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Editorial on the Research Topic

The Role of Pentraxins: From Inflammation, Tissue Repair and Immunity to Biomarkers

Pentraxins are a superfamily of highly conserved molecules characterized by a common structural
motif, the so-called “pentraxin domain” (1, 2). C reactive protein (CRP), originally identified for its
ability to bind the C-polysaccharide of Streptococcus pneumoniae, and serum amyloid P component
(SAP) are the prototypes of the family and constitute the short pentraxin arm. The latter are
25 kDa secreted proteins characterized by a structural organization in which five (CRP) or ten
(SAP) identical protomers are assembled in a pentameric symmetry. The long pentraxin PTX3, first
identified in the early 90’s as prototype of the long pentraxin family, is characterized by the presence
of a long N-terminal domain unrelated to other proteins. Short and long pentraxins diverged
from a common ancestor of all pentraxins, an events that occurs very early in evolution, given
that members of the long pentraxin superfamily where identified in the most ancient vertrebate
Takifugu rubripes (1).

CRP, SAP and PTX3 aremultifunctional molecules mainly produced by inflammatorymediators
and tissue injury. CRP is the most important acute phase protein in humans and is routinely
measured to monitor human diseases. SAP contributes to amyloid formation and is possibly a
therapeutic target. PTX3 is an essential mediator of innate resistance to selected pathogens of
fungal, bacterial and viral origin, and is involved in regulation of inflammation, tissue remodeling
and cancer.

This Research Topic, carried out with the support of the International Union of Immunological
Societies (IUIS), wants to offer an overview of the main biological characteristics of these proteins,
pointing to their essential role as regulators of the innate immune response and the possible
translational implications.

The review from Pepys can be considered the grand opening of the Research Topic (Pepys).
Pepys trace the history of short pentraxins from the discovery to their structural characterization,
from the biological properties to the translational potential. In particular, it is shown how both CRP
and SAP have become extremely useful as biomarker of human disease and as possible therapeutic
targets in different pathological conditions, including amyloidosis and Alzheimer’s disease (SAP),
or myocardial and cerebral infarction (CRP).

The essential role that the members of the pentraxin superfamily exert in the innate
immune response fully accounts for the strong evolutionarily pressure observed. Pathak and
Agrawal describe the organisms where CRP has been found and the evolution of CRP from
a constitutively expressed protein in arthropods to an acute phase molecule in humans. They
also report the structural and biological similarities and differences among CRPs from different
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animals, while Ngwa and Agrawal describe the relationship
between structure and function, in particular in relation to the
anti-bacterial effect of CRP. Different structures are reported
for CRP, with a native or a non-native pentameric protein
and a monomeric molecule. Singh and Agrawal investigate the
contribution of the different structural arrangements of CRP in
relation to the atheroprotective role of the protein.

Amain property of pentraxins is represented by the regulation
of Complement activation. Two papers in this Research Topic
are dealing with this important aspect of the regulation of
inflammation (Ma and Garred, Haapasalo and Meri). The
classical, the alternative and the lectin pathway of complement
activation are all affected by interaction of members of the
pentraxin family with their main initiating molecules (C1q,
Ficolin-2, Mannose Binding lectin, CL-12) or regulators (Factor
H and C4-binding protein). Ma and Garred underline the
role of pentraxins in complement activation via crosstalk
with both initiators and regulators of the classical and lectin
pathways, while Haapasalo and Meri focus their review on
the regulation of the alternative pathway. In both reviews,
it is evidenced how the regulation of complement activity is
an essential component of the role of CRP, SAP and PTX3
in immunosurveillance, anti-microbial immune response and
immunologic homeostasis. In line with the general cross-
talk between pentraxins and complement molecules, PTX3
has been shown to interact with C1q through the globular
recognition domains (gC1q) modulating complement activity
via the classical complement pathway. Bally et al. dissect the
molecular determinants of this interaction, showing a key
contribution of the B chain Arg residues that line the side of
the gC1q heterotrimer, supporting the hypothesis that binding of
C1q to targets through this region triggers efficient activation of
the C1 complex.

Pentraxins can also directly bind to selected pathogens
to act as opsonins and promote the removal of recognized
microorganisms through phagocytosis. Lu et al. coworkers review
the interaction of CRP, SAP and PTX3 with Fc receptors and
describe the structural and functional characteristics of this
interaction. The interaction of pentraxins with Fc receptors
results in activation of cellular immune functions, similarly to Fc
receptor activation by immune-complexes.

A unique characteristic of SAP is its ability to be deposited
on amyloid fibrils, contributing to amyloid formation. Based
on this observation, Pilling and Gomer describe in their
review how SAP has been developed as possible therapeutic.
SAP administration can inhibit fibrosis, an effect observed
in preclinical studies as well as in small clinical trials with
myelofibrosis patients. On the other hand, SAP depletion has a
therapeutic potential for amyloidosis and can result in unleashing
the innate immune system (Pilling and Gomer).

Doni et al. give a general overview on the structure and
function of PTX3 and focus on the involvement of the
molecule in sterile conditions of tissue damage and cancer,
providing evidence that microbial and matrix recognition are
evolutionarily conserved properties shared by humoral innate
immunity molecules. They report that in models of tissue
damage, PTX3 promotes tissue remodeling repair by interacting

with fibrinogen/fibrin, as well as plasminogen (Plg), and favoring
pericellular fibrinolysis. They also discuss the complexity of
the roles of PTX3 in cancer, suggesting that PTX3 may have
different functions on carcinogenesis depending on the tissue and
cancer type. PTX3 is involved in tuning carcinogenesis through
the modulation of cancer-related inflammation or angiogenesis
or has a pro-tumorigenic function, by promoting tumor cell
migration and invasion andmacrophage infiltration (Doni et al.).
One of the mechanisms underlying the involvement of PTX3
in tissue remodeling and cancer stems for its interaction with
FGF2 and other members of the FGF family via its N-terminal
domain, leading to inhibition of FGF-mediated angiogenic
responses, in particular in FGF-dependent tumors and FGF2-
mediated smooth muscle cell proliferation and artery restenosis.
Presta and Foglio discuss this property of PTX3 and present
the first low molecular weight pan-FGF trap able to inhibit
FGF-dependent tumor growth and neovascularization, identified
based on the FGF2/PTX3 interaction, and the implications for
its development in FGF-mediated clinical conditions. de Oliveira
et al. discuss the role of PTX3 in ischemia and reperfusion
injury (IRI), a condition associated with increased expression
of this pentraxin in response to DAMPS and inflammatory
cytokines. In condition of sterile IRI, such as acute myocardial
infarction or kidney, lung and brain IRI, PTX3 deficiency
results in worse outcome. Regulation of P-selectin-dependent
neutrophil recruitment in damaged tissues and tuning of
complement activation and inflammation by PTX3 are among
the most relevant mechanisms proposed. On the contrary,
PTX3 was shown to have a clear deleterious role in intestinal
IRI, a condition associated with significantly more systemic
inflammation and remote damage than in the other models
of IRI, potential loss of the intestinal barrier and bacterial
translocation (de Oliveira et al.).

The generation of PTX3-deficient mice provided the first
evidence that this molecule plays a non-redundant role in female
fertility. Camaioni et al. discuss the studies performed in this
field demonstrating that PTX3 is synthesized before ovulation
by cells surrounding the oocyte and actively participates in
the organization of the hyaluronan-rich provisional matrix
required for successful fertilization. These results are relevant
in humans since PTX3 polymorphisms have been associated
with female fertility, in terms of dizygotic twinning and number
of children given birth during the lifetime (3). It has been
proposed that PTX3 may act as a biomarker of oocyte quality,
and its systemic levels, determined by genetic variations and/or
low-grade chronic inflammation, may affect the growth and
development of the follicle and affect the incidence of ovarian
disorders (Camaioni et al.).

In line with the role of the short pentraxin CRP as
a systemic biomarker and independent predictor of adverse
cardiovascular events, such as acute myocardial infarction,
stroke, and peripheral artery disease, the involvement of PTX3
in cardiovascular diseases (CVD) has been investigated in
mice and humans. Ristagno et al. discuss data on animal
CVD models indicating that PTX3 can have cardioprotective
and atheroprotective roles by regulating inflammation. In
addition, data collected in several clinical settings indicate
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that PTX3 is a potential biomarker of CVD. PTX3 plasma
levels rise rapidly in acute myocardial infarction, heart failure
and cardiac arrest, reflecting the extent of tissue damage and
predicting the risk of mortality. Along the same line and
based on the expression of PTX3 by endothelial cells (Ramirez
et al.), discuss the association between PTX3 concentration
and autoimmune vasculitis, showing that systemic lupus
erythematosus (SLE), ANCA-associated systemic small vessel
vasculitides, giant cell arteritis and Takayasu’s arteritis were
all associated with increased PTX3 plasma concentration,
which correlated with disease activity, acute phase reactants
and prednisone treatment. Their study suggests that high
levels of PTX3 in the systemic circulation can be used to
identify the risk of vascular involvement in systemic immune-
mediated diseases. It has been shown that SLE patients
display high frequencies and titers of anti-PTX3 antibodies,
which are inversely correlated with Lupus nephritis (LN)
occurrence, suggesting an immunomodulatory capacity of anti-
PTX3 antibodies. Gatto et al. describe the identification and
characterization of peripheral B cells recognized by PTX3 present
in SLE patients and healthy donors, but absent in LN patients,
and suggest a potential immune regulatory role or protective
function of these B cells.

Finally, Trojnar et al. investigated the involvement of PTX3
and CRP in thrombotic microangiopathies, such as typical
and atypical hemolytic uremic syndrome, secondary thrombotic
microangiopathies and thrombotic thrombocytopenic purpura.
They found that both PTX3 and CRP levels were elevated in the
acute phase of thrombotic microangiopathies. In contrast with
CRP, PTX3 levels were associated with patient survival, and signs
of complement consumption.

Identification of sepsis biomarkers allowing early stratification
and recognition of patients at higher risk of death is crucial.
PTX3 has been proposed as a promising biomarker candidate
in sepsis patients since PTX3 plasma concentration increase
and persistence has been positively associated with severity
and mortality. Albert Vega et al. elucidated that despite their
immune dysfunctions, circulating cells were responsible for the

maintenance of PTX3 concentration in the blood of severe
sepsis patients.

PTX3 has been previously described to bind both human
and murine cytomegalovirus (CMV) and mediate several host
antiviral mechanisms. Campos et al. show the contribution
of genetic variation in donor PTX3 to the risk of CMV
reactivation in patients undergoing allogeneic hematopoietic
stem-cell transplantation. This result suggests that donor PTX3
allelic variants can predict the risk of CMV reactivation in
this clinical setting, similarly to what reported on invasive
aspergillosis in hematopoietic stem-cell transplanted patients (4).

This Research Topic describes the pleiotropic functions
of pentraxin family members and suggests the complexity
of their involvement in modulating innate and inflammatory
responses. The potential contradictory roles of these molecules
in health and disease depends on the disease context, the
cellular source, or the levels of protein released. Deciphering
more clearly the multifaceted functional roles of pentraxins, and
in particular PTX3, in physiology and disease may facilitate
the development of targeted therapeutic approaches in various
clinical conditions.
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Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a

key role in various physiological and pathological conditions. Alteration of the angiogenic

balance, consequent to the deranged production of angiogenic growth factors and/or

natural angiogenic inhibitors, is responsible for angiogenesis-dependent diseases,

including cancer. Fibroblast growth factor-2 (FGF2) represents the prototypic member

of the FGF family, able to induce a complex “angiogenic phenotype” in endothelial cells

in vitro and a potent neovascular response in vivo as the consequence of a tight cross

talk between pro-inflammatory and angiogenic signals. The soluble pattern recognition

receptor long pentraxin-3 (PTX3) is a member of the pentraxin family produced locally in

response to inflammatory stimuli. Besides binding features related to its role in innate

immunity, PTX3 interacts with FGF2 and other members of the FGF family via its

N-terminal extension, thus inhibiting FGF-mediated angiogenic responses in vitro and in

vivo. Accordingly, PTX3 inhibits the growth and vascularization of FGF-dependent tumors

and FGF2-mediated smooth muscle cell proliferation and artery restenosis. Recently,

the characterization of the molecular bases of FGF2/PTX3 interaction has allowed the

identification of NSC12, the first low molecular weight pan-FGF trap able to inhibit FGF-

dependent tumor growth and neovascularization. The aim of this review is to provide

an overview of the impact of PTX3 and PTX3-derived molecules on the angiogenic,

inflammatory, and tumorigenic activity of FGF2 and their potential implications for the

development of more efficacious anti-FGF therapeutic agents to be used in those clinical

settings in which FGFs play a pathogenic role.

Keywords: angiogenesis, FGF, inflammation, PTX3, endothelium, cancer

FGF2 AS AN ANGIOGENIC GROWTH FACTOR

Angiogenesis is a multistep process leading to the formation of new blood vessels from
pre-existing ones. It occurs in different physiological and pathological settings, including
embryonic development, wound repair, inflammation, and cancer. During the “angiogenic switch,”
activated endothelial cells (ECs) degrade the basement membrane and start migrating (tip cells)
and proliferating (stalk cells) to form EC sprouts that will originate vascular loops and capillary
tubes with formation of tight junctions, deposition of a new basement membrane and pericyte
recruitment (1, 2). The activation of ECs results from the balance between pro-angiogenic
growth factors and anti-angiogenic players released by different perivascular cell types (2). A
plethora of molecules have been described to regulate angiogenesis, including Fibroblast Growth
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Factor-2 (FGF2) that, together with FGF1, was first identified in
the 1980s as a heparin-binding angiogenic factor (3, 4).

FGF2 exerts pleiotropic activities on target cells, including
ECs, by interacting with cell surface heparan-sulfate
proteoglycans (HSPGs) and high affinity tyrosine kinase
receptors (FGFRs) (5). FGF2/FGFR interaction fosters the
dimerization of the receptor and the autophosphorylation of its
intracellular tyrosine kinase domain that, in turn, leads to the
activation of complex signal transduction pathways (6).

Among the 23 members of the FGF family (5), FGF2
represents the most characterized and potent pro-angiogenic
mediator in vitro and in vivo (7), even though a significant
pro-angiogenic activity has been demonstrated also for FGF4
and FGF8 whereas it remains debated for other FGFs
(including FGF5, FGF7, FGF9, FGF16, and FGF18) (8). In vitro,
FGF2 induces EC proliferation and migration, promotes the
production of proteases and expression of integrin and cadherin
receptors (9).

In vivo, FGF2 stimulates the neovascularization process in
different experimental models, including the chick embryo
chorioallantoic membrane (CAM) (10), rabbit/mouse cornea
(11, 12), zebrafish yolk membrane (ZFYM) (13), and murine
subcutaneous Matrigel plug (14) assays. Conversely, loss of FGF
signaling in ECs results in augmented vascular permeability and
loss of vessel integrity (15). Notably, the pro-angiogenic function
of FGF2 is mostly mediated by FGFR1, that represents the main
FGFR expressed by activated ECs (9), and less frequently by
FGFR2 (16), whereas FGFR3 and FGFR4 do not appear to be
expressed in ECs.

Usually, the biological effect exerted by FGF2 on ECs is the
consequence of a paracrine stimulation due to its release by
inflammatory cells, stromal components or tumor cells, as well
as by its mobilization from FGF-binding components that are
present in the extracellular matrix (ECM) (6, 7, 17). Moreover,
ECs can undergo autocrine or intracrine stimulation due to the
self-production of FGF2 (18).

Finally, FGF2 stimulates lymphangiogenesis by direct and
indirect (often vascular endothelial growth factor (VEGF)-C
mediated) action on lymphatic endothelial cells (LECs), where it
promotes proliferation, migration, and survival (19, 20). Recent
observations have shown that FGF2 controls the glycolytic
metabolism in ECs and LECs through a FGFR/MYC/Hexokinase
2-mediated pathway (21).

FGF2-DEPENDENT ANGIOGENESIS AND

INFLAMMATION

Emerging evidence supports a role for inflammation in
angiogenesis and suggests mutual dependency of the two
processes in several physiological and pathological conditions
(22, 23) due to common signaling pathways and mediators
(24). During inflammatory reactions, the immune infiltrate
may produce pro-inflammatory cytokines with pro-angiogenic
properties, together with growth factors and proteases that
contribute to the formation of new vascular structures (25, 26).
The newly formed vasculature, in turn, sustains inflammation by

facilitating the recruitment of inflammatory cells to the site of
inflammation (27–29).

Noteworthy, elevated levels of FGF2 have been implicated
in the pathogenesis of several diseases characterized by a
deregulated angiogenic/inflammatory response, including cancer
(7).

Contribution of Inflammatory Cells in

Promoting FGF2-Dependent Angiogenesis
In response to phlogistic stimuli, inflammatory cells provide key
cytokines and growth factors to the angiogenic vascular network
and interact with endothelial surface adhesion molecules,
affecting vascular permeability and inducing EC migration and
proliferation (30–32). These cells can produce pro-angiogenic
factors, including FGF2, that stimulate the proliferation and
migration of hypoxic ECs, supporting a paracrine model for the
modulation of EC growth at the inflammatory site. Thus, various
cell types known to play a pivotal role in the initiation and
progression of inflammation have been considered active players
in angiogenesis (33–36). In this context, monocytes/macrophages
(MCs/MPHs) (37, 38), T lymphocytes (34, 39) and mast cells
(40) express FGF2 and their homing to inflammatory sites can
impact the neovascular response associated to inflammation (41).
In addition, platelet alpha granules represent a source of various
angiogenic factors, including FGF2, that are released during
physiological and pathological conditions and may contribute to
angiogenic responses (42).

The involvement ofMCs/MPHs in inflammatory angiogenesis
has been reported in a variety of experimental settings (43). For
instance, Polverini and colleagues found that activatedMPHs and
their cell culture media were able to induce neovascularization
in the cornea assay, thus relating the angiogenic activity
of macrophages with their secretome (44). MCs/MPHs are
frequently associated with proliferating blood vessels where they
accumulate and provide angiogenic growth factors, including
FGF2, as is the case for coronary collaterals where the rapid vessel
growth correlates with MC adhesion to the intima (45, 46).

Factors released by MCs/MPHs alter the tissue
microenvironment, promoting EC migration, proliferation
and new vessel formation (47, 48) and stimulate the migration of
other accessory cells, in particular mast cells, able to potentiate
the angiogenic response (29, 49). The early recruitment of
MCs/MPHs (within 2–3days after implantation) precedes blood
vessel formation in a FGF2-driven Matrigel plug angiogenesis
assay (23). Accordingly, a significant reduction of the angiogenic
response elicited by FGF2 and other angiogenic factors has
been demonstrated following MC/MPH depletion induced
by intraperitoneal pretreatment with clodronate liposomes
(Clodrolip) (50, 51). Notably, MPHs may facilitate FGF signaling
by producing heparinases and plasmin that degrade the ECM,
thus disengaging ECM-bound FGF molecules that eventually
will activate FGFRs in ECs, and create “guiding paths” for
proliferating and migrating ECs (35, 43). Accordingly, long-
term treatment with FGF2 stimulates ECM degradation by
MCs/MPHs to facilitate the invasion of Tie2+ EC precursors and
blood vessel formation in Matrigel implants (48).
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The significant inhibition of the angiogenic response to
FGF2 observed in neutropenic mice suggests that, similar to
MCs/MPHs, neutrophils may play a key role in FGF2-mediated
angiogenesis (32), most likely by producing additional pro-
angiogenic cytokines and ECM-degrading proteases (52–54). On
the other hand, neutrophil-derived elastase may favor FGF2
degradation, thus counteracting its angiogenic activity (55, 56).

The tissue density of mast cells is highly correlated with the
extent of normal and pathologic angiogenesis (57). Mast cells are
recruited by FGF2 (58) and, in turn, may release FGF2, as well as
other pro-angiogenic factors, leading to EC activation (59, 60).
Accordingly, mast cells and their isolated secretory granules
induce an angiogenic response in the chick embryo CAM assay
(61) that is inhibited by neutralizing anti-FGF2 antibodies (40).

More recently, it has been demonstrated that dendritic
cells may sustain inflammatory neovascularization through
the expression of a wide array of pro-angiogenic mediators
(including FGF2, VEGF, and ETS-1) (62–66). In addition,
similar to MCs, DCs may contribute to neovessel formation
by differentiating into endothelial-like cells following treatment
with FGF2, VEGF-A, and IGF-1 (67).

FGF2 Amplifies the EC Response to

Inflammatory Stimuli
ECs themselves may play important autocrine, intracrine, or
paracrine roles in angiogenesis via FGF2 production (18), thus
inducing a pro-angiogenic status in the endothelium that creates
a favorable environment for vascular growth. FGF2 production
and release from ECs can be triggered by inflammatorymediators
such as IL-1β (68), nitric oxide (NO) (69), prostaglandin E2
(PGE2) (70), and IL-2 upon exposure of ECs to interferon-α
(IFN-α) (71).

The observation that angiogenesis is accompanied by
vasodilation prompted studies aimed to assess the involvement
of vasodilators, like NO and PGE2, in the angiogenic activity
of FGF2. Even though FGF2-induced angiogenesis can occur
independently from NO production (72), elevation of NO levels
in ECs increases their FGF2 production (72). Similarly, PGE2
exerts its pro-angiogenic action through paracrine activation of
endothelial FGFR1 following mobilization of FGF2 sequestered
in the ECM (70). Conversely, FGF2 and VEGF-A induce
angiogenesis by increasing cyclooxygenase and PGE2 production
(73, 74).

A transcriptome study on murine microvascular ECs
demonstrated that FGF2-driven neovascularization induces a
complex pro-inflammatory signature in the endothelium, with
early upregulation of several inflammation-related genes (23).
Even though also VEGF-A may upregulate the expression of
inflammation-related genes in ECs (75–77), it remains unclear
whether the two angiogenic mediators utilize distinct or common
molecular pathways to exert their biological effects on ECs.
Indeed, although an intimate cross-talk between FGF2 and
VEGF-A during angiogenesis may exist (78), FGF2 appears to
be responsible for the early induction of inflammation-related
genes independently from VEGF expression, that represents a
later event (23).

FGF2 amplifies the EC response to inflammatory stimuli by
vasoactive effects and recruitment of a consistent inflammatory
infiltrate. Besides inducing vasodilation of coronary arterioles
through endothelial NO production (79), FGF2 increases
vascular permeability via VEGF-A and protease upregulation
(80). Moreover, FGF2 enhances the recruitment of MCs, T cells,
and neutrophils (25) by increasing their adhesion and trans-
endothelial migration via the upregulation/expression of the cell
adhesion molecules ICAM-1 and VCAM-1 in ECs (81, 82).

Notably, studies from different groups suggest that FGF2
might have a context-dependent pro- or anti-inflammatory
activity. While a rapid, transient exposure to FGF2 induces the
upregulation of endothelial adhesion molecules that contribute
to immune infiltrate recruitment, a prolonged exposure to
FGF2 may result in a marked down-regulation of ICAM-1,
VCAM-1, and E-selectin expression on ECs, accompanied by a
strong reduction of adhesion and transmigration of monocytes,
neutrophils and CD4+ T lymphocytes even in response to potent
chemotactic factors (83–85). This biphasic effect of FGF2 might
be one of the mechanisms utilized by cancer cells to escape from
host immune reactions during the angiogenic stage of tumor
development (86).

Finally, inflammation may also impair the angiogenic effects
mediated by FGF2 via the production of molecules that sequester
FGF2. For instance, the C-X-C chemokine platelet factor 4,
a well-known inhibitor of angiogenesis released from alpha-
granules of activated platelets, is able to bind FGF2, thus
preventing FGFR activation and proliferation in ECs (87). A
further, remarkable example is represented by long pentraxin-
3 (PTX3), a member of the innate immunity with relevant
functions in inflammatory responses and pathogen recognition,
whose FGF2 antagonist activity will be discussed in details here
below.

PTX3/FGF INTERACTION

Biochemical Interactions
The pentraxin family is a highly conserved group of pattern
recognition glycoproteins implicated in innate immunity. PTX3,
a prototypic member of the long pentraxin subfamily, is a 340
kDa octamer in which up to 92% of the amino acid sequence
(each subunit being formed by 389 residues) is common between
mouse and human proteins (88).

The roles played by PTX3 in innate immunity, wound
healing/tissue remodeling, cardiovascular diseases, fertility, and
infectious diseases span, among others, from opsonization to
apoptotic cell clearance, extracellular matrix formation and FGF2
inhibition in tissue homeostasis (89). This functional variety is
due to the complex structure of the protein. PTX3 has a unique
N-terminal domain with non-redundant functions, whereas its
C-terminal domain is common to all pentraxins and contains the
“pentraxin signature” (89, 90). PTX3 contains anN-glycosylation
site in Asn220 that contributes to the fine tuning of ligand
binding (91).

The N-terminal domain of PTX3 binds FGF2 with high
affinity (Kd ∼ 30–300 nM) (92–94) and one octameric PTX3
molecule binds FGF2 in a 1 to 2 stoichiometric ratio (95).
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FIGURE 1 | PTX3/TSG-6 interaction modulates FGF2-mediated angiogenesis. (A) PTX3 acts as a natural FGF trap, thus inhibiting FGF2/FGFR1 complex formation

and angiogenesis. (B) TSG-6 binds PTX3 and prevents PTX3/FGF2 interaction. This abrogates the inhibitory effect exerted by PTX3 on FGF2 activity.

Using various biochemical approaches, the N-terminal amino
acidic sequence 97–110 was recognized as responsible for
FGF2 binding. Later, the acetylated pentapeptide Ac-ARPCA,
corresponding to amino acids 100–104, was identified as the
minimal sequence of PTX3 able to bind FGF2 (93, 96). Of
note, PTX3 can interact via its N-terminal also with FGF8b,
anothermember of the FGF family endowed with pro-angiogenic
properties (97), and other family members, like FGF6, FGF10,
and FGF17 (92).

An important player in modulating PTX3/FGF2 interaction
is represented by the tumor necrosis factor-stimulated gene-
6 (TSG-6) protein. TSG-6 is expressed in inflamed and
neovascularization sites by lymphocytes, smooth muscle cells,
and ECs in response to inflammatory stimuli (98). TSG-6 binds
PTX3 and other ECM components, like hyaluronic acid and the
heavy chains of inter-α-inhibitor, thus allowing the formation
of intricate molecular webs in the ECM (99, 100). TSG-6 binds
the PTX3 N-terminus and prevents its interaction with FGF2,
thus reverting the inhibition exerted by PTX3 on FGF2 activity.
This may provide a mechanism to control angiogenesis in those
inflammatory conditions characterized by the co-expression of
TSG-6 and PTX3, in which the relative levels of these proteins
may act as a biological rheostat to fine-tune the angiogenic
activity of FGF2 (101) (Figure 1).

Biological Implications
PTX3/FGF2 interaction prevents the formation of the
biologically active HSPG/FGF2/FGFR ternary complex, thus
inhibiting FGF2-dependent EC activation and angiogenesis
(94, 102). In vitro experiments demonstrated that the N-terminal
domain of PTX3 and the PTX3-derived ARPCA pentapeptide
impair the proliferation/activation of ECs in response to FGF2
but not to VEGF-A, thus confirming the specificity of the effect

(94, 96). In vivo, PTX3 significantly hampers the angiogenic
response triggered by alginate beads adsorbed with FGF2 and
implanted on the chick embryo CAM (Figures 2Aa) (96). Similar
results were obtained in a zebrafish/tumor xenograft model (103)
where the angiogenic response to FGF2-overexpressing tumor
cells was strongly impaired by the co-injection of PTX3 or
ARPCA (Figures 2Ab) (96). Accordingly, overexpression of
PTX3 by tumor cells of different origin (including melanoma,
prostate, and breast cancer cells) causes a significant inhibition of
tumor-associated neovascularization and FGF-dependent tumor
growth (92, 104, 105).

The effect of PTX3 overexpression on ECs was assessed
in a transgenic mouse model where the human Ptx3 gene
was under the control of endothelial-specific Tie2 promoter
[TgN(Tie2-hPTX3) mice] (106). When isolated from the
lung of TgN(Tie2-hPTX3) animals, PTX3-overexpressing ECs
showed a reduced capacity to respond to exogenous FGF2 in
terms of cell proliferation and 3D-sprouting when compared
to ECs isolated from wild type animals (106). This was
accompanied by a significant reduction of endothelial FGFR1
activation/phosphorylation following stimulation with FGF2.
In agreement with these observations, the overexpression of
PTX3 by the endothelium of transgenic animals caused a
significant inhibition of the angiogenic response triggered by
FGF2 in an ex vivo murine aorta ring assay and in vivo when
TgN(Tie2-hPTX3) mice were tested in a Matrigel plug assay
(Figures 2Acd). No inhibitory effect was observed when VEGF-

A was used an angiogenic stimulus, thus confirming that the

anti-angiogenic activity of PTX3 was directly mediated by the

impairment of the FGF2/FGFR1 axis. As a consequence of the

anti-FGF2/anti-angiogenic activity of PTX3, FGF2-dependent
syngeneic tumor grafts of different origin were characterized by
impaired FGFR1 activation and reduced CD31+ vascularization
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FIGURE 2 | PTX3 inhibits the angiogenic activity of FGF2. (A) When tested in different angiogenesis models, a molar excess of purified PTX3 protein (a,b) or its

transgenic endothelial overexpression (c,d) inhibits the neovascular response triggered by an optimal dose of recombinant FGF2 [see references (13), (94), (106) for

details] **p < 0.01; #p < 0.001. (B) The PTX3-derived pentapeptide ARPCA (ball and stick representation) interacts with the FGFR-binding domain of FGF2 (red

circle) without affecting its heparin-binding region (green circle). A similar mechanism of action is hypothesized for the FGF trap small molecule NSC12.

and tumor growth when injected in TgN(Tie2-hPTX3) mice
(106). Notably, the TRAMP-C2 prostate adenocarcinoma cell
grafts generated in TgN(Tie2-hPTX3) mice were characterized
also by a significant decrease of the mast cell infiltrate
into the lesion (58). These data, in keeping with previous
observations about the capacity of mast cells to respond
chemotactically to FGF2, provide evidence about a relationship

among FGF2-dependent mast cell recruitment, angiogenesis, and
tumor growth in prostate adenocarcinoma, all hampered by
PTX3.

Moreover, when considering the role of FGF2 in the
formation and maintenance of lymphatic vessels (19, 20), it is
possible to hypothesize that PTX3 may inhibit FGF2-mediated
lymphangiogenesis and its associated events, including tumor
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metastatic dissemination (107). Further experiments are required
to assess this hypothesis.

The anti-angiogenic/anti-tumor activity of PTX3 was not
restricted to FGF2. Indeed, due to its capacity to bind FGF8b,
PTX3 prevents the interaction of this FGF family member
with FGFR1 and blocks FGF8b-induced EC proliferation and
chemotaxis in vitro and angiogenesis in vivo, causing a significant
inhibition of tumor growth and vascularization when transduced
in androgen-regulated Shionogi 115 mouse breast tumor cells
(97) that express both FGF2 and FGF8b following stimulation
with dihydrotestosterone (105).

PTX3 binds extracellular matrix component of the vessel
wall, including collagen and fibrinogen, thus affecting platelet
aggregation (108), In addition, it can bind activated circulating
platelets and dampen their proinflammatory and prothrombotic
action (109). It will be of interest to assess whether such
interactions may result in the sequestration of platelet-released
FGF2, with a consequent modulation of its bioavailability and
biological activity in different thrombosis-prone conditions,
including tissue ischemia, wound healing, atherosclerosis, and
cancer.

Therapeutic Implications
When considering its FGF2 antagonist activity, PTX3 might be
regarded as a potential therapeutic agent in those pathological
settings in which FGF2 exerts a driving role. Endovascular
injection of adeno-associated virus harboring the PTX3 cDNA
was used to block FGF2-mediated intimal thickening after
balloon injury in the rat carotid artery (110) whereas its
retroviral/lentiviral transduction has been exploited to inhibit
FGF activity in different tumor models (102). However, due to its
size (340 kDa), complex quaternary structure (homo-octamer),
and proteinaceous nature, any pharmacological application of
PTX3 protein appears unrealistic unless functional “shuttles”
can be identified for this “cargo.” One possibility for a direct
therapeutic exploitation of the PTX3 protein has been shown
by using “tumor targeting” Tie2+ monocytes (TEMs) (111)
derived from the bone marrow of TgN(Tie2-hPTX3) mice (106).
In this experimental model, PTX3-expressing TEMs were able
to efficiently deliver the PTX3 protein to the tumor site in a
syngeneic FGF2-dependent model of prostate cancer, causing a
significant reduction of the growth of the tumor grafts (106).

In order to set the basis for the development of novel
PTX3-derived FGF2 antagonists with potential therapeutic
implications, the PTX3-derived pentapeptide ARPCA
was characterized in preclinical models of FGF-dependent
angiogenesis and cancer. Acetylated ARPCA appears to bind
the FGF2 protein in a region responsible for its interaction
with the D2-D3 linker and D3 domain of FGFR1 (Figure 2B)

and inhibits the angiogenic activity exerted by FGF2/FGF8, as
well as the FGF-dependent growth of prostate and androgen-
dependent breast tumors (96, 105). More recently, based on
the analysis of ARPCA/FGF2 interaction, molecular modeling
and small molecule library screening, a PTX3-derived 480 Da
compound (named NSC12, Figure 2B) was identified as the
first small molecule to function as a pan FGF2 trap (106, 112).
Indeed, NSC12 binds and impairs the biological activity of all
the canonical FGF family members and displays significant
anti-angiogenic activities in vitro, ex vivo and in vivo in a series of
FGF2-dependent angiogenesis assays, with no effect on VEGF-
dependent EC activation (106). In addition, in vivo experiments
performed on FGF-dependent models of prostate and lung
cancer confirmed the capacity of NSC12 to inhibit FGFR1
activation and to reduce tumor growth and tumor-associated
angiogenesis (26, 74). The non-aminoacidic structure of NSC12
makes this molecule a promising candidate for the development
of more efficacious anti-FGF therapeutic agents to be used in
clinical settings.

It must be pointed out that, at variance with tyrosine kinase
FGFR inhibitors, FGF trapping following PTX3 overexpression
in transgenic mice, as well as long-term NSC12 administration
(106) or treatment with the FGFR-derived decoy molecule FP-
1039 (113), are all devoid of significant toxic effects. This
appears to be in contrast with the alterations of vascular integrity
observed after systemic overexpression of soluble FGFRs in
transgenic mice (15) and calls for further experiments aimed at
assessing the therapeutic window of FGF trapping agents.

In conclusion, FGF2/PTX3 interaction may exert a deep
impact on the angiogenesis process during inflammation
and tumor growth. The balance among these interactors and
other FGF and/or PTX3 binding molecules (e.g., TSG-6, ECM
components and HSPGs) may further modulate neovessel
formation under different physio/pathological conditions. A
better understanding of these interactions may provide valuable
insights into the pathogenesis of angiogenesis-dependent
diseases and will set the basis for the development of novel
therapeutic agents.
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The Development of Serum Amyloid
P as a Possible Therapeutic

Darrell Pilling* and Richard H. Gomer*
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Pentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects

of the innate immune system. SAP inhibits the differentiation of monocyte-derived

fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory

macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this

minireview, we describe how these effects of SAP have led to its possible use as a

therapeutic, and how modulating SAP effects might be used for other therapeutics.

Fibrosing diseases such as pulmonary fibrosis, cardiac fibrosis, liver fibrosis, and renal

fibrosis are associated with 30–45% of deaths in the US. Fibrosis involves both fibrocyte

differentiation and profibrotic macrophage differentiation, and possibly because SAP

inhibits both of these processes, in 9 different animal models, SAP inhibited fibrosis. In

Phase 1B and Phase 2 clinical trials, SAP injections reduced the decline in lung function in

pulmonary fibrosis patients, and in a small Phase 2 trial SAP injections reduced fibrosis in

myelofibrosis patients. Acute respiratory distress syndrome/ acute lung injury (ARDS/ALI)

involves the accumulation of neutrophils in the lungs, and possibly because SAP inhibits

neutrophil adhesion, SAP injections reduced the severity of ARDS in an animal model.

Conversely, depleting SAP is a potential therapeutic for amyloidosis, topically removing

SAP from wound fluid speeds wound healing in animal models, and blocking SAP

binding to one of its receptors makes cultured macrophages more aggressive toward

tuberculosis bacteria. These results suggest that modulating pentraxin signaling might

be useful for a variety of diseases.

Keywords: pentraxin, serum amyloid P component (SAP), fibrosis, macrophage, fibrocyte, pulmonary fbrosis

INTRODUCTION: SAP AND DEBRIS CLEARANCE

SAP (PTX2) is a member of the pentraxin family of proteins that includes C-reactive protein (CRP;
PTX1) and pentraxin-3 (PTX3). SAP is made by hepatocytes and secreted into the blood (1, 2).
Searches of proteomics and RNA-seq databases suggests that the liver is the major source of SAP. In
humans and most mammals, the levels of SAP in the plasma are maintained at relatively constant
levels, between 20 and 50µg/ml (3–5). There is little evidence for sequence variation of SAP at
the genomic or amino acid level. In mice, SAP acts as an acute phase protein, with levels rising
up to 20-fold following an inflammatory insult (6, 7). SAP is a pentameric protein with sequence
and structural similarity to CRP (8–10). The structure of SAP (and CRP) pentamers is a flat disk
with a hole in the middle (11, 12). The crystal structure of PTX3 has yet to be determined, but
models based on site-directed mutagenesis, electron microscopy, and small-angle X-ray scattering
data suggests that PTX3 is an octamer of two tetramers (13). Each SAP molecule has two Ca++

atoms bound to it, and the pentamer thus has 10 Ca++ atoms on one side of the disk. With the
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help of the bound Ca++, this side of the disk binds to a variety of
molecules including apoptotic debris, bacterial polysaccharides,
amyloid deposits, and bacterial toxins (1, 14, 15). Phagocytic cells
such as monocytes and macrophages then bind the SAP, CRP,
or PTX3, and engulf the debris or other material the pentraxin
has bound (16). CRP and PTX3 can similarly bind a variety of
debris molecules (17, 18). Proteins with strong similarity to SAP
(and CRP and PTX3) are present in the hemolymph of horseshoe
crabs (17, 19), so this debris clearancemechanism appears to have
evolved during the early evolution of animals (Figure 1).

REMOVING STUCK SAP AS A POSSIBLE

THERAPEUTIC FOR AMYLOIDOSIS

Amyloidosis is a disease where misfolded proteins aggregate and
form large deposits in a tissue, leading to organ dysfunction
(20, 21). SAP was originally isolated as a serum-derived protein
found in all types of amyloid deposits (hence the serum amyloid
part of its name) (22, 23). SAP was found to be a pentameric
protein, hence the P part of its name (24–27). SAP is also easily
purified by incubating serum with certain types of agarose in
the presence of calcium, washing unbound protein off, and then
eluting fairly pure bound SAP with a calcium chelator (28, 29).
One possibility is that the SAP in the amyloid deposits binds
to the misfolded proteins in an attempt to opsonize them for
phagocytosis, but cannot pull proteins out of the deposit, and
the SAP then gets stuck in the deposits. SAP knockout mice
have reduced severity of experimentally-induced amyloidosis,
suggesting that the stuck SAP exacerbates the amyloid deposit
formation and/or hinders the ability of other opsins to pull the

FIGURE 1 | SAP regulates multiple aspects of immune responses. Some of

the known effects of SAP are shown clockwise from top: SAP inhibits

neutrophil adhesion to extracellular matrix and inhibits neutrophil movement

into tissues. SAP binds to FcγR and DC-SIGN to inhibit monocyte to fibrocyte

differentiation. SAP also binds multiple plasma proteins such as the

complement component C1q and mannose-binding lectin (MBL) to promote

phagocytosis of bacteria and regulate macrophage differentiation. SAP

opsonizes bacteria and cell debris to promote removal by macrophages, and

binds amyloid deposits. Finally, SAP promotes immuno-regulatory, and M1

phagocytic macrophages.

amyloid complexes apart (30). The Pepys group found a small
molecule compound that causes two human SAP pentamers to
stick to each other, and this complex is then quickly cleared
from the circulation (31). In SAP knockout mice expressing
human SAP, the compound decreased serum SAP levels but did
not reduce the severity of experimentally-induced amyloidosis
(31). Adding anti-SAP antibodies to this treatment however
did reduce experimentally-induced amyloidosis, suggesting that
reducing SAP levels is a possible therapeutic for amyloidosis
(32–35).

INTERMEZZO 1: WOUND HEALING AND

FIBROSIS

Most plant and animal tissues have a remarkable ability to heal
mechanical wounds, indicating a strong evolutionary pressure
for wound healing (36). In vertebrates, a typical dermal wound
fills with scar tissue consisting of fibroblasts, connective tissue,
and a capillary bed, and then is covered with an epithelium
(37). Unfortunately, inappropriate wound healing responses to
perceived wounds cause fibrosing diseases, where scar tissue
forms in an internal organ, leading to organ dysfunction.
There are at least 62 different fibrosing diseases, and these are
associated with 30–45% of deaths in the US (38, 39). Examples
of fibrosing diseases include cardiac fibrosis, probably triggered
by reduced blood flow to part of the heart, and this fibrosis
accounts for a significant fraction of the 450,000 deaths per year
from cardiovascular disease in the US (40, 41). Other fibrosing
diseases are cirrhosis of the liver, triggered by damage from
viral infections, alcohol, or other chemical insults (39), end-stage
kidney disease in diabetics, where the scar tissue formation is
probably triggered by damage from high glucose levels (42), and
pulmonary fibrosis, where particulate matter such as coal dust,
and other unknown factors, triggers the progressive formation of
scar tissue in the lungs (43). The only FDA-approved therapeutics
for fibrosis are two drugs which slow, but do not stop, the
progression of pulmonary fibrosis (44).

INTERMEZZO 2: FIBROCYTES

In the 1850’s, James Paget examined healing wounds and
observed that cells from the blood enter the wound and then
differentiate into elongated cells with an oval nucleus [see Figure
14, page 127 in (45)]. Bucala et al. found that these cells originate
from bone marrow derived circulating CD14+ monocytes and
express markers such as such as CD34 and CD45 that identify
them as bone marrow-derived cells, as well as markers such
as collagen that identify them as fibroblast-like cells (46–49).
They named the cells fibrocytes. Although fibrocytes are rarely
observed in normal tissues, they are present in high numbers in
healing wounds (46, 50, 51) and fibrotic lesions in pulmonary
fibrosis (51–58), keloid scars (59, 60), asthma (52, 61, 62), chronic
kidney disease (63–65), and nephrogenic systemic fibrosis (66).
Fibrocytes are also present in the fibrotic lesions in animalmodels
of pulmonary fibrosis (53, 67–75), liver fibrosis (71) and renal
fibrosis (73, 76). In addition to contributing to themass of fibrotic
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lesions, fibrocytes promote angiogenesis (77), which can then
promote the growth of the scar tissue, and secrete TGF-β (78),
which causes resident fibroblasts to proliferate and increase their
collagen production. Fibroblasts thus have a multiplicative effect
on scar tissue formation. At the time we started working on
fibrocytes, nothing was known about extracellular factors that
regulate their differentiation, and thus why fibrocytes are present
in wounds but not normal tissues, and how to control them.

OUR ENTRY INTO THE SAP, FIBROCYTES,

WOUND HEALING, AND FIBROSIS FIELDS

Our lab had been studying the ability of diffusible secreted
factors to indicate the local density and composition of cells in
a tissue, using the eukaryotic amoeba Dictyostelium discoideum
as a model system (79, 80). We decided to try to look for
cell density sensing factors secreted by human white blood
cells. To simplify the purification of any such factors from the
extracellular medium, human peripheral blood mononuclear
cells (PBMCs) were cultured in serum-free medium. Some of
the cells became long, spindle-shaped cells after 3–5 days (81,
82). Videomicroscopy indicated that these spindle shaped cells
were quite motile, and they stained for fibrocyte markers (81).
Fibrocytes did not appear during this timeframe when serum
was present, indicating that something in serum inhibits fibrocyte
differentiation.

Since removing something that inhibits fibrocyte
differentiation might potentiate wound healing, and conversely
adding something that inhibits fibrocyte differentiation might
inhibit fibrosis, we abandoned the search for human density
sensing factors and purified the fibrocyte differentiation
inhibitor from human serum. It turned out to be SAP (81).
SAP also inhibits the differentiation of mouse, rat, and dog
PBMCs into fibrocytes (83–86). CRP has no significant effect
on, and PTX3 potentiates, fibrocyte differentiation, indicating
that the three pentraxins differentially affect fibrocytes (81, 87).
When PBMCs were cultured in serum that was depleted of SAP,
fibrocytes rapidly appeared, indicating that SAP is the main
endogenous inhibitor of fibrocyte differentiation in the blood
(81).

Pentraxins also regulate macrophages (17, 39, 88–95). In
addition to inhibiting fibrocyte differentiation, SAP inhibits pro-
fibrotic macrophages, and promotes the formation of immuno-
regulatory macrophages (84, 95–105). Although SAP can bind
complement component C1q and mannose-binding lectin, these
proteins have very modest effects on the ability of SAP to affect
macrophage phenotypes (95, 106–108).We refer the reader to the
above references and reviews for information on the complexity
of pentraxin (including SAP) regulation of macrophages that is
beyond the simplicity of this minireview (Figure 1).

REMOVING SAP AS A POSSIBLE

THERAPEUTIC FOR WOUND HEALING

Since after blood clots, a wound is covered with serum, and serum
contains SAP, and SAP inhibits fibrocyte differentiation and thus

wound healing, an intriguing possibility is that removing SAP
from wound fluid might potentiate fibrocyte differentiation and
wound healing. Wound dressings with Ca++ and the type of
agarose originally used to purify SAP from serum were tested on
full thickness dermal wounds in rats. These dressings speeded
healing of these wounds, as well as partial thickness dermal
wounds in pigs (109). In the pig wounds, the agarose/ Ca++

dressings caused wound to heal faster than wounds treated with
commercial dressings such as Tielle, Intrasite, and Xeroform.
Although SAP levels in humans are unaffected by inflammation,
serum SAP levels in the general population range from 20 to
60µg/ml (3, 5, 110). Compared to controls, patients with low
levels of SAP have better survival of skin grafts, supporting the
idea that reducing SAP levels might help wound healing (111).
In part because the wound dressing market is basically saturated,
efforts to fund clinical tests of this SAP-depleting dressing have
been unsuccessful.

ADDING SAP AS A POSSIBLE

THERAPEUTIC FOR FIBROSING DISEASES

A simple non-surgical animal model of a fibrosing disease
is pulmonary fibrosis in mice and rats, where a drug called
bleomycin can be pipetted through the mouth into the airway,
and within 14 days causes pulmonary fibrosis (112, 113). In
the bleomycin model, SAP injections led to reduced numbers
of fibrocytes in the lungs and reduced fibrosis in rats and
mice, and delaying SAP injections until inflammation and
fibrosis was already apparent (therapeutic dosing) also reduced
symptoms (84). SAP injections have now been shown to
inhibit inflammation and fibrosis in other models of pulmonary
fibrosis (102, 103), cardiac fibrosis (96, 97), radiation-induced
oral mucositis (101), allergic airway disease (100), autoimmune
encephalomyelitis (114), corneal wound healing (75), and two
models of renal fibrosis/ end stage kidney disease (98). An
obvious question about using SAP as a therapeutic for fibrosis
is that this might block wound healing. We found that SAP
injections slow, but do not stop, dermal wound healing in mice
(115).

SAP EFFICACY AS AN ANTIFIBROTIC IN

CLINICAL TRIALS

Compared to control mice, mice lacking SAP have strongly
increased pulmonary fibrosis in response to bleomycin,
indicating that an endogenous function of SAP is to reduce
fibrosis (116). Compared to controls, patients with renal fibrosis,
pulmonary fibrosis, scleroderma, myelofibrosis, rheumatoid
arthritis, and mixed connective tissue disease tend to have low
levels of SAP, supporting the idea that fibrosis might in part
involve a SAP deficiency (81, 98, 103, 117). One initial problem
obtaining NIH funding to study SAP and fibrosis was that
people confused SAP with serum amyloid A (SAA; a completely
different, and probably not beneficial protein). We encountered
this with a grant application where a reviewer denounced our
efforts to inject animals with SAA. After politely explaining
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that SAP was not SAA, the grant was funded. An early worker
in the SAP field encountered this too, and published a letter
in Nature entitled “Serum Amyloid P component (not Serum
Amyloid Protein)” (118). For this and other reasons, colleagues
used the alternative SAP nomenclature Pentraxin 2 (PTX2)
(26, 119), and called the recombinant SAP used for clinical trials
PRM-151 (120). Compared to standard of care, injections of
recombinant human SAP/PTX2 improved lung function in a
Phase 1b trial and a Phase 2 trial in pulmonary fibrosis patients
(5, 121). In the 28-weeks Phase 2 trial, SAP injections slowed
the decline in forced exhalation volume (FEV), and essentially
stopped the decline in the distance patients could walk in 6min.
61 of the patients receiving SAP in this trial were also taking
either pirfenidone or nintedanib, FDA-approved drugs that slow
the decline in lung function in pulmonary fibrosis, while 16
other patients treated with SAP were not taking these drugs.
Intriguingly, the 16 patients not taking these drugs who were
treated with SAP appeared to show on average a very slight
improvement in forced exhalation volume and an improvement
in how far they could walk in 6min, suggesting the exciting
possibility that SAP might be able to partially reverse pulmonary
fibrosis. Myelofibrosis is a fibrosis of the bone marrow (122).
SAP injections also reduced fibrosis and improved bone marrow
function in a 27-patient Phase 2 trial on myelofibrosis patients
(123).

SAP PHARMACOLOGY

The plasma clearance rates for patients treated with SAP is ∼24
to 30 h (5, 124). In the Phase 2 clinical trial, and in earlier
trials, efficacy was observed with monthly dosing. The apparent
paradox of how something with a short plasma half-life could
show efficacy with monthly dosing can be answered by looking
at the tissue half-life, which for healthy volunteers is 7.2 days
(124). SAP, as well as CRP and PTX3, have long been known
as opsonins that helps phagocytic cells ingest debris (16, 125–
129). In fibrosis, debris and other tissue insults are thought
to both initiate as well as potentiate fibrosis (39). Clearing
debris from the vicinity of a fibrotic lesion is very likely one
mechanism whereby SAP inhibits fibrosis. The debris is not
detectable in the circulation, rather it is localized to the vicinity
of the fibrotic lesion. Thus this beneficial effect of SAP occurs
in the tissue rather than in the circulation. Although SAP
has some modest effects on macrophage differentiation from
monocytes (changes in the expression of a small number of
surface markers in some but not all of the macrophages) (95,
99), macrophage polarization from one macrophage phenotype
to another macrophage phenotype (again, even more subtle
changes in the expression of a small number of surface markers)
(95), and neutrophil adhesion to tissue extracellular matrix
components (see below), the most obvious effect of SAP on
innate immune cells is its ability to completely inhibit the
differentiation of monocytes into fibrocytes. All of these effects
on innate immune cells affect what the cells do after they
have entered a tissue. A reasonable assumption is thus that
the SAP effects occur in the tissue, specifically in the vicinity

of the fibrotic lesion, rather than in the circulation, and thus
that the key half-life is the tissue rather than plasma half-
life.

Two observations suggest that the half-life of SAP in a fibrotic
lesion may be considerably longer than 7.2 days. First, amyloid
deposits resemble in many ways fibrotic lesions, and the half-life
of SAP in amyloid deposits is 24–27 days (124, 130, 131). Second,
in mice where fibrosis was induced in one kidney by obstructing
the ureter, injected SAP localized to the fibrotic kidney, with
much less localization to the non-injured contralateral kidney
(98). Together, these arguments and results support the idea that
even with a short plasma half-life, monthly injections of SAP can
be efficacious.

SAP INHIBITION OF FIBROCYTES

ALLOWS AN ASSESSMENT OF THE

POSSIBLE EFFECT OF FACTORS SUCH AS

DIETARY SALT ON FIBROSIS

Human PBMC cultured in serum-free medium differentiate
into easily identifiable (by microscopy) fibrocytes, and adding
different concentrations of SAP to inhibit this generates a
standard curve of SAP effects. This allows a simple assay to
look at the effects of various conditions or compounds on
this process. For instance, ELISA assays of sera from keloid
patients (these patients form greatly exaggerated dermal scars)
showed normal levels of SAP, but the fibrocyte assay on
keloid patient PBMC showed that these cells are relatively
insensitive to SAP (132). A variety of compounds affect fibrocyte
differentiation and/or the ability of SAP to inhibit fibrocyte
differentiation (57, 63, 82, 87, 117, 133–142). One compound
that may be clinically relevant is NaCl, which when added to
increase the medium NaCl concentration by 25mM (this level
of increase can be seen in the serum after a very salty meal)
potentiates fibrocyte differentiation and inhibits the SAP effect,
possibly explaining why high salt intake is associated with a
propensity for cardiac fibrosis (137). Peritoneal dialysis can lead
to peritoneal fibrosis, and we found that peritoneal dialysis
fluid and dialysis fluid components such as NaCl also promote
fibrocyte differentiation and impede SAP (139). In support of
this connection between salt and fibrocytes, low dietary salt
reduces the severity of bleomycin-induced pulmonary fibrosis in
mice, suggesting that low salt diets may be beneficial for fibrosis
patients (143).

SAP CAN OVERRIDE OTHER

PROFIBROTIC FACTORS

A variety of signals promote wound healing and fibrosis. For
instance, TGF-β1 is an extracellular signal that drives fibrosis
(144, 145), and in mice, conditional expression of TGF-β1 in
the lungs causes pulmonary fibrosis (103, 146). In this model,
SAP injections stopped and reversed fibrosis (103). We found
that although quiescent fibroblasts secrete the protein Slit2
to inhibit fibrocyte differentiation (essentially telling incoming
monocytes that no more fibroblast-cells are needed) (138),
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fibroblasts activated by the pro-fibrotic signal TNF-α secrete the
protein lumican, which promotes fibrocyte differentiation (142).
Thankfully, SAP can override the effect of lumican on fibrocytes
(142). Other signals that promote fibrocyte differentiation
and profibrotic macrophage differentiation include thrombin
activated during blood clotting (this may thus initiate the
fibrocyte component of wound healing), and tryptase released
from mast cells (147, 148). SAP also competes with these signals
to inhibit fibrocytes and macrophages (148, 149). In addition,
SAP inhibits fibrocyte differentiation induced by IL-4, IL-13, high
molecular weight hyaluronic acid, and PTX3 (82, 87, 136, 141).
Together, these results suggest that one reason SAP appears to be
effective in the clinic as an anti-fibrotic is a fortunate dominance
of SAP over these signals.

ELUCIDATING SAP RECEPTORS LED TO

SMALL-MOLECULE SAP MIMETICS

Fcγ receptors (FcγRs) bind the Fc domain of IgG
immunoglobulins (150). Once aggregated IgG cross-links
multiple FcγRs (this prevents monomeric IgGs from activating
FcγRs), a signaling cascade is activated through tyrosine
kinases to initiate an immune response (151). Phagocytic cells,
such as monocytes, bind SAP, CRP, and PTX3 using different
combinations of FcγRs (16, 86, 98, 152–156), and the structure
of SAP bound to FcγRIIa and modeling of SAP binding to other
Fc receptors has been published (157, 158). In support of the
hypothesis that SAP inhibits fibrocyte differentiation by binding
to FcγRs, we found that cross-linked but not monomeric IgG
also inhibits fibrocyte differentiation (159). Mouse monocytes
lacking FcγRI, or human monocytes with siRNA-reduced FcγRI,
had a reduced sensitivity to SAP, while mouse cells lacking other
FcγRs had normal or enhances sensitivity to SAP, indicating
that FcγRI mediates SAP signaling (86). Surprisingly, monocytes
from cells lacking all four known FcγRs still responded to SAP,
indicating that a different receptor also mediates SAP signaling
(156, 160).

To help elucidate SAP signaling, we mutated SAP protein
surface amino acids that were different from CRP, and the
mutant SAPs were assayed for their ability to inhibit fibrocyte
differentiation (SAP and CRP are have highly similar amino acid
sequences and structures, but CRP does not inhibit fibrocyte
differentiation) (81, 87)). None of the mutant SAPs completely
abrogated SAP activity (86, 156). One amino acid initially
overlooked was a glycosylated asparagine on SAP that is a non-
glycosylated alanine on CRP, and when SAP was desialylated,
the SAP largely lost its ability to inhibit fibrocyte differentiation;
conversely when the CRP alanine was mutated to an asparagine,
the asparagine became glycosylated and the glycosylated CRP
inhibited fibrocyte differentiation (160). This suggested that
a polysaccharide receptor might help to sense SAP, and we
found that the C-type lectin DC-SIGN mediated SAP effects on
monocytes (160). Other workers found a variety of compounds
that block the ability of polysaccharides to bind DC-SIGN, and
three of these potently inhibited fibrocyte differentiation. One
of the DC-SIGN-binding molecules showed efficacy in a mouse

pulmonary fibrosis model at 0.001 mg/kg (160). These results
suggest that small molecules that mimic SAP might be useful as
therapeutics for fibrosing diseases.

ADDING SAP AS A POSSIBLE

THERAPEUTIC FOR NEUTROPHIL-DRIVEN

DISEASES

Inflammatory lesions recruit neutrophils to the site of damage
(161, 162). This however can sometimes be counterproductive;
for instance some patients with damaged lungs develop acute
respiratory distress syndrome/ acute lung injury (ARDS/ ALI),
where neutrophils enter the lungs and release proteases and
reactive oxygen species. This causes further damage and
further neutrophil recruitment and subsequent damage, and
this vicious cycle results in the ∼40% mortality seen in the
∼200,000 ARDS patients each year in the US (163). SAP
decreases neutrophil binding to extracellular matrix components
(164–166), and in a mouse model of ARDS, SAP injections
starting 24 h after injury reduced the number of neutrophils
in the lungs (166). The small-molecule SAP mimetic discussed
above also showed efficacy in this ARDS model (160). These
results suggest that SAP and SAP mimetics might be useful
as therapeutics for neutrophil-driven diseases such as ARDS/
ALI.

BLOCKING SAP SIGNALING AS A

POSSIBLE THERAPEUTIC FOR DISEASES

SUCH AS TUBERCULOSIS

M1macrophages are highly aggressive against bacteria and other
pathogens, but SAP, which is a constitutive component of the
blood, pushes macrophages toward an anti-inflammatory/anti-
fibrotic phenotype (90, 95, 99, 100, 103, 156, 167, 168).
Tuberculosis bacteria can live inside macrophages, where
they also push the host macrophage away from a M1
phenotype to help the survival of the parasitic bacteria
(169). To test the hypothesis that blocking SAP signaling
to macrophages would reduce regulatory macrophages and
increase M1 macrophages, we screened 3,000 compounds
for the ability to inhibit the binding of SAP to FcγRI,
and found 12 that reduced this binding (170). In support
of the hypothesis, SAP potentiated the proliferation of
Mycobacterium smegmatis and Mycobacterium tuberculosis
in human macrophages, and in the presence of SAP, 2 of the
compounds reduced the intra-macrophage proliferation of these
bacteria (170).

CONCLUSION

Pentraxins are ancient and fascinating molecules. Increasing
levels of SAP either locally or systemically is showing promise
as a therapeutic for a variety of diseases where the ability
of SAP to help clear debris and calm the innate immune
system is beneficial. Conversely, decreasing levels of SAP, or
decreasing SAP effects, shows promise as potential therapeutics
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where unleashing the innate immune system is beneficial. An
intriguing possibility is that altering levels of other pentraxins
might similarly be useful as stand-alone therapeutics or in
combination with manipulations of SAP levels for even more
diseases.
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The phylogenetically ancient, pentraxin family of plasma proteins, comprises C-reactive

protein (CRP) and serum amyloid P component (SAP) in humans and the homologous

proteins in other species. They are composed of five, identical, non-covalently associated

protomers arranged with cyclic pentameric symmetry in a disc-like configuration. Each

protomer has a calcium dependent site that mediates the particular specific ligand

binding responsible for all the rigorously established functional properties of these

proteins. No genetic deficiency of either human CRP or SAP has been reported, nor

even any sequence polymorphism in the proteins themselves. Although their actual

functions in humans are therefore unknown, gene deletion studies in mice demonstrate

that both proteins can contribute to innate immunity. CRP is the classical human acute

phase protein, routinely measured in clinical practice worldwide to monitor disease

activity. Human SAP, which is not an acute phase protein, is a universal constituent of

all human amyloid deposits as a result of its avid specific binding to amyloid fibrils of

all types. SAP thereby contributes to amyloid formation and persistence in vivo. Whole

body radiolabelled SAP scintigraphy safely and non-invasively localizes and quantifies

systemic amyloid deposits, and has transformed understanding of the natural history

of amyloidosis and its response to treatment. Human SAP is also a therapeutic target,

both in amyloidosis and Alzheimer’s disease. Our drug, miridesap, depletes SAP from

the blood and the brain and is currently being tested in the DESPIAD clinical trial in

Alzheimer’s disease. Meanwhile, the obligate therapeutic partnership of miridesap, to

deplete circulating SAP, and dezamizumab, a humanized monoclonal anti-SAP antibody

that targets residual SAP in amyloid deposits, produces unprecedented removal of

amyloid from the tissues and improves organ function. Human CRP binds to dead and

damaged cells in vivo and activates complement and this can exacerbate pre-existing

tissue damage. The adverse effects of CRP are completely abrogated by compounds

that block its binding to autologous ligands and we are developing CRP inhibitor drugs.

The present personal and critical perspective on the pentraxins reports, for the first time,

the key role of serendipity in our work since 1975. (345 words)

Keywords: pentraxin, C-reactive protein, serum amyloid P component, amyloidosis, drugs, miridesap,

dezamizumab, complement
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DISCOVERY OF THE PENTRAXINS

When I returned to clinical training at the Royal Postgraduate
Medical School in London in 1973, after my PhD
discovery of the role of complement in induction of antibody
formation (1–5), the Head of Medicine, Professor (later Sir)
Christopher Booth, advised to me to start a more clinical research
project. He suggested that I should “crack Crohn’s disease.” This
led me serendipitously1 to the pentraxins.

In the early 1970s, reduced numbers of circulating T cells
had been reported in many chronic inflammatory diseases of
unknown etiology, including Crohn’s disease. Although this was
actually an artifact caused by differential loss of T cells during
isolation of peripheral blood lymphocytes (6), T cell function
in Crohn’s disease was still of interest in 1975 when Henry
Gewurz reported that C-reactive protein (CRP) bound to antigen
activated T cells and suppressed their functions (7). I assumed
that CRP production would be increased in active Crohn’s disease
and speculated that it could be responsible for suppression
of T cell function. However, to my surprise, in 1975, CRP
measurements had not been reported in either Crohn’s disease
or ulcerative colitis and I set out to do this for the first time.

There were no commercial quantitative immunoassays
for CRP at that time. I therefore isolated some human
CRP and immunized a rabbit to raise my own anti-CRP
antiserum. This “famous” rabbit, known only as R1032, produced
strong precipitating antibodies to CRP, which were excellent
for electroimmunoassay. But it also produced precipitating
antibodies against another, immunochemically distinct, normal
trace plasma protein with fast α-mobility, which was not an acute
phase reactant. None of the available antisera to known human
plasma proteins reacted with this unknown protein; which I
designated “protein X.” I had neither the resources nor the
motivation to attempt amino acid sequencing and, since many
plasma proteins had not been sequenced, it might not have
helped. Indeed, as it transpired, if we had sequenced it then
it would have been the first time for that protein! Meanwhile
I used the antiserum to assay CRP concentrations in clinical
samples using electroimmunoassay (8), and made important
new observations (see section Routine clinical measurement of
CRP), whilst ignoring the immunoprecipitates produced by the
contaminating antibodies to protein X.

My CRP antigen preparation had obviously been
contaminated with protein X and I therefore sought to
improve the isolation procedure. CRP was named for its calcium
dependent binding to pneumococcal C-polysaccharide so
calcium dependent affinity chromatography was an obvious
and attractive possibility (9). CRP from whole serum bound
efficiently, in the presence of calcium, to suitable ligands that
had been covalently immobilized on Sepharose, commercial
beaded agarose, and other serum proteins were then washed
away. The CRP could then be eluted by calcium chelation but,
regardless of the immobilized ligand, protein X was still present.
The obvious control experiment showed that, unlike CRP,

1Serendipity: “making discoveries, by accident and sagacity, of things not sought”

Horace Walpole, 28 Jan 1745.

protein X underwent avid calcium dependent binding to plain
unsubstituted Sepharose, and was eluted by calcium chelation.
This simple one step isolation in pure form of a trace plasma
protein was unique and demanded identification of protein X.
In collaboration with Arnold Feinstein and Ed Munn, who had
first reported negative staining electron microscopy (EM) of
IgM, EM of isolated protein X instantly identified it as amyloid
P component (AP) (10–14) (Figure 1). Unexpectedly, isolated
CRP had a remarkably similar appearance (Figure 1). Both these
homopentameric, calcium dependent, ligand binding, plasma
proteins were composed of globular subunits arranged with
cyclic symmetry in a disc like configuration.

At the same time, two other groups were working on these
two proteins. Robert Painter isolated the C1 component of
complement from whole serum by calcium dependent affinity
chromatography on IgG covalently immobilized on Sepharose
(16). In addition to the known subcomponents, C1q, C1r, and
C1s, he always found a fourth protein that he designated C1t
(17) and which he soon found to resemble AP (18) in the EM.
Meanwhile Alex Osmand and Henry Gewurz observed marked
N-terminal sequence homology between CRP and C1t (AP) and,
together with Painter noted their highly characteristic, similar
EM appearances (19). Osmand coined the name “pentraxin” for
this newly recognized protein family, derived from the Greek
words “penta” (five) and “ragos” (berries), representing the EM
appearance of the molecules2. We confirmed immunochemically
that our protein X was serum amyloid P component (SAP)
(21), and my discovery of its calcium dependent binding to
unsubstituted Sepharose explained its presence in Painter’s C1
preparations, showing that it had nothing to do with C1.

Work on the pentraxins, CRP and SAP, then proceeded
energetically in various directions, albeit with some false starts.
The claims for binding and effects of CRP on lymphocytes, that
had serendipitously introduced me to the field, proved not to
be reproducible. Indeed there have been, and still are, a number
of highly controversial claims about properties, functions and
effects of CRP and SAP. However, the early discovery of classical
pathway complement activation by CRP following its binding to
macromolecular ligands (22, 23) withstood the test of time and
it is unequivocally crucial for the role of CRP in exacerbation of
tissue damage (24).

WHAT ARE PENTRAXINS?

“What’s in a name? That which we call a rose

By any other name would smell as sweet.”

William Shakespeare. Romeo and Juliet (II, ii, 1-2)

The question is both scientific and semantic. The neologism,
pentraxin, was invented by Alex Osmand (19) from the Greek
words meaning five berries, to describe the unique cyclic
pentameric symmetrical appearance of the molecules of human

2Pentraxin is a splendid name but I confess to having misleadingly tried to change

it. In 1983, based on advice by Greek colleague who wrongly thought that the

etymology was from “penta” and “axin,” I suggested, incorrectly, that the name

should be “pentaxin” (20). Alex Osmand corrected me -mea culpa.
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FIGURE 1 | Molecular appearance of the pentraxins. (A) Negatively stained

electron microscopic image of human CRP with the characteristic symmetrical

pentameric ring viewed face on. Inset shows disc-like appearance of single

molecules side on. (B) Negatively stained electron microscopic image of

human SAP with the characteristic symmetrical pentameric ring viewed face

on. Inset shows typical face to face double pentamer forming the decameric

assembly present in calcium free conditions. This was thought to be the

normal assembly of human SAP until the actual physiological native

pentameric structure was demonstrated (15). (C) Cryoelectron microscope

image of our preparations of human CRP (mass 115,135) and of (D) human

SAP (mass 127,310) showing the actual native pentraxin structure with no

staining or artefactual enhancement (courtesy of Dr Richard Henderson).

CRP and SAP. The appearance is shared by the pentraxins from
all the different species that have been visualized, apart from
the hexameric CRP homolog of the horseshoe crab, Limulus
polyphemus (25) and other multimeric invertebrate homologs. In
addition to the numbers of subunits there are other differences
between species. For example, rat CRP differs from the human
CRP in being glycosylated and in having a covalent disulphide
bond between one pair of protomers in each pentamericmolecule

(26). Nevertheless the very high degree of sequence homology,
together with the instantly recognizable pentraxin molecular
appearance, demonstrate that all the different plasma proteins
characterized by calcium dependent binding to the classical
pentraxin ligands are unequivocally members of the same
family. The “long pentraxins” (27) do not have the pentraxin
appearance although they contain a domain with modest
sequence homology to pentraxins. Also calcium binding, which
is required for stability of the secondary, tertiary and quaternary
structures of most actual pentraxins, and is essential for the
specific ligand binding that underlies all robustly reproducible
pentraxin functions, is not a feature of the “long pentraxins.”
An analogous situation exists in relation to the many diverse
non-immunoglobulin proteins which contain immunoglobulin
sequence homology domains but do not share antibody-like
specific epitope binding. They are, accordingly, not called
antibodies but the well-established “long pentraxin” names are
evidently not going to change.

PENTRAXIN STRUCTURE

In 1994, we reported the first pentraxin structure: the 3D
X-ray crystal structure of human SAP alone and of its calcium
dependent complex with the cyclic pyruvate acetal of galactose
(28) (Figure 2). SAP crystallized easily but it followed nearly
17 years of failure to grow reproducible crystals of human
CRP suitable for X-ray crystallography. Eventually I thought of
lowering the calcium concentration to reduce the solubility of
human CRP as it starts to denature. This yielded a batch of poor
and fragile crystals that nonetheless provided a low resolution
structure of partly calcified CRP (30). Then my serendipitous,
inadvertent, “overconcentration” of a batch of isolated human
CRP to more than 20 mg/ml in the presence of physiological
calcium, caused sudden, concentration dependent, reversible
precipitation of the protein that pointed the way to effective
crystallization conditions. Finally, the full physiological structure
of human CRP alone and with bound phosphocholine was solved
(31) (Figure 3).

The tertiary fold of the two human pentraxins is closely
similar, with the main chain forming a flattened β-jellyroll with
closely tethered loops between the antiparallel strands. There is
a short α-helix on one face, the “A” face (29), of each protomer
and calcium tethered loops on the opposite, binding, “B,” face,
forming the shallow ligand binding pocket. Although there is
only about 11% amino acid sequence homology with the human
pentraxins, the proteins with the most similar β-jellyroll tertiary
fold are the legume lectins, pea lectin and concanavalin A (28).
This architecture is apparently an effective support for proteins
that provide calcium dependent binding of carbohydrate and
other non-protein ligands.

The extensively hydrogen bonded antiparallel β-strands
and tightly bound loops make the pentraxins rather
resistant to proteolysis but, in the absence of calcium,
the calcium coordinating loops are disorganized and readily
cleaved (33, 34). Calcium is obviously always present at ∼2mM
in the extracellular environment in vivo but the normally very
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FIGURE 2 | Structure of human SAP. (A) Electron micrograph of negatively

stained human SAP molecules. (B) Ribbon diagram of the 3D X-ray crystal

structure of human SAP face on (“B” face uppermost). (C) Ribbon diagram of

the 3D X-ray crystal structure of human SAP side on. Calcium atoms are

represented as yellow spheres located on the binding, “B” face; the single

small α-helix of each protomer is shown in red, located on the “A” face (29);

β-sheets are in pale blue and loops in dark blue.

stable, albeit non-covalent, native pentameric assembly of
human CRP is notably destabilized in the absence of calcium.
Free protomers are released and the protein readily aggregates.
Use of non-physiological experimental conditions, leading to
artefactual properties of human CRP, has produced misleading
conclusions about properties and effects of the protein. Even
worse, effects caused by sodium azide preservative in CRP
preparations (35) and contamination of recombinant CRP by
bacterial products (36) have been misleadingly attributed to CRP
itself.

Human SAP is also more susceptible to proteolytic cleavage
in the calcium coordinating loops when calcium is absent
(34) but, unlike human CRP, under these non-physiological
conditions human SAP forms stable decameric assemblies of
pairs of pentameric SAP molecules interacting “B” face to “B”
face (37). The interaction is mediated by displacement of the
loop comprising residues 134–151 in each protomer and then
binding of the loop in the inter-subunit groove in the “B” face
of the apposed pentameric ring (37). For a number of years we
believed that this double pentamer was the native state of the
SAP molecule [see for example (28)], in contrast to the single
pentamer of human CRP. However, careful characterization of
the molecular form of native SAP within the milieu of whole
serum showed that human SAP is actually a single pentamer
that is not complexed with any other plasma constituent (15).
These studies are challenging because, as we had discovered very
early on, exposure of isolated pure human SAP to calcium leads
to rapid autoaggregation (38). Aggregated human SAP acquires
novel ligand binding and other properties (39), unfamiliarity
with which produced a number of misleading reports on
possible functions of SAP. We eventually showed that human
SAP autoaggregation is mediated by binding of the exposed
γ-carboxylate of residue Glu167 on one SAP molecule in the
calcium dependent ligand pocket on another (40). This is
prevented by the presence of physiological concentrations of
serum albumin (15), probably, at least in part, by virtue of
calcium binding by the albumin, critically lowering the free
ionisable calcium concentration. In any case, in the presence
of the calcium, that is required for its ligand binding, isolated
human SAP must be stabilized by a sufficient concentration of
serum albumin.

FUNCTIONAL ROLES OF THE

PENTRAXINS in vivo?

Identification of the roles of human CRP and SAP is complicated
by the failure so far to detect any genetic deficiency of either
protein: the ultimately informative “experiment of Nature” has
not been seen. There are also no common structural variants.
Although some extremely rare coding polymorphisms of theCRP
and SAP genes have been noted in genomic studies, the variant
proteins that they might encode have not yet been reported.
This remarkable conservation suggests that both proteins may
have important functions, necessary for survival, presumably
in relation to host defense, since this is a major driver of
natural selection. However, given the ancient phylogeny of the
pentraxins, long antedating acquired immunity, some of these
primitive putative “survival” functions are now likely to be
redundant.

Our early original studies of pentraxins in other species (25,
26, 41–55) showed that the pentraxin family is phylogenetically
ancient with highly conserved sequence homology, secondary,
tertiary and quaternary structure as well as calcium dependent
ligand binding. Nonetheless, there are major differences between
family members in different, even closely related, species. For
example, rat SAP (26) has a similar abundance to human

Frontiers in Immunology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 238230

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pepys The Pentraxins 1975–2018: Serendipity, Diagnostics and Drugs

FIGURE 3 | Structure of human CRP with bound phosphocholine and bis(phosphocholine)-hexane. (A) Space filling model of “B” face of human CRP with

phosphocholine bound in each of the protomer binding sites. (B) 3D X-ray crystal structure of phosphocholine in the binding pocket of a single CRP protomer within

the native molecule, showing the ligand interactions with calcium and the CRP residues responsible for binding. (C) The structure of bis(phosphocholine)-hexane

(above) and the structure of the complex formed by two CRP molecules cross linked by five bis(phosphocholine)-hexane molecules; face on (left) and side on (right)

[From reference (32) with permission of Macmillan Publishers Ltd].

SAP (56) (mean (SD, range) concentration, women: 21 mg/l
(8. 8-5-5); men: 32 mg/l (7, 12–19, 21–31, 33–52), and neither
is an acute phase protein (57). In contrast, mouse SAP baseline
concentrations are strain dependent with a ∼50-fold range
between C57BL/6 (∼3–5 mg/l) and DBA (>150 mg/l), and it is
a major acute phase reactant rising to >300 mg/l (42). On the
other hand mice have low baseline CRP concentrations, ∼5–9
mg/l, which rise only twofold in the acute phase response (58).
Meanwhile rats have baseline CRP concentrations of ∼300–500

mg/l rising 3- to 4-fold in the acute phase response (26). In
humans, the median baseline CRP concentration is 0.8 mg/l,
with 90% of healthy subjects below 3 mg/l and 99% below
10 mg/l (59). But the concentration can be as low as 50 µg/l
(59) and can rise to >500 mg/l at the peak of the acute
phase response (60). There are many other variations between
species, including behavior as acute phase reactants, precise
ligand specificity and the secondary effects of ligand binding:
precipitation, agglutination and complement activation. In some
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species, the hallmark properties of human CRP and SAP are
variably distributed between the two pentraxins while neither
the dog nor the rabbit even have an SAP gene, although their
respective CRP molecules behave rather similarly to human
CRP. These findings suggest that the various pentraxins may
have different functions in different species and they make
it impossible to extrapolate reliably from experimental animal
studies to possible functional roles of the pentraxins in humans.

THE CHALLENGE OF IDENTIFYING

PHYSIOLOGICAL FUNCTIONS OF THE

PENTRAXINS

There have been wide ranging claims, speculations and many
evidence-free assertions about pentraxin functions. There are
very few robustly definitive observations or experiments. A
major weakness in most studies of putative pentraxin functions
has been lack of information about the provenance, purity
and functional integrity of the CRP and SAP preparations
that have been used. Isolation of structurally and functionally
intact preparations of these trace plasma proteins, and rigorous
demonstration of their quality, are challenging. It is not adequate
to use a commercial product or in house preparation without
comprehensive characterization. For example, among the many
claimed activities is the assertion that the human pentraxins
trigger production and secretion of pro-inflammatory cytokines.
We have never been able to replicate these reports (36).
In order to make definitive observations, we isolated sterile,
endotoxin-free, structurally and functionally intact, clinical Good
Manufacturing Practice (cGMP) grade human CRP and SAP
from pooled normal human plasma of healthy, pathogen free
US donors (61). We showed that neither protein had inherent
pro-inflammatory effects, either on human peripheral blood
mononuclear cells in vitro or when administered parenterally to
mice or healthy human volunteers in vivo (61, 62).

FUNCTIONS OF HUMAN C-REACTIVE

PROTEIN

Human CRP binds avidly to exposed phosphocholine residues on
macromolecules of both autologous and extrinsic origin (22, 63).
It then aggregates particulate ligands and precipitates soluble
ligands and also triggers classical complement pathway activation
(22, 64). Beneficial effects of some of these phenomena may
thus underlie the evolutionary persistence of the protein and the
highly adaptive regulation of its production in response to injury,
infection and inflammation. CRP binds selectively to dead and
damaged cells but not to healthy living cells. Phospholipase action
on plasma membranes of damaged cells disrupts the normal lipid
bilayer, exposing the phosphocholine head groups recognized by
CRP. Co-localization of CRP with fixed complement in areas
of tissue damage suggests a possible role for CRP in removal
of cellular debris from the tissues. However, there is no direct
evidence that this function actually operates.

Injection of human CRP into mice at the time of inoculation
with virulent pneumococci confers efficient protection against

sepsis (65–67). Administration of human CRP after inoculation
of the bacteria does not protect. Indeed, all patients with active
pneumococcal infections have greatly increased plasma CRP
concentrations and abundant circulating human CRP so CRP
evidently does not control established pneumococcal sepsis.

In order to study this question further we created pure-
line Crp gene-deleted C57BL/6 mice using C57BL/6 embryonic
stem cells (58). Normally housed CRP deficient mice had
normal growth, development, fertility and life span. They
did not develop anti-nuclear autoimmunity and responded
normally to endotoxin challenge, two processes in which roles
for CRP had been proposed (68). However, the CRP-deficient
mice were remarkably susceptible to Streptococcus pneumoniae
infection and were protected by reconstitution with isolated
pure human CRP, or by anti-pneumococcal antibodies (58).
Autologousmouse CRP is evidently essential for innate resistance
to pneumococcal infection before antibodies are produced,
probably by clumping the bacteria, limiting their spread and
promoting their phagocytosis and destruction by neutrophils.
Our findings are consistent with the significant association
between clinical pneumococcal infection and non-coding human
CRP gene polymorphisms which reduce CRP expression (69–71).
Deficiency or loss of function variation in CRP may therefore be
lethal at the first early-life encounter with this ubiquitous virulent
pathogen, explaining the invariant presence and structure of CRP
in human adults. Meanwhile, the protective function of mouse
CRP against pneumococcal infection is the only function of any
CRP to be firmly established so far in the same species.

FUNCTIONS OF HUMAN SERUM AMYLOID

P COMPONENT

Continuous treatment for up to several years with the drug,
CPHPC (72) (now called miridesap, see below), that persistently
depletes circulating SAP by over 90% for as long as the drug is
taken, has had no adverse effects (73). Thus, despite its invariant
presence, human SAP probably does not have a necessary
function in adults.

Our discovery of the avid specific binding of human SAP
to DNA (74) and to chromatin (75), where it displaces H1-
type histones, thereby solubilizing native long chromatin under
physiological conditions, strongly suggested a possible function
of human SAP in the in vivo handling of exposed DNA and
chromatin. Indeed, in ex vivo human tissues, both apoptotic
cells, which always bear chromatin fragments on their surface,
and nuclear debris are always coated with SAP (76, 77).
However, our early observation of increased spontaneous anti-
nuclear autoimmunity in SAP knockout mice (78) turned out
to be limited to the autoimmunity susceptible C57BL/6 strain
and not a general effect of SAP deficiency (79). There was
no increased autoimmunity, even after autoantigen challenge,
with SAP knockout in different mouse strain backgrounds
(79). Furthermore, there has been no increased autoantibody
production in patients with SAP depletion produced by
miridesap (73).
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An intriguing possibility is that the avid binding of human
SAP to DNAmay be the mechanism responsible for the failure of
DNA vaccination to be immunogenic in humans. We discovered
that there is complete concordance among species tested so far
(sub-human primates, dog, rabbit, horse, cow, sheep, pig, goat)
between the effectiveness of DNA vaccination and the absence
of SAP binding strongly to DNA (unpublished observations). In
particular, mice respond well to DNA vaccination and mouse
SAP binds DNA very weakly (79). Also transgenic expression
of human SAP in mice blocks immune responses to DNA
vaccination (80) and this inhibition is completely abrogated by
administration of my SAP-depleting drug, CPHPC (miridesap)
(72, 81). We therefore lately conducted a preliminary clinical
trial, HIV-CORE 003, of SAP depletion by CPHPC (miridesap)
in healthy volunteers receiving a DNA vaccine against HIV
(82). The results were largely negative although, compared to
placebo treated controls, the SAP depleted subjects mounted
significantly broader immune responses (82). Further studies of
this important question are needed.

SAP is inherently resistant to proteolysis (34) and is also
a potent anti-opsonin (83). Its binding therefore “protects” its
macromolecular ligands from degradation, whether these are
the amyloid fibrils in local or systemic amyloid deposits, or
pathogenic bacteria. Indeed those bacterial pathogens to which
SAP binds (84), use the bound SAP to shield themselves from the
host’s phagocytic defenses (83). Thus, for example, SAP knockout
mice are more resistant than wild type mice to lethal infection
with Strep. pyogenes and rough Gram negative bacteria (83).
In contrast, SAP deficient mice are more susceptible than wild
type controls to lethal infection with smooth Gram negative
bacteria, to which SAP does not bind (83). Mouse SAP therefore
contributes to innate immunity to some bacterial infections and,
although the mechanism is unknown, this is so far the only
definite in vivo function identified for an autologous SAP.

A host defense role for SAP is potentially consistent with the
fact that human SAP binds avidly to Shiga toxin 2 and neutralizes
it in vitro (85, 86), which led to our demonstration that human
SAP protects against cytotoxicity of E. coli Shiga toxin 2 for
podocytes in vitro (87) and against lethality in mice in vivo (88).
However, we did not find any association between human SAP
concentrations and haemolytic uraemic syndrome or antibody
titres against toxigenic E. coli lipopolysaccharide (88). Although
SAP binds many lipopolysaccharides, there is no reproducible
evidence that either SAP (83) or CRP (68) protect against their
in vivo toxicity in mice.

Interestingly, binding of human SAP to the lipopolysaccharide
of rough Gram negative bacteria blocks classical complement
pathway activation by the endotoxin (89). We had previously
discovered (39) that pairs of aggregated SAP molecules, but not
single soluble SAP molecules, calcium dependently bind C4-
binding protein, a negative regulator protein of the classical
cascade. On the other hand, supraphysiological concentrations of
human SAP, which undergo calcium dependent autoaggregation,
do activate complement. However, the abundant coating of
amyloid fibrils with SAP clearly does not activate complement
and the in vitro observation is therefore probably not relevant
in vivo.

How the anti-opsonin and “ligand protective” properties of
SAP contribute to beneficial functions of the protein remains
a matter for speculation. However, in addition to being a
circulating plasma protein, human SAP is also a normal
constituent of the extracellular matrix; and aggregated human
SAP has a highly specific binding interaction with fibronectin
(39), another universal matrix glycoprotein. Human SAP is
an integral component of the glomerular basement membrane
(90) and of the microfibrillar mantle present on elastic fibers
throughout the body (91). It is therefore conceivable that the
SAP helps to protect the integrity of the structures with which
it is associated. Experimental investigation of this concept is
challenging. Mouse SAP is not detected in the extracellular
matrix of normal mouse tissues and SAP evidently does not
have a specific obligatory function since neither dogs nor rabbits
have an SAP gene, while horses, which do have an SAP gene,
do not express a protein with the same calcium dependent
ligand binding specificity as SAP of other species (unpublished
observations). Our SAP deficient, gene deleted mice have no
phenotype when unchallenged (92), supporting the view that,
despite the evolutionary conservation of SAP, its functions may
well be redundant in normal health.

SAP AND AMYLOIDOSIS

My discovery of calcium dependent ligand binding by SAP to
agarose (9, 21) enabled our demonstration that the analogous
binding of SAP to amyloid fibrils is responsible for the universal
presence of SAP in all amyloid deposits of all types in humans
(93). We formally demonstrated that the circulating SAP is the
precursor of amyloid P component (AP) in amyloid deposits
(94). This led directly to my use of radiolabelled SAP as an
amyloid specific tracer in vivo (95, 96) and the invention of
SAP scintigraphy and metabolic studies (97–99). The ability
to image amyloid throughout the whole body in patients with
systemic amyloidosis and thus, safely and non-invasively, localize
and quantify amyloid deposits, has made major contributions to
understanding the natural history of amyloidosis and its response
to therapy (100) (Figure 4). Once the scan became available,
the Immunological Medicine Unit at the Royal Postgraduate
Medical School soon became the de facto national referral
center for amyloidosis patients in the UK. In 1999, when I
moved with my team to the Royal Free Campus of University
College Hospital, the UK Department of Health funded us as
the NHS National Amyloidosis Centre to provide diagnostic and
management advice for the whole national caseload (www.ucl.
ac.uk/amyloidosis/ and www.amyloidosis.org.uk). The Centre
now sees over 4,000 amyloidosis patients per year, follows the
world’s largest and most diverse cohort of such patients and has
conducted about 40,000 SAP scintigraphy studies since 1988 with
no adverse effects.

The observation of calcium dependent ligand binding by
SAP (9, 21) also led toward potential new treatments. My
serendipitous finding in 1983 that widely differing amounts
of SAP bound to different batches of Sepharose led to the
discovery that SAP binding correlated precisely with the
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FIGURE 4 | Whole-body scintigraphy with 123 I-labeled serum amyloid P

component in systemic amyloidosis. (A) (a) Left: Anterior view of a typical

patient with AL amyloidosis showing massive liver and spleen amyloid and the

pathognomonic deposits throughout the bone marrow that are not seen in any

other type of amyloidosis. Right: Posterior view of a typical patient with AA

amyloidosis showing amyloid in the spleen, kidneys, and adrenal. The left

adrenal is obscured by the overlying spleen, but the right is clearly visible

above the kidney. (b) Posterior scans taken a year apart in a patient with

longstanding rheumatoid arthritis who suddenly developed AA amyloidosis.

The earlier scan (left) is normal; the later one (right) shows heavy splenic and

significant renal amyloidosis. (B) (a) Anterior (left) and posterior (right) views of

a patient with AL amyloid who presented with minor proteinuria and no other

clinical or investigational evidence of disease. There is substantial renal

(Continued)

FIGURE 4 | amyloid but no scintigraphically detectable de- posits elsewhere.

(b) Anterior (left) and posterior (right) views of a different patient with AL

amyloid who also presented with minor proteinuria and no other clinical or

investigational evidence of disease. There is massive amyloid deposition in the

liver and spleen. The kidneys are not visualized, probably because the tracer,

which distributes according to the amount of amyloid, is all taken up

elsewhere. Note that, in contrast to (a), there is no residual tracer in the

circulation, indicating a heavy whole-body amyloid load. This patient did not

tolerate intensive chemotherapy and developed liver failure. (C) (a) Anterior

(left) and posterior (right) views of a patient with AL amyloid who presented

with multiple fractures over 4 years. X-ray and bone scan were normal but

bone biopsy unexpectedly revealed amyloid. No monoclonal gammopathy

was identifiable at that time, but bone amyloid is frequent in AL and may be

the main clinical feature. (b) Serial anterior views showing regression of AA

amyloidosis in a juvenile rheumatoid arthritis patient treated with chlorambucil,

in whom the SAA concentration was suppressed to <10 mg/l. (c) Serial

anterior views showing regression of AL amyloidosis in a patient treated with

high-dose melphalan and stem cell rescue. [From Pepys (100) with permission

of Annual Reviews].

pyruvate content of the agarose. Pyruvate is a variable trace
component present as the cyclic acetal of β-D-galactopyranose
in agarobiose (101). We synthesized the monosaccharide, methyl
4,6-O- (1-carboxyethylidene)-β-D-galactopyranoside (MOβDG)
and showed that it completely blocked and reversed the binding
of SAP to all its known ligands, crucially including pure
protein ligands and amyloid fibrils with no carbohydrate present
(101). These seminal results enabled localisation of the calcium
dependent ligand binding site in SAP when we solved its 3D
X-ray crystal structure (28), and also led to a new therapeutic
approach. Although we did not then know the role, if any, of
SAP in pathogenesis of amyloidosis, the finding that MOβDG
could remove all the SAP bound in amyloid deposits suggested
an approach to disrupting the deposits and promoting their
clearance (102).

We subsequently showed that AP in amyloid is identical to
its SAP precursor in the plasma and remains completely intact
despite very prolonged residence in the tissue deposits (103). The
plasma half-life of SAP in normal healthy subjects is∼24 h whilst
the half-life of SAP in visceral amyloid deposits is∼30 days (99).
Furthermore, binding of SAP to amyloid fibrils in vitromutually
protects the fibrils and the SAP from degradation by proteases
and phagocytic cells (104). SAP, although itself rather resistant to
proteolysis, is not a protease inhibitor. It protects the fibrils only
when it is actually bound to them (104).

Amyloid fibrils are readily digested by proteases and ingested
and degraded by phagocytic cells in vitro. In contrast, in vivo,
systemic amyloid deposits are almost entirely ignored by the
normally highly efficient cellular and molecular mechanisms for
clearance of extracellular debris from the tissues. The reasons for
this are unknown but, in view of our discovery that bound SAP
protects amyloid fibrils from degradation in vitro, I proposed
that it might do the same thing in vivo. I hypothesized that the
universal, ubiquitous coating of SAP on amyloid fibrils in vivo
protects them from clearance and removal (104). I claimed
that stripping of bound SAP, and prevention of SAP binding,
would enable amyloid deposits to be recognized as abnormal
and therefore phagocytosed and degraded, leading to amyloid
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removal (105). We then went on to create the first SAP knockout
mice and to show that, although it was possible to induce
systemic AA amyloidosis in them, it took longer than in wild
type mice and the deposits were smaller (92). SAP was thus
validated as a therapeutic target. Meanwhile SAP was also shown
to promote amyloid fibril formation from soluble precursors
in vitro3, apparently by binding to and stabilizing protofibrillar
aggregates (109–111).

I invented a high throughput screen for inhibitors of SAP
binding to amyloid fibrils (105) and in the late 1990s, I persuaded
Roche to use it to explore their compound library. With the help
of some fortuitous serendipity, this swiftly led to the creation
of a drug candidate, (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-
oxo-hexanoyl]pyrrolidine-2-carboxylic acid, which I abbreviated
as CPHPC, a palindromic acronym for a palindromic molecule4

(72). Binding of SAP to amyloid fibrils and all its other known
ligands is inhibited by CPHPC because SAP binds to the drug
in a complex composed of two pentameric SAP molecules
cross linked face to face by five of these bivalent hexanoyl
bis(D-proline) molecules (72) (Figure 5). Each D-proline head
group is located in the calcium dependent ligand binding pocket
of a protomer. AlthoughN-acetyl D-proline is only weakly bound
by SAP, with Kd ∼15µM, the cross linking of pairs of SAP
molecules by five CPHPC molecules forms a very stable complex
with Kd ∼10 nM due to the avidity gain of multivalency. In the
SAP-CPHPC complex, all the calcium dependent ligand binding
sites are occupied and the ligand binding “B” face of the disc-like
SAP molecules is also occluded (72, 112) (Figure 5).

Work toward clinical testing in humans proceeded rapidly
but, shortly before the first in human study, Roche stopped
their development and handed the project over to us. Our first
administration of CPHPC to humans immediately revealed that
the drug produced very rapid and almost complete depletion of
SAP from the circulation that persisted for as long as the drug was
given (72, 73) (Figure 6). We showed that this resulted from the
instant clearance of the SAP-CPHPC complex by the liver (72),

3In the artefactual, non-physiological, absence of calcium, SAP inhibits the

formation of Aβ amyloid fibrils in vitro (106). Indeed, we subsequently found that

human SAP has classical chaperone properties in protein refolding assays (37, 107).

The activity is calcium independent, does not involve ligand binding by the SAP

and is apparently mediated by the “A” face of the molecule (37) but it is not clear

whether and how it might operate in vivo.
4The high throughput screen of 100,000 compounds identified a small number of

hits, themost attractive of which was one of the four disastereoisomers of captopril.

Captopril itself and a third isomer were inactive but the fourth was more active

than the original hit. When the actual material being tested was analyzed, it was

found that the active substance was no longer the compound itself, with a free

sulphydryl group, but a disulphide bonded covalent dimer. We had then lately

reported the 3D X-ray crystal structure of the complex of SAP with dAMP, in

which pairs of SAP molecules were cross linked face to face by hydrogen bonding

between each dAMP molecules held in the calcium dependent ligand binding

pockets of each SAP protomer (108). It was therefore obvious that similar cross

linking of SAP molecules by a palindromic covalent structure would be a more

potent inhibitor of SAP binding to other ligands than just single univalent ligands

potentially occupying individual protomer binding sites. The disulphide dimer

of the original hit was then synthesized and, as we had predicted, it was the

most potent inhibitor. Further medicinal chemistry to replace the sulfur atoms

with the hexanoyl chain yielded (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-

hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC).

FIGURE 5 | Structure of CPHPC (miridesap) and its complex with human SAP.

The palindromic bivalent structure of (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]

-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC), now known by its

WHO INN, miridesap, is shown above. Below is the 3D X-ray crystal structure

of the SAP-drug complex which is also the structure of the complex in solution

(112). [From Pepys et al. (72) with permission of Macmillan Publishers Ltd].

where the SAP was promptly destroyed whilst the CPHPC, which
is not metabolized at all, is released and swiftly excreted, mainly
in the urine and to a smaller extent in the bile. The invention
of CPHPC and the novel, and so far unique, pharmacological
mechanism, by which a small molecule drug produces a targeted
knockout of a pathogenic plasma protein, was recognized by the
American Chemical Society as one of the medicinal chemistry
highlights of 2002. CPHPC itself and prolonged SAP depletion
were both well tolerated with no adverse effects other than
mild transient stinging at sites of subcutaneous injection of the
drug (73). However, the treatment did not promote regression
of amyloid deposits from the tissues of patients with systemic
amyloidosis. Depletion of circulating SAP removed much but
never all SAP from its binding to amyloid, despite months of
CPHPC treatment (73). This reflects a combination of factors that
cannot be overcome: the avidity of binding of SAP to amyloid
fibrils, the continuous production of new SAP by the liver, and the
rapid excretion of CPHPC. In addition, crucially, the avid binding
of SAP to CPHPC requires simultaneous binding of multiple
D-proline head groups by pairs of SAP molecules. Complete
elution of SAP from amyloid deposits therefore requires the
presence of ∼1mM CPHPC, an extremely high concentration
that is not attainable in vivo despite the excellent tolerability of
the drug. Something more was required to clear amyloid.

Phagocytosis and degradation by macrophages is the most
important mechanism for removal of autologous debris and
extrinsic materials from the extracellular space of the tissues. It is
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FIGURE 6 | Depletion of circulating SAP by CPHPC (miridesap) in patients with systemic amyloidosis. (A) Serum concentration of SAP immediately before and 6

weeks after starting daily treatment with CPHPC. (B) Sustained depletion of SAP throughout CPHPC treatment. Each line shows the results of serial measurements in

an individual patient. Note different scale for SAP concentration compared to (A). From Gillmore et al. (73) with permission of Blackwell Publishing Ltd). In patients

without systemic amyloidosis and the associated massive extracellular load of SAP (98), CPHPC (miridesap) treatment reduces plasma SAP concentration to much

lower values, for example, mean (SD) 0.25 (0.16) mg/l, in our 5 patients with Alzheimer’s disease (112).

potently engaged by antibody mediated complement activation.
In 2005, I realized that the residual SAP left in amyloid
deposits, after depletion of the circulating SAP by CPHPC,
could be used as a target for anti-SAP antibodies that would
trigger amyloid removal (113). We tested the idea in human
SAP transgenic mice in which we had induced systemic AA
amyloidosis (114). Circulating human SAP was depleted with
CPHPC and the mice then received a single dose of either
sheep polyclonal anti-human SAP antibody or of normal control
sheep IgG. There were no discernible adverse effects. Within 2
weeks almost no amyloid was detectable in the anti-SAP treated
animals, compared to the unchanged massive amyloid load in
the controls (114). Both classical complement pathway activation
and macrophages were necessary and amyloid clearance was
effected bymultinucleated, macrophage derived, giant cells which
surrounded, engulfed and destroyed the amyloid within days
of antibody administration (114) (Figure 7). Depletion of SAP
from the plasma and extracellular fluid is obviously essential,
before administration of the anti-SAP antibody, so the proposed
treatment is an obligate therapeutic partnership, not just a
combination of two different drugs. Suitable avid, complement
activating mouse monoclonal anti-human SAP antibodies were
as effective as the xenogeneic polyclonal antibody (113), enabling
potential clinical implementation with humanized antibody. In
2009, the invention was licensed to GlaxoSmithKline (GSK) for
clinical drug development.

GSK fully humanized our optimal mouse monoclonal
antibody and the first in human phase 1 study in patients
with different types of systemic amyloidosis, starting in 2013,
demonstrated unprecedented removal of visceral amyloid, with
progressive removal after serial antibody doses (115, 116)
(Figure 8). The antibody caused moderate infusion reactions
and higher antibody doses produced skin rashes but there was

no disturbance of organ function, even in heavily amyloidotic
organs. Indeed abnormal liver function tests returned toward
normal in all patients as their amyloid load was reduced
(115, 116). All amyloid reducing doses of anti-SAP antibody
produced transient early acute phase responses and dramatic
depletion of plasma complement C3 concentration, consistent
with activation of the same mechanism as we characterized
in mice (115, 116). In 2017, the two drugs received their
WHO International Non-proprietary Names (INN), miridesap
for CPHPC and dezamizumab for the humanized monoclonal
anti-SAP antibody, and the encouraging phase 1 results led to the
current GSK phase 2 trial in patients with cardiac amyloidosis.

SAP, ALZHEIMER’S DISEASE AND

CEREBRAL AMYLOID ANGIOPATHY

Miridesap was intended from the outset to target SAP associated
with the Aβ amyloid deposits in the brain and cerebral
vasculature in Alzheimer’s disease, as well as for systemic
amyloidosis. Human SAP is synthesized only by the liver.
As we had predicted, our initial, preliminary, clinical study
in Alzheimer’s disease confirmed that depletion of circulating
SAP also completely removed SAP from the cerebrospinal fluid
(112). Our subsequent study in a triple transgenic, human
SAP expressing, mouse model of human Alzheimer’s disease,
confirmed that miridesap does indeed achieve the desired
“molecular dissection” of Alzheimer’s disease neuropathology by
removing all SAP from cerebral amyloid deposits (117). This
contrasts with the failure of miridesap to removal all SAP from
the enormously more abundant visceral amyloid deposits in
systemic amyloidosis (73), and, encouragingly, should enable
the original SAP removal hypothesis to be tested with respect
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FIGURE 7 | Amyloid clearance mediated by macrophage derived multinucleated giant cells after depletion of circulating SAP followed by treatment with anti-SAP

antibody. Thin sections of liver stained with toluidine blue from AA amyloidotic human SAP transgenic mice treated with CPHPC (miridesap) to deplete circulating SAP

followed by anti-SAP antibody to target residual SAP in the amyloid deposits. Control mouse, not treated with anti-SAP antibody, show abundant amorphous

pink-stained amyloid deposits, with the characteristic absence of any surrounding inflammatory reaction or cellular infiltrate. One day after anti-SAP antibody treatment

there is intense, predominantly mononuclear cell infiltration in and around the amyloid. Five days after anti-SAP-antibody treatment there is fusion of macrophages to

form multinucleated giant cells surrounding and infiltrating the deposits and containing large masses of ingested amyloid undergoing degradation. At 16 days there is

complete elimination of amyloid deposits with no residual cellular infiltrate and restoration of normal tissue architecture. [From Bodin et al. (114) with permission of

Macmillan Publishers Ltd].

to cerebral amyloid. This is one of the goals for our current
“Depletion of serum amyloid P component in Alzheimer’s
disease” (DESPIAD) phase 2b clinical trial of miridesap. We also
hope to study SAP depletion in cerebral amyloid angiopathy
(118), the most prevalent form of clinical amyloidosis.

However, there is another rationale for SAP depletion in these
brain diseases. Human SAP is directly cytotoxic for cerebral
neurones, in vitro and in vivo, causing death by apoptosis (119–
123). The SAP enters the cells, tracks to the nucleus, presumably
via the nuclear localisation sequence present in pentraxins (124),
enters the nucleus and then binds to chromatin, as we first
demonstrated (75, 125). We have lately confirmed and extended
(unpublished observations) an original preliminary report (126)
that individuals with dementia have a higher brain content
of SAP than individuals without dementia, regardless of the
presence of Alzheimer’s disease neuropathology. The results are
consistent with a possible direct pathogenetic role of SAP in
dementia, unrelated to the role of SAP in amyloid. Detection of
potential benefit from abrogation of direct SAP neurotoxicity is
the other major goal of the DESPIAD trial.

ROUTINE CLINICAL MEASUREMENT OF

CRP

My initial measurements of serum CRP concentration in
1975 swiftly showed that CRP was an excellent marker
of Crohn’s disease, closely reflecting extent and activity
much better that any other single measurement (127).
Our subsequent work confirmed and extended the
results (128–130). I also made the striking discovery that
the CRP response in ulcerative colitis, which, in 1975,
also had not previously been reported, was completely
different from Crohn’s disease. Despite even severe,
extensive, active ulcerative colitis, the circulating CRP
concentration was generally modestly increased if at all
(127, 128, 130). The unexpected, surprising, original
observation of a marked difference in the CRP response to
two rather similar disease processes, both with extensive
inflammatory activity and tissue damage, initiated my
lifelong interest in the clinical significance and utility of CRP
assays.
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FIGURE 8 | Whole body scintigraphy with 123 I-labeled serum amyloid P

component in a patient with systemic amyloidosis before and after depletion of

circulating SAP followed by treatment with anti-SAP antibody. (A) Scan

immediately before treatment. (B) Scan 42 days after single dose of

dezamizumab (fully humanized monoclonal anti-human SAP antibody) infused

following depletion of circulating SAP with miridesap. The heavy load of

amyloid in the liver has been dramatically reduced. [From Richards et al. (115)

with permission of Massachusetts Medical Society].

Initially we studied the behavior of CRP as an acute phase
reactant in a very broad range of different conditions, in well
characterized series of patient, thereby establishing the optimal
use of CRP in routine clinical practice (Tables 1, 2). Commercial
instrument based, rapid quantitative CRP immunoassays
emerged in the early 1980s and modern high throughput
automatic clinical chemistry analysers followed. In 1983, the
World Health Organization invited me to create the First
International Reference Standard for Immunoassay of C-reactive
protein 84/506 (131). It remains the primary standard for all
commercial clinical measurement of CRP. I also provided all the
CRP for the major international secondary standards, the IFCC
CRM470 and the ERM DA470 and ERM DA472. By virtue of
my uniquely broad clinical experience with CRP measurement,

TABLE 1 | Human CRP responses in different diseases.

Major CRP acute-phase response

Infections Bacterial

Systemic/Severe fungal,

mycobacterial, viral

Allergic complications of infection Rheumatic fever

Erythema nodosum

Inflammatory disease Rheumatoid arthritis

Juvenile chronic arthritis

Ankylosing spondylitis

Psoriatic arthritis

Systemic vasculitides

Polymyalgia rheumatica

Crohn’s disease

Familial Mediterranean fever

Cryopyrin-associated periodic

syndromes

Necrosis Myocardial infarction

Stroke

Tumor embolisation

Acute pancreatitis

Trauma Surgery

Burns

Fractures

Malignancy Lymphoma

Carcinoma

Sarcoma

Modest or absent CRP acute-phase response

Systemic lupus erythematosus

Scleroderma

Dermatomyositis

Ulcerative colitis

leukemia

Graft-vs.-host disease

and the expertise I had acquired in very large scale isolation
and purification of human CRP to provide standards and
calibrators, I played a substantial role in development of routine
clinical CRP testing worldwide, working closely with major
diagnostics companies. As recently noted by the EU SCIENCE
HUB, the European Commission’s science and knowledge
service, “C-reactive protein (CRP) is one of the most important
analytes in clinical chemistry.” I have comprehensively reviewed
elsewhere the scientific and clinical basis for routine use of CRP
measurements (60, 132) (Tables 1, 2).

CRP AS A THERAPEUTIC TARGET

Our original 1994 report identified for the first time the
association between acute phase responses and adverse prognosis
in acute coronary syndromes (133). Our 1997 epidemiological
work on CRP in patients with angina (134), and studies
by others in general populations, identified an association
between increased baseline values of CRP and future incidence
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TABLE 2 | Routine clinical uses of CRP measurement.

Screening test for organic disease

Assessment of disease activity in inflammatory conditions

Juvenile chronic (rheumatoid) arthritis

Rheumatoid arthritis

Ankylosing spondylitis

Psoriatic arthropathy

Systemic vasculitides

Polymyalgia rheumatica

Crohn’s disease

Rheumatic fever

Familial Mediterranean fever

Cryopyrin-associated periodic syndromes

Acute pancreatitis

Diagnosis and management of infection

Most systemic/severe bacterial, mycobacterial, viral and fungal infections

Response to antimicrobial treatment

Bacterial endocarditis

Neonatal septicaemia and meningitis

Intercurrent infection in systemic lupus erythematosus

Intercurrent infection in leukemia and its treatment

Postoperative complications including infection and thromboembolism

Differential diagnosis/classification of inflammatory disease

Systemic lupus erythematosus vs. rheumatoid arthritis

Crohn’s disease vs. ulcerative colitis

of cardiovascular disease. The association initially seemed
potentially consistent with a pathogenic role for CRP in
atherosclerosis and stimulated very widespread clinical interest
in CRP, particularly as it was so easy to measure. An avalanche
of epidemiological and experimental observations followed,
purporting to show that CRP is a pro-atherogenic risk factor for
cardiovascular disease. We were initially enthusiastic but it was
soon clear that the early observational epidemiology cohorts had
grossly overestimated the significance of the association. They
included large total numbers of subjects but only small numbers
of cardiovascular disease events, and their interpretation was
then flawed by remorseless conflation of the overestimated
association with causality. Poorly controlled experimental work
purporting to show atherogenic activities of CRP was also badly
flawed by use of uncharacterized and often contaminated CRP
preparations. It soon became clear there was no evidence for
causality of CRP in cardiovascular disease, as detailed in our
extensive critical reviews (35, 135, 136). Appropriately large
scale observational epidemiology firmly established that baseline
CRP values are actually only a very modest risk marker for
cardiovascular disease (137, 138) and Mendelian randomization
studies proved that CRP itself is definitely not a causative
risk factor (139). In addition to many unequivocally negative
experimental in vitro and in vivo studies (35, 135, 136), we finally
showed that direct infusion of pharmaceutical grade authentic
cGMP human CRP had no pro-inflammatory effects in healthy
volunteers (62) in contrast to the pro-inflammatory effect of
recombinant CRP made in E. coli!

In contrast to the now discredited idea that CRP is pro-
atherogenic, the evidence for a role of CRP in exacerbation of pre-
existing ischemic and other tissue injury is robust. Complement
has long been known to be responsible for the inflammatory
neutrophil infiltrate that characterizes experimental acute
myocardial infarction (140) and it had been speculated that CRP,
via its capacity to activate complement after binding to its ligands
in vivo, might exacerbate tissue damage (141–145). In 1999 we
were the first to actually demonstrate this in vivo, using the
rat acute myocardial infarction model (24). Although rat CRP
circulates at very high concentration in normal healthy animals,
rat CRP does not activate rat complement whereas human CRP
activates both human and rat complement (26). Rat thus provide
an excellent model for investigation of the effects of human
CRP in humans. Administration of isolated pure human CRP
to rats following ligation of the coronary artery substantially
increased the size of the resulting myocardial infarct and human
CRP was co-deposited with rat complement on and around the
infarcted tissue (24). Crucially, the exacerbation of injury by
human CRP was completely abrogated by prior depletion of C3
using cobra venom factor (24). The CRP effect was thus totally
complement dependent. We subsequently showed that human
CRP also increased cerebral infarct size in the rat middle cerebral
artery occlusion model (146).

Having identified and validated human CRP as a therapeutic
target, we designed novel bis(phosphocholine)-alkanes as
inhibitors of ligand binding by human CRP in vivo. These
ligands for CRP were based on our knowledge of the 3D X-ray
crystal structure of the CRP-phosphocholine complex (31) and
our experience with miridesap, hexanoyl-bis(D-proline), the
SAP inhibitor drug (72). We showed that bis(phosphocholine)-
hexane (32) and bis(phosphocholine)-octane (unpublished)
completely abrogated the enhancement of tissue damage caused
by human CRP in the rat acute myocardial infarction model.
Binding of human CRP to these compounds inhibits CRP
binding to other ligands, though it does not accelerate clearance
of CRP from the circulation as miridesap does with human SAP.

Exacerbation by CRP of ischemic and inflammatory tissue
injury in various different animal models has been independently
confirmed by other groups. Abrogation of the pathogenic
CRP effect has also been replicated with our compound,
bis(phosphocholine)-hexane, and by suppression of CRP
production with antisense oligonucleotides, and by using CRP
apheresis to remove circulating CRP (147–154).

The cross linking of pairs of CRP molecules by five
bis(phosphocholine)-alkane molecules markedly stabilizes the
non-covalent homopentameric assembly of native human CRP,
preventing denaturation and the release of protomers. However,
in the absence of calcium or of calcium dependent ligand
binding, denatured CRP can dissociate in vitro to release free
protomers, so-called monomeric or “mCRP,” that bear specific
neoepitopes. Based on ex vivo immunohistochemical detection
of these epitopes, it has been asserted that mCRP products
of CRP denaturation mediate the pro-inflammatory effects of
CRP in vivo (155). Inhibition by bis(phosphocholine)-hexane of
CRP-mediated inflammation has then been attributed exclusively
to stabilization of native CRP (155), curiously ignoring
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our unequivocal demonstration of the absolute complement
dependence of the pro-inflammatory actions of human CRP
in vivo (24). Fortunately this oversight and mechanistic
disagreement have no practical importance as the avid binding of
our palindromic CRP inhibitor ligands, designed to prevent CRP-
mediated complement activation in vivo, inevitably also robustly
stabilizes the native pentameric CRP structure.

The bis(phosphocholine)-alkanes are well tolerated and
would have been suitable for development as infusional drugs
but it was not possible to synthesize and purify them at
scale. We have therefore designed new, different and more
potent inhibitors of CRP binding and are currently working
toward candidate selection for clinical development. Clinical
observations are consistent with the experimental evidence
that high circulating CRP concentrations exacerbate pre-
existing tissue damage. For example, higher CRP values
during and after acute myocardial infarction are strongly
associated with poor prognosis overall, including more extensive
myocardial injury, impaired cardiac function and progression
to heart failure (156). The same is true in a wide range
of other tissue damaging ischaemic, inflammatory, infective,
traumatic and malignant conditions. There are thus likely to
be many indications for therapeutic use of CRP inhibitor
drugs.

CONCLUSIONS

The range of physiological and pathophysiological roles of
the pentraxins remains incompletely understood. Their gene
and amino acid sequences, and very characteristic molecular
assembly, are highly conserved in phylogeny and there are no
human genetic deficiencies or even isoforms, and yet there are
major differences in behavior and properties between even closely
related species. The pentraxins thus display a fascinating, and so
far unexplained, mixture of conservation and plasticity in a single
protein family. However, regardless of their normal roles, both
human CRP and SAP have become extremely useful in clinical
diagnosis and monitoring of disease. CRP assay is one of the
most widely used clinical chemistry tests and SAP scintigraphy
has transformed understanding and optimal management of
systemic amyloidosis. Importantly, human CRP and SAP are

also therapeutic targets for which the design and development of
potential new medicines are making exciting progress.
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C-reactive protein (CRP) is a member of the pentraxin family of proteins. These proteins

are highly conserved over the course of evolution being present as far back as 250 million

years ago. Mammalian pentraxins are characterized by the presence of five identical non-

covalently linked subunits. Each subunit has a structurally conserved site for calcium-

dependent ligand binding. The biological activities of the pentraxins established over

many years include the ability to mediate opsonization for phagocytosis and complement

activation. Pentraxins have an important role in protection from infection from pathogenic

bacteria, and regulation of the inflammatory response. It was recognized early on

that some of these functions are mediated by activation of the classical complement

pathway through C1q. However, experimental evidence suggested that cellular receptors

for pentraxins also play a role in phagocytosis. More recent experimental evidence

indicates a direct link between pentraxins and Fc receptors. The Fc receptors were

first identified as the major receptors for immunoglobulins. The avidity of the interaction

between IgG complexes and Fc receptors is greatly enhanced when multivalent ligands

interact with the IgG binding sites and activation of signaling pathways requires Fc

receptor crosslinking. Human pentraxins bind and activate human and mouse IgG

receptors, FcγRI and FcγRII, and the human IgA receptor, FcαRI. The affinities of the

interactions between Fc receptors and pentraxins in solution and on cell surfaces are

similar to antibody binding to low affinity Fc receptors. Crystallographic and mutagenesis

studies have defined the structural features of these interactions and determined the

stoichiometry of binding as one-to-one. Pentraxin aggregation or binding to multivalent

ligands increases the avidity of binding and results in activation of these receptors

for phagocytosis and cytokine synthesis. This review will discuss the structural and

functional characteristics of pentraxin Fc receptor interactions and their implications for

host defense and inflammation.
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INTRODUCTION

Pentraxins are an ancient family of serum proteins that are
part of the innate immune system. Pentraxins are defined
by a homologous pentraxin (PTX) domain of ∼200 amino
acids that contains a calcium-dependent ligand-binding site.
The two classical pentraxins, C-reactive protein (CRP) and
serum amyloid P component (SAP) are composed of non-
covalently linked subunits arranged in a planar cyclic pentamer
or hexamer (Figure 1) (1). Both CRP and SAP are present in
most mammalian species and are represented in evolution as
early as the horseshoe crab. A group of proteins designated “long”
pentraxins contains the PTX domain along with an additional N-
terminal domain (2, 3). This review will focus on the classical
or “short” pentraxins, CRP, and SAP, and more specifically the
mouse and human proteins and receptors, where the most
complete functional studies of CRP and SAP have been done
(4, 5).

Pentraxins are pattern-recognition molecules with specificity
for damaged cell membranes, nuclear components and microbial
antigens (Table 1 comparing CRP and SAP) (6–9). The
prototypic ligand for CRP is phosphocholine (PC) (Figure 1).
SAP binds phosphoethanolamine (PE) and a number of other
ligands, including microbial polysaccharides. CRP was first
characterized and named for its binding to the cell wall C-
polysaccharide of Streptococcus pneumoniae. SAP was initially
identified as the precursor for a shared component of amyloid.
Each subunit has a single ligand binding site allowing multivalent
binding on one face of the pentamer. Multivalent binding by
pentraxins initiates complement activation through the classical
pathway (10) and promotes recognition and activation of cellular
receptors.

CRP and SAP are serum proteins, synthesized in the liver,
but differ from each other in expression as well as binding
specificity. In humans, SAP is expressed constitutively at
moderate concentrations (30µg/ml) whereas CRP is an acute
phase protein that increases dramatically in concentration from
<1µg/ml to several hundred µg/ml during acute inflammation.
In the mouse CRP is only found at low concentrations and SAP
is an acute phase reactant (11, 12) (Table 1).

Immunoglobulin Fc receptors (FcRs) expressed primarily on
hematopoietic cells provide essential links between antibody
and cellular responses (13, 14). FcR are named for their
specificity for different isotypes of immunoglobulins. Structurally
IgG receptors, FcγR, as well as the IgE receptor, FcεRI, and
the IgA receptor, FcαRI, are members of the immunoglobulin
superfamily with two or three C2-type immunoglobulin-like
extracellular domains (Figure 2). There are multiple human
FcγR including the high affinity receptor FcγRI, and several
low affinity receptors, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb,
that differ in cell expression and associated signaling pathways.
Despite a high degree of sequence identify in their extracellular
domains, FcγR have distinct IgG subtype specificities as well
as differences in affinity for IgG. FcγR crosslinking is required
for signaling through either activating motifs (immunoreceptor
tyrosine-based activation motifs, ITAM) or inhibitory motifs
(immunoreceptor tyrosine-based inhibitory motifs, ITIM) found

in receptor cytoplasmic domains or associated signaling chains
(Figure 2). This restricts cellular responses such as phagocytosis,
cytokine synthesis, and cytolysis to IgG in complex with
multivalent antigen. Several structures of the extracellular
portions of FcR have been published and similar modes of
binding to immunoglobulin Fc domains have been defined
(15–19). In all cases, one Fc receptor interacts with both
heavy chains of Fc asymmetrically in the lower hinge region
of IgG between CH1 and CH2 domains (Figure 3). This
Fc receptor binding induces a conformational change in the
relative orientation of the two antibody heavy chain CH2
domains, such that the two-fold symmetrically positioned CH2
domains observed in the receptor-free antibody structures
become asymmetrically positioned to the bound Fc receptor. This
obligates immune complex formation as the means for antigen
aggregation.

IDENTIFICATION OF FCγ RECEPTORS AS
PENTRAXIN RECEPTORS

Opsonization of bacteria and complement activation were
the earliest recognized activities of CRP (10, 20). Using C-
polysaccharide-coated erythrocytes as targets, CRP was shown
to promote phagocytosis both directly and via complement
activation (21). CRP-dependent phagocytosis was inhibited by
aggregated IgG. Despite these functional data, identification
of the cellular receptors for CRP was controversial for many
years. These studies were complicated by the expression of
multiple FcγR on different hematopoietic cells. A comparison
of the presence of different FcγR on cells with CRP receptors
suggested that human FcγRIIa was a major CRP receptor.
The recognition between pentraxins and FcγR were established
using COS cells transfected with FcγRI and FcγRIIa (22),
demonstrating FcγRIIa as the primary CRP receptor on human
monocytes (23). Additional studies found that SAP also bound
to FcγR to promote phagocytosis (24). In subsequent studies
both human CRP and SAP bound and activated human and
mouse FcγR onmonocytes, macrophages and neutrophils (4, 25).
Interestingly, CRP binding to FcγRIIa, the predominant receptor
on neutrophils and monocytes, was found to be allele-specific
(26). FcγRIIa is found in two allelic variants, which differ in a
single amino acid (R orH) at position 131. CRP binding is specific
for the R variant whereas IgG binds with higher affinity to the H
allelic form.

STRUCTURAL RECOGNITION OF
PENTRAXINS BY FCγ RECEPTORS

Using a solution BIAcore-based binding assay, the binding
affinities between CRP, SAP, and the long pentraxin PTX3
and FcγR were examined systematically (Table 2). The results
showed both a general∼µM binding affinity between pentraxins
and FcγR as well as isoform dependent differences (25).
Solution studies using isothermal calorimetry established the
affinity for the CRP-FcγRIIa interaction as 4µM with a
stoichiometry of 1:1. As previously seen in experiments
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FIGURE 1 | Structure of pentraxins. (A) Pentameric structure of CRP. The ridge helix is highlighted in green and the bound phosphocholine molecules are shown in

bold sticks. (B) Pentameric structure of SAP with ridge helix highlighted in red. (C) structural superposition of CRP and SAP (Protein Data Bank ID: 1B09, 1SAC).

with peripheral blood cells from FcγRIIa-typed individuals,
CRP recognition of FcγRIIa was limited to the R allelic
variant.

Structural characteristics of the interaction between
pentraxins and FcγRs were determined from the crystal
structure of the complex between human SAP and FcγRIIa
(Figure 3) (25). FcγRIIa docks across the face of SAP opposite
the ligand binding face contacting two of the five pentraxin
subunits. The diagonal docking structure of FcR on SAP
precludes additional receptor from binding to the pentraxin
and ensures a 1:1 stoichiometry between the pentraxin and the
receptor despite the presence of five identical receptor binding
epitopes. There are no significant conformational changes
in either SAP or the receptor. The contact area of the two
SAP subunits is approximately equal and similar residues are
involved, including Tyr 173 and Gln 174 from the ridge helix and
residues 200–204 from the C-terminus. Since Fc receptors have a
shared structural fold consisting of two tandem Ig-like domains
and CRP and SAP share a cyclic pentameric structure, it is likely
that the characteristics of the SAP-FcγRIIa co-crystal apply
to other pentraxin-FcγR interactions. This mode of binding
for CRP to FcγR is consistent with mutations of the putative

interface residues Tyr 175 and Leu 176 of CRP impaired FcR
binding (27).

The pentraxin binding partially overlap with the IgG
binding sites on the receptor. This is consistent with cellular
studies showing the inhibition of CRP and SAP function by
IgG.

ACTIVATION OF FCγR BY PENTRAXINS

Pentraxin binding to peripheral blood cells leads to signaling,
opsonization and cytokine production. The opsonic activity
of CRP was recognized soon after its discovery as a
pneumococcal binding protein. CRP increased phagocytosis
of C-polysaccharide coated erythrocytes by both complement-
dependent and complement-independent mechanisms (21).
Aggregated IgG inhibited CRP-dependent phagocytosis. More
recently, the direct participation of FcγR in pentraxin-mediated
phagocytosis was shown by the co-localization of FcγRIIa with
CRP and SAP-opsonized zymosan during phagocytosis by
human macrophages. The pentraxin-opsonized zymosan uptake
was inhibited by human IgG (25).
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TABLE 1 | Comparison between CRP and SAP in human and mouse.

Human CRP Human SAP Mouse CRP Mouse SAP

Pentameric structure Yes Yes Yes Yes

Calcium-dependent ligand binding Yes Yes Yes Yes

Ligands PC, C-polysaccharide PE, LPS PC, C-polysaccharide PE, LPS

Nuclear antigen binding snRNP, histones DNA, chromatin Unknown Unknown

Found in amyloid No Yes No Yes

Acute phase reactant Yes No No Yes

Baseline concentration <1µg/ml 30µg/ml <1µg/ml 10–100µg/ml varies by strain

FcγR binding Yes Yes Not measured Not measured

FcαR binding Yes Yes Not measured Not measured

FIGURE 2 | A schematic representation of FcγRs and FcαRI on the cell surface. Each tyrosine residue on the cytoplasmic immuno-tyrosine activating motif (ITAM) or

immune-tyrosine inhibitory motif (ITIM) are represented by a cylinder. The orientation of each Ig domain in different Fc receptors is based on the structural

superposition of the second Ig domain (D2) (Protein Data Bank ID: 3RJD, 1FCG, 2FCB,3AY4, and 1UCT).

Pentraxins also affect leukocyte cytokine production. Many
of the ligands for CRP and SAP directly activated toll-like
receptors (TLR), and CRP enhanced proinflammatory cytokine
production by human peripheral blood mononuclear cells
(PBMC) responding to S. pneumonia (28). Cytokine responses
of PBMC from individuals homozygous for the R-131 allele of
FcγRIIa were more affected by CRP than responses of PBMC
from individuals homozygous for the H-131 allele. The ability of
SAP to induce cytokines (IL-6, IL-8, IL-10) independently of TLR
activation was shown using macrophages from mice genetically
deficient in Myd88 or RIP2 to prevent TLR and NOD pathway
signaling (25).

Additional in vitro activities of pentraxins mediated through
FcγR are under further investigation. A limiting role for CRP
in dendritic cell maturation and T cell activation in a mouse
model of experimental autoimmune encephalomyelitis (EAE)
was shown to require the inhibitory receptor FcγRIIb (29). Anti-
inflammatory and anti-fibrotic activities of SAP on neutrophils
and monocyte/macrophage differentiation mediated through
FcγR have been reviewed recently (30). The development of
SAP as a therapeutic agent for renal and pulmonary fibrosis is
discussed further below.

BINDING AND ACTIVATION OF FCαR BY
PENTRAXINS

While FcγRs mediate cellular function of IgG, FcαRI, and
FcεRI are high affinity receptors for IgA and IgE, respectively.
Both FcαRI and FcεRI consist of two tandem C2-type Ig
domains that structurally resemble members of FcγRs (Figure 2).
The conserved structures of the pentraxins and the shared
structural folds of FcR raise the possibility of a broad recognition
between pentraxins and FcR. Indeed, FcαRI but not FcεRI
showed binding to CRP and SAP in solution (Table 2) (31).
Although the in vivo relevance remains to be established,
much of the functional evidence for pentraxin interaction
with FcαRI were shown using FcαRI transfected RBL (Rat
Basophilic Leukemia) cells. CRP not only bound FcαRI on
transfected cells, crosslinking by CRP induced ERK (extracellular
signal-regulated kinase) phosphorylation, degranulation, and
cytokine production in transfected RBL cells. In addition, CRP
induced surface expression of FcαRI on neutrophils, resulting in
phagocytosis and TNF-α production (31). Interestingly, FcαRI is
structurally more similar to members of inhibitory NK receptor
(KIRs) rather than FcγRs. In particular, the juxtaposition of the
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FIGURE 3 | Binding mode between Fcγ receptors and pentraxins or IgG antibody. (A) The FcγR-IgG Fc interaction was represented by FcγRIIIA-IgG1 Fc complex

structure (PDB ID: 1T83). (B) The complex structure between SAP and FcγRIIA(PDB ID: 3D5O). (C,D) Schematic representation of the interaction between

pentraxin-FcγRIIa, IgG1 Fc-FcγRIIa, or FcγRIII. The interfaces are highlighted in shaded red or black circles. (E) Binding sites of FcγRIIA on SAP in crystal structure

(PDB ID: 3D5O).

two Ig domains on FcαRI is opposite to that of FcγRs (Figure 2).
In addition, the IgA binding by FcαRI is also distinct from that
of IgG binding by FcγRs. Unlike FcγRs which bind to the lower
hinge region of IgG, FcαRI recognizes the membrane proximal
region of IgA CH3 domain (Figure 4) (32). The IgA binding
epitope on FcαRI involves the receptor N-terminal D1 domain
rather than the IgG recognition by the D2 domain of FcγRs. As
a result of the structural difference, CRP binding site on FcαRI
appears distinct to that of CRP binding site on FcγRs. Subsequent
alanine mutations on the receptor have indicated a number of
FcαRI residues important for the pentraxin binding. They include
Y35, R48, E49, and R82 on the receptor D1 domain, that partially
overlaps with the receptor IgA binding site (Figure 4) (33).

PENTRAXIN ACTIVATION OF FCγR IN VIVO

In vivo functions of pentraxins have primarily been studied in
mouse models using human injected or transgenic human CRP.
Mice genetically deficient in individual FcγR or complement
components have been used to delineate the role of FcγR in
these functional settings. Human CRP and human SAP were

TABLE 2 | Binding affinity between pentraxins and human Fc receptors in solution

(25).

Dissociation constants Kd (µM)

CRP SAP PTX3 IgG1 IgA

FcγRI 3.2 0.5 n.d. 0.03 –

FcγRIIa 1.9 1.4 19 0.32 –

FcγRIIb 4.1 1.2 n.d. 0.64 –

FcγRIII 4.1 2.9 1.6 0.38 –

FcαRI 2.8 3.2 n.d. – 0.12

n.d. means Not detectable.

shown to mediate phagocytosis through mouse FcγRs (34). In
these studies CRP opsonization was mediated by mouse FcγRI.
SAP opsonization was mediated by mouse FcγRI and FcγRIII.
CRP effects in the mouse may also be mediated by the inhibitory
receptor FcγRIIb as described below. Mouse pentraxin binding
to mouse FcγRs has not been studied due to the very low levels of
expression of CRP in the mouse.
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FIGURE 4 | Binding mode between FcαRI and pentraxins or IgA antibody.

(A) The binding sites identified by site-directed mutagenesis between CRP

and FcαRI were indicated by red circles on D1 and D2 domain of FcαRI.

(B) The complex structure between FcαRI and IgA Fc(PDB ID: 1OW0).

(C) Schematic representation of the interaction between pentraxin-FcαRI

based on site-directed mutagenesis and docking studies. (D) Schematic

representation of the interaction between IgA Fc-FcαRI in crystal structure

(PDB ID: 1OW0). The interfaces are highlighted in shaded red or black circles.

The protective role of CRP in pneumococcal Infection was
first described in 1989 (35). Mice injected with human CRP
were protected from lethal infection with type III or type IV
S. pneumoniae. These findings have been reproduced using
mice transgenic for human CRP. More recently, the relative
contributions of complement and FcγR were investigated in
CRP-mediated protection from pneumococcal infection (36).
CRP was protective in mice genetically deficient in individual or
multiple FcγR. However, CRP did not protect C3 or C4-deficient
mice from S. pneumoniae.

In contrast to the results in pneumococcal infection, CRP
protection in a mouse model of endotoxin shock was completely
dependent on FcγR (37). It had previously been shown by others
that mice transgenic for rabbit CRP or injected with human
CRP, but not SAP were resistant to high dose endotoxin lethality
(38). In our studies CRP protected wild type mice, but not
mice genetically deficient in the FcR γ-chain. Injection of CRP
increased serum levels of the anti-inflammatory cytokine IL-10
in wild type, but not γ-chain deficient mice. Mice deficient in

FcR γ-chain lack expression of all activating FcγRs, including
FcγRI, FcγRIII, and FcγRIV. An additional role for the regulatory
FcγRIIb was found in these studies. Mice deficient in FcγRIIb
had similar sensitivity to endotoxin shock as wild type mice.
However, CRP treatment of FcγRIIb-deficient mice increased
their sensitivity to endotoxin shock that was associated with
greatly increased serum levels of the pro-inflammatory cytokines
TNF-α and IL-12. These results suggest a complex interaction
between CRP and FcγR in the regulation of the inflammatory
response generated through TLR in response to endotoxin.

A possible clinical correlate of these experiments was found in
a study of patients who were hospitalized following severe trauma
(39). Patients expressing the CRP-binding allele of FcγRIIa (R-
131) were at decreased risk of sepsis and maintained greater
MHC class II expression on monocytes in the period following
traumatic injury. Decreased class II expression is associated
with poor monocyte activation and increased susceptibility to
infection in patients following traumatic injury.

Mouse models of immune thrombocytopenic purpura (ITP)
have been used extensively to study IgG-FcγR interactions in
immune complex and autoimmune disease. Injection of anti-
platelet antibodies (rat monoclonal anti-mouse CD41) induces
platelet clearance over a period of 24 h with recovery by 48 h.
Injection of either human CRP or human IgG (IVIG) prevented
platelet depletion in this model and protection was also seen
following transfer of CRP-treated spleen cells (40). The transfer
ITP model was used to identify the cells and receptors required
for CRP effects on immune complex disease. The results showed
that CRP treated splenic or bone marrow-derived macrophages
transferred suppression and that FcγRI and syk activation were
required in the donor cells. The protective effect of CRP and
CRP-treated macrophages required FcγRIIb in the recipient mice
similar to IVIG-mediated suppression of ITP (41).

CRP injection was also protective in immune complex
mediated-nephritis (42). Nephrotoxic nephritis (NTN) was
induced by immunizing mice with rabbit IgG followed by
injection of rabbit antibody to mouse glomerular basement
membrane. CRP was protective in this model by an FcγRI,
macrophage, and IL-10 dependent pathway, similar to what was
found in the endotoxin shock model.

Together these studies demonstrate that CRP can activate
macrophages through FcγR to regulate inflammatory responses.
In contrast CRP protection against S. pneumoniae infection is
primarily mediated by complement activation.

Effects of either injected or transgenic CRP have also been seen
in more complex autoimmune mouse models (43–45). Injected
CRP prevented and treated renal disease in two mouse models
of SLE (NZBxNZW F1, and MRL/lpr) similar to its effects in
NTN. NZBxNZW F1 mice expressing CRP from a transgene
showed delayed development of disease. In these cases, the
mechanisms of protection are likely to be complex and have not
been fully determined. Overproduction of type I interferon by
plasmacytoid dendritic cells in response to immune complexes
containing autoantibodies and nuclear antigens is an important
contributor to SLE. We recently showed that CRP inhibits
interferon production by purified human pDC responding to
immune complexes containing lupus autoantibodies and nuclear
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antigens (46). pDC express FcγRIIa which mediates uptake
of immune complexes that stimulate the type I IFN response
through intracellular TLR (47).

Experimental autoimmune encephalomyelitis (EAE) is a
model for multiple sclerosis and has been studied extensively as
a T cell-mediated autoimmune disease. CRP expressed from a
transgene is protective in mouse EAE by shifting the phenotype
of autoimmune T cells fromTH1 to TH2 (48).More recently, CRP
was found to inhibit dendritic cell maturation thereby decreasing
antigen-driven T cell activation. The effect of CRP on dendritic
cells and its effect on EAE in vivo required the inhibitory receptor,
FcγRIIb (29).

SAP also regulates the inflammatory response by binding
to FcγR. SAP promotes phagocytosis and enhances cytokine
production by monocytes and macrophages through activating
FcγR as described above. In addition, SAP was identified as
a serum factor responsible for inhibiting the differentiation
PBMC into fibrocytes, and this effect was inhibited by aggregated
IgG (49). In vivo SAP attenuated fibrosis in both renal
and pulmonary models by regulating macrophage polarization
(30, 50). Recombinant human SAP is currently in phase II
clinical trials for the treatment of myelofibrosis and idiopathic
pulmonary fibrosis (51).

CONCLUSION

Pentraxins are serum acute phase proteins conserved throughout
the animal kingdom. While they are known to activate

complement to provide innate immunity against infections,
recent work established their role in activating cellular immune
functions. Members of the pentraxin family can crosslink
and activate a subgroup of Fc receptors upon opsonization,
similar to Fc receptor activation by immune-complexes.
Because of their ability to activate both soluble and cellular
immune responses and their inflammatory nature, pentraxins
interface innate, and adaptive immunity. These features are
essentially shared with antibodies. However, while antibodies
are highly restricted to individual antigenic epitopes, pentraxins
are pattern recognition receptors with broad specificity for
microbial glycans. They are therefore not redundant but
complementary to each other in providing host immune
surveillance.
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Follicular development is a highly coordinated process that in humans takes more than

6 months. Pituitary gonadotropins and a variety of locally produced growth factors and

cytokines are involved in determining a precise sequence of changes in cell metabolism,

proliferation, vascularization, and matrix remodeling in order to obtain a follicle with

full ovulatory and steroidogenic capability. A low-grade inflammation can alter such

processes leading to premature arrest of follicular growth and female reproductive

failure. On the other hand, factors that are involved in inflammatory response as well

as in innate immunity are physiologically upregulated in the follicle at the final stage of

maturation and play an essential role in ovulation and fertilization. The generation of

pentraxin 3 (PTX3) deficient mice provided the first evidence that this humoral pattern

recognition molecule of the innate immunity has a non-redundant role in female fertility.

The expression, localization, and molecular interactions of PTX3 in the periovulatory

follicle have been extensively studied in the last 10 years. In this review, we summarize

findings demonstrating that PTX3 is synthesized before ovulation by cells surrounding

the oocyte and actively participates in the organization of the hyaluronan-rich provisional

matrix required for successful fertilization. Data in humans tend to confirm these findings,

indicating PTX3 as a biomarker of oocyte quality. Moreover, we discuss the emerging

evidence that in humans altered PTX3 systemic levels, determined by genetic variations

and/or low-grade chronic inflammation, can also impact the growth and development of

the follicle and affect the incidence of ovarian disorders.

Keywords: PTX3, fertility, PCOS, ovarian disorders, theca cells, follicle growth, cumulus matrix

INTRODUCTION

The ovary is the organ assigned to the cyclic production of a mature egg as well as of
steroid hormones that, acting locally and systemically, influence female fertility and metabolic
activity of many tissues. These functions are accomplished by ovarian follicles in which
growth and maturation of the oocyte occur in parallel with proliferation and differentiation
of epithelial somatic cells, named granulosa cells. During its development, the follicle
induces the formation of a specialized connective tissue, the theca layer, which organizes
an extended network of blood vessels supplying the avascular multilayered follicle cells with
nutrients, oxygen, and pituitary gonadotropins. Theca cells are also directly involved in the
ovarian endocrine function producing androgens that granulosa cells convert to estrogens.
As expected in a connective tissue, immune cells are present in the theca layer of the
follicle and their number and type change at different follicle stages. Strong evidences
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indicate that the immune system plays an important role in the
physiology of the ovary (1). Depletion of macrophages/dendritic
cells in CD11c-diptheria toxin receptor transgenic mice resulted
in loss of ovarian vascular integrity, reduction in mature
follicles and impaired ovulation (2–4). Immune cells are also
essential for vasculature invasion of luteinized theca and
granulosa cells and for the formation of the corpus luteum
(2, 3, 5, 6). Of note, before ovulation also granulosa cells
acquire an inflammatory and immune–like phenotype producing
prostaglandins, inflammatory cytokines, chemokines, and innate
immune components that play an essential role in ovulation
and fertilization (7–9). Uncontrolled systemic pro-inflammatory
conditions alter ovarian homeostasis and have a negative impact
on follicular dynamics. Indeed, it has been proposed that
even a low-grade chronic inflammation and a small imbalance
between pro- and anti-inflammatory cytokines play a role in
the pathogenesis of polycystic ovarian syndrome (PCOS) (10,
11), characterized by follicle growth alteration and oligo or
anovulatory cycles.

Here we will review the ovarian expression and biological
function of pentraxin 3 (PTX3), a multifunctional protein
implicated in innate immunity response, regulation of
inflammation, angiogenesis and formation and remodeling
of the extracellular matrix.

THE LONG PENTRAXIN PTX3: GENE,

STRUCTURE AND LIGANDS

PTX3 is a glycoprotein assembled to form an octameric
complex stabilized by intermolecular disulfide bonds (12–14).
The primary sequence of PTX3 is highly conserved among
species and consists of two structural domains: a C-terminal
region showing homology with the classical short pentraxin C-
reactive protein (CRP) and serum amyloid P component (SAP),
and a unique N-terminal domain that has no homology with
any other known protein (15). The PTX3 gene is arranged in
three exons, with the first and second coding the signal peptide
and the N-terminal domain, and the third exon coding the C-
terminal pentraxin domain. PTX3 is released by peripheral blood
leukocytes and myeloid dendritic cells following stimulation
with pro-inflammatory cytokines (IL-1 and TNF-α), agonists
of TLR or microbial components (16). PTX3 production is
also stimulated in myeloid cells by the anti-inflammatory
cytokine IL-10, which is essential for damping inflammation
and preventing tissue damage (17). Human neutrophils store
PTX3 in lactoferrin-positive granules and rapidly release it at the
inflammatory site (18). Other cell types produce PTX3 locally
in response to inflammatory conditions and appropriate stimuli:
smooth muscle cells, fibroblasts, adipocytes, chondrocytes,
mesangial, endothelial, mesenchymal stroma cells, and ovarian
cells (19). PTX3 has multifunctional properties for its capacity to
interact with different types of ligands (19). In particular, PTX3
plays a non-redundant role in innate immunity by opsonizing
selected pathogens and binding and facilitating clearance of
apoptotic cells (20, 21). PTX3 modulates the inflammatory
reaction by binding elements of the complement cascade and

FIGURE 1 | Schematic representation of molecular interactions and functions

of PTX3 during folliculogenesis. SNP haplotypes of PTX3 and altered

circulating PTX3 levels in reproductive disorders suggest a role of PTX3 in the

control of ovarian immune milieu during follicle development. In the

preovulatory follicle, PTX3 is expressed by CCs and interacts with IαI and

TSG6 for organizing the HA matrix, which is essential for oocyte ovulation and

fertilization. After ovulation, PTX3 is expressed by stromal and endothelial cells

of the corpus luteum and, by sequestering FGF2, is involved in vasculature

involution during its regression. (CCs, cumulus cells; GCs, granulosa cells).

regulating complement activation. It interacts with surface-
bound C1q, ficolin 1, ficolin 2 and mannose binding lectin
and activates the classical and lectin complement pathways
(22–26). On the other hand, PTX3 modulates the alternative
complement pathway by recruiting the factor H and enhancing
the inactivation of C3b to iC3b, both recognized by the
leukocyte receptor CD11/CD18 (27, 28). Coating of microbes
and apoptotic cells by PTX3 would help phagocytosis during
infection and sterile inflammation without inducing excessive
complement activation and tissue harm. PTX3 also binds
Fibroblast Growth Factor-2 (FGF2) and sequesters the growth
factor in an inactive form, thus modulating angiogenesis in
various physio-pathological conditions (29). Interaction of PTX3
with plasminogen and fibrin in wounding or injured tissue
matrix has been recently demonstrated. It allows migration
of macrophages and mesenchymal stroma cells by promoting
pericellular fibrinolysis (30). PTX3 is expressed at specific sites
and times during the ovarian cycle and play different roles
(Figure 1).

PTX3 EXPRESSION IN THE OVARY

PTX3 is specifically expressed by a small group of granulosa
cells surrounding the oocyte, namely cumulus cells, following
LH or hCG stimulation of preovulatory follicles. This cell
subpopulation differs in many aspects from the majority of
granulosa cells and have different fate. Granulosa cells produce
PGE2 and a series of EGF-like growth factors and cytokines under
the LH/hCG stimulation. They upregulate proteolytic activity in
the theca, leading to matrix degradation, cell death and break at
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FIGURE 2 | Proposed model of PTX3/HC/TSG6/HA interactions in cumulus matrix. During cumulus matrix formation, the binding of HA-linked HCs to the multimeric

PTX3 molecule allows the crosslinking of several HA strands. TSG6, that catalyzes the transfer of HCs from CS of IαI to HA through the formation of an intermediate

complex (TSG6-HC), also binds to PTX3. These interactions facilitate the simultaneous and coordinated integration of HCs and PTX3 within the cumulus matrix. (CS,

chondroitin sulfate; LC, light chain; HC, heavy chain; HA, hyaluronan).

the site of follicle wall facing the ovarian surface (9). Conversely,
the oocyte modulates the response of cumulus cells to granulosa
cell-derived factors mentioned above thereby inducing these cells
to synthesize an extensive extracellular matrix, which facilitates
the oocyte release and in vivo fertilization (31–33) (Figure 1).
Mechanical analysis of the rheological properties of this matrix
by colloidal-probe atomic force microscopy showed that it is
extremely soft and with mucoelastic characteristics (34). The
main component of such peculiar matrix is hyaluronan (HA),
a long polysaccharide synthesized by HAS2 and organized
by proteins in a highly hydrated mesh-like structure, which
increases the space among the cells and consequently the overall
volume of the cumulus cell oocyte complex (COC) (35, 36). For
this characteristic, the process is named cumulus expansion.

PTX3 is one of the most upregulated genes by the oocyte
in the mouse cumulus cells before ovulation and is involved in
cumulus matrix formation (37). Deletion of Ptx3 gene in mice
results in female infertility for the failure of oocyte fertilization
due to ovulation of abnormal COCs. In COC ovulated by Ptx3
deficient mice cumulus cells appear to form a uniform unstable
mass, rather than surrounding a central positioned oocyte, and
quickly disperse in the oviduct (38). In vitro studies demonstrated
that Ptx3−/− COC induced to expand in vitro is able to synthesize
HA at the normal rate but this polymer is released into the
medium, instead being organized in a matrix. The normal matrix
phenotype can be restored in vitro by stimulating Ptx3−/− COCs
in the presence of the recombinant full length PTX3 (rhPTX3)
or the recombinant N-terminal region (rhNter-PTX3), but not
by the C-terminal fragment of the protein (39). Therefore,
although short pentraxins have the ability to bind to some
matrix components (40), the action of PTX3 is distinct being
fully exerted through the unique sequence of the molecule, then
assigning a specific role to PTX3 in HA matrix organization
(Figure 1).

PTX3 does not bind to HA but can bind to inter-α-trypsin
inhibitor (IαI) proteoglycan and tumor necrosis factor-inducible
gene 6 (TSG-6) protein (38, 39). The former is mainly synthesized
by the liver and circulating in the blood (41), while the latter is
synthesized by granulosa cells and cumulus cells concomitantly
to HA and PTX3 (38). IαI is a peculiar proteoglycan consisting
in a protein carrying one chondroitin sulfate (CS) chain, called
bikunin, to which two homologous proteins, named heavy chains
(HCs), are linked to the CS in the Golgi through an ester
bond (41). The increased vessel permeability in the periovulatory
follicle facilitates the diffusion of IαI in the follicular fluid
(42, 43) and the HCs are translocated from the CS to the
elongating HA polymers by TSG-6, which catalyzes the transfer
via a transesterification reaction. Blocking HC integration in the
cumulus matrix by the deletion of bikunin (which prevents the
assembly of intact IαI) or Tsg6 gene in mice produces female
sterility and cumulus matrix instability, as in Ptx3 null mice
(38, 44, 45). PTX3 does not influence the transfer of HCs to
HA, but it interacts with HCs in biological context as assessed by
co-localization and co-precipitation from COC matrix extracts
(39). In addition, the HC binding site resides in the PTX3 N-
terminal domain and a monoclonal antibody inhibiting their
interaction neutralizes full-length rhPTX3 in restoring normal
phenotype in Ptx3 deficient COCs (39). Site direct mutagenesis
of cysteines forming disulphide bonds revealed the relevance of
PTX3 multimeric state in matrix formation and suggested that
its octameric structure provides at least four binding sites for
HCs (12, 46). Thus, it has been hypothesized that multimeric
PTX3 might stabilize the HA network by binding several HCs
covalently linked to distinct HA molecules, acting as a “node”
(39, 46) (Figure 2). TSG-6 has an HA binding capacity and PTX3
has multiple binding sites for this protein, as found for HCs
(46, 47). However, several lines of evidence do not support the
possibility that TSG-6 directly participates in crosslinking HA.
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First, matrix formation is not inhibited by HA hexasaccharides
competing with the TSG-6 binding to HA (48). In agreement,
mutants of TSG-6 with highly reduced HA binding capacity do
support matrix assembly of Tsg-6 deficient COC in vitro (49).
Finally, during expansion, all TSG-6 molecules form covalent
complexes with individual HCs that act as intermediates in the
transfer reaction. On these bases, it has been proposed that
“the binding of TSG-6 to PTX3 might favor the interaction of
PTX3 with HCs committed to link with HA (those in TSG6-
HC complexes), leading to the integration of PTX3 into the
matrix at the same time as, and in coordinate fashion to, HCs”
(39) (Figure 2). This hypothesis found a strong support in an in
vitro binding assay where PTX3, IαI, and TSG-6 are added to
an immobilized HA film in a controlled sequence. The results
demonstrated that PTX3 can be incorporated into the HA film
only if it is pre-mixed with IαI and TSG-6 (47).

Interestingly, HA-HC-PTX3 complex is also formed in
human amniotic membrane and is reported to exert anti-
inflammatory and anti-scarring actions in inflamed tissues by
inhibiting M1 macrophages infiltration and further polarizing
them toward M2 phenotype (50). Then, it is possible that
HC-PTX3 interaction in the cumulus matrix, besides having a
structural role, could also protect the oocyte by dampening the
activity of leukocytes in the reproductive tracts and preserving
the microenvironment for optimal fertilization. The presence
of PTX3 in the cumulus matrix and in the follicular fluids
aspirated from patients undergoing IVF suggest that this
molecule might have the same role in human female fertility
(38).

Following the expulsion of the COC, theca cells, fibroblasts,
and endothelial cells invade the granulosa cell layers by
initiating the formation of the corpus luteum. Luteal theca and
granulosa cells produce progesterone, which sustains embryo
implantation. An intensive formation of blood vessels occurs
during the maturation of the corpus luteum producing one of
the greatest rates of blood flow of any tissue in the body (51).
In the absence of pregnancy, this gland loses its function and
structure and undergo to regression. Transcriptome analysis of
the bovine corpus luteum isolated from animals treated with
prostaglandin F2alpha, the physiological inducer of luteolysis
in most domestic animals and likely in primates, showed a
significant upregulation of PTX3 expression at the early stage
of luteal regression, concomitant with FGF2 expression. Either
luteal endothelial and steroidogenic cells showed this ability in
vitro (52, 53). It has been then suggested that PTX3 might
participate in the involution of microvasculature during corpus
luteum regression by sequestering FGF2 and preventing its
pro-angiogenic activity (53, 54) (Figure 1). In contrast, one
study performed in sheep reported that PTX3 expression is
downregulated during physiological regression of corpus luteum
while it is maintained in gravidic corpus luteum (55). If
these conflicting results depend on differences among species
or between physiological and experimental-induced luteolysis
remains to be determined. In any event, the evidence that PTX3
is expressed and modulated in the corpus luteum urges further
studies.

IMMUNE CELL-DERIVED PTX3 AND

HUMAN OVARIAN DISORDERS

Polycystic ovary syndrome (PCOS) is one of the most common
endocrine disorders affecting 5-10% of premenopausal women.
It is characterized by hyperandrogenism, oligo- anovulation
and polycystic ovary, often associated with obesity and
other metabolic dysfunctions (56). The syndrome is caused
by the pronounced increase in the number of small-mid
antral follicles (2–9mm) unable to complete the growth
(17–20mm) and proceed to maturation. Theca layer is
thicker and the cells produce an excess of androgens. Such
alteration in the development of ovarian follicles is associated
to low-grade inflammation (10, 11) and local infiltration
of immune cells in the theca layer (57–61). Of note, it
has been reported that the short CRP and classical pro-
inflammatory cytokines levels are slightly but significantly
elevated while the long PTX3 level is reduced in the blood
of PCOS and overweight women (62–67). Based on the
protective and anti-inflammatory role recently assigned to
PTX3 (68), it is likely that reduced PTX3 levels would
increase the sensitivity of the ovary to the inflammatory
status. In agreement, a lower level of circulating IL-10
was found in PCOS patients and linked to higher risk
to develop the ovarian hyperstimulation syndrome (69),
an exacerbated reaction to hormone stimulation in assisted
reproductive programs characterized by local and generalized
increased capillary permeability and enhanced production of
inflammatory cytokines by immune cells. These findings further
support the importance of appropriate balance of immune
cell types in controlling and promoting follicle development
(Figure 1).

The altered mechanisms underlying the excessive follicle
formation in PCOS has not been clearly understood. The
overexpression of LH receptor mRNA in granulosa cells and
under-expression of GDF9 by the oocyte in PCOS follicles
compared to normal follicles of the same size suggest a
premature terminal differentiation (70, 71) and closely resemble
the conditions promoting polyovulation and dizygotic twinning
in sheep (72, 73). Noteworthy, a study on PTX3 single-
nucleotide polymorphisms (SNPs) performed in Gambia, where
the dizygotic twinning incidence is the highest worldwide
(74), showed that a specific three SNP haplotype GAG (at
positions rs2305619, rs3816527 and rs1840680) is more frequent
in mothers of dizygotic twins compared to women without a
history of twinning (75). In addition, in another study performed
on Ghanaian women, the same haplotype positively correlates
with the number of children given birth during the lifetime
(76). Unfortunately, the twinning frequency was not analyzed
in this study, but Ghana is another African state with high
twinning incidence (77). Moreover, the GAG haplotype confers
resistance to Mycobacterium tuberculosis and decreased the risk
of pulmonary tuberculosis (78), indicating that the protein is
functional.

All together, these data indicate that altered expression of
PTX3 can influence the ovarian microenvironment and alter
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folliculogenesis, likely deregulating the fine-tuned inflammatory
milieu of the follicle (Figure 1).
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The complement is the first line of immune defense system involved in elimination of

invading pathogens and dying host cells. Its activation is mainly triggered by immune

complexes or pattern recognition molecules (PRMs) upon recognition against non-self

or altered self-cells, such as C1q, collectins, ficolins, and properdin. Recent findings

have interestingly shown that the pentraxins (C-reactive protein, CRP; serum-amyloid

P component, SAP; long pentraxin 3, PTX3) are involved in complement activation and

amplification via communication with complement initiation PRMs, but also complement

regulation via recruitment of complement regulators, for instance C4b binding protein

(C4BP) and factor H (fH). This review addresses the potential roles of the pentraxins in the

complement system during infection and inflammation, and emphasizes the underlining

implications of the pentraxins in the context of complement activation and regulation both

under physiological and pathological conditions.

Keywords: pentraxins, PTX3, CRP, SAP, collectin, the ficolins, complement activation, complement regulation

INTRODUCTION

The complement system is one of the ancient innate immune defense system, and can
evolutionarily be traced back from the sea urchins (1). In humans, the complement system was
initially discovered in 1895 as a heat-labile effector of antibody-mediated immunity. Since then,
complement has experienced more than 100 years to unveil its authentic features (2). Today,
complement is not only a driver of innate immunity, its functions even extend to additional
physiological and/or pathophysiological roles in immune surveillance and homeostasis far beyond
simple antimicrobial effector functions (3). Complement exerts its functions through effective rules
of activation and regulation under precise control of balance. The part of activation comprises
three routes: the classical pathway (CP), the lectin pathway (LP) and the alternative pathway
(AP) (Figure 1). However, the complement system has the potential to harm the host if it is not
properly controlled and regulated. Therefore, complement activation is precisely modulated in the
circulation and on the healthy host cells by exclusive fluid-phase and cell-bound regulators, which
are crucial in protecting host cells from complement over-activation (Figure 1).

PENTRAXINS: CRP, SAP, AND PTX3

Pentraxins are conserved multifunctional soluble pattern recognition molecules (PRMs)
characterized by a C-terminal pentraxin signature containing a conserved eight amino acid
sequence (13). Proteins of pentraxin family comprise three major members, C-reactive protein
(CRP), serum-amyloid P component (SAP), and pentraxin 3 (PTX3). Based on the primary
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FIGURE 1 | Classical model of complement activation and regulation. Complement activation occurs typically through three routes. Classical pathway activation is

triggered by the C1 complex comprising C1q, C1s, and C1r upon binding to IgM or clusters of IgG against pathogen-associated molecular patterns (PAMPs) or

damage-associated molecular patterns (DAMPs) (4). Lectin pathway activation is induced by soluble pattern recognition molecules (PRMs) mannose-binding lectin

(MBL) upon binding to PAMPs or DAMPs. It is now apparent that the ficolins (ficolin −1,−2, or−3) or collectins (collectin-10, collectin-11 or a heteromeric complex of

collectin-10 and collectin-11) are also involved in lectin pathway activation (5–9). Unlike C1q complexed with the serine proteases C1r and C1s, PRMs involving lectin

pathway activation are often associated with the mannose-binding lectin-associated serine proteases (MASPs). Upon classical and lectin pathway activation, the

serine proteases cleave C4 and C2 to form C3 convertase (C4b·C2a). In contrast, alternative pathway activation occurs by direct tick-over activation of C3 thioester in

solution regardless of trigger, and creates its own C3 convertase (C3b·Bb) when activated C3b covalently bind to the target surfaces in contact with factor B (fB) and

the enzyme factor D (fD) (10, 11). The alternative C3 convertase is highly stabilized when properdin is associated. With release of anaphylatoxin C3a, surface-bound

C3 convertases generate more opsonin C3b, leading to the formation of the classical and lectin pathway C5 convertase (C3b·C4b·C2a) and the alternative C5

convertase (C3b·Bb·C3b). The C5 convertase in turn cleaves C5 into another anaphylatoxin C5a and C5b. Surface-deposited C5b sequentially recruits complement

subunits C6, C7, C8, and C9 on target surface and initiates formation of C5b-9 membrane attack complex (MAC) also named the terminal complement complex (TCC)

which may lead to target lysis (3, 12). The alternative pathway also serves to amplify classical and lectin pathway activation. Fluid-phase and cell-bound regulators

help to modulate complement over-activation; C1 inhibitor (C1-INH) controls the functions of C1r, C1s and MASP-2; C3b and C4b are inactivated by either fluid-phase

factor H (fH)/C4b-binding protein (C4BP) or cell-bound complement receptor type 1 (CR1)/CD46 as cofactors for factor I (fI). Fluid-phase fH/C4BP or cell-bound

CR1/CD55 regulate convertase activity by disassembly through decay-accelerating activity of the regulators. The formation of MAC is controlled by CD59 (3).

structure of the protomer, CRP and SAP are distinguished as the
short pentraxins from the main long pentraxin PTX3 (14). The
genes encoding the short pentraxins (CRP/SAP) and the long

pentraxin (PTX3) are located on chromosome 1q23 and 3q25,
respectively. However, in contrast to the short pentraxins, which
are expressed in liver upon stimulation of inflammatory cytokine,
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the long pentraxin PTX3 is produced by diverse immune cells,
such asmacrophages, neutrophils, dendritic cells, and endothelial
cells (15). CRP is one of the major acute phase proteins in human,
and its level in plasma elevates by 1,000-fold via stimulation
of hepatocytes by acute phase stimulus. By contrast, PTX3
is barely detectable in human blood circulation (< 2 ng/ml)
under physiological conditions, while the serum level drastically
increases (200–800 ng/ml) within 6–8 h during infection and
inflammation (15). The pentraxins share the conserved C-
terminal pentraxin domain, whereas PTX3 harbors a unique
N-terminal region without sequence homology to any known
proteins so far (15).

The pentraxins recognize wide spectrum of microbial
moieties to mediate opsonophargocytosis, but also interact
with extracellular matrix (ECM) proteins to stabilize ECM
deposition and modified self-structures on dying host cells to
keep homeostasis (14). Concerning the antibody-like common
features conserved in evolution, the pentraxins mediate
phagocytosis and inflammation by macrophages via interaction
with the surface Fcγ receptors upon target opsonization (16–18).
Thus, the pentraxins are important for both innate immune
defense and tissue homeostasis (13, 14, 19).

PENTRAXINS-MEDIATED COMPLEMENT

CROSS-ACTIVATION

Decades of initial research have solidified complement
activation by three separate and autonomous routes as
described in Figure 1. The CP and LP activation are mainly
mediated by exclusive PRMs upon opsonization. Apart
from immunoglobulins and several other ligands the CP
is also activated via the antibody-like common features
of the pentraxins, where CRP, SAP, and PTX3 instead of
immunoglobulins recruit C1 complexes upon binding to target
surfaces (16, 20, 21). Following antigen stimulation, antibody
production often experiences complexity of multiple process
by B-cells via differentiation and proliferation and antibody
interaction is highly dependent on its antigen specificity. In
contrast, the pentraxins are either acute phase reactants under
infectious and inflammatory conditions or present constitutively
with invariant and high level, and broadly recognize the
common pattern moieties arising from microorganisms.
Therefore, pentraxins-mediated immune responses are often
mobilized rapidly and drastically in resistant to microbial
invasion and tissue damage, acting at systemic and local
tissue level. Although the antibody-like features have been
endowed with the pentraxins in evolution, it is still deficient in
antigen-exclusive antibody specificity. Considering complement
activation and the underlying functional consequences,
pentraxin-mediated initiation is much more rapid and efficient
than antibody-dependent responses during infection at early
stage (14).

As has been shown for C1q it has recently been shown
that the pentraxins interact with some of the PRMs from
LP, thus allowing CRP, SAP, and PTX3 to effectively dock at
certain bacteria through sensory inputs due to their spontaneous

defect in opsonization toward it (22). The interaction has been
shown to specifically elevate host immune defense via the
LP of complement activation against various microorganism
including bacteria and fungi, thus adapting to tricky pathogenic
conditions (22). More importantly, the CP and LP, which
were previously defined separate and autonomous, have been
demonstrated to establish cross-communication through the
interaction between the pentraxins and LP PRMs, enabling
amplification of complement activation and its concomitant anti-
microbial activity (23). In this respect, it should be emphasized
that the interaction between the pentraxins and LP PRMs not
only serves to boost complement activation, may also result in
broadening repertoire of pattern recognition and complement-
mediated effector functions via such synergistic effects (24).

The pentraxins are capable of selectively opsonizing certain
bacteria, fungi, and viruses (25), but not Candida albicans and
Burkholderia cepacia (26). However, the purified pentraxins
(PTX3 and SAP in particular, but not CRP) could bind to
Candida albicans only in the premise of presence of human
serum (27), implying that the presence of certain human serum
factor might enable anchorage of the pentraxins on Candida
albicans indirectly. Recent findings have shown that serum MBL
docks both PTX3 and SAP to Candida albicans, and that this
interaction enhances complement activation and the subsequent
opsonophagocytosis by polymorphonuclear leukocytes (PMN)
(27). Interaction of PTX3 with MBL leads to communication
between the LP and CP via C1q, whereas it is still enigma
how SAP:MBL complexes boost complement activation. These
findings suggest that crosstalk between the pentraxins and MBL
provides two potential complement amplification mechanisms
via cross-activation within the complement system (Figure 2).

It has been well documented that the complement system
plays a non-redundant role against Aspergillus fumigatus
infection (29). The state of complement deficiency is highly
susceptible to Aspergillus fumigatus infection and mice deficient
in C5 has been shown to be hardly survived (30, 31). Ficolin-
2 has been recently suggested to serve as a particular inducer
of anti-fungal activity through provoking the LP of complement
activation and/or regulating pro- and anti-inflammatory airway
immune responses in treatment of Aspergillus fumigatus
challenge (24, 32, 33). Ficolin-2 has been shown to recognize
Aspergillus fumigatus in a Ca2+-insensitive manner with stronger
binding at acidic pH (34, 35), which typically prevails in a
local infectious and inflammatory condition (36) and is required
to boost complement activity (37). Zhang et al. previously
reported that interaction of CRP with ficolin-2 is elevated in
an acidic pH-sensitive manner (23). These data suggest that
local prevalence of acidic circumstances may be essential to
trigger reciprocal interaction between ficolin-2 and CRP to
combat Aspergillus fumigatus at the early stage of infection.
Consistent with the previous reports, analysis of bronchoalveolar
lavage (BAL) fluid has attested presence of ficolin-2 in invasive
aspergillosis (IA)-suffering patients, and demonstrated a notable
roles of ficolin-2 in modulation of alveolar immune responses
against infection of Aspergillus fumigatus (35). In agreement
with those reports, Genster et al. recently found that mice
are vulnerable to fungal infection under the ficolin-deficient
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FIGURE 2 | Pentraxins-expanded network of complement activation and regulation. Classical pathway (CP) activation mainly occurs by immune complexes, but also

mediated through antibody-like features of the pentraxins in complex with C1q. In addition to the traditional activating fashion as depicted above, lectin pathway (LP)

is also indirectly activated by PTX3, CRP, or SAP upon recruitment of MBL or the ficolins. Cross-activation of the CP and LP initiates when heterocomplexes are

created on target surfaces between PTX3 (or CRP) and MBL (or ficolin-2) and C1q. Two additional activation pathways emerge to boost complement amplification.

The amplification pathways comprise the avenue open to the sequence below: target→ PTX3 (or CRP)→ ficolin-2/MASPs→ C4→ C3→ formation of membrane

attach complex (MAC) (amplification 1); target→ MBL (or ficolin-2/MASPs)→ PTX3 (or CRP) → C1q→ C4→ C3→ formation of MAC (amplification 2) (3). Alternative

pathway (AP) activation often occurs independently regardless of trigger by spontaneous C3 activation in solution, and rapidly propels nascent C3b binding to nearby

target surfaces covalently. In addition, it is hypothesized that surface-bound collectin-12 (CL-12) mediates CP activation by crosstalk with PTX3, CRP or SAP. A recent

emerging activation avenue follows relatively specific sequence that involves pattern recognition and opsonization by soluble CL-12→ recruitment of properdin→ de

novo C3 convertase assembly→ C3 amplification loop→ generation of downstream effector molecules→ induction of immune signaling (28). Despite its diverse

avenues, overarching concept of complement activation focuses on sensing and eliminating potential danger signals through immunesurveillance and immune effector

mechanisms. The pentraxins recognize major fluid-phase complement regulators, C4BP and fH, resulting in down-regulation of complement-mediated inflammation.

condition (38). These results suggest that serum ficolin-2 may
facilitate to elevate host immune responses at local sites of
pulmonary fungal infection via transmigration to alveoli and
thus play a crucial role in lung infection (35). Mice deficient in
PTX3 have shown increased susceptibility to invasive pulmonary
aspergillosis (IPA) and accelerated death compared with mock
control, which was attributed to the defect in fungicidal activities
against IPA in regard to opsonophagocytosis and activation of an
adaptive type 2 responses (39). In parallel with those evidences,
Cunha et al. intriguingly found a PTX3 single-nucleotide
polymorphisms (SNPs) in donors with a homozygous haplotype,

leading to increased vulnerability to invasive aspergillosis when
patients receives hematopoietic stem-cell transplantation from
such donors (39). These results suggest that PTX3 plays non-
redundant roles in antifungal immunity. In this respect, it should
be noted that collaboration of liver-derived CRP and immune
cell-expressed PTX3 with migratory ficolin-2 might also further
boost the microbicidal immune responses at systemic and local
tissue level, respectively, for instance through the complement
cross-activation and amplification mechanisms.

Recently, the pentraxins have been shown to interact
with CL-12, a newly identified scavenger receptor C-type
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lectin (SRCL) (40, 41). By using ELISA and CHO/ldlA7 cell lines
expressing transmembrane CL-12 as platform, the interaction of
the pentraxins with transmembrane CL-12 has been visualized.
It was shown a propensity of the pentraxins including CRP,
SAP, and PTX3 for direct binding of CL-12, and demonstrated
that the interaction is able to result in the CP of complement
activation via recruitment of C1q on HEK293 cell lines
expressing transmembrane CL-12 (42). However, whether this
is indeed a case on native CL-12-expressing primary cells,
for instance HUVEC or HUAEC, is still awaiting further
clarification. Nevertheless, a soluble form of CL-12 has recently
been identified and revealed to trigger AP of complement
activation through direct contact with properdin (28). Whether
the pentraxins interact with soluble form of CL-12 and expand
a novel complement crosstalk against invading pathogens is still
unknown.

PENTRAXINS IN COMPLEMENT

REGULATION

In general, complement activation is precisely modulated in the
circulation and on healthy host cells by exclusive soluble and cell-
bound regulators as described in Figure 1. Recent data show that
the pentraxins surveil and modulate the action of complement to
avoid overwhelming activation via interaction with complement
negative regulators. Like CRP and SAP, PTX3 is able to bind
the main fluid-phase regulator of the CP and LP C4BP. Similar
to the short pentraxins, PTX3 in solution preserve the cofactor
activity of C4BP for fI upon complex formation (43). When
anchored on apoptotic/necrotic cells and extracellular matrix
(ECM), PTX3 is capable of recruiting functionally active C4BP,
leading to complement C4b inactivation and reduced terminal
complement complex (TCC) deposition on the surfaces. Both
CRP and PTX3 have been observed to interact with fH, the main
soluble regulator of the AP, and the two PTX3 binding sites on fH
were defined to be located on fH short consensus repeat (SCR) 7
and SCR19-20 (44), of which the former is also employed for CRP
binding in addition to SCR8-11 (45, 46). fH was found to remain
its C3 inhibitory activity upon binding to the pentraxins, thus
preventing exaggerated AP mediated complement activation on
CRP or PTX3-immobilized surfaces. Therefore, the pentraxins
may target all the complement pathways by interaction with
C4BP and fH and they may assist in regulation of complement
activation to avoid the adverse effect of complement in tissues.

Mutations or polymorphisms of fH are associated with
the pathogenesis of various inflammatory human diseases, for
instance atypical hemolytic uremic syndrome (aHUS) and age-
related macular degeneration (AMD) due to dysregulation of
the AP. Interestingly, Tyr402His (a polymorphic amino acid
variant in SCR7 of fH), which is linked to high risk of aHUS
and AMD, influences the binding of CRP, but not PTX3-fH
interaction. Therefore, reduced CRP- fH Tyr402His interaction
might be involved in pathogenesis of the diseases due to
the complement-mediated increased inflammation, where PTX3
could compensate for these changes at the site of inflammation.
Kelly et al. previously showed that heparin sulfate inhibits the

AP through interaction with fH, and found that fH-mediated
C3b inactivation is highly dependent on heparin sulfate and
the degree of sulphation in the Bruch’s membrane (BrM) (47).
Thus, BrM/choroid, a site of tissue damage expressing abundant
heparin sulfate glycosaminoglycans in AMD, might be protected
by recruitment of fH under normal conditions. In addition, PTX3
stored inside BrM might also act as a second line protection
for mobilization of fH and modulate complement activation.
Given the following facts that (1) the binding site for heparin
on fH is overlapped with PTX3 to SCR19-20; (2) fH Tyr402His
influences the binding of heparin as compared with its wild type;
(3) PTX3 binds equally to both the variant and the wild type,
the state of PTX3 deficiency would impact on the patients more
with fH Tyr402His than its wild type, since the decline in fH
binding to heparin would not be supplied by reserved PTX3.
In this respect, it is worthy to note that since PTX3 is rapidly
and dramatically expressed as an acute phase reactant in the
retinal pigmented epithelium (RPE) in response to inflammatory
stimuli, the manifestations of fH Tyr402His might be veiled in
AMD. Interestingly, it has been recently substantiated that PTX3
serves to brake the complement and the subsequent NLRP3
inflammasome activation through regulation of fH in the RPE
(48).

Malignant cells have been previously shown to be monitored
and recognized by the complement system and the concomitant
complement activation often occurs in many cancers upon
recognition (49). However, the complement system has also been
suggested to have a role in the development of tumor promoting
inflammation and the intermediate product of complement
activation C5a has been shown to play a tumor-exacerbating
role via elevation of T cell suppression effect and CCL-2
production attracting tumor-associated macrophages (TAMs)
and favoring M2-like polarization by bone marrow-derived
suppressor cells (50, 51). PTX3 has recently been shown to
contribute in regulation of tumor growth, which was attributed
to its capacity in control of tumor promoting inflammation
through coordination with complement regulator fH (52). As
such PTX3 does seem to have a direct effect on tumor cell growth.
However, PTX3 deficient animals were more susceptible to
chemically induced mesenchymal and epithelial carcinogenesis
than control animals (52). PTX3 deficient tumors showed
enhanced complement C3 deposition and C5a levels, CCL2
production, and tumor-promoting macrophage recruitment,
which was attributed to dysregulated complement activation
since C3-genetic inactivation and CCL2 inhibition reverted the
phenotype and the increased susceptibility to mesenchymal
carcinogenesis in PTX3-deficient mice. These findings suggest
a crucial role of PTX3 in complement-dependent tumor-
related inflammation probably via fH recruitment. Lack of the
functional PTX3 and/or fH might exacerbate pathophysiological
consequences during tumor growth and development due to
complement dysregulation.

Apart from being a serum marker of systemic inflammation
CRP is also suggested to have a direct pathological role in tissues
in diseases, such as AMD (53, 54). CRP exists primarily in
two forms with distinct structure and biological activity, the
native pentameric CRP (pCRP) and monomeric CRP (mCRP),

Frontiers in Immunology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 304664

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ma and Garred Pentraxins in Complement Activation/Regulation

and circulates in the blood stream as a non-covalent, anti-
inflammatory pCRP, however when dissociated into mCRP upon
binding to certain cell and matrix surfaces, it becomes rather
pro-inflammatory (55). Given the findings that the majority
of CRP found in BrM is in monomeric form, although pCRP
will still be present in the blood vessels of the choroid in
vivo (53), mCRP is likely a tissue-associated form derived from
circulating pCRP. Accumulating evidences show that if fH is
dysfunctional mCRP activates the complement at retina/choroid
interface and leads to exacerbate chronic inflammation and
subsequent tissue damage (56), indicating the pivotal role of
pro-inflammatory mCRP-mediated complement activation and
regulation in normal conditions. In addition, fH has been shown
to interact with mCRP through its binding sites located in SCR
6-8 and SCR 19-20 regions, but not with pCRP (46, 57–61).

CONCLUDING REMARKS

The complement system is a double-edged sword, one toward to
eliminate danger signals and hostile intruders, while the other
is toward healthy self, which may lead to pathological situations
if it is not controlled properly. The pentraxins are involved in
both complement activation and regulation via crosstalk with
major complement initiating molecules (C1q, ficolin-2, MBL,
and CL-12) as well as complement regulators (C4BP and fH)
(Figure 2). The crosstalk events between the pentraxins and
the CP and LP PRMs have been recently highlighted for their
amplifying roles in immunosurveillance, anti-microbial immune
responses, and immunologic homeostasis. However, evidence
suggests immunopathogenicity of those cooperative events
in infectious inflammation if activated inappropriately, and
also emphasizes the potential deleterious impact on pathogen
immune evasion and development of complement-related
diseases. The pathogenic side of the potential functional
roles of PRM heterocomplexes and their involvement in
complement activation need to be further explored: whether
PRM heterocomplexes are involved in potent inducers of
immunopathology during infection and inflammation and how
it exacerbates disease severity are both intriguing unanswered
questions. Furthermore, recent work has focused on how the
pentraxins-mediated complement activation and regulation
influences and thus contributes to chronic inflammation,
which likely constructs a microenvironment for initiation and

development of complement-mediated pathology. Emerging
evidences discussed above reinforce the importance of the
pentraxins (CRP and PTX3 in particular) in complement
activation and regulation in the pathogenesis of age-associated
diseases and complement-dependent tumor-promoting
inflammation. Given the recent findings that novel collectin
11 or properdin-directed complement activation triggers acute
kidney injury, it is also interesting to determine whether and
how the pentraxins regulate or exacerbate complement-involved
renal injury upon complex formation with the inducers of
renal injury. After many years’ success of complement drug
applications in the treatment of complement-related diseases (ex.
PNH and aHUS), the future of the complement field becomes

much brighter and many of complement drugs are being
processed in preclinical and clinical stages of development in
current years. Pentraxins are recently positioning with renewed
focus as a novel therapeutic targets being explored in the
community of drug development. Importantly, anti-pentraxins
drugs (CPHPC and dezamizumab) targeting human SAP
have recently entered in clinical phase 2 trial for treatment of
amyloidosis and Alzheimer’s disease, and human CRP inhibitor
targeting CRP-driven complement activation-mediated tissue
damage is also being developed (62). Taken together, a better
understanding of the complex roles of the pentraxins in the
complement system and its involvement in human inflammatory
diseases will direct more promising options of therapy against
the consequences of certain pathogen infection, and possibly
certain complement-related inflammatory diseases.
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Sepsis, which is the leading cause of death in intensive care units (ICU), has been

acknowledged as a global health priority by the WHO in 2017. Identification of

biomarkers allowing early stratification and recognition of patients at higher risk of

death is crucial. One promising biomarker candidate is pentraxin-3 (PTX3); initially

elevated and persistently increased plasma concentration in septic patients has been

associated with increased mortality. PTX3 is an acute phase protein mainly stored in

neutrophil granules. These cells are responsible for rapid and prompt release of PTX3 in

inflammatory context, but the cellular origin responsible for successive days’ elevation in

sepsis remains unknown. Upon inflammatory stimulation, PTX3 can also be produced

by other cell types, including endothelial and immune cells. As in septic patients immune

alterations have been described, we therefore sought to investigate whether such cells

participated in the elevation of PTX3 over the first days after septic shock onset. To

address this point, PTX3 was measured in plasma from septic shock patients at day 3

after ICU admission as well as in healthy volunteers (HV), and the capacity of whole

blood cells to secrete PTX3 after inflammatory stimulation was evaluated ex vivo. A

significantly mean higher (100-fold) concentration of plasma PTX3 was found in patients

compared to HV, which was likely due to the inflammation-induced initial release of the

pre-existing PTX3 reservoir contained in neutrophils. Strikingly, when whole blood was

stimulated ex vivo with LPS no significant difference between patients and HV in PTX3

release was found. This was in contrast with TNFα which decreased production was

illustrative of the endotoxin tolerance phenomenon occurring in septic patients. Then,

the release of PTX3 protein from a HV neutrophil-free PBMC endotoxin tolerance model

was investigated. At the transcriptional level, PTX3 seems to be a weakly tolerizable gene

similar to TNFα. Conversely, increased protein levels observed in anergy condition reflects
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a non-tolerizable phenotype, more likely to an anti-inflammatory marker. Hence, altered

immune cells still have the ability to produce PTX3 in response to an inflammatory trigger,

and therefore circulating white blood cell subset could be responsible of the sustained

PTX3 plasma levels over the first days of sepsis setting.

Keywords: pentraxin 3, sepsis, septic shock, immune dysfunction, endotoxin tolerance

INTRODUCTION

There are 31.5 million cases of sepsis per year that lead to 6
million deaths and 3 million people suffer from impairments
leading to post-sepsis hospital re-admission (1). The official
definition of sepsis is a life-threatening organ dysfunction caused
by a dysregulated host response to infection (2) and, although
infection is the initial trigger of sepsis response, the dysregulated
immune response remains even after successful treatment of the
infection (3). Due to the high heterogeneity among patients,
early stratification and recognition of patients at higher risk of
death is of importance as timely and appropriate decisions as
to the best therapeutic approach is crucial to improve survival
and decrease in-hospital mortality rates. In this context, several
circulating biomarkers have been investigated in clinical studies
and pentraxin 3 (PTX3) shows promising performance.

Pentraxin 3 is an acute phase protein which belongs to the long
pentraxin subfamily, conserved in evolution, which acts as a key
component of humoral innate immunity in microbial infections.
Evidence suggests that PTX3 is a key homeostatic component at
the crossroad of innate immunity, inflammation, tissue repair,
and cancer (4). PTX3 binds conserved microbial structures and
self-components under conditions of inflammation and activates
effector functions (5). It has been found to be secreted bymultiple
cells including immune, vascular, lymphatic, endothelial, and
epithelial cells (4). Neo-synthesis of PTX3 in these cells, except
for neutrophils, is strongly induced by cytokines such as IL-
1, TNF-α and by TLR agonists, but not by IL-6 or interferons
(6). In neutrophils, PTX3 is synthetized in the bone marrow
and stored in neutrophil granules, co-localized with lactoferrin
(secondary granules) in physiological conditions, ready to be
release upon inflammatory signals (7). Once released into the
circulation, neutrophils lose the ability to produce PTX3 mRNA
(8). The very high blood PTX3 levels observed as soon as
onset of an injury is related to the release of preformed PTX3
contained in neutrophils. This was clearly described by Maugeri
et al. who reported that neutrophils were responsible for plasma
PTX3 concentration elevation within 6 h from onset of clinical
symptoms of acute myocardial infarction, and that this returned
to normal values 48 h (9).

PTX3 is barely detectable in the plasma of healthy individuals
(<2 ng/mL), but its concentration can increase to up to
100 ng/ml during sepsis depending on the severity of disease
(10). In septic shock patients, early high plasma PTX3 predicts
subsequent new organ failure, and a smaller subsequent drop in
circulating PTX3 over time predicts an increased risk of death
(11, 12). Nevertheless, it is known that during septic shock
immune cells are impaired (13); septic patients have markedly
increased numbers of circulating neutrophils of various degrees

of maturation with disrupted functions including impaired
phagocytosis, reduced reactive oxygen species (ROS) production,
and loss of chemotactic activity (14). Moreover, such patients
have greater proportion of immature neutrophils with decreased
levels of intracellular lactoferrin (15). Neutrophils may therefore
not be the only source of PTX3 during sepsis. We then sought
to investigate whether other immune cells participated in the
elevation of PXT3 over the first days after septic shock onset.
In the present study, using whole blood of sepsis patients and
healthy volunteers (HV) as well as an in vitro model that
mimics immune alterations found in patients, we examined the
transcriptomic and proteomic changes of PTX3 upon ex vivo
stimulation challenge.

MATERIALS AND METHODS

Study Population
This clinical study was conducted on septic shock patients
admitted to the intensive care unit (ICU) of the Edouard Herriot
Hospital (Hospices Civils de Lyon, Lyon, France) and is part
of a wider study on ICU-induced immune dysfunctions. It was
approved by the regional ethics committee (Comité de Protection
des Personnes Sud-Est II, number 11236), which waived the need
for written informed consent because the study was observational
with a low risk for the patients and no specific procedure
other than routine blood sampling was required. This study
is also registered at the French ministry of research (Ministère
de l’Enseignement supérieur, de la Recherche et de l’Innovation;
DC-2008-509) and at the national data protection commission
(Commission Nationale de l’Informatique et des Libertés). Oral
information and non-opposition to inclusion in the study were
mandatory and recorded in patients’ clinical files.

Patients with septic shock were included prospectively.
Septic shock was defined according to the Society of Critical
Care Medicine and the European Society of Intensive Care
Medicine (2): vasopressor requirement to maintain a mean
arterial pressure of 65 mmHg or greater and serum lactate
level >2 mmol/L (>18 mg/dL) in the absence of hypovolemia.
The exclusion criteria were age <18 years, the presence of
aplasia or immunosuppressive disease (e.g., HIV infection). At
admission, data collected included demographic characteristics
(age, gender), admission category (elective or emergency surgery,
medicine) and site of primary infection; two clinical scores were
recorded: the initial severity assessed by the Simplified Acute
Physiology Score (SAPS II; range: 0–194) at admission and the
Sequential Organ Failure Assessment (SOFA) score (range: 0–
24), 24 h after ICU stay. Laboratory data during follow-up was
also collected, as was death during the ICU stay. In addition,
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study-specific experiments were performed (see details below) on
routine blood samples (EDTA-coated tubes and heparin-coated
tubes) taken at day 3–4 after septic shock onset.

Concomitantly, EDTA- and heparin-coated blood tubes from
HV aged≥50 years were obtained from the national blood service
(Etablissement Français du Sang, EFS) and used immediately.
According to EFS standardized procedures for blood donation
and to provisions of the articles R.1243–49 and following ones
of the French public health code, a written non-opposition to the
use of donated blood for research purposes was obtained from
HV. The blood donors’ personal data were anonymised before
transfer to our research laboratory. We obtained the favorable
notice of the local ethical committee (Comité de Protection
des Personnes Sud-Est II, Bâtiment Pinel, 59 Boulevard Pinel,
69,500 Bron) and the acceptance of the French ministry of
research (Ministère de l’Enseignement supérieur, de la Recherche
et de l’Innovation, DC-2008-64) for handling and conservation of
these samples.

Biological Samples and in vitro Experiment
Plasma
Plasma samples were obtained after collection of whole blood
in EDTA-coated tubes from 30 patients at day 3–4 after ICU
admission and from 10 HV and were frozen until batch analysis.

TruCulture® Stimulation
Heparinized-whole blood (1mL), collected at the same time-
point than plasma samples, from patients andHVwas distributed
into prewarmed TruCulture R© tubes (Myriad Rbm, Austin, TX,
USA) containing the medium alone (Null) or the medium with
lipopolysaccharide (LPS; 100 ng/mL). These were then inserted
into a dry block incubator and maintained at 37◦C for 24 h.
For the kinetic study, whole blood from 3 HV and 3 patients
were incubated in TruCulture R© tubes at 37◦C, and 750 µL were
collected for analysis at 1, 2, 4, and 24 h of incubation. Following
incubation, the supernatant (media and plasma) and the cellular
pellet were collected using a separation valve, according to
manufacturer’s instructions. Supernatants were aliquoted and
immediately frozen at −20◦C until batch quantification. Cell
pellets were resuspended in 2mL TRI Reagent R© LS (Sigma-
Aldrich, Deisenhofen, Germany), vortexed for 2min, and rested
for 10min at room temperature before−80◦C storage.

Endotoxin Tolerance Model
Peripheral blood mononuclear cells (PBMCs) were isolated from
heparinised venous blood of HV by Ficoll density gradient
centrifugation (Eurobio Ingen, Courtaboeuf, France) and washed
with PBS. Cells were cultured in 24-well plates at 2.106 cells/mL in
X-Vivo 20Medium (Lonza, Verviers, Belgium). PBMCs were first
cultured without or with 2 ng/mL LPS (mix of Escherichia coli
O111:B4, O55:B5, and O127:B8; Sigma-Aldrich) to induce the
LPS-primed state and incubated overnight at 37◦C and 5% CO2.
In both conditions, LPS-primed (endotoxin tolerance condition)
and unprimed (inflammation condition), PBMCs were incubated
a second time for 4 h with 100 ng/mL LPS. A non-stimulated well
was used as the control. For each condition, supernatants were
collected and stored at−20◦C. Cells were harvested, lysed in RLT

buffer and stored at−80◦C until further processing. The protocol
was adapted from Allantaz-Frager et al. (16, 17).

Monocyte Cell Line
THP1-XblueTM-MD2-CD14 cells (a human acute monocytic
leukemia cell line stably expressingMD2/CD14 genes; Invivogen,
San Diego, CA, USA) were cultured in 24-well plates at 1.106

cells/mL in RPMI 1640 medium containing 2mM L-glutamine,
25mM HEPES (Thermofisher Scientific, Waltham, MA, USA),
10% heat-inactivated fetal bovine serum (FBS; Eurobio Ingen),
100µg/mL Normocin (Invivogen) and 100 U/mL-100 µg-mL
Pen-Strep (Thermofisher Scientific) (18). Endotoxin tolerance
model set up on this cell line was above described.

mRNA Decay and Intracellular Protein
Stability Analysis
The endotoxin tolerance model, above described, performed on
the THP1-XblueTM-MD2-CD14 cells was used to evaluate mRNA
half-life and intracellular protein stability of PTX3 and TNFα.
LPS-primed (endotoxin tolerance condition) and unprimed
(inflammation condition) monocytes-like cells were incubated a
second time, for 2 h, with LPS (100 ng/mL). Then, actinomycin
D (5µg/mL) or cycloheximide (10µg/mL) were added to inhibit
further transcription and translation, respectively, to both LPS-
primed and LPS-unprimed conditions. The incubations were
stopped at 0.5, 1, 2, 4, and 6 h for analysis. For untreated
and actinomycing conditions, cells were harvested for molecular
analysis. For untreated and cycloheximide condition, cells were
harvested and solubilized in 200 µL lysis buffer (Human MxA
protein ELISA, BioVendor, Brno, Czech Republic) dedicated to
intracellular protein ELISA quantitation.

Protein Analysis
Defective TNF-α production ex-vivo is a major trait of sepsis-
induced immunosuppression (19), so this pro-inflammatory
cytokine was evaluated as reference of PTX3 behavior. PTX3
and TNFα proteins from patients and HV in plasma and
Truculture R© supernatant were quantified using ELLA
nanofluidic system (Biotechne, Minneapolis, MI, USA),
according to the manufacturers’ instructions. PTX3 and TNFα
proteins after lysis of cellular pellets from untreated and
cycloheximide conditions in the intracellular protein stability
assay were also quantified using ELLA. Intracellular protein
levels were expressed as a percentage of the maximal protein
level.

These two proteins concentrations, from endotoxin tolerance
model in PBMC and in THP1-XblueTM-MD2-CD14 cell
culture supernatants, were detected using commercially-available
ELISA kits Human TNF-alpha DuoSet ELISA and Human
Pentraxin 3/TSG-14 DuoSet ELISA (R&D Systems, Biotechne),
in accordance with the manufacturers’ instructions. Results are
expressed in pg/ml.

Molecular Detection
For Truculture R© cell pellet handling and RNA processing and
detection, the protocol was followed according to Urrutia et al.
study (20). Cell pellets from Truculture R© stimulations kept in
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TRI Reagen R© LS (Sigma-Aldrich) were thawed under agitation.
Before processing, thawed samples were centrifuged (3,000 g
for 5min at 4◦C) to pellet cellular debris generated during
the Trizol lysis. For extraction, a modified protocol of the
NucleoSpin 96 RNA tissue kit (Macherey-Nagel Gmbh&Co.
KG, Düren, Germany) was followed using a vacuum system.
Briefly, 600 µL of clarified Trizol lysate was transferred to
a tube preloaded with 900 µL 100% ethanol. The binding
mixture was transferred to a silica column, then washed
with buffers MW1 and MW2, and RNA was eluted using
30 µL RNase-free water. NanoString technology was used
for mRNA detection, a hybridization-based multiplex assay
characterized by its amplification-free step; 300 ng of RNA
were hybridized to the probes (Supplementary Table 1) at 67◦C
for 18 h using a thermocycler (Biometra, Tprofesssional TRIO,
Analytik Jena AG, Jena, Germany). After removal of excessive
probes, samples were loaded into the nCounter Prep Station
(NanoString Technologies, Seattle, WA, USA) for purification
and immobilization onto the internal surface of a sample
cartridge for 2–3 h. The sample cartridge was then transferred
and imaged on the nCounter Digital Analyzer (NanoString
Technologies) where color codes were counted and tabulated
for PTX3 (NM_002852.3) and TNFα (NM_000594.2) genes.
Counts number were normalized by the geometric mean
of HPRT1 (NM_000194.1), DECR1 (NM_001359.1) and TBP
(NM_001172085.1) housekeeping genes count number, as well as
the negative and positive control values using nSolver analysis
software (version 4.0, Nanostring technologies). Results are
expressed in counts and fold change induction.

For endotoxin tolerance model, the protocol followed, with
minor modifications, for PBMC and THP1-XblueTM-MD2-
CD14 cell pellet handling, RNA processing and detection,
was previously described (17). PTX3 and TNFα mRNA from
endotoxin tolerance model in PBMC and in THP1-XblueTM-
MD2-CD14 cells, but also from untreated and actimnomycin D
conditions in the mRNA decay assay were quantified after RNA
extraction from cellular pellet. RNeasy plus mini kit (Qiagen,
Hilden, Germany) was used for total RNA extraction and
RNA quantity was determined using Nanodrop (Thermofisher
Scientific), according to the manufacturer’s instructions. For
mRNA detection, RNA was retro-transcribed using SuperScript
VILO cDNA Synthesis kit (Thermofisher Scientific) followed by
qPCR, performed using commercial Taqman probes for TNF?
and PTX3 (Invitrogen, Carlsbad, CA, USA) and normalized
using the PPIB housekeeping gene. In the mRNA decay assay,
mRNA levels were expressed as a percentage of the maximal
mRNA level.

mHLA-DR Measurement by Flow
Cytometry
Circulating monocyte HLA-DR expression (mHLA-DR) from
patients was assessed at day 3–4 on peripheral whole blood
collected in EDTA anticoagulant tubes by flow cytometry
(NAVIOS; Beckman-Coulter, Brea, CA, USA) as previously
described (21). Results are expressed as the number of antibodies

bound per cells (AB/C). Immunocompetence levels of mHLA-
DR are defined as >15,000 AB/c and severe immunoparalysis as
>5,000 AB/c (22, 23).

Statistical Analysis
Results are expressed as median and interquartile ranges [IQR]
for continuous variables. Non-parametric data were analyzed
using the Mann–Whitney U test. Wilcoxon matched-pairs
signed rank test was used for the analysis of THP1-MD2-CD14
experiments. Spearman test was used for correlation analysis.
Statistical analyses were conducted using GraphPad Prism R©

software (version 5; GraphPad software, La Jolla, CA, USA). A
p-value 0.05 was considered as statistically significant.

RESULTS

Clinical Characteristics of the Patients and
Healthy Volunteers
From June 2017 to June 2018, 30 patients with septic shock were
included (Table 1). The mean age was 65 (range: 19–86) years
and 70% were male. The three major sites of infection were
abdominal (30%), urinary tract infection (UTI) (13%) and skin
and soft tissues (SST) (13%). The mean (range) SOFA score at
day 1–2 was 9 (4–15) and SAPS II was 62 (26–93), indicating
a high level of severity. 90% of patients had low mHLA-DR at
3–4 days after onset of shock, ranging from moderate to severe
immunoparalysis. During ICU stay, mortality was 17% (n = 5)
and the mean ICU stay among those who were discharged alive
was 10 days. Concomitantly, a total of 10 HV were included, 50%
were male and the mean age was 54.2 (range: 50–60) years.

Plasma PTX3 Concentration
The median [IQR] PTX3 plasma levels at day 3–4 after ICU
admission was significantly greater in septic shock patients
(22031 [7518–52891] pg/mL) than in HV (438 [364–557]
pg/mL, p < 0.0001; Figure 1). The 5 patients who died during
ICU stay had significant higher PTX3 plasma concentration
(204879 [47199–604280] pg/mL) compared to those who
were discharged alive (14893 [6832–35336] pg/mL, p < 0.05;
Figure 1). The correlation of plasma PTX3 levels with the degree
of immunosuppression of the cells measured on the same day was
explored, and no significant correlation was found (r spearman:
−0.317, Figure S1).

Ex vivo Whole-Blood LPS Stimulation
After 24 h incubation, we evaluated the ex vivo capacity of
patient blood cells to express PTX3 and TNFα at the protein
and molecular level upon LPS stimulation compared to an
unstimulated condition. Due to the high level of PTX3 in septic
patients at baseline (unstimulated condition, median [IQR]:
11128 [5052–21559] pg/mL), results were expressed as the
difference in cytokine production between the LPS-stimulated
condition and the unstimulated condition. Likewise, as PTX3
mRNA counts were higher in patients at baseline than in HV
(unstimulated condition, median [IQR]: 233 [75–561] counts in
patients and median [IQR]: 59 [38–98] counts in HV, p < 0.05),
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TABLE 1 | Clinical and immunological data for patients with septic shock.

Patients at D3-D4

(n = 30)

Age, years (range) 65 (19–86)

Sex, male, n (%) 21 (70)

SOFA score (range) 9 (4–15)

SAPS II (range) 62 (26–93)

Missing data 3

mHLA-DR (AB/c) 8240 (1644–32790)

TYPE OF ADMISSION, N (%)

Medical 13 (43)

Emergency surgery 17 (57)

SITE OF PRIMARY INFECTION, N (%)

Abdominal 9 (30)

UTI 4 (13)

SST 4 (13)

Other 13 (44)

LOS in the ICU, days (range) 10 (2–34)

Death in the ICU, n (%) 5 (17)

Numeric variables are presented as mean (range). Categorical variables are presented

as number of cases, and percentages among the total of patients in parentheses.

Simplified Acute Physiology Score (SAPS II) was calculated after admission and Sequential

Organ Failure Assessment (SOFA) score was measured after 24 h of ICU stay. mHLA-DR

expressed as numbers of anti-HLA-DR antibodies bound per monocyte (AB/C). LOS,

length of stay; UTI, urinary tract infection; SST, skin and soft tissue.

FIGURE 1 | Plasma PTX3 concentration. PTX3 plasma concentration in

survivors (n = 25) and non-survivors (n = 5) septic shock patients, at day 3–4

after ICU admission and in healthy volunteers (n = 10). Bar represents the

median. **p < 0.001; ***p < 0.001.

results were expressed as the ratio in counts between the LPS-
stimulated condition and the unstimulated condition. Septic
shock patients had a significantly attenuated secretion of LPS-
stimulated TNFα concentrations (median [IQR]: 701 [314–1301]
pg/mL) compared to HV (median [IQR]: 5215 [3895–6014]
pg/mL, p < 0.0001; Figure 2A). There was a corresponding

5-fold decrease in TNFα gene expression after LPS stimulation
in septic shock patients compared to HV (fold change: 1.33
vs. 6.94 respectively, p < 0.0001; Figure 2B). Conversely, septic
shock patients did not have altered capacity to secrete PTX3 after
LPS stimulation. There was no significant difference (Figure 2C,
p = 0.08) observed in PTX3 concentrations between patients
(median [IQR]: 5,077 pg/mL [4128–8737] pg/mL) and HV
(median [IQR]: 7393 [5464–9439] pg/mL). At the molecular
level, PTX3 gene expression (Figure 2D) by blood cells after
LPS stimulation did not seem to be affected in patients (fold
change: 0.95). Furthermore, LPS did not induce a significant gene
expression of PTX3 in HV (fold change: 1.66).

mRNA and Protein Kinetic on Whole Blood
After LPS-Stimulation
Kinetics studies were performed to decipher the apparently
unusual dichotomy between PTX3 mRNA expression and
protein secretion, in contrast to TNFα. Ex vivo whole blood from
3 healthy volunteers and 3 septic shock patients were stimulated
with LPS and four time-points were analyzed post-stimulation: 1,
2, 4, and 24 h. In HV, we observed a massive early TNFα mRNA
expression at 2 h post-stimulation (80-fold induction) which
decreased by half 2 h later and reached low but significant levels
of induction 24 h post-stimulation. Protein levels quickly raised
4 h post-stimulation to reach the highest 24 h post-stimulation
(Figure 3A). For PTX3 mRNA, the peak expression was also
observed 2 h post-stimulation (70-fold), and sharply decreased
2 h later until under significant levels 24 h post-stimulation.
PTX3 protein required 24 h to reach high levels post-stimulation
(Figure 3B), evidencing a time-lag between transcription and
protein secretion. For septic shock patients, an overall decrease
in induction efficiency was observed for both TNFα and PTX3 at
the transcriptional level, the lowest level being reached after 24 h
of stimulation, similarly to HV. Conversely, the highest level of
TNFα protein was observed at the earliest time-points, to further
decrease until very low levels(Figure 3C), while PTX3 protein
levels were elevated during the first 4 h, to reach highest levels
24 h post-stimulation (Figure 3D), similar to 24-h HV levels.

In vitro PBMC- and THP1-MD2-CD14 Cell
Line-Based Endotoxin Tolerance Model
Given that mature neutrophils are not able to produce de
novo PTX3 (8), we then hypothesized that the remaining
circulating immune cells could be a possible source of PTX3
production during the first days of sepsis. To mimic the
altered immune states observed in septic shock patients, healthy
neutrophil-free PBMCs (n = 12) were stimulated with LPS to
reproduce an inflammatory state and a monocyte-anergy state
(endotoxin tolerance phenomenon) to study PTX3 behavior.
As expected, median TNFα release was two-times lower in
the anergy condition (median [IQR]: 1270 [642–1801] pg/mL)
than in the inflammatory situation (median [IQR]: 2782 [2257–
4124] pg/mL, p < 0.001; Figure 4A); a similar result was
found at the molecular level (fold change 2 vs. 14 respectively,
p < 0.0001; Figure 4B). For PTX3, strikingly, there was
no significant difference between LPS-induced inflammation
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FIGURE 2 | Ex vivo whole-blood LPS-stimulation. Whole blood from 10 healthy volunteers and 30 septic shock patients stimulated ex vivo with LPS in Truculture®

tubes for 24 h. Protein levels (A–C) and mRNA gene expression (B–D) are plotted for TNFα and PTX3. For cytokine quantification, results were expressed as the

difference in cytokines production between LPS stimulated condition and unstimulated conditions (pg/mL). Counts number for mRNA gene expression, were

normalized by the geometric mean of hprt1, decr1, and tbp housekeeping genes. The relative differential expression between LPS-stimulated and unstimulated

condition was represented in the figure. Bar represents median. NS: not significant; *p < 0.05; ***p < 0.0001.

(median [IQR]: 160.8 [91.8–238.5] pg/ml) and LPS-induced
anergy conditions (median [IQR]: 325.6 [183.1–384.9] pg/mL),
although there was a trend toward increased PTX3 secretion
in the endotoxin tolerance condition (p = 0.07; Figure 4C).
A conserved capacity to secrete PTX3 was observed in the in
vitro model, independently of the inflammatory state. PTX3
gene expression was also not significantly different between
both inflammatory in vitro conditions (fold change 8 vs. 5
respectively), although there was a trend toward a lower value in
the anergy condition (p= 0.24, Figure 4D). The trends observed
with PBMCs were statistically confirmed with the monocyte
THP1-MD2-CD14 cell line (Figure S2).

mRNA and Protein Decay Analysis
Because of the intriguing behavior of PTX3 mRNA and protein
observed in whole blood, in PBMC and in THP1-MD2-CD14
cell line, we sought to investigate PTX3 mRNA half-life and
its intracellular protein stability, as well as for TNFα, in
inflammation and anergy conditions. Using actinomycin D to
inhibit RNA synthesis, we reported that PTX3 mRNA half-
life was approximately 4 h, compared to the shorter 0.5 h
of TNFα mRNA half-life (Figure S3A). No difference was
observed between inflammation and anergy conditions. By

adding cycloheximide in cell culture 2 h after LPS stimulation,
we observed the behavior of the intracellular content of
PTX3 and TNFα in inflammatory and anergy conditions. We
noticed that the intracellular content of PTX3 is maintained
in the anergy condition compared to a slight decay in LPS-
induced inflammation condition. Concerning TNFα, more than
50% of the intracellular content was diminished in both
inflammation and anergy conditions only 1 h after the addition
of cycloheximide (Figure S3B).

DISCUSSION

Pentraxin-3, along with other biomarkers such as PCT and
lactate, have been stated as clinically informative of disease
severity and patient outcome in sepsis and septic shock (24). We
confirmed that PTX3 is barely detectable in plasma from HV,
around 2 ng/mL in the study reported by Yamasaki et al. (25) and
<1 ng/mL herein, while it is much greater in sepsis patients, up
to 100 ng/mL in the study reported by Daigo et al. (10) and up
to 800-fold greater herein for highest values; this is in accordance
with a prompt liberation of preformed PTX3 from granules after
an inflammatory trigger (26).We also observed that patients with
higher PTX3 plasma levels 3–4 days after ICU admission were
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FIGURE 3 | mRNA and protein kinetic on whole blood after LPS-stimulation. Whole blood from 3 healthy volunteers (A,B) and 3 septic shock patients (C,D)

stimulated ex vivo with LPS in Truculture® tubes for 1, 2, 4, and 24 h. Protein levels (dashed line) and mRNA gene expression (solid line) are plotted for TNFα (A,C)

and PTX3 (B,D). For cytokine quantification, results were expressed as the difference in cytokines production between LPS stimulated condition and unstimulated

conditions (pg/mL, y right axis). Counts number for mRNA gene expression, were normalized by the geometric mean of hprt1, decr1, and tbp housekeeping genes.

The relative differential expression between LPS-stimulated and unstimulated condition was represented in the figure (y left axis). Lines represents median of the three

observations.

those who died during ICU stay. This is in line with the study
reported by Huttunen et al. who found that PTX3 values were
markedly higher in bacteraemic patients who died compared to
survivors (27), also described in a septic shock cohort (11).

In the present study we aimed to assess whether circulating
cells could be responsible for the maintenance of PTX3
concentration in the blood of patients over time during severe
sepsis. LPS stimulation revealed a state of immunosuppression
with a 5-fold lower capacity of patient blood cells to produce
TNFα mRNA and release of this cytokine as compared to HV.
Strikingly, patient blood cells still had the capacity to secrete
PTX3 protein after ex vivo LPS stimulation, as did HV. In line
with this, the kinetic analysis of PTX3 expression in whole blood
stimulated by LPS, both in HV and patients, revealed that the
mRNA content is globally decrease from 4 h on, reaching barely
detectable levels 24 h post-stimulation whereas the continuous
increase in PTX3 protein level reached its maximum at 24 h. The
observed delay between the highest mRNA and protein amounts
ranged roughly between 20 and 24 h in our conditions. Such
observation has already been described in a human fibroblast
cell line where such delay in PTX3 synthesis compared to mRNA
production was shown (28). Altogether, these results indicate that

sustained PTX3 plasma levels in the first week of sepsis could be
driven by circulating blood cells, despite their altered immune
functions.

Knowing that mature neutrophils are responsible for PTX3
secretion in the first hours of sepsis onset but are unable to
produce de novo mRNA PTX3, we then aimed to decipher
the cellular source of circulating PTX3 neo-synthesis in
immunodysregulated septic shock patients. Onset of sepsis
is characterized by dysfunctional host response of patients,
where an acute hyper-inflammatory phase is established leading
to organ damage and hence, early death. Simultaneously, a
compensatory response is initiated and can consequently plunge
the patient in a longer immunosuppressive phase. To reproduce
these altered immune states, a neutrophil-free immune cell
compartment was used to evaluate its capacity to produce
and release PTX3 in different inflammatory conditions. The
endotoxin tolerance model was set up on freshlyPBMC isolated
from HV and on the monocyte THP1-MD2-CD14 cell line as
well, to mimic an inflammatory- and a tolerant-immune state. At
the transcriptional level, PTX3 seems to be a weakly tolerizable
gene similar to TNFα, as previously reported in the literature
(16, 17). Conversely, increased protein levels observed in anergy
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FIGURE 4 | In vitro PBMC-based endotoxin tolerance model. LPS condition: stimulation with 100 ng/mL LPS at day 1 and ET (endotoxin tolerance) condition:

stimulation with 2 ng/mL LPS at day 0 and 100 ng/mL LPS at day 1. Protein levels (A–C) and mRNA gene expression (B–D) are plotted for TNFα and PTX3 (n = 12).

For cytokine expression results are expressed in pg/mL. For mRNA expression results are expressed in fold change. NS: not significant; *p < 0.05; **p < 0.001;

***p < 0.0001.

condition reflects a non-tolerizable phenotype, different from
TNFα but more likely to IL-10, as already described (29).
Altogether, these observations, which demonstrate the capacity of
PTX3 secretion by tolerizable circulating immune mononuclear
cells, emphasize the anti-inflammatory role of PTX3 in sepsis.
Of note, PTX3 has been described as associated with IL-10 in
atherosclerosis experimental conditions (30) and could help to
counteract the pro-inflammatory response observed in sepsis
(14). The mechanisms supporting the discordant behavior of
PTX3 at transcription and translation levels, different from
TNFα, remained to be clearly determined. On one hand, the
longer PTX3 mRNA half-life observed in vitro−4 vs. 0.5 h
for TNFα–may support a sustained protein translation in the
tolerant condition. Conversely, it was reported that miRNAs may
interact with PTX3 mRNA, making it unstable and responsible
for the delay with protein synthesis (28). In addition, we observed
a very significantly higher stability of PTX3 protein compared
to TNFα, potentially 4 times. Even if we were not able to
determine PTX3 protein half-life in our experimental settings,
we observed that PTX3 is more stable in the tolerant condition
than in the LPS-induced inflammation condition, which would
contribute to the higher protein levels in the tolerant condition.

Of note, a 2 h PTX3 protein plasma half-life was measured
using exogenously administered recombinant protein (31).
Interestingly, the absence of difference in mRNA PTX3 half-
life between inflammation and tolerant conditions and the
apparently higher stability of PTX3 protein in anergy condition
would suggest a complex phenomenon involving translation
enhancement, although we cannot exclude an increased stability,
which could be mediated by protein-protein interaction e.g.,
complement factors (32). Moreover, PTX3 is described as
induced by TNFα (33, 34) but TNFα signaling pathway is known
to be disrupted in sepsis (35) which suggests that PTX3 may
be induced through other signaling pathways especially if PTX3
has a major anti-inflammatory effect in sepsis (36). This could
explain why PTX3 was not altered during sepsis and can still be
secreted over the course of the disease. Although this remains
to be demonstrated, the PI3K/Akt pathway described in sepsis
(37) represents a potential driver of PTX3 expression in sepsis,
as recently demonstrated in cancer (38) and in inflammatory
condition (39). This pathway, which seems to control the
increased IL-1RA anti-inflammatory cytokine in sepsis patients
and in LPS-adapted THP1 cells (40), acts indeed by enhancing
translation efficacy without interfering with gene transcription.
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Further experiments are required to evaluate this hypothesis to
confirm if sustained circulating PTX3 levels in sepsis are achieved
through this signaling pathway.

This study has some limitations to take into consideration
regarding the mechanisms of production and action of PTX3 in
sepsis pathophysiology. We studied the likely source of plasma
PTX3 levels in septic shock patients by immune circulating
cells, yet we cannot exclude a role of endothelial cells which
was not investigated here (41). Indeed, although our results
indicate that plasma PTX3 levels can be explained without
endothelial cells contribution, their capacity to secrete PTX3
upon inflammatory signals and the observation that PTX3
protects against histone-mediated endothelial cell cytotoxicity in
sepsis (42) and limits the vascular regenerative response (43)
deserves further investigation. Moreover, ex vivo experiments as
well as in vitro models were performed on a limited number
of healthy individuals and/or septic patients, and therefore the
trends observed require confirmation in larger studies. Results
obtained with the monocytic THP1-MD2-CD14 cell line, point
out monocytes as (one of) the cell population(s) responsible
for such plasma PTX3 source for the first days of sepsis. New
pertinent cellular models are required to better understand the
contribution of every (blood) cell type to PTX3 expression and
the feedback loops with its environment during the host response
in sepsis.

In conclusion, circulating PBMCs, despite their immune
dysfunctions, could be responsible for the sustained PTX3 plasma
levels over the first days of sepsis setting.
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Background: Pentraxin3 (PTX3) is overexpressed in kidneys of patients developing

lupus nephritis (LN). Active LN is associatedwith reduced anti-PTX3 antibodies. However,

abnormalities of B cell differentiation against PTX3 have not been characterized in

systemic lupus erythematosus (SLE).

Objective: Characterization of PTX3-specific (PTX3+) B cells in peripheral blood of SLE

patients with or without LN and healthy donors (HD).

Patients and Methods: SLE patients without LN, biopsy-proven LN and matched HD

were analyzed. Active LN was defined as proteinuria>0.5 g/day or CrCl<60 ml/min/1.73

m2 with active urinary sediment. Peripheral B cells were analyzed for direct PTX3 binding

by flow cytometry using PTX3 labeled with cyanine 5 (Cy5) and phycoerythrin (PE).

Results: Initially, a flow cytometry based assay to identify PTX3+ B cells was developed

by demonstrating simultaneous binding of PTX3-Cy5 and PTX3-PE. Specificity of B

cells was validated by blocking experiments using unlabeled PTX3. We could identify

circulating PTX3+ B-cells in HD and patients. Notably, LN patients showed a significantly

diminished number of PTX3+ B cells (SLE vs. LN p = 0.033; HD vs. LN p = 0.008). This

decrease was identified in naïve and memory B cell compartments (naïve: SLE vs. LN p

= 0.028; HD vs. LN p = 0.0001; memory: SLE vs. LN p = 0.038, HD vs. LN p = 0.011).

Conclusions: Decreased PTX3+ B cells in LN within the naïve and memory

compartment suggest their negative selection at early stages of B cell development

potentially related to a decreased regulatory function. PTX3+ B cells could candidate

for autoantigen-defined regulatory B cells as a striking abnormality of LN patients.

Keywords: SLE, PTX3+ B cells, lupus nephritis, biomarkers, flow-cytometry

INTRODUCTION

Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE), involving up
to two thirds of patients at onset or during disease course (1–3). The inflammatory process in the
kidney is driven by both cellular and humoral abnormalities, in particular formation of immune
complexes (4–6).
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Pentraxin3 (PTX3) belongs to the long pentraxin family, i.e.,
a superfamily of multimeric evolutionary conserved molecules
which are released locally at sites of inflammation (7–12) and
are involved in tissue homeostasis, with prominent antimicrobial
functions and fine-tuning of inflammation (8–10). It has been
proposed as a bridge between innate and adaptive immunity,
being endowed with antibody-like properties i.e., the capability
to provide opsonization of foreign or apoptotic bodies (9),
to modulate antigen presentation and inflammatory responses.
Indeed, soluble PTX3 exerts an anti-inflammatory function by
sequestering C1q, while when bound to apoptotic debris PTX3
allows C1q fixation and subsequent enhanced activation of the
classical complement pathway (8, 10, 13).

Lupus kidney is a source of autoantigens (14, 15), and
current evidence supports PTX3 involvement in SLE-driven
renal inflammation. Deposits of PTX3 have been characterized
in renal samples of several immune-mediated kidney diseases
including LN (16–18), where the extent of deposition correlated
with proteinuria and renal fibrosis (11, 17, 18).

Moreover, clinical observations showed that SLE patients
display high frequencies and titers of anti-PTX3 antibodies (18–
20), which are inversely correlated with LN occurrence (18,
19, 21). Furthermore, PTX3 immunization of lupus-prone mice
resulted in anti-PTX3 antibody occurrence and was associated
with delayed and milder lupus-like nephritis and increased
overall and disease-free survival (22), thus providing evidence for
an immunomodulatory capacity of anti-PTX3 antibodies.

Despite the interaction of PTX3 with diverse cell types
has been described (9, 13, 23), its relationship with B

TABLE 1 | Demographic and therapeutic features of healthy donors and patient groups.

Healthy donors Patients

Non-renal SLE LN

No. 22 26 12

Mean age ± SD 33.4 ± 8.6 34.6 ± 10.2 41.8 ± 10.37

Female (%) 77.2 84.6 75

Active disease (cSLEDAI≥2) (%) 3/26 (11.5%) 7/12 (58.3%)

cSLEDAI [mean ± SD] 1.14 ± 3.66 4.17 ± 3.86

LN class* (no.)

Proliferative (III or IV) N/A** 7

V or mixed 5

24-h proteinuria (g) [mean ± SD] N/A 4 ± 1.41

Active urinary sediment§ (%) 0 41.7

CONCOMITANT TREATMENT

Oral prednisone (%) [mean daily dosage ± SD] 60.8 [4.04 ± 4.14] 58.3 [3.98 ± 6.05]

HCQ (%) 69.4 58.3

Immunosuppressants (%) 73.9 66.7

MMF 34.7 41.7

MTX 4.3 0

AZA 30.4 25

*International Society of Nephrology/Renal Pathology Society (ISN/RPS) 2003. **These patients never underwent kidney biopsy due to lack of renal involvement. § > 5 white blood cells

and/or >5 red blood cells/high power field and/or heme-granular/red cell casts. SLE, systemic lupus erythematosus; LN, lupus nephritis; SD, standard deviation; cSLEDAI, clinical SLE

disease activity index; HCQ, hydroxychloroquine; MMF, mycophenolate mofetil; MTX, methotrexate; AZA, azathioprine; N/A, not available.

cells remains blurry. Recently, PTX3 released by specialized
neutrophils was described to interact with marginal zone
(MZ) B cell thereby promoting class-switch from IgM to
IgG antibodies (24), however a direct interaction was not
described.

In light of the aforementioned observations and open
questions, and considering the established role of B cells
in LN development (25), it is attractive to speculate that
PTX3-specific (PTX3+) B cells could bear a regulatory
potential in lupus and particularly in LN. Herein, we sought
to develop a new method that allows identification and
characterization of peripheral PTX3+ B cells. Using this
methodology, we found PTX3+ B cells in SLE patients and
healthy donors (HD) which were virtually absent in LN
patients. This data suggests that these autoantigen specific B
cells may represent a layer of regulation that is lost in LN
patients.

PATIENTS AND METHODS

Thirty-eight consecutive SLE patients (American College of
Rheumatology criteria), including 12 with biopsy-proven LN,
and 22 HD were recruited.

Active LNwas defined as proteinuria> 0.5 g/day or creatinine
clearance < 60 ml/min/1.73 m2, evaluated with Cockcroft and
Gault formula, with active urinary sediment (3). Accordingly,
LN was considered active in 7/12 patients. Demographics of all
groups and clinical and therapeutic features of patients are given
in Table 1.
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All subjects gave written informed consent, in accordance with
the local ethics committee of the Charité Universitätsmedizin
Berlin.

Whole Blood Lysis
Blood was obtained before any induction therapy for LN in
EDTA vacutainer tubes (BD Biosciences, San Jose, CA, USA)
and lysed according to the manufacturer’s instructions. Briefly,
1ml of EDTA blood was incubated with 10ml of lysing solution
(Lysing Buffer BD Pharm LyseTM). The obtained cells were
washed three times with phosphate-buffered saline/bovine serum
albumin (PBS/BSA) (Miltenyi, Germany).

Staining Procedure and Flow Cytometry
To identify PTX3+ B cells, recombinant human purified PTX3
(10) was labeled with either cyanine 5 (Cy5) or phycoerythrin
(PE). Tetanus (TT) staining was performed in parallel as control
as previously described (24) in order to establish an optical
reference range for PTX3+ cells. Antigens were labeled at the
German Rheumatism Research Centre (DRFZ), Berlin.

For flow cytometric analysis, the following fluorochrome-
labeled antibodies were used: PTX3 staining: anti-CD19
Allophycocyanin (APC)-Cy7 (clone SJ25C1, BioLegend), anti-
CD20 Brilliant Violet (BV)510 (clone 2H7, BioLegend), anti-
CD27 Fluorescein isothiocynate (FITC) (clone M-T271, BD),
IgG PECy7 (clone G18-145, BD), IgD Peridinin-Chlorophyll-
protein (PerCp) Cy5.5 (clone IA6-2, BD), anti-CD3/anti-CD14
Pacific Blue (PacB) (clone UCHT1/M5E2, BD). TT staining:
anti-CD19 PECy7 (clone SJ25C1, BD), anti-CD20 BV510 (clone
2H7, BioLegend), anti-CD27-FITC, IgD PerCp Cy5.5 (clone IA6-
2, BD), anti-CD3/anti-CD14 PacB (clone UCHT1/M5E2, BD),
anti-CD38 APC-Cy7 (clone HIT2, BioLegend).

PTX3+B cells were identified as B cells binding both PTX3-PE
and PTX3-Cy5 (Figure 1).

TT-specific B cells were identified by the binding of TT-
Cy5. Specificity of this binding was checked in parallel stainings
performed in our laboratory.

After Fc receptor blocking (Miltenyi Biotec, Germany),
stainings were performed in the dark at 4◦C for 15min, followed
by two washing steps with PBS/BSA and centrifugation for 5min
at 4◦C and 330× g. Stained cells were analyzed by flow cytometry
using a FACS Canto II flow cytometer (BD, USA).

B cell subsets were defined as naïve (single
CD3−CD14−Dapi−CD19+CD20+CD27−), memory (single
CD3−CD14−Dapi−CD19+CD20+CD27+) and plasmablasts
(single CD3−CD14−Dapi−CD19+CD27hiCD20−).

The gating strategy is exemplarily shown in Supplementary

Figure 1. Absolute numbers of B subpopulations were calculated
by using the absolute number of B cells/µl retrieved with
Multitest 6-color TBNK analysis (BD, USA) according to the
manufacturer’s protocol.

Data Analysis and Statistics
Samples included in analyses had at least 1 × 106 events with a
minimum threshold for CD19+ cells of 50,000 events.

Flow cytometric data was analyzed by FlowJo software 7.6.5
(TreeStar, Ashland, OR, USA). GraphPad Prism Version 5

(GraphPad software, San Diego, CA, USA) was used for statistical
analysis. To test for significance, non-parametric tests were used.

RESULTS

Identification of PTX3+ B Cells in

Peripheral Blood of Patients and Controls
Initially, we developed a flow cytometric method to identify
and quantify PTX3+ B cells in human peripheral blood. B
cells (CD3−CD14−CD19+CD20+) able to bind simultaneously
PTX3-Cy5 and PTX3-PE were considered specific (Figure 1A)
(gated as shown in Supplementary Figure 1). The specificity
of PTX3 binding was further confirmed by blocking with
unlabeled PTX3 prior to staining (Figures 1A,B). Blocking of
single positive PE or Cy5-PTX3 B cells could not be efficiently
performed (Supplementary Figure 2), thus these cells were not
included in the present analysis.

PTX3+B Cells Are Decreased in LN

Patients vs. SLE and HD
LN patients showed the lowest absolute numbers of PTX3+ B
cells among total peripheral B cells, which were also significantly
decreased in comparison with HD and non-renal SLE [mean ±

standard deviation (SD) cells/ml: LN 0.023± 0.027 vs. HD 33.09
± 48.15, p = 0.008; LN 0.023 ± 0.027 vs. non-renal SLE 12.53 ±
20.24, p= 0.033] (Figure 2A, left).

Analyses of B cell subsets confirmed a substantial decrease in
absolute numbers of both naïve (CD20+CD27−) and memory
(CD20+CD27+) PTX3+ B cells in LN compared to HD and non-
renal SLE patients (mean ± SD naïve/ml: LN 0.18 ± 0.58 vs. HD
30.12± 42.96, p= 0.0001; LN SLE 0.18± 0.58 vs. non-renal 16.22
± 24.88, p = 0.028; mean ± SD memory/ml: LN 0.97 ± 2.18 vs.
HD 12.75 ± 24.88, p = 0.011; LN 0.97 ± 2.18 vs. non-renal SLE
4.07± 5.21, p= 0.038) (Figure 2A, middle and right).

Moreover, the frequencies of PTX3+ B cells and B cell subsets
were decreased in LN (Figure 2B), while there was no significant
difference between HD and non-renal SLE.

Of note, no difference in PTX3+ naïve and memory
compartment was identified between active and inactive LN (data
not shown), suggesting that the actual decrease in LN is not
related to disease activity, rather mirroring a characteristic of LN.

We detected nearly no circulating PTX3+ plasmablasts
(CD27hiCD20−/low) in whole blood sampled for the majority of
donors, where a minimum of 1 × 106 events was retrieved from
each sample. These cells were absent even when a larger amount
of cellular events (27 × 106) from an SLE patient among a total
of 7,648 plasmablasts was analyzed.

Circulating PTX3+ B Cells Reside Mainly

Within Naïve (CD20+CD27−IgD+) B Cells

With a Similar Distribution Among HD and

Non-renal SLE Patients
Using CD27 and IgD as surface markers, we further subdivided
B cell subpopulations. We found that the majority of circulating
PTX3+B cells resided among the CD20+CD27−IgD+ mature
pre-switch naïve subset, followed by a lower number of
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FIGURE 1 | Identification of PTX3+ B cells among CD19+CD20+ B cells. (A) Three representative dot plots of the PTX3-specific B cells before and after blocking

with unlabeled PTX3. Only B cells staining positive for both PTX3-Cy5 and PTX3-PE were considered (light gray square). (B) Quantification of PTX3 binding among B

cells before and after blocking of PTX3. Cy5, cyanin 5; PE, phycoerythrin. **<0.01.

CD20+CD27+IgD+ B cells (Figures 2C,D), likely representing
pre-switched memory B cells whose origin is still debated (26).
This distribution remained consistent among HD and non-renal
SLE patients (Figure 2C, left and middle), while LN patients did
not show any difference among B cell subsets (Figure 2C, right).
Proportions of PTX3+ CD27IgD B cell subsets in relationship to
the whole PTX3+ B cell pool are shown in Figure 2D.

DISCUSSION

In this study, we aimed at characterizing the distribution
of an PTX3+ B cells in peripheral blood of SLE patients,
focusing on potential differences between LN and non-renal
SLE. Most interestingly, our results show that LN patients
bear strikingly reduced amounts of circulating PTX3+ B cells
both in the naïve and memory compartment vs. HD and

non-renal SLE. This finding was observed regardless of LN
activity, suggesting a characteristic divergence between patient
subsets.

Moreover, the current results indicate that selection of PTX3
binding B cells appears to be defective in LN based on the analysis
of sole PTX3+ B cells and B cell subsets which were able to bind
specifically PTX3 molecules using two different dyes blockable
by unlabeled antigen. The observation that most circulating
PTX3+B cells belong to CD27−IgD+ and to CD27+IgD+

subsets is not surprising, since PTX3 is a self-antigen without
enhanced antigenicity. In this context, lack of detectable PTX3+

plasmablasts is consistent with the notion that the B and plasma
cell compartments underlie independent regulations (27–30),
thus at this point it is not possible to establish a direct link
between these specific PTX3-B cell subsets and the production
of anti-PTX3 antibodies.
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FIGURE 2 | PTX3+ B cells are decreased in patients with lupus nephritis and are mainly confined to CD27− IgD+ B cells. (A) Absolute numbers of PTX3+ B cells

(cell/mL) within (left) total; (middle) naïve or (right) memory B cells in HD (n = 22) and SLE (n = 26) and LN (n = 12) patients. (B) Frequencies of PTX3+ B cells (left),

naïve (middle), and memory (right) are decreased in LN (n = 12) in comparison with HD (n = 22) and SLE (n = 26). (C) Distribution of CD27 and IgD expression by

PTX3+ B cell subsets are shown. Enrichment in the naïve pool with decreases in the other subsets was found in HD (n = 22) and SLE (n = 26), but not in LN (n = 12).

(D) Pie charts of percentages of PTX3+ CD27IgD subsets within the PTX3+ B cell pool are consistent with distribution of absolute numbers. Mann-Whitney U-test

(*< 0.05, **< 0.01, ***< 0.001). SLE, systemic lupus erythematosus; HD, healthy donors; LN, lupus nephritis; PTX3 pentraxin3.

Notably, by virtue of its octameric structure, PTX3 is able to
bind diverse molecules (12, 31, 32) and either living or apoptotic
cells (9, 13, 23). More recently, the binding of PTX3 to marginal

zone (MZ) B cells was described which promoted production of
IgM and IgG antibodies, thus suggesting that PTX3 is involved in
the regulation of B cell differentiation or potentially in B helper
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function (24). So far, however, the binding site of PTX3 other
than FcÈ receptors or Toll-like receptors (23, 24) has not been
fully delineated.

It is well-known that regulatory B cell function (both in
numbers and functionality) is impaired in SLE (33, 34) and
a stable decrease of naïve and memory PTX3+B cells in LN
patients may hint to an early negative selection or depletion of
this specificity in LN. While previous pre-clinical and clinical
data showed that anti-PTX3 autoantibodies carry a LN protective
potential, it remains to be shown whether this also applies
to a potential immunomodulatory function of PTX3+ B cells.
Alternatively, and not mutually exclusively, the abundance of
naïve PTX3+ B cells in non-renal SLEmay represent polyreactive
B cells, which is a common feature of SLE (35, 36), and
may give rise to antibody secreting cells via an extrafollicular
pathway (37). This would be consistent with the progressive
decrease in PTX3+B cell subsets from naïve, pre-switch to post-
switch memory cells. The current finding of a similar level and
distribution of PTX3+ B cells in non-renal SLE and HD has
some implications. First, their absence in LN suggests that their
presence has relevance to protect the kidney. Second, selection
processes leading to PTX3+ B cell subsets might be intact
in SLE as observed for HD. Alternatively and related to the
proposed protective function, non-renal SLE patients are able to
generate a sufficient amount of PTX3+ B cells which could be
involved in immune protection being more compromised in LN.
As such, the absence of circulating PTX3+ B cells in LN may
hamper the kidney-protective effect provided by PTX3 specific
autoantibodies.

Our study is the first addressing the distribution of
autoantigen-specific B cells in lupus, focusing on a molecule of
emerging importance, through an original method of selection
and verification of autoantigen-specific B cells, which can
be thereby identified from peripheral blood of patients or
controls with a high level of certainty and in the absence of
stimulation.

In summary, this study developed amethod to reliably identify
PTX3-specific B cells and their subsets. Application of this
technology allowed the identification of an abnormal distribution
of PTX3+ B cells with their absence in LN and a very similar
profile among controls and non-renal SLE. To which extent these
findings relate to a potential immune regulatory role or protective
function of this specificity as well as potential clinical applications
in diagnostics or therapeutics remains to be delineated.
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Background: Reactivation of latent human cytomegalovirus (CMV) in patients

undergoing allogeneic stem-cell transplantation (HSCT) predisposes to several clinical

complications and is therefore a major cause of morbidity and mortality. Although

pentraxin-3 (PTX3) has been previously described to bind both human and murine CMV

and mediate several host antiviral mechanisms, whether genetic variation in the PTX3

locus influences the risk of CMV infection is currently unknown.

Methods: To dissect the contribution of genetic variation within PTX3

to the development of CMV infection, we analyzed described loss-of-function variants at

the PTX3 locus in 394 recipients of HSCT and their corresponding donors and assessed

the associated risk of CMV reactivation.

Results: We report that the donor, but not recipient, h2/h2 haplotype in PTX3 increased

the risk of CMV reactivation after 24 months following transplantation, with a significant

effect on survival. Among recipients with h2/h2 donors, CMV seropositive patients as well

as those receiving grafts from unrelated donors, regardless of the CMV serostatus, were

more prone to develop viral reactivation after transplantation. Most importantly, the h2/h2

haplotype was demonstrated to display an influence toward risk of CMV reactivation

comparable to that conferred by the unrelated status of the donor alone.

Conclusions: Our findings demonstrate the important contribution of genetic variation

in donor PTX3 to the risk of CMV reactivation in patients undergoing HSCT, highlighting

a promising prognostic value of donor PTX3 to predict risk of CMV reactivation in this

clinical setting.

Keywords: cytomegalovirus, stem-cell transplantation, PTX3, single nucleotide polymorphism, precision

medicine, genomics
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INTRODUCTION

Human cytomegalovirus (CMV), a member of the Herpesviridae

family, is a ubiquitous opportunistic pathogen that has

intimately co-evolved with its human host and can establish
latency after clearance of the primary infection (1). CMV

asymptomatically infects the majority of the world’s population
(approximately 40–99%), with the highest seroprevalence in
developing countries, and typically only leads to disease in the
absence of an adequate cellular immunity (2). Asymptomatic
long-term virus shedding in urine and saliva secretions
usually marks the primary infection in healthy individuals (3).
Throughout complex virus-host interactions, CMV evades a
number of host pathways to enable its lifelong persistence,
during which it may replicate chronically or reactivate from
latency sporadically (4). In immunocompetent individuals,
these reactivation events are tightly controlled by the immune
system and rarely result in clinical presentation (5). However,
it is becoming increasingly apparent that CMV may be
associated with additional long-term health consequences due
to its ability to establish lifelong persistence in critically
ill patients (6, 7). Accordingly, reactivation of latent virus
following allogeneic hematopoietic stem-cell transplantation
(HSCT) has been increasingly associated with overt CMV
disease, a major cause of morbidity and mortality in these
patients. Despite important efforts centered in diagnostic and
therapeutic advances, pre-emptive antiviral therapy is associated
with significant myelotoxicity and impaired hematological
reconstitution (8, 9), ultimately leading to other disease
complications including superinfection by other viruses, bacteria
and fungi, particularly Aspergillus species (10, 11).

The immune control of viral infections requires different
components originating from both innate and adaptive arms
of the immune system (12). Specifically, the innate immune
system has evolved a multitude of unique antiviral humoral
mechanisms through the participation of collectins, including
surfactant protein (SP)-A and SP-D, and pentraxins (13–15).
The long pentraxin-3 (PTX3) is a member of a superfamily of
fluid-phase proteins, distinguished by their cyclic multimeric
structure and the presence of a conserved amino acid
signature in their C-terminal domain (16). In response to
proinflammatory stimuli, PTX3 production is induced in a broad
range of immune cells, including macrophages, dendritic cells
and endothelial cells (17). Moreover, PTX3 is stored in the
intracellular granules of neutrophils in a ready-made form and
is rapidly released upon pathogen challenge or tissue damage,
thereby covering a temporal window preceding PTX3 gene
expression-dependent production. By acting as an ancestor
of antibodies, PTX3 exerts a multifaceted nonredundant role
in innate immunity against certain microbes by modulating
complement activity and facilitating pathogen recognition by
myeloid innate immune cells (18–20). As such, and although
classic immunodeficiencies have not been linked to PTX3
deficiency (21), common polymorphisms have been disclosed
as important risk factors across different infectious diseases,
namely Pseudomonas aeruginosa colonization in cystic fibrosis
patients (22), uropathogenic Escherichia coli infection (23), and

invasive aspergillosis in recipients of HSCT (24, 25) and solid
organ transplantation (26, 27), as well as patients with chronic
obstructive pulmonary disease (28).

Despite a well-recognized role in innate host defense against
selected bacteria and fungi, accumulating evidence also suggests
the involvement of PTX3 in innate antiviral immunity (29). In
fact, PTX3 has been described to act as a receptor decoy for the
virus during CMV infection (30). Specifically, PTX3 was found
to exert a protective role by binding both human and murine
CMV, resulting in a reduced viral entry into permissive cells and
resistance to Aspergillus superinfection, a mechanism entirely
dependent on Toll-like receptors (TLRs) sensing pathways and
activation of interferon (IFN) regulatory factor 3 (IRF3). Of note,
the exogenous administration of PTX3 resulted in therapeutic
efficacy against primary CMV infection and reactivation as
well as Aspergillus superinfection in pre-clinical models of
HSCT.

The compelling evidence that PTX3 is an effective mediator
in preventing CMV infection and reactivation as well as
subsequent superinfections pinpoints a potential role for PTX3
as a biomarker and therapeutic agent in viral infections and
superinfections in the transplantation setting. However, the
potential involvement of genetic variation in PTX3 during CMV
reactivation in at-high risk individuals has never been addressed.
In this large genetic association study involving 394 eligible
donor-recipient HSCT pairs, we provide crucial insights into
the genetic contribution of PTX3 as a critical regulator of
susceptibility to CMV infection. This informationmay ultimately
lay the foundations toward risk stratification approaches aimed at
a more effective and personalized management of CMV infection
in this clinical setting.

MATERIALS AND METHODS

Patients
A total of 460 hematological patients of European descent
undergoing allogeneic HSCT at Instituto Português de
Oncologia, Porto, and at Hospital de Santa Maria, Lisbon,
between 2009 and 2015, were enrolled. Both donor and recipient
DNA samples as well as patient-level data were available for
394 of these. The demographic and clinical characteristics of
the patients are summarized in Table 1. One hundred and
ninety-six cases of CMV infection and 198 uninfected controls
were identified through pp65/pUL83 antigenemia assay (>1/100
pp65/pUL83 antigen-positive cells) and blood quantitative PCR
for detection of viral DNA (>400 copies/mL) according to the
recent revised standard criteria (31). All patients were monitored
weekly for viral infection (reactivation or primary infection)
with CMV until day +90 post-HSCT and subsequently every
second week. In the event of increasing viral loads, pre-emptive
therapy with valganciclovir was initiated. Approval for the
study was obtained from the Ethics Subcommittee for Life and
Health Sciences of the University of Minho, Portugal (125/014),
the Ethics Committee for Health of the Instituto Português de
Oncologia, Porto, Portugal (26/015), the Ethics Committee of
the Lisbon Academic Medical Center, Portugal (632/014), and
the National Commission for the Protection of Data, Portugal
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TABLE 1 | Demographic and transplant-related characteristics at baseline.

Variable Total

(n = 394)

No CMV

infection

(n = 198)

CMV

infection

(n = 196)

P-value†

AGE AT TRANSPLANTATION, NO (%)

≤20 years 75 (19.1) 42 (21.2) 33 (16.8) 0.37

21–40 years 103 (26.1) 54 (27.3) 49 (25.0)

>40 years 216 (54.8) 102 (51.5) 114 (58.2)

GENDER, NO (%)

Female 169 (42.9) 90 (45.5) 79 (40.3) 0.29

Male 225 (57.1) 108 (54.5) 117 (59.7)

UNDERLYING DISEASE, NO. (%)

Acute leukemia 213 (54.1) 109 (55.1) 104 (53.1) 0.79

Chronic lymphoproliferative

diseases

65 (16.5) 28 (14.1) 37 (18.9)

Chronic myeloproliferative diseases 25 (6.3) 14 (7.1) 11 (5.6)

Myelodysplastic/myeloproliferative

diseases

57 (14.5) 28 (14.1) 29 (14.8)

Aplastic anemia 19 (4.8) 10 (5.1) 9 (4.6)

Others or unknown 15 (3.8) 9 (4.5) 6 (3.1)

TRANSPLANTATION TYPE, NO. (%)

Matched, related 180 (45.7) 106 (53.6) 74 (37.8) 0.009

Matched, unrelated 106 (26.9) 43 (21.7) 63 (32.1)

Mismatched, related 6 (1.5) 4 (2.0) 2 (1.0)

Mismatched, unrelated 102 (25.9) 45 (22.7) 57 (29.1)

GRAFT SOURCE, NO. (%)

Peripheral blood 324 (82.2) 166 (83.8) 158 (80.6) 0.10

Bone-marrow 62 (15.7) 31 (15.7) 31 (15.8)

Cord blood 8 (2.0) 1 (0.5) 7 (3.6)

DISEASE STAGE, NO. (%)

First complete remission 219 (55.6) 120 (60.6) 99 (50.5) 0.13

Second or subsequent remission,

or relapse

69 (17.5) 30 (15.2) 39 (19.9)

Active disease 106 (26.9) 48 (24.2) 58 (29.6)

CONDITIONING REGIMEN, NO (%)

RIC 274 (69.5) 136 (68.7) 138 (70.4) 0.70

Myeloablative 120 (30.5) 62 (31.3) 58 (29.6)

CMV SEROSTATUS OF DONOR AND RECIPIENT, NO. (%)

D+/R+ 270 (68.5) 133 (67.2) 137 (69.9) <0.0001

D–/R+ 81 (20.6) 30 (15.2) 51 (26.0)

D+/R– 23 (5.8) 18 (9.1) 5 (2.6)

D–/R– 20 (5.1) 17 (8.6) 3 (1.5)

DURATION OF NEUTROPENIA, MEAN DAYS (RANGE)
‡

14 (5–39) 14 (6–39) 13 (5–35) 0.40

ACUTE GVHD, NO. (%)

No GVHD or grades I–II 329 (83.5) 171 (86.4) 158 (80.6) 0.12

Grades III–IV 65 (16.5) 27 (13.6) 38 (19.4)

†P-values were calculated by Fisher’s exact probability t-test or Student’s t-test

for continuous variables, comparing the groups with and without CMV infection.
‡Neutropenia was defined as ≤0.5 × 109 cells/L. RIC, reduced intensity conditioning;

CMV, cytomegalovirus; D, donor; R, recipient; GVHD, graft-vs.-host-disease.

(1950/015). All participants provided written informed consent
prior to transplantation in accordance with the Declaration of
Helsinki.

Single Nucleotide Polymorphism (SNP)
Selection and Genotyping
Genetic variants in the PTX3 gene analyzed in this study were
selected based on their described functional consequences
and previous association with infectious complications after
HSCT (24). Genomic DNA was isolated from whole blood
using the QIAmp DNA Blood Mini Kit according to the
protocol supplied by the manufacturer (Qiagen, Hilden,
Germany). Genotyping was performed using KASPar assays
(LGC Genomics, Hertfordshire, United Kingdom) in an Applied
Biosystem 7500 Fast Real-Time PCR system (Thermo Fisher
Scientific, MA, United States), according to the manufacturer’s
instructions. Mean call rate for the SNP was >98%. Quality
control for the genotyping results was achieved with
negative controls and randomly selected samples with known
genotypes.

Statistical Analysis
The probability of CMV reactivation according to PTX3
genotypes was determined using the cumulative incidence
method and compared using the Gray’s test (32). The cumulative
incidence of CMV reactivation at 24 months after HSCT was
computed with the cmprsk package for R version 2.10.1, with
censoring of data at the date of last follow-up visit and relapse
and death as competing events. All clinical and genetic variants
achieving a P ≤ 0.15 in the univariate analysis were entered
one by one in a pairwise model together and kept in the final
model if they remained significant (P < 0.05). Multivariate
analysis was performed using the subdistribution regression
model of Fine and Gray. Overall survival, defined as the time
from transplantation to death from any cause, was estimated with
the use of the Kaplan-Meier method and evaluated according
to PTX3 genotypes with the use of the log-rank test. Power
calculations were performed using the powerSurvEpi package
0.0.9 for R. Our sample size provided 80% power and a type
I error below 5% for genetic variants with allele frequencies
between 0.15 and 0.20 conferring a relative risk of 2.0.

RESULTS

Genetic Variation in PTX3 Increases the
Risk of CMV Reactivation After HSCT
The baseline demographic and transplantation characteristics
of the enrolled HSCT patients are depicted in Table 1.
No significant differences were observed among cases of
CMV reactivation and control groups regarding the age at
transplantation, gender, underlying hematological disease, graft
source, disease stage at transplantation, conditioning regimen,
development of acute graft-vs.-host disease (GVHD) and
duration of neutropenia. However, an increased number of
cases of CMV infection was detected among serologically
positive recipients (R+), whereas recipients with negative
CMV serostatus (R–) were instead more protected from viral
reactivation (P < 0.0001). In addition, HSCT patients receiving
grafts from unrelated donors were more prone to develop CMV
infection, compared to those with related donors (P = 0.009).
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To investigate the relationship between genetic variation in
PTX3 and the susceptibility to CMV reactivation, the cumulative
incidence of infection among transplant recipients was assessed
according to recipient or donor genotypes at 24 months after
HSCT. We found that donor, but not recipient, SNPs influenced
the risk of CMV reactivation (Table 2). The cumulative incidence
of CMV infection for donor rs2305619 was 59% for GG, 38%
for AG and 36% for AA (P = 0.01), whereas for rs3816527,
cumulative incidence of CMV infection was 55% for AA, 32% for
AC and 37% for CC (P = 0.03). Haplotype analysis comprising
rs2305619 and rs3816527 revealed that cumulative incidence of
infection among patients with G-A/G-A [referred to as h2/h2
(24)] donors was 63% (P = 0.008) compared to 44 and 38%
incidence observed for A-C/G-A (h1/h2) (P= 0.42) andA-C/A-C
(h1/h1) donors, respectively (Figure 1A). In accordance with the
results obtained for the individual SNPs, no significant influence
of recipient haplotypes was observed on viral reactivation, with
the cumulative incidence being 55% for h1/h1 (reference), 41%
for h1/h2 (P = 0.07) and 50% for h2/h2 (P = 0.48). Other
haplotypes were rare and were not included in the analysis (data
not shown). The key contribution of the h2/h2 haplotype to the

TABLE 2 | Cumulative incidence of CMV reactivation according to recipient and

donor PTX3 genotypes, and association test results.

RefSNP Genotype(s) Cumulative incidence of CMV

reactivation at 24 Mo (%)

Recipient P-value Donor P-value

rs2305619 AA 52 0.12 36 0.01

AG 38 38

GG 49 59

rs3816527 AA 51 0.20 55 0.03

AC 35 32

CC 52 37

CMV, cytomegalovirus; SNP, single nucleotide polymorphism; Mo, months. The P-values

are for Gray’s test using cumulative incidence analysis.

risk of infection was further illustrated uponmodeling a recessive
mode of inheritance (cumulative incidence of CMV reactivation,
63% for h2/h2 vs. 42% for h1/h1 and h1/h2 haplotypes combined;
P = 0.004) (Figure 1B).

In a multivariate model accounting for age, gender, donor
relation and CMV serostatus, the donor h2/h2 haplotype was
found to confer a 1.9-fold (95% confidence interval, 1.2–
2.9; P = 0.004) increased risk of CMV reactivation after
transplantation (Table 3). In addition, receiving grafts from
either matched (P = 0.005) or mismatched (P = 0.004)
unrelated donors also increased risk of infection, whereas CMV
seronegative recipients displayed instead a decreased risk of
infection (P = 0.01). Collectively, our results identify genetic
variation in donor PTX3 as a potentially critical risk factor
influencing the susceptibility to CMV reactivation after HSCT.

The H2/H2 Haplotype Predisposes to CMV
Infection Regardless of Viral Serostatus
and Type of Donor
Several studies have demonstrated that CMV seropositive
patients retain a higher associated mortality in comparison with
seronegative recipients who were transplanted from seronegative

TABLE 3 | Multivariate analysis of the association of PTX3 SNPs with the risk of

CMV reactivation among transplant recipients.

Genetic/clinical variables Adjusted HR† (95% CI) P-value

Donor h2/h2 haplotype in PTX3 1.9 (1.2–2.9) 0.004

Matched unrelated donor 1.9 (1.2–3.0) 0.005

Mismatched unrelated donor 1.7 (1.2–2.5) 0.004

D+/R– 0.26 (0.09–0.74) 0.01

HR, hazard ratio; CI, confidence interval. Multivariate analyses were based on the

subdistribution regression model of Fine and Gray. †Hazard ratios were adjusted

for patient age and gender, type of transplantation, graft source, disease stage at

transplantation, CMV serostatus of donor and recipient, and duration of neutropenia. Only

the variables remaining significant after adjustment are shown.

FIGURE 1 | Genetic variation in donor PTX3 increases the risk of CMV reactivation after HSCT. Genetic association study comprising 394 eligible HSCT recipients

with available clinical data and corresponding donors. (A) Cumulative incidence of CMV reactivation after HSCT according to recipient and donor haplotypes in PTX3.

(B) Cumulative incidence of CMV reactivation after HSCT according to donor haplotypes in PTX3 following a recessive genetic model. Data were censored at 24

months, and relapse and death were considered competing events. P-values were calculated using Gray’s test.
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donors (33, 34). In light of our genetic data disclosing the h2/h2
haplotype as a critical risk factor for CMV reactivation after
HSCT, we further stratified patients according to the recipient
CMV serostatus. We observed that CMV seropositive patients
(R+) carrying the risk-conferring haplotype in PTX3 displayed
the highest risk of CMV reactivation after HSCT (Figure 2A).
Specifically, the cumulative incidence of CMV reactivation
was 68% for R+ and h2/h2 (P < 0.001), 44% for R+ and
h1/h1+h1/h2 (P = 0.03), 30% for R– and h2/h2 (P = 0.20),
and 14% for R– and h1/h1+h1/h2 (reference) (Figure 2A).
These results indicate that the h2/h2 haplotype promoted a
further increased risk of CMV reactivation among both CMV
seropositive and seronegative recipients.

FIGURE 2 | Recipient serostatus and donor relation synergize with genetic

variation in PTX3 toward risk of CMV reactivation. Genetic association study

comprising 394 eligible HSCT recipients with available clinical data and

corresponding donors. Cumulative incidence of CMV reactivation after HSCT

according to donor haplotypes in PTX3 in combination with (A) recipient

serostatus (negative, R–, or positive, R+) or (B) type of donor (related, Rel, or

NRel, unrelated). Data were censored at 24 months, and relapse and death

were considered competing events. P-values were calculated using Gray’s

test.

Given that the type of donor is also a well-described pre-
transplantation predictive factor for CMV reactivation (35), we
analyzed our genetic results according to the type of donor
(related, Rel, and unrelated, NRel). We found that recipients
harboring the h2/h2 haplotype were at higher risk of CMV
infection following HSCT, regardless of the type of transplant
(Figure 2B). The cumulative incidence of viral reactivation was
66.7% for NRel and h2/h2 (P < 0.001), 56.3% for Rel and
h2/h2 (P = 0.01), 44.4% for NRel and h1/h1+h1/h2 (P = 0.02),
and 33% for Rel and h1/h1+h1/h2 (reference). Of note, the
similar incidence of CMV reactivation observed in recipients
transplanted from Rel and h2/h2 donors and those transplanted
fromNRel and h1/h1+h1/h2 donors support a comparable effect
of genetic variation in PTX3 and the type of donor toward CMV
reactivation. Collectively, these results suggest that PTX3 may
constitute an ideal candidate for antiviral prophylactic measures
aimed at counteracting the onset of CMV reactivation in HSCT
patients.

The H2/H2 Haplotype Influences
Post-transplant Mortality
In view of our findings highlighting the genetic variation
in PTX3 as promising predictive clinical candidate for CMV
reactivation in HSCT patients, we next sought to investigate
whether the donor h2/h2 haplotype influenced post-transplant
mortality. The probability of overall survival was evaluated at
36 months following transplantation and estimated according
to donor PTX3 haplotypes. We observed that, consistent with
the increased risk of CMV reactivation, the donor h2/h2
haplotype influenced the post-transplant survival of HSCT
patients (Figure 3). The probability of survival decreased from
54% among patients who received transplants from either
h1/h1 or h1/h2 donors to 45% among patients who received
transplants from donors carrying the risk-conferring h2/h2
haplotype (P = 0.04). Taken together, these results highlight
the potential role of genetic variation in PTX3 as an important
predictor of the risk of infection, but also the outcome of the
patients.

FIGURE 3 | The donor h2/h2 haplotype in PTX3 influences post-transplant

survival of HSCT recipients. Overall survival (OS) according to donor

haplotypes in PTX3. Data were censored at 36 months. P-values were

calculated using the log-rank test.
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DISCUSSION

Although remarkable advances in molecular virology and
improvements in diagnostic methods and treatment regimen
options have vastly enhanced our ability to manage CMV
infection (36, 37), reactivation of latent virus remains one
major cause of morbidity and mortality in patients undergoing
HSCT (11). There is therefore a pressing demand for the
development of novel prognostic markers for CMV reactivation
aimed at supporting risk stratification measures and early
diagnosis of infection. In this regard, the rs12979860 SNP
upstream of the IL28B gene, known to be a critical factor
associated with spontaneous clearance of hepatitis C (38), has
been reported to influence the risk of CMV infection through
the regulation of CMV-specific T-cell responses (39). Another
study, despite failing to detect association, also revealed a
contribution of the same IL28B variant to the levels of CMV
DNAemia (40). In addition, SNPs in innate immunity genes,
most notably TLR9 (41, 42), also appear to be important
repositories of variability toward CMV infection across different
studies. Collectively, these findings point to a strong genetic
component in defining susceptibility to CMV reactivation after
HSCT.

In this study, we have disclosed genetic variation in PTX3
as an independent prognostic factor for CMV reactivation
after transplantation, providing additional insights into human
susceptibility to CMV infection. In addition, we determined a
significant contribution of the donor h2/h2 haplotype to a poorer
survival of HSCT recipients, similar to that previously reported
among recipients of grafts from HLA-mismatched donors (24).
This may reflect a key role of the h2/h2 haplotype in defining the
outcome of HSCT patients by enhancing the risk of infectious
complications. It remains to be assessed whether these genetic
variants may also affect other non-infectious complications
associated withHSCT. In this regard, it is worthwhile mentioning
that plasma levels of PTX3 were increased at the onset
of GVHD and were predictive of disease outcome (43),
although the potential contribution of genetic variation in
PTX3 to the risk and progression of GVHD remains to be
assessed.

The integration of genetic markers into clinically valid
processes to stratify the risk and progression of viral infection,
and the efficacy of antiviral prophylaxis and therapy may
represent a groundbreaking innovation for at-risk patients. In
addition, the mechanistic involvement of PTX3 during CMV
infection has been known for a long time (17, 44). By binding to
CMV through sialic acids expressed on its glyosidicmoiety, PTX3
was demonstrated to be effective in averting CMV infection and
reactivation in selected in vivo and in vitro models of infection
(30). Our genetic study associating a loss-of-function haplotype
with the risk of CMV reactivation further supports the previously
reported antiviral role of PTX3 and, considering its therapeutic
potential in pre-clinical models (30), the administration of
PTX3 could be envisaged as a promising immunotherapeutic
approach to rescue the genetic deficiency in at-risk
patients.

Although major advances have been accomplished regarding
antiviral prophylactic strategies and preemptive therapy (9, 45),
the donor and recipient CMV serological status still plays
a major influence on the outcome of post-transplantation
complications (46). Numerous investigations have demonstrated
that CMV seronegative recipients transplanted from equally
seronegative donors retain a reduced risk of transplant-related
mortality, especially that caused by infections, in comparison
with serologically positive recipients (47, 48). In line with
the reported data, we found a significantly increased number
of CMV reactivation cases among seropositive patients. Most
importantly, our observation that R+ and h2/h2 recipients
were at the highest risk of CMV reactivation highlights PTX3
as an ideal candidate for personalized medical interventions
such as intensified diagnostics and targeted preemptive antiviral
prophylaxis to prevent and counteract the onset of infection
in specific subgroups of patients that are most at risk of viral
reactivation.

Within the criteria for donor selection, the relation between
donor and recipient constitutes one of the most relevant
pre-transplantation predictors of CMV reactivation after
transplantation (35, 49). In accordance, we found a significantly
increased number of cases of CMV reactivation among patients
with unrelated donors. Since the success of transplantation
procedures hinges on the availability of suitable donors (50),
our results suggest a pivotal role for PTX3 genetics as a
pre-transplantation factor that could reshape current clinical
approaches through the implementation of innovative risk
stratification strategies that may involve the choice of alternative
donors. Indeed, our results appear to indicate that selection
of donors carrying the h2/h2 haplotype in PTX3 may have a
detrimental effect toward the reactivation of CMV after HSCT
comparable to that conferred by the unrelated status of the donor
alone.

Given its exploratory nature, our study presents certain
limitations. The most important refer to the absence of definitive
conclusions about the mechanism(s) through which genetic
variation in donor PTX3 influences the risk of developing CMV
infection. Although it could presumably involve the transfer of
CMV-specific lymphocytes, this hypothesis needs to be further
explored. In addition, the low number of cases of overt CMV
disease in our cohort precluded the appreciation of potential
associations between severe viral disease and genetic variation in
PTX3. Functional studies are ultimately required to understand
how PTX3 is regulated in response and during CMV infection
after HSCT, and what is the relative involvement of genetic
variation in defining the levels of PTX3 and contributing to
infection.

In conclusion, the evidence presented herein for a robust
association between genetic variation in PTX3 and CMV
reactivation in patients undergoing HSCT highlights the
significance of PTX3 as a promising marker for personalized
medical intervention strategies, especially in the HSCT
population, which may be particularly well-suited for
genetically-targeted antiviral prophylaxis or enhanced diagnostic
surveillance (51).
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Pentraxin-3 (PTX3) and C-reactive protein (CRP) have been shown to regulate

complement activation in vitro, but their role has not been investigated in complement

consumption in vivo. Thrombotic microangiopathies (TMA) are often accompanied by

complement overactivation and consumption, therefore we analyzed the relation of the

systemic pentraxin levels to the complement profile, laboratory parameters and clinical

outcome of TMA patients. We determined the PTX3 and CRP levels, complement

factor and activation product concentrations in blood samples of 171 subjects with

the diagnosis of typical hemolytic uremic syndrome (STEC-HUS) (N = 34), atypical

HUS (aHUS) (N = 44), secondary TMA (N = 63), thrombotic thrombocytopenic purpura

(TTP) (N = 30) and 69 age-matched healthy individuals. Clinical data, blood count and

chemistry were collected frommedical records. To determine the in vitro effect of PTX3 on

alternative pathway (AP) activation, sheep red blood cell-based hemolytic assay and AP

activity ELISA were used. We found that PTX3 levels were elevated in the acute phase of

STEC-HUS, aHUS and secondary TMA, whereas PTX3 elevation was exceptional is TTP.

Conversely, a significantly higher median CRPwas present in all patient groups compared

to controls. PTX3, but not CRP was associated with signs of complement consumption

in vivo, and PTX3 significantly decreased the AP hemolytic activity in vitro. Our results

provide a detailed description of acute phase-TMA patients’ complement profile linked

to changes in the systemic pentraxin levels that may support further molecular studies

on the function of PTX3 in disease pathogenesis and add to the laboratory assessment

of complement consumption in TMA.

Keywords: pentraxin-3, C-reactive protein, thrombotic microangiopathies, hemolytic uremic syndrome,

thrombotic thrombocytopenic purpura, alternative pathway, complement consumption
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INTRODUCTION

Pentraxin-3 (PTX3) and C-reactive protein (CRP) are fluid phase
pattern recognition molecules that have been shown to
interact with the complement system on multiple levels. PTX3
consists of a unique N-terminal domain (1) and a highly
conserved C-terminal pentraxin-like domain that is shared
with CRP and allows octamer formation of the secreted PTX3
monomers through inter-chain disulfide bonds (2). Prompt
release of PTX3 from neutrophil granulocytes is mediated at
local sites of activation (3), whereas its enduring production
is regulated via gene expression induction in innate immune
cells and endothelial cells (3). Native CRP, a member of the
short-pentraxin protein family, is stored as a pentamer in
the endoplasmic reticulum of resting hepatocytes (4). Upon
inflammatory stimuli CRP is secreted into the circulation and
phosphocholine binding on target cell membranes induces the
disassembly of the pentameric structure to CRP monomers in a
calcium-dependent fashion (4).

PTX3 may facilitate phagocytosis of pathogens and clearance
of cellular debris through the activation of the classical (CP)
and lectin pathways of complement (2) upon binding to surface-
associated mannan-binding lectin (5), ficolins, collectins (6) and
C1q (7). Conversely, its interaction with C1q in the fluid phase
restricts unwanted complement activation (3, 7). PTX3 also
may recruit functionally active complement regulatory proteins,
such as factor H (FH) (8) and C4b-binding protein (C4BP) (9)
to the surface of apoptotic cells, which in turn facilitates C3b
or C4b degradation and phagocytosis. Hence, by FH binding,
PTX3 may prevent alternative pathway (AP) amplification and
activation of the terminal pathway on non-activator surfaces
in vitro (1). However, in vivo disease models of infection and
tissue injury reported contradictory observations on the role of
PTX3 during the inflammatory response. Both endogenous and
exogenous PTX3 were shown to attenuate leukocyte recruitment

and decrease apoptosis in experimental models of kidney
and myocardial tissue injury (10, 11), whereas excess PTX3
was shown to intensify the inflammatory response in disease
models of intestinal ischemia (12, 13) and certain respiratory
pathologies (14).

CRP also has the ability to activate the CP of complement.
Pentameric CRP however, may only bind solid phase C1q when
complexed to phosphocholine (15), with concomitant restrain of
the terminal pathway (16). By contrast, monomeric CRP may
induce excess CP activation both in vitro and in vivo (15, 16),

but at the same time it also allows for CRP to interact with

the complement regulators C4BP, FH, but also with properdin
(15, 17, 18), thus regulating both the CP and AP.

Thrombotic microangiopathies (TMA) are life threatening
conditions that involve acute thrombocytopenia, hemolysis
and organ impairment. Endothelial damage and subsequent
microvascular thrombosis are key pathogenic factors in all forms
of this disease (19, 20), despite differences in the clinical course
andmanagement of TMAswith distinct etiologies.Microvascular
thrombosis has been linked to excessive complement activation
in all forms of TMA (21–23) together with neutrophil activation
and neutrophil extracellular trap (NET) release (24–28), which

may provide excess PTX3 at the site of tissue injury (29) and thus
influence the local complement activity.

Albeit numerous investigations have characterized the
interaction of pentraxins with complement factors in vitro,
no study has been designed so far to explore changes in the
systemic level of pentraxins in complement mediated diseases,
such as TMAs. Therefore, we performed a case-control study to
determine the systemic levels of PTX3 and CRP in patients at the
acute phase and remission of TMA. We explored the association
between TMA-related complement consumption and circulatory
pentraxin levels in vivo as well as the direct effect of PTX3 on
AP activation in vitro, to reveal the potential role of pentraxins
in complement mediated tissue injury. We further analyzed the
relationship between the systemic level of pentraxins and TMA
etiology, the clinical outcome of patients and classical laboratory
markers of TMA.

METHODS

Patient Selection and Sample Collection
171 TMA patients with acute disease flare were enrolled in this
study. Serum and plasma samples from all subjects were collected
prior to the start of plasma exchange therapy; however, in 16
cases fresh frozen plasma had been administered to the patients
prior to sampling. For appropriate comparison, 69 age-matched
healthy individuals were selected, none of whom showed clinical
or laboratory signs of TMA or an acute phase reaction that
could have influenced the measured laboratory parameters.
Diagnosis of TMA was established based on laboratory signs of
thrombocytopenia (<150 G/L), and microangiopathic hemolytic
anemia. Patients were included in the study only if all of the
above criteria were met. For stratification of patients by disease
etiology the following groups were formed: STEC-HUS (N =

34), aHUS (N = 44), secondary TMA (N = 63) and TTP
(N = 30) (Figure 1), based on additional diagnostic criteria
detailed in the Supplementary Material. Exclusion criteria were
ongoing plasma exchange or complement inhibitory therapy
at the time of sample collection (during the first acute flare),
or the lack of available blood sample. For additional details
on the study population please see the methods section of
the Supplementary Material. This study was carried out in
conformity with the Helsinki Declaration. Written informed
consent was obtained from all participants, and the study was
approved by the Scientific and Research Ethics Committee of the
Medical Research Council (ETT TUKEB) in Budapest, Hungary
(8361-1/2011-EKU).

Determination of Laboratory Parameters
Complement activity-, component-, regulator-, and activation
product determinations, CRP and PTX3 measurements were
performed in this study. The AP activity was determined
with the commercially available WIESLAB Alternative pathway
ELISA kit (EuroDiagnostica, Malmö, Sweden), while total
complement classical pathway activity was assessed using the
sheep-erythrocyte hemolytic titration test. C3, C4 and hsCRP
were measured by turbidimetry (Beckman Coulter, Brea, CA),
complement factors B, and I were determined by radial

Frontiers in Immunology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 24094

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Trojnar et al. PTX3 and CRP in TMA

FIGURE 1 | Representation of TMA disease etiology in the studied population. The number of participants per group (N) is shown as proportion of a whole. HUS,

hemolytic uremic syndrome; STEC-HUS, Shiga-like toxin associated HUS; TMA, thrombotic microangiopathy; TTP, thrombotic thrombocytopenic purpura; Tx,

transplantation.

immunodiffusion assay. The level of the complement regulators
C1q and FH and the titer of the anti-FH antibodies were
measured using in-house ELISA techniques, described in detail
elsewhere (22, 30, 31). A disintegrin and metalloproteinase
with a thrombospondin type 1 motif member 13 (ADAMTS13)
activity was evaluated by the application of the fluorogenic
substrate FRETS-VWF73 (22). Commercially available kits were
used to assess the levels of the complement activation products
soluble C5b-9 (sC5b-9) and C3a (C3a des-arg) (Quidel, San
Diego, CA) and for the measurement of PTX3 (R&D systems
Minneapolis, MN). For the determination of CRP, PTX3,
complement factor levels and pathway activities patient’s sera
were obtained. The complement activation products (sC5b-9
and C3a) were determined from EDTA anticoagulated plasma,
whereas the ADAMTS13 activity was evaluated from sodium-
citrate-anticoagulated plasma of the patients.

In vitro Assessment of PTX3 Effect on AP
Activation
We applied normal human serum (NHS) with additional
recombinant human PTX3 in two established methods for
the assessment of AP activity: the WIESLAB AP ELISA kit
(EuroDiagnostica, Malmö, Sweden) and the C3 nephritic factor
hemolytic assay (32), with modifications. The C3 nephritic
factor assay was performed on washed sheep erythrocytes,
where patient’s samples were replaced by NHS spiked with
recombinant human PTX3 (R&D systems Minneapolis, MN,
USA) in gradually decreasing concentrations. Following a 20-
min incubation of PTX3 with NHS, the solution was added

to sheep erythrocytes. The formation of the C3 convertase was
allowed within a 10-min incubation time at 30

◦

C, and assembly
of the terminal pathway membrane attack complex was achieved
by the addition of undiluted rat serum to the cells, following
multiple washes. After incubation at 37

◦

C for 60min, the extent
of hemolysis was detected by reading the optical density (OD)
at 412 nm. The effect of PTX3 on the assembly of C5b-9 on
a plastic surface was assessed with the WIESLAB Alternative
pathway ELISA kit (EuroDiagnostica, Malmö, Sweden). Similarly
to the above, patient’s sera were replaced by PTX3 spiked
NHS, otherwise the assay was performed according to the
manufacturer’s instructions. To allow comparison of data, the
hemolytic or AP activities in each experiment were expressed
as ratio of the reference (mean OD of NHS with buffer control)
in percentage.

Statistical Analysis
Data analysis was performed using the GraphPad Prism version
6.00 (GraphPad Software, La Jolla, CA, www.graphpad.com). The
statistical analysis applied for data comparison is indicated in
each figure legend and detailed in the Supplementary Material.

RESULTS

Patient Characteristics
This study was performed to determine the systemic level of CRP
and PTX3 in 171 TMA patients in acute disease flare and to
investigate the role of PTX3 in complement dysregulation in vivo
compared to 69 age and sex-matched healthy individuals. Basic
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clinical and laboratory characteristics of the patients and controls
are summarized in Table 1.

Our study group consisted of TMA patients with the following
etiologies: STEC-HUS (N = 34), aHUS (N = 44), secondary
TMA (N = 63), and TTP (N = 30) (Figure 1). Over 90% of
the admitted patients presented with the first acute episode
of the disease. Blood samples were obtained from all patients
preceding the start of plasma exchange or complement inhibitory
therapy, although 16 patients received fresh frozen plasma prior
to sampling. Figure 1 shows the distribution of patients with
various etiologies in the aHUS and secondary TMA groups.

All acute phase-TMA patients presented with laboratory
signs of hemolysis and thrombocytopenia (<150 G/L), with
the lowest median platelet count (i.e., 16 G/L) in the TTP
subgroup. ADAMTS13 activity was decreased in 79% of the
patients and ADAMTS13 deficiency was present in all of the

TTP patients. Organ involvement manifested in clinical and
laboratory signs of kidney damage or neurological symptoms
as a sign of central nervous system involvement in most of
the TMA patients. Classical laboratory parameters indicative of
ongoing TMA in each of the study groups are summarized in
Supplementary Table 1.

Pentraxin Levels in Acute Phase-TMA and
Their Relation to the Laboratory Markers
of Disease and Clinical Characteristics of
Patients
We measured a significantly elevated median PTX3 level in
acute phase-TMA compared to healthy controls (Figure 2A),
with an elevated systemic PTX3 level in 64% of the acute
phase TMA patients. CRP levels were also higher, exceeding

TABLE 1 | Characteristics of the TMA patients and healthy controls.

Characteristics analyzed TMA Healthy controls Result of statistical comparison

Number of individuals enrolled 171 69 NA

Age 35.2 (7.7–56.9) 33.0 (18.7–41.0) P = 0.608

Sex (male/female in %) 43/57 48/52 NA

First acute episode (%) 93.6 NA NA

31-days mortality (%) 11.7 0 NA

Complement C3 < 0.9 g/L (%) 49.7 0 NA

Complement FH < 250 mg/L (%) 25.7 0 NA

LABORATORY PARAMETERS INDICATIVE OF ONGOING TMA

Red blood cell count (109/L) 2.9 (2.6–3.4) 4.9 (4.6–5.2) p < 0.001

Hemoglobin (g/L) 85 (75–97) 141 (134–152) p < 0.001

Platelet count (109/L) 46 (22–75) 262 (235–309) p < 0.001

Lactate dehydrogenase (U/L) 1,819 (893–3,051) Not done NA

Creatinine (µmol/L) 188 (86–320) 71 (64–78) p < 0.001

Carbamide (mmol/L) 16.9 (10.9–25.9) 4.5 (3.8–5.6) p < 0.001

PENTRAXIN LEVELS AND WHITE BLOOD CELL PROFILE

PTX3 level (µg/L) 5.19 (2.08–13.17) 1.08 (0.75–1.66) p < 0.001

CRP level (mg/L) 16.9 (4.3–72.0) 1.4 (0.8–2.0) p < 0.001

White blood cell count (G/L) 10.4 (7.1–15.3) 6.5 (5.4–7.9) p < 0.001

Absolute neutrophil count (G/L) 7.1 (4.8–12.4) 4.0 (3.0–4.7) p < 0.001

Absolute lymphocyte count (G/L) 1.4 (0.8–2.6) 2.0 (1.8–2.4) p < 0.001

COMPLEMENT PARAMETERS

ADAMTS13 activity (%) (Reference range: 67–147%) 38 (17–54) Not done NA

Classical pathway activity (CH50/ml) 57 (45–71) 70 (62–77) p < 0.001

Alternative pathway activity (%) 86 (56–101) 101 (78–117) p < 0.001

C3 level (g/L) 0.90 (0.68–1.15) 1.26 (1.18–1.47) p < 0.001

C4 level (g/L) 0.23 (0.14–0.32) 0.34 (0.27–0.40) p < 0.001

Factor H level (mg/L) 390 (245–513) 560 (462–692) p < 0.001

Factor I level (%) 98 (81–123) 102 (92–108) p = 0.192

Factor B level (%) 98 (73–116) 101 (91–113) p = 0.791

C1q level (mg/L) 87 (56–112) 100 (80–124) p = 0.020

sC5b-9 level (ng/mL) (Reference range: 110–252 ng/mL) 352 (265–517) Not done NA

C3a level (ng/mL) (Reference range: 70–270 ng/mL) 171 (120–259) Not done NA

Characteristics and laboratory data of the TMA patients and healthy controls. Data are shown as median with interquartile range, results of statistical comparison are indicated with the

respective p-value of the Mann-Whitney test. ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; CRP, C-reactive protein; FH, factor H;

NA, not applicable; PTX3, pentraxin-3; sC5b-9, soluble C5b-9; TMA, thrombotic microangiopathy.
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FIGURE 2 | PTX3 and CRP levels in acute TMA vs. healthy controls. (A,B) PTX3 and CRP levels of TMA patients at the acute disease onset compared to pentraxin

levels of healthy individuals. (C,D) PTX3 and CRP levels of acute phase-TMA patients grouped by disease etiology. Data are expressed as mean of technical

duplicates, the horizontal line indicates the median of each group, while an intermittent line shows the calculated cutoff of each pentraxin, respectively. Statistical

analysis was performed with the Mann Whitney test (A,B) or the Kruskal-Wallis test corrected for multiple comparisons using the Dunn’s post hoc test (C,D),

respectively. Statistical significance is indicated by asterisks (****p < 0.0001). aHUS, atypical hemolytic uremic syndrome; CRP, C-reactive protein; PTX3, pentraxin-3;

STEC-HUS, Shiga-like toxin associated HUS; TMA, thrombotic microangiopathy; TTP, thrombotic thrombocytopenic purpura.

the upper limit of normal range (5 mg/L) in 70% of TMA
patients (Figure 2B). The calculated cutoff of CRP levels (5.01
mg/L) was equivalent to the upper limit of normal range

(5 mg/L) used in our laboratory in frames of diagnostics,
whereas the cutoff of PTX3 levels was determined based on
the levels measured in the healthy control group and set as
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3.40 µg/L (mean + 2 times the standard deviation of healthy
controls).

Elevated PTX3 and CRP levels could be detected in all etiology
groups of TMA, although PTX3 elevation was exceptional in
TTP, despite the elevated CRP level in 53% of the patients of
this subgroup (Figures 2C,D). With further subdivision of the
study groups, we found that the elevation of both pentraxins
was independent of the molecular background in aHUS, since
in each of the distinct aHUS subgroups PTX3 or CRP levels
were significantly elevated compared to healthy controls (all
p < 0.05, Mann-Whitney test) (Figures 3A,B), and we detected
similar pentraxin levels in secondary TMAs with distinct
etiologies, too (data not shown). PTX3 levels were associated
with markers of disease activity and organ damage in TMA. We
observed a positive correlation between lactate dehydrogenase
and PTX3 levels, and a weaker yet significant correlation of
the platelet count and laboratory signs of kidney damage to
PTX3. By contrast, association between CRP and disease activity
was not present, except a significant positive correlation to
creatinine levels (Table 2). The parameters presented in Table 2

were entered into two multiple regression models to explore
relationship between them and PTX3 or CRP, respectively. LDH
(standardized regression coefficient beta = 0.299) turned out
to be significant predictor of PTX3 in the multivariable model,
whereas platelet and kidney function measures did not. For
CRP, significant predictors were hemoglobin (beta = 0.183),
platelet number (beta = −0.179) and creatinine (beta = 0.338)
levels. Since platelet count is a reliable marker of disease activity
in TMA, we further explored its relationship to the systemic
pentraxin levels by grouped analysis of patients according
to platelet counts at the time of admission. We found that
irrespective of the classification, median PTX3 and CRP levels
of all subgroups remained significantly elevated compared to
healthy controls (Supplementary Figure 1). Furthermore, PTX3
and CRP showed a strong positive correlation to each other
and to markers of systemic inflammation such as the white
blood cell count and absolute neutrophil count of the patients
(Supplementary Figures 2, 3). In the 16 FFP-treated patients
enrolled in this study, administration of FFP did not results in
an improvement of the clinical status or the classical laboratory
signs of TMA until the time point of blood sample collection. We
performed all our analysis with the exclusion of the FFP-treated
patients as well, and it did not change any of our conclusions on
the correlations observed at the acute phase of TMA.

Elevated Pentraxin Levels Normalize in
Disease Remission
We obtained follow-up samples from 31 aHUS patients and
19 of the TTP patients. In over 80% of aHUS both PTX3 and
CRP levels decreased in remission compared to the paired acute
phase samples, but the extent of decline did not reach statistical
significance in patients with no clarified molecular background
of the disease (Figures 3A,B). The median PTX3 level also
remained significantly higher in aHUS remission compared to
the control group, while the CRP levels in remission were
similar to that of healthy controls (Supplementary Figure 4).

The initially low PTX3 levels of TTP patients showed no
remarkable difference in remission, and the CRP levels also
normalized in over 80% of the cases (Supplementary Figure 5).

Association of the Median PTX3 Level With
the Acute Phase Mortality
The overall 11.7% acute phase mortality arose from the high
mortality rate of the secondary TMA group, which exceeded 30%
within a 31-days period. No deaths occurred in the STEC-HUS
or aHUS study groups and one patient died in the TTP group.
The median CRP levels did not differ significantly in secondary
TMA patients who survived the acute phase compared to those
who did not, but the median PTX3 level was significantly higher
in the deceased individuals compared to those who survived the
first month of the TMA episode (Figures 4A,B). The optimum
PTX3 cut-point was 9µg/mL to differentiate patients who died
during follow up, from those who survived [odd’s ratio 3.08 (95%
CI 1.02–9.33)]. One-by-one adjustment for key activity indicators
showed that high PTX3 levels are hemoglobin and creatinine
independent predictors of mortality, whereas dependent on
platelet and LDH levels.

Signs of Complement Consumption in
Acute Phase-TMA and Their Association
With the Systemic Pentraxin Levels
Nearly 50% of the TMA patients presented with decreased C3
levels indicative of complement consumption (Table 1), while
only 9% of the patients (15/171) showed no signs of complement
alteration (with C3, C4, FH, C1q, factor I and factor B levels,
CP and AP activities, and complement activation product levels
within the laboratory normal range). To assess whether elevated
pentraxin levels were associated with complement consumption
in the acute phase of TMA, we grouped the patients based on
PTX3 and CRP levels and observed a strong linkage between
the gradual increase in PTX3 and signs of complement AP
and CP consumption (Figure 5 and Supplementary Table 2). As
a result of complement overactivation and complement factor
consumption, both C3 and C4 levels were significantly lower in
patients with PTX3 above 20 µg/L compared to those below 5
µg/L. If the relationships between decreased C3 and C4 levels
to the elevated PTX3 (Figures 5A,C) were further analyzed in
subgroups of patients stratified according to the most important
confounder, i.e., LDH level (Supplementary Figure 6), similar
associations were observed. Although the gradual increase of
PTX3 was not accompanied by a decrease in the FH levels,
complement CP and AP activities were significantly lower in
patients with PTX3 above 20 µg/L compared to those with PTX3
below 5 µg/L. Moreover, patients with a PTX3 level exceeding
20 µg/L had a median AP and CP activity below the normal
range indicating explicit complement consumption. By contrast,
CRP levels did not show an association with any of the measured
complement activity parameters.

Influence of PTX3 on AP Activation in vitro
In vivo complement consumption was accompanied by a gradual
increase in the systemic PTX3 level in our acute phase-TMA
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FIGURE 3 | PTX3 and CRP levels in aHUS acute phase and remission. PTX3 (A) and CRP (B) levels of aHUS patients are shown in the acute phase (black squares)

and in remission (empty squares) with a continuous line connecting the respective sample pairs, while the medians of each group are indicated by a horizontal line.

Half of the patients (N = 22, left) had a confirmed likely pathogenic mutation, 11 patients presented with anti-factor H antibodies (middle) and by the rest (N = 11,

right) no likely pathogenic mutation has been identified in the complement genes (CFH, CFHR5, CFI, CD46, C3, CFB), THBD or DGKE. Data points represent mean of

technical duplicates, statistical analysis was performed with the Wilcoxon-signed rank test, statistical significance is indicated by asterisks (**p < 0.01; ***p < 0.001).

aHUS, atypical hemolytic uremic syndrome; CRP, C-reactive protein; PTX3, pentraxin-3.

patients. To explore the functional relevance of this phenomenon
we tested whether PTX3 attenuates or stimulates the AP activity
on the cellular surface. In a modified hemolytic assay (used to
determine the C3 nephritic factor level) we built up the AP
convertase on sheep erythrocytes and determined the hemolytic
activity of NHS with the addition of recombinant human
PTX3 or buffer control, respectively (Figure 6A). We found that
addition of PTX3 significantly decreased the activity of the AP
C3-convertase on sheep red blood cells. Conversely, addition of
PTX3 to NHS did not influence AP activity on the surface of

ELISA plates. Hence, no remarkable change was detected in C9
deposition through lipopolysaccharide (LPS)-induced activation
of the AP (Figure 6B), whereas PTX3 alone did not bind to LPS
in the ELISA wells (data not shown).

DISCUSSION

Our study investigated the role of PTX3 and CRP in association
with complement consumption in the acute phase of TMA.
We provide a detailed description of acute phase-TMA patients’
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TABLE 2 | Correlation of the systemic pentraxin levels to laboratory markers of TMA.

Laboratory parameters analyzed PTX3 CRP

Spearman r p-value N Spearman r p-value N

Red blood cell count 0.08785 0.3380 121 0.02669 0.7714 121

Hemoglobin 0.007054 0.9329 145 0.07903 0.3447 145

Platelet count 0.1975 0.0161 148 −0.1107 0.1806 148

Lactate dehydrogenase 0.299 0.0004 134 0.003968 0.9637 134

Creatinine 0.2421 0.0023 156 0.2266 0.0045 156

Carbamide 0.2011 0.0257 123 0.1377 0.1289 123

Spearman correlation analysis of PTX3 and CRP levels to laboratory markers of hemolysis, thrombocytopenia and kidney damage, characteristic to acute phase-TMA. Statistical analysis

was performed by the Spearman correlation test, obtained r and p-values are indicated by each parameter, with the number of pairs analyzed. Significant correlations are highlighted

in bold. Please note that blood count and chemistry data were not accessible by all the enrolled patients, therefore the correlation analyses might include less than the total number of

patients (N = 171) in this study, CRP. C-reactive protein; PTX3, pentraxin-3; TMA, thrombotic microangiopathy.

FIGURE 4 | Association of the systemic pentraxin levels to acute phase mortality in secondary TMA. PTX3 (A) and CRP (B) levels of acute phase secondary TMA

patients are shown, grouped based on the 31-day survival of patients (deceased, black triangles; survived, white triangles). Data are expressed as mean of technical

duplicates, the horizontal line indicates the median of each group, while an intermittent line shows the calculated cutoff of each pentraxin, respectively. Statistical

analysis was performed with the Mann-Whitney test. Statistical significance is indicated by asterisks (**p < 0.01). CRP, C-reactive protein; PTX3, pentraxin-3; TMA,

thrombotic microangiopathy.

complement profile linked to changes in the systemic pentraxin
levels.We report that PTX3 elevation is present in the acute phase
of STEC-HUS, aHUS and secondary TMA but is exceptional
in TTP. Conversely, an elevation in the systemic CRP level
is present regardless of disease etiology in the acute phase of
TMA (Figure 2). Disease remission in aHUS was accompanied
by a decline in the level of both pentraxins (Figure 3).
However, while CRP decreased to values observed in healthy
individuals, the median PTX3 level remained significantly higher
in aHUS compared to controls (Supplementary Figure 4). In the
remission of TTP no notable alteration of the PTX3 levels could
be recorded (Supplementary Figure 5). We observed the highest
acute phase mortality in secondary TMA patients, which was
associated with high PTX3 but not CRP levels (Figure 4). TMA

was accompanied by laboratory signs of complement activation
and consumption in the majority of our patients. We show for
the first time that AP and CP consumption is associated with
elevated PTX3 in the acute phase of TMA (Figure 5). To explore
a potential mechanism in the background of this observation, we
confirmed in vitro that PTX3 limits AP activity on the surface
of red blood cells, with no effect on terminal pathway assembly
during LPS-induced AP activation on ELISA plates (Figure 6).

Microthrombus formation in TMA results in extensive
inflammation that involves turnover of the complement and
coagulation cascades together with the activation of innate
immunity (21). The observed elevation of both pentraxins in
acute phase-TMA and their strong positive correlation to the
white blood cell and absolute neutrophil counts suggests that
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FIGURE 5 | Association of the systemic pentraxin levels with laboratory signs of complement consumption. The degree of complement activation and consumption

was assessed from complement factor levels (A–F: C3, C4, FH) and complement activity parameters (G–J) in TMA patients subdivided based on the measured

systemic PTX3 or CRP levels, respectively. Data are expressed as mean of technical duplicates, the horizontal lines show the median of each group and the laboratory

normal range is indicated with gray shading. The color of each data point indicates the specific form of TMA corresponding to Figure 1 (brown, aHUS; red,

STEC-HUS; black, secondary TMA; gray, TTP). Statistical analysis was performed with the Kruskal-Wallis test corrected for multiple comparisons using the Dunn’s

post hoc test. ANOVA p < 0.0001, p = 0.1285, p = 0.0002, p = 0.6713, p = 0.0358, p = 0.2173, p < 0.0001, p = 0.0717, p = 0.0001, p = 0.053 for (A–J),

statistical significance of the Dunn’s tests are indicated by asterisks (***p < 0.001, ****p < 0.0001) on the respective figure panels (A–J). aHUS, atypical hemolytic

uremic syndrome; CRP, C-reactive protein; PTX3, pentraxin-3; STEC-HUS, Shiga-like toxin associated HUS; TMA, thrombotic microangiopathy; TTP, thrombotic

thrombocytopenic purpura.

FIGURE 6 | Effect of PTX3 on AP activity in vitro. The effect of recombinant human PTX3 on AP hemolytic activity (A) and AP-mediated C9 deposition (B) is shown in

percent compared to buffer control added to pooled serum of healthy individuals. Data represent mean of 3 times repeated experiments with technical duplicates,

error bars indicate the standard error of mean. Statistical analysis was performed with the Kruskal-Wallis test corrected for multiple comparisons using the Dunn’s post

hoc test. Statistical significance is indicated by asterisks (*p < 0.05; ***p < 0.001). AP, alternative pathway; PTX3, pentraxin-3.
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PTX3 and CRP production is induced in frames of the ongoing
inflammatory response (Supplementary Figures 2, 3). TMAs
have recently been linked to neutrophil cell activation and NET
formation (24–28), as a component of which PTX3 may be
released on demand from leukocyte infiltrates that accumulate at
the site of endothelial damage (3, 29). Furthermore, local levels
of PTX3 may increase via its production by injured endothelial
cells (3), hence providing a possible dual-source of PTX3 during
the acute phase of TMA. Conversely, increased CRP production
may be attributed to the induction of a systemic inflammatory
response that induces the release of acute phase proteins.

In approximately 60% of aHUS cases mutations to
the complement genes or antibodies directed against the
complement regulator FH account for the pathophysiological
process leading to AP dysregulation and consumption (33, 34),
whereas in the remaining one-third of the cases the molecular
background remains unrevealed. Our aHUS cohort had a
somewhat higher representation of autoimmune aHUS (25 vs.
10%) and a relatively small proportion of unexplained cases (25
vs. 30–40%) compared to the previously reported prevalence
(33, 34). We had a notable number of patients with low FH
level in our patient cohort. This arose from FH mutations and
antibodies in aHUS, albeit patients with a low FH level were
also present in STEC-HUS, secondary TMA and TTP, indicating
the presence of complement dysregulation in multiple forms
of TMA. Nonetheless, elevated pentraxin levels were present
in all aHUS subgroups independent of the molecular etiology.
PTX3 and CRP elevation was also prominent in STEC-HUS
and secondary TMA, regardless of the heterogenic etiological
background of the patients. However, PTX3 elevation was
exceptional in TTP, albeit neutrophil cell activation together with
complement dysregulation have been described in TTP (22, 28).
Laboratory signs of kidney damage were also absent in 70% of
the TTP patients, while most patients with other forms of TMA
presented with a varying degree of kidney injury. Both acute
and chronic kidney damage have been linked to the elevation of
PTX3 (35), the lack of which in TTP could provide a possible
explanation for the absence of PTX3 elevation in TTP. However,
it cannot be excluded that additional factors arising from the
distinct pathogenesis of TTP (34) have also contributed to the
observed difference.

Secondary TMA patients in our study cohort had an overall
30.2% in-hospital mortality, which is comparable to observations
reported in literature (23, 36). Acute phase disease mortality
was associated with a higher median PTX3 level in secondary
TMA, and this relationship was independent of the hemoglobin
and creatinine levels, but was non-independent of platelet
and LDH. The difference between median CRP levels did not
reach statistical significance in deceased patients compared to
those who survived the first month of the TMA episode.
This observation conforms published reports in regard to the
association of PTX3 to acute disease mortality in multiple
conditions including severe sepsis (37, 38), ventilation assisted
pneumonia (39) and acute aortic type A dissection (40). Besides,
PTX3 was reported to be a long-term prognostic marker of
mortality in patients undergoing hemodialysis (41) and of
cardiovascular death in patients with renal disease (42), whereas

some studies even place PTX3 superior to CRP as a predictor of
mortality (39), endothelial dysfunction (43) or indicator of local
inflammatory response following vascular injury (44).

Even though both pentraxins have been described to
interact with the complement system in vitro (1, 2), we only
found an association between laboratory signs of complement
consumption and elevated PTX3 in the acute phase of TMA. The
net result of the PTX3-complement interaction is proposed to
be restrain of complement-mediated damage on non-activator
surfaces and stimulation of phagocytosis and clearance of cellular
debris (1, 2). In vivo experimental models of tissue damage
however, reported inconclusive data on the overall impact
of PTX3 on tissue recovery. In murine models of ischemia-
reperfusion injury both endogenous and exogenous PTX3 were
described to alleviate leukocyte recruitment following renal
ischemia (10), while the lack of PTX3 was associated with a
higher degree of apoptosis and C3 deposition in damaged cardiac
tissue (11). Nevertheless, others reported that the overexpression
or external admission of PTX3 exacerbated the post-ischemic
intestinal and remote pulmonary tissue damage (12, 13). In
humans PTX3 has been shown to correlate with surrogate
markers of disease severity in cardiovascular and renal diseases
(35, 45, 46) and molecular characterization of this association
suggests that PTX3 is involved in the fine tuning of inflammation
with an overall tissue-protective effect (47, 48).

In endothelial damage associated with TMA, although NET
formation may promote thrombosis and complement activation
(49), as a NET component (29) PTX3 may recruit the
complement regulator FH (8) and limit the expansion of tissue
damage mediated by the AP. The potential regulatory role of
PTX3 on AP activity is suggested by experimental evidence
describing FH recruitment by PTX3 (8, 50) to the damaged cell
surface, while the presence of anti-FH antibodies or mutations
of the complement regulator have been linked to an impaired
FH-PTX3 interaction that may aggravate the endothelial damage
in aHUS (50). To better understand the potential role of PTX3
elevation in TMA, we measured the changes of AP activity in
the presence or absence of external PTX3 using two distinct in
vitro approaches. First, to determine the AP hemolytic activity,
we built up the C3 convertase on sheep erythrocytes under
conditions allowing for AP activation only. Second, we assessed
C9 generation on the surface of ELISA plates via LPS-induced
AP activation, with or without additional PTX3. Based on the
gradual decline of the hemolytic activity parallel to the increment
of PTX3 concentration in pooled human serum, we conclude that
local release of PTX3 may indeed play an important role in the
limitation of AP activity. However, based on previously published
observations on the interaction of PTX3 with the regulators of
complement (8, 9, 50), restrain of the AP activity by PTX3 is
most probably due to an indirect effect (e.g., recruitment of
complement regulators), which requires cellular attachment of
the PRM, rather than direct inhibition of the activation pathway.
This hypothesis is also supported by the observed lack of AP
restrain, when the activation was induced on the surface of an
ELISA plate, however detailed molecular investigation of this
phenomenon would be necessary to identify each complement
factor involved in the regulatory effect. Nonetheless, the observed
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restrain of the AP indicates that local release of PTX3 could
possibly attenuate complement activity and hence potentially
limit the ongoing endothelial damage in TMA patients.

Finally, the lack of correlation between CRP levels and
complement consumption could be attributed to the fact,
that CRP production is induced in the liver in frames of a
systemic inflammatory response that may not closely reflect the
degree of local endothelial damage and subsequent complement
consumption. However, in vitro evidence suggests that through
the binding of complement regulators and the restrain of excess
terminal pathway activity, CRP as well as PTX3 are able to
regulate the AP and CP of complement (1, 15–18).

In conclusion, we report the association of PTX3 elevation
with complement overactivation and consumption in TMA.
The regulatory role of PTX3 on AP hemolytic activity in vitro
suggests that PTX3 is an adjunct factor in the prevention
of excess endothelial damage in TMA. Our observations are
in line with previously published in vitro data describing the
interaction of PTX3 and individual complement factors, and
add to in vivo investigations emphasizing the potential tissue-
protective role of PTX3. This is the first study where the
association of PTX3 and CRP elevation has been investigated
in a complement mediated disease in vivo, and thus our
results provide a missing link between the numerous in vitro
observations that described the interaction of PTX3 with the
complement system under defined experimental conditions.
On the other hand, our observations may indicate a potential
practical use of PTX3 determination as a biomarker and
determinant of complement consumption in the acute phase
of TMA. However, apparent limitations of our study are
the retrospective enrollment of patients and the rare nature
of this disease that together may have caused some of our
analyses to be underpowered. The limited number of study
subjects and subsequently low case and event numbers in this
study precluded multivariate analysis in different etiology based
subgroups of TMAs, therefore some of our observation may
represent overestimation of true effects due to the lack of
adjustment for important clinical and/or laboratory covariates.
Therefore, independent confirmation of our observations is
necessary before firm conclusions can be reached on the
contribution of PTX3 to the pathogenesis of TMA. Nonetheless,
the reported association of elevated PTX3 levels and complement
consumption may initiate further investigations to understand
the exact role of PTX3 in TMA pathogenesis and may

aid the better understanding of the heterogeneous clinical

course of TMA.
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One host defense function of C-reactive protein (CRP) is to protect against Streptococcus

pneumoniae infection as shown by experiments employing murine models of

pneumococcal infection. The protective effect of CRP is due to reduction in bacteremia.

There is a distinct relationship between the structure of CRP and its anti-pneumococcal

function. CRP is functional in both native and non-native pentameric structural

conformations. In the native conformation, CRP binds to pneumococci through the

phosphocholine molecules present on the C-polysaccharide of the pneumococcus and

the anti-pneumococcal function probably involves the known ability of ligand-complexed

CRP to activate the complement system. In the native structure-function relationship,

CRP is protective only when given to mice within a few hours of the administration of

pneumococci. The non-native pentameric conformation of CRP is created when CRP

is exposed to conditions mimicking inflammatory microenvironments, such as acidic

pH and redox conditions. In the non-native conformation, CRP binds to immobilized

complement inhibitor factor H in addition to being able to bind to phosphocholine.

Recent data using CRP mutants suggest that the factor H-binding function of non-native

CRP is beneficial: in the non-native structure-function relationship, CRP can be given

to mice any time after the administration of pneumococci irrespective of whether

the pneumococci became complement-resistant or not. In conclusion, while native

CRP is protective only against early stage infection, non-native CRP is protective

against both early stage and late stage infections. Because non-native CRP displays

phosphocholine-independent anti-pneumococcal activity, it is quite possible that CRP

functions as a general anti-bacterial molecule.

Keywords: C-reactive protein, factor H, phosphocholine, pneumococcal C-polysaccharide, Streptococcus

pneumoniae

INTRODUCTION

C-reactive protein (CRP) is a multifunctional molecule of the innate immune system in humans (1–
4). CRP is a cyclic pentameric protein comprised of five identical non-covalently attached subunits.
Each subunit has an intra-disulfide bond and the molecular weight of each subunit is ∼23 kDa
(5, 6). A phosphocholine (PCh)-binding site is located on the same face of each subunit in the
homopentamer. The amino acids Phe66, Thr76, and Glu81 in CRP are critical for the formation of
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the PCh-binding site (7–9). Once CRP is complexed with a
substance with exposed PCh group, the complex activates the
complement system through the classical pathway (10–12).

Streptococcus pneumoniae are gram positive bacteria that
asymptomatically colonize the upper respiratory tract (1, 13–
15). It is the most common bacterium that causes community-
acquired pneumonia and is also a significant cause of septicemia
and meningitis (1, 13–15). Systemic pneumococcal infection
raises the level of CRP in serum by up to several hundred-fold in
humans as a part of the acute phase response (16–18). CRP binds
to pneumococci through Ca2+-dependent interaction with PCh
residues present on the pneumococcal cell wall C-polysaccharide
(PnC) (19, 20). In mice, however, CRP is only a minor acute
phase protein; therefore, mice have been useful in investigating
the functions of human CRP in vivo (21).

In murine models of pneumococcal infection, passively
administered human CRP has been shown to be protective
against lethal pneumococcal infection, that is, CRP decreases
bacteremia and enhances survival of infected mice (1, 22–
26). CRP-deficient mice are more susceptible to pneumococcal
infection than are wild type mice, which indicates that the trace
level of endogenous mouse CRP is capable of exerting anti-
pneumococcal functions (27). Mice transgenic for human CRP
are also protected against infection with S. pneumoniae (28).
The mechanism of anti-pneumococcal action of CRP in mice,
however, is unknown.

Current research on defining the mechanism of anti-
pneumococcal actions of CRP benefited from a key finding
made several decades ago using passive administration of
purified human CRP into mice (29). CRP was protective when
injected into mice 6 h before to 2 h after the administration of
pneumococci. CRP was not protective when mice received CRP
24 h after infection, suggesting that CRP is protective during
early stage infection but not in late stage infection. For early
stage protection, it is believed that the mechanism of action of
CRP involves the capability of CRP to bind to pneumococci
through PCh groups present on their surfaces and subsequent
activation of the classical complement pathway by pathogen-
bound CRP. Obviously, this mechanism does not operate for
late stage infection. A PCh-independent mechanism for anti-
pneumococcal function of CRP has been proposed along with
an explanation for the inability of CRP to be protective against
late stage infection (1, 24–26). In this article, we review PCh-
dependent, PCh-independent, and other proposed mechanisms
for the anti-pneumococcal function of CRP during both early
stage infection (when CRP and pneumococci are administered
into mice 30min apart) and late stage infection (when CRP and
pneumococci are administered into mice 24 h apart).

PCh-DEPENDENT ANTI-PNEUMOCOCCAL
FUNCTION OF CRP

In vivo experiments employing a CRP mutant incapable of
binding to PCh, PnC, and whole pneumococci provided

Abbreviations: CRP, C-reactive protein; FHR, factor H-related protein; LPS,

lipopolysaccharide; mCRP, monomeric CRP; PCh, phosphocholine; PnC,

pneumococcal C-polysaccharide.

results indicating that CRP-mediated protection of mice against
infection is independent of binding of CRP to PCh; the CRP
mutant was as effective as wild-type CRP in protecting mice
against early stage infection (26). The PCh-binding mechanism,
however, does contribute to the protection of mice during
the early stage of infection (25, 26). The PCh-dependent
mechanism contributes to the initial and immediate clearance
of pneumococci as has been shown employing a variety of
murine models of infection (26, 27). Overall, the combined
data suggest that both PCh-dependent and PCh-independent
mechanisms operate in the protection of mice against early stages
of infection, although the PCh-dependent mechanism is not
necessary (25, 26).

Indirect evidence has been presented to show the importance
of the PCh-binding property of CRP and subsequent
complement activation by CRP-complexes in protection
from infection. It has been shown that CRP binds to gram
negative bacterial lipopolysaccharide (LPS) if the LPS is modified
by adding a few PCh residues to it. The binding of CRP to PCh-
modified LPS increases based on the number of PCh residues
added and subsequently affects the resistance of the organism to
the killing effects of serum (30). Also, the pneumococcal surface
protein PspA, which is a choline-binding protein, is known
to bind to PCh. PspA thus competes and inhibits the binding
of CRP to PCh on pneumococci and decreases complement
activation (31). Similarly, pneumococci growing as a biofilm are
avirulent due to a decrease in PnC production although with
an increase in PCh expression, interference from pneumococcal
surface protein PspC, reduced binding of C1q to CRP-PCh
complexes, and subsequent failure to activate complement
(32, 33). Biofilm formation in S. pneumoniae is an effective
means of evading complement attack (33).

One study suggested that the property of CRP to activate the
classical pathway of complement in human serum is irrelevant
for the protective function of CRP in mice infected with S.
pneumoniae, because human CRP does not activate murine
complement via the classical pathway (23). Since complement-
deficient mice do not show CRP-mediated protection to
pneumococcal infection (34), it is possible that CRP-complexes
are able to activate murine complement system via a pathway
other than the classical pathway (1, 23). It has been proposed that
human CRP-complexes are able to activate the lectin pathway
in murine serum and are able to activate both the classical and
lectin pathways in human serum (23). CRP has been shown
to interact with both L-ficolin and M-ficolin and activate the
lectin pathway of complement (35–39). The interaction between
CRP and L-ficolin increases 100-fold under the conditions of
slight acidosis and reduced calcium levels, and it has also been
shown that the cross-talk between CRP and L-ficolin mediates
killing of Pseudomonas aeruginosa in plasma (37). L-ficolin also
recognizes PCh on pneumococcal strains and triggers activation
of the lectin complement pathway (40). Lectin-like oxidized
LDL receptor, LOX-1, can also recognize CRP and is involved
in CRP-dependent complement activation (41, 42). CRP is a
major hemolymph protein in the horseshoe crab Carcinoscorpius
rotundicauda. When CRP is in the hemolymph, it binds to a
range of bacteria through galactose-binding protein and ficolin.
Accordingly, it has been proposed that CRP does not act
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alone but collaborates with other plasma lectins to form stable
pathogen recognition complexes when targeting a wide range of
bacteria for destruction (35).

PCh-INDEPENDENT
ANTI-PNEUMOCOCCAL FUNCTION OF
CRP

Factor H, a regulator of complement activation, has been
implicated in resistance of pneumococci to complement attack
(43, 44). Factor H protects from complement attack by inhibiting
the activation of the alternative pathway on host cells and
on those pathogenic surfaces which are capable of recruiting
factor H from the plasma. On the host cells, factor H binds
to polyanionic structures and glycoproteins found on the cell
surface (45). On S. pneumoniae, factor H binds to a surface
protein called Hic (factor H-binding inhibitor of complement)
which is a variant of PspC (46, 47). Thus, pneumococci use
factor H to evade complement-mediated killing. The recruitment
of factor H by pneumococci might be the reason why CRP
does not protect mice from pneumococcal infections during late
stage infection.

CRP does not bind to factor H under normal physiological
conditions (48–52). Denaturation conditions for CRP enable
CRP to bind to factor H (4, 48–51). For example, immobilization
of CRP on to a surface enables CRP to bind to factor H (4, 53, 54).
Monomeric CRP (mCRP) also binds to factor H, in a Ca2+-
independent manner (55). The Y384H polymorphism of factor H
affects binding affinity for mCRP. CRP binds to factor H-Tyr384

more strongly compared to factor H-His384 which is the risk
allele (56–60). PCh does not compete with factor H for binding
to CRP (52). It has been suggested that when CRP immobilizes
itself on S. pneumoniae, it limits excessive complement activation
by recruiting factor H (61, 62). CRP has also been shown to
modulate lectin pathway-dependent cytolysis by recruiting factor
H (63, 64).WhenCRP binds to dead cells it does not recruit factor
H (55). mCRP also binds to factor H-related proteins (FHR)
FHR1 and FHR5 and to factor H like protein 1 (FHL-1) which
inhibit subsequent recruitment of factor H (65–68). CRP has also
been shown to recruit factor H on other cell types, for example,
CRP recruits factor H after binding to collectin CL-P1 on the
surface of placental cells (69, 70). Otherwise, the interaction of
CRP with CL-P1 activates the classical complement pathway. The
interaction of CL-P1 with factor H might be the key to prevent
self-attack due to complement activation induced by the CL-P1
and CRP interaction (69, 70).

Based on results obtained from the experiments performed
under defined conditions—native pentameric CRP does not bind
to factor H while mCRP binds to factor H—it was hypothesized
that a non-native pentameric CRP may also be able to bind to
factor H (48). Indeed, the native pentameric structure of CRP
could be modified in vitro to generate non-native pentameric
CRP capable of binding to factor H (2, 48–50). Since non-
native CRP and Hic can bind to factor H simultaneously,
it is possible that non-native CRP can bind to factor H-
coated pneumococci, cover the factor H-Hic complex formed on

bacteria and therefore eliminate the repressive effect of factor
H on complement activation (71–73). Recently, a CRP mutant
capable of binding to immobilized factor H was evaluated for
its ability to protect against late stage pneumococcal infection.
The CRP mutant protected mice against infection regardless
of the time of administration into mice (71–73). These data
lead to the proposal that the PCh-independent mechanism first
involves a structural change in CRP which is then followed by
the interaction between structurally altered CRP and factor H-
bound pneumococci. Once factor H on pneumococci is bound to
structurally altered CRP, such pneumococci may not be resistant
to complement attack any longer (1, 71–73).

Besides, factor H, S. pneumoniae have also been shown
to recruit another complement inhibitor, C4b-binding protein
(C4BP) via Hic that also recruits factor H (74, 75). Pneumococci
also use another cell surface protein, enolase, to recruit C4BP
(75). By recruiting C4BP, pneumococci are able to evade
complement attack. We hypothesize that non-native CRP may
also be protective against those pathogens which recruit C4BP
for complement evasion: non-native CRP could bind to factor
H/C4BP-coated pneumococci, and then the complex formed
by CRP, factor H/C4BP, and Hic could activate the lectin
pathway of complement and trigger killing of the pneumococci.
The possibility cannot be ruled out that the PCh-independent
mechanism may involve the binding of non-native CRP to
pneumococcal surface proteins, as CRP has been shown
to interact with several choline-binding proteins found on
pneumococci in a Ca2+-independent manner (76).

CRP AS AN ANTI-BACTERIAL MOLECULE

CRP binds to several pathogenic serotypes of S. pneumoniae
(77–79) and binds more avidly to those strains which contain
PCh in both cell wall and capsular polysaccharides, such as type
27 (80). CRP, like lectins, also reacts with polysaccharides that
do not contain PCh, such as depyruvylated type-IV capsular
polysaccharide prepared from type 27, in the presence of calcium,
and probably the reaction is due to N-acetylgalactosamine
in the polysaccharide (81–84). CRP appears to have opsonin
properties; it causes agglutination and lysis of gram positive
bacteria Staphylococcus aureus, Bacillus subtilis, Streptococcus
pyogenes, and Streptococcus agalactiae (77, 78).

The anti-bacterial action of CRP is not limited to gram positive
bacteria only. CRP also protects mice from the early stages
of infection with Salmonella enterica serovar Typhimurium,
which is a gram negative bacterium and to which CRP does
not bind in vitro (85). But CRP has been shown to bind to
S. enterica in the presence of serum (35). CRP also binds to
Haemophilus influenzae (86). H. influenzae undergoes phase
variation in expression of the PCh on the cell surface-exposed
outer core of the LPS. PCh-positive variants are more sensitive
to the bactericidal activity of human serum which requires
the binding of serum CRP to whole bacteria with subsequent
activation of complement (86–88). The ability of H. influenzae
to vary PCh expression to zero may relate to its ability to
cause invasive infection by evading attack by CRP (86). Mouse
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models of H. influenzae infection have not been established yet
to determine whether CRP protects against infection with H.
influenzae (27). CRP also binds to Neisseriae spp. in a Ca2+-
dependent manner (89–91). PCh is present on the LPS of
several species of commensal Neisseriae and, like H. influenzae,
Neisseriae also undergo phase variation in expression of the PCh
on their LPS (91). Mouse protection experiments have not been
performed for Neisseriae either, employing native or non-native
pentameric CRP.

Some experiments suggest a role of CRP in protecting
animals against lethal toxicity of LPS, although the subject has
been controversial (92–96). In the hemolymph of horseshoe
crab, Carcinoscorpius rotundicauda, CRP was identified as the
major LPS-binding protein in infections with Pseudomonas
aeruginosa (97). CRP bound to all bacteria tested in the
horseshoe crab hemolymph (35). The binding of CRP to
LPS is indirect; a third molecule called galactose-binding
protein (GBP) participates in bridging CRP and LPS (98).
Upon binding to LPS, GBP interacts with CRP to form
a pathogen-recognition complex, which helps to eliminate
invading microbes (35, 98). Combined data raise the possibility
that CRP functions as a general anti-bacterial molecule; CRP
may require a change in its pentameric conformation and
also seek help from other serum proteins to form pathogen-
recognition complexes.

CRP AS AN ANTI-INFLAMMATORY
MOLECULE

Native pentameric CRP can dissociate into mCRP via an
intermediate non-native pentameric structure (50, 99–101). All
three forms, native pentameric, non-native pentameric, and
mCRP display different ligand recognition functions in vitro
(2, 102–104). Under conditions of low pH, reduced calcium
levels and oxidation-reduction, CRP is converted to a non-
native conformation but remains pentameric (48–50, 105–
107). When non-native CRP binds to a non-PCh ligand, it
denatures further to mCRP. Similarly, when CRP binds to
cell membranes, liposomes, and cell-derived microvesicles, it
undergoes a structural change which involves spatial separation
of the monomers from each other without disrupting the
pentameric symmetry to form a transitional state CRP (108). The
mechanism by which CRP recognizes membrane lipids and binds
in a Ca2+-independent manner depends on the combination
of protein form, lipid composition, and membrane shape (109,
110). Surface-immobilization of CRP generates a preservable
intermediate with dual antigenicity expression of both CRP and
mCRP. The intermediate exhibits modified bioactivities, such
as a high affinity with solution-phase proteins (107). It has

been shown that mCRP but not CRP is the major isoform
present in local inflammatory lesions (111). Since mCRP is
insoluble, it is considered a tissue-bound form of CRP. Thus,
an intermediate stage of CRP structure seems to be responsible
for anti-inflammatory host defense functions of CRP in vivo.
Structural changes in vivo may be converting CRP into an
anti-inflammatory molecule assuming that the ultimate pro-
inflammatory by-product, mCRP, is continuously being removed.
An intrinsically disordered region of amino acid residues 35–47
in CRP is responsible for mediating the interactions of mCRP
with diverse ligands (112), and possibly also responsible for
mediating the interactions of non-native pentameric CRP with
diverse ligands (48–50).

CONCLUSIONS

While native CRP is protective only against early stage infection,
non-native pentameric CRP is protective against both early stage
and late stage infections in murine models of pneumococcal
infection. Because non-native pentameric CRP displays PCh-
independent anti-pneumococcal activity, it is quite possible
that CRP functions as a general anti-bacterial molecule. Thus,
pentameric CRP is an anti-inflammatory molecule.

A long-term goal could be to focus on the discovery and
design of small-molecule compounds to target CRP, a compound
that can change the structure of endogenous CRP so that the
structurally altered CRP is capable of binding to factor H-bound
pneumococci. A recent study showed that injections of sub-
inhibitory concentrations of antibiotics enhanced the binding of
CRP to three antibiotic-resistant S. pneumoniae strains in serum
and enhanced antibody-dependent complement activation (113).
Based on these findings, another goal could be to investigate
the effects of combinations of non-native pentameric CRP with
various antibiotics in pre-clinical studies.
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Pentraxins and complement defense collagens are soluble recognition proteins that

sense pathogens and altered-self elements, and trigger immune responses including

complement activation. PTX3 has been shown to interact with the globular recognition

domains (gC1q) of the C1q protein of the classical complement pathway, thereby

modulating complement activity. The C1q-PTX3 interaction has been characterized

previously by site-specific mutagenesis using individual gC1q domains of each of the

three C1q chains. The present study is aimed at revisiting this knowledge taking

advantage of full-length recombinant C1q. Four mutations targeting exposed amino

acid residues in the gC1q domain of each of the C1q chains (LysA200Asp-LysA201Asp,

ArgB108Asp-ArgB109Glu, TyrB175Leu, and LysC170Glu) were introduced in recombinant

C1q and the interaction properties of the mutants were analyzed using surface

plasmon resonance. All C1q mutants retained binding to C1r and C1s proteases

and mannose-binding lectin-associated serine proteases, indicating that the mutations

did not affect the function of the collagen-like regions of C1q. The effect of these

mutations on the interaction of C1q with PTX3 and IgM, and both the PTX3- and

IgM-mediated activation of the classical complement pathway were investigated.

The LysA200Asp-LysA201Asp and LysC170Glu mutants retained partial interaction with

PTX3 and IgM, however they triggered efficient complement activation. In contrast,

the ArgB108Asp-ArgB109Glu mutation abolished C1q binding to PTX3 and IgM,

and significantly decreased complement activation. The TyrB175Leu mutant exhibited

decreased PTX3- and IgM-dependent complement activation. Therefore, we provided

evidence that, in the context of the full length C1q protein, a key contribution to the

interaction with both PTX3 and IgM is given by the B chain Arg residues that line the

side of the gC1q heterotrimer, with a minor participation of a Lys residue located at the

apex of gC1q. Furthermore, we generated recombinant forms of the human PTX3 protein

bearing either D or A at position 48, a polymorphic site of clinical relevance in a number

of infections, and observed that both allelic variants equally recognized C1q.
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INTRODUCTION

Immune defense relies on the host capacity to identify pathogenic
microorganisms and trigger an efficient anti-infectious response
while protecting integrity of its own tissues. Pathogen sensing
is mediated by constitutive innate immune molecules that are
able to identify characteristic pathogen-associated molecular
patterns at the surface of microbes, but also potentially
noxious elements from self, such as dying cells. Recognition of
these cell surface motifs elicits effector mechanisms aimed at
containing early infection while instructing appropriate adaptive
immune response, and supporting safe removal of apoptotic
cell/debris by phagocytes (1, 2). Pentraxins and defense collagens
are evolutionarily conserved multimeric pattern recognition
proteins that are part of the humoral arm of innate immunity and
play a vital role in the first line of anti-microbial defense and in
the maintenance of tissue homeostasis (3).

The family of soluble complement defense collagens
comprises C1q, collectins including mannose-binding lectin
(MBL) and the newly described collectin-10 (CL-K1) and
collectin-11 (CL-L1), and the lectin-like proteins ficolins. C1q
is the most complex defense collagen since it is composed of 3
homologous yet distinct polypeptide chains A, B, and C that are
encoded by three different genes. Each C1q chain comprises an
N-terminal collagen-like sequence and a C-terminal globular
gC1q module and 18 chains assemble into six heterotrimeric
(A-B-C) subunits (4). This hexameric structure exhibits the
characteristic shape of a bouquet of flowers, with six collagen-
like triple helices (stems), each terminating in a C-terminal
globular trimeric head (Figure 1A). Serum C1q circulates in
association with a tetramer comprising two copies of each of
the homologous C1r and C1s serine proteases. The resulting
complex (C1) has the capacity to recognize targets through the
globular regions of C1q, which triggers activation of the proteases
associated to C1q collagen-like regions and subsequent cleavage
of the complement components C4 and C2 (5). The activation
fragments C4b and C2a assemble at the target surface to form
the C3 convertase of the classical complement pathway that
cleaves C3, the central component of the complement system.
The classical C3 convertase can also be assembled through
activation of the lectin pathway that is initiated by complexes
of complement collectins or ficolins and MBL-associated serine
proteases (MASPs), which are homologous to C1r and C1s and
able to cleave C4 and C2. A third complement activation pathway
involves assembly of an alternative C3 convertase containing
the C3b fragment and serving to amplify C3 cleavage [reviewed
in (6)].

Pentraxins are multimeric proteins with protomer subunits
characterized by a conserved C-terminal domain (containing
the canonical pentraxin signature HxCxS/TWxS) and assembled
into distinctive quaternary structures. The short pentraxins
C-reactive protein (CRP) and serum amyloid P component
(SAP) are pentameric (7), whereas pentraxin 3 (PTX3), the

Abbreviations: gC1q, globular domain of C1q; MAA, Maackia amurensis

agglutinin; MASP, MBL-associated serine protease; MBL, mannose-binding lectin;

SPR, surface plasmon resonance.

prototypic long pentraxin, contains an additional N terminal
domain and is an octamer composed of two disulfide linked
tetramers (8). Pentraxins are acute-phase proteins produced in
response to inflammatory stimuli that provide protection against
a wide variety of pathogens and participate in the clearance of
apoptotic cells (9). PTX3 has regulatory roles in inflammation,
where it has been shown to inhibit leukocyte extravasation,
and plays additional functions in cancer and tissue repair (10).
The three pentraxins have been shown to establish a complex
crosstalk with diverse components of complement, thus affecting
both the recognition and effector activities of this system. In
particular, PTX3 modulates the three complement pathways
through interactions with defense collagens (C1q, MBL, ficolin-
1, and ficolin-2) and negative regulators of the alternative and
classical/lectin C3 convertases, including factor H and C4bp
[reviewed in (11)].

Several studies have analyzed single nucleotide
polymorphisms (SNPs) in the PTX3 gene. Amongst the 22 SNPs
spanning the PTX3 gene (∼25 kb) on chromosome 3, three are
associated with susceptibility to a number of infections including
those mediated by Aspergillus fumigatus (12–15),Mycobacterium
tuberculosis (16) and Pseudomonas aeruginosa (17). Two of them
are located in intronic regions of the gene (rs2305619 in intron
1, and rs1840680 in intron 2, respectively), and one (missense
rs3816527 in exon 2) causes a single amino-acid substitution
(p.D48A) at position 48 of the preprotein sequence (i.e., in the
N-terminal domain). Epidemiological studies indicate that these
three SNPs and the corresponding haplotypes are associated with
different plasma levels of the protein, with the D48 exonic allele
being enriched in individuals with lower systemic concentrations
of PTX3 (18). This information notwithstanding, it is currently
unknown whether this exonic polymorphism has qualitative (i.e.,
functional) in addition to quantitative effects on the crosstalk
between PTX3 and the complement system, with major regard
to the interaction of this long pentraxin with C1q.

In this regard, binding of C1q to immobilized PTX3 has been
reported to trigger complement activation whereas fluid-phase
PTX3 interferes with C1q binding to complement activators such
as antigen-antibody complexes, in accordance with location of
the PTX3 binding site of C1q in the gC1q regions (19). Previous
mutagenesis studies on recombinant forms of the gC1qA, gC1qB.
and gC1qC domains fused to maltose-binding protein provided
initial information on the C1q amino acid residues at the
interface of complexes formed with selected ligands, including
immunoglobulins (IgG, IgM) and pentraxins (CRP, PTX3) (20–
23). These data highlighted the key contribution of electrostatic
forces to the interaction of C1q with most of its ligands, and
the central role of two residues, Tyr175 in gC1qB and Lys170 in
gC1qC, to recognition of PTX3 (20). We have recently produced
the whole human C1q molecule in a recombinant form and
demonstrated its structural similarity to serum-derived C1q,
as judged from biochemical analysis and electron microscopy
imaging. Recombinant C1q functionality was assessed by its
capacity to associate with the C1s-C1r-C1r-C1s tetramer, to
recognize physiological C1q ligands including IgG and PTX3,
and to trigger complement activation (24). Using site-directed
mutagenesis, we have also identified two homologous lysine
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FIGURE 1 | Location of the mutated residues on gC1q structure and SDS-PAGE analysis of the C1q variants. (A) Schematic representation of the C1q molecule and

3-D structure of C1q globular domain (gC1q) with C1qA (pink), C1qB (cyan), and C1qC (green). The location of the mutated residues is indicated on the gC1q

heterotrimer structure [figure generated using the Mac Pymol software; PDB ID 2wnv (35)]. TyrB175 and LysC170 are located at the apex of the gC1q heterotrimer and

LysA200-LysA201 and ArgB108-ArgB109 are located on the side surfaces of the gC1qA and gC1qB modules, respectively. (B) SDS-PAGE analysis and Coomassie

blue staining of the C1q variants, under non-reducing (NR) and reducing (R) conditions.

residues in the collagen-like sequences of the B (Lys61) and C
(Lys58) chains of C1q that play a key role in the interaction
with C1r and C1s and confirmed that C1q shares with MBL and
ficolins a common mechanism of interaction with its associated
proteases (24).

The availability of recombinant full-length C1q prompted
us to revisit the C1q-PTX3 interaction using site-directed
mutagenesis. To this end, we generated four C1q mutants
targeting exposed amino acid residues in the gC1q domain of the
different chains, including TyrB175 and LysC170 and investigated
the impact of these mutations on the C1q-PTX3 interaction
and the PTX3-mediated activation of the classical complement
pathway. The effect on the interaction of C1q with its canonical
ligand IgM was studied in parallel for comparison purposes.
Furthermore, we addressed the functional impact of the p.D48A
polymorphism on C1q recognition by PTX3.

MATERIALS AND METHODS

Proteins and Reagents
A recombinant form of the human PTX3 protein (with D at
position 48) was made in a CHO cell line (25), and used in

surface plasmon resonance (SPR) and complement activation
experiments (see below). To assess the effect of the rs3816527
(p.D48A) polymorphism on the interaction with C1q in solid
phase binding assays (see below), two PTX3 constructs were
generated by overlapping PCR site-directed mutagenesis that
contained triplets coding either for D or A at position 48.
The corresponding recombinant proteins were expressed in
and purified from a HEK293 cell line as previously reported
(13). Molar concentration of the recombinant PTX3 from both
cell lines was estimated using a Mr value of 340,000 (26).
Human IgM, bovine serum albumin (BSA) and FLAG peptide
were purchased from Sigma-Aldrich. Oligonucleotides were from
Eurogentec and restriction and modification enzymes from New
England Biolabs. Recombinant human MASP-2 was produced in
S2 cells and quantified as described previously (27).

Production of the Recombinant
C1s-C1r-C1r-C1s Tetramer
The recombinant C1s-C1r-C1r-C1s tetramer was produced in
the FreeStyle 293 Expression System (Thermo Fisher), using
a pcDNA3.1/Neo(+) plasmid encoding human C1r with a
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Ser637Ala mutation and a C-terminal Strep-tag (kindly provided
by A. Amberger and R. Gröbner, Innsbruck Medical University,
Austria) and a plasmid encoding human C1s with a C-
terminal FLAG epitope. The latter was generated by fusing the
FLAG tag (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) DNA sequence
to C1s DNA (amplified using the VentR polymerase and the
pFastBac-C1s plasmid (28) as a template) and cloning into
a pcDNA3.1/Zeo(+) plasmid. 293-F cells grown in FreeStyle
293 medium were co-transfected with both plasmids using
293fectin and stable transfectants were selected with 400µg/ml
neomycin and 10µg/ml zeocin (Thermo Fisher). Recombinant
C1s-C1r-C1r-C1s was purified from the culture supernatant by
chromatography on an anti-FLAG M2 affinity column (Sigma-
Aldrich) as described by Bally et al. (24). The tetrameric
assembly of the two proteins was assessed by size exclusion
chromatography on a Superose 6 Increase 10/300 GL column
(GE Healthcare). The molar concentration of the tetramer was

estimated using a Mr value of 344,500, as determined by mass
spectrometry analyses, and an absorption coefficient (A1%, 1 cm)
at 280 nm of 13.45 (29).

Production of C1q Variants
The LysA200Asp-LysA201Asp, ArgB108Asp-ArgB109Glu,
TyrB175Leu, and LysC170Glu mutations were introduced into the
C1qA-, C1qB-, and C1qC-FLAG-containing pcDNA3.1/Neo(+),
/Hygro(+), and /Zeo(+) plasmids, respectively, using the
QuickChange XL site-directed mutagenesis kit (Agilent
Technologies) (24). All constructs were checked by dsDNA
sequencing (Eurofins Genomics).

Stable 293-F cell lines producing the individual B and C,
A and C, or A and B chains of C1q (24), grown in FreeStyle
293 medium containing the appropriate selection antibiotics
and 100µg/ml ascorbic acid (Sigma-Aldrich), were transfected
with the plasmids containing the C1qA Lys200Asp-Lys201Asp

FIGURE 2 | Kinetic analyses of the interaction of the C1s-C1r-C1r-C1s tetramer and the MASP-2 dimer with immobilized C1q variants. Sixty microliter of the

C1s-C1r-C1r-C1s tetramer at the indicated concentrations were injected over (A) C1qWT (16,300 RU), (B) C1qLysC170Glu (17,000 RU) and (C) C1qTyrB175Leu

(12,200 RU) in 50mM Tris-HCl, 150mM NaCl, 2mM CaCl2, 0.005% surfactant P20, pH 7.4 at a flow rate of 20 µl/min. The MASP-2 dimer was injected over (D)

C1qWT (13,600 RU), (E) C1qLysA200Asp-LysA201Asp (13,000 RU), and (F) C1qArgB108Asp-ArgB109Glu (13,700 RU) under the same conditions as in (A–C). The

binding signals shown were obtained by subtracting the signal over the BSA reference surface and further subtraction of buffer blanks. Fits are shown as red lines and

were obtained by global fitting of the data using a 1:1 Langmuir binding model. Chi2 values were between 0.9 and 5.9. Each kinetic analysis shown is representative

of two independent experiments performed on separate sensor chips.
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mutation, the C1qB Arg108Asp-Arg109Glu or Tyr175Leu
mutation, or the C1qC Lys170Glu mutation, respectively, using
293fectin. Stable transfectants producing the three chains
were generated following additional selection with 400µg/ml
neomycin (Fisher Scientific), 100µg/ml hygromycin (Fisher
Scientific), or 10µg/ml zeocin (Sigma-Aldrich), respectively.

Recombinant wild-type (WT) and mutated C1q variants were
purified from the stably transfected cell culture supernatants
by adsorption on insoluble IgG-ovalbumin aggregates (30)
and chromatography on an anti-FLAG M2 affinity column as
described previously (24). The molar concentration of the C1q
variants was estimated using a Mr of 460,000 and A1%,1cm of 6.8.

SPR Analyses
Analyses were performed at 25◦C using a Biacore 3000
instrument (GE Healthcare). BSA and the C1q variants were
diluted in 10mM sodium acetate at the following concentration
and pH: BSA, 25µg/ml, pH 4.0; C1q variants, 50µg/ml, pH
4.5 (wild-type) or 4.0 (C1q mutants), and immobilized on CM5
sensor chips (GEHealthcare) using the amine coupling chemistry
in 10mM Hepes, 150mM NaCl, 3mM EDTA, 0.005% surfactant
P20, pH 7.4. Binding of C1q partners was measured at a flow rate
of 20 µl/min in 50mM Tris-HCl, 150mM NaCl, 2mM CaCl2,
0.005% surfactant P20, pH 7.4. The specific binding signal was
obtained by subtracting the signal over the BSA reference surface.
Regeneration of the surfaces was achieved by 10 µl injections
of 1M NaCl, 10mM EDTA, and, if needed, 10–20mM NaOH.
Kinetic data were analyzed by global fitting to a 1:1 Langmuir
binding model for at least five concentrations simultaneously,
using the BIAevaluation 3.2 software (GE Healthcare). Buffer
blanks were subtracted from the data sets used for kinetic
analyses. The apparent equilibrium dissociation constants (KD)
were calculated from the ratio of the dissociation and association
rate constants (kd/ka). Chi2 values were below 6 in all cases.

Complement Activation Assays
Microtiter plates (Maxisorp Nunc) were coated with PTX3
(10µg/ml) or IgM (2µg/ml) in 10mM NaHCO3, pH 9.6
overnight at 4◦C. Wells were incubated for 1 h at 37◦C with
PBS containing 2% BSA (w/v) and washed with PBS containing
0.05% Tween 20 (PBS-T). C1q-depleted serum (CompTech),
diluted 1:25 in 5mM Na veronal, 145mM NaCl, 5mM CaCl2,

1.5mM MgCl2, pH 7.5 and reconstituted with the recombinant
C1q variants (4µg/ml) was added to the wells and incubated
for 1 h at 37◦C. The wells were washed with 5mM Na veronal,
145mM NaCl, 5mM EDTA, pH 7.5 and then a rabbit anti-
C4 polyclonal antibody (1:1000 dilution) (Siemens Healthcare
Diagnostics) was added to each well and incubated for 1 h
at 37◦C. After washing with PBS-T and incubation with
a peroxidase-conjugated goat anti-rabbit polyclonal antibody
(diluted 1:20,000 in PBS-T) (Jackson ImmunoResearch) for
1 h at 37◦C, plates were washed with PBS-T and developed
with 3,3’,5,5’-tetramethylbenzidine (Tebu). The reaction was
stopped with 1N H2SO4 and absorbance was read at 450 nm.
Each assay was performed in duplicate and absorbance values
were determined after subtracting blank values obtained in the
absence of added C1q. Normal human serum was obtained from
the Etablissement Français du Sang Rhône-Alpes (agreement
number 14-1940 regarding its use in research). Statistical
analysis was performed using a paired two-tailed Student t-test
(GraphPad software), with statistical significance defined as P
≤ 0.05.

Gel Electrophoresis and Lectin Blotting
Aliquots of purified recombinant PTX3 (either A48 and D48
from HEK293, or D48 from CHO) were run under denaturing
conditions on Tris acetate 3–8% (w/v) gels (Thermo Fisher)
and 8–18% (w/v) gel cards (GE Healthcare), in the absence
and presence, respectively, of dithiothreitol, as reducing agent.
Following separation, protein bands were stained either with
silver nitrate (ProteoSilverTM Silver Stain Kit, Sigma-Aldrich)
or Cy5, according to the electrophoretic apparatus used (XCell
SureLockTM Mini-Cell Electrophoresis System, Thermo Fisher, or
AmershamWB System, GE Healthcare, respectively).

The oligosaccharides linked to the A48 and D48 variants
of PTX3 from HEK293 were probed for linkage and content
of terminal residues of sialic acid by lectin staining using the
DIG Glycan Differentiation Kit (Roche). Briefly, aliquots of
both preparations were resolved by SDS-PAGE on Tris-glycine
10% (w/v) gels under reducing conditions and transferred onto
Hybond-C Extra membranes. Following blocking, membranes
were incubated with Maackia amurensis agglutinin (MAA, that
recognizes α(2, 3)-linked sialic acid), and bound lectin revealed
according to the manufacturer’s instructions (26).

TABLE 1 | Kinetic and dissociation constants for binding of the C1r2-C1s2 tetramer and MASP-2 dimer to immobilized C1q variants.

Soluble C1q

ligand

Constants Immobilized C1q variants

WT LysC170Glu TyrB175Leu LysA200Asp-LysA201Asp ArgB108Asp-ArgB109Glu

C1r2-C1s2 ka (M−1 s−1) 4.35 ± 0.15 × 105 4.86 ± 0.27 × 105 4.40 ± 0.19 × 105

kd (s−1) 2.88 ± 0.19 × 10−3 2.56 ± 0.05 × 10−3 2.97 ± 0.04 × 10−3

KD (M) 6.36 ± 0.42 × 10−9 5.29 ± 0.40 × 10−9 6.75 ± 0.20 × 10−9

MASP-2 ka (M−1 s−1) 4.63 ± 0.12 × 105 4.08 ± 0.06 × 105 4.26 ± 0.05 × 105

kd (s−1) 2.34 ± 0.08 × 10−3 2.64 ± 0.11 × 10−3 2.50 ± 0.13 × 10−3

KD (M) 5.04 ± 0.03 × 10−9 6.03 ± 0.18 × 10−9 5.88 ± 0.31 × 10−9

Values are the means ± SE of two to four separate experiments.
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Solid Phase Binding Assays
Binding of the A48 and D48 variants of PTX3 from HEK293 to
C1q was assessed using 96 well Maxisorp plates (Nunc) coated
with C1q (purified from human serum; Merck Millipore). All
dilutions, incubations, and washes were performed in 50mM
HEPES, 100mM NaCl, 0.1% (v/v) Tween 20, pH 7.40 (HBS-T).

Plates were coated overnight at room temperature with proteins
in 20mM Na2CO3, pH 9.6. Control wells were incubated with
buffer alone and treated as for sample wells. Plates were blocked
with 1% (w/v) BSA for 2 h at 37◦C, and incubated with the
PTX3 proteins for 1 h at 37◦C. Bound proteins were detected
using a rabbit anti-human PTX3 polyclonal antibody (200 ng/ml)

FIGURE 3 | Kinetic analyses of the interaction of PTX3 and IgM with immobilized C1q variants. Sixty microliter of PTX3 at the indicated concentrations were injected

over (A) C1qWT (16,300 RU), (B) C1qLysC170Glu (17,000 RU), (C) C1qTyrB175Leu (12,200 RU), (D) C1qLysA200Asp-LysA201Asp (18,400 RU), and (E)

C1qArgB108Asp-ArgB109Glu (17,500 RU) in 50mM Tris-HCl, 150mM NaCl, 2mM CaCl2, 0.005% surfactant P20, pH 7.4 at a flow rate of 20 µl/min. (F–J) IgM was

injected over the immobilized C1q variants under the same conditions as in (A–E). The binding signals shown were obtained by subtracting the signal over the BSA

reference surface and further subtraction of buffer blanks. Fits are shown as red lines and were obtained by global fitting of the data using a 1:1 Langmuir binding

model. Chi2 values were between 0.25 and 5.8. Each kinetic analysis shown is representative of two to five independent experiments performed on separate

sensor chips.
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followed by a donkey anti-rabbit IgG HRP-conjugate whole
antibody (GE Healthcare) and the 3,3’,5,5’-tetramethylbenzidine
substrate. Absorbance was read at 450 nm and background from
uncoated wells subtracted.

RESULTS AND DISCUSSION

Generation and Quality Control of the C1q
Mutants
Four C1q mutants have been produced, with two mutations
targeting residues suggested to participate in the interaction
with pentraxins (TyrB175Leu and LysC170Glu), and twomutations
targeting exposed basic consecutive residues in the A and
B chains (LysA200Asp-LysA201Asp, ArgB108Asp-ArgB109Glu),
proposed to contribute to IgG and/or IgM binding (20, 21, 31).
The single mutated residues are located at the apex of the gC1q
heterotrimer whereas the tandem lysine and arginine residues are
located on the side surface of gC1q (Figure 1A).

The C1q mutants were produced in stably transfected 293-F
cells expressing the three C1q chains and the recombinant C1q
variants purified from the cell culture supernatants as described
for C1qWT. SDS-PAGE analysis of the four purified C1qmutants
showed a band pattern similar to that obtained for C1qWT,
with characteristic A-B and C-C dimers under non-reducing
conditions (Figure 1B, NR lanes) and the three A, B, and C chains
under reducing conditions (Figure 1B, R lanes). The minor
extra bands above 100 kDa, observed only under non-reducing
conditions, likely correspond to multimers of the C chain. This is
corroborated by the lower intensity of the bands corresponding
to C-C dimers compared to A-B dimers whereas the three chains
are of equal intensity under reducing conditions. It should be
mentioned that these extra bands are also observed with serum-
derived C1q (Figure S1). Negative staining electron microscopy
imaging revealed no difference between the wild-type protein
and the four mutants, with individual molecules harboring a
bouquet-like structure with six globular heads and a central stalk
(data not shown), further indicating that the mutations had no
impact on the assembly of mutated C1q.

The capacity of the C1q mutants to associate with the
C1s-C1r-C1r-C1s tetramer or MASP-2 dimer, the homologous
protease of the lectin complement pathway, was analyzed by
SPR. The proteases bound to immobilized C1qWT, in accordance

with our previous data (24) and to the four C1q mutants
(Figure 2). The lower binding level of the C1s-C1r-C1r-C1s
tetramer observed for the TyrB175Leu mutant (Figure 2C) can be
related to the lower immobilization level of this mutant (12,200
RU) by comparison with C1qWT (16,300 RU, Figure 2A) and
the LysC170Glu mutant (17,000 RU, Figure 2B). Kinetic analyses
yielded similar binding parameters and dissociation constants for
the interaction of the proteases with immobilized C1qWT and
the four C1q mutants (Table 1). These data indicated that the
mutations in the globular regions did not affect the capacity of
the collagen-like regions of the C1q mutants to associate with the
C1r/C1r or MASPs proteases.

PTX3 and IgM Binding Properties of the
C1q Variants
SPR was further used to investigate the functional impact
of the mutations on the interaction of the C1q variants
with PTX3 and with IgM, a major complement activating
ligand of C1q. The amounts of immobilized C1q ranged from
16,200 to 18,400 RU, except for the TyrB175Leu mutant, for
which the immobilization level could not exceed 12,200 RU
despite repeated injections. No detectable PTX3 binding was
observed for the two C1q variants with mutated B chain
residues (Figures 3C,E) whereas the LysC170Glu mutant and the
LysA200Asp-LysA201Asp mutant retained the ability of C1qWT
to interact with PTX3 (Figures 3B,D), although lower binding
levels were observed for the latter mutant (Figures 3A,D).
However, kinetic analysis of the interactions yielded KD values of
the same order, comprised between 5.65 and 10.9 nM (Table 2),
even if small differences could be detected between the mutants
and C1qWT. For example, the 1.5-fold higher kd value for the
LysC170Glu mutant may reflect a slightly lower stability of the
complex and the 1.5-fold lower ka value for the LysA200Asp-
LysA201Asp mutant a slightly slower formation of the complex.
Comparable effects were observed for binding of both C1q
mutants to IgM, with KD values ranging from 1.92 to 3.31 nM
(Table 2), reflecting a higher apparent affinity for IgM than
for PTX3. Interestingly, the immobilized TyrB175Leu mutant
retained the ability to interact with IgM (Figure 3H), with even
a slightly better affinity (0.89 nM) than C1qWT, arising mainly
from a 1.5-fold higher ka value. As observed for PTX3 binding,
the ArgB108Asp-ArgB109Glu mutation abolished C1q capacity to

TABLE 2 | Kinetic and dissociation constants for binding of PTX3 and IgM to immobilized C1q variants.

Soluble C1q

ligand

Constants Immobilized C1q variants

WT LysC170Glu TyrB175Leu LysA200Asp-LysA201Asp ArgB108Asp-ArgB109Glu

PTX3 ka (M−1 s−1) 1.55 ± 0.21 × 105 1.40 ± 0.01 × 105 9.83 ± 4.08 × 104

kd (s−1) 8.59 ± 0.10 × 10−4 1.52 ± 0.11 × 10−3 ND 6.34 ± 0.15 × 10−4 ND

KD (M) 5.65 ± 0.82 × 10−9 1.09 ± 0.07 × 10−8 7.84 ± 3.37 × 10−9

IgM ka (M−1 s−1) 9.19 ± 2.08 × 105 6.81 ± 0.51 × 105 1.47 ± 0.05 × 106 7.17 ± 2.48 × 105

kd (s−1) 1.54 ± 0.19 × 10−3 1.67 ± 0.04 × 10−3 1.31 ± 0.01 × 10−3 2.06 ± 0.22 × 10−3 ND

KD (M) 1.92 ± 0.68 × 10−9 2.48 ± 0.24 × 10−9 8.92 ± 0.41 × 10−10 3.31 ± 1.12 × 10−9

Values are the means ± SE of two to five separate experiments. ND, not determined due to no detectable binding in the concentration range used.
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interact with IgM (Figure 3J) and the binding levels observed
for the LysA200Asp-LysA201Asp mutant were lower than those
obtained with C1qWT (Figure 3I).

PTX3- and IgM-Dependent Complement
Activation by the C1q Variants
The capacity of the C1q variants to trigger complement
activation when added to C1q-depleted serum in microwells
coated with PTX3 or IgM was analyzed by ELISA. C4b
deposition in the wells results from serum C4 cleavage by a
functional C1 complex assembled from recombinant C1q and
the serum C1r/C1s proteases. As expected, C1qWT yielded
amounts of deposited C4b comparable to those obtained
with complement-sufficient normal human serum (NHS) in
both PTX3 and IgM coated plates. In accordance with the
SPR data, no significant difference was observed between
the LysC170Glu mutant and C1qWT whereas the ArgB108Asp-
ArgB109Glu mutation strongly decreased both PTX3- and IgM-
dependent complement activation (30 and 9% of the signal
obtained with C1qWT, respectively) (Figure 4). The TyrB175Leu
mutant also exhibited significantly decreased PTX3- and IgM-
mediated complement activating capacity (44.5 and 61.4% of the
C1qWT value, respectively), in apparent discrepancy with the
SPR data that detected no binding of PTX3 (Figure 3C) and a
strong interaction with IgM (Figure 3H). As mentioned above,
an immobilization level comparable to that of the other mutants
(>16,000 RU) could not be reached for the TyrB175Leu mutant
(12,200 RU) and the lack of PTX3 binding might be explained by
a possible threshold effect. The fact that the interaction with IgM
was not affected under the same C1q immobilization conditions
might result from a difference in the avidity component of
the interactions between hexameric C1q and multivalent PTX3
or IgM. However, it cannot be excluded that the covalent
immobilization of this mutant might have influenced its PTX3
binding capacity. In addition, the complement activating assay is
performed using coated PTX3 or IgM and the SPR experiments

in the reverse configuration (immobilized C1q variants), which
might account for the observed discrepancy. Another interesting
observation is the fact that the LysA200Asp-LysA201Asp mutant
exhibited significantly higher PTX3-dependent complement
activating capacity (163% of C1qWT, Figure 4A), which might
be linked to the slightly higher stability of the complex observed
in SPR experiments.

The D48 and A48 Allelic Variants of PTX3
and Their C1q Binding Properties
To assess if the exonic polymorphism p.D48A in the PTX3 gene
affects the protein’s binding to C1q, recombinant forms of the
D48 and A48 allelic variants were made in a HEK293 cell line
and purified by immunoaffinity chromatography as previously
described (13). SDS-PAGE analysis, performed on Tris acetate
3–8% gels under non-reducing conditions (Figure 5A), revealed
a major band with an apparent molecular mass of 340 kDa,
consistent with PTX3 protomers being mainly assembled into
octamers stabilized by disulfide bonds, in both preparations.
Additional bands were detected at apparent molecular masses of
280, 210, 170, 80, and 65 kDa, and this pattern was consistent
amongst the two allelic variants made in HEK293 and the CHO
protein, here used as a reference (8). Upon reduction, a major
band at 42 kDa (close to the expected molecular mass for
PTX3 monomers, i.e., ∼42.5 kDa) and a minor one at 100 kDa
(likely corresponding to dimers of the protein, originating from
partial reduction) were observed following Cy5 staining in all
PTX3 proteins (Figure 5B). Therefore, no significant difference
in terms of quaternary structure and homogeneity was noticed
amongst the D48 and A48 allelic variants, and the electrophoretic
profiles of these proteins under both reducing and non-reducing
conditions were comparable to that of the CHO-derived PTX3,
taken as a reference. Given that protein glycosylation has
been implicated in a number of PTX3 functions in innate
immunity and inflammation (32), and, most importantly, sialic
acid has been shown to modulate the interaction of PTX3 with

FIGURE 4 | PTX3- and IgM-dependent complement activation by the C1q variants. C1q-depleted serum (1:25 dilution) was reconstituted with the recombinant C1q

variants (4µg/ml) and added to microwells coated with 10µg/ml PTX3 (A) or 2µg/ml IgM (B). Normal human serum (NHS, 1:25 dilution) was used as a control. The

resulting C1-cleaving activity was measured by a C4b deposition assay as described under Material and Methods. Deposited C4b was detected with an anti-human

polyclonal antibody, and results are expressed as absorbance at 450 nm (OD450), following background subtraction [means ± SEM of three (IgM) and four (PTX3)

independent experiments]. Comparisons between C1qWT and each of the mutants or C1q in normal human serum were made using a paired Student t-test. *P <

0.05; **P < 0.005; ns, not significant.
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FIGURE 5 | Biochemical characterization of the D48 and A48 allelic variants of PTX3 and their binding to C1q. The indicated amounts of purified recombinant PTX3

(either A48 and D48 from HEK293, or D48 from CHO) were run under denaturing conditions on Tris acetate 3–8% (w/v) gels (A) and 8–18% (w/v) gel cards (B), in the

absence and presence, respectively, of dithiothreitol. Following separation, protein bands were stained either with silver nitrate (A) or Cy5 (B). (C) Aliquots of both A48

and D48 preparations from HEK293 were resolved on Tris-glycine 10% (w/v) gels under reducing conditions, transferred onto membranes, and probed with MAA

lectin. (A–C) representative gels from three independent experiments are shown, with molecular mass markers on the left, and apparent molecular mass values

observed for the resolved bands on the right. (D) The effect of the p.D48A polymorphism on the interaction of PTX3 with C1q was assessed by solid phase binding

assay using microwells coated with the indicated amounts of C1q that were incubated with the A48 and D48 variants (both at 3 nM). Bound PTX3 was revealed with

an anti-human polyclonal antibody, and results are expressed as absorbance at 450 nm (OD450), following background subtraction (three independent experiments

performed in quadruplicate, n = 12, mean ± SD).

C1q (33), we analyzed the sialylation status of the D48 and
A48 allelic variants by lectin blotting, using MAA to probe
the terminal α(2, 3)-linked sialic acid residues. As shown in
Figure 5C, both proteins gave two major MAA-reactive bands
at 45 and 42 kDa, indicative of glycoform populations with
distinct sialylation (possibly, bi- and tri-antennary complex
oligosaccharides), and a minor signal at 100 kDa (likely
corresponding to protein dimers, as described in Figure 5B).
Therefore, the two recombinant variants of PTX3 were virtually
identical in terms of quaternary structure and glycosylation, thus
amenable to comparative functional studies. In this regard, when
assayed in solid phase binding experiments, the D48 and A48
alleles had comparable binding to plastic-immobilized C1q at
each applied concentration (Figure 5D), indicating that in the

described experimental conditions the p.D48A polymorphism
does not affect the interaction of PTX3 with C1q.

CONCLUSION

The present study aimed at revisiting the PTX3-C1q interaction
using mutagenesis of full-length recombinant C1q, as compared
to the canonical C1q ligand IgM. We confirmed previous
observations of an essential role of the B chain residues
Arg108, Arg109, and Tyr175 in the interaction with both
PTX3 (20) and IgM (21, 34). Our results also suggest no
significant contribution of the exposed C1qA Lys200 and
Lys201 in IgM-mediated complement activation, in contrast to
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FIGURE 6 | Summary of the C1q mutagenesis results. Ribbon diagrams of the structure of the globular domains of wild-type C1q and of the four mutants are shown.

The side chains of the mutated amino acid residues are represented as stick models. The color code for the three C1q chains and the mutated amino acids is the

same as in Figure 1. The calcium ion is represented by a yellow sphere. The gC1q region found important for interaction with both PTX3 and IgM and complement

activation is delineated by dots. The effects of the C1q mutations toward PTX3 and IgM binding and complement activation are represented as follows: red crosses

(solid lines), inhibition of both activities; red crosses (dotted lines), inhibition of complement activation only; bold characters, no significant inhibition. PTX3* indicates

that enhancement of PTX3-dependent complement activation was observed.

previous data obtained with the isolated recombinant gC1qA
module showing that the LysA200Glu mutation resulted in
a 27% reduction in the binding to solid-phase IgM (21).

Intriguingly, the replacement of these two basic residues by
acidic residues in the side part of gC1qA significantly enhanced
the complement activating capacity of PTX3, which might be
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related to the slightly better stability of the complex observed
in SPR experiments. In a similar way, the C chain Lys170Glu
mutation had no significant impact on the PTX3 or IgM
binding and the complement activating properties of C1q,
in contrast to previous observations showing a considerable
reduction in gC1qC binding to solid-phase PTX3 (about 40%)
(20) and IgM (>30%) (21). These data suggest a differential
exposure of LysA200 and LysC170 in the isolated gC1qA/gC1qC
modules and in the heterotrimeric globular heads of full-
length C1q. Altogether, these mutagenesis results confirm
a key electrostatic contribution in the interaction between
C1q B chain and PTX3 or IgM (summarized in Figure 6),
consistent with the hypothesis that binding of C1q to targets
through this region triggers efficient activation of the C1
complex (35, 36).

Given that the exonic polymorphism p.D48A (or rs3816527)
in the PTX3 gene forms with rs2305619 in intron 1 and rs1840680
in intron 2 an haplotypic block that has been linked to the
susceptibility to selected infections as well as different circulating
levels of the protein, it was important to assess whether this
amino acid substitution had any effect on C1q recognition.
To this end, we generated recombinant forms of the A48
and D48 alleles that were comparable in quaternary structure,
homogeneity and sialylation status, thus being amenable to
comparative studies. These preparations had similar binding
to C1q, which indicates that the p.D48A polymorphism does
not alter the C1q binding properties of PTX3, at least in the
applied experimental conditions. In addition, we have previously
shown that the C-terminal domain of PTX3 mostly mediates
the interaction of the long pentraxin with C1q (25), and this
is modulated by protein glycosylation (at Asn220 in the C-
terminal domain). Molecular dynamics simulations suggest that
the PTX3 oligosaccharides (via their terminal residues of sialic
acid) are in contact with polar amino acids on the solvent exposed
surface of the C-terminal domain (33). Given the prominent
electrostatic nature of the PTX3-C1q interaction, as supported by
our study and previous evidence (20), it is tempting to speculate
that these residues are involved in C1q recognition. Further
studies are needed to challenge this hypothesis and identify the
PTX3 residues that support C1q binding. Finally, the novel C1q
mutants generated in this study should allow further exploration

of the molecular bases of C1q binding versatility in different
physiological contexts.
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The innate immune system comprises a cellular and a humoral arm. Humoral

pattern recognition molecules include complement components, collectins, ficolins, and

pentraxins. These molecules are involved in innate immune responses by recognizing

microbial moieties and damaged tissues, activating complement, exerting opsonic

activity and facilitating phagocytosis, and regulating inflammation. The long pentraxin

PTX3 is a prototypic humoral pattern recognition molecule that, in addition to providing

defense against infectious agents, plays several functions in tissue repair and regulation

of cancer-related inflammation. Characterization of the PTX3 molecular structure and

biochemical properties, and insights into its interactome and multiple roles in tissue

damage and remodeling support the view that microbial and matrix recognition are

evolutionarily conserved functions of humoral innate immunity molecules.

Keywords: pentraxins, PTX3, inflammation, tissue remodeling, wound healing

INTRODUCTION

Innate immune responses are the first strategies of host defense from invading pathogens and
tissue damage. Their activation occurs when conserved structures on the surface of pathogens
or associated with tissue damage, called pathogen associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs), respectively, are recognized by cell-associated
or soluble molecules known as pattern recognition molecules (PRMs). Among soluble PRMs,
pentraxins are a superfamily of evolutionarily conserved molecules with multi-functional roles in
innate immunity and inflammation, such as regulation of complement activation and opsonization
of pathogens (1). C-reactive protein (CRP) and serum amyloid P component (SAP) are the short
or “classical” pentraxins. CRP is mainly produced by hepatocytes as an acute phase protein in
man as well as other mammalian species, but not in mouse, in response to interleukin (IL)-6,
whereas SAP is the short pentraxin acting as an acute phase protein in mouse (2). Pentraxin 3
(PTX3) is the prototype of the long pentraxin subfamily, originally identified as an IL-1 or TNF-
inducible gene. PTX3 is produced by different cell types in response to primary pro-inflammatory
stimuli and microbial moieties, is an essential mediator of innate resistance to selected pathogens
of fungal, bacterial and viral origin [as discussed elsewhere (1, 3)], and is involved in regulation of
inflammation, tissue remodeling, and cancer.
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Here we will review the main biological features of PTX3
focusing on its structure and involvement in sterile conditions of
tissue damage and cancer, and providing evidence that microbial
and matrix recognition are evolutionarily conserved properties
shared by humoral innate immunity molecules.

GENE REGULATION AND

PROTEIN STRUCTURE

The human and the murine PTX3 gene map on chromosome
3 and are organized in three exons, the first two coding for the
leader peptide and the N-terminal domain, and the third coding
for the C-terminal-pentraxin domain (Figure 1).

PTX3 is mainly induced by pro-inflammatory cytokines, such
as IL-1β and TNFα, and by TLR agonists, microbial components
(e.g., LPS, lipoarabinomannan, and outer membrane proteins
of selected Gram-negative bacteria), and intact microorganisms
(Figure 1). PTX3 expression is inducible in a wide variety of
cell types, including fibroblasts and endothelial cells, myeloid
cells such monocytes, macrophages, and dendritic cells (DCs),
synovial cells, chondrocytes, adipocytes, glial and mesangial
cells, epithelial cells and retinal cells (1, 4, 5) (Figure 1).
High density and oxidized low density lipoproteins (HDL
and ox-LDL) induce PTX3 production in endothelial cells
and primary vascular smooth muscle cells (SMC) (6, 7).

FIGURE 1 | Expression of the long pentraxin PTX3. Several inflammatory stimuli, including positive (green) and negative (red) regulators (A) can induce PTX3

expression in different cell types, including cells of the myeloid lineage, fibroblasts, epithelial cells derived from different tissues, vascular and lymphatic endothelial cells

(ECs), smooth muscle cells (SMCs) and adipocytes (B). (CD40L, CD40 ligand; DAMPs, damaged-associated molecular patterns; GCs, glucocorticoids; LPS,

Lipopolysaccharide; ox-LDL/HDL, oxidized-low-density lipoprotein/high-density lipoprotein; PAMPs, pathogen-associated molecular patterns; PGE2, prostaglandin

E2; TLR, Toll like receptor; VitD3, vitamin D3).

Microbial ligands stimulate the release of PTX3 from neutrophils,
where the protein, mostly produced by myeloid precursors,
is constitutively stored in specific granules (8, 9). Among
peripheral blood mononuclear cells, only monocytes exposed
to inflammatory cytokines or LPS produce PTX3 mRNA
(1). PTX3 expression is negatively regulated by IFN-γ, IL-4,
dexamethasone, 1α,25-dihydroxivitamin D3, and prostaglandin
E2 (5, 10, 11). PTX3 is also induced by ovulatory stimuli
in granulosa cells, and when released it contributes to
the structural architecture of cumulus oophorus extracellular
matrix (12).

PTX3 expression and production is regulated by different
signaling pathways, mainly depending on the cell type and/
or stimuli. The NF-κB pathway controls PTX3 expression in
conditions of IL-1 receptor- or TLR-dependent inflammation
(13–15), while induction of the protein by TNFα in lung
epithelial cells involves the c-Jun N-terminal kinase (JNK)
pathway (16). HDL-induced PTX3 production in endothelial
cells requires the activation of the PI3K/Akt pathway through
G-coupled lysosphingolipid receptors (7).

The expression of the human PTX3 gene in physiological
and inflammatory conditions is also regulated by epigenetic
mechanisms. Hypermethylation of the promoter region and of
an enhancer encompassing the second PTX3 exon (enhancer
2) (Figure 2) have been associated with PTX3 gene silencing
in selected human tumors (e.g., colon rectal cancer and
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FIGURE 2 | Gene and protein structure of the long pentraxin PTX3. PTX3 gene is located in chromosome 3 and is organized in three exons: the first coding for the

signal peptide, the second coding for the N-terminal domain, and the third coding for the C-terminal, pentraxin domain. The promoter of PTX3 contains several

transcription factor binding sites, including Pu1, NF-κB, SP1, NF-IL6, and AP-1. Depicted are also the sites of PTX3 epigenetic regulation, mediated by two potentially

active enhancers. The first enhancer—containing the transcription factor binding sites for NF-κB, AP-1, Pu1, and SP1 - is located 230 kb upstream of the promoter,

while the second enhancer—containing the transcription factor binding site for NF-κB—encompasses the second PTX3 exon (A). Schematic representation of the

PTX3 protomer subunit with the leader peptide in gray, the N-terminal region in yellow, and the pentraxin C-terminal domain in red. Shown are the Cys residues

involved in intra- (C179-C357, and C210-C271) and inter- (C47-C47, C49-C49, C103-C103, C317/318-C317/318) chain disulfide bonds, the N-glycosylation site at

Asn220, and the pentraxin signature (a primary sequence motif highly conserved across pentraxins) (B). 8 protomer subunits assemble into an octameric protein

stabilized by inter-chain disulfides (as well as non-covalent interactions), which are pointed to by arrows in the picture (C).

leiomyosarcoma) (14). Consistent with this, hypomethylation
of these regulatory elements correlated with higher than
normal protein levels in the plasma of coronary artery disease
patients (17). Recent studies have characterized these epigenetic
mechanisms in the context of different PTX3 expressing
cells, including macrophages and fibroblasts, and have further
addressed the epigenetic modifications occurring in the PTX3
gene in colorectal cancer (CRC) (18). These investigations
identified a second enhancer located 230 kb upstream of the
PTX3 gene promoter (enhancer 1, Figure 2). In silico and ChIP
analysis revealed the binding of several transcription factors
on this enhancer (18). Many of them, including the NF-κB
subunit RelA, c-Jun, c-Fos, PU.1, and SP.1, are involved in the
activation of inflammatory and immune responses, and are also
known to control the activity of PTX3 promoter (Figure 2).
The enhancer 2 was found only to bind NF-κB after TNF-
α stimulation in macrophages, suggesting that this regulatory
element could be important in the activation of tissue-specific
transcription factors. However, the enhancer 2 could have a
direct role in activating the expression of PTX3, since ChIP
analysis showed its interaction with TAF1, a member of the
transcription preinitiation complex (PIC) (18). Furthermore,
STAT3-mediated hypermethylation of enhancer 1 has been
associated with PTX3 gene silencing in colorectal cancers (18)

(Figure 2). Interestingly, in vitro treatment of macrophages with
glucocorticoid hormones, such as dexamethasone, results in M2
polarization, which is associated with immune suppression, and
tumor progression (19). Noteworthy, one of the main markers
of this phenotype is activation of STAT3, thus suggesting that
STAT3-mediated PTX3 downregulation could be involved in
carcinogenesis (see below).

Amongst PTX3 single nucleotide polymorphisms (SNPs),
three (collectively forming an haplotypic block) have been found
associated with susceptibility to infections including those caused
by Aspergillus fumigatus (20–23), Mycobacterium tuberculosis
(24), and Pseudomonas aeruginosa (25). Two of these SNPs
are located in PTX3 intronic non-coding regions (rs2305619
in intron 1, and rs1840680 in intron 2), while the third is an
exonic polymorphism that causes an amino acid substitution at
position 48 (D48A, or rs3816527). Epidemiological studies have
found a correlation between these three SNPs and PTX3 plasma
levels, however the molecular mechanisms responsible for this
association are still poorly understood. In this regard, individuals
carrying the D48 allele have lower systemic concentrations
of PTX3 (26). This might be due to faster rate of mRNA
degradation, as proposed by Cunha et al. (20), or, alternatively,
reduced activity of the second enhancer in the PTX3 gene (that
encompasses the rs2305619, rs3816527, and rs1840680 SNPs)
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(18). It is not currently possible to exclude a direct local effect of
amino acid substitution on protein structure (therefore function).

PTX3 is a multimeric glycoprotein whose protomer subunits
comprise 381 amino acids. The protein primary sequence is
highly conserved in evolution (with 82% identity between human
and murine PTX3), likely due to early selection and enduring
maintenance in phylogenesis of fundamental structure/function
relationships. Analogous to other members of the long pentraxin
sub-family, which includes guinea pig apexin, rat, human, and
murine neuronal pentraxins 1 (NP1, or NPTX1) and 2 (NP2,
also known as Narp or NPTX2), the putative integral membrane
pentraxin NRP, and PTX4 (27), the PTX3 protomer is organized
into an N-terminal region and a 203 amino acids long C-
terminal domain with homology to the short pentraxins CRP and
SAP (28) (Figure 2).

The N-terminal domain has no obvious similarity to any
protein of known structure. However, secondary structure
predictions indicate that this domain mostly comprises α-helical
elements, three of which are likely organized into coiled-coils (6).
Furthermore, the N-terminal end of this domain (amino acids
18–54) is predicted to be intrinsically disordered, a property that
might provide the PTX3 protein with structural and functional
versatility (29), thus contributing to the remarkable complexity
of its interaction network (3).

The C-terminal domain shares with the short pentraxins a
considerable degree of homology (with up to 57% similarity),
which has allowed generation of 3D models based on the crystal
structures of CRP (PDBID:1b09) and SAP (PDBID:1sac) (30–
32) indicating that it adopts a β-jelly roll topology, stabilized
by two intra-chain disulfide bonds (33). Two additional cysteine
residues (i.e., Cys317 and Cys318) are involved both in intra- and
inter-chain disulfides that, in conjunction with inter-chain bonds
made by cysteine residues of the N-terminal domain, support the
quaternary structure of the mature PTX3 protein (34) (Figure 2).

The pentraxin domain of PTX3 bears a single N-glycosylation
site at Asn220 that, in a recombinant form of the protein from
CHO cells, is fully occupied by complex type oligosaccharides,
mainly fucosylated and sialylated biantennary sugars with a
minor fraction of tri-and tetraantennary glycans. N-linked
complex type glycosylation occurs in the natural protein
made by human cells too (32), and mediates some of the
PTX3 biological functions, including inhibition of influenza A
virus hemagglutination (35, 36) and recognition of P-selectin
(37). Furthermore, protein glycosylation (with major regard to
sialylation) modulates the interaction of PTX3 with C1q, and
the regulatory effect of PTX3 on complement activation via the
classical pathway (32). We speculate that the molecular crosstalk
between PTX3 and a range of diverse ligands involves a common
glycan code, whereby tissue- and microenvironment-specific
changes in the protein glycosylation profile might regulate its
biological properties [see (38) for a review].

The modular (i.e., N- and C-domains) and sub-modular
(i.e., coiled-coils and intrinsically disordered regions of the
N-domain) nature of the protomer likely endows PTX3 with
the structural versatility that is required to support its diverse
interactions, thereby its biological functions. In this regard, the
N-terminal region of the protein contains binding sites for

fibroblast growth factor 2 (FGF2), inter-α-inhibitor (IαI), TNF-
α-induced protein 6 (TNFAIP6 or TSG-6), plasminogen (Plg),
fibrin, and conidia of A. fumigatus (15, 39–42). C1q and P-
selectin mostly interact with the pentraxin-like domain (28, 37),
whereas both domains have been implicated in the recognition of
complement factor H (43, 44), and Ficolin-1 (45).

In addition to the multidomain organization, PTX3 has
a complex quaternary structure with high-order oligomers
stabilized by disulfide bonds. Mass spectrometry and site-
directed mutagenesis indicate that PTX3 is made of covalent
octamers (i.e., with a molecular mass of 340 kDa), through
inter-chain disulfides bridges (34) (Figure 2). A low-resolution
model based on data from electron microscopy and small
angle X-ray scattering shows that eight PTX3 protomers fold
into an elongated molecule with two differently sized domains
interconnected by a stalk region, and a pseudo 4 fold symmetry
along the longitudinal axis (33). Such quaternary structure is
unique among pentraxins, where CRP and SAP both share a
prototypical pentameric planar symmetry (46, 47). The only
other pentraxin that forms an octamer is SAP from Limulus
polyphemus, which, however, folds into a doubly stacked
octameric ring (48). In addition, the oligomeric organization
has important implications in its ligand binding properties.
For example, the PTX3 octamer contains two binding sites for
FGF2, and tetrameric recombinant forms of the N-terminal
domain recapitulate the inhibitory functions of the full length
protein toward this factor both in angiogenesis (33, 39) and
bone deposition (49). However, dimeric forms of the N-terminal
domain retain binding to IαI and TSG-6, thereby the octameric
PTX3 protein is likely endowed with multiple (at least four)
binding sites for each of these ligands, and can act as a nodal
molecule in cross-linking hyaluronic acid in the extracellular
matrix (41, 50).

High resolution models are urgently needed to disentangle the
structural complexity of this long pentraxin and shed light on its
structure/function relationships, some of which are remarkably
different to those classically described for the short pentraxins.

ROLE OF PTX3 IN TISSUE REPAIR

Beyond its role as the first line of resistance against pathogens,
innate immunity is involved in initiating the process of tissue
repair (51–53). The cellular arm of the innate immune system
senses specific DAMPs and regulates inflammatory responses
at sites of damage (52, 54). The humoral arm of the innate
immunity has different and complex roles ranging from the
clearance of apoptotic cells and regulation of immune cell
migration and activation, to regulation of remodeling cell activity
(55, 56). For instance, SAP regulates fibrosis by inhibiting the
alternative activation of macrophages via FcγRs (57) or by
modulating immune cell activities via DC-SIGN (58). Pentraxins
and components of the complement system also interact with
elements present in the extracellular matrix (ECM), thus
suggesting additional regulatory roles of the innate immune
system in the tissue response to injury (53, 59). On the
other hand, different ECM components, such as fibronectin,
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TABLE 1 | Biological functions of PTX3 in tissue remodeling and cancer.

Ligands Functions

Tissue remodeling Fertility Hyaluronic

acid/TSG-6/inter-α-

trypsin

inhibitor

Incorporation of PTX3 into the hyaluronic acid-rich ECM

surrounding the pre-ovulatory oocyte (i.e., dependent on the

presence of IαI and TSG-6) is essential for cumulus matrix stability

and female fertility (12)

Synaptogenesis ND Pentraxin 3 regulates synaptic function by inducing AMPA

receptor clustering via ECM remodeling and beta1-integrin (60)

Bone turn-over FGF2 PTX3 is expressed by osteoblast progenitors, and is essential for

matrix mineralization both in bone tissue homeostasis and fracture

repair (49)

Angiogenesis FGFs PTX3 recognizes selected FGFs via its N-terminal domain, and

inhibits their binding to FGF receptors, thus preventing

endothelial/smooth muscle cell proliferation in vitro and

angiogenesis/neointima formation in vivo (61)

Fibrinolysis Fibrinogen/

fibrin/

plasminogen

PTX3 derived from macrophages and mesenchymal cells forms a

tripartite PTX3/fibrin/plasminogen complex at acidic pH that

promotes pericellular fibrinolysis (15)

In a mouse model of arterial thrombosis, PTX3 inhibits platelet

adhesion and aggregation by targeting fibrinogen and collagen (62)

Cancer Anti-tumoral factor H In murine models of chemically induced mesenchymal and

epithelial carcinogenesis, PTX3 dampens cancer-related,

complement-dependent inflammation (14)

FGFs PTX3 inhibits the FGF-driven tumor cell proliferation in vitro, tumor

growth, angiogenesis and metastatic potential in vivo in models of

melanoma, prostate, breast and lung cancer (63)

Pro-tumoral Not defined PTX3 promotes tumor cell migration, invasion and metastasis, and

protein levels correlate with prognosis and/or tumor grade in

different types of cancer (64, 65)

mindin, osteopontin, and vitronectin, interact with microbes
and have opsonic activity (53, 66), thus suggesting a close
evolutionary link between recognition of microbial moieties and
ECM components.

In different mouse models of non-infectious tissue damage,
deficiency of the long pentraxin PTX3 was associated with altered
thrombotic response to the lesion, increased deposition and
persistence of fibrin, followed by increased collagen deposition
(15, 62, 67–69) (Figure 3).

Following tissue damage, PTX3 was induced in the blood and
locally in response to TLR activation and IL-1β amplification
(15). Interestingly, PTX3 is reported to be among the genes
induced by thrombin in monocytes (70). At sites of wound,
PTX3, released by neutrophils (9), localized in the clot and
in the pericellular matrix of macrophages and PDGFRα+FAP+

cells of mesenchymal origin that collectively invade the wound
site (15, 68).

In skin wounding, PTX3-deficiency was associated with
increased deposition of fibrin, followed by increased deposition
of collagen, fibroplasia, epithelial hyperplasia, and delayed
healing (15). A premature contraction of the woundwas observed
in PTX3-deficientmice, in agreement with an augmented content
of platelet-derived factors (e.g., thrombin, serotonin, PDGF,
TGFβ) known to be responsible of skin wound contraction
by SMC located in the panniculus carnosus (71–73). Indeed,
administration of pharmacological inhibitors of coagulation and
platelet activation reverted these defects, including premature

wound contraction and increased collagen deposition (15).
Therefore, an altered haemostatic and fibrinolytic response
triggered the alterations associated with PTX3-deficiency in skin
wound healing.

In CCl4-induced liver injury, PTX3 was localized in
necroinflammatory areas and fibrotic portal tracts, and was
associated with neutrophils, macrophages and mesenchymal
stromal cells (MSCs) (15). In this setting, PTX3-deficiency
was associated with increased centrilobular thrombosis and
fibrin deposition in necroinflammatory areas, followed by severe
impairment of repair and fibrosis, as assessed by increased α-
SMA+ fibroblastic cells and collagen deposition (15). Similar
abnormalities were reported in different models of lung injury
(15, 74). In addition, PTX3 played a protective role in a murine
model of ischemic injury of the brain, where it was involved
in the resolution of edema and glial scar formation (75). PTX3
administration reverted the IL-6/STAT3-dependent interstitial
fibrosis in a mouse model of acute kidney injury (76).

Fibrin is deposited after tissue injury and its subsequent timely
removal is essential for several aspects of tissue repair in major
organs, as well as in a wide range of pathological conditions
(77, 78). In these contexts, a defective fibrinolysis is described
as an etiopathological factor leading to reduced remodeling and
altered connective tissue formation (79–81). Macrophages and
MSCs enter the wound site invading the inflammatory matrix
through plasmin-mediated mechanisms, allowing fibrin removal
and consequent deposition of granulation tissue rich in type
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FIGURE 3 | Role of PTX3 at the crossroad between innate immunity, hemostasis and tissue repair, and cancer. By interacting with fibrinogen (FG)- and collagen

(COL)-like domains of other fluid-phase PRMs, such as C1q, ficolins, and collectins, PTX3 amplifies the recognition potential of these members of the humoral innate

immunity, favoring complement-mediated antimicrobial resistance, and effector functions (upper left panel). By interacting at acidic pH with fibrinogen/fibrin and

collagen, as well as plasminogen (Plg), PTX3 tunes injury-induced thrombotic responses and favors pericellular fibrinolysis, contributing to tissue remodeling and repair

(upper right panel). By interacting with factor H and FGFs, PTX3 controls complement-dependent tumor promoting inflammation, including CCL2-dependent

macrophage recruitment and M2-like skewing, as well as FGF-dependent neo-angiogenesis. This anti-tumor potential of PTX3 is hampered by genetic or epigenetic

silencing of PTX3 leading to enhanced tumor growth (lower panel).

I collagen, as well as other ECM proteins (71, 81, 82). The
alterations in tissue repair observed in PTX3-deficient mice
have been attributed to defective plasmin-mediated invasion
and fibrinolysis by tissue remodeling cells, namely macrophages
and MSCs (15, 68). Also in vitro, PTX3-deficient macrophages
and fibroblasts showed defective fibrinolytic activity (15), thus
suggesting that PTX3 contributes to the progression of a normal
and efficient pericellular fibrinolysis which promotes repair.

PTX3 was shown to interact specifically with Plg and
fibrin at acidic pH (optimal range from 6.5 to 5.5), but not

at neutral pH (15) (Figure 3). Interestingly, the interaction
of PTX3 with members of the ficolin and collectin family,
occurring through their fibrinogen-like domain and collagen
domains, is facilitated in an acidic microenvironment (45,
83, 84). Acidification of the wound site, which occurs as a
result of cellular metabolic adaptation to trauma-induced tissue
hypoperfusion, has functional relevance in the healing outcome
and involves several processes including cell adhesion, migration,
and proliferation (53, 85). The interaction of PTX3 with fibrin
and Plg occurs through different sites in its N-terminal domain
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and PTX3 does not interfere with the interaction between fibrin
and Plg. In mapping experiments, PTX3 did not interact with the
Plg Kringle 1 domain, indispensable for Plg initial recruitment
on lysine-rich portions of fibrin and/or on cell surface, but
specifically bound the Kringle 5 domain (15). This interaction
could be crucial for triggering Plg conformational changes that
allow a transition of the molecule from a closed-inactive to
an open and functional form (86–88). This conformational
transition is essential for Plg conversion into plasmin operated
by Plg activators (PAs) and central in fibrin removal in the
thrombus (78, 89). Indeed, in cell-free fibrinolysis assays, the
interaction of PTX3 with Plg determined the enhancement of
plasmin-mediated fibrin gel degradation triggered by urokinase
PA (uPA) and tissue-type plasminogen activator (tPA) at acidic,
but not neutral, pH. Plg activators are neutral proteases (90).
The dependence on acidic pH of the interaction of PTX3 with
fibrin and Plg ensures that it does not occur in the circulation but
rather at sites of tissue repair and in thrombi, where it supports
fibrinolysis in acidic environments. Thus, the acidic pH acts as
a “switch on” signal for this function of PTX3 (Figure 3). The
interaction with fibrin and Plg is restricted to PTX3, since no
similar function has been reported for short pentraxins. Only one
study reported the interaction of SAP with fibrin and consequent
modulation of in vitro formation of clots (91), however the
underlying molecular mechanism has never been characterized.

In a model of arterial thrombosis, PTX3 produced by the
vessel wall had a critical protective role in the modulation
of thrombus formation (62). Fibrinogen pre-incubation with
PTX3 significantly reduced platelet aggregation in the presence
of collagen. Likewise, pre-incubation of collagen with PTX3
attenuated platelet aggregation in the presence of fibrinogen.
These effects were dependent, respectively, on the N-terminal
or C-terminal domain of PTX3, and suggested that in arterial
thrombosis PTX3 disfavored the pro-thrombotic activity of
fibrinogen and collagen (62). PTX3 interacts with P-selectin
and tunes P-selectin-dependent neutrophil extravasation (37).
However, in arterial thrombosis PTX3 did not influence P-
selectin-dependent platelet-leukocyte and platelet-endothelium
aggregation (62, 92). Although initially PTX3 has been reported
to induce tissue factor (TF) expression in endothelial cells and
monocytes (93), subsequent in vitro and in vivo studies did not
confirm this result (15, 62). Indeed, in the thrombosis model
TF expression in the aorta of PTX3-deficient mice and controls
was similar (62). These results are in line with the evidence
that PTX3 plays protective functions in vascular pathologies.
Indeed, PTX3 overexpression limited the neointimal thickening
after rat carotid artery balloon injury (94) and PTX3-deficiency
was associated with augmented infarct area following myocardial
ischemia/reperfusion injury (13), increased atherosclerosis and
augmented macrophage accumulation and inflammation in
atherosclerotic plaques (95).

The administration of MSCs to acute or chronic wounds
improves wound healing by increasing granulation tissue
formation, accelerating re-epithelialization and stimulating
angiogenesis through paracrine signaling (96), thus prompting
new studies on the treatment of non-healing wounds resulting
from burns (97) and Crohn’s disease (98). In wounded

skin, MSCs acted as a potent promoter of tissue repair
and remodeling, whereas PTX3-deficient MSCs showed
compromised recruitment and invasiveness at the site of
damage, due to defective fibrinolysis, and therefore exerted a
compromised therapeutic effect causing delayed healing (68).

Similar results were obtained in a mouse model of acid
aspiration-dependent acute lung injury (69), mimicking acute
respiratory distress syndrome (ARDS) caused by aspiration of
gastric contents (99). In the mouse model, beneficial effects
of treatment with MSCs on the early acute inflammatory
reaction, pulmonary edema and long-term fibrotic evolution and
pulmonary function have been observed. The administration of
PTX3-deficientMSCs was less effective in limiting the pulmonary
edema at 24 h after acid aspiration, and was associated with
defective fibrinolytic activity, resulting at later time points in
increased pulmonary fibrosis and therefore in a not significant
increase of lung function. Levels of D-dimer significantly
increased in mice after treatment with MSCs indicating their
ability to modulate pulmonary fibrinolysis and thus affecting
fibrotic scarring. The administration of PTX3-deficient MSCs
resulted in decreased lung levels of D-dimer compared to PTX3-
competent MSCs, thus attributing to a defective fibrinolysis
the observed reduced therapeutic effects of PTX3-deficient
MSCs (69).

Recently, PTX3 has been identified as an important molecule
contributing to bone homeostasis and remodeling (49). Under
homoeostatic conditions, histological analysis of distal femurs
of PTX3-deficient mice did not show differences in the number
of active trabecular and endosteal TRAP+ osteoclasts. However,
micro-computed tomography showed a lower bone volume
attributable to suppression of the osteoblast function. In a
fracture and regeneration model of the tibia diaphysis, PTX3-
deficient mice showed a lower bone formation and repair
rate than controls, in agreement with lower percentage of
mineralized callous tissue and lower collagen I expression
compared to controls. Under conditions of homeostasis and
bone repair, the expression of PTX3 was associated with non-
hematopoietic/non-endothelial periosteal cells, in particular,
with CD51+ and α-SMA+ osteoprogenitor subsets. FGF2 is
expressed during the early stages of bone formation and
is abundantly accumulated in the bone matrix, where it
participates in osteoblastogenesis and skeletal remodeling (100).
In agreement with the property of PTX3 to bind FGF2
and prevent FGF2-dependent activities, PTX3 reversed the
negative effect of FGF2 on osteoblast differentiation from
bone marrow stromal cells in vitro, and the PTX3 N-
terminal domain alone recapitulated this activity. Therefore,
PTX3 produced by osteoblast lineage cells, acts as a bone
protective factor, important to unlock osteoblast maturation
by antagonizing the FGF2 effect during bone formation
(49). Bone formation during fracture repair initiates around
extravascular deposits of fibrin-rich matrix and subsequent
defects in fibrin clearance from the fracture site severely
impair healing (101). Fibrinogen depletion in Plg-deficient
animals restores a normal fracture repair (102), thus proving
that inefficient fibrin turnover is essential for bone repair.
Therefore, further studies are needed to address the relevance
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of PTX3-dependent modulation of the fibrinolytic system in
bone repair.

All together, these studies have provided several lines of
evidence that the involvement of PTX3 in tissue remodeling
and repair depends on the recognition of matrix molecules and
highlight the connection and interplay between haemostasis and
immunity (Figure 3).

ROLE OF PTX3 IN CANCER

Inflammation is a component of the tumor microenvironment
promoting tumor development and growth (103). Since
PTX3 is expressed in inflammatory conditions and acts as a
tuner of complement-activation and leukocyte recruitment, it
was hypothesized that PTX3 was involved in cancer-related
inflammation. Genetic studies in mice showed that PTX3-
deficiency caused increased susceptibility to mesenchymal and
epithelial carcinogenesis in the models of 3-methylcholanthrene
(3-MCA)-induced sarcomagenesis, and 7,12-dimethylbenz
[a] anthracene/terephthalic acid (DMBA/TPA)-induced skin
carcinogenesis (14). In these tumors, infiltrating macrophages
and endothelial cells were the major source of PTX3 in
response to locally produced IL-1. PTX3-deficient tumors
were characterized by increased macrophage infiltration, pro-
inflammatory cytokine production, complement activation,
and angiogenesis, as well as increased oxidative DNA damage
and genetic instability, compared to wild type tumors (14).
In this context, PTX3 regulated complement activation by
interacting with factor H, a complement regulator, and as a
consequence, macrophage recruitment and M2-like polarization
(14) (Figure 3).

These data are in line with recent studies showing that the
anaphylatoxins C3a and C5a may contribute to cancer-related
inflammation, recruit myeloid suppressor cells, and promote
IL-1β and IL-17 response in neutrophils thus promoting colon
carcinogenesis (104–107).

In addition to regulate complement, PTX3 was shown to
bind selected fibroblast growth factors (FGFs), including FGF2,
and FGF8b through the N-terminal domain, and inhibit FGF-
dependent angiogenic responses (6). This effect was shown to be
responsible of the anti-tumor activity of PTX3 in FGF-dependent
transplanted murine tumors, including prostate cancer and
melanoma and fibrosarcoma (108–110) (Figure 3). The role of
PTX3-mediated anti-angiogenic activity has not been addressed
so far in primary carcinogenesis.

In line with these preclinical studies, the human PTX3
promoter and regulatory regions were shown to be epigenetically
modified through hypermethylation in selected human
mesenchymal and epithelial cancers, such as esophageal
squamous cell carcinoma (111) and colorectal cancer
(14, 18, 112), leading to silencing of PTX3 protein expression.
Thus, genetic studies in mice and epigenetic studies in humans
demonstrate that PTX3 behaves as an extrinsic oncosuppressor
gene by acting at the level of complement-mediated,
macrophage-sustained, tumor promoting inflammation.

In contrast to the genetic evidence outlined above, several
studies performed with PTX3 overexpressing cells suggest that
the protein may play a pro-tumorigenic role by promoting tumor

cell migration and invasion (head and neck tumors, cervical
cancer) or proliferation (glioma), epithelial-mesenchymal
transition (hepatocellular carcinoma) and macrophage
chemotaxis (64, 65, 113, 114). In basal-like breast cancers, PTX3
was found to be a critical target of oncogenic phosphoinositide
3-kinase signaling and NF-κB-dependent pathways, and to
be associated with PI3K-induced stem cell-like traits (115).
However, none of these pro-tumoral effects of PTX3 has been
confirmed in gene targeted animals or in carcinogenesis models.

These contradictory results suggest that PTX3 may have a
dual role in cancer, likely depending on the type of cancer, or
on the cells producing it, in particular tumor cells or infiltrating
macrophages, fibroblasts and endothelial cells. Further genetic
studies in mice and humans will be necessary to clarify these
context-dependent findings.

PTX3 AS MARKER OF

CANCER PROGRESSION

Several lines of evidence indicate that PTX3 could be a local or
systemic marker of cancer-related inflammation. Upregulation
of PTX3 gene expression was observed associated to a stromal
signature in ovarian cancer (116), and has been described in
aggressive breast cancer and distant bone metastases (117–
119), anaplastic thyroid carcinoma (120), soft tissue liposarcoma
(121), prostate cancer (122), and glioblastoma (123). Increased
circulating levels of PTX3 were observed in myeloproliferative
neoplasms (124), soft tissue sarcomas (125), lung cancers
(126–128), pancreatic carcinomas (129), gliomas (130), and
hepatocellular carcinomas (131). In pancreatic carcinoma, high
PTX3 levels were associated with advanced clinical stage and
poor overall survival. In the same cohort of patients with invasive
ductal pancreatic carcinoma at stage III and IV, plasmatic CRP
levels were similarly associated with a worst prognosis (129).

Different studies analyzed the role of PTX3 as biomarker
in lung cancer. Through a proteomic effort, Planque et al.
reported in 2009 that PTX3 is produced by lung cancer cells.
This result was confirmed in patients with lung cancer, in which
PTX3 plasma levels resulted significantly increased compared
to healthy subjects (126). It was subsequently observed that
PTX3 circulating levels were related to disease aggressiveness
and progression, irrespective to the subtypes and histotypes of
lung cancer (127). In addition, ROC analysis indicated that
PTX3 could discriminate between cancer patients and heavy
smokers at high risk for lung cancer (127). Similarly, high PTX3
levels were correlated with worse progression-free survival in
patients with lung cancer and chronic obstructive pulmonary
disease (132), and with overall survival and disease-free survival
in small-cell lung carcinoma (SCLC) (133). A recent study on
1358 individuals at high risk for lung cancer demonstrated that
PTX3 levels were not predictive of pathology occurrence (128).
In the 110 patients of this cohort that developed resectable lung
cancer, preoperative PTX3 plasma levels were higher compared
with those of cancer-free heavy smokers, but were not predictor
of outcomes (128).

In prostate cancer patients, circulating levels of PTX3
were higher compared to patients with prostatic inflammation,
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while serum levels of prostate-specific antigen (PSA) and CRP
were not different between the two groups (134). In CRC,
PTX3 circulating levels were significantly increased compared
to healthy individuals or to patients with colorectal polyps,
representing an independent prognostic factor for CRC patients
(135). PTX3 levels were reduced at discharge after surgery,
and a subsequent increase during the follow-up was associated
to recurrence. Preoperative PTX3 levels were significantly
associated to clinical stage and to a better postoperative prognosis
in a cohort of 263 primary CRC patients (136). In another
small group of CRC patients, PTX3 serum levels combined with
CXCL8 and VEGF levels were efficiently predicting relapsing
cases (137). Since epigenetic studies showed PTX3 silencing
in colorectal tumor cells (18), increased PTX3 plasma levels
in these patients reasonably reflect cancer-related inflammation
associated with tumor growth. Patients with hepatocellular
carcinoma (HCC) showed higher PTX3 levels than individuals
with fibrosis (131). Interestingly, in these patients the A/A
genotype for rs1840680 and rs2305619, resulting in higher PTX3
plasma levels, was also significantly associated with the presence
of HCC.

Beside an evaluation of PTX3 as soluble biomarker in cancer,
some reports also investigated PTX3 expression in cancer tissues.
In hepatocellular carcinoma, PTX3 expression was analyzed
after liver resection in tumoral and adjacent normal tissue and
a higher PTX3 expression was observed in the tumoral area.
PTX3 expression was correlated with advanced stage, larger
tumor size, presence of intra-hepatic metastases, portal vein
tumor thrombosis and liver cirrhosis (65). Overall, high PTX3
expression in tumor tissue from HCC was associated with lower
survival after surgery. Immunohistochemical analysis on tissue
specimens from lung cancer revealed an interstitial expression
of PTX3 in the neoplastic area associated with shorter survival,
while no staining was observed in normal lung parenchyma
(128). In tissue samples from prostate cancer patients, PTX3 is
expressed at higher levels compared to patients with prostatic
inflammation (134).

Overall the data reported above strongly suggest that
PTX3 is overexpressed locally or systemically in different
neoplastic conditions, and could likely represent a novel
promising prognostic factor for cancer patients. In particular,
as discussed above and by Giacomini et al. (63), PTX3
originated from endothelial cells, tumor-associated fibroblasts
and infiltrating myeloid cells likely reflects microenvironment
or systemic inflammation associated with tumor progression,
and not its involvement in the pathogenesis. Indeed, the
role of PTX3 in neoplastic transformation and growth has
been shown to depend on the context and to be influenced
by its property to interact with different molecules in the
tumor environment.

CONCLUDING REMARKS

Based on genetic studies in mice and human genetic
associations, PTX3 is a well-recognized mediator of innate
resistance to selected infections, acting by modulating

complement activation, opsonizing microbes and facilitating
their clearance through phagocytosis. Moreover, by
interacting with the fibrinogen-like and collagen-like
domains of ficolins and collectins, PTX3 amplifies the
recognition potential of the humoral innate immunity (1)
(Figure 3). These lines of evidence provide the rational for
therapeutic and diagnostic translation of this molecule in
infectious conditions.

Several studies presented in this review also indicate that
PTX3 is involved in tissue remodeling and repair in sterile
conditions through the recognition of matrix molecules, and
regulates the thrombotic response and fibrin remodeling,
thus playing a non-redundant role in the orchestration of
the tissue repair process (Figure 3). Other humoral PRMs
interact with ECM components (e.g., C1q, collectins, CRP,
SAP), or contain collagen- and fibrinogen-like domains
(e.g., ficolins, MBL, collectins), and several ECM molecules
recognize microbial moieties and have opsonic activity (e.g.,
fibronectin, mindin, osteopontin, vitronectin). These lines of
evidence support the view that inflammation, innate immunity,
haemostasis, and tissue repair are functionally linked and
that the recognition of microbial moieties and extracellular
matrix molecules by the humoral arm of innate immunity is
evolutionarily conserved.

Studies reported here finally show that PTX3 is involved in
tuning carcinogenesis through the modulation of cancer-related
inflammation or angiogenesis in specific cancer types (Figure 3).
However, other studies propose that in specific models PTX3 has
a pro-tumorigenic function, by promoting tumor cell migration
and invasion and macrophage infiltration, suggesting that PTX3
may have different functions on carcinogenesis depending on
the tissue and cancer type, and possibly cell- and stimulus-
dependent PTX3 glycosylation (and sialylation) profiles, which
needs further dissection.

Cancer is considered a “non-healing wound” (138), since
wound-healing responses favoring tumor growth are activated
in the tumor microenvironment. These include extravascular
deposition of fibrin that acts as a provisional stroma for
stromal and immune cells migration, angiogenesis and ECM
deposition and remodeling (139). Fibrin degradation, vascular
resorption and collagen synthesis result in formation of dense
fibrous connective tissue (“scar” in wounds and “desmoplasia”
in cancer). These responses are similar in tumors and
wounds, but in tumors they are not self-limited. PTX3 by
interacting with fibrin matrix (15), FGF2 (109), and complement
components (14) regulates the main common processes in
tissue repair (139–141) and in tumor-promoting angiogenesis
and inflammation (Table 1) (61, 142, 143), thus suggesting
that the roles of PTX3 in tissue repair and cancer are
functionally associated.
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The long pentraxin PTX3 is a member of the pentraxin family produced locally by stromal

and myeloid cells in response to proinflammatory signals and microbial moieties. The

prototype of the pentraxin family is C reactive protein (CRP), a widely-used biomarker

in human pathologies with an inflammatory or infectious origin. Data so far describe

PTX3 as a multifunctional protein acting as a functional ancestor of antibodies and

playing a regulatory role in inflammation. Cardiovascular disease (CVD) is a leading

cause of mortality worldwide, and inflammation is crucial in promoting it. Data from

animal models indicate that PTX3 can have cardioprotective and atheroprotective roles

regulating inflammation. PTX3 has been investigated in several clinical settings as

possible biomarker of CVD. Data collected so far indicate that PTX3 plasma levels rise

rapidly in acute myocardial infarction, heart failure and cardiac arrest, reflecting the extent

of tissue damage and predicting the risk of mortality.

Keywords: PTX 3, pentraxin, cardiovascular disease, cardiac arrest (CA), heart failure, biomarker

INTRODUCTION

According to the World Health Organization (WHO), an estimated 17 million people globally
die of cardiovascular diseases (CVD) every year, with important implications in terms of quality
of life and social costs1 Experimental and clinical evidence points to inflammation as a major
cause of atherosclerosis, the underlying mechanism of CVD (1, 2). Accordingly, therapies targeting
inflammation show promising results, as demonstrated by the successes of statins therapy, due not
only to their effects on cholesterol, but also on the control of inflammation (3); or anti-interleukin-
1β (IL-1β) appears to lower cardiovascular event rates (4).

The inflammatory response is mediated by a set of cells and soluble proteins belonging to the
innate immune system. The humoral arm of the innate immune response includes components of
the complement cascade and soluble pattern recognition molecules (PRM), particularly collectins
(surfactant protein-A, [SP-A], and SP-D), ficolins, (ficolin-1;−2;−3) and members of the pentraxin
family (C-reactive protein [CRP], serum amyloid P component [SAP], and long pentraxin 3
[PTX3]) (5–7). Therefore, soluble PRM are a heterogeneous group of proteins acting as functional
ancestors of antibodies and key roles as regulators of inflammation playing as effectors and
modulators of the innate immune response in animals and man.

1Source: http://www.euro.who.int/en/health-topics/noncommunicable-diseases/cardiovascular-diseases/cardiovascular-

diseases2.
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CRP, one of the prototypic molecules of the pentraxin family,
is a systemic biomarker of inflammation widely used in the
clinic to monitor infections and inflammatory conditions (7).
Epidemiological studies have consistently associated raised CRP
serum levels with an increased risk of acute myocardial infarction
(MI), stroke, and peripheral artery disease (8). In studies to date,
CRP has emerged not only as a biomarker of CVD, but also as an
independent predictor of adverse cardiovascular events.

PTX3, identified as a cognate molecule of CRP, is a
multifunctional protein with complex regulatory roles in
inflammation and extracellular matrix organization and
remodeling (9). In men and mice PTX3 blood levels rise rapidly
and dramatically in different pathological conditions with an
inflammatory and/or infectious origin and have been investigated
in several studies (Figure 1). The main characteristic of PTX3
is that it rises faster than CRP (peak at 6–8 h for PTX3; 24–48 h
for CRP), very likely because of local vs. systemic production
of the two proteins (9). The question is “How can a member
of the humoral innate immunity be involved in cardiovascular
health and disease?” Here we review the key properties of PTX3
as prototypic member of the pentraxin superfamily in relation to
cardiovascular pathology.

The properties of PTX3 have been widely studied in humans
and mice, using genetic approaches made possible by the
high level of conservation of this molecule among species (5).
The review will specifically deal with (1) vascular disorders,
in which PTX3 has been found to play a role, but also (2)
cardiac diseases such as myocardial infarction, heart failure (HF)
and cardiac arrest (CA). While it has long been known that
atherosclerosis is an inflammatory disease (10) and consequently
innate and adaptive immune responses are expected to play a
role, the involvement of PTX3 in cardiac diseases is somewhat
less evident.

THE PENTRAXIN SUPERFAMILY: CRP
AND PTX3

The Pentraxin superfamily comprises long and short pentraxins
(9). CRP and SAP were identified as the prototypes of the short
pentraxin family; PTX3 was cloned in the late 1980’s and is
considered the prototype of the long pentraxin arm, its gene and
protein sequences being almost twice the sequences of CRP and
SAP. PTX3 is a key molecule playing complex regulatory roles
at the crossroads of innate immunity, inflammation, tissue repair
and cancer (9). A strong association has been reported between
PTX3 genetic variants, affecting circulating levels of the protein,
and susceptibility to fungal infections, suggests therapeutic use of
the protein (11–15).

The main biochemical and biological characteristics of CRP
and PTX3 have been amply described in several reviews, some of
which published very recently (7, 9). Here we will only underline
the main differences between the two proteins and some aspects
possibly helpful to define their role in CVD.

Although both CRP and PTX3 are considered acute phase
proteins, they differ in their producing cells and inducing
stimuli. The short pentraxins CRP and SAP are produced

FIGURE 1 | Number of publications/year from PubMed and Embase on PTX3

as an early indicator of acute myocardial infarction and cardiovascular

diseases in humans. SEARCH QUERY: (ptx3 OR “pentraxin 3”/exp/ descriptor)

AND “cardiovascular disease”/exp/descriptor AND 2000–2018*. Same search

strategy was applied for PTX3 AND Atherosclerosis, Acute Myocardial

Infarction (AMI), Heart Failure (HF) and cardiac arrest (CA). * 2018 included only

10 months.

primarily in the liver in response to IL-6, reflecting a systemic
response, while PTX3 is produced locally by a wide range of
stromal and myeloid cells, including monocytes, endothelial cells
(EC), and fibroblasts, but not hepatocytes (Figure 2). Primary
pro-inflammatory signals, interleukin- (IL-) 1β (IL-1β) and
TNFα, or bacterial moieties engaging Toll-like receptors (TLR),
such as bacterial lipopolysaccharides (LPS), flagellin and outer
membrane proteins, are major inducers of PTX3, while IL-6 is
ineffective. Polymorphonuclear leucocytes (PMN) have a store
of mature PTX3 produced during the differentiation from bone
marrow precursors and accumulated in their granules, ready
to be released in response to microbial recognition or tissue
damage (16).

Vascular EC are a major source of PTX3 in response to
inflammatory signals. Anti-inflammatory and atheroprotective
signals, such as high density lipoproteins (HDL) and IL-10 induce
PTX3 expression. This suggests a potential regulatory role of
PTX3 in the innate and adaptive immune responses as well as
being an anti-atherogenic molecule (17–19).

The NF-κB pathway is involved in the cascade of molecular
events leading to PTX3 expression, as initially demonstrated in
a model of acute myocardial ischemia (AMI) and reperfusion in
mice (20), and subsequently confirmed by other studies (21, 22).
In the model of myocardial infarction in mice, induction of
ischemia resulted in upregulation of PTX3 production, an effect
almost completely absent in il-1r1- ormyd88-deficient mice.

Recent data have indicated a role of PTX3 in tissue remodeling
and repair. In different models of tissue damage, PTX3 was
localized in the pericellular provisional fibrin matrix, where
it promoted migration and invasive phenotype of remodeling
cells (23). Excessive fibrin accumulation was observed in skin,
liver and lung injury models in ptx3-deficient mice, while
in a murine model of arterial thrombosis PTX3 released by
EC inhibited platelet aggregation, dampening thrombogenesis
(23, 24). In addition, PTX3 is involved in edema resolution
and scar formation in a model of brain ischemic injury in
mice (25). Finally, we recently reported a non-redundant role

Frontiers in Immunology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 823139

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ristagno et al. Pentraxin 3 in Cardiovascular Disease

FIGURE 2 | Cellular sources and main functions of the long pentraxin PTX3. The protein is induced by primary proinflammatory stimuli, TLR engagement, microbe

recognition and ischemia by myeloid and stromal cells. PTX3 is a multifunctional protein playing a role in the orchestration of tissue repair through the regulation of

fibrin deposition, and it regulates inflammation, modulating complement activity and limiting neutrophils infiltration in inflamed tissues. Finally, PTX3 is a molecule of the

innate immunity and exerts protective roles against selected pathogens acting as and opsonin. The functional role of PTX3 in the main discussed pathology is

highlighted by asterisks. However, for some of them, PTX3 has been explored only as a biomarker and there is little evidence of its functional involvement.

of PTX3 in physiological skeletal remodeling and in proper
matrix mineralization during bone fracture repair (26). These
observations illustrated how PTX3 can play essential roles in
tissue remodeling and repair.

The data summarized here indicate the complex regulation
of PTX3 production from different cell types in response to
different stimuli, and very likely reflect the different roles of this
multifunctional protein in the innate immune response and as a
constituent of the extracellular matrix. In addition, the induction
of PTX3 by anti-inflammatory and atheroprotective signals such
as HDL and IL-10 may reflect a possible protective function of
PTX3 on EC and vascular integrity.

PTX3 is also expressed during sterile inflammation. For
instance, in the model of experimental myocardial infarction
(MI) mentioned, ptx3-deficient mice had greater myocardial
lesions, more leukocyte infiltration, more cell death and
higher complement C3 deposition in the infarcted area
(20). This suggests that PTX3 might have a non-redundant
cardioprotective role in mice, acting on the inflammation and
tissue damage associated with reperfusion possibly by affecting
the classical and the alternative pathways of complement
activation (20). In addition, PTX3 can regulate leukocyte
extravasation through an interaction with P-selectin (27),
reducing neutrophil recruitment in inflamed sites. PTX3 can also
interact with platelets via P-selectin exposed on their surface,
and dampens the proinflammatory and prothrombotic effects
of activated platelets, further contributing to a cardioprotective
role (28).

In contrast, in a mouse model of transverse aortic
constriction (TAC), PTX3 modulated the hypertrophic
response and ventricular dysfunction following an increased
afterload. Specifically, echocardiography indicated that PTX3
overexpression promoted tissue remodeling, left ventricular
dysfunction, and increased myocardial fibrosis, while these
responses were suppressed in ptx3-deficient mice (29).

PTX3 IN CVD

The findings summarized above underline the dual role of PTX3
in sterile and non-sterile inflammation. Here we will examine the
role of PTX3 in four cardiovascular disorders:

1. Atherosclerosis,
2. Acute MI (AMI)
3. Heart failure (HF)
4. Cardiac arrest (CA).

We briefly discuss the evidences of the possible roles played by
PTX3 and its potential as a circulating biomarker of diagnosis
and/or prognosis in each disease.

Atherosclerosis
PTX3 is produced by different cell types potentially involved
in atherosclerosis, in particular EC, smooth muscle cells and
macrophages (Figure 2). Staining of advanced atherosclerotic
lesions in humans showed strong expression of PTX3,
mainly by macrophages and EC, but also by smooth
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muscle cells (30). Different pro-inflammatory molecules
are produced in an atherosclerotic lesion, particularly
cytokines such as TNFα and IL-1, and oxidized low-
density lipoproteins (oxLDL) These soluble factors may
well be responsible for the production of PTX3 by target
cells (31).

Investigations were made in PTX3/apolipoprotein E double
knockout mice (ptx3/apoE-/-) The lack of PTX3 in animals
with a genetic background making them susceptible to
atherosclerosis resulted in larger areas of atherosclerotic
lesions, greater accumulation of macrophages, higher expression
of adhesion molecules, cytokines and chemokines in the
vascular wall (19). Vascular inflammation was more marked,
suggesting that PTX3 could exert an atheroprotective effect
in mice.

Smooth muscle cells are important players in atherosclerosis

and are activated after arterial injury. The soluble mediators
produced by injured arteries include fibroblast growth factor

2 (FGF2), one of the well-characterized ligands recognized

by PTX3 (32, 33). FGF2 plays important roles in vivo by
promoting angiogenesis and revascularization during wound

healing, inflammation, atherosclerosis, and tumor growth. PTX3
has been reported to act as a competitor of FGF2, blocking its

interaction to its receptor and thus influencing neo-angiogenesis.

In addition, it has been recently reported that PTX3 interaction
with FGF2 might contribute to the maintenance of bone mass

in homeostatic and pathological conditions, affecting the cross-

talk between inflammatory cells and endothelium (26, 34). The

specific interaction between PTX3 and FGF2 also results in
the inhibition of FGF-dependent proliferation in vitro (35). In
addition, FGF2 exerts a potent inhibitory effect on the activation
of smooth muscle cells, suggesting that PTX3 might affect the
activation of SMC after arterial injury (35).

In summary, there are various evidences that PTX3 may play
a role in atherosclerosis:

1. PTX3 is expressed more in leukocytes and in adipose tissue
from patients with high levels of low-density lipoprotein
(LDL) compared to those with low levels (36).

2. PTX3 expression in visceral fat of obese individuals is
determined by both LDL/ high density lipoprotein (HDL)
ratio and fibrinogen (37).

3. Treatment of EC with lysophosphatidic acid led to a marked
upregulation of PTX3 both in terms of mRNA and protein
level (38).

4. Immunohistochemistry (ICH) on human atherosclerotic
lesions showed that macrophages and PMN cells infiltrating
the atherosclerotic plaques were positive for PTX3 (30, 39).

5. PTX3 expression in human EC was upregulated by
HDL, whereas there were no effects on CRP and SAP
expression (19).

6. In apolipoprotein E-deficient mice, the inflammatory reaction
of the vascular wall and macrophage accumulation in the
plaque were markedly increased by the lack of PTX3 (19, 31).

7. PTX3 plays a protective role in arterial thrombosis by
dampening the pro-thrombotic effects of fibrinogen and
collagen (23, 24)

Acute Myocardial Infarction (AMI)
One of the first in vivo findings on PTX3 was its high
expression in murine hearts after injection of LPS (40). Specific
immunostaining for PTX3 was also observed in heart tissues
of patients who died of MI (41). In early ischemic lesions
PTX3 expression was high primarily in PMN cells, while in
more advanced lesions PTX3 positivty of granulocyte was lost
and was mainly acquired by macrophages, EC and sometimes
myocardiocytes (Figure 2).

The high conservation of PTX3 in evolution allows us to
translate to humans the observations in mice, whereas CRP and
SAP expression is regulated differently in mice and man. Based
on this consideration, a model of experimental MI based on
coronary artery ligation and reperfusion was applied to ptx3-
deficient mice (20). In this model, PTX3 mRNA expression was
upregulated in the left ventricle (LV) of wild- type animals and
circulating levels of the protein were increased, with a peak
at 24 h. IHC and confocal microscopy confirmed that major
sources of PTX3 in the infarcted heart are first granulocytes
and EC (24 h after reperfusion), followed by macrophages, that
became positive 3 days after reperfusion. Similarly, PTX3 is
released from neutrophils in the early phases of AMI in humans
(28), contributing to the rapid increases in different studies
(see below). Infarct sizes were measured in wild type and ptx3-
deficient mice, and the larger damaged area was in the absence
of the protein (20). Thus, the presence of PTX3 observed by
IHC in tissue samples from mice after ischemic injury and
confirmed in the heart of patients who died from MI, supports
a pathophysiologic role of the protein in myocardial damage
and repair.

Regulation of complement activation by PTX3 has been
considered a possible mechanism involved in tissue damage
after ischemia and reperfusion. The interaction of PTX3 with
Factor H (FH), the most important regulator of the alternative
complement pathway, was important to limit FH deposition on
PTX3-coated surfaces and to protect against oxidative stress-
induced complement and inflammasome activation (42, 43). In
addition, deposition of FH and higher complement activation
was lower in tumors growing in ptx3-deficient mice (44).
These observations strongly sustain the hypothesis that the
PTX3-FH interaction may constitute a mechanism to prevent
excessive complement activation. In the infarcted heart, C3
deposition was higher in ptx3-deficient mice and complement
depletion canceled the difference between wild- type and ptx3−/−

mice (20).
Whether PTX3 plays a role in the progression of post-

infarction left ventricular dysfunction and failure has
been the subject of research in the mouse after coronary
ligation. The results have been mostly inconclusive but
nonetheless it can be concluded with some confidence that
the role of PTX3 in left ventricular remodeling after MI is
practically irrelevant.

The production of PTX3 by vascular cells in response to
inflammatory signals and ox-LDL (17, 31) and its occurrence
in atherosclerotic lesions (30, 45), prompted investigations of
PTX3 levels in AMI (46–52). A high- sensitive (lower detection
limit 0.1 ng/mL), specific (no cross-reaction with human CRP
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FIGURE 3 | Representative concentrations of PTX3 in healthy volunteers and

in different cardiovascular diseases. Data were extrapolated from four different

publications evaluating PTX3 levels in plasma samples by sandwich ELISA.

Specifically, PTX3 levels in healthy volunteers and in acute myocardial infarction

(AMI) patients are from Peri et al. (53) in heart failure (HF) patients are from

Latini et al. (56) in cardiac arrest (CA) patients are from Ristagno et al. (57) and

in severe sepsis/septic shock patients are from Caironi et al. (58). PTX3 levels

are presented as median (interquartile range). Numbers over bars represents

the median value of plasma concentration of PTX3 expressed in ng/mL.

and SAP) ELISA based on original reagents was developed and
used tomeasure circulating levels of PTX3 in patients and healthy
volunteers. Plasma PTX3 in healthy subjects was ≤ 2 ng/mL,
with higher levels in females than males and levels increased
with aging (53–55). Patients with AMI showed an early peak
of PTX3 plasma levels observed within 6–8 h from symptom
onset (Figure 3), and baseline levels were reached within 3 days
(53, 59). In a cohort of 748 patients with MI and ST elevation
enrolled in the Lipid Assessment Trial Italian Network (LATIN),
PTX3, CRP, pro b-type natriuretic peptide (NT-proBNP) and
troponin-T were measured within the first day from the onset of
symptoms. Among all these markers, PTX3 levels >10.73 ng/mL
within the first day after MI were the only independent predictor
of three-month mortality (56). High PTX3 also predicted long-
term mortality in several subsequent prospective observational
studies (50–52).

Besides being a biomarker of MI reflecting the degree of
tissue damage, PTX3 was proposed as a prognostic tool in two
large studies aiming to identify predictive factors of CVD: the
Cardiovascular Health Study (1,583 patients analyzed) and the
Multi-Ethnic Study of Atherosclerosis (2,880 patients). These
two studies illustrated a significant relation between PTX3 levels
and cardiovascular mortality and all-cause death (60, 61). In
addition, it was recently shown that higher PTX3 levels predicted
occurrence ofMI in a cohort of young ormiddle-aged individuals
followed for a first-time MI (62).

It is not clear yet whether the impressive relation with fatal
outcome seen in most of the clinical studies actually reflects a role
of PTX3 on the pathogenesis of damage, for instance through
amplification of the complement and coagulation cascades (63,
64), or amarked protective response to severe cardiac injury. This
question has not yet been addressed, nor has that more related
to the potential role of PTX3 as an early prognostic biomarker
in MI.

Heart Failure (HF)
The role of inflammation in the progression and outcome of heart
failure (HF) is still under discussion. High levels of circulating
inflammatory molecules, in particular cytokines and CRP, are
related to more severe HF and worse outcomes. However,
whether inflammation is a cause or just a consequence of
the disease is a matter of controversy. In addition, none of
the inflammatory cytokines measurable in the plasma of HF
patients can be used singly as a basis for prognosis (65), or
even when a multi-marker approach including a range of soluble
inflammatory mediators and PTX3, was considered (66).

The prognostic role of PTX3 in chronic HF with reduced
(67, 68) or preserved (69, 70) ejection fraction has been reported
in several small studies (with ≤ 200 patients each). PTX3
levels correlated weakly with those of brain natriuretic peptide
(BNP), and ROC analysis suggested that PTX3 was superior to
BNP in the prediction of adverse outcomes (68). Other studies
(with 37–164 patients) showed that the best risk prediction
was achieved by combining three biomarkers: BNP, H-FABP
and PTX3 (67, 71). Importantly, high levels of PTX3 correlated
significantly with the presence of HF among patients with normal
LVEF and LV diastolic dysfunction (69). PTX3 was assayed at
randomization and after 3 months in 1,233 patients from the
GISSI-Heart Failure trial (GISSI-HF) and 1,457 patients from the
Controlled Rosuvastatin Multinational Trial in HF (CORONA)
(72). PTX3 was independently and significantly related to the
severity of HF. In addition, PTX3 levels were higher in older
individuals with ventricular dysfunction, worse symptoms and
co-morbidity, i.e., atrial fibrillation or diabetes. Most important,
baseline concentrations of PTX3 and three-month changes were
significantly related to fatal outcome (72). Similarly, a long-
term prospective study on patients with HF and normal ejection
fraction indicated that high baseline circulating levels of PTX3
were predictive of all-cause mortality, cardiovascular mortality or
hospitalization for worsening HF (70).

The effects of rosuvastatin in the GISSI-HF and CORONA
studies deserve a comment. Rosuvastatin (10 mg/day for 3
months) consistently reduced circulating levels of high-sensitive
CRP (hsCRP) in both the CORONA trial and GISSI-HF, in line
with its anti-inflammatory properties. In contrast, the CORONA
trial found an unexpected, opposite effect on PTX3, which
increased significantly more in rosuvastatin- treated patients
than with placebo (72). This controversial observation might
be explained by the hypothesis that statins alter the innate
immunity behavior of stimulated phagocytic cells and enhance
the production of macrophage and neutrophil extracellular traps
that contain antimicrobial proteins and PTX3 (16, 73). This
hypothesis, based on clinical and epidemiological observations
of lower susceptibility to severe bacterial infection in patients
receiving statin therapy, remains highly speculative but calls for
further investigation. According to these findings CRP and PTX3
seem to exert different but, to a certain extent, overlapping roles
in systemic and local inflammation.

Cardiac Arrest (CA)
Despite the return of spontaneous circulation (ROSC), mortality
after resuscitation from cardiac arrest remains extremely high
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(74). The well-known “post-cardiac arrest syndrome” (PCAS)
is characterized by myocardial dysfunction with circulatory
shock, systemic inflammation, and evolving brain injury (75).
Thus, clear similarities between sepsis, septic shock and
PCAS have been acknowledged (76). Indeed, upon reperfusion
after ROSC, a systemic inflammatory response occurs and
ultimately contributes to worsening of circulatory shock and
neurological damage.

Recently PTX3 has been investigated in comparison with
the classic hsCRP for the prediction of early multiple organ
dysfunction syndrome (MODS), early death, and long-term
outcome after CA. More specifically, PTX3 and hsCRP were
assayed at admission to intensive care unit (ICU) and 2 days later
in 278 out-of-hospital CA patients enrolled in the prospective
observational cohort study FINNRESUSCI, conducted in 21
hospitals in Finland (57). In this population, at ICU admission
hsCRP was normal, i.e., 2.8 [1.2–9.8] mg/L, while PTX3 already
showed large increases, i.e., 19.1 [9.2–41.8] ng/mL and levels
were higher in older patients and in patients resuscitated after
longer CA. Higher plasma levels of PTX3 were significantly
associated with MODS [AUCs 0.78 (p < 0.0001)], and values
above 24 ng/mL showed 0.8 sensitivity and 0.7 specificity for
predicting MODS. HsCRP, instead, presented a lower accuracy
(AUC of 0.6, p = 0.033) compared to PTX3 (p < 0.003) in
predicting MODS occurrence. PTX3 plasma levels were already
significantly higher at ICU admission in patients who developed
MODS and died in the ICU compared to those who did
not experience MODS and survived to ICU discharge. HsCRP
levels discriminated for MODS and ICU death only 48 h after
admission (57).

After ROSC, the levels of soluble intercellular adhesion
molecule-1, soluble vascular-cell adhesion molecule-1, and P-
and E-selectins showed early increases indicating leucocyte and
endothelial activation. This condition is ultimately associated
with a rapid PTX3 increase, as illustrated by the 10-fold higher
plasma levels already observed at ICU admission in the cohort
study. Thus, early PTX3 levels, i.e., at ICU admission after ROSC,
are independent predictors of MODS and early death, while CRP
is not. Moreover, since PTX3 levels continue to rise during ICU
recovery, the post-CA pro-inflammatory response is prolonged
and could be therefore a potential target for intervention (57).

PTX3 as Circulating Biomarker in CVD
Preclinical data in the mouse and the homology with CRP, a
molecule used to monitor inflammatory diseases and infection
in clinical practice, prompted investigation of PTX3 as possible
marker of human pathology. As seen above, PTX3 has been
investigated as a possible circulating biomarker in MI, HF and
CA, but the numbers of pathological conditions potentially
involving PTX3 as biomarker are larger. The rapid rises in PTX3
plasma levels are compatible with an acute phase response. PTX3
blood levels can reach 800 ng/ml in patients with endotoxin
shock, sepsis and infections of viral, bacterial or fungal origin
(58, 77–83). In general, PTX3 circulating levels were significantly
correlated with the severity of disease and mortality, and served
to monitor the response to therapy. In addition, PTX3 levels
rarely correlate with CRP, indicating that the two proteins

might have different roles. This lack of correlation was useful
to distinguish the presence and absence of shock in a small
cohort of patients with meningococcal disease (80). In addition,
myeloproliferative disorder patients with major thrombosis had
higher levels of hsCRP and lower levels of PTX3, thus confirming
that the two molecules modulate cardiovascular risk factors in
opposite ways (84).

The diagnostic and prognostic value of circulating PTX3 was
tested in recent studies on patients with severe sepsis and septic
shock. The Albumin Italian Outcome Sepsis (ALBIOS) trial
reported that high levels of PTX3 measured in a cohort of 958
patients on day 1 after admission to the ICU were able to predict
new organ failures, while a smaller drop in circulating PTX3 over
time predicted an increased risk of death (58). Similar increases
in plasmatic levels of PTX3 and associations with mortality
in patients with sepsis or septic shock were reported in other
studies (85–88).

PTX3 plasma levels were significantly elevated in patients with
arterial inflammation who underwent percutaneous coronary
intervention (PCI) (54, 89, 90). Systemic PTX3 levels before
PCI were associated with larger plaque area and volume, a
higher risk of plaque rupture at the culprit site and impaired
post-PCI myocardial perfusion (49). A study on 594 patients
with stable coronary artery disease (CAD) reported that PTX3
plasma levels were higher 24 h after PCI than before (91). During
the follow-up for major adverse cardiovascular events, patients
with higher post-PCI levels of PTX3 had a higher incidence of
events. Similarly, in patients with angina who underwent PCI,
PTX3 levels resulted to be an independent risk factor associated
to troponin increase after PCI (92). These data suggest that
PTX3 could provide a reliable marker for risk stratification in
patients undergoing PCI. Patients with unstable angina pectoris
have higher PTX3 levels than healthy controls, suggesting that
this long pentraxin might be a candidate marker to unstable
angina (54).

PTX3 has also been proposed as a novel marker for stent-
induced inflammation in patients with CAD after PCI (93).
PTX3 was increased in peripheral blood and in the coronary
sinus of 20 patients undergoing coronary stenting. Expression of
CD11b/CD18 on neutrophils correlated with PTX3 levels. The
relative PTX3 increase observed at 24 h was the most powerful
predictor of late lumen loss. In the same setting, CRP could
not discriminate between patients with and without re-stenosis.
These data suggested that, after vascular injury PTX3 may be
used as a marker of the inflammatory response and neointimal
thickening. Patients with re-stenosis after PCI presented a
positive transcardiac gradient, indicative of PTX3 production by
the coronary vasculature (93). The role of PTX3 in patients with
CAD was confirmed in a subsequent prospective observational
study on 75 ST elevation MI patients. High levels of PTX3
before PCI were associated with higher frequencies of plaque
rupture (49).

PTX3 levels were high in patients with small vessel vasculitis
and rheumatoid arthritis, but not in those with systemic lupus
erythematosus (94, 95). In small vessel vasculitis, a group of
autoimmune disorders characterized by inflammation of the
blood vessels, PTX3 plasma levels were higher in patients with
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active disease than in those with quiescent disease (95). EC are
responsible for PTX3 production, as shown by IHC performed
on skin sections at sites of vasculitis (96). Moreover, PTX3 is
more abundant at sites of leukocytoclastic infiltration (97). PTX3,
in contrast to the short pentraxin SAP, inhibits the uptake of
apoptotic PMNs by macrophages (97), suggesting that the long
pentraxin is a key factor in the incomplete clearance of apoptotic
and secondary necrotic PMNs observed in small-vessels vasculitis
(96). High circulating PTX3 levels were associated with vascular
injury in systemic lupus erythematosus patients, thus increasing
the dysfunction on the vascular endothelium (98).

PTX3 plasma levels also increase in patients with chronic
kidney disease (CKD) (99), and correlate with the severity of
the disease (100, 101). Hemodialysis (HD) patients have higher
circulating levels of PTX3 compared to peritoneal hemodialysis
patients (102). During the HD session, PTX3 plasma levels are
increased, suggesting that the protein could be a biomarker
of the HD-induced inflammation (103). In addition, in the
presence of peripheral or coronary artery disease, PTX3 levels
are significantly increased (102). Finally, high PTX3 levels predict
all-cause mortality and cardiovascular mortality in patients
with CKD (99), a finding reminiscent of MI data (56). PTX3
was associated with proteinuria and endothelial dysfunction
in patients with advanced CKD or type 2 diabetes (104),
suggesting that PTX3 is more than just an additional marker of
inflammation in chronic HF (105).

Preeclampsia, a pathological condition causing an exaggerated
inflammatory response resulting in endothelial dysfunction
(106–108), is a major complication of pregnancy. Circulating
levels of PTX3 are high in preeclampsia, underlining the strong
inflammatory response (108, 109). In addition, PTX3 levels in
the first trimester were altered in women who subsequently
developed preeclampsia, this confirming that an excessive
inflammatory response is one of the causal factors causing
preeclampsia in pregnant women (110).

CONCLUDING REMARKS

PTX3, the prototype member of the long pentraxin family,
is a soluble pattern recognition molecule with multifunctional
properties. Genetic approaches indicate that PTX3 is an
essential component of innate immunity and a modulator of
the inflammatory response. Not surprisingly in an intricate
field such as the immune/inflammatory response, PTX3 has
a dual character, one is good-protective against excessive

inflammatory response, the other is harmful- antiangiogenic
in cardiovascular diseases or inhibitor of phagocytosis in

nasopharyngeal carcinoma (111). In addition, the recent
observations on the involvement of PTX3 in tissue remodeling
and repair (23–26) may cast further light on the role of this
molecule in the cardiovascular pathology.

Current data are consistent with a role of PTX3 as a
novel marker of CVD (Figure 3). In general, PTX3 levels
rise rapidly, reflecting the inflammatory response affecting
vascular involvement. Thus, PTX3 has a different kinetics of
production and different patterns of recognized ligands from
CRP, a much more widely used biomarker of inflammation
and infection. Data available so far propose that CRP and
PTX3 could serve as complementary biomarkers of pathological
conditions, with CRP reflecting a systemic response while PTX3
is mainly produced locally. However, one must acknowledge
that, while the functional role of PTX3 in some vascular
disorders, i.e., atherosclerosis and MI, has been well-described,
in HF and CA, PTX3 has been explored only as a biomarker
and there is little evidence of its functional involvement.
In fact, the crucial question on each candidate biomarker
is “How long can a biomarker be called “emerging”? Are
10 years enough? Or better 20? How long should we
keep searching for evidence? It is impossible to answer
this rationallly. Although almost 50 years passed since the
discovery of natriuretic peptides and their functions, the
evidence of benefits obtained from their clinical monitoring is
still incomplete.
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C-reactive protein (CRP) is an evolutionarily conserved protein. From arthropods to

humans, CRP has been found in every organism where the presence of CRP has been

sought. Human CRP is a pentamer made up of five identical subunits which binds to

phosphocholine (PCh) in a Ca2+-dependent manner. In various species, we define a

protein as CRP if it has any two of the following three characteristics: First, it is a cyclic

oligomer of almost identical subunits of molecular weight 20–30 kDa. Second, it binds

to PCh in a Ca2+-dependent manner. Third, it exhibits immunological cross-reactivity

with human CRP. In the arthropod horseshoe crab, CRP is a constitutively expressed

protein, while in humans, CRP is an acute phase plasma protein and a component

of the acute phase response. As the nature of CRP gene expression evolved from a

constitutively expressed protein in arthropods to an acute phase protein in humans,

the definition of CRP became distinctive. In humans, CRP can be distinguished from

other homologous proteins such as serum amyloid P, but this is not the case for most

other vertebrates and invertebrates. Literature indicates that the binding ability of CRP

to PCh is less relevant than its binding to other ligands. Human CRP displays structure-

based ligand-binding specificities, but it is not known if that is true for invertebrate CRP.

During evolution, changes in the intrachain disulfide and interchain disulfide bonds and

changes in the glycosylation status of CRP may be responsible for different structure-

function relationships of CRP in various species. More studies of invertebrate CRP are

needed to understand the reasons behind such evolution of CRP. Also, CRP evolved as

a component of and along with the development of the immune system. It is important

to understand the biology of ancient CRP molecules because the knowledge could be

useful for immunodeficient individuals.

Keywords: C-reactive protein, pentraxin, serum amyloid P, phosphocholine, PTX3

INTRODUCTION

Human C-reactive protein (CRP) was identified as a plasma protein which, in the presence of Ca2+,
precipitated C-polysaccharide (PnC) isolated from the cell wall of Streptococcus pneumoniae (1).
The precipitation was due to the binding of CRP to phosphocholine (PCh) moiety present in PnC
(2). In animals, we define a protein as CRP if it has at least two of the following three characteristics:
First, it is a cyclic oligomer of almost identical subunits of molecular weight 20–30 kDa. Second, it
binds to PCh in a Ca2+-dependent manner. Third, it exhibits immunological cross-reactivity with
human CRP.

CRP is an evolutionarily conserved protein. From arthropods to humans, CRP has been found
in every organism where the presence of CRP has been sought (3–8). In the arthropod horseshoe
crab, CRP is a constitutively expressed protein found in the hemolymph (8). After ∼500 million
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years of evolution, in humans and some other species, CRP
became a protein which is expressed as a component of
the acute phase response (9). The aim of this paper was
to review the changes observed in the structure and ligand-
binding specificities of CRP during evolution. We reviewed
the literature on the structure and ligand-binding specificities
of CRP from the following animals from arthropods to
humans: American horseshoe crab, giant African snail, 17
different species of fish, chicken, frog, cow, dog, guinea pig,
horse, hamster, mouse, goat, rat, rabbit, monkey, pig, mink,
elephant, squirrel, seal, phascogale, and man. We compared the
primary structure of CRP and searched for the conservation
of functionally critical amino acid residues that are known
for human CRP (Figure 1). We also compared the overall
quaternary structure (Table 1), ligand-binding specificities, and
immunological cross-reactivity of CRP (Table 2), if known. Two
other proteins, serum amyloid P component (SAP), also known
as pentraxin-2, and long pentraxin (PTX3), which share several
structural and functional properties with CRP, are not reviewed
here (3, 56).

CRP IN AN ARTHROPOD

A protein that fits the definition of CRP is present in the
hemolymph of the arthropod American horseshoe crab, Limulus
polyphemus (5, 6, 10–13, 57–59). Limulus CRP binds to PCh
in a Ca2+-dependent manner and precipitates PnC. Limulus
CRP exhibits immunological cross-reactivity against snail CRP;
the cross-reactivity against human CRP and rabbit CRP is
weak. Limulus CRP is made of three types of subunits,
each subunit having 218 amino acid residues, encoded by
three homologous genes. The three subunits, which share
an identical N-terminal sequence of 44 amino acid residues
and a C-terminal sequence from amino acid residues 206–
218, exist approximately in equimolar amount and are tightly
associated. Hexagonal Limulus CRP, as revealed by electron
microscopy, consists of two copies of each type of subunit.
The positions of six half-cystines that form three intrachain
disulfide bonds and the site of glycosylation are constant in
all subunits. The molecular weight of Limulus CRP is ∼300
kDa. The molecular weight of the subunits is ∼25 kDa.
Thus, there are 12 subunits in one Limulus CRP molecule,
that is, two hexamers stacked together. The concentration
of CRP in Limulus hemolymph is ∼2.0 mg/ml. It remains
to be determined whether Limulus CRP is an acute phase
protein. Limulus CRP has also been shown to chelate the heavy
metals mercury and cadmium, and hence playing a role in
detoxification of heavy metals. Such a detoxification function
of Limulus CRP is not known for human CRP. Uniquely,
Limulus CRP has also been shown to exhibit Ca2+-independent
binding to membranes mimicking the outer membrane of
Gram-negative bacteria and then create pores in the lipid
bilayer (5, 6, 10–13, 57–59).

Abbreviations: CRP, C-reactive protein; FP, female protein; LDL, low density

lipoprotein; PCh, phosphocholine; PnC, pneumococcal C-polysaccharide; SAP,

serum amyloid P component.

FIGURE 1 | Alignment of the primary structure of CRP from various species

using Clustal Omega (1.2.4) EMBL-EBI multiple sequence alignment software.

Sequences were obtained from NCBI in FASTA format and copied into the

EMBL-EBI alignment software where the output result was obtained in the

format of ClustalW with character counts. For horse and horseshoe crab,

there were several sequences due to the presence of isoforms. Since the

microheterogeneity between these isoforms was <10%, the first isoform

sequence was selected. Accession numbers of the sequences are: Horseshoe

crab, AAA28270; Rainbow trout, NP001118197.1; Goldfish, AK022072.1;

(Continued)
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FIGURE 1 | Common carp, AEU04519; Zebrafish, AGB69036; Rockfish,

AKR17056; Tonguefish, NP001281151; Salmon, NP001134140; Chicken,

ABD16281; Frog, NP001165686; Pig, NP999009; Horse, XP001504452;

Dog, CDF47287; Monkey, XP001117250; Rabbit, NP001075734; Squirrel,

XP026263752.1; Guinea pig, AAC60662; Elephant, XP006895510.1; Mouse,

AFA37877; Hamster, XP005078251; Rat, AFA37869; Goat, XP017901842;

Cow, NP001137569; and Human, AAL48218. The sequence of the signal

peptide is not shown. The column on the right shows the number of amino

acid residues in each CRP. (A) Sequence of amino acid residues 1–87 of

human CRP aligned with the sequence of CRP from other animals. Conserved

amino acid residues in the following functional sites are highlighted: The

intrinsically disordered region in CRP (amino acid residues 35–46 in human

CRP) is highlighted in red. The PCh-binding site (amino acid residues 66, 76,

and 81 in human CRP) is highlighted in blue. (B) Sequence of amino acid

residues 88–206 of human CRP aligned with the sequence of CRP from other

animals. Conserved amino acid residues in the following functional sites are

highlighted: The C1q-binding site (amino acid residues 112 and 175 in human

CRP) is highlighted in green. The Ca2+-binding site (amino acid residues

134–148 in human CRP) is highlighted in yellow.

CRP IN A MOLLUSC

Based on the reactivity with anti-Limulus CRP antibodies, CRP
was detected in the hemolymph of the mollusc, giant African
snail, Achatina fulica (14, 15, 60–62). Achatina CRP binds to PCh
in a Ca2+-dependent manner. The molecular weight of Achatina
CRP is∼400 kDa.AchatinaCRP is glycosylated and has two types
of subunits, of molecular weight 20 and 24 kDa. Although anti-
Limulus CRP antibodies react with Achatina CRP, anti-Achatina
CRP antibodies do not react with Limulus CRP. Achatina CRP
is a constitutively expressed protein and one of the major
components of the haemolymph with a normal level of ∼2.0
mg/ml. Like Limulus CRP, Achatina CRP has also been shown to
bind to heavy metals and it has been proposed that Achatina CRP
may be utilized as a viable exogenous agent of cytoprotection
against heavy metal-related toxicity. In addition, Achatina CRP
has been found to be bacteriostatic against gram negative bacteria
and bactericidal against gram positive bacteria (14, 15, 60–62).

CRP IN FISH

CRP was first found in the serum of a marine teleost fish,
plaice, Pleuronectes platessa (16–19) and has been isolated and
characterized mostly from teleost fish. Plaice CRP binds to
PCh in a Ca2+-dependent manner and looks pentameric in its
electron microscopic appearance. The molecular weight of plaice
CRP is ∼187 kDa, consisting of 10 non-covalently associated
subunits arranged in two pentameric discs. There are two distinct
subunits in plaice CRP; the difference in size between the
subunits is due to carbohydrates since the heavier subunit is
glycosylated while the lighter one is not. Plaice CRP is present
at a concentration of 55µg/ml and is not an acute phase protein
because its serum concentration does not increase in response
to turpentine. However, adrenal hormones and endotoxins do
cause an increase in circulating CRP in plaice (16–19). ACRP-like
protein has also been purified from the eggs of another marine
teleost, lumpsucker, Cyclopterus lumpus (20, 21). The molecular

weight of lumpsucker CRP is in the range of 125 and 150 kDa.
Lumpsucker CRP consists of identical, non-covalently bound
subunits of molecular weight 20–21.5 kDa.

CRP is also present in the sera of another teleost, the rainbow
trout species, Salmo gairdneri and Oncorhynchus mykiss (22, 63–
67). Trout CRP binds to PCh in a Ca2+-dependent manner,
precipitates PnC, is a glycoprotein, and has 179 amino acid
residues. According to one study, the molecular weight of
rainbow trout CRP is 110 kDa, while that of the subunits is
∼20 kDa. According to another study, the molecular weight of
rainbow trout CRP is 81.4 kDa, it is a trimer, and composed
of one monomer subunit (26.6 kDa) and one disulfide-linked
dimer (43.7 kDa). However, there exists the possibility that a
hexamer or a double-stacked hexamer was separated into two or
four trimers. The CRP level in normal trout sera is in the range
of 30–88µg/ml. Trout CRP is an acute phase protein because
its concentration increases in response to toxic chemicals and
bacterial pathogens (22, 63–67). Cod, Gadus morhua, CRP that
exhibits Ca2+-dependent binding to PCh, is glycosylated, and is
a pentamer in its electronmicroscopic appearance. The size of the
subunits in cod CRP varies in the range of 22–29 kDa (23, 24).

Among other teleosts, CRP has been isolated from the sera of
eels Anguilla anguilla and Anguilla japonica (25, 26). Eel CRP
binds to PCh in a Ca2+-dependent manner and agglutinates S.
pneumoniae. The molecular weight of eel CRP is 120 kDa and
the subunits are non-glycosylated, with a molecular weight of 24
kDa. The serum levels of eel CRP is ∼1µg/ml. CRP is present
in channel catfish Ictalurus punctatus (27). Catfish CRP binds to
PCh and precipitates PnC in a Ca2+-dependent manner. Catfish
CRP is a non-glycosylated protein with a molecular weight of
∼100 kDa. Electron microscopy has shown that catfish CRP
has a planar pentagonal symmetry. The serum titer of catfish
CRP follows an acute phase pattern in catfish injected with
turpentine. Striped catfish, Pangasianodon hypophthalmus, CRP
binds to PCh in a Ca2+-dependent manner, is a trimer of 28 kDa
subunits, can exist as tetramers of trimers, is devoid of interchain
disulfide bonds, is glycosylated, and agglutinates a few species
of pathogenic bacteria (28). A CRP gene in ayu, Plecoglossus
altivelis, has been identified (29). The expression of ayu CRP is
upregulated following bacterial infection. Ayu CRP agglutinates
both gram negative and positive bacteria in a Ca2+-dependent
manner. Ayu CRP is not glycosylated, has a molecular weight of
25.2 kDa, and has 225 amino acid residues.

In cyprinids, the carp family fish rohu, Labeo rohita, CRP has
been purified by their Ca2+-dependent binding to PCh (30, 68,
69). There are three types of glycosylated subunits in rohu CRP,
and all three types of subunits move to identical position after
desialylation and deglycosylation. Rohu CRP appears pentameric
under electron microscope and is composed of identical subunits
of molecular weight 33 kDa. Rohu CRP is an acute phase
protein because its concentration in serum increases in response
to heavy metal poisoning of water. In common carp Cyprinus
carpio, CRP CRP displays Ca2+-dependent binding to phosphate
monoesters (31, 37, 70–72). Common carp CRP is glycosylated,
has 208 amino acid residues, and the molecular weight of the
subunits is 27 kDa. A potential commercial use of CRP, which
is constitutively expressed in common carp, is as a biomarker of
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TABLE 1 | Properties of CRP isolated from various animals. See the text for scientific names of the animals.

Animal Approximate molecular

weight (kDa)

Symmetry

(quaternary

structure)

Approximate

molecular of

subunits (kDa)

Glycosylation Acute phase

protein

References

Horseshoe crab 300 Hexamer

(stack of two

hexamers)

25 Yes No (10–13)

Giant African Snail 400 20 and 24 Yes No (14, 15)

Plaice 187 Pentamer (10

subunits)

18.7 Yes No (16–19)

Lumpsucker 125–150 Pentamer 20–21.5 (20, 21)

Rainbow trout 81.4 Trimer 26.6 Yes Yes (22)

Cod Pentamer 22–29 Yes (23, 24)

Eel 120 Pentamer 24 No (25, 26)

Channel catfish 100 Pentamer No Yes (27)

Striped catfish Trimer 28 Yes (28)

Ayu 25.2 No Yes (29)

Rohu Pentamer 33 Yes Yes (30)

Common carp 27 Yes Yes (31)

Major carp 22 and 29 Yes Yes (32, 33)

Goldfish 25.6 Yes (34)

Dogfish 250 Pentamer of dimers 25 (35, 36)

Zebrafish Trimer Yes (37, 38)

Tonguefish 26 Yes (39)

Rockfish 160 and 152 30 and 26 Yes Yes (40)

Frog 24 No (41)

Cow 100 Pentamer 23 No No (42, 43)

Dog 115 Pentamer 21 Yes Yes (44, 45)

Harbor seal 25 Yes (46)

Goat 120 Pentamer 24 Yes No (47)

Horse 118 Pentamer 24 No Yes (48)

Hamster 128–150 Pentamer 27–30 Yes Yes (49–51)

Rabbit 115–140 Pentamer 23.5 No Yes (52, 53)

Rat 129 Pentamer 23 Yes Yes (54)

Human 115 Pentamer 23 No Yes (55)

health status in cultured carp. Serum level of CRP in common
carp infected with some but not all pathogens increases several-
fold, suggesting that common carp CRP is a minor acute phase
protein. CRP has also been purified from the sera of major
carp Catla catla (32, 33). Kinetic studies of metal intoxication
in major carp indicated that a unique molecular variant of
CRP is present in the serum at the peak level of acute phase
induction, and this variant coexists with normal CRP. Major carp
CRP is a glycoprotein, contains two non-identical subunits of
molecular weight 22 and 29 kDa, and binds to PCh in a Ca2+-
dependent manner. The electrophoretic mobility of the subunits
is identical after desialylation and deglycosylation implying that
the molecular variants vary in the glycan parts. The expression
of CRP during the course of parasitic infection in the goldfish,
Carassius auratus, was also determined (34); goldfish CRP, which
has 214 amino acid residues and has subunits of 25.6 kDa,
enhances complement-mediated killing of trypanosomes in vitro,
and lysis increases after addition of immune serum.

Dogfish, Mustelus canis, CRP also binds to PCh in a Ca2+-
dependent manner and precipitates PnC (35, 36, 73). Dogfish

CRP has a molecular weight of ∼250 kDa with subunits of
molecular weight of ∼25 kDa. Dogfish CRP probably exists as
pentamers of two disulfide-linked dimers; however, the crystals
of the protein were found to contain two hexamers in the
asymmetric unit. Dogfish CRP is present at a concentration of
400µg/ml. Dogfish CRP exhibits immunological cross-reactivity
with rabbit CRP. The CRP gene from zebrafish, Danio rerio,
a bony fish, has been cloned, expressed, protein purified, and
crystallized (37, 38, 74, 75). There are seven CRP-like genes
in zebrafish which are differentially expressed both normally
and in acute phase and have anti-viral activities. Zebrafish CRP
is trimeric, and each subunit has 208 amino acid residues.
In tonguefish, a flat fish, CRP is composed of 210 amino
acid residues with a subunit molecular weight of ∼26 kDa
(39). Expression of tonguefish CRP is upregulated by pathogen
infection. Tonguefish CRP has been found to interact with both
gram positive and negative bacteria.

In rockfish, Sebastes taczanowskii, CRP is a sex-limited protein
(40). CRP is induced in the serum of males by estrogen
administration. Serum levels in females during vitellogenic and
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TABLE 2 | Immunological cross-reactivity among CRP from various animals.

Reactivity with serum or CRP Anti-CRP antibodies or antiserum

Human Sheep Rabbit Dog Cow Goat Horseshoe crab

Human
√ √ √ √

Sheep
√ √

Rabbit
√ √ √

Dog
√ √

Cow
√ √ √

Goat
√ √ √

Rat

Mouse
√

Elephant
√

Horse
√

Monkey
√ √

Cat
√

Sheep
√ √

Dogfish
√

Snail
√

Horseshoe crab
√ √ √

Only those animals are shown for which at least one immunological cross-reactivity is known. See the text for references.

gestation periods are about 1,000 times higher than those in
the normal males. In the presence of Ca2+, rockfish CRP
binds to PCh and agglutinates S. pneumoniae. In rockfish,
two types of CRP are found, with molecular weights 160
and 152 kDa, with subunits of 30 and 26 kDa, respectively.
Both subunits are glycosylated. In another species of rockfish,
Sebastes schlegelii, CRP contains 208 amino acid residues
with a molecular weight of 25 kDa (76). In Atlantic salmon
Salmo salar, five CRP-like molecules are present (77). Salmon
CRP has 208 amino acid residues, is not an acute phase
protein, and only one of five CRP species is upregulated
by cytokines.

CRP IN BIRDS, REPTILES,
AND AMPHIBIANS

So far, the presence of CRP has been investigated only in
the fowl Gallus gallus. In chickens, CRP has 206 amino acid
residues. The mRNA for CRP was found in many tissues
from the fowl by using a probe derived from human CRP
cDNA (78, 79). Although genes are present in lizards, the
CRP protein has not been isolated and characterized from any
reptile (77). Among amphibians, CRP has been isolated from
the frog Xenopus laevis (41). Frog CRP has 210 amino acid
residues. Xenopus CRP is present at an intermediate low level
of ∼1µg/ml in the normal serum. Frog CRP level in the serum
is not induced by turpentine. It is suggested that frog CRP
represents a transitional period in the evolution of CRP, when
host defenses switched from primitive innate immunity to the
immune system. The constitutive functions of CRP gradually
became less essential as a result of the development of a complex
immune system (41).

CRP IN MAMMALS

CRP from cow, Bos taurus, has been purified from the serum
(42, 43, 80). Unlike human CRP, bovine CRP does not precipitate
PnC. However, bovine CRP exhibits immunological cross-
reactivity with human, goat and sheep CRP. Bovine CRP is
a pentameric molecule with a molecular weight of ∼100 kDa
and is composed of five identical non-glycosylated subunits of
molecular weight of ∼23 kDa. Each subunit has one intrachain
disulfide bond. The pentameric structure of bovine CRP was
seen by electron microscopy. The concentration of bovine CRP
is in the range of 5–40µg/ml and it is not an acute phase
protein (42, 43, 80).

CRP from dogs, Canis lupus, exhibits Ca2+-dependent
binding to PCh (44, 45, 81–88). Dog CRP has the typical
cyclic pentameric disc-like structure in its electron microscopic
appearance, although the pentamer stacks. Dog CRP has 204
amino acid residues and a molecular weight of ∼100 kDa. Dog
CRP is composed of five subunits of∼20 kDa with an intrachain
disulfide bond in each subunit. In another study, the molecular
weight of dog CRP was estimated to be ∼156 kDa. In one study,
two isotypes of CRP with different molecular weights, 22 and 25
kDa were found, with the 25 kDa subunit glycosylated. Two of
the five subunits in the pentamer were glycosylated. Antibodies
to human CRP react with dog CRP, but antibodies to dog CRP
do not react with human CRP. However, antibodies to dog CRP
was used to detect CRP in elephants. CRP Normal healthy dogs
contain ∼5–60µg/ml of CRP but, following a stimulus, CRP
behaves as an acute phase protein (44, 45, 81–88).

Guinea pig CRP has 206 amino acid residues and has not
been characterized fully, but the gene has organization typical
of the CRP genes of other mammals. Guinea pig CRP is not
an acute phase protein (89). Harbor seal, Phoca vitulina, CRP
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binds to PCh in a Ca2+-dependent manner and has a molecular
weight of ∼25 kDa (46). A CRP-like protein has also been
isolated from goat serum (47). Direct binding of goat CRP to
PCh has not been shown; however, fluid phase PCh inhibits the
Ca2+-dependent binding of goat CRP to its ligand agarose. Goat
CRP is composed of five identical, glycosylated, non-covalently
associated subunits, each of molecular weight ∼24 kDa. Goat
CRP possesses immunological cross-reactivity with human, cow
and sheep CRP. Like in cows and guinea pigs, CRP in goats is
not an acute phase protein (47). CRP in horses has pentameric
structure as revealed by electron microscopy and binds to PCh
in a Ca2+-dependent manner (48, 90). Horse CRP has 204
amino acid residues and a molecular weight of ∼118 kDa. Horse
CRP is composed of five identical, non-glycosylated and non-
covalently associated subunits with molecular weight of ∼23
kDa. Equine CRP displays immunochemical cross-reactivity with
human CRP. In horses, CRP is an acute phase protein (48, 90).
Monkey CRP has 206 amino acid residues and precipitates PnC;
however, monkey CRP was first isolated by Ca2+-dependent
binding to organic monophosphates. Monkey CRP reacts with
anti-sheep CRP antibodies but not with anti-dog CRP antibodies
(91). CRP from pigs has 203 amino acid residues but not been
characterized fully yet. Porcine CRP is an acute phase protein
(92, 93).

A CRP-like protein named female protein (FP) was found
in Syrian and Armenian hamsters (49–51, 94–96). FP is a
prominent serum constituent of normal female hamsters but is
under hormonal control in males. However, in normal adult
male hamsters, FP in serum increases only about 5-fold during
an acute phase response, in contrast to human CRP which may
increase 1,000-fold or more. FP has a pentameric structure as
indicated by electron microscopy and binds to PCh in a Ca2+-
dependent manner. FP has 206 amino acid residues with a
molecular weight in the range of 128–150 kDa. The molecular
weight of each of the five non-covalantly assembled glycosylated
subunits is in the range of 26–30 kDa; each subunit contains
a single intrachain disulphide bond. In the presence of Ca2+,
FP aggregates, probably to form decamers (49–51, 94–96). In
mice (97–100), CRP is not an acute phase protein. Murine CRP
agglutinates several strains of gram-positive bacteria in vitro.
Murine CRP has 206 amino acid residues. Protein modeling has
demonstrated that adaptively selected amino acid residues in
murine CRP lie in the ligand-binding region and contact region
between subunits (97–100).

Rabbit CRP reacts with PCh and precipitates PnC in a
Ca2+-dependent manner (52, 53, 91, 101–120). CRP was
found localized at sites of inflammation in rabbits and was
not observed at the inflammatory site before appearance in
the blood. The concentration of rabbit CRP in the serum is
∼1.5µg/ml. Investigation of rabbit CRP provided evidence that
CRP molecules expressing a structure and antigenicity that are
distinct from native CRP occurs in vivo, and that such molecules
accumulate at sites of inflammation. Rabbit CRP has 205 amino
acid residues and is pentameric. The molecular weight of rabbit
CRP lies between 115–140 kDa. The subunit size is 23.5 kDa.
For precipitation of the PCh-ligands, only the binding of the
phosphoryl group of PCh to rabbit CRP is required, unlike
for human CRP where binding to both the phosphoryl and

cationic groups of PCh are needed for precipitation. Transgenic
mice expressing rabbit CRP are partially protected from a lethal
challenge of endotoxin or platelet activating factor. Rabbit CRP
is capable of activating complement when bound to a ligand;
however, complement activation is not required to mediate
protection against either endotoxins or platelet activating factor.
Immobilized rabbit CRP binds to low-density lipoprotein (LDL)
also. In rabbits, CRP has been found associated with the
progression of atherosclerosis (52, 53, 101–120).

Rat CRP is unique when compared to CRP from other
mammalian species (54, 111, 112, 121–133). Rat CRP has
five subunits arranged as a cyclic pentamer and is the only
mammalian CRP which is glycosylated and contains a covalently
linked dimer in its pentameric structure. Rat CRP binds to PCh
in a Ca2+-dependent manner but does not precipitate PnC. The
non-glycosylated rat CRP is also able to bind to PCh. Rat CRP is
made up of 206 amino acid residues. One pair of the subunits per
molecule is linked by two interchain disulphide bonds, that is, the
five subunits are not non-covalently associated. The other three
subunits have intrachain disulfide bonds. Rat CRP is present at a
concentration of 0.3–0.5mg/ml and is not an acute phase protein.
Immobilized rat CRP is capable of binding to LDL also in a Ca2+-
dependent and PCh-inhibitable manner; however, the binding
ability of rat CRP to PCh is not a sufficient requirement for the
interaction between rat CRP and LDL. A sialic acid moiety must
also be present on rat CRP for binding to LDL. LDL is modified
once it is complexed with rat CRP. Like Limulus CRP, rat CRP has
also been shown to play a role in detoxification of heavy metals
such as mercury (54, 111, 112, 121–133).

Mink presents an unusual case (134): it is called mink SAP.
However, mink SAP is not glycosylated unlike SAP in other
mammals. Mink SAP binds to PCh also, unlike SAP in other
mammals. The molecular weight of mink SAP subunits is ∼26
kDa. The presence of mRNA for CRP has also been found by
using a probe derived from human CRP cDNA in many tissues
from Asian elephant Elephas maximus (135, 136) and ground
squirrel Spermophilus richarsonii (137). CRP is also present in
elephant sealMirounga angustirostris (138). A gene sequence for
CRP is also found in marsupial genome, red-tailed phascogale
Phascogale calura (139).

HUMAN CRP

In humans, CRP is a major acute phase protein whose
concentration may increase more than 1,000-fold in severe
inflammatory states (9). Human CRP is a pentameric protein
composed of five identical non-covalently bound subunits of 206
amino acid residues with a molecular weight of∼23 kDa. Human
CRP binds to PCh in a Ca2+-dependent manner. There are five
PCh-binding sites, one located on each subunit. Each subunit
binds two Ca2+ ions (55, 140). In human CRP, Glu81 in the
PCh-binding site interacts with the nitrogen atom of choline
in PCh, Phe66 interacts with three methyl groups of choline,
and Thr76 is critical for creating the appropriately sized pocket
to accommodate PCh. The phosphate group of PCh directly
coordinates with the two Ca2+ bound to CRP. Using synthetic
peptides derived from CRP, direct binding of Ca2+ to a peptide
of residues 134–148 has been shown. Crystallography of CRP
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has demonstrated that two Ca2+ ions are co-ordinated by Asp60,
Asn61, and by residues Glu138, Gln139, Asp140, Glu147, and Gln150

in a loop (55, 141–144). Once CRP is bound to a PCh-containing
ligand, it activates the classical complement pathway. Residues
Asp112 and Tyr175 play critical roles in the formation of the
C1q-binding site in CRP (145–147).

Acidic pH transforms native pentameric CRP into another
pentameric configuration, called as non-native CRP, which
exposes a hidden ligand-binding site for non-PCh ligands, and
which enables CRP to bind to immobilized, denatured and
aggregated proteins. For example, CRP does not bind to oxidized
LDL (ox-LDL) at physiological pH but gains the ability to bind to
ox-LDL at acidic pH (148). H2O2-treated CRP also gains a ligand
recognition property not exhibited by native CRP, indicating that
H2O2, like acidic pH, is another modifier of the structure and
ligand recognition function of CRP (149). Immobilization of CRP
or mutagenesis of Glu42 in the inter-subunit contact region in
pentameric CRP also convert CRP into molecules that bind to a
variety of immobilized, denatured and aggregated proteins (148–
151). A possible binding site in non-native CRP for immobilized,
denatured and aggregated proteins could be formed involving
the single intrinsically disordered region present in CRP (152).
It has been shown that when CRP dissociates into its monomers,
monomeric CRP recognizes such protein ligands through the
intrinsically disordered region (152).

CRP is a multifunctional component of the human innate host
defense machinery. In mouse models of pneumococcal infection,
transgenic or passively administered humanCRP has been shown
to be protective against lethal infection with S. pneumoniae (153–
160). Similarly, CRP may be an atheroprotective molecule, as
shown by using transgenic CRP in animal models of human
like atherosclerosis (161–166). CRP has been found deposited at
sites of inflammation, indicating the presence of non-native CRP
in vivo. The functions of CRP at sites of inflammation have not
been defined yet; however, it has been suggested that a structural
change in CRP and the resulting shift from the ligand recognition
function of CRP in its native conformation to another ligand
recognition function in its non-native conformation occurs at
sites of inflammation (151, 152, 167).

Interestingly, human CRP also possesses sites for
glycosylation, although the sites are hidden in native CRP (168–
170). When CRP was isolated from patients with six different
pathological conditions, CRP was found to be differentially
glycosylated. A few amino acids at the N-terminus and a few
amino acids near the C-terminus are missing in glycosylated
human CRP. The cleavage of these peptides from CRP exposes
two potential sites of glycosylation and these sites are located
on CRP on the face opposite to the PCh-binding face of CRP. It
has been proposed that glycosylated CRP has a protective role
toward the clearance of damaged erythrocytes in diseases.

EVOLUTION OF CRP

As the nature of CRP gene expression evolved from a
constitutively expressed protein in arthropods to an acute
phase protein in humans, the definition of CRP also became
distinctive. In humans, CRP can easily be distinguished from
other homologous proteins such as SAP, but this is not the case

in invertebrates. For invertebrates, it has always been difficult to
define a protein as either CRP or SAP because of the similarities
in their structures and functions. Also, whereas a single CRP
gene is present in the human, multiple genes are present in some
species, such as Limulus.

There is sequence similarity and homology among the
known functional sites of CRP from all species (Figure 1). The
PCh-binding property of CRP has been conserved. However,
employing animal models of pneumococcal infection it has
been shown that the PCh-binding property of human CRP is
not the only relevant ligand recognition function of human
CRP. Apparently, another ligand-binding property of CRP,
such as recognition of complement regulator protein factor
H by CRP in its non-native conformation, is responsible for
its host defense functions (160). Because some ancient CRP
molecules including bovine CRP do not bind PCh, it has
been proposed that the recognition of PCh by CRP is less
relevant to the role of the protein than its interaction with other
ligands (42, 151, 160).

Human CRP in its non-native structural conformation
expresses the capability to bind to deposited and
conformationally altered proteins and which can be achieved
by several means including treatment of CRP with acidic pH
(151). The ligand-binding property of human CRP in its non-
native structure has implications for toxic and inflammatory
conditions and favors the conservation of CRP throughout
evolution. It seems that the host-defense functions of CRP
evolved to expose a ligand-binding site only when needed,
that is, an inflammatory microenvironment would have to be
sensed by CRP first and that CRP would change its structure
to execute a function. It is not known, however, whether CRP
from invertebrates also exhibits structure-based ligand-binding
properties. A recent study has shown that LimulusCRP is capable
of binding to immobilized ox-LDL without being pre-treated
with acidic pH (171). During evolution, changes in the intrachain
disulfide and interchain disulfide bonds and the changes in the
glycosylation status of CRP may also be responsible for the
structure-function relationships of CRP in various species.

CONCLUSIONS

CRP evolved as a component of and along with the development
of the entire immune system. Both structure and function of
CRP have evolved; however, more studies on CRP from all
invertebrates and vertebrates are needed to understand fully
the reasons behind the evolution of CRP. Structure-function
relationships of CRP from most animals are unknown. We
know that the ligand-binding properties of Limulus CRP are
not identical to that of native human CRP but overlap the
ligand-binding properties of non-native pentameric human CRP
that can be generated at inflammatory microenvironments (143,
158). Since the ligand recognition functions of CRP lead to
effector functions, it is important to understand the biology
of ancient CRP molecules because the knowledge could be
useful for immunodeficient individuals: all humans have CRP,
but it is not known whether human CRP is functional in
all humans.
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Maria Chiara Di Chio 1, Mattia Baldini 1,3, Rebecca De Lorenzo 1,3, Enrica P. Bozzolo 2,

Roberto Leone 4, Alberto Mantovani 4,5,6, Angelo A. Manfredi 1,2,3* and Enrico Tombetti 1,2,3
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PTX3 is a prototypic soluble pattern recognition receptor, expressed at sites of

inflammation and involved in regulation of the tissue homeostasis. PTX3 systemic levels

increase in many (but not all) immune-mediated inflammatory conditions. Research on

PTX3 as a biomarker has so far focused on single diseases. Here, we performed a

multi-group comparative study with the aim of identifying clinical and pathophysiological

phenotypes associated with PTX3 release. PTX3 concentration was measured by

ELISA in the plasma of 366 subjects, including 96 patients with giant cell arteritis

(GCA), 42 with Takayasu’s arteritis (TA), 10 with polymyalgia rheumatica (PMR), 63

with ANCA-associated systemic small vessel vasculitides (AAV), 55 with systemic

lupus erythematosus (SLE), 21 with rheumatoid arthritis (RA) and 79 healthy controls

(HC). Patients with SLE, AAV, TA and GCA, but not patients with RA and PMR,

had higher PTX3 levels than HC. PTX3 concentration correlated with disease activity,

acute phase reactants and prednisone dose. It was higher in females, in patients with

recent-onset disease and in those with previous or current active vasculitis at univariate

analysis. Active small- or large- vessel vasculitis were the main independent variables

influencing PTX3 levels at multivariate analysis. High levels of PTX3 in the blood can

contribute to identify an increased risk of vascular involvement in patients with systemic

immune-mediated diseases.

Keywords: PTX3, autoimmunity, lupus, rheumatoid arthritis, Takayasu arteritis, giant cell arteritis, ANCA

associated small vessel vasculitis, intravascular immunity

INTRODUCTION

Vascular inflammation reflects the dynamic interaction of circulating cells, blood molecules and
vascular structures which plays a role in vascular homeostasis and in systemic or tissue/organ-
limited autoimmunity (1–5). The vasculature recruits cellular and immune effectors to facilitate
the intercellular signaling required to deploy an inflammatory and immune response (5, 6). Vessels
are frequently targeted in immune mediated-diseases, although in a subset of patients vascular
inflammation is prominent, resulting in overt vasculitis.
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Pentraxins are part of an ancestral humoral innate network,
evolutionarily rooted before the divergence of the immune and
the haemolymphatic system. Pentraxin-3 (PTX3), a member
of the long-pentraxin family, has changed little during the
evolution, likely due to its role in multiple biological events (7, 8).
In contrast to other pentraxins such as C-reactive protein (CRP),
PTX3 is mostly generated at sites of inflammation rather than
as a consequence of centralized hepatic synthesis. Neutrophils
massively release PTX3 upon activation, while endothelial
cells or macrophages synthetize the molecule, sustaining PTX3
production for longer times (9–11). In the extracellular space,
PTX3 opsonizes self and foreign antigens and contributes to
the structural and functional fitness of the extracellular matrix.
Evidence has been acquired for a potential pathogenic role of
PTX3 in a broad range of events from host defense to fertility,
cancer biology, autoimmunity, regulation of angiogenesis and
tissue repair (7, 12–19).

Enhanced expression of PTX3 has been reported in multiple
systemic autoimmune diseases (20–27). Given that most cellular
sources of PTX3 can be involved in vascular inflammation,
and that PTX3 has been shown to be specifically involved in
the regulation of the cross talk between the main players of
intravascular immunity, including neutrophils, apoptotic cells,
platelets, endothelial and antigen presenting cells (22, 28, 29), we
undertook an observational study assessing systemic expression
of PTX3 in healthy subjects and multiple inflammatory diseases
with variable vascular involvement.

PATIENTS AND METHODS

Upon written informed consent, 366 subjects followed up at
San Raffaele University Hospital, Milan, Italy were recruited
including: 96 patients with GCA, 42 with TA, 10 with
PMR, 38 with granulomatosis with polyangiitis (GPA), 15
with eosinophilic granulomatosis with polyangiitis (EGPA), 10
with microscopic polyangiitis (MPA), 55 with systemic lupus
erythematosus (SLE), and 21 with rheumatoid arthritis (RA).
Seventy-nine healthy volunteers served as controls. All patients
gave their written informed consent for participation in this
study (Autoimmuno-Mol protocol, approved by the Ethics
Committee of the San Raffaele Institute, Milan, Italy; reference
number 2/2013/INT). Patients were classified according to the
1990 American College of Rheumatology (ACR) classification
criteria for GCA and PMR (30), the 1996 Sharma’s diagnostic
criteria for TA (31), the European Medicine Agency algorithm

Abbreviations: AAV, ANCA-associated vasculitis; ACR, American College of

Rheumatology; ANCA, anti-neutrophil cytoplasmic antibodies; BILAG, British

Isles Lupus Assessment Group; BVAS, Birmingham Vasculitis Activity Score; CRP,

C-reactive protein; DAS-28, 28-joint disease activity score EGPA, eosinophilic

granulomatosis with polyangiitis; ESR, erythrocyte sedimentation rate; GPA,

granulomatosis with polyangiitis; HC, healthy controls; ITAS, Indian Takayasu

Activity Score; MPA, microscopic polyangiitis; PDN, prednisone; PGA, Physician’s

global assessment scale; PMR, polymyalgia rheumatica; PTX3, pentraxin-3; RA,

rheumatoid arthritis; SDI, SLICC/ACR damage index; SLE, systemic lupus

erythematosus; SLEDAI, SLE disease activity index; SLICC, SLE international

collaborating clinics; TA, Takayasu’s arteritis; TADS, TADamage Score; VAS, visual

analog scale; VDI, vasculitis damage index.

for classification of GPA, EGPA and MPA (32), the revised
1997 ACR or the 2012 SLE International Collaborating
Clinics (SLICC) classification criteria for SLE (33, 34) and
the 2010 ACR/European League Against Rheumatism(EULAR)
classification criteria for RA (35).

Basic demographics (including gender, age at sampling
and disease duration), disease activity and accrued irreversible
damage, dose of prednisone or equivalents, erythrocyte
sedimentation rate (ESR) and CRP values at time of sampling
were recorded. In patients with SLE, complement levels and
anti-DNA titres were collected. Disease activity for group
comparison was quantitated by employing a 28-joint disease
activity score (DAS-28) for RA, the SLE disease activity index
2000 version (SLEDAI-2K) for SLE (36), the Birmingham
Vasculitis Activity Score version 3 (BVAS v3) for anti-neutrophil
cytoplasm antibody (ANCA)-associated vasculitides (AAV)
(37) and the Indian Takayasu Activity Score for TA (ITAS2010)
(38). In patients with SLE, disease activity was also estimated by
employing the British Isles Lupus Assessment Group (BILAG)
2004 version index (39) and a 0.0-3.0 physician global assessment
scale (PGA). A 0-10 visual analog scale (VAS) also measured
SLE patients’ impression about their global health status. Organ
damage was determined by the SLICC/ACR Damage Index
(SDI) for SLE (40), the Vasculitis Damage Index (VDI) for AAV
and GCA (41) and the TA Damage Score (TADS) for TA (42).
Disease activity and damage scores were made homogeneous
by calculating Z-scores (i.e., x−mean

standard deviation
) for activity and

damage (Z-activity and Z-damage). In parallel to quantitative
assessment, a binary evaluation of disease activity and damage
was performed. The former was based on the Physician Global
Assessment of disease avidity (Inactive vs. Active/smoldering),
the latter by the presence vs. absence of items related to vasculitic
manifestations in the abovementioned scores. In patients
with SLE, lupus chilblains, skin/digital vasculitis/ischemia,
urticarial vasculitis, gastrointestinal vasculitis, choroidopathy or
retinal vasculitis, cerebral vasculitis and alveolar hemorrhage
were considered as relevant vasculitic manifestation, whereas
Raynaud’s phenomenon was not. In patients with AAV, “pure”
vasculitic manifestations included absence of ear-nose-throat
(ENT) or orbital involvement and presence of purpura, scleritis,
episcleritis, optic neuritis, renal involvement, peripheral
neuropathy, hemorrhagic alveolitis, or diagnosis of MPA.

PTX3 plasma levels were measured by a sandwich ELISA
based on original reagents developed in house. 96 well plates
(Nunc MaxiSorp cat. 446612) were coated with 100 µl anti-
hPTX3monoclonal antibody (MNB4 (43) 1µg/ml−100 ng/well)
in coating buffer (15mM carbonate buffer pH 9.6) and incubated
overnight at 4◦C. Plates were washed after each step with
300 µl/well of washing buffer (PBS 1X with Ca++ Mg++

+

0.05% Tween 20, pH 7.00). After coating, non-specific binding
to the plates was blocked with 5% dry milk in washing
buffer (2 h at room temperature), then 50 µl in duplicate
of recombinant human PTX3 standard (from 75 pg/ml to
2.4 ng/ml) and human plasma (diluted in PBS 1X w/o Ca++

Mg++
+ 2% BSA, pH 7.00), were plated. 1 µl of 2.5%

Polybrene was added to 50 µl of plasma and incubated at
room temperature for 10min before dilution. After 2 h at
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TABLE 1 | General features of patients included in the study.

RA (n = 21) SLE (n = 55) PMR (n =

10)

AAV (n = 63) GCA (n = 96) TA (n = 42)

Age at diagnosis (year) ND 26.2

(18.6- 34.2)

72.0

(68.5- 73)

48.5

(36.5 - 61.5)

74.0

(67.0 - 77.0)

30.0

(24.0 - 40.5)

Age at sampling (years) 63.0

(43.0- 67.0)

38.2

(31.2- 48.9)

73.0

(69.3- 77)

59.5

(47.8 - 67.9)

75.2

(69.4 - 79.5)

46.0

(35 - 53)

ESR (mm/h) 16.5

(12.8 - 23.5)

20.0

(7.0 - 38.5)

30.0

(20.0 - 50.0)

13.0

(6.5- 31.5)

31.0

(18.0 - 57.8)

15

(7.8- 30.3)

CRP (mg/l) 3.5

(2 - 6.7)

2.1

(0.3 - 6.1)

10.4

(8.7 - 22.3)

0.8

(0.23 - 6.2)

11.0

(2.26 - 31.4)

2.25

(1.03 - 7.3)

PDN dose at sampling (mg/day) 5.0

(2.5 - 5)

3.8

(0.0 - 5.0)

1.9

(0.0 - 17.2)

5.0

(5.0 - 6.5)

5.0

(0.0 - 12.5)

5.0

(0.0 - 5.0)

Z-activity −0.42

(−0.47 - −0.28)

−0.33

(−0.56 - 0.35)

NA −0.4

(−0.4- −0.07)

−0.23

(−0.23 - −0.07)

−0.42

(−0.47 - −0.28)

Z-damage ND −0.2

(−0.2 - −0.07)

NA −0.06

(−0.06 - 0.01)

−0.14

(−0.14 - −0.06)

−0.12

(−0.57 - 0.19)

37◦C, plates were incubated with 100 µl /well of purified and
biotinylated rabbit IgG anti hPTX3 (5 ng/well) in washing
buffer (1 h at room temperature), followed by incubation with
100 µl/well-streptavidin conjugated to horseradish peroxidase
(cat. SB01-61, Biospa, Milan, Italy) diluted 1:2,000 in washing
buffer (1 h at room temperature). Finally, 100 µl of 1-StepTM

Ultra TMB-ELISA Substrate Solution (cat. 34029, Thermo
Scientific, Rockford, IL, USA) were added and the reaction was
blocked after 10min with 50 µl of 2M Sulphuric Acid (H2SO4)
before reading the plates at 450 nm in an automatic ELISA
reader. All the procedure was performed by personnel blind to
patients’ characteristics. For each biological sample, 2 dilutions
in duplicate wells were evaluated and mean PTX3 content was
calculated converting Abs450 values to protein concentration by
means of the standard curve with recombinant purified hPTX3.
Analysis was performed with SoftMax Pro software v5.3 (MDS
Analytical Technologies, USA) and linear regression was used
to interpolate unknown samples. Lower limit of detection of
the assay was 75 pg/ml, interassay variability was from 8 to
10%; no cross reaction was observed with short pentraxins CRP
and SAP.

PTX3 was measured in four different batches. Inter-batch
variability was corrected by normalization based on HC
samples. The relative frequencies of laboratory and clinical
categorical variables were compared by using chi-square test
with Fisher’s exact correction as appropriate. Quantitative
variables were compared by using Spearman’s correlation
tests. Differences in quantitative variables among groups were
assessed by employing Mann-Whitney U-test or Kruskal-
Wallis’ test for multiple comparisons. We also employed
generalized linear models with gamma distribution of the
dependent variables and log function as a link function to
assess the effect of each quantitative or qualitative variable on
PTX3 levels. Data were processed and analyzed by employing
Microsoft Excel R© 2013 and IBM SPSS R© version 15-23. Data
are expressed as median (interquartile range, IQR) unless
otherwise specified.

RESULTS

Expression of PTX3 in Systemic
Autoimmune Diseases
We enrolled 287 patients diagnosed with systemic autoimmune
diseases. Seventy-nine volunteers served as controls. Twenty-
one patients had RA, a systemic inflammatory disease targeting
the synovial membrane, 55 had SLE, the prototypic systemic
autoimmune disease, including 19 patients with vasculitic
features, ten had PMR, a fruste form of GCA with prominent
osteoarticular inflammation sparing the vasculature. Moreover,
we enrolled patients with primary systemic vasculitis of small
vessels (n= 63, including 38 with GPA, 15 with EGPA) and large
vessels (n= 138, including 96 with GCA and 42 with TA).Table 1
summarizes patients’ main characteristics.

PTX3 levels were significantly higher in patients with systemic
inflammatory immune-mediated and autoimmune diseases
(2.33 ng/ml, IQR: 1.26–4.89, n = 287) than in HCs (1.22 ng/ml,
IQR:0.80–1.98, n = 79; p < 0.001 ). However, despite often
comparable levels of systemic inflammation, PTX3 expression
was heterogeneous in patients with different diseases. RA and
PMR had plasma PTX3 levels comparable to those of HC. In
contrast, PTX3 plasma levels of patients with SLE, AAV, GCA,
and TA were significantly higher. Moreover, patients with SLE
had higher levels of PTX3 compared to patients with AAV, GCA
and TA (p<0.001 for AAV and TA, p= 0.001 for GCA; Figure 1).

PTX3 Correlates With Disease Activity but
Not With Accrued Damage
On univariate analysis in the general group of subjects who
had been studied, PTX3 levels were higher in females than in
males (Figure 2A) and did not correlate with disease duration
(Table 2). Patients with recent onset disease (i.e., up to 6 months)
had higher PTX3 levels compared to patients with longer disease
duration (Figure 2B). PTX3 levels positively correlated with Z-
activity (Rho= 0.181, p= 0.016, n= 176 Figure 3A), with acute
phase reactants (ESR and CRP, Rho = 0.229 and Rho = 0.128, p
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FIGURE 1 | PTX3 levels among different diseases. PTX3 plasma levels were

compared among patients with multiple distinct autoimmune diseases and HC.

Pairwise comparisons among groups are reported below. Patients with PMR

and RA did not differ from HC, whereas patients with other immune-mediated

diseases showed significantly higher levels of PTX3 compared to patients with

RA and HC. Patients with SLE had higher levels of PTX3 compared to patients

with large- (TA, GCA) and small-vessel vasculitides (AAV). AAV,

ANCA-associated vasculitides; GCA, giant cell arteritis; HC, healthy controls;

PMR, polymyalgia rheumatica; RA, rheumatoid arthritis; SLE, systemic lupus

erythematosus; TA, Takayasu’s arteritis; *p < 0.05; **p < 0.01; ***p < 0.001.

< 0.001 and p = 0.035, n = 261 and n = 269, respectively) and
with steroid dose (Rho = 0.198, p = 0.001, n = 259; Table 1 and
Figure 3B). On the contrary, PTX3 levels did not correlate with
Z-damage (Rho=−0.006, p= 0.930). PTX3 levels were higher in
patients with active disease as compared to those with quiescent
disease (3.28, IQR 1.27–7.21, n = 123 vs. 1.74, IQR: 1.07–3.16,
n = 222), while similar levels were observed in patients with
or without organ damage. Accordingly, PTX3 levels were higher
in patients with active disease and on corticosteroid treatment,
but did not differ between patients with or without chronic
damage (Figures 4A–C).

PTX3 Reflects Vascular Inflammation
Subjects with previous vasculitic manifestations had higher PTX3
levels than those without (2.3 ng/ml, IQR = 1.26–4.83, n =

220 vs. 1.43 ng/ml, IQR = 0.88–2.81, n = 146; p <0.001)
and patients with active vasculitis had higher levels of PTX3
compared to patients without evidence of vasculitis at time of
sampling (3.15 ng/ml, IQR = 1.31–7.75, n = 85 vs. 1.72 ng/ml,

IQR = 1.08–3.37, n = 278; p < 0.001 Figure 4D). PTX3 plasma
levels were higher either in patients with a history of small-
vessel inflammation (3.21 ng/ml, IQR = 1.57–6.58, n = 70)
or large vessel inflammation (2.27 ng/ml, IQR 1.12–4.29, n =

138) as compared to those without history of vasculitic features
(1.43 ng/ml, IQR = 0.88–2.81, n = 157; p < 0.001 and p
= 0.003, respectively, Figure 4E). Moreover, active small-vessel
inflammation (4.10 ng/ml, IQR = 2.16-8.09, n = 21) or active
large-vessel inflammation (2.49 ng/ml, IQR= 1.10–7.95, n= 64)
identified two subsets of patients with higher PTX3 plasma levels
than patients without active vascular inflammation (1.72 ng/ml,
IQR= 1.09–3.39, n= 281; p< 0.001 for both tests, Figure 4F).

PTX3 and Disease-Specific Clinical
Features
Both in SLE and AAV, pure vasculitic manifestations are not
detectable in all cases. Analysis of the patients with AAV revealed
a positive correlation of PTX3 and CRP levels (rho = 0.362; p
= 0.005, n = 58), ESR (rho = 0.272; p = 0.037, n = 59) and
ANCA titres at blood sampling (rho = 0.266; p = 0.049, n =

55). PTX3 also correlated with disease activity as measured by
BVAS in patients with GPA and MPA (rho = 0.362; p = 0.014,
n = 46). PTX3 levels were higher in patients with exclusive
vasculitic manifestations (3.51 ng/ml, IQR = 2.00–7.92, n = 16
vs. 1.83 ng/ml, IQR = 1.28–2.97 in patients with concomitant
granulomatous lesions, n = 47; p = 0.011) and lower in patients
with ear-nose-throat involvement (1.84 ng/ml, IQR = 1.32–2.97,
n= 43 vs. 3.37 ng/ml, IQR= 1.74–7.92, n= 20; p= 0.039).

PTX3 levels of patients with SLE correlated with disease
activity as assessed by SLEDAI-2K in the whole group of patients
(rho = 0.361; p = 0.007, n = 55) and in those who were off
corticosteroids (p < 0.001, n = 19; Table 3), but not in patients
receiving prednisone. In the latter patients, a positive correlation
was observed between PTX3 levels and prednisone dose (rho =

0.198; p= 0.001, n= 36). Patients with >1 moderately-to-highly
active (A, B) BILAG domain had significantly higher PTX3 levels
than those with more limited disease activity extent (7.23 ng/ml,
IQR = 5.51–9.58, n = 9 vs. 4.29 ng/ml. IQR = 3.09–6.34, n =

46; p = 0.041). PTX3 also directly correlated with PGA (rho =

0.383; p = 0.004, n = 55) and inversely with patient-reported
VAS (rho = −0.331; p = 0.013, n = 55) and C4 levels (rho =

−0.458; p = 0.001, n = 51). There was no significant correlation
with age, disease duration or with CRP concentration or anti-
DNA antibodies titres (Table 3). CRP was higher in patients with
>1 A/B BILAG domain (p= 0.004), but its concentration did not
correlate with SLEDAI-2K or prednisone dose. SLE patients with
active disease tended to have higher levels of PTX3 compared
to patients with inactive disease. This trend was more evident in
patients with past or current evidence of vascular inflammation
(Supplementary Figure 1).

PTX3 Levels Reflect Small- and
Large-Vessel Inflammation at
Multivariate Analysis
We performed two multivariate linear regressions of PTX3
plasma levels with a stepwise backward approach. The first
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FIGURE 2 | PTX3 levels and demographics. These panels show the existing differences in systemic expression of PTX3 by selected demographics. PTX3 levels were

higher in females (A) and in patients with early-onset disease (B). *p < 0.05.

TABLE 2 | Correlations among PTX3 plasma levels and clinical features at

univariate analysis.

Variable Spearman’s Rho p

Age (years) NS NS

Age at disease onset (years) NS NS

Z-score (activity) 0.181 0.016

Z-score (damage) NS NS

ESR (mm/h) 0.229 0.0002

CRP (mg/l) 0.128 0.035

Prednisone dose (mg) 0.198 0.001

regression included sex, diagnosis, disease activity, history and
activity of small-vessel inflammation, history, and activity of
large-vessel inflammation, and steroid therapy. The stepwise
algorithm resulted in a model including disease activity (B =

3.162, Std.Err = 0.738, p<0.001) and activity of small vessel
inflammation (B= 4.200, Std.Err= 1.579, p= 0.008). In a second
iteration, disease activity was excluded due to high colinearity
with the other variables. The final regression model (Table 4)
included activity of small vessel inflammation (B= 6.706, Std.Err
= 1.473, p < 0.001), activity of large vessel inflammation (B =

4.269, Std.Err = 0.844, p = 0.008), and diagnosis (B = 0.243,
Std.Err= 0.121, p= 0.046).

DISCUSSION

In this brief report, we present a multi-disease comparison
of PTX3 plasma profile in patients with various systemic
autoimmune and inflammatory conditions. In line with previous
evidence from other groups and us (20, 21, 23, 24, 26, 44–
46), we observed that PTX3 levels rise in acutely inflamed
patients. Accordingly, PTX3 levels are higher in patients with
recent onset disease [see also (23, 47)] and correlated with
disease activity and with conventional inflammatory markers
such as ESR and CRP. However, PTX3 blood levels do not

merely reflect systemic inflammation, and indeed they failed to
increase in conditions such as RA and PMR. The relative lack
of PTX3 increase well-agrees with the role of PTX3 as a tissue-
generated signal: the inflamed synoviae possibly represent the
preferential site of PTX3 generation and it has been reported
that PTX3 assessment in the synovial fluid might indeed be more
informative (27, 48).

Clinically overt vascular inflammation involving small or large
vessels was associated with elevated PTX3 levels. Identification
of reliable biomarkers for vascular inflammation assessment
constitutes a significant unmet need in current Rheumatology
practice (49–55). The present study supports the contention
that vascular inflammation is a major driver of PTX3 elevation
(20, 23, 56).

Patients with SLE had the highest PTX3 levels. PTX3
correlated with active SLE as estimated by the number of high-
score BILAG domains. Aberrant presentation of autoantigens
due to non-physiological release of PTX3 (13, 28, 57) could
be involved, as indicated by the protective role of anti-PTX3
antibodies in SLE (58, 59). Corticosteroids are major inducers
of PTX3 at a systemic level (60) and can constitute an
additional modulatory variable in this setting. In particular,
systemic administration of corticosteroid drugs or exposure to
higher endogenous glucocorticoid levels cause an overall rise in
blood PTX3 levels. Nonetheless, glucocorticoids have divergent
effects on different cell types as they dampen PTX3 expression
in monocyte-derived dendritic cells, but significantly induce
PTX3 in endothelial cells and fibroblasts (60). Consistently,
corticosteroids also exert distinct biological effects over different
pathogenic backgrounds (61). Alternatively, smoldering vascular
inflammation might be advocated as a potential explanation for
plasma PTX3 elevation in patients with SLE and for conflicting
results in the literature regarding associations with clinically
overt vasculitis (26, 62–65).

Single tissue/organ-limited inflammatory events not involving
the vascular bed might not represent effective stimuli for PTX3
elevation in the circulating blood. In line with this view,
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FIGURE 3 | Correlations with PTX3 levels. PTX3 correlated with multiple disease and treatment-related variables at univariate analysis. (A) Depicts the linkage between

increasing normalized activity score (Z-activity) and PTX3 plasma levels. (B) Shows the potential influence of corticosteroid treatment on PTX3 circulating levels.

FIGURE 4 | PTX3 levels and disease phenotypes. In this multi-panel graph, differences in PTX3 plasma levels among phenotype groups are highlighted. PTX3 levels

were higher in patients with active disease (A), but not with accrued irreversible damage (B). PTX3 was also higher in patients on corticosteroids (C). (D) Depicts the

existing differences between patients with vs. without a history of vasculitis and between active or quiescent vasculitis at time of sampling. In (E,F) patients are

stratified according to a history (E) or ongoing activity (F) of small- or large-vessel vasculitis associated with higher levels of PTX3 when compared to no vasculitis.

*p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE 3 | Correlations among PTX3 levels and clinical variables in patients

with SLE.

Correlation with PTX3

All patients Patients on PDN

Age No No

Disease duration No No

SLEDAI-2K Yes No

PGA Yes No

Patient’s VAS Yes (inverse) No

Erythrocyte sedimentation rate No No

CRP levels No No

C3 levels No No

C4 levels Yes (inverse) No

Anti-DNA titres No No

PDN dose No Yes

TABLE 4 | Multivariate linear model of PTX3 levels.

B Std. error p-value

Active small-vessel inflammation 6.706 1.473 <0.001

Active large-vessel inflammation 4.269 0.844 0.008

Diagnosis 0.243 0.121 0.046

History of small-vessel inflammation 1.148 1.122 0.307

History of large-vessel inflammation 0.607 0.862 0.482

Sex −0.354 0.750 0.637

Steroid therapy −0.260 0.828 0.754

R2 of the model including the significant variables: 0.122.

relatively low PTX3 concentrations were found in plasma from
patients with RA, PMR and AAV without vasculitic features
in this and other studies (20, 44). Neutrophil, endothelial
cells and vessel-residing mononuclear cells can all concur
to PTX3 release in the circulating blood during acute and
chronic vascular injury (8, 11). PTX3 might be part of a
protective response to the extension and exacerbation of organ
damage due to post-ischemic inflammation (21, 29). However,
PTX3 can also promote vascular injury under septic conditions
(66). Furthermore, as a constituent of the antimicrobial array
embedded in neutrophil extracellular traps (NETs) (10), PTX3
can concur to NETs-related immunothrombosis (58, 67) and
similarly to neutrophil myeloperoxidase and proteinase-3 (which
are also enclosed in NETs), promote the generation of pathogenic
antibodies (68). Anti-PTX3 antibodies have been proposed
represent atypical ANCA and, in contrast to SLE, might correlate
with disease activity in patients with AAV (69).

This study has limitations. Systemic diseases without primary
vessel inflammation are relatively underrepresented, which
warrants caution in the interpretation of PTX3 dynamics in
these settings. In addition, this study only explored the clinical
relevance of PTX3 as a biomarker of vascular inflammation,
without any deeper insight into the pathogenic drivers of
this phenotype. Further mechanistic studies are thus needed
to address this issue and possibly refine our knowledge on

potential applications of PTX3 in diagnostics and therapy. To this
purpose, dissecting the role of glucocorticoids as confounding
factors for PTX3 expression would be of particular relevance,
due to the widespread use of corticosteroid drugs in immune-
mediated diseases.

Taken together, these data suggest that PTX3 could be
implicated in multiple distinct pathophysiological events causing
and maintaining inflammation in immune-mediated diseases.
From a diagnostic point of view, PTX3 elevation in the circulating
blood marks the occurrence of inflammatory events in blood
vessels and might find a specific niche in clinical practice
as a tool to identify vasculitic subsets among patients with
autoimmune diseases.
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Reperfusion of an ischemic tissue is the treatment of choice for several diseases,

including myocardial infarction and stroke. However, reperfusion of an ischemic tissue

causes injury, known as Ischemia and Reperfusion Injury (IRI), that limits the benefit of

blood flow restoration. IRI also occurs during solid organ transplantation. During IRI, there

is activation of the innate immune system, especially neutrophils, which contributes to

the degree of injury. It has been shown that PTX3 can regulate multiple aspects of innate

immunity and tissue inflammation during sterile injury, as observed during IRI. In humans,

levels of PTX3 increase in blood and elevated levels associate with extent of IRI. In mice,

there is also enhanced expression of PTX3 in tissues and plasma after IRI. In general,

absence of PTX3, as seen in PTX3-deficient mice, results in worse outcome after IRI. On

the contrary, increased expression of PTX3, as seen in PTX3 transgenic mice and after

PTX3 administration, is associated with better outcome after IRI. The exception is the gut

where PTX3 seems to have a clear deleterious role. Here, we discuss mechanisms by

which PTX3 contributes to IRI and the potential of taming this system for the treatment

of injuries associated with reperfusion of solid organs.

Keywords: PTX3, ischemia and reperfusion injury, sterile inflammation, hypoxia, adhesion moleculaes, neutrophil

INTRODUCTION

Impaired blood flow to tissues caused by reduced or obstructed arterial inflow (ischemia) and
consequent decreasing of oxygen and nutrient supply is an intrinsic condition during clinical
procedures, including coronary angioplasty, vascular reconstruction, organ transplantation, and
vascular diseases, such as stroke, myocardial, renal, and intestinal infarction (1–3). Although
reperfusion brings blood flow and oxygen back, which are essential to prevent irreversible tissue
injury, it may paradoxically worsen ischemic tissue damage. During reperfusion, there is excessive
production of pro-inflammatorymolecules by the ischemic tissue and systemic distribution of these
molecules. This phenomenon is known as ischemia-reperfusion injury (IRI) and is a major issue
during organ transplantation, as it directly correlates to graft rejection (4–6). IRI is responsible for
up to 10% of early transplant failures and is also associated with high rates of acute and chronic
rejection (7–9).

During ischemia, adenosine triphosphate (ATP) production is impaired due to decreased
oxygen supply (10). In addition, ischemic tissue produces high levels of pro-inflammatory
cytokines, vasoactive agents, adhesion molecules, and reactive oxygen species (ROS) (4).
Particularly, ROS generation modifies intracellular pH that is associated with organelle damage
and cell death (11). In this sterile inflammatory context, the innate immune response is activated
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when dead cells release their contents into the extracellular
environment, which are recognized by pattern recognition
receptors (PRRs) expressed on resident immune cells.
Furthermore, soluble pattern recognition molecules work
as fluid-phases receptors, distributed mainly in distinct liquid
compartments. This humoral arm of the innate immune
system consists of three clearly defined subgroups of molecules,
represented by collectins, ficolins, and pentraxins (12).

Pentraxins belong to a family of phylogenetically conserved
proteins and are divided into two groups according to the length
of their primary structure: the short and long chain pentraxins
(13). The classical short pentraxins, represented by C-reactive
protein (CRP) and serum amyloid P component (SAP) are
produced in the liver under pro-inflammatory stimuli, most
prominently by IL-6. Both CRP and SAP bind to different ligands
of microbes and host components in a calcium-dependent
manner, a mechanism associated to innate immunity against
pathogens and also for scavenging of cellular debris (14).
Long pentraxins are characterized by an unrelated N-terminal
domain coupled to a pentraxin-like C-terminal domain (15). The
prototypic long pentraxin 3 (PTX3), also formerly referred to
as TSG-14 (TNF-stimulated gene 14) was identified in the early
1990s in human endothelial cells and fibroblasts as a TNF or IL-
1β-inducible mRNA and protein, respectively (16, 17). Here, we
provide an overview of currently available data about the role
of PTX3 in the complex mechanisms involved in the immune
response during IRI in different organs. Then, we discuss possible
options for IRI therapy based on the knowledge of PTX3 biology.

MECHANISMS OF TISSUE DAMAGE

DURING ISCHEMIA AND REPERFUSION

INJURY (IRI)

Several pathological processes contribute to IRI, including
impaired endothelial cell barrier function (18, 19), activation
of cell death programs (20) and activation of innate and
adaptive immune responses (21). IRI occurs as the result
of a biphasic condition. During ischemia, when the oxygen
levels decrease, there is a dysfunction of the electron transport
chain in mitochondria and a shift from aerobic to anaerobic
metabolism, which impairs ATP production. Moreover, there
is accumulation of lactic acid and ketone bodies, leading
to decrease of pH in tissues and cells, known as metabolic
acidosis. The lack of energetic substrate also interferes with
transmembrane transports, causing dysfunction of sodium-
potassium and calcium pumps on the cell surface, which results
in cell hyperosmolarity and flow of water into the cytoplasm and
cell swelling (22). In ischemic tissues, a large number of ROS are
produced by mitochondria. ROS production can cause damage
to membrane lipids, proteins, and DNA, leading to endothelial
cell dysfunction and consequently cell death (23). In addition,
the deleterious effects of low oxygen levels spread along different
cell types in the affected tissue (24–27). There is a variation of
the resistance to ischemia among cell populations of a given
tissue. For example, cardiac cells are more resistant to periods of
ischemia as compared to hepatocytes and Kupffer cells (28).

The magnitude and duration of ischemia will determine
the degree of cell dysfunction and death. Cells that died
during the ischemic phase release a range of intracellular
molecules called danger associated molecular patterns (DAMPs),
also known as alarmins. Under homeostatic conditions, these
molecules are hidden into intracellular compartments. However,
under conditions of cellular stress, DAMPs are released to
the extracellular environment or kept on cell membrane
(29). Different molecules have been described as DAMPs,
including ROS, ATP, high mobility group box 1 (HMGB1),
DNA, mitochondrial formyl peptides, IL-1, urate, and S100
proteins. These molecules bind to a variety of PRR and
trigger inflammatory responses through the activation of
various signaling pathways (30). Innate immune, parenchymal
and endothelial cells express PRRs on their surface and
in their cytoplasm, which recognize DAMPs. PRRs include
Toll-like receptors (TLRs), Retinoic Acid-Inducible Gene I-
like receptors, nucleotide-binding oligomerization domain-like
receptors (NLRs), including the inflammasomes, and C-type
lectin receptors. Thus, it seems clear that DAMPs released during
ischemia contribute to the intense inflammatory response seen
in IRI (31).

The reperfusion phase occurs when the blood flow is
restored to the ischemic tissue. During the first minutes, the
blood flow to ischemic tissue may not happen immediately,
a phenomenon known as no-reflow. It is believed that this
intravascular obstruction may be caused by leukocytes and
platelets (32). Although reperfusion is required to restore
oxygen to the tissue, the metabolic distress caused during
ischemia creates a condition that triggers a set of excessive
innate immune response, which exacerbates the injury to
vascular and parenchymal cells during reperfusion. The
reperfusion can be separated in two phases. Initially, there
is intense oxidant stress, leading to impaired production of
antioxidative molecules that increases ROS generation further.
ROS initiate a series of cellular events that cause inflammation,
promoting cellular injury through endothelial dysfunction,
DNA damage, necrosis and/or apoptosis (11). An important
pathway of ROS production involves reduction of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (32).
Indeed, abrogation of NADPH component in mice reduces
the deleterious effects of IRI (33). In addition, the reperfusion
phase sets deposition of complement, upregulation of adhesion
molecules, inflammatory cell infiltration, mainly neutrophils,
and further pro-inflammatory mediators production (33, 34).
The local presence of DAMPS and molecules produced in
response to DAMPs will feed into this increasing inflammatory
reaction seen during IRI.

Although the degree of injury may vary in different
tissues, a common feature in all organs is microvascular
dysfunction. The vascular injury induced by IR is a consequence
of local and systemic inflammatory response and includes
vascular permeability, endothelial cell activation, platelet–
leukocyte interaction, complement activation, and imbalance
between vasodilating and vasoconstricting factors (3). Tissue
hypoxia during ischemia directly influences the increase
of vascular permeability, as demonstrated by studies with
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endothelial cells exposed to an environment with low oxygen
concentration, a phenomenon that alters endothelial cell barrier
function in a mechanism dependent on reduced adenylate
cyclase activity and intracellular cAMP levels (19). Moreover,
studies in vivo demonstrated that animals exposed to a hypoxic
environment showed vascular leakage in multiple organs and
increased hypoxia-associated pulmonary edema (35, 36).

The migration of neutrophils from blood into tissue during
vascular inflammation occurs by a multistep cascade. There
is initial tethering and rolling on vessel wall via selectins
interactions followed by firm adhesion and emigration out
of the vasculature to the parenchyma. These events are
well-established in different microvasculatures including the
peritoneum, mesentery, skeletal muscle, and skin (37). In
this regard, tissue and resident cells produce chemoattractant
factors, such as chemokines, that guide neutrophil infiltration
into the site of inflammation. To induce neutrophil migration,
chemokines are maintained in high concentration on the
endothelium cell surface by binding to glycosaminoglycans
(38). Moreover, other factors contribute to neutrophil migration
and microvascular dysfunction after reperfusion, including
complement components and leukocyte interactions with
platelets (39). Upon leaving the vessels and entering the
tissues, activated leukocytes release ROS and proteases, causing
increased microvascular permeability, edema, thrombosis, and
parenchymal cell death (39). Indeed, previous reports have
shown that Reparixin, a non-competitive allosteric antagonist
of chemokine receptor CXCR2 was able to prevent neutrophil
migration and reduce liver and intestinal damage, suggesting that
excessive neutrophil migration is detrimental to tissues following
reperfusion (40, 41).

ROLE OF PTX3 DURING STERILE

INFLAMMATION

There are several actions of PTX3 that are relevant to the sterile
inflammation that occurs during IRI (Figure 1). PTX3 can be
considered an acute-phase protein. In normal conditions, its
serum levels is low (around 25 ng/ml in the mouse, <2 ng/ml
in humans), but quickly increases during inflammation (200–
800 ng/ml in humans and mice) (42). Innate immune factors
stimulate the production of PTX3 locally, including pattern
molecules (DAMPs) and cytokines (43). Particularly in the field of
sterile inflammation, IL-1 is a potent inducer of PTX3 production
during tissue damage, as occurs in mouse models of acute
myocardial infarction (AMI) (44).

In terms of kinetics, local production of PTX3 begins before
the synthesis of classical pentraxins by hepatic parenchyma cells.
PTX3 can be produced in several organs, especially in the heart
and striated muscle, but also in the lungs, ovarium, thymus,
and the skin (45). Resident leukocytes and parenchymal cells
are important sources of PTX3 (46, 47). PTX3 is also stored
in neutrophil granules, which are released under inflammatory
stimuli. It is estimated that neutrophils release about 25% of
their PTX3 to the extracellular compartment, much of them
associated with neutrophil extracellular traps (NETs) (48). Thus,

while CRP and SAP are produced in the liver and carried to the
inflammatory foci by blood flow, PTX3 is formed locally at sites
of ongoing inflammatory reaction (45, 49).

The multifunctional properties of PTX3 include interactions
with different ligands, such as complement C1q component,
the extracellular matrix component TSG6, apoptotic cells,
endothelial cells, and leukocytes (50). Complement factors and
PTX3 have been considered important regulators in the clearance
of dying cells. In this regard, an investigation in mammalian
cells showed that soluble PTX3 binds to immobilized C1q
and, reciprocally, C1q bound to immobilized PTX3 (51). In
addition, C1q and PTX3 present different functions during
the phagocytosis of apoptotic cells. Previous reports have
demonstrated that complement C1q is necessary for effective
phagocytosis of apoptotic cells by macrophages, whereas PTX3
inhibits this process (52, 53). This mechanism was elucidated by
Baruah and coworkers’ study, who showed that C1q and PTX3
have different affinity for apoptotic cell domains. However, the
presence of PTX3 in the solution removed bound C1q from
apoptotic cells, leading to inhibition of complement activation
by C1q on apoptotic cells and their phagocytosis by dendritic
cells. Moreover, it has been shown that although PTX3 decreased
the internalization of dying cells by human dendritic cells, it did
not affect the capture of soluble or inert particulate substrates,
such as fluorescent ovalbumin and latex beads. Furthermore,
apoptotic cells preincubated first with PTX3 did not modify
binding of C1q to these dying cells. Thus, these findings
suggest that PTX3 and C1q interaction may occur in soluble
phase, reducing the availability of C1q-mediated phagocytosis
(54). These results suggest that although PTX3 prevents cell
phagocytosis by dendritic cells, it favors the sequestration of
cell debris by antigen-presenting cells, which could contribute
to reduce self-antigen presentation and a possible development
of autoimmune disorders (55). Furthermore, deficiencies of C1q
is associated with development of systemic erythematosus lupus
(SLE) and accumulation of apoptotic cells in renal glomeruli,
which emphasizes the importance of C1q in the clearance of
cellular debris (56). It has been demonstrated for a long time
that patients with SLE have a well-characterized defect in the
production of pentraxins during active phases of the disease
(57). Thus, these data suggest that the interaction of C1q and
PTX3 may have important implications in the healthy removal
of cellular debris under inflammatory conditions and protection
against autoimmunity.

PTX3 also interacts with endothelial cell adhesion molecules.
Deban and coworkers reported that PTX3 released by
hematopoietic cells prevent excessive neutrophil recruitment
under P-selectin interaction. This observation was also
demonstrated using exogenous PTX3.This finding suggests
a natural anti-inflammatory effect of PTX3 in P-selectin-
dependent models of leukocyte recruitment and inflammation
(58). Moreover, models of sterile inflammation, such as
AMI induced by coronary artery ligation and reperfusion or
cerebral IRI, showed that absence of PTX3 was associated with
increased neutrophil migration and tissue damage (44, 59).
These results suggest that PTX3 provides a feedback loop
by preventing neutrophil recruitment and tissue damage in
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FIGURE 1 | Pro-inflammatory and anti-inflammatory properties of PTX3 in sterile inflammation. Endogenous stimuli induce the production of PTX3 by different cellular

types. DAMPs, Damage-associated molecular patterns.

models of sterile inflammation. In addition, PTX3 influences
macrophages function. PTX3 impairs the production IL-1β,
TNF, and CCL2 levels, whilst stimulates TGF-β production
by THP-1 macrophages. These results were associated with
Akt phosphorylation and reduced NF-κB activation in the
presence of PTX3. Silencing PTX3 increased IL-1β production
by macrophages (60). Moreover, it has been reported that
mice lacking PTX3 subjected to wire-mediated endovascular
injury exhibited higher deteriorated neointimal hyperplasia
after vascular injury via the effects of macrophage accumulation
(61). Thus, considering the function of PTX3 in control pro-
inflammatory molecules production by macrophages, half of
macrophages positive for PTX3 in coronary atherosclerosis
presented M2-like phenotype (62). Therefore, all these findings
suggest a role for PTX3 in resolving inflammation by suppressing
the activity of macrophages at inflamed sites and inducing
healing process.

Recent studies using genetic-modifiedmice demonstrated that
PTX3 has an important action in regulating vascular sterile
inflammation. Norata and coworkers have shown increased
expression of PTX3 in the vasculature during atherogenesis.
Mice deficient for PTX3 fed with an atherogenic diet showed
larger atherosclerotic lesions compared with WT mice. These
mice also showed increased expression of adhesion molecules,
cytokines, and chemokines in the vascular wall, associated with

intense accumulation of macrophages within atherosclerotic
plaque (63). On the other hand, although these results
suggest atheroprotective and cardiovascular protective effects
of PTX3 by modulating the vascular-associated inflammatory
response, this molecule induces tissue factor in endothelial
cells, presenting potential proinflammatory and prothrombotic
properties (64, 65). Thus, PTX3 may orchestrate different
roles depending on the scenario of vascular pathology. In
this regard, increased levels of PTX3 is observed in vascular
disorders, such as myocardial infarction and small vessel
vasculitis that correlate with worsen outcome or disease
activity. In fact, during inflammation, blood vessels produce
large amounts of PTX3 (66). PTX3 has been linked to
vascular endothelial dysfunction in several diseases, including
chronic kidney disease and preeclampsia, a condition associated
with hypertension (67, 68). Carrizzo and coworkers have
shown that PTX3 promotes endothelial dysfunction and
morphological changes by a mechanism dependent on P-
selectin and matrix metalloproteinase-1 (MMP1) pathway. In
vivo administration of PTX3 induced endothelial dysfunction
and increased blood pressure. Moreover, inhibition of MMP1
protected mesenteric arteries against the endothelial dysfunction
promoted by PTX3, an effect absent in P-selectin-deficient
mice (69). In addition, overexpression of PTX3 attenuates
the production of nitric oxide by a mechanism dependent
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on the upregulation of MMP1 and P-selectin (69). Therefore,
these studies suggest that a high plasma concentration of
PTX3 could be a biomarker of altered endothelial function in
different diseases.

ROLE OF PTX3 IN ORGAN SPECIFIC IRI

In the last decades, the mechanisms associated to IRI
pathogenesis has been extensively investigated, although
they have not yet been completely elucidated. As discussed
above, IRI is characterized by intense tissue inflammation due to
high production of local pro-inflammatory cytokines and with
massive accumulation of neutrophils. As described below, the
role of PTX3 during IRI seems to be organ specific, depends on
the amount and source of this protein, and the related disease
(70–73) (Figure 2).

Renal IRI
Renal IRI syndrome develops after a sudden transient decrease
in total or regional blood flow to the kidney (74). The
sterile inflammatory disease observed in this condition occurs
due to endothelial cell activation caused by endothelial cell-
leucocyte interaction and by reduced vascular blood flow. In
addition to endothelial cell damage, IRI is associated with
endothelial-leukocyte interactions through the up-regulation of
adhesion molecules.

A previous study has shown that injured renal cells released
endogenous HMGB1 after IRI. HMGB1 binds to endothelial
Toll-like receptor 4 (TLR4), promoting an increase of adhesion
molecules expression in vasculature (75). Interestingly, PTX3
is regulated by TLR4 activation, since TLR4-deficient mice
subject to renal IRI showed reduced PTX3 production and
lower renal damage when compared with WT animals. This

modification in PTX3 expression occurred together with other
markers of endothelial activation and was associated to reduced
kidney injury and lower expression of endothelial adhesion
molecules and chemokines when compared to wild type
mice (76).

Although the study above suggested a deleterious role of
PTX3 in the context of IRI, others provide more direct
evidence for a beneficial role of this protein. Renal injury was
aggravated in PTX3-deficient mice subject to IRI by a mechanism
dependent on the control of neutrophil and macrophage
recruitment into the postischemic kidney (77). Mechanistically,
absence of PTX3 could affect PTX3-P-selectin interaction
(58). The neutralization of P-selectin by specific antibody
completely abrogated IRI-induced tissue damage. Interestingly,
administration of recombinant PTX3 injection in the reperfusion
phase effectively prevented renal inflammation, as observed by
reduction of leukocyte accumulation by suppressing leukocyte-
selectin interaction and consequent leukocyte rolling on
endothelial cells (77). In this regard, lack of PTX3 increase the
expression of P-selectin, favoring the interaction of circulating
leukocytes with activated endothelial cells (78). Thus, in
the kidney undergoing IRI injury, local PTX3 production
tends to avoid excessive organ inflammation and dysfunction.
In addition, PTX3 injection recovered kidney function as
observed by the reduction of IRI-induced interstitial fibrosis
by a mechanism associated with the reduction of IL-6 and
p-STAT3 (79).

Cardiac IRI
Cardiovascular diseases (CVD) are responsible for high number
of deaths in the developed world and numerous studies have
indicated that PTX3 has a potential contribution to prevent
the progression of CVD (80, 81). The reperfusion of affected

FIGURE 2 | Protective and deleterious functions of PTX3 during Ischemia and Reperfusion Injury (IRI) in different organs. The role of PTX3 during IRI seems to be

organ specific, depends on the amount and source of this protein, and the related disease.
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coronary arteries is a crucial step for an effective therapy after
a myocardial infarction. However, as it occurs in other organs,
the restoration of blood flow is associated to myocardium
damage that limits the benefit of blood flow restoration,
known as myocardial IRI. A similar phenomenon is also
seen during cardiac transplantation, which is associated with
organ dysfunction that impairs cardiac recovery (82). Local
inflammation is the major problem that contributes to cardiac
IRI, associated with intense and rapid production of cytokines
and accumulation of leukocytes in the affected area. Neutrophils
migrate rapidly to the infarct zone guided by chemoattractants
during the first 24 h of myocardial IR and release degradative
enzymes that contribute to irreversible myocardial damage (83).
PTX3 can be released by neutrophils early and by macrophages
and endothelial cells in the late phase of myocardial infarcted
patients (84) and there is evidence to suggest that the heart is a
major site for PTX3 expression (85), which could contribute to
its involvement in multiple cardiovascular disorders.

A transcriptomic analysis of the whole blood obtained
after cardiac surgery identified PTX3 as a potential indicator
for infarction and irreversible injury of the myocyte in
ischemic cardiomyopathy (86). Using an experimental model of
myocardial infarction and samples of myocardial infarction of
patients, Maugeri and coworkers demonstrated that neutrophils
were the main source of increased PTX3 in blood of patients with
AMI in the early phase of the symptoms (within 6 h). Moreover,
activated platelets were responsible to trigger neutrophil PTX3
release. Indeed, a substantial fraction of PTX3 was observed
on cell membranes of circulating platelets in patients with
AMI. In the presence of PTX3, the formation of platelet-
neutrophil aggregation was inhibited, which was associated
to less effectiveness of platelets at upregulating CD11b/CD18
integrin expression, a critical step for leukocytes to adhere to and
transmigrate within inflamed tissues (87). These results suggested
that PTX3 decreases the inflammatory response triggered by
activated platelets, limiting noxious effects of neutrophils in
the heart.

Other studies have also suggested that PTX3 has important
functions for the protection of AMI. For instance, exogenous
PTX3 played a protective role in myocardial IRI by preventing
cardiomyocyte apoptosis and reducing troponin production in
mice, which was associated to an improvement of hemodynamic
performance (46). That study also demonstrated an important
effect of PTX3 on cell function, restricting γδT cell expansion and
activation, decreasing local expression of the proinflammatory
cytokines IL-23 and IL-17A and neutrophil and macrophage
infiltration in the tissue. Furthermore, using an experimental
model of acute cardiac ischemia and reperfusion in mice,
researchers identified a kinetics of PTX3mRNA in the circulation
which peaked after 24 h and returned to basal levels after 3
days (44). In the same study, mice deficient for PTX3 presented
increased myocardial damage after cardiac IRI, with extended
area without reflow, intense accumulation of leukocytes into
affected area, and elevated number of apoptotic cardiomyocytes.
Interestingly, the infusion of exogenous PTX3 in these mice
reversed that phenotype (44). Thus, PTX3 seems to have a
protective role to reduce myocardium damage by reducing heart

inflammation. In addition to its potential therapeutic role, it is
suggested that PTX3 could be used as an early indicator of CVD
and an important inflammatory component of ischemic heart
disease in humans. Peri and coworkers demonstrated that plasma
levels of PTX3 were elevated after myocardial infarction faster
than C-reactive protein, suggesting that PTX3 could be used as an
earlier indication of cardiac IRI (88). PTX3 is present in normal
cardiomyocytes (88). The increased PTX3 in blood may be a
consequence of its release from dying or necrotic cells due to
increased permeability of necrotic cardiomyocyte (89).

Pulmonary IRI
Pulmonary IRI frequently occurs during lung transplantation,
especially in the earlier stages of transplantation, as a form of
acute lung injury (ALI) (90). Importantly, the development of
ALI in the first 3 days after lung transplantation is associated to
the development of chronic lung allograft dysfunction (CLAD),
a condition that reduces up to 50% survival in the first 5 years
after surgery (91–93). In ALI and acute respiratory distress
syndrome patients, plasma PTX3 is elevated and is positively
correlated with lung injury parameters (94). In transplantation
models, IRI has been directly related to the activation of
the innate immune system, which involves recognition TLR
signaling pathways, complement activation and natural killer
cell migration in transplantation models, and leads to decreased
allograft tolerance in many organs (95, 96). In the lung, IRI leads
to five main processes that result in regional injury, including
sterile immunity, activation of coagulation, activation of cell
death pathways and endothelial dysfunction (97).

A few studies indicate that PTX3 has protective effects in lung
IRI. For instance, PTX3-deficient mice subjected to orthotopic
lung transplantation showed increased lung parenchymal fibrosis
28 days after lung transplantation. These mice had significantly
larger numbers of T cells and B cells, which is associated with
CLAD (98). This is in line with othersmodels of ALI, where PTX3
dampened neutrophil extravasation to lung parenchyma, while
PTX3-deficient mice had worsen lung injury (58). Thus, these
results indicate acute beneficial effects of PTX3 in lung transplant
recipients and protection against the development of chronic
rejection. On the other hand, a study by Diamond and colleagues
reported that patients with idiopathic pulmonary fibrosis and
chronic obstructive pulmonary disease showed higher levels
of PTX3 6 h and 24 h after reperfusion when compared with
controls. Moreover, there was a positive correlation between
elevated PTX3 levels and the elevated risk of graft dysfunction
in lung transplant recipients with idiopathic pulmonary fibrosis
(99). In this sense, PTX3 could be used as a marker of lung
damage and severity of disease since is quickly detected in ALI
patients (94). It is important to mention the differences among
those studies. The protective role of PTX3 was performed mice.
In humans, there was only a positive correlation between PTX3
levels and lung injury. Indeed, there are no data to explain
whether increased levels of PTX3 are protective or harmful, as
demonstrated above in cardiac IRI, where elevated PTX3 levels
promote negative feedback on the inflammatory response to the
heart (46). Thus, it is not possible to define a causal relationship
between PTX3 release leading to lung injury in humans.
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Brain IRI
Different organs exhibit different levels of susceptibility to
IRI with the brain being perhaps the most IRI sensitive
organ, as irreversible brain damage can become evident within
20min of ischemia (100). Cerebral ischemia is associated with
high mortality and disability rates worldwide, as evidenced in
stroke, intracerebral or subarachnoid hemorrhage, traumatic
brain injury or perinatal hypoxia, and the intense production
of pro-inflammatory mediators in acute cerebral ischemia is
directly associated with brain damage (101). Increased number
of circulating leukocytes and intense recruitment of neutrophils
to the brain can be observed up to 24 h after the first symptoms
of stroke (102). In addition, the inflammatory state at the
affected site is associated to high levels of cytokines, including
IL-1β, IL-6, TNFα, IL-10, TGF-β, and chemokines, such as
CCL2, CCL3, CXCL1, and CX3CL1 (101, 103). Among them,
IL-1β has been considered critical for the brain inflammation
after stroke. Its expression is rapidly produced and contributes
to brain neurotoxicity. In addition, the blockade of IL-1
receptor prevents ischemic and excitotoxic neuronal damage
in rat (104).

As observed in other tissues, PTX3 has been considered
a new mediator of inflammation in cerebrovascular disorders
and also be considered a potential prognostic marker in
ischemic stroke (105). Early after ischemic stroke, peri-infarct
astrocytes are important source of PTX3 (106, 107). The
production of PTX3 in brain is dependent on IL-1β release
after cerebral ischemia and it mediates the formation of the
glial scar and resolution of brain edema. Interestingly, mice
deficient for PTX3 had marked increase in tissue damage and
unresolved cerebral edema after 6 days of cerebral ischemia
(108). In accordance, PTX3 deletion impaired blood brain
barrier integrity, increased brain inflammation and decreased
the resolution of tissue damage (108). Another report showed
that PTX3-deficient mice subjected to experimental cerebral
ischemia showed reduced neurogenesis in the dentate gyrus of
the hippocampus. Furthermore, absence of PTX3 was associated
to marked reduction in poststroke angiogenesis when compared
to wild type mice 2 weeks after cerebral ischemia. In addition,
recombinant PTX3 demonstrated important neurogenic role in
vitro (59). These data indicate that PTX3 contributes to recovery
after stroke through regulation of neurogenesis and angiogenesis
and glial scar formation.

Intestinal IRI
Intestinal ischemia occurs following mesenteric artery blockade
with consequent reduction of blood flow to the area. Gust
ischemia is very lethal and reperfusion is the only therapy
of choice in these cases and may culminate in intense
intestinal tissue inflammation and damage. Different conditions
and procedures may cause intestinal ischemia, including
necrotizing enterocolitis, allograft rejection in small bowel
transplantation, complications of abdominal aortic aneurysm
surgery, cardiopulmonary bypass, and inflammatory bowel
disease (3, 109). Another critical point during intestinal IRI is
the risk of loss of the intestinal barrier, facilitating bacterial

translocation into the circulation, that could be associated with
the development of sepsis (110).

To date, two studies have addressed the role of PTX3 in the
context of intestinal IRI. The first one showed that transgenic
mice overexpressing up to 4 extra copies of PTX3 had reduced
survival rate after intestinal IRI when compared to wild type
mice. This phenotype was associated with increased production
of proinflammatory cytokines locally, systemically, and in the
lungs (remote organ). This was accompanied by intense tissue
damage and hemorrhage in both intestine and remote tissue, as
observed in lungs (111). In addition, PTX3-deficient mice were
protected from intestinal IRI. In PTX3-deficient mice, there was
decreased NF-kB translocation and TNF and CXCL1 production
when compared to wild type mice. The reduced inflammation
was associated with decreased neutrophil influx, preservation
of intestinal architecture and significant prevention of lethality.
To assert the deleterious effect of PTX3 during intestinal IRI,
intravenously infusion of PTX3 reversed the protected phenotype
in PTX3-deficient mice (112). Thus, those results show that
endogenous PTX3 is essential for the cascade of events leading
to tissue inflammation and injury after IR. Moreover, they
suggest that PTX3 blockade may be useful as therapy for
intestinal IRI.

CONCLUDING REMARKS

PTX3 has clear role in the induction of sterile inflammation,
as observed during IRI (Figure 2). In humans, levels of PTX3
increase in blood and elevated levels associate with extent
of IRI. In general, absence of PTX3, as seen in PTX3-
deficient mice, results in worse outcome after IRI. On the
contrary, increased expression of PTX3, as seen in PTX3
transgenic mice and after PTX3 administration, is associated
with better outcome after IRI. The overall protective effects
of PTX3 are associated with decreased local edema formation
and decreased neutrophil-endothelial cell interactions. As
neutrophils contribute significantly to IRI, these effects of PTX3
may underlie its beneficial effects in these models. In this regard,
it the administration of PTX3 may be beneficial in patients
undergoing IRI.

The situation is dramatically different in a model of intestinal
IR injury. In the latter model, systemic levels and local expression
of PTX3 also increases after reperfusion. However, and in
contrast to findings in other systems, decreased PTX3 expression
is associated with decreased damage and enhanced expression
is associated with more significant and lethal damage in a
model of intestinal IR injury (111, 112). It is difficult to
reconcile these findings with the overall contrasting effects of
PTX3 in models of IR injury in other sites. Intestinal IRI
is in general much more severe than IRI to other organs
and accompanied by very significant lethality rates within
the first few hours after reperfusion. In addition, there is
significantly more systemic inflammation and remote damage
than in the other models of IRI. There are no studies directly
comparing whether local and systemic severity accounts for
the differences observed. Regardless of the explanation, it is
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clear that one should take great caution when considering the
administration of PTX3 in instances of severe IRI, as seen
in the gut.
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C-reactive protein (CRP) is a pentameric molecule made up of identical monomers. CRP

can be seen in three different forms: native pentameric CRP (native CRP), non-native

pentameric CRP (non-native CRP), and monomeric CRP (mCRP). Both native and

non-native CRP execute ligand-recognition functions for host defense. The fate of any

pentameric CRP after binding to a ligand is dissociation into ligand-bound mCRP. If

ligand-bound mCRP is proinflammatory, like free mCRP has been shown to be in vitro,

then mCRP along with the bound ligand must be cleared from the site of inflammation.

Once pentameric CRP is bound to atherogenic low-density lipoprotein (LDL), it reduces

both formation of foam cells and proinflammatory effects of atherogenic LDL. A CRP

mutant, that is non-native CRP, which readily binds to atherogenic LDL, has been found

to be atheroprotective in a murine model of atherosclerosis. Thus, unlike statins, a

drug that can lower only cholesterol levels but not CRP levels should be developed.

Since non-native CRP has been shown to bind to all kinds of malformed proteins in

general, it is possible that non-native CRP would be protective against all inflammatory

states in which host proteins become pathogenic. If it is proven through experimentation

employing transgenic mice that non-native CRP is beneficial for the host, then using a

small-molecule compound to target CRP with the goal of changing the conformation of

endogenous native CRP would be preferred over using recombinant non-native CRP as

a biologic to treat diseases caused by pathogenic proteins such as oxidized LDL.

Keywords: C-reactive protein, low-density lipoprotein, cholesterol, atherosclerosis, amyloid

INTRODUCTION

C-reactive protein (CRP) is a pentamer of identical subunits which functions in two different
structural states, as native pentameric CRP (native CRP) in normal physiological environment
and as non-native pentameric CRP (non-native CRP) in localized pathological and inflammatory
environments (1–7). During making of CRP in the liver, first, the five subunits fold to almost a
native core and the single C-terminal helix is correctly positioned. Then, the intrachain disulfide
bond between Cys36 and Cys97 is formed. Further folding of the subunit is driven by the newly
formed disulfide bond and Ca2+-binding. Finally, CRP is assembled as pentamers and secreted into
the circulation (8). It has been shown that recombinant CRP is not assembled and not secreted from
the transfected cells if there is a mutation in the region coding for its Ca2+-binding site (9). When
CRP enters an inflammatory microenvironment and is exposed to pathological conditions, the data
obtained from in vitro experiments suggest that the pentameric structure of CRP is converted from
its native conformation to a non-native conformation (2, 10, 11). Whether it is native CRP or
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non-native CRP, binding of CRP to a ligand causes dissociation
of pentameric CRP and generation of monomeric CRP (mCRP)
on the surface of the ligand (10).

Atherosclerosis is an inflammatory disease caused by
the deposition and subsequent modification of low-density
lipoprotein (LDL) in artery walls (12–14). Modified LDL is
atherogenic: it is recognized and engulfed by macrophages to
form LDL-loaded foam cells that contribute to the development
of atherosclerotic lesions (14–16). It has been suggested that
in areas in which inflammation takes place, including in
atherosclerosis, the pH may be acidic due to hypoxia, lactate
generation, activated macrophages and proton generation (17–
21). Since CRP has been found to localize with LDL and
macrophages in atherosclerotic lesions in both humans and
experimental animals, CRP has been implicated in modulating
the pathogenesis of atherosclerosis (22–26). Here, we review
the literature on the structure-function relationships of CRP
in vitro and in vivo as applied to atherosclerosis and conclude
that CRP plays a defensive role in the pathogenesis of
atherosclerosis (27, 28).

FUNCTIONS OF CRP (NATIVE CRP)
IN ATHEROSCLEROSIS

CRP, in its native pentameric conformation and in the presence
of Ca2+, binds to cells and molecules with uncovered
phosphocholine (PCh) groups, such as the membrane
of damaged cells and platelet-activating factor (29–31).
Each subunit in the pentamer has a PCh-binding site.
The three-dimensional structure and mutagenesis of the
PCh-binding site revealed that Glu81, Phe66 and Thr76

are critical for creating the pocket on CRP to bind and
accommodate PCh (32–35). Once CRP is bound to a PCh-
containing ligand, it activates the classical complement
pathway (36).

Many kinds of modifications can occur to deposited LDL in
arteries; however, two types of modified LDL prepared in vitro,
oxidized LDL (ox-LDL) and enzymatically-modified LDL (E-
LDL), are mostly used in experiments to define the role of
CRP in atherosclerosis (37–39). Since the PCh groups present
in LDL are exposed in E-LDL, CRP is able to bind to E-
LDL in a Ca2+-dependent manner (40, 41). CRP does not
bind to ox-LDL; however, CRP can bind to ox-LDL if LDL
is oxidized enough to expose its PCh moiety (42–45). If CRP
binds to ox-LDL independent of the exposure of PCh on ox-
LDL, it would be possible only in a pathological milieu that
can affect CRP structurally (10, 11). CRP has also been shown
to bind to complexes consisting of ox-LDL and β2-glycoprotein
I (46, 47). CRP also binds to cholesterol crystals and it has
been shown that CRP is located mainly in the cholesterol-
rich necrotic core in atherosclerotic lesions (48). It has been

Abbreviations: CRP, C-reactive protein; CRP or native CRP, native pentameric

CRP; non-native CRP, non-native pentameric CRP; mCRP, monomeric CRP; LDL,

low-density lipoprotein; ox-LDL, oxidized LDL; E-LDL, enzymatically-modified

LDL; PCh, phosphocholine.

shown that CRP also binds to LOX-1 which is a receptor for
ox-LDL (49, 50).

CRP, ox-LDL and E-LDL all are known to be involved
in interrelated pathophysiological pathways including in the
formation of LDL-loaded macrophage foam cells (16, 51).
However, the literature on the effects of CRP on the formation
of foam cells has been controversial. Since CRP was found
to be located intracellularly in foam cells, it was hypothesized
that CRP complexes with LDL, enhances the binding of LDL
to macrophages, and thus facilitates the cellular uptake of
LDL along with CRP (52–57). When pure complexes of CRP
and E-LDL were used for treatment of macrophages, it was
found that CRP-bound E-LDL was unable to form foam cells,
clearly suggesting for the first time that CRP possesses the
ability to prevent the formation of foam cells (58). Indeed, in
another study, the complexes of CRP and LDL were found
to be unable to enter macrophages (59). In addition, when
endothelial cells and a third type of modified LDL, acetylated
LDL, were used in foam cell experiments, mCRP was found
to decrease the uptake of acetylated LDL by endothelial cells
(60). In another study employing endothelial cells as a model
for foam cell formation, CRP was found to increase LDL
transcytosis across endothelial cells (61). mCRP has also been
shown to decrease uptake of ox-LDL by macrophages and it
has been proposed that the interaction of mCRP with ox-
LDL may contribute to retardation of the foam cell formation
by reducing the aggressive macrophage response to ox-LDL
(43, 62). Additionally, it has been proposed that mCRP may
exert a protective role by facilitating the clearance of retained
native LDL from extracellular space, and thus lower the risk
of LDL modifications (43). But, since foam cell formation
is inhibited whenever CRP is complexed with modified LDL
such as CRP-E-LDL and mCRP-acetylated LDL, it has been
proposed that if each LDL molecule retained in the arterial wall
becomes CRP-bound, the development of atherosclerosis should
be retarded (58).

Besides the effects of CRP on the formation of foam cells, other
consequences of the interactions between CRP andmodified LDL
have been reported, although it is unclear whether it was ensured
that CRP was free of spontaneously generated mCRP. CRP,
after binding to LDL, causes charge modification of LDL (59).
The production of proinflammatory cytokines by macrophages
decreases when the cells are treated with a combination of CRP
and ox-LDL (62). CRP inhibits the susceptibility of copper-
induced oxidation of LDL, that is, once CRP is bound to
ox-LDL, further oxidation is prevented, and CRP does so by
prolonging the time it takes for copper ions to oxidize LDL
(63, 64). By sequestering minimally modified LDL (mmLDL),
CRP can prevent binding of mmLDL to monocytes and attenuate
mmLDL-induced monocyte adhesion and activation (65). CRP
was also found to suppress the proatherogenic effects of
macrophages when bound to lysophosphatidylcholine present in
ox-LDL and inhibit the association of ox-LDL to macrophages;
this effect may in part retard the progression of atherosclerosis
(66). These findings suggest that not only does CRP prevent foam
cell formation but also reduce the proinflammatory effects of
modified LDL and foam cells.
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Human CRP, mouse CRP and rabbit CRP have all been
used to determine the effects of CRP on the development
of atherosclerosis. For human CRP, three different murine
models of atherosclerosis, ApoE−/− mice, LDLr−/− mice and
ApoB100/100LDLr−/− mice, and a rabbit model of atherosclerosis
have been employed. CRP was either transgenic or passively
administered. In most studies employing ApoE−/− mice, CRP
was found to be neither proatherogenic nor atheroprotective:
both passively administered human CRP and transgenically
expressed human CRP had no effect on the development,
progression, or severity of atherosclerosis (67–71). In two studies
employing ApoE−/− mice, CRP slightly worsened the disease
(72, 73). In another study employing ApoE−/− mice, CRP
promoted early changes of atherosclerosis by directly increasing
the transcytosis of LDL across endothelial cells and increasing
LDL retention in vascular walls (61). In LDLr−/− mice also,
there was no effect of CRP on the development of atherosclerosis
(74). When ApoB100/100LDLr−/− mice were employed, which
are rich in LDL and develop human-like hypercholesterolemia,
CRP slowed the development of atherosclerosis, suggesting an
atheroprotective role of CRP (75). In the rabbit model of
atherosclerosis also, there was no effect of transgenic human
CRP on either aortic or coronary atherosclerotic lesion formation
(76). CRP-deficient mice were employed to observe any possible
role of endogenous murine CRP in atherosclerosis (77). In
both ApoE−/−CRP−/− and LDLr−/−CRP−/− mice, the size of
atherosclerotic lesions was either equivalent or increased when
compared to that of ApoE−/− and LDLr−/− mice, suggesting
that murine CRP had the ability to mediate atheroprotective
effects (77). Besides human and murine CRP, the effect of rabbit
CRP on the development of atherosclerosis in rabbits has also
been investigated by using CRP antisense oligonucleotides (78).
CRP antisense oligonucleotide treatment led to a significant
reduction of CRP levels in rabbits; however, both aortic
and coronary atherosclerotic lesions were not significantly
changed, suggesting that inhibition of plasma CRP does not
affect the development of atherosclerosis in rabbits (78). The
combined data suggest that native CRP was either incapable
or only partly capable for protecting against atherosclerosis in
animal models.

FUNCTIONS OF NON-NATIVE
PENTAMERIC CRP (NON-NATIVE CRP)
IN ATHEROSCLEROSIS

In the presence of a biological protein modifier, the structure
of CRP is altered leading to the production of non-native CRP
which ultimately generates mCRP (1–5, 79). Dissociation of
CRP to mCRP thus involves an intermediate stage of non-
native CRP, and it has been shown that antibodies specific for
mCRP react with non-native CRP also (1). There are several
modifiers of CRP structure. CRP is modified in the presence
of abundant damaged cell membranes (1). The binding of CRP
to activated platelets and apoptotic cells has also been shown
to change the structure of CRP to generate mCRP (80, 81).
CRP, by binding to cell-derived microvesicles, undergoes a

structural change without disrupting the pentameric symmetry
and constitutes the major CRP species deposited in inflamed
tissue (4). mCRP has also been seen deposited at burn wounds
having necrotic and inflamed tissue (82). Acidic pH condition
modifies CRP (10, 83). CRP is also modified by hydrogen
peroxide and hypochlorous acid (11, 84). Hypochlorous acid
modifies CRP by oxidation and chlorination of amino acids,
leading to protein unfolding, greater surface hydrophobicity
and the formation of aggregates (84). These findings suggest
that when CRP enters an inflammatory microenvironment
and is exposed to pathological conditions, the structure of
CRP is changed first to a non-native pentameric conformation
leading to complete dissociation of CRP and generation
of mCRP.

Except for binding to PCh, the recognition functions of non-
native CRP are different from those of CRP (2, 7). One function
of CRP in its non-native pentameric conformation is to bind
to modified LDL irrespective of the presence of PCh and Ca2+.
Unlike CRP, non-native CRP readily binds to ox-LDL regardless
of the extent and nature of the oxidation status (10, 11). To E-
LDL, non-native CRP binds more avidly than CRP does (83).
It has also been shown that, in the absence of Ca2+, a new
lysophosphatidylcholine-binding site located on the opposite side
of the known PCh-binding site becomes functional (85, 86).
The binding to and actions of CRP on endothelial cells also
requires a conformational rearrangement in CRP (87). Taken
together, the deposition of CRP and its co-localization with
LDL in atherosclerotic lesions indicate the presence of non-
native CRP at the lesions. Besides PCh, the other moieties on
LDL molecules that interact with CRP include apolipoprotein
B and cholesterol. However, the moiety on modified LDL
with which non-native CRP interacts is unknown (88–90). The
binding site on non-native CRP for modified LDL has not been
elucidated as yet either. It has been proposed though that the
binding site may involve amino acid residues participating in
the formation of intersubunit contact region since this region
is buried in CRP and accessible in non-native CRP (2, 10). In
addition, a single sequence motif called the cholesterol binding
sequence, from amino acid residue 35 to 47, has been found
to be responsible for mediating the interactions of mCRP
with diverse ligands. The versatility of the cholesterol binding
sequence appears to originate from its intrinsically disordered
conformation (91).

Although the investigations to determine the effects of
CRP on the development of atherosclerosis in animals provide
conflicting results, a study employing mCRP in ApoE−/− mice
indicated that mCRP was atheroprotective (73). Additionally,
the data obtained from in vitro experiments raised hopes
that non-native CRP may be more atheroprotective than CRP,
considering the difference between the LDL-binding recognition
functions of CRP and non-native CRP. Employing site-directed
mutagenesis, it was possible to create CRP mutants capable
of binding to ox-LDL without the requirement of any further
structural change, and one such mutant has been reported
earlier (92). Recently, the impact of such a CRP mutant on
the development of atherosclerosis was evaluated employing the
LDLr−/− mouse model of atherosclerosis (93). The development
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of atherosclerotic lesions in the whole aorta was reduced in
mice receiving mutant CRP that had a non-native pentameric
structure. Considering the findings made on all forms of
CRP structure, it seems clear that CRP is an atheroprotective
molecule (93).

PROINFLAMMATORY FUNCTIONS OF
LIGAND-BOUND mCRP

Once CRP, either native or non-native, is bound to certain types
of ligands, mCRP is generated on the surface of the ligand,
due to complete dissociation of the five subunits of CRP. It has
been shown that the binding of non-native CRP to immobilized
protein ligands results in expression of mCRP epitopes and that
mCRP cannot be detached from the ligand (10). Thus, mCRP
is not a free molecule; instead, mCRP is always ligand-bound
and found in CRP-derived debris. The presence of mCRP can be
detected at the sites where CRP-ligands are present. The detection
of autoantibodies against mCRP provided further evidence for
the in vivo existence of non-native CRP and mCRP, probably
ligand-bound (94–96). The mCRP form is the predominant form
of CRP existing in atherosclerotic lesions (80, 97–100). It has also
been shown that the expression of proinflammatory properties
of CRP requires sequential conformational changes beginning
with the loss of pentameric symmetry, followed by reduction
of the intrasubunit disulfide bond, generating mCRP (87, 101).
Since free mCRP is proinflammatory in in vitro experiments,
it can only be assumed that ligand-bound mCRP may also be
proinflammatory. Ligand-associated mCRP must be removed
along with the ligand.

CRP, STATINS, AND ATHEROSCLEROSIS

Statins, the inhibitors of a key enzyme in the cholesterol
biosynthesis pathway, are used in humans as cholesterol-
lowering drugs (102). However, statins also lower CRP levels
in humans and human CRP-transgenic mice (103–108). Statins
lower CRP levels independently of their cholesterol-lowering
activity (103, 104). Statins lower CRP by inhibiting the
biosynthesis of CRP by hepatocytes (109, 110). Nitric oxide also
inhibits the biosynthesis of CRP (109). It is possible that nitric
oxide acts as the mediator of the CRP-lowering effect of statins,
since statins are known to generate nitric oxide production (109–
112). Because CRP is beneficial, to get rid of CRP from the
circulation is not a good idea; a drug that can lower cholesterol
levels, but not the CRP levels, should be of choice over statins
which lower both (113, 114).

CONCLUSIONS

CRP appears in the body in response to inflammation and
CRP requires exposure to an inflammatory milieu to change its
structure and execute functions (2, 115). We have hypothesized
earlier that one of the functions of CRP at sites of inflammation
is to sense the inflammatory microenvironment, change its
own structure in response but remain pentameric, and then

bind to pathogenic proteins deposited at those sites (11). CRP
does not show an effect on the development of atherosclerosis
likely because the inflammatory microenvironment in the
arterial wall in animal models of atherosclerosis may not
be appropriate in terms of pH and redox conditions and,
therefore, the structure of CRP remains unchanged. Consistent
with this hypothesis, a CRP molecule which was modified
in vitro and was capable of binding to atherogenic LDL, did
reduce the development of atherosclerosis in mice (93). Thus,
CRP has atheroprotective functions displayed by its non-native
pentameric form. It has also been proposed that CRP-mediated
lipoprotein removal likely underlies the regression of early lesions
and perhaps CRP should be considered as an antiatherogenic
agent (39).

Non-native CRP binds not only to atherogenic LDL but
to all immobilized proteins, including proteins that might
be deposited in the host body or recruited on pathogenic
surfaces (10, 116). We have suggested previously that deposited,
aggregated and conformationally denatured proteins expose a
CRP-ligand, regardless of the protein’s identity (10). Accordingly,
non-native CRP has also been found to be protective against
pneumococcal infection (117–119). Although it is not clear
what structure on immobilized proteins is recognized by
non-native CRP, it has been proposed that an amyloid-like
structure is formed on all such proteins and that is what
is being recognized by non-native CRP, consistent with the
hypothesis that CRP is a pattern recognition molecule of
the innate immune system (10). Indeed, an amyloid-like
structure appears on LDL by oxidation (120, 121). Non-native
CRP may serve as a tool to investigate the functions of
CRP in every inflammatory disease involving deposition and
aggregation of proteins, such as amyloidosis and autoimmune
diseases (122). CRP may have been conserved throughout
evolution for protection against disease and toxicity caused
by protein misfolding and conformationally altered pathogenic
proteins (123, 124).

Considering all the properties of all forms of CRP, it can
be said that CRP possesses the functionality of a host defense
molecule against not only atherosclerosis but against all diseases
caused by proteins when proteins behave like a pathogen or
a toxic molecule, in a life cycle that begins as free CRP
in circulation and ends in ligand-bound mCRP at sites of
inflammation via an intermediate stage of non-native pentamers.
If it is validated through further experimentation employing
mice transgenic for non-native CRP that non-native CRP is
beneficial, the focus should be on the designing and synthesis
of a small-molecule compound to target CRP with the goal of
changing the conformation of endogenous CRP, which would
be preferred over using recombinant non-native CRP as a
biologic to treat diseases caused by pathogenic proteins such
as ox-LDL.
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The functions of pentraxins, like C-reactive protein (CRP), serum amyloid protein P (SAP)

and pentraxin-3 (PTX3), are to coordinate spatially and temporally targeted clearance

of injured tissue components, to protect against infections and to regulate related

inflammation together with the complement system. For this, pentraxins have a dual

relationship with the complement system. Initially, after a focused binding to their targets,

e.g., exposed phospholipids or cholesterol in the injured tissue area, or microbial

components, the pentraxins activate complement by binding its first component C1q.

However, the emerging inflammation needs to be limited to the target area. Therefore,

pentraxins inhibit complement at the C3b stage to prevent excessive damage. The

complement inhibitory functions of pentraxins are based on their ability to interact with

complement inhibitors C4bp or factor H (FH). C4bp binds to SAP, while FH binds to

both CRP and PTX3. FH promotes opsonophagocytosis through inactivation of C3b to

iC3b, and inhibits AP activity thus preventing formation of the C5a anaphylatoxin and the

complement membrane attack complex (MAC). Monitoring CRP levels gives important

clinical information about the extent of tissue damage and severity of infections. CRP is a

valuable marker for distinguishing bacterial infections from viral infections. Disturbances

in the functions and interactions of pentraxins and complement are also involved in a

number of human diseases. This review will summarize what is currently known about

the FH family proteins and pentraxins that interact with FH. Furthermore, we will discuss

diseases, where interactions between these molecules may play a role.

Keywords: CRP–C-reactive protein, complement factor H, PTX3, innate, age-related macular degeneration (AMD),

factor H-related protein, complement C1q, cholesterol

INTRODUCTION

As a part of the host defense, the immune system enables us to cope with unwanted materials
threatening our body. Innate immunity acts stereotypically and rapidly (in minutes to hours) to
recognize and clear away unwanted materials, while the adaptive immunity generates antigen-
specific responses during a longer time course (days to weeks). The central players in the
humoral arm of innate immunity include complement (C) system components and soluble pattern
recognition molecules, such as pentraxins and collectins. The interplay between these components
has a crucial role in the recognition and clearance of both foreign and endogenous unwanted
particles from the human body. Any disturbances in these interactions may have a significant
impact on the immune response and health.
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The complement system was first described in 1888–1889,
when both George Nuttall and Hans Buchner independently
demonstrated that blood serum was able to kill bacteria.
Buchner called this activity “alexin.” However, due to the
“complementing” function, 10 years later the system was named
“complement” by Paul Ehrlich. Jules Bordet observed that for
bacterial killing serum contains a heat-stable component, i.e.,
antibodies, and a heat-labile component, complement. Within
the next 50 years it was generally believed that complement
requires antibodies for activation. In 1954, however, Louis
Pillemer demonstrated that the complement system can be
activated independently from antibodies by the so called
“properdin” system, thereby playing a central role in innate
immunity (1). Because this pathway does not require antibodies
nor humoral lectins for activation, like the classical (CP) and
lectin pathways (LP), it was later named as the alternative
pathway (AP). The AP can act as a separate pathway and as
an amplification system of activation triggered by the other
pathways. We now know that the first identified heat-labile
components, C1 subcomponents C1r and C1s, belong to an
activation cascade containing over 40 different molecules. The
heat-labile components include also other serine proteases of
the C system, like C2, factor B, and the lectin-associated
serine proteases (MASPs). Many of the complement factors also
interact e.g., with the coagulation, fibrinolytic, and kinin system
components. Complement also closely links the innate and
adaptive immune systems together e.g., in antigen recognition
and delivery to the adaptive immune system players: dendritic
cells, follicular dendritic cells, macrophages, B cells and T cells
(2). Importantly, the immune system also maintains tolerance
and controls excessive inflammatory reactions.

A unique and separate system of targeted complement
activation involves a group of evolutionarily relatively old
molecules, the pentraxins. C-reactive protein (CRP), serum
amyloid P component (SAP), and pentraxin-3 (PTX3) belong
to the pentraxin family of pattern recognition molecules. The
listed three members have been shown to interact with distinct
C components. The first interaction between the C component
C1q and CRP was described by Volanakis and Narkates (3).
Thereafter, an interaction between SAP and C1q was soon
reported (4). Years later, PTX3 was found to bind C1q, as well (5).
These data and further studies have shown that pentraxins play
a crucial role in inflammation in directing C activation toward,
for example, foreign microbes, apoptotic cells and injured tissue.
They interact with C components at different stages of the
activation cascade. It has been generally accepted that, together
with the C system, they contribute to host defense, tissue
clearance and regulation of inflammation.

In addition, but very importantly, after activating the
complement classical pathway the pentraxins regulate further
activation to prevent excessive tissue damage and to coordinate
targeted clearance of the injured tissue components. The
complement inhibitory function of pentraxins is partially based
on their ability to interact with factor H (FH), a complement
regulator that interferes with AP activity at the C3b stage and
thus prevents formation of the complement membrane attack
complex C5b-9 (MAC). Pentraxins and C components such as

C3b, C5b-9, and FH are often found in pathological deposits.
Changes in their temporal behavior correlate and associate with
the same diseases (6–8). Mutations or polymorphisms in these
molecules can influence the interactions and have an impact on
the progression of the diseases (6–8). The roles of FH, pentraxins
and the interactions between these molecules during the course
of inflammation have been the subject of many investigations.
Pentraxins have been considered either as inflammatory or
as anti-inflammatory factors. Thus, their potential causal or
protective roles in various diseases still remain to be sorted out.
This review summarizes studies on the interactions between
pentraxins and the complement system, We will highlight
current observations and discuss aspects, where more research
is needed.

THE COMPLEMENT SYSTEM

The complement cascade can be activated through three
pathways, the classical, lectin and alternative pathways
(Figure 1). C3 is the key component of all three pathways,
since all pathways converge on it, and major effector functions of
complement are mediated through activation of this molecule.

Alternative Pathway
Distinct from the CP and LP, the AP is activated spontaneously,
because C3 is continuously hydrolyzed at a low rate in human
plasma to form a metastable C3(H20) without cleavage of C3
to C3a and C3b (Figure 1). C3(H20) is able to bind factor B in
a Mg2+-dependent manner exposing it to cleavage by factor D
thus forming the C3(H20)Bb complex, the initial C3 convertase,
in the fluid phase. This enzyme cleaves fluid phase C3 to C3a
and C3b, and the freshly formed C3b can then target any nearby
surface that has available hydroxyl or amino groups for covalent
attachment. Soluble or fluid phase associated C3bBb enzyme
has a strong catalytic activity for cleaving new C3 molecules to
C3a and C3b and thus to amplify AP activation. The smaller
cleavage fragment, C3a, is released into solution and acts as an
anaphylatoxin and as a chemotactic and activating factor for
leukocytes (2).

A key to the properly directed and efficient complement attack
by AP is the ability to discriminate the target cells from host
cells. In general, on the host cell surface the C3b molecules
are rapidly inactivated, while on foreign cells and particles the
deposited C3b molecules remain active and can lead to rapid
amplification of AP activation. The C3 convertases (C3bBb) also
activate the terminal complement cascade by cleaving fluid phase
C5. Additional nearby C3b molecules may be needed for the
attraction and proper orientation of C5 molecules. C5 activation
leads to the release of the strongly proinflammatory chemotactic
and anaphylatoxic protein fragment C5a and assembly of the
potentially lytic C5b-9 membrane attack complex (MAC) onto
the target membrane. Therefore, the fate of C3b deposits on a cell
membrane dictates whether complement activation eliminates
the target or not. Because of the strong biological activities of
the C system, its activation needs carefully directed and efficient
regulation at different times, occasions and locations. For this,
additional molecules like the pentraxins are needed.
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FIGURE 1 | Complement activation with emphasis on alternative pathway amplification. Complement proteins interact with each other in sequence leading to

cleavage of C3 to C3b. Activation on a suitable target leads to opsonization (coating with C1q, C4b, C3b, or iC3b), release of chemotactic and anaphylatoxic

fragments (C5a, C3a) and formation of the membrane attack complex (MAC). C4bp inhibits the CP C3 convertase C4b2a. The alternative pathway gets amplified,

when C3 convertase (C3bBb) activates additional C3 molecules by cleavage to C3b to generate new C3 convertase enzymes. This amplification step efficiently

opsonizes the target with C3b molecules and its inactivation fragment iC3b. Factor H is the main inhibitor of the amplification loop. Its function is to promote C3b

inactivation, inhibit binding of factor B to C3b and accelerate the dissociation of the AP C3 convertases.

FACTOR H AND FACTOR
H-RELATED PROTEINS

The molecular mechanism, how our own cells are protected
from the AP attack, is based on the recognition of C3b on host
cells by factor H (FH), the main AP regulator in plasma and
other body fluids. FH is an elongated molecule composed of
20 short-consensus repeat (SCR) or complement control protein
(CCP) domains. The N-terminal domains 1-4 are responsible for
the regulatory activity, while the C-terminal domains 19-20 are
responsible for simultaneous recognition of C3b (9) and either
sialic acids or glycosaminoglycans present on self surfaces (10).
In addition, domains 6-7 can bind to surface polyanions (11, 12),
As a result of these interactions, FH blocks AP activation and
amplification on host structures. FH does this by acting (i) as a
cofactor for factor I in the proteolytic cleavage of C3b to iC3b, (ii)
by inhibiting the formation or (iii) by promoting the decay of the
surface-bound C3bBb convertases (Figure 1) (13–15).

The essential role of FH in keeping spontaneous complement
activation in check is obvious. It is based on the clinical
consequences of CFH gene mutations or anti-FH autoantibodies
that prevent full function of FH (16–18). Although the initiation
of AP activation in the fluid phase relies on a spontaneous
low-grade process without a need for a trigger, the activation
will be enhanced under suitable conditions. Disease-related FH
abnormalities usually lead to an imbalance between AP activation
and regulation in the fluid phase or to amistargeted attack against

endothelial and blood cell surfaces (19). On surfaces recognized
as activators AP amplification readily takes place, because the
generated C3b molecules can bind covalently to the surface in
the immediate neighborhood of the activating C3 convertase.

In addition to FH, the factor H family includes an alternatively
spliced variant of FH, called factor H-like protein (FHL-1), and
five factor H-related proteins (FHR-1 to 5) (Figure 2). While
FHL-1 contains the first seven domains of FH (plus an extra 4
unique amino acids) and possesses AP regulatory activity, FHRs
in general lack these regulatory domains. Therefore, FHRs have
no strong direct regulatory activity, although they all interact
with C3b (20). Instead, they can compete with the binding of
the C-terminus of factor H and thereby regulate its activity with
a net result to promote complement activation (21). The most
homologous regions between FH and the FHRs are the 2 most
C-terminal regions (19-20 in FH), which bind to the C3d region
of C3b (22).

The gene cluster coding for FH and FHR-proteins is located on
chromosome 1q32. The full-length FH is encoded by 22 exons,
while the sequence for FHL-1 stops after alternative splicing at
exon 10. The CFHR genes are located downstream from the CFH
gene (23).

There are several known genetic variations and mutations
within the FH gene cluster. Of these, some have no observable
effect on the phenotype, while others are associated with
diseases or other harmful effects on the carrier. Most of
the disease-related mutations in FH are located within the
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FIGURE 2 | Schematic structures of representative factor H family proteins, their interactions with pentraxins CRP and PTX3 and disease associations. The pentraxin

interacting domains in FH family proteins (marked above) display disease-associated polymorphisms that alter the protein/pentraxin interactions. The substituted

amino acid are marked below. The asterisk indicates the pentraxin, whose binding to the protein is affected by the polymorphism. FHR-2 and FHR-3 are not shown,

because their plasma concentrations are low. AMD, Age-related Macular Degeneration; DDD, Dense Deposit Disease; aHUS, atypical Hemolytic Uremic Syndrome;

PTX, pentraxin; CRP, C-reactive protein; mCRP, monomeric CRP; pCRP, pentameric CRP.

carboxyl-terminal domains 19-20. They are associated with the
atypical hemolytic-uremic syndrome (aHUS) (24). Mutations in
the amino-terminus are associated with dense deposit disease
(DDD), earlier called membranoproliferative glomerulonephritis
type II (MPGN) and rarely also with partial lipodystrophy (PLD).
Some polymorphisms have been found to be associated with age-
relatedmacular degeneration (AMD), which is themost common
cause of visual loss in the elderly people in the industrialized
countries. The strongest genetic risk factor for AMD is the Y402H
(Tyr402His) polymorphism, which is located in the domain
seven (CCP7) of FH (25–27). In addition to polymorphisms
and mutations, also autoantibodies against FH can predispose to
diseases similar to aHUS or DDD (28, 29). Individuals with factor
H deficiency have an over 1,000-fold increased risk to develop
meningococcal meningitis, which is due to a secondary C3 and
C5 deficiency following overactivation of the alternative pathway
in the fluid phase.

FH INTERACTIONS WITH PENTRAXINS

Pentraxins
Pentraxins (PTX) are innate pattern recognition molecules,
some of which are produced as a response to infection
and tissue damage. The name pentraxin comes from the
ability of at least some of these molecules to form multimers
with five nearly identical subunits. Pentraxins have multiple
functions. The best characterized function is activation of the
classical pathway of complement on certain microbes and
necrotic cells, and thereby contribution to removal of cellular
debris. Further observations also imply antibody-like functions,
which in evolution would predate the emergence of adaptive

immunity (30). The pentraxins are divided into two groups,
the short pentraxins: C-reactive protein (CRP) and serum
amyloid P component (SAP) and long pentraxins: neuronal
PTX1 (NPTX1), neuronal PTX2 (NPTX2), PTX3 and PTX4.
All PTXs contain an approximately 200 amino acid-long PTX
domain, while the long PTXs have an additional N-terminal
domain. The neuronal pentraxins, NPTX1 and NPTX2, are
expressed particularly, but not exclusively, in neurons, They have
been suggested to be involved in the clearance of synaptic debris
during neuronal synapse remodeling (31). However, no role in
complement activation by these molecules has been reported.
In contrast, CRP, SAP, and PTX3 are all known to activate
complement, interact with multiple complement components
and thereby contribute to innate immunity. Sometimes, they have
been referred to as ancestors of antibodies (Figure 3).

SAP shares approximately 51% sequence identity with
CRP, which supports the hypothesis that SAP and CRP are
products of an earlier gene duplication event. SAP is the
glycoprotein precursor of the amyloid P protein. SAP occurs
in association with amyloid deposits, including those associated
with Alzheimer’s disease (34). SAP binds C1q to activate the CP
similarly as CRP and PTX3. However, according to the current
knowledge, SAP does not interact with any of the FH family
proteins. Instead, SAP binds the fluid phase regulator of the CP,
C4b-binding protein (C4bp), and plays a potential role in the
regulation of CP (35).

CRP was originally named by its ability to bind to the
phosphocholine (PC) part of the C-type polysaccharide of
pneumococcus in a calcium-dependent manner. It also binds
on carbohydrate structures of many other microorganisms such
as fungi, yeasts, bacteria and parasites. Moreover, it recognizes

Frontiers in Immunology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 1750193

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Haapasalo and Meri Complement and Pentraxins

FIGURE 3 | Binding of the short pentraxin CRP (32) and the long pentraxin PTX3 (33) to factor H. Multiple interactions between the molecules exist.

modified low-density lipoproteins (LDL) and necrotic and
apoptotic cells, and thereby participates in the phagocytosis and
clearance mechanisms of the innate immune response (36). One
of the specific targets for CRP in LDL particles is cholesterol
itself, to which CRP binding was found to be dependent on
the 3beta-OH group (37). CRP is produced by hepatocytes as
a response to infection or tissue damage, mainly in response to
the proinflammatory cytokine IL-6. CRP is therefore commonly
used as a non-specific laboratory indicator for infection, systemic
inflammation, and tissue damage (34). Highly elevated levels are
usually seen in serious bacterial infections, but not so commonly
in viral infections. Binding of CRP to apoptotic and necrotic cells
enhances their opsonization and phagocytosis by macrophages.

Importantly, CRP has been observed to bind the alternative
complement pathway inhibitor factor H (FH) to potentially
recruit it to areas of tissue damage (32). This would limit AP
activation and excessive inflammation in these areas and promote
a non-inflammatory clearance of dying cells (38) (Figure 4).With
the help of complement, CRP thus demarcates the area destined
to clearance.

In addition to FH, also FHR-1, FHR-4, and FHR-5 (Figure 2),
have been shown to bind CRP on necrotic cells (39–41). When
compared to full length FH and FHL-1, the FHRs, however (with
the possible exception of FHR-5), possess no direct complement
regulatory activity. It has been suggested that FH, FHL-1, and
different FHRs possess different binding properties to CRP
than FH. FHL-1 domains 6-7, FHR-1 domains 3-5, and FHR-5
domains 3-7 preferentially interact with the monomeric (mCRP),
while FHR-4 domain 1 mainly binds the pentameric form of
CRP (pCRP) (39, 41–43). Both CRP forms are known to exist
in humans. They have been shown to possess similar functions
in modulating CP activation on necrotic cells, but they differ
in their relative abundance in different tissues. The pCRP is
present in plasma, while the mCRP is detected mainly on
the surfaces of damaged cells and platelets (44). While the
molecular function of the FH-CRP interaction is known, it is
still unclear whether binding of FHRs to CRP will enhance

C activation and/or promote CRP-mediated opsonization. The
FHRs, however, appear to play a particular role in C activation,
as exemplified by the association of several reported genetic
variations, e.g., FHR deletions and hybridmolecules, with various
diseases (45).

Unlike CRP and SAP, PTX3 has been described as an octamer
composed of eight identical subunits. It is produced locally in a
number of tissues and expressed by several cell types, including
fibroblasts, monocytes, macrophages, myeloid dendritic cells
and neutrophils (3). It can opsonize target surfaces, such as
fungal (Aspergillus) and bacterial pathogens and apoptotic cells
to initiate complement activation. PTX3 binds C1q, mannan-
binding lectin, M-ficolin (ficolin-1) and L-ficolin (ficolin-2), and
thereby activates both the CP and LP (36). Binding of PTX3 to
C1q is calcium-independent, as opposed to CRP and SAP that
both require this divalent cation for their interaction with C1q
(34). In addition, PTX3 binds FH, and FHL-1 to inhibit excessive
complement activation (27). Also, FHR-1 and FHR-5 have been
observed to bind PTX3. By competing out factor H FHRs may
actually promote complement activation.

ALTERATIONS IN FH-PENTRAXIN
INTERACTIONS AND THEIR POSSIBLE
DISEASE ASSOCIATIONS

Recently, it has become clear that AP dysregulation is a
central event in the development of several complement related-
diseases involving factor H mutations or polymorphisms in
domains FH1-5, FH7, and FH19-20 (Table 1). While mutations
in FH19-20, or autoantibodies against this region, are associated
with atypical hemolytic uremic syndrome (aHUS), the Y402H
polymorphism in domain 7 is associated with age-related
macular degeneration (AMD) (54, 55) and dense deposit
disease (DDD) or C3-glomerulonephritis (C3GN) (26). DDD
and C3GN are collectively referred to as C3 glomerulopathy
(C3G), which is linked to mutations in the N-terminus of
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FIGURE 4 | Role of CRP and FH in promoting clearance of dying cells. On viable cells (Left) accidentally deposited C3b is rapidly inactivated to iC3b and no C

activation takes place. On surfaces, from where protective polyanions, like sialic acids, are lost as a consequence of cell damage, factor H binding is decreased

(Right). This together with CRP-mediated classical pathway activation leads to complement activation. During a prolonged time course, the large number of

deposited C3b molecules, will, however, be inactivated to iC3b with the help of factor H recruitment by CRP. Deposited iC3b molecules promote phagocytosis of the

debris without leading to further activation of the terminal pathway.

TABLE 1 | Diseases related to factor H mutations or variants that have potential effects on interactions with CRP, PTX3, C3b or polyanions.

Disease Factor H or FHR

polymorphisms/mutations

Interactions affected Functional effect of disease-related variant References

AMD FH Y402H (domain 7)

FHL-1

CRP, polyanions Insufficient clearance of drusen, inflammation (46–50)

aHUS FH mutations in domains 19-20 PTX3, C3b/d, sialic

acid

C attack against vascular and blood cells,

C-mediated inflammation

(24, 27, 51)

Atherosclerosis FH I62V (associated with high

MMP-8 levels)

C3b Increased release of MMP-8 from neutrophils (52)

DDD FH domains 1-5 (e.g., R83S) C3b AP overactivation in the fluid phase, C3b deposition

on basement membranes

(51, 53)

FH Y402H (domain 7) CRP, polyanions Inflammation (26)

C3GN FHR abnormalities (e.g., hybrids),

FHR5

CRP, C3b Competition with factor H, AP dysregulation (21)

FH Y402H (domain 7) CRP Inflammation (26)

AMD, age-related macular degeneration; aHUS, atypical hemolytic-uremic syndrome; DDD, dense deposit disease; C3GN, C3 glomerulonephritis; FHR, factor H-related protein; AP,

alternative pathway.

FH or to FHR abnormalities. Interestingly, the AMD/DDD-
associated domain 7 of FH mediates binding to CRP as well as
to glycosaminoglycans (56). In addition to this short pentraxin,
the long pentraxin 3 (PTX3) interacts with FH (33). However,
unlike CRP binding to FH, the PTX3 binding to FH is not
affected by the AMD-associated polymorphism. This implies
different molecular functions for these two pentraxins within
the complement regulatory system. Because CRP and PTX3 are

both acute phase proteins, while FH is the main regulator of the
AP, these interactions most likely are relevant during episodes of
inflammation and/or tissue injury.

Age-Related Macular Degeneration (AMD)
AMD is a progressive blinding disease that makes the individual
unable to perform basic activities requiring vision, such as
reading, recognizing faces, and driving. Globally, AMD affects
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170 million people. Therefore, it is the leading cause of visual
disability in the industrialized countries. While age is the
strongest risk factor for AMD, several genetic risk factors have
also been reported. Of these, theY402H polymorphism in FH is
the strongest (6).

FH binds CRP at three sites, one located at domain 7, the
second within domains 8 to 11 (32) and the third in domains
19-20 (57). CRP is thought to play an important role in helping
to direct CP activation and suppressing AP activation at the site
of tissue damage and during local inflammation. While CRP
induces CP activation and C3b formation on apoptotic and
damaged cells by recruiting C1q, the binding of FH to CRP blocks
further AP activation and inflammation caused by accelerated C
attack (Figure 5). Therefore, blocking of AP at this stage is crucial
to prevent excessive damage of autologous cells and tissues at the
site of inflammation.

An aberrant complement regulation may contribute to the
etiology of inflammatory diseases, as exemplified by the strong
association of the FH Y402H polymorphism with AMD (46–
48). As a result of a single nucleotide polymorphism that leads
to the substitution of tyrosine in position 402 in domain 7 of
FH by a histidine, the binding of FH to CRP is reduced (49). It
has also been observed that the 402 polymorphism may affect
FH binding to certain local polyanions in the retinal tissue
(58). The reduced binding of FH to CRP and/or to polyanions
could partially explain why individuals homozygous for 402H
have an up to 10-fold increased risk for developing AMD than
individuals homozygous for 402Y. This is supported by the
finding that drusen, lesions developed in early AMD between
the basal surface of the retinal pigmented epithelium (RPE) and
Bruch’s membrane, contain numerous proteins associated with
the complement system, including the membrane attack complex
(MAC) (59). This same study found that drusen contain proteins
common to extracellular deposits associated with atherosclerosis,
elastosis, amyloidosis and DDD. Thus, suggests partially shared
pathogenetic mechanisms for these diseases. However, the results
of studies analyzing associations of FH and CRP with these
diseases are still controversial.

The FH Y402H polymorphism is strongly associated with
AMD. However, it is still unclear how diminished CRP
interaction with FH contributes to the disease development.
Ultimately, the binding of FH to both CRP and PTX3 prevents
further complement activation. In the case of AMD, the described
effect on the molecular interaction between CRP and FH is
logical and supported by the synergistic effects between 402H
homozygosity, CRP expression and AMD (60, 61). No genetic
association to AMD has been observed with FH family proteins
FHR-4 and FHR-5, although they are known to interact with
mCRP. In contrast, individuals with an FHR-3–FHR-1 deletion
have a smaller risk for AMD (40, 62). Because the binding
sites in the C-terminal domains of FH and FHR-1 are nearly
identical, it is possible that the protective effect of FHR-3–FHR-
1 deletion could be primarily caused by the FHR-1 deficiency.
Because FHR-1 competes out FH it could actually promote,
rather than inhibit, AP activation on CRP-coated necrotic cells,
although contradictory results have also been reported (41, 63).
In addition to Y402H in FH, the same polymorphism is found in

FHL-1. It has been suggested that FHL-1 is a major regulator of
complement in the retinal Bruch’s membrane, as it can passively
diffuse through the membrane, whereas the full-sized FH cannot
(50). In addition, FHL-1 was reported to have slightly different
binding properties to CRP and PTX3 than FH (64).

Atypical Hemolytic Uremic Syndrome
(aHUS)
Hemolytic uremic syndrome (HUS) is a disease characterized
by thrombocytopenia, microangiopathic hemolytic anemia and
acute renal failure. The more frequent, “typical” form of HUS is
associated with infections caused by Shiga-like toxin-(verotoxin)
producing bacteria, such as enterohemorrhagic E. coli (EHEC),
while aHUS is usually linked to mutations in complement
proteins (FH, factor I, membrane-cofactor protein/MCP, factor
B, C3), thrombomodulin or to antibodies against FH. aHUS
is characterized by severe endothelial and blood cell damage,
which is caused by a dysregulated and misdirected complement
attack. Endothelial injury can be simulated ex vivo by the patient
serum also in cases, where no mutations or autoantibodies have
been found. These observations indicate that dysregulation of the
AP on the cell surfaces is the central event in aHUS pathology
(65). An abnormal recognition of cell or platelet surface sialic
acids or C3b by mutated FH is the key mechanism behind the
FH-mutation associated aHUS (66).

Binding of C1q to PTX3 has previously been shown to have
a dual role, enhancing or inhibitory, upon C function. This
depends on whether PTX3 recruits C1q to fluid phase molecules
or to cellular surfaces, such as bacteria or apoptotic cells (67).
Binding of the C-terminal domains of FH or of FHR-1 to PTX3
has been shown to be affected by aHUS-associated mutations
within domains 19-20 of FH and by autoantibodies against FH
and FHR-1. These findings suggest that a reduced binding of
FH/FHR-1 to PTX3 could also have a role in the enhanced local
C-mediated inflammation and endothelial damage in aHUS (27).
Genomic rearrangements resulting in the generation of hybrid
genes between FH and FHR-1 or FHR-3 or deletions are not
unusual. From these, some have been reported to associate with
aHUS or C3G but their interactions with PTX3 have not yet
been studied.

Atherosclerosis
Atherosclerosis is a disease, where arterial walls lose their
dynamic properties because of lipid accumulation. The arteries
may become narrow and in later stages obstructed because
of plaque formation. Total obstruction, because of e.g., of
plaque rupture, may lead to a local infarction e.g., in the
myocardial coronary arteries. Atherosclerosis is considered to
be a multifactorial disease driven by inflammation. Somewhat
elevated levels of CRP are related to the long-term risk of
death from cardiac causes (68). CRP is known to bind to
phosphocholine (PC) and cholesterol in modified LDL particles
and colocalize with LDL in human atherosclerotic lesions (37,
69). It has been suggested that FH has a protective role in the
development of atherosclerosis, as it binds to apolipoprotein
E and thereby increases cholesterol efflux by macrophages
(70, 71). A marker of atherosclerosis, elevated level of matrix
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FIGURE 5 | Role of factor H-CRP interaction in regulating complement activation on host cells during the course of inflammation. CRP deposition initially activates the

classical pathway of complement on injured cells, which leads to deposition of large amounts of C3b. Binding of factor H to CRP blocks further AP activation and

inflammation on the damaged cells by promoting inactivation of the C3b molecules to iC3b. In contrast, only a few iC3b molecules are formed on healthy cells due to

the rapid inactivation accidentally bound C3b-molecules by sialic acid-bound factor H. On injured cells the density of iC3b molecules is high enough to lead to

phagocytosis.

metalloproteinase 8 (MMP-8), was also strongly linked to FH
gene polymorphisms in a large unbiased population study (52).

Accumulation of lipids in the lesions caused by inefficient
removal of modified LDL by macrophages has been recognized
in both atherosclerosis and AMD. Interestingly, AMD and
atherosclerosis partially share similar pathological and
histological features (72). Complement dysregulation may
play a role in the development and progression of both diseases.
However, the results of studies investigating the link between
CRP, FH Y402H polymorphism and atherosclerosis have
yielded controversial results (60, 73). Studies showing that
mCRP dissociated from pCRP mediates local proinflammatory
effects suggest that mCRP is a proatherogenic factor. mCRP
might thus contribute to the formation of atherosclerotic
plaques and induce plaque rupture or destabilization (74).
To what extent polymorphisms or binding properties of FH
or FHL-1 could alter mCRP effector functions has not yet
been elucidated.

C3 Glomerulopathy (C3G)
Dense deposit disease (DDD, membranoproliferative
glomerulonephritis type II) and C3 glomerulonephritis (C3GN)
constitute a group of rare kidney diseases (C3G). The kidney
histology in DDD is characterized by the presence of dense
deposits in the glomerular basement membranes in electron
microscopy. The deposits stain for complement C3/C3b, while
immunoglobulins are absent. The fundamental cause of DDD is
relatively well-understood. The disease is due to hypercatabolism
of the alternative complement pathway in the fluid phase and
C3b deposition to targets (basement membranes) that lack
membrane regulators of complement, like CD46 or CD55.
C3 glomerulonephritis, however, is less well-understood. It is
characterized by C3 deposits in the absence of glomerular dense
deposits and immunoglobulins, although they may be present in

small amounts. In a proportion of cases C3G is associated with
monoclonal gammopathy (17, 75, 76).

Mutations, allelic variants, sequence duplications and
deletions within the FH/FHR gene cluster are known to
associate with C3GN and DDD (26, 53, 77). They include
the Y402H polymorphism in the CRP interacting domain
7 on FH. One significant SNP in FHR-5 associates strongly
with a particular type of C3GN. This SNP is located in the
FHR-5 domain 1 that is homologous to the short consensus
repeat 6 of FH, which interacts with CRP. This is particularly
interesting as this could affect the FHR-5-CRP interaction,
and thereby influence complement activation and control in
C3GN (26).

Other Diseases
According to what has repeatedly been shown, interactions
between pentraxins, and the C system play a crucial role
in the development and regulation of inflammation. These
interactions play an important role in handling tissue damage
and priming it for clearance. Thus, they are involved also
in conditions such as cancer and infectious diseases, where
tissue damage and necrosis often occur. It has been suggested
that FH expression levels could be increased in certain
tumors, such as urinary bladder and skin tumors (78, 79). In
humans, PTX3 expression is increased in different cancers,
while in mice FH recruitment by PTX3 to C3b deposited on
tumor cells has been shown to restrict the development of
local inflammation. This indicates that PTX3-FH interaction
could play a role in tumor-associated inflammation (80).
In a few studies, genetic polymorphisms in FH/FHRs
have been associated with microbial infections (81–84),
but further studies will be necessary to define their real
significance. Probably indicating its importance, CRP only
shows polymorphism in the non-coding regions that could

Frontiers in Immunology | www.frontiersin.org 8 August 2019 | Volume 10 | Article 1750197

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Haapasalo and Meri Complement and Pentraxins

influence its expression levels. Reduced expression of CRP has
been observed e.g., systemic lupus. No deficiencies in CRP have
been observed.

CONCLUDING REMARKS

After the first discovery of the interaction between FH
and pentraxins (32), it is now widely accepted that these
molecules together regulate the balance between C activation and
inhibition. Biochemical, histological and genetic data clearly link
these factors to various inflammatory diseases indicating that
they participate in the development and progression of these
diseases. There are several polymorphisms and mutations in the
pentraxin interacting domains of the FH family proteins. Some
of them alter pentraxin-FH interactions suggesting a role for
thesemolecules in disease development. However, further work is

needed to characterize the exact molecular mechanisms and roles
of pentraxin-FH interactions in the initiation and progression of
inflammation in these diseases.
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