD44+ T cells
was determined with respect to their expression of IFN-γ,
TNF-α and IL-17, respectively, or their combinations, for
both immunization strategies by combinatorial Boolean gating
analysis (Figure 5C). The polyfunctionality of the CD4+CD44+

T cells is represented pictorially by pie charts after deduction
of control group responses from all immunization groups. The
i.m./i.pulmon. immunization induced primarily polyfunctional
T-cell populations consisting of double (IFN-γ+TNF-α+ and
TNF-α+IL-17+) and triple (IFN-γ+TNF-α+IL-17+) positive
cytokine-producing memory CD4+CD44+ T cells and a lower
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FIGURE 3 | The H56/CAF01 vaccine forms a depot at the site of injection following s.c. administration. (A) Experimental scheme: S.C. immunization was carried out

with 10 µg cold H56 adjuvanted with 111 In-CAF01 (125/25 µg DDA/TDB) or 10 µg 111 In-H56 adjuvanted with cold CAF01 (125/25 µg DDA/TDB). Dynamic

whole-body SPECT/CT scans were carried out for 40min (10 min/frame) and thereafter static 40min scans at 6 and 24 h, 60min scan at 96 h and 90min scan at

144 h were performed. Animals were euthanized on day 6 after immunization for ex vivo quantification of the biodistribution using a gamma counter. Representative

SPECT/CT images of a mouse injected s.c. with cold H56 + 111 In-CAF01 (B) and 111 In-H56 + cold CAF01 (C), imaged over 144 h post-administration. (D) Organ

SUVs in g/mL of the cold H56 + 111 In-CAF01 or 111 In-H56 + cold CAF01 over 144 h post-immunization; calculated from dynamic and static SPECT/CT images.

Statistical analysis: two-way ANOVA and Sidak’s post-test. Data represent mean values ± s.d., n = 3. *p < 0.05, **p < 0.01, and ****p < 0.0001. (E) Ex vivo organ

biodistribution (% administered dose (AD)/organ] of the cold H56 + 111 In-CAF01 or 111 In-H56 + cold CAF01 on day 6 (144 h) post-immunization. Statistical analysis:

two-way ANOVA and Sidak’s post-test. Bars represent mean values ± s.d., n = 3. **p < 0.01.

frequency of single (IFN-γ+, TNF-α+, or IL-17+) cytokine-
positive effector CD4+CD44+ T cells (Figure 5C, pies). This
shows that there is a CAF01 dose-dependent increase in the
frequency of terminally differentiated effector CD4+CD44+ T
cells producing IFN-γ+ alone (Figure 5C, blue pies), whereas
immunization with a lower dose of CAF01 led to more IL-17
producing memory-line T cells also expressing TNF-α with
or without expression of IFN-γ (Figure 5C, red and light blue
pies). However, there was a dose-dependent increase in the IFN-
γ+TNF-α+ producing CD4+CD44+ T cells (Figure 5C, orange
pies). In agreement with the stronger antibody and cytokine
responses measured above, there was a higher frequency of
H56-specific, cytokine-producing memory CD4+CD44+ T
cells in the lungs following i.m./i.pulmon. immunization, as
compared to the 250/50 3∗i.m. immunization, which induced
very low levels of these cells (Figure 5C, bars). Among the

three groups immunized using i.m./i.pulmon. vaccination,
immunization at the lowest CAF01 dose (125/25 µg DDA/TDB)
induced consistently higher frequencies of cytokine-producing
single, double, and triple cytokine-producing CD4+CD44+ T
cells, except IFN-γ+TNF-α+ subgroup, where immunization
with 250/50 µg DDA/TDB induced the highest frequency of
IFN-γ+TNF-α+ producing CD4+CD44+ T cells.

T cells were also measured in the lymph nodes draining
the lungs (TLNs + MLNs) in immunized mice (Figures 5D,E).
I.m./2∗i.pulmon. immunization with 125/25 and 500/100 µg
DDA/TDB led to a markedly higher frequency of IFN-γ,
TNF-α, and IL-17 cytokine-producing CD4+CD44+ T cells as
compared with 250/50 3∗i.m. immunization (Figure 5D). At
the individual cytokine level, i.m./i.pulmon. immunization with
the highest CAF01 dose (500/100 µg DDA/TDB) induced the
highest CD4+CD44+ T-cell levels (Supplementary Figure S2B).
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FIGURE 4 | Strong antibody and cytokine responses in the lungs and serum after parenteral (i.m.) prime and airway (intrapulmonary, i.pulmon.) mucosal boost

immunization with H56/CAF01. Mice were primed i.m. and boosted twice i.m. (5/250/50 µg H56/DDA/TDB) or primed i.m. (5/250/50 µg H56/DDA/TDB) and boosted

twice i.pulmon. (10/125/25 or 10/250/50 or 10/500/100 µg H56/DDA/TDB) at 2 weeks interval with H56 adjuvanted with different doses of CAF01 (DDA/TDB). IgA

(A,B), IgG1 (C,D), IgG2a (E,F), IgG2b (G,H), and IgG2c (I,J) mid-point titers (log EC50 values) were determined in homogenized lung supernatants and serum at 2

weeks after the last boost immunization. Lung cells (K,L) and splenocytes (M,N) were isolated 2 weeks after the last boost immunization and in vitro stimulated with

H56 for 72 h and IFN-γ and IL-17 levels were determined by ELISA. Statistical analysis: one-way ANOVA and Tukey’s post-test. Bars represent mean values ± s.e.m.,

n = 6. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

The i.m./i.pulmon. immunization induced a polyfunctional
T-cell population consisting of single (IFN-γ+ and TNF-
α+, respectively) cytokine-positive effector CD4+CD44+ T
cells, double (IFN-γ+TNF-α+ and TNF-α+IL-17+) positive,
cytokine-producing memory CD4+CD44+ T cells and triple
(IFN-γ+TNF-α+IL-17+) cytokine-positive CD4+CD44+ T cells
(Figure 5E, pies). For the groups immunized i.m./i.pulmon.,
there was a dose-dependent decrease in the relative frequency
of double-positive (TNF-α+IL-17+) and triple-positive
CD4+CD44+ T cells (Figure 5E, red pies). In contrast to
observations in the lungs, the IFN-γ+TNF-α+ producing
CD4+CD44+ T cells in the draining lymph nodes did not show a
dose-dependent increase after i.m./i.pulmon. immunization, and
the highest fraction of cells was observed after i.m./i.pulmon.
immunization with 250/50 µg DDA/TDB (Figure 5E, orange
pies). As in the lungs, noticeably higher frequencies of memory
CD4+CD44+ T cells were observed in the TLNs and MLNs

following i.m./i.pulmon. immunization, as compared to the
frequencies after i.m. immunization (Figure 5E, bars), and
immunization with 125/25 µg DDA/TDB induced higher
frequencies of all subsets of cytokine-producing CD4+CD44+ T
cells, except for the IFN-γ+TNF-α+ producing subset.

H56-Specific Th1 and Th17 Cells Are
Induced in the Spleen Upon Parenteral
(i.m.) Prime and Airway (i.pulmon.) Boost
Immunization
Systemic induction of H56-specific Th1 and Th17 cells in
the spleen was also investigated (Figure 6A). In general, the
i.m./i.pulmon. vaccination strategy resulted in induction of
lower relative frequencies of CD4+CD44+ T cells in the
spleen, as compared to i.m./i.m. immunization (Figures 6B,C).
Interestingly, immunization with 125/25 µg DDA/TDB
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FIGURE 5 | Robust T-cell responses in the lungs and the lung-draining tracheobronchial and mediastinal lymph nodes (TLN + MLN) by parenteral (i.m.) priming and

airway (intrapulmonary, i.pulmon.) mucosal H56/CAF01 immunization. Mice were primed i.m. and boosted twice i.m. (5/250/50 µg H56/DDA/TDB) or primed i.m.

(5/250/50 µg H56/DDA/TDB) and boosted twice i.pulmon. (10/125/25 or 10/250/50 or 10/500/100 µg H56/DDA/TDB) at 2 weeks interval with H56 adjuvanted with

different concentrations of CAF01 (DDA/TDB). Lung cells and the lung draining LNs (TLN + MLN) were examined for CD4+CD44+ T cells and IFN-γ, TNF-α, and

IL-17 cytokines by intracellular flow cytometry analysis after stimulation with H56, 2 weeks after the last booster immunization. (A) Gating strategy for quantification

and localization of lung-associated CD44+ T cells in immunized mice (exemplified by lung cells from an immunized mouse from the vaccine group 125/25

i.m./2*i.pulmon.). Lung cells were examined for labeling with i.v. injected FITC-conjugated anti-CD45.2 mAb 2 weeks after the last booster immunization by

intracellular flow cytometry analysis after stimulation with H56. Dot plot shows IFN-γ, TNF-α, or IL-17 expression in i.v.CD45+ (intravascular) and i.v.CD45−

(parenchymal) cells. (B) Number of cyt+CD4+CD44+ T cells (any cytokine IFN-γ, TNF-α, and IL-17), which are located in lung parenchyma (CD45−). Statistical

analysis: one-way ANOVA and Tukey’s post-test. Bars represent mean values ± s.e.m., n = 6. ****p < 0.0001. (C) After Boolean gating analysis, the frequencies of

the seven possible CD4+CD44+ T cell subpopulations expressing any combination of the IFN-γ, TNF-α, and IL-17 cytokines are shown for all immunization groups.

The background from the control group was subtracted. Pie charts represent the fraction of CD4+CD44+ T cells expressing different cytokine combinations. Pie chart

color-coding and the subpopulation association for each color is shown below the bar graph (E). Statistical analysis: two-way ANOVA and Tukey’s post-test. Bars

represent mean values ± s.e.m., n = 6. *p < 0.05, **p < 0.01, and ****p < 0.0001. (D) Number of cyt+CD4+CD44+ T cells (any cytokine IFN-γ, TNF-α, and IL-17) in

the lung draining LNs (TLN+MLN). Statistical analysis: one-way ANOVA and Tukey’s post-test. Bars represent mean values ± s.e.m., n = 6. **p < 0.01. (E) Boolean

gating analysis and pie charts of CD4+CD44+ T cells expressing different cytokine combinations in the lung-draining LNs (TLN+MLN), 2 weeks after the last booster

immunization. Statistical analysis: two-way ANOVA and Tukey’s post-test. Bars represent mean values ± s.e.m., n = 6. ****p < 0.0001.

generated equivalent frequencies of cytokine-producing
T cells as the 250/50 3∗i.m. immunization (Figure 6B).
When comparing the frequencies of CD4+CD44+ T cells

producing IFN-γ, TNF-α, and IL-17, respectively, we observed
that i.m./i.pulmon. immunization with 125/25 and 250/50
µg DDA/TDB stimulated equivalent frequencies of T
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cells as the i.m. immunization with 250/50 µg DDA/TDB
(Supplementary Figure S2C). Examination of the functionality
of the H56-specific CD4+CD44+ T in the spleen revealed
that i.m./i.pulmon. immunization with the lowest CAF01 dose
(125/25 µg DDA/TDB) induced primarily a polyfunctional
T cell population consisting of double (IFN-γ+TNF-α+ and
TNF-α+IL-17+) and triple (IFN-γ+TNF-α+IL-17+) positive,
cytokine-producing memory CD4+CD44+ T cells and TNF-α+

memory CD4+CD44+ T cells (Figure 6C, pies). Three i.m.
immunizations promoted a comparable functionality profile.
On the other hand, higher doses of CAF01 administered
i.m./i.pulmon. (250/50 and 500/100 µg DDA/TDB, respectively)
led to a dominant IFN-γ+TNF-α+ producing CD4+CD44+ T
cell population (Figure 6C, orange pies). Unlike for the lungs,
i.m./i.pulmon. immunization induced comparable frequencies
of H56-specific, cytokine-producing memory CD4+CD44+ T
cells in the spleen as the i.m./i.m. immunization (Figure 6C,
bars). i.m. and i.m./2∗i.pulmon. immunization with 125/25 µg
DDA/TDB also promoted similar frequencies of IFN-γ+ or
TNF-α+ producing effector CD4+CD44+ T cells.

Vaccine-induced T cells were also evaluated in the ILNs
and PLNs draining the site of i.m. injection (Figure 6A),
and we compared i.m./i.pulmon. vs. i.m./i.m. immunization,
respectively. The i.m./i.m. immunization with 250/50 µg
DDA/TDB induced higher but statistically indifferent
cytokine-producing frequencies of CD4+CD44+ T cells
in the draining LNs, as compared with i.m./i.pulmon.
immunization (Figure 6D). There was significant differences in
the frequencies of CD4+CD44+ T cells producing IFN-γ, TNF-
α, or IL-17 between the groups vaccinated by i.m./i.pulmon.,
as compared to i.m./i.m. immunization with 250/50 µg
DDA/TDB (Supplementary Figure S2D). However, there
was a considerable difference in the functionality of the
CD4+CD44+ T cells between the two immunization strategies
(Figure 6E, pies). Whereas i.m./i.pulmon. immunization
predominantly induced single cytokine-producing CD4+CD44+

T cells, i.m. immunization with 250/50 µg DDA/TDB resulted
in a polyfunctional T-cell population consisting of double
(IFN-γ+TNF-α+ and TNF-α+IL-17+) and triple (IFN-γ+TNF-
α+IL-17+) positive, cytokine-producing memory CD4+CD44+

T cells and IFN-γ+ or TNF-α+ effector CD4+CD44+ T
cells. I.m./i.pulmon. immunization did mainly induce very low
frequencies ofmemory CD4+CD44+ T cells and promoted single
cytokine-producing effector CD4+CD44+ T cells (Figure 6E,
bars). The frequencies of memory and effector CD4+CD44+

T cells were significantly higher after i.m. immunization with
250/50 µg DDA/TDB, as compared to the frequencies detected
after i.m./i.pulmon. immunization.

The Biodistribution of Parenteral (s.c.)
Prime and Airway (i.pulmon.) Boost
Administered Vaccine Mimics the
Biodistribution of i.pulmon. Administered
Vaccine
We used SPECT/CT to investigate the biodistribution of
the H56/CAF01 vaccine following parenteral prime-airway

mucosal boost immunization and compared with our previous
biodistribution results. We performed this study as we wanted to
know whether there would be a faster clearance of H56 or CAF01
on i.pulmon. immunization with previously primed animals.
Mice were primed s.c. with cold H56 or cold H56/CAF01,
respectively, and boosted i.pulmon. 2 weeks later with 67Ga-H56
or 67Ga-H56/111In-CAF01, respectively. Mice were imaged by
SPECT/CT imaging at the designated time-points up to 144 h
post-injection, and the vaccine biodistribution was visualized
and quantified (Figure 7A and Supplementary Figure S3A),
followed by terminal ex vivo quantification of the biodistribution
on day 6 of the study. Dual-isotope labeling of H56 and
CAF01 with 111In and 67Ga, respectively, followed by SPECT-CT
imaging, allowed for anatomical visualization of vaccine uptake
in the lungs, as well as biodistribution and pharmacokinetics
(Figures 7B,C). The images demonstrate pronounced differences
in the biodistribution of H56 and CAF01 following s.c. prime
and i.pulmon. boost immunization, where H56 was cleared
within 24 h post-injection. The i.pulmon. administration of
unadjuvanted H56 resulted in a very fast clearance of H56
within 6 h (Supplementary Figure S3B). The vaccine remained
in the lungs for up to 6 h, followed by a slow redistribution to
the stomach and intestines up to 24 h of the study. The signal
from H56 was clearly visible until 24 h (Figure 7C) as compared
to CAF01, which could be weakly visualized up to 96 h post-
injection (Figure 7B). The in vivo quantification of radioactivity
in images through SUV values verify these findings (Figure 7D).
In contrast to a single i.pulmon. administration of the
H56/CAF01 vaccine, s.c. prime-i.pulmon. boost immunization
resulted in comparable activity of H56 and CAF01 in the
lungs at the designated time points (Figure 7D, upper left).
A relatively higher activity for both H56 and CAF01 was
observed in the trachea, kidneys and bladder within 30min
post-injection, which declined at later time-points. As observed
previously, a high activity of both H56 and CAF01 was observed
in the stomach and the intestines at 6 and 24 h post-injection.
The SUVs for unadjuvanted H56 showed a very low activity
in the lungs and other organs, and most of the activity
was observed in the kidneys within 6 h, which reflects that
immunization with unadjuvanted H56 leads to lower retention
in the lungs and faster metabolism and elimination of the
protein (Supplementary Figure S3C). Whole-body activity was
measured 144 h post-i.pulmon.-boost immunization. The results
are in line with the imaging-based in vivo biodistribution, and
the major fraction of the radioactivity was observed in the
lungs (Figure 7E). The biodistribution profile of unadjuvanted
H56 showed relatively low H56 activity in the lungs and
liver (Supplementary Figure S3D). For H56/CAF01 s.c. prime-
i.pulmon. boost immunization, there were differences in the
remaining activity ex vivo between H56 and CAF01 in the lungs
with comparatively higher radioactivity for H56 than for CAF01.
For all other organs than the lungs, a relatively low dose fraction
of CAF01-associated radioactivity was found in the liver, kidneys
and intestine, as observed previously following either a single
s.c. or i.pulmon. administration (Figure 7E). In contrast, H56
radioactivity was detectable in relatively higher dose fractions in
the liver and kidneys, which supports our prior observations of a
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FIGURE 6 | Parenteral (i.m.) prime and airway (i.pulmon.) mucosal boost immunization with H56/CAF01 induce equivalent T-cell responses in the spleen as parenteral

(i.m.) prime-boost immunization. Mice were primed i.m. and boosted twice i.m. (5/250/50 µg H56/DDA/TDB) or primed i.m. (5/250/50 µg H56/DDA/TDB) and

boosted twice i.pulmon. (10/125/25 or 10/250/50 or 10/500/100 µg H56/DDA/TDB) at 2 weeks interval with H56 adjuvanted with different concentrations of CAF01

(DDA/TDB). Spleen cells and the inguinal and popliteal lymph nodes (ILN+PLN) draining the site of i.m. injection were harvested 2 weeks after the last booster

immunization, surface-stained for the CD4 and CD44 receptors and intracellular localized IFN-γ, TNF-α, and IL-17 cytokines by intracellular flow cytometry analysis

after stimulation with H56. (A) Gating strategy for the evaluation of antigen-specific, cytokine-producing CD44+ T cells in spleen and lymph nodes of immunized mice

(exemplified by TLN + MLN cells from an immunized mouse from the vaccine group 125/25 i.m./2*i.pulmon.). Dot plot shows IFN-γ, TNF-α, or IL-17 expression in

CD44+ T cells. (B) Number of cyt+CD4+CD44+ T cells (any cytokine IFN-γ, TNF-α, and IL-17) in the spleen. Statistical analysis: one-way ANOVA and Tukey’s

post-test. Bars represent mean values ± s.e.m., n = 6. *p < 0.05. (C) After a Boolean gating analysis, the frequencies of the seven possible CD4+CD44+ T cell

subpopulations expressing any combination of the IFN-γ, TNF-α, and IL-17 cytokines are shown for all immunization groups. Background from the control group was

subtracted. Pie charts represent the fraction of CD4+CD44+ T cells expressing different cytokine combinations. Pie chart color-coding and the subpopulation

association for each color is shown below the bar graph (E). Statistical analysis: two-way ANOVA and Tukey’s post-test. Bars represent mean values ± s.e.m., n = 6.

*p < 0.05 and ****p < 0.0001. (D) Number of cyt+CD4+CD44+ T cells (any cytokine IFN-γ, TNF-α and IL-17) in LNs draining the site of injection (ILN + PLN). Bars

represent mean values ± s.e.m., n = 6. (E) Boolean gating analysis and pie charts of CD4+CD44+ T cells expressing different cytokine combinations in the LNs

draining the site of injection (ILN+PLN) 2 weeks after the last booster immunization. Statistical analysis: two-way ANOVA and Tukey’s post-test. Bars represent mean

values ± s.e.m., n = 6. *p < 0.05, **p < 0.01 and ****p < 0.0001.

faster clearance of H56 than CAF01 (Figure 7E). Proportionately
higher amounts of H56 activity was also observed in organs
other than the liver and the kidneys. However, no remaining
activity was detected in the lung-draining LNs, as observed
earlier. We also compared the activity of 67Ga-H56 alone with

67Ga-H56 adsorbed to 111In-CAF01 and observed significant
differences in the pulmonary uptake and biodistribution of
unadjuvanted protein, as compared to liposome-adsorbed
protein (Supplementary Figure S4). Unadjuvanted H56 was
cleared much faster than the CAF01-bound H56.

Frontiers in Immunology | www.frontiersin.org 14 November 2018 | Volume 9 | Article 282566

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Thakur et al. SPECT/CT and Mucosal Immunization of H56/CAF01 Vaccine

FIGURE 7 | H56/CAF01 vaccine biodistribution upon parenteral (s.c.) priming and airway (i.pulmon.) mucosal boosting follow a similar trend as the biodistribution

following airway (i.pulmon.) mucosal prime immunization. (A) Experimental scheme: Mice were prime-immunized s.c. with 5 µg cold H56 adjuvanted with cold CAF01

(250/50 µg DDA/TDB). At week 2, animals were boost-immunized via intrapulmonary (i.pulmon.) route with 10 µg 67Ga-H56 adjuvanted with 111 In-CAF01 (125/25

µg DDA/TDB). Animals were imaged by dynamic whole-body SPECT/CT scan for the initial 40min (10 min/frame) and after that static 40min scans at 6 and 24 h,

60min scan at 96 h and 90min scan at 144 h were conducted. Animals were euthanized on day 6 after immunization for ex vivo biodistribution using a gamma

counter. Representative SPECT/CT images showing biodistribution of 111 In-CAF01 (B) and 67Ga-H56 (C) of a mouse prime-immunized s.c. with H56/CAF01 and

boost-immunized i.pulmon. with 67Ga-H56 + 111 In-CAF01. (D) Organ SUVs (g/mL) were calculated from dynamic and static SPECT/CT images of the cold s.c.

prime-immunized and hot (67Ga-H56 + 111 In-CAF01) i.pulmon. boost-immunized animals over 144 h post-immunization. Statistical analysis: two-way ANOVA and

Sidak’s post-test. Data represent mean values ± s.d., n = 3. **p < 0.01. (E) Ex vivo organ biodistribution [% administered dose (AD)/organ] of the cold s.c.

prime-immunized and hot (67Ga-H56 + 111 In-CAF01) i.pulmon. boost-immunized animals on day 6 (144 h) post-immunization. Statistical analysis: two-way ANOVA

and Sidak’s post-test. Bars represent mean values ± s.d., n = 3. *p < 0.05 and ****p < 0.0001.

DISCUSSION

Although a more efficacious vaccine is urgently needed for TB,
vaccine design and development has been very challenging due
to the specific requirement for induction of cell-mediated and
mucosal immunity (2). It is now widely accepted that it is
beneficial to stimulate Th1 and Th17 CD4+ T-cell responses
in the lungs for vaccine-induced protection in general (50,
51) and against Mtb infection in particular (52, 53). Mtb
evades host immunity by delaying the extravasation of primed
circulating antigen-specific T cells into the lung mucosa (2,
54). Antigen-specific T cells induced by parenteral vaccination
remain confined to tissue compartments outside of the lung
parenchyma and the airways, and are thus not capable of

mediating complete protection against Mtb (15, 55). Therefore,
a vaccination strategy, which induces and maintains tissue-
resident memory T cells and/or circulating T cells capable of
rapid influx into the lungs upon pathogen re-exposure, may
provide robust protection against Mtb infection. Parenteral
administration of the TB subunit vaccine H56/CAF01 has been
shown to induce promising protective efficacy in mice (29) and
non-human primates (30). However, the H56/CAF01 vaccine
has never been evaluated following airway (i.pulmon.) mucosal
immunization. Here, we document the immunogenicity of the
H56/CAF01 vaccine following parenteral (i.m.) priming and
airway (i.pulmon.) boost immunization, which induces local lung
and systemic memory CD4+ T cells and IgA responses. We
further describe, for the first time, the SPECT-CT imaging-based
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in vivo biodistribution and pharmacokinetics of the H56/CAF01
vaccine following parenteral (s.c.) or airway (i.pulmon.) priming
or parenteral prime-airway mucosal boost (s.c.- i.pulmon.)
immunization strategy. We observe pronounced differences in
the deposition, biodistribution and clearance of H56 protein
and CAF01 adjuvant. Our study provides new information on
H56/CAF01 mucosal boost immunization-inducible memory
CD4+ T cells in the lungs and SPECT/CT imaging-based in
vivo biodistribution of the individual vaccine components, which
may assist the development of effective mucosal immunization
strategies against pulmonary TB. These results also support
our ongoing efforts to develop a thermostable, dry powder-
based H56/CAF01 vaccine for i.pulmon. administration (43),
and we envisage the potential application of such an inhalable
dry powder dosage form in combination with a suitable device
for mass vaccination programs against TB. Hence, the safety of
airway mucosal vaccination has to be evaluated thoroughly in
future studies.

It is well-known that T cells play a crucial role in the
pulmonary host defense against many bacterial, viral, and fungal
pathogens, and inadequate T-cell immunity may increase the
likelihood of pathogen dissemination from the lungs (9). It is also
well-known that MHC class II-restricted CD4+ T cells producing
IFN-γ and TNF-α play important roles in protection against
TB in experimental animal models and in humans (56, 57). In
many preclinical TB challenge studies, increased CD4+ central
memory T cells have been associated with enhanced protection
(14, 57, 58). Localization of antigen-specific CD4+ T cells at the
site of infection in the lung parenchyma is of ultimate importance
for disease protection after vaccination (52, 56). However, Mtb
infection greatly interferes with migration of circulating vaccine-
induced antigen-specific T cells to the lungs (19), which is
correlated with lack of protection (15, 59). Therefore, novel
immunization strategies are needed to induce T cells that
effectively home back to the lung parenchyma in the airways.
In the present study, we introduce an effective immunization
protocol for the H56/CAF01 vaccine, which results in induction
of strong Th1, Th17, and IgA responses in the airways. We
show that Th1 and Th17 cells are induced systemically after
airway mucosal boost immunization of parenterally primed H56
antigen in a CAF01 dose-dependent manner, and that local lung
mucosal and systemic IgA and IgG responses accompany this.
We also show thatmucosal immunization induces polyfunctional
(IFN-γ+TNF-α+IL-17+) and double positive (IFN-γ+TNF-α+

and TNF-α+IL-17+) and TNF-α single-positive CD4+ T cells
in the lungs and the lung draining LNs (TLNs + MLNs) as
well as the spleen. The H56/CAF01 vaccine has previously
been shown to preferentially induce accumulation of TNF-
α single-positive, double positive (IFN-γ+TNF-α+ and TNF-
α+IL-2+) and triple-positive (IFN-γ+TNF-α+IL-17+) CD4+ T
cells in the lungs, which provide protection against an Mtb
challenge (29). Our results also support previous observations
that less differentiated H56-specific T-cells have increased ability
to migrate into the lung parenchyma (39, 60). However, we also
observe CD4+ T cells with an intermediate state of differentiation
(IFN-γ+TNF-α+), as usually seen post-Mtb infection (39, 60,
61). The induction of this population following prime-boost

immunization could suggest that innate immune factors in the
lung microenvironment play an important role for the extent
of cell differentiation (62). However, the maintenance of an
IFN-γ+TNF-α+ double positive T-cell population has been
associated with enhanced control of mycobacterial growth (56,
57). Similarly, parenteral prime andmucosal boost immunization
were shown to induce strong mucosal and systemic immunity
(16, 63, 64), accompanied by improved protection in a number of
preclinical infectious disease models (65–67). Intranasal boosting
of parenterally primed immune responses was associated with
improved protection againstMtb infection, which correlated with
IFN-γ+ CD4+ and CD8+ T cells residing in the airway lumen
of the lungs (68). Similarly, respiratory mucosal boosting of
parenteral immunization resulted in improved protection against
Mtb infection, and it was accompanied by antigen-specific T
cell responses in the lungs (13, 69). Together with our data,
these findings suggest that parenteral prime and mucosal boost
immunization is a potentially effective strategy for inducing
lung-resident CD4+ T cells, which can subsequently provide an
improved protection against an Mtb challenge. We are currently
testing this strategy in anMtb challenge model.

Almost all licensed vaccines against infectious diseases
induce antibodies, which are correlated with disease protection
(70). Antibody-mediated protective immunity is mediated by
mucosal IgA, which prevents pathogen uptake across the
epithelial barrier, and by serum IgG, which prevents further
pathogen transmission via the blood (71). However, the role
of B cells and their production of antibodies in the immune
response to Mtb infection remains elusive (72–74). Recently,
there is growing evidence that Mtb-specific antibodies may
contribute to prevention of TB (75, 76), and one study reported
that antibodies recovered from healthcare workers provided
moderate protection against Mtb in mice (76). Furthermore,
a number of experimental studies have shown a protective
effect of antibodies against Mtb surface glycolipids (77, 78) and
recombinant antigens (79, 80). The induction of antigen-specific
IgA and IgG responses following prime-boost immunization in
our study strengthens these findings. Ideally, vaccine-induced
mucosal IgA antibodies present at the natural portal of entry
in the lungs, which are capable of fast neutralization of Mtb
following exposure, would be the optimal preventive strategy
against TB. In line with this, passive protection by mucosally
administered human IgA antibodies against Mtb infection in
the lungs of mice has been reported (81, 82). Recently, vaccine-
induced pulmonary secretory IgA has been associated with
immunological protection against TB in mice (17, 83). Given
the fact that antibodies are protective against many intracellular
infections, further studies are required to verify the functional
differences in antibodies to Mtb and the precise role of mucosal
antibodies in the immunological protection against TB (84).

In this study, we successfully radiolabeled CAF01 liposomes
with a lipophilic chelator, and developed an 111In-DTPA-CAF01
complex with high radiolabeling efficiency and purity. We also
describe the successful design of 111In-DTPA-H56 and 67Ga-
NOTA-H56 complexes, respectively, with high radiopurity and
radiolabeling efficiency. Radiolabeling of both H56 and CAF01
was not only easy and reproducible, but did also result in
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preserved size and integrity of both protein and liposomes.
The 111In and 67Ga radionuclides were selected due to their
relatively long half-life (111I n = 2.81 and 67Ga = 3.26 days),
their high photon energy, their ready and daily availability
as cyclotron-produced radionuclides, and the possibility for
clinical translation. Using SPECT-CT imaging, we confirmed
our previous studies showing that CAF01 forms a depot at
the site of injection (48). First, we show that 111In-CAF01
with surface-adsorbed cold H56 and 111In-H56 adsorbed onto
cold CAF01 remain at the site of injection for up to 6 days
post-s.c. injection, and we confirmed the observation through
ex vivo biodistribution. Using the tracer molecule 3H-DPPC
with DDA and TDB and 125I-labeled Ag85B-ESAT6 protein
(so-called H1), it was shown previously that CAF01 forms a
depot when injected i.m. or s.c. and promotes antigen retention
at the site of injection (48). Moreover, this depot effect was
correlated with the synchronization of DC uptake of antigen
and activation by CAF01, which is an important element for
the Th1/Th17 adjuvanticity of CAF01 (85, 86). However, in our
study, there was a clear difference in the biodistribution of H56
and CAF01 following s.c. injection; H56 was cleared faster than
CAF01 and was detected in the kidneys and the bladder already
6 h post-administration. Following pulmonary administration of
radiolabeled H56 and CAF01, respectively, we generally observed
rapid accumulation of radioactivity in the lungs and the bladder
within the first hour post-administration. The observed activity
in the trachea is caused by deposition of very small amounts
of activity from the tip of the MicroSprayer R© needle during
i.pulmon. administration. At later time-points, the amount of
radioactive H56 in the lungs, although lower, was detectable until
24 h, as compared to radioactive CAF01, which was observed
until 96 h. For both H56 and CAF01, radioactivity was observed
in the stomach and the intestines from 6 to 24 h post-injection,
which could be due to cough reflux during the withdrawal of
the MicroSprayer R© needle from the trachea, or clearance of
the dispersion from the trachea and subsequent swallowing, as
previously reported (47). Nevertheless, the applied i.pulmon.
administration method enables a rather uniform distribution
of the aerosolized vaccine into both lung lobes as observed
by SPECT imaging. This is further supported by the fact that
extrapulmonary distribution following aerosolization did not
influence the overall vaccine immunogenicity, and it was not
associated with any apparent side effects or systemic toxicity
during the study period (up to a maximum of 6 weeks).

Induction of cell-mediated immunity by vaccination is
challenging. It is believed that repeated administration of the
same vaccine (homologous boosting) is effective for increasing
humoral but not cellular immune responses, while heterologous
prime-boost immunization induces strong humoral and cellular
immune responses (87, 88). However, the use of the homologous
parenteral prime-mucosal boost immunization schedule has
been shown to induce simultaneous robust local mucosal and
systemic protective cellular and humoral immunity against
mucosal pathogens, e.g., Mtb and HIV (13, 63, 69). Our
data show that homologous parenteral priming followed by
airway boosting with H56/CAF01 elicits strong antigen-specific
CD4+ T cell responses, both in the spleen and the lungs,

and IgA responses in both serum and lungs, as compared to
parenteral homologous prime-boost immunizations. Recently,
it was reported that the administration route used for priming
and boosting of the H56/CAF01 vaccine is important for
improving and directing the vaccine-induced immune responses
using either the homologous or heterologous prime-boost
combinations (22). Largely, the enhanced immunity following
prime-boost homologous or heterologous immunization to the
target antigen is reflected predominantly by cellular events, e.g.,
an increased number of antigen-specific T cells, enrichment
of high-avidity T cells, and subsequent increased protective
efficacy against a pathogen challenge (89). Having demonstrated
significantly higher CD4+ T-cell- and antibody responses
for homologous prime-boost immunization, we evaluated the
biodistribution and pharmacokinetics of the H56/CAF01 vaccine
by SPECT/CT imaging to compare pulmonary uptake and
distribution between airway (i.pulmon.) prime vs. parenteral
(s.c.) prime—airway (i.pulmon.) mucosal boost immunization
strategies. However, the vaccine biodistribution in airway-
boosted animals that were primed s.c. with the homologous
vaccine was not significantly different from the biodistribution
in s.c.- primed only animals. Since most of the immunological
events are taking place at the cellular level initially in the
lung mucosa and draining lymph nodes followed by systemic
circulation, whole-body SPECT/CT imaging cannot be used
to differentiate the cellular events during prime vs. prime-
boost immunization. Nevertheless, the comparable vaccine
biodistribution profiles upon homologous prime and prime-
boost immunization underlines the reproducibility of our
radiolabeling results and emphasizes the usability of the
SPECT/CT imaging-based approach for quantification of the
biodistribution of subunit vaccines. Our novel data represent
dual-isotope radiolabeling and preclinical non-invasive and
longitudinal SPECT/CT imaging of the H56/CAF01 vaccine as
a readily translatable strategy, which can be integrated into a
clinical workflow. In addition, this novel radiolabeling platform
can be used to identify image-derived biomarkers, which could be
used to image vaccine-induced immune response, where imaging
of sites such as lungs, LNs and spleen can provide additional
information about vaccine-induced immune response as well
as safety and efficacy. Interestingly, a recent study reported
a PET imaging-derived biomarker that can be used to image
activated T cells to predict tumor responses to in situ vaccination
(90). Future studies should include devising novel immuno-
SPECT/CT strategies for the identification of H56/CAF01
vaccine-induced activated T cells for differentiating prime
vs. prime-boost immunizations and corresponding vaccine
efficacy.

From our data we can conclude that strong IgA antibody
and polyfunctional Th1 and Th17 cell responses are induced in
the lung mucosa and the systemic circulation upon parenteral
(i.m.) priming combined with airway (i.pulmon.) mucosal
boost immunization with the TB subunit vaccine H56/CAF01,
as compared to parenteral (i.m.) priming combined with
parenteral (i.m.) boost immunization. These data demonstrate
that parenteral priming followed by airway mucosal boosting
with the H56/CAF01 vaccine is a novel immunization strategy
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for improving vaccine immunogenicity and directing the
trafficking of antigen-specific CD4+ T cells to the lungs. These
results warrants further preclinical and clinical development of
H56/CAF01 as an inhalable and self-administrable aerosol
vaccine. We conclude that there are very pronounced
differences in the pharmacokinetics of H56 and CAF01
based on dual isotope (111In/67Ga)-based SPECT/CT imaging
of the vaccine biodistribution. Our results also suggest a
comparable biodistribution profile of the H56/CAF01 vaccine
following airway (i.pulmon.) prime and parenteral prime
(s.c.)—airway (i.pulmon.) mucosal boost immunization,
respectively. We believe that immuno-SPECT/CT strategies
can be developed, based on this novel radiolabeling platform,
for imaging of H56/CAF01 vaccine-induced activated T
cells at specific effector sites, e.g., the lungs. Overall, our
findings may hold considerable implications for the rational
design of effective mucosal immunization strategies against
TB.
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The Human Respiratory Syncytial Virus (hRSV) and the Human Metapneumovirus

(hMPV) are two pneumoviruses that are leading agents causing acute lower respiratory

tract infections (ALRTIs) affecting young infants, the elderly, and immunocompromised

patients worldwide. Since these pathogens were first discovered, many approaches for

the licensing of safe and effective vaccines have been explored being unsuccessful

to date. We have previously described that immunization with recombinant strains

of Mycobacterium bovis Bacillus Calmette-Guérin (rBCG) expressing the hRSV

nucleoprotein (rBCG-N) or the hMPV phosphoprotein (rBCG-P) induced immune

protection against each respective virus. These vaccines efficiently promoted viral

clearance without significant lung damage, mainly through the induction of a T helper

1 cellular immunity. Here we show that upon viral challenge, rBCG-immunized mice

developed a protective humoral immunity, characterized by production of antibodies

specific for most hRSV and hMPV proteins. Further, isotype switching from IgG1 to

IgG2a was observed in mice immunized with rBCG vaccines and correlated with an

increased viral clearance, as compared to unimmunized animals. Finally, sera obtained

from animals immunized with rBCG vaccines and infected with their respective viruses

exhibited virus neutralizing capacity and protected naïve mice from viral replication and

pulmonary disease. These results support the notion that the use of rBCG strains could

be considered as an effective vaccination approach against other respiratory viruses with

similar biology as hRSV and hMPV.

Keywords: hRSV, hMPV, antibodies, humoral immune response, vaccine, respiratory virus, BCG

INTRODUCTION

For almost a century,Mycobacterium bovis Bacillus Calmette-Guérin (BCG) has been widely used
to prevent Tuberculosis and has also been characterized as an effective T helper type 1 (Th1) inducer
(1). Further, BCG has been shown to be safe in adults, infants, and newborns. The approach of using
BCG as a vector for recombinant expression of heterologous antigens has been previously tested for
several pathogens, such as measles virus, rotavirus, hepatitis B virus, Plasmodium yoelii, Bordetella
pertussis, and Toxoplasma gondii, exhibiting promising results in mouse models for those diseases
(2–7).
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Worldwide, human Respiratory Syncytial Virus (hRSV) is
the leading cause of acute lower respiratory tract infections
(ALRTIs). HRSV was first identified in 1956 and mainly afflicts
infants, young children, elderly, and immunocompromised
patients, causing about 34 millions of ALRTIs and ∼200,000
deaths per year (8). Next to hRSV, human Metapneumovirus
(hMPV) is the second cause of ALRTIs (9) and was first identified
in 2001 (10). Although the overall burden in hospitalization
remains poorly characterized for hMPV, as it was recently
identified, it has been estimated that about a 7–19% of
children hospitalization can be due solely to this virus (11, 12).
Furthermore, clinical studies have shown that by the age of
5, virtually every child has been infected with both of these
viruses, exhibiting classical ALRTI manifestations, which include
fever, cough, wheezing, and some clinical manifestation like
bronchiolitis, laryngotracheitis, acute bronchitis, and pneumonia
(8, 10–14) with an increase in the mucus production, obstruction
of bronchoalveolar spaces, exacerbated inflammatory response,
and the generation of airway hyper-responsiveness (15–17). In
addition, prospective surveillance studies have suggested that
children affected by severe hMPV infections usually require
longer recovery periods at intensive care units than do children
infected with hRSV (11–14). Both hRSV and hMPV are RNA
single-stranded, negative sense enveloped viruses, belonging to
the Pneumoviridae family, particularly the Orthopneumovirus
genus and the Metapneumovirus genus, respectively (15).
Furthermore, hRSV has been recently renamed as human
Orthopneumovirus (15).

Some reports have suggested that the host immune system
is unable to generate an effective and protective immunological
memory against either of these viruses, which after disease
resolution, prompts the acquisition of repeated infections
throughout life (18, 19). Accordingly, it has been described
that the nucleoprotein of hRSV (N-hRSV) is able to inhibit the
assembly of an effective immunological synapse, apparently by
clustering with the pMHC-TCR complex (20). Also, N-hRSV
blunts the interferon response by interacting with MDA5 and
MAVS, pivotal elements in the main pathways associated with
the viral clearance (21). On the other hand, the phosphoprotein
of hMPV (P-hMPV) has been described as a crucial component
for the assembly of the virus replication core (22). It has
been reported that P of hMPV-B1 serotype could interfere
with the RIG-I pathway, prompting the inhibition of the
interferon I pathway (23). Considering this, both proteins
have been previously suggested as possible candidate antigens
for the induction of a strong and protective cellular immune
response against either hRSV or hMPV infections when used for
immunization, respectively (24, 25).

Our group has previously reported that recombinant BCG
strains (rBCG) expressing either N-hRSV (rBCG-N) or P-hMPV
(rBCG-P) as heterologous antigens, can protect against infection
by hRSV or hMPV, respectively (24, 25). In this work, we
evaluated the previously unexplored humoral immune response
induced in mice immunized with either rBCG-N and rBCG-
P. We observed that the post-challenge antibody response is
enhanced by the established immunity elicited by both rBCG
vaccines (rBCG-N or rBCG-P). This concerted response was

able to significantly decrease viral replication and disease by
promoting the secretion of neutralizing antibodies specific
against the attachment and the fusion glycoproteins of both
paramyxoviruses. These results suggest that rBCG strains are
good vaccine candidates able to induce a cellular immune
response capable of boosting the humoral immune response
against unrelated antigens and to prevent the disease cause by
both pneumoviruses.

MATERIALS AND METHODS

hRSV and hMPV Propagation and Titration
HEp-2 cells (American Type Culture Collection, CCL-23TM) and
LLC-MK2 (American Type Culture Collection, CCL-7TM) were
used to propagate hRSV serogroup A2, strain 13018–8 (clinical
isolate obtained from the Instituto de Salud Pública de Chile)
and hMPV serogroup A, strain CZ0107 (clinical isolate obtained
from the Laboratorio de Infectología y Virología of the Hospital
Clínico, Pontificia Universidad Católica de Chile) (26, 27). Briefly,
cell monolayers were grown in T75 flasks with DMEM (Life
Technologies Invitrogen, Carlsbad, CA) supplemented with 10%
FBS (Gibco Invitrogen Corp, Carlsbad) for HEp-2 cells and
Opti-MEM supplemented with 5% FBS for LLC-MK2 cells,
until 80–90% confluence. Flasks containing 5mL of infection
medium [DMEM 1% FBS for hRSV and Opti-MEM 5% FBS
medium, supplemented with CaCl2 (100µg/mL) for hMPV]
were inoculated with 2 × 105 Plaque formation units (PFU) of
the respective virus and incubated at 37◦C. After viral adsorption
(2 h), supernatants were replaced with fresh medium (DMEM
1% FBS and Opti-MEM) and incubated for 48 h for hRSV and
72 h for hMPV, until visible cytopathic effect was observed.
For harvesting, cells were scraped, and the flask content was
pooled and centrifuged first at 300 × g for 10min and then
at 500 × g for 10min in order to remove cell debris. In
parallel, supernatants of non-infected cells monolayers (HEp-2
and LLC-MK2) were collected as previously described and used
as non-infectious control (Mock). Viral titers of supernatants
were determined by immunocytochemistry in 96-well plates with
HEp-2 and LLC-MK2 cells monolayers, as previously described
(26–29). hRSV and hMPV inoculums were routinely evaluated
for lipopolysaccharide andMycoplasma contamination.

Doses of BCG-WT, rBCG-N, and rBCG-P
for Immunization
Vaccine doses of BCG-WT (Danish 1331 strain), rBCG-N, and
rBCG-P (both of them obtained as previously described (24,
25) were prepared by growing the mycobacteria on 7H9 liquid
medium (Sigma-Aldrich, M0178-500G), supplemented with 10%
OADC (Sigma-Aldrich, M0678-1VL) and Kanamycin only for
the recombinant bacteria [20µg/mL] (Sigma-Aldrich, 60615),
until reaching an OD600 equal to 0.8. Then, the mycobacteria
cultures were washed three times with 1X PBS-0.05% Tween 80,
resuspended with 1X PBS-glycerol 50% at a final concentration
of 4 × 108 CFU per vial and frozen at −80◦C until their
use. For immunization, vials were centrifuged at 14,000 g and
resuspended in saline solution prior to injection.
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Dot-Blot Assays
Lysates obtained from BCG-WT and rBCG strains expressing
either N-hRSV or the P-hMPV, as well as purified N and P
proteins as positive controls and 1X PBS as a negative control,
were spotted into nitrocellulose membranes. Loaded membranes
were incubated for 1 h at 4◦C. Membranes were then blocked
with a solution 1X PBS and 5% non-fat milk solution for 2 h
at RT. Then, membranes were incubated for 1 h with an hRSV
anti-N protein monoclonal antibody (1E9/D1 clone 1.48 mg/mL)
and hMPV anti-P protein polyclonal antibody (6B12 clone 1.2
mg/mL) diluted in 1X PBS and 5% non-fat milk at a final dilution
for both antibodies of 1:750. As a secondary antibody, an HRP-
Goat anti-mouse IgG (H+L) (1.5 mg/mL) (Life Technologies,
N. Meridian rd., Rockford, IL 61101, USA) was used diluted in
1X PBS, 5% non-fat milk, at a final dilution of 1:2,000, for 1 h.
Membranes were washed with 1X PBS, 0.05% Tween 20, three
times after every step. Finally, membranes were incubated with
the HRP Chemiluminescent Substrate (Invitrogen, Carlsbad,
CA 92008, USA) and proteins were visualized with the gel
documenter myECL Imager (ThermoFischer Scientific).

Mouse Immunization and Viral Infection
Six to eight-week-old BALB/cJ mice received a sub-cutaneous
injection in the right dorsal flank with 1 × 108 CFU of BCGWT
or rBCG strains expressing N-hRSV or P-hMPV, respectively,
in a final volume of 100 µL per dose (n = 6 per group)
(Figures 2A,G). After 14 days, mice were boosted with the
respective BCG strain. Twenty-one days post immunization,
mice were intraperitoneally anesthetized with a mixture of
ketamine and xylazine (80 and 4 mg/kg, respectively), and
challenged by intranasal instillation with ∼1 × 107 PFU of
hRSV A2, strain 13018-8 or ∼1 × 106 PFU of hMPV A, strain
CZ0107, accordingly to the vaccine injected, in a final volume of
<100 µL per mouse. Blood samples were obtained from these
animals before immunization, boost, challenge, and at 7 days
post-infection (dpi) and 14 dpi. For hRSV infected mice, lung
samples, and Bronchoalveolar Lavage (BAL) were obtained at
7 and 14 dpi. For hMPV-infected mice, blood samples, lung
samples, and BAL were obtained at 28 dpi, and 21 days post re-
infection with ∼1 × 106 PFU of hMPV (49 dpi). All animals
were treated and manipulated with supervision of a veterinarian
and according to the institutional guidelines of the Pontificia
Universidad Católica de Chile and the “Guide for the care and
use of laboratory animals”.

Quantification of IgG Isotypes
Ninety-six well ELISA plates were separately coated with the
following antigens overnight at 4◦C: 50 µL/well of hRSV or
hMPV (previously UV-inactivated for 45min and sonicated by
10min to expose as many antigens as possible), 100 ng/well of
N-hRSV purified protein or 100 ng/well of F-, G- and P-hRSV
proteins (SinoBiological, Beijing, China). For hMPV ELISA,
plates were coated with 200 ng/well of P-, M-, andM2.1- proteins
purified.

Plates were blocked with 200 µL of 1X PBS, 2% Fish gelatine.
After 1 h at RT, plates were washed three times with 200 µL of
1X PBS, 0.05% Tween 20 and incubated for 1 h at RT with 100

µL of the different serum samples previously diluted at 1:500
in triplicate (14 dpi for hRSV and 28 dpi for hMPV). Then,
the plates were washed three times and incubated with 50 µL
of 1:2,000 dilution of HRP-Goat anti-mouse IgG (H+L) (Life
Technologies, N. Meridian rd., Rockford, IL 61101, USA) for 1 h
at RT. Afterwards, plates were washed and revealed with 50µL of
1mg/mL 3-39-5-59-tetramethylbenzidine (TMB,Merck) at RT in
the darkness. After 10min, 50 µL of H2SO4 solution were added
to stop the reaction. Plates were analyzed in an ELISA reader at
450 nm (Multiskan Ex, Thermo Labsystems).

Immunoglobulin isotypes were also analyzed from the same
sera samples in similar conditions. 96-well ELISA plates were
coated overnight at 4◦C with 50 µL of hRSV or hMPV,
previously UV-inactivated by 45min and sonicated by 10min.
After blocking and washing as previously described, the plates
were incubated with 50 µL of 1:500 dilution of sera sample
in triplicate (14 dpi for hRSV and 49 dpi for hMPV) 1 h
at RT. Biotinylated Rat anti-Mouse IgG2a (Clone RMG2a-62,
Biolegend, San Diego, CA) and IgG1 (Clone RMG1-1, Biolegend,
San Diego, CA) antibodies were used to assess the titers of
circulating anti-hRSV IgG isotype in vaccinated and control
mice. Plates were read at 450 nm and data was represented
as a ratio of the IgG2a concentration/IgG1 concentration. The
concentration of different IgG, IgG1, and IgG2a isotypes, was
measured interpolating the absorbance values in a curve of mice
purified IgG-antibody. The production of the hybridomes was
made by GrupoBios, Chile.

Determination of Linked Recognition
Mechanism
Six to eight-week-old BALB/cJ mice received a sub-cutaneous
injection in the right dorsal flank with 1 × 108 CFU of either
BCG WT or rBCG-N strains (n = 5 for each group). Other
mice were immunized with purified N-hRSV protein in Freund
adjuvant or purified N-hRSV protein in Aluminum Hydroxide
adjuvant (Supplementary Figure 2). After 14 days, animals were
boosted with the same dose and at day 21 post-immunization,
mice were euthanized. Spleens were collected and plated at a final
concentration equal to 1 × 106 cells/mL in 24 well plates. Then,
cells were stimulated with purified N-hRSV protein (1µg/mL)
and after 72 h T cells were purified by MACS columns following
the manufacturer instructions (mouse CD4+ T cell isolation kit,
Miltenyl Biotec). Purified T cells were transferred to a total of 5
naïvemice per group and 1 day post-transfer, animals were either
treated with mock or infected with hRSV. Animal body weight
loss was monitored and at 7 dpi mice were euthanized (Data not
shown). Sera samples were used to measure antibody secretion
against the whole virus and the N, F, and G hRSV proteins by
indirect ELISA, as described above.

Serum Neutralization Assays
HEp-2 or LLC-MK2 cells were grown until 80–90% of
confluence. Then, the sera from 14 dpi in the hRSV-infected
animals or 21 days post-second infection (49 dpi) in the hMPV-
infected animals were pooled and incubated at 56◦C for 30min
to inactivate the complement system. Sera were then incubated
with GFP-recombinant viruses (hRSV or hMPV), respectively,
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at 37◦C for 1 h. The mixtures were added to the respective cell
culture and incubated for 1 h at 37◦C in 5% of CO2 supplement.
Then supernatants were replaced with fresh DMEM 1% FBS for
the HEP-2 cells and Opti-MEM for the LLC-MK2 cells. Cells
were incubated for 48 h at 37◦C with a 5% of CO2 supplement.
GFP expression in both cells was visualized by epifluorescence
microscopy and the plaque-forming units (PFU) were quantified
as previously described (30). As a positive control, cells were
treated with GFP-expressing virus without sera, and as negative
control cells were treated with Mock.

Passive Transfer of Immune IgG From
rBCG-Vaccinated Mice to Naive Animals
Six to eight-week-old BALB/cJ mice were intravenously
transferred with 100 µg of total IgG from the sera of the
following animal groups: non-immunized but hRSV-infected
(nt-hRSV), BCG-WT immunized hRSV-infected, rBCG-N
immunized hRSV-infected, non-immunized but hMPV-infected
(nt-hMPV), BCG-WT hMPV-infected, and rBCG-P immunized
hMPV-infected mice (n = 6 for each group). Serum samples
used for these experiments were collected at 14 dpi (hRSV)
and 49 dpi (hMPV). One day after the transfer, animals were
intraperitoneally anesthetized with a mixture of ketamine and
xylazine (80 and 4 mg/kg, respectively) and challenged by
intranasal instillation with 1 × 107 PFU of hRSV or 1 × 106

PFU of hMPV, respectively. In both cases, Mock treatments were
used as negative control and virus infected non-transferred (nt)
as an infection-control. In order to evaluate the effect of the
protection, animals were immunized with 100 µg of palivizumab
(intraperitoneal route) as a positive antiviral control against
hRSV. Weight loss was daily measured in both experiments
(Data not shown). At 7 dpi, animals were terminally anesthetized
by i.p. injection of a mixture of ketamine and xylazine (20 and 1
mg/kg, respectively) and BALs and lungs were collected.

Evaluation of hRSV- and hMPV-Associated
Disease Parameters
To determine the infiltration of polymorphonuclear cells, BALs
were collected as previously described (24). Briefly, lung samples
were collected, clamping the non-lobed section of the lung, stored
in 4% PFA and later used to histological analyzes, as previously
described (24). A lower section of the lobate lung was collected
and stored in TRIzol (Life Technologies), and the RNA was
extracted following the manufacture conditions. The rest of the
lung was collected and incubated with collagenase IV for 30min
at 37◦C, then PBS-1X/1%FBS was added to stop the collagenase
reaction. Lung samples were homogenized using a 70µm cell
strainer (BD Biosciences) and centrifugated at 0.3 g for 5min at
4◦C. Supernatants were discarded, and pellets were incubated for
5min with an ACK solution at RT. The cells were washed with
PBS/1%FBS and centrifuged once again. Finally, samples were
resuspended in 1mL of PBS/1%FBS and used for flow cytometry.
BAL samples were collected by gently instilling 1mL of PBS
with a tuberculin syringe through the trachea of the animals
and subsequently recovered (twice), while the lung was pinched.
The final volume was centrifuged at 0.3 g for 5min at 4◦C.

Supernatant was stored at −80◦C and pellets were resuspended
in 300 µL of PBS/1%FBS. Finally, the cells from Lungs and BALs
were incubated in 96 six-well plates and centrifugated at 0.3 g for
5min at 4◦C, then the samples were stained with anti–CD11b
PerCP-Cy 5.5 (clone M1/70, BD Pharmingen), anti–CD11c APC
(clone HL3, BD Pharmingen), and anti-Ly6G FITC (Clone 1A8,
BD Pharmingen) antibodies. Data were acquired on FACSCanto
II cytometer (BD Biosciences) and analyzed using FlowJo v10.0.7
software (BD Biosciences). Viral loads were detected in the lungs
by qRT-PCR as previously described (24, 25). Also, lung samples
were stored in 4% PFA, maintained at 4◦C, embedded in paraffin,
cut, and stained with H&E as previously described (24).

Statistical Analyses
All statistical analyses were performed using GraphPad Prism
version 6.0 Software. Statistical significance was assessed using
One-way ANOVA with a posteriori Tukey test or Two-way
ANOVA test with a posteriori Tukey test.

RESULTS

rBCG-N and rBCG-P Vaccines Are Able to
Reduce Disease-Associated Parameters
Caused by hRSV or hMPV Infection
The expression of the hRSV N protein or the hMPV P protein in
rBCG-N or rBCG-P strains, respectively, was corroborated by dot
blot assays. Both recombinant BCG strains expressed significant
amounts of the respective proteins, as compared to negative and
BCG-WT controls (Supplementary Figure 1).

The hRSV- and hMPV-associated disease parameters were
evaluated post-immunization to evaluate the protective capacity
of the rBCG strains against each respective viral infection
(Figure 1). The immunization scheme is described at the
Materials and Methods section (Mouse immunization and
viral infection) and is also shown in Figure 2A. As shown
in Figure 1A, infection with 1 × 107 PFU of hRSV induces
body weight loss in all infected animals 1 day post-infection
(dpi). Importantly, rBCG-N-immunized and hRSV-infected
mice started recovering their original body weight at 2 dpi and
recovered their original body weight by day 5 pi. On the contrary,
the non-immunized and hRSV-infected group (hRSV) was not
able to recover their initial weight by 7 dpi.

Likewise, as seen for the rBCG-N immunized and hRSV-
infected mice (rBCG-N+hRSV), vaccination was able to
drastically decrease viral loads in the lungs of the hRSV-infected
animals as compared to the non-immunized but infected group
(hRSV) (Figure 1B). Further, the BCG-WT immunized and
hRSV-infected mice (BCG-WT+ hRSV) showed a significant
decrease in the viral loads, as compared to hRSV mice, although
this decrease was less pronounced than the observed for the
rBCG-N+hRSV mice (Figure 1B). Remarkably, the number of
BAL neutrophils (CD11b+ Ly6G+ cells) infiltrating the lungs
of rBCG-N-vaccinated animals was lower than those vaccinated
with BCG-WT or hRSV-infected, naïve mice (Figure 1C).

A similar protective response was found for the hMPV-
infected animals with a similar body weight loss and recovery
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FIGURE 1 | Evaluation of infection parameters from animals infected with hRSV or hMPV. Several infection parameters were measured in the mice infected with hRSV

or hMPV to corroborate that both viral infections promote the diseases. For hRSV all the parameters were measured at day 7 post-infection, for hMPV weight loss was

measured for 7 days post-infection, while the neutrophils infiltrate and the viral load were measured at day 28 pi. The weight loss was measured from hRSV- (A) and

hMPV-infected mice (D). Also, the viral load was quantified for hRSV (B) and (E) hMPV. In addition, the neutrophils infiltration was measured in the hRSV- (C) and

hMPV-infection (F), respectively. The bars observed in the (B,C) are accordingly: Mock-treated, hRSV-infected, Immunized with BCG-WT and infected with

hRSV (BCG-WT+hRSV) and Immunized with rBCG-N and infected with hRSV (rBCG-N +hRSV). The bars observed in (E,F) are accordingly: Mock-treated,

hMPV-infected, BCG-WT +hMPV, and rBCG-P + hMPV. N = 3 for each group, with two independent experiments. Differences were evaluated by a

one-way ANOVA (*p < 0.05; **p < 0.01; ***p ≤ 0.001; ****p ≤ 0.0001). The error bars represent the Standard Deviation (SD).
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FIGURE 2 | Evaluation of the induction of IgG specific-antibodies against viral antigens after a viral infection. IgG for different antigens were evaluated from the sera

obtained at different time points: Prior to immunization (Preimmune), prior to virus infection (Prechallenge), 7 and 14 days post-infection (7 dpi and 14 dpi) for hRSV or

7 dpi and 28 dpi for hMPV, respectively (A, G). Specific antibodies levels were determined by ELISA assay against hRSV (B), N protein (C), P protein (D), G protein

(E), F protein (F). Similarly, this same ELISA assays were done against hMPV (H), P protein (I), M2.1 protein (J), and M protein (K). The bars observed in the (B–F) are

accordingly: Mock-treated, hRSV-infected, BCG-WT +hRSV, and rBCG-N +hRSV. On the other hand, the bars observed in (H–K) are accordingly:

Mock-treated, hMPV-infected, BCG-WT +hMPV, and rBCG-P +hMPV. The measure was made at 450 nm. The sera from 6 different animals for each

group was used for the ELISA assay, with each serum tested in 3 replicates. N = 3 for each group, with two independent experiments. Differences were evaluated by

a two-way ANOVA (*p < 0.05; **p < 0.01; ***p ≤ 0.001; ****p ≤ 0.0001). The error bars represent the Standard Deviation (SD).
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(Figure 1D). Also, the rBCG-P immunized and hMPV-infected
mice (rBCG-P+hMPV) showed a significant decrease in viral
loads as compared to the non-immunized and hMPV-infected
mice (hMPV) (Figure 1E) and a decrease in the number of
infiltrating neutrophils in the BALs (Figure 1F). Remarkably,
no significant differences were detected in the BALs of BCG-
WT+hMPV when compared with the hMPV-infected naive
mice. Therefore, and as described previously, immunization
with recombinant rBCG vaccines significantly decrease disease
parameters associated to hRSV and hMPV infection, such as
body weight loss, viral loads, and neutrophil infiltration in the
lungs.

Immunization With rBCG Strains Enhances
Post-challenge Antibody Responses for
Several Viral Proteins
To evaluate whether the immune protection induced by the
rBCG vaccines involves a humoral-mediated response, the
presence of anti-hRSV or -hMPV antibodies in sera from
immunized mice (BCG-WT, rBCG-N, and rBCG-P groups)
was measured (Figure 2). An increase in the total anti-hRSV
antibodies was observed in the rBCG-N+hRSV sera at both 7 and
14 dpi, as compared to all the other treatments (Figure 2B). BCG-
WT+hRSV treated mice showed a significant increase in anti-
hRSV antibodies as compared to mock-treated and the hRSV-
infected mice at 14 dpi (Figure 2B). However, this increase was
not as pronounced as the one observed for the rBCG-N+hRSV
treated mice. No significant differences were detected between
hRSV- and the mock-treated animals at day 7 post-infection,
although there is a clear tendency to an increase in the quantity
of IgG.

Since the production of total antibodies against hRSV was
significantly higher in infected mice previously immunized with
rBCG-N, we measured the specific antibody production against
various individual hRSV proteins, such as N, P, G, and F
proteins (Figures 2C–F). We observed that at 7 and 14 dpi
rBCG-N+hRSV treated mice secreted more anti-N antibody
as compared with all the other groups (with the exception
of the BCG-WT+hRSV group at 7 dpi). At 14 dpi BCG-
WT+hRSV also showed an increase in the anti-N antibody
secretion, as compared to mock-treated and the hRSV mice
(Figure 2C). A significantly higher antibody secretion against
P-, G-, and F-hRSV proteins was detected at 7 and 14 dpi
for the rBCG-N+hRSV treated mice as compared to the
mock controls (Figures 2D–F). Remarkably, this increase was
statistically higher when compared to all the other treatments at
14 dpi, with the exception of BCG-WT+hRSV for the F-protein
(Figure 2F). The IgG concentration for the F protein was as high
as the one detected for the total hRSV antibodies (about 1,500–
2,000µg/mL), indicating that this protein is one of the major
antigenic determinants of the virus, accordingly to what has been
previously described (31).

When the humoral response induced by the rBCG-P vaccine
was evaluated, high antibody titers were observed starting
from 28 dpi against total hMPV, P-, M2.1-, and M-proteins
for the rBCG-P+hMPV, when compared with all the other

treatments, with the exception of the BCG-WT+hMPV treated
mice for the total anti-hMPV (Figures 2H–K). Likewise, the
BCG-WT+hMPV treated mice also showed significantly higher
anti-hMPV antibody titers as compared to themock-treatedmice
at 28 dpi (Figure 2H). Remarkably, a higher secretion of anti-M
antibodies was detected for the rBCG-P+hMPV treated mice as
early as 7 dpi, as compared to all the other treatments (Figure 2J).
Finally, the BCG-WT+hMPV treated mice and the hMPV
infected naïve mice showed higher levels of anti-M2.1 antibodies
as compared to the mock treated-mice at 28 dpi (Figures 2I–K).
Again, post-infection IgG levels for all the proteins evaluated was
significantly higher in rBCG-P-immunized mice as compared to
the other groups, suggesting that the effect was induced by both
vaccination and infection.

The low IgG levels detected in the sera from mock-treated
mice against both G and F proteins, could be associated with
the assay methodology properties, as ELISA may have shown
unspecific interactions (Figure 2). These results suggest that
immunization with rBCG vaccines, upon challenge with the
pathogen, is able to promote the secretion of antibodies against
several proteins of each respective virus.

Transfer of Activated N-hRSV
Protein-Specific T Cells From Immunized
Mice to Challenged Mice Leads to
Diversification of the Antibody Response
Against Viral Proteins
As shown above, a significant increase in the secretion of
antibodies specific against proteins different than those expressed
by the rBCG vaccines was detected upon immunization and
viral challenge (Figure 2).Therefore, to elucidate whether the
secretion of antibodies against the different proteins was an effect
of either the expressed proteins by themselves or an effect of
the vaccine prototypes as a whole, we measured the secretion
of antibodies by hRSV-infected mice that were previously
adoptively transferred with T cells derived from rBCG-
N immunized mice (Figure 3 and Supplementary Figure 3).
Briefly, mice were immunized with 1 × 108 CFU of either
BCG-WT or rBCG-N, then at day 14 post-immunization
mice were boosted with the same vaccine dose. Unimmunized
or mice immunized with purified hRSV Nucleoprotein with
either Freund adjuvant or Aluminum Hydroxide adjuvant, were
included as controls (Supplementary Figure 2). At day 21 after
the first immunization, animals were euthanized, spleens were
collected and 72 h-long splenocyte cultures were performed
stimulating with purified hRSV nucleoprotein. Next, T cells were
purified and immediately transferred to naïve mice. Animals
were then infected and euthanized at 7 dpi, sera were collected,
and the secretion of specific antibodies was measured.

We detected that mice receiving T cells from the rBCG-
N immunized group and then infected with hRSV (rBCG-
N+hRSV) induced the higher antibody secretion against the
proteins evaluated, as compared to control animals (Figure 3).
The anti-hRSV antibody titers were higher in the rBCG-
N-transferred mice, exhibiting a significant increase when
compared to most of the other groups, except the one
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FIGURE 3 | The rBCG-N vaccine promotes the secretion of antibodies against several antigens through the Linked Recognition mechanism. The secretion of specific

antibodies against the whole virus and the N, F, and G hRSV proteins were measured by indirect ELISA from the sera collected of the T cell transferred and infected

mice after 7 dpi. The anti- hRSV (A), anti-N-hRSV (B), anti-F-hRSV (C) and anti-G-hRSV (D) were evaluated and measured at 450 nm. The bars observed in the (A–D)

are accordingly: Non-transferred and Mock-treated (ST+Mock), Non-transferred, and hRSV-infected (ST+hRSV), T cells transferred from mice immunized

with hRSV-N protein in Freund adjuvant, treated with mock (N-Freund+Mock), T cells transferred from mice immunized with hRSV-N protein in Freund adjuvant,

infected with hRSV(N-Freund+hRSV), T cells transferred from mice immunized with BCG-WT and then infected with hRSV (BCG-WT + hRSV) and T cells

transferred from mice immunized with rBCG-N and then infected with hRSV (rBCG-N +hRSV). The sera from five different animals for each group was used for the

ELISA assay, with each serum tested in three replicates. Data combinate from two independent experiment for ST+mock, ST+hRSV, BGC-WT+hRSV and

rBCG-N+hRSV groups (N = 9), and one independent experiment for N-Freund+Mock, N-Freund+hRSV groups (N = 5). Differences were evaluated by a one-way

ANOVA (*p < 0.05; **p < 0.01; ***p ≤ 0.001; ****p ≤ 0.0001). The error bars represent the Standard Deviation (SD).

immunized with purified hRSV-N protein with Freund as
adjuvant and then infected with hRSV (N-Freund+hRSV),
were no significant differences were detected. Remarkably, mice
receiving T cells from the BCG-WT immunized and then
infected with hRSV (BCG-WT+hRSV) showed no significant
differences as compared to the N-Freund group (Figure 3A).

A similar response was observed when the anti-N antibody
secretion was evaluated, as only rBCG-N+hRSV transferred

mice showed a rise in antibody titers, as compared to all
other experimental groups. No significant differences were
observed between the mock-treated, hRSV-infected and BCG-
WT+hRSV transferred groups (Figure 3B). Regarding the other
viral proteins, we identified an increase in the anti-F and anti-
G antibody secretion for the rBCG-N+hRSV transferred mice as
compared to mock-treated mice, whether they were immunized
or not (Figures 3C,D).
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FIGURE 4 | The rBCG strains induce a strong IgG2a isotype switching after a viral infection. The secretion of specific antibody isotype IgG2a and IgG1 was measured

in both vaccines by indirect ELISA. The assay was done using a total virus extract and expressed as the ratio between the IgG2a and IgG1 in animals infected with

hRSV (A) and hMPV (B). Secretion of this specific antibody was measured from sera at 14 dpi (hRSV) or 49 dpi (hMPV) using total extract of each virus to incubate the

plate. The bars observed in the (A) are accordingly: Mock-treated, hRSV-infected, BCG-WT +hRSV, and rBCG-N +hRSV. On the other hand, the bars

observed in (B) are accordingly: Mock-treated, hMPV-infected, BCG-WT +hMPV, and rBCG-P +hMPV. The measure was made at 450 nm. The sera

from six different animals for each group was used for the ELISA assay, with each serum tested in three replicates. N = 3 for each group, with two independent

experiment. Differences among groups were evaluated by a one-way ANOVA (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001). The error bars represent the

Standard Deviation (SD).

As controls, we also included animals immunized with the
nucleoprotein of hRSV, along with either the Freund Adjuvant—
a Th-1 inducer—or Aluminum hydroxide Adjuvant—a Th-2
inducer (32, 33) (Supplementary Figures 2, 3). Remarkably, the
total anti-hRSV, anti-F and anti-G antibodies secretion was
statistically higher in the mice transferred with the T cells from
the animals immunized with the Aluminum hydroxide adjuvant,
as compared to all the other groups. This effect was not seen
when the specific anti-N antibodies were measured, as the rBCG-
N+hRSV transferred animals exhibited a significantly higher
antibody secretion as compared to all the groups except for the
Aluminum hydroxide (Supplementary Figure 3). These results
suggest that, although animals are being immunized with a
particular antigen, the vaccine elicited T helper response seems
to promote the activation of B cells specific for viral antigens
beyond those encoded by these recombinant proteins. As such,
these data also suggest the normal presentation of nucleoprotein
and phosphoprotein peptides by the B cells of hRSV and hMPV
infected mice, respectively.

rBCG Vaccines Induce an Efficient
Antibody Class Switching Upon Viral
Infection
Since antibody class switching also depends on the help
provided by CD4+ T cells, we sought to evaluate whether this
phenomenon is also promoted by the cellular immunity induced
by rBCG vaccination. Sera obtained from the experimental

groups presented in Figure 2 were analyzed by ELISA and the
IgG2a/IgG1 antibody ratio was determined for virus-specific
antibodies. Similar responses were observed for both rBCG
vaccines as compared with their respective control groups
(Figure 4). rBCG-N+hRSV treated mice showed the highest
IgG2a/IgG1 ratio for virus-specific IgGs as compared to all of
the others control mice (Figure 4A). Nevertheless, the BCG-
WT+hRSV treated mice also showed an increased IgG2a/IgG1
ratio as compared to mock-treated and hRSV mice, although
this rise was not as high as the observed for the sera derived
from rBCG-N+hRSV-treated mice (Figure 4A). Additionally,

the hRSV infected naïve mice only showed an increase in the
antibody ratio when compared with the mock-treated animals

(Figure 4A).
As stated above, a similar pattern was observed in the

sera derived from rBCG-P-vaccinated mice (Figure 4B). The

rBCG-P+hMPV treated mice also showed an increase in
the IgG2a/IgG1 antibody ratio, as compared with mock-

treated and hMPV infected naïve mice (Figure 4B). Further, a

higher IgG2a/IgG1 antibody ratio was observed for the BCG-
WT+hMPV treated mice as compared to hMPV-infected and
mock-treated mice. Remarkably, no differences were detected in
the ratio among the sera from mock-treated and hMPV infected
naïve mice. These results indicate that antibodies secreted by
animals immunized with rBCG vaccines undergo significant
isotype switching that may contribute to their viral clearance
capacity.
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FIGURE 5 | Sera from immunized mice are able to neutralize both viruses in vitro. Sera pools from all experimental groups were incubated with the GFP-virus and

then used to infected cells to evaluate whether they have the ability to neutralize viral replication. The effect was measured counting the plaques forming units (PFUs)

induced by each GFP- virus and indicated as percentage of inhibition. The effect observed from the sera of the hRSV-infected animals was evaluated at 14 dpi (A) and

the effect from hMPV-infected animals was evaluated at 49 dpi (B). The bars observed in the (A) are accordingly: Mock-treated, hRSV-infected, BCG-WT

+hRSV, and rBCG-N +hRSV. On the other hand, the bars observed in (B) are accordingly: Mock-treated, hMPV-infected, BCG-WT +hMPV, and

rBCG-P +hMPV. N = 3 for each group, with two independent experiments. Differences were evaluated by a one-way ANOVA (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001;

***p ≤ 0.0001). The error bars represent the Standard Deviation (SD).

rBCG-Induced Antibodies Show Virus
Neutralizing Capacity ex vivo
To evaluate whether the antibodies generated by the rBCG
immunization are able to neutralize hRSV or hMPV replication
ex-vivo, sera collected from the immunized and infected animals
were incubated with hRSV or hMPV and later used to infect
cells (Hep-2 for hRSV and LLC-MK2 for hMPV), then PFUs
were evaluated (Figure 5). Sera obtained from rBCG-N+hRSV-
treated, BCG-WT+hRSV-treated and hRSV-infected mice led to
a decrease in the number of viral PFUs, represented as an increase
in the percentage of inhibition of viral loads, as compared to
mock-treated mice. Furthermore, sera from rBCG-N+hRSV-
treated mice showed a higher antiviral effect when compared
with sera derived from hRSV-infected and BCG-WT+hRSV-
treated animals (Figure 5A). As for hMPV-infected animals,
rBCG-P+hMPV-treated, BCG-WT+hMPV-treated, and hMPV-
infected mice showed a significant increase in the percentage of
inhibition, as compared to mock-treated mice. Moreover, rBCG-
P+hMPV-treated and hMPV-infected mice showed significantly
higher percentage of inhibition as compared to sera from
BCG-WT+hMPV-treated animals. However, no differences were
found among rBCG-P+hMPV and hMPV mice (Figure 5B).
These data suggest that immunization with rBCG promotes the
secretion of antibodies with enhanced capacities to neutralize
virus in cell culture experiments.

Antibodies triggered by rBCG vaccination followed by virus
challenge protect naïvemice from viral-induced lung pathology.

After evaluating the neutralizing effect of the sera obtained

from the immunized mice ex-vivo, we sought to evaluate the

capacity of these sera to protect from a viral infection in vivo.

With this aim, sera were transferred from immunized to naïve
mice, which in turn were challenged with the respective virus.
As shown in Figure 6A, a significant viral load reduction was
observed for mice transferred with sera from rBCG-N+hRSV-
treated mice as compared to non-transferred but hRSV-infected
mice (nt-hRSV). The adoptive transfer of sera from rBCG-
N+hRSV-treated mice led to similar levels of protection as
compared to the transfer of Palivizumab, a commercially available
humanized anti-hRSV-F mAb (Figure 6A). Further, a significant
decrease in the infiltration of neutrophils to the lungs was
observed for mice that had received sera from rBCG-N+hRSV-
treated animals (Figure 6B).

Additionally, H&E staining of histopathological lung samples
showed that nt-hRSV and hRSV animals exhibited a loss of lung
structure and a high cellular infiltration (Figure 6C). In contrast,
animals transferred either with Palivizumab, sera from BCG-
WT+hRSV-treated mice or sera from hRSV-infected mice and
then challenged with hRSV, showed reduced pathological signs as
compared to nt-hRSV mice (Figure 6C). When mice transferred
with sera from rBCG-N+hRSV-treated mice were evaluated,
signs of improvement in the lung structure and a decrease in the
cellular infiltration were observed as compared to nt-hRSV, being
similar to the infiltration found in the lungs from mock-treated
mice (Figure 6C).
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FIGURE 6 | Passive immunity transfer from sera of previously rBCG immunized mice protects naïve mice from hRSV- and hMPV-associated pathology. Sera from 14

dpi (hRSV) or 49 dpi (hMPV) was passively transferred to naïve mice. Then mice were then infected with hRSV or hMPV, respectively. As a control, a non-transferred

group was also infected (nt-hRSV or nt-hMPV). Parameters as viral load in lung by RT-qPCR (A for hRSV and D for hMPV), neutrophils infiltrated in BALs (B for hRSV

and E for hMPV) and histopathological lung H&E staining (C for hRSV and F for hMPV) were evaluated. For hRSV, Palivizumab was used as a positive control. The

bars observed in the (B,C) are accordingly: Mock-treated, nt-hRSV, Transf. hRSV, Transf. BCG-WT +hRSV, and Transf. rBCG-N +hRSV and

Palivizumab. On the other hand, the bars observed in (E,F) are accordingly: Mock-treated, nt-hMPV, Transf. hMPV Transf. BCG-WT +hMPV, and

Transf. rBCG-P +hMPV. Differences were evaluated by a one-way ANOVA (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001). These results are from two

independent experiments with 3 animals by group. The error bars represent the Standard Deviation (SD).
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Equivalent parameters were evaluated for animals transferred
with sera from rBCG-P+hMPV-treated mice. As seen in mock-
treated mice, we observed almost no hMPV replication and
significantly lower viral loads in mice that received sera from
rBCG-P+hMPV-treated mice, as compared to non-transferred
but hMPV-infected (nt-hMPV), mice transferred with sera
from hMPV-infected mice, and from BCG-WT+hMPV-treated
mice (Figure 6D). Further, animals transferred with BCG-
WT+hMPV-treated mice also showed a decrease in viral loads
relative to nt-hMPV, although this was not seen against hMPV-
transferred + hMPV mice. Neutrophil infiltration into the lungs
was also evaluated for the rBCG-P vaccine. Importantly, sera
transfer from rBCG-P+hMPV-treated mice led to a reduced
infiltration of neutrophils into lungs, similar to the values
seen in mock-treated mice. Further, nt-hMPV mice, mice
transferred with sera from hMPV-treated and BCG-WT+hMPV-
treated mice showed higher values of neutrophil infiltration,
as compared to mice receiving sera from rBCG-P+hMPV-
treated mice (Figure 6E). Although animals transferred with
sera from BCG-WT+hMPV-treated mice also showed a slight
reduction in neutrophil infiltration as compared with the sera
from nt-hMPV mice, the value of neutrophils was significantly
higher than in those transferred with sera from rBCG-P+hMPV
transferred mice (Figure 6E). No significant differences were
detected between the hMPV-transferred group and nt-hMPV
mice. These data were consistent with the observation that mice
receiving sera from rBCG-P+hMPV mice showed a healthier
lung structure, similar to the control mock-treated mice, with
signs of significantly lower inflammatory cell infiltration, as
seen in the histopathological lung samples (Figure 6F). In
contrast, mice from groups nt-hMPV, hMPV-transferred, and
BCG-WT+hMPV transferred showed a significant loss of lung
structure and an increase of inflammatory cell infiltration
(Figure 6F). These data suggest that passive transfer of humoral
immunity from rBCG-vaccinated mice into naïve animals is
able to significantly reduce virus-associated pathology symptoms,
characterized by viral loads, neutrophil infiltration, and lung
structure damage.

DISCUSSION

Both hRSV and hMPV are respiratory viruses identified as
the leading cause of most pathologies affecting the upper
and lower respiratory tract of infants, children, elderly and
immunocompromised people (10). Both hRSV and hMPV
cause bronchiolitis, bronchitis, pneumonia, and high rates of
hospitalizations, with hMPV as an emergent pathogen (8, 10–
15). Nowadays, no vaccines against these viral pathogens are
available. Thus, we developed two vaccines prototype using
recombinant BCG strains (rBCG) that incorporate the genes
codifying either the N protein (rBCG-N) of hRSV or the P
protein (rBCG-P) of hMPV, respectively (24, 25). In this present
work, we sought to evaluate whether the previously found cell-
mediated immune response protection against hRSV and hMPV
was also accompanied by a virus-specific neutralizing antibodies
production after viral infection.

Both rBCG-N and rBCG-P have been previously reported
as protectors from lung damage, neutrophils infiltration to the
lungs and viral replication. Further, these rBCG vaccines were
shown to elicit a Th-1 response and induce the proliferation of
specific CD4+ and CD8+ IFNγ+ producers T cells (24, 25, 34).
Also, rBCG-N has been found to induce a Th-17 response and
a long-lasting immunity in mice (34). In the present work, we
observed that rBCG-N and rBCG-P were able to induce high
antibody titers specific for hRSV and hMPV, respectively, as
well as for several of the viral proteins. Interestingly, antibodies
against hRSV were found before viral challenge in sera from
rBCG-N immunized mice, but no antibodies against hMPV were
found in sera from rBCG-P immunized mice before the viral
challenge. Further, titers of anti-hMPV, anti-P, anti-M2, and
anti-M antibodies were found at 28 dpi in the sera of rBCG-P
immunized and hMPV-infected mice. Consistently, it has been
previously reported that hMPV displays a biphasic replication
cycle and infection peaks fluctuating from 7 to 14 dpi and it is
possible to find neutralizing antibodies throughout 28 dpi and
until 60 dpi (30). The different behaviors seen between hRSV and
hMPV could be associated with the capacity of the N protein of
hRSV to migrate to the surface of the host cells, a characteristic
that could also enhance its capacity to be presented as an antigen
by immune cells (20), when compared with the P protein of
hMPV (35). Another reason that could explain the antibody
secretion differences found could be associated with the capacity
of the BCG to achieve a proper folding of these proteins.

Mature B cells are activated upon B cell receptor (BCR)
binding to antigen, which is processed and presented to
effector helper T cells (36). Activated B cells will produce
antibodies against this antigen. Significantly, even when the
concentration and affinity of the antigen is very low, it has been
reported that insoluble antigens may congregate in a region
of the immunological synapse along with cytoplasmic effectors
polarizing inside the B cell, which enhance antigen processing
and presentation to T cells (36). We observed that both vaccines
induced significant antibody secretion against viral proteins
different than those expressed by the rBCGs. Remarkably, the
secretion of antibodies against hRSV was significantly higher
in the immunized animals (BCG-WT + hRSV and rBCG-N +

hRSV), as compared to the unimmunized and infected mice.
It has been reported that both hRSV and hMPV infections do
not induce an effective humoral immune response, promoting
a low antibody secretion with a non-protective isotype (37).
On the contrary, we found that BCG-WT, rBCG-N, and rBCG-
P promote an increase in antibody secretion throughout time.
Such antibody secretion could be explained by the immunogenic
capacity of BCG to induce a strong Th-1 profile, prompting the
secretion of IFN-γ in higher levels than IL-4 (38). Such Th-1
driving, in turn, promotes the proliferation and differentiation
of the B cells population into an effector plasma cell profile,
which increase the secretion of antibodies (39, 40). In addition,
BCG vaccination by itself has been associated to the selection
and survival of B cells and their subsequent maturation toward
plasma cell and memory B cell by Follicular B-helper T cell
(TFH), which could explain the high antibody titers detected
for the mice immunized with the BCG-WT (41). Furthermore,
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it has been previously described that the immunization with
BCG is able to induce the secretion of IgG2a antibodies by itself,
therefore explaining the isotope switching detected. Also, the
antibodies increase found in rBCG-N when compared to the
BCG-WT could be associated with the nature of the antigen and
the capacity of the host to present this antigen (39) that could, in
turn, promote the enhancement of these capacities of the rBCG,
when compared to the BCG-WT strain. Also, it is possible for B
cells to be activated recognizing the specific recombinant antigen
in their B cell receptor (BCR), while presenting another viral
antigen in their Major Histocompatibility complex II (MHC-II)
to T cells, for their later activation. These activated T cells will
aid naïve B cells to maturate and differentiate into plasma cells,
that will secrete high levels of antibodies, as compared with the
BCG-WT- which did not express the recombinant antigen- after
the viral infection (36). Higher antibody concentrations in sera
from hMPV- compared to hRSV-infected mice were found. Such
differences could be attributed to the times of collected samples,
as the hMPV sera were collected at 28 dpi and the hRSV sera were
collected at 14 dpi (40).

Production of IgG specific for an antigen different than the
one used for the immunization has been previously reported
for other pathogens (42–44). Such phenomenon, known as
“linked recognition,” takes place when two or more proteins
have epitopes spatially close to each other in a manner that
the B cell presents on MHC-II one of those linked antigens
to the T cell. As a result, the B cell that receives help from
the T cell becomes activated and reacts to the secondary
antigen—not the one presented to the T cell—and generates
antibodies against this linked antigen. Therefore, it is likely
that linked recognition takes place after rBCG-N and rBCG-
P immunization, as IgGs specific for other antigens, such as
P, F, and G proteins for hRSV and M and M2.1 for hMPV,
were produced. These proteins are all closely expressed on
the surface of infected cells, along with the N protein during
early stages of the replication cycle of hRSV (20). Importantly,
the anti-F antibody secretion at 14 dpi from BCG-WT+hRSV
and rBCG-N+hRSV mice is significantly higher (about 1,500–
2,000µg/mL) than the one seen for all the other proteins (about
500µg/mL). Such large antibody titers could be explained by
the capacity of both BCG and F protein to activate the TLR4
signaling pathway, which eventually can induce IL-6 secretion
(31, 45) and promote secretion of protein specific IgGs by B cells
(46).

To corroborate that the linked recognition antibody secretion
against the different viral proteins were an effect of the vaccine
as a whole and not just an effect of the expressed proteins,
we compared the response induced by the transfer of T
cells purified from rBCG-N immunized, BCG-WT immunized,
and hRSV-infected mice 7 dpi, the point when we detect an
early IgG secretion. We also included other groups such as
N-hRSV + Freund Adjuvant –as a Th-1 inducer adjuvant-
and N-hRSV + Aluminum hydroxide (Alum) Adjuvant –
as a Th-2 inducer adjuvant (Supplementary Figure 2). The
data obtained indicates that rBCG-N vaccine promotes the
highest antibodies secretion when compared with all the other
groups, even against N-hRSV protein + Freund Adjuvant

–whose adjuvant formulation is based on an extract of
BCG.

These results suggest that the live-attenuated vaccine as
a whole is required to induce an increase in the humoral
immune response. Remarkably, N-hRSV + Alum Adjuvant
showed higher levels of antibodies secretion when compared
to the other control groups in three of the four analyses
made (Supplementary Figure 3). A possible reason for this
could be associated with the capacity of this adjuvant to
promote a Th-2 immune profile, through the IL-4 secreted
by the monocytes –instead of IFN-γ- promoting and strong
but not protective humoral response (47). Moreover, it has
been reported that the effect of Alum is dependent of several
variables, such as the adsorption capacity of the antigen
and the protein content of the vaccine, among others (48).
Although the IgG measurement was performed at both 7
and 14 dpi, we decided to perform the linked recognition
assay at 7 dpi, as we detected that as early as this time
point the CD4+ T cell population was already activated,
therefore the mechanism we suggest could occur at this time
(Supplementary Figure 4).

A signature immune response against respiratory viruses,
such as hRSV and hMPV, is the antibody secretion of
IgG1 and IgG3 isotypes (49, 50). Importantly, although these
subclasses can opsonize and neutralize these viruses, they are
not suitable for the induction of an effective antiviral response,
thereby not being optimal for the control of the infection.
Importantly, several studies have demonstrated that IgG2a is
the adequate isotype against these infections since it increases
the opsonization and exhibits enhanced neutralizing capacities
when compared to the IgG1 isotype (51). Interestingly, we
found that the use of rBCG strains promotes an isotype
switching from IgG1 to IgG2a, which has been previously
reported to be associated with an efficient immune response
due to the neutralizing activity of these antibodies and the
activation of the complement pathway (4). Such isotype changes
–along with the Th-1 driving- have already been reported
after rBCG immunization (1, 24, 25, 34, 52). Interestingly,
we found that rBCG-N vaccine enhanced isotype switching,
prompting to an even better humoral response. Also, rBCG-
P and BCG-WT promoted the isotype switching seen in
rBCG-N—for hMPV-infected mice—but in lower levels when
compared with rBCG-N. Such a difference among viruses could
be explained because IgG2a displays a faster viral clearance
as compared to IgG1, thereby allowing rapid elimination of
the pathogen (40). Further, the differences could also be
associated to the fact that the IgG2a/IgG1 ratio was determined
for the sera obtained at 14 dpi for hRSV and at 28 dpi
for hMPV, promoting in this way the decrease of the total
circulating IgG.

The use of IFN-α previous to an hRSV-infection has been
associated with an increase in the IgA secretion in neonatal
and adult mice, accompanied by a strong B cell activation and
maturation (53). This effect has also been observed after the BCG
vaccinationwhere, using blood samples fromneonatal vaccinated
children, it was found that BCG promotes the secretion of type I
IFN by the plasmacytoid dendritic cells. This might explain why
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BCG is a good vaccine against viral and intracellular pathogens as
we have found in our study (54). The neonatal immune response
induced by hRSV-infection promotes an inefficient antibody
secretion during the first infection, as compared with adult mice
(55). Such a response is characterized with low levels of IgM and
IgG in the sera, with a peak at day 28 post-infection, instead
of the 7-day post-infection peak detected in adult mice (55).
A possible explanation for this behavior is the associated age
response dependent-limitation. Also, the antibody levels increase
faster after a second infection (55). Therefore, there seem to be
differences in the immune response of neonatal compared to
adult mice, which could vary the response to the vaccination. For
this reason, further studies in neonatal mice are needed to better
understand the response of vaccines against hRSV to be intended
finally to vaccinate newborns.

As we determined that both rBCG were able to induce
the secretion of several types of antibodies, we then sought
to evaluate their neutralizing capacities. We found that sera
from rBCG-N+hRSV and BCG-WT+hRSV mice at 14 dpi
were able to neutralize hRSV-GFP in Hep-2 cell culture since
the hRSV PFUs in these cells significantly decreased, shown
as an increase in the percentage of inhibition. Importantly,
such inhibition was also found in BCG-WT+hRSV sera but its
effect was not as high as the one seen in rBCG-N+hRSV sera,
suggesting that the BCG could promote the isotype antibodies
switching, inducing an inhibitory effect on the capacity of hRSV
to infect cells ex vivo. Likewise, rBCG-P+hMPV and BCG-
WT+hMPV displayed higher percentage of inhibition when
compared withmock-treated sera. The hMPV sera also presented
significantly higher capacities to neutralize hMPV-GFP in cell
culture. These data suggest that a second challenge with hMPV
could induce a positive effect on the neutralizing capacity of
IgG2a antibodies promoting the control of the viral replication in
both the infection alone and the rBCG-P vaccine. Also, although
the neutralizing levels in those three groups—hMPV, BCG-
WT+hMPV, and rBCG-P+hMPV—were similar, the quantity
of secreted antibodies was significantly different among them,
suggesting that the vaccine not only promoted the isotype
switching, but also a higher secretion of these antibodies.

Given that both vaccines showed neutralizing capacity of
the secreted antibodies ex vivo, we used these sera to perform
a passive transference of immunity to naïve mice. In the sera
transfer experiments, sera from hRSV-infected mice resulted in
a mildly decrease of neutrophils infiltration to the lungs, but only
sera from rBCG-N and hRSV-infected mice induce a reduction
of neutrophils to mock-like levels. Remarkably, we observed
that sera from previously rBCG-N and rBCG- P immunized
mice were able to reduce viral load, neutrophils infiltration to
lungs and protected from lung damage when compared to their
respective control groups.

Currently, the most effective FDA approved treatment against
hRSV is palivizumab, a monoclonal antibody that targets a
region of F protein that is highly conserved between both
antigenic groups of the virus. Further, such antibody is currently
used as a prophylactic method, mainly for high-risk infants
(51). However, a major concern about this treatment is its

price/effectiveness relation, since at least five doses are required
in order to achieve a passive immune response. Moreover, even
after the administration of five doses, only a 50% of the cases
reported a decrease in the hRSV-associated disease parameters.
Accordingly, no memory immune response has been reported
after administration of palivizumab (19, 51, 56). Importantly,
in the sera transfer experiment we found that our rBCG-N
strain is able to induce an even more pronounced humoral-
mediated protection than palivizumab. Such protection could
be associated with the high levels of anti-viral antibodies in the
sera of immunized animals and the significant isotype switching,
which in turn promote an effective antiviral response, as well as
the activation of complement pathway (19).

In conclusion, the use of BCG as a vector could be considered
as a promising vaccine approach against respiratory viruses,
promoting an efficient humoral response characterized
by high titers of neutralizing and protecting antibodies.
Thus, our rBCG strains are not inducing only a cellular
response, as previously described, but also a humoral
response, mediated by neutralizing antibodies against
several viral proteins, that promotes an effective immune
response when those are transferred to naïve recipient
mice.
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Bordetella pertussis is the agent of pertussis, also referred to as whooping cough, a

disease that remains an important public health issue. Vaccine-induced immunity to

pertussis wanes over time. In industrialized countries, high vaccine coverage has not

prevented infection and transmission of B. pertussis, leading to periodic outbreaks in

people of all ages. The consequence is the formation of a large source for transmission

to children, who show the highest susceptibility of developing severe whooping cough

and mortality. With the aim of providing protection against both disease and infection, a

live attenuated pertussis vaccine, in which three toxins have been genetically inactivated

or removed, is now in clinical development. This vaccine, named BPZE1, offers strong

protection in mice and non-human primates. It has completed a phase I clinical trial

in which safety, transient colonization of the human airway and immunogenicity could

be demonstrated. In mice, BPZE1 was also found to protect against inflammation

resulting from heterologous airway infections, including those caused by other Bordetella

species, influenza virus and respiratory syncytial virus. Furthermore, the heterologous

protection conferred by BPZE1 was also observed for non-infectious inflammatory

diseases, such as allergic asthma, as well as for inflammatory disorders outside of the

respiratory tract, such as contact dermatitis. Current studies focus on the mechanisms

underlying the anti-inflammatory effects associated with nasal BPZE1 administration.

Given the increasing importance of inflammatory disorders, novel preventive and

therapeutic approaches are urgently needed. Therefore, live vaccines, such as BPZE1,

may offer attractive solutions. It is now essential to understand the cellular and molecular

mechanisms of action before translating these biological findings into new healthcare

solutions.

Keywords: Bordetella, influenza, RSV, asthma, contact dermatitis, inflammation

INTRODUCTION

Despite of the use of efficacious vaccines, Bordetella pertussis is still one of the leading causes of
neonatal morbidity and mortality worldwide (1). In the 90s, acellular pertussis vaccines (aPV) have
been increasingly replacing the first-generation, whole-cell vaccines (for the description of pertussis
vaccines, see Table 1) (2, 3). In countries with high aPV vaccination coverage, the resurgence of
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pertussis has revealed that aPV-induced immunity decreases
faster than that induced by whole-cell vaccines or by natural
infection (1). Furthermore, aPV vaccination skews the immune
response to a Th2 type, both in mice and in human infants (4–6).
Given that immunity induced by B. pertussis infection decreases
later than vaccine-induced immunity (7), and that newborns are
capable of inducing a strong Th1 response upon infection (8), a
live attenuated pertussis vaccine candidate has been developed
to be administered by nasal inoculation (9). Named BPZE1, this
vaccine candidate has successfully completed a phase I clinical
trial in humans (10). Genetic modifications were made to remove
or inactivate three major toxins, pertussis toxin (PTX), tracheal
cytotoxin (TCT), and dermonecrotic toxin (DNT). A single
intranasal administration of BPZE1 led to strong and prolonged
B cell and Th1T cell responses, inducing protection against
challenge infection (9, 11–14). A single nasal administration of
BPZE1 in infant mice was associated with stronger protection
than that induced by two inoculations of aPV (9) and was
lasting substantially longer (13, 14). In addition to mice, juvenile
baboons were protected by a single nasal administration of
BPZE1 against infection and whooping cough disease upon
challenge with a highly virulent B. pertussis clinical isolate (15).
Therefore, BPZE1 is now in further clinical development as a
vaccine candidate against pertussis in adults and in neonates.

HETEROLOGOUS PROTECTION BY BPZE1

Clinical, immunological, and epidemiological studies have shown
that live vaccines can induce immunity to organisms other
than those against which they were initially intended. The
Bacillus Calmette-Guerin (BCG), smallpox, measles, oral polio,
and yellow fever vaccines have been extensively documented
to decrease disease and/or mortality from infections that
are different from tuberculosis, smallpox, measles, polio,
yellow fever, respectively (16). When repurposed against
cancer, inflammatory and/or auto-immune disorders, promising
effects have been observed for some of these vaccines (17).
These heterologous non-specific effects, also termed “off-target
effects,” seem to be limited to live vaccines (18). Therefore,
the heterologous protection by BPZE1 was also extensively
investigated.

In addition to B. pertussis, BPZE1 protects mice also against
lung infection by other Bordetella species, although this was
not observed after vaccination with aPV (9, 12, 19). Bordetella
parapertussis is a respiratory pathogen that causes chronic
pneumonia in sheep or pertussis-like disease in humans, albeit
usually less serious than pertussis caused by B. pertussis.
A single nasal BPZE1 vaccination led to strong protection
against colonization by B. parapertussis (9) and protection could
be transferred by splenocytes but not by serum of BPZE1-
vaccinated mice, whereas serum from convalescent mice was
able to protect against re-challenge with B. parapertussis. These
observations indicate that BPZE1-mediated cross-protection was
cell-mediated (12). Bordetella bronchiseptica can infect a large
variety of mammalian species, including humans, and can cause
mild to severe cough. In a mouse lethal challenge model,

BPZE1 reduced both death and lung colonization induced
by B. bronchiseptica (19). Interestingly, these protective effects
depend on two distinctive mechanisms. The decrease in colony-
forming units (CFUs) in the lungs relied on adaptive T-cell-
mediated immunity. However, protection against mortality was
primarily due to BPZE1 potent anti-inflammatory properties.
Compared to non-vaccinated mice, BPZE1-vaccinated animals
had reduced inflammation, neutrophil infiltration and tissue
damage in the lungs upon B. bronchiseptica infection. Nasal
vaccination with BPZE1 also primed mice for the induction
or recruitment of CD4+CD25+FoxP3+ regulatory T cells in
the lungs the amounts of which strongly increased upon
B. bronchiseptica challenge only in the BPZE1 vaccinated mice.
The role of these cells in the anti-inflammatory activities of
BPZE1 was evidenced by the significantly decreased protection
against B. bronchiseptica-induced mortality when they were
depleted using anti-CD25 antibodies 24 h before challenge.

The above observations suggest that the heterologous
protection induced by BPZE1 against the closely related
pathogens B. parapertussis and B. bronchiseptica is likely due
to cross-reactive B- or T-cells. Even the anti-inflammatory
protective activity against B. bronchiseptica-induced mortality
may be mediated by cross-reactive CD4+CD25+FoxP3+

regulatory T cells. However, heterologous protection elicited by
BPZE1 has also been assessed against very distant pathogens,
totally lacking any cross-reactive antigens at the B- or T-cell
levels, such as highly pathogenic influenza A virus (20). A single
nasal inoculation of BPZE1 decreased mortality caused by a
virulent mouse-adapted Influenza A strain (20). When mice
were infected with 2 LD50 of a mouse-adapted H3N2 virus 6 or
12 weeks after a single BPZE1 vaccination, 60% of them survived
the viral challenge. No protection against H3N2-induced death
was observed when the vaccine was heat-inactivated, or when
it was given 3 weeks prior to challenge. These data suggest that
only live BPZE1 provides protection and that BPZE1-mediated
protection takes several weeks to be established for a long period
of time. Protection was dose-dependent and required at least 5×
106 CFU of BPZE1 in this model. Although live BPZE1 protected
against H3N2-induced death, it did not significantly reduce
the viral load, demonstrating that the virus particles were not
directly targeted by the protective mechanism. This observation
is consistent with the lack of B- or T-cell cross-reactivity between
BPZE1 and the virus. However, BPZE1 vaccination decreased
lung immunopathology, decreased neutrophil and increased
macrophage numbers in the bronchoalveolar lavage fluids.
Furthermore, BPZE1 protected against lymphocyte depletion
and reduced the inflammatory cytokine storm resulting from
the viral infection, as evidenced by a decrease in IL-1β, IL-6,
and GM-CSF as compared to the non-vaccinated mice upon
viral challenge. Strikingly, an additional administration of
BPZE1 improved survival of the influenza-infected mice and
further decreased the inflammatory cytokine levels. Since this
protective mechanism did not rely on adaptive immunity,
these observations suggest that BPZE1 could induce trained
innate immunity, which has been shown to be based on
epigenetic reprogramming of monocytes (21). This may lead to
transcriptional programs that rewire the intracellular immune
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TABLE 1 | Vaccine formulations against pertussis.

Vaccine Producer PTX (µg) FHA (µg) PRN (µg) FIM (µg)

DTaP

Infanrix GlaxoSmithKline 25 25 8 –

Boostrix GlaxoSmithKline 8 8 2.5 –

Daptacel Sanofi Pasteur 10 5 3 5

Adacel Sanofi Pasteur 2.5 5 3 5

DTwP

D.T.COQ/D.T.P. Sanofi Pasteur NA NA NA NA

Triple Antigen Serum Institute of India Ltd. NA NA NA NA

Quinvaxem Crucell-Janssen NA NA NA NA

LIVE ATTENUATED VACCINE

BPZE1 (Phase II) ILiAD Biotechnologies – NA NA NA

signaling of these innate immune cells but also induce a shift of
cellular metabolism, thus increasing the innate immune cells’
capacity to respond to stimulation. Although not yet studied,
administration of BPZE1 may potentially be associated with
specific epigenetic events that are known to control myeloid cell
differentiation, the acquisition of myeloid identity and innate
immune memory (22).

However, the mechanism of the protective anti-inflammatory
effect of BPZE1 is not yet known. Although BPZE1
administration resulted in a transient increase of IL-10-
producing CD4+ T cells in the bronchoalveolar lavages (23),
the role of IL-10 in BPZE1-mediated protection against
influenza remains uncertain. TGF-ß levels did not differ
between vaccinated and non-vaccinated mice. Whether
CD4+CD25+FoxP3+ regulatory T cells play a role in this model
was not investigated.

Protection against viral diseases has also been demonstrated
in a murine model of respiratory syncytial virus (RSV) infection
(23). RSV usually does not cause death in mice but induces dose-
dependent weight loss. When mice were vaccinated with BPZE1
14 days before RSV infection, the weight loss was completely
abolished. Compared to the non-vaccinated mice, the viral load
was reduced 2- to 3-fold in the vaccinated animals, despite
the lack of cross reactivity between BPZE1 and RSV. However,
this does not fully account for the protective effect against
weight loss. Lymphocyte recruitment to the lungs after RSV
infection was also significantly reduced in the vaccinated mice,
whereas the amounts of macrophages and polymorphonuclear
cells in the bronchoalveolar lavages were increased in the BPZE1-
treated animals. Interestingly, neonatal vaccination with BPZE1
induced protection for a long period of time against RSV disease
as a single nasal BPZE1 dose administered to 2–5-day old
mice significantly decreased RSV-induced weight loss when they
reached adulthood.

Interestingly, prior BPZE1 vaccination led to an increase in
IL-10-producing CD4+ T cells after RSV infection, whereas
the numbers of IFN-γ-producing cells were reduced. This is
in apparent contrast to what was reported in the influenza
model, where BPZE1 treatment resulted in reduced levels of
both IL-10 and IFN-γ in the bronchoalveolar lavages after viral

challenge (20). Whether this merely reflects different read-outs
or timings between the two studies or whether it suggests
different mechanisms of protection against the two diseases
remains to be investigated. In the RSV model, the numbers
of virus-induced IL-17-producing CD4+ T cells were also
increased by prior BPZE1 vaccination (23), while TNF-α and
RANTES levels in the bronchoalveolar lavages were decreased.
The role of IL-17 in BPZE1-mediated protection against RSV
disease could be demonstrated by the use of blocking anti-
IL-17 antibodies administered before and during challenge to
the BPZE1-vaccinated mice. Administration of these antibodies
reestablished the weight loss prevented by BPZE1 vaccination
and prevented the recruitment of IL-10/IFN-γ double positive T
cells, whereas it did not increase viral load. These data indicate
that BPZE1-mediated protection against RSV disease does not
merely rely on its ability to slightly decrease the viral load. IL-
17 may be important for the recruitment or expansion of IL-10
producing T cells that in turn may decrease lung inflammation.
The role of IL-10 in limiting RSV disease has been well
documented (24, 25). However, in addition to the induction of
IL-17- and of IL-10-producing T cells, BPZE1 vaccination prior
to RSV challenge also induced elevated levels of CD4+FoxP3+

regulatory T cells, which have also been documented to modulate
RSV disease (26). The role of these cells in BPZE1-mediated
protection against RSV disease has not been investigated yet.

PROTECTION AGAINST NON-INFECTIOUS
DISEASES BY BPZE1

As BPZE1 provided protection against inflammation induced
by viral infections, it was also investigated whether BPZE1 can
prevent inflammation caused by non-infectious etiologies, such
as allergen-induced asthma. In a murine asthma model, nasal
inoculation of BPZE1 10 days before ovalbumin sensitization
reduced peribronchial inflammation upon ovalbumin challenge,
as compared with the non-vaccinated control group of sensitized
mice (27). In contrast, nasal infection with virulent B. pertussis
prior to ovalbumin sensitization exacerbated the pathology.
This observation is in line with B. pertussis-caused exacerbation
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of asthma in humans (28) and with the recently developed
notion that B. pertussis infection may also be an important
cause of asthma in humans (29). In contrast to virulent
B. pertussis, which exacerbated goblet cell hyperplasia and
mucus secretion, nasal administration of BPZE1 reduced
mucus secretion in the ovalbumin-sensitized mice and reduced
bronchial hyperreactivity (27). This was paralleled by a reduced
inflammatory infiltration of the airways, as evidenced by a
reduced total cell number, neutrophils and especially eosinophil
influx, upon aerosol ovalbumin challenge in the BPZE1-
treated mice compared to the non-vaccinated mice. However,
BPZE1 treatment did not decrease the ovalbumin-specific serum
IgE responses, whereas infection with virulent B. pertussis
increased the ovalbumin-specific serum IgE levels. BPZE1
administration before sensitization by ovalbumin also decreased
the levels of the Th2 cytokines IL-4, IL-5, and IL-15 in the
bronchoalveolar lavages, whereas it significantly increased the
IFN-γ levels. Thus, since BPZE1 vaccination had no effect on IgE
production, it is tempting to hypothesize that the increased IFN-
γ production in BPZE1-vaccinated mice has antagonized Th2-
driven fibrosis and remodeling of the airways through eosinophil
recruitment (30).

When the mice were vaccinated with BPZE1 6 weeks before
sensitization, comparable findings were reported (31), indicating
that the protective effect of BPZE1 is long-lasting. Again,
pre-treatment with BPZE1 protected against airway pathology,
whereas pretreatment with virulent B. pertussis exacerbated it,
even after total clearance of the Bordetella infection. Similarly,
mucus hypersecretion induced by ovalbumin was markedly
decreased in BPZE1-treated mice, as was the inflammatory
cell recruitment in the lungs, especially the recruitment of
eosinophils. Interestingly, in contrast to the study by Kavanagh
et al. (27), BPZE1 treatment also significantly reduced total and
ovalbumin-specific serum IgE responses in ovalbumin sensitized
and challenged mice (31), although the reduction was <2-fold.
Finally, the levels of the Th2 cytokines IL-4, IL-5, and IL-13 in
the bronchoalveolar lavages were also decreased in the BPZE1-
vaccinated mice, as were the levels of IL-1ß and IL-2, whereas
the IFN-γ levels did not change. Interestingly, in this model,
bronchoalveolar IL-10 levels were increased in the ovalbumin-
treated mice as compared to the controls, and this increase was
abolished by prior BPZE1 administration. Thus, it is possible that
the protective effect of BPZE1 in this model does not depend
on IL-10, although this remains to be investigated. Overall, these
studies show that BPZE1 is a potent immunomodulatory agent
able to suppress allergic asthma in mice even several weeks
after a single administration, which is different from most other
anti-inflammatory agents that only provide short-term effects.

As in the asthma models described above nasal BPZE1
administration also affected serum antibody responses (31), as
well as T-cell responses in the spleen (31), it is possible that its
off-target effects may not be restricted to the respiratory tract. In a
murine model of allergic contact dermatitis, nasal immunization
with BPZE1 was indeed found to reduce dinotrochlorobenzine-
induced ear swelling and inflammation of the skin (31). When
mice were intranasally vaccinated twice with BPZE1 at a 4-
week interval and then treated with dinitrochlorobenzene,

a significant prevention of ear swelling was observed, with
decreased tissue edema, inflammatory cell infiltration and local
production of pro-inflammatory cytokines. However, in contrast
to the allergic asthma model, a single administration of BPZE1
did not significantly reduce ear swelling and inflammatory cell
infiltration of inflammatory cells in the skin, and two doses
were necessary. Two intranasal doses of BPZE1 also reduced
the amounts of IL-1ß, IL-2, IL-17, IL-6, TNF-α, and IL-4 in
ear homogenates of dinotrochlorobenzine-treated mice, without
affecting the levels of IL-10. Thus, intranasal BPZE1 treatment
is associated with a systemic protection against inflammatory
disorders both at local and at distant sites.

POSSIBLE MECHANISMS UNDERLYING
THE ANTI-INFLAMMATORY EFFECTS OF
BPZE1?

Although BPZE1 is associated with potent anti-inflammatory
properties, it is likely that its nasal administration initially
induces mild inflammation, since it is able to induce T
and B cell responses to B. pertussis antigens. However, this
moderate inflammation appears to be well controlled and
rapidly resolved. Little is known about the post-vaccination
resolution of inflammation. It has been hypothesized that
there is a spontaneous decay of proinflammatory signals,
potentially helped by cells of the immune system. Specifically,
the regulatory T cells, which are the gateway cells protecting
hosts from autoimmunity (32) and which dampen the immune
response back to homeostatic levels after an acute reaction
(33, 34). Regulatory T cells and Th17 cells have a dynamic
relationship between immunity and inflammation, as both are
linked with tolerance and immunosuppression (35). Therefore, a
modification of the delicate balance between subsets of regulatory
T cells and effector T cells in BPZE1-treated mice may result
in a short-term mild inflammatory response followed by an
tolerogenic response in case of subsequent immune stimulation.

However, as of today the cellular and molecular mechanisms
of the BPZE1-associated anti-inflammatory effects remain
unclear. Both CD4+CD25+FoxP3+ Treg cells and IL-10-
producing CD4+ T cells may depend on IL-17 and be involved
in a synergistic manner (36). However, this may vary between
disease models. In vitro studies on human dendritic cells
suggest that BPZE1 can drive Th1/Th17 responses in humans
(37). BPZE1-treated dendritic cells induced T lymphocytes
expressing CD39/CD73 to generate adenosine using ATP
as substrate, and CD38/CD203a/CD73, which can hydrolyze
NAD+ to generate adenosine as well (38), and adenosine is
known for its anti-inflammatory properties (39). Thus, the
induction of these enzymes may result in a regulatory phenotype
that may contribute to the mechanism underlying the anti-
inflammatory properties of BPZE1. Interestingly, the anti-
inflammatory activities of BPZE1 are neither associated with
immunodeficiency, since antibody levels or antigen-specific T
cell responses to viral or bacterial antigens are not changed by
BPZE1 inoculation, nor with a rise in bacterial (9) or viral load
(20, 23) upon heterologous infection.
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Whereas, many pathogenic bacteria lead to inflammation in
the host, some bacterial proteins have the ability to prevent
inflammatory responses in order to increase their survival
within the host. Pathogens have developed different strategies
to counter inflammatory mechanisms, such as escape from the
host defense, inhibition of leukocyte recruitment to an inflamed
area, deactivation of anti-microbial peptides, increased stability
of endogenous inflammatory inhibitors, increased expression
of anti-inflammatory cytokines, and NF-κB pathway inhibition
through the cleavage of p65/relA (40).

The initial encounter of pathogens with the immune system
occurs in an environment often conditioned and regulated by its
endogenous microbiota. Thus, it may also be possible that the
anti-inflammatory effects observed after BPZE1 administration
is partly driven by commensals. It is known that commensals are
critical and active inducers of regulatory responses. For example,
induction of regulatory T cells was proposed as one of the main
mechanisms of action of probiotics—defined bacteria known
to confer a health benefit to the host (41). Whether BPZE1
administration alters the endogenousmicrobiota has not yet been
investigated.

Three virulence factors are lacking or are inactivated in
BPZE1, compared to the virulent parental strain. The DNT gene
is deleted in BPZE1, the PTX gene has been genetically modified,
which results in an enzymatically inactive molecule, and the
level of TCT has been reduced to background levels. When
functionally active, these virulence factors exacerbate airway
inflammatory responses during B. pertussis infection (42–44).
Therefore, their loss in BPZE1 would be expected to abolish the
inflammatory effects.

The lack of widespread occurrence of PTX-deficient strains
in the acellular vaccine era suggests that this virulence factor is
crucial for B. pertussis pathogenicity and/or transmission (45). A
B. pertussis strain not producing PTX failed to induce lethality in
4-week-old young mice, and to effectively colonize the airways
of infected mice (46). A U.S. B. pertussis isolate lacking both
PTX and pertactin (PRN) (47) caused no disease in a non-human
primate model of pertussis (45). Mice infection with high doses
of PTX-deficient strains promptly resolved inflammatory airway
pathology, whereas infection with isogenic PTX-producing
strains significantly prolonged inflammatory events and airway
pathology (42, 48). Similarly, mice infected with a PTX-
producing B. pertussis strain have significantly exacerbated
respiratory reflex responses after intratracheal inoculation of
bradykinin, compared to mice infected with a PTX-deficient
strain (49, 50). Paroxysmal coughing lasting several days in
rats infected with virulent B. pertussis (51) was not observed
in rats infected with a PTX-deficient strain (52). Expression
of inflammatory cytokine and chemokine genes was increased
in B. pertussis-infected mouse lungs, but not in mice infected
with a PTX-deficient strain (42, 53). Two distinct signaling
mechanisms are used by PTX to subvert cellular responses:
ADP-ribosylation of the Gαi/o proteins by the A-protomer of
the toxin (Gi/o protein-dependent action) and the interaction
of the B-oligomer with cell surface proteins (Gi/o protein-
independent action) (54). As BPZE1 produces enzymatically
inactive PTX, it is likely that the absence of inflammation upon

BPZE1 administration is due to the inactivation of this enzymatic
activity.

However, the absence of inflammatory properties does not
explain the potent anti-inflammatory properties of BPZE1, which
are likely due to B. pertussis factors that are yet to be discovered.
The broad effects of PTX on cell signaling may interact with these
unknown factors and thus mask specific immunomodulatory
properties.

The adenylate cyclase toxin (ACT), still present in BPZE1, is
one potential candidate. This toxin induces a fast upregulation
of cellular cAMP levels, which inhibits certain antibacterial
activities, such as reactive oxygen species production,
phagocytosis, and oxidative burst induction in the neutrophils
(55–59). During early infection, inhibition of these activities
abolishes innate immune control of B. pertussis (60, 61). In
epithelial cells and macrophages, ACT may promote infection
by influencing the secretion of cytokines and chemokines (43).
Purified ACT was shown to suppress the generation of IL-12
and TNF-α and to increase the production of IL-6 and IL-10
in human monocyte-derived dendritic cells (MDDC) and
macrophages activated by lipopolysaccharide (LPS) (61–65),
implying that ACT activity is associated with a down-regulation
of inflammation. In human bronchial epithelial cells, it was
reported that in vitro ACT activity was related to the inhibition
of expression of genes coding for the proinflammatory cytokines
IL-1β, TNF-α and IL-8 (66). Conversely, within 1 h of toxin
addition, the activity of ACT resulted in increased expression
of genes coding for IL-1α, IL-6, and IL-10. However, within
24 h after the addition of ACT, the expression levels of these
genes were back to the basal state (66). Interestingly, co-
incubation of ACT (10 ng/ml) and LPS led to survival signaling
in MDDCs and bone-marrow-derived dendritic cells (BMDCs)
(67). ACT committed TLR-stimulated dendritic cells to induce
CD4+CD25+Foxp3+T regulatory cells in vitro. In mice, ACT-
deficient mutants of B. pertussis are impaired in their ability to
infect, but this impairment was detectable at later time points
than that seen with a PTX-deficient strain (68). These data
are consistent with another study reporting that the ACT gene
promoter was upregulated later than the PTX gene promoter
after infection (69). Therefore, in virulent B. pertussis, PTX may
act early during infection to suppress neutrophil influx and ACT
may act afterwards to affect neutrophils and other cells recruited
at the site of infection (68). In the absence of active PTX early
activation of ACT may thus strongly inhibit inflammatory
responses in BPZE1-treated hosts.

Recently, ACT was found to interact with filamentous
haemagglutinin (FHA) to suppress in vitro production of a
biofilm (70). An immune-regulatory role of FHA has been
proposed, as microbe-specific type 1 regulatory T cell (Tr1)
clones specific for FHA could be generated from the lungs of
mice during acute infection by B. pertussis (71). The Tr1 clones
secreted high levels of IL-10 (but not IL-4, nor IFN-γ), expressed
T1/ST2 and CC chemokine receptor 5 and inhibited Th1
responses. In addition, FHA suppressed IL-12 and stimulated
IL-10 generation by dendritic cells, which directed naive T cells
toward the regulatory subtype. However, another recent study
did not confirm the production of IL-10 by DCs upon FHA
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treatment (72). Nevertheless, in vivo systemic administration of
FHA was shown to suppress pro-inflammatory cytokine and
to enhance anti-inflammatory cytokine generation by innate
immune cells. They suppressed (directly or indirectly) intestinal
inflammation in a T cell-mediated model of colitis through the
generation of regulatory T cells (73). The inhibitory role played
by FHA was also observed in a B. bronchiseptica animal model of
infection (43). A first analysis demonstrated that FHA can down-
regulate the innate immune response against B. bronchiseptica
infection, leading to lessened inflammation and longer bacterial
persistence (74). In the same model, additional studies reported
that without FHA, B. bronchiseptica triggers a Th17 response
leading to fast bacterial clearance, while the wild-type strain
expressing FHA caused persistent infection (58).

PRN is yet another candidate potentially endowed with
anti-inflammatory properties. PRN-deficient B. pertussis strains
induced stronger TNF-α, IL-6, IL-8, and G-CSF production
when incubated with human DCs than their PRN-producing
isogenic counterparts (75). Furthermore, the expression of
IRAK1/2, JUN and MAP2K3, as well as that of TLR1, TLR5,
and TLR6 was significantly more up-regulated in human DCs
when incubated with PRN-deficient B. pertussis than with PRN-
producing B. pertussis. In vivo, infection of mice with PRN-
deficient B. pertussis also resulted in increased serum levels
of some cytokines, such as TNF-α, IL-8 G-CSF, and IL-1ß,
compared to infection with PRN-producing B. pertussis. In
the lungs of mice the genes involved in lipid release, necrosis
and cell death were significantly more expressed after infection
with PRN-deficient B. pertussis than with PRN-producing
B. pertussis.

Obviously, many questions remain to be answered before
a vaccine such as BPZE1 can be considered as a tool to
prevent or treat heterologous inflammatory diseases. Whether
any of these factors alone or in combination may account for
the anti-inflammatory properties of BPZE1 obviously requires
further studies. Monitoring immune cell recruitment over time
in bronchoalveolar lavage fluids and examining gene expression
profiles of each cell type after BPZE1 treatment may improve
our understanding. Inactivation or suppression of additional
factors in BPZE1 may also be necessary to identify the causative
factors of the anti-inflammatory effects. It is also unknown
how important lung colonization with live BPZE1 is, whether

BPZE1 induces dysbiosis in the respiratory tract or elsewhere,
and whether this might play a role. The duration of the anti-
inflammatory effect has not been explored either. It will also be
important to examine whether a single mechanism is responsible
for the anti-inflammatory properties in all models investigated so
far, or whether different mechanisms might be at play according
to the model. Finally, all evidence for heterologous protection
mediated by BPZE1 has been obtained in murine models and
it remains to be assessed whether BPZE1 expresses its anti-
inflammatory properties also in other species, including humans.
These are among the questions that should be addressed in future
investigations.

CONCLUSION

Vaccination is considered as one of the most successful and
cost-effective medical interventions ever introduced (76, 77).
The assumption that vaccines have non-specific effects was first
reported in the 1990s at the Bandim Health Project in West
Africa by Aaby et al. (78). Since then, our understanding of
the immunological landscape is changing drastically. Beyond its
capacity to protect against B. pertussis infection, the protection
of BPZE1 against heterologous infections and inflammatory
diseases make this live attenuated vaccine a good candidate
to treat a variety of diseases associated with exacerbated
inflammation. Given the generic mechanisms and robustness
of innate immunity, the capacity to understand and take
advantage of this very effective system supplies an attractive
method to counteract infections (79). Analyzing how pathogens
induce anti-inflammatory and anti-immune machineries in
their hosts will lead to a better identification of the different
defense weaknesses and thereby more accurately decipher the
fundamental mechanisms of microbial pathogenesis (80). Given
the rising rate of new infectious and inflammatory diseases and
the persistence of classical infections, including pertussis, this
research remains essential to consider new preventative and
therapeutic strategies.
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Co-ligation of the B cell antigen receptor with complement receptor 2 on B-cells via

a C3d-opsonised antigen complex significantly lowers the threshold required for B cell

activation. Consequently, fusions of antigens with C3d polymers have shown great

potential in vaccine design. However, these linear arrays of C3d multimers do not mimic

the natural opsonisation of antigens with C3d. Here we investigate the potential of using

the unique complement activating characteristics of Staphylococcal immune-evasion

protein Sbi to develop a pro-vaccine approach that spontaneously coats antigens

with C3 degradation products in a natural way. We show that Sbi rapidly triggers

the alternative complement pathway through recruitment of complement regulators,

forming tripartite complexes that act as competitive antagonists of factor H, resulting

in enhanced complement consumption. These functional results are corroborated by

the structure of the complement activating Sbi-III-IV:C3d:FHR-1 complex. Finally, we

demonstrate that Sbi, fused with Mycobacterium tuberculosis antigen Ag85b, causes

efficient opsonisation with C3 fragments, thereby enhancing the immune response

significantly beyond that of Ag85b alone, providing proof of concept for our pro-vaccine

approach.

Keywords: vaccine, adjuvant, complement, immune evasion, Staphycoccus aureus

INTRODUCTION

Opsonisation of an antigen with C3d(g), the final degradation product of complement component
C3, results in the co-ligation of the B cell antigen receptor and complement receptor 2 (CR2) on
B cells, thereby instigating a profound molecular adjuvant effect, i.e., this co-ligation of receptor
complexes lowers the threshold of antigen required for B cell activation by up to 10,000 fold (1–3).
Furthermore, as CR2 is also expressed highly on follicular dendritic cells (FDCs) (4) the presence
of C3d(g) on the antigen allows it to be trafficked onto and trapped at the surface of these cells (5).
This provides an essential depot of antigen to support the germinal center reaction and maintain
the ongoing immune response including the generation of high affinity antibodies and memory
B-cells (3, 4, 6). B cells can also have an important role as antigen presenting cells (APCs) (7, 8) and
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have been shown to contribute to T-helper cell priming (9, 10)
and therefore, antigen-C3d-CR2 interactions play a key role in
humoral immunity (5). Additionally, C3d activation of T helper
cells has also been described in a CR2 independent manner (11),
underlining the importance of C3d opsonisation in stimulating
the immune system to respond.

Not surprisingly, this functionality led to the idea that
recombinant versions of C3d would make an ideal natural
adjuvant and to the subsequent design of linear polymers of
human C3d (12). Indeed, these linear arrays of C3d multimers
(3-mer to 20-mer) when fused directly to an antigen can act
as potent activators of human B-cells. However, they do not
mimic the natural opsonisation of antigens by C3d at a molecular
level and do not always enhance immune responses (13). After
activation of C3, C3b attaches directly to the antigen surface via
the reactive thioester on the convex face of the protein’s thioester
domain (TED). In the presence of complement regulators [factor
I (FI) and its co-factors, such as factor H (FH) and CR1] this
is rapidly converted to iC3b and then to C3d, exposing the
concave CR2 binding site of the TED fragment away from the
antigen surface (14). It is likely that multiple iC3b/C3d molecules
attach to complex antigens/pathogen surfaces during the initial
activation phases of complement, creating high-avidity binding
sites for complement fragment receptors.

In the last two decades, structural biology has helped to unveil
many of the molecular aspects that are crucial for the activation
and regulation of the complement system. Most notable are
the crystal structures of the central complement component
activation states, native C3 (15), activated C3b, and inactive
C3c (16). The structure of C3b in complex with factors B and
D (17) subsequently revealed a detailed view of the alternative
pathway C3 convertase assembly and its activation, leading to the
amplified cleavage of C3 molecules that result in opsonisation,
and clearance of microbial pathogens, and host debris. The
covalent attachment of C3b to surfaces does not discriminate
between self or non-self surfaces and requires tight regulation
to protect host surfaces. Structures of C3b in complex with FH
domains 1–4 (18) and domains 19–20 (19, 20) provided insights
into protection of host cells (21) and demonstrated how factor
H-related proteins (FHRs) function as competitive antagonists of
FH, modulating complement activation and providing improved
discrimination of self and non-self surfaces (22). The subsequent
structure of the complex of C3b, FH1−4, and regulator factor I
(23) improved our understanding in the proteolytic cleavage of
C3b to the late-stage opsonins iC3b or C3dg and provided the
basis for the regulator-dependent differences in processing and
immune recognition of opsonized material.

Here we investigate the potential to harness the unique
complement-stimulatory characteristics of Staphylococcus
aureus immunomodulator Sbi to develop “pro-vaccines.” Sbi
components would trigger natural complement activation
in the host and coat antigen surfaces with complement
component C3 degradation products, thereby enhancing
the degree of immunogenicity of target antigens. Research
from our lab previously revealed that Sbi contains two
domains (III and IV), which bind to the central complement
component C3 and cause futile fluid phase consumption

of this component (24). Therefore, these two domains of
Sbi offer the potential to not only coat an antigen with the
natural adjuvant C3d, but also to generate anaphylatoxins
and the full range of C3 opsonins. Such an approach has
the clear potential to activate many immune cells unlike
recombinant C3d fragment-based adjuvants of the past, that,
due to the restricted expression pattern of CR2, were largely
focused to B cells. Furthermore, the direct activation of
complement close to the target antigen (with the associated
anaphylatoxin generation) may be critical for generating
appropriate inflammatory immune responses, both humoral
and cellular; needed to immunize against complex pathogenic
targets.

In this study we first investigate the molecular mode
of action of Sbi-III-IV and evaluate the importance of
the tripartite complex formation between Sbi, C3d, and
complement regulators factor H (FH) or factor H-related
proteins (FHRs) for complement activation. Based on
these findings, we then tested whether our pro-vaccine
strategy would be successful by using Mycobacterium
tuberculosis antigen 85b (Ag85b) as a model antigen in a
fusion construct containing Sbi domains III and IV. We
show that this Sbi-Ag85b conjugate is opsonized by C3
degradation products in serum, and when administered to
mice, leads to an enhanced immune response in vivo, but
only in mice that possess C3 and complement receptor 1
and 2, demonstrating proof of concept for this adjuvant
compound.

RESULTS

Sbi-III-IV Triggers C3 Consumption via
Activation of the Alternative Complement
Pathway, Forming a Covalent Adduct With
C3b
To investigate the molecular details of the C3 futile consumption
caused by Sbi, a protein construct consisting of domains III
and IV (Sbi-III-IV) was incubated with normal human serum
(NHS) and analyzed using western blotting. As seen previously
(24), we found that Sbi-III-IV-induced C3 consumption results
in the deposition of metastable C3b molecules onto serum
proteins, causing the formation of high molecular weight
C3b covalent adduct species with serum proteins (Figure 1A).
Immuno-blotting analyses using a polyclonal anti-Sbi antibody
(Figure 1B) reveals that a small fraction of Sbi-III-IV molecule
also forms a covalent adduct with a nascent C3b molecule
that is subsequently converted into a smaller Sbi-iC3b adduct
as a result of proteolytic processing by serum proteases. In
addition, we show that Sbi-III-IV-induced C3 consumption
coincides with the release of the C3a anaphylatoxin fragment
(Figure 1C), and the proteolytic activation of factor B (FB)
(Figure 1D), confirming the alternative complement pathway
as the driving force behind this process. Pre-incubation of
serum with Sbi-III-IV results in the loss of serum hemolytic
ability caused by the futile consumption of fluid C3 (Figure 1E).
Without pre-incubation, the Sbi-III-IV construct does not
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FIGURE 1 | Sbi-III-IV induces C3 futile consumption via the alternative complement pathway and thereby causes C3b adduct formation and C3a anaphylatoxin

production. (A) C3 activation and C3b deposition in NHS after incubation with 10µM Sbi-III-IV, visualized using anti-C3d western blot analysis. C3b adducts formed

with serum proteins are indicated. Positions of α-120 (C3) α’110 (C3b) and α’-68 (iC3b) are indicated. The 10min lag-time in C3 activation we observe in the presence

of excess Sbi-III-IV (10µM) correlates with the delay reported in the natural C3 “tick-over” process, required for supplying the critical enzymatic component for the

initial fluid phase Alternative Pathway (AP) C3 convertase. (B) Sbi-C3b adduct formation, visualized with anti-Sbi western blot. These adducts migrate at higher than

expected molecular weights (Sbi-α’110: ∼160 kDa and Sbi-α’68: ∼120 kDa, with expected molecular weights of 125 and 83 kDa, respectively) which is caused by

the high pI of the Sbi-III-IV construct (pI = 9.3). Sbi-III-IV has a molecular weight of 14.8 kDa, but migrates to ∼22 kDa in SDS-polyacrylamide gel due to the positively

charged electrophoresis buffer. (C) C3a anaphylatoxin production, followed using anti-C3a western blot analysis (showing only the low molecular weight region). (D)

FB cleavage, monitored by anti-FB western blot analysis. (E) Concentration dependent Sbi-III-IV induced C3 consumption, studied by a rabbit erythrocytes haemolytic

assay. Rabbit erythrocytes were exposed to normal human serum pre-incubated with Sbi-III-IV (incubated, closed circles) and normal human serum with Sbi-III-IV

added at the start of the experiment (not incubated, open circles). (F) Schematic representation of the relative positions of point mutations that display the most

profound functional defects, K173A and R231A. (G) C3 consumption profiles of Sbi-III-IV mutants K173A and R231A. For (B–E) and (G), one representative blot of

three independent experiments was shown. For (E), four independent measurements of two experiments were shown. The mean and SD for each measurement were

calculated for all datasets. Curves were fitted using non-linear variable slope (four parameters) function in GraphPad Prism.

protect rabbit erythrocytes from lysis in NHS under AP
conditions.

Sbi Domain III Residue K173 Is Essential
for Complement Consumption
In order to gain understanding of the individual roles of Sbi
domains III and IV in AP activation, a systematic site-directed
mutagenesis approach was used, mainly focusing on charged
and polar amino acids (for details see Table S1 and Figure S1).

Functional screening of these mutants identified K173, located
within Sbi domain III (Figure 1F), as an essential contributor
to triggering C3 consumption. Sbi mutant K173A shows no
complement activation after 30min incubation with human
serum, demonstrating a comparable complement activation
defect to the previously identified C3d binding mutant R231A
(24, 25) (Figures 1F,G), located in Sbi domain IV. Assessment
of the C3d binding affinity, using switchSENSE (Table 1 and
Figure S2A), shows that contrary to R231A the C3d binding
capacity of K173A is unaffected, indicating it is essential for
the role for domain III in the futile consumption of C3.
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TABLE 1 | Sbi-III-IV:C3d interaction affinity determined by switchSENSE.

Kd (nM) kON (M−1S−1) kOFF (S−1)

WT:C3d 5.0 ± 0.8 5.9 ± 1.0×105 3.0 ± 0.1×10−3

K173A:C3d 5.8 ± 1.2 5.3 ± 0.9×105 3.0 ± 0.4×10−3

R231:C3d No binding

TABLE 2 | Sbi-III-IV:C3d complex hydrodynamic diameter determined by

switchSENSE.

DH (nm) of Sbi-III-IV DH (nm) of Sbi:C3d complex

WT 4.3 ± 0.1 6.6 ± 0.2

K173A 3.8 ± 0.3 5.0 ± 0.3

R231A 4.7 ± 0.3 No binding

Interestingly, our switchSENSE analyses of the C3d binding
characteristics also shows a reduced hydrodynamic diameter for
K173A compared to WT and the C3d impaired binding mutant
R231A, indication that this mutation in domain III results in
a more compact Sbi:C3d complex (Table 2 and Figure S2B). A
more detailed structural analysis of these conformational changes
follows below.

Sbi-III-IV Enhances Binding of FH or FHRs
to C3 Breakdown Products
In a previous study, we reported that Sbi-III-IV binds C3
isoforms in combination with the C-terminal part of FH
(FH19−20), forming tripartite complexes (26). Many FHRs
share SCR modules with high FH19−20 sequence identity (22)
particularly FHR-1 which has been demonstrated to have
significant complement dysregulation potential (21). Thus, we
investigated the potential role for Sbi-III-IV in mediating the
formation of tripartite complexes with C3 fragments and FHR-1,
FHR-2, or FHR-5.

On a C3b opsonised surface plasmon resonance (SPR) sensor
chip, the presence of wild-type Sbi-III-IV clearly enhanced
the binding of FH, FHR-1, FHR-2, FHR-5 as well as FH19−20

(at fixed concentrations of 100, 12.5, 20, 25, and 20 nM,
respectively) to the surface in a concentration dependent manner
(Figure 2A). However, in the case of the K173Amutant, tripartite
complex formation with FH or FHR-1, 2, 5, or FH19−20 is
significantly impaired, showing decreased binding and more
rapid dissociation compared to WT Sbi-III-IV (Figures 2B,C).
We also co-injected Sbi-III-IV with FH or FHR-1, flowing
opsonized iC3b or amine-coupled C3d(g) across the surface. On
these surfaces, the fold-changes in FH (or FHR-1) binding levels
were also enhanced even at reduced Sbi-III-IV concentration
(Figures S3A–D).

Sbi-III-IV Acts as a Competitive Antagonist
of FH via the Recruitment of FHRs
Our SPR data, described above, show that Sbi-III-IV enables
FH or FHR-1, 2 and 5 binding to the C3 activation fragment
C3b and late-stage proteolytic fragments iC3b and C3d(g). To

further our understanding of the mechanism of FH or FHR
recruitment and the contribution of these tripartite complexes
to AP complement activation, we used a rabbit erythrocyte
haemolytic assay. In the presence of Sbi-III-IV and endogenous
FH (and FHRs), in NHS, addition of recombinant FHR-1
or FHR-2 resulted in significantly enhanced C3 consumption
(Figure 3A), as evidenced by the reduction in erythrocyte lysis
in a concentration dependent manner. In the absence of Sbi-
III-IV only baseline C3 consumption was observed. Although
FHR-5 alone can reduce erythrocyte lysis in a concentration
dependent manner, as described previously (27), in the presence
of Sbi-III-IV C3 consumption by FHR-5 is clearly enhanced
(Figure 3B). As predicted, the results in Figure 3C indicate that
the observed reduction in erythrocyte lysis caused by C3 fluid
phase consumption, in the case of FHR1 and likely the remaining
FHRs, is mediated by the C-terminal SCR domains of the protein
rather than the N-terminal domains.

Whilst our SPR and rabbit erythrocyte assay clearly indicate
that in vitro Sbi-III-IV can recruit FHRs in tripartite complexes
with C3b and thereby enhance fluid phase complement
consumption, it has to be taken into account that the
physiological molar concentrations of FHR-1, 2, and 5 are 13–
164 fold less than that of FH (21, 28). To further investigate the
potential competitive binding between FH and the FHRs in Sbi-
III-IV mediated tripartite complexes, we used an ELISA-based
assay where we applied FH (25 nM) and Sbi-III-IV [1µM, in the
presence of a concentration range of FHRs (9.3–150 nM)] onto
a C3b coated plate. Subsequently, we assessed the percentage of
FH bound using monoclonal antibody OX-24. Figure 3D shows
that FHR-1 can compete with FH to bind C3b, decreasing the
percentage of residual FH bound to C3b from∼70% at the lowest
FHR-1 concentration to ∼30% at the highest concentration.
In the presence of Sbi-III-IV WT this effect is dramatically
increased with only ∼25% residual FH bound at the lowest
FHR-1 concentration, reducing to ∼0% at the highest FHR-
1 concentration (Figure 3E). These results clearly indicate that
Sbi-III-IV can preferentially recruit FHR-1 to form a tripartite
complex with C3b. Similarly, enhancement of recruitment was
observed with FHR-5 and fragment FH19−20 but only weakly
with FHR-2. Although unable to activate complement, Sbi-III-IV
mutant K173A is still able to compete for the binding of FHR-1
in the presence of FH, but its ability to enhance binding of FHR-2
and FHR-5 to C3b is clearly affected (Figure 3F).

To assess the potential AP de-regulatory roles of the Sbi-
III-IV mediated tripartite complexes we subjected them to a
novel C3 convertase decay acceleration activity (DAA) assay
and a fluid phase C3b co-factor activity (CFA) assay (29,
30). We demonstrated that in absence of Sbi, FHR-1 failed
to antagonize FH efficiently and show a difference in the
level of C3 convertase formation (Figure 3G). Co-injection
of FHR-1 and −5 shows reduced C3 convertase formation,
which is in accordance with the results from a previous study
(31). However, the presence of Sbi (2µM) potentiates the FH
antagonizing effect of FHR-1, and to a lesser extent that of
FHR-5, at a physiologically relevant concentration ratio (FH
2,000 nM: FHR-1 200 nM: FHR-5 20 nM), resulting in increased
C3 convertase formation on a C3b surface (Figure 3H). The
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FIGURE 2 | Surface plasmon resonance analyses of tripartite complexes. A triply diluted concentration series (4,050 to 1.8 nM) of (A) WT or (B) K173A Sbi-III-IV were

co-injected with plasma purified FH, recombinant FHR-1, FHR-2, FHR-5, or FH19−20. The red response curves were indicative of binding experiment in the absence

of Sbi. The co-injection experiments of a fixed analyte concentration in combination with increasing Sbi concentration were depicted by increasingly dark lines. (C)

Relative changes of Sbi-III-IV mediated FH (or FHR) binding to C3b. By subtracting the co-injection sensorgram (i.e., Sbi+FH) with the corresponding Sbi binding

dataset (Figure S3), the changes in FH (or FHRs) binding was deduced (Figure S3). Changes in FH (or FHRs) binding were expressed as the relative change, derived

from dividing the Sbi mediated binding by the FH (or FHR) only control, using the response-difference values at the equilibrated binding point (173.5 s). Each

sensorgram is representative of two experiments. Relative change curves were fitted using non-linear variable slope (four parameters) function in GraphPad Prism.

baseline C3b breakdown rate was acquired in the presence of FH
(0.160µM) and FI (0.017µM), and subsequent measurements
were performed in the presence of FHR alone (0.32µM) and
in combination with Sbi-III-IV (1µM). As shown in Figure 3I

and Figure S3F, the presence of FHR-1, 2 or 5 increases the C3b
fluid phase half-life to different degrees, with FHR-5 showing
the largest increase in half-life. Most interestingly, the C3b
half-life could be further extended by the addition of Sbi-III-
IV.

The Sbi-III-IV:C3d:FHR-1 Tripartite
Complex Forms a Dimer in Solution
To investigate the structural characteristics of the Sbi-III-
IV:C3d:FHR1 tripartite complex, we used small angle X-
ray scattering (SAXS). The scattering profile collected at an
equimolar mixing ratio is shown in Figure 4 in log plot (a) as well
as Kratky plot (b). The featureless descend in the log plot and the
plateau in the latter is characteristic for scattering of particles that
are, at least partially, disordered.

The SAXS data and the overall parameters obtained (Table S2)
suggest that the complex is largely dimeric but rather flexible
in solution. Quantitative flexibility analysis was performed
using the ensemble optimisation method EOM (32), which
fits the experimental data using scattering computed from
conformational ensembles. Models with randomized linkers
were generated based on the known structures of FHR-11−2

[3zd2, (21)]; FH18−20 [3sw0, (33)], containing the equivalent
of FHR-13; FH19−20:C3d complex [2xqw, (20)], corresponding
with FHR-14−5; and the Sbi-IV:C3d complex [2wy8, (34)]. To
account for the dimerisation, P2 symmetry was applied, using
the FHR-11−2 dimer interface as seen in the crystal structure
(3zd2). The distributions of the overall parameters in the
selected structures compared with those of the original pool
(Figure 4C) suggests that the complex is rather flexible with a
slight preference for extended structures in solution. The subset
of most typical models (and the volume percentage of their
contribution) shown in Figure 4C indicate that in addition to
the expected contact sites with C3d, Sbi-III domain appears to
also interact with FHR-1, corroborating the functional results
described above. Figure 4D shows a schematic representation
of the dimeric Sbi-III-IV:C3d:FHR-1 complex observed in
solution.

K173A Restricts the Conformational
Freedom of Sbi Domain III
To examine the possible structural effects of the K173A
substitution in Sbi domain III, SAXS data was collected on
the Sbi-III-IV(K173A):C3d complex, and compared to the
wild-type Sbi-III-IV:C3d complex published previously (34).
The experimental scattering pattern collected at 240µM (∼12
mg/ml) is presented in Figure 4E and the structural parameters
derived from this data are given in Table S2. The estimated
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FIGURE 3 | Functional characterization of tripartite complexes in complement AP regulation. NHS was incubated with Sbi-III-IV, in combination with specified

reagents or just buffer, the consumption of AP activity was indicated by the protection of rabbit red blood cell from lysis. (A) Pre-incubation of recombinant FHR-1

or−2 with the presence or absence of Sbi-III-IV. (B) Pre-incubation of recombinant FHR-5 in the presence or absence of Sbi-III-IV. (C) Pre-incubation of recombinant

FH19−20 or FHR-11−2 in the presence or absence of Sbi-III-IV. Using an ELISA assay, the ability of FHR-1,−2,−5, FH19−20, or FHR-11−2 to modulate FH binding to

a C3b coated surface was studied in the absence (D) or presence of WT Sbi-III-IV (E), or K173A Sbi-III-IV (F). C3 convertase formation in the absence (G) or presence

of Sbi-III-IV (H) was assessed by flowing factor B (500 nM) and factor D (100 nM) in the presence of FH (2,000 nM) or FH +FHR-1 (2,000 and 200 nM) or

FH+FHR-1&-5 (2,000, 200 and 20 nM) across a surface amine coupled with 500 RU C3b. To form Sbi bound C3 convertase, experiments were conducted in addition

of 2,000 nM of Sbi-III-IV. Detailed experimental and data processing procedures are provided in Materials and Methods and Figure S3E. (I) Percentage of intact C3b

derived from continuous recording of ANS fluorescence changes between 465 and 475 nm spectrum. Baseline C3b breakdown curve (−) was recorded in the

presence of FH and FI, interference caused by the addition of FHR-5 (+) or FHR-5 in combination of Sbi (++) was also examined. The data for FHR-1 and FHR-2 are

presented in Figure 3F. Normalized data was depicted in solid lines, simulated breakdown curves were shown as dotted-lines. Each curve represents the mean value

of three independent experiments. For (A–F), the mean and standard deviation for each measurement was calculated; For (G–H), each sensorgram is representative

of two experiments. For (I), simulated breakdown curves were fitted using one phase exponential decay function in GraphPad Prism.

molecular mass (MM) of the solute agrees within the errors with
the values predicted for a 1:1 complex (∼15 + 35 kDa). At
lower concentration a decrease in the MM estimates is observed
which suggests that the complex slowly begins to dissociate. The
previously described wild-type Sbi-III-IV:C3d data on the other
hand, suggests that at higher concentrations, higher oligomeric
species are present, thus, for the comparison here, data collected
at 0.6 mg/ml is shown. The faster descend of the wild-type data,
which translates to a larger Rg, suggests that rearrangements of
the flexible N-terminus lead to a more elongated particle (Rg
wild-type = 32.8 Å) as compared to K173A mutant (Rg K173A
= 30.6 Å). This is in strong agreement with the switchSENSE
analysis of the C3d binding characteristics, which show a
reduced hydrodynamic diameter for K173A compared to WT
(Table 2).

The ab initio low resolution models of the complex
reconstructed from the highest concentration data using
DAMMIF (35) showed a large cone shaped molecule with
a volume of 124 nm3 (Figure 4F). The resolution of the
reconstruction is estimated to be 29 ± 2 Å (36). The large
base of the cone can accommodate the crystal structure of

Sbi-IV:C3d complex (2wy8) (34). The extra space at the tip of
the cone would be sufficient to harbor the 60 N-terminal residues
comprising the Sbi-III domain. A more detailed modeling
was conducted with the program Coral (37), utilizing the
available high-resolution model of Sbi-IV:C3d and allowing for
60 additional beads to be added that mimic the missing Sbi-
III domain. Twenty independent Coral runs were performed
which all yielded models with a more or less structured N-
terminal region, suggesting that Sbi-III-IV(K173A) in complex
with C3d is conformationally restricted compared to wild-
type Sbi-III-IV. This is further supported by the narrow
distributions obtained with EOM (Figure S4B). Surprisingly,
whilst repeating these analyses using a proposed alternative
binding mode of the Sbi-IV:C3d complex (represented by
2wy7), where Sbi-IV is seen bound at the convex face of
C3d, the χ² value is greatly improved (Figure S4C). With this
modeling approach a similar restricted conformation is observed
for the N-terminus of Sbi-III-IV(K173A). Further studies are
currently being conducted to further investigate the potential
physiological relevance of this alternative Sbi-IV:C3d binding
mode.
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FIGURE 4 | Structural analysis of the Sbi-III-IV:C3d:FHR-1 tripartite complex. SAXS solution structure analysis and EOM modeling of the Sbi-III-IV:C3d:FHR-1 tripartite

complex: (A) Left panel, fit of the selected ensemble of conformers to the experimental scattering. Radius of gyration (Rg, middle panel), particle maximum dimension

(Dmax, right panel), and distribution histograms of the selected conformers vs. the pool. (B) Kratky plot of the tripartite complex. (C) Examples of rigid body models of

the selected conformers corresponding to the histogram peaks. The volume fraction of each species is indicated. The relative positions of C3d, Sbi-III-IV, and FHR-1

in the dimeric tripartite complex are indicated, with C3d in red, Sbi-IV in dark blue, Sbi-III in turquoise and FHR-1 in orange. (D) Schematic representation of the

dimeric Sbi-III-IV:C3d:FHR-1 tripartite complex. (E) Comparison of the solutions structure of wild-type Sbi-III-IV:C3d and mutated version Sbi-III-IV(K173A):C3d of the

dual complex. Radius of gyration (Rg), particle maximum dimension (Dmax), and distribution histograms of the selected conformers vs. the pool are shown in

Figure S4A. (F) Ab initio shape reconstruction shown as gray spheres in comparison to the partial crystal structure Sbi-IV:C3d (2wy8). (G) Examples of rigid body

models. Complete set of models as well as flexibility assessment is presented in Figure S5. C3d in shown red, Sbi-IV in dark blue, and Sbi-III in turquoise.
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A Fusion Construct of Sbi-III-IV With
M. tuberculosis Ag85b Activates the AP
To test the potential of Sbi-III-IV to induce C3d opsonisation in
a vaccine setting, a recombinant construct was designed whereby
Sbi-III-IV is fused to Mycobacterium protein Ag85b (Figure 5A,
and detailed in Figure S5A). Based on the SAXS structure
of the Sbi-III-IV:C3d:FHR-1 tripartite complex, revealing the
importance of a flexible and extended conformation of Sbi
domain III, we decided to attach Ag85b at the C-terminus of Sbi
domain IV and included a long flexible linker between Sbi-IV
and Ag85b to ensure accessibility and flexibility of the functional
domains. Expressed and purified fusion protein was subsequently
structurally and functionally characterized.

Circular dichroism analysis of the Sbi-III-IV-Ag85b fusion
indicates that the protein construct is folded and that the
secondary structural elements of both parent proteins have
been preserved (Figure S5B). SAXS data obtained for the fusion
protein demonstrate that both the Ag85b domain as well as
Sbi-IV domain are accessible (Figure 5B and Figure S5C).

Functional activity of the Sbi-III-IV-Ag85b fusion construct
was assessed using an AP complement activity assays (WIESLAB,
Euro Diagnostica), showing strong C3 depletion activity
(Figure S5D), whilst Ag85b on its own showed no complement
activating properties. These results confirm that the complement
activating properties of Sbi III-IV are not impaired as part of
the fusion construct. The western blot analyses presented in
Figure 5C and Figure S5E confirm these results, showing both
C3 activation and opsonisation by the Sbi-III-IV-Ag85b fusion
construct when incubated with NHS. Interestingly, C3 activation,
and consumption occur more rapidly with the fusion construct
when compared to Sbi-III-IV (Figures 1A,B) under the same
conditions. Whilst Sbi-III-IV shows opsonisation with a single
molecule of C3b (Figure 1B), the Sbi-III-IV-Ag85b fusion is
opsonized by 2 molecules of C3b that over time degrade to iC3b
and C3d (Figure 5C and Figure S5E). Interestingly, opsonisation
of Ag85b with C3 fragments also occurs when co-incubated with
Sbi-III-IV in NHS.

Sbi-III-IV Acts as an Adjuvant in Mice When
Immunized With Ag85b
Based on the ability of Sbi-III-IV to activate complement
[Figures 1B,C (human serum) and Figure 6A (mouse serum)]
and opsonise Ag85b with complement C3 break down fragments
(Figure 5C), we expected that this new fusion protein when
injected into mice would elicit a greater immune response to
the Sbi-III-IV-Ag85b fusion protein than Ag85b administered
alone (in PBS). Indeed, wild-type C57bl/6 mice immunized I.P.
(or I.V., data not shown) with Sbi-III-IV-Ag85b generated a >4
fold increase in immune response initially and following the
boost when compared to Ag85b alone (Figure 6B). Furthermore,
when mice were immunized with a mixture of Sbi-III-IV and
Ag85b (not fused together), this also resulted in a significantly
improved immune response, corroborating the role of C3
fragment opsonisation of the antigen in this process (see
Figure S5E). Subsequent, studies using C3−/− and Cr2−/− mice
clearly demonstrated that C3 and C3 breakdown fragment

receptors (CR1 and CR2) were essential for this “adjuvant”
function, respectively (Figure 6C). Overall, these data clearly
suggest that complement AP dysregulation function of the
Sbi-III-IV domain can be harnessed to improve immune
responses through the coating of antigens with C3 breakdown
fragments.

DISCUSSION

Previous work from our group (24) revealed that Staphylococcus
aureus immunomodulator Sbi binds complement component
C3 within the thioester domain of C3 or the C3dg portion
of the molecule and resulted in futile consumption of C3 via
uncontrolled activation of the AP. In this study, we endeavored
to both understand the mechanism of action of Sbi-III-IV and
harness it; in order to develop pro-vaccines which would trigger
natural complement activation and thereby coat antigen surfaces
with complement component C3 degradation products, generate
anaphylatoxins at the site of immunization and strongly enhance
the immunogenicity of antigens (Figure 6D).

The seminal studies by Pepys (38), using C3
activating/depleting agents including cobra venom factor
and Zymosan, clearly demonstrated intact C3 function was
important for the T-dependent response (38). A molecular
mechanism explaining this effect was established by Fearon
and Carter (39) supported by studies in both C3 (40) and Cr2
(complement receptor type I and II) knock-out mice (41).
Dempsey et al. exploited these findings and established that
multiple copies of C3d, in a linear trimer, could enhance antigen-
specific responses up to 10,000 fold (3). However, the initial
potential of trimeric C3d, as a highly potent molecular adjuvant,
has not been realized and the reason(s) for this remain(s)
unclear. One possible explanation is that the artificial linear
trimer structure fails to represent naturally opsonised antigen,
and consequently does not provide sufficient CR cross-linking or
additional inflammatory signals for the B cell (or APC) activation
threshold to be reached. One possible approach to overcome this
is attaching more C3d to test antigens, but that approach is also
limited (42). In the light of these and other findings (11, 13, 43),
we considered that with understanding of the mode of action
of Sbi-III-IV we might be able to develop a new complement
activation based immune adjuvant.

The first clue to a mechanism for Sbi’s ability to rapidly
activate the AP came from monitoring Sbi-III-IV treated NHS
in a time course using anti-C3 and anti-Sbi immuno-blotting.
Here, we demonstrated that metastable C3b not only attaches
covalently to serum proteins but also to Sbi-III-IV itself; as a
transacylation target (Figure 1). This makes sense in the respect
that Sbi’s affinity to C3 obviously places it in close proximity to the
site of complement turnover and we speculate that C3b deposited
on Sbi-III-IV could help extend the fluid phase half-life of C3b,
preventing FH, and FI from binding and inactivating as normal,
perhaps similar to covalent adducts of C3b with IgG (44, 45).

However, as we have shown previously, Sbi-III-IV also
interacts with complement regulators FH and FHR-1, in addition
to binding C3b and its degradation products, thereby forming
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FIGURE 5 | Structural and functional analysis of the Sbi-III-IV-Ag85b fusion protein. (A) Schematic structure of the Sbi-III-IV-Ag85b fusion protein (see details of the

construct in Figure S5). (B) SAXS analysis of the fusion protein indicates a monomeric molecule with a radius of gyration of Rg = 3.7 nm and maximum particle size

of Dmax = 15 nm. The various molecular mass estimation range from 44 to 51 kDa and are comparable with a predicted monomer mass of 50 kDa. The 10

independent ab initio models obtained with DAMMIF are similar to each other, and according to the χ² values that estimate the goodness of the fit, the final structures

fit well with the experiment. More detailed modeling with Coral and EOM show that the flexibility of the missing structural information is restricted. (C) C3 activation

and C3-fragment deposition in NHS after incubation with Sbi-III-IV-Ag85b (100µM) or Ag85b (100µM), visualized using anti-Sbi and anti-C3d western blot analysis.

Resultant higher molecular weight bands with Sbi III-IV-Ag85b were identified as Sbi-III-IV-Ag85b with two covalently attached C3b α’ chains; Sbi-III-IV-Ag85b with

two iC3b α’-68 chains and Sbi-III-IV-Ag85b with two C3d molecules. Ag85b alone is unable to activate C3 as indicated by the presence of an intact C3 α-chain.

tripartite complexes (26). We next investigated whether Sbi-III-
IV acts as a competitive antagonist of FH via the recruitment
of FHR-1 and −5 into tripartite complexes and that FHR-1
can effectively displace FH from the tripartite complex. To this
end, data from our systematic site-directed mutagenesis screen
brought to light several Sbi mutants with complement activation
defects (Figure 1 and Figure S1). For instance, we demonstrated
that an alanine substitution in Sbi domain III at position 173
resulted in a dramatic reduction in C3 consumption activity
(Figure 1G). Notably, although a similar effect was observed with
a previously identified mutation in domain IV with impaired
C3d binding (R231A), K173A showed only slightly impaired C3d
binding capacity (Table 1) suggesting a different mechanism. We
therefore postulated that the K173A mutant would be ideal to
elucidate the structural and functional role of Sbi domain III
in the activation of complement and found that K173 in Sbi
domain III was crucial for the recruitment of FHR-5 and that the
K173A mutation only slightly affects FHR-1 binding (Figures 2,
3). These findings implicate a direct role of Sbi domain III in
the tripartite complex formation with these FHRs and that this

likely occurs via interactions with the C-terminal SCR domains
that share sequence identity with FH19−20. We confirm this by
showing that increasing concentrations of recombinant FHR-1,
FHR-2, FHR-5, and FH19−20 in serum indeed potentiate Sbi-
III-IV mediated C3 consumption, whilst the N-terminal SCRs
(FHR-11−2) fail to do this (Figure 3).

We also observed that Sbi greatly enhances the binding
of FHRs to C3b, thereby antagonizing FH activity, as shown
by the C3 convertase decay accelerating activity (DAA) assay
(Figures 3G,H). These results imply that the FHR-1 or FHR-
5 containing tripartite complexes can protect the AP C3
convertase, aiding the consumption of C3. These findings further
enhance the notion that the FHR family has diversified AP
de-regulatory functions, where FHR-1 seems more efficient in
counteracting the DAA of FH, whilst in contrast FHR-5 potently
antagonizes the cofactor activity (CA) of FH. The observed
Sbi-III-IV mediated shift in the complement regulatory balance
toward C3 activation could potentially be further enhanced by
the formation of homo/heterodimeric forms of FHR-1 with itself
and with other FHRs (FHR-2 and FHR-5) (12). These data
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FIGURE 6 | Sbi-III-IV is an effective adjuvant in mice. (A) Freshly prepared CD21−/− mouse serum was mixed with Sbi-III-IV-Ag85b or just Sbi-III-IV. The reaction was

stopped at various time points (0, 30, 60, 120min). Western blot was developed with rabbit anti-C3 at 1/1000 and goat anti-rabbit at 1/2000. C3d is shown as

confirmation that C3 has been activated and broken down. (N) is Cr2−/− serum incubated for 120min with saline. (B) C57Bl/6 mice (groups of 6) where immunized

intraperitoneally with either 2.7 µg Sbi-III-IV-Ag85b protein, 2 µg Ag85b, or 0.7 µg Sbi-III-IV plus 2 µg Ag85b in 150mM NaCl solution, followed by weekly bleed and

boosted (day 28) before terminal bleed at day 49. Serum IgG reactivity to Ag85b was measured over time by ELISA. Sera was diluted 1/50 and the mean absorbance

± SEM of each mouse group is shown. All data has been normalized to the day 0 average of all WT mice. (C) The previous experiment was repeated in C57Bl/6 mice

deficient of C3 (C3−/−)and complement receptor type I and 2 (Cr2−/−). Data is representative of at least 2 repeats (***P < 0.001, Student’s T-test, GraphPad Prism).

(D) Schematic representation of the dimeric Sbi-III-IV:C3d:FHR-1 solution structure providing a nidus for AP C3 convertase generation that overwhelms local

complement regulators, leading to the opsonisation of the nearby antigen surface by C3 break-down products that help facilitate the co-ligation of the B cell antigen

receptor (BCR) with complement receptor 2 (CR2) thereby lowering the threshold for B cell activation.

link to an ongoing evolutionary “arms race” where FH was
initially hijacked by S. aureus to protect it from complement
(46) and then FHRs (devoid of intrinsic complement regulatory
activity) were evolved/deployed by the host to compete with
FH on that surface and restore complement opsonisation of
the pathogen (22). Perhaps the release/secretion of Sbi from
S. aureus is a more recent event in this arms race with the
host, which takes the C3b/C3 convertase binding potential away
from the bacterial surface and leads to local rapid fluid phase
consumption of complement, i.e., local decomplementation and
bacterial survival/propagation. Our understanding of the role
and complexity of FHRs in immune evasion strategies is still in
its infancy (46), but this study underlines the potency of another
strategy in this process.

Using FHR-1 as a “model” dimerization domain containing
FHR, structural analysis of the Sbi-III-IV:C3d:FHR-1 tripartite
complex, using SAXS, indeed suggests the formation of a dimer
mediated by FHR-1 domain 1 and 2 and provides details of the
role of the extended unfolded nature of domain III in the binding
of FHR-1 (Figure 4). The molecular basis of the preferential
binding of FHR-1 over FH cannot easily be explained on the

basis of differences in amino acid sequence between the two
complement regulators, since their C3d binding regions (SCR 4–
5 of FHR-1 and SCR 19–20 of FH) share 99% sequence identity.
However, our SAXS analyses, and binding studies using C3d(g)
or iC3b as ligands (Figures 3, 4), indicate that the C-terminal
regions of FHR proteins are readily exposed, unlike those of FH
that exist in a “latent” conformation with the C-terminal part
of the protein folded back and partially blocked (47–50). The
dimeric physiological state of FHR-1 and the other FHRs tested
in this study is also likely to enhance their ability, due to increased
avidity, to assemble a tripartite complex.

Analysis of the hydrodynamic volume of the Sbi-III-IV:C3d
complex using switchSENSE highlighted a significant contraction
of the normally extended conformation Sbi-III-IV structure (34)
caused by the K173A substitution in domain III (Table 2). SAXS
analysis confirms these findings, showing a partially kinked
N-terminal structure of domain III in K173A with reduced
conformational freedom (Figures 4E–G). The contraction of the
Sbi-III-IV structure caused by the K173A substitution suggests
that the normally flexible and extended conformation of domain
III plays an important role in the recruitment of FHRs, especially
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FHR-5 into the tripartite complex after the initial interaction
between Sbi-IV and C3b. Previous structural analyses of the Sbi’s
domain III, using NMR, revealed that this domain is indeed
natively unfolded (51).

Based on the structural and functional information described
here we decided to construct a Sbi-III-IV-Ag85b fusion
construct that could be used to test its effect on the
immune response against this model antigen in vivo. We
chose Mycobacterium tuberculosis Ag85b, a fibronectin-binding
protein with mycolyltransferase activity (52), because it is
known to be immunogenic and previously suggested as a
vaccine candidate (53). Indeed, there is evidence that Ag85b
can elicit both humoral and cellular immune reactions in
patients with TB, but there is conflicting evidence of its efficacy
as a vaccine (54, 55), suggesting adjuvants may improve its
overall immunogenicity. This target also gives scope to allow
further testing in animal models of disease (56). Structural
analysis, using Circular Dichroism and SAXS confirmed that
secondary structural elements of both parent proteins have
been preserved in the fusion protein construct and that the
crucial functional Sbi domains are accessible for interactions
with complement (Figure 5 and Figure S5). We also show
that the Sbi-III-IV-Ag85b fusion construct can induce AP
activation and is opsonized with C3 breakdown products
(Figure 5C).

With AP activation in human and mouse serum confirmed
(Figures 5, 6), we opted to use straightforward immune response,
IgG titer, analysis to demonstrate the potential of Sbi-III-IV
to trigger complement in vivo and act as a vaccine adjuvant
in a mouse model, in a similar manner to many previous
studies (57). Our data herein firstly indicates that Sbi-III-IV can
activate mouse complement in an analogous manner to that
of the human complement system. This obviously allows direct
analysis of these pro-vaccine compounds in both mouse and
human model systems (a huge advantage to previous C3d based
adjuvants) (13), indeed Sbi-III-IV has acted as a C3 activator
in all species tested thus far (data not shown). As predicted
from the in vitro work, the opsonisation of fusion proteins
or co-immunized antigen by mouse complement breakdown
fragments results in a significant increase in the immunogenicity
of Ag85b, with increased IgG titres noted in the presence of
fused or co-immunized Ag85b (Figure 6). The adjuvant function
both increased the intensity of the response and the rate of
the response when compared to Ag85b immunized alone. We
will need to further explore the potency of this response to
that of common adjuvants and with a mix of target antigens
to fully assess the utility of Sbi-III-IV as a universal vaccine
adjuvant. For instance, comparison of the action of Sbi-III-IV to
the Glaxo-Smith-Kline’s adjuvant systems, particularly AS01 (58),
or to MF59 (59) may be of key interest and recent approaches
may provide ideal pre-clinical model systems to facilitate this
(60, 61) before progression to clinical studies. This is because
our data provides evidence of a 4-fold increase in humoral
response whilst AS01 has been demonstrated to have a much
more significant effect of T cell effector function (58). The work
is ongoing but the data herein demonstrate the initial proof of
concept.

In summary, we have demonstrated that Sbi-III-IV triggers
consumption of complement component C3 via activation of
the alternative complement pathway, by acting as a competitive
antagonist of FH via the recruitment of FHRs into dimeric
tripartite complexes that can protect C3b bound to Sbi
(Figure 6D). It is likely this provides a stable nidus for
alternative pathway mediated C3 convertase generation, i.e.,
local fluid phase C3bBb generation that overwhelms any local
complement regulators, providing the potential for bystander
lysis, or opsonisation of surfaces. Our ability to harness this
potential, targeting complement opsonisation to the surface of an
antigen (in this case fromMycobacterium) and therefore use Sbi-
III-IV as a vaccine adjuvant clearly demonstrates Sbi-III-IV has
great potential for use with a range of antigens across multiple
species, including humans, althoughmore work remains to make
that a reality.

MATERIALS AND METHODS

Proteins, Antibodies, and Sera
Factor H (FH), C3b, factor B (FB), factor D (FD), factor
I (FI), properdin (FP), FI-depleted serum, goat anti-human
C3 polyserum, and goat anti-human FB polyserum were
purchased from Complement Technologies (Tyler, TX). FHR-
11−2, FHR-1, −2, and −5 used in the tripartite complex
reconstruction and binding competition assay were produced
using Chinese Hamster ovary cell culture [as previously
described Nichols et al. (62)]. Horse radish peroxidase (HRP)-
conjugated rabbit anti-goat immunoglobulin polyserum and
HRP-conjugated Streptavidin were acquired from Sigma Aldrich.
HRP-conjugated goat anti-rabbit immunoglobulin G (Thermo
Fisher, catalog no. 815-968-0747), HRP-conjugated rabbit anti-
mouse immunoglobulin G (Thermo Fisher, catalog no. 31452)
and biotin-conjugated FH monoclonal antibody OX24 (catalog
no. MA5-17735) were purchased from Thermo Fisher Scientific.
The goat anti-human FH polyclonal serum (catalog no. 341276-
1ml) that was previously used to detect human FH and
FHR-1 was purchased from Merck Millipore. Human C3
was purified from mixed pool citrated human plasma (TCS
Bioscience, PR100) using polyethylene glycol 4,000 precipitation,
anion, and cation exchange chromatography as previously
described (63). A pET15b-C3d construct was acquired from
Prof. David E. Isenman and transformed into Escherichia
coli (E. coli) stain BL21 (DE3), recombinant C3d was then
expressed, and purified using a previously described protocol
(64). Lyophilized normal human serum (NHS) was purchased
from Euro Diagnostica (catalog no. PC300). Additional proteins
and antibodies are described in the specific experimental
section.

Sbi-III-IV Constructs
The expression and purification of the N-terminally 6×His
tagged recombinant Sbi-III-IV from a pQE30:sbi-III-IV
construct were described previously (24).
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Sbi-III-IV Mutagenesis
Mutations in the Sbi-III-IV sequence were introduced using
the QuikChange II XL site-directed mutagenesis kit (Agilent
Technologies), the primers used are listed in Table S1. The
mutated pQE30:sbi-III-IV plasmids were sequenced to confirm
the success of the mutagenesis. SDS-PAGE profiles of all the Sbi-
III-IV mutant proteins used in this study are shown in Figure S1.

Sbi-III-IV Induced C3 Consumption Assay
Lyophilized NHS was re-suspended in chilled dH2O to a 2×
concentration. Equal volumes of 2×NHS and Sbi (10µM) were
combined. Sbi treated sera were then incubated in a thermocycler
at 37◦C for 30min. Treated serum samples were collected at
time intervals, 0.5 µl of serum was loaded on an SDS-PAGE gel
analyzed under reducing condition. The proteins were Western
blotted, and the blots were probed with anti-C3d, anti-Sbi, anti-
C3a or anti-factor B antibodies.

A hemolytic assay was modified from a previously published
procedure (65) to measure Sbi induced consumption of C3.
Briefly, rabbit erythrocytes (TCS Bioscience) were resuspended
in GVB buffer (5mM veronal, 145mM NaCl, 10µM EDTA, 0.1
% (w/v) gelatin) by washing three times via centrifugation at 600
g for 6min. The concentration of rabbit red cells to be used in
each experiment was determined by adding a stock of 5 µl of
erythrocytes to 245 µl of water to give complete lysis and then
re-adjusting cell concentration until an optical density reading
of 0.7 (A405) was reached. Lysis experiments were conducted
in two steps, first, 15 µl of NHS, 5 µl of Mg+-EGTA (70mM
MgCl2, and 100mM EGTA), 20 µl of protein in E2 buffer was
mixed and pre-incubated at 37◦C for 30min. Subsequently, 5 µl
of rabbit erythrocyte was added and incubated for an additional
30min at 37◦C. At the end of the incubation, 150µl of quenching
buffer (GVB supplemented with 10mM EDTA) was added. The
cells were pelleted by centrifugation at 1,500g for 10min, and
absorbance (A405) of 100 µl of supernatant measured. Post-
consumption lysis percentage was calculated as 100×((A405 test
sample-A405 0% control)/(A405 100%-A405 0% control)).

In vitro Complement Activation Assay in
Mouse Serum
Mouse serum was collected from male Cr2−/− mice by cardiac
puncture and allowed to clot fully on ice for 4 h followed by
separation of serum by centrifugation at 2,000 g in a refrigerated
centrifuge. Serum was then mixed with Sbi-III-IV or Sbi-III-
IV-Ag85b, ensuring that the amount of Sbi-III-IV in each
preparation was equivalent. The reaction was stopped at 0,
30, 60, and 120min, by the addition of reducing sample
buffer, boiled for 5min and analyzed on a 10% SDS-PAGE
gel. After transfer to nitrocellulose the blots were probed with
Rabbit anti-C3d (1/1000, DAKO, A0063) and Goat anti-Rabbit-
HRPO (1/2000, 111-035-046-JIR, Stratech), developed with ECL
substrate (Pierce), and exposed to X-Ray film for 2min.

Binding Kinetics and Hydrodynamic
Diameter Analysis
A switchSENSE DRX 2,400 instrument (Dynamic Biosensors)
was used to characterize the binding kinetics and protein size
changes based on switchSENSE technology (66, 67). Purified

Sbi-III-IV-cys, K173A, R231A, and their ligand C3d were sent
to Dynamic Biosensor’s protein analyzing facility for binding
kinetic and hydrodynamic diameter analysis. In the case of a
protein binding event, based on the real-time measurements
of the switching dynamics in a range of ligand concentrations,
binding rate constants (kON and kOFF) and dissociation constants
(KD) can be analyzed (67). Alternatively, under saturated binding
conditions, the switching dynamic of the protein (or protein
complex) can be compared with the switching dynamics of bare
DNA and with a biophysical model with which the size of the
immobilized protein (or protein complex) can be determined.
For determination of Sbi-III-IV:C3d binding kinetic parameters,
130, 100, 70, and 40 nM of C3d were applied sequentially onto
the Sbi-III-IV immobilized microchip. All Sbi:C3d complexes’
hydrodynamic diameters were estimated at a C3d concentration
of 130 nM.

Fluorometric C3b Breakdown Assay
Fluorometric C3b breakdown assay was performed using a
black 96 well microplate (Thermofisher, M33089) in a TECAN
Spark 20M temperature-controlled fluorescence plate reader.
Excitation was at 386 nm and emission was recorded at 475 nm
with a 20 nm bandwidth. The control C3b breakdown rate,
performed in PBS, contained 100 µl of 1µM C3b, 160 nM FH,
17 nM of FI and 10µM ANS, and was scanned every 5 s for
15min. To study the interruption of C3b breakdown, 32 nM of
FHR was either added alone or in combination with 1µM of
Sbi-III-IV. Data were collected at 25◦C, normalized by Excel
using the equation “Percentage of C3b=((FX-(F15min))/(F15min-
F0min))

∗100” and plotted by Graphpad Prism.

Small Angle X-ray Scattering Analysis
Synchrotron radiation X-ray scattering from solutions of the Sbi-
III-IV:C3d:FHR-1 tripartite complex, the Sbi-III-IV(K173A):C3d
complex, and the Sbi-III-IV-Ag85b fusion protein were collected
at the EMBL P12 beamline of the storage ring PETRA III
(DESY, Hamburg, Germany). Images were collected using a
photon counting Pilatus-2M detector and a sample to detector
distance of 3.1m and a wavelength (λ) of 0.12 nm covering
the range of momentum transfer (s) 0.1 < s< 4.5 nm−1;
with s=4πsinθ/λ. Different solute concentrations were measured
using a continuous flow cell capillary. To monitor radiation
damage, 20 successive 50ms exposures were compared and
frames displaying significant alterations were discarded. The
data were normalized to intensity of the transmitted beam and
radially averaged; the scattering of the buffer was subtracted, and
the different curves were scaled for solute concentration. The
forward scattering I(0), the radius of gyration (Rg) along with
the probability distribution of the particle [p(r)] and the maximal
dimension (Dmax) were computed using the automated SAXS
data analysis pipeline SASFLOW (68).

For the Sbi-III-IV-Ag85b fusion protein data quality was
improved with SEC-SAXS mode and the parallel analysis of light
scattering data in a similar manner as described in Gräwert et al.
(69). Frames comprising solely the monomeric version of the
fusion protein were averaged and used for further processing
after background subtraction.
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The molecular masses (MM) were evaluated by comparison
of the forward scattering with that from a reference solution of
BSA and based on the Porod volumes of the constructs. With
SAXS, the former estimation of MM is within an error of 10%,
provided the sample and standard concentrate are determined
accurately. DAMMIF was used to compute the ab initio shape
models. For this, 10 independent models fitting the experimental
scattering curves were generated and compared to each other.
More detailed modeling was obtained with Coral. Here, existing
partial crystal structure of the Sbi-IV:C3d complex was extended
with 60 additional beads placed at the N-terminus of Sbi-IV to
mimic the missing Sbi-III domain. Here too, 10 independent
runs were performed, and the degree of variation addressed.
Further analysis of the flexibility of the samples was addressed
with Ensemble OptimizationMethod (EOM). For this, ensembles
of models with variable conformations are selected from a pool
of randomly generated models such that the scattering from the
ensemble fits the experimental data, and the distributions of the
overall parameters (e.g., Dmax) in the selected pool are compared
to the original pool.

The proteins in the Sbi-III-IV:C3d:FHR-1 tripartite complex
were combined 1:1:1 at a concentration of 45µM. The Sbi-III-
IV(K173A):C3d complex were formed at a 1:1 ratio at 240µM
(12 mg/ml). PDB structure 2wy8 (Sbi-IV:C3d complex) was used
to model the complex using and compared with SAXS data
previously recorded (34). The Sbi-III-IV-Ag85b fusion protein
was provided at 29, 72, and 145µM concentrations (1.45, 3.6,
and 7.2 mg/ml, respectively). The samples were dialysed against
PBS, which was also used for background subtraction. From
all samples concentration series were measured to exclude any
concentration dependent alterations.

Surface Plasmon Resonance Analysis
Tripartite complexes were analyzed by surface plasmon
resonance (SPR) technology using a Biacore S200 (GE
Healthcare). All experiments were conducted at 25◦C on
CM5 chips, using HBST (10mM HEPES, 150mM NaCl,
and 0.005% Tween 20, pH 7.4) as running buffer, which was
optionally supplemented with 1mM of MgCl2 (HBST+) to
be compatible with AP amplification condition. On the chip
surface 800 RU of C3b was opsonized via AP C3 convertase
through a method described before (70, 71). The iC3b surface
was produced by injecting of repetitive cycles of FH and
FI across a C3b opsonized surface, the completeness of the
conversion was confirmed by the inability of FB binding. A
separate chip surface was made by amine coupling 600 RU of
recombinant C3d (CompTech, USA). In all SPR experiments,
response differences were derived using the signal from a flow
cell to subtract the parallel reading from a reference flow cell
that blocked with carbodiimide, N-hydroxysuccinimide and
ethanolamine. Analytes were injected in duplicate (at 30 µl/min
for 200 s) followed by running buffer for 300 s and a regeneration
phase involving injection of regeneration buffer (10mM sodium
acetate, 1M NaCl pH 4.0) for 60 s. To analyze Sbi-III-IV binding
and the assembly of tripartite complex, concentration series
of Sbi-III-IV WT or K173A were flowed cross separately or
co-injected with FH, FHR-1, FHR-2, FHR-5, or FH19−20 at a
fixed concentration (100, 12.5, 20, 25, or 20 nM, respectively).

The C3 convertase DAA assay was performed on a CM5 chip
amine coupled with 500 RU C3b, using HBST+ as running buffer
throughout. A mixture of analytes for building C3 convertase
were flowed across, including FB and FD in addition to various
FH reagent combinations (FH or FH and FHR-1 or FH, FHR-
1 and −5). The various FH reagents combinations were also
flow across separately in order to derive the sensorgram for C3
convertase. To examining Sbi bound C3 convertase, 2µM of
wild-type Sbi-III-IV was added to the mixture of analytes for
building C3 convertase. The various FH reagent combinations
spiked with Sbi were flowed across separately in order to derive
the sensorgram for Sbi bound C3 convertase. Each injection cycle
includes Injection of the C3 convertase mixture for 200–300 s,
followed by running buffer for 300–400 s and two consecutive
60s regeneration phases.

FH/FHR-1 Competition Assay
C3b was diluted in carbonate buffer (pH 9.5) and coated on
to wells of a Nunc MaxiSorp plate (0.25 µg/well) for 16 h at
4◦C. The wells were blocked with PBST (PBS with 0.1% Tween
20) supplemented with and 2% BSA for 1 h at 37◦C, and then
washed with PBST buffer. Doubly diluted concentration series
(9-600 nM) of FHRs, FH19−20, FHR-11−2 in PBST-2% BSA were
then added to the wells, together with a constant concentration of
FH (25 nM) and Sbi-III-IV (1,000 nM). The plate was incubated
for 1 h at 37◦C, then washed with PBST. Fifty microliter of
monoclonal anti-FH antibody OX-24 (specific to the FH SCR
domain 5) diluted with PBS-2% BSA (0.6µg/ml) was added
to the wells and the plate incubated for a further 1 h. The
wells were washed with PBST, and 50 µl sheep anti-mouse IgG
(1:5000 dilution in PBST-2% BSA) was added to the wells for
1 h at 37◦C. The wells were washed again and the conjugate
was detected using TMB ELISA substrate solution, which was
added to the wells for 5min. The color reaction was stopped
by 10% H2SO4 and the plate was read at A450 using a plate
reader.

Design and Purification of the
Sbi-III-IV-Ag85b Fusion Construct
The DNA sequence coding for Sbi-III-IV (sbi448−798) was fused
to the 5’ end of the DNA sequence for Ag85b (ag85b121−975)
via a linker region of 84 bp (Figure S5A). The fusion gene
was commercially synthesized and ligated into the pET15b
vector, containing an ampicillin resistance cassette and a T7
promoter. The pET15b:sbi-III-IV-ag85b plasmid was verified
using sequencing, and the resulting construct encoded an N-
terminally his-tagged Sbi-III-IV-Ag85b protein. E. coli BL21
(DE3) cells harboring the pET15b:sbi-III-IV-ag85b plasmid were
grown in LB broth supplemented with 100µg/ml ampicillin
to an A600 = 0.4–0.6. Protein expression was induced with
0.5mM IPTG and by incubating the cells at 17◦C for 16 h.
Bacteria were harvested, lysed using sonication (80% amplitude,
for six 10 s bursts) in the presence of protease inhibitor
cocktail (set VII-Calbiochem, Merck), and the protein initially
purified using nickel-affinity chromatography (His-Trap column,
GE Healthcare) with a gradient of 0–0.5M imidazole in
50mM Tris, 150mM NaCl, pH 7.4. It was further purified
using size-exclusion chromatography (Hi-Load 16/60 Superdex
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S200 column, GE Healthcare) equilibrated in 20mM Tris,
150mM NaCl, pH 7.4. Fractions containing protein were
pooled and concentrated. Protein concentration was measured
at A280.

Analysis of Sbi-III-IV-Ag85b Fusion Protein
AP Complement Activity
Alternative pathway (AP) activity of Sbi III-IV-Ag85b-treated
NHS samples was analyzed using the ELISA-based WIESLAB R©

(Euro Diagnostica) complement system AP assay. Sbi-III-IV-
Ag85b was mixed with normal human serum (NHS) at a 1:1
volume ratio and incubated for 30min at 37◦C in a thermal
cycler. Treated serum was then diluted with AP diluent (blocking
the activation of the other two complement pathways) by 1 in 20.
From this point the manufacturer’s instructions were followed.
A blank (AP diluent), positive control (NHS) and negative
control (heat-inactivated NHS) were also recorded. Complement
activation was converted to residual AP activity (%) using the
equation: (sample - negative control)/(positive control - negative
control)× 100.

Analysis of C3 Fragment Deposition on
Sbi-III-IV-Ag85b Fusion Protein
The method used is similar to that described for WT Sbi-
III-IV. Lyophilised NHS (Euro Diagnostica) was re-suspended
in chilled dH2O. Sbi-III-IV-Ag85b (100µM) was mixed with
NHS in a 1:1 ratio, and incubated for 1 h at 37◦C in a
thermocycler. Samples were taken at regular intervals (0, 5,
15, 30, and 60min), and separated by SDS-PAGE followed
by Western blot analysis using either rabbit anti-Sbi (1.5:5000
dilution), rabbit anti-C3d (1.5:5000 dilution) or mouse anti-
Ag85b (1:1000 dilution) polyclonal antibodies and detected using
HRP-conjugated secondary antibodies (1:2500 goat anti rabbit
or 1:1000 goat anti mouse). NHS-only was used as a negative
control.

Measurement of Immune Response to
Sbi-III-IV-Ag85b Fusion Protein
Eight week old male C57bl/6 mice (wild-type, C3−/− and
Cr2−/−) were bled by tail vein venesection at day−2. Mice were
then immunized at day 0 with molar equivalent doses of Ag85b
alone (2 µg, a sub-optimal dose without adjuvant or boost, data
not shown), Sbi-III-IV-Ag85b (fusion protein), Sbi-III-IV alone
or a mixture of Sbi-III-IV and Ag85b, as appropriate. Mice were
then bled weekly thereafter and plasma stored at −80◦C until
required for batch analysis. Mice were boosted at day 28 and
sacrificed at day 42.

For analysis of IgG response to Ag85b by ELISA, 96 well plates
(NUNC maxisorb) were coated with 1µg/ml Ag85b (Abcam,
UK) or 1.35µg/ml Sbi-III-IV-Ag85b in carbonate buffer at 50 µl
per well and incubated at 4◦C for 16 h. Plates were washed with
0.01% PBS-Tween and a 1% BSA blocking solution was applied
for 1 h at 20◦C. Serum samples were diluted to 1/50 or 1/100 in
0.01% PBS-Tween, added at 50 µl per well and incubated for 1 h
at 20◦C. Plates were washed and secondary antibody (sheep anti

mouse IgG-HRPO, 515-035-071-JIR, Stratech, UK) was added
at 1/100 dilution, 50 µl per well and incubated for 1 h at 20◦C.
TMB substrate (50µl per well) was added and allowed to develop
for 6min. The reaction was stopped by the addition of 100 µl
10% H2SO4 per well and plates were read at A450. A mouse
monoclonal anti-Ag85b (Abcam, ab43019) used as a positive
control. The mean absorbance ± SEM of each mouse group is
shown. Data for each mouse, at time 0, has been normalized to
the day 0 average reactivity to Ag85b in all mice screened.
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The respiratory mucosa is the primary portal of entry for numerous viruses such

as the respiratory syncytial virus, the influenza virus and the parainfluenza virus.

These pathogens initially infect the upper respiratory tract and then reach the lower

respiratory tract, leading to diseases. Vaccination is an affordable way to control

the pathogenicity of viruses and constitutes the strategy of choice to fight against

infections, including those leading to pulmonary diseases. Conventional vaccines based

on live-attenuated pathogens present a risk of reversion to pathogenic virulence while

inactivated pathogen vaccines often lead to a weak immune response. Subunit vaccines

were developed to overcome these issues. However, these vaccines may suffer from

a limited immunogenicity and, in most cases, the protection induced is only partial.

A new generation of vaccines based on nanoparticles has shown great potential to

address most of the limitations of conventional and subunit vaccines. This is due to recent

advances in chemical and biological engineering, which allow the design of nanoparticles

with a precise control over the size, shape, functionality and surface properties, leading to

enhanced antigen presentation and strong immunogenicity. This short review provides an

overview of the advantages associated with the use of nanoparticles as vaccine delivery

platforms to immunize against respiratory viruses and highlights relevant examples

demonstrating their potential as safe, effective and affordable vaccines.

Keywords: respiratory viruses, nanocarriers, nanovaccine, mucosal sites, immune response

INTRODUCTION

Lower respiratory tract infections (LRTIs) constitute a major public health burden worldwide.
LRTIs represent a leading cause of humanmortality andmorbidity, causing annually over 3 million
deaths worldwide (1). Among these infections, about 80% of LRTI cases are caused by viruses (2).
In most cases, these pathogens enter the host via airborne transmissions (e.g., droplets or aerosols),
replicate efficiently in the respiratory tract and cause clinical manifestations, ranging from fever to
bronchiolitis and pneumonia (3). In addition, LRTIs associated with viruses represent an important
source of economic loss for livestock and poultry industry as these infections predispose animals to
secondary bacterial infections (4–6).

Viruses infecting the human lower respiratory tract include the influenza virus, the respiratory
syncytial virus (RSV), the parainfluenza virus and the adenovirus (7, 8). Seasonal influenza virus
epidemics result in a significant burden of disease in children and elderlies and account for 3–5
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million cases of severe illness and for nearly 290,000–650,000
deaths worldwide each year (9). RSV and parainfluenza virus
infections are the leading cause of hospitalization for acute
respiratory infections in young children, causing 45 and 40%
of pediatric hospitalizations, respectively (10, 11). Adenovirus
infections account for 3–5% of LRTIs cases in children and
can be fatal for immunocompromised patients (12). In general,
respiratory viruses represent a major health problem in infants,
young children, immunocompromised patients and the elderly
population. According to Global Burden of Diseases (GBD),
74% of deaths associated with LRTIs represent these vulnerable
patient groups (13).

Vaccination remains the most cost-effective strategy to
fight against infectious diseases. Conventionally, vaccine
formulations consist of attenuated viruses, killed pathogens
(inactivated) or subunit protein antigens, which elicit a specific
immune response. These vaccine formulations have allowed
the prevention, or the control, of several important diseases
including rubella, yellow fever, polio and measles, and, in the
case of smallpox, even eradication (14, 15). Considerable efforts
have been devoted for the development of efficient vaccines
against LRTIs, including inactivated/fragmented trivalent
or quadrivalent seasonal vaccines against influenza type A
and type B viruses such as Influvac R© (16), Vaxigrip R© (17),
and Fluzone R©(18) as well as live attenuated vaccines such as
Nasovac R© and Flumist R© for nasal administration in young
children (19, 20). Nevertheless, live-attenuated vaccines against
influenza virus suffer from safety concerns due to their nature
and represent a risk for elderly and immunosuppressed humans
(21). Besides, killed pathogen vaccines and virus-derived subunit
vaccines induce weaker immune responses and often require the
use of an adjuvant to boost efficiency (22).

Several promising vaccines are currently evaluated in the
clinics for different respiratory viruses (23). These new vaccine
formulations aim to be safer and more efficient compared to
traditional vaccines based on attenuated viruses, killed pathogens
and subunits. Nevertheless, the high level of antigenic drift
(genetic mutations) of some viruses, such as the influenza virus,
reduces the efficacy of vaccines and needs to be addressed (24).
Therefore, while improving safety and efficiency, vaccines should
also be less sensitive to antigenic drift. The concept of “universal
vaccine” is critical for viruses like the influenza virus, and new
formulations to induce broad-spectrum immunity are being
investigated. In the next sections, we discuss the advantages of
using nanoparticle formulations against respiratory viruses and
we highlight relevant examples of the use of nanoparticles as safe,
effective, and affordable vaccines.

NANOPARTICLES, AN ALTERNATIVE

APPROACH TO CONVENTIONAL

VACCINES

The use of particles as nanoplatforms displaying relevant
antigenic moieties is appealing as an alternative approach
to conventional vaccines. These nano-sized materials can be
obtained from biological sources and/or can be synthetic.

Currently, there is a large variety of particles evaluated as antigen
carriers, including inorganic and polymeric nanoparticles, virus-
like particles (VLPs), liposomes and self-assembled protein
nanoparticles (Figure 1A). The advantages of these materials
reside primarily in their size (at least one dimension should be
at the nanometer level), since many biological systems such as
viruses and proteins are nano-sized (25). Nanoparticles can be
administered via sub-cutaneous and intramuscular injections, or
can be delivered through the mucosal sites (oral and intranasal),
and penetrate capillaries as well as mucosal surfaces (26, 27).
Recent progresses have allowed the preparation of nanoparticles
with unique physicochemical properties. For instance, size,
shape, solubility, surface chemistry, and hydrophilicity can
be tuned and controlled, which allows the preparation of
nanoparticles with tailored biological properties (28). Moreover,
nanoparticles can be designed to allow the incorporation of a
wide range of molecules including antigens which makes them
highly interesting in vaccinology (29, 30).

Incorporation of antigens in nanoparticles can be achieved
by encapsulation (physical entrapment) or by conjugation
(covalent functionalization) (21). Studies have demonstrated
that nanoparticles could protect the native structure of
antigens from proteolytic degradation and/or improve
antigen delivery to antigen-presenting cells (APCs) (31). In
addition, nanoparticles incorporating antigens can exert a
local depot effect, ensuring prolonged antigen presentation
to immune cells (32). Interestingly, nanoparticles have also
shown intrinsic immunomodulatory activity (33). For instance,
nanoparticles such as carbon nanotubes (CNTs), carbon
black nanoparticles, poly(lactic-co-glycolic acid) (PLGA)
and polystyrene nanoparticles, titanium dioxide (TiO2)
nanoparticles, silicon dioxide (SiO2) nanoparticles, and
aluminum oxyhydroxide nanoparticles have been reported to
induce NLRP3-associated inflammasome activation (34). In fact,
once internalized by APCs, these nanoparticles provide signals
that trigger lysosomal destabilization and the production of
reactive oxygen species (ROS), leading to the release of lysosomal
contents, including the cysteine protease cathepsin B. This
protease is sensed by NLRP3, which subsequently activates the
formation of the inflammasome complex (35–39). Subsequently,
interleukins are produced as downstream signaling events,
leading to the recruitment and/or activation of immune cells
(35, 40–45). Taken together, these properties advocate that
nanoparticles are promising antigen carriers and immune cell
activators for vaccination.

NANOPARTICLES AND THE RESPIRATORY

TRACT IMMUNE SYSTEM

The respiratory mucosa represents the primary site for invasion
and infection by a virus whose replication occurs in the ciliated
cells of the upper respiratory tract (URT). Subsequently, infection
spreads to the low respiratory tract (LRT) by virus-rich secretions
and by infected cell debris from the URT (46). Nasal-associated
lymphoid tissue (NALT), the first site for inhaled antigen
recognition located in the URT, is an important line of defense
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FIGURE 1 | Overview of the immune response in the upper respiratory tract. (A) Schematic view of different nanoparticles used for intranasal vaccination.

(B) Mechanisms of NALTs immune responses in the upper respiratory tract. (1) Nanoparticles are transcytosed from the mucus layer into the nasal epithelial tissues by

micro-fold cells (M cells) or passively diffuse through epithelial cell junctions. (2) Other nanoparticles are captured and internalized by DCs (dendritic cells) from their

extension through epithelial junctions and by other APCs, such as B cells. (3) Cells that have encountered nanoparticles migrate to the nearest lymph node in order to

activate naive T helper cells. Once activated, T helper cells activate B cells that have encountered the same antigen presented by nanoparticles. Activated B cells

proliferate in the lymph node (B cell zone) and, once mature, enter systemic circulation in order to reach the inflammation site. IgA+ B cells locally differentiate into

antibody-secreting plasma cells to produce IgA dimers. (4) IgA dimers are secreted via polymeric Ig receptor (pIgR) at the mucosal surface. NALT immune response

induces long-lasting memory B and T cells able to trigger a rapid recall response.

against respiratory viruses. NALT is present in rodents, birds
and primates (47). This structure is characterized by aggregates
of lymphoid cells located in the nasopharyngeal cavity (48). In
human, the Waldever’s ring, made of adenoid and tonsil, is
considered as the equivalent of NALT structure, which contains
various narrow epithelial channels. NALT comprises aggregates
of lymphoid follicles (B-cell areas), interfollicular areas (T-cell
areas), macrophages and dendritic cells (DCs) (Figure 1B),
which, when activated, support the clearance of infectious agents
(46, 48, 49). Accordingly, NALT is considered as an inductive
site for humoral and cellular immune responses and represents a
promising target for vaccines against respiratory viruses. Ideally,
nanovaccines would follow a path similar to respiratory viruses
in order to efficiently deliver antigens to NALT and trigger
a specific mucosal immune response. Therefore, formulation,
size and antigen exposition are critical aspects when designing
nanovaccines targeting NALT. Most respiratory viruses have an
average diameter size ranging between 20 and 200 nm (50–53).

Thus, in addition of being safe and immunogenic on its own,
a nanovaccine should have a size similar to viruses while
incorporating relevant antigens (54).

Over the last decade, a number of nanoparticles have been
designed to mimic respiratory viruses in terms of size, shape
and surface property in order to target NALT as well as to
raise humoral and cellular immune responses (21, 55, 56).
First, beside a nanoparticle size of 20–200 nm in diameter to
match the size of most respiratory viruses, nanoparticles should
be preferably positively charged. In fact, positively charged
polymeric, phospholipidic, metallic, inorganic, and protein-
based nanoparticles have shown stronger immune responses
compared to their negatively charged counterparts (21, 57).
Second, the incorporation of antigens/epitopes within or on
the surface of the nanoparticles can be challenging and
requires advanced approaches in chemical and/or biological
engineering (21). The most common strategy is to encapsulate
or entrap antigens/epitopes within the nanoparticles. In this case,
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nanoparticles are used to protect the antigen/epitopes and deliver
them to NALT (58–60). Nanoencapsulation can be achieved
by using different procedures, including nanoprecipitation and
oil in water (o/w) emulsion (61). Alternatively, antigens can
be attached and exposed on the nanoparticle surface. This
strategy aims at mimicking viruses. Conjugation of antigenic
epitope can be performed directly on the nanoparticles using
different chemical reactions like the disulfide bond and the
thiolate-gold bond formation (62–64). Otherwise, it can be
achieved by first preparing an epitope-functionalized self-
assembling unit, which upon self-assembly form nanoparticles
decorated with the antigen (65–67). Third, the formulation and
administration strategies are also critical aspects to consider.
Vaccines administered via subcutaneous or intramuscular
injection induce systemic immunity and usually, a weak mucosal
response is observed. On the other hand, mucosal vaccination,
either oral or intranasal delivery, induces humoral, and cellular
immune responses at the systemic level and the mucosal surfaces,
which is more effective in the protection against respiratory
viruses (68, 69). Studies have demonstrated that vaccination via
the intranasal route provides a better protection when compared
to subcutaneous immunization in the context of respiratory
pathogens and mucosal immunity. Intranasal vaccination led
to higher antigen-specific lymphocyte proliferation, cytokine
production (interferon-γ, interleukins) and induction of antigen-
specific IgA antibody (70–74). A promising formulation strategy
is the intranasal spray, which delivers conveniently and safely
the nanovaccines directly to the respiratory mucosa (75–77).
However, the number of clinical trials using nanovaccine
formulations for intranasal delivery, including spray dried
nanovaccines, is limited. This is mostly associated with the
difficulty of keeping the nanovaccine integrity during the entire
formulation process (76). Moreover, the immune response is
particularly sensitive to the nature, size, shape, and surface
properties of the nanoparticles as well as to the density and the
potency of the antigens. Thus, it is very challenging to predict
the effect of a given nanovaccine on the immune system. In
addition, nanoparticles have some limitations associated with
their synthesis, or preparation, and their properties. These
include limited antigen loading, low synthesis yield, poor
targeting capability to immune cells, limited manufacturability,
and, in some cases, toxicity (78–80). These drawbacks can lead
to side effects and/or poor immunogenicity, which precludes
their clinical usage. Besides, little is known about the interactions
between nanoparticles and immune cells. In fact, their adjuvant
effect and their ability to activate the immune system still remain
unclear and need to be better understood at the molecular
level (81). Nonetheless, nanoparticle formulations have recently
revealed promising results against respiratory virus infections
(Table 1) and relevant examples will now be discussed.

POLYMERIC NANOPARTICLES

A polymer consists of a large molecule constructed from
monomeric units. Depending on the construction, polymers
can be linear, slightly branched or hyperbranched (3D network)

(104). Polymeric nanoparticles can be either obtained from
the polymerization of monomeric units or from preformed
polymers. These nanoparticles are attractive in the medical field
due to their adjustable properties (size, composition, and surface
properties), which allow controlled release, ability to combine
both therapy and imaging (theranostics), and protection of
drug molecules (105–107). For example, poly(lactic-co-glycolic
acid) (PLGA) is a biodegradable and biocompatible polymer
approved by the Food and Drug Administration (FDA) and
European Medicines Agency (EMA) for use in humans. This
is due to its ability to undergo hydrolysis in vivo, resulting in
lactic acid and glycolic acid metabolites, which are efficiently
processed by the body (108). PLGA can be engineered to
form nanoparticles capable of encapsulating different types of
biomolecules and release them sustainably over time (108–111).
These nanoparticles can encapsulate antigens and prevent their
degradation over 4 weeks under physiological conditions, which
is critical for mucosal vaccination (112). Moreover, PLGA-
NPs promote antigen internalization by APCs and facilitate
antigen processing and presentation to naïve lymphocytes
(113, 114). For instance, spherical PLGA-NPs (200–300 nm
of diameter) were used to encapsulate an inactivated Swine
influenza virus (SwIV) H1N2 antigens (KAg) via water/oil/water
double emulsion solvent evaporation (83). It was observed
that pigs vaccinated twice with this preparation and challenged
with a virulent heterologous influenza virus strain, have a
significantly milder disease in comparison to non-vaccinated
animals. This observation correlated closely with the reduced
lung pathology and the substantial clearance of the virus from
the animal lungs. Other polymeric nanoparticles, such as
chitosan, a natural polymer composed of randomly distributed
β-(1–4)-linked d-glucosamine and N-acetyl-d-glucosamine, and
N-(2-hydroxypropyl)methacrylamide/N-isopropylacrylamide
(HPMA/NIPAM), were also investigated as intranasal vaccines
against respiratory viruses (85–90, 115–121). Overall, polymeric
nanoparticles have many advantages, including biocompatibility
(122), antigen encapsulation and stabilization (123, 124),
controlled release of antigens and intracellular persistence in
APCs (125, 126), pathogen-like characteristics, and suitability
for intranasal administration (126, 127). Nevertheless, the effect
of the polymer properties (core chemistry, size, shape, surface
properties) on the transport within the URT remains unknown.
More studies are needed to better understand the effect of
changing nanoparticle properties on their biological activities
and to, ultimately, predict the fate of these nanocarriers upon
their intranasal administration.

SELF-ASSEMBLING PROTEIN

NANOPARTICLES AND VLPs

Self-assembling protein nanoparticles (SAPNs) are structures
obtained from the oligomerization of monomeric proteins.
The protein building blocks are mostly obtained through
recombinant technologies and are considered safe for biomedical
applications (128). SAPNs can be engineered to have a diameter
ranging from 20 to 100 nm, similar to the sizes of many
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TABLE 1 | Nanoparticle-based vaccines against respiratory viruses delivered via the intranasal route.

Material Size (nm) Virus Antigen/Epitope Adjuvant References

POLYMERIC NANOPARTICLES

PLGA 225.4 Bovine parainfluenza 3 virus

(BPI3V)

BPI3V proteins – (82)

200–300 Swine influenza virus (H1N2) Inactivated virus H1N2 antigen – (83)

γ-PGAa 100–200 Influenza (H1N1) Hemagglutinin – (84)

Chitosan 140 Influenza (H1N1) H1N1 antigen – (85)

300–350 Influenza (H1N1) HA-Split – (86)

571.7 Swine influenza virus (H1N2) Killed swine influenza antigen – (87)

200–250 Influenza (H1N1) M2e Heat shock protein 70c (88)

HPMA/NIPAM 12–25 RSV F protein TLR-7/8 agonist (89, 90)

Polyanhydride 200–800 RSV F and G glycoproteins – (91, 92)

SELF-ASSEMBLING PROTEINS AND PEPTIDE-BASED NANOPARTICLES

N nucleocapside

protein of RSV

15 RSV RSV phosphoprotein R192G (93)

15 RSV FsII Montanide
TM

Gel 01 (94)

15 Influenza (H1N1) M2e Montanide
TM

Gel 01 (95)

Ferritin 12.5 Influenza (H1N1) M2e – (96)

Q11 – Influenza (H1N1) Acid polymerase – (97)

INORGANIC NANOPARTICLES

Gold 12 Influenza M2e CpG (64)

OTHERS

VLP 80–120 Influenza (H1N1) Hemagglutinin – (98)

80–120 Influenza (H1N1, H3N2, H5N1) M2e – (99)

80–120 RSV F protein et G glycoprotein of

RSV and M1 protein of Influenza

– (100)

ISCOMb 40 Influenza (H1N1) Hemagglutinin ISCOMATRIX (101, 102)

DLPC liposomesc 30–100 Influenza (H1N1) M2, HA, NP MPL and trehalose 6,6′ dimycolate (103)

aPoly-γ -glutamic acid.
bQuillaia saponin, cholesterol, phospholipid, and associated antigen.
cDilauroylphosphatidylcholine.

viruses and therefore, are considered as nanovaccine candidates
against viruses, including respiratory viruses (128, 129). For
example, SANPs, designed to elicit an immune response
against RSV, have been explored using the nucleoprotein
(N) from the virus nucleocapsid. The N protein is a major
target of antigen-specific cytotoxic T-cell response. The self-
assembly of N protein protomers led to the formation
of supramolecular nanorings of 15 nm diameter (93). This
platform was modified by fusing the FsII epitope targeted
by monoclonal neutralizing antibody (palivizumab) to the N-
protein, in order to form chimeric nanorings with enhanced
immune response and virus protection against RSV. The results
showed reduced virus load in the lungs of challenged mice
(94). Similarly, chimeric nanorings displaying 3 repeats of the
highly conserved ectodomain of the influenza virus A matrix
protein 2 (M2e), were prepared by recombinant technologies
(95). When administrated via the intranasal route, these M2e-
functionalized nanorings induced local production of mucosal
antibodies and led to mice protection (95). These N-nanorings
are interesting for intranasal delivery of antigen due to their
similarities with respiratory viruses in term of size and structure
(sub-nucleocapsid-like superstructures). Other examples of

SAPNs as potential nanovaccines against respiratory viruses
include the capsid protein of the papaya mosaic virus (PapMV),
the purified coronavirus spike protein and ferritin, which are self-
assembling proteins that form rod-shaped and nearly spherical
nanostructures, respectively (96, 130–140). Recently, assemblies
composed of four tandem copies of M2e and headless HA
proteins were prepared and stabilized by sulfosuccinimidyl
propionate crosslinking, showing the possibility of generating
protein nanoparticles almost entirely composed of the antigens of
interest (141).

VLPs are spherical supramolecular assemblies of 20–200 nm
diameter, which result from the self-assembly of viral capsid
proteins. These particles are free from genetic materials and
have the advantage of mimicking perfectly the structure and
the antigenic epitopes of their corresponding native viruses.
Therefore, this repetitive antigen display promotes efficient
phagocytosis by APCs and subsequent activation (142–146).
Recently, Lee and colleagues demonstrated that intranasal
delivery of influenza-derived VLPs expressed in insect cells and
exposing 5 repeats of the M2e epitopes, confers cross protection
against different serotypes of influenza viruses by inducing
humoral and cellular immune responses (99).
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SAPNs and VLPs are thus attractive but their formulation
into stable and spray dried vaccines for intranasal injection
can be challenging and may require the use of surfactants and
saccharides (147). In the last decades, self-assembling peptides
(SAPs) have also been investigated as intranasal nanovaccines
against respiratory viruses due to their straightforward chemical
synthesis and their storage stability upon lyophilization (97).

INORGANIC NANOPARTICLES

There are many inorganic nanoparticles suitable for biomedical
applications, including superparamagnetic nanoparticles (iron
oxide nanoparticles), quantum dots and plasmonic nanoparticles
(gold and silver nanoparticles). Inorganic materials are mostly
used as tools with improved therapeutic efficacy, biodistribution
and pharmacokinetics. However, inherently, plain inorganic
core nanoparticles would not be suitable in biological fluids
due to particle aggregation. Therefore, in the medical field,
these nanoparticles are often coated with organic molecules via
adsorption or chemical reactions. In fact, these biocompatible
nanoparticles can be described as complex hybrids materials
with an inorganic core and an organic outer shell (148, 149).
Among inorganic nanoparticles, the most commonly used for
vaccination are gold nanoparticles (AuNPs). AuNPs are readily
internalized by macrophages and dendritic cells, and induce their
activation (150, 151). Large scale production is possible with
strict control on particle size and ease of functionalization using
the strong affinity between thiol groups and gold. Thiol groups
can be attached to AuNP surface by forming thiolate–Au bonds
(152–155). Furthermore, no immune response is elicited toward
inert carriers like AuNPs (156). Thus, these nanoparticles are
an appealing platform for nanovaccine engineering via antigen
functionalization.

A wide range of molecules, including adjuvants and antigens
can be conjugated on AuNPs at high density, resulting in
improved immunogenicity and antigen presentation (157, 158).
AuNPs can be formulated for intranasal administration and
can diffuse into the lymph nodes, triggering robust antigen-
specific cytotoxic T-cell immune responses (159, 160). Tao and
coworkers have demonstrated that the peptide consensus M2e
of influenza A viruses with a non-native cysteine residue at the
C-terminal end could be attached on the AuNPs via thiolate–
Au chemistry. The resulting M2e-AuNPs was administered
by the intranasal route to mice with CpG (cytosine-guanine
rich oligonucleotide) adjuvant, triggering a fully protective
immune response against the influenza virus PR8 strain (161).
More recently, it was demonstrated that this formulation
could induce lung B cell activation and robust serum anti-
M2e IgG response, with stimulation of both IgG1 and IgG2a

subclasses (161). Additionally, this vaccination strategy led
to protection against infection by the pandemic influenza
virus strain, A/California/04/2009 (H1N1pdm) pandemic strain,
influenza virus A/Victoria/3/75 (H3N2) strain and the highly
pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)
(64). Although gold nanoparticles constitute an attractive
platform for antigen conjugation, they can accumulate in
organs such as liver and spleen for a long period, which
could be ultimately associated with toxicity (162). Coating
with biocompatible materials reduces their toxicity, although it
can lead to alterations of the physicochemical and biological
properties. Therefore, safety issues of AuNPs still need to be
addressed.

CONCLUSION AND PERSPECTIVES

Engineered nanoparticles have demonstrated their potential as
vaccine delivery platforms. They can be envisaged as both
antigen nanocarriers and adjuvants. In all cases, intranasal
administration of nanovaccines allows a convenient and safe
delivery of the antigen to NALT, inducing mucosal and systemic
immunity. Nonetheless, additional studies are still needed
before their clinical translation. While intranasal vaccination
of nanoparticles generates specific IgA antibody in the URT
and leads to high survival rates in animal models, there are
still limited studies on non-human primates, thus making
nanoparticle’s fate difficult to predict in a human URT. In
addition, nanoparticle vaccines are generally functionalized
with specific antigen(s), which result in an immune response
targeted against these antigenic determinants. Considering
antigenic drifts, the growing human population that needs to
be vaccinated and the different type of viruses, the cost to
address all these aspects would be too prohibitive to produce
affordable vaccines. Consequently, the development of broad
spectrum vaccines constitutes a critical need and we consider
that nanovaccine engineering will contribute to achieve this
objective.
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Influenza virus infections remain a major and recurrent public health burden. The intrinsic

ever-evolving nature of this virus, the suboptimal efficacy of current influenza inactivated

vaccines, as well as the emergence of resistance against a limited antiviral arsenal,

highlight the critical need for novel therapeutic approaches. In this context, the aim

of this study was to develop and validate an innovative strategy for drug repurposing

as host-targeted inhibitors of influenza viruses and the rapid evaluation of the most

promising candidates in Phase II clinical trials. We exploited in vivo global transcriptomic

signatures of infection directly obtained from a patient cohort to determine a shortlist

of already marketed drugs with newly identified, host-targeted inhibitory properties

against influenza virus. The antiviral potential of selected repurposing candidates was

further evaluated in vitro, in vivo, and ex vivo. Our strategy allowed the selection of a

shortlist of 35 high potential candidates out of a rationalized computational screening

of 1,309 FDA-approved bioactive molecules, 31 of which were validated for their

significant in vitro antiviral activity. Our in vivo and ex vivo results highlight diltiazem, a

calcium channel blocker currently used in the treatment of hypertension, as a promising

option for the treatment of influenza infections. Additionally, transcriptomic signature

analysis further revealed the so far undescribed capacity of diltiazem to modulate the

expression of specific genes related to the host antiviral response and cholesterol

metabolism. Finally, combination treatment with diltiazem and virus-targeted oseltamivir

neuraminidase inhibitor further increased antiviral efficacy, prompting rapid authorization

for the initiation of a Phase II clinical trial. This original, host-targeted, drug repurposing

strategy constitutes an effective and highly reactive process for the rapid identification
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of novel anti-infectious drugs, with potential major implications for the management

of antimicrobial resistance and the rapid response to future epidemic or pandemic

(re)emerging diseases for which we are still disarmed.

Keywords: influenza viruses, antivirals, inhibitors of viral infection, transcriptome, host targeting, drug repurposing

INTRODUCTION

Besides their well-known pandemic potential, annual outbreaks
caused by influenza viruses account for several million
respiratory infections and 250,000 to 500,000 deaths worldwide
(1). This global high morbidity and mortality of influenza
infections represents a major and recurrent public health threat
with high economic burden. In this context, the suboptimal
vaccine coverage and efficacy, coupled with recurrent events
of viral resistance against a very limited antiviral portfolio,
emphasize an urgent need for innovative treatment strategies
presenting fewer obstacles for their clinical use (2).

For decades, the strategy for antiviral development was
mostly based on serial screenings of hundreds of thousands
of molecules to identify “hits” and “leads” that target specific
viral determinants, a quite costly and time-consuming process.
However, the dramatic reduction in successful candidate
identification over time (3), along with a concomitant increase
of regulatory complexity to implement clinical trials, have
fostered rising interest in novel strategies. Indeed, new
approaches, focused on targeting the host instead of the
virus, as well as on marketed drug repurposing for new
antiviral indications (3–5) have been recently proposed in
the context of global health emergencies posed by Ebola (6)
and Zika (7) viruses. Such innovative strategies are strongly
supported by a shift of paradigms in drug discovery, from
“one-drug-one-target” to “one-drug-multiple-targets” (8). In
that sense, different in silico approaches based on structural
bioinformatic studies (9, 10), systems biology approaches (11),
and host gene expression analyses (12) have been applied
to decipher multi-purpose effects of many US Food and
Drug Administration (FDA)-approved drugs. Additionally,
as successfully demonstrated in antiretroviral therapy (13),
targeting host instead of viral determinants may confer a
broad-spectrum antiviral efficacy, and also reduce the risk
of emergence of drug resistance against influenza viruses
(14). As a result, the last decade has witnessed several
host-directed experimental approaches against influenza
infections, notably nitazoxanide, DAS181 or acetylsalicylic acid
(15–17).

In line with this emerging trend, we previously postulated
that host global gene expression profiling can be considered as
a “fingerprint” or signature of any specific cell state, including
during infection or drug treatment, and hypothesized that
the screening of databases for compounds that counteract
virogenomic signatures could enable rapid identification of
effective antivirals (18). Based on this previous proof-of-concept
obtained from in vitro gene expression profiles, we further
improved our strategy by analyzing paired upper respiratory
tract clinical samples collected during the acute infection and

after recovery from a cohort of influenza A(H1N1)pdm09-
infected patients and determined their respective transcriptomic
signatures. We then performed an in silico drug screening
using Connectivity Map (CMAP), the Broad Institute’s publicly
available database of more than 7,000 drug-associated gene
expression profiles (19, 20), and identified a list of candidate
bioactive molecules with signatures anti-correlated with those
of the patient’s acute infection state (Figure 1A). The potential
antiviral properties of selected FDA-approved molecules were
firstly validated in vitro, and the most effective compounds
were further compared to oseltamivir for the treatment of
influenza A(H1N1)pdm09 virus infections in both C57BL/6 mice
and 3D reconstituted human airway epithelia. Altogether, our
results highlight diltiazem, a calcium channel blocker with so far
undescribed capacity to stimulate the epithelial antiviral defense,
as a promising repurposed host-targeted inhibitor of influenza
infection. Moreover, our results plead in favor of the combination
of diltiazem with the virus-targeted antiviral oseltamivir for the
improvement of current anti-influenza therapy, and possibly
decreasing the risk of antiviral resistance. This study confirms
the feasibility and interest of integrating clinical virogenomic
and chemogenomic inputs as part of a drug repurposing
strategy to accelerate bedside-to-bench and bench-to-bedside
drug development.

MATERIALS AND METHODS

Ethics Approval and Consent to Participate
Adult patients were recruited by general practitioners in the
context of a previously published randomized clinical trial
Escuret et al. (21) (ClinicalTrials.gov identifier NCT00830323)
and all of them provided written informed consent. The study
protocol was approved by the Lyon Ethics Committee (Comité
de Protection des Personnes Lyon B) on September 9th, 2009 and
conducted in accordance with the Declaration of Helsinki.

All animal procedures were approved by the Institutional
Animal Care Committee of the Center Hospitalier Universitaire
de Québec (CPAC protocol authorization #2012-068-3)
according to the guidelines of the Canadian Council on Animal
Care.

Clinical Samples
A previously published randomized clinical trial
(ClinicalTrials.gov identifier NCT00830323) was conducted
in Lyon and Paris (France) during the peak circulation of the
influenza A(H1N1)pdm09 virus, with the aim to assess the
efficacy of oseltamivir-zanamivir combination therapy compared
with oseltamivir monotherapy (21). Briefly, patients tested
positive for influenza A infection by the QuickVue rapid antigen
kit (Quidel) were randomized in one of the two treatment
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FIGURE 1 | From nasal wash clinical samples to a shortlist of 35 candidate molecules. (A) Overview of the in silico strategy used in this study. A detailed description

of the strategy is described in the Online Methods section. (B) Hierarchical clustering and heatmap of the 1,117 most differentially deregulated genes between

“infected” (red) and “cured” (light green) samples. Raw median centered expression levels are color coded from blue to yellow. Dendrograms indicate the correlation

between clinical samples (columns) or genes (rows). (C) Functional cross-analysis of candidate molecules obtained from Connectivity Map (CMAP). Three lists of

candidate molecules were obtained using different set of genes in order to introduce functional bias and add more biological significance to this first screening: a Main

List based on the complete list of differentially expressed genes, and two other lists (List #1 and #2) based on subsets of genes belonging to significantly enriched

Gene Ontology (GO) terms. (D) Venn Diagram comparing the total 160 molecules obtained from the three lists described in (C), with monensin as the only common

molecule. Only the candidates selected for in vitro screening and validation are depicted.
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groups and nasal wash specimens were collected within 2 h of
the first visit and every 24 h until 96 h after treatment initiation.
Nasal swabs were also performed on days 5 and 7. In voluntary
patients, an optional supplementary nasal wash was performed
at least 3 months after influenza infection (recovery phase).
H1N1 subtype was further confirmed by PCR. For nine of these
patients, transcriptomic data were obtained from paired samples
collected during influenza infection without treatment and in
the recovery phase.

Sample Processing, RNA Preparation and
Hybridization
Nasal wash samples were collected in RNAlater R© Stabilization
Solution (Thermo Fisher Scientific). Total RNA was extracted
using RNeasy Micro kit (Qiagen) following the manufacturer’s
instructions. RNA quality was assessed using a Bioanalyzer2100
(Agilent technologies, Inc, Palo Alto, CA, USA). To account
for samples having low amount and/or partially degraded
RNA (RNA Integrity Numbers between 1 and 8), we applied
two types of corrections: (i) cRNA labeling was performed
after a linear amplification protocol, as previously described
(22) and (ii) raw signals obtained after hybridization of
labeled cRNA on microarray and data acquisition were
processed using the MAXRS algorithm (23). Labeled cRNA were
hybridized on Affymetrix HG-U133plus2 microarrays according
to manufacturer’s instructions in a GeneChip R© Hybridization
Oven 640 (Affymetrix) and microarrays were subsequently
scanned in an Affymetrix 3000 7G scanner.

Data Normalization and MAXRS
Computational Analysis
The MAXRS algorithm (23) is particularly suited to gene
expression analysis under low hybridization conditions. Briefly,
this method takes advantage of the specific design of Affymetrix
probe sets, which are composed of an average of 11 different
probes that target the same locus, and is based on the observation
that for most of the probe sets the same probe shows the
highest fluorescence intensity in almost all arrays. For each
microarray (m = 1..M) and for each probeset (t = 1..T),
fluorescence intensity values on microarray m of all probes (p
= 1..Pt) belonging to the probeset t are sorted in increasing
order. These ranks are denoted as rmtp. Then, we calculated
across all microarrays the rank sum (RStp) for each probeset t
for each probe p belonging to the probeset t. Finally, for each
probeset t, we kept the three probes p with the highest RStp.
The mean intensity of these three probes is attributed to the
probeset t. As it is common practice with many modern pre-
processing algorithms, and because of the low global fluorescence
signal intensity, mismatched probes were excluded fromMAXRS
analysis.

After pre-processing the raw dataset with the MAXRS
algorithm, a normalization step was performed using Tukey
median-polish algorithm (24). Differential expression was
assessed by applying a Student t-test for each probeset, and
multiple testing was corrected using the Benjamini-Hochberg
algorithm in the qvalue library (25). For further downstream

analysis, genes were selected according to two criteria: (i)
absolute fold change >2, and (ii) corrected p-value < 0.05.
Data were generated according to the Minimum Information
About a Microarray Experiment guidelines and deposited in
the National Center for Biotechnology Information’s Gene
Expression Omnibus (GEO) (26) under accession number
GSE93731.

Functional Analysis
Functional enrichment analysis was performed on a selection of
differentially-expressed genes with DAVID tools (27), using the
Gene Ontology (GO) (28). To further select genes for the CMAP
query, we selected 6 Biological Process (BP) terms (GO_BP:
GO:0009615-response to virus; GO:0006955-immune response;
GO:0042981-regulation of apoptosis; GO:0006952-defense
response; GO:0009611-response to wounding; GO:0042127-
regulation of cell proliferation) that shared >90% of genes
with all significantly enriched GO_BP terms, and 3 relevant
Cellular Component terms (GO_CC: GO:0031225-anchored to
membrane; GO:0005829-cytosol; GO:0005654-nucleoplasm). To
visualize and compare the different lists of compounds, Venn
diagrams were obtained using the webtool developed by Dr. Van
de Peer’s Lab at Ghent University (http://bioinformatics.psb.
ugent.be/webtools/Venn/).

Cells and Viruses
Human lung epithelial A549 cells (ATCC CCL-185) were
maintained in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fœtal calf serum and supplemented with
2mM L-glutamine (Sigma Aldrich), penicillin (100 U/mL), and
streptomycin (100µg/mL) (Lonza), maintained at 37◦C and 5%
CO2. MucilAir R© human airway epithelia (HAE) were obtained
from Epithelix SARL (Geneva, Switzerland) and maintained in
air-liquid interphase with specific MucilAir R© Culture Medium
in Costar Transwell inserts (Corning, NY, USA) according to the
manufacturer’s instructions.

Influenza viruses A/Lyon/969/09 and A/Quebec/144147/09
were produced in MDCK (ATCC CCL-34) cells in EMEM
supplemented with 2mM L-glutamine (Sigma Aldrich),
penicillin (100 U/mL), streptomycin (100µg/mL) (Lonza) and
1µg/mL trypsin. Viral titers in plaque forming units (PFU/ml)
and tissue culture infectious dose 50% (TCID50/mL) were
determined in MDCK cells as previously described (29, 30).

Viral Growth Assays
For viral growth assays in the presence of molecules, A549 cells
were seeded 24 h in advance in multi-well 6 plates at 1.8 × 105

cells/well. Three treatment protocols were evaluated. (1) In pre-
treatment protocol, cells were washed with DMEM and then
incubated with different concentrations of candidate molecules
diluted in DMEM supplemented with 2mM L-glutamine (Sigma
Aldrich), penicillin (100 U/mL), streptomycin (100µg/mL)
(Lonza) and 0.5µg/mL trypsin. Six hours after treatment,
cells were washed and then infected with A/Lyon/969/09
(H1N1)pdm09 virus at a multiplicity of infection (MOI) of 0.1.
(2) In pre-treatment plus post-treatment protocol, cells were
initially treated and infected in the same conditions as explained
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above. One hour after viral infection, a second identical dose
of candidate molecules in supplemented DMEM was added.
(3) In post-treatment protocol, cells without pre-treatment
were infected in the conditions described and treatments
with candidate molecules at the indicated concentrations were
initiated 24 h p.i. In all cases, supernatants were collected at 48 h
p.i. and stored at−80◦C for TCID50/ml viral titration.

Viability and Cytotoxicity Assays
Cell viability was measured using the CellTiter 96 R© AQueous
One Solution Cell Proliferation Assay (MTS, Promega). A549
cells were seeded into 96-well plates and treated with different
concentrations of molecules or solvents. Cells were incubated
at 37◦C and 5% CO2 and then harvested at different time-
points, following the same scheme as in viral growth assays.
Results were presented as a ratio of control values obtained with
solvents. Treatment-related toxicity in HAE was measured using
the Cytotoxicity Detection KitPLUS (LDH, Roche) according
to the manufacturer’s instructions. Briefly, duplicate 100 µL-
aliquots of basolateral medium from treated and control HAEs
were incubated in the dark (room temperature, 30min) with 100
µL of lactate dehydrogenase (LDH) reagent in 96-well plates.
After incubation, “stop solution” was added and the absorbance
was measured in a conventional microplate ELISA reader. The
photometer was set up for dual readings to determine non-
specific background at 750 nm, and absorbance was measured
at 490 nm. Percent cytotoxicity was calculated as indicated by
the manufacturer, using mock-treated and 1% triton-treated
epithelia as “low” and “high” controls, respectively. Percent
viability is presented as 100–percent cytotoxicity.

Mouse Model of Viral Infection
All protocols were carried out in seven to 9-weeks old female
C57BL/6N mice (Charles River, QC, Canada). Animals were
randomized in groups of 15 according to their weight to
ensure comparable median values on each group, and then
housed in micro-isolator cages (5 animals per cage) in a
biosafety 2 controlled environment (22◦C, 40% humidity, 12:12 h
photoperiods), with ad libitum access to food and water.

On day 0, mice were lightly anesthetized with inhaled
3% isoflurane/oxygen, and then infected by intranasal (i.n.)
instillation of influenza A/Quebec/144147/09 (H1N1)pdm09
virus in 30 µl of saline, as specified in each case. Control
animals were mock-infected with 30 µl of saline. Candidate
molecules were evaluated in two different treatment protocols:
(i) treatments were started on the same day of infection (day
0, 6 h prior to infection), or (ii) treatments were started 24 h
after infection (day 1). Regardless of treatment initiation time, all
treatments were performed per os (150-µl gavage) once daily for
5 consecutive days (5 drug administrations in total). Mortality,
body weight and clinical signs such as lethargy and ruffled fur
were daily monitored on 10 animals/group for a total of 14 days.
Animals were euthanized if they reached the humane endpoint
of >20% weight loss. The remaining 5 animals/group were
euthanized on day 5 p.i. to measure lung viral titers (LVTs).

Vehicle (saline) or oseltamivir were used as placebo and
positive treatment control, respectively. The oseltamivir dose

(10 mg/kg/day) was adjusted to confer ∼50% protection in
the selected experimental conditions and is considered a good
correlate of half the normal dose of 150 mg/day given to humans
(31). The doses of repurposed candidate molecules were selected
to be in the non-toxic range for mouse studies, according to
published preclinical data for their first therapeutic indication. To
validate this choice in our specific model, potential drug toxicity
was evaluated in mock-infected animals treated with the same
regimens as virus-infected mice.

Pulmonary Viral Titers
In order to evaluate the effect of different treatments on viral
replication, 5 animals per group were euthanized on day 5 p.i.
and lungs were removed aseptically.Mice were randomly selected
from the 3 cages of each group to minimize cage-related bias.
Lungs were homogenized in 1ml of PBS using a bead mill
homogenizer (Tissue Lyser, Qiagen) and debris was pelleted by
centrifugation (2,000 g, 5min). Triplicate 10-fold serial dilutions
of each supernatant were plated on ST6GalIMDCK cells (kindly
provided by Dr. Y. Kawaoka, University of Wisconsin, Madison,
WI) and titrated by plaque assays (29). The investigator was
blinded to group allocation.

Viral Infection in Reconstituted Human
Airway Epithelium (HAE)
For HAE infection experiments, apical poles were gently washed
with warm PBS and then infected with a 100-µL dilution
of influenza A/Lyon/969/09 (H1N1)pdm09 virus in OptiMEM
medium (Gibco, ThermoFisher Scientific) at a MOI of 0.1.
Basolateral pole sampling as well as 150-µL OptiMEM apical
washes were performed at the indicated time points, and then
stored at −80◦C for PFU/mL and TCID50/mL viral titration.
Treatments with specific dilutions of candidate molecules alone
or combined with oseltamivir in MucilAir R© Culture Medium
were applied through basolateral poles. Control HAE were
mock-treated in the same conditions with MucilAir R© Culture
Medium without molecules. All treatments were initiated on
day 0 (5 h after viral infection) and continued once daily for
5 consecutive days (5 drug administrations in total). Variations
in transepithelial electrical resistance (1 TEER) were measured
using a dedicated volt-ohmmeter (EVOM2, Epithelial Volt/Ohm
Meter for TEER) and expressed as Ohm/cm2.

High Throughput Sequencing and
Bioinformatics Analysis
cDNA libraries were prepared from 200 ng of total RNA
using the ScriptseqTM complete Gold kit-Low Input (SCL6EP,
Epicenter), according to manufacturer’s instructions. Each cDNA
library was amplified and indexed with primers provided
in the ScriptSeqTM Index PCR Primers kit (RSBC10948,
Epicenter) and then sequenced as 100 bp paired-end reads.
Prior to sequencing, libraries were quantified with QuBit and
Bioanalyzer2100, and indexed libraries were pooled in equimolar
concentrations. Sequencing was performed on an Illumina HiSeq
2500 system (Illumina, Carlsbad, CA), with a required minimum
of 40 million reads sequenced per sample. Conversion and
demultiplexing of reads was performed using bcl2fastq 1.8.4

Frontiers in Immunology | www.frontiersin.org 5 January 2019 | Volume 10 | Article 60130

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pizzorno et al. Drug Repurposing and Influenza Inhibitors

(Illumina). The FastQC software (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc) was used for quality controls of
the raw data. Reads were trimmed using the Trimmomatic (32)
software, with a minimum quality threshold of Q30. Trimmed
reads were pseudo-aligned to the Homo sapiens genome
(GRCh38.p11) using the Kallisto software (33). Statistical analysis
was performed in R3.3.1 with the package EdgeR 3.14.0
(34). Differential expression was calculated by comparing each
condition to the mock using a linear model. The Benjamini-
Hochberg procedure was used to control the false discovery
rate (FDR). Transcripts with an absolute fold change >2 and
a corrected p-value < 0.05 were considered to be differentially
expressed. Enriched pathways and GO terms were assessed with
DAVID 6.8 (27). For visualization purposes, a heatmap and
stacked barplots were constructed in R3.3.1 on mean-weighted
fold changes and association between conditions were assessed
by Spearman correlation analysis.

Statistical Analysis
All experimental assays were performed in duplicate at a
minimum, and representative results are shown unless indicated
otherwise. No statistical methods were used to predetermine
sample size in animal studies, which were estimated according to
previous studies and the known variability of the assays. No mice
were excluded from post-protocol analyses, the experimental
unit was an individual animal and equal variance was assumed.
Kaplan-Meier survival plots were compared by Log-Rank
(Mantel-Cox) test and hazard ratios (HR) were computed by
the Mantel-Haenszel method. Weight loss and viral titers of
all groups were compared by one-way analysis of variance
(ANOVA) with Tukey’s multiple comparison post-test. The
testing level (α) was 0.05. Statistical analyses were performed on
all available data, using GraphPad, Prism 7.

RESULTS

Generation of Clinical Virogenomic Profiles
We determined in vivo transcriptional signatures of infection
from paired nasal wash samples of nine untreated patients,
collected during acute A(H1N1)pdm09 pandemic influenza
infection (“infected”) and at least 3 months later to ensure a
recovery non-infected state (“cured”) (21). The nine patients
from whom transcriptomic data could be obtained constitute a
representative sample of the whole studied cohort, except for
the male sex ratio (Table S1). We combined two strategies to
tackle the characteristic low RNA amount/quality of this type
of clinical samples. Firstly, cRNA labeling was performed after
a linear amplification of initial RNA, as previously described
(35). Secondly, raw signals obtained after hybridization of labeled
cRNA on microarray and data acquisition were processed using
the MAXRS algorithm (23) to overcome low hybridization
conditions. This approach, initially developed for the analysis
of heterologous hybridizations, takes advantage of the specific
design of the Affymetrix R© microarray used in our study, with
several probes targeting the same locus (23).

After normalization, differentially expressed genes were
selected based on two criteria: (i) an absolute fold change

>2, and (ii) a Benjamini-Hochberg corrected p-value < 0.05.
We therefore identified a total of 1,117 commonly deregulated
probes, with almost equal proportion of up-regulated (48.4%; n=
541) and down-regulated probes (51.7%; n = 576). Remarkably,
despite considerable inter-patient variability among recovery
state samples, a substantial homogenization of transcriptional
profiles was observed in the context of infection, as shown
in the heatmap presented in Figure 1B and by the median
Spearman’s ρ correlation values for both groups (0.60 “cured”
vs. 0.90 “infected”). These virogenomic signatures of infection
constituted the input for the subsequent in silico query for the
identification of candidate compounds.

In silico Cross-Analysis of Chemogenomic
vs. Virogenomic Clinical Profiles
We then performed an in-silico search for molecules that
reverse the virogenomic signature of infection, using the
CMAP database (Build 02) as previously described (18).
CMAP is a collection of genome-wide transcriptional expression
data from cultured human cells treated with bioactive small
molecules. HG-U133plus2 probesets were mapped to the U133A
probesets using the Ensembl BioMarts online tool (36, 37),
and connectivity scores and p-values were obtained using the
CMAP algorithm (19, 20). With the global set of 1,000 most
differentially expressed genes as input (Figure 1C, Main List),
we obtained a preliminary list of 60 candidate compounds.
In parallel, we used two other subsets of genes belonging
to significantly enriched Gene Ontology (GO) terms obtained
from microarray analyses to introduce functional bias and add
more biological significance to our first screening. Hence, by
using 6 Biological Process terms (GO_BP) that shared more
than 90% of genes (Figure 1C, Functional cross-analysis #1),
a second list of 109 compound candidates was obtained. A
third list of 19 compounds was obtained using 3 relevant
Cellular Component terms (GO_CC) (Figure 1C, Functional
cross-analysis #2). The comparison of the 160 compounds
from the three distinct lists (12.2% of compounds of CMAP,
Table S2) highlighted monensin as the only common compound
(Figure 1D).

To rationally reduce the number of drug candidates,
bioactive drugs were excluded if not compatible with a
final use as antiviral, mostly for safety (e.g., teratogens,
intercalating agents), and/or pharmacological (e.g., documented
low bioavailability) reasons, based on clinical data and the
PubMed/PubChem databases. Thus, the number of candidates
was initially decreased to 139 and then to 110 (Figure S1).
We subsequently determined a shortlist of 35 bioactive
molecules (<3% of CMAP, Table 1) for in vitro screening,
based on two main criteria: (i) molecules representative
of the different pharmacological classes identified, and (ii)
molecules evenly distributed in the three lists obtained after
in silico screening (Main List, List #1 and List #2, Figure 1D),
which comprise a panoply of documented pharmacological
classes, including anti-fungal agents (e.g., monensin, flucytosine),
anti-inflammatory agents (e.g., felbinac, apigenin, prednisone)
and adrenergic agonists/antagonists (timolol, methoxamine,
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TABLE 1 | Shortlist of the 35 selected molecules and their documented pharmacological classes.

Name Pharmacological class

Adiphenine Parasympatholytics/Anticholinergics/Antispamodics

Alpha-estradiol* 5 alpha-reductase inhibitors/Androgenic alopecia treatment

Amiloride*# Epithelial Sodium Channel Blockers/Diuretics/Acid Sensing Ion Channel Blockers

Apigenin*# Anti-Inflammatory Agents, Non- steroidal/?

Benzathine benzylpenicillin# Anti-Bacterial Agents

Biperiden* Antiparkinson Agents/Muscarinic Antagonists/Parasympatholytics

Carmustine Antineoplastic Agents, Alkylating

Chloropyramine Histamine H1 Antagonists

Clofilium tosylate Anti-Arrhythmia Agents

Diltiazem Antihypertensive Agents/Calcium Channel Blockers/Cardiovascular Agents/Vasodilator Agents

Diphenhydramine Anesthetics, Local/Anti-Allergic Agents/Antiemetics/Histamine H1 Antagonists/Hypnotics and Sedatives

Etilefrine Adrenergic beta-1 and alpha agonist/Cardiotonic/antihypotensive agent.

Felbinac# Anti-Inflammatory Agents, Non-steroidal

Flucytosine*# Antifungal Agents/Antimetabolites

Folic acid Hematinics/Vitamin B Complex

Fusidic acid# Anti-Bacterial Agents/Protein Synthesis Inhibitors

Genistein Anticarcinogenic Agents/Phytoestrogens/Protein Kinase Inhibitors

Gentamicin# Anti-Bacterial Agents/Protein Synthesis Inhibitors

Lanatoside C Anti-Arrhythmia Agents

Levamisole* Adjuvants, Immunologic/Antinematodal Agents/Antirheumatic Agents

Methoxamine Adrenergic alpha-1 Receptor Agonists/Sympathomimetics/Vasoconstrictor Agents

Monensin*# Antifungal Agents/Antiprotozoal Agents/Coccidiostats/Proton Ionophores/Sodium Ionophores

Nimesulide*# Anti-Inflammatory Agents, Non-steroidal/Cyclooxygenase Inhibitors

Pindolol Adrenergic beta-Antagonists/Antihypertensive Agents/Serotonin Antagonists/Vasodilator Agents

Prednisone# Anti-Inflammatory Agents/Antineoplastic Agents, Hormonal/Glucocorticoids

Prestwick-1103# Anti-Inflammatory Agents, Non-steroidal/Cyclooxygenase Inhibitors

Ranitidine Anti-Ulcer Agents/Histamine H2 Antagonists

Ribavirin* Antimetabolites/Antiviral Agents

Riboflavin* Photosensitizing Agents/Vitamin B Complex

Roxithromycin# Anti-Bacterial Agents

Sulfadimethoxine# Anti-Infective Agents

Sulfamonomethoxine# Anti-Infective Agents

Timolol* Adrenergic beta-Antagonists/Anti-Arrhythmia Agents/Antihypertensive Agents

Tolazoline Adrenergic alpha-Antagonists/Antihypertensive Agents/Vasodilator Agents

Ursodeoxycholic acid Cholagogues and Choleretics

Shortlist of the 35 selected candidates representative of the 110 molecules obtained from the in silico screening (Figure 1 and Figure S1). Documented pharmacological classes were

obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov). (*) indicate molecules previously evaluated for their antiviral properties according to the literature, and numerals (# ) those

belonging to anti-microbial or anti-inflammatory related pharmacological classes.

tolazoline), as represented in the Venn diagram (Figure 1D,
Table 1). Interestingly, at least 14 (40%) molecules from our
short-list belong to a pharmacological class related with anti-
microbial or anti-inflammatory activities (Table 1, #), and 11
(31.4%) have already been reported in the literature for their
antiviral properties against influenza or other viruses (Table 1, ∗),
notably the nucleoside inhibitor ribavirin (38, 39) and the
ionophore monensin (40).

Inhibitory Effect of the Selected Molecules
on A(H1N1)pdm09 Viral Growth in vitro
In vitro screening of the antiviral potency of the 35 selected
molecules was performed in A549 human lung epithelial cells

seeded in 6-well plates. Firstly, we evaluated the impact of
6 h pre-treatment with a 10-fold drug concentration range,
using the original CMAP concentration as reference. Six
hours after treatment, cells were washed and infected with
influenza A(H1N1)pdm09 virus at a MOI of 0.1. Viral titers
in supernatants collected from treated samples at 48 h post
infection (p.i.) were normalized with those measured in
mock-treated controls (>105 TCID50/mL). Potential treatment-
induced cell toxicity was evaluated in the same experimental
conditions using the MTS assay and expressed also as the
percentage of cell viability compared to non-infected controls
(Figure 2). Based on antiviral activity and cell viability profiles
obtained (Figure 2A, blue triangles), we defined as “inhibitors”
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FIGURE 2 | Screening and validation of the effect of selected molecules on A(H1N1)pdm09 viral growth in vitro. (A, left) Evaluation on A549 cells of the antiviral

potency of the 35 candidates selected by in silico analysis. Relative viral production (%, X axis) and relative cell viability (%, Y axis) of both pre-treatment (blue triangles)

and pre-treatment/treatment (green circles) regimens were evaluated. A 10-fold drug concentration range using CMAP as reference (CMAP × 10, CMAP, CMAP/10,

CMAP/100, CMAP/1,000, and CMAP/10,000) was used. CMAP × 10 was only tested in the context of pre-treatment, by anticipation of a lower efficacy of molecules

in this experimental setup. All experimental assays were performed in triplicate and mean values are represented. (A, right) Zoom panels depicting molecules defined

(Continued)
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FIGURE 2 | as “inhibitors” according to the following two criteria: (i) induce a 75% or higher reduction on viral production, and (ii) have minor impact on cell viability,

with relative values in the 90–110% range. For clarity purposes, with the exception of diltiazem, etilefrine, monensin, and ribavirin. Ad, Adiphenine; Al, Alpha-estradiol;

Am, Amiloride; Ap, Apigenin; Be, Benzathine Benzylpenicilline; Bi, Biperiden; Ca, Carmustine; Ch, Chloropyramine; Cl, Clofidium tosylate; Di, Diphenydramine; Fe,

Felbinac; Fl, Flucytosine; Fo, Folic acid; Fu, Fusidic acid; Ge, Genistein; Ga, Gentamycin; La, Lanatoside C; Le, Levamisole; Me, Methoxamine; Ni, Nimesulide; Pi,

Pindolol; Po, Prednisone; Pr, Prestwick-1103; Ra, Ranitidine; Ri, Riboflavine; Ro, Roxythromycin; Sud, Sulfadimethoxine; Sum, Sulfamonomethoxine; Ti, Timolol; To,

Tolazoline; Us, Urseodeoxycholic acid. Dose-response curves for all the 35 molecules are presented in Table S3. (B) Venn diagram of the 10 molecules identified in

pre-treatment (10/35; 28.57%) and matching the “inhibitor” criteria, mainly when used at 10-fold CMAP concentration. EC50 curves for monensin and ranitidine are

represented. (C) Venn diagram of the 30 “inhibitor” molecules identified in pre-treatment/treatment (30/35; 85.7%). EC50 curves for monensin, diltiazem, and etilefrine

are represented.

compounds that fulfilled the following two criteria: (i) induce
>75% reduction on viral production, and (ii) have minor
impact on cell viability, with relative values in the 90–110%
range (Figure 2A, squares in left panels and zooms in right
panels). A total of 10 compounds (28.6%) matched both
criteria, mainly when used at a 10-fold CMAP concentration
(Figure 2B), yet only a limited number of them exhibited
classic dose-dependent inhibition. Whenever possible, as in
the case of monensin or ranitidine for example, EC50 values
were calculated, which were mostly in the micromolar range
(Figure 2B).

In a second round of screening, we tested the same
6 h pre-treatment but with serial 10-fold dilutions from the
initial CMAP concentration to CMAP/10,000, followed by one
additional treatment immediately after infection (Figure 2A,
green circles in left and right panels). In these conditions,
30 compounds (85.7%) met our criteria to be considered as
inhibitors of viral production (Figure 2C), with half of them
showing a classic dose-dependent inhibition effect. Calculated
EC50 values were in the nanomolar range and hence significantly
lower than those calculated in the context of pre-treatment
only. Dose response curves and calculated EC50 for all the
35 compounds are presented in Figure S2 and Table S3,
respectively.

Efficacy of Selected Molecules for the
Treatment of Influenza A(H1N1)pdm09
Virus Infection in Mice
Based on EC50 and cytoxicity data from the in vitro screening,
we selected 8 molecules to investigate their potential as
inhibitors of influenza A(H1N1)pdm09 in C57BL/6 mice.
Oseltamivir, the standard antiviral for the treatment of
influenza infections was used as control. All treatments
were performed per os, starting 6 h before infection and
being continued once daily for 5 consecutive days (5 drug
administrations in total) (Figure 3). While animals treated
with oseltamivir or monensin showed clinical improvement
compared to the saline (placebo) group in terms of survival
and weight loss (oseltamivir only), treatment with Lanatoside
C, prednisolone, flucytosine, felbinac, and timolol showed no
clinical benefit at the selected concentrations (Figure S3A). In
contrast, diltiazem and etilefrine not only significantly improved
survival and maximum mean weight losses (Figures 3A,B),
but also showed at least 1-log reductions in LVTs on day
5 p.i. (Figure 3C). Importantly, no signs of toxicity were

observed for any of the drugs at the regimens tested
(Figure S3B).

Diltiazem Retains Its in vivo Efficacy When
Administered 24h After Viral Infection
To best mimic the therapeutic setting, we next evaluated
the efficacy of the same 5-day oral regimen with diltiazem
or etilefrine but when initiated 24 h after viral infection
(Figure 4). As with oseltamivir and monensin, diltiazem
treatment completely prevented mortality and reduced weight
loss in influenza A(H1N1)pdm09 infected mice, which otherwise
showed only 50% (5/10) survival for the etilefrine and saline
groups (Figures 4A,B). Interestingly, 1- to 1.5-log reductions in
LVTs compared to the saline group were observed at day 5 in
groups of mice treated with diltiazem or etilefrine (Figure 4C).
We then used a more stringent approach by increasing the viral
inoculum to evaluate the same delayed (24 h post infection)
5-day diltiazem regimen in the context of a 100% lethal
A(H1N1)pdm09 infection (Figures 4D–F). Whereas, treatment
with oseltamivir and diltiazem successfully rescued 40% (4/10)
and 20% (2/10) of mice, respectively, half-dose treatment with
diltiazem (45 mg/kg) rescued 30% (3/10) of mice from death,
also showing significant improvement in mean weight loss
(Figures 4D,E). Calculated hazard ratios (HR) for the saline
group compared to these three treatment groups were 8.41
(CI95: 1.65–43.02), 2.85 (0.56–14.47), and 7.62 (1.49–38.96),
respectively. Noteworthy, LVTs at day 5 p.i. were comparable
among all treated and untreated groups (Figure 4F), suggesting
mainly a protective effect of diltiazem toward severe influenza
infection rather than a direct role in decreasing viral production.

Diltiazem Significantly Reduces Viral
Replication in Infected Reconstituted
Human Airway Epithelia (HAE)
To further complement in vivo data, we characterized the
inhibitory properties of diltiazem using a biologically relevant
reconstituted airway epithelium model, derived from human
primary bronchial cells (MucilAir R©, Epithelix). HAE were
infected with influenza A(H1N1)pdm09 at a MOI of 0.1,
and treatments on the basolateral medium were initiated 5 h
p.i. and continued once daily for 5 consecutive days. Viral
replication at the apical surface of mock-treated (MucilAir R©

Culture Medium without molecules) HAE peaked at 48 h p.i.
(∼1 × 108 PFU/ml) and was detectable at important levels
for at least 7 days. As expected, trans-epithelial electrical
resistance (TEER) values, measuring tight junction and cell
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FIGURE 3 | Efficacy of oral administration of selected molecules in mice infected with influenza A(H1N1)pdm09 virus. C57BL/6N mice (n = 15/group) were

intranasally inoculated with 5 × 105 PFU of influenza A/Quebec/144147/09 virus on day 0 and treated by gavage with saline (gray), oseltamivir 10 mg/kg/day (red),

monensin 10 mg/kg/day (blue), diltiazem 90 mg/kg/day (green), or etilefrine 3 mg/kg/day (orange). A mock-infected, saline-treated group (black dotted line, n = 6)

was included as control. Treatments were initiated on day 0 (6 h before infection) and administered once daily for 5 consecutive days. (A) Survival rates (n = 10/group),

(B) mean weight changes (±SEM, n = 10/group or remaining mice) and (C) median (±CI95, n = 5/group) lung viral titers on day 5 p.i. are shown. *p < 0.05,

compared to the infected saline-treated group by one-way ANOVA with Tukey’s post-test. Data are representative of two independent experiments.

layer integrity, sharply decreased and bottomed out at 72 h
p.i. in the untreated control, correlating with the first virus
detection on the basolateral medium (Figure 5A and Table S6).
A similar pattern was observed in infected HAE treated with
oseltamivir 0.1µM or diltiazem 9µM (CMAP), which conferred
no significant advantage over the untreated control. Conversely,
oseltamivir 1µM and diltiazem 90µM treatments (10-fold
CMAP) strongly inhibited viral replication, delaying the peak
of viral production by 24 h. Both treatments induced >3-log
reductions in apical viral titers at 48 h p.i. compared to the
untreated control, and >2-log reductions when comparing peak
titers (48 h p.i. untreated vs. 72 h p.i. treated). Moreover, whereas
oseltamivir treatment stabilized TEER during the time-course
of infection, diltiazem treatment partially buffered the TEER
decrease observed in the untreated control (Figure 5A and

Table S6). No virus was detected on the basolateral medium
for these two treated groups, and absence of treatment-induced
toxicity was confirmed by measuring the release of intracellular

lactate dehydrogenase (LDH). Interestingly, we observed that

inhibitory and protective properties demonstrated by diltiazem
were progressively reversible when basolateral medium was

replaced with fresh medium without drugs. Overall, these results
are in accordance and strongly support the inhibitory and

protective effects of diltiazem observed in vitro and in mice,
respectively.

Diltiazem-Oseltamivir Combination
Confers Improved Efficacy When
Compared to Monotherapy in Infected HAE
We anticipated that the combination of two antiviral compounds
that target different viral/cellular determinants could induce
better virological and physiological responses when compared
to antiviral monotherapy. We therefore evaluated the diltiazem-
oseltamivir combination in the same conditions described above,
notably a 5-day treatment course with treatment initiation at
5 h p.i. The diltiazem 90 µM/oseltamivir 1µM combination
conferred >3-log reduction in apical peak viral titers when
compared to the untreated control, even greater than that
observed with same dose monotherapy. TEER values remained
stable during combined treatment, comparable to those observed
with oseltamivir 1µM monotherapy (Figure 5B and Table S6).
Remarkably, although not effective as monotherapy in the low
concentrations tested above, the diltiazem 9 µM/oseltamivir
0.1µM combination contrariwise delayed the peak of viral
production, significantly reduced apical viral titers, and slightly
buffered TEER values compared to the untreated control
(Figure 5B and Table S6). Once again, no treatment-related
toxicity was observed for any of the combinations tested.
These results plead in favor of the potential of diltiazem
for the improvement of current anti-influenza therapy with
neuraminidase inhibitors.
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FIGURE 4 | Efficacy of post-infection oral treatment with diltiazem and etilefrine in mice infected with influenza A(H1N1)pdm09 virus. C57BL/6N mice (n = 15/group)

were intranasally inoculated with 1 × 105 (A–C) or 4 × 106 (D–F) PFU of influenza A/Quebec/144147/09 virus on day 0 and treated by gavage with saline (gray),

oseltamivir 10 mg/kg/day (red), monensin 10 mg/kg/day (blue, A only), diltiazem 45 mg/kg/day (light green, B only), diltiazem 90 mg/kg/day (dark green), or etilefrine 3

mg/kg/day (orange, (A) only). A mock-infected, saline-treated group (black dotted line, n = 6) was included as control. Treatments were initiated on day 1 (24 h after

infection and administered once daily for 5 consecutive days. (A,D) Survival rates (n = 10/group), (B,E) mean weight changes (±SEM, n = 10/group or remaining

mice), and (C,F) median (±CI95, n = 5/group) lung viral titers on day 5 p.i. are shown. ***p < 0.001, compared to the infected saline-treated group by one-way

ANOVA with Tukey’s post-test. Data are representative of two independent experiments.
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FIGURE 5 | Diltiazem significantly reduces viral replication in infected reconstituted human airway epithelia (HAE). Apical viral production (±SEM) and transepithelial

electrical resistance (1 TEER±SEM) in MucilAir® human airway epithelium infected on the apical pole with influenza A/Lyon/969/09 (H1N1) pdm09 virus at a MOI of

0.1 and subjected to (A) single or (B) combined treatments by the basolateral pole. Treatments with culture medium (mock, gray), oseltamivir 0.1µM (red, dotted line),

oseltamivir 1µM (red, solid line), diltiazem 9µM (green, dotted line), diltiazem 90µM (green, solid line), oseltamivir 0.1 µM/diltiazem 9µM (brown, dotted line) or

oseltamivir 1 µM/diltiazem 90µM (brown, solid line) were initiated 5 h after infection and administered once daily for 5 consecutive days. **p < 0.01 and ***p < 0.001

compared to the infected Mock-treated group by one-way ANOVA with Tukey’s post-test. Data are representative of three independent experiments.

Diltiazem Treatment Induces a Significant
Reversion of the Viral Infection Signature
Since the rationale behind our approach relies on attaining
antiviral activity through a drug-induced global and multi-level
inversion of the infection signature, we advantageously used
the MucilAir R© HAE model coupled with high-throughput
sequencing in order to characterize and compare the specific
transcriptional signatures induced by infection and/or diltiazem
treatment (Figure 6 and Figure S4). HAE were mock-infected
or infected with influenza A(H1N1)pdm09 virus and then
mock-treated or treated in the same experimental conditions
in which the antiviral effect of diltiazem has been previously
validated (MOI of 0.1, 90µM diltiazem). At 72 h p.i., cells

were lysed and total RNA was extracted. cDNA libraries were
then produced, amplified, and subjected to high-throughput
sequencing. Taking the mock-infected / mock-treated (“mock”)
as baseline, we initially performed DAVID functional gene
enrichment (absolute fold change >2, Benjamini-Hochberg
corrected p < 0.05) on the specific transcriptional signature of
diltiazem with the objective of gaining insight on the putative
host pathways involved in its antiviral effect. The lists of up-
regulated (n = 194) and down-regulated (n = 110) transcripts
in the mock-infected/diltiazem (“mock + diltiazem”) condition
were analyzed using DAVID 6.8 to highlight associations with
specific GO terms. Although no enriched BP was identified
among down-regulated transcripts, the list of up-regulated
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FIGURE 6 | Diltiazem treatment effectively induces significant reversion of the viral infection signature. (A) DAVID gene enrichment analysis of the diltiazem

transcriptional signature. The seven most significant biological processes (BP) are presented. BP related to antiviral response and cholesterol biosynthesis/metabolism

are represented in blue and green, respectively. (B) Hierarchical clustering and heatmap of the 118 common differentially expressed transcripts (absolute fold change

>2, Benjamini-Hochberg corrected p-value < 0.05) between mock-infected/diltiazem (“mock + diltiazem”), infected/mock-treated (“H1N1”), or infected/diltiazem

(“H1N1 + diltiazem”) HAE. The mock-infected/mock-treated (“mock”) condition was used as baseline. Mean-weighted fold changes are color-coded from blue to

yellow. (C) Median Spearman ρ correlation value calculations between the 3 conditions highlighted in the heatmap. (D) Stacked barplot representation of the 40 most

up/down-regulated transcripts highlighted in the analysis. Barplots were constructed in R3.3.1 based on mean-weighted fold changes and ordered according to

H1N1 values (blue). Mock + diltiazem and H1N1 + diltiazem conditions are represented in yellow and green, respectively.

transcripts associated with diltiazem treatment highlighted 7
particularly enriched BP. While 4 of these BP (GO:0009615;
GO:0045071; GO:0051607; GO:0060337) are directly linked

to antiviral response/cellular response to virus, the remaining
3 (GO:0055114; GO:0008299; GO:0006695) are involved in
cholesterol biosynthesis/metabolism (Figure 6A). We then
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compared the common differentially expressed transcript
levels between the three infection/treatment conditions. These
transcriptional signatures revealed a marked anti-correlated
profile between the “mock + diltiazem” and the infected /
mock-treated (“H1N1”) conditions (Figure 6B), supported by
a median Spearman’s ρ correlation value of −0.82 (Figure 6C).
Most important, the infected/diltiazem (“H1N1 + diltiazem”)
condition yielded ρ correlation values of 0.40 and −0.72 when
compared to either “mock + diltiazem” or “H1N1,” respectively,
therefore confirming a partial reversion of the infection
virogenomic signature during effective antiviral treatment with
diltiazem (Figure 6D and Figure S4), as expected.

DISCUSSION

The existing urge for alternative strategies to cope with
the limited efficacy of currently approved antivirals for the
prevention and treatment of influenza infections (2, 41, 42),
mostly in the case of patients with severe influenza and acute
respiratory distress syndrome (ARDS) (43, 44), represented the
central driving force of this study. Here, we developed and
validated for the first time an innovative approach based on
clinical genomic signatures of respiratory viral infections for
the rapid discovery, in vitro, in vivo, and ex-vivo evaluation, as
well as the repurposing of FDA-approved drugs for their newly
identified host-targeted inhibitory and protective properties
against influenza infections.

Targeting host components on which viral replication depends
instead of viral determinants represents a real change of
paradigm in antiviral development, with pioneering results
mainly observed in the context of antiretroviral therapy (13, 45).
Nevertheless, and despite strong putative advantages such as
the achievement of broad-spectrum antiviral efficacy and the
minimization of viral drug resistance, this approach usually fails
to overcome two major limiting factors of classic compound
screening. Firstly, it remains target-centered per se, therefore
leading to the identification of drugs with limited efficacy due to
the complex network and high redundancy of the host cellular
pathways. Secondly, the need of high-throughput screenings
often entails the measurement of a very limited number of
viral parameters, usually in non-physiologically and hence poorly
relevant conditions and/or cellular models.

Based on our initial proof-of-concept study on the in silico
screening of the CMAP database (19, 20) with no initial a priori
on specific host targets (18), we moved our approach up to
the clinical trial setting, by determining exploitable and more
relevant virogenomic profiles directly from standard clinical
samples of influenza-infected patients. Since the low amount of
often degraded RNA obtained from these samples represented
a major challenge, we implemented an original combination of
sample preparation techniques for low input but high quality
samples with data processing initially designed for expression
analysis of non-model species (22, 23).

Another substantial development was the integration of
several lists of candidate molecules issued from different
transcriptomic signatures with enriched relevant DAVID Gene

Ontology terms, and their final selection based on their
pharmacological classes and potential compatibility as antivirals.
Our refined strategy allowed the selection of a shortlist of 35
high potential candidates out of a rationalized computational
screening of a total of 1,309 FDA-approved bioactive molecules.
This drastic positive selection step constituted a major advantage,
since it enabled the implementation of relevant and integrated
in vitro, in vivo and ex-vivo evaluations in a time- and cost-
effective manner. Most important, the use of patient (in vivo)
virogenomic profiles led to the identification of molecules with
highly improved in vitro activity and significant in vivo antiviral
efficacy as compared with compounds previously obtained from
our initial study based on cell culture (in vitro) virogenomic
profiles (18). These results truly highlight the added value of
using relevant clinical virogenomic signatures to optimize the
computational screening for active drugs.

Two of the molecules identified in this study with
transcriptomic profiles that counteract clinical virogenomic
signatures (e.g., ribavirin and monensin) have already been
validated for their anti-influenza properties (38, 40), and then
supported the relevance of our compound selection strategy.
Nevertheless, although different modes of action have been
postulated for the anti-influenza activity of the synthetic
guanosine analog ribavirin (39), the exact mechanisms remain
uncharacterized so far. Similarly, it has been postulated that
monensin, an antibiotic isolated from Streptomyces spp, may have
a role as a ionophore that interferes with intracellular transport
of several enveloped viruses, including influenza (40). In that
sense, even if we cannot rule out that some of the molecules
identified in silico exert a direct effect on a specific pathway or
cellular target, the fact that these molecules have been identified
with a high anti-correlation rate in CMAP strongly supports
a potential multi-target inhibitory effect, probably resulting
in deep modifications of host gene expression. In fact, both
monensin and ribavirin were previously reported to modulate
the host cellular gene expression profile, notably through the
up-regulation of the cholesterol and lipid biosynthesis genes (46)
or the virus-induced ISRE signaling and antiviral ISGs genes
(47), respectively.

The two most promising molecules highlighted in this
study are etilefrine, an alpha and beta- adrenergic receptor
agonist, currently indicated as a cardiotonic and anti-hypotensive
agent (48) and mainly diltiazem, a voltage-gated Ca2+
channel antagonist that is currently used to control angina
pectoris and cardiac arrhythmia (49). In addition to their
strong inhibitory effect on the viral growth of circulating
A(H1N1)pdm09 viruses, with in vitro EC50 values in the
nanomolar range (Figure 2), both molecules also demonstrated
antiviral properties against oseltamivir-resistant A(H1N1)pdm09
and prototype H3N2 and B influenza strains (Table S4).
Interestingly, virus pre-incubation with diltiazem or etilefrine
before infection did not affect final viral titers compared to
PBS-incubated controls, hence suggesting that the observed
antiviral effect of these molecules is not mediated by direct
drug-virus interactions at early stages of viral entry (Table S5).
Our in vivo results (Figures 3, 4), obtained without previous
treatment optimization in terms of dosage or administration
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route, also suggest that these drugs harbor a protective role
toward influenza infection, particularly in the case of diltiazem,
which conferred increased survival in mice even in a model
of severe influenza infection (Figures 4D–F). Moreover, the
inhibitory and protective properties of diltiazem were validated
in the reconstituted human airway epithelium model, also
showing enhanced efficacy when combined with oseltamivir
(Figure 5).

Finally, a very recent study by Fujioka and colleagues (50)
confirmed the antiviral activity of diltiazem anticipated by our
approach. In that study, based on the role of Ca2+ channels
on the attachment of influenza viruses to the host cell, the
authors discuss whether the diltiazem induced modulation of
Ca2+ channel activity might not fully explain such observed
antiviral activity, consistent with a multi-level (off-target) effect
of diltiazem. In this context, in which not all Ca2+ channel
inhibitors confer significant antiviral activity, the newly described
capacity of diltiazem to partially reverse the global virogenomic
signature of infection and modulate specific genes related to the
host antiviral response and cholesterol metabolism (Figures 6
and Figure S4) suggests a putative explanation for its inhibitory
effect observed in vitro, ex vivo and in mice. Nevertheless,
although RT-qPCR mRNA quantification performed on a set
of genes representative of the two hubs further validated these
observations (Figure S5), further investigations are underscored
to shed light on the specific mechanisms underlying such
potential multi-level mode of action of diltiazem.

Overall, the results presented here set a solid baseline for
our drug repurposing strategy and for the use of diltiazem
as a host-targeted antiviral in clinical practice. Moreover, the
increased antiviral efficacy observed in reconstituted human
airway epithelium (Figure 5B and Table S6) plead in favor of
the combination of diltiazem with the virus-targeted antiviral
oseltamivir for the improvement of current anti-influenza
therapy, and possibly decreasing the risk of development of
viral resistance. In that regard, our results prompted a French
multicenter randomized clinical trial aimed at assessing the
effect of diltiazem-oseltamivir bitherapy compared with standard
oseltamivir monotherapy for the treatment of severe influenza
infections in intensive care units, hence completing the bedside-
to-bench and bench-to-bedside cycle of our innovative approach.
Additionally, retrospective signature analysis of sequential
respiratory samples from patients included in both study arms
and stratified according to their clinical response to treatment
will provide valuable data to pursue the investigations on the
specific mediators of the diltiazem-related antiviral response.

This trial (FLUNEXT TRIAL PHRC #15-0442, ClinicalTrials.gov
identifier NCT03212716) is currently ongoing.

Finally, our study underscores the high value of clinical
specimens and the advantages of exploiting virogenomic and
chemogenomic data for the successful systematic repurposing
of drugs already available in our modern pharmacopeia as new
effective antivirals. We propose that our approach targeting
respiratory epithelial cells, the principal influenza infected cell
type in the lung, could be extended to other respiratory viruses
and eventually to other pathogens involved in acute infections.
Importantly, drug repurposing presents several financial and
regulatory advantages compared to the development of de novo
molecules (5), which are of particular interest not only in the
context of antimicrobial resistance but also against both emerging
or recurrent pathogens for which we are still disarmed.
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The guanabenz derivative Sephin1 has recently been proposed to increase the levels

of translation initiation factor 2 (eIF2α) phosphorylation by inhibiting dephosphorylation

by the protein phosphatase 1—GADD34 (PPP1R15A) complex. As phosphorylation of

eIF2α by protein kinase R (PKR) is a prominent cellular antiviral pathway, we evaluated the

consequences of Sephin1 treatment on virus replication. Our results provide evidence

that Sephin1 downregulates replication of human respiratory syncytial virus, measles

virus, human adenovirus 5 virus, human enterovirus D68, human cytomegalovirus,

and rabbit myxoma virus. However, Sephin1 proved to be inactive against influenza

virus, as well as against Japanese encephalitis virus. Sephin1 increased the levels of

phosphorylated eIF2α in cells exposed to a PKR agonist. By contrast, in virus-infected

cells, the levels of phosphorylated eIF2α did not always correlate with the inhibition of

virus replication by Sephin1. This work identifies Sephin1 as an antiviral molecule in cell

culture against RNA, as well as DNA viruses belonging to phylogenetically distant families.

Keywords: PKR, GADD34, PPP1R15A, virus, antiviral, eIF2α, host, broad-spectrum

INTRODUCTION

Most clinically available antiviral drugs act by directly targeting viral components to inhibit a
critical step in the viral life cycle, such as entry, replication, or viral egress (1). These molecules
have several advantages, as they can be very potent inhibitors and should have minor side effects
because they are, in theory, virus specific. However, viruses evolve constantly and the selective
pressure of the treatment can give rise to mutants that are resistant to these drugs. This is illustrated
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for example by the emergence of influenza virus strains resistant
to viral neuraminidase inhibitors (2).

By contrast, antiviral molecules targeting host functions that
are necessary for the virus life cycle are less likely to lead to
the emergence of resistant viral mutants (3). Moreover, broad-
spectrum antiviral molecules can be developed if the targeted
host cell function regulates the replication of a wide range of
viruses. Numerous host factors have been identified as required
for viral replication through whole-genome genetic screens,
providing impetus to develop antiviral molecules targeting
these host factors (4). The numerous pathways experimentally
identified as potential targets for antiviral therapy include
viral entry or egress, viral assembly, viral protein synthesis
or maturation, and the immune response against viruses (3,
5, 6). Currently, approved drugs targeting the host include
the widely used type I interferons, which boost the antiviral
innate immune response, ribavirin, which modulates the pool of
intracellular nucleosides and is reported to modulate the innate
immune response, and finally maraviroc, inhibiting human
immunodeficiency virus entry by targeting C-C chemokine
receptor type 5 (CCR5) (1). In an effort to limit toxicity, it is
necessary to target a host cell function that is not crucial to the
cell physiology and/or that is more specific to infected cells.

The phosphorylation of serine 51 of the α subunit of
eukaryotic translation initiation factor 2 (eIF2α) inhibits
initiation of protein translation in response to various cellular
stresses (7). Four protein kinases have been shown to specifically
phosphorylate eIF2α. The protein kinase RNA-like endoplasmic
reticulum kinase (PERK) phosphorylates eIF2α in response
to endoplasmic reticulum stress, due to the accumulation
of unfolded proteins in the endoplasmic reticulum or to
perturbations of the endoplasmic reticulum membrane lipid
composition (8, 9). The haem-regulated inhibitor kinase (HRI)
phosphorylates eIF2α in response to iron deficiency and has
been demonstrated to regulate the differentiation of red blood
cells (10). The general control non-derepressible-2 (GCN2)
phosphorylates eIF2α in response to amino-acid deficiency (11).
Finally, the interferon-induced double-stranded RNA-activated
protein kinase (PKR) phosphorylates eIF2α in response to the
accumulation of viral RNA harboring a double-stranded or
other nucleic acids secondary structures produced during viral
replication (12). Increased eIF2α phosphorylation attenuates
translation of most mRNAs and is a physiological response to
adapt to the various cellular stresses described above. Activation
of PKR is for example an antiviral response aiming at reducing
the translation of viral proteins in infected cells. The importance
of PKR in antiviral defense is illustrated by the broad-array of
viral countermeasures selected during evolution to inhibit PKR
activation or eIF2α phosphorylation (12). It should however be
noted that increased eIF2α phosphorylation seems to benefit
to some viruses, including viruses belonging the Togaviridae
family (13), Reoviridae family (14), and hepatitis C virus
(15), most likely because translation of their mRNAs relies
on secondary structures from which initiation can proceed
even in the presence of high levels of eIF2α phosphorylation
(12). As a consequence, developing means to increase eIF2α
phosphorylation could be an antiviral intervention only for

viruses whose mRNA translation is inhibited by increased eIF2α
phosphorylation.

Dephosphorylation of eIF2α allows the cell to resume
initiation of protein translation and is achieved by a binary
complex between the catalytic phosphatase subunit PP1 and a
regulatory subunit composed of either GADD34 (or PPP1R15A)
(16) or CReP (or PPP1R15B) (17). The regulatory subunits
GADD34 and CReP target the phosphatase PP1 specifically
to the phosphorylated eIF2α substrate. CReP is constitutively
expressed. By contrast, GADD34 expression is induced by eIF2α
phosphorylation and therefore should be specifically expressed
in stressed cells. GADD34 thus provides a negative feedback on
eIF2α phosphorylation (8).

The guanabenz derivative Sephin1 was shown to increase
eIF2α phosphorylation in cells stimulated with drugs causing
PERK activation via the accumulation of unfolded proteins in the
endoplasmic reticulum lumen (18). Sephin1 was described as a
specific inhibitor of GADD34, although the identity of its target is
currently subject of debate [see section Discussion and (19–21)].
We reasoned that inhibition of GADD34 could have antiviral
effects by potentiating eIF2α phosphorylation in infected cells.
Moreover, given that GADD34 is induced in cells with increased
eIF2α phosphorylation, a GADD34 inhibitor should specifically
act in stressed cells, such as infected cells, thus enhancing
drug selectivity.

In the current work, we provide evidence that Sephin1
exhibited antiviral effects against specific viruses belonging to
various viral families. In addition, Sephin1 increased eIF2α
phosphorylation in response to activators of PKR, suggesting
that Sephin1 may act by increasing eIF2α phosphorylation in
virus-infected cells.

MATERIALS AND METHODS

Reagents and Cellular Treatments
Cells were treated for 16 h with 2.5µg/ml tunicamycin (Sigma,
USA) or with 1µg/ml of intracellularly delivered Poly(I:C)
(HMW)/LyoVec (Invivogen, France). Sephin1 was purchased
from Tocris (United-Kingdom) or synthesized according to the
protocol described in Das et al. (18). Purity was verified by
nuclear magnetic resonance. Sodium arsenite (Sigma, USA) was
added to cells in culture at a final concentration of 500µM for
1 h before lysis. Cells were treated for 24 h with 1,000 U/ml of
bacterially produced recombinant human interferon α A (PBL
assay science, USA).

Cells and Viruses
Human HEK293, HEK293T, human ARPE-19, and rabbit RK13
cells were grown at 37◦C in DMEM containing glutamate
supplemented with 10% FBS, 1x penicillin-streptomycin. Human
HEp-2 cells were grown at 37◦C in MEM containing glutamate
supplemented with 10% FBS, 1x Penicillin-Streptomycin. Wild-
type mouse embryonic fibroblasts (MEF WT) and MEF in
which the endogenous eIF2α gene has been genetically replaced
by a nonphosphorylable (S51A) allele (MEF S51A) have been
described previously and were kindly provided by David Ron,
University of Cambridge, United Kingdom (22, 23). Human
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respiratory syncytial virus (hRSV), derived from the strain
Long, genetically modified to express firefly luciferase or the
fluorescent protein mCherry were previously described and used
to infect HEp-2 cells (24). Enterovirus D68, kindly provided by
Caroline Tapparel, Université de Genève, Switzerland (25), was
used to infect human RD cells cultured at 33◦C, as previously
described (26). Human adenovirus serotype 5 (hAdV), belonging
to serotype 5, genetically modified to express the bacterial
partitioning system-based AnchOR3 was used to infect human
HEK cells, as recently described (27). Measles virus strain
Schwartz genetically modified to express the firefly luciferase (28)
was used to infect human HEKT cells, as previously described
(29). Myxoma virus strain T1 was used to infect RK13 cells
as previously described (30). Human cytomegalovirus (hCMV)
derived from the TB40/E strain and genetically modified to
express the bacterial partitioning system-based AnchOR3 was
used to infect human ARPE-19 cells, as recently described (31).
The AnchOR3 system is distributed by NeoVirTech SAS, France
and is available upon request. Influenza A/Puerto Rico/8/1934
(H1N1) and A/turkey/Italy/977/1999(H7N1) were used to infect
A549 or MDCK cells, as previously described (32, 33). Japanese
encephalitis virus genotype 3 strain Nakayama (34) was used
to infect HEK293T cells. Briefly, HEK293T cells were infected
with JEV at a MOI of 0.01 for 48 h and JEV RNAs in cell
supernatants were quantified by real-time RT-PCR as described
in Yang et al. (35). Theiler’s murine encephalomyelitis virus
(TMEV) genetically modified to express a mutant L protein
and the fluorescent protein Cherry (36) was used to infect
MEF WT and MEF S51A. Cellular viability was measured with
Vita-Blue Cell Viability Reagent (Biomake) according to the
manufacturer’s protocol. This assay is based on a fluorescent
dehydrogenase enzymes substrate, which correlates with cellular
metabolic activity.

Western-Blot Analyses
Cells were lysed as previously described (37) and used for
western-blot analyses. Phosphorylated eIF2α was detected with a
polyclonal rabbit antibody (ab32157, Abcam, United-Kingdom)
or (44-728G, ThermoFischer Scientific, USA). Total eIF2α was
detected with a polyclonal rabbit antibody (Proteintech, USA).

Quantification of Virus Replication
Myxoma virus titers were determined by standard plaque assay
on RK13 cells, as described in Camus-Bouclainville et al. (30).
Enterovirus D68 and influenza virus titers were determined
by the tissue culture infectious dose 50 (TCID50) method, as
described in Soubies et al. (38). We measured replication of
luciferase expressing virus 24 h post-infection by lysing cells and
measuring light emission on a Clariostar (BMG Labtech) plate
reader using the Luciferase assay System kit (Promega) according
to the manufacturer’s instructions. We measured replication of
TMEV expressing the fluorescent protein Cherry by measuring
fluorescence using a Clariostar (BMG Labtech) plate reader.
hRSV expressing Cherry was detected in paraformaldehyde
fixed HEp-2 cells by immunofluorescence and imaged using a
confocal microscope. Replication of hAdV and hCMV expressing
AnchOR3 protein was quantified by measuring GFP foci using

automated microscopy, as described in Komatsu et al. (27) and
Mariamé et al. (31).

Rabbit Infections and Treatments
Rabbit infections and treatments were described in a protocol
approved by the Ethical committee Science et Santé Animale
(SSA 115) and the French Ministry of Research (protocol
reference number 2015112009419390). Rabbits were infected by
injection of 50 plaque-forming units of myxoma virus wild-
type strain in the dermis of the right ear. The myxoma virus
wild-type strain LH 3082 used for the in vivo infection was
isolated in 2008 from the eyelid of a rabbit found dead in a
farm in the South West of France. Sephin1 was solubilized in
DMSO at a concentration of 1 mg/ml and further diluted in
pineapple juice to administer either at 5 mg/kg (first experience),
or 100 mg/kg (second experiment) by a single daily oral
administration. Control animals received equivalent volumes of
DMSO in pineapple juice. Animals were monitored daily for
clinical signs and conjonctival swabs were performed at the
indicated days post-infection to monitor for virus replication as
recommended (39).

RESULTS

Consequences of Sephin1 Treatment on
eIF2α Phosphorylation in Cells Stimulated
With Known Stimulators of eIF2α Kinases
To determine the levels of eIF2α phosphorylation, we performed
western-blot analysis using antibodies against phosphorylated
eIF2α and against total eIF2α. In order to verify the specificity
of these antibodies, we treated cells with sodium arsenite, a well-
known potent inducer of eIF2α phosphorylation that mainly
activates HRI (40). High levels of phosphorylated eIF2α were
detected in sodium arsenite treated cells (Figure 1A, lanes 7),
demonstrating the specificity of these antibodies and the position
of the band corresponding to phosphorylated eIF2α, indicated
with an asterisk. To evaluate the consequences of Sephin1
treatment on eIF2α phosphorylation, we exposed HEKT cells
to the glycosylation inhibitor, tunicamycin, a known inducer
of ER stress causing the accumulation of unfolded proteins
in the ER. The accumulation of unfolded proteins in the
ER leads to the activation of PERK, which phosphorylates
eIF2α. As expected, eIF2α phosphorylation was increased in
cells treated with tunicamycin (Figure 1A, lanes 1 vs. 5). Co-
treatment with Sephin1 increased tunicamycin-induced eIF2α
phosphorylation (Figure 1A, lanes 5 vs. 6), in agreement with
previously published results (18). We next evaluated if Sephin1
could also potentiate eIF2α phosphorylation in the context of
viral infections by stimulating cells with intracellularly delivered
Poly(I:C), a synthetic RNA mimicking viral RNA and known to
stimulate PKR (41). Poly(I:C) induced eIF2α phosphorylation
(Figure 1A, lanes 1 vs. 3), which was further increased in cells
treated simultaneously with Sephin1 (Figure 1A, lanes 3 vs. 4).
Upon interferon α-pretreatment, which is known to upregulate
PKR expression, we observed increased eIF2α phosphorylation
in Poly(I:C)-treated HEK293T cells (Supplementary Figure 1,
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FIGURE 1 | Consequences of Sephin1 treatment on eIF2α phosphorylation.

(A) HEK293T cells were either left untreated (NT), treated for 16 h with

intracellularly delivered poly(I:C), which stimulates PKR or with tunicamycin

(Tun), which stimulates PERK, in the presence or absence of 50µM Sephin1.

The asterisk indicates the position of phosphorylated eIF2α, as revealed in

cells stimulated with sodium arsenite (As), a potent inducer of eIF2α

phosphorylation. (B) RD cells and (C) HEp-2 cells were either left untreated

(NT) or treated for 16 h with intracellularly delivered poly(I:C), in the presence or

absence of 50µM Sephin1. The mean fold increase of the phosphorylated

eIF2α phosphorylation/total eIF2α ratio normalized to non-treated cells

calculated from three independent experiments is shown below the

photographs.

lanes 3 vs. 7). Simultaneous treatment with Sephin1 further
increased eIF2α phosphorylation in Poly(I:C)-treated cells
(Supplementary Figure 1, lanes 7 vs. 8). Sephin1 treatment also
increased eIF2α phosphorylation in RD cells (Figure 1B) and
in HEp-2 cells (Figure 1C) treated overnight with intracellularly
delivered Poly(I:C). Altogether, these results suggest that Sephin1
could boost PKR-mediated eIF2α phosphorylation, possibly by
inhibiting GADD34-mediated dephosphorylation of eIF2α.

Evaluation of the Antiviral Properties of
Sephin1 Against RNA Viruses
Human respiratory syncytial virus (hRSV) is a negative strand
RNA virus belonging to the Pneumoviridae family. hRSV is a
common cause of acute lower respiratory disease in infants and
young children. Current antiviral therapies against hRSV are
limited to an expensive humanized monoclonal antibody used
as a prophylactic treatment and to ribavirin, which has limited
efficacy and relatively high toxicity (42). There is therefore a
need to develop new antiviral therapies. In order to test if
Sephin1 was able to inhibit hRSV replication, we infected HEp-
2 cells with a genetically engineered hRSV expressing the Firefly
luciferase, used to quantify virus replication (24). Following virus
adsorption for 1 h, cells were treated with increasing doses of
Sephin1. Measurement of luciferase activity 24 h post-infection
revealed a dose dependent inhibition of hRSV replication by
Sephin1 (Figure 2A). A 30-fold inhibition of replication was
observed when Sephin1 was used at 50µM, which is the
highest dose used in the experiments. Cellular viability was
measured with a fluorescent dehydrogenase enzymes substrate,
which reveals cellular metabolic activity. Cellular viability
did not decrease significantly following Sephin1 treatment
for 24 h and remained above 80% in HEp-2 cells treated
with 50µM Sephin1 (Figure 2B). Fluorescence and bright-field
microscopic analysis of HEp-2 cells infected with a genetically
engineered hRSV expressing the fluorescent protein Cherry
(24) confirmed that treatment with 50µM Sephin1 for 24 h
led to a significant reduction of virus replication and was not
associated with significant changes in cellular morphology or
density (Figure 2C).

We further documented the antiviral spectrum of Sephin1 by
testing its antiviral potential against measles virus. Measles virus
is a negative strand RNA virus belonging to the Paramyxoviridae
family currently causing large outbreaks due to suboptimal
vaccination coverage in many countries (43). To evaluate the
antiviral properties of Sephin1 against measles virus, we infected
human HEK293T cells with a genetically engineered measles
virus expressing the Firefly luciferase (28). Following virus
adsorption for 1 h, cells were treated with increasing doses of
Sephin1. Measurement of luciferase activity 24 h post-infection
revealed a dose dependent inhibition of measles virus replication
in HEK293T cells by Sephin1 (Figure 3A). A 10-fold inhibition
of replication was observed when Sephin1 was used at 40µM,
which is the highest dose used in these experiments. Cellular
viability remained above 75% in HEK293T cells treated for 24 h
with 40µM Sephin1 (Figure 3B).
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FIGURE 2 | Evaluation of the antiviral properties of Sephin1 against hRSV. (A) HEp-2 cells were infected with a recombinant strain of hRSV expressing luciferase and

incubated with increasing doses of Sephin1 or DMSO alone. After 24 h, luciferase expression was determined. (B) Viability of HEp-2 cells incubated with increasing

doses of Sephin1 or DMSO alone was determined after 24 h of incubation using the cellular viability assay Vita-Blue. (C) HEp-2 cells were infected with a recombinant

strain of hRSV expressing mCherry and incubated with increasing doses of Sephin1 or DMSO alone. After 24 h, cells were fixed and imaged using a confocal

microscope. Data represent mean ± SEM from representative experiments, repeated at least three times. *p < 0.05, **p < 0.01 by one-way analysis of variance,

followed by Bonferroni comparison test comparing the Sephin1-treated group at the indicated concentration to the vehicle-treated control group.

FIGURE 3 | Evaluation of the antiviral properties of Sephin1 against measles virus. (A) HEK293T cells were infected with a recombinant strain of measles virus

expressing luciferase and incubated with increasing doses of Sephin1 or DMSO alone. After 24 h, luciferase expression was determined. Data represent mean values

from a representative experiment, repeated at least three times. (B) Viability of HEK293T cells incubated with increasing doses of Sephin1 or DMSO alone was

determined after 24 h incubation using the cellular viability assay Vita-Blue. Data represent mean ± SEM from representative experiments, repeated at least three

times. ***p < 0.001 by one-way analysis of variance, followed by Bonferroni comparison test comparing the Sephin1-treated groups at the indicated concentrations to

the vehicle-treated control group.

We next tested the antiviral properties of Sephin1 against
enterovirus D68. Enterovirus D68 is a positive strand RNA
virus belonging to the Picornaviridae family and causing
upper respiratory tract infections in children (44). To mimic
physiological temperatures found in the human upper tract,
we infected human RD cells grown at 33◦C with enterovirus
D68 (26). Cells were infected at a low MOI to allow multiple
cycles of infection. Following virus adsorption for 1 h, cells
were treated with 50µM Sephin1 and supernatants collected
at the indicated time post-infection to quantify viral load by
standard tissue culture infectious dose 50 (TCID50) method.
Treatment with 50µM Sephin1 caused a more than 10-fold
reduction of enterovirus ED68 titers (Figure 4A). Inhibition of
enterovirus ED68 was readily detected at 24 h post-infection and
persisted throughout the experiment up to 72 h post-infection,
even though Sephin1 was added via a single treatment in the
culture medium at 1 h post-infection. RD cells viability did
not decrease significantly following 50µM Sephin1 treatment
for 24 h and remained above 90% (Figure 4B), consistent with

cellular viability results observed in Sephin1-treated HEp-2 cells
and HEK293T cells.

We further tested the antiviral potential of Sephin1 against
influenza A virus. We infected human A549 cells with
the influenza A/Puerto Rico/8/1934 (H1N1) strain at a low
multiplicity of infection. Following 1 h adsorption, A549 cells
were treated with 50µM Sephin1 or control cells treated with
vehicle only. Viral titers in the supernatants were determined by
standard plaque assay. We did not observe any inhibitory effect
of Sephin1 on influenza virus replication (Figure 5). Similar
results were obtained when experiments were performed on the
canine MDCK cell line or when experiments were performed
with the avian influenza A/turkey/Italy/977/1999(H7N1) virus
strain (data not shown).

To assess the antiviral potential of Sephin1 against a virus
belonging to the Flaviviridae family, we infected HEK293T cells
with Japanese encephalitis virus. Sephin 1 had no effect on
the replication of Japanese encephalitis virus, as determined by
quantifying viral genomes in the supernatants by quantitative
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FIGURE 4 | Evaluation of the antiviral properties of Sephin1 against enterovirus ED68. (A) RD cells were infected with enterovirus ED68 and incubated at 33◦C in the

presence of 50µM Sephin1 or DMSO alone (control). Viral titers were determined from supernatants harvested at the indicated times post-infection. (B) Viability of RD

cells incubated with increasing doses of Sephin1 or DMSO alone was determined after 24 h of incubation using the cellular viability assay Vita-Blue. Data represent

mean ± SEM from representative experiments, repeated at least three times. *p < 0.05 by one-way analysis of variance, followed by Bonferroni comparison test

comparing the Sephin1-treated groups at the indicated concentrations to the vehicle-treated control group.

FIGURE 5 | Evaluation of the antiviral properties of Sephin1 against influenza

virus. A549 cells were infected with influenza A/Puerto Rico/8/1934 (H1N1)

strain and incubated in the presence of 50µM Sephin1 or DMSO alone

(control). Viral titers were determined from supernatants harvested at the

indicated times post-infection. Data represent mean ± SEM from a

representative experiment, repeated at least three times.

RT-PCR (Figure 6). We thus identified viruses that are not
inhibited by Sephin1, demonstrating that although Sephin1
has a broad antiviral spectrum, it is not active against
all viruses.

Evaluation of the Antiviral Properties of
Sephin1 Against DNA Viruses
In order to test if Sephin1 could inhibit phylogenetically
distant viruses, we analyzed its antiviral potential against
human Adenovirus (hAdV), a DNA virus belonging to the
Adenoviridae family causing respiratory tract infections in
humans. A genetically modified hAdV expressing the bacterial
partitioning system-based AnchOR3 was used to infect HEK293
cells. The AnchOR3 system allows for the real-time detection
of viral DNA replication in living cells through the detection of
GFP foci and is therefore used to monitor DNA virus replication

FIGURE 6 | Evaluation of the antiviral properties of Sephin1 against Japanese

encephalitis virus. HEK293T cells were infected with Japanese encephalitis

virus and incubated in the presence of 50µM Sephin1 or DMSO alone

(control). Viral titers were determined by quantitative RT-PCR from

supernatants harvested at the indicated times post-infection. Data represent

mean ± SEM from a representative experiment, repeated at least three times.

in real-time by fluorescent microscopy (27). Cells were treated
with increasing doses of Sephin1 or vehicle only and infected
immediately with AnchOR3 hAdV. Measurement of GFP
fluorescent foci by automated microscopy 24 h post-infection
revealed a dose dependent inhibition of hAdV replication by
Sephin1 (Figure 7A). A four-fold inhibition of replication was
observed when Sephin1 was used at 50µM, which is the
highest dose used in the experiments. Cellular viability did
not decrease significantly following Sephin1 treatment for 24 h
and remained above 80% in HEK293 cells treated with 50µM
Sephin1 (Figure 7B).

We next analyzed the antiviral potential of Sephin1 against
myxoma virus, a DNA virus of the Poxviridae family,
which contains pathogens of major importance in human
and veterinary medicine. Myxoma virus is responsible for
Myxomatosis in European rabbits, a disease of medical
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FIGURE 7 | Evaluation of the antiviral properties of Sephin1 against human Adenovirus. (A) HEK293 cells were infected with a recombinant strain of hAdV expressing

ANCHOR3 and incubated with increasing doses of Sephin1 or DMSO alone. After 24 h, virus replication was determined by automated counting of GFP foci. (B)

Viability of HEK293 cells incubated with increasing doses of Sephin1 or DMSO alone was determined after 24 h incubation using the cellular viability assay Vita-Blue.

Data represent mean ± SEM from representative experiments, repeated at least three times. ***p < 0.001 by one-way analysis of variance, followed by Bonferroni

comparison test comparing the Sephin1-treated groups at the indicated concentrations to the vehicle-treated control group.

importance in veterinary medicine, worsened due to the
emergence of strains causing respiratory diseases in rabbits
(39). Following myxoma virus adsorption for 1 h, rabbit
RK13 cells were treated with 50µM Sephin1. Cells and
supernatants were harvested at 24, 72, and 120 h post-infection
and subjected to three freeze-thaw cycles to detect free
viral particles, as well as cell-associated virus particles (30).
Virus titration by standard plaque-assay revealed that Sephin1
significantly inhibited myxoma virus replication (Figure 8A).
Cellular viability did not decrease significantly following Sephin1
treatment of RK13 cells for 24 h (Figure 8B).

Finally, we evaluated the antiviral of Sephin1 against human
cytomegalovirus (hCMV), a DNA virus belonging to the
Herpesviridae family. hCMV is widespread in the human
population and causes severe diseases following congenital
infection. A genetically modified hCMV expressing the
AnchOR3 system to detect viral DNA replication by the
accumulation of GFP foci was used to infect the human retinal
pigment cell line ARPE-19 (31). Sephin1 had a dose-dependent
inhibitory effect on hCMV replication in the human ARPE-19
cell line, reaching a five-fold inhibition at 50µM (Figure 9A).
At this dose Sephin1 caused a 40% reduction in cellular viability,
indicating that Sephin1 is associated with moderate toxicity
at 50µM in the ARPE-19 cell line (Figure 9B). Altogether
these results provide evidence that Sephin1 has antiviral
activity against respiratory viruses belonging to phylogenetically
distant families.

Evaluation of the Contribution of eIF2α

Phosphorylation to the Antiviral Effects of
Sephin1
To test if the antiviral effect of Sephin1 correlated with increased
eIF2α phosphorylation, we performed western-blot analyses of
virus-infected cells. eIF2α phosphorylation was increased in
cells infected with hRSV (Figure 10A, compare lanes 1 and 3).
However, treatment with 50µM Sephin1 did not increase eIF2α

phosphorylation in hRSV-infected cells (Figure 10A, compare
lanes 3 and 4). eIF2α phosphorylation was not increased in
cells infected with measles virus (Figure 10B, compare lanes
1 and 3) or in cells infected with myxoma virus (Figure 10C,
compare lanes 1 and 3), even when cells were treated with
50µM Sephin1 (Figures 10B,C, compare lanes 3 and 4).
Thus, the antiviral activity of Sephin1 does not correlate with
increased eIF2α phosphorylation, raising the possibility that
some antiviral effects of Sephin1 could be independent of
eIF2α phosphorylation.

To test if Sephin1 could inhibit virus replication
independently of eIF2α phosphorylation, we compared wild-
type mouse embryonic fibroblasts (MEF WT) and mouse
embryonic in which the endogenous eIF2α gene has been
genetically replaced by a nonphosphorylable (S51A) allele
(MEF S51A) (22). These cells were infected with Theiler’s
murine encephalomyelitis virus (TMEV), a positive strand
RNA virus belonging to the Picornaviridae family. We used
a genetically modified virus, which has a deleted L protein,
rendering the virus highly susceptible to the antiviral effects
of PKR and expressing the fluorescent protein Cherry, used as
a reporter to quantify virus replication (36). Following virus
adsorption for 1 h, cells were either treated with vehicle
only or treated with 50µM Sephin1. Virus replication
was evaluated by measuring Cherry fluorescence using
a fluorescent microplate reader. Sephin1 reduced Cherry
fluorescence in MEF WT cells, indicating that it inhibited
TMEV-Cherry replication in MEF WT cells (Figure 10D).
Surprisingly, Cherry fluorescence was higher in Sephin1-
treated MEF S51A cells compared to non-treated S51A
cells, indicating that Sephin1 treatment increased TMEV
replication in cells expressing nonphosphorylable eIF2α
(Figure 10E). It is currently unclear how Sephin1 could increase
TMEV replication in cells expressing nonphosphorylable
eIF2α. This result nevertheless demonstrates that eIF2α
phosphorylation is required for the antiviral effects of Sephin1
against TMEV.
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FIGURE 8 | Evaluation of the antiviral properties of Sephin1 against myxoma virus. (A) RK13 cells were infected with myxoma virus and incubated in the presence of

50µM Sephin1 or DMSO alone (control). Viral titers were determined from crude lysates harvested at the indicated times post-infection. (B) Viability of RK13 cells

incubated with increasing doses of Sephin1 or DMSO alone was determined after 24 h incubation using the cellular viability assay Vita-Blue. Data represent mean ±

SEM from representative experiments, repeated at least three times. **p < 0.001, ***p < 0.001 by one-way analysis of variance, followed by Bonferroni comparison

test comparing the Sephin1-treated groups at the indicated concentrations to the vehicle-treated control group.

FIGURE 9 | Evaluation of the antiviral properties of Sephin1 against human cytomegalovirus. (A) ARPE-19 cells were infected with a recombinant strain of hCMV

expressing ANCHOR3 and incubated with increasing doses of Sephin1 or DMSO alone. After 72 h, virus replication was determined by automated counting of GFP

foci. (B) Viability of ARPE-19 cells incubated with increasing doses of Sephin1 or DMSO alone was determined after 72 h incubation using the cellular viability assay

Vita-Blue. Data represent mean ± SEM from representative experiments, repeated at least three times. ***p < 0.001 by one-way analysis of variance, followed by

Bonferroni comparison test comparing the Sephin1-treated groups at the indicated concentrations to the vehicle-treated control group.

Sephin1 Is Showing Some Antiviral Effect
in vivo, Which Is However Limited by Toxic
Side Effects
In order to evaluate if Sephin1 could exert antiviral activity
in vivo, we evaluated its therapeutic potential in European rabbits
infected with myxoma virus. European rabbits are the natural
hosts of myxoma virus. Rabbits were inoculated with 50 plaque-
forming units of myxoma virus strain LH 3082 by intradermal
inoculation in the right ear lobe. Sephin1 was administered
by oral gavage once daily at a dose of 5 mg/kg. Treatment
with Sephin1 began straight after virus inoculation. Control
rabbits were treated similarly with vehicle. Except for two rabbits
in the control group and one rabbit in the Sephin1-treated
group, no other infected rabbits developed clinical signs of
myxomatosis over the period of observation. Sephin1 appeared
to be well-tolerated at a daily dose of 5mg/kg, as Sephin1-treated
rabbits were clinically indistinguishable from the control rabbits.
Conjonctival swabs were performed on day 0, 5, 9, and 11 to
monitor for virus replication by q-PCR (Figure 11). Levels of

viral DNA increased in non-treated control animals over the
observation period, indicating efficient virus replication in the
rabbits. The levels of virus replication were much higher for
the three rabbits showing clinical signs, indicated by arrows
in Figure 11. We observed a significant reduction in virus

replication at day 11 post-infection in the Sephin1-treated group
compared to the control group, demonstrating that Sephin1
can exert an antiviral activity in vivo. However, the antiviral

activity of Sephin1 given orally at 5 mg/kg daily was modest.
We therefore repeated the experiment in order to administer

Sephin1 at a higher dosage. In this second in vivo experiment,

rabbits were infected as previously. Sephin1 was administered
by oral gavage once daily at a dose of 100 mg/kg beginning

straight after inoculation.When used at 100 mg/kg, acute toxicity
was observed as soon as 2 days post-infection in the Sephin1

treated rabbits, which developed anorexia and presented ruffled
fur. For ethical reasons, in compliance with the guidelines from

the animal care and use committee, we euthanized the animals

and terminated the experiment. Altogether these results suggest
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FIGURE 10 | Evaluation of the contribution of eIF2α phosphorylation to the antiviral effects of Sephin1. Cells were either left non-infected (NI) or infected with the

indicated viruses, in the presence or absence of 50µM Sephin1. Sodium arsenite (As), a potent inducer of eIF2α phosphorylation, was used as a positive control for

detection of eIF2α phosphorylation by western-blot. (A) Analysis of eIF2α phosphorylation in HEp-2 cells infected with hRSV. (B) Analysis of eIF2α phosphorylation in

HEK293T cells infected with measles virus. (C) Analysis of eIF2α phosphorylation in RK13 cells infected with myxoma virus. (D) Consequences of Sephin1 treatment

on TMEV replication in WT mouse embryonic fibroblasts (MEF WT). (E) Consequences of Sephin1 treatment on TMEV replication in mouse embryonic fibroblasts

expressing a non-phosphorylable (S51A) allele of eIF2α (MEF S51A). TMEV replication was determined by measuring mCherry fluorescence. Data represent mean ±

SEM from representative experiments, repeated at least three times.

that although Sephin1 has some antiviral activity in vivo at 5
mg/kg, increasing the dosage to reach higher concentrations and
possibly better antiviral activity is currently not possible due to
the existence of major side effects.

DISCUSSION

Negative strand RNA viruses, positive strand RNA viruses, as
well as DNA viruses were inhibited by Sephin1 treatment in cell
culture. Our results thus provide evidence that Sephin1 treatment
has antiviral properties against a broad range of viruses belonging
to phylogenetically distant viral families. A four to 100-fold
inhibition of viral replication was obtained when Sephin1 was
used at 50µM. At this dose, cellular viability remained above
75% in all cell lines tested, with the exception of ARPE-19 cells,
which had a 40% decrease in viability. This result demonstrates
that, although the molecule had to be used at a high dose to reach
a significant antiviral effect, inhibition of virus replication could
not be attributable to alterations in cellular viability.

Secondary structures found in the RNA of some positive
strand RNA viruses, such as viruses belonging to the Togaviridae
family, Reoviridae family and hepatitis C virus, allow translation
of these RNAs to proceed normally, or in some cases better,
in the presence of high levels of eIF2α phosphorylation (12).
It is therefore expected that Sephin1 would have no antiviral

effect against these viruses. In the case of influenza virus, the
lack of antiviral activity of Sephin1 might be attributable to the
tight inhibition of PKR activation by the viral protein NS1 (45).
This inhibition is mediated by the binding of NS1 to PKR (46).
Influenza A viruses with mutant NS1 proteins unable to bind
to PKR are highly attenuated in wild-type mice, but replicate
to high levels in PKR deficient mice (46). By contrast, wild-type
influenza viruses replicate to similar levels in wild-type mice and
in PKR deficient mice (46, 47). These observations suggest that
PKR is an important antiviral pathway against influenza viruses,
which is very efficiently counteracted by wild-type NS1 protein.
The lack of activity of Sephin1 observed in cell culture may be
due to the absence of PKR activation and eIF2α phosphorylation
in influenza virus infected cells, as previously described (48).
Similarly, the lack of antiviral activity of Sephin1 against Japanese

encephalitis virus could be due to the tight inhibition of PKR
activation by the viral protein NS2A (49). In the absence of eIF2α

phosphorylation and consequent expression of GADD34, it is

anticipated that Sephin1 would have no effect.
GADD34 has been shown to stimulate type I interferon

production in response to the synthetic viral RNA analog

poly(I:C) and in response to infection with Chikungunya virus,

a member of the Togaviridae family (50). Activation of PKR
by poly(I:C) and in response to Chikungunya virus infection

leads to eIF2α phosphorylation, which inhibits initiation of
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FIGURE 11 | Evaluation of the antiviral potential of Sephin1 against myxoma

virus in vivo. Rabbits were inoculated with 50 plaque-forming units of myxoma

virus. Eight rabbits were treated with Sephin1 by oral gavage once daily at a

dose of 5 mg/kg. Seven rabbits were administered vehicle only. Myxoma virus

DNA was detected by q-PCR from conjonctival swabs performed at the

indicated days post-infection. Rabbits exhibiting clinical signs are indicated

with an arrow. *p < 0.05 by the two-tailed Mann–Whitney test.

protein translation, including translation of type I interferons.
GADD34 expression and subsequent dephosphorylation of eIF2α
resume initiation of protein translation and consequently allow
translation of type I interferons (50). Inhibition of GADD34 is
therefore a double-edged sword. On one hand, increased eIF2α
phosphorylation caused by inhibition of GADD34 can potentiate
the antiviral effects by causing a tighter inhibition of viral protein
translation. On the other hand, a prolonged increase of eIF2α
phosphorylation caused by inhibition of GADD34 can inhibit
the translation of host proteins involved in antiviral defense,
such as type I interferons and antiviral effector proteins. The
potential beneficial effects of GADD34 inhibition are difficult to
predict. For viruses, such as members of the Togaviridae, which
are able to translate their proteins in the presence of high levels
of eIF2α phosphorylation, inhibition of GADD34 will likely be
detrimental to the host because of a reduction in the translation of
host proteins involved in antiviral defense. For viruses, which are
unable to translate their proteins in the presence of high levels of
eIF2α phosphorylation, the consequences of GADD34 inhibition
on viral replication are to our knowledge not predictable, and
therefore most likely need to be experimentally tested.

Inhibition of myxoma virus and measles virus by Sephin1 was
not associated with increased levels of eIF2α phosphorylation.
We thus did not observe a strict correlation between the antiviral
effects of Sephin1 and eIF2α phosphorylation. One tentative
explanation is that viral inhibition leads to a reduction in the
levels of viral PKR activators in Sephin1-treated cells compared
to infected non-treated cells. However, these observations also
raise the possibility that Sephin1 does not act by targeting
GADD34-PP1 mediated dephosphorylation of eIF2α. Indeed,
contradicting the initial description (18) and follow-up work

(21), Sephin1 and its derivative guanabenz were recently shown
to lack any effect on GADD34-PP1 mediated dephosphorylation
of eIF2α (19, 20, 51). We cannot rule out that Sephin1 mediates
its effects independently of GADD34. However, we observed
increased phosphorylation of eIF2α in cells stimulated with the
PERK activator tunicamycin and in cells stimulated with the
PKR activator poly(I:C). Moreover, the lack of antiviral activity
of Sephin1 against Theiler’s murine encephalomyelitis virus
(TMEV) in MEF cells expressing a nonphosphorylable (S51A)
allele demonstrates that eIF2α phosphorylation is required for the
antiviral effects of Sephin1 against TMEV. Whether these effects
are due to a specific inhibition of GADD34 by Sephin1 remains
to be investigated.

We observed amodest antiviral effect of Sephin1 administered
by oral gavage once daily at a dose of 5 mg/kg against myxoma
virus in rabbits. At 5 mg/kg, no toxic side effects were detected
by clinical examination of the rabbits. However, when we
administered Sephin1 by oral gavage once daily at a dose of
100 mg/kg, major clinical signs were detected, indicating that
at this dosage Sephin1 caused acute toxicity. GADD34 knock-
out mice were viable and did not show any clinical signs under
normal breeding conditions (52). This finding suggests that the
toxic side effects of Sephin1 observed in rabbits are unlikely due
to inhibition of GADD34, but rather point to Sephin1-induced
alterations in physiology that are independent of GADD34.
Ongoing studies to identify the causes of toxicity could provide
information for the development of new treatment regimens,
including new formulations and modes of administration. In
addition, Sephin1 can be the scaffold of structure-activity
relationship studies to identify new variants with increased
efficiency or decreased in vivo toxicity, and thus exhibiting
an improved selectivity index to consider these new variants
as promising therapeutic antiviral candidates. In this chemical
series, this is already well exemplified by the development of
Sephin1 itself, which is derived from guanabenz to eliminate
some unwanted binding to the α2- adrenergic receptor (18).

The prominent role of the PKR eIF2α pathway in antiviral
defense is well-established. Direct stimulators of PKR will
stimulate eIF2α phosphorylation in all cells exposed to the
drug, therefore likely leading to unwanted side effects in
non-infected cells. By contrast, GADD34 expression is stress-
inducible and drugs targeting GADD34 should therefore be
active only in cells that have increased levels of eIF2α
phosphorylation, including virus-infected cells, thus increasing
selectivity. GADD34 inhibitors would most likely be most
effective in complement with other molecules, such as drugs
targeting viral PKR antagonists or drugs thought to affect viral
protein folding, such as nitazoxanide (53) or iminosugars (54),
which could potentiate PERK-mediated eIF2α phosphorylation
in infected cells.
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Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is one of the most

prevalent lung infections of humans and kills ∼1.7 million people each year. TB

pathophysiology is complex with a central role played by granuloma where a delicate

balance takes place to both constrain bacilli and prevent excessive inflammation that

may destroy lung functions. Neutrophils reach the lung in waves following first encounter

with bacilli and contribute both to early Mtb elimination and late deleterious inflammation.

The hypoxic milieu where cells and bacilli cohabit inside the granuloma favors metabolism

changes and the impact on TB infection needs to be more thoroughly understood. At

the cellular level while the key role of the alveolar macrophage has long been established,

behavior of neutrophils in the hypoxic granuloma remains poorly explored. This review

will bring to the front new questions that are now emerging regarding neutrophils

activity in TB. Are different neutrophil subsets involved in Mtb infection and how?

How do neutrophils and close relatives contribute to shaping the granuloma immune

environment? What is the role of hypoxia and hypoxia induced factors inside granuloma

on neutrophil fate and functions and TB pathophysiology? Addressing these questions is

key to the development of innovative host-directed therapies to fight TB.

Keywords: neutrophils, Mycobacterium tuberculosis, granuloma, lung, HIF, hypoxia, host-directed therapies

INTRODUCTION

Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is present worldwide. With estimated
10.4 million new cases and 1.7 million deaths in 20161, TB remains one of the most
devastating respiratory disease of human kind. The key cell in Mtb lung infection is
the lung alveolar macrophage (AM) that engulfs the bacilli and orchestrates the adaptive
host immune response if bacilli are not eliminated (1). This is the starting point for the
granuloma, set as an immune defense mechanism that eventually becomes the pathologic
signature of Mtb infection. AM plays major roles in the battle between Mtb and the
host and a large body of the literature is devoted to this key cell. However, mature
neutrophils circulate in high numbers in blood and are also sequestered in the lung (2). As
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they are present in the early phase of Mtb infection, before
the onset of adaptive immunity, they could play important
beneficial protective roles [see extensive review in (3)]. In the
zebra-fish (ZF) embryo infected with M. marinum (Mm) as a
surrogate of Mtb infection in mammals, neutrophils come in
response to signals sent by Mm-infected dying macrophages
(MPs). Neutrophils dispose offMm-infectedMPs by efferocytosis
in the nascent granuloma and kill bacilli through NADPH
oxidase-dependent mechanisms (4). We and others have shown
in resistant mouse models that neutrophils come in two different
waves after Mtb infection before and after the onset of adaptive
immunity (5, 6). While the first wave was found to phagocytose
BCG–the vaccine strain used against Mtb–in situ in the lung,
the second T-cell dependent wave was seldom associated with
bacilli. In response to virulent Mtb, T-cell dependent neutrophils
did not control Mtb growth but rather established close contacts
with T-cells in the granuloma (6) suggesting their role in
regulation of the adaptive immune response. This is in line
with their established role in the formation of the structured
mature granuloma in mice (7). However, during active TB, it
is now consensus that neutrophils are largely responsible for
lung destruction (8). They are the most represented cell subset
in sputum (9) and drive an interferon-inducible transcriptional
signature in blood cells during active TB (10). Several excellent
reviews recently covered neutrophils as “good and bad guys”
during TB (3, 8, 11, 12). Such opposite roles may depend on
several factors including timing and magnitude of neutrophil
recruitment or different neutrophils subsets which respective
roles in TB remain elusive. Despite the fact that neutrophils
are established as key players in the TB granuloma, the impact
of hypoxia on their behavior and functions is still poorly
explored and we advocate in this review that this should be
reconsidered. Moreover, in the granuloma, the influence of the
hypoxic milieu on contribution of neutrophils to production
of soluble mediators involved in TB pathophysiology needs
to be reconsidered. The world is on high demand of host-
directed therapies (HDTs) as adjunct to antibiotics to fight against
TB and we hope that our mini review will help to design
effective strategies by taking into account the impact of hypoxia
on neutrophils.

THE Mtb GRANULOMA IS A

PATHOLOGICAL IMMUNOGICAL NICHE

WHERE NEUTROPHILS PLAY

MAJOR ROLE

For a long time, the granuloma has been considered as an
uniquely host-driven response, set to constrain Mtb and prevent
bacilli dissemination. This view was challenged when, in ZF
embryo, virulent Mm was shown to disseminate and establish
infection bymanipulation of the nascent granuloma and adjacent
stromal cells (13). Today, the host-pathogen mutual benefit
of the granuloma is still a matter of debate (14, 15), as is
the role of neutrophils in this structure. Some confounding
interpretations may come from animal models, especially the
mouse, most extensively used in TB research. In humans, primary
TB leads to caseating granulomas that necrotize over time.

Cavities, allowing Mtb transmission, represent the most severe
signature of the disease (16). Human TB granulomas are hypoxic
as demonstrated by Positron Emission Tomography-Computed
Tomography (PET-CT) scans using hypoxia-specific tracers in
patients with active TB (17). In TB susceptible animals such as
the rabbit, the guinea pig, and the non-human primate, hypoxic
granulomatous lesions develop in the lung (18). By contrast,
the resistant mouse lines C57BL/6 and BALB/c that have been
extensively used, do not develop necrotizing hypoxic granulomas
which brought the quite general belief that mice are not an
adequate model for TB pathophysiology studies (19). However,
extremely susceptible mice such as C3HeB/FeJ do develop central
caseous necrosis in the lung (20) and these lesions are hypoxic
(21). A common feature to all TB susceptible animals that
develop hypoxic necrotizing granulomas is the abundance of
neutrophils (22, 23). Mtb induces necrosis of human neutrophils,
which depends on its main virulence factor, the small protein
ESAT-6 secreted by Type VII secretion system. Necrosis is driven
by neutrophil-derived Reactive Oxygen Species (ROS) and is
required for Mtb growth after uptake of infected neutrophils
by human macrophages (24). In C3HeB/FeJ mice, neutrophils
dying by necrosis or NETosis rather than apoptosis seem to
drive the caseous necrosis and liquefaction process (25). The
crucial role of neutrophils and the S100A9 inflammatory protein
for granuloma formation is demonstrated (26). Therefore, what
“adequate” animal models and available pathology studies in
humans teach us is that neutrophils and hypoxia are crucial to
the development of lung lesions during TB disease.

However, some clarification is needed regarding the definition
of neutrophils. These cells have long been considered as an
homogenous population based on their polylobed nucleus and
a minimal set of markers: in mice, they are defined by flow
cytometry as Gr1, CD11b double positive cells or more recently
as CD11b, Ly-6C, Ly-6G triple positive cells. In humans, they
are still minimally identified as CD11b+ CD14−CD15+ cells.
The picture has become more complex with the description
of Myeloid Derived Supressor Cell (MDSCs), which largely
share markers with neutrophils. MDSCs are an immature
and heterogeneous population present at homeostasis and
accumulating in pathological situations. Originally described in
cancers, MDSCs are increasingly characterized in inflammatory
diseases (27, 28). MDSCs suppress T cell responses, via different
mechanisms, including production of ROS, nitric oxide (NO),
or arginase 1 (29). MDSCs are present as two main subsets:
monocytic MDSCs and granulocytic MDSCs (Gr-MDSCs). The
later display the same morphology and phenotype as bona fide
neutrophils. They share the Ly-6G or Gr1 markers. Therefore,
MDSCs can robustly be distinguished from bona fide neutrophils
only based on their suppressive function (30). Expansion of
granulocytic and monocytic MDSCs is observed in blood of
active TB patients and healthy recently exposed contacts (31,
32). This correlates with enhanced L-arginine catabolism and
NO production in plasma from active TB patients (33). In
resistant (C57BL/6) or susceptible (129S2) strains MDSCs–
defined as Gr1+ cells–are identified in the lung parenchyma
during the course of Mtb infection where they suppress T
cells (34). They also vigorously ingest Mtb. Interestingly, in
susceptible mice, Gr1+ MDSCs cells accumulate in higher
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numbers and phagocytoze more bacilli as compared to resistant
mice. Therefore, MDSCs could represent a niche for Mtb
replication, helping the pathogen to escape the immune system
(34).MDSCs are also associated with TB progression and lethality
(35). These findings emphasize the potential of MDSCs as targets
for immunotherapy. However, most studies using depletion
antibodies that target the Gr1 or the Ly-6G surfacemarker, do not
allow today a clear distinction of the role of bona fide neutrophils
vs. MDSCs in TB pathophysiology. To add to the complexity, the
low density neutrophils (LDNs) have recently been described as a
new population of neutrophils. LDNs, displaying heterogeneous
morphology and containing mature and immature cells, are
immunosuppressive via secretion of IL-10 and expression of
arginase-1 (36). Interestingly, mature high density neutrophils
(HDNs) can switch to LDNs in a TGF-β dependent way, and
acquire immunosuppressive functions similar to granulocytic
MDSCs (37). First described in cancer (37) and pulmonary
pathologies (38), LDNs have also been identified in TB and
associated to the severity of the disease. Moreover, Mtb is able
to convert HDNs to LDNs in vitro, suggesting manipulation
by Mtb (39). Even though LDNs are not yet considered as
granulocytic MDSCs, the largely shared purification procedure,
analysis methods andmarkers between these two cell populations
suggest possible overlaps (30). Mtb infection in mice recruits
an altered “neutrophil” population defined as “Gr-1int/Ly-6Gint”
cells with lower levels of Gr1/Ly-6G as compared to classical
neutrophils. These immature cells highly express the CD115 and
CD135 markers and inhibit T cell proliferation (35). Whether
these cells are distinct from granulocytic MDSCs remains to
be clarified.

Outside from the TB research field, recent studies identified
neutrophils as potential players in inflammatory angiogenesis.
Neutrophils store Vascular Endothelial Growth Factor (VEGF),
a key player in the process of angiogenesis, that they may
release upon stimulation. By recruiting neutrophils, MIP-1α
and MIP-2 act in an autocrine loop to promote this process.
A new CXCR4high and CD49dhigh neutrophil subset, displays
angiogenic properties via secretion of high concentrations
of MMP-9 promoting neovascularization (40). In a model
of skin hypersensitization, Tan et al. demonstrated that
neutrophil MMP9 and heparanase, targeting distinct domains
of the extracellular matrix, cooperate to release diverse VEGF
isoforms and influence their bioavailability and bioactivity
during inflammatory angiogenesis (41). In mice and humans,
CD49d+ CXCR4high VEGFR1high neutrophils are recruited
specifically in hypoxic ischemic tissues in a VEGFR1 and
VEGFR2 dependent way (42). Whether such neutrophils could
contribute to formation of the hypoxic TB granuloma remains
on open question.

HYPOXIA-INDUCED-FACTORS ARE

MASTER REGULATORS IN

Mtb GRANULOMA

The tremendously exciting field of immunometabolism, which
links cellular bioenergetics pathways to immune cell functions,
brings new views on the fate of the TB granuloma. In

response to inflammatory environment, MPs switch from
oxidative phosphorylation–the mitochondrial respiration system
that quiescent cells use to generate energy–to aerobic glycolysis.
This shift, called the Warburg effect, was discovered in
proliferating cancer cells that highly incorporate glucose, that
they convert to lactate while producing ATP and cell-building
blocks (43). Master regulators of this switch are Hypoxia-
Induced–Factors (HIFs), a family of transcription factors that
govern cell reprogrammation (44). Under normoxia, the enzymes
Prolyl Hydroxylase Domains (PHD) and Factor Inhibiting HIF
(FIH) repress HIFs via targeted degradation and transcriptional
mechanisms. Under low O2 tension, these enzymes become
inactive, HIFs are stabilized and derepressed and activate a
transcriptional program to adapt the cell to hypoxia. Other
than O2, HIFs respond to a variety of environmental factors.
HIF1α−/− mice display enhanced Mtb burden and reduced
survival (45). This could be linked to HIFs regulating the
bactericidal functions of MPs and neutrophils (46). NF–kb,
the master regulator of the inflammatory response, regulates
transcription of the hif1a gene encoding one of the HIF subunits
(47). In MPs, LPS binding to TLR4 activates HIF-1α that
upregulates IL-1β production. The signaling occurs through
succinate, one intermediate of the tricarboxylic acid cycle (48)
that accumulates upon reprogrammation of the MP toward
aerobic glycolysis. However, this effect cannot be generalized to
all TLR- signaling pathways (49). Imaging with glucose tracers
illustrates high glucose uptake after infection with Mtb in the
lungs of C3HeB/FeJ mice (50) non-human primates (51) and
humans (52). Aerobic glycolysis is confirmed by NMR-analysis
of metabolites in mice (53) and guinea pigs (54), or global
transcriptomics of genes encoding glycolytic enzymes in the
lungs of mice, rabbits, and humans (55). Reprogramming of
the host metabolism translates in coordinated up and down
regulation of genes encoding key glycolytic enzymes and glucose
transporters, reminiscent of the Warburg effect as well as
regulation of HIF-1α (55). While the granuloma becomes
necrotic, MPs packed with lipid droplets transform into foamy
cells (56) which is driven by reprogrammation of host lipid
metabolism in response to Mtb compounds (57). Interestingly,
lipid droplets formation in Mtb infected MPs is driven by IFN-γ
and requires HIF-1α and its target gene hig2 (58).

Several immunopathology studies demonstrate extensive
vascularization of TB granulomas in humans (59) and mice
(59, 60) provided that they are not necrotic (61). The link between
hypoxia, vascularization, and development of the granuloma
was recently established in the ZF infected with Mm (62). In
this model, HIF-1α is activated, PHD-3 expression is increased
and induces production of the angiogenic factor VGEF-A,
which is intimately linked to nascent granuloma formation. In
human MPs infected with Mtb, a similar angiogienic signature
is observed (63). Moreover, the level of VEGF-A is increased
in sputum and peripheral blood of active TB patients and is
proposed as a differentiating biomarker for patients progressing
to active TB (64–66). Circulating angiogenic factors are markers
of disease severity and are associated to the bacterial burden (67).
In ZF embryos infected by Mm, CXCR4 signaling is important to
initiate angiogenesis for granuloma expansion (68). Surprisingly,
despite the established over-representation of neutrophils in
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TB lesions, little information is available on how these cells
behave in face of Mtb in the highly hypoxic and angiogenic
granuloma milieu.

Neutrophils are generally seen as short-lived cells. However,
the life span of neutrophils is highly increased in hypoxic
milieu (69). By high consumption of oxygen during oxidative
burst, neutrophils themselves contribute to generate the hypoxic
milieu, which may well be the case during active TB when
they invade the lung. Prolonged survival is linked to sustained
expression of PHD3, in vitro and in vivo, in response to hypoxia
and inflammatory stimuli (70). Interestingly, PHD3 is strongly
induced in lungs of Mtb infected mice (55). HIF-2α is the most
expressed in neutrophils, in contrast to MPs where HIF-1α is
the most active. HIF-2α deficiency increases neutrophil apoptosis
(71). MIP-1 is also identified as a novel hypoxia stimulated
granulocyte survival factor (72).

In the ZF model infected with Mm, neutrophil-specific
HIF-1α stabilization decreases bacterial burden via a NO-
dependent mechanism. On the contrary, despite also being
upregulated, HIF-2α has a negative impact on bacterial burden
emphasizing opposite roles of different HIF factors (73).
Therefore, it is possible that the hypoxic environment of the
TB granuloma that favors extended life-span for neutrophils
allows them to actively shape granuloma evolution. On one
hand, this may help bacilli control as well as resolution of
inflammation, since neutrophils actively participate to MP
efferocytosis and the release of lipids such as LXA4. On the other
hand, hypoxia increases neutrophil degranulation and confers
extended activity to damage lung tissues in a PI3K dependent
pathway (74). Hypoxia-induced decrease of neutrophil apoptosis

induces a delay in resolution of inflammation by maintaining
active neutrophils in the inflamed tissue (75). Moreover,
hypoxia impairs the ability of neutrophils to kill certain
bacteria (76).

HIF-1α is a major player in an another chronic infection
caused by the intracellular parasite Leishmania. HIF-1α crucially
enhances immunosuppressive functions ofMDSCs and decreases
leishmanicidal capacity of myeloid cells (77). Even though to
our knowledge no study has tackled the link between HIF-1α
and MDSCs in TB, a similar important role could be discovered.
Also, since hypoxia and angiogenesis are intimately linked to
the granuloma development, another interesting perspective
is the possible role of angiogenic neutrophils (40, 42) in
the process.

POSSIBLE INFLUENCE OF THE HYPOXIC

Mtb GRANULOMA ON KEY

NEUTROPHIL-RELEASED MEDIATORS

Neutrophils contribute both pro- and anti-inflammatory factors
in TB (78, 79). Information on how HIF-1α stabilization
in hypoxic environment influences the secretion of critical
immunemediators by neutrophils is limited to granule proteases,
antimicrobial peptides and TNF (46). Literature on the impact
of HIF-1α stabilization on MP-released mediators is more
extensive and we consider it as a source of inspiration illustrating
the potential role of hypoxia on neutrophil-released mediators
(Figure 1). In the following paragraph, we focus on how hypoxia
may regulate release by neutrophils of the key mediators

FIGURE 1 | Impact of HIFs on control of key mediators released by neutrophils and macrophages. Key mediators and essential cellular processes controlled by HIF

stabilization in macrophage (left) or neutrophil (right) after infections with M. tuberculosis, M. marinum, or other bacteria or during non-infectious disorders are depicted

(numbers refer to publications listed in the review).
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TABLE 1 | Impact of neutrophils and close relatives in cancer and TB.

Tumor formation and evolution Early Mtb infection and granuloma

Prognosis/Pathophysiology • Clinical evidence (neutrophil to lymphocyte ratio) mostly

links neutrophils to cancer progression. Poor prognosis.

• Different granulocytic populations described with various

functions. Anti-tumor activity of High Density Neutrophils

(early stage tumor). Accumulation of immature neutrophils

associated to cancer progression (Gr MDSCs or Low

Density Neutrophils). Promote angiogenesis, tumor

progression, and metastases (95)

• In many cancers, different granulocyte subpopulations are

described (96). Better definition is needed

• Early phase of infection: neutrophils contribute to innate

resistance (11, 97) and granuloma formation (7, 98, 99)

• Late phase of infection, active TB: established role of

neutrophils to severe forms in preclinical models (8) and in

humans (9)

• Gr-MDSCs accumulate during early phase Mtb infection and

active TB, in blood and lung in humans (31)

• MDSCs may represent permissive reservoir for Mtb (34) and

their accumulation associates with severe TB in mice (35)

Hypoxia and angiogenesis • HIF-2α, selectively modulates neutrophil recruitment (100)

• Neutrophil recruitment to early-stage tumors is linked to

hypoxia (101)

• Induction of angiogenic neutrophils in hypoxic conditions

• Hypoxia augments neutrophil degranulation and confers

enhanced potential for damage to respiratory airway

epithelial cells (69)

• Hif-1α increases NO production by neutrophils in early stage

of Mm infection and is involved in control of bacterial growth

(73)

• Granuloma formation in the ZF model coincides with

angiogenesis and local hypoxia (62)

Modulation of T cell

response

• MDSCs are major players in tumor-mediated

immunosuppression

• Neutrophils in solid tumors are potent producers of Arg-1

and could contribute to local immune suppression

(102, 103)

• MDSCs are present in lungs (3) but their role in development

and evolution of granuloma remains unclear

• Arg-1 is associated to severe TB in mouse models

(104, 105) and is detected in necrotizing granulomas in

humans (106). Pathway documented in MPs, however,

deciphering neutrophil contribution to Arg-1 production

would be of interest.

Tissue Remodeling • MMP-9 delivered by tumor-recruited neutrophils is

associated to tumor angiogenesis and dissemination (107)

• Angiogenic neutrophils contribute to tumor growth and

metastasis (108)

• Neutrophils through COX-2-mediated PGE2 synthesis and

elastase promote tumor cell proliferation (109)

• MMPs are involved in early granuloma formation and

participate to tissue destruction during late phase (110, 111)

• Pathogenic mycobacteria (Mm or Mtb) exploit the

formation of new blood vessels to disseminate via MPs

(62, 63). Neutrophils are migrating cells (112), their

contribution to Mtb dissemination is not documented yet.

in Mtb virulence: ROS, NO, IL-1β, and type I IFN. Some
of these mediators may play different roles in humans and
animal models and data should sometimes be interpreted with
caution. In Mtb infected MPs, HIF-1α is stabilized by IFN-
γ and regulates the production of prostaglandins and NO
(45). In mice, NO not only acts as an antimicrobial agent
and inflammatory mediator but further amplifies myeloid cell
bactericidal activity via HIF-1α stabilization. NO modulates the
MP response toMtb through activation of HIF-1α and repression
of NF-kB (80). HIF-1α and NO are intrinsically linked: they
positively regulate each other, but display distinct roles in the
regulation of inflammation. Among the mediators regulated in
opposite directions, neutrophil-attracting chemokines, IL-1α and
IL-1β, are all down regulated in HIF-1α−/− and upregulated
in Nos2−/− Mtb infected and IFN-γ activated BMDMs (80).
In the hypoxic granuloma, NO produced by IFNγ-activated
MPs restricts neutrophil recruitment to avoid destructive
inflammation (80). In Mm infected ZF, HIF-1α stabilization
induced IL-1β production by MPs and increased neutrophil
NO production that is protective against infection (81). In
Mm infected NADPH oxidase 2-deficient mice (Ncf1−/−) mice,
ROS-deficiency decreases IL-1β production by MPs but induces
early and extensive neutrophilic inflammation, with high elastase
activity and IL-1β production (82). This also reveals a novel role
for ROS in the early neutrophilic granulomatous inflammation

and the importance of neutrophil-driven IL-1β production
during mycobacterial infection. In addition to MPs, neutrophils
also produce ROS and NOS. Neutrophils are able to discriminate
pathogens by differential production and localization of ROS,
and tune their own recruitment and distribution to exquisitely
tailor the anti-microbial response (83). HIF-1α stabilization
in neutrophils induces NO production after infection by Mm
(73). NOS and ROS production also influences the secretion of
cytokines. NO inhibits NLRP3-dependent IL-1 responses (84).
IL-1β signaling is also important for ROS production as Mtb-
infected newly recruited neutrophils lacking IL-1R fail to produce
ROS, resulting in compromised pathogen control (85). HIF-1α
stabilization clearly influences ROS/NOS and IL-1β production
by MPs and neutrophils, both factors are important during
mycobacterial infection, but their regulation seems different in
the two cell types (73, 80–82, 84, 85) (Figure 1). In human
neutrophils stimulated with Mtb, hypoxia up-regulates secretion
of MMP-8, MMP-9 and neutrophil elastase that are involved
in matrix destruction. Hypoxia inhibits NETs formation and
both neutrophil apoptosis and necrosis after direct stimulation
by Mtb (69).

Type I IFN is a major cytokine in TB pathophysiology.
Overproduction of type I IFN (IFN-I) is linked to
exacerbated TB in both mouse models and humans. IFN-I
triggers immunopathology by increasing the recruitment of
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inflammatory monocytes and neutrophils to the lung (86).
Secretion of IFN-I by MPs and its effect on neutrophils is
well-documented (87–89). In MPs, Mtb triggers IFN-I secretion
through bacterial DNA release in the cytosol. However,
strains display variable ability to activate the IFN-I pathway
depending on their effective triggering of mitochondrial
stress (87). Host-protective cytokines such as TNF, IL-12, and
IL-1β are inhibited by exogenous IFN-I, via production of
immunosuppressive IL-10 (88). By contrast, IL-1β suppresses
IFN-I through eicosanoid prostaglandin E2 (90). In the
inflammatory environment in mouse tumor models, IFN-I
shifts neutrophils to antimetastastic phenotype (89). Therefore,
IFN-I has multiple and crucial effects on neutrophils, but so far
studies on IFN signaling in neutrophils in hypoxic environment
are still scarce. As hypoxia leads to accumulation of cytosolic
DNA via mitochondrial or nuclear DNA damage, it could
favor activation of the cGAS/STING/IRF3 pathway (91). The
convergence between hypoxia and IFN-I signaling is suggested
by Karuppagounder et al. who identified the effect of Tilorone,
a small molecule inducing IFN-I which also triggered hypoxic
response in brain cells (91). Another study claims that IFN-I
promotes tumorigenic properties through up-regulation of
HIF functions in different cancer cell lines (92). Direct IFN-I
secretion by neutrophils is proposed, where Sox2 could act as a
sequence-specific DNA sensor in neutrophils during microbial
infection (93). However, it is unclear if neutrophils can sense
DNA via the cGAS/STING pathway (94).

Thus, even though the impact of hypoxic environment
encountered in the TB granuloma on the IFN-I pathway is not
documented yet, this issue could be of great interest to better
understand TB pathophysiology and propose new therapies.

NEUTROPHILS IN TB: MANY

OPEN QUESTIONS

Although it is now consensus that during active TB, neutrophils
are the main villains responsible for lung destruction, we–and
others (3, 11)–advocate that this narrow vision is revisited.
“Neutrophils” encompass different subsets with various functions
that remain poorly defined. They come to infectious foci in waves
of different magnitude. A better definition of neutrophil subsets,
their coordinated dynamics of recruitment to the lung and their
associated functions is needed. Neutrophils crosstalk with other
cells and secrete a vast number of mediators thus taking full
part to the regulation of the immune response against Mtb. They
respond to signals sent by their environment, including hypoxia
in inflamed tissues. In the hypoxic TB granuloma, light has been
recently shed on the fate and behavior of MPs, under the control
of the master regulator HIF-1α. However, there is currently
scarce information on the fate and behavior of neutrophils in a
similar context. How do neutrophils respond to hypoxia in the
TB context? How do neutrophils contribute to the shaping of
the granuloma? In the future, models allowing development of
the hypoxic TB granuloma should be favored. A better definition

of mediators released by neutrophils in the hypoxic context of
the granuloma is expected. As neutrophils are key players in the
game, we believe that these questions need to be solved in order
to propose new interventions to fight against TB.

PERSPECTIVES FOR INNOVATIVE

THERAPEUTICS AGAINST TB

In the era of increasing multidrug resistance of Mtb
strains, HDTs sometimes represent the last hope for
patients. As the hallmark of destructive inflammation,
neutrophils are often considered as potential targets.
Inhibiting necrotic neutrophil death could restore Mtb
growth control (24). Removing neutrophils by drugs or
immunotherapeutic interventions could also alleviate lung
tissue destruction.

Recent studies in the TB field shed some light on parallels
that could be drawn between the TB granuloma and solid
tumors (Table 1), especially regarding the role of neutrophils.
Since HDTs are more advanced in the field of cancer than
they are in TB, we propose that some tracks well-developed
in cancer therapy are explored to advance the field of HDTs
for TB patients. Among promising avenues, we propose that
metabolic changes occurring in TB granuloma are being
considered (113).Modulation of theHIF pathways (114) deserves
attention as it could dampen excessive protease secretion
(69). PHD3 and HIF-2α that operate in neutrophils under
inflammatory or hypoxic conditions (70, 71) represent more
attractive targets than largely distributed HIF-1α. In cancer,
another active field in the clinics is blocking angiogenesis
since this pathway is key to tumor development. Angiogenesis
appeared more recently as key to the development of the
TB granuloma and it would be interesting to determine
whether modulating angiogenesis could bring some benefit
to TB patients. Along this line, we believe that recently
described angiogenic neutrophils should also be investigated
in TB.

TB still kills 1.7million people each year and active TB patients
continuously spread bacilli that represent threat to human kind.
Development of adjunct HDTs is a promising avenue to boost
current drug regimen directed against Mtb (115). We believe
that addressing the questions that we raised in this review
about neutrophils in TB could greatly help in the quest for
innovative HDTs.
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Influenza viruses still constitute a real public health problem today. To cope with the

emergence of new circulating strains, but also the emergence of resistant strains to

classic antivirals, it is necessary to develop new antiviral approaches. This review

summarizes the state-of-the-art of current antiviral options against influenza infection,

with a particular focus on the recent advances of anti-influenza drug repurposing

strategies and their potential therapeutic, regulatory and economic benefits. The review

will illustrate the multiple ways to reposition molecules for the treatment of influenza,

from adventitious discovery to in silico-based screening. These novel antiviral molecules,

many of which targeting the host cell, in combination with conventional antiviral agents

targeting the virus, will ideally enter the clinics and reinforce the therapeutic arsenal to

combat influenza virus infections.

Keywords: influenza virus, antivirals, antiviral resistance, drug repurposing, drug repositioning, drug discovery,

drug combination, transcriptional profiling

INFLUENZA VIRUSES, A LONG-LIVED THREAT
FOR POPULATIONS

“A piece of bad news wrapped up in a protein,” definition of a virus by Sir Peter Medawar.

Despite its apparent blandness for the collective mindset of an important portion of the society, the
intrinsic morbidity and mortality as well as the related deaths because of bacterial superinfections
or exacerbation of chronic illnesses, make of influenza infections a major and recurrent global
public health concern. Indeed, human influenza type A and B viruses are responsible for annual
flu epidemics marked by up to 1 billion infections, 3–5 million severe cases and 300,000–650,000
deaths worldwide, with an huge economic burden in terms of medical visits, hospitalizations,
work/school absenteeism. and productivity loss (1–3). As members of the Orthomyxoviridae
family, influenza viruses (type A, B, C, or D) are enveloped viruses harboring a negative-sense
single-stranded RNA segmented genome. In such segmented nature of the viral genome resides the
capacity of influenza viruses to form new reassortant strains following the concomitant infection of
a host with more than one strain of human, and/or animal origin, a phenomenon so far observed
only among type A influenza viruses [reviewed in (4)]. Owing to viral reassortment, the genetic
baggage of progeny viruses does not exactly match that of one of the “parental” strains but a
combination of both. Depending on the specific combination of genetic segments, and notably
in the case of a human influenza strain acquiring the Hemagglutinin (HA) and/or Neuraminidase
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(NA) major surface antigens from animal origin, reassortment
events can result in an antigenic shift, defined as the generation
of a new virus with antigenic properties drastically different
from those of the circulating strains. Should this new variant
be sufficiently antigenically different to escape the repertoire
of pre-existing immunity in the population, it might rapidly
disseminate and replace the circulating strains, hence triggering
a global influenza pandemic. Although relatively rare–three
veritable pandemics occurred during the 20th Century and one
so far in the twenty-first century–the outbreak of pandemics
is a quite unpredictable event that might entail potentially
devastating effects [reviewed in (5)], particularly considering the
contemporary state of affairs regarding global transportation and
trade, migration, and the narrowing interface between rural and
overcrowded urban areas.

Influenza vaccination constitutes the most effective strategy to
prevent seasonal flu and its clinical complications, mainly among
high-risk populations such as very young children, the elderly,
pregnant women, immunocompromised patients as well as
people with obesity, diabetes, or cardiorespiratory comorbidities
(6, 7). Nevertheless, current flu vaccination still presents several
limitations that make it fall short of expectations in terms of
effectiveness. The short duration of vaccine-induced immunity
coupled with the intrinsic antigenic drift of influenza viruses
resulting from the gradual accumulation of point mutations in
the antigenic sites of the HA (and to a lesser extent the NA)
surface protein underscore the need of the annual reformulation
of vaccine composition. Moreover, the length of the current
vaccine manufacturing process (at least 6 months to produce
sufficiently large vaccine quantities) demands continual strain
selection to be done approximately 8 months before the next
flu season (6, 8). Should an antigenic drift occur during
this time window, the possibility of a mismatch between the
vaccine composition and circulating strains might negatively
affect protection. Even in the absence of seasonal mismatches
or the emergence of pandemic strains, insufficient vaccine
coverage and suboptimal uptake in specific target groups (i.e., the
elderly or the immunocompromised) also compromise vaccine
effectiveness. Furthermore, despite the recent progress made in
the pursue of the “Holy Grail” of a universal influenza vaccine
that can provide broader, long-lasting protection against both
matching, and antigenically diverse influenza strains (9, 10), their
clinical effectiveness remains to be evaluated, hence highlighting
the need of complementary therapeutic approaches to manage
influenza infections.

Besides vaccination, antiviral drugs represent the other pillar
for the control of seasonal influenza epidemics and play a central
role as major prophylactic and therapeutic agents in the event
of a pandemic outbreak. In that regard, this review summarizes
the state-of-the-art of current antiviral options against influenza
infection, with a particular focus on the recent advances of
anti-influenza drug repurposing strategies and their potential
therapeutic, regulatory and economic benefits. This review
presents examples of the multiple ways to reposition molecules
for the treatment of influenza, from adventitious discovery to in
silico-based screening. These novel antiviral candidates, many of
which target the host cell, could also be used in combination

with conventional virus-targeted antiviral agents in order to
reinforce our very limited therapeutic arsenal against influenza
virus infections.

CURRENT ANTIVIRAL OPTIONS FOR
TREATING INFLUENZA INFECTIONS

As mentioned above, antivirals are key players in pandemic
preparedness programs, being the first choice for the treatment
of infected patients as well as for preventive post-exposure
prophylaxis of those potentially exposed to the new virus,
especially during the initial pandemic period in which no vaccine
is available. Antivirals are as well important in the normal
seasonal setting. Although their use is mostly focused on the
treatment of severely ill patients and the immunocompromised,
some countries, including the USA and Japan, regularly resort
to antivirals for the management of uncomplicated influenza in
otherwise healthy patients (11, 12). To date, only two classes
of antiviral agents are globally approved and available for
the treatment of influenza infections: M2 ion-channel blockers
and neuraminidase (NA) inhibitors. The first class includes
adamantane derivatives, amantadine and rimantadine, which
inhibit proton conductivity of the M2 ion channel of influenza
A viruses hence preventing the viral uncoating step of the viral
replication cycle. Nevertheless, although quite efficient in their
early days, widespread dissemination of the S31N (and to a much
lesser extent V27A) M2 resistance mutation in post-2006 H3N2
and post-2009 H1N1 circulating strains prompted the WHO
to remove both amantadine and rimantadine from the list of
recommended anti-influenza agents for clinical use, in 2009 (6).
As a result, NA inhibitors stand as the only influenza antivirals
currently recommended by the WHO (13).

NA inhibitors are competitive analogs of sialic acid, the
preferred influenza receptor on the host cell’s surface. By
binding to the broadly conserved active site of the NA, NA
inhibitors interfere with the sialidase enzymatic activity of
the viral protein, which is essential for the release of newly
formed progeny viruses from the infected cell, hence preventing
the spread of infection to the rest of the respiratory tissue
(14). Three NA inhibitors are currently licensed worldwide
for the treatment of influenza A and B infections: oseltamivir,
zanamivir, and peramivir. Oral oseltamivir (administered as
its prodrug oseltamivir phosphate) is the most largely used
of the three, whereas inhaled zanamivir is not recommended
for very young children nor for individuals with underlying
respiratory conditions, and intravenous peramivir is prioritized
in hospitalized patients that cannot receive oral treatment (15).
Additionally, inhaled laninamivir, a single-dose long lasting NA
inhibitor, is approved in Japan for the prevention and treatment
of influenza A and B in both adult and pediatric patients (16). It
is important to note that some degree of skepticism is still present
regarding the real efficacy of NA inhibitors, notably following
the 2014’s Cochrane clinical meta-analysis that reported only a
minimal shortening of influenza symptoms in children and adults
with uncomplicated influenza but not in hospitalized patients
(17). Nevertheless, actual evidence-based consensus points to
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a moderate efficacy of NA inhibitor treatment in reducing
symptom duration, pneumonia, hospitalization and mortality,
especially when administered within 48 h from symptom onset
(18, 19). Conversely, delayed treatment initiation is associated
with compromised efficacy but may yet be beneficial in at-
risk patients. Moreover, the emergence of NA inhibitor-resistant
virus variants is a matter of concern, with particularly higher
frequencies among children and the immunocompromised (20).
The H275Y NA substitution is the main mutation responsible for
both oseltamivir and peramivir resistance in H1N1 viruses while
R292K and E119V are the most commonly reported in H3N2
viruses, these latter two also conferring reduced susceptibility
to zanamivir and laninamivir (17, 21). Even if nowadays the
prevalence of drug-resistance in circulating strains is quite low
(≤1%), evidence form pre-2009 seasonal strains has proved
that, given the appropriate conditions, resistance could rapidly
disseminate to attain a prevalence of 90–100% (17, 21). In that
regard, the relatively recent detection of localized clusters of NA
inhibitor-resistant H1N1pdm09 viruses harboring the H274Y
mutation combined or not with I222R/V NA substitutions (22,
23) strengthens the importance of continuous surveillance.

In addition to M2 ion channel blockers and NA inhibitors,
two small molecules that target the viral RNA-dependent RNA
polymerase, favipiravir and baloxavir marboxil, are undergoing
clinical evaluation in the US and Europe but already obtained
approval by Japanese Health authorities. Favipiravir is a
nucleoside analog that acts as a competitive inhibitor of viral
polymerase substrate, approved since 2014 for the treatment of
influenza infections with newly emerging strains and/or resistant
to other antiviral agents. However, despite the apparent high
threshold for drug resistance (24) and broad-spectrum antiviral
potential notably validated in the context of recent Ebola virus
outbreaks (25), recent results of Phase II/III randomized trials
on its therapeutic efficacy against uncomplicated influenza were
not completely conclusive (26). Baloxavir marboxil is a selective
inhibitor of the cap-dependent endonuclease activity of the
influenza viral PA polymerase subunit (27), therefore interfering
with the cap-snatching activity of the viral polymerase complex.
In that regard, a very recent report disclosed for the first
time the results of two randomized (Phases II and III) clinical
trials evaluating the efficacy of a single-dose oral treatment
with baloxavir marboxil in otherwise healthy outpatients with
acute uncomplicated influenza, compared with placebo and a
regular 5-day treatment with oseltamivir (28). Overall, baloxavir
marboxil and oseltamivir moderately reduced the time to
symptom alleviation compared to placebo, while the former
outperformed the two others in reducing viral loads. These
results prompted the US Food and Drug Administration (FDA)
to approve Xofluza R© (baloxavir marboxil) for the treatment
of acute uncomplicated influenza in patients 12 years of age
and older who have been symptomatic for no more than 48 h
(29). Nevertheless, this first antiviral flu treatment with a novel
mechanism of action approved by the FDA in nearly 20 years
does not seem to escape the problem of all other virus-targeted
anti-influenza agents. The emergence of virus variants (mostly
due to the I38T/M PA amino acid substitutions) conferring
significant levels of reduced susceptibility to baloxavir marboxil

was observed in up to 9.7% of the patients receiving the drug
(28, 30).

Overall, Table 1 summarizes the main characteristics of
the abovementioned currently available antiviral options for
influenza. Such limited therapeutic arsenal coupled with the
recurrent risk of emerging drug-resistance highlights the obvious
unmet need of novel approaches to complement existing
therapies with new anti-influenza drugs.

WHAT IS DRUG REPURPOSING?

“The most fruitful basis for the discovery of a new drug is to

start with an old drug,” famously stated the 1998 Nobel Prize in

Physiology and Medicine Laureate, Sir James Black.

Despite the enormous scientific and technological advances that
the field of biomedical research has witnessed in the last 20–30
years, this scenario failed to efficiently translate into significant
improvement on the success rate of the classic “from the bench to
the bedside” target-centered, mechanistically biased de novo drug
discovery process (38). Indeed, with an almost unchanged total
number of 25–30 novel molecules out of the approximately 50
new drugs yearly approved by the FDA (39), biopharmaceutical
experts estimate that only 12% of drug candidates that make it
into Phase I clinical trials receive the final green light (40). In
other words, of 5,000–10,000 compounds that come from classic
drug discovery, only one is likely to be approved. The causes of
this phenomenon are multifactorial, including the targeting of
more intricate diseases, limitations of reductionist experimental
models to reproduce biological complexity, increased regulatory
stringency, tolerability issues, and unexpected side effects.
Altogether, the total R&D process leading to the introduction of
a new drug in the market demands on average 13–15 years and
between U$S 1.5 and 2.6 billion (40–42).

In this context, drug repurposing stands as a worthwhile
attractive alternative to fill part of this so-called innovation
gap. Drug repurposing, also termed drug repositioning, defines
the process of identifying and validating a new therapeutic
indication for an existing or developmental drug (38, 42, 43).
The basis of drug repurposing relies on bypassing long, risky
and expensive preclinical and early clinical evaluation stages by
focusing on available extensive human clinical, pharmacokinetics
and safety data as the starting point for further development
(Figure 1). An extended definition could also include not only
already marketed drugs but also “sleeping” candidates that
have seen their development abandoned in advanced phases of
clinical evaluation (e.g., Phase II/III trials) due to non-satisfactory
efficacy for their first intended medical use, which might find
a second life in a novel therapeutic indication Noteworthy,
repurposing arguably accounts for 30% of the new drug products
approved by the FDA (44).

In practice, the concept of drug repurposing represents a
broad term encompassing many different, though not mutually
exclusive, experimental approaches to recognize potential new
applications outside the scope of the original medical indication
(42), including:
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TABLE 1 | Currently approved drugs for the treatment of influenza viral infections.

International

non-proprietary

name

Pharmaceutical

brand names

(examples)

Antiviral class Antiviral activity Clinical indication Resistance

reported

Discovery/

Reference

Amantadine

hydrochloride

Mantadix

Symmetrel

Symadine

Osmolex ER

M2 ion-channel

blockers

Blocks influenza virus uncoating

and entry into host cell

High risk old adults and children

Prophylaxis

Or treatment 24/48 post

symptoms appearance

YES 1963

(31)

Rimantadine

hydrochloride

Roflual

Flumandine

1969

(32)

Oseltamivir phosphate Tamiflu NA inhibitors Sialic acid structural analog,

competitive inhibitor of the

influenza viral neuraminidase

substrate

Children, adolescent and adults

48 h from symptom onset

YES 1998

(33)

Zanamivir Relenza Children and adults

≥5 years (prophylaxis)

≥7 years (treatment)

48 h from symptom onset

1993

(34)

Peramivir Rapivab

Peramiflu

Rapiacta

Children, adolescent and adults

intravenous peramivir is prioritized in

hospitalized patients that cannot

receive oral treatment

48 h from symptom onset

2000

(35)

Laninamivir octanoate Inavir Children and adults

inhaled laninamivir

Prevention adults and

pediatric patients

2000

(36)

Favipiravir Avigan Polymerase

inhibitor

Nucleoside analog, competitive

inhibitor of viral RNA-dependent

RNA polymerase substrate

Limited to cases in which

other influenza antiviral drugs are

ineffective or not sufficiently effective

YES 2002

(37)

Baloxavir marboxil Xofluza Selective inhibitor of the

cap-dependent endonuclease

activity of the influenza viral PA

polymerase subunit

Treatment of acute uncomplicated

influenza in patients 12 years of age

and older who have been

symptomatic for no more than 48 h

2018

(27)

FIGURE 1 | From the bench to the bedside: comparison between de novo drug development and drug repurposing. De novo (classic) drug development constitutes

a time-consuming and expensive process. From initial discovery to market, it generally takes 13–15 years and costs up to US$ 2 billion, with a very low success rate

(10%). In contrast, drug repurposing approaches offer several advantages. Indeed, the time frame from discovery to market is shorter (5–11 years), less expensive

(US$ 350 million), and with a higher success rate (30%), mostly because a large part of preclinical and clinical testings (e.g., safety, formulation, posology) have been

already performed for the drug’s initial therapeutic indication (41, 42).
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Serendipitous Observations
Some of the best-known success stories of drug repurposing
have their starting point on serendipitous observations recorded
in the context of either preclinical models of disease or pre-
/post-approval clinical trials, leading to a subsequent rationalized
evaluation and validation of the new treatment potential (41).
Thalidomide and sildenafil are two examples of such key
observations. The first one was initially introduced as an anti-
nausea for pregnant women but had to be rapidly removed from
the market due to its teratogenicity. Further research enabled
this molecule as well as some derivatives to be repurposed for
the treatment of leprosy and multiple myeloma (45). Sildenafil,
on the other hand, never reached the market for its originally
intended use in the treatment of hypertension but the observed
side-effects on erectile dysfunction ended in its approval in under
the commercial name of Viagra R©. More recently, sildenafil found
a third life under the commercial brand of Revatio R© for the
treatment of pulmonary hypertension (46).

Target-Based Repurposing
Although serendipitous observation has historically proved its
usefulness, the intrinsic necessity of the casual observation
of an unintended and usually infrequent second benefit
poses a significant hurdle for exploiting the full potential
of drug repurposing, for which more controlled, systematic
methodologies are needed. Target-based repurposing relies on
having previous knowledge of the specific molecular or cellular
determinant/function target recognized by the drug intended to
be repurposed. If new research finds out that target is plays an
important role in a condition or disease other than the original
indication, there is a potential for repurposing. Of note, the target
might but not necessarily has to play the same role in both
conditions. For example, in the case of the previously mentioned
favipiravir, the drug plays the same role as viral RNA polymerase
inhibitor against both influenza and Ebola viruses. On the other
hand, the Abelson tyrosine-protein kinase 2 (Abl2), target of
the anticancer drug imatinib, has been found to be required for
efficient fusion and release of severe acute respiratory syndrome
coronavirus (SARS-CoV) and Middle East respiratory syndrome
coronavirus (MERS-CoV) pseudovirions into the cytoplasm of
the infected cell, a key step for viral replication (47).

An alternative scenario of target-based repurposing can
happen when a particular drug of known mechanism of action is
found to have a newmolecular/cellular target, and this previously
unrecognized second target is associated with a different disease.
The molecule is therefore said to present polypharmacology-
related features, meaning the capacity to act on multiple targets
(48, 49). Polypharmacological phenomena includes both a single
drug acting on multiple targets of a unique disease pathway, or
a single drug acting on multiple targets pertaining to multiple
disease pathways (50). In fact, polypharmacology is usually
responsible for treatment toxicity or other undesirable adverse
events, but some of these “side-effects” might also lead to drug
repurposing, as further exemplified in the next sections. During
the last decade, an increasing number of studies converged
on proposing that many drugs, initially designed for a unique

therapeutics target, are in fact expected to hit on average between
6 and 13 different targets (51, 52).

Phenotypic Screening
Onemajor limitation of the target-based drug repurposingmodel
relies on its dependence on the existing scientific knowledge of
the drug/disease mechanism(s) of action/pathology as well as
on potential alternative targets, which is usually incomplete. In
other words, we cannot fully anticipate the repurposing potential
of a drug unless we have characterized its molecular/cellular
target(s), or if we do not know that a given drug target plays
an important role on a particular disease. Phenotypic screening
of bioactive molecule libraries in different experimental cell-
based or in vivo disease models without the need of a priori
knowledge or consideration of the target and/or mechanism
of action the candidate was designed to modulate can provide
valuable contribution to overcome this constraint (53). Indeed,
despite this approach has been questioned due to the fact
that the expected altered phenotype readout as a surrogate of
an exploitable biological effect induced by the drug candidate
might account for an important number of false positive
“hits,” it is nonetheless true that the contribution of high-
throughput phenotypic screening to first-in-class small molecule
drug discovery exceeded that of target-based approaches (54,
55). In that regard, many well-annotated collections of small-
molecule libraries could be readily made available through
different collaborative and/or commercial partnerships in order
to accelerate drug repurposing through hypothesis biased or
unbiased phenotypic screening [reviewed in (54–57)].

In silico-Assisted Repurposing
With the advent of big data and systems biology, computer-based
approaches are gaining increasing acceptance in the field of drug
discovery, and drug repurposing is not an exception. Besides the
inclusion of constantly emerging “omics” (e.g., transcriptomic,
proteomic, metabolomic) data to expand our current knowledge
of drug/disease-associated mechanisms, in silico data mining
and modeling tools have pushed our capacity to analyze data
to the next level (58–60). These in silico methods include the
screening of chemical, biological, and text databases, analysis of
quantitative structure-activity relationships, pharmacophores,
homology models, and other molecular modeling approaches
as well as network analysis of biological functions, machine
learning and almost any other analysis tools that include
using a computer (61–64). In that regard, proper mining of
biological, chemical and clinical datasets, has proved effective
in unveiling novel relationships (65, 66). Moreover, another
level of complexity can be added by combining, for example,
epidemiologic information obtained in-house and/or from
publicly available literature databases with in vitro experimental
molecule screenings with the aim to identify novel indications,
as in the case of digoxin and prostate cancer (67, 68). Indeed,
the real power of computer-assisted drug repurposing resides
on adopting an integrative strategy that combines the predictive
and analytic capacity of in silico tools with some of the target
biased or unbiased experimental evaluation/validation methods
previously mentioned. This “systems pharmacology” approach
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(69–71) across the boundaries of traditional disciplines would
put researchers in a better-informed position to design more
comprehensive repurposing strategies with more effective
predictive capacity and, hopefully, improved candidate
success rates.

THE EMERGENCE OF DRUG
REPURPOSING APPROACHES IN THE
FIELD OF ANTIVIRAL DRUG DISCOVERY

These last 10 years, there has been a remarkable growing interest
for drug repurposing in the field of antiviral drug discovery,
fueled by the incontestable reality of many known viral infections
still lacking specific treatment. This interest is inversely correlated
with the very low number of classic antiviral molecules that
have been market-approved these last 5 years, mostly for the
treatment of hepatitis C virus or HIV-related pathologies (72).
The best example of antiviral drug repurposing approaches are
emerging viruses such as Ebola, Zika virus or MERS-CoV, for
which there is an urgent and cost-effective need for therapeutics
solutions. Indeed, to rapidly propose a solution in the context
of a viral outbreak, one interesting approach consists to look at
the available pharmacopeia used to treat pathogens. For example,
chloroquine, a major antimalarial drug, has been proposed for
the treatment of filoviral infections, and more largely for the
treatment of other emerging pathogens, as it targets endosomal
acidification, a pivotal step in the replication cycle of a large
number of viruses (73, 74). Another interesting illustration is
the previously cited example of favipiravir, which proved its
repurposing potential for the treatment of Zika or Ebola viral
infections (25, 43, 75).

DRUG REPURPOSING FOR INFLUENZA
VIRAL INFECTION

As mentioned before, the intrinsic ever-evolving nature of the
virus, high transmissibility, host promiscuity, suboptimal vaccine
efficacy, limited antiviral arsenal, and zoonotic, and pandemic
potential are more than convincing factors to consider influenza
viruses as attractive targets for drug repurposing. Despite many
interesting omics-based approaches (76) or high-throughput
screening of specific drug libraries, such as kinase inhibitors (77),
no anti-influenza agent issued from drug repurposing has yet
reached regulatory market approval. However, advances made
during the last years forecast optimism. The following selected
examples constitute a very good illustration of the diversity and
capabilities of drug repurposing strategies for influenza infection.
An exhaustive list of anti-influenza candidates issued from drug
repurposing approaches is presented in Table 2.

The case of statins is arguably the best-known example of anti-
influenza repurposing issued from clinical observations. In the
early 2000s, clinicians observed that besides the cardioprotective
activity of statins, these hydroxyl methylglutaryl-coenzyme A
(HMG-CoA) reductase inhibitors approved for their use as
cholesterol metabolism regulators could have pleiotropic anti-
inflammatory and immunomodulatory effects, which could be of

benefit to improve survival of patients with severe influenza (78–
80). Although many mouse and observational studies account
for the protective role of statins in pneumonia, most in vivo
studies reported so far failed to clearly demonstrate such a
beneficial effect in the specific context of influenza infection
(99–102). On the other hand, a few but not all observational
studies highlighted an association between statin treatment with
up to 41% reduction of 30-day all-cause mortality in patients
hospitalized with laboratory-confirmed seasonal influenza (103–
105). A randomized placebo-controlled Phase II clinical trial
(NCT02056340) aimed at evaluating the potential effect of
atorvastatin to reduce the severity of illness in influenza-infected
patients is currently undergoing.

Nitazoxanide is another illustration of a serendipitous
repurposing approach, and probably one of the most promising
examples. Nitazoxanide is a thiazolide anti-infective initially
licensed for the treatment of parasitic infections, for which anti-
influenza properties were first documented by Rossignol et al.
(81). Interestingly, the proposed mode of action of nitazoxanide
toward influenza is clearly distinct to that for which it was
designed in its initial indication, acting at the post-translational
level by selectively blocking the maturation of the viral
glycoprotein HA, with a consecutive impact on its intracellular
trafficking and insertion into the host plasma membrane (81,
106). This drug presents potent antiviral activity against a
large panel of circulating strains (82). The effectiveness of
nitazoxanide in treating patients with non-complicated influenza
was successful in a Phase IIb/III trial (107) and is currently being
assessed in a Phase III clinical trial (NCT01610245).

BAY81-8781/LASAG (D, L-Lysine acetylsalicylate-glycine), a
modified version of the anti-inflammatory drug acetylsalicylic
acid (ASA) licensed for intravenous and inhalation delivery, is
currently investigated as an anti-influenza treatment as a result
of a mixed serendipitous and target-based repurposing strategy.
It was initially shown that ASA had interesting antiviral effects
against influenza viruses in vitro and in vivo via the inhibition
of the NF-kB activating kinase IkkB, which negatively impacts
influenza vRNP transport and release of infectious viral particles
(108–110). However, due to the pharmacokinetic limitations
of ASA, the LASAG modified version with improved stability
and tolerability was developed. Like ASA, this molecule also
demonstrates antiviral activity against several human and avian
influenza viruses in vitro. In a mouse infection model, inhalation
of LASAG resulted in reduced lung viral titers and protection
of mice from lethal infection (85). More recently, a Phase II
proof-of-concept study comparing LASAG versus placebo in
patients with severe influenza (all patients receiving Tamiflu
as standard of care treatment) demonstrated that aerosolized
LASAG improved the time to symptom alleviation compared to
placebo, despite the absence of a statistically significant reduction
of viral load in LASAG-treated group (86).

Naproxen constitutes a nice example of in-silico & target-
based strategy for the identification of new antivirals. Lejal et al.
used a structure-based modeling approach to identify drugs of
interest directed against the nucleoprotein (NP) of influenza A
virus, using the X-ray structure of the RNA-free NP of H1N1
as prototype. An in-silico screening, focused of a defined specific
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site of NP structure, has identified naproxen, a known inhibitor
of inducible cyclooxygenase type 2 (COX-2) commonly used as
non-steroidal anti-inflammatory drug. This identified molecule
has shown antiviral properties against influenza A virus in vitro
and in vivo (94). More recently, naproxen analogs with improved
efficacy have been developed, showing high level of inhibition
of both NP-RNA and NP-polymerase subunit PA complexes,
without parallel inhibition of COX-2 (111, 112). Interestingly, in
contrast to other examples of drug repurposing strategies, the
example of naproxen remains virus-targeted and future works
will determine if this drug will present the sameAchille’s heel than
classic antivirals regarding selection of antiviral resistance.

The last two examples of this chapter are midodrine and
diltiazem, that we identified as influenza antivirals in the context
of an in-silico assisted strategy based on transcriptional profiling.
An emerging approach in drug repurposing is based on signature
matching, which consists of comparing a specific characteristic
of a drug–its cellular signature–to that of a disease (42). This
approach, mostly based on transcriptomic data, was successfully
exploited to identify drug repurposing opportunities in a large
range of therapeutics areas, and notably in the field of oncology
and rare diseases (42). Our group was the first to transpose
this approach to the field of viral infectious diseases, thanks
to the development and democratization of DNA-microarray
and more recently RNAseq techniques. In a proof-of-concept
study using an in vitro model of infection, we postulated that
host global gene expression profiling can be considered as a
“fingerprint” or signature of any specific cell state, including
during infection or drug treatment, and hypothesized that
the screening of databases for compounds that counteract
virogenomic signatures could enable rapid identification of
effective antivirals (97). Among the molecules identified in
silico, midodrine, an adrenergic alpha receptor agonist widely
used to treat hypotension, demonstrated very interesting in
vitro antiviral activities (97). These results prompted the
Phase II clinical evaluation of midodrine (NCT01546506)
for the treatment of uncomplicated seasonal flu in primary
care centers.

Based on this previous proof-of-concept obtained from in
vitro gene expression profiles, we further improved the strategy
by analyzing upper respiratory tract clinical samples collected
from a cohort of influenza A(H1N1)pdm09-infected patients
and determined their respective transcriptomic signatures. We
then performed an in-silico drug screening and identified a
list of candidate bioactive molecules with signatures anti-
correlated with those of the patient’s acute infection state.
The potential antiviral properties of selected market-approved
molecules were firstly validated in vitro, and the most effective
compounds were further compared to oseltamivir for the
treatment of influenza A(H1N1)pdm09 virus infections in mice
and in a physiological in vitro model of reconstituted human
airway epithelia (MucilAirTM). These results notably highlighted
diltiazem, a calcium channel blocker used as an anti-hypertensive
drug, as a very promising repurposed host-targeted inhibitor
of influenza infection (98). An ongoing French multicenter
randomized clinical trial is investigating the effect of diltiazem-
oseltamivir bitherapy compared with standard oseltamivir

monotherapy for the treatment of severe influenza infections in
intensive care units (FLUNEXT trial NCT03212716).

VIRUS-TARGETED vs. HOST-TARGETED
THERAPY, WHY NOT BOTH?

“Two are better than one, because they have a good return for their

labor” Ecclesiastes 4:9-10.

The concept of antiviral combination therapy was originally
pioneered for antiretroviral treatments, with the primary goal of
preventing or at least delaying the emergence of drug resistance
via the targeting of multiple steps of the viral cycle (113).
Another expected complementary goal is to obtain additive or
synergistic effects by combining drugs, a “double-trigger” effect,
to increase effectiveness and/or reduce dosage. In the context of
influenza infections, the combination of classic antivirals, mostly
NA inhibitors, was explored by several research groups, including
ours, with relatively mixed conclusions. For example, in a mouse
model, the combination of oseltamivir with zanamivir was shown
to be not superior to zanamivir monotherapy in the context of
influenza A(H3N2) or A(H1N1)pdm09 infection (114). A clinical
trial was conducted during the A(H1N1)pdm09 pandemic
in 2009-2010 (COMBINA trial NCT00830323) and failed
to demonstrate whether oseltamivir/zanamivir combination
therapy improved or reduced the effectiveness of oseltamivir
alone in the treatment of influenza infections in community
patients (115). Other clinical investigations have shown a greater
effectiveness of such combination therapy to reduce influenza
transmissibility (116).

As most alternative antiviral strategies for the treatment of
influenza infections, including those related to drug repurposing
and targeting the host instead of viral determinants, an
emerging trend consists to propose innovative therapies that
combine classic antivirals with host-targeting drugs, which
starts to show promising results (87). For example, Belardo
et al. have demonstrated, in cell culture-based assays using
different human and avian models, that the combination
of NA inhibitors and nitazoxanide presents synergistic
anti-influenza effects (117). Convincing results were also
obtained using a combination treatment including naproxen.
In a clinical trial enrolling hospitalized patients infected by
influenza A(H3N2), combination therapy with naproxen,
oseltamivir, and clarithromycin showed improved efficacy in
terms of hospital stay duration and patient mortality, when
compared to oseltamivir treatment alone (118). In the context
of the evaluation of the antiviral activity of diltiazem in the
reconstituted human airway epithelium model MucilAirTM, our
group demonstrated that the diltiazem-oseltamivir combination
treatment conferred a greater reduction of apical viral titers
than that was measured with the same-dose monotherapy,
with a marked delay of viral production (98). An ongoing
French multicenter randomized clinical trial is investigating
the effect of diltiazem-oseltamivir bitherapy compared with
standard oseltamivir monotherapy for the treatment of
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severe influenza infections in intensive care units (FLUNEXT
trial NCT03212716).

Altogether, these results plead in favor of the use of drug
repurposing for the improvement of the current standard of
care anti-influenza therapy. In contrast to other technological
domains, the innovation is not necessary chasing and replacing
the established standard, and future works are still necessary to
investigate the real impact of these novel “host & virus-targeted”
multi-therapy approaches on the management and control of the
emergence of viral resistance.

CONCLUDING REMARKS

“We do not need to find new drugs; rather we need to find the
patients who can benefit from existing drugs” the saying goes.
Although somehow exaggerated, this statement summarizes
pretty clearly the essence behind the drug repurposing initiative.
Finding new indications for already-existing drugs has many
benefits, mainly by improving cost-effectiveness, reducing risks,
and shortening time to market (37, 41). The purpose of this
review was to foster discussion on drug repurposing as an
option to complete and implement our current anti-influenza
therapeutic arsenal. We are facing an important need for
the development of novel antiviral strategies that improve
treatment effectiveness–especially in the case of severe diseases–
and that are less prone to selection for antiviral resistance. In
that regard, the identification and validation by different and
complementary means of repurposed drugs is incontestably of
great interest, notably in combination with current classic virus-
targeted inhibitors. In addition, the deposition of data, including

negative results, into public database should be encouraged, as it
would facilitate efforts to repurpose licensed or orphaned drugs,
and consecutively increase our chances to find new efficient
antiviral drugs. With a growing number of academic groups and
pharmaceutical companies working on this emerging field, we
should most certainly see interesting progress and efficient novel
anti-influenza therapies reaching regulatory market approval in a
near future.

In the context of a globalized world facing major
vicissitudes including population dynamics, climate change
and the multiple emergence/re-emergence of zoonotic
viruses, the effectiveness and reaction force of the classic
de novo development of antivirals is challenged. Despite
inherent limits, drug repurposing offers a very large
palette of possibilities to rapidly and efficiently find new
antiviral drugs.
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Influenza vaccination is a common approach to prevent seasonal and pandemic

influenza. Pre-existing antibodies against close viral strains might impair antibody

formation against previously unseen strains–a process called original antigenic sin. The

role of this pre-existing cellular immunity in this process is, despite some hints from

animal models, not clear. Here, we analyzed cellular and humoral immunity in healthy

individuals before and after vaccination with seasonal influenza vaccine. Based on

influenza-specific hemagglutination inhibiting (HI) titers, vaccinees were grouped into

HI-negative and -positive cohorts followed by in-depth cytometric and TCR repertoire

analysis. Both serological groups revealed cross-reactive T-cell memory to the vaccine

strains at baseline that gave rise to the majority of vaccine-specific T-cells post

vaccination. On the contrary, very limited number of vaccine-specific T-cell clones was

recruited from the naive pool. Furthermore, baseline quantity of vaccine-specific central

memory helper T-cells and clonotype richness of this population directly correlated

with the vaccination efficacy. Our findings suggest that the deliberate recruitment of

pre-existing cross-reactive cellular memory might help to improve vaccination outcome.

Keywords: influenza vaccination, vaccination efficacy, pre-existing cross-reactive T-cells, central memory T-cell,

clonotype diversity
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INTRODUCTION

Influenza infection is a major cause of acute respiratory
infections (1, 2). While healthy individuals manage the infection
efficiently, several groups, including elder, immunosuppressed,
and chronically ill individuals, have a significant risk of prolonged
and complicated infection course and high mortality (2, 3).

Vaccination with trivalent inactivated vaccine (TIV) or
live attenuated vaccine (LAV) is the common approach
to raise protective antibody titers against influenza and is
generally accepted as the most relevant protection factor (4,
5). However, it is not rare that the post vaccination antibody
levels are insufficient. Even though several clinical conditions
are associated with low vaccination efficacy (e.g., chronic
inflammatory and metabolic disorders, immune deficiencies),
the scenario of insufficient or failed vaccination also affects the
healthy population (6–8).

The exact prerequisites and correlates of efficient vaccination
are not completely understood so far but have been attributed
to the vaccine origin, its composition and application mode (9–
14). In case of a primary immune response the contact with
previously unseen pathogenic antigens leads to an inflammatory
process and the recruitment of T- and B-cells from naive pools.
Besides generation of effector cells this leads to formation of

the immune memory, both cellular and humoral. In case of a
secondary immune response, pre-existing memory B- and T-

cells promptly proliferate, differentiate and perform numerous
effector functions, resulting in a rapid raise of antibodies titers

and pathogen clearance. For influenza however, the situation
is somewhat special. The previous contacts with influenza
leave long-lasting and sometimes life-long cellular and humoral
immunity. However, due to antigenic drift and shift new viral
strains are continuously created which are no longer recognized
by the pre-existing memory, what helps the virus to bypass the
pre-existing immunity (15–18). The exact role of pre-existing
immune memory in the development of sufficient protection
against novel epitopes is not clear, yet. Numerous findings
indicate that it can be detrimental and lead to impaired formation
of neutralizing antibody against previously unseen influenza
strains. This phenomenon known as the original antigenic sin
(OAS) was initially linked to the pre-existing cross-reactive
antibodies and cognate memory B-cells (19, 20). However, the
role of pre-existing cross-reactive T-cells in an insufficient and
failed immune response against novel influenza strains was
inferred from the studies on Dengue virus and mouse LCMV
(21, 22). This was further strengthened by several reports
on the suppression of naive and follicular influenza-specific
helper T-cells by the pre-existing cross-reactive memory (23,
24). However, new findings show that pre-existing influenza-
specific memory, both cellular and humoral, is not always
detrimental but on the contrary might be helpful in terms
of vaccination efficacy and protection against natural infection
(25, 26). One report showed that the pre-existing cross-reactive
memory CD4 specific to highly conserved internal influenza
virus proteins are sufficient to alleviate influenza infection in
a human inoculation model (27). However, data on the role
of pre-existing memory against highly variable hemagglutinin

(HA) and neuraminidase (NA) induced by vaccination are
very limited.

The goal of the current study was to elucidate the generation
of influenza-specific helper T-cells upon vaccination with novel,
previously unexperienced strains and to unravel their role in the
formation of humoral immunity against novel influenza strains.

MATERIALS AND METHODS

Study Cohort
A total of 15 healthy adult individuals between 24 and 64 years
old were involved in the study. The including criteria were as
follows: 18 years or older, no previous influenza vaccination with
the strains from the current composition (seasonal influenza
vaccine 2011/2012) and/or no confirmed influenza infections in
the past three years, no acute or chronic diseases, no known
allergy to vaccine components, no pregnancy, good general
health condition, written informed consent.

Vaccination and Sample Collection
The vaccination was performed intramuscularly by a study
physician with the trivalent influenza vaccine (Mutagrip
2011/2012 Sanofi-Pasteur). The vaccine was composed of
A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2),
B/Brisbane/60/2008 according to WHO recommendation. 50ml
venous blood was drawn at day 0, 7, 14, and 21 post vaccination
using Lithium-Heparin Vacutainers (BD Biosciences) and
processed immediately.

Hemagglutination Inhibition Assay
Influenza-specific antibody titers were measured by a standard
hemagglutination inhibition (HAI) assay, using vaccine strains
(s. vaccine composition) and turkey hen erythrocytes (28).
Baseline (day 0) and post vaccination (day 21) sera were tested
simultaneously in duplicates and the antibody titers estimated.
Baseline seronegativity was defined by a HAI titer <10 (29).
For statistical evaluation the combined vaccination efficacy for
three vaccine components was calculated as the sum of the
binary logarithm fold change (1LF) between day 21 and baseline
according to the formula:

1LF =

3
∑

c=1

log2

(

titer
(

c, day21
)

titer
(

c, day0
)

)

,

where the sum ranges over the three components c.

PBMC Preparation
Peripheral blood mononuclear cells (PBMCs) were isolated
by gradient centrifugation with Ficoll-Paque Plus (GE
Healthcare). PBMCs were re-suspended in complete medium
(RPMI/10%FCS/Penicillin/Streptomycin, all from Gibco).

Flow Cytometric Assessment and Isolation
of Influenza-Specific Helper T-Cells
Frequency, cytokine production and phenotype analysis of the
influenza-specific helper T-cells was done after overnight PBMC
stimulation with the vaccine (at least 10µg/mL of HA from
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every strain). As negative and positive controls, PBMC were
incubated alone or with staphylococcal enterotoxin B (1µg/ml,
Sigma-Aldrich). Brefeldin A was added after 2 h of stimulation
(10µg/mL, Sigma-Aldrich). At the end of the stimulation PBMC
were harvested, stained for surface, and intracellular markers
using FACS-Lysing and FACS-Perm Solution (BD Biosciences),
and analyzed on BD Fortessa flow cytometer (BD Biosciences).

Influenza-specific helper T-cells were isolated after overnight
PBMC stimulation with the vaccine (10µg/mL of HA from
every strain) and human anti-CD40 antibodies (clone HB14,
Miltenyi Biotec). Live sorting was done on BD FACS Aria
(BD Biosciences) with sorting strategy provided in Figure S2.
The following subsets were enriched with high purity: naive
(CD45RA+CCR7+), central memory (CM, CD45RA-CCR7+)
and effector (Eff, CD45RA-CCR7-). Following antibodies were
used for the cytometric analysis and sorting: CD3 eFluor
650 (HIT3a, eBioscience), CD4 QDot 565 (OKT4, Biolegend,
in-house fluorochrome coupling), CD8 QDot 525 (RPT-
T8, Biolegend, in-house fluorochrome coupling), CCR7 FITC
(G043H7, Biolegend), CD45RA eFlour 605 (HI100, eBioscience),
CD154 APC/Cy7 (24-31, Biolegend), CD69 Pe/Cy5 (FN50,
Biolegend), TNFa Pacific Blue (Mab11, Biolegend), IFNg Alexa
Fluor 700 (B27, Biolegend), IL2 Pe (MQ1-17H12, Biolegend),
IL4 Pe/Cy7 (MP4-25D2, Biolegend), IL17 PerCP/Cy5.5 (BL168,
Biolegend), CD19 V500 (HIB19, BD Biosciences), CD27 PerCP-
Cy5.5 (M-T271, Biolegend), IgD FITC (IA6-2, BD Biosciences),
CD20 eFluor 650 (2H7, eBioscience), CD38 Alexa Fluor 700 (HB-
7, Biolegend), CD2/3/4/14/15/34/56/61/235a-biotin (as part of
Pan B Cell Isolation Kit, Miltenyi Biotec), anti-biotin-Vio Blue
(Bio3-18E7, Miltenyi Biotec). Peripheral blood plasmablasts were
gated as CD27++CD38++CD20low/- cells among Lineage-
CD19low/+ population (Figure S1). Absolute cell counts in
peripheral blood were estimated as previously described (30).
Detailed information on the sorted influenza-specific CD4 T-cells
is provided in Table S1.

Clonotype Analysis
The clonotype analysis was performed based on NGS-sequencing
of the TCRβ chain of the FACS-enriched influenza-specific
subsets. The detailed method description with primer
sequences and amplification parameters can be found in
the original publication (31, 32). Briefly, DNA was isolated
using AllPrep DNA Micro Kit (QIagen) and the recombined
TCRβ locus was amplified and processed using Illumina
NGS platform. The raw sequencing data were deposited at
Sequence Read Archive (SRA) with the following BioProject
ID: PRJNA445234.

The raw sequences were processed with subsequent clone
grouping on the nucleotide level using our free open-source
clonotyping platform IMSEQ with analysis parameters provided
in the supplementary Method Information (33). Detailed
information on recovered sequencing reads is provided in
Table S1. For the clonotype richness and overlap analysis,
samples with less than 1,000 raw sequencing reads were
discarded. In order to increase sensitivity of the clonotype
analysis, clonotypes from the memory subsets at baseline (CM
and Eff day 0) were grouped as a common pre-existing memory.
The unique clones from the naive and common memory at

baseline were tracked into the memory subsets post vaccination
and the cumulative frequencies of the corresponding clones
were calculated. Clonotype richness was assessed as the number
of unique clonotype after sample size normalization. For this
reason, subsets were size-normalized to 40,000 raw sequencing
reads (corresponding to the size of the smallest analyzed sample)
and the unique clones grouped. The number of unique clones per
normalized sample represented the value of clonotype richness.

Flow Cytometry and Statistical
Data Analysis
FACS data were analyzed with FlowJo 9.9.3 (TreeStar).

Statistical analysis was performed using GraphPad Prism with
following hypotheses defined beforehand:

1. Serologically exposed and non-exposed cohorts show
different kinetics of peripheral blood B- and influenza-specific
CD4 T-cells,

2. Pre-existing influenza-specific T-cells define vaccination
efficacy in the serologically non-exposed cohort,

3. Origin of influenza-specific CD4 T-cells post vaccination:
baseline naive or cross-reactive memory,

4. Clonotype diversity/richness of the pre-existing influenza-
specific CD4 T-cells define vaccination efficacy in the
serologically non-exposed vaccinees.

Normality distribution was assessed by D’Agostino-Pearson
omnibus or Shapiro-Wilk normality test. In case of normal
distribution parametric t test and Pearson correlation were
calculated; otherwise Mann-Whitney test and Spearman
correlation were performed. Multiple comparisons were adjusted
using the Holm-Sidak approach. P-values<0.05 were considered
significant and designated as following: <0.05 as ∗, <0.01 as ∗∗

and <0.001 as ∗∗∗.

RESULTS

First, we assessed the vaccination efficacy in the cohort of 15
healthy individuals anamnestically not exposed to the natural
influenza or the seasonal vaccination in the previous 3 years.
This way subjects with no recent definite contact with influenza
were preselected. However, despite preselection strategy, further
serology analysis showed preformed hemagglutination inhibiting
(HI)-antibodies to one or several viral strains in 7 out of 15 study
participants at baseline. The vaccinees were therefore stratified
into HI-positive and -negative groups according to the baseline
antibody titers (Table 1). Of note, there were no non-responders
in the study. All individuals developed protective antibody titers
upon vaccination.

HI-Negative Donors Develop a Higher
Plasmablast Response Post
Vaccine Application
In order to determine any difference in the B-cell kinetics in
two serological groups, we analyzed peripheral blood B-cells
including plasmablasts (PB) at baseline and day 7, 14, and 21 post
vaccination by flow cytometry. We did not observe any relevant
changes in B-cell populations except PB. These were defined as
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TABLE 1 | Humoral responses to seasonal influenza vaccine assessed as titers of neutralizing antibodies.

Donor ID Age Gender California D0 Brisbane D0 Perth D0 California D21 Brisbane D21 Perth D21 1LF

#30 26 M 1.00 1.00 1.00 8.32 4.91 4.32 14.55

#37 56 F 4.32 3.32 6.32 5.32 3.32 7.32 2.00

#38 30 M 1.00 1.00 1.00 1.00 6.32 3.32 7.64

#39 59 F 1.00 1.00 1.00 1.00 6.32 6.32 10.64

#40 61 M 1.00 1.00 1.00 4.32 7.91 4.32 13.55

#41 57 M 1.00 3.32 1.00 6.32 5.32 5.91 12.23

#42 64 F 1.00 1.00 1.00 1.00 5.32 11.32 14.64

#43 64 M 1.00 5.32 1.00 5.32 6.32 6.32 10.64

#45 26 M 7.32 5.32 1.00 8.32 9.32 5.32 9.32

#47 29 M 1.00 1.00 1.00 5.32 7.91 9.32 19.55

#51 26 M 1.00 1.00 1.00 7.91 4.32 6.91 16.14

#52 24 M 7.32 6.32 1.00 7.32 6.32 4.32 3.32

#53 26 F 1.00 1.00 1.00 9.91 7.32 7.32 21.55

#54 62 F 1.00 4.32 4.32 6.32 6.32 10.32 13.32

#55 29 F 5.32 4.32 4.32 7.32 7.32 7.91 8.58

Neutralizing antibodies were assessed in HIA at baseline and day 21 post vaccination. Data are shown as binary logarithm of the corresponding dilution titers. 1LF represents the

summary serology change for three influenza strains included in the current vaccine composition.

CD27++CD38++CD20low/- among CD19+/low population
(Figure S1) and analyzed as relative frequencies and absolute
counts per mL whole blood. Significant PB rise at day 7 post
vaccination was present in both groups (Figure 1; HI-positive
group p < 0.01; HI-negative group p < 0.001 and p < 0.01
analyzed as frequencies and counts, correspondingly). The HI-
positive group showed less pronounced changes at day 7, and the
HI-negative group had significantly higher PB (p < 0.05 for both
frequencies and absolute counts). Though the analyses were done
on the whole blood level without further determination of B-cell
antigen specificity, the observed population reflects kinetics of
the influenza-specific PB, as previously shown (34, 35).

Influenza-Specific Central Memory CD4
T-Cells Influence the Vaccination Outcome
in HI-Negative Individuals
In order to analyze the role of CD4 T-cells, peripheral blood
samples from both groups were stimulated with the vaccine
and analyzed by means of multiparameter flow cytometry using
markers of antigen-specific stimulation (31, 36). Analyses were
performed at baseline and day 7, 14, and 21 post vaccination as
CD4 T-cell frequencies and absolute counts (Figure S2).

As anticipated, the HI-positive cohort showed pre-existing
influenza-specific helper T-cells at baseline. This was also the case
in the HI-negative individuals (Figure 2A). The kinetics analysis
showed a significant increase of vaccine-specific CD4 T-cells in
both groups with the peak at day 7 post vaccination (HI-positive
group p < 0.05 for frequencies and absolute counts; HI-negative
group p < 0.001 for frequencies and p < 0.01 for absolute
counts) and a steady decline at later time points (Figure 2A). Of
interest, the HI-negative subjects revealed a significantly higher
magnitude of influenza-specific helper T-cells at the peak of
vaccine-induced response as compared to HI-positive cohort.

While no differences between serological groups were found at
baseline and decline, at day 7 the HI-negative group showed
a significantly higher vaccine-specific response (p < 0.01 for
frequencies and p < 0.05 for cell counts).

We next analyzed the differentiation status of influenza-
specific CD4 T-cells before and after immunization. Using CCR7
and CD45RA the differentiation status of T-cells can be assessed
with division into following subsets: naive (CD45RA+CCR7+),
central memory (CM, CD45RA-CCR7+), effector (Eff, CD45RA-
CCR7-), and terminally differentiated memory T-cells (TEMRA,
CD45RA+CCR7-). Our data showed that the majority of
vaccine-specific T-cells at baseline were of memory phenotype
(Figures 2B–D). In both serological groups, CM dominated over
Eff. Surprisingly, both groups also revealed influenza-specific T-
cells with naive phenotype at baseline (Figure 2D). Though in
absolute minority as compared to memory subsets, naive cells
were present in all participants.

The kinetics of vaccine-specific CM CD4 T-cells in the HI-
positive group showed no significant changes. In the HI-negative
group on the contrary, the changes were highly pronounced.
Compared to baseline, influenza-specific CMCD4T-cells showed
a significant increase with the peak at day 7 with further decline
(Figure 2B; p < 0.001 and p < 0.01 between baseline and day
7 and 14, respectively, for both frequencies and absolute counts;
p < 0.05 between baseline and day 21 for frequency analysis).

Kinetics of vaccine-specific Eff CD4 T-cells resembled the
pattern of unseparated influenza-specific T-cells with the peak
at day 7 and a steady decline thereafter (Figure 2C; HI-positive
group p < 0.01 and p < 0.05 for frequencies and counts; HI-
negative group p < 0.01 for both analyses).

Unexpectedly, vaccine-specific T-cells with naive phenotype
did not show any relevant changes in the course of immunization
and were still present post vaccination (Figure 2D). These cells
showed a truly naive nature as Boolean gating revealed low IL2
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FIGURE 1 | Enhanced peripheral blood plasmablast response in the serologically naive group after vaccine application. Peripheral blood plasmablasts (PB) were

defined as CD27++CD38+ cells among CD19+/low population as relative frequencies and absolute cell numbers per mL peripheral blood. Analyses were performed

at baseline and different time points post vaccination in both HI-negative (n = 8) and HI-positive (n = 7) groups. Parametric t tests with the Holm-Sidak approach for

multiple comparisons were performed. The box plots show median with 25th to 75th percentiles and min to max range (whiskers). P-values are designated as

following: <0.05 as *, <0.01 as ** and <0.001 as ***. The applied gating strategy is provided in Figure S1.

and no effector cytokine production. Memory influenza-specific
T-cells on the contrary produced all measured effector cytokines
(Figures S3A,B). Some donors revealed vaccine-specific TEMRA

CD4 T-cells, however, at extremely low frequencies. This cell
subset was therefore not analyzed further (Figure S2).

We further wondered, which factors influenced the
establishment of influenza-specific humoral immunity. Thus,
we performed a correlation analysis between the amount of
influenza-specific helper T-cells, either complete or further
separated based on different differentiation status, and the
degree of humoral response. We found that in the HI-negative
group the absolute counts of influenza-specific CM T-cells at
baseline correlated significantly with the change in vaccine-
specific antibody titer (Figure 2E; Pearson R = 0.78, adjusted
p = 0.02). We could not identify other correlations in the
HI-negative group; there were no correlations in the HI-positive
group. Taken together, the data presented here show that the
number of CM T-cells correlates with the vaccination efficacy in
H-negative vaccinees.

Influenza-Specific Helper T-Cells Post
Vaccination Are Predominantly Recruited
From the Pre-existing Memory
Both serological groups showed efficient vaccination as reflected
by sufficient titers increase post vaccination (Table 1). The
influenza-specific T- and B-cells in the HI-positive group were
responsible for the sufficient cellular and humoral immunity
resulting in increased HI-titers. In the HI-negative group,
on the contrary, the role of the pre-existing cross-reactive
memory T-cells in the vaccination process was not clear
and for this reason we aimed to investigate to which extent
these pre-existing T-cells contributed to the formation of
influenza-specific T-cell memory as opposed to naive vaccine-
specific T-cells.

For this purpose, subsets of vaccine-specific T-cells based
on differentiation status were FACS-sorted at baseline and all
analysis points post vaccination. The T-cell receptor (TCR)
repertoires of all sorted populations were analyzed by sequencing

of the TCRβ chain on the nucleotide level. As T-cells originating
from the same progenitor bear identical TCR on the cell
surface, it can be used as a cellular identifier to track and
thus elucidate the origin of T-cells with different phenotypic
status, inter-subset dynamics and/or tissue distribution as
previously demonstrated (31, 32). In order to define the
origin of the influenza-specific CD4 T-cells post vaccination,
unique clonotypes from the sorted baseline naive or pre-
existing cross-reactive memory subsets (CM and Eff) were
tracked post vaccination at memory subsets and the cumulative
repertoire shares for the found clonotypes were calculated
(schematically shown in Figure 3A). The analysis revealed that
the influenza-specific clonotypes were predominantly recruited
from the pre-existing cross-reactive memory and that these
clonotypes constituted absolute majority of the vaccine-induced
helper T-cells. Tracking naive clonotypes from day 0 in post
vaccination repertoires revealed shared clonotypes of about
1% in only six out of 34 comparison pairs. The remaining
pairs showed either neglectable clonotype share or could
not reveal any single naive clonotype in post vaccination
memory (Figure 3B). The pre-existing cross-reactive memory,
on the contrary, contributed significantly higher to the post
vaccination repertoires constituting up to 80% of the memory
clonotypes (p < 0.001; Figure 3B). Based on these observations,
we conclude, that the influenza-specific helper T-cells are
predominantly recruited from the pre-existing cross-reactive
memory and not the naive repertoires.

Clonotype Diversity of Pre-existing
Influenza-Specific CM T-Cells Correlates
With the Serological Response
to Vaccination
Clonotype richness/diversity is a prerequisite for an antigen-
specific T-cell population to recognize broad array of pathogenic
epitopes, since T-cells targeting numerous epitopes are more
effective at combating the pathogens. To assess whether this
feature of influenza-specific T-cells played a role in the
vaccination efficacy we analyzed the correlation between the
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FIGURE 2 | Influenza-specific CD4 T-cells with CM phenotype define the vaccination efficacy in the serologically naive cohort. (A) Vaccine-specific helper T-cells were

analyzed in both serologically experienced (n = 7) and naive (n = 8) cohorts based on expression of CD154 and CD69, the cytokine-independent markers of

antigen-specific CD4 T-helper activation. Influenza-specific helper T-cells were further analyzed based on CCR7 and CD45RA allowing discrimination of cell with CM

(B), Eff (C), and naive phenotype (D). CM helper T-cells were defined as CCR7+CD45RA-, Eff as CCR7-CD45RA- and naive as CCR7+CD45RA+. Relative

frequencies among CD4 helper T-cells and absolute cell numbers per mL peripheral blood are shown. Parametric t tests with Holm-Sidak approach for multiple

comparisons were performed. The box plots show median with 25th to 75th percentiles and min to max range (whiskers). P-values are designated as following:

<0.05 as *, <0.01 as ** and <0.001 as ***. The applied gating strategy is provided in Figure S2. (E) Pearson correlation analysis of pre-existing vaccine-specific CD4

T-cells with CM phenotype in serologically unexperienced cohort at baseline (n = 8) analyzed as absolute cell numbers per mL peripheral blood and post-vaccination

antibody titer increase. R, Pearson correlation coefficient. The line represents the best linear fit.

clonotype richness and the antibody titer change in the HI-
negative group. As group size drastically influences diversity,
the analyzed samples were first normalized to equal size.
Next, sequence reads were grouped according to the clonal
identity and the number of unique clones was defined as a
measure of the sample richness. Our analyses revealed that
the baseline richness of influenza-specific CM helper T-cells
strongly correlated with serological outcome of vaccination in
the HI-negative group (Figure 4; Pearson R = 0.91, adjusted
p = 0.006). Clonotype diversity of further influenza-specific
populations and time points revealed no correlation to the
serology change. The detailed clonotype composition of CM
T-helper cell at baseline in HI-negative group is presented
in Table S2.

DISCUSSION

Influenza results in the formation of a long-term immunity that
can sometimes last lifelong (4, 37). Contacts with previously seen
epitopes lead to memory activation and fast pathogen clearance.

However, due to antigenic drift and shift new viral strains are

constantly created that can escape pre-existing antibodies and
T-cells. In this case the recruitment of naive T- and B-cells is

necessary for the efficient eradication of novel viruses. Not all
influenza virus components mutate with equal pace with HA
and NA showing the highest mutation rate (38, 39). This results
in a mixed immune response to both conserved and previously
unseen viral epitopes. For several pathogens, including influenza,
there are concerns that the pre-existing humoral and cellular
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FIGURE 3 | Post vaccination influenza-specific helper T-cell repertoires in the serologically unexposed group are formed predominantly from the pre-existing

cross-reactive memory and not the naive T-cells. In the HI-negative cohort influenza-specific clonotypes from the baseline naive and memory subsets (CM and Eff)

were tracked in the memory post vaccination and cumulative frequencies of the clonotypes with different origin (either naive or memory) were determined. (A)

Schematic representation of the performed analysis. Single clonotypes from naive and common pre-existing memory were tracked in post vaccination subsets;

cumulative frequencies of the corresponding clonotypes were estimated. (B) Cumulative frequencies of the influenza-specific clonotypes post-vaccination (n = 40)

originating from either naive (n = 6) or pre-existing cross-reactive memory subsets (n = 14) at baseline. *p < 0.05, **p < 0.01, and ***p < 0.001. Detailed information

on sorted cell populations and sequencing outcome is provided in Table S1.

FIGURE 4 | Clonotype richness of the cross-reactive vaccine-specific CM

T-cells at baseline significantly correlates with the level of serological response

to the previously unseen viral strains. Pearson correlation analysis between the

clonotype richness of influenza-specific CM CD4 T-cell subsets (n = 7) at

baseline and vaccination efficacy in the serologically unexperienced cohort.

Clonotype richness of the influenza-specific T-cells was assessed as the

number of unique clones per subset of normalized size (40,000 arbitrarily

sampled raw sequencing reads according to the size of the smallest analyzed

population). R, Pearson correlation coefficient. The line represents the best

linear fit.

immunity can hamper the response against novel strains and
skew the response against epitopes from previous encounters.
This phenomenon known as original antigenic sin (OAS) was
linked mostly to the pre-existing antibodies and described in
numerous infections, including influenza (31, 40–44). One of

the proposed mechanisms suggested the epitope masking by the
pre-existing antibodies resulting in the inhibited recruitment of
naive B-cells and skewed induction of memory B-cells from the
previous encounters (45–47). The role of helper T-cells in the
development of OAS in humans, however, was hardly addressed
due to sampling and technological limitations. Original data
from the Dengue virus and mouse LCMV studies pointed out
on the cross-reactive T-cell memory among the reasons of the
failed immunity (21, 22). Various animal studies confirmed this
concept (40, 41, 48). However, new data revealed CD4+memory
specific to highly conserved internal influenza virus proteins as a
protection correlate in human influenza infection (27).

Here, we analyzed the role of the pre-existing T-helper
memory in the vaccination against previously unseen influenza
strains. In order to exclude influence of immune senescence
on the vaccination efficacy and decrease the chance of previous
contacts with the vaccine strains, individuals younger than 65
were studied (49, 50). As the vaccine strains were previously
circulating, we first applied anamnestic approach to exclude cases
of overt infection as well as vaccination in the previous 3 years.
As half of the study participants revealed vaccine-specific titers,
these can be due to either subclinical/identified influenza or
contacts with the virus for longer than the defined time window.
Alternatively, this might reflect cross-reactive humoral immunity
as broadly cross-reactive antibodies against numerous influenza
strains were lately described (51, 52). Thus, final cohort definition
relied on baseline serological status and serologically naive group
was defined by absent vaccine-specific titers before vaccination.

The analysis of B-cell kinetics post vaccination revealed a
strong increase of PB frequencies. Though the antigen specificity
of the B-cell subsets was not assessed, the PB rise is most probably
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due to influenza-specific cells. It was previously shown, that up
to 80% of PB at day 7 post vaccination are vaccine-specific (35).
Furthermore, HI-positive cohort showed lower PB rise at the
peak of response as compared to HI-negative one. This might
be attributed to the pre-existing influenza-specific antibodies that
dampen influenza-specific B-cell responses post vaccination (34).
Still, even with lower PB increase the HI-positive group revealed
protective antibody titers.

Using multiparameter flow cytometry and NGS-based
clonotyping, we addressed the role of pre-existing helper T-cells
in the early process of vaccine-specific memory formation.
As MHC-class II tetramers are very limited and restrict cell
analysis to a handful of epitopes and HLA-allele, we applied
ex vivo stimulation and employed cytokine-independent
analysis of antigen-specific helper T-cells (36, 53). Of notice,
all subjects showed pre-existing memory T-cells at baseline,
both serologically exposed and unexperienced, suggesting
cross-reactive memory to conserved vaccine components and/or
third-party antigens. As split vaccine was used for stimulation of
influenza-specific T-cells, not only HA- and NA-specific but also
T-cells with other specificities (including internal proteins NP
and M1) were analyzed. The serology analysis utilizing HI-titers
focused on antibodies targeting HA-antigens as these antibodies
prevent hemagglutination induced by influenza hemagglutinins.
However, even though present before vaccination and included
into the analysis, the NP- and M1-specific T-cells (as well as
other specificities against conserved antigens) are very unlikely
to influence hemagglutinin-specific neutralizing titers as T- and
B-cell-specific epitopes must be physically linked for efficient
T-cell help (54, 55). In fact, it would be interesting to further
clarify the influence of pre-existing NP- andM1-specific T-helper
cell as cytotoxic T-cell with these specificities were associated
with reduced influenza severity (13). Notably, memory T-helper
cells specific to third-party microbial/environmental antigens
were shown to be cross-reactive to influenza (as well as HIV) that
were boosted after vaccination. As newborns showed only naive
T-cells with these specificities it was linked to increased infection
vulnerability (56).

On the clonal level we showed that in the serologically
unexperienced group the vaccine-induced T-cells are recruited
mostly from the pre-existing cross-reactive T-cell memory.
Even though naive-derived T-cells also contributed to post
vaccine-induced response, the clonotype share of naive-
derived cells was neglectable as compared to pre-existing
memory. To our knowledge this is the first report comparing
contribution of pre-existing memory and naive T-cells in
influenza vaccination. Our findings are in line with recent
reports from animal LIV influenza vaccination showing that
the pre-existing cross-reactive CD8 T-cell memory hampered
recruitment of naive specificities (23, 57). Another study
suggested that the subdominant heterotypic CD8 clonalities
suppress naive precursors (58). Further mouse influenza studies
revealed that cross-reactive memory specific to conserved
epitopes inhibited expansion of naive specificities (25, 59).
Another very recent report on whole blood clonotype analysis
did not reveal significant clonotype changes after influenza
vaccination suggesting that only a limited number of T-cells

was recruited in the course of vaccination which was not visible
on a global scale (60). Our findings show that in serologically
unexperienced individuals, the pre-existing cross-reactive
T-cells provide sufficient help to naive B-cells. There is still a
small hypothetical possibility, that even with lacking HI-titers
low levels of HA-specific non-neutralizing antibodies were
present at baseline stemming from the cross-reactive memory
B-cells specific to close viral strains. These cross-reactive B-
cells would eventually develop highly neutralizing antibodies
through somatic hypermutation. However, regardless of the
source of HI-titers, either naive of cross-reactive memory
B-cells, the pre-existing T-cells are helpful in generating
protective antibody titers with no or limited recruitment of
naive T-cells.

We detected vaccine-specific T-cells with naive phenotype
not only at baseline but also in follow-up, a phenomenon
not unique to influenza. Recently, we reported on high
frequencies of A. fumigatus-specific helper T-cells with naive
phenotype (31). Even though Aspergillus represents a ubiquitous
pathogen that constantly tackles the immune system, the
substantial amount of fungus-specific T-cells still remain in
the naive pool. This “dispensability” of naive T-cells might
be another hint on sufficient help from the pre-formed
T-cell memory.

Our analysis revealed that the pre-existing influenza-
specific helper T-cells with CM phenotype at baseline strongly
correlate with the serological response. To our knowledge
this is the first report on the differentiation status of
influenza-specific CD4 T-cells and vaccination efficacy. The post
vaccination expansions of influenza-specific IFNg-producing T-
helper cells as measured by Elispot were shown to tightly
correlate with increase of neutralizing antibodies. However, no
correlation was found between serology and the pre-existing
cross-reactive T-cells at baseline (54, 61). Here, influenza-
specific T-cells were analyzed independently of cytokine-
producing capacities in with markers allowing analysis of
differentiation status.

Another, yet unresolved question is to which extent the
diversity of the antigen-specific T-cells is important for an
efficient immune response. Few reports addressed the role
of clonotype diversity of antigen-specific T-cells in immune
response and specifically influenza vaccination (62, 63). As
more diverse clonotypes cover higher array of antigens, this
should more efficiently target a pathogen. We showed strong
correlation between the richness of pre-existing influenza-
specific CM helper T-cells and the humoral response to
previously unseen influenza vaccine strains. To our knowledge
this is the first report on the repertoire diversity of pre-
existing influenza-specific T-cells and vaccination efficacy.
In line with our results are the data showing impaired
influenza-specific response by restricted diversity CD8 T-cells
in mouse model (64). Another indication on the role of
clonotype composition comes from the human CMV setting,
showing inverse correlation between the breadth of CMV-
specific clonotype and antibody titers (65). Our data are
strongly corroborated by the analysis of circulating follicular
T-helper cells (cTfh) in influenza vaccination that revealed
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strong correlation between an increased cTfh-clonality and
rise of peripheral plasmablast cells post vaccination (62).
However, no link between cTfh-clonality at baseline and
vaccination efficacy was found. As baseline cTfh encompass
limited specificities to previously encountered influenza strains,
further T-helper subsets with differing specificities join cTfh-
pool upon vaccination and provide efficient help to influenza-
specific B-cells.

Although the role of pre-existing T-cells in the generation
of sufficient humoral immunity needs further analysis, several
authors suggest that the pre-existing memory T-cells can be of
great practical importance in vaccination (66, 67). In mouse
models, immunization with inactivated influenza viruses in
the presence of cholera toxin was reported to increase cross-
reactivity and enhance levels of neutralizing antibodies (68).
Currently, numerous studies in humans try to piggyback
cellular immunity to standard vaccines (diphtheria, tetanus,
and pertussis) in order to improve vaccination efficacy in risk
groups (69–71).

One limitation of the current study is the lack of patients
with failed vaccination. Additional studies on a cohort with
low or no response to vaccine in scenarios with or without
pre-existing antibodies would help to elucidate the role of
pre-existing immunity, either beneficial or detrimental, in
this process.

Taken together, our study demonstrates an important role
of pre-existing memory T-cells in the generation of vaccine-
specific humoral immunity to previously unseen strains.
While naive vaccine-specific T-cells could be detected prior
and after vaccine application independently of serological
status, these cells were not recruited in the formation of
vaccine-specific cellular memory as demonstrated by NGS
and multiparameter flow cytometry. Our findings suggest
that T-cell memory from previous encounters with close
influenza strains provides sufficient help to naive B-cells specific
to previously unseen viral strains and that the extent of
previous encounters is beneficial in terms of vaccine-induced
antibody titers.
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Bacterial infections of the respiratory tract constitute a major cause of death worldwide.

Given the constant rise in bacterial resistance to antibiotics, treatment failure is

increasingly frequent. In this context, innovative therapeutic strategies are urgently

needed. Stimulation of innate immune cells in the respiratory tract [via activation of

Toll-like receptors (TLRs)] is an attractive approach for rapidly activating the body’s

immune defenses against a broad spectrum of microorganisms. Previous studies of

the TLR5 agonist flagellin in animal models showed that standalone TLR stimulation

does not result in the effective treatment of pneumococcal respiratory infection but

does significantly improve the therapeutic outcome of concomitant antibiotic treatment.

Here, we investigated the antibacterial interaction between antibiotic and intranasal

flagellin in a mouse model of pneumococcal respiratory infection. Using various

doses of orally administered amoxicillin or systemically administered cotrimoxazole, we

found that the intranasal instillation of flagellin (a dose that promotes maximal lung

pro-inflammatory responses) induces synergistic rather than additive antibacterial effects

against antibiotic–susceptible pneumococcus. We next set up a model of infection

with pneumococcus that is resistant to multiple antibiotics in the context of influenza

superinfection. Remarkably, the combination of amoxicillin and flagellin effectively treated

superinfection with the amoxicillin-resistant pneumococcus since the bacterial clearance

was increased by more than 100-fold compared to standalone treatments. Our results

also showed that, in response to flagellin, the lung tissue generated an innate immune

response even though it had been damaged by the influenza virus and pneumococcal

infections. In conclusion, we demonstrated that the selective boosting of lung innate

immunity is a conceptually advantageous approach for improving the effectiveness of

antibiotic treatment and fighting antibiotic-resistant bacteria.

Keywords: flagellin, Toll-like receptor 5, antibiotic, resistance, Streptococcus pneumoniae, pneumonia,

superinfection
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INTRODUCTION

Pneumonia constitutes a major cause of death, morbidity and
health resource use worldwide. The main causative agents
identified in adult patients hospitalized for community-acquired
pneumonia (CAP) are viruses (in 27–30% of cases, the most
common being rhinovirus, influenza and coronavirus) and
bacteria (14–23% of cases, with a marked predominance of
Streptococcus pneumoniae infections) (1–3). When faced with
overt clinical signs of bacterial pneumonia, the standard of
care is antibiotic treatment. The combination of a constant
rise in antibiotic resistance in recent decades with a decline
in the discovery of new drugs has led to an increase in
treatment failure and mortality (4). In 2017, the World Health
Organization’s Global Action Plan highlighted the urgent need
to control the emergence of antibiotic resistance (5). Given this
context, a number of new anti-infectious treatment strategies are
being developed.

The modulation of innate immunity [by targeting immune
receptors, such as Toll-like receptors (TLRs)] is a promising
approach (6, 7). Indeed, innate immunity is highly conserved
in evolution, and this system constitutes the first line of
defense against invading pathogens. Moreover, innate immunity
triggers a broad range of antimicrobial defense mechanisms and
immune cells—thereby greatly reducing the risk of resistance
in the pathogens. Moreover, activation of TLR signaling has
been associated with a favorable outcome in infections with
antibiotic-resistant bacteria or colonization resistance by such
pathogens (8–10). These observations support that stimulation
and effector activities of innate immunity are not influenced by
the antibiotic resistancemechanisms carried by bacteria. Flagellin
is the main protein component of the bacterial flagellum and
is a natural agonist of TLR5; the latter is expressed at the
surface of amany different cell types, includingmucosal epithelial
cells and immune cells such as dendritic cells, macrophages,
and lymphocytes (11). Various studies in animal models have
highlighted the antimicrobial potency of flagellin against a
wide variety of bacterial infections [such as intestinal infections
caused by Salmonella enterica, Enterococcus faecium, Clostridium
difficile, and Escherichia coli (8, 12–14), respiratory infections
caused by Pseudomonas aeruginosa and S. pneumoniae (15,
16)], and viral and fungal infections (17–19). Although most
studies have demonstrated the protective effect of flagellin
administered before or during exposure to a microbial pathogen,
the protein’s immunostimulatory efficacy in therapeutic context
has not been extensively characterized. Using a mouse model of
S. pneumoniae lung infection, we recently demonstrated that
combination treatment with mucosally administered flagellin
and an orally or intraperitoneally administered low-dose (i.e.,
subtherapeutic) antibiotic is more effective than the antibiotic
alone (i.e., with a lower bacterial load in the lung, and a lower
mortality rate). Furthermore, the combination treatment was
also effective in a model of post-flu pneumococcal superinfection
(20). The effectiveness of these combination therapies depends
on TLR5 signaling as demonstrated using TLR5-deficient
animals and TLR5-mutated recombinant flagellin (20). Our
studies highlighted that the airway epithelium is the main

TLR5-specific signaling compartment (21–23). Taken as a whole,
these observations are the first to highlight the added value
of respiratory delivery of flagellin as an immunomodulatory
biologic for the adjunct treatment of bacterial pneumonia (i.e.,
in addition to the standard of care).

Our working hypothesis was that simultaneous treatment
with an antibiotic and intranasal, i.e., respiratory flagellin
constitutes a “double hit” against the pathogen. A combination
of two drugs may result in independent actions or specific
(i.e., additive, synergistic, or antagonistic) effects that define
the biological outcome (24–26). An interaction between two
drugs is considered to be synergistic when the measured effect
of the combination treatment exceeds the predicted cumulative
value of the two components given separately. Synergy increases
treatment efficacy, and is expected to limit the emergence of drug
resistance. Furthermore, synergy allows the physician to decrease
the dose level or the frequency of dosing, which thereby dampens
adverse drug reactions and may even enable the rehabilitation
of neglected drugs. Conversely, an antagonistic combination
treatment has a smaller effect than the predicted cumulative
value of the two components given separately. Most studies
of potentially synergistic antimicrobial agents are performed in
in vitro systems such as bacterial cultures, using checkerboard
assays and increasing doses of each drug (25, 27). Unlike
antibiotics that directly affect the bacteria, immunomodulatory
biologic activity requires sentinel cells for detection, downstream
signaling and thus the production of antimicrobial effectors and
the recruitment and/or activation of innate immune cells. At
present, there are no comprehensive in vitro models of this
complicated physiological system.

In the present study, we quantified the nature and magnitude
of the interactions between antibiotics and intranasal instillation
of flagellin with regard to antibacterial effectiveness in a murine
model of S. pneumoniae respiratory infections. Furthermore,
we wanted to assess the efficacy of this novel therapeutic
strategy against infection with antibiotic-resistant bacteria, which
represents major public health issues today. To this aim,
we investigated the combination’s effect on antibiotic-resistant
S. pneumoniae in a relevant model of post-flu pneumococcal
pneumonia, and characterized the immune response induced by
the flagellin-mediated protection.

MATERIALS AND METHODS

Bacterial Strains and Cultures
Serotype 1 S. pneumoniae (Sp1; clinical isolate E1586) was
obtained from the National Reference Laboratory—Ministry of
Health, Uruguay (15). Serotype 3 S. pneumoniae (Sp3; strain
104491) was provided by the Institut Pasteur (Paris, France); it
is a multidrug-resistant clinical isolate from a human bronchial
secretion, and is resistant to amoxicillin (AMX), cefotaxime,
doxycycline, erythromycin, chloramphenicol, streptomycin, and
cotrimoxazole (SXT).Working stocks were prepared as described
previously (15, 28). Briefly, fresh colonies grown on blood-
agar plates were incubated in Todd Hewitt Yeast Broth
(THYB) (Sigma-Aldrich, Saint-Louis, MO) at 37◦C until the
OD600nm reached 0.7–0.9 units. Cultures were stored at −80◦C
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in THYB + glycerol 12% (vol./vol.) for up to 3 months.
For infection, working stocks were thawed and washed with
sterile Dulbecco’s Phosphate-Buffered Saline (PBS, Gibco, Grand
Island, NY) and diluted to the appropriate concentration. The
number of bacteria (as colony forming units [CFUs]) was
confirmed by plating serial dilutions onto 5% sheep blood
agar plates.

Mouse Models of Infection
Female BALB/cJ mice, female Swiss mice, and male C57BL/6J
mice (6–8 weeks old) (Janvier Laboratories, Saint Berthevin,
France, or Envigo, Huntingdon, UK) were maintained in
individually ventilated cages and handled in a vertical
laminar flow cabinet (class II A2, ESCO, Hatboro, PA). All
experiments complied with institutional regulations and ethical
guidelines (C59-350009, Institut Pasteur de Lille; Protocol
2015121722429127). Prior to intranasal infection, the mice
were anesthetized via the intraperitoneal injection of 1.25mg
(50 mg/kg) ketamine plus 0.25mg (10 mg/kg) xylazine in
250 µl of PBS. For primary infections with Sp1, 2–4 × 106

CFU were inoculated intranasally in 30 µl PBS, as described
previously (20). The influenza infection model was developed
in our laboratory on the C57BL/6J mice (29, 30). The Sp3
pneumococcal superinfection model was therefore performed
in these animals. Briefly, mice were first infected intranasally
with 30 µl PBS containing 50 plaque-forming units (PFUs)
of the pathogenic, murine-adapted H3N2 influenza A virus
strain Scotland/20/74, as described previously (30, 31). Seven
days later, animals were infected intranasally with 103 CFU of
Sp3 in 30 µl PBS. For the determination of bacterial counts in
lung and spleen, mice were sacrificed at selected times via the
intraperitoneal injection of 5.47mg of sodium pentobarbital
in 100 µl PBS. Tissues were collected and homogenized
with an UltraTurrax homogenizer (IKA-Werke, Staufen,
Germany), and viable counts were determined by plating
serial dilutions onto blood agar plates and incubating them at
37◦C for 12–24 h.

Flagellin and Antibiotic Administration
The recombinant flagellin FliC1174−400 came from S. enterica
serovar Typhimurium FliC and was produced with an histidine
tag, as described previously (20, 32). The protein FliC1174−400

was certified to be immunologically active in reporter cells and in
mouse assays, and the residual lipopolysaccharide concentration
was determined to be <20 pg per µg of flagellin (20). For
flagellin treatment, FliC1174−400 (1 ng to 25 µg in 30 µl
PBS) was administrated intranasally under light anesthesia
via isoflurane inhalation (Axience, Pantin, France). Control
animals received intranasal PBS alone. Mice were treated either
intragastrically with AMX [5–350 µg of amoxicillin trihydrate
(Sigma-Aldrich) in 200 µl water per animal] or intraperitoneally
with SXT—a combination of the antibiotics sulfamethoxazole
and trimethoprim (Bactrim R© Roche, Basel, Switzerland) at
total doses of 1mg (0.84mg sulfamethoxazole and 0.16mg
trimethoprim) or 4mg (3.34mg sulfamethoxazole and 0.66mg
trimethoprim) in 200 µl PBS per animal.

Testing for Synergy and Proportional
Effects
The treatments’ effects on S. pneumoniae lung infection
were quantified as the percentage bacterial growth (%growth),
corresponding to the ratio of the mean bacterial load in the
lungs of infected, treated mice to the load in infected, non-
treated (control) mice. For example, the effect of treatment A
was calculated as follows: %growth[A] = (mean CFU[A]/mean
CFU[control]) × 100. The predicted additive effect (or predicted
%growth) of a combination treatment was calculated as described
previously (33). Briefly, the predicted %growth of a treatment
combining compounds A and B is the product of the
experimentally defined %growth values for each standalone
treatment (predicted%growth[A+B] = %growth[A] × %growth[B]). If
the experimental %growth for the combination treatment is lower
or higher than the predicted %growth, then the two drugs are
synergistic or antagonistic, respectively. When the experimental
and predicted %growth values are identical, the two drugs’ effects
are additive.

Transcriptional Analysis by RT-qPCR
Total lung RNA was extracted with the NucleoSpin RNA Plus
kit (Macherey-Nagel, Duren, Germany) and reverse-transcribed
with the High-Capacity cDNA Archive Kit (Applied Biosystems,
Foster City, CA). The cDNA was amplified using SYBR green-
based real-time PCR on a Quantstudio 12K PCR system (Applied
Biosystems). Relative mRNA levels (2−11CT) were determined
by comparing first the PCR cycle thresholds (Cq) for the gene of
interest and the reference genes Actb and B2m (1Cq), and then
the1Cq values for infected mice treated with the AMX+flagellin
combination treatment and with AMX alone (control group)
(11Cq). All the primers used in the study (listed inTable 1) were
validated for efficacy.

Cell Analysis by Flow Cytometry
Bronchoalveolar lavage (BAL) fluid samples were obtained after
intratracheal injection of 3× 1ml of PBS supplemented with 5%
fetal calf serum (FCS). Lungs were perfused with PBS, excised
and finely minced then digested in a solution of RPMI 1640
medium (Gibco) containing 1 mg/ml collagenase VIII (Sigma-
Aldrich) and 80µg/ml DNase I (Sigma-Aldrich) for 20min at
37◦C. After washes, red blood cells were removed using a lysis
solution (Pharmlyse, BD Bioscience). Lung cell homogenates
were then suspended in a 20% percoll gradient and centrifuged
at 2,000 rpm without brake at room temperature for 10min. The
cell pellets were washed with PBS supplemented with 2% FCS and
cells were filtrated before antibody labeling. BAL and lung cells
were stained with anti-CD45-allophycocyanin-cyanine 7 (clone
30F11), anti-CD11b-Brilliant Violet 785 (clone M1.70), anti-
SiglecF-AlexaFluor 647 (clone E50-2440), anti-Ly6C-peridinin
chlorophyll protein-cyanine 5.5 (clone HK1.4), anti- Ly6G-
phycoerythrin (clone 1A8), anti-CD11c-phycoerythrin-cyanine 7
(clone HL3), and CCR2-Brillant Violet 421 (clone SA203G11)
antibodies. Dead cells were excluded from the analysis using
propidium iodide. The antibodies were purchased from BD
Biosciences (San Jose, CA) or BioLegend (San Diego, CA). Data
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TABLE 1 | Sequences of the primers used for qPCR assays.

Target gene Forward primer (F) Reverse primer (R)

Actb CGTCATCCATGGCGAACTG GCTTCTTTGCAGCTCCTTCGT

B2m TGGTCTTTCTGGTGCTTGTC GGGTGGCGTGAGTATACTTGAA

Ccl20 TTTTGGGATGGAATTGGACAC TGCAGGTGAAGCCTTCAACC

Cxcl1 CTTGGTTCAGAAAATTGTCCAAAA CAGGTGCCATCAGAGCAGTCT

Cxcl2 CCCTCAACGGAAGAACCAAA CACATCAGGTACGATCCAGGC

Il1b AATCTATACCTGTCCTGTGTAATGAAAGAC TGGGTATTGCTTGGGATCCA

Il6 GTTCTCTGGGAAATCGTGGAAA AAGTGCATCATCGTTGTTCATACA

S100a9 CACCCTGAGCAAGAAGGAAT TGTCATTTATGAGGGCTTCATTT

were collected on a BD LSR Fortessa and analyzed with the BD
FACSDiva software.

Cytokine and Chemokine Production
Concentration of CCL20, CXCL1, CXCL2, IL-6, IL-1β, and TNF
was determined in BAL fluids and lung homogenates by enzyme-
linked immunosorbent assay (ELISA kit from eBioscience, R&D
Systems or Becton Dickinson). BAL fluids were obtained by
intratracheal injection of 2 × 1ml PBS supplemented with
protease inhibitors (Roche). Lungs were perfused with PBS and
collected in T-PER reagent (Pierce) supplemented with protease
inhibitors and debris were eliminated by centrifugation. All
samples were stored at−20◦C.

Statistical Analysis
The results were described as the mean ± standard error of the
mean (SEM) or the median (range), as indicated. Intergroup
differences were analyzed using the Mann-Whitney test and the
log rank test. All analyses were performed with Prism software
(version 5.0, GraphPad Software, La Jolla, CA). The threshold for
statistical significance was set to p < 0.05.

RESULTS

Determination of the Minimum Dose of
Intranasal Flagellin for the Full Activation
of Respiratory Tract Innate Immune
Responses
In earlier research, we had shown that the intranasal
administration of a combination of flagellin FliC1174−400

and low-dose antibiotics improved the therapeutic outcome of
lung infection with the antibiotic-susceptible Sp1 [minimum
inhibitory concentration (MIC)AMX = 0.016µg/ml] (20).
Given the difficulty of performing in vitro checkerboard assays
with immunomodulators, we therefore sought to evaluate
the nature of antibiotic-flagellin interactions in vivo. We
first defined the dose of flagellin that promoted saturating
immune responses in Sp1-infected mice (Figure 1). Intranasally
administered flagellin was associated with the production
of various innate immunity-related components, including
chemokines (CXCL1, CXCL2, and CCL20), inflammatory
cytokines (IL-1β and IL-6), and antimicrobial peptides (S100A9),
along with the recruitment of neutrophils to the airways

(15, 16, 20, 21, 23, 28). Mice were treated simultaneously with
oral AMX (0.2 mg/kg) and intranasal flagellin FliC1174−400

(at doses of 0.4 µg to 1 mg/kg, i.e., 1 ng to 25 µg per animal).
Immune responses were analyzed by monitoring the lung
transcription of inflammatory genes associated with TLR5
signaling and by comparing mRNA levels to animals that
received AMX alone. The results showed that doses from 1 to
25 µg per animal saturated the upregulation of transcriptional
response for Cxcl1, Cxcl2, Ccl20, Il1b, and Il6 genes. Ultimately,
the dose of 2.5 µg of FliC1174−400 was selected as a saturating
immunostimulatory dose in the context of pneumococcal
infection and lung inflammation.

The Combination of Antibiotics and
Respiratory Instillation of Flagellin Displays
Synergistic Therapeutic Activity Against
S. pneumoniae Infection
The next set of experiments was designed to characterize the
therapeutic interaction between intranasal flagellin FliC1174−400

and oral AMX.Mice were infected with Sp1 and treated 12 h later
with either a single intranasal instillation of flagellin (2.5 µg),
a single intragastric administration of suboptimal AMX doses
of 5 µg (0.2 mg/kg) or 40 µg (1.6 mg/kg) or the combination
treatment. To define the treatments’ efficacy, lung bacterial
counts were measured at 12 h post-treatment. The results
showed that flagellin alone had mostly no antibacterial effect,
whereas 5 and 40 µg doses of AMX alone were, respectively,
associated with 5- and 7-fold smaller bacterial loads, relative to
untreated mice (Figure 2A). The combination treatment (AMX
+ FliC1174−400) induced a 10-fold relative decrease in bacterial
counts for 5 µg of AMX and a 82-fold relative decrease for 40 µg
of AMX—showing that AMX-flagellin combination treatment is
more effective than the corresponding dose of AMX or flagellin
as monotherapy (Figure 2A). The nature of the interactions
between flagellin and antibiotics was further analyzed by
comparing the bacterial growth upon treatment. The %growth

values for the combination treatment (8.4% for flagellin + AMX
5 µg and 1.2% for flagellin+ AMX 40 µg) were much lower than
the corresponding predicted %growth values for additive effects,
calculated as %growth[AMX] × %growth[flagellin] (19.2% for flagellin
+ AMX 5 µg and 12.3% for flagellin+ AMX 40 µg) (Figure 2B).
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FIGURE 1 | The effect of the flagellin dose on the transcriptional response of immune system-related genes. BALB/c mice (n = 4 per group) were infected intranasally

with 2 × 106 Sp1 and treated 12 h later with the antibiotic amoxicillin (AMX; 5 µg, intragastric administration) combined with the intranasal administration of various

doses of flagellin FliC1174−400 (0.001, 0.1, 0.3, 1, 2.5, 10, and 25 µg in 30 µl of PBS) or vehicle only (PBS). Lungs were collected 2 h post-treatment, and RNA was

extracted and reverse-transcribed. Gene expression was analyzed using quantitative PCR assays. The relative expression level for each gene is expressed against

that of the reference genes Actb and B2m and the reference condition AMX+PBS (arbitrarily set to a value of 1). The data are quoted as the mean ± SEM.

This experiment indicated strong synergy between the
two compounds.

Similar experiments were carried out with the combination
of the antibiotic SXT and flagellin (Figures 2C,D). The
antibiotic SXT was administered intraperitoneally at doses of
1 and 4mg (40 and 160 mg/kg, respectively). Flagellin (2.5
µg) significantly improved the therapeutic outcome of SXT
treatment, as evidenced by CFU counts in the mice’s lungs
12 h after administration of the treatments (Figure 2C).
The experimental %growth values for the combination
treatment were lower than the corresponding predicted
%growth values (14 vs. 23.5% for SXT 1mg, and 0.88 vs. 7.3%
for SXT 4mg)—reflecting a synergy between flagellin and
SXT (Figure 2D).

Taken as a whole, these results show that antibiotics +

flagellin had a strong synergistic effect on pneumococcal
lung infection in mice. Furthermore, the synergy seems
to be independent of the type of antibiotic, since it was

observed with a compound that inhibits bacterial cell wall
(AMX) and a pair of compounds that inhibits folic acid
synthesis (SXT).

A Model of Pneumonia With
Antibiotic-Resistant S. pneumoniae in a
Post-influenza Context
Next, we looked at whether the combination treatment’s effect
on an antibiotic-sensitive S. pneumoniae strain was also exerted
on antibiotic-resistant bacteria. To this end, a mouse model of
infection with a Sp3 strain that is resistant to a wide range of
antibiotics including AMX (MICAMX = 2µg/ml, i.e., 125-fold
higher than for Sp1) was developed. We found that the Sp3
strain failed to induce a lethal infection and other signs of disease
(weight loss) in naïve mice—even at high doses of challenge
(106 or 107 bacteria per animal) (Figures 3A,B). Given that
the influenza virus infection increases susceptibility to bacterial
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FIGURE 2 | Synergy between intranasal flagellin and antibiotics in the treatment of a pneumococcal lung infection. Swiss mice (n = 12–20) were infected intranasally

with 4 × 106 pneumococcus Sp1. The animals were treated 12 h later with the intragastric administration of amoxicillin (AMX; 5 or 40 µg) (A,B), the intraperitoneal

injection of cotrimoxazole that is the combination of the two antibiotics sulfamethoxazole and trimethoprim (SXT; 1 or 4mg) (C,D), and the intranasal administration of

flagellin FliC1174−400 (2.5 µg in 30 µl of PBS) or PBS only. Lungs were collected at 12 h post-treatment, homogenized, and plated with serial dilution onto blood agar

plates. (A,C) Bacterial counts in the lungs of mice. Each symbol represents an individual animal. Colony-forming unit (CFU) counts for individual mice are shown. The

solid line represents the median value, and the dashed line represents the detection threshold. Data from flagellin-treated mice were compared with those from

PBS-treated mice in a Mann–Whitney test (*p < 0.05, **p < 0.01, and ***p < 0.001). (B,D) The treatments’ effects on bacterial growth were quantified as the

percentage of residual growth (% growth) in treated mice (antibiotic + PBS or antibiotic + FliC1174−400 ) vs. untreated mice (PBS). The predicted additive effect was

calculated as % growth[antibiotic] × % growth[flagellin]. The values were plotted according to the dose of antibiotic.

infections even after it has been eliminated (34–37), Sp3 infection
was assessed in mice that had already been exposed to the virus.

Briefly, mice were infected first with an intranasal, sublethal dose
of H3N2 virus (50 PFU) and then infected 7 days later with 103

CFU of Sp3. This bacterial superinfection induced significant

weight loss and was 100% lethal (Figures 3A,B). The bacterial
counts increased gradually over time, and reached 107 CFU per

lung 24 h post-infection (Figure 3C). Sp3 was also detected in the
spleen—indicating a translocation and systemic dissemination of
the bacteria—from 24 h post-infection onwards (Figure 3C). In
conclusion, the antibiotic-resistant Sp3 strain induced effective
pneumonia when animals had been previously exposed to
experimental flu.

An Amoxicilin + Flagellin Combination Is
Effective Against Amoxicillin-Resistant
S. pneumoniae
In order to test the efficacy of an antibiotic+flagellin combination
treatment in the post-influenza Sp3 superinfection model, mice
were treated with AMX alone, flagellin FliC1174−400 alone, or a
combination of both compounds 12 h after the bacterial infection
(Figure 4A). Due to the high level of AMX resistance, the doses
of antibiotic used were 100 µg (4 mg/kg) and 350 µg (14
mg/kg). Using this regimen, the serum concentration levels of
AMX in naïve animals were expected to be close to 1 × MIC
and 4 × MIC, respectively (Professor Charlotte Kloft, personal
communication). Flagellin treatment alone decreased bacterial
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FIGURE 3 | A murine model of pneumonia due to antibiotic-resistant pneumococcus. (A–C) C57BL/6J mice (n = 5–8) were infected intranasally with 106 or 107

antibiotic-resistant pneumococcus Sp3 in 30 µl of PBS or with 50 PFUs of H3N2 virus in 30 µl of PBS followed 7 days later by intranasal administration of 103 Sp3.

(B) Body weight was monitored after Sp3 infection and expressed as a percentage of the initial weight. The data are quoted as the mean ± SEM. (C) Survival was

monitored daily for 12 days. Data were compared in a log-rank test. ***p < 0.001. (D,E) C57BL/6J mice were infection intranasally with 50 PFUs of H3N2 virus in 30

µl of PBS followed 7 days later by intranasal administration of 103 Sp3. (E) Bacterial counts in the lung and spleen of mice (n = 5). Tissues were collected at the

indicated times post-Sp3 infection, and plated in serial dilutions on blood-agar plates. The values correspond to the median (range) CFU count. The dashed line

represents the detection threshold.

counts in the lungs by 5.6-fold, whereas AMX treatments
decreased bacterial counts by 3.7-fold (for a dose of 100 µg) and
74.6-fold (for a dose of 350 µg). When AMX was combined with

flagellin, bacterial counts were of 5,526- and 5,485-fold lower for
the 100 and 350 µg doses of antibiotic, respectively. These results
show a significant therapeutic advantage for the combination
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treatment, relative to standalone AMX or flagellin treatments
(Figure 4B). We also determined CFU counts in the spleen; both
AMX and AMX + flagellin treatments (either with 100 or 350
µg of the antibiotic) were able to prevent systemic dissemination
of the infection (data not shown). Comparison of %growth for
the observed effect of the combination treatment vs. predicted
additive effect (0.7 vs. 8.9% for AMX 100 µg, and 0.02 vs. 0.9%
for AMX 350 µg) demonstrated the synergy of the combination
in the context of superinfection and antibiotic resistance
(Figure 4C). After two administrations of treatments 12 and
36 h after Sp3 superinfection, the flagellin + AMX combination
was found to significantly improve the survival of mice, relative
to standalone treatments (Figure 4D). These data strongly
suggest that flagellin + AMX have synergistic therapeutic effects
to control the antibiotic-resistant pneumococcal infections in
relevant pathophysiological contexts.

The Respiratory Administration of Flagellin
During Amoxicillin Treatment Stimulates
Innate Immunity in the Context of
Pneumococcal Post-influenza
Superinfection
Since infection by influenza virus induces major changes in
lung integrity and immune cell populations, we investigated the
immunomodulatory impact of flagellin on post-flu respiratory
infections by the antibiotic-resistant Sp3 strain. To this end,
C57BL/6 mice were infected with influenza A virus at day
0 and then challenged with antibiotic-resistant Sp3 at day
7. Treatments with oral AMX (100 µg) combined or not
with intranasal flagellin (2.5 µg) were administered 12 h after
Sp3 infection. Lungs were collected 2 h post-treatment for
transcriptional analysis using RT-qPCR assays, as described
in Figure 1. We observed that despite the superinfection,
flagellin still enhanced the transcription of Cxcl1, Cxcl2, Ccl20,
Il1b, Il6, and S100a9 genes, i.e., surrogate markers of TLR5-
mediated lung stimulation (Figure 5A). We next quantified the
cytokine/chemokine production after 6 h of treatment both in the
BAL fluids and lung protein extracts. Delivery of flagellin in the
lung of AMX-treated pneumococcal superinfection significantly
increased levels of CCL20, CXCL1, CXCL2, and Tumor-necrosis
factor (TNF) both in the lungs (Figure 5B) and in the BAL
fluids (Figure 5C) in AMX+flagellin-treated mice compared
with AMX+PBS-treated mice. We also observed increased IL-6
production in both compartments although it was not statistically
significant. Production of IL-1β (or pro- IL-1β) was detected
only in the lung tissue and was increased in flagellin-treated
mice. Finally, we used flow cytometry to evaluate immune cell
populations in BAL fluids and lung tissue collected 12 h post-
treatment. The analysis showed that the neutrophil counts were
higher in mice having receiving the combination treatment (i.e.,
TLR5 stimulation and AMX) than in mice having receiving
AMX alone both in the lung tissues (Figure 5D) and the
BAL fluids (Figure 5E). Interestingly, the innate response to
combination treatment was also detectable in blood since the
production of the inflammatory mediators were significantly
augmented at 2 h (for IL-6, CCL20, CXCL1, and CXCL2) and

6 h (CCL20 and CXCL1) compared to AMX alone treatment
(Supplementary Figure 1). The blood cytokine production then
diminished to an undetectable or very low level at 12 h. Thus,
these observations showed that the mucosal delivery of flagellin
does not induce sustained systemic inflammation. Overall, the
innate immune response to flagellin was effectively stimulated
in the context of the influenza immunological imprinting, the
superinfection challenge, and the antibiotic treatment.

DISCUSSION

Our present results demonstrated the synergistic efficacy of a
combination of an antibiotic (AMX or SXT) and the local
administration of the immunomodulatory biologic flagellin
against respiratory infections caused by S. pneumoniae. Of
note, the efficacy of combined antibiotic + flagellin treatment,
previously demonstrated in inbred BALB/c and C57BL/6 mice
by Porte et al. (20), was here extended to outbred Swiss mice,
showing genetic background independence of the protection.
Remarkably, flagellin was able to trigger lung innate immune
responses in the context of inflammation (i.e., airways damaged
by bacterial pneumonia and flu). Immunostimulation in the
lung was a dose-dependent process that was saturating by
microgram-per-animal levels of flagellin. The synergy appeared
to be independent of the antibiotic dose level and the antibiotic’s
target, since AMX acts on the bacterial cell wall and SXT inhibits
DNA synthesis. The present study is also the first to have
demonstrated that stimulating innate immunity can treat severe
pneumonia induced by antibiotic-resistant pathogenic bacteria;
this may open up new avenues for the treatment of pneumonia in
the context of growing antimicrobial resistance.

It has been demonstrated that intranasal administration of
flagellin activates TLR5-dependent local innate responses with
broad-spectrum antibacterial activity (11, 15, 16, 20, 21, 23).
The pulmonary response includes the production of various
antimicrobial peptides (i.e., cathelicidin antimicrobial peptide
and the β-defensins), cytokines (TNF, IL-1β, and IL-6), and
chemokines (i.e., CCL20, CXCL1, CXCL2, CXCL5, and CXCL8).
This cytokine and chemokine production is in line with the
observed recruitment of phagocytes (and especially neutrophils)
in the lung following the intranasal administration of flagellin
to naïve mice (15, 23, 38). Flagellin intranasal administration
specifically triggers TLR5-mediated transcription in the lungs
from 2 to 30 h after a pneumococcus infection or from 7 to 14
days after an influenza infection (20). Here, we demonstrated
that the lung innate immune signature induced by intranasal
instillation of flagellin is still effective in a highly inflammatory
context with associated lung damage (pneumococcal post-
influenza superinfection), and is not influenced by antibiotic
treatment (Figure 5). Interestingly, earlier reports indicated
that influenza infections promote the partial but sustained
desensitization of TLR-mediated lung innate responses and a
reduction in TLR expression (39). Our observations demonstrate
that, in the physiopathological context of superinfection, flagellin
is still able to trigger sufficient levels of innate defense and exert
synergy with antibiotics (Figure 4).
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FIGURE 4 | Synergy between amoxicillin and intranasal administration of flagellin in the treatment of pneumonia with antibiotic-resistant pneumococcus. (A)

C57BL/6J mice (n = 12–28) were infected intranasally first with 50 PFUs of H3N2 virus in 30 µl of PBS and then 7 days later with 103 antibiotic-resistant

pneumococcus Sp3 in 30 µl of PBS. Mice were treated 12 h after Sp3 infection via the intranasal administration of flagellin FliC1174−400 (2.5 µg in 30 µl of PBS), the

intragastric administration of amoxicillin (AMX; 100 or 350 µg), or combination of both. Lungs were collected 24 h post-infection, homogenized, and plated in serial

dilutions onto blood agar plates to measure the bacterial load. For survival experiment, mice received a second dose of the same treatment at 36 h post-Sp3 infection.

(B) Lung bacterial counts. Colony-forming unit (CFU) counts for individual mice are shown, and the solid line represents the median value. The dashed line represents

the detection threshold. Data from flagellin-treated and control (PBS-treated) mice were compared in a Mann-Whitney test (**p < 0.01, and ***p < 0.001). (C)

The treatments’ effects on bacterial growth were quantified as the percentage of residual growth (%growth) in treated mice (AMX+PBS or AMX+FliC1174−400) vs.

untreated mice (the PBS group). The predicted additive effect was calculated as %growth[AMX] × %growth[flagellin]. The values were plotted according to the dose of

AMX. (D) Survival was monitored daily for 12 days. Data from the treated groups were compared with data from an untreated group in a log-rank test (**p < 0.01, and

***p < 0.001).

Airway epithelial cells have been identified as an important
component for detection of flagellin and TLR5 signaling at
homeostasis (21, 22). These sentinel cells not only sense danger
signals introduced in the conducting airways but also produce
factors to directly impair the colonization and growth of
pathogens or indirectly mobilize phagocytic and immune cells to
clear infection. More generally, airway epithelium TLR signaling
represent a key driving force in antibacterial defense (40).
Recently, Anas et al. demonstrated an essential contribution of
epithelial signaling in the respiratory tract in response to flagellin
in the context of infection with Pseudomonas aeruginosa (41).
Our data showed that several antimicrobial peptides (S100A9),
cytokines (IL-1β and TNF), and chemokines (CCL20, CXCL1,
and CXCL2) that were associated to epithelial responses are
also upregulated after the administration of the combination
treatment in the post-flu superinfection model, suggesting that
the epithelium is also an important flagellin-specific driving force
in the lung damaged by viral and bacterial infections. Targeting
epithelium is a serious benefit for immunostimulation since it
allows reducing the dose and bypassing systemic adverse effects.

Our data contribute to highlight the therapeutic potential
of the association of two drugs with distinct modes of action:

an antibiotic with a direct effect on bacteria, and a TLR5-
specific stimulator of innate immunity with indirect antibacterial
activity mobilizing both multiple phagocytic host cells and
various antimicrobial factors such as antibacterial peptides, and
chemokines and cytokines that mobilize and activate immune
cells. Besides pathogen killing, the multitargeting of innate
immunity by flagellin could impact on bacterial fitness and
thereby increase susceptibility to the antibiotic. The innate
immune response induced by TLR5 signaling may also modify
the distribution of antibiotic in lung tissues while the antibiotic,
by damaging the pathogen, could also enhance the immune
signaling. In addition, the pharmacokinetics of the antibiotic
and the immunostimulator, i.e., a short-term dose-dependent
effect for the antibiotic, and an immediate and long-lasting
impact of the immunostimulator due to cell mobilization, are
likely complementary. Finally, flagellin, by modulating innate
immunity in the respiratory tract, has been shown to enhance the
mucosal and systemic adaptive immunity (22, 23). Such property
may be of interest to elicit anti-pathogen immune memory and
prevent recurrent/relapse infections.

As an opportunistic bacterium, S. pneumoniae frequently
colonizes the upper respiratory tract and thus represents
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FIGURE 5 | Lung innate immune response during flagellin treatment in post-flu superinfection with antibiotic-resistant pneumococcus. C57BL/6J mice (n = 4–6) were

infected intranasally first with 50 PFUs of H3N2 virus in 30 µl of PBS and then 7 days later with 103 antibiotic-resistant pneumococcus Sp3 in 30 µl of PBS. Mice

were treated 12 h after Sp3 infection with the antibiotic amoxicillin (AMX; 100 µg, intragastric administration) and the intranasal administration of flagellin FliC1174−400

(2.5 µg in 30 µl of PBS) or PBS only. (A) Lungs were collected 2 h after treatment, and homogenized. After RNA extraction, expression levels of selected genes were

then analyzed using RT-qPCR assays. The relative expression level for each gene is expressed against that of the reference genes Actb and B2m and the reference

condition AMX+PBS (arbitrarily set to a value of 1). The data represent the mean ± SEM. Lungs (B) and BAL fluids (C) were collected 6 h after treatment and cytokine

(Continued)
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FIGURE 5 | and chemokine levels were measured by ELISA. Data from AMX+flagellin-treated and AMX+PBS-treated mice were compared in a Mann-Whitney test

and are represented as individual values and mean. Lungs (D) and BALs (E) were collected 12 h after treatment. Lungs and BAL cell suspensions were stained using

a mixture of antibodies specific for surface markers before flow cytometry analysis. Neutrophils were defined as CD45+CD11b+Ly6G+ cells after exclusion of dead

cells and alveolar macrophages (CD45+SiglecF+CD11c+ cells) from the analysis. Numbers of neutrophils in the lung parenchyma (D) and BAL fluids (E) are shown

for individual animal and the line represents the mean. Data from AMX+flagellin group were compared to those of AMX+PBS group in a Mann-Whitney test. Statistical

significance is indicated as follows: *p < 0.05, and **p < 0.01.

the prime cause of bacterial-associated CAP (42). However,
other microorganisms can cause CAP and healthcare-associated
pneumonia; they include Gram-positive bacteria such as
Staphylococcus aureus,Gram-negative bacteria like P. aeruginosa,
Klebsiella pneumoniae, Haemophilus influenzae,mycoplasma (M.
pneumoniae) and intracellular bacteria (Legionella pneumophila)
(1). The diagnosis and treatment of CAP is complicated by
the broad variety of causative agents, and the progression
of antibacterial resistance. In this context, immunomodulators
such as flagellin are of great interest because they activate a
large number of antimicrobial immune mechanisms. Indeed,
flagellin has already demonstrated its ability to protect against
various pathogens including Gram-negative and Gram-positive
bacteria (8, 12–16, 20). Furthermore, our present results showed
that the therapeutic synergy between antibiotic and intranasal
flagellin is independent of the antibiotic’s mechanism of action—
suggesting that flagellin can potentially be combined with
various antibiotics for a wide range of clinical situations. The
synergistic effects of the combined therapy have been determined
to be independent of capsule antigenicity (serotype 1 or 3)
of pneumococcus, suggesting that the general innate immune
protecting mechanisms triggered by flagellin could potentially be
effective against a large variety of serotypes.

Given the progression of antibiotic resistance, a model
of infection by antibiotic-resistant bacteria would constitute
an important tool for developing alternative anti-infectious
approaches. We first attempted to develop such a model in
immunocompetent animals. The multidrug-resistant clinical
isolate of pneumococcus Sp3 was unable to induce a lethal
infection, even at high doses. Acquisition of antibiotic resistance
is often associated with a loss of bacterial fitness (43), which
might explain the Sp3’s very low virulence in naïve mice. It is
now becoming clear that many cases of bacterial pneumonia
result from co-infections or consecutive infections (especially
influenza virus infections) (37). As shown by Figures 3D,E, 4,
influenza virus infection creates a favorable environment for
colonization and invasion by the low-virulence antibiotic-
resistant pneumococcus Sp3 strain. Our data demonstrated that
the flagellin+AMX combination treatment effectively reduces
the bacterial burden caused by the Sp3 strain in the lung,
and improves the survival rate among treated mice. Our
proof-of-concept findings may be transposable to the clinic
for patients with co-infections and superinfections, which
are relevant physiopathological causes of hospitalization and
complicated pneumonia.

Antibiotics constitute the current standard of care for bacterial
pneumonia, and the growing threat of antibiotic resistance
is a major public health concern. When defining the dosing
regiments of antibiotics used to treat a patient, the physician

must take account of the antibiotic’ pharmacokinetic and
pharmacodynamic characteristics. The relationship between in
vivo exposure to the drug and in vitro susceptibility of the
bacteria conditions not only the treatment’s clinical outcome
(i.e., clearance of the infection) but also adverse effects or drug
toxicity (44). Thus, the maximum dose of antibiotic that can
be administered to a patient may not be enough to totally clear
highly resistant bacteria. Our data suggest that the antibacterial
efficacy of these antibiotic dose levels can be synergistically
enhanced by the effect of flagellin on lung innate immunity.

Taken as a whole, the present results suggest that the selective
boosting of innate lung immunity by flagellin improves the
therapeutic outcome of antibiotic treatment. In humans, this
approach might be a useful generic alternative to the treatment
of bacterial pneumonia, thereby reducing the antibiotic dose
and regimen as well as the emergence of antibiotic resistance.
Moreover, such strategy promotes multitarget inhibition through
multiple innate immune effectors that should be more resistant
to the development of resistance and may restore some
antibacterial activity to antibiotic in the context of antibiotic
resistance. Characterization of flagellin’s contribution to the lung
antibacterial defenses at the molecular and cellular level and the
protein’s synergy with antibiotics is likely to open up new avenues
for the immunotherapy of respiratory tract infections.
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Aspergillosis is difficult to treat and carries a high mortality rate in immunocompromised

patients. Neutrophils play a critical role in control of infection but may be diminished

in number and function during immunosuppressive therapies. Here, we measure the

effect of three bifunctional small molecules that target Aspergillus fumigatus and

prime neutrophils to generate a more effective response against the pathogen. The

molecules combine two moieties joined by a chemical linker: a targeting moiety (TM)

that binds to the surface of the microbial target, and an effector moiety (EM) that

interacts with chemoattractant receptors on human neutrophils. We report that the

bifunctional compounds enhance the interactions between primary human neutrophils

and A. fumigatus in vitro, using three microfluidic assay platforms. The bifunctional

compounds significantly enhance the recruitment of neutrophils, increase hyphae killing

by neutrophils in a uniform concentration of drug, and decrease hyphal tip growth velocity

in the presence of neutrophils compared to the antifungal targeting moiety alone. We

validated that the bifunctional compounds are also effective in vivo, using a zebrafish

infection model with neutrophils expressing the appropriate EM receptor. We measured

significantly increased phagocytosis of A. fumigatus conidia by neutrophils expressing the

EM receptor in the presence of the compounds compared to receptor-negative cells.

Finally, we demonstrate that treatment with our lead compound significantly improved

the antifungal activity of neutrophils from immunosuppressed patients ex vivo. This type

of bifunctional compounds strategy may be utilized to redirect the immune system to

destroy fungal, bacterial, and viral pathogens.

Keywords: neutrophil, fungi (mycelium and spores), Aspergillus fumigatus (A. fumigatus), bifunctional molecules,

cloudbreak, microfluidic, zebrafish
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INTRODUCTION

Humans are continuously exposed to airborne spores of
the saprophytic fungus Aspergillus fumigatus (A. fumigatus).
In healthy individuals, pulmonary host defense mechanisms
efficiently eliminate this mold. However, the incidence of invasive
pulmonary aspergillosis (IPA) has risen in recent decades,
reflecting the increasing number of immunosuppressive medical
interventions such as chemotherapy, hematopoietic stem cell
and solid organ transplants (1, 2). Even with appropriate
antimicrobial therapy, the mortality rate of IPA remains as
high as 50% (3, 4). In a recent clinical study of patients with
acute lymphoblastic leukemia (ALL), 6.7% of patients developed
invasive fungal infections within a median time of 20 days
after induction of chemotherapy, with a high (19.2%) 12-week
mortality after diagnosis of invasive aspergillosis (IA) (5). There
is an increasing demand for novel therapeutic strategies aimed at
enhancing or restoring antifungal immunity (6).

Recently, exploration has begun into the promise of
using immunotherapy to combat IA, with use of cytokines
and granulocyte transfusions, alone or in combination with
antifungal therapy. In the past, chemokines have been tested to
modify effector and antigen presenting cells in the context of
cancer (7). Modulation of neutrophil functions are an especially
promising immunotherapeutic strategy (8). Colony stimulating
factors (CSFs) and cytokines, mainly IFN-γ, have been utilized in
the clinical management of fungal diseases. CSFs and granulocyte
transfusions are used to augment the number and function of
circulating neutrophils in neutropenic patients (9). Other in vivo
studies report on the anti-Aspergillus activity of neutrophils,
including the rapid resolution of IPA following recovery of
chemotherapy-induced neutropenia (10, 11). Ex vivo loading of
the antifungal drug posaconazole into HL60s, a neutrophil-like
cell line, enhanced activity against A. fumigatus, and transfusion
of these cells improved survival outcome in a mouse model of
IPA (12).

Neutrophils are one of the key targets for fungal
immunotherapy because of their critical role in preventing
infections. In different immunocompromised murine models,
myeloid (notably neutrophils and macrophages), but not
lymphoid cells, were strongly recruited to the lungs upon
infection. Other myeloid cells, particularly dendritic cells and
monocytes, were only recruited to lungs of corticosteroid treated
mice, which developed a strong pulmonary inflammation
after infection (13). Both macrophages and neutrophils are
known to kill conidia, whereas hyphae are killed mainly by
neutrophils (14, 15). Some evidence suggests that killing of
conidia by neutrophils in vitro depends whether or not the
conidia are in a “resting” or “swollen” state (16). In vivo,
early recruitment of neutrophils to the lung is important to
inhibit germination of A. fumigatus conidia and to restrict
growth of hyphae (17). Since hyphae are too large to be
engulfed, neutrophils possess an array of extracellular killing
mechanisms, including the creation of swarms surrounding
the fungi and the formation of neutrophil extracellular traps
(NETs), which consist of nuclear DNA decorated with fungicidal
proteins (18, 19).

Microfluidics are emerging as an important tool for precisely
quantifying neutrophil-pathogen interactions (20). We have
recently reported on microfluidic devices that enabled the
measurement of neutrophil-fungus interactions at single-cell
resolution. We found that human neutrophils have a limited
ability to migrate toward and block the growth of A.
fumigatus conidia (21) and that the growth-blocking ability
of human neutrophils is significantly enhanced by peptide
chemoattractants such as N-Formyl-Met-Leu-Phe (fMLP), which
act through the Formyl Peptide Receptor (FPR1) on neutrophils.
This effect of chemoattractants is significantly larger in the
presence of chemoattractant gradients compared to uniform
concentrations (21). To study interactions between neutrophils
and hypha in detail, we have developed an “infection-on-a-chip”
device, which enabled the detailed analysis of neutrophil-hypha
interaction at single-cell resolution over time and revealed the
importance of hypha branching, neutrophil recruitment, and
iron sequestration on blocking hypha growth (22).

Here, we present a novel immunotherapy strategy that
aims to enhance the interactions between neutrophils and
fungi and direct the natural innate immune system to achieve
control over fungal infection. Using microfluidic platforms, we
quantify a significant increase in recruitment of neutrophils and
hyphae killing in both gradients and uniform concentrations of
bifunctional compounds that bind both to fungi and neutrophils.
Wemeasure decreased hyphal tip growth velocity in the presence
of bifunctional compounds compared to the antifungal targeting
moiety alone. Using a zebrafish model of conidial phagocytosis,
we demonstrate molecular specificity for drug action through
human FPR1 in vivo. Finally, we demonstrate that these
bifunctional compounds significantly improve the antifungal
activity of neutrophils from immunosuppressed patients ex vivo.

RESULTS

Bifunctional compounds are molecules with two binding sites:
a targeting moiety (TM), which recognizes a target on the
surface of microbes, and an effector moiety (EM), which binds
to a receptor on the surface of the immune cells (7, 23, 24)
(Figure 1A). Here, we tested bifunctional compounds that used
caspofungin (CAS) and amphotericin B (AmB) as TMs with
affinity to known fungal targets: (1-3)-β-D-glucan synthase and
ergosterol, respectively. These compounds were linked to the
EM fMLP, which is an FPR1 ligand (Figure 1B, Figure S1). The
coupling of the TM to the EM results in bifunctional compounds
designed to decorate fungal targets with potent activators of
innate immune cells, with the goal of enhancing antifungal
activity (Figure 1C). To visualize decoration of fungal hyphae via
antifungal TMs, we utilized a boron-dipyrromethane (BODIPY)
labeled caspofungin (TM-BODIPY) conjugate. Treatment of
RFP-expressing fungal hyphae for 30min with TM-BODIPY
[10mM] augmented the BODIPY fluorescent signal at the hyphal
interface (Figure 1Dii). This effect is most likely due to the
specific binding and accumulation of antifungal TM on the
surface of the fungi, and was not observed for a BODIPY-labeled
formyl peptide (EM-BODIPY) negative control (Figure 1Di).
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FIGURE 1 | Design of immunogenic bifunctional compounds for enhancing neutrophil activity against fungi. (A) Diagram shows conceptual basis of bifunctional

compounds design to stimulate interactions between specific immune cell types and microbes. The bifunctional compounds used in this study utilize antifungal TMs

and a formyl peptide EM with the aim of stimulating neutrophil activity against fungi. (B) Chemical structures detailing synthesis of C-001/C-014 and C-016 by fusion

of an fMLP EM with caspofungin (CAS) and amphotericin B (AmB) TM, respectively. Detailed synthesis methods can be found in the Supplementary Material. (C)

Hypothesized mode of action: Binding of formyl peptides enhances neutrophil activation, while molecules decorating the fungal surface further stimulate their

anti-microbial activities. (D) Targeting of compounds to the fungal surface via the antifungal TM caspofungin. Following 30min of treatment with caspofungin-BODIPY

conjugate, RFP-expressing hyphal structures are clearly labeled with the fluorescent signal from BODIPY (ii). This specific decoration of the fungal surface does not

occur using a BODIPY-conjugated formyl peptide control (i). Scale as shown.
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TABLE 1 | MIC/MEC values (µM) for conjugates and control compounds.

A. fumigatus

Compound MAY-3626 MAY-4609 ATCC 13073

CAS >29/0.055 >29/0.11 >29/0.11

C-014 >20/0.16 >20/0.076 >20/0.16

AmB 0.54 0.54 0.54

C-016 1.4/1.4 2.8/0.7 2.8/1.4

Bifunctional Compounds Amplify Human
Neutrophil Migration Toward A. fumigatus

and Suppression of Fungal Growth
To confirm that the bifunctional compounds interact with
human neutrophils via FPR1, we tested the ability of the
compounds to induce neutrophil chemotaxis. First, we calculated
the minimum inhibitory concentrations (MICs) and minimum
effective concentration (MEC) of our compounds against
A. fumigatus (AF293) in the absence of neutrophils (see
Supplemental Materials). Compounds C-001 and C-014 (CAS-
formyl peptide conjugates), as well as C-016 (a AmB-formyl
peptide conjugate) demonstrated potent MIC/MEC values,
which suggested excellent affinity of the TMs (Table 1).

Next, we validated that these concentrations also induced
maximum chemotaxis of human neutrophils. Measurement of
healthy-donor neutrophil recruitment showed that C-001, C-014,
and C-016 retained potent chemotactic activity. The chemotactic
activity of the compounds was comparable to that of an optimal
concentration of fMLP (25), with [10 nM] C-001, and [100 nM]
of C-016 or fMLP inducing maximum neutrophil migration in
the microfluidic assay (Figure 2C). Importantly, CAS and AmB
were not chemotactic to neutrophils (Figure 2C).

To investigate the interactions between neutrophils and
fungi at single-cell resolution, we utilized our microfluidic
infection-on-chip platforms, which provide well-controlled
microenvironment conditions (21). In the absence of drug, we
observed that low numbers of neutrophils migrate naturally
toward A. fumigatus hyphae in the chemotaxis-chambers
(Figure 2B top panel Movie S1). We tested that human
neutrophils are activated in the presence bifunctional compounds
by measuring the change in circularity and reactive oxygen
species (ROS) production (Figure S2). We also ran a dose-
response experiment to identify the optimal concentration of
C-001, C-014, and C-016 to induce neutrophil chemotaxis in
the presence of A. fumigatus (Figures S3, S4). C-001 [10 nM],
C-014 [10 nM], and C-016 [100 nM] were able to produce a
significant influx of neutrophils compared to A. fumigatus alone.
The bifunctional compounds were less chemotactic than the
fMLP [100 nM] positive control in the presence of A. fumigatus,
likely due to the lower [10 nM] concentration used for C-001 and
C-014 (Figure 2C).

In the chemotaxis-chamber devices, in the absence of
neutrophils, 80.7 ± 4.6% of the conidia germinated within
6 h. The antifungal backbone alone had minimal effect on the
germination of conidia within the same time interval (CAS:

71.8 ± 10.4% and AmB: 83.4 ± 4.2%). Neutrophils alone
reduced the fraction of conidia germination to 47.9 ± 7.8%
(N = 8). Remarkably, human neutrophils further reduced the
fraction of conidia germinating in the presence of C-001 (13.2
± 3.4, N = 10), C-014 (16.0 ± 9.7%, N = 4), and C-016
(11.2 ± 6.0%, N = 4) (Figure 2D, Movies S2, S3). Maintained
conidial fluorescence even following phagocytosis by neutrophils
(Figure 2B) indicated that although conidial germination was
suppressed, some of these spores likely remained viable within
neutrophils over the timeframe imaged.

Uniform Concentrations of Bifunctional
Compounds Significantly Enhance the
Activity of Human Neutrophils Against
Growing Hyphae
To measure the interactions between human neutrophils
and fungi in uniform concentrations of drug, we confined
these interactions within nanowells (300µm wide × 500µm
long × 50µm deep) (Figure 3A). We loaded fungi into
the wells and allowed the conidia to germinate for 7 h.
We added isolated human neutrophils to the wells (average
concentration: 30 neutrophils/well), in the presence and absence
of uniform concentrations of bifunctional compounds and
control chemoattractants, and monitored the interactions
between neutrophils and fungi for 18 h. The ability of neutrophils
to block conidia germination was enhanced in the presence
of C-016 [10 nM – 1.7% conidia germination] compared
with uniform concentrations of fMLP [100 nM – 21.4 %
conidia germination] (Figure 3C). Strikingly, we also observed
a significant increase in the number of neutrophil “swarms”
(clusters of more than 6 neutrophils) in the presence of C-
016 (Figures 3B,D), which correlated with enhanced suppression
of hyphal growth in that condition. This “swarming” effect
might have been facilitated by the shorter distances between
neutrophils and germinating conidia and faster recruitment
of larger neutrophil numbers compared to the chemotaxis-
chamber assay.

Bifunctional Compounds Help Neutrophils
Block Hyphal Tip Extension
We have previously described the ability of neutrophils to
interact with growing hyphal tips and suppress their growth
(22). Using similar microfluidic devices (22) that allow fungi
to grow for 18 h before interactions with neutrophils and
confine growing hyphae into channels, we tested whether
bifunctional compounds enhance the interaction between
neutrophils and hyphae. We found that the velocity of
hypha growth was drastically reduced from ∼11 to ∼0.5–1.5
µm/min by the presence of human neutrophils and bifunctional
compounds (P = 0.05, N = 10) (Figures 4A,B, Figure S5,
Movies S4, S5). The velocity of hypha growth was not altered
in the presence of antifungal controls and was only reduced
to ∼6 µm/min in the presence of neutrophils without the
bifunctional compounds.
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FIGURE 2 | Gradients of bifunctional compounds enhance human neutrophil recruitment and their ability to suppress A. fumigatus hyphal growth. (A) A previously

published device consisting of fungal growth chambers connected via migration channels to one central neutrophil reservoir are used to test neutrophil chemotaxis in

response to gradients of bifunctional compounds (21). (B) Representative images show A. fumigatus (red, RFP) hyphal growth and neutrophil (blue, Hoechst)

recruitment in chambers at 0 and 16 h in the presence of C-016 (bifunctional conjugate with amphotericin B TM and formyl peptide EM, lower panels) or amphotericin

B (AmB, upper panels) controls. Gradients of C-016 resulted in enhanced neutrophil recruitment and effective suppression of hyphal growth compared to

amphotericin B alone. Scale as shown (C). Quantification of neutrophil recruitment at 16 h in response to bifunctional compounds compared to relevant controls.

Chemotaxis of neutrophils was enhanced in the presence of the formyl peptide control (fMLP [100 nM]) and all three bifunctional formyl peptide conjugates compared

to untreated and antifungal-treated controls. (D) Quantification of hyphal growth at 16 h following treatment with bifunctional compounds in the presence of

neutrophils compared to relevant controls. Only partial suppression of hyphal growth was observed in the presence of neutrophils alone. This was significantly

enhanced by treatment with all three bifunctional conjugates and the formyl peptide control, as previously described (20). Antifungal controls used at the relevant

concentrations did not affect fungal growth. Bar graphs show mean and standard error from pooled experimental replicates. Statistics: two-tailed T-test. *p ≤ 0.05,

**p ≤ 0.01, ***p ≤ 0.001, and ****p < 0.0001.

Bifunctional Compounds Enhance
Phagocytosis of Conidia by Humanized
Zebrafish Neutrophils
To assess whether bifunctional compounds could enhance
neutrophil responses in vivo, we utilized an established zebrafish
infection model that has been used to study the activity of
innate immune cells in response to A. fumigatus conidia and

hyphae (26–28). In this model, conidial phagocytosis is heavily
predominated by macrophages rather than neutrophils (26, 28).

Consequently, reducing macrophage numbers (via knockdown

of spi1 expression using antisense oligonucleotides that block

translation of spi1 mRNA) was required for isolating the effect

of neutrophil activities on A. fumigatus conidia phagocytosis and

clearance (26, 27).
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FIGURE 3 | Uniform concentrations of bifunctional compounds enhance the ability of human neutrophils to suppress hyphal growth and stimulate neutrophil

swarming. (A) Diagram of previously described nanowell device designed to test drug activity at uniform concentrations (21). Fungal conidia are allowed to germinate

and grow for 7 h prior to addition of neutrophils in the presence or absence of neutrophils. (B) Representative images show swarming of neutrophils

(polymorphonucleocytes, PMNs, blue, Hoechst) around A. fumigatus hyphae induced by the presence of C-016. (C) Quantification of hyphal growth in this device

demonstrates significant suppression by neutrophils, either in the presence or absence of fMLP or AmB treatment. This suppression was further enhanced in the

presence of C-016. (D) Quantification of neutrophil swarms around growing A. fumigatus hyphae shows a significant increase in the presence of C-016 vs. control

conditions. Bar graphs show mean and standard error from pooled experimental replicates. Statistics: two-tailed T-test. *p ≤ 0.05, ***p ≤ 0.001, and ****p < 0.0001.

FPR1 sensitivity has been shown to vary widely between
mammalian species, with mouse and rat neutrophils exhibiting
poor recruitment in response to fMLP compared to human cells
(29). There is evidence that zebrafish neutrophils do respond to
formylated peptides (30, 31), although experiments in this model
have been complicated by inability to distinguish direct responses
to chemoattractant from recruitment to injured tissue at the site
of microinjection. To avoid this complication in our experiments,
we delivered pre-treated conidia at one site (the duct of Cuvier)
and analyzed neutrophil responses at a spatially distant site (the
caudal venous plexus) (Figure 5Ai).

To test whether bifunctional compounds could enhance
phagocytosis of A. fumigatus conidia, we microinjected pre-
treated and control conidia along with test or control compounds
into the circulation, then imaged the caudal venous plexus 2 h

post-infection (hpi) (Figure S7A). Despite effective suppression
of the macrophage lineage by treatment with antisense
oligonucleotides targeting spi-1 mRNA transcripts (spi1-
MO) (Figure S7B) and comparable numbers of neutrophils
(Figure S7B) and conidia (Figure S7C) present in all
groups, no significant increase in the percent of phagocytic
neutrophils (Figure S7D) or the number of engulfed conidia
(Figure S7E) was observed following pretreatment with
bifunctional compounds.

Colony forming units (CFU) provide a poor readout of
infectious burden for hyphal pathogens, because unlike single-
cell organisms like bacteria or yeast, fungal filaments cannot
be reliably homogenized into individual viable units. To assess
whether fungal burden might be suppressed following treatment,
we therefore scored larvae at 24 hpi for RFP-positive hyphae
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FIGURE 4 | Bifunctional compounds enhance the ability of human neutrophils

to suppress hyphal tip extension. (A) Representative images show

suppression of hyphal tip (red, RFP) elongation by neutrophils (blue, Hoechst)

in the presence of C-014 [10 nM]. (B) Quantification of hyphal growth velocity

demonstrates significant suppression in the presence of bifunctional

compounds C-001 [10 nM], C-014 [10 nM], and especially C-016 [100 nM]

compared to control conditions—including fMLP [100 nM]. Bar graphs show

mean and standard error from pooled experimental replicates. Statistics:

two-tailed T-test. *p ≤ 0.05, ***p ≤ 0.001, and ****p < 0.0001.

using fluorescence microscopy (Figure S8). In spi1-MO treated
larvae, which had neutrophils but reduced macrophages, we
observed hyphae in 10–20% of surviving infected larvae, with no
significant difference between drug-treated and control groups
(Figure S8B). In spi1-MO/csf3r-MO treated zebrafish, which had
reduced neutrophils as well as macrophages (32), we observed
hyphae in 80–90% of larvae, highlighting the important role that
neutrophils play in suppressing hyphae in this model. Again, no
significant difference was observed between treated and control
groups in this context.

Comparison of protein sequence identity between receptor
homologs in humans, mice, rats and zebrafish revealed that while
the conservation between mammalian homologs was higher than
70%, conservation between mammals and zebrafish was <40%
(Figure S6). To test whether expression of human FPR1 in
zebrafish neutrophils could enhance the neutrophil response in
the presence of bifunctional compounds, wemosaically expressed
human FPR1 under the control of the leukocyte-specific
zebrafish lyzC promoter (33) using Tol2-mediated transgenesis.
Expression of the protein was traced using mCherry linked to the
receptor using the self-cleaving T2A peptide, allowing separation
of the fluorophore and thus unimpeded receptor function. The
transgene DNA construct and Tol2 transposase mRNA were co-
injected with an antisense morpholino oligonucleotide targeting
irf8, knockdown of which results in enhanced specification of
neutrophils at the expense of macrophages (34). Injection into
Tg(mpx:EGFP) embryos at the one-cell stage resulted in both on-
target expression of FPR1/mCherry in GFP-labeled neutrophils
(GFP/mCherry+ cells), as well as off-target expression in tissues
such as the somite (Figure 5Aii). To test whether the FPR1-
expressing dual-labeled cells would exhibit an enhanced response
to bifunctional compounds, we inoculated control or pre-treated
conidia into the circulation FPR1/mCherry-expressing larvae at
3 dpf, and scored phagocytosis at 2 h post-infection in the caudal
venous plexus. Because mosaic larvae contained both FPR1-
positive (GFP+/mCherry+) and FPR1-negative (GFP(only)+)
neutrophils, this approach provided an internal control when
assessing phagocytosis of pre-treated conidia.

Pre-treatment of conidia with C-016 prior to inoculation
significantly enhanced phagocytosis by GFP+ neutrophils
expressing human FPR1 and mCherry (Figure S7E).
Furthermore, comparison of per-cell phagocytosis rates
demonstrated that pre-treatment of conidia with either C-001
or C-016 (but not DMSO or fMLP) resulted in significantly
higher rates of phagocytosis by FPR1/mCherry-expressing
GFP+ leukocytes compared to GFP(only)+ cells in the same
larvae (Figure 5B). As expected, conidial delivery, leukocyte
numbers, and phagocytosis by GFP(only)+ cells (expressing the
native zebrafish FPR1) were not significantly different between
treatment groups (Figures S7A–D). These observations suggest
that using fMLP as an effector moiety on immunotherapy
compounds confers species-specific neutrophil responses
mediated by differential formyl-peptide receptor activity.

Bifunctional Compounds Improve
Fungicidal Activity of Neutrophils From
Immunosuppressed Patients
Our previous studies have shown that stimulation of neutrophils
with chemoattractants presented as spatial gradients, enhanced
neutrophil activity against fungal pathogens (20). We therefore
assessed the efficacy of C-016, our most promising candidate,
in enhancing fungicidal activity of neutrophils isolated from
kidney transplant patients using our microfluidic host-pathogen
platform. The patients were undergoing various regimes
of immunotherapy (Table 2). For healthy donors without
stimulation, an average of 194.2 ± 100 neutrophils migrated
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FIGURE 5 | Bifunctional compounds enhance phagocytosis of A. fumigatus conidia by zebrafish neutrophils expressing human FPR1. (A) (i) Diagram of experimental

approach: Calcofluor-stained A. fumigatus conidia (blue) are co-delivered with treatments into the circulation via the Duct of Cuvier at 3 days post-fertilization. Imaging

is performed at 2 h post-infection at a distal site, the caudal venous plexus, which is rich in leukocytes. (ii) Example image of 3 dpf irf8-MO treated Tg(mpx:EGFP) larva

(GFP-labeled neutrophils) with mosaic expression of human FPR1 (traced by mCherry, red fluorescence), 2 h following delivery of calcofluor-labeled (blue fluorescent)

A. fumigatus conidia. A GFP/mCherry co-labeled leukocyte containing phagocytosed conidia is indicated in magnified panel (open white arrowhead). Off-target

expression of the transgene was also observed in tissues including the somites (full white arrowhead). (B) Treatment with C-001 and C-016 resulted in significantly

increased phagocytosis of conidia by GFP/mCherry+ (human FPR1-expressing) neutrophils compared to GFP(only) wild-type cells. Each point represents an infected

larva. N ≥ 40 larva scored per condition. Data collated from multiple experiments. Statistics: two-tailed T-test. *p ≤ 0.05, ***p ≤ 0.001.

to the chambers. After stimulation with C-016, an order
of magnitude higher number of neutrophils migrated to
the chamber (1,966 ± 158.3 cells, p = 0.002). For kidney
transplant patients without stimulation, an average of 133.5 ±

70.35 neutrophils migrated to the chambers. After stimulation
with C-016, an order of magnitude higher number of
neutrophils migrated to the chamber (1,053 ± 233.5 cells, p =

0.012) (Figure 6A). The increase in migration and stimulation
of healthy neutrophils by C-016 resulted in <1% conidia
germination, compared with 26.1 ± 5.1% in the presence of
neutrophils without compound. In kidney transplant patients,
conidia germination decreased from 45.66 ± 8.8% (neutrophils
alone) to 6.47 ± 4.6% (neutrophils and compound) (Figure 6B).
One of the transplant patient’s neutrophils did not respond
to C-016 (Patient #4). In this patient, only 4% of the
average number of neutrophils migrated to the chamber, and
this was not a sufficient number to control A. fumigatus
hyphae growth.

DISCUSSION

We tested the efficiency of bifunctional compounds consisting
of a TM that binds to the surface of A. fumigatus and
an EM that interacts with FPR1 chemoattractant receptor
on human neutrophils in an immunotherapy strategy to
amplify neutrophil anti-fungal activities. We found that the
bifunctional compounds enhanced the activity of neutrophils

against A. fumigatus both in vitro and in vivo. We also
measured a significant improvement in the response of human
neutrophils isolated from immunosuppressed kidney transplant
patients, in ex vivo experiments in the presence of bifunctional
compound C-016.

We also show that zebrafish models recently developed for

the detailed study of leukocyte-fungi interaction during infection
(28) are effective tools for evaluating bifunctional compounds
in vivo. The direct visualization of host-pathogen interactions
is facilitated by the use of Tg(mpx:EGFP/mpeg1:mCherry)
compound transgenic larvae on a nacre−/− mutant background
with reduced pigmentation (35) to enhance imaging. This
compound transgenic line has green fluorescent neutrophils
and red fluorescent macrophages (36). Rather than delivering
conidia into the zebrafish brain as previously described (26,
27), we instead microinjected fungal conidia directly into the
circulation and measured phagocytosis at a spatially distant site.
This methodology enabled us to measure neutrophil activity
in the absence of damage signals from a nearby wound.
Delivery into the circulation resulted in a dominant macrophage
phagocytic response, consistent with previous studies (28)
and the higher efficiency of macrophages vs. neutrophils
at phagocytosing pathogens from zebrafish circulation (37).
To allow measurement of neutrophil responses in isolation,
macrophage numbers were suppressed by morpholino-mediated
knockdown of genes driving macrophage specification from the
anterior lateral plate mesoderm (spi1) (38), or differentiation
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TABLE 2 | Kidney transplant patient data summary.

Patient Time from

transplant

ANC

(K/uL)

Treatment

(daily doses)

Neutrophil response to A. fumigatus

No compound With C-016

Neutrophils

recruited

%Fungus alive Neutrophils

recruited

%Fungus alive

#1 6 months 12.24 Prograf 4mg,

Prednisone 20mg,

MMF 1g

222 56.6% 1,648 2%

#2 6 years 1.93 Prograf 4.5mg,

Prednisone 5mg,

MMF 1g

447 3.6% 806 0.4%

#3 14 years 4.58 Prograf 0.5mg,

Prednisone 2.5mg,

Cell Cept 500mg

18 61.6% 1166 2%

#4 1 month 0.95 Prograf 6mg,

Prednisone 15mg,

Cell Cept 750mg,

Cefepime, Valcyte and Bactrim

17 55.7% 52 29.3%

#5 7 years 2.47 Prograf 3mg,

Cell Cept 500mg,

Prednisone 5mg

71 43.2% 1496 5.1%

#6 3 years 9.34 Cyclosporine 125mg,

Cell Cept 500mg,

Prednisone 5mg

26 53.3% 1,152 0%

Average Transplant Patients 133.5 ± 70.4 45.67 ± 8.8 1,053 ± 233.5 6.47 ± 4.6

Average Healthy Controls 194.2 ± 100 26.1 ± 5.1 1,966 ± 158.3 0.58 ± 0.2

Comparison between with and without C-0016 p = 0.012 p = 0.006

FIGURE 6 | C-016 enhances the anti-fungal activity of neutrophils from immunosuppressed patients. (A) Quantification of neutrophil recruitment demonstrated that

gradients of C-016 enhanced migration of cells from both healthy donors and transplant patients to Aspergillus chambers compared to unstimulated controls. (B)

Quantification of hyphal growth showed enhanced suppression by C-016 treated neutrophils from healthy donors and transplant patients compared to unstimulated

controls. Each point represents an individual neutrophil donor. N = 5 healthy donors and N = 6 kidney transplant patient donors tested. Statistics: paired T-test. *p ≤

0.05, **p ≤ 0.01.

from the neutrophil-macrophage common precursor (irf8) (34).
In theory, the absence of a significant response from zebrafish
neutrophils to untreated conidia provided an ideal environment
to test enhancement by bifunctional compounds. However,
our experiments in zebrafish demonstrate that use of fMLP
as an effector moiety provides highly specific activity via the
human FPR1.

The modular composition of bifunctional compounds allows
for rapid exploration of combinations of TM, EM, and
linker domains, potentially enabling efficient discovery of
anti-infective molecules with the desired potency, specificity
and physical properties. These experiments also highlight
the power of utilizing both ex vivo and in vivo models
to test activity, specificity, and mode of action. Together,
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microfluidics and zebrafish offer complementary imaging-
based platforms for measuring leukocyte activity, allowing
intuitive translation, and comparison of experimental findings
between models.

Bifunctional small molecules represent promising
immunotherapies for the treatment of aspergillosis and other
fungal infections. Enhancing the host response against fungi is
important in situations where the efficacy of the innate immune
response is deficient and the degree of the immune suppression
in the patient becomes the major host determinant (39).
Further study of these agents is warranted. While our current
study focusses on enhancing the activity of neutrophils, which
express high levels of FPR-1, other cells, such as monocytes,
macrophages, dendritic cells, and even vascular endothelial
cells and keratinocytes are known to express FPR-1, albeit at
lower levels (40). It is possible that activation of these other
immune cell lineages in vivo may provide further protection
against fungi. Treatment with bifunctional compounds may
also be limited to topical or localized delivery, for example: to
treat dermatophyte infection. Bifunctional compounds may
be useful as adjunctive therapy along with standard of care
regimens to augment neutrophil killing potential and improve
protection against fungal infections. The same compound design
principles used here may also be applied to other infectious
diseases to redirect the immune system to destroy fungal,
bacterial, or viral pathogens. The compendium of microfluidic
devices developed to probe neutrophil-fungi interactions
(21, 22) could be utilized to prescreen drug candidates
and predict the effectiveness of bifunctional compound
immunotherapies in individual patients. Theoretically, this
type of measurement could also be used to tune the immune
system by immunosuppressive therapy drug dosages high
enough to avoid organ rejection and low enough to ward off
fungal infections.

MATERIALS AND METHODS

Bifunctional Compound Synthesis
Compounds were prepared as described in detail in the
(Figure S1). Preparation of C-001: mono-Fmoc-protected
caspofungin was prepared from commercial caspofungin acetate
by treating with 9-fluorenylmethyl-N-hydroxysuccinimidyl
carbonate (Fmoc-OSu) in DMF. The purified product was
coupled with N-formyl-L-methioninyl-L-leucyl-L-phenylalanine
N-hydroxysuccinimide ester (fMLF-OSu). The Fmoc group was
removed from that product by stirring with 10% piperidine
to give C-001 after HPLC purification. Preparation of C-014:
C-014 was prepared using a procedure analogous to that
for C-001 above but replacing caspofungin with L-733,560
(41). Preparation of C-016: The diaminoethylether amide of
amphotericin B was prepared by Fmoc derivatization of the
mycosamine of amphotericin B followed by coupling with
N-Fmoc-diaminoaminoethyl amine and removal of the Fmoc
groups with piperidine. Treatment of the product with fMLF-
OSu gave C-016 after reversed phase purification. fMet-Leu-Phe
(fMLP) was obtained commercially.

Fungal Strains
Aspergillus fumigatus strain 293 expressing cytosolic RFP or GFP
was grown on Sabouraud dextrose agar plates supplemented
with 100µg/mL ampicillin at 30◦C for 3–4 days. Conidia
were harvested by gentle scraping, followed by washing in
ice-cold phosphate-buffered saline (PBS) 3 times. Conidia
were immediately used or stored at 4◦C for up to 1 week
before use. To enable visualization following zebrafish infection,
conidia were briefly stained with Calcofluor White as previously
described (28).

Zebrafish
Zebrafish stocks were maintained and mated according to
standard protocols (42) and following the rules of the
Massachusetts General Hospital Subcommittee on Research
Animal Care. Transgenic strains—Tg(mpx:GFPuwm1) (43) and
Tg(mpeg1:mCherry) (36), were on the nacre−/− background (35),
and were a kind gift from Elliott Hagedorn and Leonard Zon.
Human formyl-peptide receptor (FPR1) was sub-cloned from
pBGSA FPR1-EGFP (Addgene ID:62604) into a middle entry
vector and combined with existing 5′ (lyzC promoter) and 3′

(T2A-mCherry) vectors using standard Gateway approaches.
Mosaic expression of FPR1 was achieved by Tol2 transposase-
mediated transgenesis (44). Briefly, fertilized eggs were co-
injected with transgene DNA (50 ng/µl) and Tol2 transposase
mRNA (25 ng/µL) into the cell at the single-cell stage.
For infection, embryos were raised to 52 h post-fertilization,
conidia delivered into the duct of Cuvier by microinjection
as previously described (28), and imaging performed on the
caudal venous plexus 2 h post-infection to assess phagocytosis.
For knockdown studies, fertilized eggs were microinjected
with 1 nL of morpholino at the one-cell stage. To enable
better measurement of neutrophil-specific responses, primitive
macrophage differentiation was restricted by blocking translation
of spi1 or irf8 using anti-sense morpholino oligonucleotides
(spi1-MO) as previously described (34, 38). The morphant
larvae were raised to 2 days post-fertilization, and then
microinjected into the vasculature with a solution of A.
fumigatus conidia pre-stained with Calcofluor together with C-
001 (10 nM), C-016 (100 nM), or DMSO, using microstructured
surface arrays developed for this purpose (31, 45). Imaging
was performed on a fully automated Nikon TiE microscope.
For each larva, a 21-slice z-stack (100µm at 5µm intervals)
was captured of the caudal venous plexus at 10x magnification
for 4 channels: DAPI—conidia, GFP—neutrophils, TRITC—
macrophages, and brightfield. Analysis was performed manually
using NIS Elements and ImageJ.

Microfluidic Device Fabrication
Microfluidic devices used to measure leukocyte migration in
response to Aspergillus fumigatus with or without drug (C-
001, C-014, C-016), anti-fungal control (Caspofungin) and/or
chemoattractant (fMLP) gradients were manufactured using
standard microfabrication techniques. Two layers of photoresist
(SU8; Microchem), the first one 10µm thin (corresponding
to the migration channels) and the second one 70µm thick
(corresponding to the FCCs) were patterned on one silicon wafer
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sequentially using two photolithographic masks and processing
cycles according to the instructions from the manufacturer. The
wafer with patterned photoresist was used as a mold to produce
polydimethylsiloxane (PDMS) (Fisher Scientific) devices, which
were then bonded to the base of glass-bottom 12- or 24-well
plates, using an oxygen plasma machine (Nordson-March).

Primary Human Neutrophil Isolation
Peripheral blood samples were collected in 3mL tubes containing
a final concentration of 5mM ethylenediaminetetraacetic acid
(EDTA, Vacutainer; Becton Dickinson) and processed within 2 h
of collection.

Using standard sterile techniques, we isolated neutrophils
from whole blood by use of HetaSep followed by the EasySep
human neutrophil enrichment kit (Stemcell Technologies) in
accordance with the manufacturer’s protocol. The purity of
neutrophils was assessed to be >98%, using the Sysmex KX-
21N Hematology Analyzer (Sysmex America). White blood cells
(WBCs) were isolated using Hetasep, followed by a 5-min spin-
down cycle and washing with 1 × PBS. WBCs were stained
with Hoechst fluorescent dye (32.4µM; Sigma-Aldrich). The
final aliquots of WBCs were re-suspended in Roswell Park
Memorial Institute (RPMI) medium plus 10% fetal bovine serum
(FBS; stock 50mL of FBS/450mL of RPMI; Sigma-Aldrich) at a
concentration of 4,000 cells/2 µL and kept at 37◦C. Cells were
then immediately introduced into the microfluidic device for
the chemotaxis and A. fumigatus assay. All experiments were
repeated at least 3 times with neutrophils or WBCs from 3
different healthy donors.

Microfluidic Neutrophil Chemotaxis and A.

fumigatus Killing Assay Preparation
Immediately after bonding to the well plate, donut-shaped
devices were filled with A. fumigatus conidia (MYA-4609)
expressing red fluorescent protein (RFP) at a concentration of 106

cells/mL+/− drug [10 nM], anti-fungal control [10 nM] and/or
chemoattractant solution of fMLP [100 nM] (Sigma-Aldrich, St.
Louis, MO) in IMDM + 20% FBS. The device was then placed
in a vacuum for 15min. The chemoattractant filled all of the
FCCs as the air was displaced. The devices were then vigorously
washed five times with 1× PBS to remove any residual A.
fumigatus conidia, K2 Therapeutics drug or chemoattractant that
was outside of the focal chemotaxis chambers (FCCs). The device
was then submerged in 0.5mL of cell media. Neutrophils or white
blood cells (20,000 cells/2 µL) were then pipetted into the cell
loading chamber (CLC) using a gel-loading pipette tip and could
reach the fungus only after migrating through a 600µm long
channel between the cell-loading well and the drug-treated fungi
chambers (Figure 2A). Neutrophil migration into the migration
channel toward the FCC started immediately and was recorded
using time-lapse imaging for 18 h on a fully automated Nikon
TiE microscope (10× magnification) with biochamber heated to
37◦Cwith 5% carbon dioxide gas. Image analysis of cell migration
counts and fungal growth was analyzed by hand using Image
J software.

Statistical Analysis of Neutrophil
Chemotaxis and A. fumigatus Killing
Image analysis of cell migration counts and fungi growth
was analyzed by hand using Image J software. Neutrophils
in each chamber were counted every 15min for the first 2 h
of the experiment and then every hour for the remaining
16 h. Percentage of conidia to convert to hyphal growth was
measured by counting conidia loaded per chamber before
neutrophils or WBCs are loaded into the chamber and
counting numbers of these conidia that grow hyphae by
18 h. Fungal growth velocity was calculated using Image J.
For experiments with neutrophils from transplant patients,
the 16 chambers in each device (n = 3) were analyzed for
at least three different healthy donors. Data was analyzed
for statistical significance using paired two-tailed t-tests.
For zebrafish experiments, data was tested for normality
using the D’Agostino & Pearson normality test. Normally
distributed data was analyzed using two-tailed unpaired t-
tests for pairwise comparisons, or ordinary one-way ANOVA
with Tukey’s multiple comparisons test. Non-normal data was
compared using Kruskal-Wallis test for multiple comparisons.
All statistical analysis was performed using Prism Version
7.0a (GraphPad).
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We characterized five different vaccine candidates and a commercial vaccine in terms

of safety, immunogenicity and using a systems vaccinology approach, with the aim to

select novel vaccine candidates against Mycoplasma hyopneumoniae. Seven groups of

sixM. hyopneumoniae-free piglets were primo- and booster vaccinated with the different

experimental bacterin formulations, the commercial vaccine Hyogen® as a positive

control or PBS as a negative control. The experimental bacterin was formulated with

cationic liposomes+ c-di-AMP (Lipo_AMP), cationic liposomes+ Toll-like receptor (TLR)

2/1, TLR7, and TLR9 ligands (TLR ligands; Lipo_TLR), micro-particles + TLR ligands

(PLGA_TLR), squalene-in-water emulsion + TLR ligands (SWE_TLR), or DDA:TDB

liposomes (Lipo_DDA:TDB). Lipo_DDA:TDB and Lipo_AMP were the most potent in

terms of serum antibody induction, and Lipo_DDA:TDB, Lipo_AMP, and SWE_TLR

significantly induced Th1 cytokine-secreting T-cells. Only PLGA_TLR appeared to induce

Th17 cells, but was unable to induce serum antibodies. The transcriptomic analyses

demonstrated that the induction of inflammatory and myeloid cell blood transcriptional

modules (BTM) in the first 24 h after vaccination correlated well with serum antibodies,

while negative correlations with the same modules were found 7 days post-vaccination.

Furthermore, many cell cycle and T-cell BTM upregulated at day seven correlated

positively with adaptive immune responses. When comparing the delivery of the identical

TLR ligands with the three formulations, we found SWE_TLR to be more potent in the

induction of an early innate immune response, while the liposomal formulation more

strongly promoted late cell cycle and T-cell BTM. For the PLGA formulation we found

signs of a delayed and weak perturbation of these BTM. Lipo_AMP was found to

be the most potent vaccine at inducing a BTM profile similar to that correlating with
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adaptive immune response in this and other studies. Taken together, we identified

four promising vaccine candidates able to induce M. hyopneumoniae-specific antibody

and T-cell responses. In addition, we have adapted a systems vaccinology approach

developed for human to pigs and demonstrated its capacity in identifying early immune

signatures in the blood relating to adaptive immune responses. This approach represents

an important step in a more rational design of efficacious vaccines for pigs.

Keywords: Mycoplasma hyopneumoniae, bacterins, safety, immune responses, transcriptomics

INTRODUCTION

Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary
cause of enzootic pneumonia (EP), a chronic respiratory disease
in pigs. The disease causes severe economic losses in swine-
producing countries worldwide due to a reduced average daily
weight gain of the pigs, a higher feed conversion ratio and
an increased use of antimicrobial agents (1–3). Control of the
disease can be achieved by optimizing management and housing
conditions combined with medication and vaccination (2).

Vaccination with inactivated, adjuvanted whole-cell bacterins
is practiced worldwide to control EP (4). However, current
commercial vaccines only offer partial protection, have a limited
effect on the transmission of the microorganism and cannot
prevent colonization (5–7). Most commercial bacterins are based
on the J-strain, a low virulent M. hyopneumoniae strain isolated
in the UK in the sixties (8–10), and contain adjuvants including
aluminum hydroxide, carbopol, mineral oil or biodegradable oil
(4). The main effects of vaccination are a reduction in clinical
symptoms, lung lesions, medication use, and performance
losses (11, 12). Those effects may vary between pig herds (2),
which could be partially explained by antigenic and pathogenic
differences between the strains circulating in the herd and the
vaccine strain (10).

The immune mechanisms leading to protection against
M. hyopneumoniae infection are complex and not yet fully
elucidated. M. hyopneumoniae-specific serum antibody
concentrations induced by vaccination are not correlated
with the severity of lung lesions in M. hyopneumoniae-infected
pigs (5, 13), indicating that systemic antibodies play only a minor
role in protective immunity. However, local mucosal antibodies
(IgA) are considered important to prevent and control M.
hyopneumoniae-induced pneumonia, as the adherence of the
microorganism to the ciliated epithelium of the respiratory tract
is the first step in the pathogenesis (14). Also, several studies
suggest that systemic cell-mediated immune responses play a
major role in disease protection (14–17).

Abbreviations: EP, enzootic pneumonia; CCU, color changing units; PLGA,

poly(lactic-co-glycolic acid); SWE, squalene-in-water emulsion; DDA,

dimethyl dioctadecylammonium; DPPC:DC-Chol, 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine and dimethylaminoethane carbamoyl cholesterol; TDB, trehalose

6,6-dibehenate; c-di-AMP, cyclic diadenylate monophosphate; PAM, Pam3Cys-

SK4; CpG, CpG ODN SL03; PS, particle size; Pdi, polydispersity index; ZP, zeta

potential; IM, intramuscularly; ID, intradermally; ISR, injection site reaction;

ADG, average daily gain; BAL, bronchoalveolar lavage; GSEA, gene set enrichment

analysis; FDR, false discovery rate; DEG, differentially expressed genes; BTM,

blood transcriptional modules.

Based on this knowledge, innovative bacterin formulations
that include virulent M. hyopneumoniae strains formulated with
adjuvants specifically designed to promote cellular immune
responses could improve vaccine efficacy. Therefore, we
developed three different vaccine formulations to deliver a
cocktail of TLR 2/1, TLR 7, and TLR 9 ligands previously shown
to potently activate porcine antigen presenting cells including
dendritic cells (DC), monocytes and B cells (18, 19). The
formulations included a liposomal, a micro-particle and an oil-
in-water formulation. In addition, we developed a liposomal
formulation to deliver a cyclic di-nucleotide targeting the STING
pathway (20) as an alternative immunostimulant, and another
cationic liposomal formulation to deliver a Mincle ligand, also
previously found to be efficacious (21). All formulations were
based on the M. hyopneumoniae strain F7.2C, a highly virulent
field strain isolated in Belgium in 2000 (22, 23), and shown to be
antigenically different from the J-strain (23).

Overall, the aim of this study was to assess the safety of
these five novel bacterin formulations and characterize the
immune responses induced by the formulations, compared to
a commercial vaccine in order to select new promising vaccine
candidates. To this end, M. hyopneumoniae-specific T cell
responses and antibody responses were measured in pigs. For T
cells, we focussed on Th1 and Th17 based on their known role in
protective immunity against Mycoplasma infection, as identified
in mouse models (24). Next to that, we employed a systems
immunology approach to understand how different formulations
modulate the immune system toward potent immunogenicity.
This analysis employed “blood transcriptional modules” (BTM)
defined for peripheral blood cells in human (25), which were
adapted to pigs. This technique sheds light into the black
box of the immune response by identifying pathways and
networks of genes related to adaptive immune responses as
previously demonstrated for human and sheep (25–34). Also, this
approach has been shown to possess more discriminative power
for analyses of peripheral blood leukocytes during vaccination
when compared to gene sets based on canonical pathways (25).
Our work has demonstrated the possibilities of such novel
approaches in vaccinology and identified vaccine candidates for
further exploration.

MATERIALS AND METHODS

Vaccines
The vaccine strain M. hyopneumoniae F7.2C was grown in
modified Friis medium (35) for 5 days at 37◦C. The culture,
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containing 5 × 108 color changing units (CCU)/ml, was
inactivated by incubation with 4mM binary ethyleneimine (BEI)
under agitation at 37◦C for 24 h. Subsequently, the BEI was
neutralized by incubating the inactivated culture with 4mM
sodium thiosulfate under agitation at 37◦C for 24 h. Inactivated
bacteria were pelleted at 15,000 g for 40min at 4◦C and washed
three times in 50ml sterile phosphate buffered saline (PBS). The
final pellet was resuspended in sterile PBS.

For this study, five adjuvant formulations were developed
based on the association of particle-based delivery systems
[liposomes, poly(lactic-co-glycolic acid) [PLGA] microparticles
and a squalene-in-water emulsion (SWE)] with different
immune stimulators. These included the Mincle agonist
trehalose 6,6-dibehenate (TDB, Avanti, Alabaster, AL, USA), the
STING ligand cyclic diadenylate monophosphate (c-di-AMP,
produced at the Helmholtz Center for Infection Research,
Braunschweig, Germany) and a combination of TLR ligands:
TLR1/2 ligand Pam3Cys-SK4 (PAM, EMC Microcollections,
Tübingen, Germany), TLR9 ligand CpG ODN SL03 (CpG,
Eurofins Genomics, Les Ulis, France), and TLR7/8 ligand
resiquimod (Chemdea, Ridgewood, NJ, USA).

Two cationic liposome formulations were produced, based
on the thin lipid film method (36), and followed by extrusion:
TDB was combined with dimethyl dioctadecylammonium
(DDA) bromide to form Lipo_DDA:TDB, and c-di-AMP was
encapsulated into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
and dimethylaminoethane-carbamoyl-cholesterol (DPPC:DC-
Chol) cationic liposomes (37) to obtain Lipo_AMP. The TLR
ligand selection was combined in different delivery systems:
PLGA micro-particles, cationic liposomes and SWE. Cationic
liposomes (DPPC:DC-Chol) and PLGA cationic micro-particles
(combined to ethylaminoethyl-dextran) were produced with the
thin lipid film and the double emulsion (W/O/W) methods (38),
respectively. Pam3Cys-SK4 and resiquimod were encapsulated
into both types of particles and CpG was later adsorbed to their
surface to form the Lipo_TLR and PLGA_TLR formulations.
Finally, for the SWE_TLR formulation, SWE [a squalene-
based formulation developed and produced by the Vaccine
Formulation Laboratory, and composed of 3.9% (w/v) squalene,
0.5% (w/v) Tween 80 and 0.5% (w/v) Span 85 (39)] was mixed
with the same immune stimulators (PAM, CpG, and resiquimod).

For each formulation we measured the following physico-
chemical characteristics: particle size (PS), polydispersity index
(Pdi), and zeta potential (ZP), by means of dynamic light
scattering for the liposomes and SWE, and laser diffraction
for the micro-particles (Zetasizer Nano ZS and Mastersizer
3000, Malvern, UK). The amounts of immune-stimulators
loaded into the Lipo_AMP and Lipo_TLR formulations were
indirectly determined by the use of nanodrop (for c-di-
AMP) and fluorescently labeled immune-stimulator (CpG-
FITC and Pam-Rodhamine, Invivogen, San Diego, CA, USA)
methods. The free immune-stimulators were separated from
the liposomes by filtration using the Vivaspin R© 500 centrifugal
concentrator (PED membrane, MWCO 100 kDa, Sartorius,
Göttingen, Germany) and then quantified as mentioned
above (Supplementary Table 1) Antigenwasmixedwith the final
product, and PS and ZP of the formulations were monitored over
a period of 1 month.

The composition of each experimental vaccine is given
in Table 1. The commercial vaccine employed was Hyogen R©

(CEVA Santé Animale, Libourne Cedex, France) representing
a mineral oil emulsion with Escherichia coli J5 non-toxic LPS
as immunostimulant and inactivated M. hyopneumoniae field
isolate BA 2940-99 as antigen.

Animal Experiment
The study was performed after approval by the Ethical
Committee for Animal Experiments of the Faculty of Veterinary
Medicine, Ghent University (approval number EC2016/91).
Forty-two M. hyopneumoniae-free Rattlerlow-Seghers piglets
(RA-SE Genetics NV, Ooigem, Belgium) were enrolled in the
study. All animals were purchased from a herd that has been
free of M. hyopneumoniae for many years based on repeated
serological testing, nested PCR testing on tracheobronchial
swabs, and absence of clinical signs and pneumonia lesions in
the slaughter house. The piglets were weaned at 28 days of age
and transported 4 days later to the experimental facilities of the
Faculty of VeterinaryMedicine, Ghent University, Belgium. They
were housed in stables with absolute air filters for impending
particles (HEPAU15) on both incoming and outgoing ventilation
shafts and fed ad libitumwith a non-antimicrobial-supplemented
diet. On the day of arrival at the experimental facilities, the
piglets were randomly allocated into six vaccination groups and
one control group of six piglets each. Due to practical reasons,
the piglets were vaccinated, sampled and euthanized over 2
consecutive days. After an acclimatization period of 6 days, the
piglets of the vaccination groups were primo-vaccinated (D0; 39–
40 days of age) intramuscularly (IM) into the right side of the
neck with 2mL vaccine. Additionally, group Lipo_DDA:TDBwas
vaccinated intradermally (ID) into the left side of the neck with
0.2mL vaccine. The rationale for the ID injection of formulation
Lipo_DDA:TDB was based on a previous report showing
that CAF01, a liposome-based adjuvant containing similar
immunomodulators, was able to induce mucosal immunity when
administered this way (40). The piglets of the control group were
injected IM into the right side of the neck with 2mL sterile PBS.
Two weeks later (D14), the piglets of the vaccination groups
were booster vaccinated IM with 2mL vaccine (all groups).
The control group received 2mL PBS IM. On D28 all piglets
were euthanized.

Safety Parameters
The piglets were observed daily for at least 15min from D-6
until D28 of the study. On the days of vaccine administration,
the piglets were observed twice: shortly before (D0; D14)
and 4 h after vaccination (D0+4h; D14+4h). For each piglet,
clinical findings regarding body condition (skinny), behavior
(depressed, unconscious), respiration (sneezing, coughing,
abdominal breathing), digestion (diarrhea, vomiting), lameness
and other remarkable findings were recorded. At necropsy
(D28), lungs were macroscopically examined for the presence
of lesions according to Hannan et al. (41). Subsequently,
bronchoalveolar lavage (BAL) fluid was collected from one lung
part by flushing the head bronchus with 20mL sterile PBS,
as previously described (15). From the BAL fluid, DNA was
extracted using a commercial kit (DNeasy R© Blood & Tissue
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TABLE 1 | Composition of the experimental M. hyopneumoniae bacterins and their route of administration.

Vaccine formulation Dose (mL) Delivery system Immune-stimulators

(µg/dose)

Antigen dose (CCU) Administration route

Primo Booster

Lipo_AMP 2 DPPC:DC-Chol liposomes C-di.AMP (100) 109 IM IM

Lipo_TLR 2 DPPC:DC-Chol liposomes Pam3Cys-SK4/CpG ODN

SL03/resiquimod (80/80/80)

109 IM IM

PLGA_TLR 2 PLGA micro-particles (combined

to ethylaminoethyl-dextran)

Pam3Cys-SK4/CpG ODN

SL03/resiquimod (80/80/80)

109 IM IM

SWE_TLR 2 squalene-in-water emulsion Pam3Cys-SK4/CpG ODN

SL03/resiquimod (80/80/80)

109 IM IM

Lipo_DDA:TDB IM 2 ID 0.2 DDA liposomes TDB (500) IM 109 ID 2x108 IM+ID IM

CCU, color changing units; IM, intramuscular; ID, intradermal; DPPC:DC-Chol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and dimethylaminoethane-carbamoyl-cholesterol; c-di-

AMP, bis-(3′,5′)-cyclic dimeric adenosine monophosphate; PLGA, poly(lactic-co-glycolic acid); DDA, dimethyl dioctadecylammonium; TDB, trehalose 6,6′-dibehenate.

kit, Qiagen, Venlo, The Netherlands) and a nested PCR for the
detection of M. hyopneumoniae DNA was performed according
to Stärk et al. (42).

The pigs were weighed on the day of primo-vaccination (D0)
and at euthanasia (D28). Average daily gain (ADG) in g/pig/day
was calculated according to Sacristán et al. (43).

Rectal body temperature was measured shortly before and 4 h
after vaccine administration, then daily until 4 days post-vaccine
administration, and on D7, 10, 21, 24, and 28 of the study. This
was based on the guidelines on safety evaluation of veterinary
vaccines written in the European Pharmacopeia 8.0.

Injection site reactions (ISR) were evaluated shortly before
vaccination, 4 h after vaccination and then daily from D1 to D28
using the scoring system explained in Supplementary Table 2.
Scores could range from 0 to 3 with 0 = normal, 1 = mild, 2 =

moderate, and 3 = severe. At euthanasia (D28), tissue samples
from the injection site were collected from all study animals
for histopathological examination. All IM and ID injection sites
were marked with a permanent pen upon vaccination. Out of
the marked area a tissue sample of approximately 2 cm2 with a
depth of 5 cm (IM injection site) or 3 cm (ID injection site) was
removed in an angle of 90◦ to the skin. A tissue sample with
a dimension of 2 × 2 × 3 cm from the left side of the neck
was collected as described above from the pigs of the control
group to serve as a control for the ID injection sites. The tissues
were fixed immediately after sampling in 10% neutral formalin.
After fixation, tissue blocks were sectioned from the samples,
embedded in paraffin and histological slides were stained with
hematoxylin and eosin. Each injection site sample was evaluated
using light microscopy and an overall score ranging from 0 to 3
(0 = not detected, 1 = mild, 2 = moderate, and 3 = severe) was
given. This score took into account the presence and degree of
hemorrhage, blood resorption, necrosis, inflammation (acute and
chronic), angiogenesis, and proliferation of connective tissue.

Serology
Before primo-vaccination (D0), on D7, on the day of booster
vaccination (D14) and at euthanasia (D28), serum samples were
collected and analyzed for the presence of antibodies against M.
hyopneumoniae with a commercial blocking ELISA (IDEIATM

Mycoplasma hyopneumoniae EIA kit, Oxoid Limited, Hampshire,
UK) according to the manufacturer’s instructions. Samples with
optical density (OD) lower than 50% of the average OD of the
buffer control were considered positive. Samples with OD-values
equal or bigger than 50% of the average OD of the buffer control
were classified as negative.

Immunoglobulin (Ig) G and IgA isotypes of the M.
hyopneumoniae-specific antibodies in serum were determined
with an in-house indirect ELISA. Briefly, Nunc Maxisorb R©

flat-bottom 96 well plates (eBioscience, San Diego, CA, USA)
were coated overnight at room temperature with Tween 20-
extracted M. hyopneumoniae antigens (44). After blocking with
PBS containing 0.05% Tween 20 and 1% BSA for 2 h at 37◦C,
plates were washed three times with PBS + 0.05% Tween 20
and serum diluted 1:200 and 1:100 was added for the detection
of IgG and IgA, respectively. After incubating for 30min at
37◦C, plates were washed again, and peroxidase-labeled goat anti-
porcine polyclonal IgG diluted 1:60,000 and IgA diluted 1:20,000
(Bethyl Laboratories, Montgomery, TX, USA) were added. Plates
were incubated again for 30min at 37◦C, washed and 3,3′5,5′-
tetramethylbenzidin substrate (Sigma-Aldrich, Saint Louis, MO,
USA) was added. After incubating for 10min, the reaction was
stopped with 2N HCl and the OD was measured at 450 nm.
All samples were tested in duplicate. To relatively quantify
the antibody levels a standard curve was made using two-fold
serial dilutions of a positive reference serum corresponding
to defined arbitrary units (1:800 dilution defined as 1 unit).
The interpolation from the standard curve employed non-linear
regression with least square fits using Graphpad Prism 7.0
(GraphPad Software Inc., San Diego, CA, USA).

M. hyopneumoniae-Specific Antibodies in
Bronchoalveolar Lavage (BAL) Fluid
The BAL fluid collected on D28 was analyzed undiluted for
the presence ofM. hyopneumoniae-specific IgA antibodies using
peroxidase-labeled goat anti-porcine polyclonal IgA (Bethyl
Laboratories, Montgomery, TX, USA) diluted 1:80,000 in an in-
house indirect ELISA as described above. A cut-off was calculated
as mean OD-value from the control animals plus three times
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the SD and established at an OD-value of 0.098. Samples with
OD-values higher than the cut-off were considered positive and
samples equal to or below the cut-off were considered negative.

T Cell Assays
Shortly before the booster vaccination on D14 and on the day of
euthanasia (D28), blood samples were taken from each animal to
assess the primary and secondary T cell-specific responses against
M. hyopneumoniae. For each animal, samples were restimulated
in triplicate cultures and analyzed separately. Briefly, peripheral
blood mononuclear cells (PBMCs) were isolated using a ficoll-
plaque density gradient (1.077 g/L, GE Healthcare Bio-sciences
Corp., Piscataway, NJ, USA) and plated in 12-well plates at 5 ×

106 cells/well in 1ml of AIM-Vmedium (GibcoTM, ThermoFisher
Scientific, Waltham, MA, USA). Subsequently, the cells were
restimulated in vitro overnight (18 h) with 6.25× 107 CCU/mL of
M. hyopneumoniae F7.2C bacterin. For the last 4 h of stimulation,
we added Brefeldin A (eBioscience, San Diego, CA, USA) in
each well to inhibit cytokine release and allow intra-cellular
detection of cytokines by flow cytometry (FCM). Concanavalin
A stimulation (10µg/mL, Sigma-Aldrich, Saint Louis, MO, USA)
was employed as a positive control. Cells were then harvested and
the cytokine production of T cell populations was determined
by FCM, using a 5-step 6-color staining protocol. Cells were
first incubated with the LIVE/DEADTM Fixable Aqua Dead Cell
Stain Kit (InvitrogenTM, ThermoFisher Scientific, Waltham, MA,
USA) according to the manufacturer’s instructions. The cells
were then incubated with anti-CD4 (clone 74-12-4, Southern
Biotech, Birmingham, AL, USA) and anti-CD8β (clone PG164A,
WSU, Pullman, WA, USA) antibodies, and subsequently with
the corresponding secondary antibodies: anti-mouse IgG2b
AlexaFluor 488 (Molecular Probes, Eugene, OR, USA) and anti-
mouse IgG2a PE-Cy7 (Abcam, Cambridge, UK), respectively.
Following surface staining, cells were fixed and permeabilized
using the BD Cytofix/CytopermTM Fixation/Permeabilization
Solution kit (Becton Dickinson, Franklin Lakes, NJ, USA)
according to the manufacturer’s instructions. Cells were finally
incubated with directly coupled anti-human TNF-α AlexaFluor
647 (clone MAb11, BioLegend, San Diego, CA, USA), anti-pig
IFN-γ PerCP-Cy5.5 (clone P2G10, Becton Dickinson, Franklin
Lakes, NJ, USA), and anti-human IL-17A PE (clone SCPL1362,
Becton Dickinson, Franklin Lakes, NJ, USA). Flow cytometry
acquisition was performed on a CytoFLEX flow cytometer
(Beckman Coulter, Brea, CA, USA) and the results were further
analyzed with the FlowJoTM software (Tree Star Inc., Ashland,
OR, USA).

Vaccine-Induced Transcriptional
Responses
Blood samples were collected on D0, D1, and D7 for RNA
preparation (2.5ml in PAXgene R© Blood RNA Tubes, Becton
Dickinson, Franklin Lakes, NJ, USA). RNA was extracted
using the Paxgene R© Blood RNA kit (Qiagen, Venlo, The
Netherlands) and the RNA quality was controlled with a
Fragment Analyzer. All samples were found to have good quality
[RNA integrity number (RIN) > 8] and were sequenced using
an Illumina R© HiSeq 3000 sequencer (Illumina, San Diego, CA,

USA). The quality of the reads was assessed using FastQC v.
0.11.21 The reads were mapped to the Sus scrofa reference
genome (Sscrofa_11.1) with HISAT2 v. 2.1.0 (45). Feature Counts
from Subread v. 1.5.3 was employed to count the number
of reads overlapping with each gene, as specified in the
Ensembl annotation build 91. The RNAseq data are available
in the European Nucleotide Archive2 under the accession
number PRJEB30361.

The Bioconductor package DESeq2 v. 1.18.1 was used to
test for differential gene expression between the different time
points for each vaccine separately (46). Our specific interest was
to identify genes where the change between two time points
was different in vaccinated animals compared to the controls.
Therefore, a two-factorial model was used, including the factors
time point and group (vaccine vs. control), and their interaction.
The genes were then ranked based on the P-values for the
interaction term for a “ranked gene set enrichment analysis”
(GSEA) (47) using the BTM as defined by Li et al. (48).

The BTM were adapted to the pig by replacing human genes
with their pig homologs. This step involved extensive manual
curation. The final lists of genes for each module can be found
in theData Sheet 1.

To compare the module activity of the different vaccines,
all modules with a false discovery rate (FDR) q < 0.1 were
used. In GSEA, a cut-off of 0.25 is recommended but in this
study a cut-off of 0.1 was selected to reduce the amount of
BTM changing over time. Heat maps were created reflecting
the modular activity calculated as the negative natural logarithm
of the P-value. For negative enriched BTM, this was multiplied
with −1 to obtain a positive value. The rationale of this was to
obtain a value reflecting both the enrichment of a module and its
statistical significance.

Correlation Analyses of BTM and
Vaccine-Induced Adaptive
Immune Responses
To get more insight in the immunomodulation toward a
potent immune response, BTM were correlated with the
vaccine-induced adaptive immune responses (antibodies, M.
hyopneumoniae-specific INFγ+TNF+ CD4T cells and CD8T
cells). To this end, single-sample (ss) GSEA scores were first
calculated to transform a single sample’s gene expression profile
to a gene set (BTM) enrichment profile3 as described in
Barbie et al. (49). Subsequently, the time-dependent changes
in ssGSEA values for each BTM were determined as the
ratio of D1:D0, D7:D0, and D1:D7 ssGSEA values. These
ratios were then correlated to the immune response values
using Pearson’s correlation coefficient. In order to obtain
sufficient values, the data from all vaccinated animals (controls
excluded) was used. Only correlation coefficients with P < 0.05
were considered.

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2www.ebi.ac.uk/ena
3http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/

ssGSEAProjection/4

Frontiers in Immunology | www.frontiersin.org 5 May 2019 | Volume 10 | Article 1087218

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
www.ebi.ac.uk/ena
http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/ssGSEAProjection/4
http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/ssGSEAProjection/4
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Matthijs et al. Immunological Characterization of Novel Mycoplasma hyopneumoniae Bacterins

Statistical Analyses
Fisher’s exact tests were performed to analyse differences in
the number of animals with ISR and histopathological findings
(irrespective of type) at the injection site between the control
group and the vaccinated groups. A Bonferroni correction
for multiple tests was applied. Rectal temperature values were
averaged for the following periods: D1-3, D4-14, D15-17, and
D18-28 to distinguish between systemic reactions shortly after
vaccination (D1-3; D15-17) and systemic reactions developed
later on (D4-14; D18-28). Rectal temperature and ADG were not
normally distributed according to the Shapiro-Wilk’s test, and
Mann-Whitney U tests were run to analyse differences between
the control and vaccinated groups in ADG, rectal temperature
measured 4 h after vaccination (D0+4h; D14+4h) and during the
following periods: D1-3, D4-14, D15-17, D18-28. The Bonferroni
method was applied to correct for multiple comparisons. For
the quantitative antibody ELISA and T cell data, a two-way
ANOVA was employed using the factors vaccine and time.
Tukey’s or Dunnett’s tests were used to correct for multiple
comparisons, respectively. Statistical analyses of clinical variables
were conducted in SPSS 24 for Windows (IBM, Armonk, NY,
USA) and for immune response data using GraphPad Prism 7.0
(GraphPad Software Inc., San Diego, CA, USA). Significance is
indicated as ∗P ≤ 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

RESULTS

Safety of the Vaccines
To evaluate the safety of the vaccines the general health, ADG and
rectal temperature of the piglets was closely monitored. Diarrhea,
which sometimes resulted in skinny pigs, was the most frequent
clinical finding observed in all groups (Lipo_DDA:TDB: 2/6;
Hyogen and PLGA_TLR: 4/6; control, Lipo_TLR, SWE_TLR:
5/6; Lipo_AMP: 6/6; Supplementary Figure 1B). As it was
mostly seen during the acclimatization period and started the
day after arrival, it was diagnosed as post-weaning diarrhea.
All pigs were treated once with 5mg enrofloxacin per kg
body weight (Floxadil R© 50 mg/mL, Emdoka, Hoogstraten,
Belgium) IM in the hind leg and responded well on treatment.
Arthritis (swollen joints) was also observed (control, Lipo_AMP,
Lipo_TLR, PLGA_TLR: 1/6; Hyogen: 3/6) and cases occurred
during the whole study period (Supplementary Figure 1C).
Bursitis was recorded for one pig in groups Lipo_TLR, SWE_TLR
and Hyogen, and lameness for one pig in groups Lipo_AMP
and Lipo_DDA:TDB (Supplementary Figures 1D–E). Behavior
and respiration were normal throughout the entire study, except
for one pig of the PLGA_TLR group that showed severe
abdominal breathing following blood sampling on D14. At
necropsy (D28), none of the pigs had macroscopic lung lesions
and no M. hyopneumoniae DNA was detected in BAL fluid.
The vaccinated groups did not differ in ADG compared to
the control group (data not shown). Four hours after primo-
and booster vaccination (D0+4h, D14+4h), rectal temperatures
of groups SWE_TLR and Hyogen were significantly higher
compared to the control group (P ≤ 0.05). Rectal temperatures
from Lipo_AMP and Lipo_TLR were also increased over
the physiological threshold (>40◦C) 4 h after primo- and

booster vaccination. However, this increase was only statistically
significant compared to the control group at D0+4h and D14+4
for groups Lipo_TLR and Lipo_AMP, respectively (P ≤ 0.05). A
slight increase, although not statistically significant, was observed
for PLGA_TLR 4 h after primo-vaccination. Group means were
back to normal 1day after vaccination and all remained within
normal physiological levels during the remainder of the trial
(Supplementary Figure 1F).

The presence and severity of ISR was recorded daily and
a histopathological examination of each injection site was
performed at the end of the study (D28). No ISR were seen
in the control group and group PLGA_TLR. Overall mild and
transient ISR were observed in one pig of group SWE_TLR,
and in two pigs of each of the groups Lipo_AMP, Lipo_TLR,
and Hyogen. In the group Lipo_DDA:TDB three pigs showed
a moderate but transient ISR at the IM injection site. However,
at the ID injection site, all pigs showed a prolonged mild to
moderate ISR which lasted until the end of the study in 4/6 pigs.
A more detailed overview of the duration of the ISR and their
severity is given in Supplementary Table 3. Histopathological
examination of the injection site at D28 revealed an overall severe
foreign body reaction with chronic inflammation, angiogenesis,
and proliferation of connective tissue in 5/6 ID injection site
samples from group Lipo_DDA:TDB.Mild (moderate for one pig
in group SWE_TLR) focal chronic inflammation was observed
in all IM injected groups. Mild to moderate hemorrhage was
also observed in all IM injected groups. This was probably
caused by the sampling itself as it was most of the time
located at the borders of the collected tissue. The results of
the histopathological examination of the injection sites are
represented in Supplementary Table 4.

M. hyopneumoniae-Specific
Antibody Responses
According to the commercial blocking ELISA (Oxoid;

Supplementary Table 5), all pigs from the control group
remained serologically negative for M. hyopneumoniae

throughout the study. On day 28 of the study, all the animals from

groups Lipo_AMP, Lipo_TLR, SWE_TLR, Lipo_DDA:TDB, and
Hyogen were seropositive. From the PLGA_TLR group, only
two out of six pigs seroconverted at D28.

To quantify serum IgG levels in arbitrary units we used
an in-house indirect ELISA with a positive reference serum as
a standard (Figure 1). At D28, groups Lipo_AMP, SWE_TLR,
Lipo_DDA:TDB, and Hyogen were statistically different from
the control group. The Lipo_DDA:TDB formulation induced the
highest IgG response, followed by the Hyogen and Lipo_AMP
formulations. Group Lipo_TLR was not significantly higher than
the control group, although we could detectM. hyopneumoniae-
specific IgG antibodies in all animals from this group. In the
PLGA_TLR group, only one animal appeared to react. No M.
hyopneumoniae-specific IgA antibodies were observed for any of
the groups at any time point in the serum. Only one animal from
the SWE_TLR group was positive forM. hyopneumoniae-specific
IgA in BAL fluid on D28 (Supplementary Table 3).
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FIGURE 1 | Serum antibody levels following vaccination of pigs with vaccine candidates. M. hyopneumoniae-specific IgG antibodies induced by the five novel

vaccines and one commercial vaccine listed in the legend were determined by indirect ELISA. Six animals per group received two injections in 14 days interval.

Individual animals are shown. Significance was calculated using two-way ANOVA followed by Tukey’s test (*P < 0.05; **P < 0.01; ***P < 0.001).

T Cell Responses
The results of the M. hyopneumoniae-specific T cell responses
after primo-vaccination (D14) are presented in Figures 2A–C.
No significant group differences were found for the percentage of
cytokine-producing T cells in the peripheral blood compartment.
Nevertheless, as antigen-specific T cells are transient in the blood,
a negative result cannot be interpreted as a lack of T cell response.
In fact, a few animals appeared to respond (defined as being above
the 99% confidence interval (CI) of the control group) indicating
some degree of T cell priming in certain groups. This was
found in particular in the groups SWE_TLR, Lipo_DDA:TDB
and Hyogen with three animals above this threshold for the
TNF+IFN-γ+ double positive CD4 (Th1) cells (Figure 2A). For
the CD8+ TNF+IFN-γ+ T cells, two animals were above the
threshold in the PLGA_TLR, SWE_TLR, and Hyogen groups
(Figure 2C).

At D28, the SWE_TLR and Lipo_DDA:TDB groups were
significantly higher than the control group for the percentage
of CD4+ TNF+IFN-γ+ T cells (Figure 2D) and the PLGA_TLR
group was significantly higher than the control group for the
percentage of CD4+IL17A+ (Th17) cells (Figure 2E). For the
percentage of CD8+ TNF+IFN-γ+ T cells, groups Lipo_AMP
and lipo_DDA:TDB were significantly higher compared to the
control animals (Figure 2D). Despite the lack of statistical
significance, other vaccines also appeared to have induced
specific T cell immunity in some animals. For the CD4+

TNF+IFN-γ+ cells, three animals were above the 99% CI
threshold in the Lipo_AMP group and two in the Hyogen group.
For the CD8+ TNF+IFN-γ+ cells, two pigs were above the 99%
CI threshold in the Lipo_TLR group, five in the SWE_TLR group
and three in the Hyogen group (Figures 2D–F).

When focusing on TNF−IFN-γ+-producing T cells, we
found a high level of non-specific responses at both D14
and D28 in the unvaccinated group which “masked” the

vaccine induced responses (Supplementary Figure 2). Only
Lipo_DDA:TDB induced a significant level of CD4+ TNF+IFN-
γ−-producing T cells at D28 (Supplementary Figure 3).

In conclusion, the vaccines SWE_TLR and Lipo_DDA:TDB
induced a statistically significant Th1 driven T cell response. In
the groups receiving the Hyogen and Lipo_AMP formulations,
despite a trend suggesting stimulation of Th1 responses, the
differences were not statistically significant in the current
setting. Interestingly, the PLGA_TLR formulation was the
only vaccine candidate which significantly induced a Th17
response, although only 3/6 animals in this group were above
the threshold.

Blood Transcriptional Modules Correlating
to Vaccine-Induced Adaptive
Immune Responses
In order to shed light on the immunological perturbations
associated with adaptive immune responses, changes in
transcriptional modules expression were correlated to the
immune responses shown in Figures 1, 2.

For the early transcriptional responses (determined as
modular changes between D0 and D1), a total of seven
inflammatory, eight myeloid cell, three DC/antigen presentation
and one IFN type I BTM correlated positively with the antibody
response. Interestingly, none of these modules correlated with
the CD4T cell response, but some with the CD8T cell response.
For the late transcriptional responses (determined as modular
changes between D1 and D7), a negative correlation was found
for many BTM belonging to the families of modules reflecting
innate immune responses. This was found again mainly for the
antibody and CD8T cell responses (Figure 3).

Main positive correlations of the CD4T cell response were the
D0 to D7 changes in cell cycle BTM (Figure 4). For the change of
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FIGURE 2 | M. hyopneumoniae-specific T cell responses induced following vaccination of pigs with vaccine candidates. Six animals per group were prime-boost

vaccinated on D0 and D14. At D14 and D28, M. hyopneumoniae-specific T cells induced by the tested vaccines listed in the legend were determined by in vitro

restimulation of PBMC from vaccinated animals followed by intracellular cytokine staining and multicolor flow cytometry. Following doublet exclusion, live cells were

gated and the percentage of IFNγ+TNF+ double positive CD4+ (A,D) and CD8β+ (C,F) T cells as well as IL-17A+ CD4T cells (B,E) was determined. The mean

values obtained from triplicate cultures for individual animals are shown. Positive animals are marked in red (defined as being above the 99% CI of the control group).

Significance was calculated using two-way ANOVA followed by Dunnett‘s test (*P < 0.05; **P < 0.01; ***P < 0.001). PBMC, peripheral blood mononuclear cells.

cell cycle BTM between D1 and D7, we also found many modules
correlating with antibody and T cell responses.

T/NK cell BTM upregulation between D0 and D7 correlated
well with CD8T cell responses. The induction of these BTM also
correlated with antibody levels between D1 and D7 (Figure 4).

Transcriptional Profiling of Vaccines
To better understand differences in the induction of immune
responses between the vaccines, we next performed a
transcription profiling. From the reads obtained, we first
calculated the differentially expressed genes (DEG) using
DSeq2, and then employed a two-factorial model, including the
factors time point and group (vaccine vs. control), to identify
genes differing between two time points in vaccinated animals
compared to the controls. Next, we used ranked GSEA analyses
using BTM as gene sets and ranked DEG between D0 and D1,
D0 and D7, and D1 and D7 of each vaccine group. All data are
shown in Figures 5–8 and Supplementary Figures 4, 5, and
summarized in Table 2.

Inflammatory Responses
From D0 to D1, the Lipo_AMP formulation induced the
highest number of inflammatory BTM, followed by the groups
SWE_TLR and Lipo_DDA:TDB (Figure 5). Interestingly, in

the PLGA_TLR group, no inflammatory BTM were induced
and some even showed a downregulation. For the D0 to D7
comparison, again groups Lipo_AMP and SWE_TLR showed
the highest upregulation of these BTM. For the D1 to D7
comparison, we found a downregulation of inflammatory
modules in the Lipo_AMP, Lipo_TLR, and the Hyogen groups
but not in the Lipo_DDA:TDB group, which still had BTM
related to platelet activation overexpressed. In the PLGA_TLR
group, eight BTM were upregulated indicating a delayed innate
immune response. In summary, the three vaccines which
induced significant T cell responses in terms of IFNγ/TNF
secreting cells as well as antibody responses were those
with the strongest positive early upregulation of inflammatory
BTM, confirming the results obtained using the correlation
analysis (Figure 3).

IFN Type I Responses
With respect to IFN type I BTM, only vaccines which
contained IFN inducers such as c-di-AMP (Lipo_AMP) and
CpG (Lipo_TLR, SWE_TLR) induced an early IFN type I BTM
response. The PLGA_TLR formulation contained the same TLR
cocktail as SWE_TLR and Lipo_TLR, but was unable to induce
such responses (Figure 5).
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FIGURE 3 | Innate immune response BTM correlating with adaptive immune responses. Time-dependent changes in scores for BTM were determined using ssGSEA

and then correlated to antibodies, M. hyopneumoniae-specific INFγ+TNF+ CD4T cells and CD8T cells. Pearson correlation coefficients for the BTM changes from

D0 to D1 (D0 vs. D1), from D0 to D7 (D0 vs. D7), and from D1 to D7 (D1 vs. D7) are shown as heat maps. A P < 0.05 was used as cut-off. Red colors indicate positive

and blue negative correlations. The BTM were grouped into inflammatory, myeloid cell, DC/antigen presentation and IFN type I BTM as previously described (34).

BTM, blood transcriptional modules.

Myeloid and DC/Antigen Presentation Responses
All vaccines with the exception of PLGA_TLR induced an
early (D0 to D1) myeloid cell response (Figure 6). The number

of BTM being modulated was the highest in the Lipo_AMP
group, followed by the groups SWE_TLR, Lipo_DDA:TDB, and
Hyogen (the latter two being very similar). The PLGA_TLR
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FIGURE 4 | Cell cycle and lymphocyte BTM correlating with adaptive immune responses. Time-dependent changes in scores for BTM were determined using ssGSEA

and then correlated to antibodies, M. hyopneumoniae-specific INFγ+TNF+ CD4T cells and CD8T cells. Pearson correlation coefficients for the BTM changes from

D0 to D1 (D0 vs. D1), from D0 to D7 (D0 vs. D7) and from D1 to D7 (D1 vs. D7) are shown as heat maps. A P < 0.05 was used as cut-off. Red colors indicate positive

and blue negative correlations. The BTM were grouped into cell cycle, T/NK cell and B cell BTM as previously described (34). BTM, blood transcriptional modules.

formulation actually had a negative influence on myeloid
cell BTM response. Only Lipo_AMP, Lipo_TLR, and Hyogen
induced a clear downregulation of these BTM from D1 to
D7. This was interesting considering that a late D1 to D7
downregulation of myeloid cell BTM was found to strongly
correlate with antibody and CD8T cell responses (Figure 3). In

summary, the vaccines which induced good adaptive immune
responses were also those which induced an early induction of
many myeloid cell BTM.

The Lipo_AMP formulation was found to be the most
potent to induce BTM relating to DC and antigen presentation
from D0 to D1. Similar to the myeloid cell BTM, DC/antigen
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FIGURE 5 | Inflammatory and IFN type I BTM induced by vaccines. The heat maps show the vaccine-dependent induction of BTM activity determined for D0 to D1

(D0 vs. D1), for D0 to D7 (D0 vs. D7), and for D1 to D7 (D1 vs. D7) changes in the modules. The values shown were calculated by −log(P-value)*1 for positively

enriched BTM and as −log(P-value)* −1 for negatively enriched BTM. A cut-off of an FDR of q < 0.1 was employed. Red colors indicate BTM upregulation and blue

downregulation. BTM, blood transcriptional modules.

presentation BTM were downregulated from D1 to D7 by the
formulations Lipo_AMP and Lipo_TLR, and to a lower extent
by the Hyogen vaccine.

Cell Cycle/Proliferation
The Lipo_DDA:TDB and SWE_TLR vaccines were found to
downregulate, while PLGA_TLR upregulated cell cycle BTM
from D0 to D1 (Figure 7). The two liposomal formulations
Lipo_AMP and Lipo_TLR had a clear positive effect on these
BTM at later time points (D0 to D7 and D1 to D7). Interestingly,
the correlation analyses demonstrated a clear association between
the late (D0 or D1 to D7) upregulation of these BTM and adaptive
immune responses (Figure 4).

B Cell BTM and T/NK Cell BTM
The Lipo_AMP, SWE_TLR, and Hyogen vaccines had an overall
negative effect on the early expression (D0 to D1) of B-cell
BTM (Figure 8). The SWE_TLR and Hyogen formulations were
those to strongly induce these BTM at later time points (D1
to D7). Common BTM between the strong vaccines in terms
of antibody responses were plasma cells and immunoglobulin
(M156.0 and M156.1), which were overexpressed from D1 to D7.
However, these BTMwere not found significant in the correlation
analyses (Figure 4).

For the T cell/NK cell BTM, a variable early downregulation
by the more immunogenic vaccines Lipo_AMP, SWE_TLR,
Lipo_DDA:TDB, and Hyogen was found. Only the liposomal
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TABLE 2 | Overview of the immune responses induced by the M. hyopneumoniae bacterins.

Vaccine formulation Ab

response

(D28)

Th1

response

(D14/D28)

Th17

response

(D14/D28)

Early

inflam.

BTM

Early

IFN type I

BTM

Early

myeloid

cell/DC BTM

Late cell

cycle BTM

Late

T/NK-cell

BTM

Late Ig

BTM

Lipo_AMP ++ + – +++ + +++ ++ ++ ++

Lipo_TLR + + – + + + ++ ++ ++

PLGA_TLR – – + – – – – – –

SWE_TLR + ++ – ++ ++ ++ – – +++

Lipo_DDA:TDB ++ +++ – + – ++ – – ++

Hyogen ++ + – + – ++ – – ++

Six animals per group were prime-boost vaccinated on D0 and D14. Ab, antibody; Th, T helper; BTM, blood transcriptional modules; early, upregulation from D0 to D1; late, upregulation

from D1 to D7; –, none to weak; +, moderate; ++, strong; +++, very strong.

formulations Lipo_AMP and Lipo_TLR induced a late D0/D1
to D7 upregulation of these modules, although many of those
modules correlated to antibody and T cell responses (Figure 4).

DISCUSSION

The present study assessed the safety and performed a detailed
immunological profiling of five novel M. hyopneumoniae
bacterin formulations. We included as well the commercial
vaccine Hyogen R© in our study. Hyogen R© is a recently developed
bacterin based on a virulentM. hyopneumoniae field isolate with
a TLR4 ligand as immunostimulant, and in that way comparable
with our experimental bacterin formulations.

In terms of side effects, formulations Lipo_AMP, Lipo_TLR,
and SWE_TLR induced a significant but transient increase in
rectal body temperature shortly (4 h) after vaccination. This
was also observed for the Hyogen R© vaccine, and comparable
observations were made by Llopart et al. (50) after two shot
vaccination against M. hyopneumoniae with the commercial
vaccine Mypravac suis R© (HIPRA, Amer, Spain). Fever beginning
a few hours after vaccination and persisting for 24 to 36 h
is the result of an excessive induction of pro-inflammatory
cytokines by the vaccine (51, 52). Systemic reactions of such
kind are commonly reported and considered as “normal toxicity”
associated with vaccination (52).

Overall, the ISR occasionally observed in all IM vaccinated
groups and at the IM injection site of group Lipo_DDA:TDB
weremild and resolved quickly. Transient redness and swelling at
vaccination sites were also reported in other M. hyopneumoniae
vaccination studies (53–55). Such local reactions often occur
after parenteral administration of adjuvanted vaccines and are
tolerated in terms of safety (52). Microscopically, mild focal
chronic inflammation was observed in all IM injected groups,
including the control group, indicating that these findings were
probably caused by the tissue damage due to needle insertion
and injection of fluid, and not by the administered vaccine
formulation. Nevertheless, prolonged mild to moderate ISR were
observed in all pigs from group Lipo_DDA:TDB at the ID
injection site and histopathological examination of this injection
site at D28 of the study showed a severe foreign body granuloma
in five pigs. Local reactions of such kind could result in carcass
trim losses at slaughter and are therefore considered to be a

relevant adverse side effect of vaccination (51, 56). The transient
ISR at the IM injection site of this vaccine group suggests that the
prolonged and rather severe ISR is at least partially due to the ID
administration. However, this cannot be stated with certainty as
there was no control group ID injected with sterile PBS.

Two weeks after booster vaccination, the commercial vaccine
Hyogen R© as well as the vaccines Lipo_DDA:TDB and Lipo_AMP
induced a strong humoral response. Vaccine formulations
SWE_TLR and Lipo_TLR generated a moderate serological
response, whereas for the PLGA_TLR formulation only two
animals seroconverted. Nevertheless, as we do not know the
antigen payload of the Hyogen R© vaccine, we cannot directly
compare its efficacy to the experimental vaccines. Although
systemic antibodies are considered to play a minor role in
protection against EP (5, 13), high levels of serum antibodies
induced by vaccination can be an easy and practical tool to
confirm successful vaccination in the field (57). It can also
be expected that high levels of IgG will only be induced
with significant induction of Th cell activation. We only
found lgA antibodies in BAL fluid of one pig injected with
the SWE_TLR vaccine. This is not surprising considering
the parenteral vaccine administration, and is in line with
previous studies showing IgA in BAL fluid of vaccinated pigs
only after challenge (13, 14). Future studies are required to
investigate the potential of adjuvants to induce both local and
systemic immune responses after mucosal application of the
vaccine. For example, this has been achieved for inactivated
viruses using nanoparticle-based delivery (58, 59). Nevertheless,
the absence of detectable IgA antibodies in BAL fluid from
vaccinated pigs does not exclude priming of the immune
system for such responses as vaccinated animals had higher
mucosal IgA responses compared to unvaccinated animals
following challenge (13, 14). Although we did not measure
M. hyopneumoniae-specific IgG in BAL fluid, it can reach
the alveolar lumen by transudation from the blood and
might also play a role in protection against disease. In fact,
the implementation of the human parenterally-administered
conjugate vaccine against type B Haemophilus influenza resulted
in a reduction of carriage and a reduced risk of horizontal
transmission. This was hypothesized to be due to such
IgG (60, 61).

Circulating M. hyopneumoniae-specific TNF+IFN-γ+ CD4
and CD8T cells were identified in particular in the SWE_TLR,
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FIGURE 6 | Myeloid cell and DC/antigen presentation BTM induced by vaccines. The heat maps show the vaccine-dependent induction of BTM activity determined

for D0 to D1 (D0 vs. D1), for D0 to D7 (D0 vs. D7), and for D1 to D7 (D1 vs. D7) changes in the modules. The values shown were calculated by −log(P-value)*1 for

positively enriched BTM and as −log(P-value)* −1 for negatively enriched BTM. A cut-off of an FDR of q < 0.1 was employed. Red colors indicate BTM upregulation

and blue downregulation. BTM, blood transcriptional modules.

Lipo_DDA:TDB, and Lipo_AMP groups. However, also in the
Lipo_TLR and Hyogen groups a few animals appeared to have
such cells. Such Th1 response is expected to promote cell-
mediated immunity via activation of NK cells and macrophages,
as well as by inducing antigen-specific cytotoxic immunity (CD8
cells) (62). While such responses could participate in protection
againstM. hyopneumoniae, pro-inflammatory CD4 Th responses

might also mediate lung damage and clinical disease (63). While
the classical effector functions of CD8T cells are likely irrelevant
for the immune response against a Mycoplasma species that
is not an intracellular organism, mouse models indicate that
CD8T cells are suspected to dampen inflammatory responses
mediated by CD4+ Th cells (24, 64). Furthermore, CD8T cells
contribute to Th1 responses, which based onmousemodels could
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FIGURE 7 | Cell cycle BTM induced by vaccines. The heat maps show the vaccine-dependent induction of BTM activity determined for D0 to D1 (D0 vs. D1), for D0

to D7 (D0 vs. D7), and for D1 to D7 (D1 vs. D7) changes in the modules. The values shown were calculated by −log(P-value)*1 for positively enriched BTM and as

−log(P-value)* −1 for negatively enriched BTM. A cut-off of an FDR of q < 0.1 was employed. Red colors indicate BTM upregulation and blue downregulation. BTM,

blood transcriptional modules.

Frontiers in Immunology | www.frontiersin.org 14 May 2019 | Volume 10 | Article 1087227

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Matthijs et al. Immunological Characterization of Novel Mycoplasma hyopneumoniae Bacterins

FIGURE 8 | B cell and T/NK cell BTM induced by vaccines. The heat maps show the vaccine-dependent induction of BTM activity determined for D0 to D1 (D0 vs.

D1), for D0 to D7 (D0 vs. D7), and for D1 to D7 (D1 vs. D7) changes in the modules. The values shown were calculated by −log(P-value)*1 for positively enriched BTM

and as −log(P-value)* −1 for negatively enriched BTM. A cut-off of an FDR of q < 0.1 was employed. Red colors indicate BTM upregulation and blue downregulation.

BTM, blood transcriptional modules.

be protective against Mycoplasma infection. Based on this their
induction by the present vaccines could be viewed as positive.

In this study, the PLGA_TLR formulation was the best at
inducing a Th17 response, although in only three of six animals a
response was detected. The lack of detection of IL-17-producing
Th cells does not mean a lack of priming, as activated/memory
T cells could have left the blood circulation. Nevertheless, future
studies are required to confirm the ability of this formulation to
induce Th17 responses. It has been suggested that Th17 cells may
play a major role in the protection of the lung mucosa against
respiratory pathogens by recruiting other immune cells to the
inflamed mucosa for pathogen clearance (65) and by promoting

IgA secretion into the airway lumen (66). Similar to other species,
porcine IL-17-producing cell differentiation can be induced in
vitro by TGF-β in the presence of IL-6 and/or IL-1β (67), and
in vivo during several extracellular bacterial infections (68–70).

In addition to these classical vaccinology readouts we also
applied a transcriptomics-based approach to obtain a more
precise profile of the type of immune response induced by
our vaccine candidates, and to better understand the immune
modulatory effector functions needed for induction of a
protective immune response after vaccination. We identified
a number of BTM correlating to adaptive immune responses
which have been previously reported in human and sheep
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studies (25, 26, 28–30, 34). This was an early upregulation
of monocytes BTM, such as S4, M11.0, M118.0, and M118.1,
neutrophil BTM such as M163 and M37.1, modules related to
inflammation and pathogen sensing such as M16, M146, and
M37.0, and BTM related to antigen presentation such as M147,
M139, and M209. Interestingly, many of these modules strongly
negatively correlated with the antibody and CD8T cell responses
from D1 to D7. This suggests that a strong innate immune
response in the first 24 h followed immediately by a down-
regulation is associated with the initiation of a stronger adaptive
immune response. This inverse correlation was also seen at later
time points in a previous study using sheep (34). Similar to
previous reports (25, 28, 29, 34) a few cell cycle, B cell, and
T/NK cell BTM upregulated in the first 24 h after vaccination
negatively correlated with adaptive immune responses. While
these correlations were mainly found for the antibody responses,
most of the modules correlating to CD4T cell responses were
found to be cell cycle BTM upregulated between D0 and D7.
This was also reported by Qi et al. (30) who found a strong
association of cell cycle and DNA repair BTM to virus-specific
T cells (common BTM are M4.4, M4.12, M103, M76, M22.0,
M22.1). The upregulation of T/NK cell modules between D0 and
D7 positively correlated to CD8T cell responses, as well as to the
antibody responses between D1 and D7. Altogether, these results
confirm the importance of early innate immune responses in the
myeloid and DC cell compartment within the first 24 h for a
potent vaccine-induced adaptive immune response. Clearly, the
upregulation of myeloid cell and DC/antigen presentation BTM
could partially reflect changes in cell population, i.e., those that
are caused by enhanced hematopoiesis following stimulation of
the innate immune system (71). Nevertheless, in a previous study
we were unable to identify a significant increase in the circulation
of monocytes, indicating that the BTM changes reflect more than
changes in cell populations (34). This study also demonstrates
that the main upregulated BTM from D0 or D1 to D7 correlating
to adaptive immune responses are cell cycle and T/NK cell BTM.
This could reflect the first recirculation of activated T cells leaving
the lymph nodes that drain the site of vaccine injection.

After obtaining this information, we went back and analyzed
which BTM were actually induced by the vaccines. While all
vaccines, with the exception of the PLGA_TLR formulation,
induced early upregulation of inflammatory, myeloid cell and
DC/antigen presentation BTM, the Lipo_AMP vaccine appeared
to be the most potent in stimulating these early innate immune
responses. When it came to the later upregulation of cell cycle
and T/NK cell BTM, this was only a feature of the Lipo_AMP and
the Lipo_TLR vaccines. This was surprising considering that the
Lipo_TLR was not found to be a particularly potent formulation.
Furthermore, the more potent vaccines, such as Lipo_DDA:TDB
and SWE_TLR, actually induced a downregulation of these
BTM. While this requires further investigations, our current
interpretation is that there could be differences in the kinetics of
activated lymphocyte recirculation, which would have required
more frequent sampling to detect. Furthermore, it should again
be noted that T cell recirculation and the presence of memory
T cells in the circulation is a dynamic process. Therefore, a lack
of antigen-specific T cells in the peripheral blood cannot be

interpreted as a lack of priming. On the other hand, the BTM
profile induced by the PLGA_TLR vaccine was in line with its
rather poor immunogenicity.

Overall, our data demonstrate the potency of cationic
liposome formulations as delivery system to induce potent B
and T cell responses using inactivated M. hyopneumoniae as
antigen. Cationic liposomes may have the advantage of a more
targeted delivery of the immunostimulant and antigen to DC,
and also have been shown to enhance the retention time in
lymph nodes (72, 73). This may favor strong T cell responses.
Although we did not specifically address the requirement of an
immunostimulant for liposomal vaccines, it is well-described that
immunogenicity of liposomal vaccines can be enhanced (72).
Our data indicate that both AMP and TDB appear to be good
candidate molecules for the M. hyopneumoniae vaccine. The
transcriptomic profile of the Lipo_AMP vaccine was particularly
impressive as it corresponded best to a BTM profile known to
correlate with adaptive immune responses. From all experimental
formulations, Lipo_DDA:TDB induced the highest antibody
and Th1 responses. Unfortunately, this formulation caused a
prolonged ISR after ID administration. Applying this vaccine
only via the IM route could resolve this safety issue, but it would
be probably associated with a loss of immunogenicity (74). In
contrast, the PLGA-based MP formulation did not appear to be
suitable to induce good antibody and Th1 responses, possibly in
part due to a delayed TLR ligand delivery to innate immune cells.
Nevertheless, the fact that this vaccine induced IL17-producing
Th cells at least in some animals is interesting and should be
kept in mind for future investigations. The present work also
identified the SWE_TLR as an interesting vaccine candidate, as
it induced a robust Th1 response and IgA in BAL fluid of one
animal. This vaccine has the advantage of being easy to produce.
Moreover, O/W formulations are known to have a much better
safety profile as W/O vaccines (72). Future studies are required
to address which immunostimulant is best suited for a SWE
adjuvant in the pig. This will require the use of a selection of
identical antigens.

In conclusion, the present study identified promising M.
hyopneumoniae bacterin formulations to be selected for future
challenge experiments, based on their ability to induce strong
innate immune responses and robust Th1 or Th17 responses.
We also demonstrated the utility of transcriptome-based systems
immunology analyses to unravel the mechanistic events leading
to the stimulation of adaptive immune responses after vaccine
injection. While the present study was not designed to identify
the effects of formulation and immunostimulants but rather to
select the most promising candidates from five novel vaccines,
the information provided on these vaccine formulations will also
be very valuable for other vaccines and future adjuvant research.
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Viruses by Synonymous Genome
Recoding
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Using computer algorithms and commercial DNA synthesis, one or more ORFs of

a microbial pathogen such as a virus can be recoded and deoptimized by several

strategies that may involve the introduction of up to thousands of nucleotide (nt) changes

without affecting amino acid (aa) coding. The synonymous recoding strategies that

have been applied to RNA viruses include: deoptimization of codon or codon-pair

usage, which may reduce protein expression among other effects; increased content

of immunomodulatory CpG and UpA RNA, which increase immune responses and

thereby restrict viral replication; and substitution of serine and leucine codons with

synonymous codons for which single-nt substitutions can yield nonsense codons, thus

limiting evolutionary potential. This can reduce pathogen fitness and create potential

live-attenuated vaccines that may have improved properties. The combined approach

of genome recoding, synthetic biology, and reverse genetics offers several advantages

for the generation of attenuated RNA viruses. First, synonymous recoding involves many

mutations, which should reduce the rate and magnitude of de-attenuation. Second,

increasing the amount of recoding can provide increased attenuation. Third, because

there are no changes at the aa level, all of the relevant epitopes should be expressed.

Fourth, attenuation frequently does not compromise immunogenicity, suggesting that

the recoded viruses have increased immunogenicity per infectious particle. Synonymous

deoptimization approaches have been applied to two important human viral pathogens,

namely respiratory syncytial virus (RSV) and influenza A virus (IAV). This manuscript will

briefly review the use of these different methods of synonymous recoding to generate

attenuated RSV and IAV strains. It also will review the characterization of these vaccine

candidates in vitro and in animal models, and describe several surprising findings with

respect to phenotypic and genetic instability of some of these candidates.

Keywords: human respiratory virus, respiratory syncytial virus, influenza virus, vaccine, genome recoding,

synonymous codon deoptimization, synthetic biology

INTRODUCTION

The availability and affordability of large-scale commercial DNA synthesis opened the field of
synthetic biology (1, 2). This technological advance allowed, in 2002, the rescue of an infectious
poliovirus entirely from synthetic DNA (3). During the following years, synthetic biology and
reverse genetics were combined to design and rescue viruses with extensive targeted modifications.
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This resulted, in 2006, in the rescue of poliovirus strains with
extensive codon deoptimization (CD) (4, 5). This exemplifies
the approach of synonymous genome recoding, in which one
or more ORFs of a microbial pathogen are modified at the
nt level without altering coding at the aa level. Subsequently,
synonymous genome recoding has been widely applied to reduce
pathogen fitness and create potential live-attenuated vaccines.

Deoptimization by synonymous genome recoding offers
several advantages for viral vaccine design. Genomes of recoded
viruses may contain up to thousands of synonymous nucleotide
mutations in one or several ORFs. Many of these likely
contribute to attenuation, in aggregate this large number should
impose a significant barrier against reversion to virulence,
because any single-site reversion likely would yield only a
small amount of de-attenuation (6–8). In principle, the level

of attenuation can be modulated by adjusting the number of
introduced mutations. Recoded vaccine candidates encode all

viral proteins with the same aa sequence as the wt parent,

and thus should induce innate, humoral, and cell-mediated
responses against the same array of epitopes. Recoded viruses
also can contain an increased number of CpG and UpA
RNA dinucleotides that may increase host immune responses
that restrict the virus and provide greater efficacy. Because
synonymous recoding does not involve the lengthy development
of specific attenuating mutations, it provides an expedited
means of developing attenuated strains of a known or newly
emerging pathogen.

Synonymous genome recoding has been applied to two
important human respiratory viruses with negative-sense RNA
genomes, namely respiratory syncytial virus (RSV) and influenza

virus type A (IAV). RSV belongs to the Pneumoviridae
family and is the most important viral agent of severe

respiratory illness in infants and young children worldwide,
and also is an important cause of respiratory illness in

the frail elderly. Vaccines or antiviral drugs suitable for

routine use are not yet available. A live-attenuated vaccine

is a strategy of choice for the pediatric population because
it is free of RSV disease enhancement that is associated

with inactivated and subunit RSV vaccines in RSV-naïve
recipients. The RSV genome consists of a single non-

segmented negative-sense 15.2 kb RNA, containing 10 genes
in the order 3′-NS1-NS2-N-P-M-SH-G-F-M2-L-5′. The M2

mRNA encodes two separate proteins, M2-1 and M2-2, from
overlapping ORFs.

IAV belongs to the Orthomyxoviridae family, and contains

eight RNA genome segments, each encoding one or two
proteins: segment 1, PB2; 2, PB1 and PB1-F2; 3, PA, and PA-

X protein; 4, HA; 5, NP; 6, NA; 7, M1, and M2; 8, NS1.

Antigenic change of IAV is driven by point mutations in
the HA and NA proteins as well as segment reassortment.

Three types of vaccines are currently licensed for IAV:
inactivated, live-attenuated, and recombinant HA protein. This

review describes the current strategies of synonymous genome
recoding used to generate attenuated RSV and IAV viruses

and the characterization in vitro and in vivo of the resulting

vaccine candidates.

FOUR STRATEGIES FOR SYNONYMOUS
GENOME RECODING

The four approaches used to deoptimize the different strains of
IAV and RSV and the resulting number of silent nt mutations
that have been introduced in these viruses ORFs are summarized
in Table 1.

Codon Deoptimization (CD)
Due to the degeneracy of the genetic code, most amino acids
are encoded by more than one nucleotide triplet (synonymous
codons). Some codons are used more or less frequently than one
would expect based on random chance. This unequal frequency
of usage of synonymous codons, referred to as codon bias
[CB, (19)], can be found in many organisms including viruses
(20, 21). CD involves recoding part or all of one or more ORFs
to increase the content of synonymous codons that normally are
under-represented in the genome of these organisms.

Several hypotheses that have been proposed to explain
CB—as well as the effects of CD—involve mechanisms by
which CB might affect protein expression (usually to increase
expression), and indeed there is a significant association between
CB and translation efficiency in Escherichia. coli (E. coli) and
Saccharomyces cerevisiae (22). One hypothesis is that the codon
usage of a virus is adapted to the host tRNA abundance,
thereby enhancing viral translation and fitness (21, 23–25).
Indeed, in several prokaryotes and unicellular eukaryotes there
is a consistent correlation between tRNA abundance and the
corresponding codon usage frequency (26). This correlation
is more difficult to establish for multicellular eukaryotes. In
humans, the tRNA abundance varies widely among different
tissues. However, the tRNA abundance was statistically correlated
to codon usage of highly expressed genes specific for those tissues
(27, 28). Nt assignments involved inmRNA secondary structures,
and an avoidance of GC content, also might sometimes
contribute to CB (19, 29, 30). Of note, the codon bias of negative
strand RNA viruses frequently differs from that of their host. A
recent study suggests that this discrepancy is due to constraints
of the viral replication machinery; in a VSV minigenome system,
the purine/pyrimidine content of viral RNAs affected the stability
of the viral nucleocapsids and the RNA synthesis activity of
viral polymerase complex (31). CB also has been suggested to
occur as a means of regulating protein folding: for example,
underrepresented tRNAs can decrease the rate of polypeptide
chain elongation and thereby improve the quality of protein
folding (32). In addition, selective pressure to reduce the content
of CpG and UpA RNA, which appear to stimulate innate and
adaptive immune responses that would restrict the virus, may
contribute to CB (14).

Codon-Pair Deoptimization (CPD)
Just as codons may appear more or less frequently than expected,
the usage of particular pairs of codons may be more or less
frequent than expected which is called “codon pair bias” (CPB)
(33). For example, in E. coli, two codon pairs encoding Leu-Ala
[CTG-GCA and CTG-GCG] are highly overrepresented, while
the synonymous codon pair CTG-GCC is under-represented.

Frontiers in Immunology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 1250234

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Le Nouën et al. Synonymous Genome Recoding of Respiratory Viruses

TABLE 1 | Attenuation of influenza and respiratory syncytial virus by synonymous genome recoding.

Virus Deoptimization

strategy

Virus strain Gene(s) deoptimized Number of silent

mutationsj
Main results References

IAV CDa Seasonal H1N1 PB2, PB1, PA, HA, NP, NA, M, NSb 62, 77, 65, 46, 31, 47, 27,

18

No effect on protein

expression in vitro

Virus attenuated in

mammalian cells and in

mice

Immunogenicity in mice

equivalent to wt

(9)

PR8 H1N1 NS 135 Reduced NS1 and NEP

protein expression in vitro

Reduced virus replication in

vitro

Virus attenuated in mice

Immunogenicity in mice

equivalent to wt

(10)

CPD PR8 H1N1 NP, HA, NA, PB1c 314, 353, 265, 236 Reduced protein expression

of CPD ORFs in vitro

Reduced virus replication in

vitro

Viruses attenuated in mice

Immunogenicity equivalent

to or higher than wt

(11, 12)

2009 pH1N1d HA, NAe 346, 293 Reduced rate of replication

in vitro

Final titers in the lung of

ferrets equivalent to wt

(13)

Increasing CpG or

UpA content

PR8 H1N1 NP 86 (CpG-high virus), 73

(UpA-high virus)

Reduced virus replication in

vitro

Virus attenuated in mice

Immunogenicity equivalent

to wt

(14)

Mutations in ser

and leu codonsf
2009 pH1N1 HA, PAg 94, 111 No effect on virus replication

in vitro

Virus attenuated in mice

Immunogenicity equivalent

to wt

(15)

RSV CD A2 NS1, NS2, Gh 84, 82, Not indicated Reduced protein expression

of CD genes in vitro

Reduced virus replication in

vitro

Virus attenuated in mice or

cotton rats

Immunogenicity equivalent

to or higher than wt

(16, 17)

CPD A2 NS1, NS2, N, P, M, SH, G, F, Li 65, 60, 241, 143, 163, 23,

197, 422, 1,378

Reduced protein expression

of CPD genes

Reduced virus replication in

vitro

Viruses attenuated in mice,

hamsters, and African green

monkeys

Immunogenicity equivalent

to wt

(18)

aCD, codon deoptimization; CPD, codon-pair deoptimization.
bRecoded individually or in the combination of eight.
cRecoded individually and in combinations, notably NP-HA-PB1 (11) and HA-NA (12).
d2009 pandemic (p)H1N1.
eRecoded in combination.
fSerine and leucine codons recoded into synonymous codons for which some single-nt substitutions result in nonsense codons.
gRecoded separately.
hRecoded in the combinations NS1-NS2 and NS1-NS2-G.
iRecoded in the combinations NS1-NS2-N-P-M-SH; G-F; L; and all genes except M2-1 and M2-2.
jNumber of silent mutations introduced in each gene, respectively.
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While this non-randomness was evident for pairs of codons,
a bias was much less obvious in control analyses evaluating
pairs of non-adjacent codons, and almost absent when pairs
were separated by two or three intervening codons (33).
CPB is thought to affect translation due to differences in the
compatibility of different synonymous pairs of aminoacyl-tRNAs
in the translating ribosome (33, 34). Buchan and al. suggested
that structural features that regulate tRNA geometry within
the ribosome may favor specific codon pairs and thus govern
genomic codon pair patterns, driving enhanced translational
fidelity and/or rate (35). As with CB, other factors may contribute
to CPB, such as selection to reduce the content of CpG and UpA
RNA thought to be immunostimulatory (36). CPD is achieved
by rearranging synonymous codons to increase the frequency

of codon-pairs that typically are under-represented, without
changing the overall codon usage or nt content. The first CPD
of an RNA virus involved poliovirus, in 2008 (37).

Increasing the CpG and UpA Content
CpG and UpA RNAs typically are under-represented in RNA
virus genomes, presumably due to selective pressure to reduce
immune recognition by innate immunity sensors. CPD or CD of
a viral genome frequently result in inadvertent increases in the
CpG and UpA content of the recoded virus, which may account
for the increased immunogenicity per PFU that sometimes is
observed (11). For several RNA virus genomes, the content of
CpG and UpA was deliberately increased while preserving the
natural overall CPB and CB ratios (14, 38–40). The resulting

FIGURE 1 | Methodology used to generate genome scale deoptimized RSV or IAV viruses. Four strategies of deoptimization have been used to atttenuate RSV and

IAV: (A) codon deoptimization (CD), (B) codon-pair deoptimization (CPD), (C) increase of the CpG and UpA content and (D) synonymous Serine and Leucine codon

substitutions that allow single-nt mutations yielding non-sense codons. An example is shown for each approach. The synonymous mutations generated by the

deoptimization process are indicated in red. In (A), the “A” to “T” mutation resulted in the introduction of an underrepresented Arg codon (10). In (B), the CPD process

(37) may yield CpG dinucleotides at codon boundaries that were shown to be significantly suppressed in wt viruses (36). In (C), the program “Sequence Mutate” in the

SSE package (43) introduces a synonymous mutation (“A” to “G”) that resulted in the introduction of a CpG motif in the Thr amino acid. Finally in (D), a synonymous

mutation “C” to “T” generated a Leu codon “TTA” that by only a single-nucleotide change can generate a stop codon (TAA or TGA) (15).

Frontiers in Immunology | www.frontiersin.org 4 June 2019 | Volume 10 | Article 1250236

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Le Nouën et al. Synonymous Genome Recoding of Respiratory Viruses

viruses were substantially attenuated yet were as immunogenic as
their wt parents, presumably due to greater stimulation of innate
immune sensors by CpG andUpA resulting in increased immune
responses and restriction of virus replication.

Note that CpG DNA can directly and very efficiently
activate B cells but also Natural Killer cells, dendritic cells and
monocytes/macrophages through TLR9 stimulation (41). While
this is less clear for CpG RNA, synthetic CpG RNAs have
been shown to stimulate human monocytes resulting in IL-6
and IL-12 production and costimulatory molecule up-regulation.
However, this effect is not mediated through TLR3, 7/8, or 9
and the pathways remain to be defined (42). In addition, during
virus replication, large amounts of viral mRNAs or double-
stranded intermediates are produced that could be potentially be
recognized by sensors of the innate immune response. Whether
or not the increased CpG and UpA content in recoded viruses
results in increased immunogenicity remains to be determined.

Recently, the host Zinc-finger antiviral protein (ZAP) was
shown to inhibit a recoded CpG-rich version of HIV-1 by directly
binding to regions of the viral RNA rich in CpG RNA. This
suggests that ZAP is part of the cellular system for detecting
non-self RNA containing CpG RNA (40).

Synonymous Serine and Leucine Codon
Substitutions That Allow Single-nt
Mutations Yielding Nonsense Codons
Serine and leucine codons, which have the highest codon
redundancy, can be recoded to increase the use of synonymous
codons for which some of the possible single-nt changes result in
nonsense mutations (“1-to-Stop” mutations) (15). This reduces
the number of mutations at a given serine or leucine codon that
can yield fit virus, and thus reduces evolutionary potential and
viral fitness. This strategy has been applied to the pathogenic
enterovirus Coxsackie B3 as well as to IAV (15).

METHODOLOGY USED TO GENERATE
DEOPTIMIZED RSV AND IAV
VACCINE CANDIDATES

The methodologies that have been applied to RSV or IAV
to generate deoptimized vaccine candidates are described in
Figure 1. In all approaches, following identification of the
gene(s) or portion(s) of the ORF(s) that will be targeted for
deoptimization, silent mutations were first introduced in silico,
manually (9, 10, 15) or using computer algorithms (11–14, 18),
as described below. For each approach, packaging and splicing
signals or replication/translation elements were excluded from
the deoptimization process.

CD (Figure 1A) of the PR8NS gene by Nogales and colleagues
was done by introducing synonymous mutations to increase
the abundance of codons that were under-represented in the
natural coding sequences (10). Fan and colleagues used a different
approach, as they changed the CB of a seasonal human H1N1
virus to an avian-like IAV CB (9). To do so, the authors first
determined the segment specific CBs of the human H1N1 strain
and the corresponding avian IAV sequences. This allowed to

determine the number of mutations that had to be introduced
into the humanH1N1ORFs to change its CB to an avian IAV-like
CB. Mutations were randomly distributed in the targeted ORF at
sites that were highly conserved at the amino acid sequence level
to reduce the possibility of introducing mutations into potential
mutational hot spots, or disrupting potential critical RNA signals.
The free energy of the resulting RNAs and the dinucleotide usage
frequency were unchanged by these modifications.

CPD (Figure 1B) was done using a computer algorithm to
enrich a given viral coding sequence for codon-pairs under-
represented in a core set of human genes (37). First, the CPB of an
ORF is defined by a codon pair score (CPS). This CPS is defined
as the natural log of the ratio of the observed over the expected
number of occurrences of each codon pair. The expected number
of each codon pair was calculated so that it is independent both
of the amino acid frequency and the codon bias (33). The CPB for
an ORF was then determined as the arithmetic mean of all CPS.
The CPD algorithm of Coleman and colleagues (37) shuffles the
existing codons of an ORF to generate under represented codon
pairs, while preserving the codon bias and the free energy of the
folding of the recoded RNA.

The increase of the CpG and UpA content of IAV NP gene
(Figure 1C) (14) was completed using the computer algorithm
“Sequence Mutate” in the SSE package (43) while maintaining
the mononucleotide composition through the introduction of
compensatory substitutions elsewhere in the sequence. The CPB
was not modified by this process.

Finally, Moratorio and colleagues introduced synonymous
mutations that allow single-nt mutations yielding nonsense
codons into the HA or PA gene of the 2009 pandemic H1N1
virus only in codons coding for two amino acids with the highest
codon redundancy (Leu and Ser) to limit the overall change in
nucleotide sequence to <5%. These Leu and Ser mutations did
not affect the CB, CPB, CpG content or dinucleotide frequency
(Figure 1D) (15).

In every case, the deoptimized sequences were synthetized
de novo and cloned into plasmids that were used to rescue the
deoptimized virus of interest by reverse genetics. The rescued
viruses were then evaluated phenotypically in vitro and in vivo.

SYNONYMOUS GENOME RECODING
OF IAV

Codon Deoptimization (CD)
CD was applied to the seasonal human H1N1 by converting
its codon usage so that it was similar to that observed in
avian influenza virus, in order to attenuate the virus for
humans without reducing yield in embryonated chicken eggs,
the substrate for vaccine production (9). All eight segments were
codon-deoptimized alone or in combination. This attenuated the
virus in mammalian cells and in mice, whereas replication in
embryonated eggs remained comparable to wt. Surprisingly, CD
did not affect protein expression (9), illustrating that its effects
can be different than predicted.

CD also was applied to the laboratory-passaged H1N1 PR8
strain, involving only the NS gene (10). CD did not affect NS
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mRNA transcription in MDCK cells but, as expected, did reduce
NS protein expression in MDCK and human airway A549 cells,
and virus replication was reduced in A549 cells. The CD PR8
virus was attenuated in mice. Both the CD seasonal human
H1N1 and the CD PR8 IAV retained their immunogenicity
despite attenuation and conferred homologous and heterologous
protection against IAV challenge in mice (9, 10).

Codon-Pair Deoptimization (CPD)
The NP, HA, NA, and PB1 segments of the laboratory-passaged
PR8 H1N1 strain were subjected to CPD alone or in several
combinations (11, 12). PR8 that contained CPDNP, HA, NA, and
PB1 alone or in various combinations replicated to about 10-fold
lower titers thanwt PR8 onMDCK cells. However, the replication
of the PR8/CPD-HA-NA virus in human A549 cells was 1,000-
fold lower than wt. As expected, translation of the CPD genes
was reduced compared to other genes from the same virus (11).
Surprisingly, in case of the CPD NA mRNA, transcription was
also reduced, with the underlying mechanism being unclear (12).

Despite overall robust replication in vitro, PR8 viruses with
various combinations of CPDNP, HA, PB1 genes were attenuated
in mice, and the attenuation increased with increasing number
of CPD genome segments (11). In mice, the PR8/CPD-NP-HA-
PB1virus did not induce any disease symptoms or weight loss
and was 3,000-fold reduced for replication compared to wt. In
addition, it was a more potent inducer of IAV-specific antibodies
than wt, and replication of challenge virus was below the level
of detection in 80% of the mice (11). The virus PR8/CPD-HA-
NA also was attenuated in vivo, replicating to 100- to 1,000-fold
lower titers than wt in the lungs of mice, with the NA gene
being the major contributor of attenuation (12). This virus also
induced a strong antibody response that was equivalent to wt, and
it efficiently protected against lethal challenge, with protection
being durable for at least 7 months (12).

Since CPD of the HA and NA genes was so highly attenuating
for the PR8 virus, the HA, and NA genes of the 2009 pandemic
(p)H1N1 strain similarly were subjected to CPD in combination
(13). The resulting virus had a reduced rate of replication
in MDCK cells, but final titers were similar to those of its
pH1N1 parent (13). In ferrets, the CPD-HA-NA virus was non-
pathogenic. However, no significant difference in virus titers
in the lung at day 3 pi was observed between this virus and
its pH1N1 parent, suggesting that additional genes will need
to be subjected to CPD to obtain additional attenuation (13).
Thus, there can be strain-to-strain variability in the attenuation
achieved by CPD.

Increasing the CpG and UpA Content
Segment 5 (encoding NP) of IAV PR8 was recoded to increase
the content of CpG or UpA RNA (14). Replication of the two
resulting viruses (CpG-high or UpA-high) was delayed compared
to wt in MDCK cells, with final titers that were about 10-
fold reduced. Plaque size and infectivity were also reduced. The
viruses replicated to 10-fold lower titers than their wt parent
in mice, but cytokine production, CD4+, CD8+-T cell and
antibody responses were comparable to those induced by wt
virus, and the mutants were fully protective against wt challenge.

This suggested that CpG- and UpA-high IAV viruses may induce
innate and adaptive immune responses disproportionate to their
replication phenotypes (14).

Synonymous Serine and Leucine Codon
Substitutions That Allow Single-nt
Mutations Yielding Nonsense Codons
Moratorio and colleagues recoded either the HA or PA gene of
the 2009 pandemic H1N1 virus to replace serine and leucine
codons with synonymous codons for which a number of single-
nt substitutions could yield nonsense mutations (15). There
was no effect of the recoding on virus replication in MDCK
cells. However, both viruses exhibited an increase in nonsense
mutations in themutated genes compared to wt, that significantly
reduced viral fitness. In addition, virus replication was reduced
10- to 100-fold in mice. Despite reduced replication, the antibody
response was comparable to wt and these viruses induced
complete protection against wt virus. The apparent greater
immunogenicity per PFU was suggested to be due to immune
stimulation by truncated proteins and by adjuvant effects of
defective viruses (15). Thus, reducing the evolutionary potential
of a virus provides a novel attenuation strategy.

SYNONYMOUS GENOME RECODING
OF RSV

Codon-Deoptimization (CD)
CD was performed for the ORFs encoding the RSV interferon
antagonist non-structural proteins 1 (NS1) and 2 (NS2) (16,
17, 44, 45) and the gene encoding the attachment glycoprotein
G (17). As a result of CD, the level of NS1 and NS2 protein
was reduced in Vero, BEAS-2B, and Hep-2 cells (16, 44) and
the expression of G was reduced in Vero cells (17). CD of
NS1 and NS2 did not affect virus replication in Hep-2 and
Vero cells, but significantly reduced virus replication in the
interferon competent bronchial airway BEAS-2B cells, as well as
in differentiated normal human bronchial epithelium (NHBE)
cells grown at the air-liquid interface (ALI) (16). The addition
of the CD G further reduced virus replication on NHBE/ALI
cells, probably due to the role of G in attachment to primary
cells (17). Interestingly, while infection of human 293 cells
with wt RSV induced a 50% reduction of STAT2 expression,
RSV/CD-NS1-NS2 had no effect on STAT2 levels, indicating that
this virus had lost the ability to inhibit this aspect of innate
immunity. Compared to wt RSV-infected cells, NF-kB activation
was reduced in RSV/CD-NS1-NS2- infected cells. The reduced
activation of NF-kB by this virus may increase cell apoptosis thus
contributing to the attenuated phenotype of this virus (16).

RSV/CD-NS1-NS2 and RSV/CD-NS1-NS2-G replicated to
10-fold lower titers in the lungs of mice compared to wt, but
induced significantly higher level of antibodies, and animals were
protected against challenge (16). The RSV/CD-NS1-NS2-G virus
also was strongly attenuated in the upper and lower respiratory
tract of cotton rats, but still induced high levels of antibodies
and the vaccinated animals were completely protected against wt
challenge (17).
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Codon-Pair Deoptimization (CPD)
Our group studied the effect of genome-scale CPD of RSV
(18, 46). Four CPD RSV strains were designed in which one
(L), two (G and F), six (NS1, NS2, N, P, M, and SH), and nine
(all except M2-1 and M2-2) ORFs were subjected to CPD. All
four CPD RSVs were temperature sensitive, which is a novel
and unexplained effect, but as one possibility might indicate
deficiencies in protein folding resulting from altered translation
of CPD ORFs. The viruses grew less efficiently than wt in
vitro and had reduced mRNA and protein synthesis. CPD of
the surface glycoproteins G and F resulted in the strongest
reduction in virus replication. The CPD RSVs exhibited a level of
attenuation inmice andAfricanGreenmonkeys comparable with
that of two attenuated RSV strains presently in clinical trials (18).

The RSV bearing nine CPD ORFs was phenotypically and
genetically stable when subjected to serial passage in vitro at
progressively increasing temperature. Serial passage at increasing
temperature of the RSV bearing the CPD L ORF (Min L) induced
a partial loss of temperature-sensitivity and the acquisition of
a broad array of mutations that were predominantly missense.
Surprisingly, many of the mutations involved ORFs other
than L, suggestive of changes affecting protein interactions to
compensate for the reduced quantity of L protein. Unexpectedly,
each of two compensatory missense mutations in the M2-1
protein had a major effect on restoring viral fitness, which differs
from the expectation that individual mutations would have
modest effects on viral fitness. The introduction of several of the
compensatory mutations identified in the passaged viruses into
Min L resulted in increased genetic stability, and the resulting
virus was strongly attenuated in vivo but was comparable to
wt RSV in immunogenicity and protective efficacy, yielding an
improved vaccine candidate (46).

BENEFITS, POTENTIAL LIMITS, AND
FUTURE OF SYNONYMOUS
GENOME RECODING

Genome scale deoptimization of RNA viruses resulted in the
generation of vaccine candidates that in most cases were
attenuated in vitro, and always attenuated in animal models.
While this approach has many advantages that have been
described above, the underlying mechanism and resultant effects
of the deoptimization still need to be further explored.

Firstly, the extent of deoptimization tolerated by viruses differs
widely from virus to virus. For example, while extensive CPD of
RSV (up to 9 out the of 11 ORFs CPD) still readily generates
a replicating virus, this is not the case for poliovirus or HIV,
where extensive CPD or CD did not yield replicating virus. This
renders the effect of deoptimization on viral genes hard to predict
and implies that, in each case, phenotypes have to be evaluated
experimentally. In addition, CD, CPD, and the increase of the
CpG and UpA content in some cases resulted in the decrease of
the specific infectivity of the recoded viruses. This effect varied
depending of the virus and the genes that had been deoptimized
and also has to be carefully evaluated on a case-by-case basis.

Most of the approaches described above share common
features. For example, the increase of the CpG content was the
intended effect in one approach (14), and an also a side effect
of CPD. Translation efficiency is expected to be affected both
by CD and CPD. With the exception of poliovirus, different
deoptimization approaches have not been directly compared side
by side using the same genes or portion of genes of a pathogen.
This renders the comparison of the efficiency of the different
strategies difficult. For poliovirus, both CD and CPD of the same
region of the capsid-encoding ORF generated attenuated viruses
(5, 37). Interestingly, while both approaches reduced the specific
infectivity of the deoptimized viruses, CD reduced the specific
infectivity 10-fold more than CPD, suggesting that CD might
have a greater effect on the specific infectivity than CPD, at least
for poliovirus.

A direct comparison of deoptimized vaccine candidates to
those generated by traditional approaches (e.g., biological viruses
attenuated by serial passage, recombinant viruses attenuated
by gene or codon deletions or non-synonymous attenuating
mutations) is also mostly lacking. Pre-clinical evaluation of CPD
RSV vaccine candidates showed that the level of restriction of
CPD RSVs in African green monkeys was similar to that of
two live-attenuated pediatric RSV vaccine candidates presently
in clinical trials in infants and young children (18).

Importantly, despite strong restriction of replication in vivo,
the deoptimized viruses generally induced a strong immune
response in vaccinated animals, usually at the level observed
with wt virus. As mentioned above, large amounts of viral
mRNAs or double-stranded intermediates are produced during
virus replication that could be potentially be recognized by the
innate immune sensors. It is tempting to speculate that the
increased CpG and UpA content in the recoded viruses results
in viral mRNAs and/or double double-stranded intermediates
with increased immunogenicity. However, this hypothesis would
need to be verified. A comprehensive evaluation of the activation
and/or proliferation of immune cells (dendritic cells, CD4+, and
CD8+ T cells) following stimulation with these viruses would be
helpful to elucidate the basis of this strong immunogenicity. In
addition, a comprehensive evaluation of the immune response
of non-human primates would be informative. Evaluation of
the attenuation and immunogenicity of deoptimized vaccine
candidates in phase I studies will provide answers on the
usefulness of these approaches. Finally, it would also be of interest
to complete the reverse experiment by recoding viruses using the
most used codon pairs or by further reducing the CpG and UpA
content to investigate the resulting effect on virus replication and
immunogenicity in animal models.

Overall, the data available to date encourage the further
evaluation of these vaccine candidates in clinical trials.
However, a more comprehensive understanding is needed of the
mechanisms of attenuation conferred by the different strategies
of deoptimization. De-attenuation appears to be rare, suggesting
that these viruses are genetically stable (4, 5, 16, 17, 37, 47–
51). However, an important limitation is that the de-optimized
viruses generally have not been subjected to strong selective
pressure that would favor the outgrowth of viruses with de-
attenuating mutations. In the study in which strong selective
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pressure was applied to CPD RSV, the virus containing nine CPD
ORFs was stable. However, selective pressure on the virus that
contained only the CPD L ORF (Min L) resulted in a number
of unexpected findings, including de-attenuating mutations
outside the CPD ORF that presumably compensated for the low
expression of the CPD genes. Importantly, those mutations were
used to make a more stable and more immunogenic vaccine
candidate. Thus, further studies will be needed to understand
escape mechanisms from the restrictions imposed by CPD.

CONCLUSION

While genome scale deoptimization of RNA viruses was
initiated a decade ago, most of the vaccine candidates
generated to date have been evaluated only in animal models.

These synonymous recoding strategies may prove useful for
developing novel live-attenuated vaccines, such as for pediatric
respiratory RSV vaccines as well as for emerging highly
pathogenic viruses.
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Lower respiratory infection caused by human pathogens such as influenza and

respiratory syncytial virus (RSV) is a significant healthcare burden that must be addressed.

The preferred options to achieve this goal are usually to develop vaccines for prophylaxis

and to develop antiviral small molecules to treat infected patients with convenient,

orally administrable drugs. However, developing a vaccine against RSV poses special

challenges with the diminished immune system of infants and the elderly, and finding

a universal flu vaccine is difficult because the product must target a large array of

viral strains. On the other hand, the use of small-molecule antivirals can result in the

emergence of resistant viruses as it has well-been reported for HIV, influenza, and

hepatitis C virus (HCV). This paper reviews peptide antiviral strategies as an alternative to

address these challenges. The discovery of influenza and RSV peptidic fusion inhibitors

will be discussed and compared to small molecules in view of escape mutations. The

importance of constraining peptides into macrocycles to improve both their inhibitory

activity and pharmacological properties will be highlighted.

Keywords: escape mutation, peptides, fusion, antivirals, RSV, influenza

Lower respiratory infection is one of top four causes of human death worldwide (1), causing 3
million deaths in 2016. Among the pathogens responsible for these infections, influenza virus,
respiratory syncytial virus (RSV), and pneumococcus are the most important causes. The year
2018 marks the 100th anniversary of one of the largest public health crises in modern history,
the 1918 influenza pandemic known colloquially as “Spanish flu,” which at the time killed at least
2% of the Earth’s population. Currently, influenza continues to represent a global threat because
of the constant evolution of the virus into various strains and the increase of urbanization, mass
migration, and global transports. TheWorld Health Organization estimates that seasonal influenza
is responsible for the death of about 500,000 persons every year (2); in contrast to the 1918
epidemic, which affected mainly the 20- to 40-year age group, influenza-associated hospitalizations
are now the highest in children younger than 5 years and in the elderly (3). A meta-analysis
estimated that, in 2008, there were 90 million new cases of influenza in children <5 years, of which
20 million developed acute lower respiratory infections (ALRIs) and 1 million developed severe
ALRI (4). In 2010, there were 11.9million hospital admissions due to severe ALRI and 3million due
to very severe ALRI (5). Currently, the mortality associated with influenza is higher in the elderly.
A study covering the period from 1972 to 2003 in the United States estimates a yearly average of
influenza-associated deaths of 2,680 individuals for those aged <65 years and 22,790 for those aged
>65 years (6).
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RSV caused almost 34 million cases of lower respiratory
infections in children under 5 years of age in 2005 worldwide,
resulting in approximately 100,000 deaths (7). Although RSV is
not a large cause of mortality in developed countries, the virus
creates a significant burden on the healthcare system, because of
the high number of children under 5 years of age that must be
hospitalized, accounting for 45% of the total children admissions.
In the United States, it has been estimated that RSV is responsible
for 86,000 children hospitalizations per year with an estimated
cost of US$394 million (8). The virus is also an important
source of infection in the elderly population and in bone marrow
transplant recipients (9). It is estimated that RSV causes, on
average, 17,358 deaths annually in the United States, 78% of
which occur in adults aged 65 or older, resulting in 5% of the total
elderly hospital admissions (10). However, contrary to influenza,
RSV kills more in the pediatric population; RSV accounts for
6.7% of all deaths in infants aged 28–364 days (1).

To prevent another important influenza pandemic, an
efficient vaccine is warranted. The current flu vaccines contain
representative hemagglutinins (HAs) of H3N2, H1N1, and type
B viruses. The vaccines are effective but the immunity takes
time to develop; thus, they are of no use for the infected
patient. Additionally, the vaccines must be reformulated each
year because of the antigenic drift, and they are not effective
when the formulation does not match the epidemic virus. For
these reasons, a universal vaccine is sought to replace the
seasonal vaccine by providing long-lasting protection against
both seasonal and pandemic strains, thanks to the discovery
of human broadly neutralizing antibodies (11, 12). In the case
of RSV, despite decades of research, there are currently no
licensed vaccines available. Current efforts are driven (i) toward
immunizing pregnant women with a vaccine targeting the fusion
F viral protein to protect neonates and young infants through
trans-placental antibody transfer, and (ii) toward immunizing
infants and young children with live attenuated vaccines (13).
The discovery of the means to stabilize the metastable prefusion
form of F (preF) (14) has been a major breakthrough in the
field due to the following reasons. Firstly, preF neutralizing
antibodies are more potent than postF neutralizing antibodies;
secondly, preF contains six antigenic binding sites that can
be used to generate antibodies (15), and lastly, the x-ray
coordinates of preF can be utilized to perform an in silico study
to engineer and screen for the best preF antigens in animals,
prior to their application to human (14). Currently, 18 RSV
vaccine trials and 21 preclinical development programs are under
development (16). The most promising candidate is an RSV F
nanoparticle-based vaccine of Novavax. This vaccine is under
development against young infants, pregnant women, and the
elderly. The maternal immunization phase 3 clinical trial is
the most advanced (17, 18). The vaccine is a prefusogenic F
protein encapsidated into a nanoparticle and complemented with
an aluminum adjuvant to boost immunization. The primary
endpoints of the phase 3 clinical trial have been met and
the study will be unblinded shortly; the data are promising
and suggest that the first RSV vaccine might be approved
by the U.S. Food and Drug Administration soon. It will
be valuable to see, in case of success, if the adjuvant is

well tolerated by the fetus (and, by extension, by the young
infants), and if the immunization of this vaccine can extend
beyond 1–2 months. Persistence of maternal antibodies in
the neonate may be too short to achieve reliable protection
unless a very high titer of neutralizing antibodies is reached.
Additionally, the timing of immunization can have an impact
on level of transplacental antibody transfer from the mother to
the fetus.

Since no vaccines are presently available to eradicate the
seasonal flu, antiviral molecules are needed to treat the infected
patients. The current standard of care against flu targets two
proteins, the matrix-2 (M2), a proton-selective ion channel
protein, or the neuraminidase (NA) protein. M2 enables the
migration of H+ ions into the interior of virus particles, a
process that takes place upon endosome acidification and is
needed for virus uncoating to occur. NA cleaves the sialic acid
that is used by the virus to bind to the host receptor, thereby
allowing the release of the virus from the infected cell and
further spreading in the host (19). The licensed drugs targeting
M2 are amantadine (Symmetrel) and rimantadine (Flumadine),
belonging to the class of adamantane derivatives, and the ones
targeting NA are oseltamivir (Tamiflu), zanamivir (Relenza), and
peramivir (Rapivab). In principle, these antivirals are universal
and can be used against all strains of influenza virus. However,
resistance strains have emerged in the last two decades and have
become a serious issue. The use of the adamantane derivatives
resulted in the appearance of several escape mutants in viruses
isolated from man and avian in the transmembrane region of
the M2 protein (20, 21). In particular, the S31N was shown
to be present in all H3N2 and 15.5% of the H1N1 influenza
A viruses worldwide by 2006 (22, 23). Resistance increased
dramatically in the United States in a period of 10 years,
starting from only 2% prevalence in 1999, to 15% in 2005, and
finally 96.4% in 2006. In some Asian countries such as China,
adamantane resistance was already detected in 70% of all virus
isolates in 2004. On the other hand, the H274Y NA mutant
resistant to oseltamivir and peramivir has naturally appeared
in 2007 and is now present in virtually all H1N1 virus isolates
(24). This still leaves the option of using the adamantanes
to treat the infections due to H1N1 and oseltamivir to treat
the infections due to H3N2. Even in the case that a virus
resistant to both adamantanes and oseltamivir would appear
to become predominant (25), zanamivir could still be used.
However, because zanamivir is an inhalable drug, which requires
the use of an unfriendly device to administer the compound,
this option cannot be used to treat the pediatric population,
the elderly, and patients with chronic airway disease such as
asthma or chronic obstructive pulmonary disease (COPD) (26).
In addition to this, a diagnostic tool must be available to
identify quickly the subtype of the influenza virus for a prompt
clinical decision.

Recently, a peptide-based strategy has been used to design
peptidic macrocyclic compounds capable of inhibiting the fusion
of influenza A group 1 viruses (27). Like broad neutralizing
antibodies (bnAbs), these peptides aim at binding to the
conserved HA stem, an approach that may reduce the likelihood
of generating escape mutants. HA is a trimeric metastable
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protein, in which each subunit contains an HA1 and an HA2
subdomain linked by a disulfide bond. HA1 is a globular domain
mediating binding of the virus to sialylated receptors at the
surface of the host cell, and HA2 is an α-helical stem region
mediating fusion of the viral membrane with the host cell
membrane. Following binding to cell-surface receptors, the virus
is internalized by endocytosis. The low pH of the endosomes
(pH 5–6) triggers a major structural rearrangement of HA2.
Each HA2 subunit monomer contains a long helix connected
through an extended loop to a shorter helix. The C-terminus
of the long helix is anchored to the viral membrane, and the
fusion peptide is at the N-terminus of the short helix. This
structure forms a six-helix bundle in trimeric HA2. As the
shorter helix is antiparallel to the long helix, the fusion peptide
is located next to the viral membrane in the prefusion form.
Upon pH change, the extended loop rotates dramatically and
merges with the long helix to position the fusion peptide at
180◦ from the viral membrane into the host cell endosomal
membrane. This structural rearrangement is the driving force
of the fusion between the viral and host cell membrane (28–
30). A peptide binding to the prefusion HA stem region
should prevent fusion of the virus with the host cell, thereby
neutralizing the virus, as it is the case for bnAbs. To design
such peptide, the authors combined discontinuous segments
located at the complementary-determining regions (CDRs) and
framework regions (FRs) of the bnAbs. Similar strategies had
been used by others previously (31–35). CDRs are hypervariable
loops of the antibody mediating binding to the antigen, and
FRs are variable domains, assisting the CDRs to bind to the
antigen. The x-ray structures of several bnAbs bound to the
HA stem region were used to design the peptides described in
this work. First, the x-ray structures of the bnAbs CR9114 and
FI6v3 were compared, revealing a striking similarity between
the binding mode of both bnAbs CDRs to HA stem. CR9114 is
an antibody identified through screening combinatorial libraries
constructed from human B cells, which neutralizes both influenza
A and B viruses (36). FI6v3 is an antibody isolated through
screening human peripheral blood plasma, which neutralizes
all 16 influenza A subtypes (37). CR9114 uses residues of FR3,
CDR1, and CDR3 to make hydrophobic contact with the HA
stem, whereas FI6v3 uses mainly CDR3 (Figure 1). Therefore,
the CDR3 sequence of FI6v3, a 14-mer peptide, was used
as a starting point for the medicinal chemistry work. Firstly,
Leu100B of FI6v3 was replaced with Glu to improve water
solubility. Secondly, in order to improve the weak micromolar
inhibitory activity of the resulting linear peptides, the peptide
was constrained into a macrocycle through a lactam cyclization
between the side chain of an ornithine and the carboxylic C-
terminus end of the peptide. Thirdly, the polar unfavorable N-
terminal arginine was replaced by a hydrophobic amino acid
leading to a significant increase of affinity, and the peptide was
further optimized by sequential amino acid replacement with
non-natural amino acid bioisosteres designed on the basis of
the binding of various bnAbs to the HA stem. Finally, these
sequential changes were combined into one peptide, peptide P7,
which was shown to bind to several influenza A subtypes of
group 1, including the 2009 H1N1 pandemic and avian H5N1

FIGURE 1 | Design of a macrocyclic peptide binding to the HA stem binding

site. (Left) The complementary-determining regions (CDRs) of the bnAbs

CR9114 and FI6v3, which bind to HA stem, are shown. The HA protomers are

not shown. The key determinants of CR9114 and FI6v3 are shown in green

and yellow, respectively. The LCDR1 binding determinant of FI6v3 is not

shown as it was not used in the design. (Right) overlay of FI6v3 HCDR3 with

selected CR9114 key determinants, which was used as the basis for the

design of peptide inhibitors. The red arrows depict approximately where the

macrocyclic bride was inserted. This figure was prepared with Pymol using

PDB ID 3ZTN and 4FQI for FI6v3 and CR9114, respectively.

strains. P7 is an 11-mer peptide with a molecular weight of
1,639 Da, containing three non-natural residues and one N-
methylated amino acid in its sequence. P7 binds to the HA
stem with an affinity of approximately 20 nM and is capable of
inhibiting viral fusion in cells with an EC50 of 70 nM. In vitro
stability of the P7 peptide was assessed in human and mouse
plasma; no degradation could be observed over the course of the
study (4 h), implying that the insertion of a macrocyclic constrain
and non-natural amino acids confer enhanced stability on the
peptide. The peptide displayed no cytotoxicity in Calu-3 lung-
derived cell lines, and the pharmacokinetic profile in BALB/c is
encouraging for further drug development. P7 has a t1/2 of ∼
2.7 h, and its clearance in the plasma is ∼24 h. The design of
peptide P7 is a remarkable example of the potential of peptide
therapeutics and highlights the importance of constraining a
peptide into a macrocycle to decrease the entropic cost required
to go from the multiple possible conformations of unbound
peptide to the rigid conformation of the receptor/peptide bound
complex. Despite its small size, P7 is capable of burying almost
the same surface, which is used by the anti-stem bnAbs to
inhibit viral fusion; this surface is approximately 600 Å, and
is too large to be accommodated by a small molecule. Of
course, it remains to be seen if peptide P7 can be converted
into an orally available drug or if, as for the treatment
with Relenza, another mode of administration will need to
be considered.

Another example of pan inhibitor is P9, a peptide active
against influenza A virus H1N1, H3N2, H5N1, H7N7, and H7N9
(38). P9 is a 30-amino-acid synthetic peptide derived frommouse
β-defensin-4 (mBD4). The authors performed a series of N- and
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C-terminal truncation of mBD4, resulting in the identification
of P9. The peptide contains two disulfide bonds and is rich in
basic amino acids. P9 is active against various flu strains with
IC50 values ranging from 450 nM to 1.43µM. Experimental data
suggest that P9 binds to viral glycoproteins and inhibits RNA
replication through preventing the pH drop required to trigger
viral fusion in the endosome, thanks to the high content of basic
amino acids. Administration of P9 tomice prior to viral challenge
showed that one-fifth of the dose was still present 8 h post-
administration, suggesting that the presence of disulfide bonds
confer a certain degree of proteolytic stability to the peptide
despite the presence of only wild-type amino acids.

For RSV prospective therapies, resistance might become
a problem with the neutralizing antibodies currently under
development. The current standard of care consists of
prophylactic treatment of at-risk infants with palivizumab,
a monoclonal antibody against RSV F protein administered
monthly as an injectable during the infection peak season
(39, 40). Its limited efficacy and high cost limit its use to pre-
term infants with bronchopulmonary dysplasia and chronic
respiratory disease and newborns with congenital heart disease
(8). As a result, 60% of at-risk children remain untreated, and no
efficient therapy is available to treat the adult population (41).
Recombinant antibodies targeting the antigenic sites of preF
with longer half-life than palivizumab are currently developed
to decrease the number of injection of the current standard
of care, including REGN2222, ALX-0171 (42), and MEDI8897
(43, 44). Regeneron has recently reported the phase 3 clinical
trial results of Suptavumab (REGN2222), a 5- to 10-fold more
potent neutralizing antibody than palivizumab (45, 46). This
trial failed to meet the primary endpoint against RSV B clinical
isolates because of the emergence of the L172Q and S173L
resistant mutants. This was completely unexpected since these
variants, which had never been observed prior to 2015, appeared
spontaneously over the last three seasons in genotype B patients
enrolled in the study as well as in the placebo group. These
results highlight that targeting a single antigenic epitope with
neutralizing antibodies is risky, even if this appeared not to be
a serious issue with palivizumab. As a result, MedImmune is
carefully assessing the variants present in the population tested
against the clinical candidate MEDI8897.

In principle, resistance should not be an issue for the
treatment of young infants with antiviral drugs given that RSV
is not a chronic disease; the viral load should decrease rapidly
upon administration of the antiviral, leaving no time for the virus
to mutate. However, the identification of the F140L and T400I
escape mutants in the clinical phase 2a human challenge study
of presatovir suggests that resistant circulating RSV strains could
emerge (47). Additionally, resistance will become a problem for
hematopoietic cell transplant (HCT) patients, since these patients
need to go on therapy for a period of 6 months. The most
advanced molecules that have been reported recently in clinical
settings are Presatovir (GS-5806) (48), Lumicitabine (ALS-
008176) (49), Ziresovir (AK0529), JNJ-53718678 (50), EDP-938
(51), and RV-521 (52). Presatovir, JNJ-53718678, and RV-521 are
small-molecule fusion inhibitors targeting preF; Lumicitabine is
a pro-drug nucleoside polymerase inhibitor; and EDP-938 is a

replication inhibitor whose mechanism has not been disclosed.
Johnson & Johnson has recently announced that they abandoned
development of Lumicitabine (53). Presatovir and JNJ-53718678
are currently on hold; formulation issues must be addressed for
JNJ-53718678. More importantly, the phase 2 clinical trial of
Presatovir in HCT patients failed to meet its primary endpoint.
It is likely that Gilead has also abandoned the phase 2b trial of
Presatovir. Despite the fact that no patient was enrolled later
than 5 days after the onset of the disease, this trial appeared to
fail because the compound was not administered early enough.
These results raise the question whether it will be ever possible
to administer an antiviral molecule early enough to treat an
infected patient.

All the small-molecule fusion inhibitors (including GS-5806,
RV-521, and JNJ-53718678) that have been discovered to date
against RSV most likely interact and bind to the same binding
pocket of preF. This pocket is a threefold symmetric cavity,
which is formed at the junction of three protomers of preF (54).
The binding of small molecules to this site tethers the fusion
peptide and the heptad repeat 2 (HR2) of F, thereby stabilizing
the metastable preF state and preventing the conformational
rearrangement of the fusion peptide and HR2 required for the
fusion between the virus and the host cell membranes. These
inhibitors can be viewed as a hand fidget spinner toy, in which
each ring of the toy consists of one aromatic moiety of the
inhibitor. This moiety makes an aromatic π-π stacking with
Asp489 of HR2 and Phe140 of the fusion peptide. In some
instances, as with JNJ-53718678, the inhibitor has only two rings
and therefore fills only two lobes of this cavity (50). In other
instances, as it is most likely the case for GS-5806, the inhibitor
has three rings and is able to fill all three lobes of the binding
pocket (54). As a result, it is likely that the emergence of an
escape mutant would be resistant to all class of small-molecule
fusion inhibitors. Consistent with this, cell culture resistance
selection experiments resulted in escape mutations either at
positions that directly contact the inhibitor (e.g., Phe140 and
Phe488I) or at amino acid positions that are required to be
displaced to accommodate the antiviral molecule (e.g., D498Y
and L141W) (50, 54).

Peptides derived from the HR2 domain of F can also be
used as fusion inhibitors. As these peptides target the transition
between preF and postF (55, 56), the small-molecule escape
mutants should not affect their inhibitory activity. RSV HR2 is a
49-amino-acid sequence that has been extensively characterized
(Figure 2). HR2 is a largely unstructured peptide in aqueous
solution folding into an α-helix upon binding to a trimeric HR1
coiled coil (57). A scan of synthetic peptides of 35 amino acids
in length across the HR2 wild-type sequence resulted in the
identification of T108 and T118, two peptides that were shown
to be capable of blocking virus-mediated syncytia formation
(58). Some efforts were made to reduce the length of the T108
sequence, but this turns out to be unsuccessful (59) as reducing
the length of the peptide beyond 30 amino acids abrogates
its activity. To improve the pharmacological properties of the
peptides, T118 was modified into a series of stapled peptides (60).
The stapled peptide technology relies on the incorporation of
unnatural olefinic amino acids (UAA) at positions that will not
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FIGURE 2 | (A) Schematic representation of the fusion protein F. The F1 chain is linked to the F2 chain via a disulfide bridge. FP, fusion peptide; HR1, heptad repeat 1;

HR2, heptad repeat 2; TM, transmembrane domain. (B) Comparison of the wild-type HR2 sequence with the inhibitory peptides T118, SAH-RSVBD, and peptide 4ca.

A gray arrow above the HR2 sequence indicates the region folding as an α-helix in the x-ray structure of the postfusion structure (PDB accession number 1G2C). The

brackets below the peptides indicate the position of the staples. +, R-pentenyl alanine; X, S-pentenyl alanine; 8, R-octenyl-alanine.

interfere with the binding of the peptide to its target, and the
subsequent cross-linking of these non-natural amino acids by
Grubbs mediated ruthenium metathesis (61, 62). This results in
the side-chain to side-chain incorporation of an all-hydrocarbon
macrocyclic bridge, which can significantly increase the affinity
of the peptide to the target, the proteolytic stability, and the
cellular permeability through an endocytosis uptake mechanism.
Because the staple is used to stabilize α-helical structures, the
UAAs used for stapling are incorporated at i and i + 3, i
and i + 4, or i and i + 7 positions within the sequence
of the peptide, spanning one turn or two turns of the helix,
respectively. “i” refers to the position where the first UAA is
incorporated during the solid phase peptide synthesis (which
occurs from the C- to the N-terminus); the second UAA can
then be incorporated at 3, 4, or 7 amino acids away from the
“i” position at its N-terminus. Bird et al. (60) tested some i,
i + 4, and i, i + 7 single-stapled peptides within the N- and
C-termini of T118 and evaluated the affinity of these analogs
toward a 5HB (5-helix bundle) recombinant protein, a protein
mimicking RSV postF, but lacking one of the three HR2 domains
(59). When the resulting SAH-RSVF (stabilized α-helices of
RSV F) peptides were tested for their affinity toward 5HB, they
found that the i, i + 7 single-stapled peptides demonstrated
notable enhanced binding activity, unlike the i, i + 4 single-
stapled peptides, which had a binding affinity similar to the
unmodified peptide. The best i, i + 7 peptides were combined
into double-stapled peptides and tested in proteolytic resistance
assays as well as in a cellular viral infectivity assay. This work
led to the identification of SAH-RSVFBD (Figure 2), which was
then shown by intranasal administration with nanoparticles
to be able to prevent RSV viral infection of BALBc mice. In
a similar work (63), a stapled peptide scan across the HR2
sequence was performed with the aim to identify a minimal
domain capable of disrupting the formation of postF. HR2
was divided into three overlapping subdomains, which were
scanned for various stapling combinations. The binding affinity
of the resulting peptides was assessed against recombinant 5

HB. In contrary to the 35-mer stapled peptide scan by Bird and
colleagues (60), stapling did not improve the binding affinity
of the single-stapled peptides, even with the i, i + 7 staple.
Furthermore, the single-stapled peptides were all inactive in
the cellular viral inhibition assay. However, the addition of a
second staple restored the inhibitory activity of the peptide.
Further optimization resulted in the discovery of peptide 4ca,
which inhibits RSV infection of Hep-2 cells with an EC50

value of 0.59µM (Figure 2). Peptide 4ca is a 20-mer sequence
with a molecular weight of 2,441 Da, containing one i, i +
4 and one i, i + 3 staple. Despite its significantly shorter
size, peptide 4ca inhibits RSV infection with a similar EC50

value to SAH-RSVFBD in Hep-2 cells. Furthermore, peptide
4ca is highly stable to proteolytic digestion and is capable of
decreasing RSV infection in the upper and lower respiratory tract
of BALB/c mice following intranasal delivery of the peptide with
no signs of apparent cytotoxicity and immunogenicity. Here,
again, this work highlights how the insertion of macrocycle(s)
can dramatically improve the potency and pharmacological
properties of a peptide.

Peptides derived from the HR2 domain of F can also be used
to develop pan inhibitors of other lower respiratory pathogens.
A 36-mer peptide derived from the HR2 domain of human
parainfluenza 3 (HIPV3) was found to inhibit HIPV3 as well
as Hendra virus (Hev) and Nipah virus (Niv), two highly
pathogenic viruses. Although the initial inhibitory activity of
the 36-mer peptide was modest (IC50 = ∼700 nM), a whole
body of work was performed to significantly improve the
potency of the peptide. Rather than performing the standard
structural relationship activity studies (SAR), the authors added a
cholesterol (Chol) moiety to improve the potency of the peptide.
Such strategy was pioneered by Merck Research Laboratories
during the development of enfurvitide follow-on products, a HIV
gp41 fusion inhibitor (64). Through selectively enriching the
peptide in the membrane, where viral fusion occurs, Chol tagging
will improve the local concentration of the peptide, thereby
increasing its antiviral potency. The Chol moiety is derivatized
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FIGURE 3 | Cholesterol tagging of HR2 derived peptides. (A) Bromoacetyl

cholesterol derivative used from the conjugation step to the HR2 peptide. The

cholesterol with or without PEG is activated at its hydroxyl function with a

bromoacetyl function as described in Santoprete et al. (65). The length of PEG

spacer used in these studies was 4, 12, or 24. (B) The HR2 peptides are

derived from HIV (64), HPIV3 (66), HeV and NiV (67). A cysteine residue

appended at the N- or C-terminus of the HR2 peptide is used for

chemoselective ligation of the peptide to the bromoacetyl cholesterol

derivative. A Gly-Ser linker is inserted between the cysteine and the peptide to

ensure sufficient spacing between the peptide and the lipid raft.

with a bromoacetyl function, which is used as an electrophile
to react with a nucleophilic cysteine residue appended through
a short GSG linker at the N- or C-terminus of the peptide, to
form a thioether linkage (Figure 3). The addition of Chol to the
36-mer peptide (V-Chol) improved the potency 100-fold when
it was attached at the C-terminus, but not at the N-terminus,
consistent with the HIV work (68). Surprisingly, both V-Chol
and the N-terminal Chol conjugates were even more potent
against Hev and Niv (picomolar). Another interesting feature
of this technology is that Chol appears to prolong the half-life
of the peptide in vivo, through binding to serum proteins (69).
More recently, the authors further explored the effect of the
PEG spacer upon peptide inhibition (66). Briefly, the authors
found that the increase in spacer length (i) is beneficial for
the solubility and inhibitory activity of the Chol conjugate, (ii)
enhances the kinetics of peptide insertion in lipid membranes,
and (iii) enhances the susceptibility to protease degradation.
Therefore, an optimum balance must be found to select the best
PEG to insert in the Chol conjugate.

CONCLUSION

The pharmaceutical industry has shown poor interest to develop
peptide therapeutics due to their notoriously bad ADME
(absorption, distribution, metabolism, elimination) properties.
Peptides are rapidly degraded by proteases, can be immunogenic,
do not efficiently cross the epithelial and skin barriers, and
it is very challenging to confer oral bioavailability on these

molecules (70). The bioavailability of peptides is typically <1%,
whereas at least 20% is usually sought to make a drug. There are
some exceptions such as cyclosporine A, an immunosuppressive
undecapeptide with an impressive bioavailability of 26% (71),
but in general, most marketed peptides such as Semaglutide,
Liraglutide, and Exenatide are administered as injectables (72,
73). Additionally, the cost of goods to produce the active
product ingredient (API) is higher for peptides than for small
molecules. For all these reasons, the traditionalmedicinal chemist
is usually unwilling to develop peptide therapeutics. However,
given that many biological protein targets have binding sites
that are too large to be accommodated by small molecules (74),
and that it has become increasingly more difficult to develop
orally available drugs, the field has seen a significant increase
of injectable high-molecular-weight biological drugs. At the
interface between these two classes of molecules, peptides are an
alternative to target large protein–protein interaction sites. With
the realization that macrocyclization can dramatically improve
the binding affinity and proteolytic stability of peptides, there
has been considerable effort devoted recently toward finding
novel means to cyclize peptides (75). Furthermore, many labs
are currently investigating the mechanisms conferring cellular
permeability on cyclosporine A and other analogs with the aim
of identifying novel tools to increase the bioavailability of peptide
therapeutics (76–79).

Lower respiratory infections caused by influenza and RSV are
a significant healthcare burden. Vaccines, neutralizing antibodies,
bnAbs, and small molecules are currently under development to
address this important unmet medical need. With the growing
list of failed RSV drugs and vaccines, and the constant threat of
a flu pandemic, peptides are an alternative to treat or prevent
these diseases. Long-acting macrocyclic peptides may be used
to target the influenza HA stem region or the mechanism of
RSV F fusion, with the aim to develop a universal influenza
treatment or a cheaper RSV prophylactic therapy with less
susceptibility to escape mutations. It should not be forgotten
that the HCV and HIV protease inhibitor drugs, simeprevir
and darunavir, were peptides at the onset of the medicinal
chemistry work.
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Despite efforts made to develop efficient preventive strategies, infections with influenza

A viruses (IAV) continue to cause serious clinical and economic problems. Current

licensed human vaccines are mainly inactivated whole virus particles or split-virion

administered via the parenteral route. These vaccines provide incomplete protection

against IAV in high-risk groups and are poorly/not effective against the constant

antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology

and in the understanding of the protective anti-influenza immune mechanisms suggest

that intranasal immunization is a promising strategy to fight against IAV. To date,

human mucosal anti-influenza vaccines consist of live attenuated strains administered

intranasally, which elicit higher local humoral and cellular immune responses than

conventional parenteral vaccines. However, because of inconsistent protective efficacy

and safety concerns regarding the use of live viral strains, new vaccine candidates

are urgently needed. To prime and induce potent and long-lived protective immune

responses, mucosal vaccine formulations need to ensure the immunoavailability and

the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while

being minimally reactogenic/toxic. The purpose of this review is to compile innovative

delivery/adjuvant systems tested for intranasal administration of inactivated influenza

vaccines, including micro/nanosized particulate carriers such as lipid-based particles,

virus-like particles and polymers associated or not with immunopotentiatory molecules

including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The

capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular

responses against IAV and their (cross)-protective potential are considered.

Keywords: influenza A virus, mucosal vaccines, adjuvant, delivery systems, intranasal immunization

INTRODUCTION

Despite progress in antiviral therapies, influenza viruses remain an important cause of respiratory
tract (RT) infections in humans and animals worldwide (1). Influenza viruses are members of the
Orthomyxoviridae family and are classified into four genera (A, B, C, D). Influenza A viruses (IAV),
whose natural reservoirs are aquatic birds, can infect a broad spectrum of animal species including
humans and poultry. Based on the molecular structure and genetic characteristics of the surface
glycoproteins hemagglutinin (HA) and neuraminidase (NA), IAV can be categorized into 18 HA
subtypes and 11 NA subtypes.
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IAV have a negative-sense, single-stranded RNA genome
consisting of 8 segments encoding for at least 17 viral proteins (1).
Each segment is associated with the viral nucleoprotein (NP) and
the three polymerase components, namely the polymerase basic
protein 1 (PB1) and 2 (PB2) and the polymerase acidic protein
(PA). These ribonucleoprotein complexes are encapsidated by
the matrix protein 1 (M1) beneath an envelope composed of
a lipid bilayer derived from the host plasma membrane where
are embedded the surface glycoproteins HA, NA and the matrix
protein 2 (M2). HA is responsible for the binding of the virus
to sialic acid moieties at the host cell surface. HA is a trimeric
glycoprotein and each monomer is composed of two domains, a
globular head (HA1) and a stalk domain (HA2). HA1, exposed at
the surface of the virion is subject to a high degree of antigenic
variations. HA2, more conserved across IAV, is involved in
various steps of the virus life cycle, including the fusion between
the viral envelope and the endosomal host membrane. NA is a
tetrameric glycoprotein which enzymatically removes sialic acid
residues from the surface of infected cells, allowing the release of
budding virions. M2 is a tetrameric protein acting as a proton-
selective ion channel which triggers the uncoating of the viral

Abbreviations: Ab, antibody; Ag, antigen; APC, antigen-presenting cell;

ASC, antibody-secreting cell; BALT, bronchus-associated lymphoid tissues;

BCR, B cell receptor; CCL, (C-C motif) ligand; CCR, (C-C motif) receptor;

CCS, ceramide carbamoyl-spermine; cDC, conventional dendritic cell; c-di-

AMP, cyclic-di-adenosine monophosphate; cGAMP, 2’,3’-cyclic-guanosine

monophosphate-adenosine monophosphate; CDN, cyclic di-nucleotides;

CpG-ODN, synthetic oligodeoxynucleotides composed of unmethylated CpG

motifs; CT, cholera toxin; CTA1, A1 subunit of the cholera toxin; CTA1-

DD, CTA1 fused to a synthetic dimer of the Ig binding D domain (DD)

from Staphylococcus aureus protein A; CTL, cytotoxic T lymphocyte; DC,

dendritic cell; DDAB, dimethyldioctadecylammonium bromide; DLN, draining

lymph nodes; DMPC, dimyristoyl phosphatidylcholine; DMPG, dimyristoyl

phosphatidylglycerol; DOTAP, dioleoyl-3-trimethylammoniumpropane;

DPPC, dipalmitoyl phosphatidylcholine; FAE, follicle-associated epithelium;

GC, germinal center; HA, hemagglutinin; HA1, globular head domain of

hemagglutinin; HA2, stalk domain of hemagglutinin; HAI, hemagglutination-

inhibition; HIV, human immunodeficiency virus; HPAIV, highly pathogenic

avian influenza viruses; HTCC, N-[(2-hydroxy-3-trimethylammonium) propyl]

chitosan chloride; IAV, influenza A viruses; IBV, influenza B virus; IFN, interferon;

Ig, immunoglobulins; IIV, inactivated influenza viruses; IL, interleukin; i.n.,

intranasal; ISCOM, immune stimulating complex; ISCOMATRIX, immune

stimulating complex matrix; LAIV, live-attenuated influenza viruses; LPAIV, low

pathogenic avian influenza viruses; LRT, lower respiratory tract; LT, Escherichia

coli heat-labile toxin; M cells, microfold cells; M1, matrix protein 1; M2(e),

(ectodomain of the) matrix protein 2; MALT, mucosa-associated lymphoid

tissues; mDC, myeloid dendritic cell; MHC, major histocompatibility complex;

moDC, monocyte-derived dendritic cell; MPLA, monophosphoryl lipid A; NA,

neuraminidase; NAIP, nucleotide oligomerization domain-like receptor family,

apoptosis inhibitory protein; NALT, nasopharynx-associated lymphoid tissues;

NK, natural killer; NLR, nucleotide oligomerization domain-like receptor; NLRP3,

nucleotide oligomerization domain-like receptor family, pyrin domain containing

3; NP, nucleoprotein; NRSV, nucleoprotein of the respiratory syncytial virus; PA,

polymerase acidic protein; PAMP, pathogen associated molecular pattern; PB1,

polymerase basic protein 1; PB2, polymerase basic protein 2; pDC, plasmacytoid

dendritic cell; PEI, polyethyleneimine; PG, phosphatidylglycerol; γ-PGA, poly

(γ-glutamic acid); PLGA, poly (D, L-lactide-co-glycolide); poly (I:C), polyinosine-

polycytidylic acid; PRR, pattern recognition receptor; RT, respiratory tract; SP-C,

surfactant protein C; STING, stimulator of interferon genes; Th, T helper; TLR,

Toll-like receptor; TMC, N-trimethyl-derivatives of chitosan; TRIF, Toll or

interleukin-1 receptor domain-containing adaptor-inducing interferon-β; TRM,

resident memory T cell; URT, upper respiratory tract; VLP, virus-like particle;

WIV, whole inactivated viruses.

ribonucleoprotein complexes necessary for the release of the viral
genetic material into the host cytosol. Unlike HA and NA, the
ectodomain of M2 (M2e) is sparsely expressed at the surface
of the virion, less subjected to the host immune pressure and
consequently more conserved across IAV (1).

Circulating IAV are continuously evolving, leading to the
emergence of new strains expressing surface glycoproteins
that have distinct antigenic properties (1). In particular,
point mutations in the viral genome RNA result in the
emergence of new strains responsible for seasonal epidemics
(“antigenic drift”), and the co-infection of a host with multiple
IAV strains can result in genetic reassortments responsible
for the emergence of novel subtypes (“antigenic shift”)
that can give rise to strains with pandemic potential. The
disease severity caused by IAV infections depends on several
parameters such as viral and host factors. In humans, the
virus initially targets the mucosa of the upper RT (URT)
(nose, pharynx), leading to dry cough, nasal discharge,
rhinitis, pharyngitis and fever, and can eventually reach
the lower RT (LRT) (trachea, bronchi, bronchioles, alveoli)
resulting in fatal pneumonia in severe cases. Seasonal
influenza infections, which are mainly caused by H1N1 or
H3N2 IAV strains, are responsible for 3–5 million human
cases of severe infections and 290,000–650,000 fatal cases
annually, most often in young children, the elderly and
immunocompromised individuals (2). Pandemic IAV infections
affect a broader category of populations and cause atypical
and more severe clinical symptoms (1). In aquatic birds, low
pathogenic avian influenza viruses (LPAIV) typically cause
asymptomatic infections. In poultry, infections with LPAIV can
be asymptomatic or provoke low to mild pathophysiological
damages to the respiratory, digestive and reproductive systems
(resulting in a drop in egg production), while infections
with highly pathogenic avian influenza viruses (HPAIV) are
characterized by high morbidity and mortality rates. Outbreaks
in domestic poultry result in massive culling to control the
viral spread and are thus responsible for important economic
losses (3).

THE MUCOSAL IMMUNE RESPONSES
AGAINST IAV INFECTIONS

The host RT is not only the initial point of entry and
replication of IAV, but also the site of the host immune defenses.
Components of the antiviral immune responses are located in
the RT lining fluids and in the mucosa-associated lymphoid
tissues (MALT) (4). Broadly, in mammals, the MALT of the
RT include the nasopharynx-associated lymphoid tissues (NALT)
located at the entrance to the nasopharyngeal duct in the URT
(Waldeyer’s ring in humans), the bronchus-associated lymphoid
tissues (BALT) randomly distributed along the LRT but most
consistently located at sites of bronchial tree bifurcation, and
the draining lymph nodes (DLN). The NALT and BALT are
globally composed of organized inductive sites, comprising B
cell follicles and interfollicular T cell areas, as well as effector
sites, consisting of the diffuse tissue of the lamina propria. The
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MALT of the RT are overlaid by a surface epithelium made
of ciliated cells and various transporter cells located in the
follicle-associated epithelium (FAE), such as microfold (M) cells,
which transfer the luminal antigens (Ags) to the subepithelial
cells (5). MALT are also detected in the avian RT (6). Over
the last decade, considerable progress have been done in the
understanding of the mechanisms of host mucosal immune
responses against IAV (mostly in experimental mouse models of
IAV infections).

At the first steps of infection, IAV must face host innate
immune molecules with antiviral and/or immunomodulatory
activities such as mucins, lectins, complement molecules, natural
immunoglobulins (Ig) and antimicrobial peptides (7). Once the
virus reaches and infects the epithelium, the local immune cells
detect the viral components [also called pathogen-associated
molecular patterns (PAMPs)] via pattern recognition receptors
(PRRs) including Toll-like receptors (TLRs) (7). These cells
produce various cytokines and chemokines involved in the
antiviral defense and in the recruitment and activation of innate
effector cells, which establish an antiviral program and prime
adaptive immune responses.

Neutrophils, natural killer (NK) cells, and
monocytes/macrophages interfere with viral replication and
spread within the RT, and Ag-presenting cells (APCs) including
dendritic cells (DCs) initiate specific adaptive immune responses
(7–9). Murine DC subsets can be classified into CD11chi

conventional DCs (cDCs), CD11cloB220+ plasmacytoid DCs
(pDCs) and inflammation-induced CD11b+Ly6C+ monocyte-
derived DCs (moDCs). In mice, after capturing IAV Ags in the
MALT of the RT, respiratory DCs (including CD103+CD11blo

and CD103−CD11bhi cDC subsets) acquire a mature phenotype,
transport viral Ags to the DLN and simultaneously process
the Ags and present Ag-derived peptides on class I or II major
histocompatibility complex (MHC) molecules to naive CD8+

and CD4+ T cells, respectively (10–14). Beside migratory
cDCs, CD8α+CD11b− resident cDCs are also involved in
the cross-presentation of IAV Ags to naive CD8+ T cells in
the DLN (10, 15). Following IAV infection in mice, moDCs
accumulate in the RT and they promote immune-induced
pathology. However, their complete elimination is detrimental
because they facilitate the optimal expansion of effector CD8+

T cells in the infected lung (16). Finally, pDCs are a potent
source of type I interferons (IFNs), they are involved in the
generation of virus-specific antibody (Ab)-secreting cells
(ASCs) and they ensure a full-magnitude CD8+ T cell response
(17–19). Subsets of CD11c+CD103lo myeloid DCs (mDCs),
including CD1c+ mDC1 and CD141+ mDC2 (equivalent to
CD103−CD11bhi and CD103+CD11blo mouse cDC subsets,
respectively), and pDCs have been identified in the human
RT. Studies have suggested that mDCs and pDCs could
traffic to the site of IAV infection, but the functionality of
the human DC subsets during IAV infection remains largely
unknown (20).

Following primary IAV infection in mice, activated CD4+

and CD8+ T cells are detected in the DLN and spleen and the
most highly activated and divided cell populations migrate to
the airways and notably to the lamina propria of the MALT

(21, 22). Activated IAV-specific CD8+ T cells differentiate
into effector cytotoxic T lymphocytes (CTLs) which kill virus-
infected cells (23, 24). Activated IAV-specific CD4+ T cells
differentiate into various subsets which present heterogeneous
antiviral functionalities and organ location, including T helper
1 (Th1), Th17 cells, follicular helper CD4+ T cells and CD4+

CTLs (25–27). Studies in humans have mainly examined IAV-
specific T cell responses in the peripheral blood. Secondary
responses are generally observed because most adults have
encountered IAV Ags multiple times during infections and/or
vaccinations. In the absence of specific Ab responses to newly-
emerged IAV, the presence of pre-existing circulating cross-
reactive CD4+ or CD8+ T cells exhibiting cytotoxic activities
correlates with protection against experimentally or naturally
mild H1N1 or H3N2 infections in humans (28–30). A recent
study showed that rapid and robust IAV-specific CD8+ T cell
recall responses correlated with early recovery of patients from
severe H7N9 disease (30). Most T cell epitopes are highly
conserved across IAV and are located on internal proteins
such as NP, M1 or polymerase subunits, but they are also
present in surface glycoproteins HA and NA, and in M2
(9, 28, 31–33).

Follicular helper CD4+ T cells support the generation and
maintenance of the germinal centers (GCs) in the B cell follicles
in cooperation with follicular DCs (34). In GCs, activated B
cells, which have received helper signals from cognate CD4+ T
cells, experience intense proliferation and undergo processes of
class switch recombination, somatic hypermutation and affinity
selection. GC reactions usually result in the generation of specific
long-lived ASCs producing high affinity switched protective
Abs and memory B cells. Activated B cells can also participate
in early GC-independent reactions, mainly characterized by
the rapid generation of low-affinity/specificity ASCs/memory
B cells (34). Primary IAV infection in mice results in the
development of specific ASCs which present site-specific kinetics
and isotype distribution (35, 36). Anti-IAV Abs display a variety
of functions depending on their isotype, specificity, affinity,
concentration and post-translational modifications. Secretory
IgA, which are polymeric IgA produced by IgA ASCs in the
lamina propria and secreted to the mucosal surface, prevent
infection of the epithelial cells via extracellular or intracellular
immune exclusion. In addition, polymeric IgA can cross-react
with IAV heterovariants (different IAV viruses belonging to the
same subtype) or heterosubtypic strains (different IAV viruses
belonging to different subtypes) (37). This breadth of reactivity
could be linked to the avidity conferred by the polymeric form
and/or the effect of the constant heavy chain in modulating
the specificity/affinity of the variable regions (37, 38). IgA are
thus an essential protective front line of defense against highly
variable IAV.Whereas, IgG likely play a minor role in supporting
secretory IgA in the prevention of IAV infection in the URT, they
are crucially involved in the protection of the LRT in mice (39).
In humans with low serum hemagglutination-inhibition (HAI)
Ab titers, nasal and serum IgA provide protection against an i.n.
experimental H1N1 challenge (40). However, the relative role
of mucosal IgA vs. IgG in the (cross)-protection against IAV
infection in humans remains poorly characterized.
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IAV-specific Abs generated after an infection are mostly
directed against the variable HA1 and, in a lesser extent, against
NA (41). Anti-HA Abs mainly interfere with the virus infectivity
by preventing virus binding to the sialic acid molecules and entry
in epithelial cells. High HAI Ab titers are traditionally considered
as the primary correlate of protection against IAV in humans
and in animal models (1). Anti-NA Abs prevent the release of
newly formed virions. Broadly neutralizing Abs directed against
the conserved HA2 can occasionally be elicited in IAV-infected
individuals and they interfere with the virus infectivity through
several mechanisms (42). Besides neutralizing functions, IAV-
specific Abs also exhibit Fc-related effector functions including
Ab-dependent cellular cytotoxicity, Ab-dependent phagocytosis
and Ab-dependent complement mediated-lysis (43–45). Abs
directed against HA2, NA, M2e, NP, and M1 isolated from
humans or animals have the potential to mediate protection via
Fc-dependent mechanisms (43–45).

The clearance of a primary viral infection results in the
establishment of long-lasting memory immune cells detectable
in the MALT and in other lymphoid tissues, in the circulation
and in the bone marrow. These cells play a critical role in
the fight against reinfections. Among influenza-specific memory
T cell populations, lung-resident memory CD8+ T (CD8+

TRM) cells are crucially involved in the heterosubtypic cross-
protection against pulmonary infection in mice (46, 47). Virus-
specific CD8+ TRM cells can also be generated in the URT
after IAV infection in mice. This cell population can efficiently
clear a secondary heterosubtypic IAV infection from the URT
and consequently blocks the spread of the virus from the
URT to the LRT and the subsequent development of severe
pulmonary diseases (48). IAV infection also stimulates the
generation of specific lung CD4+ TRM cells in mice (49)
and adoptive transfer experiments demonstrate that these
cells have a better protective potential against homologous
reinfection than memory CD4+ T cells isolated from non-
MALT locations (50). IAV-specific lung CD8+ TRM cells
are also detected in humans but due to practical and
ethical limitations, the implication of mucosal TRM cells in
the resistance against IAV reinfection in humans is largely
unknown (49, 51).

Whereas, long-lived ASCs serve as an immediate first line
of defense against IAV homologous reinfections by secreting
Abs with high specificity/affinity, memory B cells are more
specialized to respond to antigenically divergent viruses. In
particular, recent studies in mice have shown that GCs in the
BALT select cross-reactive B cell repertoire, resulting in the
generation of tissue-resident broad reactive memory B cells
(52). The presence of these memory B cell populations at
the site of infection facilitates their direct contact with intact
influenza virions and could promote a faster production of
high-affinity (cross-reactive) Abs through T-independent and
PRR-dependent pathways (34). Ab responses induced by natural
IAV infections in humans are relatively broad and long-lived
(41). However, further investigations are needed to localize and
identify cell subsets involved in these memory cross-reactive
humoral responses (41).

PROBLEMATIC ISSUES RELATED TO
CURRENT IAV VACCINES

Vaccination remains the most efficient and cost-effective means
to protect human and animal populations against IAV (1).
Most influenza vaccines available on the market are inactivated
influenza A virus (IIV) vaccines administered via the parenteral
route. Three types of IIV vaccines exist, namely whole inactivated
virus (WIV) vaccines consisting of formaldehyde- or β-
propiolactone-inactivated whole virion, split virus vaccines, and
subunit vaccines. In split virus vaccines, the virus envelope is
broken by diethyl ether or detergent treatment that disrupts
the particulate organization and exposes all viral proteins, while
subunit vaccines consist of surface proteins HA andNA separated
from the nucleocapsid and lipids. While WIV preparations
are commonly used in human pre-pandemic vaccines and
in poultry, current human seasonal vaccines are mainly split
virus or subunit vaccines. Current IIV vaccines predominantly
induce virus-specific Ab responses directed against HA1 and
do not stimulate efficient cellular immune responses. Thus, the
efficiency of these vaccines is restricted to the protection against
homologous/antigenically similar strains (1).

Beside IIV vaccines, live-attenuated influenza virus (LAIV)
vaccines administered via the intranasal (i.n.) route are also
available in humans. LAIV vaccines are composed of cold-
adapted virus strain(s) restricted to the URT and causing only
mild symptoms (1). LAIV and IIV vaccines are equally effective
in adults, while studies have concluded that LAIV vaccines are
more efficient in children, generating broader and longer-lived
immune responses. Indeed, LAIV vaccines mimic the natural
route of infection and consequently induce stronger mucosal
IgA and broader T cell-mediated immune responses than IIV
vaccines (1). A recent study in mice comparing two different
licensed influenza vaccines showed that, in contrast to IIV
vaccines injected parenterally, i.n. LAIV vaccines elicited the
generation of lung TRM cells, conferring long-term protection
against various non-vaccine strains (53). Despite very promising
results, some drawbacks have been associated with the use of
LAIV vaccines (1). A suboptimal protection of LAIV vaccines
in children against the 2009 H1N1 pandemic virus has been
reported in the USA, which might be due to an impaired viral
replication in the URT, resulting in a decreased stimulation of
the host (mucosal) immune system. Also, for safety concerns,
LAIV vaccines are contraindicated in children <2 years old and
in immunocompromised individuals. Finally, the virus strain(s)
composing LAIV vaccines could theoretically undergo genetic
reassortments with circulating wild type viruses (1).

Thus, due to its ability to generate broadly reactive and long-
term protective immune responses at the front line of virus entry,
vaccination via the mucosal route is an appropriate strategy for
the prevention and control of IAV infections. However, current
mucosal vaccines need to be reformulated into safer, more refined
and immunogenic preparations. In order to counteract the high
variability of IAV, an active area of research area focusing on
developing subunit vaccine candidates containing conserved
surface or internal protein(s)/epitope(s) of the virus has garnered
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much interest. These “universal” vaccines aim at generating
cross-reactive Abs and/or cross-reactive T cell responses (1).
Alongside WIV, split or protein subunit vaccines, nucleic acid-
based subunit vaccines induce vaccine Ag production in the host
itself and can engage both humoral and cell-mediated immune
responses (1, 31). Pre-clinical and clinical studies have shown
that nucleic acid-based IAV vaccines can be efficiency delivered
by live viral vectors through parenteral or mucosal routes and
viral-vectored vaccines are commercially available for the control
of avian IAV in poultry (54, 55). Nucleic-acid based vaccines
delivered via non-lived vectors mimic infection or immunization
with live microorganisms while being non-infectious, egg/cell-
free manufacturable (ensuring a rapid, cost-effective and scalable
production) and they do not have to address the challenge
of preexisting or induced anti-vector immunity which could
prevent repeated immunizations (56–58).

ADJUVANTS/DELIVERY SYSTEMS FOR
INTRANASAL VACCINATION AGAINST
IAV INFECTIONS

The goal of vaccination is to generate potent and long-
term protective immune responses against infections. Unlike
attenuated live vaccines, inactivated vaccines (especially purified
or recombinant subunit vaccines) usually require additional
compounds to be effective. The role of an adjuvant is to
increase vaccine efficacy by modeling the quality and the
quantity of the host immune responses. In particular, the
adjuvant can affect the magnitude, breadth, specificity, affinity,
kinetics, longevity, and composition of the immune responses
(59–61). The incorporation of adjuvant(s) into a vaccine
formulation can decrease the amount of the vaccine Ag(s) and
the number of doses required to induce protective immunity,
and enhance vaccine efficacy in special populations (the
elderly, neonates/infants, immunocompromised individuals)
(59–61). Adjuvants were formerly classified as delivery systems,
which function as vehicles to which the vaccine Ag(s)
can be associated, and immune potentiators. However, there
is now evidence that some delivery systems also exhibit
immunostimulatory properties. Adjuvants exert their effect
through various mechanisms including the formation of a depot
at the site of injection, which guarantees a slow release of the
vaccine Ag(s) and a constant stimulation of the host immunity
(depot effect), the recruitment of immune cells, the activation
of innate immune receptors, the enhancement of Ag uptake by
APCs and the activation and the maturation of APCs (59–61).
By targeting innate immune cell subsets and by generating a
particular cytokine milieu (Th1, Th2, and/or Th17 for example),
adjuvants can shape the nature of the subsequent adaptive
immune responses to produce the most effective and protective
reaction against a given pathogen.

Despite the relevance of the mucosal route of vaccination
in the fight against respiratory pathogens, this method of
administration faces several hurdles (62). In addition to
encountering a tolerogenic mucosal environment, vaccine
Ag(s) must resist degradation caused by the harsh mucosal

environment characterized by the presence of proteases,
nucleases and low pH. In addition, the Ag(s) is (are) likely to be
diluted in the mucosal fluids and swept away by the mucociliary
clearance. Consequently, mucosal vaccines have to be carefully
formulated with adjuvants in order to breach the host mucosal
barriers and allow the vaccine Ag(s) to reach and stimulate the
cells of the underlying MALT (62). Mucosal adjuvants should
ensure the integrity and the stability of vaccine Ag(s), exhibit
mucoadhesive properties and allow Ag uptake by epithelial cells
and/or M cells. The rationale and challenges for the development
of IAV mucosal vaccines are presented in Figure 1.

In this section, we have compiled the delivery/adjuvant
systems tested for i.n. administration of IIV vaccines with
a special emphasis on experimental animal studies (see
Supplemental Table 1). We have focused our work on non-
replicative delivery/adjuvant systems (excluding viral and
bacterial vectors).

Bacterial Enterotoxins and Derivatives
The most potent and studied mucosal adjuvants in pre-clinical
studies are cholera toxin (CT), the closely related Escherichia
coli heat-labile toxin (LT) and their derivatives (detoxified/non-
toxic holotoxins, isolated subunits). CT and LT holotoxins are
composed of a pentameric B subunit, which binds to GM1-
ganglioside receptors ubiquitously present on the surface of most
nucleated cells, non-covalently associated with an A subunit. The
A1 portion of the A subunit enzymatically ADP-ribosylates the α

subunit of the GTP-binding protein Gs (Gsα), causing a dramatic
elevation of intracellular cyclic AMP responsible for the efflux
of ions and water from the targeted cells associated with watery
diarrhea. The mucosal adjuvant properties of enterotoxins rely
on a better accessibility of the co-administered Ag(s) to the cells
of the MALT, which is related to an increased permeability of the
mucosal barriers and/or to an enhancement of the recruitment
and activation of local APCs (63).

Experimental studies in mice have demonstrated that these
holotoxins are potent immunostimulators for mucosal IIV
vaccines (64, 65). For example, the addition of CT to H1N1
WIV vaccine administered to mice via the i.n. route enhanced
the magnitude of the serum and mucosal Ab responses
directed against homologous, H1N1 heterovariant and H3N2
heterosubtypic viruses (65). CT increased the breadth of
protection of the vaccine and all mice receiving the adjuvanted
formulation survived the i.n. H3N2 heterosubtypic challenge
(65). The adjuvant also stimulated the generation of long-lived
ASCs lodged in the bone marrow that secreted IgA and IgG
reactive against the homologous and the H3N2 heterosubtypic
viruses (65). Holotoxins engineered into less toxic molecules,
through site-directed mutations of the enzymatically active
A subunit, and administered with influenza WIV or subunit
vaccines also retained adjuvant functions (66, 67). However, the
i.n. delivery of vaccines formulated with native or even detoxified
LT in humans resulted in the development of facial paralysis
(Bell’s palsy) in some individuals, stopping further clinical use of
enterotoxin-based adjuvants (63).

Enterotoxins lacking B subunit are good alternatives to i.n.
holotoxin-based adjuvants because they keep strong adjuvant
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FIGURE 1 | Rationales and challenges for the development of IAV mucosal vaccines.

functions without toxic side effects (68, 69). For example, a study
in mice evaluated the ability of the A1 subunit of the CT (CTA1)
to potentiate the immunogenicity of a subunit vaccine composed
of a portion of HA2 of a H5N1 virus [HA2H5N1(15−137)] fused
with an M2 consensus sequence spanning the residues of the
extracellular and cytoplasmic domains of M2 from H1N1, H5N1
and H9N2 viruses (consM2H1N1/H5N1/H9N2) (69). The fusion
of CTA1 with the consM2H1N1/H5N1/H9N2-HA2H5N1(15−137)

chimeric protein increased the magnitude and persistence of
M2/HA2-specific serum and mucosal humoral responses and
M2/HA2-specific cellular immune responses in the spleen. Mice
immunized with the CTA1-adjuvanted vaccine showed a better
resistance to an i.n. challenge with divergent subtypes of IAV
(H1N1, H5N1, H5N2, H7N3, H9N2) than mice immunized with
the vaccine without CTA1 (69).

The chimeric protein composed of CTA1 fused with a
synthetic dimer of the Ig binding D domain (DD) from
Staphylococcus aureus protein A (CTA1-DD) is also a promising
adjuvant for next generation mucosal vaccines against IAV.
The DD portion of the molecule targets the B cell receptor
(BCR) as well as the complement receptor CD21 on follicular
DCs, resulting in an enhancement of GC formation (63, 70).
In addition, experiments in mice and non-human primates
have proven the safety of CTA1-DD (63). In pre-clinical
tests, CTA1-DD increased the immunogenicity and/or the
protective potential of various influenza subunit vaccines
administered intranasally, either in fusion with M2e epitopes
(71, 72), admixed with virus-like particles (VLPs) exposing
M2e epitopes (73), or incorporated into lipid-based particles
with IAV Ags (70). For example, the incorporation of
CTA1-DD into immune stimulating complexes (ISCOMs)
containing H1N1 HA and NA boosted the specific serum
and mucosal humoral responses as well as type 1/type 2-
cell-mediated immune responses in the spleen in mice. The
immunostimulatory effects of CTA1-DD depended both on the
enzymatic activity of the toxin and on B cell targeting (70).
These encouraging results make CTA1-DD a very attractive
adjuvant for mucosal anti-IAV vaccines for clinical or veterinary
use (63).

Flagellin
Flagellin, the primary structural component of the bacterial
flagellum, is another promising mucosal adjuvant for anti-
IAV vaccines. Flagellin targets TLR5 expressed at the surface
of various cells including airway epithelial cells, DCs and
lymphocytes, as well as cytosolic detectors of the NAIP
(nucleotide oligomerization domain-like receptor (NLR) family,
apoptosis inhibitory protein) family proteins (74). The mucosal
adjuvant properties of flagellin rely on the acceleration of the
transepithelial transport of the co-administered Ag(s) by the FAE
and on the stimulation of the migration of subepithelial DCs into
the FAE (75).

The i.n. co-administration of recombinant flagellin derived
from Vibrio vulnificus or Salmonella typhimurium with H1N1
WIV vaccine or a trivalent split vaccine composed of two
IAVs (H1N1 and H3N2) and an influenza B strain (IBV)
boosted the immunogenicity of the vaccine in mice (76, 77).
In particular, the adjuvant increased the serum and/or mucosal
Ab responses and elicited systemic type 2-biased-cell-mediated
immune responses (76, 77). The incorporation of flagellin into
the vaccine preparation enhanced protection of mice against a
subsequent i.n. homologous challenge (76, 77). The adjuvant
exhibited a safer profile than enterotoxins because it did not
accumulate in the central nervous system (77).

Flagellin is also a potent mucosal adjuvant for influenza
subunit vaccines (78–80). The association of flagellin with IAV
epitopes, as free fusion proteins or as membrane-anchored form
into influenza VLPs, significantly increased the immunogenicity
and the (cross)-protective potential of these vaccines against IAV
in mice (78–80). For example, the membrane incorporation of
flagellin intoH1N1 (HA/M1) VLPs enhanced serum andmucosal
Ab titers and elicited systemic type 1/type 2-cell-mediated
immune responses specifically directed against the homologous
H1N1 strain (78). Moreover, the addition of flagellin to the
vaccine formulation induced higher cross-neutralizing Ab titers
to a H3N2 virus detectable in the serum and in the lung lavage
(78). Accordingly, mice immunized with the adjuvanted vaccine
were all resistant to the i.n. H3N2 heterosubtypic challenge in
contrast to the unadjuvanted group (78). Another in vitro study
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showed that the conjugation of flagellin on the surface of gold
nanoparticles bearing a recombinant trimeric HA derived from
a H3N2 virus stimulated the uptake of the vaccine by murine
bone marrow-derived DCs and promoted the activation and the
maturation of the cells (81). Mice intranasally immunized with
such flagellin-adjuvanted vaccine developed higher influenza-
specific immune responses and showed a better resistance against
an i.n. homologous challenge (81, 82).

Interestingly, flagellin also significantly boosted the
immunogenicity and the protective capacity of IIV vaccines in
chickens, and notably when it was admixed with H5N2 WIV
vaccine or fused with an epitope located in HA1 of a H7N9 virus
(83, 84).

Clinical trials have proven the safety and the immunogenicity
of flagellin-adjuvanted influenza subunit vaccines when
administered via the parenteral route (85, 86). Further clinical
investigations on the efficacy of this adjuvant in mucosal
anti-IAV vaccination are needed.

Proteosome-Based Adjuvants
Proteosomes and Protollin are two other potent mucosal
immunoactivators. Proteosomes are nanoparticles composed
of a mixture of outer membrane proteins and traces of
lipooligosaccharides derived from Neisseria meningitidis and
Protollin consist of proteosomes complexed with Shigella flexneri
lipopolysaccharides. These adjuvants stimulate Ag uptake by the
FAE and cells of the MALT, and promote the maturation and
activation of APCs via the engagement of various PRRs (87). Pre-
clinical tests in mice concluded that proteosomes and Protollin
were safe and strong mucosal adjuvants for split (88, 89) or
subunit (89, 90) IAV vaccines. In addition, recent clinical trials
showed that an i.n. proteosome-adjuvanted trivalent split vaccine
was safe, immunogenic, and effective in healthy adults (91).
The vaccination protected subjects against illness following an
experimental H3N2 homologous challenge, and the protection
was correlated with pre-challenge specific serum HAI Ab and
nasal IgA titers (91). Thus, this class of adjuvants deserves to be
harnessed for the development of mucosal anti-IAV vaccination.

Bacterial-Derived Vesicles
Bacterium-Like Particles
Bacterium-like particles, also known as Gram-positive enhancer
matrix, are non-living microparticles derived from non-
pathogenic food-grade bacteria Lactococcus lactis, and consist of
bacterial-shaped peptidoglycan spheres deprived of intact surface
proteins and intracellular content. The immunostimulating
properties of bacterium-like particles are related to their ability
to activate and stimulate the maturation of APCs (92). In mice,
bacterium-like particles admixed with H1N1 or H3N2 split
vaccine enhanced serum and mucosal humoral responses as well
as systemic type 1-biased cellular responses directed against the
vaccine strain (93, 94). Moreover, the presence of the particles
in the vaccine formulation significantly increased the level of
protection of mice against an i.n. homologous challenge (94).
The adjuvanticity of bacterium-like particles was suggested to
be TLR2-dependent (95). Successful pre-clinical tests were also

reported using bacterium-like particles non-covalently coupled
with purified influenza epitopes (HA, M2e or NP) (92).

Finally, a phase I clinical trial has proven the safety and
the immunogenicity of i.n. vaccine formulations composed of
seasonal influenza trivalent split vaccine mixed with bacterium-
like particles (92). In particular, the adjuvant boosted the specific
serum HAI Ab and nasal IgA titers and increased the frequency
of IFN-γ-producing peripheral blood mononuclear cells (92).

Outer Membrane Vesicles
Outer membrane vesicles are nanosized vesicles naturally
produced by Gram-negative bacteria (96). They are composed
of various PAMPs such as lipopolysaccharides, lipoproteins,
peptidoglycan, flagellin monomers and nucleic acids, and they
can stimulate the activation of respiratory CD103+ DCs (96).
The incorporation of outer membrane vesicles into a trivalent
split vaccine boosted influenza-specific serum IgG and HAI
Ab titers as well as IgG and IgA titers in the LRT in mice
receiving the vaccine formulation via the i.n. route (96). In
addition, the adjuvant stimulated type 1-cell-mediated immune
responses in the lungs and spleen (96). All mice survived an
i.n. homologous challenge and were significantly more resistant
to H1N1 heterovariant or H5N2 heterosubtypic challenges than
mice immunized with the unadjuvanted vaccine (96).

Lipid-Based Adjuvants
Liposomes
Liposomes are self-assembling bi- or multi-layered lipid vesicles
with an aqueous core ranging from 10 nm to several µm in
diameter (97). Various categories of lipids can be incorporated
into liposomes such as phospholipids, sterols (cholesterol) or
sphingolipids. Liposomes are common vaccine delivery vehicles
because they protect the associated Ag(s) from the degradation or
neutralization, they exhibit Ag depot effect and they are uptaken
by APCs (97). Several physicochemical features of the liposomal
formulations determine their immunomodulatory potentials
including the lipid characteristics and the lipid composition of
the liposomes (97). For example, the length and the degree
of saturation of the hydrophobic tail of the lipids govern
the fluidity/permeability and thus the stability of the particles.
Cholesterol commonly modulates the stability of liposomes. In
addition, the hydrophilic headgroups of the lipids determine the
surface charge and, by extension, the ability of the liposomes
to adhere/penetrate epithelial surfaces (in the context of a
mucosal vaccination). The localization of the vaccine Ag(s) in
the preparation, e.g., admixed with the liposomes, attached to the
surface of the liposomes or encapsulated in the aqueous core of
the liposomes, also influences the Ag-specific immune responses.
Finally, the adjuvanticity of the liposomes can be improved by
the incorporation of muco-adhesive/muco-penetrating polymers
or PRR ligands into the formulation (97).

Both pre-clinical and clinical trials have demonstrated
the remarkable adjuvant potential of liposomes in parenteral
vaccination against IAV. Encouraging results have also been
obtained in the context of mucosal vaccination (97, 98). Early
studies showed that anionic dimyristoyl phosphatidylcholine
(DMPC)/dimyristoyl phosphatidylglycerol (DMPG) liposomes
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facilitated the association and uptake of co-administered
molecules by macrophages in vitro (99). The co-encapsulation of
H1N1 split vaccine in DMPC/DMPG liposomes with synthetic
oligodeoxynucleotides composed of unmethylated CpG motifs
(CpG-ODN, TLR9 ligands) boosted the magnitude of virus-
specific IgG and IgA titers in the URT and LRT and induced
systemic type 1-biased cell-mediated immune responses in
intranasally immunized mice (99). In addition, mice receiving
the liposome-formulated vaccine showed reduced lung viral
loads after an i.n. heterovariant challenge (99). CAF01, another
liposomal preparation containing the monocationic lipid
dimethyldioctadecylammonium bromide (DDAB) and the
immunostimulator α,α’-trehalose 6,6’-dibehenate was effectively
uptaken by murine bone marrow-derived DCs in vitro and
stimulated the maturation of the cells (100). By using the human
bronchial epithelial Calu-3 cell culture model, CAF01 was shown
to enhance the transport of co-administered Ag through the
mucus layer and across the epithelial cells (101). Accordingly,
in mice, the i.n. administration of CAF01 with H3N2 (100) or
seasonal trivalent (101) split vaccines remarkably strengthened
virus-specific mucosal and systemic immune responses. Finally,
polycationic liposomes composed of ceramide carbamoyl-
spermine (CCS) sphingolipids complexed with cholesterol
enhanced the efficacy of H1N1 monovalent or seasonal trivalent
split vaccines (102, 103). Mice intranasally immunized with the
vaccine adjuvanted with CCS/cholesterol liposomes showed an
increase in serum and mucosal HAI Ab titers directed against
homologous or heterovariant viruses (102, 103). In addition the
adjuvant increased type 1-cell-mediated immunity in the spleen
(102, 103). Finally, the animals exhibited a better resistance to i.n.
homologous or heterovariant challenges than mice immunized
with the unadjuvanted vaccine (103). CCS/cholesterol liposomes
presented similar adjuvant effects to CT, while having a better
safety profile (103). Interestingly, CCS/cholesterol liposomes
had stronger adjuvant properties than anionic DMPC/DMPG
or monocationic dioleoyl-3- trimethylammoniumpropane
(DOTAP)/cholesterol liposomes, which could be linked to an
extended retention time of influenza Ags in the nasal cavity and
in the lungs (102, 103). Finally, CCS/cholesterol liposomes also
enhanced the immunogenicity of H1N1 split vaccine in aged
mice, albeit with lower specific serum and mucosal Ab titers
than those observed in adult mice (103). Clinical trials with
i.n. liposome-based influenza split vaccine have been reported
(97, 104).

Some studies have demonstrated that liposomes are also
potent mucosal carriers for influenza subunit vaccines in
mice (105–107). For example, an M2e consensus sequence
incorporated into the lipid bilayer of liposomes composed of
a mixture of phospholipids, cholesterol and monophosphoryl
lipid A (MPLA) generated M2e-specific serum IgG and
systemic type 1/type 2-cell mediated immune responses in
mice vaccinated subcutaneously and intranasally (107). The
animals were also significantly protected against an i.n.
homologous challenge (107). Interestingly, the M2e-specific
serum Ab response inhibited in vitro viral cell lysis by
various IAV subtypes including H2N2, H3N2, H6N2, H5N9,
and H1N1 IAV, highlighting the potential of liposomes as

mucosal delivery platforms for broadly-protective vaccines
against IAV (107).

Preclinical and clinical studies have also concluded that
cationic liposomes are attractive delivery platforms for nucleic-
acid based IAV vaccines. Cationic lipids are known to efficiently
complex the nucleic acids, facilitate cellular uptake and allow
endosomal escape of nucleic acids into the host cytoplasm (57).
The encapsulation of plasmid DNA encoding a HA protein
derived from aH1N1 strain into cationic liposomes administered
to mice via the i.n. route boosted the immunogenicity of the
vaccine and all animals survived a subsequent i.n. homologous
challenge unlike mice vaccinated with the naked plasmid DNA
(105). Over the past decade, major technological advances have
enabled mRNA vaccines to become promising candidates against
IAV infections (57, 58, 108). In contrast to plasmid DNA,mRNA-
based vaccines are delivered directly to the cytoplasmic site of
function, eliminating the potential risk of integration into the
host chromosome. The engineering of mRNA sequence and
the development of separation and/or purification techniques
can increase mRNA translation and stability and modulate its
inherent immunogenicity (57, 58, 108). In addition, several
delivery systems have been explored to improve the efficiency
of mRNA vaccines, including liposomes (109). These carriers
are usually composed of an ionizable cationic lipid, cholesterol,
phospholipids, and lipid-linked polyethylene glycol which
increases the half-life of the formulation (109). Liposome-
encapsulated mRNA vaccines encoding IAV Ags such as HA, NP
and/or M1 administered via intramuscular or intradermal routes
generated significant B and/or T cell immune responses and
conferred protection against i.n. homologous or heterosubtypic
IAV challenge in various experimental animal models including
mice, ferrets and/or non-human primates (110–112). A recent
clinical study showed that mRNA vaccine encoding a HA
protein derived from H10N8 or H7N9 viruses formulated with
liposomes and administered via the intramuscular route was safe
and immunogenic (111). While lipid nanoparticles are potent
delivery systems for nasal mRNA vaccines in the context of
anti-tumor vaccination (113), additional studies are needed to
evaluate the efficacy of such carriers in mucosal vaccination
against IAV.

Virosomes
Virosomes are a special category of liposomes which are
composed of purified or synthetic lipids and viral envelope
proteins such as HA and NA (“influenza virosomes”) (98).
Influenza virosomes are commercially available, safe and
efficient vaccine platforms for parenteral vaccination in humans.
However, there have been no new i.n. formulations on the
market since the withdrawal of LT-adjuvanted virosomal vaccines
(98). Among various strategies to potentiate the immunogenicity
of i.n. virosomal vaccines against IAV, the incorporation of
cyclic di-nucleotides (CDN) (see section Nucleotide-Based
Adjuvants) has proven to be valuable in pre-clinical tests (114).
Mice immunized with H5N1 virosomes admixed with cyclic-
di-adenosine monophosphate (c-di-AMP) developed stronger,
broader and more persistent anti-IAV immune responses than
mice immunized with the unadjuvanted virosomes (114). In
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particular, the animals showed higher mucosal IgA titers and
higher serum HAI Ab titers reactive against homologous and
heterovariant viruses. Moreover, the adjuvant increased the
frequency of long-lived IgG ASCs lodged in the bone marrow.
Mice also exhibited stronger systemic type 1/type 2/type 17
cellular immune responses, including higher frequency of
multifunctional influenza-specific CD4+ T cells in the spleen
(114). Finally c-di-AMP promoted protection of mice against i.n.
homologous challenge (114). Clinical trials with virosome-based
influenza vaccines administered via the nasal route are ongoing
(98, 115).

Immune Stimulating Complexes (ISCOMs)/ Immune

Stimulating Complex Matrix ISCOMATRIX
ISCOMs are negatively-charged pentagonal dodecahedrons
with a ring-like stable structure about 40 nm in diameter
which are spontaneously formed after mixing the vaccine
Ag(s) with cholesterol, phospholipids and saponins from the
Quillaja saponaria Molina tree (QuilA) which are potent
immunostimulators (98). The corresponding structure
without incorporated vaccine Ag is called ISCOMATRIX.
ISCOM/ISCOMATRIX adjuvants are efficiently processed by
various APCs and are thus widely-exploited vaccine delivery
systems. The high affinity between saponins and cholesterol
ensures the stability of the adjuvant (116). Vaccine formulations
with more refined fractions of QuilA saponins have been
developed in order to increase the safety and the tolerogenicity
of the adjuvant (117). Pre-clinical studies have shown that this
category of adjuvants markedly increases the immunogenicity
and the protective potential of i.n. split or subunit IIV vaccines,
with the viral Ags incorporated into ISCOMs or simply admixed
with the ISCOMATRIX (70, 117, 118). Notably, mice intranasally
immunized with an ISCOM/ISCOMATRIX-formulated H1N1
split vaccine presented higher nasal/lung IgA and serum IgG
titers than mice vaccinated with the non-adjuvanted vaccine
(118). Two other studies indicated that mice receiving envelope
Ags derived from H1N1 virus in ISCOM/ISCOMATRIX
formulations via the i.n. route exhibited stronger serum and
mucosal Ab responses as well as higher systemic type 1/type 2
cellular immunity than mice receiving the free Ags (70, 117).
The immunogenicity of ISCOM/ISCOMATRIX preparations
can be boosted by the inclusion of immunostimulators (117).
The addition of CTA1-DD into ISCOM/ISCOMATRIX
formulations resulted in generating attractive and versatile
mucosal delivery platforms for IAV Ags by targeting both
DCs and B cells (117). Of note, a CTA1-3M2e-DD/ISCOM
preparation could be kept 1 year at 4◦C or as freeze-dried
powder without altering the immunogenicity of the vaccine
(117). ISCOMs are thus promising adjuvant for the development
of cold chain-independent vaccines. Finally we can mention that
ISCOMATRIX is also a suitable mucosal adjuvant for H5N1WIV
vaccines in chickens (119). Clinical trials with i.n. ISCOM-based
influenza vaccines are currently under way (98, 116).

Other Lipid-Based Adjuvants
Surfacten is a modified bovine pulmonary surfactant forming
unilamellar vesicles about 300–1,000 nm, which is widely used

in premature babies with respiratory distress syndrome without
significant adverse effects. It also displays potent mucosal
adjuvant properties toward influenza split vaccines in mice (120,
121). More precisely, Surfacten enhanced the uptake of influenza
Ags by bone marrow-derived DCs in vitro, and increased the
distribution and the retention time of influenza Ags as well
as the maturation of CD11c+ cells in the nasal cavity in vivo
(120, 121). The adjuvant boosted both virus-specific local and
systemic humoral and cell-mediated immunity and enhanced
the protection of mice against i.n. homologous or heterovariant
challenge (120, 121). Three major lipids, namely dipalmitoyl
phosphatidylcholine (DPPC), phosphatidylglycerol (PG) and
palmitate, and the surfactant protein C (SP-C) play an essential
role in the adjuvant properties of Surfacten (121).

SF-10, a synthetic surfactant composed of
DPPC/PG/palmitate lipids, a cationic SP-C-related peptide
and a mucoadhesive carboxyvinyl polymer (CVP) is also a safe
and effective delivery vehicle for IAV split vaccines in mice and
non-human primates (122–124). In vivo experiments in mice
showed that SF-10 stimulated the delivery of co-administered
Ags to epithelial cells and APCs localized in the NALT, including
CD8+CD11c+ DCs known to be involved in the cross-priming
of CD8+ T cells (123). Accordingly, the i.n. administration
of SF-10 with H1N1 split vaccine strengthened virus-specific
serum and mucosal Ab responses and T cell-mediated responses
(122, 123). In particular, mice immunized with the SF-10-
supplemented vaccine showed higher frequency of IFN-γ- and
IL-4-secreting lymphocytes in the NALT and CD8+ CTLs in
the spleen (122, 123). These mice were also more resistant to
an i.n. heterovariant challenge than those immunized with
the unadjuvanted vaccine, and the protection was significantly
reduced after depletion of CD8+ or CD4+ T cells (123). The
resistance was associated with higher cytolysis activities in the
lungs and DLN in the early phase of infection (123). Finally,
young cynomolgus monkeys immunized with H1N1 split
vaccine admixed with SF-10 via the i.n. route developed humoral
immune responses composed of nasal Abs which cross-reacted
against H1N1 heterovariant and H3N2 heterosubtypic viruses,
and serum HAI Abs (124). Moreover, the animals exhibited
influenza-specific immunological memory (124). SF-10 is thus a
very promising adjuvant for i.n. influenza vaccines intended for
humans, and in particular for young children.

Endocine is an anionic adjuvant based on mono-olein
and oleic acid lipids found ubiquitously in the human body.
Clinical vaccine studies against diphtheria and the human
immunodeficiency virus (HIV) have proven that Endocine is a
safe and well-tolerated i.n. adjuvant (125). Several studies have
demonstrated that it is also a promising mucosal adjuvant for
IAV vaccines (125–127). The addition of Endocine to an i.n.
split trivalent vaccine enhanced both local and systemic cross-
reactive humoral and cell-mediated immune responses in adult
mice (126). The adjuvant is also a potent immunoenhancer in
immunocompromised mice (127). Aged mice immunized with
an Endocine-adjuvanted H1N1 split vaccine exhibited increases
in influenza-specific serum IgG and HAI Ab titers and lung
IgG and IgA titers (127). Finally, ferrets intranasally immunized
with H1N1 split or WIV vaccine formulated with Endocine
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developed serum HAI and neutralizing Ab responses against
homologous and H1N1 heterovariant viruses (125). Animals
challenged intratracheally with the homologous strain were
significantly protected from virus replication in the URT and LRT
(125). Further (pre-)clinical investigations on the use of Endocine
in i.n. IIV vaccine formulations are warranted.

Among other lipid-based adjuvants which have proven to
be successful in mucosal vaccination against IAV in (pre)-
clinical tests, we can cite the oil-in-water nanoemulsionW805EC,
consisting of a highly refined soybean oil combined with non-
ionic and cationic surfactants and ethanol. In vitro and in vivo
studies in mice suggested that the adjuvanticity of W805EC was
related to its ability to increase the uptake of the antigenic
payload by nasal epithelial cells, facilitating the subsequent
engulfment of Ag-primed apoptotic epithelial cells by DCs,
followed by activation and migration of DCs to the DLN (128,
129). The adjuvant activity of W805EC is related, at least in
part, to TLR2/TLR4 activation (130, 131). Accordingly, W805EC
enhanced the immunogenicity and the protective potential of
i.n. H1N1 WIV vaccine in mice (132). The i.n. administration
of W805EC with a seasonal IAV split vaccine also boosted
serum humoral responses directed against homologous and
heterovariant viruses in ferrets (133). Finally, a clinical study
conducted with healthy human adults revealed that W805EC
was safe, well-tolerated and boosted the influenza-specific serum
and mucosal Ab responses when combined intranasally with a
seasonal trivalent split vaccine (134). A recent study mentioned
that an mRNA vaccine expressing a HA protein derived
from a H1N1 virus formulated with an oil-in-water cationic
nanoemulsion elicited broad and protective immune responses
against homologous and heterologous challenge when delivered
intramuscularly to mice or ferrets (135). However, the efficiency
of such formulations in the context of a mucosal immunization
remains to be evaluated.

Virus-Like Particles (VLPs)
VLPs are multimeric cage-like structures consisting of self-
assembled structural viral proteins around a hollow interior space
devoid of viral genetic material. VLPs mimic virions in shape,
size, and molecular organization while being non-replicating and
non-infectious (136, 137). VLPs can interact with APCs of the
innate immunity. In addition, VLPs display highly repetitive
epitopes and can stimulate B cell responses by BCR cross-
linking (136).

Several pre-clinical studies have demonstrated that VLPs
are potent i.n. delivery vehicles for IAV epitopes (79, 138).
Influenza VLP vaccines are mostly produced by the recombinant
baculovirus/insect cell expression system and consist of self-
assembled M1 molecules surrounded by the lipid membrane
derived from the insect cells where various combinations of
influenza epitopes are anchored, including HA, NA and/orM2(e)
(136, 137). Most of influenza VLPs fully protect animals against
an i.n. homologous challenge, and several studies have reported
their efficacy against heterologous viruses as well (136, 137). For
example, the i.n. immunization of mice with VLPs incorporating
H1N1 HA, NA and M1 [(HA/NA/M1) VLPs] induced the
generation of IgG and IgA in the serum, the URT and LRT, which

cross-reacted with a H5N1 virus (139). Mice were fully protected
against a subsequent i.n. homologous challenge and exhibited a
partial but significant resistance to a challenge with the H5N1
virus (139). In contrast, all mice receiving the vaccine via the
intramuscular route succumbed to the heterosubtypic challenge.
Ferrets intranasally immunized with the same vaccine survived
the H5N1 challenge and displayed reduced nasal viral loads,
unlike animals vaccinated via the parenteral route (139).

Numerous pre-clinical studies have proven that i.n. influenza
VLP vaccines elicit long-lasting (cross-) protective immune
responses (140–142). For example, long-lived IgA/IgG ASCs and
memory CD4+/CD8+ T cells were detected in the bone marrow
and in the spleen of mice immunized with H1N1 (HA/M1)
VLPs, respectively (140). All mice survived an i.n. homologous
or heterovariant challenge up to 5 months post-immunization
(140). Also, a recent study showed that the i.n. administration
of a mixture of (HA/M1) VLPs individually displaying H1, H3,
H5, and H7 HA epitopes significantly protected adult mice
against an i.n. homologous (H1N1 or H7N1 virus), heterovariant
(H5N1 orH7N9 virus), or heterosubtypic (H2N1, H7N1, H10N1,
or H11N1 virus) challenge (142). The VLP cocktail protected
mice against a challenge with the H7N9 or H10N1 virus until
6 months post-vaccination. Passive serum transfer experiments
suggested an involvement of anti-HA Abs in the resistance
against homologous or heterovariant challenge; however the
correlates of protection against the heterosubtypic challenge
remain unknown (142). Interestingly, a partial protection was
also observed in aged mice against the H10N1 challenge (142).

Other VLP platforms presenting conserved IAV epitopes
(M2e or epitopes located in HA2) have been successfully tested in
pre-clinical tests with the hepatitis B virus core protein (73, 143,
144), the coat protein of bacteriophage Qβ (Qβ-VLPs) (145), the
protrusion domain of the capsid protein of norovirus (P-VLPs)
(138, 146) or the NP of respiratory syncytial virus (NRSV-VLPs)
(147) as VLP scaffold.

Experimental studies in mice have allowed a better
understanding of the adjuvant mechanisms of Qβ-VLPs at
the mucosal surfaces (148, 149). During the self-assembly
process, Qβ-VLPs are packaged with RNA derived from E. coli
which typically mediate TLR3/7 signals. A first study concluded
that Qβ-VLPs applied via the i.n. route were captured by alveolar
macrophages and lung DCs, transported to the DLN and
subsequent mucosal IgA responses required macrophage/DC
activation via TLR7 stimulation (148). A second study established
that Qβ-VLPs administered intranasally could also be taken
up by the lung B cells, transported to the spleen and delivered
into B cell follicles (149). In accordance with these results,
mice intranasally immunized with Qβ-VLPs incorporating M2e
epitopes developed significant mucosal and serum M2e-specific
humoral responses, and all animals survived a subsequent i.n.
lethal H1N1 challenge (145). Besides Qβ-VLPs, P-VLPs are also
efficient mucosal delivery platforms for M2e epitopes in mice
(138) and in chickens (146). Chickens intranasally immunized
with P-VLPs carrying multiple repetitions of an avian M2e
consensus sequence showed a significant reduction in virus
shedding from the trachea and the cloaca after an i.n. challenge
with avian H5N2 or H7N2 viruses (146). However, no anti-M2e
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Ab were detected in the serum or in the nasal washes and the
protective immune mechanisms remain unknown. Finally, in
our research group, we have demonstrated that mice intranasally
immunized with three repetitions of M2e sequence from a H1N1
virus exposed at the surface of NRSV-VLPs developed strong local
and systemic M2e-specific Ab responses and were successfully
protected against an i.n. homologous challenge (147). Only the
i.n. route generated mucosal IgA titers and led to the protection
of animals (147).

Although most of the aforementioned influenza VLPs trigger
potent host immune reactions by themselves, several studies
have indicated that the incorporation of immunostimulating
molecules such as enterotoxins (64, 73), PRR ligands (78, 79,
81, 82, 150) or cytokines/chemokines (151), either admixed or
anchored at the surface of VLPs, enhances the magnitude, the
duration and/or the breadth of the protective immune responses.

Clinical trials have attested the safety and the efficacy of
influenza VLPs in parenteral vaccination (136). The promising
results obtained in mucosal vaccination during experimental
animal studies support the rationale for developing influenza
VLPs for human mucosal vaccination as well.

Organic Polymers
Chitosan
Chitosan are natural cationic polysaccharides composed of
glucosamine and N-acetylglucosamine resulting from the partial
deacetylation of chitin (152). Diverse forms of chitosan
are available with various degrees of acetylation, molecular
weight and chemical modifications affecting their solubility,
biocompatibility, biodegradation and immunogenicity (152).
Chitosan polymers and their derivatives have been widely used
as mucosal adjuvants under different formulations such as
solutions, powders, micro/nanoparticles and gels (152). Because
of electrostatic interactions of positively charged chitosan with
the negatively charged components of the mucus, chitosan
polymers exhibit strong mucoadhesive properties. In addition,
chitosan-based adjuvants enhance the permeability of the
epithelial barrier by inducing a reversible opening of tight
junctions, and consequently promote the interactions of the co-
administered Ag(s) with the MALT. Finally, chitosan polymers
directly stimulate the activation and the maturation of APCs
including DCs via TLR4-, NLR family pyrin domain containing
3 (NLRP3)-, and/or stimulator of interferon genes (STING)-
dependent pathway (152, 153).

Chitosan-based adjuvants have successfully improved the
immunogenicity and the protective potential of i.n. influenza
split vaccines in pre-clinical tests (154–157). For example,
N-trimethyl-derivatives of chitosan (TMC) boosted the
immunogenicity of H1N1 split vaccine reflected by increased
serum IgG and HAI Ab titers and mucosal IgA titers (154).
An optimal immune response was obtained when influenza
Ags were conjugated on TMC nanoparticles instead of being
encapsulated into the TMC nanoparticles (154). In another
study, a thermo-sensitive chitosan-based hydrogel (a solution
of N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan
chloride (HTCC) plus α,β-glycerophosphate) formulated with
H5N1 split vaccine extended the retention time of influenza

Ags in the nasal cavity of mice (156). This could be due to the
mucoadhesive properties of HTCC and/or the reduction of the
ciliary beating frequency caused by the overlaying of epithelial
surface with the semi-solid hydrogel solution (156). In addition,
the adjuvant efficiently increased the intercellular penetration of
influenza Ags through the mucosa (156). Consequently, mice
receiving the hydrogel-adjuvanted vaccine presented a boost
in influenza-specific serum and mucosal Ab titers as well as in
cell-mediated immune responses, including an increase in type
1/type 2 cellular responses in the spleen and in the frequency of
memory CD8+ T cells in the NALT (156). TMC admixed with
H5N1 split vaccine also boosted serum Ab titers reactive against
the vaccine strain and H5N1 heterovariant viruses in ferrets and
the adjuvanted vaccine protected animals against a subsequent
intratracheal homologous challenge (157).

Pre-clinical experiments in mice and chickens have also
revealed that chitosan polymers are efficient mucosal adjuvants
for DNA (158) or protein influenza subunit vaccines either
admixed with influenza Ags (144, 159) or as coating agents
on the surface of polyamines (69, 160) or polyesters (161,
162) nanoparticles containing influenza Ags (see sections
Chitosan and Polyamine polymers). Chitosan-containing lipid
nanoparticles complexed with mRNA encoding H5 HA or
NP proteins also boosted the immunogenicity of IAV Ags
after subcutaneous immunization in mice and rabbits (163).
These experiments have to be performed in the context of a
mucosal vaccination.

Clinical studies have proven the safety and the adjuvant
potential of chitosan for various i.n. vaccines including IIV
vaccines, but further investigations are needed (164, 165).

Polyamine Polymers
Poly (γ-glutamic acid) (γ-PGA) polymers are anionic
biodegradable bacterial polymers with mucoadhesive properties
due to the hydrogen bonding between the carboxylate group
of γ-PGA and the hydroxyl group of the mucus glycoproteins
(166). In addition, γ-PGA nanoparticles are efficiently taken up
by APCs and they enhance the activation, the maturation and
the functions of APCs (167).

Experiments inmice have demonstrated that γ-PGA polymers
are potent mucosal adjuvants/carriers for split or subunit
influenza vaccines (69, 160, 167, 168). For example, a first
study established that the supplementation of an i.n. H1N1
split vaccine with γ-PGA nanoparticles enhanced serum and
mucosal neutralizing Ab responses and type 1/type 2-cell
mediated immune responses in the spleen (168). These responses
were specifically directed against the vaccine strain or a
heterovariant virus (168). Mice immunized with the adjuvanted
vaccine were fully resistant to i.n. homologous or heterovariant
challenge (168). In a second study, the incorporation of
consM2H1N1/H5N1/H9N2-HA2H5N1(15−137) into a formulation
consisting of γ-PGA polymers associated with MPLA and QS21
(a specific fraction of QuilA saponins) generated higher and
more persistent HA2/M2-specific immune responses than a free
consM2H1N1/H5N1/H9N2-HA2H5N1(15−137) fusion protein vaccine
(167). The adjuvanted vaccine conferred a full and/or long-
lasting protection to mice against an i.n. challenge with different
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subtypes of IAV including H5N1, H1N1, H5N2, or H9N2 viruses
(167). Notably, the adjuvant effect of the γ-PGA/MPLA/QS21
formulation was similar as CT (167).

Polyethyleneimine (PEI) polymers are a family of synthetic
cationic molecules widely used as gene transfer agents because
of their ability to complex, condense and protect nucleic acids
against enzymatic degradation, to promote transfection of cells
and to facilitate endosomal escape of nucleic acids (166).
In vivo bioluminescence imaging of luciferase performed in
mice after the i.n. administration of luciferase-encoding DNA
formulated with PEI or unformulated DNA revealed that PEI
significantly improved the efficiency of gene transfer in the RT
(169). Accordingly, PEI efficiently boosted the magnitude, the
breadth and the protective potential of influenza DNA vaccines
administered via the i.n. route in mice (169). In particular,
the combination of PEI with a DNA vaccine encoding a HA
derived from a H5N1 virus increased the serum and mucosal
Ab responses against the vaccine strain (169). Furthermore, the
animals presented higher frequency of HA-specific memory IFN-
γ-secreting CD4+ and CD8+ T cells in the lungs and spleen than
mice vaccinated with the naked DNA (169). In accordance with
these observations, mice immunized with the adjuvanted vaccine
were more resistant to an i.n. homologous challenge (169).
Finally, the PEI-complexed vaccine generated cross-reactive
immune responses and conferred partial cross-protection tomice
against an i.n. H5N1 heterovariant challenge (169). A recent
study has demonstrated that PEI conjugated with β-cyclodextrin
(a cyclic polysaccharide) is an excellent platform material for
i.n. mRNA vaccination in mice (170). In vivo imaging showed
that the complexation of anionic mRNA encoding the envelope
glycoprotein gp120 of HIV with the PEI-cyclodextrin polymer
prolonged the nasal residence time of the mRNA and increased
uptake of the mRNA by nasal epithelial cells (170). In addition,
in vitro observations suggested that the polymer facilitated the
i.n. delivery of the mRNA cargo through a paracellular route by
reversibly opening tight junctions while preserving the integrity
of the epithelial barrier (170). Consequently, this polymeric
delivery system boosted the gp120-specific serum and mucosal
humoral and cellular responses (170). In mice, PEI is a potent
adjuvant for subcutaneous or intramuscular mRNA vaccines
encoding IAV HA or NP Ags (171, 172). However, the ability of
PEI to transport IAV mRNA vaccines through the mucosal route
awaits further investigation.

Likewise, PEI polymers are potent mucosal adjuvants for
influenza WIV and protein subunit vaccines in mice and
chickens, with similar potency as bacterial-derived adjuvants (84,
173). In vitro analysis showed that the combination of PEI with
H9N2 WIV vaccine increased the adhesion of the viral Ags to
Calu-3 epithelial cells (173). In addition PEI enhanced the cellular
uptake and endosomal escape of the viral Ags in murine bone
marrow-derived DCs, and stimulated the maturation of the cells
(173). Accordingly, mice intranasally immunized with the PEI-
complexed WIV vaccine developed higher local and systemic
influenza-specific immune responses than mice immunized with
the uncomplexed WIV vaccine (173). Finally, a recent study
demonstrated (172, 173) that chickens immunized with a portion
of the HA1 domain of a H7N9 virus formulated with PEI

developed higher serum, nasal and lung anti-HA Ab titers than
animals immunized with the unadjuvanted formulation (84). The
birds also showed reduced viral loads in the cloaca and throat
after an i.n. homologous challenge in comparison with the birds
of the unadjuvanted group (84).

Because of safety issues related to the non-biodegradable
nature of PEI and to the positive charge of these polymers
(which can interact electrostatically with cellular anionic
macromolecules and interfere with normal cellular functions),
less toxic PEI derivatives have been developed such as deacylated
PEI. These modified PEI polymers retain adjuvant properties
toward HA DNA vaccines in mice (174).

Polyesters
PLGA, a copolymer of poly (D, L-lactide-co-glycolide) approved
for clinical use, has been widely exploited as a nanoparticle
delivery system because of its biocompatibility, biodegradability,
safety, and controlled release properties (166). Hydrophilic
polymeric materials can be added on the surface of PLGA
nanoparticles to increase the stability and the transfer of the
antigenic payload across mucosal surfaces. These stabilizers
are usually polyethylene glycol, polyvinyl alcohol or chitosan
(175). Experimental studies in animals have demonstrated that
PLGA nanoparticles are good mucosal adjuvants for i.n. IAV
WIV vaccines (162, 176). A first study showed that chickens
immunized with an aerosol vaccine composed of H9N2 WIV
admixed with polyvinyl alcohol-modified PLGA nanoparticles
incorporating PEI-CpG-ODN complexes generated higher virus-
specific serum IgY and HAI Ab titers and mucosal IgA titers
than birds immunized with the non-adjuvanted WIV vaccine
(176). A second study concluded that chickens immunized via i.n.
and intraocular routes with polyvinyl alcohol/chitosan-modified
PLGA nanoparticles encapsulating a H4N6 WIV with PEI-
CpG-ODN complexes developed higher influenza-specific serum
and mucosal Ab responses than chickens of the unadjuvanted
group (162).

Poly-(ε-caprolactone), another biodegradable and
biocompatible polyester polymer, was also described as a
potent carrier system for mucosal vaccines against IAV in
pre-clinical tests (161). Notably, mice intranasally vaccinated
with chitosan-coated poly-(ε-caprolactone) nanoparticles
incorporating a recombinant HA derived from a H1N1 virus
exhibited higher HA-specific serum and mucosal Ab titers
and systemic type 1/type 2-cell-mediated immune responses
than mice vaccinated with uncoated nanoparticles or with the
unadjuvanted recombinant HA (161).

Other Organic Polymers
Poly (N-vinylacetamide-co-acrylic acid) (PNVA-co-AA) bearing
D-octaarginine are biocompatible cationic oligopeptides which
enhance permeation of co-mixed Ag(s) through mucosal barriers
(177). The co-administered Ag(s) are suggested to be taken up
into cells via macropinocytosis through the biorecognition of the
peptidyl branches in the polymer backbone, while the polymer
remains on the cell membrane (177). The i.n. co-administration
of H1N1WIV vaccine with D-octaarginine-linked PNVA-co-AA
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in mice boosted the HA-specific nasal IgA titers which cross-
reacted in vitro with recombinant HAs from H1N1 heterovariant
and H3N2 or H5N1 heterosubtypic viruses (178, 179). Mice
vaccinated with the adjuvanted preparation showed a better
resistance to an i.n. homologous challenge than mice immunized
with H1N1 WIV alone (178, 179). The cross-protective potential
of such polymers remains to be evaluated in vivo.

Inorganic Nanoparticles
During the last years, gold nanoparticles are appearing
increasingly attractive (mucosal) vaccine delivery vehicles
(180). As immunologically inert molecules, they do not
induce competing carrier-specific immune responses. Also,
they can be chemically synthesized with tight control over
the nanoparticle size and are easily functionalized with
vaccine epitopes/immunopotentiators (180). A series of recent
publications has demonstrated that gold nanoparticles are potent
mucosal delivery platforms for influenza Ags in mice (81, 82,
181, 182). By designing dual-linker nanoparticles, a research
group grafted a recombinant trimeric HA derived from a
H3N2 virus and a recombinant flagellin monomer on gold
nanoparticles by click chemistry and metal-chelating reactions
with high conjugation efficiency (81, 82). The conjugation of the
vaccine epitopes on the nanoparticles increased the uptake of
influenza Ags by DCs and stimulated the activation, maturation
and function of DCs in vitro (82). With respect to these
observations, the vaccine formulation intranasally administered
to mice generated stronger influenza-specific immune responses
than a vaccine composed of free trimeric HA mixed with
flagellin (81). Notably, mice immunized with the nanoparticles
showed elevated serum IgG and HAI Ab titers, higher IgG
and IgA titers in the URT and LRT and higher frequency
of long-lived IgG/IgA ASCs in the spleen (81). In addition,
animals exhibited higher influenza-specific systemic and local
cell-mediated immune responses. In particular, mice showed a
boost in type 1/type 2/type 17-cell-mediated immune responses
and in the frequency of CD8+ CTLs in the spleen, an increase
in type 1-biased cellular responses in the NALT and higher
frequency of IFN-γ-expressing CD4+/CD8+ T cells in the DLN
(81). All mice survived a lethal i.n. homologous challenge and
showed reduced lung viral loads in contrast to animals receiving
the vaccine formulation uncoupled to the nanoparticles (81).
The attachment of a human M2e consensus sequence to gold
nanoparticles also significantly strengthened the immunogenicity
and the protective potential of the M2e epitopes in mice (181,
182). Hence, these nanocarriers are interesting mucosal delivery
platforms for broadly-protective vaccines against IAV.

Nucleotide-Based Adjuvants
Polyinosine-polycytidylic acid [poly (I:C)] is a synthetic analog
for double-stranded RNA that mimics viral RNA and activates
various APCs in a TLR3/Toll or interleukin (IL)-1 receptor
domain-containing adaptor-inducing interferon-β (TRIF)-
dependent pathway (61). Numerous studies have demonstrated
that the incorporation of poly (I:C) into IAV WIV, split or
subunit vaccines enhanced the magnitude and/or the breadth of
the specific immune in mice and chickens (183–186).

A recent study showed that the i.n. administration of poly
(I:C) with H1N1 split vaccine in mice boosted serum IgG and
mucosal IgA Ab responses in a TLR3/TRIF-dependent pathway
(183). The adjuvant also increased the frequency of virus-specific
IFN-γ-secreting CD4+ and CD8+ T cells in the spleen (183).
The mucosal adjuvanticity of poly (I:C) relied on its ability
to stimulate the activation and the maturation of CD103+

DCs located in the NALT, which were crucially involved in
the generation of local humoral and T cell-mediated immune
responses (183). In particular, the addition of poly (I:C) to the
vaccine formulation enhanced the frequency of GC B cells and
follicular helper T cells in the NALT and the local expression
of various cytokines involved in IgA class switching (183). Mice
immunized with the adjuvanted vaccine were fully protected
against an i.n. H1N1 heterovariant challenge in contrast to
TRIF−/− mice or mice immunized with the unadjuvanted
vaccine (183).

Poly (I:C) was also tested in a HA2-directed vaccine
strategy in mice (185). The methodology consisted of sequential
immunizations with different chimeric HAmolecules which have
the same H1 HA2 but different non-H1 HA1s. The adjuvant
boosted the induction of HA2-specific serum IgG and nasal
IgA directed against the HA vaccine strain (185). In addition
the adjuvant enhanced the generation of serum Abs which
cross-reacted with HA molecules from H1N1 heterovariant and
H5N1 and H2N2 heterosubtypic viruses (185). The adjuvanted
vaccine fully protected mice against i.n. homologous and H1N1
heterovariant challenges (185).

We can mention that poly (I:C) is also an interesting mucosal
adjuvant for influenza vaccines in chickens (186). The i.n. co-
administration of poly (I:C) with H5N1 IIV vaccine enhanced
influenza-specific serum IgG and HAI Ab titers and IgA titers in
the nose and in the trachea of birds (186).

Finally, poly (I:C12U), an analog of poly (I:C) exhibiting a
safer profile, gave promising results in pre-clinical (187) and
clinical trials (188). In particular, the i.n. immunization of healthy
humans with a seasonal LAIV vaccine in association with poly
(I:C12U) induced the generation of nasal IgA which reacted with
homologous viruses as well as H5N1, H7N9, and H7N3 HPAIV
with pandemic potential for humans (188).

Another class of nucleotide-based adjuvant, CDN,
exhibited comparable efficacy to poly (I:C) in enhancing the
immunogenicity of mucosal IAV split or subunit vaccines in mice
(114, 189–192). CDN are bacterial second-messenger molecules
detected by the innate immune system via various sensors
including STING (189). The inclusion of 2′,3′-cyclic-guanosine
monophosphate-adenosine monophosphate (cGAMP) in i.n.
H1N1 split vaccine stimulated the activation of innate and
adaptive immunity in the NALT, the spleen and the DLN,
and promoted GC formation in the NALT in a STING-
dependent pathway (189). It resulted in an increase in specific
serum and mucosal humoral responses and in systemic type
1/type 2/type 17 cellular immune responses, including higher
frequency of IFN-γ-producing CD4+ and CD8+ T cells in the
spleen (189). Other studies demonstrated that the addition
of CDN to recombinant H5N1 HA or H1N1 NP subunit
vaccines enhanced the magnitude and/or the breadth of the
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humoral and cellular anti-IAV immune responses in mice
(190, 192).

CpG-ODN are TLR9/TLR21 agonists which activate various
APCs and commonly generate pro-inflammatory and Th1-
biaised immune milieu (193). These compounds have thus
been widely exploited as vaccine enhancers in numerous pre-
clinical and human clinical trials (193). Several studies in
mice and chickens have demonstrated that CpG-ODN alone
or in combination with other immunopotentiators/delivery
systems are suitable mucosal adjuvants for IAV WIV, split
or subunit vaccines (64, 83, 99, 176, 181, 182, 186, 194–
197). By using an in vitro DCs:Calu-3 cells co-culture model
and by doing i.n. instillation in mice in vivo, a recent study
proposed a mechanism for the mucosal adjuvanticity of CpG-
ODN toward a H9N2 WIV vaccine. The authors suggested
that CpG-ODN stimulated the secretion of the chemokine
(C-C motif) ligand 20 (CCL20) by epithelial cells in a
TLR9-dependent pathway, which enhanced DC recruitment
to the nasal epithelium and promoted the formation of
transepithelial dendrites involved in the capture of luminal
influenza Ags (197). Clinical trials have proven the safety and
immunogenicity of CpG-ODN-adjuvanted IIV vaccines when
administered via the parenteral route (85). In view of the
very promising results in animal models, the efficacy of CpG-
ODN in mucosal anti-IAV vaccination should be evaluated
in humans.

Cytokines/Chemokines
Cytokines and chemokines are signaling molecules
released by a wide range of immune and non-
immune cells (198). They are critically involved in host
defense against infections by modulating the activation,
maturation, differentiation, migration, survival and
functions of innate and adaptive immune cells (198).
These molecules have been considered as interesting
alternatives to pathogen-derived adjuvants for anti-IAV
vaccines (198).

Various cytokines such as IL-2, IL-12, IL-1 family cytokines
(IL-1α/β, IL-18, and IL-33), IL-23 and type I IFNs are efficient
and safe mucosal adjuvants when admixed with IAV WIV,
split or subunit vaccines in mice (198, 199). For example, the
incorporation of type I IFNs to an i.n. H1N1 split vaccine
enhanced the magnitude and the duration of virus-specific
serum and mucosal humoral responses and increased the
protection of mice against an i.n. homologous challenge (200).
The mucosal adjuvanticity of type I IFNs was suggested to be
related to the ability of the cytokines to stimulate the uptake
of co-administered Ags by phagocytes of the nasal mucosa
(200). In another study in mice, the i.n. co-administration
of cytokines belonging to the IL-1 family with recombinant
HA derived from a H1N1 virus increased the magnitude
of serum and mucosal anti-HA Abs titers in serum and in
mucosal secretions as well as the frequency of type 1/type 2
cytokine-producing cells and CD8+ CTLs in the spleen (201).
The adjuvant remarkably enhanced the level of protection of
mice against an i.n. heterovariant challenge (201). Mucosal
vaccine formulations with cytokines/chemokines anchored into

influenza WIV or VLPs have also been successfully tested in
mice (151, 202–204). The incorporation of cytokines/chemokines
in nanoparticle vaccine formulations could overcome the
relatively short half-life of these molecules (198). Recent studies
have been focused on CCL28, which is highly expressed
by epithelial cells and selectively attracts T and B cell
subsets (including IgA ASCs) at mucosal surfaces (151, 203).
CCL28 anchored in H3N2 (HA/M1) VLPs showed in vitro
chemotactic activity toward chemokine (C-C motif) receptor
3 (CCR3)/CCR10-expressing mouse splenocytes and lung cells
(203). In mice, the chemokine enhanced the magnitude, the
avidity, the functionality and the duration of serum and mucosal
humoral responses specifically directed against homologous and
heterovariant viruses (151, 203). Accordingly, the adjuvanted
vaccine conferred a higher and more persistent protection in
animals against an i.n. homologous or heterovariant challenge
(151, 203).

Although cytokines/chemokines are promising adjuvants for
mucosal anti-IAV vaccines, these molecules may present some
drawbacks (198). The pleiotropic effects of these proteins
on immune cells may result in unwanted adverse effects.
In addition, the adjuvant effects observed in animal models
may not be directly translated to humans as it was reported
for an i.n. influenza split vaccine formulated with type I
IFNs (205).

Adjuvants and Trained Immunity
Studies listed so far in this review have evaluated the efficacy
of mucosal adjuvants on their ability to enhance adaptive
immune responses (T and/or B cell responses) specifically
directed against influenza Ags (Supplemental Table 1). However,
a growing body of evidence suggests that some categories
of adjuvants may also induce long-lasting functional state
within innate immune cells, resulting in an increase in non-
specific host defense against a range of pathogens. This concept
has been named “trained immunity” (206). Some studies
have indicated that prophylactic mucosal administration of
bacterial-derived molecules, in particular enterotoxins, TLR3
and TLR9 ligands, or type I IFNs protected mice against a
subsequent IAV challenge (73, 207–209). For example, mice
intranasally treated with CT, LT (R192G) or CpG-ODN showed
reduced mortality and/or lung viral loads subsequently to a
H1N1 challenge 24 h after the last treatment. The improved
resistance was associated with higher frequencies of CD4+

T cells, B cells and DCs in the airways and the generation
of BALT-like structures in the lungs (207). Furthermore, the
i.n. administration of chitosan fully protected mice against
lethal challenge with H7N9 or diverse H1N1 viruses (210).
The protection was associated with infiltration of leukocytes
in the bronchoalveolar lavage and an enhanced expression
of inflammatory cytokines in the LRT (210). Mice were
significantly protected against H7N9 challenge even 10 days
after the chitosan administration (210). Whether the protective
efficacy of the mucosal IAV vaccine formulations compiled in
this review was influenced by trained immunity remains to
be determined.
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CONCLUSIONS

Vaccination via the i.n. route has the potential to elicit long-
lasting and cross-protective humoral and cellular immune
responses at the portal of entry of respiratory pathogens. It is thus
a suitable strategy to prevent infections caused by highly variable
IAV. However, the i.n. vaccine formulations have to be rationally
elaborated because the respiratory mucosal surfaces restrain the
immunoavailability and the immunogenicity of vaccine Ag(s).
Numerous experimental animal studies have demonstrated the
promising potential of various adjuvant/delivery systems for the
development of i.n. human and veterinary (chickens) vaccines
against IAV. They consist of immunopotentiatory molecules,
such as bacterial-derived components, synthetic nucleotides
and cytokines/chemokines, associated or not with particulate
carriers, such as lipid-based particles, VLPs, organic polymers
and inorganic nanoparticles. These adjuvant systems boost
the efficacy of current IIV vaccines or new subunit vaccine
candidates by increasing the magnitude, the persistence and/or
the breadth of the host (protective) anti-IAV immunity. Some
of these novel mucosal vaccine formulations are safe and
immunogenic in early phase clinical trials but they have
to overcome several hurdles before reaching the market,
including regulatory and economic restrictions and the lack
of appropriate correlates of protection. Standardized assays
taking into account the protective role of non-HAI Abs and
cell-mediated immunity need to be developed to adequately
evaluate the efficacy of these new mucosal formulations. Needle-
free mucosal vaccines that provide a broad-coverage against
IAV and do not require annual re-vaccination are promising

alternatives to current IAV vaccines and should increase
awareness about the benefits of influenza vaccination among the
general public.
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