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Editorial on the Research Topic

Frontiers in Phytolith Research

Interest in phytoliths has grown significantly in recent years. The Research Topic is unusual in
its highly interdisciplinary nature, and in the huge range of scales covered: from cellular and
molecular studies of phytolith formation to investigations focussing on the role of phytoliths in
biogeochemical cycling. This Frontiers in Phytolith Research Topic includes high quality work
across this whole range of phytolith research.

For phytoliths to form, plants need to absorb silicon (Si) from their environment. Since Ma et al.
(2006) first described a Si transporter in the rice root, considerable interest was raised in establishing
the molecular basis of plant Si uptake. The Bokor et al. paper in our issue reports a Si transporter in
date palm for the first time. Two papers in our collection (Sun et al.; Li et al.) investigate the effects
of Si fertilization on phytolith accumulation in rice, and in both cases showed significant increases
in deposition. Whether Si transporters are directly involved in the formation of phytoliths remains
to be studied.

Plant internal processes and structure also impact on phytoliths. Phytoliths not only vary in
shape and size, but also in their chemistry, and this is influenced by the environment in which
they form (Hodson, 2016). Carole Perry has worked on the chemistry of silica deposition in plants
for many years, and we were pleased to include a paper from her group (Volkov et al.) in our
collection. The authors investigate silica and its carbohydrate matrix in the elaters of Equisetum
arvense, using Raman and scanning electron microscopy, assisted by density functional theory.
Phytolith chemistry has usually been analyzed in bulk samples, but Zancajo et al. investigate
individual phytoliths in the leaves of Sorghum bicolor using Raman and synchrotron FTIR
microspectroscopies. They show that bilobate silica cells have a different silica molecular structure
and type of occluded organic matter compared with prickles and long cells.

One of the areas of phytolith research where we have seen major advances in the last 20 years
is morphometrics. This work was further advanced by the publication of the International Code
for Phytolith Nomenclature (ICPN) 2.0, while we were in the midst of compiling our collection
[International Committee for Phytolith Taxonomy (ICPT), 2019]. This will allow phytolith
researchers to accurately describe the morphotypes they find in their work, and to compare their
results with scientists around the world. Not surprisingly, anatomical and morphometric research
feature strongly in five of the papers we received. Both Ge et al. and Bhat et al. worked on
members of the Panicoideae. Ge et al. consider morphological variation in the phytoliths from
the inflorescence bracts of 38 weed and crop species in China, while Bhat et al. work on the leaf
and synflorescence phytoliths of three Setaria species. In both cases the authors report that it is
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possible to distinguish fairly closely related taxa using phytolith
morphological and morphometric traits. Two papers take very
different approaches to the study of palm phytoliths (Bokor et al.;
Huisman et al.). Bokor et al. work on the phytoliths found in
stegmata cells present in roots, stems and leaves. The stegmata
are located on the outer surface of sclerenchyma bundles or
associated with the vascular bundles. Huisman et al. study
the phytoliths of 12 palm species from mid-elevation Andean
forests and identify a number of distinctive morphotypes that
are characteristic of a particular species. But phytoliths do not
always distinguish between related taxa. Wang et al. show that
bulliform phytolith size could not be reliably used to distinguish
between cultivated rice and three wild rice species, and moreover
hydrothermal factors (higher temperature, precipitation and
water level) led to increased size.

Plants deposit phytoliths for many reasons. It has been known
for many years that plant silica acts as a physical defense against
grazing and pathogens. Mir et al. added to this body of literature,
showing that Si fertilization of rescuegrass decreases herbivory
by a grasshopper. They went on to show that the increased
silica content of the plants caused greater mandibular wear of
the grasshoppers.

When plant organs die and drop to the ground, they
then rot and release phytoliths into the soil. Once released
two key processes are important: migration of the phytoliths
within the soil profile; and breakdown and dissolution of
phytoliths. Liu et al. study the translocation of phytoliths in soil
profiles in Northeast China. They find that 22% of phytoliths
are translocated beneath the surface, and that translocation
depends on phytolith size and aspect ratio. The authors
suggest that phytolith translocation should be considered in
investigations concerning palaeoclimate and palaeovegetation
reconstructions. Strömberg et al. (2018) assessed translocation
processes within the soil, but then went on to consider the
dissolution and breakdown of phytoliths. The major factor
in increasing phytolith solubility was geometric surface to
bulk ratio. One area they did not cover was the chemical
makeup of the phytoliths, and particularly any differences in
the breakdown of cell wall and lumen phytoliths. Hodson
reviews this topic and concludes that there is no evidence
in the literature that cell wall phytoliths were either more or
less soluble.

Phytoliths have found applications in many aspects of
ecological work, and Solomonova et al. included in our collection
is one example. These authors consider the influence of moisture
and temperature on the phytolith assemblages of ecosystems
in the Altay Mountains. They are able to distinguish between
seven of 13 regionally important plant communities by using
aggregated and more detailed phytolith morphotypes. For six
communities there is too much overlap in their phytolith
morphotypes. This kind of work on modern systems is needed
before attempting to reconstruct past ecosystems using phytolith
assemblages. Although many papers in our collection will be of
use to those working in palaeoecology, palaeoclimatology, and
archaeology, unfortunately themajor gap in Frontiers in Phytolith
Research are studies looking at using phytoliths to reconstruct
past ecology, climates or human activities. Readers are referred

to Ball et al. (2016) and Strömberg et al. (2018) for recent reviews
of work in these areas.

It was Conley (2002) who first emphasized the importance of
phytoliths as a sizable pool of Si in the terrestrial biogeochemical
cycle. Because biogenic silica is more soluble than other mineral
components of the soil (e.g., aluminosilicates) inmost subsequent
investigations it has been shown to be a significant source of Si
for plant uptake. Our collection includes two papers concerning
the role of phytoliths in Si cycling. Gewirtzman et al. investigate
the effects of soil warming on cycling of Si in a temperate
forest. They find that warming increases Si uptake by vegetation
and accelerates the internal cycling of silica. In contrast Koné
et al. find that biogenic silica storage in the sediments of Ivory
Coast lagoons is dominated by diatom frustules and sponge
spicules rather than the phytoliths produced by the abundant
macrophytes. They conclude that the macrophytes contribute
little to biogenic Si storage in sediments but speculate that fragile
phytogenic silica structures may affect local silica cycling.

Parr and Sullivan (2005) first suggested that the carbon
occluded within phytoliths (so-called PhytOC) might be
significant in the global carbon cycle, and that sequestration
within phytoliths might have some potential for tackling climate
change. Their work created a whole new sub-discipline in
phytolith research and it was not surprising that five of the
papers submitted to Frontiers in Phytolith Research touched on
this area. Two papers (Li et al.; Sun et al.) investigate the effects
of fertilization on carbon sequestration in phytoliths from rice.
In both cases fertilization has no effect on the carbon content
of phytoliths, but it did increase the mass of phytoliths in the
plants, and hence the total amounts of carbon sequestered. A
further two papers (Chen et al.; Zhang et al.) emphasize the
importance of bamboo in carbon sequestration. Chen et al. work
on the belowground biomass of monopodial bamboo species in
China, and find that this represents an important and overlooked
PhytOC stock. Zhang et al. carry out a wider scale investigation of
carbon sequestration in phytoliths in the forests of China. They
find that sequestration is particularly high in bamboo, and that
the litter layer beneath bamboo plants is very high in PhytOC.
This could make a very significant contribution to the long term
global biogeochemical carbon sink.

In recent years the whole topic of carbon sequestration
in phytoliths has become mired in controversy. Some (e.g.,
Song et al., 2016) are convinced that the original hypothesis
of Parr and Sullivan (2005) is correct, and that PhytOC is a
highly important store of carbon on a global scale. Others (e.g.,
Reyerson et al., 2016) consider that carbon sequestration is not
significant. The key issue is the extraction procedure used to
prepare phytoliths for analysis. Strong extraction may remove
carbon from within phytoliths giving low values for PhytOC,
and then apparently poor sequestration on a global scale. Weak
extraction may leave contaminants on the surface of phytoliths
and lead to overestimation of sequestration. Hodson assesses
this whole controversy, and attempts to find a way forward. He
suggests that cell wall phytoliths are much richer in PhytOC than
lumen phytoliths, as demonstrated by Zancajo et al., and that
they may be highly significant in global carbon sequestration.
Two hypotheses are advanced, one to explain what happens to
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phytoliths when they are prepared in the laboratory for analysis,
and the other what happens in the soil. Hodson concludes that
phytoliths probably are an important global carbon store.

The carbon dating of phytoliths has become another
controversial area in phytolith research. Discrepancies in dating
have been suggested to indicate that it is not a reliable technique,
and some workers have suggested the “old carbon hypothesis”
to explain these problems (Reyerson et al., 2016). Essentially
this involves carbon being taken up from the soil and then
selectively deposited in phytoliths. As this carbon will have
an older date than that coming from the atmosphere it is
postulated to cause problems with dating. However, others (e.g.,
Piperno, 2016) are critical of this idea and believe the dating
problems are due to methodological issues. Zuo and Lu provide
a comprehensive review of this topic. They are critical of the “old
carbon hypothesis” and suggest that dating of phytoliths often
gives consistent results.

Phytolith research is multidisciplinary and undertaken at
many different scales. Often work in one area of research throws
light on a topic at a different scale. So it is quite possible that
the work of Zancajo et al. which suggests that bilobate silica
cells in sorghum leaves have a different type of occluded organic

matter compared with prickles and long cells may yet prove
important when we consider carbon sequestration and dating.
Therefore, phytolith researchers need to be aware of work that
is some way from their immediate field of research. If this does
not happen then we will all miss out. In his opinion article, Katz
suggests that we need to break down the disciplinary barriers
within phytolith research to produce a superdiscipline. He ends
by stating, “Hence, embedding superdisciplinary thinking in
plant silicon and phytolith research can not only advance our
field, but increase its impact in the merger of Earth and life
sciences into a single superdiscipline. Working toward this goal
is a true new frontier for plant silicon and phytolith research,
for Earth-life sciences and for science in general.” There is much
to be said in favor of this idea. We hope that Frontiers in
Phytolith Research has, in some way, contributed to advancing
the superdiscipline.
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Riyadh, Saudi Arabia

Date palm (Phoenix dactylifera) can accumulate as much as 1% silicon (Si), but not
much is known about the mechanisms inherent to this process. Here, we investigated
in detail the uptake, accumulation and distribution of Si in date palms, and the
phylogeny of Si transporter genes in plants. We characterized the PdNIP2 transporter
following heterologous expression in Xenopus oocytes and used qPCR to determine
the relative expression of Si transporter genes. Silicon accumulation and distribution
was investigated by light microscopy, scanning electron microscopy coupled with X-ray
microanalysis and Raman microspectroscopy. We proved that PdNIP2-1 codes for
a functional Si-permeable protein and demonstrated that PdNIP2 transporter genes
were constitutively expressed in date palm. Silicon aggregates/phytoliths were found
in specific stegmata cells present in roots, stems and leaves and their surfaces
were composed of pure silica. Stegmata were organized on the outer surface of the
sclerenchyma bundles or associated with the sclerenchyma of the vascular bundles.
Phylogenetic analysis clustered NIP2 transporters of the Arecaceae in a sister position
to those of the Poaceae. It is suggested, that Si uptake in date palm is mediated by
a constitutively expressed Si influx transporter and accumulated as Si aggregates in
stegmata cells abundant in the outer surface of the sclerenchyma bundles (fibers).

Keywords: Arecaceae, cell wall composition, date palm (Phoenix dactylifera), phylogenetic analysis, phytoliths,
plant anatomy, silicon (Si) transporters, stegmata
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INTRODUCTION

Silicon (Si) is not considered to be an essential element for plants,
but its tissue concentration can exceed that of many essential
elements in some plant species (Hodson et al., 2005; White and
Brown, 2010). The roles of Si as a beneficial element for plants,
protecting them from a variety of abiotic stresses and biotic
challenges, have been discussed in the literature for a long time
(Epstein, 1999; Coskun et al., 2018).

In most circumstances, plant roots take up Si from the
soil solution and it is then transported to the aboveground
organs via the xylem (Casey et al., 2003; Mitani et al., 2005).
The accumulation of Si varies greatly among plant species
and those belonging to the commelinid monocot orders
Poales (e.g., cereals, grasses, bromeliads, and sedges) and
Arecales (e.g., palms) generally accumulate more Si than
other plants (Hodson et al., 2005). The identification of genes
encoding proteins responsible for Si transport have shown
that Si accumulation is the result of an efficient symplastic
pathway mediated by Si influx and efflux transport mechanisms
in the plasma membrane of root cells (Ma and Yamaji,
2015). Silicon influx proteins, termed Lsi1, are members of
the NIP III (nodulin 26-like intrinsic protein III) group of
aquaporin-like proteins belonging to the large MIP (major
intrinsic protein) superfamily that contains various classes
of integral membrane proteins functioning as diffusion
facilitators of water and small uncharged solutes (Wallace
and Roberts, 2005; Ma and Yamaji, 2015; Pommerrenig
et al., 2015; Deshmukh et al., 2016). Aquaporins in the
NIP III group contain two hallmark domains: a unique
selectivity filter (ar/R filter, also known as GSGR filter)
formed by glycine (G), serine (S), glycine (G) and arginine
(R) and two NPA motifs (also referred to as NPA boxes)
consisting of asparagine (N), proline (P) and alanine
(A) separated by 108 amino acids (Deshmukh et al., 2015;
Ma and Yamaji, 2015).

Following its uptake by roots, Si can be deposited in
plant tissues in various forms, most frequently in silica cells
or silica bodies distributed within the leaf epidermis or
as a dense layer beneath the cuticle (Datnoff et al., 2001;
Coskun et al., 2018). Other common sites of Si deposition
are specialized cells termed stegmata that form a sheath
around sclerenchyma fibers attached to vascular bundles or
individual fiber bundles in species such as palms in the
commelinid monocot order Arecales and orchids in non-
commelinid monocot order Asparagales (Møller and Rasmussen,
1984). Root tissues are also sites of Si accumulation in some plant
species, with the endodermis being the dominant deposition
site, especially in monocots (Sangster and Hodson, 1992;
Lux et al., 2003).

Silicon deposition in palms is a well-known, but poorly
understood phenomenon. This study is focused on a detailed
description of date palm anatomy as it relates to the unique
Si distribution in this species and presents novel observations
on Si uptake mechanisms in date palms and the phylogenetic
relationships between the Si transport proteins of date palms and
other Si-accumulating species.

MATERIALS AND METHODS

Plant Cultivation
In our studies, we compared three developmental stages of date
palms: young seedlings (ca 1-month-old) grown in hydroponics,
1-year-old plants grown in perlite, and 10-year-old plants grown
in soil. For the oocyte experiments, RNA was extracted from roots
of 1-week-old date palm and rice plants grown in hydroponics.

Prior to cultivation in hydroponics and perlite, date palm
seeds were surface sterilized in 2.5% NaClO solution for 10 min
and washed several times with dH2O. After such treatment,
germination took about 2.5 weeks. In hydroponics, two different
treatments were imposed: a Si− control treatment with Hoagland
solution (Hoagland and Arnon, 1950) and without silicon
supplementation, and an Si+ treatment with Hoagland solution
and Si addition as sodium silicate [Na2O(SiO2)x.xH2O, or given
also as Na2O7Si3 by Sigma-Aldrich] to a final concentration
of 1 mM (this compound is referred as Si in the text), or
0.084 g/L of elemental silicon. This Si concentration was chosen
because it is similar to the Si concentrations in soil solutions
and is recommended for laboratory studies (Epstein, 1994;
Liang et al., 2015). Plants were grown in a growth chamber
with 12 h light/12 h dark, a light intensity of 200 µmol
PAR m−2 s−1, relative humidity of approximately 75% and
day/night temperatures of 28/24◦C. During the first 5 days,
germinated plants were acclimatized to hydroponics by growing
them in a half-strength Hoagland solution without Si addition.
Subsequently, the two different treatments (Si− and Si+) were
initiated and five plants were cultivated in 3 L pots for 21 days.
Hoagland solution was renewed every third day and pH was
adjusted to a value of 6.2.

Cultivation in 1L pots filled with perlite (68–73% SiO2, 7.5–
15.0% Al2O3, 1.0–2.0% Fe2O3, 0.5–2.0% CaO, 0.2–1.0% MgO,
2.0–5.5% K2O, 2.5–5.0% Na2O, max. 1.0% TiO2, max. 0.2%
P2O5, max. 0.3% MnO) lasted about 12 months. Plants (one
per pot) were watered once a week with half strength Hoagland
solution (200 mL). Plants were grown in a growth chamber with
conditions identical to hydroponically cultivated plants.

In addition, 10-year-old plants grown in soil in the greenhouse
at the Department of Plant Physiology, Faculty of Natural
Sciences, Comenius University in Bratislava, were studied. Plants
were watered regularly with tap water and every second year they
were transferred to a bigger pot containing fresh sandy-loam soil
with a bioavailable Si concentration of 113 ± 15 mg kg−1 as
described by Bokor et al. (2017). The final volume of the pot at
the end of the cultivation was 60 L.

Light Microscopy
Hand sections were prepared as described by Lux et al. (2015).
Cross and longitudinal sections of all organs studied, primary,
lateral and adventitious roots, stem, shoot apex, leaf petioles,
leaf sheaths, and leaf blades, were examined under a microscope
(Axioskop 2 plus, Carl Zeiss, Germany) and documented using a
digital camera DP72 (Olympus, Japan).

For general anatomy, both unstained sections and sections
cleared with lactic acid and stained in an aqueous 0.05%
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(w/v) solution of toluidine blue were used. The Wiesner
phloroglucinol-HCl reaction was used to identify lignification of
cell walls in individual tissues. Suberin was visualized in sections
cleared and stained with a 0.01% (w/v) solution of Fluorol Yellow
088 (FY088; Sigma-Aldrich) in lactic acid at 70◦C for 1 h (Lux
et al., 2015) and examined under an epifluorescence microscope
(Axioskop 2 plus, Carl Zeiss, Germany; filter set Carl Zeiss N. 25:
excitation filter TBP 400 nm + 495 nm + 570 nm, chromatic
beam splitter TFT 410 nm + 505 nm + 585 nm, and emission
filter TBP 460 nm+ 530 nm+ 610 nm).

Serial cross and longitudinal sections, of fixed, paraffin
embedded and stained sections were used for additional studies
of all organs. Briefly, the samples of individual organs were
fixed in formalin–acetic acid–alcohol (FAA), dehydrated in a
graded ethanol series, transferred to xylene and embedded
in paraffin (Johansen, 1940). Sections, 15–20 µm thick, were
deparaffinised in xylene and stained with alcian blue/safranin and
mounted in Canada balsam. Observation and documentation
were performed as described above.

Scanning Electron Microscopy (SEM)
Coupled With X-Ray Microanalysis
Transversely and longitudinally sectioned and air-dried root,
stem and leaf tissues were fixed on aluminum stubs covered with
a carbon sticker. Surface conductivity was increased by carbon
coating, which in turn also resulted in a uniform, approximately
60 nm thick, carbon layer on the tissue surface. The distribution
of Si was analyzed with a Jeol JSM-IT300 scanning electron
microscope (SEM) equipped with an energy dispersive X-ray
(EDX) analyser (EDAX, Octane Plus, Ametek, United States).

Plant phytoliths were examined at several different spots on
each of the three plant tissues studied (root, stem, and leaf). Raw
data were processed with the TEAM Enhanced ver. 4.3 (EDAX-
Ametek, United States) software and all values were expressed as
weight % of the total analyzed Si element.

Total Si Concentrations in Plant Tissues
At the end of cultivation, the total Si concentration was measured
in roots and second fully developed leaves of plants cultivated
in perlite; and in roots, shoot apexes, leaf petioles, and leaf
blades of plants cultivated in soil. The concentration of Si in
the dry biomass of plant samples was determined using atomic
absorption spectroscopy (AAS). Plant samples were dried at
room temperature and ground to small pieces (<1 mm) with a
mortar and a pestle. Digestions of plant samples were carried out
in stainless steel coated PTFE pressure vessels ZA-1 (Czechia)
in an electric oven at 160◦C for 6 h. Each vessel contained
between 0.1 and 0.5 g dried plant sample, 5 ml of concentrated
HNO3, 0.25 ml of concentrated HF and 2 ml of 30% H2O2. After
digestion, 2 ml of a saturated solution of H3BO3 was added and
the resulting mixture was diluted to 25 ml with redistilled water
and stored in a 100-ml polyethylene bottle. Silicon concentrations
were determined by a flame atomic absorption spectrometry
(AAS Perkin Elmer Model 5000, wavelength 251.6 nm, flame:
acetylene-N2O). The concentration of bioavailable Si from the
perlite (70 ± 5 mg kg−1) was analyzed according to Rodrigues

et al. (2003) with appropriate modifications. After extraction
by 0.5 M acetic acid, Si was measured by ICP-MS in place
of colorimetric determination using blue silicomolybdous acid
procedure as used in the original procedure, and as a quality
control certified reference material for Si was analyzed, too.
Analyses were performed at a certified laboratory of the Institute
of Laboratory Research on Geomaterials (Faculty of Natural
Sciences, Comenius University in Bratislava).

Isolation of Silica Phytoliths
Hand cross-sections from the basal part of the leaf sheath were
placed on a microscope slide and a drop of 96% sulfuric acid was
added. After 5 min, several drops of distilled water were added,
the sample covered with a cover slip and gently pressed to break
the digested tissues. The isolated phytolith samples were then
used either for dark field light microscopy or for Raman analyses.

Raman Microspectroscopy
For Raman analyses, 15 µm thick microtome sections of paraffin
embedded samples were prepared, dewaxed with 100% xylene
for 30 min (2×) and gradually rehydrated in 20-min steps.
A gradual series of mixtures of ethanol and distilled water
was used (1:0; 1:0; 0.7:0.3; 0.5:0.5; 0.3:0.7; 0:1; 0:1). Sections
were placed on microscope slides, mounted in distilled water,
covered with coverslips and sealed with nail polish to avoid
water evaporation. Hydrated silica gel was prepared as aqueous
suspension of chromatography grade silica gel. Raman spectra
were collected with a DXR Raman Microscope (Thermo Fisher
Scientific, United States), equipped with a 532 nm laser, using
900 lines mm−1 grating. Spectra were recorded using 9 mW
laser power, 12 s photobleaching time, with 10–30 s acquisition
time per collection and eight collections per measurement. At
least five spectra per structure were collected and analyzed.
Omnic Atlas software (Thermo Fisher Scientific, United States)
was used to collect the spectra. Spectral processing was
performed using Spectragryph 1.0.7 (F. Menges “Spectragryph –
optical spectroscopy software,” Version 1.0.7, 20171). Spectra
were baseline-corrected, smoothed (Sawitzky-Golay, 9 points,
polynomial order 4) and normalized against a peak at 2895 cm−1

if not stated otherwise. Spectra are presented as means of
all spectra collected from the object analyzed. The reference
table used for peak assignments for these spectra are shown
in Supplementary Tables S1, S2. The estimation of S/G-lignin
ratio was based on the ratio of peak intensities 1334/1273 cm−1

(Lupoi and Smith, 2012). The estimation of cellulose crystallinity
was based on the ratio of peak intensities 380/1096 cm−1

(Agarwal et al., 2010).

RNA Extraction and cDNA Synthesis
On the third day of hydroponic cultivation and for the next
5 days, root tissues were sampled from plants growing in both
Si− and Si+ treatments to evaluate gene expression. Samples
(up to 150 mg) were stored at –80◦C before RNA extraction.
Total RNA was extracted and treated with DNase I using a
Spectrum Plant Total RNA kit (Sigma–Aldrich, United States)

1http://www.effemm2.de/spectragryph/
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according to the manufacturer’s instructions, except for the
duration of DNase I treatment which was extended to 60 min.
The RNA concentration and sample purity were measured
using a NanoDropTM 1000 spectrophotometer (Thermo Fisher
Scientific, Germany) and RNA integrity was checked by agarose
(1%) gel electrophoresis. The synthesis of the first strand of
cDNA was performed using an ImProm-II Reverse Transcription
System (Promega, United States), using Oligo(dT)15 primers
according to the manufacturer’s instructions. A control without
RT was performed for each sample to determine whether there
were any traces of genomic DNA. Samples containing only cDNA
(10-times diluted) were used for qPCR analysis.

Plasmid Constructions for Heterologous
Expression in Xenopus Oocytes
The cDNA prepared from rice and date palm was used
to amplify the open reading frames (ORF) of OsLsi1 and
PdNIP2-1. The ORFs amplified using Phusion Taq polymerase
(New England Biolabs, Whitby, ON, Canada) were first
cloned in a pUC18 plasmid vector and sequenced to confirm
the accuracy of the ORFs. For heterologous expression in
Xenopus laevis oocytes, the ORFs were further cloned using
EcoRI/XbaI restriction sites into the Pol1 vector (PdNIP2-
1EcoR1F: CCGAATTCATGGCTTCCTTTCCGAGAC, PdNIP2-
1Xba1R: GTTCAATTGGAAAATGTTTGATCTAGAGC), a
X. laevis oocyte expression vector derived from pGEM and
comprising the T7 promoter, the Xenopus globin untranslated
regions and a poly(A) tract (Caron et al., 2000). Both the
plasmid constructs, OsLsi1-Pol1 and PdNIP2-1-Pol1, were
transformed into Escherichia coli TOP10 strain and stored
at −80◦C. Correctness of the constructs was checked by
sequencing (T7P: TAATACGACTCACTATAGG, Xeno3UTR:
GACTCCATTCGGGTGTTCTTG) prior to in vitro translation.

Si Transport Assays Using Heterologous
Expression in Xenopus Oocytes
Plasmids containing either the OsLsi1 or PdNIP2-1 ORF were
recovered from a fresh bacterial culture using a QIAprep Spin
Miniprep kit (Qiagen2). Five micrograms of each plasmid was
linearized using NheI (Roche3). Digested products were column-
purified using a PCR purification kit (Qiagen), and 1 µg of
plasmid DNA was transcribed in vitro using the mMessage
mMachine T7 Ultra kit (Ambion4). Complementary RNAs
(cRNAs) were purified using the lithium chloride precipitation
method as described by the manufacturer and suspended in
ultra-pure water.

The oocyte assays were performed as described by Deshmukh
et al. (2013) with some minor changes. Oocytes at stage 5 or 6
were injected with 25 nl of 1 ng/nl cRNA or an equal volume
of H2O as a negative control. Then oocytes were incubated
for 1 day at 18◦C in Barth’s (MBS) medium [88 mM NaCl,
1 mM KCI, 2.4 mM NaHCO3, 0.82 mM MgSO4, 0.33 mM

2http://www.qiagen.com/
3http://www.roche.com
4http://www.invitrogen.com/site/us/en/home/brands/ambion.html

Ca(NO3)2·4H20, 0.41 mM CaCl2, 15 mM HEPES, pH 7.6]
supplemented with 100 µM each of penicillin and streptomycin.
Then, 10 sets of 10 oocytes for each condition were exposed
to MBS solution containing 1.7 mM Si for 30 or 60 min.
After exposure, oocytes were rinsed in solution containing 0.32
M sucrose and 5.0 mM HEPES (pH 7.4). Si quantification
was performed with a Zeeman atomic spectrometer AA240Z
(Varian, Palo Alto, CA, United States) equipped with a GTA120
Zeeman graphite tube atomizer. Data from the spectrometer were
analyzed using JMP 9.0.2 (SAS Institute Inc.). Three replicates
were used for this assay.

Primer Design and RT-qPCR
In the NCBI database, two PdNIP2 transcripts (mRNA
sequences) with the following accession numbers
XM_008804384.2 for PdNIP2-1 and XM_008785804.2 for
PdNIP2-2 were available for date palm. The primers for the
reference gene actin (XM_008778129.2) and NIP2 genes
(Supplementary Table S3) were designed using the Primer3plus
tool5. Gradient PCR was performed to determine annealing
temperature of primers. After that, PCR products were checked
by agarose (2%) gel electrophoresis and sequenced by the
Sanger method to verify product specificity at the Department
of Molecular Biology, Faculty of Natural Sciences, Comenius
University in Bratislava. Before qPCR analysis, the stability of the
reference gene and efficiency of gene amplification was assessed
(Livak and Schmittgen, 2001; Pfaffl et al., 2004). The reference
gene, PdNIP2-1 and PdNIP2-2 genes were amplified by the
Maxima SYBR Green/ROX qPCR Master Mix (Thermo Fisher
Scientific, Germany) in 96-well plates using a Light Cycler II
480 (Roche, Switzerland). Melt curve analysis of amplification
products was included at the end of each run of the qPCR
reaction. The main purpose of the melt curve analysis was to
check PCR product specificity; i.e., to confirm that only specific
amplification and no non-specific PCR products or primer
dimers were formed. The relative change in gene expression
was estimated according to the Pfaffl method, including the
amplification efficiency of the selected genes (Pfaffl, 2001).

Bioinformatics and Statistics
Amino acid sequences were aligned using the MAFFT algorithm
with one hundred bootstrap repeats on the GUIDANCE2Server6

(Sela et al., 2015). The confidence level of the resulting base
multi sequence alignment (MSA) was estimated by comparing
bootstrap trees as guide-trees to the alignment algorithm.
Unreliably aligned columns were removed from the MSA at a
cutoff value of 0.93. To analyze the effect of masking on tree
inferences, all phylogenetic analyses were conducted also on
the unmasked MSA.

Phylogenetic trees were constructed using both the Bayesian
and the maximum likelihood techniques. Bayesian inference
was performed using the computer program MrBayes ver. 3.2.6
(Ronquist et al., 2012) on the CIPRES Portal ver. 3.17, using the

5http://primer3plus.com/web_3.0.0/primer3web_input.htm
6http://guidance.tau.ac.il/ver2/
7http://www.phylo.org
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WAG amino acid substitution model, four independent chains,
one million generations and a sample frequency of one hundred.
The first 25% of sampled trees were considered as burn-in
and discarded. A 50% majority-rule consensus of the remaining
trees was computed, and posterior probabilities of its branching
pattern were estimated. Maximum likelihood analyses were
performed using the computer program PhyML ver. 3.0 on the
South of France bioinformatics platform8 (Guindon et al., 2010),
with the SPR tree-rearrangement and 1000 non-parametric
bootstrap replicates. The best amino acid substitution model for
maximum likelihood analyses was selected automatically, using
the Akaike Information Criterion as implemented in PhyML.
Bayesian and maximum likelihood trees were computed as
unrooted and were rooted a posteriori in FigTree ver. 1.2.3
(Andrew Rambaut9) with the midpoint method.

The 3D structure of proteins was constructed using the Phyre2

server10 (Kelley et al., 2015). Profiling of transmembrane domains
was done using the TMHMM tool11 and functional annotation of
NIP2-1 like proteins was performed using the Conserved Domain
Database12. Amino acids were aligned in CLC Sequence Viewer
(version 7.7.1) for visualization of NPA motifs and ar/R selectivity
filters in PdNIP2 proteins.

The Statgraphics Centurion (version 15.2.05) and Microsoft
Excel 365 software were used for statistical evaluation. The
differences among group means were assessed by ANOVA
(analysis of variance) and LSD (least significant difference) served
as a post hoc test. Data from qPCR were evaluated by Student’s t
test (Microsoft Excel). Statistical significance was attributed at the
0.05 probability level.

RESULTS

Silicon Accumulation
Silicon accumulated in all organs of the date palm plants studied
(Figure 1). The concentration of Si in plant tissues varied
according to the developmental stage of plants and the cultivation
method. The largest Si concentration was found in leaf blades
of plants, whether cultivated in soil or perlite (Figure 1). The
average concentration of Si in leaf blades of 10-year-old palm
plants reached ca. 13 g kg−1 dry weight (1.3% dry weight). The
shoot apexes, leaf petioles and adventitious roots of 10-year-
old plants had significantly lower Si concentrations than the
leaf blades (Figure 1). The Si concentration in leaf blades of 1-
year-old plants grown in perlite was significantly less than that
in leaf blades of 10-year-old plants grown in soil, whereas the
Si concentration in roots of 1-year-old plants grown in perlite
was significantly larger than that of 10-year-old plants grown in
soil (Figure 1). The Si concentration in primary roots of plants
grown hydroponically was not significantly different from the Si
concentration in roots of plants cultivated in perlite or soil.

8http://www.atgc-montpellier.fr/phyml/
9http://tree.bio.ed.ac.uk/software/figtree/
10http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
11www.cbs.dtu.dk/services/TMHMM/
12www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml

Anatomy of Vegetative Organs and Si
Deposits
The structural organization of date palm, with the focus on Si
deposition, is summarized in Figures 2, 3 and Supplementary
Figure S1. Silicon deposits are present in the form of silica
aggregates, termed phytoliths, in specialized small cells, termed
stegmata. Stegmata in roots are exclusively attached to the
sclerified bundles of fibers in the cortex. These bundles occur
rarely in primary seminal roots (Figure 2A) but can be
numerous in lateral roots (Figures 2B,C) and adventitious roots
(Figures 2D–J). In the thinnest laterals (≤1 mm diameter),
only individual bundles formed by 2–4 fibers are developed
(Figure 2C). In thicker laterals (≥1 mm) one circle of fiber
bundles is present formed by ∼10 fibers (Figure 2B). In the
thickest adventitious roots, the number of fiber bundles can
exceed 100 and they are scattered within the whole mid cortical
region (Figures 2D,F).

Here, we have studied relatively young date palm plants
and focus on the presence of sclerifying sheaths of vascular
bundles and leaf traces occurring close to the shoot apex
(Figure 3A). Already these sheaths are accompanied by stegmata
accumulating Si.

The anatomy of the simple leaves of young plants is similar to
the leaflets of the compound leaves of adult plants (Figures 3B–
E). Stegmata with phytoliths are present in leaves in two
anatomically distinct locations. One location is around the
isolated bundles of sclerenchyma fibers occurring immediately
subepidermally or deep in the mesophyll covered with axially
arranged rows of stegmata (Figures 3F,G). The second location is
around the sheath of sclerenchyma fibers surrounding the veins
with a collateral arrangement of vascular tissues. The stegmata
occurring in the petioles and leaf sheaths are of the same type and
distribution as in the leaves and leaflets (3 H–L).

SEM/EDX and Raman Analysis of Si
Phytoliths
A detailed investigation of various date palm tissues was
performed to detect the pattern of Si distribution using
SEM coupled with X-ray analysis of element distribution
(EDX). In roots, stegmata cells containing Si aggregates were
positioned on the outer surface of the sclerenchyma bundles
(Figures 4A,B), organized in rows of cells with an average
distance between the individual phytoliths of about 10–12 µm
and an average size of Si phytoliths of between 6 and 8 µm
(Figures 4C,D). Silicon is also present in the shoot apex,
mostly in the form of individual Si phytoliths associated with
the sclerenchyma of the vascular bundle. In leaves, the X-ray
analysis showed that Si was localized in leaf tissues at two
sites: as a part of sclerenchyma around the vascular bundles,
and as a part of individual sclerenchyma bundles in the leaf
mesophyll. Silicon was not detected in the epidermis, nor
in association with the cuticle (Figures 4E,F). A very dense
net of Si aggregates was observed in the leaf sheaths. The
size of Si phytoliths varied between 5 and 10 µm, and they
were associated with the surface cell layers of sclerenchyma
bundles (Figures 4G,H).
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FIGURE 1 | Silicon concentration in vegetative organs of Phoenix dactylifera cultivated in hydroponics, perlite or soil. The plants cultivated in perlite were 1-year-old
in comparison to the well-developed, 10-year-old plants grown in a soil. Different letters indicate significant differences between the treatments at 0.05 level. Values
are means (n = 4) ± standard deviation.

In general, stegmata were almost entirely filled by Si phytoliths
(Figures 5A–C). X-ray analysis of the surface elemental
composition of phytoliths revealed two major elements, Si and
oxygen (Figure 5D). The presence of carbon was attributed to
the surface carbon coating of samples prior the analysis. No other
elements were detected in phytoliths.

Representative Raman spectra of isolated silica phytoliths and
reference spectra of hydrated silica gel and opal were compared
(Figure 5E). All three spectra were dominated by a broad band
in the region 400–490 cm−1 assigned to Si–O–Si bond-rocking
vibration, underlining the amorphous nature of the silicas. In
contrast to spectra from opal, spectra from both phytoliths
and silica gel exhibited a well-resolved peak near 482 cm−1.
The broad and asymmetrical band around 800 cm−1 visible in
all three spectra was assigned to symmetric Si–O–Si stretching
vibrations arising from the heterogeneities in the geometry of
SiO2 subunits. The Si–O vibrations of non-bridging oxygen
within the region 950–1000 cm−1 reflects the abundance of Si–
OH groups (985 cm−1) and the presence of chemical impurities.
Whereas the opal spectrum showed relatively low abundance
of Si–OH groups, illustrating its compact inner structure, both
phytoliths and silica gel exhibited a relatively high abundance of
Si–OH groups, indicating a large surface area. A band assigned
to asymmetric Si–O–Si stretching vibrations is located between
1050 and 1200 cm−1. Here, the phytolith spectra exhibit a peak
around 1053 cm−1, indicating that some other elements or
contaminants might be present.

Raman Analyses of the Cell Wall
Composition
Raman microspectroscopy was used to investigate the cell
wall composition of root and leaf tissues (Supplementary

Figure S2). In roots, the relatively thin hypodermal cell
walls exhibited signals indicative of suberization and intense
lignification with balanced S/G-lignin ratio, relatively high
H-lignin content and ferulic/p-coumaric acids. The outer cortical
layer displayed similar cell wall composition to the cortical fiber
bundles, characterized by high cellulose crystallinity, relatively
weak lignification of the cell wall, but intense lignification in
the compound middle lamellae. The thin-walled cell strands
separating the aerenchyma lacunae in the mid cortex showed
high abundance of both aromatic and aliphatic esters. The cell
walls of the inner cortex displayed a low abundance of phenolic
compounds (1600–1660 cm−1), but their ester-rich constitution
was indicated by a broad band between 1660 and 1750 cm−1

(C=C and C=O stretching). These cells probably represented
an early developmental stage of the thin-walled cells of the
mid cortex. The endodermis has developed a thick U-shaped
cell wall with relatively high content of phenolic compounds
(including H-lignin) in comparison to the thin-walled cells
of the mid cortex as well as to the fiber walls. In addition,
multiple signals associated with lipidic substances indicated
suberin deposits and a relatively large amount of ferulic/p-
coumaric acid.

The cell walls of the pith sclerenchyma exhibited a
qualitatively similar composition to the outer cortex but with
a slightly higher degree of wall lignification. Early metaxylem
walls were heavily lignified with a high S/G-lignin ratio. The
spectra from late metaxylem walls exhibited a very similar
profile, but with less wall lignification. The phloem cell walls
exhibited a profile associated with simple primary cell walls,
displaying a relatively high pectin signal (817 cm−1), a very
low signal from phenolic compounds, low cellulose crystallinity
and a relatively high abundance of hemicelluloses (region 470–
515 cm−1, 1462 cm−1).
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FIGURE 2 | The anatomy of individual root types in P. dactylifera with fiber bands and stegmata – specialized Si-accumulating cells. (A) Seminal root. (B,C) Lateral
roots. (D–J) Adventitious roots in transverse (D–H) and longitudinal sections (I,J). Paraffin embedded sections stained with alcian blue/safranin (A,B,D,E,H–J) or
with Basic fuchsin (F), unstained – autofluorescence (C), and hand sections stained with Fluorol yellow in UV light (G). (A) Seminal root of 2-month-old seedling
covered by rhizodermis (epidermis) (e) and composed hypodermis. Mid-cortex typically develops an extensive aerenchyma (aer). Polyarch vascular cylinder (vc) with
11 alternating xylem and phloem poles, several late metaxylem vessels are shifted centripetally and sclerified pith is located in the center. No fiber bands are present
at this stage of development. (B,C) Lateral roots structurally resemble the seminal root, with exception of fiber bands (white arrowheads) regularly scattered in the
cortex. Stegmata cells, adjacent to the fiber bands, are not visible at this magnification. Rhizodermis (e) and composed hypodermis (hyp) are formed by several
layers of cells with varying cell wall thicknesses. Extensive aerenchyma (aer) occupies the mid-cortex. Endodermis (en) with thick U-shaped inner tangential walls.
Broad late metaxylem vessels (lx) are shifted centripetally from the xylem poles formed by early metaxylem vessels (ex). (D–J) Adventitious roots of adult plants are
characterised by a multitude of fiber bands (white arrowheads) scattered in the mid-cortex. Proportionally to the age/thickness of the adventitious roots, the number
of fiber bands counts from dozens (F,G) to hundreds (D,E,H). Composed hypodermis (hyp) is formed by several layers of exodermis with suberized cell walls (G,H).
Outer cortex is located internally to the hypodermis, composed of several layers of sclerenchyma. Many cells in the peripheral tissues contain tannins (tc). Polyarch
vascular cylinder with several dozens of alternating xylem (ex) and phloem (ph) poles is surrounded by thick-walled endodermis (en). An additional circle of late
metaxylem (lx) vessels is present centripetally from xylem poles. In thick roots, the pith (p) might form a central cavity. (E) Stegmata with silica phytoliths (red
arrowheads) are attached to the surface of fiber bands and are clearly visible in longitudinal sections of roots (I,J).

Phylogenetic Placement of Si
Transporters From Date Palm
Two putative Si transporters, PdNIP2-1 (XP 008802606.1) and
PdNIP2-1 (XP_008784026.1) share an 87% identity based on
a BLAST alignment and both show the hallmark features
required for Si transport (Figure 6A). The 3D model of both

proteins showed an hourglass-like structure (Figures 6B,C). The
TMHMM tool for prediction of transmembrane domains showed
six transmembrane helices for both proteins, identical to the
known Si transporters of other plant species (Figures 6D,E). Both
proteins were classified functionally as membrane channels that
are members of the MIP superfamily using this tool.

Frontiers in Plant Science | www.frontiersin.org 7 August 2019 | Volume 10 | Article 98814

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00988 August 13, 2019 Time: 15:51 # 8

Bokor et al. Silicon Accumulation in Date Palm

FIGURE 3 | Structure of stem apex (A), young leaf (B), leaflet blade (C–G), leaf petiole (H,I), and leaf sheath (J–L). Stegmata in leaves are associated with both fiber
bands and vascular sclerenchyma. (A) Stereomicroscope image of the shoot apex showing the shoot apical meristem (sam), leaf primordia (lp), vascular bundles
(vb), and fiber bands (white arrowheads). (B) Unstained paradermal section of a young leaf from a date palm seedling showing epidermal cells, stoma (st), and
subepidermally occurring stegmata (red arrowheads) attached to the surface of a fiber band. (C–G) Adult leaflet from a 10-year old. Unstained sections (C,E) show
epidermal and hypodermal layers at the leaf surface, mesophyll with vascular bundles (vb), and fiber bands (white arrowheads) occurring both adaxially and abaxially.
In the central part of the leaflet the mid vein is absent (E) and expanding tissue of large parenchyma cells is present adaxially (exp). In the opposite-abaxial part, two
large fiber bands are developed. Stegmata adjacent to the fiber bands and sclerenchyma sheaths of vascular bundles can be seen in high magnification (D) and
more clearly in longitudinal sections (F,G). Alcian blue/safranin stained samples (D,F,G). (H,I) Leaf petiole and (J–L) leaf sheaths of adult 10-year-old plant in
unstained cross-sections are shown either under white light (H,J,L) or UV irradiation (I). (J,K) Phloroglucinol-HCl staining visualizing cell wall lignification. Leaf petiole
and leaf sheath are covered by a single layer epidermis and lignified hypodermis (I,J). Mesophyll is composed of chlorenchyma (H,I) and parenchymatous ground
tissue. Peripherally present fiber bands (white arrowheads) and large sclerenchyma sheaths of vascular bundles are accompanied by stegmata, as seen in high
magnification (F,G,K,L). The ground tissue cells usually contain a number of starch grains (sg).

Phylogenetic analyses showed that the PdNIP2-1 and PdNIP2-
2 transporters from date palm belong to the well-defined group
of Si influx transporters previously identified in various plant
species (Figure 7). Transporter sequences from Arecaceae were
clustered together with strong statistical support in Bayesian
and maximum likelihood trees. In both phylogenetic analyses,
sequences from the family Poaceae were classified in a sister
position to those from the Arecaceae, supporting a common

phylogenetic ancestry of Si transporters in the monocotyledonous
cluster. The NIP2 transporters from dicotyledons formed a
distinct, statistically fully supported group (Figure 7).

Silicon Permeability of PdNIP2-1
To prove the functionality of PdNIP2, X. laevis oocytes
expressing PdNIP2-1 were assayed for their ability to
accumulate Si (Figure 8A). Oocytes expressing either
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FIGURE 4 | Scanning electron microscopy images of various P. dactylifera tissues with corresponding maps showing the distribution of Si (violet color). (A,B) Cross
section of an adventitious root showing detail of a fiber band (white arrowhead) with adjacent stegmata cells containing Si phytoliths (red arrowheads). Multiple
phytoliths are not visible in (A), though detected by EDX (B). (C,D) Longitudinal section through the fiber band (white arrowhead) in an adventitious root. Cell walls of
several stegmata cells are disrupted, uncovering Si phytoliths (red arrowheads). (E,F) Cross section of a leaf showing the presence of Si phytoliths in stegamata cells
associated with vascular bundles (vb) and fiber bands (white arrowheads). A detail on a stegma (red arrowhead) associated with the vascular bundle sclerenchyma
(scl). (G,H) A surface view on a fiber band (white arrowhead) with a dense net of adjacent stegmata. Cell walls of multiple stegmata are disrupted, uncovering Si
phytoliths (red arrowheads).
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FIGURE 5 | EDX and Raman analyses of the Si phytoliths. (A) Scanning electron micrograph showing three adjacent stegmata with disrupted cell walls exposing the
Si phytoliths. (B) Detail of an exposed phytolith used in EDX analysis. (C) Dark-field microscopy image of isolated Si phytoliths used in Raman analysis. (D) A
representative spectrum from EDX analysis of a Si phytolith demonstrating the dominance of Si and O as its main chemical constituents. (E) Comparison of Raman
spectra collected from isolated silica phytoliths [shown in panel (C)], hydrated silica gel, and opal.

PdNIP2-1 or rice OsLsi1 accumulated significantly more
Si than oocytes injected with water, and the same amount
after 60-min incubation, confirming the function of
PdNIP2-1 as a Si transporter as predicted from in silico
analyses (Figure 8A).

Expression of PdNIP2 Si Transporters in
Roots of Date Palm Plants
The expression of PdNIP2 genes in roots of date palm plants
was constant. The relative amount of the PdNIP2-1 transcripts
in roots showed only slight daily variation (Figure 8B), varying
between 0.62–1.29 and 0.54–1.12 for mRNA in the Si− and Si+
treatments, respectively. The second transcript PdNIP2-2 showed
a general increase in expression with length of cultivation in
both Si− and Si+ treatments (Figure 8C). However, the fold
change of this transcript ranged only between 1.0 and 2.35

in the Si− treatment and 1.0–1.92 in Si+ treatment. Because
this variation of both transcripts is rather low, we also used
the BestKeeper tool to determine the stability of expression
of the transcripts in the Si− and Si+ conditions, based on
the correlation coefficient of all possible pairs of the candidate
reference genes (Supplementary Table S4). Both transcripts
showed a low (<1) standard deviation of the threshold cycle
values (SD CT) and a low SD (<2) of the fold change of gene
expression (x-fold), with a strong correlation for all transcripts
(Supplementary Table S4).

DISCUSSION

There is little knowledge of the role of Si in date palm,
with limited data being available (Fathi, 2014). The present
study might stimulate research on this important element
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FIGURE 6 | Alignment of amino acid sequences of silicon influx transporters (NIP2s) in various plant species with highlighted NPA motifs (red color) and the G-S-G-R
Ar/R selectivity filter (green color) (A). Prediction of the 3D structure of PdNIP2-1 (B) and PdNIP2-2 (C) proteins. Prediction of transmembrane domains of PdNIP2-1
(D) and PdNIP2-2 (E) proteins.

in this economically (FAOSTAT, 2019) and medicinally (Zhang
et al., 2017) important species. This study provides conclusive
evidence of the presence and functionality of Si influx
transporters in date palm and highlights a unique pattern of Si
deposition in stegmata cells. Stegmata containing Si phytoliths
are present in all organs of the date palm, attached to the surface
of sclerenchyma bundles in roots, leaves and stem and to the
surface of sclerenchyma sheaths of vascular bundles in stems and
leaves (Figures 2–4).

Morphology of Phytoliths
The phytoliths of Phoenix dactylifera are classified as
spherical, with surface appearance ranging between warty and
echinate/spiculate (Figure 5) (Prychid et al., 2003; Tomlinson
et al., 2011). Such morphology is recognized as typical for palm
species and provides a reliable taxonomical identifier (Piperno,
2006; Tomlinson et al., 2011). The hat-shaped/conical phytoliths
are the only other morphotype found in palms and can be
found, for example, in Caryota, Sclerosperma, and Reinhardtia
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FIGURE 7 | Phylogeny of silicon influx transporters (NIP2s) of monocotyledonous and dicotyledonous plants. Posterior probabilities for Bayesian inference and
bootstrap values for maximum likelihood were mapped onto the 50%-majority rule consensus tree. The scale bar indicates two substitutions per ten hundred amino
acid positions.

(Tomlinson et al., 2011). In contrast, grass phytoliths seem
to exhibit much greater morphological variability, where it
is possible to identify several morphotypes within the leaf
epidermis alone (Kumar et al., 2017).

Mature stegmata possess thick inner tangential and radial cell
walls and thin primary outer tangential walls (Figures 2, 3). In the
majority of cases, each stegmata contains a single phytolith that
occupies almost the entire cell volume. The size of stegmata varies
between 10 and 12 µm and the size of phytoliths varies between
6 and 8 µm.

Phytolith Structure
Raman microspectroscopy confirmed the amorphous nature of
the silica framework (a broad band in region 400–490 cm−1),
which is a well-known attribute of silica phytoliths in general
(Currie and Perry, 2007). A well-resolved peak near 482 cm−1

and a relatively strong signal near 985 cm−1 further indicated a
large surface area of the silica and suggested that the phytoliths
have a microporous structure (Iqbal and Vepřek, 1982; Gailliez-
Degremont et al., 1997). This is consistent with the study by
Lins et al. (2002), revealing the porous structure of phytoliths
in the palm Syagrus coronata. A high abundance of superficial –
OH groups might favor the adsorption of new silica species
via hydrogen bonding (Coradin and Lopez, 2003) and enable
the growth of the phytolith. According to Lins et al. (2002)
the phytoliths of S. coronata were composed of granules of
varying size and morphology. This feature is reflected in the
Raman spectra by a broad band around 1200 cm−1, indicating

that multiple degrees of silicate unit polymerization are present
in the phytoliths of date palm (McMillan and Remmele,
1986). This might have resulted from contaminants disrupting
the silica framework during polymerization (McMillan, 1984;
Marsich et al., 2009).

Phytolith Association With Cell Walls
The phytoliths from date palm do not seem to contain any
organic backbone (Figure 5), which was also reported for the
palm S. coronata (Lins et al., 2002). In contrast to palms,
the phytoliths of grasses are typically associated with the cell
walls, particularly, within lignified tissues (Guerriero et al., 2016;
Kumar et al., 2017). Raman signals from their scaffolding organic
materials can be detected even if harsh procedures are used to
isolate phytoliths (Gallagher et al., 2015), usually indicating the
presence of phenolic compounds and hemicelluloses (Guerriero
et al., 2016; Soukup et al., 2017). Recent studies suggest that
lignification might be required to initiate silica deposition (Zhang
et al., 2013; Soukup et al., 2017). The association of phytoliths
with lignified cell walls has also been reported in dicots, despite
the fact that they have low tissue Si concentrations (Scurfield
et al., 1974; Hodson et al., 2005). It is speculated that a trade-
off between the accumulation of silica and lignin might occur
in plants (Schoelynck et al., 2010; Yamamoto et al., 2012;
Klotzbücher et al., 2018). Such a phenomenon is often considered
beneficial, with the cost of silicification being estimated to be only
3.7% that of lignification (Raven, 1983). However, although the
stiffness provided by these two components might be comparable,
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FIGURE 8 | (A) Silicon influx transport activity of PdNIP2-1 from date palm
evaluated at two different time points in Xenopus oocyte assays. Oocytes
injected with OsLsi1 from rice, or water were used as positive and negative
controls, respectively. Values are means ± standard deviation. Different letters
indicate significant differences in the same time point. The relative transcript
level of PdNIP2-1 (B) and PdNIP2-2 (C) genes in roots of hydroponically
grown date palm seedlings in the Si– treatment (orange line) and the Si+
treatment (blue line) from the third to the seventh day of cultivation. Gene
expression for the control was set as 1.0. Statistically significant differences
between control and treated plants were analyzed by Student’s t test and are
denoted as ∗P < 0.05. Values are means ± standard deviation. The mean
values are based on three technical and three biological replicates.

they are not entirely interchangeable due to the much lower
density of lignin and its water repelling properties (Raven, 1983;
Soukup et al., 2017). However, unlike grasses, Si phytoliths in
palms are probably formed intracellularly in the vacuole and
seemingly without an organic backbone. Schmitt et al. (1995)
performed a detailed TEM study of stegmata ontogenesis in
the rattan palm species Calamus axillaris. They concluded that

the “silica-body” grows within the vacuole. The growth of the
“silica body” is probably controlled via active Si accumulation
progressively supersaturating the vacuole, and by additional
modulation of its physico-chemical environment.

Anatomical observations of date palm show that stegmata
that are almost completely filled with Si phytoliths are
very abundant near lignified tissues, principally in the outer
surface of the sclerenchyma bundles (fibers) in roots, stem
and shoots of date palm (Figures 2, 3). Therefore, we
also performed Raman spectra analysis of cell walls in
lignified tissues. Despite Raman spectra from the fiber cell
walls indicating relatively weak lignification, they exhibited
good responsiveness to Wiesner reaction (phloroglucinol-HCl).
This can be associated with a relatively high abundance of
sinapyl/coniferyl aldehydes, which are the key cell wall reagents
in this reaction. Furthermore, high content of phenolic aldehydes
in the lignin polymer indicate an early stage of lignification
(Pomar et al., 2002). In older tissues, additional H-lignin signals
appeared in the spectra and the S/G-lignin ratios declined,
suggesting that in later stages of the cell wall development
predominantly G- and H-lignin were deposited. Relatively
weak lignification of the cell wall, high cellulose crystallinity
and strong lignification of the compound middle lamellae
indicate the gelatinous character of these fibers (Mellerowicz
and Gorshkova, 2012). As such, these fibers might provide
adjustable mechanical support, that is gradually stabilized
by the deposition of lignin as the tissue matures and the
organ achieves its optimal position in the environment. This
anatomical trait might have substituted for secondary growth,
allowing palms to achieve a stable erect posture of the
trunk with much lower metabolic costs invested into rigid
mechanical tissues.

The Role of Silica Phytoliths
Silica phytoliths are traditionally perceived as structures
supporting the mechanical properties of plant tissues (Currie
and Perry, 2007; Yamanaka et al., 2009). The abrasive nature
of silica also deters grazing animals and phytophagous insects
(Massey and Hartley, 2009). Moreover, leaf phytoliths might
facilitate the transmittance of light to the mesophyll and
improve the efficiency of photosynthesis (Sato et al., 2016).
Despite these benefits, demands driving the evolution of silica
phytolith formation are still unclear (Strömberg et al., 2016).
A contrasting evolutionary perspective views silicic acid as a
potentially toxic substance and controlled silicification as a
mechanism for its detoxification (Exley, 2015). In concentrations
exceeding 2 mM, silicic acid is prone to polymerize and might
lead to silica scaling on the surfaces of membranes or enzymes
and impair their functionality. On the other hand, it offers
protection against fungi and insects and might stabilize the
membrane against harmful effects (Coskun et al., 2018). So far,
the roles of silica phytoliths in palms have not been assessed
experimentally. Besides possible prophylactic roles, intracellular
formation of Si phytoliths might indicate a role in harnessing
excess Si accumulated by the plant. This might be crucial
for the longevity of palm tissues and/or slow progression
of fiber lignification. For instance, up to 20–30% less lignin
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was recorded in rice straws due to the silica-lignin trade-off
(Klotzbücher et al., 2018), and in aged bamboo leaves, epidermal
silicification was reported to extend to chlorenchyma and
reduce the leaf photosynthetic efficiency (Motomura et al.,
2008). Curiously, a negative correlation between leaf longevity
and silicon content was found across various plant groups
(Cooke and Leishmann, 2011).

Molecular Aspects of Si Transport
The Lsi1 transporter, which mediates Si influx to roots, was
first discovered in rice plants (Ma et al., 2006). Since then, the
list of plant Si transporters has been extended to include those
of many other species (Yamaji et al., 2008; Chiba et al., 2009;
Mitani et al., 2009, Mitani-Ueno et al., 2011; Montpetit et al.,
2012; Vivancos et al., 2016; Ouellette et al., 2017). The NIP2
transporters, especially the well characterized NIP2-1 (Lsi1), have
a role in Si uptake from soil to root cells and are, therefore,
intimately involved in Si accumulation by flowering plants. In
addition, a more efficient NP3,1 aquaporin has been identified
in horsetail (Equisetum arvense) that contains a STAR pore in
contrast to the GSGR pore in monocots including date palm
(Grégoire et al., 2012). However, in our study, we take only
NIP2 proteins into consideration. For this reason, we focused
the molecular study on the properties of PdNIP2 in date palm
roots. In our study, transcriptomic data, bioinformatic analyses
and oocyte assays revealed the presence and functionality of
PdNIP2 transporters in P. dactylifera similar to those known
in other plants. These proteins share the hallmark features,
such as the ar/R pore and the 108 amino acid sequence
between the NPA loops required for Si transport across the
plasma membrane (Deshmukh et al., 2015). The permeability
of PdNIP2-1 to Si was proven to be comparable to that of
rice Lsi1 using a Xenopus oocyte bioassay, a heterologous
expression system that has proven reliable for testing the
functionality of Si transporters. Using Si as a substrate rather
than germanium, our data have also eliminated any possible
complication associated with a surrogate substrate (Garneau
et al., 2018). A phylogenetic analysis clustered the sequences of
NIP2 transporters from the Arecaceae separately, but in a sister
position to the Poaceae.

The expression of PdNIP2 genes in roots of hydroponically
grown date palm plants was relatively unaffected by the presence
or absence of Si in the growth medium (Figure 8). Plant
species appear to differ in the effects of rhizosphere Si supply
on the expression of NIP2 genes and their expression can be
up-regulated, down-regulated or unaffected by Si addition to
cultivation media (for a detailed review, see Ma and Yamaji,
2015). Analysis using the BestKeeper tool suggests that both
PdNIP2-1 and PdNIP2-2 have the transcriptional attributes of
a reference gene, although PdNIP2-1 is a better reference gene
than PdNIP2-2. It is possible that the constitutively large Si
accumulation in P. dactylifera plants might be a consequence
of the relatively high stable expression of the PdNIP2 genes
that are most probably responsible for Si uptake. In contrast,
plants that do not accumulate Si, especially dicots, have a
constitutively low expression of NIP2 genes that is even supressed
by the presence of Si in cultivation media, as for example

NIP2-1 (XM_013836541) in Brassica napus (Haddad et al.,
2019), which might explain smaller accumulation of Si by dicots
than monocots. We found homologous sequences to OsLsi2
and OsLsi6 transcripts in the sequence of P. dactylifera. It is,
therefore, suggested that the uptake of Si from soil into root
epidermal cells is mediated by PdNIP2. Silicon is subsequently
transported from cortical cells to the xylem by a Lsi2-like
protein and translocated and distributed in leaves by a Lsi6-
like proteins.

CONCLUSION

In conclusion, Si is accumulated in all tissues of P. dactylifera
plants, where Si aggregates are present in stegmata. In contrast
to grasses, in which Si is generally associated with epidermal
tissues, the stegmata of palms are abundant in the outer
surface of the sclerenchyma bundles (fibers) present in roots,
shoot apex, leaf petioles and blades with the diameter of Si
aggregates/phytoliths ranging from 6 to 8 µm. The surface of
phytoliths is composed of only silicon and oxygen, without
any organic constituents. The analysis of the fiber cell walls
suggests they possess a gelatinous character and together with
Si phytoliths might provide strong mechanical support for the
plant. Again, in contrast to grasses, in which Si phytoliths
are mostly associated with cell walls, those of P. dactylifera
appear to be formed intracellularly. As P. dactylifera is a Si
accumulator homologous sequences of Lsi genes typical for
grasses, which are also Si accumulators, were predicted from
its genome and found to be functional. Phylogenetic analysis
of those transporters within Arecaceae, suggested that they
occupied a sister clade to those of the Poaceae and both were
distinct from those of dicots. It is likely that, as the palms and
grasses diverged, different patterns of Si accumulation became
established in each clade.
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In this study, a pot experiment was designed to elucidate the effect of varying dosages
of silicon (Si) fertilizer application in Si-deficient and enriched paddy soils on rice phytolith
and carbon (C) bio-sequestration within phytoliths (PhytOC). The maximum Si fertilizer
dosage treatment (XG3) in the Si-deficit paddy soil resulted in an increase in the rice
phytolith content by 100.77% in the stem, 29.46% in the sheath and 36.84% in the
leaf compared to treatment without Si fertilizer treatment (CK). However, the maximum
Si fertilizer dosage treatment (WG3) in the Si -enriched soil increased the rice phytolith
content by only 32.83% in the stem, 27.01% in the sheath and 32.06% in the leaf.
Overall, Si fertilizer application significantly (p < 0.05) increased the content of the rice
phytoliths in the stem, leaf and sheath in both the Si-deficient and enriched paddy
soils, and the statistical results showed a positive correlation between the amount of
Si fertilizer applied and the rice phytolith content, with correlation coefficients of 0.998
(p < 0.01) in the Si-deficient soil and 0.952 (p < 0.05) in the Si-enriched soil. In addition,
the existence of phytoliths in the stem, leaf, and sheath of rice and its content in
the Si-enriched soil were markedly higher than that in the Si-deficient soil. Therefore,
Si fertilizer application helped to improve the phytolith content of the rice plant.

Keywords: Si fertilizer, phytolith accumulation, Si-deficient paddy soils, PhytOC, rice organs

INTRODUCTION

Phytoliths derive from bio-mineralization in plants and usually take the shape of the plant cell or cell
spatium where Si is deposited. The phytolith content of plants ranges from less than 50 g kg−1 to as
high as 150 g kg−1 (Epstein, 1994; Parr et al., 2010; Song et al., 2013, 2017; Ji et al., 2017), mainly due
to phylogenetic differences in Si requirements of most dicotyledons and some Gramineae (Hodson
et al., 2005), as well as the amount of available silica in the environment (Seyfferth et al., 2013; Guo
et al., 2015; Si et al., 2018; Wen et al., 2018).

Rice is a staple crop, with a global planting area of approximately 1.64 × 108 ha as of 2014
(Prajapati et al., 2016). When rice is harvested, the rice straw and husks are removed from the paddy
field and used for other purposes, including animal feeding and firewood, or simply incinerated
(Savant et al., 1996). Thus, most of the Si taken up by rice is removed from a field when the rice
straw is removed, and the loss of SiO2 is from 75 to 130 kg hm−2 every production season (Zhang
et al., 2014). Such large losses of Si make it difficult to maintain the balance of Si in soils from natural
weathering alone. Currently, most paddy soils in China are Si-deficient. For example, 73% of paddy
soils in Zhejiang Province and approximately 60% in Henan Province are Si-deficient (Cai, 2015).
Some research has shown that Si fertilizer application can significantly increase the biomass of rice
(Wu et al., 2014; Zhang et al., 2014).
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In plants, monosilicic acid is taken up from the soil by a
specific transporter (Ma et al., 2006; Song et al., 2014a) and
deposited throughout the cellular structures, thereby forming
amorphous Si particles known as “phytoliths” (Piperno, 1988;
Pearsall, 1989). There is a significant correlation between the Si
content and the phytolith content of crop materials, including the
leaves, stems and sheaths, and the Si concentration of the plant
phytoliths is approximately 90% (Song et al., 2014a).

Phytoliths can occlude small amounts of many elements,
such as C, N, S, and so on (Kameník et al., 2013; Li et al.,
2014; Anala and Nambisan, 2015). The C-occluded content of
phytoliths ranges from less than 1 g kg−1 to as high as 100 g
kg−1 (Clarke, 2003). This PhytOC can be stored in the soil for
thousands of years (Parr and Sullivan, 2005). Thus, it plays a
vital role in global carbon (C) pools (Song et al., 2014a). The
Si cycle is tightly coupled to the C cycle, and this interaction is
relevant for research on climate change (Chadwick et al., 1994).
The formation of phytoliths in rice plants depends not only on
the crops (Li et al., 2013a; Guo et al., 2015) but also on the plant
cultivars (Hodson et al., 2005; Henriet et al., 2008; Yang et al.,
2015), the soil’s Si availability (Henriet et al., 2008; Klotzbücher
et al., 2018) and so on.

The application of Si fertilizer in soils with different available
Si contents needs further study regarding the accumulation
of phytoliths in rice. Thus, in this work, we designed a pot
experiment to elucidate the effect of varying dosages of Si
fertilizer application on the rice phytolith and PhytOC contents
of plants grown in Si-deficient and enriched paddy soils.

MATERIALS AND METHODS

Experimental Soils and Rice Cultivar
The Si-deficient paddy soil (red paddy soil) was obtained
from Yangliu Town, Xuanchen City, Anhui Province, China.
The Si-enriched paddy soil (Wushan soils) was obtained from
the Changshu Agroecological Experimental Station, Chinese
Academy of Sciences. The base is located in Xinzhuang
County, South Changshu, Suzhou, Jiangsu Province, China. The
physicochemical properties of the two soils are shown in Table 1.

The rice cultivar (Oryza sativa) Nanjing 46 was obtained from
the Changshu Agroecological Experimental Station, Chinese
Academy of Sciences.

Pot Experiment
Two soils (Si-deficient and enriched paddy soils) were selected
from Xuanchen City and the Changshu Agroecological
Experimental Station, Chinese Academy of Sciences, respectively.
Four available Si dosages were designed in the pot experiments:
(1) CK (Si fertilizer not applied); (2) low slag Si fertilizer I
(SiO2150 kg ha−1); (3) high slag Si fertilizer II (300 kg ha−1);
and (4) high slag Si fertilizer III (600 kg ha−1). Thus, this
experiment comprised 8 treatments repeated 3 times. Two soils
were placed in the pot bowl for a total volume of 0.0175 m3; each
pot contained N 46%, P2O5 13.5%, and K2O 60%, Si fertilizer
was applied as the base fertilizer and three rice plants were
planted in every pot. Pots were placed in the greenhouse of

the Changshu Agroecological Experimental Station, Chinese
Academy of Sciences in June 2014, and the whole rice growth
period was maintained using conventional management.

Sample Preparation
After the rice cultivar harvest, each rice plant was separated
into five different organs: sheath, leaf, root, stem, and grain. All
rice samples were rinsed twice in distilled water, placed in an
ultrasonic bath for 20 min and subsequently dried in oven at 70◦C
for 24 h. After hulling, the rice organ samples were stored for
phytolith extraction and PhytOC determination.

Phytolith Extraction From Rice Organs
and PhytOC Analysis
The phytolith extraction was used for a revised wet digestion
measurement previously described by Zuo and Lü (2011);
Sun et al. (2016). Phytolith extraction sample assemblages
were installed on glass slides in Balsam Canada mounting
medium. The slides were viewed at 400 × magnification using
a microscope (Jiangnan XP-213, China) fitted with a polarizing
filter and a 5.0 MP color CCD camera to ensure the absence of
organic material residue as shown by Parr et al. (2010; Figure 1).
The PhytOC was measured using an Elemental Analyzer 3000
(GmbH Company, Germany).

Statistical Analyses
The mean values of all parameters were calculated from the
determination of three replicates, and the standard errors of
the means were determined. A one-way ANOVA was used to
measure the significance of the results between different varieties,
and Tukey’s multiple range tests (p < 0.05) were subsequently
performed. All the statistical analyses were performed using SPSS
v.17 for Windows.

RESULTS

Phytolith and C Contents of the
Phytoliths in the Rice Organs
With an increase in the application of the Si fertilizer dosages,
the content of the phytoliths in the rice organs was increased
in the Si-deficient red paddy soil (Table 2). For example, the
content of the phytoliths in the XG3 (26.10 g kg−1) and XG2
(18.50 g kg−1) stems was significantly (p < 0.05) higher than
that of the control (13.00 g kg−1), and the rate increased by
100.7 and 42.3%, respectively. In addition, the content of the
phytoliths of XG1 in the stem was not significantly (p > 0.05)
different than that of the control. However, the content of the
phytoliths in the rice sheath and leaf could be significantly
(p < 0.05) increased by the application of all the Si fertilizer
dosages. The content of the phytoliths in the XG3 treatment rice
grains could only be increased by a high dose of Si fertilizer
application. However, the content of the phytoliths in all the
root treatments was not significantly (p > 0.05) different from
that of the control.
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TABLE 1 | Basic chemical properties of the two soils.

NH4OAc- Organic Na2CO3- NH4OAc-

extractable Total N Total P Total K matter extractable extractable K

Experimental Soils Si (mg kg−1) pH (g kg−1) (g kg−1) (g kg−1) (mg kg−1) P (mg kg−1) (mg kg−1)

Si-deficient paddy soil (red paddy soil) 5.67 4.62 1.20 0.18 52.49 28.89 17.44 210.0

Si-enriched paddy soil (Wushan soils) 252.3 7.54 2.40 0.73 20.16 39.89 34.27 101.7

FIGURE 1 | Optical microscope images of phytoliths extracted from the rice samples using the wet ashing method according to Zuo and Lü (2011) and Sun et al.
(2016); magnification 400×, scale bar 30 µm.

TABLE 2 | Different effects of silicon fertilizers on rice organs content of phytoliths.

Treatments stem (g kg−1) sheath (g kg−1) leaf (g kg−1) grain (g kg−1) root (g kg−1)

XCK 13.00 ± 1.44c 36.01 ± 1.45c 34.72 ± 1.50c 11.59 ± 2.41b 80.66 ± 25.81a

XG1 16.84 ± 1.07bc 42.73 ± 2.74b 41.37 ± 2.25b 13.86 ± 1.61b 117.20 ± 18.58a

XG2 18.50 ± 0.91b 49.37 ± 0.89a 48.72 ± 2.09a 12.96 ± 3.49b 92.87 ± 36.86a

XG3 26.10 ± 4.41a 46.62 ± 2.38a 47.51 ± 3.08a 19.37 ± 1.38a 84.78 ± 30.35a

WCK 37.22 ± 4.19b 75.31 ± 4.68bc 76.18 ± 4.44b 16.60 ± 3.29b 67.46 ± 22.70b

WG1 38.57 ± 4.63b 74.18 ± 3.21c 76.14 ± 8.10b 17.26 ± 1.92b 56.09 ± 1.76b

WG2 42.09 ± 3.23b 84.00 ± 5.19b 93.13 ± 11.68a 21.69 ± 1.83ab 96.66 ± 14.10a

WG3 49.44 ± 0.74a 95.72 ± 5.59a 100.60 ± 7.98a 24.72 ± 4.96a 82.03 ± 5.32ab

W, Wushan soil; X, Red paddy soil; G, Leg silicon fertilizer. Different lowercase letters after the data mean that the difference between different types of Si-fertilizer dosage
treatments are significant (p < 0.05).

With the increase in the application of the Si fertilizer doses,
the content of the phytolith in the rice organs could be increased
in the Si-enriched Wushan paddy soil (Table 2). For example,
the content of the phytoliths of the WG3 (100.60 g kg−1) and
WG2 (93.13 g kg−1) leaves was significantly (p < 0.05) higher
than that of the control (76.18 g kg−1), and the increase in
the rate was 32.06 and 22.25%, respectively. In addition, the
content of the phytoliths of WG1 in the stem was not significantly
(p > 0.05) different from that of the control. However, the
content of the phytoliths in the other rice organs could be
significantly (p < 0.05) increased by the application of high Si
fertilizer dosages.

Thus, different Si fertilizer doses might increase the content of
the phytoliths in the rice organs in either Si-deficient red paddy
soil or Si-enriched Wushan paddy soil. The C content in the
phytoliths in the organs was not affected by the increase in the Si
fertilizer dose. However, the content of the C in the phytoliths was
different in all the organs. Generally the content of the C of the
leaf phytoliths was higher than that of the other organs (Table 3).

Phytolith Content and the Estimated
PhytOC Fluxes in Whole Rice Plants
Compared with the control treatment, the content of phytoliths
in the whole rice plant was significantly (p < 0.05) increased
by the use of a high Si fertilizer dose in the two types of soils
(Table 4). The C content of the phytoliths and the PhytOC
content of the dry organ weights were not significantly (p > 0.05)
different in the rice plant. In Si-deficient red paddy soil, the
estimated PhytOC fluxes were calculated by the content and
proportion of the phytoliths and the C content of the phytoliths
in each part of the rice plant. The results showed that the
application of Si fertilizer could significantly (p < 0.05) increase
the content of the estimated PhytOC fluxes in the whole plant
with the increase in the Si fertilizer dosage. The estimated
PhytOC fluxes of the XG2 (11.36 kg-CO2 ha−1 year−1) and
XG3 (12.93 kg-CO2 ha−1 year−1) treatments were 43.04 and
49.70%, respectively, and were significantly (p < 0.05) higher
than those of the control treatment (8.41 kg-CO2 ha−1 year−1).
In the Si-enriched soil, the phytolith content of all the Si fertilizer
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TABLE 3 | Different effects of silicon fertilizers on rice organs content of C content of phytoliths.

Treatments stem (g kg−1) sheath (g kg−1) leaf (g kg−1) grain (g kg−1) root (g kg−1)

XCK 8.60 ± 1.34a 5.80 ± 0.75a 8.02 ± 1.81a 4.78 ± 0.61a 1.67 ± 0.01a

XG1 4.85 ± 1.20b 6.09 ± 0.92a 9.21 ± 3.84a 6.79 ± 1.87a 1.88 ± 0.31a

XG2 5.28 ± 1.20b 4.82 ± 1.20a 9.47 ± 1.75a 7.08 ± 1.43a 1.68 ± 0.24a

XG3 4.64 ± 0.38b 4.61 ± 0.97a 7.23 ± 1.20a 5.10 ± 1.90a 2.19 ± 0.34a

WCK 2.28 ± 0.36a 2.28 ± 0.39ab 7.41 ± 2.81a 6.53 ± 2.91a 4.98 ± 1.42a

WG1 2.59 ± 0.55a 2.16 ± 0.11ab 3.22 ± 0.82a 3.39 ± 0.45a 4.79 ± 2.22a

WG2 4.13 ± 2.0a 2.82 ± 0.54a 5.58 ± 3.37a 4.34 ± 0.92a 4.68 ± 0.59a

WG3 2.23 ± 0.67a 1.90 ± 0.09b 4.31 ± 2.57a 4.42 ± 1.18a 4.03 ± 1.12a

W, Wushan soil; X, Red paddy soil; G, Leg silicon fertilizer. Different lowercase letters after the data mean that the difference between different types of Si-fertilizer dosage
treatments is significant (p < 0.05).

TABLE 4 | Different effects of silicon fertilizers on rice plant content of phytoliths, C content of phytoliths, PhytOC content of dry organ weight, and the estimated PhytOC
fluxes per ha in kg of CO2 equivalents (kg∼e∼ CO2) for rice.

Phytolith C content of PhytOC content of dry Estimated PhytOC fluxes

Treatments content (g kg−1) phytoliths (g kg−1) organs weight (g kg−1) (kg-CO2 ha−1yr−1) Biomass (t ha−1)

XCK 24.23 ± 0.39b 5.74 ± 0.52a 0.13 ± 0.01b 8.41 ± 0.99b 16.38 ± 2.34b

XG1 26.64 ± 1.02a 6.61 ± 1.48a 0.16 ± 0.04a 10.38 ± 2.43a 18.43 ± 1.74a

XG2 28.32 ± 2.06a 6.56 ± 1.04a 0.17 ± 0.03a 11.36 ± 2.34a 18.90 ± 1.67a

XG3 31.94 ± 2.18a 5.14 ± 1.05a 0.16 ± 0.03a 12.93 ± 0.54a 20.33 ± 0.77a

WCK 34.96 ± 0.88b 5.44 ± 1.80a 0.17 ± 0.05a 8.74 ± 0.29a 17.94 ± 0.46a

WG1 36.22 ± 1.06b 3.21 ± 0.15a 0.11 ± 0.01a 7.92 ± 0.95a 17.42 ± 1.61a

WG2 48.06 ± 4,34a 4.29 ± 1.09a 0.21 ± 0.08a 11.11 ± 1.93a 17.78 ± 4.38a

WG3 53.85 ± 0.79a 4.39 ± 0.68a 0.21 ± 0.07a 9.23 ± 0.09a 14.76 ± 1.78b

W, Wushan soil; X, Red paddy soil; G, Leg silicon fertilizer. Different lowercase letters after the data mean that the difference between different types of Si-fertilizer dosage
treatments are significant (p < 0.05).

treatments in the rice plants was higher than that of the control
treatment, but it was not significantly (p > 0.05) different in all
the Si fertilizer treatments compared with the control treatment.
The estimated PhytOC fluxes of WG1 were 1.3% lower than
those of the control.

The Correlation Coefficients Between
the Six Variables of the Red Paddy Soil
As shown in Table 5, the coefficient of variation in the different
factors in the Si-deficient red paddy soils was high, illustrating
considerable variation among these different Si fertilizer dosages.
The results demonstrated that there was a significant correlation
(R = 0.998 and p < 0.01) between the phytolith content and
the Si fertilizer dose. The C contents of the phytoliths were
not correlated (R = −0.177 and p > 0.05) with the phytolith
content in the rice plants treated with different fertilizer doses.
The correlation coefficient was 0.986, indicating a significant
relationship (p < 0.05) between the phytolith content and
the estimated PhytOC fluxes. The biomass of the rice was
significantly related to the phytolith content (R = 0.972 and
p < 0.05) and the estimated PhytOC fluxes (R = 0.994
and p < 0.01).

The Correlation Coefficients Between
the Six Variables of the Wushan Soil
As shown in Table 6, the coefficient of variation in the different
factors in the Si-deficient red paddy soils was high, illustrating

considerable variation among the different Si fertilizer doses.
The results demonstrated that there was a significant correlation
(R = 0.952 and p < 0.05) between the phytolith content and
the Si fertilizer dose. The C contents of the phytoliths were
not correlated (R = −0.035 and p > 0.05) with the phytolith
content in the rice plants of different fertilizer treatments.
The correlation coefficient was 0.598 and there was significant
correlation (p > 0.05) between the phytolith content and
the estimated PhytOC fluxes. The biomass of the rice was
significantly correlated with the phytolith content (R = −0.890
and p > 0.05) and the estimated PhytOC fluxes (R = 0.076
and p > 0.05).

DISCUSSION

Rice accumulates Si (Seyfferth et al., 2013), and the Si
concentration is approximately 10–15% in the rice plant
(Marschner, 1995), with approximately 90% of the Si present in
the phytolith (Wang, 1998). There was a significant correlation
between the Si content and the phytolith content of the crop
materials, such as the phytolith contents of the rice leaves, stems
and sheaths (Song et al., 2014a). The shape of the phytoliths in the
different rice organs varied (e.g., double-peaked, bulliform, and
parallel dumbbell phytoliths) (Prajapati et al., 2016). Prajapati
et al. (2016) reported that the phytolith content in the different
rice organs (stem, sheath, leaf, and grain) ranged from 0.14 to
26.4 g kg−1. Similar results and trends were reported by other
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TABLE 5 | The correlation coefficients between the six variables of the red paddy soil.

Estimated

Silicon Phytolith C content of PhytOC content of PhytOC

Variables fertilizer content phytoliths dry organs weight fluxes Biomass

Silicon fertilizer 1

Phytolith content 0.998∗∗ 1

C content of phytoliths −0.238 −0.177 1

PhytOC content of dry organs weight 0.620 0.665 0.612 1

Estimated PhytOC fluxes 0.973∗ 0.986∗
−0.008 0.795 1

Biomass 0.953∗ 0.972∗ 0.041 0.799 0.994∗∗ 1

∗Correlation is significant at the 0.05 level (2-tailed). ∗∗Correlation is significant at the 0.01 level (2-tailed).

TABLE 6 | The correlation coefficients between the six variables of the Wushan soil.

Estimated

Silicon Phytolith C content of PhytOC content of PhytOC

Variables fertilizer content phytoliths dry organs weight fluxes Biomass

Silicon fertilizer 1

Phytolith content 0.952∗ 1

C content of phytoliths −0.209 −0.035 1

PhytOC content of dry organs weight 0.599 0.796 0.526 1

Estimated PhytOC fluxes 0.333 0.598 0.229 0.800 1

Biomass −0.890 −0.746 0.100 −0.393 0.076 1

∗Correlation is significant at the 0.05 level (2-tailed). ∗∗Correlation is significant at the 0.01 level (2-tailed).

researchers (Li et al., 2013c; Guo et al., 2015). Our results showed
that whether the paddy soil was Si-deficient or Si-enriched,
the utilization of Si fertilizer could significantly (p < 0.05)
improve the phytolith content of the rice organs (Tables 2, 3)
such as the stem, sheath, leaf, grain and root. According to
the formation mechanism of phytoliths, the available Si in the
soil is taken up by rice plants at the roots, usually taking the
shape of the plant cell or cell spatium where Si is deposited
(Piperno, 1988; Ma, 2003; Neumann, 2003; Song et al., 2016).
Thus, the use of Si fertilizer increased the content of effective
Si in the soil (Ma et al., 2004; Liu et al., 2006; Cai, 2015) and
increased the absorption capacity of Si in the rice (Li et al.,
2013c; Seyfferth et al., 2013; Guo et al., 2015; Zuo et al., 2016;
Huan et al., 2018), thereby increasing the phytolith content of the
rice plant (Table 4).

A substantial amount of research reported that the factors
of the PhytOC content were as follows: different varieties (Parr
et al., 2009, 2010; Parr and Sullivan, 2011; Li et al., 2013b;
Song et al., 2017; Sun et al., 2017), pest and disease resistances
(Ma et al., 2002), nitrogen utilization (Zhao et al., 2016), basalt
powder (Guo et al., 2015), soil-effective Si content (Song et al.,
2014b; Klotzbücher et al., 2018), and net production on the
ground (Blecker et al., 2006). It has been shown that Si is an
important element for rice growth and the deficiency of plant-
available Si may exert an adverse effect on the rice yield through
biotic stresses, disease and pests, etc. (Ma, 2004; Ma et al., 2004).
Our results also showed that the contents of phytolith in rice
plants were different in Si-deficient and Si-enriched paddy soil.
The content of Phytolith in rice plants with Si-enriched paddy
soils was higher than that in rice plants with Si-deficient paddy

soil (Tables 2, 4). Moreover, whether in Si-deficient or in Si-
enriched paddy soils, there was a positive correlation (p < 0.05)
between the phytolith content of rice plants and the Si fertilizer
dosages (Tables 5, 6). Previous studies have demonstrated that
the content of the Si (phytoliths) in crops may be promoted
through Si fertilizer application (Alvarez and Datnoff, 2001; Liang
et al., 2010; Mecfel et al., 2010). Further, in the Si-deficient
paddy soil, the estimated PhytOC fluxes were significantly related
to the Si fertilizers (R = 0.973 and p < 0.05), the phytolith
content (R = 0.986 and p < 0.05) and the biomass of the
rice (R = 0.994 and p < 0.01) (Table 5). However, in the
Si-enriched paddy soil, the estimated PhytOC fluxes were not
correlated (P > 0.05) with these factors. Zhang et al. (2014)
showed that the yield of rice was increased 14.5% by the use
of 225 kg ha−1 Si fertilizer; when the application of Si fertilizer
was increased to 375 kg ha−1, the yield of the rice increased
only by 10.1%. Similarly, Wu et al. also recommended the use
of 225 kg ha−1 Si fertilizer as the most economical measure (Wu
et al., 2014). We also obtained the same results. The application
of Si fertilizer to the Si-enriched paddy soil did not increase
the biomass of the rice but reduced it. In particular, when the
amount of the Si fertilizer reached 600 kg ha−1, the rice biomass
decreased significantly by 29.10% compared with the control
treatment (Table 4). Therefore, excessive Si fertilizer not only
has no benefit to the accumulation of estimated PhytOC fluxes
in rice plant, but also reduces the yield of rice. However, for Si-
deficient soils, the application of Si fertilizer can not only increase
rice yield, but also increase the phytolith content of rice plants
and the estimated PhytOC fluxes (Table 4). Thus, different Si
fertilizer doses were one of the measures to improve the phytolith
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content and the biomass of the rice plant. Thus, how to promote
the phytolith content and C content of phytoliths will require
further in-depth study.

The global rice cultivation area was approximately
1.64 × 108 ha in 2014 (Prajapati et al., 2016); when rice is
harvested, the rice straw and husks are removed from the paddy
field and used for other purposes, including animal feeding and
firewood, or simply incinerated (Savant et al., 1996). Thus, most
of the Si taken up by rice is removed from a field when the rice
straw is removed, and the loss of SiO2 is from 75 to 130 kg ha−1

every production season (Zhang et al., 2014). Such large losses
of Si make it difficult to maintain the balance of Si in soils from
natural weathering alone. Appropriate dosages of Si fertilizer
could solve the problem of Si deficiency in soil, and increase
the biomass of rice and the content of phytolith in rice plants,
and indeed result in the occlusion of increased CO2 in the rice
plants (Liang et al., 2010; Mecfel et al., 2010). The estimated
PhytOC fluxes increased from 0.49 to 4.52 Kg-e-CO2 ha−1

year−1 (Table 4). More than 8.04 × 104 to 7.41 × 105 Mg-e-CO2
would have been occluded within the phytolith of the rice plants
per year globally. Taking the largest estimated PhytOC flux (12.93
Kg-e-CO2 ha−1 year−1) of the rice plants, 2.12 × 106 Mg-e-CO2,
would have been occluded within the phytolith of rice plants
every year. However, the annual CO2 bio-sequestration within
the rice phytoliths of the unit area is likely to be lower than that
of other plants, such as bamboo leaf litter (1.56 × 107 Mg-e-
CO2 year−1) (Parr, 2006), wetland plants (4.39 × 107 Mg-e-CO2
year−1) (Guo et al., 2015), grasslands (4.14 × 107 Mg-e-CO2
year−1) (Song et al., 2012), millet (2.37 × 106 Mg-e-CO2 year−1)
(Pan et al., 2017) and sugarcane leaf (0.72 × 107 Mg-e-CO2
year−1) (Parr et al., 2009). In this study, we showed that Si
fertilizer application could promote the phytolith content and
biomass of rice plants and further improve the estimated PhytOC
flux of rice plants. Thus, the measure provided a theoretical
basis for the bio-carbon sequestration of the rice plant and
laid a foundation for PhytOC fixation in paddy soil by the
return of straw.

CONCLUSION

The use of Si fertilizer could significantly increase the phytolith
content of rice plants in Si-deficient red paddy soil or Si-enriched
Wushan soil. The phytolith content of rice plants was positive
correlation with the Si fertilizer dose in two types paddy soil.
The estimated PhytOC fluxes in Si-deficient red paddy soil had
a positive correlation with the phytolith content, the biomass of
the rice and the Si fertilizer dose. In this study, we estimated that
the PhytOC fluxes increased from 0.49 to 4.52 Kg-e-CO2 ha−1

year−1. More than 8.04 × 104 to 7.41 × 105 Mg-e-CO2 would
have been occluded within the phytoliths of the rice plants per
year globally. Therefore, Si fertilizer application might provide a
new approach to increase the atmospheric CO2 occluded within
the phytoliths, offering a potential method.
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Phytoliths are silica bodies formed in living plant tissues. Once deposited in soils through
plant debris, they can readily dissolve and then increase the fluxes of silicon (Si) toward
plants and/or watersheds. These fluxes enhance Si ecological services in agricultural and
marine ecosystems through their impact on plant health and carbon fixation by diatoms,
respectively. Fertilization increases crop biomass through the supply of plant nutrients,
and thus may enhance Si accumulation in plant biomass. Si and phosphorus (P)
fertilization enhance rice crop biomass, but their combined impact on Si accumulation
in plants is poorly known. Here, we study the impact of combined Si-P fertilization on the
production of phytoliths in rice plants. The combination of the respective supplies of 0.52 g
Si kg–1 and 0.20 g P kg−1 generated the largest increase in plant shoot biomass (leaf, flag
leaf, stem, and sheath), resulting in a 1.3-fold increase compared the control group.
Applying combined Si-P fertilizer did not affect the content of organic carbon (OC) in
phytoliths. However, it increased plant available Si in soil, plant phytolith content and its
total stock (mg phytolith pot−1) in dry plant matter, leading to the increase of the total
amount of OC within plants. In addition, P supply increased rice biomass and grain yield.
Through these positive effects, combined Si-P fertilization may thus address agronomic
(e.g., sustainable ecosystem development) and environmental (e.g., climate change)
issues through the increase in crop yield and phytolith production as well as the
promotion of Si ecological services and OC accumulation within phytoliths.

Keywords: phytolith, crop yield, silicon-phosphorus fertilization, rice, silicon cycle
INTRODUCTION

Amorphous biogenic silica (SiO2·nH2O) can accumulate in living plant tissues during their growth
and development (Conley, 2002; Piperno, 2006). These silica bodies, named phytoliths, are released
into the soil after the decomposition of litter and plant residues (Smithson, 1956; Alexandre et al.,
1997; Fraysse et al., 2006). Depending on their chemical composition and structure, phytoliths can
accumulate in soils and sediments over centuries or millennia, or dissolve and then contribute to the
.org February 2020 | Volume 11 | Article 67132
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pool of aqueous monosilicic acid (dissolved silicon: DSi), which
is available for plant root uptake (Bartoli, 1985; Meunier et al.,
1999; Fraysse et al., 2009; Struyf et al., 2010; Cornelis and
Delvaux, 2016). The elemental composition of phytoliths is
influenced by plant species and phytolith morphology (Bartoli
and Wilding, 1980; Li et al., 2014; Nguyen et al., 2014). Organic
carbon (OC) (0.2–6%) can be associated with phytoliths (Bartoli,
1985; Parr and Sullivan, 2005; Parr et al., 2010; Zuo and Lü, 2011;
Li et al., 2013c; Alexandre et al., 2015). In particular, the
occlusion of organic carbon (OC) within phytolith (PhytOC),
which is formed in plant tissues, has been proposed as a
mechanism which traps the photosynthesized molecules within
silica bodies (Parr and Sullivan, 2005; Santos et al., 2012;
Alexandre et al., 2015; Reyerson et al., 2016). The occurrence
of PhytOC has been reported in various studies (Parr and
Sullivan, 2005; Parr et al., 2010; Parr and Sullivan, 2011; Song
et al., 2012; Song et al., 2013; Li et al., 2013a; Li et al., 2013b;
Huang et al., 2014; Song et al., 2015; Guo et al., 2015; Sun et al.,
2016; Pan et al., 2017; Qi et al., 2017; Li et al., 2018a). However,
the biological processes leading to the occurrence of PhytOC has
not been demonstrated. Therefore, OC content in phytoliths
varies depending on the extraction procedure (Parr and Sullivan,
2014; Santos and Alexandre, 2017; Song et al., 2016). These
variations led to a debate on the scale of OC occlusion within
phytoliths, and on the significance of the PhytOC sink for the
global C cycle and climate change mitigation (Parr and Sullivan,
2005; Song et al., 2012; Hodson, 2016; Reyerson et al., 2016;
Lorenz and Lal, 2018; Crifò and Strömberg, 2019; Ramesh et al.,
2019; Song et al., 2016; Santos and Alexandre, 2017). In addition,
OC associated with phytoliths might have a non-photosynthetic
origin attributed to the uptake of organic molecules from soil
(Santos et al., 2012; Alexandre et al., 2015; Reyerson et al., 2016),
which could lead to erroneous C dating using phytoliths
(Hodson, 2016). Therefore, the accurate determination of the
phytolith OC content must not only completely eliminate
external OC, but also keep the phytolith structure intact and
the oxidation of C in the phytolith to a minimum (Parr and
Sullivan, 2014). Overoxidation may significantly underestimate
phytolith C sequestration and should be avoided (Parr and
Sullivan, 2014).

In any case, whether phytoliths sequester OC or not, the
increase in silicon (Si) uptake undoubtedly enhances plant
biomass, Si and phytolith content in plants [a.o. (Li et al.,
2018b; Li et al., 2019)]. The amount of OC that could be
associated with phytoliths would depend on plant Si
accumulation and thus phytolith content (Li et al., 2013c);
therefore, suggesting that regulating Si supply might increase
phytolith-associated OC in croplands. In this respect, the
combination of Si and phosphorus (P) fertilization may
enhance the contents of plant phytolith and OC associated
within phytoliths.

This study is how co-fertilization combining Si and
phosphorus (P) can affect Si availability and plant uptake, as
well as phytolith formation in rice. Si uptake improves the
growth of Si-accumulator cereals such as rice (Savant et al.,
1997; Ma et al., 2001; Ma et al., 2006; Liang et al., 2015). Si
Frontiers in Plant Science | www.frontiersin.org 233
fertilization can enhance rice resistance to biotic and abiotic
stresses (e.g., pests, water and heat stress, disease, etc.) (Liang
et al., 2007; Cooke et al., 2016; Cooke and Leishman, 2016;
Coskun et al., 2019), and thus promote rice crop yields and Si
accumulation (Savant et al., 1997; Ma et al., 2001; Keller et al.,
2012). However, P fertilization also plays an important role in
improving yields and promoting plant precocity (George et al.,
2001; Lambers et al., 2006; Hammond and White, 2008). In
paddy soils, Si and P fertilization could alleviate P deficiency,
increase P uptake by plants (Ma and Takahashi, 1990; Liang
et al., 2007; Hu et al., 2018), and enhance plant available Si in soil,
hence improving crop yields (Song et al., 2014; Klotzbücher et al.,
2015; Carey and Fulweiler, 2016; Li et al., 2019). Furthermore,
plant available Si content in soil may increase after P supply.
Besides, Si supply can increase P bioavailability in soil through
the competition between silicate and phosphate for sorption on
Al and Fe oxide surfaces that bear positive charges (Parfitt, 1989;
Su and Puls, 2003). Combined Si-P fertilization may thus
substantially influence Si and P biocycling in the soil-plant
system, as well as plant phytolith and chemical composition.

Through a pot experiment in controlled conditions, we aim to
address three interconnected questions: 1) does Si-P fertilization
increase rice biomass? 2) does increased biomass promote plant
phytolith formation? and 3) does combined Si-P supply impact
the amount of OC associated within phytoliths?
MATERIALS AND METHODS

The pot experiment was carried out at Zhejiang Agricultural and
Forestry University, Lin'an, Zhejiang Province, Eastern China
(29°56'–30°27'N, 118°51'–119°52'E). This region is characterized
by a mid-subtropical monsoon climate with a mean annual
precipitation of 1,500 mm, a mean annual temperature of 15.8°
C, 237 frost-free days, and an annual 1,939 h of sunshine.

Pot Experiment Design and Management
The soil used was a Cambisol, according to the World Reference
Base (WRB) key (IUSS, 2014), sampled from the agricultural
station at Zhejiang Agricultural and Forestry University. The soil
was air-dried, sieved at 2 mm, and mixed with Si-P fertilizers.
The soil physico-chemical properties were as follows (Lu, 2000):
pHwater = 5.34 ± 0.02, soil organic matter = 30.26 ± 4.28 g kg−1,
available Si = 155.59 ± 22.73 mg kg−1, available P = 113.87 ± 1.35
mg kg−1, available K = 10.33 ± 1.11 mg kg−1 and available N =
87.15 ± 2.47 mg kg−1 (Guo et al., 2015). The analytical methods
were described by Lu (2000). Here, plant available Si was assessed
using extracts of NaOAc and acetic acid. Jiayu 253 was selected as
the experimental rice (Oryza sativa) cultivar because of its high
yield and wide distribution in Zhejiang province.

The experiment was carried out using three fertilization
levels, zero (0), medium (m), and high (h), for Si (Si0: 0, Sim:
0.26, Sih: 0.52 g SiO2 kg

–1) using Na2SiO3, and P (P0: 0, Pm: 0.2,
Ph: 0.4 g kg–1) using P2O5. Nine treatments (Si0P0, Si0Pm, Si0Ph,
SimP0, SimPm, SimPh, SihP0, SihPm, and SihPh) and five replicates
per treatment were set up (Table 1). N and K fertilizers were
February 2020 | Volume 11 | Article 67
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applied in all treatments as, respectively, urea ammonium nitrate
(0.20 g N kg−1), and KCl (0.25 g K kg−1). All fertilizers were
added to soil before planting rice. Soil pH value and available Si
and P contents under different levels of Si and P supply were
Frontiers in Plant Science | www.frontiersin.org 334
determined by Sun et al. (2015), as presented in Table 2. Each
pot (0.24 m diameter, 0.28 m height) contained 8.5 kg air-dried
soil and was regularly irrigated using tap water (Si: 0.36 mg L–1) at
the same level until rice grain harvesting. After a first irrigation of
500 ml, 1,000 ml of water were supplied per pot during the whole
growing period, once every 2 days. Crop harvesting was done 4
months after planting. The rice plant parts were sampled
separately: sheath, leaf, flag leaf, and stem. Plant samples were
thoroughly washed with deionized water, and then oven dried at
75°C until a constant weight was attained, as equal to dry shoot
biomass. Rice grains, including rice husk, were also dried at 75°C
and weighed.

Plant Chemical Analysis
Dried plant samples were cut into small pieces by stainless steel
scissors for the analysis of Si and phytolith content. Plant
samples were fused with Li-metaborate at 950°C and dissolved
in nitric acid (HNO3 4%), prior to molybdenum blues
colorimetry to determine Si content (Lu, 2000).

Microwave digestion in combination with Walkley–Black
digestion was used to isolate the phytoliths from plant material
(Walkley and Black, 1934; Parr et al., 2001), in order to remove
extraneous organic materials thoroughly (Li et al., 2013c). We
first checked the presence of phytoliths by optical microscopy to
ensure that all extraneous organic materials had been removed
(Li et al., 2013c). Then, we further assess the purity of phytolith
extract using the scanning electron microscope (SEM) images
and energy-dispersive spectroscopy (EDS) (Figure 1). The
phytoliths were then oven dried at 75°C for 24 h, cooled and
weighed. Phytolith particles were dissolved in HF 1 M at 45°C
during 100 min, so that associated OC could be released in the
acidic solution (Li et al., 2013c). Associated OC content was
determined using the potassium dichromate procedure and the
soil standard reference GBW07405, ensuring a relative precision
below 5% (Li et al., 2013c). Using plant dry matter, OC and
phytolith contents, we computed OCphyt and OCpdm, as the OC
TABLE 2 | Soil pH value and available silicon (Si) and phosphorus (P) contents

under different levels of Si and P supply*.

Treatments pH Available P Available Si Available N Available K

mg kg−1

Si0P0 5.47d 10.25d 102.45cd 103.37c 10.25d
Si0Pm 5.50d 14.58c 112.23c 104.19bc 14.58c
Si0Ph 5.59cd 17.84b 110.23c 107.40bc 17.84b
SimP0 5.67c 14.23c 123.48bc 98.81c 14.23c
SimPm 5.71c 17.22b 132.79b 117.87b 17.22b
SimPh 5. 77c 19.27a 133.28b 127.00a 19.27a
SihP0 6.49a 14.29c 142.14ab 98.17c 14.29c
SihPm 6.22b 18.06ab 153.83a 98.75c 18.06ab
SihPh 6.38ab 20.33a 155.22a 111.13b 20.33a
*The data were collected from Sun et al., 2015.
FIGURE 1 | (A) Scanning electron microscope (SEM) image of rice leaf phytolith. (B) Semi-quantitative element concentration (wt. %, n = 5) measured by SEM-
energy-dispersive spectroscopy (EDS) of the selected area.
TABLE 1 | The pot experimental design, as designed following silicon (Si) and
phosphorus (P) levels. Different lowercase letters indicate significant differences
among all treatments [least significant difference (LSD) test; p < 0.05, n = 5].

Number Treatments SiO2 fertil-
izer quantity

(g kg−1)

Si fertil-
izer
levels

P2O5 fertil-
izer quantity

(g kg−1)

Phosphoric
fertilizer
levels

1 Si0P0 0.00 Low 0.0 Low
2 Si0Pm 0.00 Low 0.2 Medium
3 Si0Ph 0.00 Low 0.4 High
4 SimP0 0.26 Medium 0.0 Low
5 SimPm 0.26 Medium 0.2 Medium
6 SimPh 0.26 Medium 0.4 High
7 SihP0 0.52 High 0.0 Low
8 SihPm 0.52 High 0.2 Medium
9 SihPh 0.52 High 0.4 High
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contents per mass unit of, respectively, phytolith and plant
dry matter.

Data Treatment
Phytolith stock (mg pot−1) = phytolith content (mg g−1) ×
biomass of dry plant tissue (g pot−1) where phytolith stock is
used to refer to the mass of phytoliths per pot (mg pot−1);
phytolith content is used to refer to the mass of phytoliths per
gram of dry plant tissue (mg g−1); biomass of dry plant tissue is
used to refer to the mass of dry plant tissue per pot (g pot−1).

A two-way analysis of variance of was performed to assess the
effects of combined Si-P fertilization levels using SPSS (24.0).
Fisher's least significant difference (LSD) test was used to
compare the average values of the contents of SiO2, phytolith,
OCphyt, OCpdm in the different plant parts (leaf, flag leaf, sheath,
and stem) (at P < 0.05 level, n = 5). Origin 8.0 software was used
to plot the figures.
RESULTS

Rice Shoot Biomass and Grain Yield
The rice shoot biomass (g pot−1) significantly varied from 168 in
Si0P0 to 213 in SimPm or SimPh (Table 3). Among the Si0
treatments, there was a significant increase in shoot biomass
between Si0P0 and Si0Ph whereas Si0Pm was intermediate
between and not significantly different from the other two
treatment levels (Table 3). At the given level Pm = 0.2 g kg−1,
increasing Si application rate from Si0 to Sim increased the leaf
and shoot biomass (Table 3). At the same Pm level, rice grain
yield increased from Si0 to Sim and from Si0 to Sih (Table 3).

Content and Stock of Phytoliths Formed in
Rice Plants
Considering all plant parts, phytolith content significantly varied
(p < 0.05) from 4.73 to 59.12 mg g–1 (Tables 4–6). At all given
levels of Si0, Sim, and Sih, the increase in P application rate did
TABLE 3 | Effect of silicon-phosphorus (Si-P) levels on biomass in different plant
parts and rice dry shoot.

Treatments Leaf Flag
leaf

Stem and
sheath

Grains* Rice dry
shoot

g pot−1

Si0P0 12.40c 5.65bc 55.62b 102.20c 175.88b
Si0Pm 15.46a 6.20ab 53.64b 117.05bc 192.35ab
Si0Ph 15.76a 5.53b 51.53b 130.39a 203.21a
SimP0 9.98d 4.81c 42.80c 110.55c 171.70ab
SimPm 15.22a 5.30bc 55.81b 136.42a 212.92a
SimPh 13.34b 5.60bc 49.36bc 141.69a 210.99a
SihP0 12.39c 4.72c 47.91bc 117.60bc 182.61ab
SihPm 15.59a 7.08a 59.55ab 129.51ab 210.07ab
SihPh 15.15a 5.50bc 62.28a 114.23bc 197.15ab
Frontiers in Pl
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The data of rice organ (leaf, flag leaf, stem and sheath) collected from Sun et al., 2015;
Different lowercase letters represent significant differences of rice shoot biomass
(Duncan's multiple range test; at p < 0.05 level, n = 5).
*Grains including rice husk.
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TABLE 4 | Contents of SiO2, phytolith, organic carbon (OC) associated with
phytolith as expressed per unit mass of phytolith (OCphyt) and of plant dry matter
(OCpdm) in different plant parts (leaf, flag leaf, sheath, and stem).

Rice
organs

Treatment SiO2

content in
plant parts

Phytolith
content

OCphyt OCpdm

Si
treatment

P
treatment

(mg g–1)

Leaf Si0 P0 35.28 ±
5.25Ba

28.35 ±
3.69Ca

14.48 ±
1.62Aa

0.41 ±
0.10Ba

Pm 34.47 ±
4.21Ca

31.52 ±
0.70Ba

14.50 ±
0.41Aa

0.46 ±
0.02Ba

Ph 33.46 ±
5.88Ba

29.39 ±
3.03Ba

15.16 ±
1.93Aa

0.45 ±
0.10Aa

Sim P0 42.35 ±
5.76Ba

42.37 ±
6.98Ba

15.48 ±
2.86Aa

0.67 ±
0.23ABa

Pm 42.92 ±
0.62Ba

38.61 ±
4.07Ba

13.77 ±
0.53Aa

0.53 ±
0.08ABa

Ph 44.74 ±
3.95Aa

34.80 ±
5.08Ba

13.73 ±
2.47Aa

0.49 ±
0.16Aa

Sih P0 67.05 ±
2.84Aa

59.12 ±
1.39Aa

14.71 ±
3.51Aa

0.87 ±
0.23Aa

Pm 54.31 ±
5.03Ab

50.56 ±
4.86Ab

13.11 ±
1.67Aa

0.67 ±
0.15Aab

Ph 49.55 ±
0.45Ab

43.55 ±
0.30Ac

11.16 ±
0.92Aa

0.49 ±
0.04Ab

Mean ±
s.d.

44.90 ±
10.86A

39.82 ±
10.33A

14.01 ±
1.30A

0.56 ±
0.15A

Sheath Si0 P0 21.85 ±
0.95Ca

19.47 ±
1.49Bb

16.74 ±
4.08Aa

0.33 ±
0.10Aa

Pm 23.99 ±
0.09Ba

21.73 ±
3.79Bb

18.04 ±
0.10Aa

0.39 ±
0.07Aa

Ph 24.31 ±
0.43Ca

23.44 ±
0.49Ca

18.17 ±
1.96Aa

0.43 ±
0.05Aa

Sim P0 35.85 ±
1.87Ba

32.00 ±
1.84Aa

14.79 ±
0.73Aa

0.47 ±
0.05Aa

Pm 28.87 ±
1.90Bb

25.85 ±
2.85Bb

12.27 ±
3.05Ba

0.32 ±
0.11Aa

Ph 35.12 ±
0.20Aa

26.88 ±
0.33Bb

12.77 ±
1.07Ba

0.34 ±
0.03Aa

Sih P0 47.82 ±
1.18Aa

32.80 ±
1.20Aa

14.53 ±
4.69Aa

0.48 ±
0.17Aa

Pm 37.13 ±
1.53Ab

35.33 ±
6.33Aa

15.48 ±
2.11ABa

0.56 ±
0.17Aa

Ph 30.93 ±
0.66Bb

29.79 ±
0.10Aa

14.06 ±
1.93Ba

0.42 ±
0.06Aa

Mean ±
s.d.

31.76 ±
8.20AB

27.54 ±
5.41AB

13.67 ±
1.72A

0.37 ±
0.06B

Stem Si0 P0 5.86 ±
1.45Ba

4.73 ±
0.67Ba

14.34 ±
2.53Aa

0.07 ±
0.02Ba

Pm 7.07 ±
2.51Aa

5.59 ±
1.34Ba

17.59 ±
0.70Aa

0.10 ±
0.02Aa

Ph 8.60 ±
3.73Aa

7.00 ±
3.11Ca

17.69 ±
4.49Aa

0.13 ±
0.09Aa

Sim P0 11.85 ±
1.94Aa

10.41 ±
0.78Aa

13.50 ±
2.98Ab

0.14 ±
0.04Aa

Pm 6.58 ±
1.61Ab

5.56 ±
1.84Bb

17.60 ±
0.47Aa

0.10 ±
0.03Aab

Ph 7.87 ±
0.51Ab

5.55 ±
0.40Bb

11.91 ±
1.60Ab

0.07 ±
0.01Ab

Sih P0 11.06 ±
1.75Aa

10.17 ±
0.85Aa

12.96 ±
1.35Aa

0.13 ±
0.02Aa

Pm 9.83 ±
2.74Aa

8.79 ±
0.73Aa

14.80 ±
4.79Aa

0.13 ±
0.05Aa

(Continued)
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not significantly increase phytolith content regardless of plant
part, while this effect was not true for sheath with a significant
increase from Si0P0 to Si0Pm (Table 5). Yet at given levels P0, Pm,
and Ph, the increase in Si application rate significantly increased
phytolith content in all plant parts (Table 5). Phytolith content
in leaves was the highest, and varied from 28.36 to 59.12 mg g–1,
with an average of 39.82 mg g–1 (Table 4). As compared to the
other plant parts, stem phytolith content was the lowest, with an
average value of 7.11 mg g–1. Considering all plant parts, the
stock of phytolith formed during the experimental period varied
significantly from 152.6 to 1,002.7 mg pot−1 (Figure 2). Si-P
fertilization increased the stock of phytoliths formed in all plant
parts, including plant shoot biomass (Figure 2). At all given
levels of Si0, Sim, and Sih, the increase in P application rate did
not significantly increase phytolith stock regardless of plant part,
including in plant shoot biomass (Figure 2; Table 5). Yet at given
levels P0, Pm, and Ph, the increase in Si application rate
significantly increased phytolith stock in all plant parts,
including plant shoot biomass. The mean phytolith stock was
the highest in sheath (758.3 mg pot−1), followed by leaf (621.0 mg
TABLE 6 | Two-way analysis of variance (ANOVA) of silicon-phosphorus (Si-P)
levels on the rice shoot biomass, stock of phytolith, and OCpdm in rice shoot.

Total amount (mg pot–1) Main factor F p

Biomass Si fertilization 0.192 0.827
P fertilization 2.774 0.089

Si × P fertilization 0.270 0.894
Phytolith Si fertilization 30.343 0.000

P fertilization 1.920 0.202
Si × P fertilization 2.440 0.123

OCpdm Si fertilization 41.540 0.000
P fertilization 3.322 0.059

Si × P fertilization 14.340 0.000
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TABLE 4 | Continued

Rice
organs

Treatment SiO2

content in
plant parts

Phytolith
content

OCphyt OCpdm

Si
treatment

P
treatment

(mg g–1)

Ph 9.05 ±
1.48Aa

6.20 ±
0.68Ab

11.76 ±
1.24Aa

0.07 ±
0.02Aa

Mean ±
s.d

8.64 ±
2.02C

27.54 ±
5.41AB

13.67 ±
1.72A

0.37 ±
0.06B

Flag
leaf

Si0 P0 23.63 ±
1.86Cb

19.04 ±
2.35Ca

14.13 ±
0.68Aa

0.27 ±
0.05Ba

Pm 25.09 ±
3.40Ca

19.72 ±
1.44Ba

15.57 ±
4.25Aa

0.31 ±
0.11Aa

Ph 24.02 ±
2.28Ca

19.59 ±
3.18Aa

16.04 ±
0.33Aa

0.31 ±
0.06Aa

Sim P0 35.21 ±
0.33Ba

32.00 ±
0.69Ba

12.02 ±
1.30Ab

0.39 ±
0.05ABa

Pm 26.02 ±
3.66Bb

28.53 ±
4.15Aa

11.38 ±
0.74Ab

0.33 ±
0.07Aa

Ph 37.20 ±
4.46Aa

27.48 ±
6.25Aa

15.23 ±
1.14Aa

0.42 ±
0.13Aa

Sih P0 48.16 ±
6.87Aa

42.08 ±
4.89Aa

13.34 ±
3.14Aa

0.57 ±
0.20Aa

Pm 35.88 ±
5.59Ab

32.00 ±
5.26Ab

11.74 ±
0.17Aa

0.38 ±
0.07Aa

Ph 31.14 ±
1.48Bc

26.33 ±
0.75Ab

13.54 ±
4.26Aa

0.36 ±
0.12Aa

Mean ±
s.d.

31.82 ±
8.15AB

27.48 ±
7.45AB

15.21 ±
2.11A

0.41 ±
0.09AB
Different lowercase letters indicate significant differences among the treatments in different
P treatments and rice plant parts at a given Si level, respectively [least significant difference
(LSD) test; p < 0.05, n = 5]. Different uppercase letters indicate significant differences
among the treatments in different Si treatments and rice plant parts at a given P level,
respectively (LSD test; p < 0.05, n = 5). Uppercase letters of bolded texts indicate
significant differences among different plant parts (leaf, flag leaf, sheath, and stem).
TABLE 5 | Two-way analysis of variance (ANOVA) of silicon-phosphorus (Si-P) levels on the contents of SiO2, phytolith, organic carbon (OC) associated with phytolith
as expressed per unit mass of phytolith (OCphyt) and of plant dry matter (OCpdm), as well as the stock of phytolith and OCpdm in different plant parts (leaf, flag leaf,
sheath, and stem).

Parameters Main factor Leaf Flag leaf Stem Sheath

F p F p F p F p

SiO2 content (mg g–1) Si fertilization 64.341 0.000 30.634 0.000 3.840 0.041 390.371 0.000
P fertilization 4.342 0.029 7.191 0.005 1.537 0.242 56.941 0.000

Si × P fertilization 4.825 0.008 7.798 0.001 2.618 0.070 68.887 0.000
Phytolith content (mg g–1) Si fertilization 66.384 0.000 36.186 0.000 7.773 0.004 33.205 0.000

P fertilization 7.929 0.003 0.578 0.571 6.197 0.009 7.123 0.005
Si× P fertilization 3.534 0.027 4.059 0.016 6.938 0.001 3.829 0.020

OCphyt (mg g–1) Si fertilization 1.781 0.197 6.544 0.007 3.643 0.047 3.025 0.074
P fertilization 1.375 0.278 0.044 0.957 3.674 0.046 1.984 0.167

Si × P fertilization 0.883 0.494 0.619 0.655 1.194 0.347 0.681 0.614
OCpdm (mg g–1) Si fertilization 6.257 0.009 2.942 0.078 0.234 0.794 3.889 0.039

P fertilization 3.606 0.048 0.245 0.785 0.809 0.461 1.054 0.369
Si × P fertilization 1.736 0.186 1.775 0.178 2.749 0.060 1.797 0.173

Phytolith stock (mg pot–1) Si fertilization 13.068 0.002 14.071 0.002 2.880 0.108 12.156 0.003
P fertilization 0.796 0.481 0.826 0.469 0.910 0.437 2.016 0.189

Si × P fertilization 0.608 0.667 1.664 0.241 1.893 0.196 0.859 0.524
OCpdm stock (mg pot–1) Si fertilization 22.866 0.000 25.016 0.000 1.850 0.186 14.224 0.000

P fertilization 4.383 0.028 3.851 0.041 4.015 0.036 9.072 0.002
Si × P fertilization 5.426 0.005 7.127 0.001 8.494 0.000 3.158 0.039
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pot–1), flag leaf (374.3 mg pot–1), and stem (average 289.1 mg
pot–1). Considering shoot biomass and including rice grains, the
stock of phytolith significantly varied from 1,296.6 to 2,778.6 mg
pot−1, the latter and maximal value being measured at SihPm level
(Figure 2).

Organic Carbon Content Associated With
Phytoliths Formed in Rice Plants
Considering all plant parts, OCphyt ranged from 11.16 to 18.17
mg g–1, but did not differ between Si-P treatments and plant parts
(Tables 4–6). OCphyt content did not vary following P
application irrespective of the Si supply (Si0, Sim, and Sih),
while this effect was not true for stem and flag leaves with a
significant increase from SimP0 to SimPm and SimP0 to SimPh,
respectively (Table 5). At a given level Sih in leaf, and a given
level Sim in stem, the increase in P application rate significantly
decreased their OCpdm content (Table 5). At a given level Si0, the
increase in P application rate significantly increased the OCpdm

stock in all plant parts as well as plant shoot biomass except
leaves, while at a given level Sih level, the increase in P application
rate significantly decreased the OCpdm stock in all plant parts as
well as plant shoot biomass except sheath (Table 6 and Figure 3).
However, OCpdm content and its stock significantly increased
with increasing Si application rate due to the increased phytolith
Frontiers in Plant Science | www.frontiersin.org 637
content and phytolith stock in all plant parts, respectively (Table
4 and Figure 3).
DISCUSSION

Effects of Silicon-Phosphorus Supply on
Rice Shoot Biomass and Yield
Our experimental data show that the addition of P alone
increased biomass and grain yield (a significant increase from
Si0P0 Si0Pm Si0Ph); but when a combined Si-P fertilization were
applied there was no significant increase in biomass and yield
except that at SimPm and SimPh (Table 3). This supports the
results of previous experiments carried out either in the field (Liu
et al., 2014; Liang et al., 2015; Song et al., 2015) or in pots
(Agostinho et al., 2017; Liang et al., 1994; Ma and Takahashi,
1990). Si fertilizer supply increased the stock of bioavailable Si
that is crucial for sustainable paddy rice yield production
(Klotzbücher et al., 2015). Furthermore, once available Si is
taken up by plant roots, the accumulation of phytoliths in
plant tissues can enhance the efficiency of plant photosynthesis
and water use (Meunier et al., 2017), as well as their tolerance to
biotic stresses (Epstein, 1994; Cooke and Leishman, 2016;
Coskun et al., 2019). On the other hand, P supply likely
FIGURE 2 | Phytolith stock (mg pot−1) at a two-way analysis of variance of silicon-phosphorus (Si-P) levels in the different plant parts. (A) Leaf; (B) flag leaf;
(C): stem; (D): sheath; (E) rice shoot. Error bars represent the standard deviations of the means. Different lowercase letters indicate significant differences among the
treatments in different P treatments and rice plant parts at a given Si level, respectively [least significant difference (LSD) test; p ≤ 0.05, n = 5]. Different uppercase
letters indicate significant differences among the treatments in different Si treatments and rice plant parts at a given P level, respectively (LSD test; p ≤ 0.05, n = 5).
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increased plant growth and fecundity as well as root growth
(Lambers et al., 2006; Brown et al., 2012). Indeed, low P levels
(i.e., SimP0 or SihP0; Table 3) did not significantly increase rice
biomass regardless of plant part (Tables 2 and 3), confirming
that rice growth was clearly limited at low P supply (Ma and
Takahashi, 2002; Ma, 2004; Cooke and Leishman, 2016;
Agostinho et al., 2017; Hu et al., 2018) even with increasing
the addition of Si fertilizer. Excessive inorganic P within rice
plant inhibits enzyme reactions, induces abnormal osmotic
pressure in plant cell, which further decreases rice growth (Ma
and Takahashi, 1990). As reported by Ma and Takahashi (1990),
the levels of bioavailable P and Si in soil influence plant P
content. At Si0 level, the increase in P supply did not result in
a change of stem, sheath and flag leaf biomass (Table 3) likely
because the positive side-effects of P nutrition were limited at a
high P supply, as mentioned here above. However, these side-
effects may have been enhanced by low Si level. Yet once
available P content increases up to 17.8–20.3 mg kg−1 at Ph
level (Table 2), the increase in bioavailable Si is beneficial to rice
plants by decreasing P uptake (data not shown; Ma and
Takahashi, 1989; Owino-Gerroh and Gascho, 2005; Greger
et al., 2018), which, in turn, decreases plant P content (Ma and
Takahashi, 1990). This Si-induced decrease in plant P uptake can
also result from the molecular mechanism of down-regulating
the expression of P transporter gene, OsPT6 in rice (Hu et al.,
2018). The Si-P interaction thus contributes to increase rice
Frontiers in Plant Science | www.frontiersin.org 738
biomass at SimPm, SimPh, and SihPh levels (Table 5), suggesting Si
supply may alleviate excessive P application.

Effects of Silicon-Phosphorus Supply on
the Production of Phytoliths
At a given P level, Si2O content significantly increased with
increasing Si application rate compared to control (Si0),
regardless of plant part. Thus, the addition of Si fertilizer as
monosilicic acid (H4SiO4) taken up by roots resulted in silica
accumulation in plant tissues through the formation of
phytoliths (Figure 4A). This significant increase was due to the
addition of Si fertilizer that can improve the well-observed
increase in plant available Si in soils (Table 2). The DSi release
from highly soluble Na2SiO3, wollastonite and other Si fertilizers
(Haynes et al., 2013; Haynes, 2014; Keeping, 2017; Li et al.,
2018b; Li et al., 2019) largely contributed to the pool of
bioavailable Si, from which it was taken up by plant roots to
accumulate around plant transpiration termini. As expected, P
fertilizer supply did not change the concentration of available Si
in Si0 level (Table 2), and thus of phytolith content, regardless of
plant part (Table 4). Interestingly, our data further show that, at
given levels Sim and Sih, the increase in P application rate
decreased the formation of phytoliths, but not always
significantly, and regardless of plant part, except in flag leaf at
Sih treatment (Table 4). This trend is in accordance with Ma and
Takahashi (1990) who reported that Si content of rice shoots
FIGURE 3 | Stock of OCpdm (mg pot−1) at two-way analysis of variance of silicon-phosphorus (Si-P) levels in the different plant parts. (A) Leaf; (B) flag leaf;
(C): stem; (D): sheath; (E) rich shoot. Error bars represent the standard deviations of the means. Different lowercase letters indicate significant differences among the
treatments in different P treatments and rice plant parts at a given Si level, respectively [least significant difference (LSD) test; p < 0.05]. Different uppercase letters
indicate significant differences among the treatments in different Si treatments and rice plant parts at a given P level, respectively (LSD test; p < 0.05, n = 5).
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decreased with increasing P availability in soil (Tables 2 and 3).
As here discussed above, this trend of decreasing Si deposition in
plant tissues resulted from dilution caused by increased plant
growth following P application and the molecular mechanism of
Frontiers in Plant Science | www.frontiersin.org 839
down-regulating the expression of P transporter gene, OsPT6 in
rice (Hu et al., 2018). Since shoot biomass significantly increased
following P addition, our data thus suggest that combined Si-P
fertilization contributes to increased Si bioavailability in soil, Si
FIGURE 4 | Plot of: (A) phytolith content of plant parts against SiO2 content considering all silicon-phosphorus (Si-P) treatments (leaf: y = 0.9151x−1.2668,
R2 = 0.9254 P < 0.01; flag leaf: y = 0.8248x + 1.3865, R2 = 0.8035 P < 0.01; Sheath: y = 0.5457x + 10.337, R2 = 0.6938 P < 0.01; Stem: y = 1.0171x−1.6823,
R2 = 0.8929 P < 0.01). (B) OCpdm content of plant parts against phytolith content considering all Si-P treatments (leaf; y = 0.0134x + 0.0233, R2 = 0.8557 P < 0.01;
flag leaf; y = 0.011x + 0.1038, R2 = 0.8097 P < 0.01; sheath; y = 0.008x + 0.1541; R2 = 0.6845 P < 0.01; stem; y = 0.0121x + 0.0166; R2 = 0.7924 P < 0.01).
(C) OCpdm content of plant parts against C content of phytoliths (OCphyt) considering all Si-P treatments (leaf; y = 0.019x + 0.29, R2 = 0.0273 P > 0.05; flag leaf;
y = −0.0079x + 0.5291; R2 = 0.0329 P > 0.05; sheath; y = −0.003x + 0.4191; stem; y = 0.0027x + 0.0629; R2 = 0.0491 P > 0.05).
February 2020 | Volume 11 | Article 67

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Li et al. Silicon-Phosphorus Fertilization Affects the Phytolith Stock
root uptake, phytolith formation, and rice plant biomass, which,
in turn, increases the stock of phytolith production in plants,
while this effect is limited at the high P levels.

Effects of Silicon-Phosphorus Fertilization
on Carbon Associated With Rice
Phytoliths
Considering all plant parts (Figure 4), our data suggest that
OCpdm may be controlled by phytolith accumulation in plant
tissues (Figures 4A, B), during which the incorporation of OC
seems to be constant (Figure 4C) and therefore does not
influence the OC content of phytoliths, OCphyt, in line with
previous hypotheses (Li et al, 2013c). Evidently, the increase in
phytolith stock increases the stock of OCpdm, i.e., the quantity of
OC associated with phytolith in living plant tissues.

Si-P fertilization does not affect OCphyt content, regardless of
plant part and biomass whereas it affects OCpdm (Table 4). SEM-
energy dispersive X-ray spectroscopy (EDX) image (Figure 1)
illustrates that OC can be associated with the extracted
phytoliths. However, the associated OC levels, irrespective of
its source, do not change with the fertilizer treatments. SEM-
EDX is semi quantitative, and thus, we used this technique not to
quantify but to check the OC content as determined chemically.
Therefore, we may not conclude about the possible entrapment
of OC during polymerization of biogenic amorphous silica as
previously proposed (Hodson et al., 1985; Parr and Sullivan,
2005; Zuo and Lü, 2011; Parr and Sullivan, 2014; Alexandre et al.,
2015; Alexandre et al., 2016; Reyerson et al., 2016; Hodson, 2016;
Song et al., 2016). Similarly, the hypothetical ability of plant
phytoliths to occlude OC does not vary depending on the
application rate (this study) and type of Si supply: basalt
powder (Guo et al., 2015) or slag-based silicate (Song et al.,
2015). According to Zhao et al. (2016), increased N supply in
degraded grasslands decreased the phytolith content in grass
shoots, while significantly increased OC content of their
phytoliths. These authors hypothesized that the increase in
OCphyt was probably caused by improved cell growth, partly
enlarged cell volume and decrease in the specific surface area of
phytoliths. Similarly, Gallagher et al. (2015) reported, that
growing conditions impact the OC content of phytoliths in
Sorghum bicolor irrespective of the type and rate of application
of inorganic fertilizers. These growth conditions, referring to
different nutritive regimes of N, P, K, and microelements,
affected the plant transpiration stream, and thus Si
accumulation (Gallagher et al., 2015), which in turn, affect the
OC content of phytolith (Blackman, 1969; Hodson et al., 1985).
In addition to the growth conditions, the nature of plant part or
organ might influence the phytolithic OC content through its
impact on phytolith morphology and specific surface area (Li
et al., 2013c and Li et al., 2014; Table 4).

Although Si-P fertilization did not increase OCphyt, the
application of Si and P fertilizer can substantially improve the
OCpdm content in rice plant through increasing phytolith
accumulation (Figures 2 and 3; p < 0.001). Our data further
show that the content of phytolithic OC in rice plants mainly
depends on Si supply. Indeed, phytolith accumulation in rice plant
Frontiers in Plant Science | www.frontiersin.org 940
tissues significantly increased with increasing supply of Si fertilizer.
Thus, regulating Si supply promoted the OC content associated
within phytolith by increasing phytolith accumulation in plant
notably through the increase in biomass production.
Consequently, increasing crop productivity could play a crucial
role in increasing the stock of phytolithic OC, while the processes
explaining OC associated within phytoliths are still debated. Here
the largest rice biomass was obtained at SihPm level (Si = 0.52 g
kg–1; P = 0.2 g kg–1), regardless of plant part (Table 3). The level
SihPm largely contributed to double the stock of phytolithic OC
(mg pot−1) from 18.9 at Si0P0 to 36.8 at SihPm (Figure 3E). Another
lesson is that P should not be neglected if rice productivity is to be
improved as discussed above. Thus, regulating Si-nutrient supply
combined with optimal P supply is promising to enhance both
phytolith formation and associated organic carbon in Si-
accumulating plants, as well as crop productivity.
CONCLUSION

Our experimental results show that i) phytolith concentration
increases with increasing Si fertilization, ii) phytolithic OC
concentration does not depend on Si or P fertilization, iii) as
the biomass increases with Si fertilization, the stocks of phytolith
and phytolithic OC increase, iv) P fertilization has no clear
impact either on phytolith or phytolithic OC concentration,
but increases plant biomass and grain yield. Despite the
occurrence of OC associated within phytoliths, we cannot be
sure of OC occlusion within phytoliths. We conclude that the
combined Si-P fertilization increases the phytolith stock by
increasing the biomass and phytolith content of rice plants.
Through these positive effects, combined Si-P fertilization may
thus address agronomic (e.g., sustainable ecosystem
development) and environmental (e.g., climate change) issues
through the increase in crop yield and phytolith production as
well as the promotion of Si ecological services and OC
accumulation within phytoliths.
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Equisetum species are primitive vascular plants that benefit from the biogenesis of silica
bio-organic inclusions in their tissues and participate in the annual biosilica turnover in
local eco-systems. As means of Equisetum reproduction and propagation, spores are
expected to reflect the evolutionary adaptation of the plants to the climatic conditions
at different times of the year. Combining methods of Raman and scanning electron
microscopy and assisted with density functional theory, we conducted material spatial-
spectral correlations to characterize the distribution of biopolymers and silica based
structural elements that contribute to the bio-mineral content of the elater. The elater tip
has underlying skeletal-like structural elements where cellulose fibers provide strength
and flexibility, both of which are necessary for locomotion. The surface of the elater
tips is rich with less ordered pectin like polysaccharide and shows a ridged, folded
character. At the surface we observe silica of amorphous, colloidal form in nearly
spherical structures where the silica is only a few layers thick. We propose the observed
expansion of elater tips upon germination and the form of silica including encapsulated
biopolymers are designed for ready dispersion, release of the polysaccharide-arginine
rich content and to facilitate silica uptake to the developing plant. This behavior would
help to condition local soil chemistry to facilitate competitive rooting potential and
stem propagation.

Keywords: Equisetum, spore, microscopy, Raman, silica, DFT

INTRODUCTION

The occurrence of silica in algae (i.e., diatoms) (Brunner et al., 2009), simple animals (i.e., sponges)
(Mann et al., 1983) and in plants (Sachs, 1862; Lewin and Reimann, 1969; Page, 1972; Hodson et al.,
2005) are important examples of bio-mineralization in evolution. Silica may accumulate in pith
(stem), cortex (stem or root), mesophyll (leaves) and vascular tissues of plants (Lewin and Reimann,
1969). Equisetum spp. (commonly known as horsetail) are ancient examples of living vascular plants
(Page, 1972). It has been reported that Equisetum spp. take up mono-silicic acid from the soil to
accumulate silica in their tissues (Timell, 1964; Grégoire et al., 2012). The genus benefits from a
broad global distribution and yet can also be considered as an invasive and persistent weed.
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Electron microscopy of silica depositions in epidermal cells of
an Equisetum sp. (Kaufman et al., 1971) provided strong support
for the earlier expectations (Lewin and Reimann, 1969) that silica
may serve to (1) provide mechanical strength and rigidity of
cellular wall and/or of tissue (Perry and Fraser, 1991; Hodson
et al., 2005; Grégoire et al., 2012), (2) prevent excessive water
loss through the epidermis (Gao et al., 2004), and (3) protect
against pathogens and predators (Stahl, 1888; Guerriero et al.,
2018; Coskun et al., 2019). Indeed, recently, correlation between
the localization of silica and callose (a type of polysaccharide in
plants) was reported which allowed the suggestion of a unique
relationship between uptake of silicic acid and depositions of
biogenic silica and callose, which were considered to provide
resistance against fungal infection in horsetail (Guerriero et al.,
2018) though alternative hypotheses as to how resistance is
achieved have recently been published (Coskun et al., 2019).

Silica deposited in living organisms, often referred to as
biogenic silica or biosilica, is generally accepted to be in
amorphous forms (Perry et al., 1984; Brunner et al., 2009;
Neethirajan et al., 2009). Silicification of Equisetum and its spores
is a complex but potentially useful model system with insights
(i.e., optical properties) that could aid commercial applications
(Neethirajan et al., 2009). The formation of amorphous biosilica
through the biosilicification process in Equisetum spp. is
notable in its divergence from crystalline inorganic silica, with
characteristics that have been described as a xerogel (Holzhüter
et al., 2003). The chemical and morphological characteristics
of the biosilica influence the biocompatibility of the material,
being remarkably less harmful than crystalline polymorphs both
natural and man-made, though silica toxicity is an active area
of research (Fruijtier-Pölloth, 2012; Murugadoss et al., 2017).
Silica produced by plants presents ordered hierarchical porous
structures giving this material interesting properties with possible
applications both in industry and in medicine (Davis, 2002;
Sola-Rabada et al., 2018).

To understand the role of silica in biology and survival
strategies of Equisetum, it is necessary to correlate both the
distribution of biosilica inclusions and chemical properties of the
inorganic component (at the junction with bio-tissue) with plant
biology and biochemistry. In the early 70s (Kaufman et al., 1971),
it was reported that in E. hyemale, silica is uniformly distributed
over and within the outer epidermal cell walls, while in E. arvense,
silica is concentrated in discrete structures (knobs and rosettes)
projecting from the outer epidermal walls. Even though both
rosette and knob structures were reported to contain inorganic
silica, the character of silica distribution and the chemical nature
of such inorganic inclusions in such structures, as well as in
particulate structures on the outside of elaters, may be very
different (Duckett, 1970; Kaufman et al., 1971; Perry and Fraser,
1991). In our previous study on the subject, we characterized the
distribution of silica in stem nodes, internodes, basal branches,
distal and leaves of E. arvense as fibrillary, globular and sheet-
like silica ultra-structures (Perry and Fraser, 1991). According to
the results, we anticipated the inorganic component would assert
mechanical strength and rigidity and discussed the possible role
of the cellulose micro-fibrillary network to template some of the
considered silica depositions.

As a lower vascular plant species Equisetum reproduces with
the aid of spores (Sadebeck, 1878; Newcombe, 1888; Beer, 1909;
Erdtman, 1952), see Figure 1. Spores are notable for their
complex morphology and motile nature. Beer (1909), Rudolf Beer
reported that a “ripe spore contains a very considerable quantity
of chlorophyll in its protoplast,” and that when “spores are heated
with concentrated sulphuric acid on a cover-glass, very pretty
siliceous skeletons are left behind.” Later spore protoplasm was
reported to differentiate into a peripheral one, where storage
substances are dominant, a middle zone containing chloroplasts,
and an internal one surrounding the nucleus (Gullvag, 1968). The
central body of a spore is approximately of 30–50 µm in diameter
(Duckett, 1970). Each spore has four elaters, which respond to
humidity variations (Newcombe, 1888).

Under dry air (depending on humidity) elaters can
demonstrate periodic opening, and upon drying from a
fully hydrated state, elaters may open rapidly to pitch a spore
1.5 mm above the surface (Marmottant et al., 2013). The
described locomotion helps dispersal strategies using both
hydrodynamics and aerodynamics because of local changes in
environmental conditions. The structural mechanism of elater
mobility is likely due to their bilayer structure: the inner layer
consists of longitudinal microfibrils, the matrix of the outer elater
formed because of structural granulations is expected to be less
dense and porous (Uehara and Kurita, 1989). The differential
volume change of one layer with respect to the other (Elbaum
et al., 2007; Reyssat and Mahadevan, 2009) is suggested to be
responsible for the curvature changes of the elaters (Marmottant
et al., 2013). Besides a role in dispersion and spore motility, one
may anticipate that due to the terminating paddle structure,
elaters will have other purposes either when folded or when
unfolded. The morphology of the paddles, structuring and
elemental distributions at their surface (Perry, 1989) may suggest
that in a dry environment paddles may assist the physical fixation
of a spore at a site and conditioning of local biochemistry
prior to germination.

In one of our earlier studies, we pioneered the characterization
of silica distribution in elaters of E. arvense spores (Perry, 1989).
On the surfaces of the spores and elaters, we identified small
rounded objects ca. 500 nm in diameter protected by a coating of
small silica particles, that contained proteinaceous material rich
in arginine, low in aromatic amino acids and with a small amount
of glucose containing polysaccharide material (Perry, 1989). In a
relatively recent study, fluorescence labeling was used to observe
“punctate” deposits of silica on the spore surfaces (Law and Exley,
2011). To understand the role of silica deposits on the surface
of the spore/elater germination machinery we need to provide
chemical/biological spatial-functional correlations between the
bio-organic and bio-inorganic components. Correlations in
chemical composition for different extractions (Currie and Perry,
2009) lent support to the idea that the observed spatial co-
distributions of the organic and inorganic components are
according to the genetically programmed biochemistry of the
plant. However, a deeper insight would require characterization
of the structural states of the silica and the organic moieties
at the junctions. This is where, due to resolution and chemical
selectivity, the methods of Raman microscopy sampling are
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particularly valuable. For example, the technique has been
applied to the analysis of the chemical composition of Equisetum
hyemale, where Gierlinger et al. (2008) described the non-
uniform distribution of silica below a cuticular wax layer.

The challenge of what is being attempted becomes obvious
if we compare the results by Raman microscopy with the
conclusions of Kaufman et al. (1971) who used electron
microscopy to report that silica is uniformly distributed over
and within the epidermal surface in Equisetum hyemale. The
differences, however, may be accounted for by variations in
sample preparation (if the plane of cuts were explored or
surfaces) and due to differences in penetration depth for different
frequencies of radiation: being either a few or several hundreds
of nanometers for X and Y, respectively. From this perspective,
the results of the two techniques are both relevant and should be
discussed comparatively if possible.

In this article we combine Raman microscopy with scanning
electron microscopy (SEM) and elemental analysis to explore
(and correlate) structural, vibrational and elemental properties
on the paddle structure of a selected elater of a spore of
Equisetum arvense. Further, we use computational studies of
structures representing the major classes of materials anticipated
to confirm identification of the materials present. The structure
of the results section of the article is as follows: after describing
the spore elater complex we present, (a) experimental spectra
obtained from different regions of the system studied, (b)
theoretical vibrational spectra calculated for representative
(bio)chemical markers necessary for the reconstruction of Raman
microscopy images, and (c) Raman difference microscopy images
reconstructed for the selected spectral markers where for this task
we adopt an ansatz for renormalization of Raman intensities. The
described details on the distribution of bio-inorganic structural
components allow us to discuss the bio-functionality of these
structures and to hypothesize on survival strategies.

MATERIALS AND METHODS

Spore heads of a field horsetail, Equisetum arvense, were
collected in Nottinghamshire (May 2018), see details in the
Supporting Information.

Silica nanoparticles were synthesized by a modified Stöber
method (Stober et al., 1968). The synthesized particles were
rehydrated several times in the presence of deuterium oxide at
high-temperature and vacuum avoiding annealing to allow for
solvent exchange with deuterium oxide. For the optical studies
200± 12 nm diameter particles were used, the sizes of which were
determined by employing dynamic light scattering (Zetasizer
Nano-ZS, Malvern Instruments, Malvern, United Kingdom).

Material and elemental analysis: sample imaging and energy-
dispersive X-ray spectroscopy (EDS) were conducted using a
JEOL 7100FEG SEM equipped with an Oxford Instruments
X-MaxN 80 mm2 EDS. Samples were mounted on an aluminum
stub with carbon tape (TAAB, Aldermaston, United Kingdom).
The instrument was operated in secondary electron mode with
a 1.0 kV accelerating voltage for imaging with a beam of about
2 nm diameter. For elemental analysis (EDS), the accelerating

voltage was set to 10.0 kV. Micrographs were collected and
exported using PC-SEM v. 5.1.0.6 and EDS spectra were collected,
processed and exported using Aztec 3.3 SP1.

Raman spectral studies were conducted using a DXR
microscope from Thermo Fisher Scientific, Madison, WI,
United States equipped with 50× and 100× microscopy
objectives. The spectral resolution in the Raman experiment was
down to 2 cm−1 according to the instrumental limit of the
microscope operated with a 25 micron confocal slit or pinhole.
The former was used for Raman spectral measurements when
spatial resolution was not considered, while the latter was used
for sampling of Raman maps. Raman measurements were made
using 532 nm excitation radiation of 2 mW.

To correlate results of SEM and Raman microscopy studies,
in the latter we used a spore sample on the same aluminum
stub fixed with double-sided carbon adhesive tape as prepared
for SEM. However, since Raman studies cannot be conducted
on samples deposited on carbon tape (due to immediate thermal
degradation of carbon under laser 532 nm radiation even when
working at minimal power), it was necessary to search for an
elater that would be free and hanging from the edge of the
carbon tape. Hence, upon Raman mapping with a short focal
length 100× microscope objective, the elater would not be
physically disturbed by the objective. Hereafter, every time a
suitable elater was found, numerous pre-tests were conducted by
taking Raman samples to monitor the mobility and structural
stability of the elater. In particular, it was determined by periodic
focusing of field radiation of different powers that the minimal
possible power of 2 mW] could be used as under such the elater
would stop changing the bending of its stem. After sampling
Raman maps of different regions of a selected elater (and
before the elater would demonstrate structural degradation and
decomposition), we conducted SEM microscopy and elemental
analysis for carbon, oxygen and silicon atoms on the same elater
(as shown in Figure 2).

Raman activities at different sites of the selected elater were
sampled with a spatial resolution of 1 micron in both directions
of the imaging plane. As a Raman microscopy scan collects a set
of spectra specific for defined positions in the image plane, in
order to present Raman microscopy images specific to spectral
signatures of interest, we must process each spectrum from
the detected set to extract amplitudes of spectral components
of interest. Being dependent on the nature of the vibration
(normal) modes, abundance of contributing structural species,
orientation and degree of orientational variance at the sampling
sites, the extracted amplitudes therefore are informative on
molecular structural distributions at interfaces. To approach this,
we conducted reconstructions of Raman activity microscopy
images (RAM) specific to selected vibrations according to:

RAM (X, Y,ω) =

∑
i

Aω,i
1

2πσ2 Exp

[
−
(X − Xi)

2

2σ2
x
−
(Y − Yi)

2

2σ2
y

]
(1)

where i, is the index of a site where a spectrum is taken, Aω,i, is
the amplitude of the Raman resonance of interest in the detected

Frontiers in Plant Science | www.frontiersin.org 3 March 2019 | Volume 10 | Article 21045

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00210 March 1, 2019 Time: 18:30 # 4

Volkov et al. Equisetum Spore Elaters: Composition, Functionality

spectrum, and ω, is the frequency of the resonance. Furthermore,
the equation shows that we sum image projections of two-
dimensional Gaussian source functions over all the defined sites i.
Setting σ2

x = σ2
rmy = 0.5 µm2 provides the spatial full width of a

source function. Xi and Yi describe the position of the projection
of the site i into the image plane. X and Y variables are sample
distances from the site i in terms of the dimensions of detector
pixels or displacements of a pinhole.

To utilize Raman microscopy imaging properly, we need to (1)
understand “which” spectral resonance can be used to describe a
particular structural species. In the last two decades, multivariate
algorithms, such as principal component analysis (Pearson, 1901;
Dieing and Ibach, 2011), independent component analysis (Ans
et al., 1985; Hyvarinen et al., 2001) and methods of cluster
analysis (Hedegaard et al., 2011), have gained popularity as
powerful tools in the processing of microscopic images and
Raman microscopy images of Equisetum tissues have previously
been processed using principal component analysis (Gierlinger
et al., 2008). In our studies, however, we approach Raman image
reconstruction using (i) spectral markers obtained by exploring
and comparing our experimental results, (ii) peak assignments
previously reported in literature and, (iii) our predictions of
quantum chemistry for the model molecular systems. The
adopted approach is more computationally demanding than
extraction of orthogonal (independent) spectral signatures upon
application of linear algebra on detected spectral sets. However,
this allows us, first, to avoid possible artifacts due to non-linear
variances of Raman amplitudes as the surface of elaters in relation
to molecular orientations are not trivial; and, second, trying to
understand better the nature of the observed Raman responses.

As we have mentioned, we adopted a computationally
demanding approach to select responses suitable for molecular
structural analysis using Raman image reconstructions. To
manage the task, we conducted quantum chemical calculations
for selected model systems using the 6–31 g∗ basis set and
the restricted b3lyp functional (Becke, 1988; Lee et al., 1988)
within the Gaussian 09 program package (Frisch et al., 2010). To
model vibrational properties of inorganic structural components
which may resemble that of the elater’s surface, we adopted
(see Figure 3): (i) Silica-10, four hexagonal cycles merged in a
cage system; (ii) Silica-16, four hexagonal cycles merged in a
single layer system; (iii) Silica-48, single layer spherical structure
with two pores on opposite sides; and (iv) Silica-60, single layer
spherical structure, with two pores on opposite sides, fused
with a cage to model a small span of a double layered system.
To model vibrational properties of bio-organic components as
expected in Equisetum tissues, we adopted structural segments of
cellulose, glucomannan, pectin, lignin and a methylated dipeptide
with arginine side group and arginyl-n-acetyl-di-glucosamine
(NDGA) at a Silica-6 hexagonal cycle. Here, we used the following
structural definitions, as described in the literature: cellulose
is a linear polysaccharide consisting of thousands of β(1-4)
linked D-glucose units (Updegraff, 1969), glucomannan is a
hemicellulose polymer, with linearly linked β(1-4)-linked D-
mannose and D-glucose in a ratio of 1.6:1 (Katsuraya et al., 2003),
pectins are hetero-polysaccharides with chains and branches
of α(1-4)-linked D-galacturonic acid (Ridley et al., 2001),

lignins are bio-organic polymers composed of phenylpropanoids
p-hydroxyphenyl, guaiacyl, and syringyl (Boerjan et al., 2003;
Martone et al., 2009). The scaling factor for the calculated Raman
dispersions was 0.97.

Using the results of quantum chemistry and experimental
Raman spectroscopy to correlate the presence of different
chemical species at the elater surface, we show differences
between Raman microscopy images reconstructed for selected
vibrations, while the intensities of the Raman images are scaled
to be equal. This intensity renormalization allows qualitative
(relative) characterization of spatial co-distributions of chemical
species of interest at very complex interfaces and surfaces.

In the following Results section we describe: Raman
spectral properties of a spore central body and of its elaters;
review theoretically predicted spectral responses for the model
molecular systems; select spectral markers and demonstrate the
results of Raman difference microscopy images constructed for
the selected spectral markers.

RESULTS

Bright Field Optical Microscopy
The structural changes of spores of E. arvense upon humidity are
shown in Figure 1. Under low humidity elaters are unfolded or
partially unbent as shown in Figure 1A, whereas, in an aqueous
environment (or in humid air), elaters wrap around the main
spore body (see Figure 1B). The diameter of the central body
of the spores corresponds well to the typical reported for this
species, approximately 30–50 µm (Duckett, 1970). It is also
observed, Figure 1C, that at the surfaces of the paddle structures
and at the sides of the stems of the elaters there are small
rounded objects, Figure 1D which have been previously reported
to contain polysaccharide and proteinaceous material rich in
arginine and reinforced with porous silica layers (Perry, 1989).
Let us now describe the Raman spectral properties of a spore
central body and of its elaters.

Raman Responses From the Spore
Central Body
Raman spectra sampled at the spore body under air and from
the squeezed content are shown in Figure 4A. Accordingly,
Figures 4A1,A2 show the corresponding optical microscopy
images of the spore body under air and its content in water
squeezed by application of a 300 µm glass cover slip. As expected,
under 532 nm excitation, the detected spectra are dominated by
spectral responses of carotenoid molecules which are generally
present in light-harvesting proteins (Ruban et al., 1995, 2001).
The spectra show the ν1 mode specific to C = C- stretching
vibrations; ν2 mode of C-C stretches coupled either to C-H in-
plane bending or C-CH3 stretching, the ν3 mode characteristic to
CH3 in-plane rocking vibrations; and the ν4 mode specific to C-H
out-of-plane bending (Rimai et al., 1973). The peak at 1520 cm−1

was fitted with two components, the major at 1523 cm−1 and
the minor centered at 1515 cm−1. Accounting for the reported
sensitivity of Raman on excitation wavelength (Ruban et al.,
2001) and the possible linear regression (Gall et al., 2015) of the
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FIGURE 1 | Optical microscopy images of Equisetum spores (A) under air
and (B) in water. Scales bars are 100 and 50 µm, respectively. Comparison of
an Equisetum spore under air by (C1) scanning electron microscopy and (C2)
optical microscopy. Scales bars are 40 and 20 µm, respectively. (D) Scanning
electron microscopy of spherical containers at surface of elater. Scale
bar is 1 µm.

wavelengths of electronic transitions for zeaxanthin (Landrum
and Bone, 2001), β-carotene (Britton, 1995), lutein (Takaichi and
Shimada, 1992), and lutein epoxide (Melendez-Martinez et al.,
2005), on the frequencies of the ν1 of C = C- stretching vibrations,
we may anticipate that the main component fitted at 1523 cm−1

is due to the contribution of β-carotene. The smaller component
is likely due to Fermi resonance with possible combinations
and overtones. At the same time, it cannot be completely
ruled out that the lower frequency component at 1515 cm−1

may be a signature of another carotenoid, like, for example,
rhodoxanthin as was reported to be present in significant
amounts in sporiferous shoots of E. arvense (Czeczuga, 1985).
Accounting for dependencies on the wavelength of Raman
excitations, the reported electronic and vibrational properties for
rhodoxanthin (Chabera et al., 2009; Berg et al., 2013) may fit
approximately the correlation electronic transitions on ν1 of the
C = C- stretching frequency, as suggested in Boerjan et al. (2003).

Raman Responses From Spore Elaters
Next, let us review the results of Raman spectroscopy of elaters,
which, as organelles, have been described as four narrow spiral
bands, formed upon division of the external coat of a spore

at maturity (Sadebeck, 1878). Figure 4B shows several Raman
spectra sampled at various sites on elater paddle structures. The
spectra show two rich and complex subsets of Raman activity:
between 250 and 750 cm−1 and between 870 and 1750 cm−1

which is expected to be due to both, inorganic and organic
structural components (Sapei et al., 2007; Gierlinger et al.,
2008). Also, in the spectral region covering 2600 to 3100 cm−1,
resonances which are typical for -CH stretching modes of bio-
organic molecules are observed (Atalla and Agarwal, 1985; Wiley
and Atalla, 1987; Edwards et al., 1997; Agarwal and Ralph, 1997;
Agarwal et al., 2001; Jahn et al., 2002; Synytsya et al., 2003). The
spectra shown are site specific and are selected to demonstrate
spectral diversity.

To analyze the observed spectral responses, we use the results
of computational quantum-chemical density functional theory
(DFT) calculations to account for the spectral contributions of
bio-organic and bio-mineral species we expect to be present:
(1) silica structures, (2) carbohydrates, and (3) lignin(s), amino
acids and polypeptides; as spectral markers to discuss the spatial
distribution of the expected molecular species. In Figure 5
we present the calculated isotropic Raman responses (DFT
predictions) for silica and hydro-carbon molecular structures, as
shown in Figure 3, which we may consider as representatives of
the main structural moieties present at the surface of the elater
paddle structure.

Deduction of Spectral Markers Specific to Silica
Structures
Raman responses of inorganic amorphous silica have been
previously reported in literature. According to the results of early
studies on Raman responses in silica gels (Gailliez-Degremont
et al., 1997), attribution of (a) strong activities at 430–440
and 490–495 cm−1 to in-plane Si-O-Si vibrations and to the
modes associated with SiO4 tetrahedra with a non-bridging
oxygen atom; (b) medium and weak intensity signals at 800 and
1070 cm−1 to Si-O-Si symmetric and asymmetric stretching,
respectively; and, (c) weak and medium responses at 910–920
and 970–980 cm−1 to surface and internal silanol stretching,
respectively. These assignments were adopted to discuss the
experimental results of Raman microscopy studies on the
distribution of silica in a knob structure of E. hyemale (Gierlinger
et al., 2008). In particular, Gierlinger et al. suggested that (i) an
“overall remarkably high intensity” below 580 cm−1 should be
a signature of amorphous silica in Equisetum tissue; (ii) Raman
resonance at 802 cm−1 is due to Si–O–Si and Si–C stretching
(Gailliez-Degremont et al., 1997); and (iii) the strong band at
973 cm−1 is specific to surface and internal silanol stretching. In
a separate report (Sapei et al., 2007), the authors discussed the
role of silica hydration in contact with polysaccharides to explain
the presence of the peak at 973 cm−1. Note that this resonance
was detected at the knob tip but not when the signal was sampled
from a silica rich layer adjacent to epidermal cells.

To understand better the possible contributions of silica
inclusions into the Raman spectra of elaters (Figure 4B), in
Figure 4C we show Raman spectra from silica rich rosette
structures at the side of an aged dry branch (the corresponding
microscope images are also shown in Figures 4C1,C2); and in
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FIGURE 2 | (A) Optical microscopy, (A1) and SEM images, (A2,A3) of an elater selected for simultaneous Raman microscopy; and (B) high resolution SEM images
of the selected elater with lines red (B1), yellow (B2), and cyan (B3), corresponding to the abundances of carbon, oxygen and silica, respectively; circles mark the
destination points. Supporting Information provides the original (low resolution) SEM images with lines, along which the abundances of atoms were sampled.

FIGURE 3 | Graphical images of the structures used in quantum chemical density functional studies (DFT): silica-10 cage, silica-16 four-cycle cluster, silica-48 pored
cage, silica-60 pored cage with a six-cycled double-layered structure, and model systems designed to represent structural components of cellulose, glucomannan,
pectin, lignin, arginine dipeptide, and disaccharide with arginyl and acetyl-amine side groups coordinated with silica hexagonal cycle.

Figure 4D we show the Raman response from synthesized silica
nanoparticles after different thermal treatments (TEM image is
shown in Figure 4D1). The response from the latter systems is
particularly helpful to verify the spectral contributions specific

to Si-OH groups, which are expected at the particle surface
(Perry and Keeling-Tucker, 2000). As it emerges from IR (Bunker
et al., 1989; Morrow and McFarlan, 1992), Raman (Brinker et al.,
1982; Humbert, 1995), and NMR (Chuang and Maciel, 1996)
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FIGURE 4 | Raman spectra of Equisetum structures and silica nanoparticles. (A) Raman spectrum of the central body of an Equisetum spore in water (green line)
and its optical microscopic image, (A1) (scale bar 2000 µm); and the Raman spectrum of the squeezed-out content of the central body of an Equisetum spore (blue
line) and its optical microscopic image, (A2) (scale bar 10 µm). (B) Raman spectra sampled at different sites on the Equisetum spore elater. Numbers indicate
spectral regions used for reconstructions of Raman microscopy images specific to these frequencies. (C) Raman spectra of silica rich rosette structures at the
surface of the dried branch and its microscopic images, (C1,C2) (scale bars 10 and 20 µm, respectively). (D) Raman spectra of ca. 200 nm diameter amorphous
silica nanoparticles (gray line) and the same sample after several hours of high temperature treatment at 1200 C (red line) and a TEM image (D1).

FIGURE 5 | Raman responses calculated with DFT for a series of model systems designed to represent structural components of cellulose, glucomannan, pectin.
arginine side group, and silica structures as indicated. The structures of the model systems are presented in Figure 3. The dotted marks denote spectral
contributions of NH2 bending modes specific to the arginine side group in the considered systems.
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experimental studies, amorphous silica surfaces may undergo
dehydroxylation via condensation of vicinal silanols upon
heating. Consistently, Raman spectra in Figure 4D shows
a significant decrease of Raman activity at 976 cm−1 for
thermally treated amorphous silica particles compared to samples
maintained at room temperature.

Inspection of the nature of the normal modes by DFT
reveals that admixture of delocalized out-of-plane Si-OH bending
and in-plane Si-O-Si symmetric vibrations of SiO4 tetrahedra
contribute to the Raman activities anticipated at 500 cm−1,
Figure 5. The variations in this spectral region are due to: (a)
relative weights of the two types of vibrations, (b) geometry of
hydrogen Si-OH. . .O-H bonding, which may not be optimal,
(c) extent of delocalization, and (d) effects of coupling that
contribute to excitonic splits. There is a noticeable tendency for
the normal modes, where the contributions of out-of-plane Si-
OH bending mode dominate, to manifest at the lower frequency
side. The delocalized in-plane Si-OH bending modes are shown
in the spectral region between 700 and 1200 cm−1. The diversity
in this region is due to different degrees of admixing of such
bending activities with O-Si-O symmetric stretching at about
800 cm−1, or with Si-O stretching at about 900 cm−1, or with
Si-O-Si antisymmetric vibrations at 1000 cm−1 and above. The
results of our calculations partially agree with assignments for
silica gels (Gailliez-Degremont et al., 1997). However, DFT theory
suggests a significant (if not a leading) role for various out-
of-plane and in-plane Si-OH bending modes in the considered
structures. This is certainly due to the enhanced contribution of
the surface in small and single-double layered systems and this is
what we expect at the surface of Equisetum elaters.

The calculated Raman spectral activities in the region between
700 and 1200 cm−1 for the silica structures (Figure 5) agree
better with the experimental spectral responses from plant
tissues, as shown in Figures 4A–C, rather than with spectral
responses from the amorphous silica nanoparticles, as described
in Figure 4D. Therefore, considering previous peak assignments,
the spectral properties of silica nanoparticles and the suggestions
of theoretical studies on silica cage systems, we may adopt the
broad scattering intensity between 500–580 cm−1 as a signature
of biosilica at the surface of an elater (marker #1 in Figure 4B).
Also, we ascribe Raman activities in the spectral region 920–
1000 cm−1, see marker #3 in Figure 4B, to biosilica. However,
due to the weak intensity, we do not use such responses in our
discussion based on Raman microscopy image reconstructions
(see next section of the manuscript, Raman microscopy). Here,
we wish to emphasize that we do not observe resonance at
805 cm−1 in the spectral response from elaters, while such a
signal is strong in the response from the nanoparticles. It is
interesting that both Raman signatures at 813 and 976 cm−1 are
present in spectra detected form the rosette structures, though
they are quite weak. The observed variances in the spectral
responses of silica at the elater paddle structure suggest that
structural composition of this mineral component at the surface
of elaters may have a peculiar, distinct character, that likely differs
from that found in amorphous inorganic nanostructures or in
bio-organic deposits developed by plants for the purposes of
defense and mechanical strength (Timell, 1964; Kaufman et al.,

1971; Perry and Fraser, 1991; Hodson et al., 2005; Grégoire
et al., 2012). This observation may have justifications from
the perspective of spore biology – we will address this in our
general discussion.

Deduction of Spectral Markers Specific to
Carbohydrates
Polysaccharides are the main bio-organic structural components
for plants and for Equisetum spp. tissues (Sapei et al., 2007;
Gierlinger et al., 2008). To discuss our experimental observations,
we adopt previous assignments for polysaccharide biopolymers
such as cellulose (Wiley and Atalla, 1987; Edwards et al., 1997),
glucomannan (Agarwal and Ralph, 1997), and pectin (Synytsya
et al., 2003); as well as our predictions of Raman responses for
the model systems, Figure 5. In these structural cases, theory
predicts a set of spectrally narrow resonances in the frequency
range 300–700 cm−1. C-OH out-of-plane bending contributes
in this range but dominates at lower frequency. Symmetric
and antisymmetric ring deformations with possible admixing
of out-of-plane wagging of C-O-C bridges and C-OH out-
of-plane bending contribute in the central region and at the
high frequency side of this spectral range. In earlier studies,
normal modes in this spectral region were mainly assigned
to skeletal-bending modes involving the CCC, COC, OCC,
and OCO internal coordinates of glucose-like moieties (Wiley
and Atalla, 1987; Edwards et al., 1997). It is interesting to
notice that for more regular (polycrystalline like) cellulose and
glucomannan structures, normal modes in the frequency range of
300–700 cm−1 tend to group into higher and lower frequencies
subsets with a window of relative transparency at 500 cm−1,
which is where theory predicts that Raman resonances of silica
shell systems would contribute the most, see the previous section.
In the case of a more distorted pectin-like system, the out-of-
plane C-OH bending modes admixed with the ring vibrations;
fill the spectral range 300–700 cm−1 more uniformly.

Theoretical prediction (Figure 5) shows an absence of Raman
activities for the more regular (polycrystalline) cellulose-like
system in the spectral range between 700 and 1000 cm−1.
For cellulose-like molecules, there are weak resonances at 870–
900 cm−1 due to stretching/bending localized on C4-C5 and
C5-C6 of glucopyranose rings. Besides this, the delocalized ring
deformations which involve C4-C5-O and C4-O-C1 bending and
C1-O stretching experience strong splitting at 723 and 989 cm−1.
Calculations for glucomannan- and pectin-like systems provide
similar results for this spectral range, but the normal modes are
less delocalized due to the more deformed and less crystalline
character of the materials. As a result, the C2-C3 and C1-O
stretching, C1-C2-C3 symmetric and antisymmetric stretching,
C1-O-C4 and C1-O-C5 symmetric stretching, and C1-O-C4
bending start to contribute in the spectral region between 700
and 1000 cm−1. In early studies, Raman activities in this spectral
region were assigned to ν(COC) in plane symmetric mode
at 897 cm−1 for glucomannans (Agarwal and Ralph, 1997;
Gierlinger et al., 2008), to γ(COH)ring for pectins at 817 and
832 cm−1, to a glycosidic asymmetric (COC) skeletal mode of
α-anomers of pectins at 855 cm−1, and to α-glycosidic bonds of
acidic pectin at 859 cm−1 (Synytsya et al., 2003). Considering the
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results of our theoretical studies we ascribe the experimentally
detected Raman responses between 860–900 cm−1 (see marker
#2 in Figure 4B) to local C1-O and C2-C3 stretching and C1-O-C4
bending modes of less regular and more deformed glucomannan-
and pectin-like polysaccharides.

Comparing the experimental data with the results of
DFT studies on polysaccharide model systems, we can
state that the broad band between 1000 and 1150 cm−1

(Figure 4B) is dominated by delocalized C-O-C symmetric,
C-O-C antisymmetric and C-O stretching admixed with some
contributions from C-C stretching of the pyranose rings. The
degree of delocalization is smaller for more deformed structures,
like pectin. At lower frequencies, there are also contributions
of partially delocalized pyranose rings corresponding to C-C
stretching admixed with COH bending. The peak assignments
are consistent with those reported in early studies for cellulose
(Wiley and Atalla, 1987; Edwards et al., 1997), glucomannan
(Agarwal and Ralph, 1997), and pectins (Synytsya et al.,
2003). From our Raman microscopy studies, we attribute the
contribution of Raman intensities between 1000 and 1150 cm−1

(marker #4 in Figure 4B) as a “generic” spectral signature of
bio-organic components (mainly polysaccharides) for the normal
modes, where interatomic displacements are mainly in the plane
of pyranose rings. The next, higher energy spectral subsets of
Raman activities centered at 1250 and 1375 cm−1 are specific
to (possibly) delocalized C-CH bending modes associated with
pyranose rings with contributions of both, C-CH and C-OH
bending of the side groups, consistent with the early assignments
reported in literature (Wiley and Atalla, 1987; Agarwal and
Ralph, 1997; Edwards et al., 1997; Synytsya et al., 2003). It is
interesting that for the three considered polysaccharides, our
theory predicts (with minor spectral deviation) the CH2 scissor
modes at around 1500 cm−1. In the experimental spectra this
should correspond to spectral signatures at about 1464 cm−1,
which we adopt as a spectral marker #5 in Figure 4B.

Finally, theoretical predictions for Raman activities specific
to C-H stretching modes in the spectral range 2800–3010 cm−1

were investigated. In the case of the more regular cellulose
and glucomannan structures, DFT anticipates (a) CH stretching
of pyranose rings should dominate at the lower frequency
side from 2870 to 2915 cm−1; (b) side group CH2 symmetric
stretching mixed with CH activities of pyranose rings contribute
mainly in the spectral range 2929–2949 cm−1; and, (c) side
group CH2 antisymmetric stretching mixed with CH activities
of pyranose rings would dominate at the higher frequency side
from 2980 to 3009 cm−1. In comparison, theory predicts that
CH Raman activities for less ordered pectin-like systems are
broader. Inspection of the normal modes in that region reveals
that in such systems, the vibrations with contribution of CH2
symmetric and antisymmetric stretching modes “explore” wider
spectral ranges. From this perspective, the maximal Raman
activity at 2882 cm−1, which we adopt as spectral marker #7
(Figure 4B) should be informative on the more ordered cellulose-
like structural components (see Figure 3) at the interface of
the elaters where CH2 antisymmetric stretching mixed with CH
activities of pyranose rings dominate at the higher frequency side
from 2980 to 3009 cm−1.

Deduction of Spectral Marker Specific to Lignin
Firstly, it is important to note that the intensities of the two
Raman transitions at about 1607 and 1683 cm−1 (see Figure 4B)
vary depending on the sampling spot at the surface of the elater
paddle structure. Further, considering the spectral response from
the rosette structures at the side of aged Equisetum dry branch,
Figure 4C, two analogous resonances are observed, though the
lower frequency resonance becomes very narrow and is shown
at 1620 cm−1. According to previously reported results (Atalla
and Agarwal, 1985; Agarwal et al., 2001; Jahn et al., 2002; Sapei
et al., 2007), these two spectral signatures can be attributed to
vibrations of the lignin structural component. Indeed, quantum
calculations for the normal modes of a lignin-like segment (see
Figure 5), suggest that the lower frequency resonance may be
assigned to symmetric stretching in the aromatic ring, analogous
to the ‘8a’ and ‘8b’ modes in substituted benzenes as assigned
by Varsanyi (1974). The higher frequency resonance may be a
signature of carbonyls which are present in lignin (Kirk and
Farrell, 1987; Christopher et al., 2014).

To distinguish the role of lignin at the surface of elaters,
we identified another independent spectral marker specific for
this bio-polymer. For example, Figure 4C shows a dominant
resonance at 2930 cm−1, which was reported as a spectral
signature specific to lignin (Atalla and Agarwal, 1985; Agarwal
et al., 2001; Jahn et al., 2002; Sapei et al., 2007). Considering
that in the spectra detected from elaters, the Raman response
at 2930 cm−1 is present as a smaller shoulder and it is
not proportional to the spectral signatures at about 1607 and
1683 cm−1, we anticipate that lignin is a minor structural
component at an elater surface, and, if present, its distribution
is not uniform, and it is not well-ordered. According to
the Raman response as shown in Figure 4C, this contrasts
with the clear presence of lignin as a constituent structural
component in a dried branch, where lignin fibers likely form
well aligned depositions to contribute to mechanical stability.
Accounting for both variances of experimental Raman responses
(in Figures 4B,C) and DFT predictions for lignin in the spectral
range between 1520 and 1750 cm−1, we adopt the experimentally
observed Raman resonance at 1607 cm−1 as a representative
signature for the lignin contribution and indicate it with marker
#6 in Figure 4B.

Deduction of Spectral Markers Specific to Amino
Acids and Polypeptides
The results of our previous studies (Perry, 1989) suggest that in
this spectral region may be expected possible spectral signatures
due to arginine functional groups and other protein related
structural motifs. Exploring Raman activities predicted for the
arginine side group, we confirm that there are two relatively weak
and two strong in-plane NH2 bending modes for this moiety.
These demonstrate variance in relative atomic displacements
and in frequencies that depend on possible coordination of
the side group with silica and orientation in respect to the
backbone of a structural moiety: see the dotted markers next
to the corresponding spectra in Figure 5. The results of
theoretical studies suggest that the observed underlying spectrally
broad background in the spectral range 1663–1754 cm−1
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FIGURE 6 | Raman microscopy of a single elater. Left: Graphical representations of the three levels at which the Raman map was obtained and the corresponding
optical microscopy (100×) images of the mapped regions of the selected elater. Right: The Raman difference maps are calculated for the differences as indicated in
the panels using spectral components as shown in Figure 4B. In the panels we provide brief details of the nature of considered spectral components. Detailed
descriptions are provided in the main text. To explain the meaning of the color code, let us consider differences 2–7. There, blue areas indicate the spatial regions
where the Raman activities of the subtracted Raman microscopy maps, reconstructed at frequency by marker #7 (see Figure 4), are larger than the Raman activities
of the Raman microscopy maps reconstructed at frequency by marker #2. Red areas indicate spatial regions where the situation is the opposite of this.

and observation at some sites of a relatively narrow spectral
signature at 1675 cm−1 (see the upper spectrum in Figure 4B),
may indicate the presence of arginine and carbonyl moieties,
respectively. However, due to the weak intensity, breadth and
non-systematic character of the spectral responses measured, we
do not use these spectral signatures in our further analysis.

Raman Difference Microscopy on the
Bio-Inorganic Composition of an Elater
Surface
Taking differences between equally scaled images (specific to the
selected Raman activities) we gain a qualitative comparison of
how one Raman active vibrational activity correlates or anti-
correlates in respect to another in space. Accordingly, Figure 6
shows three sets of Raman microscopy maps corresponding to
the upper, the middle and the lower sections of the same elater
paddle structure. Here, we recapitulate the chemical-structural
aspects we wish to stress using Raman difference maps. The

Raman difference signal mapping labeled as 1–4, 1–6, and 1–7
would contrast spatial distributions of biosilica versus spatially
aligned structural elements of generic extended cellulose-
like polysaccharides mainly, lignin, and other generic organic
contributions expressed through CH stretching, respectively. In
contrast, the Raman microscope maps named 2–7, 5–7, and 6–7
would contrast spatial distribution of pectin-like polysaccharides
(Synytsya et al., 2003; Gierlinger et al., 2008), δCH2 scissor
modes of hydrocarbons and lignin versus distribution of organic
contributions expressed through CH stretching.

To gain deeper insight, in Figures 7, 8 we show Raman
difference signals along selected directions of the lower and
the upper sampling sections, as demonstrated in Figure 6.
Note that, selected directions match those in Figure 2 where
X-ray spectroscopy in the electron microscope was attempted.
Considering the moderate accelerating voltage applied (to allow
for the fragility of the specimen) and accounting for the
approximate density of carbon atoms of about 24 atoms at
120Å2, we anticipate a relatively good sampling efficiency along
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FIGURE 7 | The upper set of images expands SEM images, as shown in
Figure 2, featuring the bottom part of the paddle structure. (C1,O1,Si1)
Abundances for carbon, oxygen, and silicon atoms along the sampling line as
shown in the top set of images from left to right according to indexes i = 1–3,
respectively. Panels (A1,B1,A2,B2,A3,B3) show Raman difference signals: 1–7
(black), 1–4 (red), 1–6 (orange), 2–7 (blue), 5–7 (magenta), and 6–7 (dark cyan)
extracted from Raman difference images of the lower section, see Figure 6,
along the lines as shown in the top set of images.

line B1, but a loss of sampling efficiency when signals were
detected along lines B2 and B3, see Figure 2. This is likely due
to alteration in the orientation of the sampling plane, the gun
and the detector during successive line scans. X-ray spectroscopy
(EDS) instructs on the average relative levels of contributions of
carbon and silicon atoms, and on the relative local variability.
The former characteristic helps us understand the character of
silica deposition. We see that, on average, the presence of silicon
(as silica) is about 20 times smaller than that of the bio-organic
component. This suggests the presence of thin (likely one or
rarely few layers) clusters of silica at the interface. This agrees with
the results of secondary ion mass spectrometry on some silica
depositions in Equisetum arvense (Guerriero et al., 2018).

We first consider the bottom section of the elater, which
comprises the connection between the stem and the paddle
structure (Figure 6). This structural region has a very complex
three-dimensional character, with a steep slope of the stem
at the lower side. The EDS responses in Figures 7O1,C1,Si1
show the underlying trend - atomic abundances increase (from
left to right). This is likely to be due to orientation effect –
reflection toward detector is favorable at the slope. In the same
spatial region, Raman difference signals 1–4, 1–6, and 1–7 in
Figure 7A1 anti-correlate with the differences 2–7, 5–7, and 6–7
in Figure 7B1. For the biosilica component signals are collected
more efficiently than those from the bio-organic structures and

FIGURE 8 | The upper set expands SEM images, as shown in Figure 2,
featuring the middle part of the paddle structure. Explanations for the panels
are the same as those in the caption of Figure 7, save the Raman difference
signals: 1–7 (black), 1–4 (red), 1–6 (orange), 2–7 (blue), 5–7 (magenta), and
6–7 (dark cyan) are extracted from Raman difference images of the middle
section, see Figure 6.

the extended cellulose-like contribution is prominent amongst
the others. Comparatively, the atomic abundances (C3, O3, Si3)
and the Raman difference signals maps (A3 and B3) as shown
in Figure 7 are sampled from a more uniformly spatial region
(structural components located at the same height), thus avoiding
the tilting of the sampling plane. The SEM image shows that
at the very left side of the sampling line, there is the presence
of a spherical structure. Since, here, the sampling plane is not
tilted; we may attribute the positive Raman differences 1–7 and
1–4 (in Figure 7A3) as signatures of silica surplus, likely due
to the material of the vertical side walls of the structure. This is
consistent with the fact that the positive signatures are spatially
broader and “tipped” from the top. It is also interesting, that, in
contrast to the dependences in Figure 7B1, the Raman differences
5–7 and 6–7 in Figure 7B3 in the spatial region of the spherical
structure are positive and relatively narrower, comparing to
differences 1–7 and 1–4 in Figure 7A3. This suggests that the
deposition of pectin-glucomannan glycoside may be associated
with that of silica, and that such polysaccharide components
are likely imbedded in the bio-inorganic component/structure.
Further, the lignin-like contributions are diminished at the center
of the spherical structure (see orange line in Figure 7A3). Finally,
the Raman difference signals maps shown in Figures 7A2,B2,
reveal an intermediate character considering the above described
cases. This can be explained as a spatial overlap of the areas
where Raman signals are sampled. Note that, the physical limit
of Raman microscopy resolution cannot be better than λ/2, and
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experimentally will always be inferior comparing to SEM. In
Figure 8 are shown the atomic abundances and Raman difference
signals in the upper section of the elater paddle structure. This
section of the paddle structure is the most distant from the
stem; however, similar tendencies to that of the lower section are
observed when comparing Raman mapping (A1, B1 and A2, B2)
with Figures 7A3,B3.

After exploring possible correlations of several Raman
difference signals with mapping spatially parallelized with atomic
abundances, it is time to review the two-dimensional Raman
difference microscopy images (in Figure 6), to help unravel
the morphogenetic plan of the Equisetum spore developed by
millions of years of evolution. First, we consider the Raman
difference map of the stem part, which is expected to provide
mechanical stability and locomotion properties. Images specific
to differences corresponding to Raman maps 1–4, 1–6, 1–7, and
5–7 indicate that silica deposition may have a spiral character,
see arrows in the lower set of panels in Figure 6, and it may
be coordinated with spatial distributions and orientation of CH
moieties associated with a cellulose-like structural component.

Exploring the middle section Raman map, we may confirm
that formation of spherical structures requires a morphogenetic
plan requiring the embedding of polysaccharide and silica layers
and a supply of material. To address this further, black and green
stars have been placed on the images for the middle and the
upper sections in Figure 6. For example, the lower black stars (of
the middle section) indicate the region where silica is strongly
associated with CH modes of cellulose-like component, but
anti-correlates with a pectin-glucomannan-like fraction which is
embedded inside the structure, more concretely in the center of
a spherical structure. Similar trends are observed in the spatial
region marked by green stars in the middle section.

Here, it is interesting to notice that SEM images of the
upper part of the paddle structure indicate a more rigged
and folded morphology of the surface at the tip. This is
consistent with Raman microscopy maps. Raman maps reveal
a more red-blue rapidly altering pattern toward the edge,
and the very edge, apparently is reinforced with cellulose-
like polycrystalline terminations – see the blue ridge at
the edge in differences 1–7, 2–7, 5–6, and 6–7 in the
Raman images specific to the upper part (see blue and red
arrows in Figure 6).

Finally, it is necessary to address that in contrast to large
scale preferences for distributions for pectin-glucomannan- and
cellulose-like components reported in cells of stems and branches
of Equisetum spp. (Perry and Fraser, 1991; Speck et al., 1998;
Perry and Keeling-Tucker, 2003; Sapei et al., 2007; Gierlinger
et al., 2008), distributions of polysaccharides and lignin at the
elater paddle structure exhibits structure on the submicron scale.
Overall, this correlates with the ridged-folded morphology of
the surface of the elater paddle. This ridged-folded morphology
becomes more obvious toward the edges.

DISCUSSION

Early TEM studies demonstrated that an elater can be found on
the surface of the plasmodial plasma membrane as a thin belt-
like structure spirally coiled around the middle layer (Uehara
and Kurita, 1989). The structure consists of an inner granulo-
fibrous zone and of an outer micro-fibrillar region which aligns
parallel to the longitudinal axis. This structure provides structural
heterogeneity of the inner and outer layers of the elaters in stems
to demonstrate locomotion capacity by rapid differential volume
change (Marmottant et al., 2013). In our studies, we address the
complexity of bio-organic decoration of the paddle structure of
the elater, which should be consistent with the needs of biological
survival and propagation. Our SEM studies clearly indicate: (a)
a ridged complex, of about 0.5 micron, at the elater’s surface,
suggesting a folding complex nature of structuring of the bio-
organic matter under the surface; (b) the presence of sub-micron
diameter spherical structures on the ridged surface of the paddle
structure and on the surface of the connecting stems; (c) more
or less uniform silica deposition at the surface of the paddle
structures. Our Raman microscopy results suggest that; (d) silica
is deposited in its amorphous form in thin layered structures;
(e) there is a relative increase of silica at the sites of spherical
containers; (f) pectin- and glucomannan-like glycosides may
have some preference in the interior of the spherical containers;
(g) the spherical containers are attached at the surface of paddle
structures where cellulose-like planar bio-organic components
dominate and where lignin contributions are diminished. The
observed differences in distribution and character of inorganic
and bio-organic structural elements in the elater of Equisetum

FIGURE 9 | SEM and optical bright field microscopy images of spores on carbon tape for SEM studies 10 days after deposition.
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arvense arise from the restrictions of prior morphogenesis and
structural and elemental capacities gained during evolution
to answer the practical challenges of initial proliferation and
survival at the early stages of vegetation. To understand this,
in Figure 9 are shown the SEM and optical microscopy images
of spores on carbon tape 10 days after their deposition. These
images show that the paddle structures undergo motion to
interact with the carbon substrate with the consequence that
some paddles and some spore central bodies demonstrate partial
submerging into the carbon substrate. Further, some of the
paddle structures became flattened and expanded and opening of
spherical container to expose its contents to the environment is
revealed (see Figure 9). The observed structural reorganization
suggests that there exists an on-going morphogenesis and
biochemistry which involves the elater paddles and spore central
body to support effective germination. From these results, it can
also be concluded that silica deposition at the elaters’ surface
and their paddles as layered structures is beneficial for fast break
down into a chemical substrate suitable for both, conditioning
of local microbiology and to become ready for re-consumption
as expected upon following the vegetation cycle. Opening of
the internal spherical structures is likely to occur for the same
purpose, while flattening and spreading of elaters may hinder
photosynthesis of algae and other plants in the spatial region next
to the spore central body.

Colloidal silica dissolution is a challenging task when applied
to deposits in process cooling systems. Earlier studies suggested
that hydroxyl ions play a catalytic role in the process (Jendoubi
et al., 1997). However, later experimental studies indicated
that an increase in the number of -COOH groups in various
agents (capable to dissolve colloidal silica) does not have an
obvious effect on dissolution efficiency. Instead, the presence
of -PO3H2 and NH2 groups would appear to be important,
and, particularly, under acidic environments (Mavredaki et al.,
2005). Consequently, we may suggest that since degrading plant
tissues typically generate an acidic environment (due to humid
acid and other products), the side-group of arginine containing
polysaccharide matrix (Perry, 1989) may facilitate the anticipated
fast uptake of silica provided by the elater surface. This silica is
particularly conditioned to: (i) not hinder the necessary flexibility
and morphology of elaters; and, (ii) partition fast into the
substrate in a colloidal form to be easily re-absorbed by young
vegetation, facilitated by substrate chemistry pre-conditioned by
decay and prior release of the content of the containers. Further,
there are a range of opinions concerning whether silica may
(Guerriero et al., 2018) or may not (Coskun et al., 2019) play
a role in anti-fungal and anti-bacterial resistance mechanisms
though it is not unreasonable to propose that fast re-absorption
of silica would help improve the strength of structural elements
within a living organism. If this is a skeletal component of a “few-
cell” developing organism this may be along the biogenetic law
stated by Haeckel of “ontogeneous recapitulation of phylogeny”
(Haeckel, 1866). At the same time, we cannot exclude the
opinion of the editor that fast silica re-absorption could be an
evolutionary memory of mechanisms which are not obvious
now but were possibly helpful in the past. It is possible that
morphological and (bio)chemical studies of early Equisetum

embryogenesis may help us understand if silica uptake was
among the evolutionary advances of organisms (keeping in mind
diatoms and sponges). This, however, is far beyond the scope of
the current study.

CONCLUSION

The use of sensitive Raman microscopy assisted with density
functional theory is an attractive approach to explore the bio-
mineral composition of Equisetum spore elaters spatially, both
at the surface and within the biological structure. The spatial-
spectral optical sampling correlates with structural properties
detected using scanning electron microscopy. The approach
suggests that silica is deposited in an amorphous, nearly colloidal
form within structures that are up to a few layers thick that
are readily dissolved and dispersed on germination. Silica and
pectin-glucomannan-like glycosides may have some preference
in the internal content of the spherical containers which are
attached at the surface of paddle structures where a cellulose-
like planar bio-organic component dominates and where lignin-
like contributions are minimal. Spatial correlations of spectral
signatures assist in addressing how structural properties and
biochemical decoration of the elaters may support the physiology
of the organelles and contribute to reproduction success.

AUTHOR CONTRIBUTIONS

CP and VV conceived the study. CP collected the plant
material, performed the early studies on germination, and
supervised the study. VV conducted the Raman microscopy and
DFT calculations. GH conducted the SEM microscopy. AS-R
conducted the material studies. All authors contributed in writing
and reviewing the manuscript.

FUNDING

The authors gratefully acknowledge funding from AFOSR
FA9550-16-1-0213 and thank Dr. Joanna Aizenberg, Harvard
University, for continued access to the Odyssey Cluster
at Harvard University. Fees for open access were provided by a
research contingency fund allocated to CP by NTU.

ACKNOWLEDGMENTS

Some of computations used in this paper were run on the Odyssey
Cluster supported by the Faculty of Arts and Sciences Division,
Research Computing Group at Harvard University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2019.00210/
full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org 13 March 2019 | Volume 10 | Article 21055

https://www.frontiersin.org/articles/10.3389/fpls.2019.00210/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2019.00210/full#supplementary-material
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00210 March 1, 2019 Time: 18:30 # 14

Volkov et al. Equisetum Spore Elaters: Composition, Functionality

REFERENCES
Agarwal, U. P., McSweeny, J. D., and Ralph, S. A. (2001). FT–raman investigation

of milled-wood lignins: softwood, hardwood, and chemically modified black
spruce lignins. J. Wood Chem. Technol. 31, 324–344. doi: 10.1080/02773813.
2011.562338

Agarwal, U. P., and Ralph, S. A. (1997). FT-raman spectroscopy of wood:
identifying contributions of lignin and carbohydrate polymers in the spectrum
of black spruce (Picea Mariana). Appl. Spectrosc. 51, 1648–1655. doi: 10.1366/
0003702971939316

Ans, B., Herault, J., and Jutten, C. (1985). Adaptive neural architectures: detection
of primitives. Cognitiva 85, 593–597.

Atalla, R. H., and Agarwal, U. P. (1985). Raman microprobe evidence for lignin
orientation in the cell walls of native woody tissue. Science 227, 636–638.
doi: 10.1126/science.227.4687.636

Becke, A. D. (1988). Density functional exchange energy approximation with
correct asymptotic behavior. Phys. Rev. A 38:3098. doi: 10.1103/PhysRevA.38.
3098

Beer, R. (1909). The development of the spores of Equisetum. New Phytol. 8,
261–266. doi: 10.1111/j.1469-8137.1909.tb05531.x

Berg, C. J., LaFountain, A. M., Prum, R. O., Frank, H. A., and Tauber, M. J. (2013).
Vibrational and electronic spectroscopy of the retro-carotenoid rhodoxanthin
in avian plumage, solid-state films, and solution. Arch. Biochem. Biophys. 539,
142–155. doi: 10.1016/j.abb.2013.09.009

Boerjan, W., Ralph, J., and Baucher, M. (2003). Lignin biosynthesis. Ann. Rev. Plant
Biol. 54, 519–549. doi: 10.1146/annurev.arplant.54.031902.134938

Brinker, C. J., Tallant, D. R., Roth, E. P., and Ashley, C. S. (1982). Sol-gel transition
in simple silicates: III. Structural studies during densification. J. Non Cryst.
Solids 82, 117–126. doi: 10.1016/0022-3093(86)90119-5

Britton, G. (1995). UV/Visible Spectroscopy. Carotenoids Volume 1B: Spectroscopy.
Berlin: Birkhäuser Verlag, 13–62.

Brunner, E., Gröger, C., Lutz, K., Richthammer, P., Spinde, K., and Sumper, M.
(2009). Analytical studies of silica biomineralization: towards an understanding
of silica processing by diatoms. Appl. Microbiol. Biotechnol. 84, 607–616.
doi: 10.1007/s00253-009-2140-3

Bunker, B. C., Haaland, D. M., Ward, K. J., Michalske, T. A., Smith, W. L., Binkley,
J. S., et al. (1989). Infrared spectra of edge-shared silicate tetrahedra. Surface Sci.
210, 406–428. doi: 10.1016/0039-6028(89)90603-1

Chabera, P., Fuciman, M., Hríbek, P., and Polivka, T. (2009). Effect of carotenoid
structure on excited-state dynamics of carbonyl carotenoids. Phys. Chem. Chem.
Phys. 11, 8795–8803. doi: 10.1039/b909924g

Christopher, L. P., Yao, B., and Ji, Y. (2014). Lignin biodegradation with laccase-
mediator systems. Front. Energy Res. 2:12. doi: 10.3389/fenrg.2014.00012

Chuang, I.-S., and Maciel, G. E. (1996). Probing hydrogen bonding and the local
environment of silanols on silica surfaces via nuclear spin cross polarization
dynamics. J. Am. Chem. Soc. 118, 401–406. doi: 10.1021/ja951550d

Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., et al.
(2019). The controversies of silicon’s role in plant biology. New Phytol. 221,
67–85. doi: 10.1111/nph.15343

Currie, H. A., and Perry, C. C. (2009). Chemical evidence for intrinsic ‘Si’ within
equisetum cell walls. Phytochemistry 70, 2089–2095. doi: 10.1016/j.phytochem.
2009.07.039

Czeczuga, B. (1985). Carotenoids in sixty-six representatives of the pteridophyta.
Biochem. Syst. Ecol. 13, 221–230. doi: 10.1016/0305-1978(85)90030-4

Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature
417, 813–821. doi: 10.1038/nature00785

Dieing, T., and Ibach, W. (2011). Multivariate Image Generation. Confocal Raman
Microscopy. Berlin: Springer-Verlag, 106–111. doi: 10.1007/978-3-642-12
522-5

Duckett, J. G. (1970). Spore size in the genus Equisetum. New Phytol. 69, 333–346.
doi: 10.1111/j.1469-8137.1970.tb02432.x

Edwards, H. G. M., Farwell, D. W., and Webster, D. (1997). FT raman microscopy
of untreated natural plant. Spectrochim. Acta Part A 53, 2383–2392. doi: 10.
1016/S1386-1425(97)00178-9

Elbaum, R., Zaltzman, L., Burgert, I., and Fratzl, P. (2007). The role of wheat awns
in the seed dispersal unit. Science 316, 884–886. doi: 10.1126/science.1140097

Erdtman, G. (1952). Pollen Morphology and Plant Taxonomy. Stockholm: Almqvist
& Wiksell.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A.,
Cheeseman, J. R., et al. (2010). Gaussian 09, Revision B.01. Wallingford CT:
Gaussian, Inc.

Fruijtier-Pölloth, C. (2012). The toxicological mode of action and the safety of
synthetic amorphous silica-a nanostructured material. Toxicology 294, 61–79.
doi: 10.1016/j.tox.2012.02.001

Gailliez-Degremont, E., Bacquet, M., Laureyns, J., and Morcellet, M. (1997).
Polyamines adsorbed onto silica gel: a Raman microprobe analysis. J. Appl.
Polymer Sci. 65, 871–882. doi: 10.1002/(SICI)1097-4628(19970801)65:5<871::
AID-APP4>3.0.CO;2-K

Gall, A., Pascal, A. A., and Robert, B. (2015). Vibrational techniques applied to
photosynthesis: resonance Raman and fluorescence line-narrowing. Biochim.
Biophys. Acta 1847, 12–18. doi: 10.1016/j.bbabio.2014.09.009

Gao, X. P., Zou, C. Q., Wang, L. J., and Zhang, F. S. (2004). Silicon improves water
use efficiency in maize plants. J. Plant Nutr. 27, 1457–1470. doi: 10.1081/PLN-
200025865

Gierlinger, N., Sapei, L., and Paris, O. (2008). Insights into the chemical
composition of Equisetum hyemale by high resolution Raman imaging. Planta
227, 969–980. doi: 10.1007/s00425-007-0671-3

Grégoire, C., Rémus-Borel, W., Vivancos, J., Labbé, C., Belzile, F., and Bélanger,
R. R. (2012). Discovery of a multigene family of aquaporin silicon transporters
in the primitive plant Equisetum arvense. Plant J. 72, 320–330. doi: 10.1111/j.
1365-313X.2012.05082.x

Guerriero, G., Law, C., Stokes, I., Moore, K. L., and Exley, C. (2018). Rough and
tough. How does silicic acid protect horsetail from fungal infection? J. Trace
Elem. Med. Biol. 47, 45–52. doi: 10.1016/j.jtemb.2018.01.015

Gullvag, B. M. (1968). On the fine structure of the spores of equisetum fluviatile var.
verticillatum studied in the quiescent, germinated and non-viable state. Grana
Palynol. 8, 23–69. doi: 10.1080/00173136809427460

Haeckel, E. (1866). Generelle Morphologie der Organismen: Allgemeine Grundzuge
der Organischen Formen-Wissenschaft, Mechanisch Begrundet Durch die von
C. Darwin Reformirte Decendenz-Theorie. Berlin: G. Reimer. doi: 10.1515/
9783110848281

Hedegaard, M., Matthaus, C., Hassing, S., Krafft, C., Diem, M., and Popp, J. (2011).
Spectral unmixing and clustering algorithms for assessment of single cells by
Raman microscopic imaging. Theor. Chem. Acc. 130, 1249–1260. doi: 10.1007/
s00214-011-0957-1

Hodson, M. J., White, P. J., Mead, A., and Broadley, M. R. (2005). Phylogenetic
variation in the silicon composition of plants. Ann. Bot. 96, 1027–1046. doi:
10.1093/aob/mci255

Holzhüter, G., Narayanan, K., and Gerber, T. (2003). Structure of silica in
Equisetum arvense. Analyt. Bioanalyt. Chem. 376, 512–517. doi: 10.1007/
s00216-003-1905-2

Humbert, B. (1995). Estimation of hydroxyl density at the surface of pyrogenic
silicas by complementary NMR and raman experiments. J. Non Cryst. Solids
191, 29–37. doi: 10.1016/0022-3093(95)00311-8

Hyvarinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis.
Hoboken, NJ: John Wiley & Sons. doi: 10.1002/0471221317

Jahn, A., Schroder, M. W., Futing, M., Schenzel, K., and Diepenbrock, W.
(2002). Characterization of alkali treated flax fibres by means of FT
Raman spectroscopy and environmental scanning electron microscopy.
Spectrochim. Acta Part A 58, 2271–2279. doi: 10.1016/S1386-1425(01)00
697-7

Jendoubi, F., Mgaidi, A., and El Maaoui, M. (1997). Kinetics of the dissolution of
silica in aqueus sodium hydroxide solutions at high pressure and temperature.
Can. Soc. Chem. Eng. 75, 721–727. doi: 10.1002/cjce.5450750409

Katsuraya, K., Okuyamab, K., Hatanaka, K., Oshima, R., Sato, T., and Matsuzaki, K.
(2003). Constitution of konjac glucomannan: chemical analysis and 13C NMR
spectroscopy. Carbohydr. Polym. 53, 183–189. doi: 10.1016/S0144-8617(03)
00039-0

Kaufman, P. B., Bigelow, W. C., Schmid, R., and Ghosheh, N. S. (1971). Electron
microprobe analysis of silica in epidermal cells of Equisetum. Am. J. Bot. 58,
309–316. doi: 10.1002/j.1537-2197.1971.tb09978.x

Kirk, T. K., and Farrell, R. L. (1987). Enzymatic “combustion”: the microbial
degradation of lignin. Ann. Rev. Microbiol. 41, 465–505. doi: 10.1146/annurev.
mi.41.100187.002341

Landrum, J. T., and Bone, R. A. (2001). Lutein, zeaxanthin and the macular
pigment. Arch. Biochem. Biophys. 385, 28–40. doi: 10.1006/abbi.2000.2171

Frontiers in Plant Science | www.frontiersin.org 14 March 2019 | Volume 10 | Article 21056

https://doi.org/10.1080/02773813.2011.562338
https://doi.org/10.1080/02773813.2011.562338
https://doi.org/10.1366/0003702971939316
https://doi.org/10.1366/0003702971939316
https://doi.org/10.1126/science.227.4687.636
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1111/j.1469-8137.1909.tb05531.x
https://doi.org/10.1016/j.abb.2013.09.009
https://doi.org/10.1146/annurev.arplant.54.031902.134938
https://doi.org/10.1016/0022-3093(86)90119-5
https://doi.org/10.1007/s00253-009-2140-3
https://doi.org/10.1016/0039-6028(89)90603-1
https://doi.org/10.1039/b909924g
https://doi.org/10.3389/fenrg.2014.00012
https://doi.org/10.1021/ja951550d
https://doi.org/10.1111/nph.15343
https://doi.org/10.1016/j.phytochem.2009.07.039
https://doi.org/10.1016/j.phytochem.2009.07.039
https://doi.org/10.1016/0305-1978(85)90030-4
https://doi.org/10.1038/nature00785
https://doi.org/10.1007/978-3-642-12522-5
https://doi.org/10.1007/978-3-642-12522-5
https://doi.org/10.1111/j.1469-8137.1970.tb02432.x
https://doi.org/10.1016/S1386-1425(97)00178-9
https://doi.org/10.1016/S1386-1425(97)00178-9
https://doi.org/10.1126/science.1140097
https://doi.org/10.1016/j.tox.2012.02.001
https://doi.org/10.1002/(SICI)1097-4628(19970801)65:5<871::AID-APP4>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-4628(19970801)65:5<871::AID-APP4>3.0.CO;2-K
https://doi.org/10.1016/j.bbabio.2014.09.009
https://doi.org/10.1081/PLN-200025865
https://doi.org/10.1081/PLN-200025865
https://doi.org/10.1007/s00425-007-0671-3
https://doi.org/10.1111/j.1365-313X.2012.05082.x
https://doi.org/10.1111/j.1365-313X.2012.05082.x
https://doi.org/10.1016/j.jtemb.2018.01.015
https://doi.org/10.1080/00173136809427460
https://doi.org/10.1515/9783110848281
https://doi.org/10.1515/9783110848281
https://doi.org/10.1007/s00214-011-0957-1
https://doi.org/10.1007/s00214-011-0957-1
https://doi.org/10.1093/aob/mci255
https://doi.org/10.1093/aob/mci255
https://doi.org/10.1007/s00216-003-1905-2
https://doi.org/10.1007/s00216-003-1905-2
https://doi.org/10.1016/0022-3093(95)00311-8
https://doi.org/10.1002/0471221317
https://doi.org/10.1016/S1386-1425(01)00697-7
https://doi.org/10.1016/S1386-1425(01)00697-7
https://doi.org/10.1002/cjce.5450750409
https://doi.org/10.1016/S0144-8617(03)00039-0
https://doi.org/10.1016/S0144-8617(03)00039-0
https://doi.org/10.1002/j.1537-2197.1971.tb09978.x
https://doi.org/10.1146/annurev.mi.41.100187.002341
https://doi.org/10.1146/annurev.mi.41.100187.002341
https://doi.org/10.1006/abbi.2000.2171
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00210 March 1, 2019 Time: 18:30 # 15

Volkov et al. Equisetum Spore Elaters: Composition, Functionality

Law, C., and Exley, C. (2011). New insight into silica deposition in horsetail
(Equisetum arvense). BMC Plant Biol. 11:112. doi: 10.1186/1471-2229-11-112

Lee, C., Yang, W., and Parr, R. G. (1988). Development of the colle-salvetti
correlation-energy formula into a functional of the electron density. Phys. Rev.
B 37:785. doi: 10.1103/PhysRevB.37.785

Lewin, J. C., and Reimann, B. E. F. (1969). Silicon and plant growth. Ann. Rev. Plant
Physiol. 20, 289–304. doi: 10.1146/annurev.pp.20.060169.001445

Mann, S., Perry, C. C., Williams, R. J. P., Fyfe, C. A., Gobbi, G. C., and Kennedy,
G. J. (1983). The characterization of the nature of silica in biological systems.
J. Chem. Soc. Chem. Commun. 0, 168–170. doi: 10.1039/c39830000168

Marmottant, P., Ponomarenko, A., and Bienaimé, D. (2013). The walk and
jump of Equisetum spores. Proc. R. Soc. Lond. Ser. B Biol. Sci. 280:20131465.
doi: 10.1098/rspb.2013.1465

Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C., et al.
(2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall
architecture. Curr. Biol. 19, 169–175. doi: 10.1016/j.cub.2008.12.031

Mavredaki, E., Neofotistou, E., and Demadis, K. D. (2005). Inhibition and
dissolution as dual mitigation approaches for colloidal silica fouling and
deposition in process water systems: functional synergies. Industr. Eng. Chem.
Res. 44, 7019–7026. doi: 10.1021/ie0501982

Melendez-Martinez, A. J., Britton, G., Vicario, I. M., and Heredia, F. J. (2005).
Identification of isolutein (lutein epoxide) as cis-antheraxanthin in orange juice.
J. Agric. Food Chem. 53, 9369–9373. doi: 10.1021/jf051722i

Morrow, B. A., and McFarlan, A. J. (1992). Surface vibrational modes of silanol
groups on silica. J. Phys. Chem. 96, 1395–1400. doi: 10.1021/j100182a068

Murugadoss, S., Lison, D., Godderis, L., Van Den Brule, S., Mast, J., Brassinne, F.,
et al. (2017). Toxicology of silica nanoparticles: an update. Arch. Toxicol. 91,
2967–3010. doi: 10.1007/s00204-017-1993-y

Neethirajan, S., Gordon, R., and Wang, L. (2009). Potential of silica bodies
(phytoliths) for nanotechnology. Trends Biotechnol. 27, 461–467. doi: 10.1016/
j.tibtech.2009.05.002

Newcombe, F. C. (1888). Spore-dissemination of Equisetum. Bot. Gazette 13,
173–178. doi: 10.1086/326297

Page, C. N. (1972). An interpretation of the morphology and evolution of the cone
and shoot of Equisetum. Bot. J. Linn. Soc. 65, 359–397. doi: 10.1111/j.1095-8339.
1972.tb02279.x

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
Philos. Magaz. 2, 559–572. doi: 10.1080/14786440109462720

Perry, C. C. (1989). Chemical Studies of Biogenic Silica. Biomineralization: Chemical
and Biochemical Perspective. Weinheim: Federal Republic of Germany,
223–256.

Perry, C. C., and Fraser, M. A. (1991). Silica deposition and ultrastructure in the
cell wall of Equisetum arvense: the importance of cell wall structures and flow
control in biosilicification? Philos. Trans. R. Soc. B 334, 149–157. doi: 10.1098/
rstb.1991.0104

Perry, C. C., and Keeling-Tucker, T. (2000). Biosilicification: the role of the organic
matrix in structure control. J. Biol. Inorgan. Chem. 5, 537–550. doi: 10.1007/
s007750000130

Perry, C. C., and Keeling-Tucker, T. (2003). Model studies of colloidal silica
precipitation using biosilica extracts from Equisetum telmateia. Colloid Polymer
Sci. 281, 652–664. doi: 10.1007/s00396-002-0816-7

Perry, C. C., Mann, S., and Willians, R. J. P. (1984). Structural and analytical studies
of the silicified macrohairs from the lemma of the grass Phalaris canariensis L.
Proc. R. Soc. Lond. Ser. B Biol. Sci. 222, 427–438.

Reyssat, E., and Mahadevan, L. (2009). Hygromorphs: from pine cones to
biomimetic bilayers. J. R. Soc. Interface 6, 951–957. doi: 10.1098/rsif.2009.0184

Ridley, B. L., O’Neill, M. A., and Mohnen, D. (2001). Pectins: structure,
biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57, 929–
967. doi: 10.1016/S0031-9422(01)00113-3

Rimai, L., Heyde, M. E., and Gill, D. (1973). Vibrational spectra of some carotenoids
and related linear polyenes. Raman spectroscopic study. J. Am. Chem. Soc. 95,
4493–4501. doi: 10.1021/ja00795a005

Ruban, A. V., Horton, P., and Robert, B. (1995). Resonance raman spectroscopy
of the photosystem II light-harvesting complex of green plants: a comparison
of trimeric and aggregated states. Biochemistry 34, 2333–2337. doi: 10.1021/
bi00007a029

Ruban, A. V., Pascal, A. A., Robert, B., and Horton, P. (2001). Configuration and
dynamics of xanthophylls in light-harvesting antennae of higher plants. J. Biol.
Chem. 276, 24862–24870. doi: 10.1074/jbc.M103263200

Sachs, J. (1862). Ergebnisse einiger neuerer untersuchungen uber die in pflanzen
enthaltene Kieselsaure. Flora 33, 65–71.

Sadebeck, R. (1878). Die entwicklung d. keimes d. schachtelhalme. Jahrb. f.
wissensch. Bot. 11, 575–602.

Sapei, L., Gierlinger, N., Hartmann, J., Noske, R., Strauch, P., and Paris, O. (2007).
Structural and analytical studies of silica accumulations in Equisetum hyemale.
Anal. Bioanalyt. Chem. 389, 1249–1257. doi: 10.1007/s00216-007-1522-6

Sola-Rabada, A., Sahare, P., Hickman, G., Vasquez, M., Canham, L. T., Perry, C. C.,
et al. (2018). Biogenic porous silica and silicon sourced from Mexican Giant
Horsetail (Equisetum myriochaetum) and their application as supports for
enzyme immobilization. Coll. Surfaces B 166, 195–202. doi: 10.1016/j.colsurfb.
2018.02.047

Speck, T., Speck, O., Emanns, A., and Spatz, H. C. (1998). Biomechanics and
functional anatomy of hollow stemmed sphenopsids: III. Equisetum hyemale.
Bot. Acta 111, 366–376. doi: 10.1111/j.1438-8677.1998.tb00721.x

Stahl, E. (1888). Pflanzen und schnecken. biologische studie uher die schutzmittel
der pflanzen gegen schneckenfrass. Jenaische Zeitschrift für Naturwissenschaft
22, 557–684.

Stober, W., Fink, A., and Bohn, E. (1968). Controlled growth of monodisperse
silica spheres in the micron size range. Adv. Colloid Interface Sci. 26, 62–69.
doi: 10.1016/0021-9797(68)90272-5

Synytsya, A., Copikova, J., Matejka, P., and Machovic, V. (2003). Fourier transform
Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 54, 97–106.
doi: 10.1016/S0144-8617(03)00158-9

Takaichi, S., and Shimada, K. (1992). Chracterization of carotenoids in
photosynthetic bacteria. Methods Enzymol. 213, 374–385. doi: 10.1016/0076-
6879(92)13139-O

Timell, T. E. (1964). Studies on some ancient plants. Svensk Papperstidning 67,
356–363.

Uehara, K., and Kurita, S. (1989). An ultrastructural study of spore wall
morphogenesis in Equisetum arvense. Am. J. Bot. 76, 939–951. doi: 10.1002/j.
1537-2197.1989.tb15074.x

Updegraff, D. M. (1969). Semimicro determination of cellulose in biological
materials. Anal. Biochem. 32, 420–424. doi: 10.1016/S0003-2697(69)80009-6

Varsanyi, G. (1974). Assignments for Vibrational Spectra of 700 Benzene Derivatives.
New York, NY: Wiley.

Wiley, J. H., and Atalla, R. H. (1987). Band assignment in the Raman spectra of
celluloses. Carbohydr. Res. 160, 113–129.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Volkov, Hickman, Sola-Rabada and Perry. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 15 March 2019 | Volume 10 | Article 21057

https://doi.org/10.1186/1471-2229-11-112
https://doi.org/10.1103/PhysRevB.37.785
https://doi.org/10.1146/annurev.pp.20.060169.001445
https://doi.org/10.1039/c39830000168
https://doi.org/10.1098/rspb.2013.1465
https://doi.org/10.1016/j.cub.2008.12.031
https://doi.org/10.1021/ie0501982
https://doi.org/10.1021/jf051722i
https://doi.org/10.1021/j100182a068
https://doi.org/10.1007/s00204-017-1993-y
https://doi.org/10.1016/j.tibtech.2009.05.002
https://doi.org/10.1016/j.tibtech.2009.05.002
https://doi.org/10.1086/326297
https://doi.org/10.1111/j.1095-8339.1972.tb02279.x
https://doi.org/10.1111/j.1095-8339.1972.tb02279.x
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1098/rstb.1991.0104
https://doi.org/10.1098/rstb.1991.0104
https://doi.org/10.1007/s007750000130
https://doi.org/10.1007/s007750000130
https://doi.org/10.1007/s00396-002-0816-7
https://doi.org/10.1098/rsif.2009.0184
https://doi.org/10.1016/S0031-9422(01)00113-3
https://doi.org/10.1021/ja00795a005
https://doi.org/10.1021/bi00007a029
https://doi.org/10.1021/bi00007a029
https://doi.org/10.1074/jbc.M103263200
https://doi.org/10.1007/s00216-007-1522-6
https://doi.org/10.1016/j.colsurfb.2018.02.047
https://doi.org/10.1016/j.colsurfb.2018.02.047
https://doi.org/10.1111/j.1438-8677.1998.tb00721.x
https://doi.org/10.1016/0021-9797(68)90272-5
https://doi.org/10.1016/S0144-8617(03)00158-9
https://doi.org/10.1016/0076-6879(92)13139-O
https://doi.org/10.1016/0076-6879(92)13139-O
https://doi.org/10.1002/j.1537-2197.1989.tb15074.x
https://doi.org/10.1002/j.1537-2197.1989.tb15074.x
https://doi.org/10.1016/S0003-2697(69)80009-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


1

Edited by: 
Martin John Hodson, 

Oxford Brookes University, 
United Kingdom

Reviewed by: 
Carole Celia Perry, 

Nottingham Trent University, 
United Kingdom 
Minh N. Nguyen, 

Vietnam National University, 
Vietnam

*Correspondence: 
Victor M. R. Zancajo 

rodriguez.zancajo@gmail.com 
Janina Kneipp 

janina.kneipp@chemie.hu-berlin.de 
Rivka Elbaum 

rivka.elbaum@mail.huji.ac.il

Specialty section: 
This article was submitted to 

 Plant Physiology, 
 a section of the journal 

 Frontiers in Plant Science

Received: 17 April 2019
Accepted: 11 November 2019
Published: 11 December 2019

Citation: 
Zancajo VMR, Diehn S, Filiba N, 

Goobes G, Kneipp J and Elbaum R 
(2019) Spectroscopic Discrimination 

of Sorghum Silica Phytoliths. 
 Front. Plant Sci. 10:1571. 

 doi: 10.3389/fpls.2019.01571
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Sorghum Silica Phytoliths
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and Rivka Elbaum 5*

1 School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Berlin, Germany, 2 Chemistry Department, 
Humboldt-Universität zu Berlin, Berlin, Germany, 3 BAM Federal Institute for Materials Research and Testing, Berlin, Germany, 
4 Department of Chemistry, Bar Ilan University, Ramat Gan, Israel, 5 R. H. Smith Institute of Plant Sciences and Genetics in 
Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel

Grasses accumulate silicon in the form of silicic acid, which is precipitated as amorphous 
silica in microscopic particles termed phytoliths. These particles comprise a variety of 
morphologies according to the cell type in which the silica was deposited. Despite the 
evident morphological differences, phytolith chemistry has mostly been analysed in bulk 
samples, neglecting differences between the varied types formed in the same species. In 
this work, we extracted leaf phytoliths from mature plants of Sorghum bicolor (L.) Moench. 
Using solid state NMR and thermogravimetric analysis, we show that the extraction 
methods alter greatly the silica molecular structure, its condensation degree and the 
trapped organic matter. Measurements of individual phytoliths by Raman and synchrotron 
FTIR microspectroscopies in combination with multivariate analysis separated bilobate 
silica cells from prickles and long cells, based on the silica molecular structures and the 
fraction and composition of occluded organic matter. The variations in structure and 
composition of sorghum phytoliths suggest that the biological pathways leading to silica 
deposition vary between these cell types.

Keywords: phytoliths, biosilicification, Raman, sorghum, solid state NMR, synchrotron FTIR

INTRODUCTION
Grasses are silicon accumulators, concentrating silicic acid (herein Si) from the soil solution through 
the activity of Si transporters (Ma et al., 2006; Ma et al., 2007; Sakurai et al., 2015). Si moves with the 
water transpiration stream and deposits as hydrated amorphous silica (SiO2·nH2O) impregnating 
cell walls and filling cell lumens and intercellular spaces (Prychid et al., 2003). These microparticles 
are termed phytoliths. We can find phytoliths in root endodermis, leaf epidermis, inflorescence 
bracts, preferentially in highly transpiring organs (Jones et al., 1963). Phytoliths studies are relevant 
to geology and archaeology. This is because, similarly to pollen grains, under ambient conditions 
they are the more stable than other plant parts (Kelly et al., 1991; Shahack-Gross et al., 1996; 
Albert et al., 1999; Elbaum et al., 2003; Piperno et al., 2009; Ball et al., 2016). Organic molecules are 
trapped within phytoliths (Perry, 1985; Harrison, 1996; Elbaum et al., 2009; Parr and Sullivan, 2010; 
Gallagher et al., 2015; Asscher et al., 2017) and possibly reflect the chemical environment in which 
the silica formed (Perry and Keeling-Tucker, 2000). These organic entities can be studied by nuclear 
magnetic resonance (NMR) (Ravera et al., 2016). A seminal study of the hairs in the grass Phalaris 
canariensis demonstrates that plant silica has a significant fraction of surface silanol groups (Mann 
et al., 1983; Perry and Mann, 1989).
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In order to study phytoliths, the plant tissue around them is 
digested, many times by harsh chemistry, high temperature, or mild 
chemistry during very long time periods (archaeologic or geologic). 
These processes change the physical and chemical properties of 
phytoliths. These changes were monitored in phytolith assemblies 
(Jones and Milne, 1963; Cabanes et al., 2011; Watling et al., 2011; 
Cabanes and Shahack-Gross, 2015). Individual phytoliths were 
also characterized (Perry et al., 1984a; Perry et al., 1984b; Elbaum 
et al., 2003; Watling et al., 2011; Alexandre et al., 2015; Gallagher 
et al., 2015), and variation in the mineral structure was identified 
within one phytolith type (Perry et al., 1990). However, different 
phytolith morphotypes were not compared, and we do not know 
whether a specific morphotype has a unique chemical signature, 
which is different from other morphotypes.

Raman and fourier transformed infrared (FTIR) microspectroscopy 
enable the probing of individual phytoliths and assessing their 
mineral structure and occluded organic matter. In these vibrational 
microspectroscopy methods, information on chemical bonds and 
thereby structure and composition of a sample is obtained. By 
combining a microscope with FTIR or Raman spectrometer, the 
spectra are collected at a micrometre resolution. FTIR absorption 
spectroscopy gives fingerprint-like information that has been 
widely used to study cell wall constituents like proteins, aromatic 
phenols, cellulose, and to characterize biologically produced silica 
(also referred to as biogenic silica or biosilica, (e.g. Fröhlich, 1989; 
Kačuráková et al., 2000; Gendron-Badou et al., 2003; Kerr et  al., 
2013). Raman spectroscopy complements the information from 
FTIR spectroscopy and was used to analyse cell wall polymers, 
silica, phenolics, and lipids in varied plant tissues (e.g., Sapei et al., 
2007; Chylińska et al., 2014; Prats Mateu et al., 2016). Spectral 
information is often encoded in very minute features. Principal 
component analysis (PCA) transforms the spectral dataset into 
a variance weighted vector-space, and provides us with a highly 
sensitive analysis for subtle spectral variations.

In this work, we extracted silica phytoliths from sorghum leaves, 
using two wet digestion methods, and compared the extracts 
using bulk and individual phytolith analyses. We used vibrational 
microspectroscopy, both Raman and FTIR, to characterize 
individual phytoliths and evaluate the differences between 
phytolith morphotypes. Our results indicate a significant influence 
of the extraction method on the structure and composition 
of phytoliths silica and occluded organic matter. Nonetheless, 
we could show that specific phytolith morphotypes contain 
characteristic organic molecules.

MaTeRIal aND MeThODS

Controlled Plant growing Conditions
Seeds of Sorghum bicolor (L.) Moench (line BTx623) were sown in 
1-L pots in universal potting soil (Bental 11, Tuff Merom Golan), 
and grown in a greenhouse at The Robert H. Smith Institute 
of Plant Sciences and Genetics greenhouse in Rehovot, Israel 
during September 20 2016 to January 1, 2017 under natural light 
and temperature of the Israeli autumn (21°C –33°C). The plants 
were irrigated automatically twice a day by water supplemented 
with N-P-K fertilizer (nitrogen (N), phosphorus (P2O5), and 

potassium (K2O)) at respective % weight ratio of 5-3-8. Leaves 
were harvested at flowering stage. Only fully developed green 
leaves were collected, and cut to exclude the main vein.

Sample Preparation and Phytolith extraction
Leaf pieces and cross sections were prepared manually using razor 
blades. Phytoliths were isolated from mature healthy leaves using 
two wet extraction methods: (a) H2SO4/H2O2/HNO3 extraction 
(herein SONE), (Protocol 2 in Corbineau et al., 2013). Leaves were 
cut and rinsed with 10% HCl, immersed in 70% H2SO4 solution 
at 70°C for 2 hours, and left overnight at room temperature. The 
sample was heated to 70°C, 30% H2O2 was added slowly until 
the supernatant became clear, and then kept heated for 3 h. The 
sediment was collected, rinsed with DI water thrice, and reheated 
to 70°C in concentrated HNO3 for 2 h. About 50 mg of KClO3 was 
added and the sample was kept overnight at room temperature. 
The sediment was collected, rinsed with DI water, washed with 
0.001 M KOH solution, rinsed three times with DI water, and 
dried at 70°C until its weight remained constant; (b) Microwave-
assisted digestion (herein MAD) using a Discover SPD-80 
sample digestion system (CEM, USA). Cut leaves were oxidized 
by 65% HNO3 for 30 min at room temperature in quartz vessels, 
afterwards the temperature was raised linearly to 200°C over 5 
min and retained for 5 min at a pressure of 200 psi. The sample 
was rinsed three times with DI water and dried at 70°C. Phytolith 
samples from both extraction methods were stored in paraffine 
sealed Eppendorf tubes at ambient temperature until analysis.

Raman Microspectroscopy
Extracted phytolith samples were placed on a calcium fluoride 
slide without a cover slip. Raman spectra were collected from 
individual particles by a Jasco Raman spectrometer, using a 532-nm 
wavelength laser with a power of 5.6 mW for excitation, focused by 
a 100x objective to a spot size of ~1 µm2. Spectra were obtained from 
25 phytoliths of each morphology (bilobate silica cells, prickles or 
trichomes and long cells or plates), with 30 s acquisition time and 
10 accumulations in the spectral range of 136 – 3977 cm-1. The 
spectra were calibrated using a spectrum of 4-acetamidophenol, 
and preprocessed with MATLAB, including background correction 
using asymmetric least squares method (AsLS), spectra interpolation 
yielding a spectral resolution of 1.8 cm-1, vector normalisation and 
selection of the spectral range of interest. PCA was performed on 
preprocessed spectra and on their first and second derivatives. By 
PCA, variations in the dataset were identified, which led to the 
formation of groups of similar spectra that were represented in scores 
plots. The loadings estimated how much each of the old coordinates, 
that is the wavenumbers, contributed to the PCs. Therefore, beyond 
differentiation and classification, PCA allowed us to highlight 
features in the collected dataset that are the basis for discrimination 
between the spectral groups, corresponding to each PC.

Synchrotron Fourier Transform Infrared 
(FTIR) Microspectroscopy
Extracted phytolith samples were placed on zinc selenide slides 
and FTIR transmission spectra were collected from individual 
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particles in the range from 700 to 4,000 cm-1 using a FTIR 
microscope (ThermoNicolet) at the IRIS beamline of BESSY-
HZB, Berlin. The spot size from which the spectrum was acquired, 
was approximately 60 µm2 (12 × 5 µm) but was adapted to the 
size of each phytolith to avoid contributions by Mie scattering 
and maximize the signal-to-noise ratio. We collected 35 spectra 
of bilobate silica phytoliths and 36 long cell phytoliths. Prickle 
phytoliths led to strong scattering contribution to the absorbance 
spectra due to their morphology, and thus their spectra were 
excluded from the analysis. Pre processing of the spectra included 
selection of the spectral range of interest, interpolation of the 
data, baseline correction with asymmetric least square smoothing 
(AsLS), and vector normalization. Extended multiplicative 
signal correction (EMSC) was applied to the data to correct 
baseline variations, noise, and scattering effects that were caused 
by the micron range size of the samples. The window size and 
polynomial order of the fitting curve for the Savitzky-Golay 
(SG) numerical algorithm and EMSC were optimized following 
a procedure previously evaluated and described (Zimmermann 
and Kohler, 2013). We removed nine spectra outliers during the 
EMSC analysis.

Nuclear Magnetic Resonance
Solid state nuclear magnetic resonance (SSNMR) measurements 
were performed under magic angle spinning (MAS). 
Approximately 40 mg of extracted phytoliths were placed 
in the NMR rotor and the samples were spun at 10 kHz in all 
experiments. Spectra of 29Si Direct polarization (DP) MAS 
SSNMR and cross polarization (CP) MAS SSNMR were acquired 
at room temperature on a Bruker 11.7T Avance ІІІ spectrometer 
equipped with a 4-mm VTN CPMAS probe employing 1H 
decoupling at a field of 85.7 kHz. The 1H-29Si cross polarization 
spectra were recorded using a CP contact time of 6 ms, recycle 
delay of 6 s and 2048 scans. The 29Si direct polarization spectra 
were taken with a 3 μs 90° pulse followed by acquisition of 
2,048 points with 8 μs dwell time a recycle delay of 60 s and 137 
scans. Time domain signals (2,048 points) were zero filled to 
4,096 points and multiplied by exponential decaying function 
(with line broadening of 100 Hz) and then Fourier transformed, 
phase adjusted and baseline corrected using automatic 5th order 
polynomial function. Line deconvolutions in all 29Si NMR 
spectra shown were performed using the DMFIT program which 
minimizes the line shape generated by a set of simulated lines 
to the line shape of the convoluted spectrum (ref to https://
doi.org/10.1002/mrc.984). The Q4 line in Figure 3 was best 
fit by adding three more Q4 peaks aside from the main Q4 
signal at −111.4 ppm (see Table S1). These peaks represent Q4 
species with minor populations having slightly different local 
environments resulting from etching of the silica surface by the 
harsh acidic treatment. These Q4 species contribute less than 
2% to the total intensity and therefore were neglected in the Q4/
Q3+Q2 calculation. I.e. only the Q4 specie at −111.4 ppm was 
taken in calculating this ratio. The program assigns each line 
four parameters (position, amplitude, width, and Gaussian-to-
Lorentzian ratio) which were varied until a minimum in the 
calculated least square function comparing the two line shapes 

was found. It generated a standard deviation value as a score for 
the goodness of fit. It also calculated the intensity percentage that 
each line takes, out of 100% intensity of the spectrum based on 
the other peak parameters. An example for the fitting parameters 
of the 29Si CP spectrum of SONE is given in the supplementary 
information, Table S1.

Thermogravimetric analysis
Thermogravimetric analysis (TGA) of the phytolith samples 
were performed with a Bargal Q500 instrument (Bargal Analy-
tical Instruments Ltd, Israel) following Tishler et al. (2015). 
Approximately 5 mg of phytoliths were placed in a platinum 
crucible, equilibrated at 25°C and the weight variation recorded 
in the range of 30°C to 900°C under nitrogen flow of 60 ml per 
min, using the high-resolution sensitivity mode and a ramp of 
30°C per min. Data were processed using the Universal Analysis 
2000 software from TA instruments (Waters).

Scanning electron Microscopy - energy 
Dispersive X-Ray analysis
Leaf samples were imaged by a JCM-6000PLUS NeoScope 
scanning electron microscope (SEM, JEOL, Japan) at the 
backscattered electrons mode, under accelerating voltage of 15 kV 
using the low vacuum mode. Si elemental maps were obtained by 
energy-dispersive X-ray (EDX) with a dwell time of 2 ms, high 
probe current, and gain 1. Extracted phytoliths were imaged by a 
FEI/Philips XL-30 field emission with accelerating voltage 15 kV. 
Samples were mounted on a carbon tape and coated by a gold 
layer of 5 or 10 nm.

ReSUlTS

extraction Methods affect the Structure 
and Chemistry of the Biosilica
Several types of phytoliths can be found in sorghum leaf 
epidermis (Figure 1), including bilobate silica cells, silicified long 
cells, prickles, and cross cells, similarly to other grasses (Prychid 
et al., 2003). We compared plant biogenic silica isolated by two 
very common extraction methods: (1) sulphuric acid-hydrogen 
peroxide-nitric acid extraction (SONE), and (2) microwaved-
assisted digestion (MAD). Both ways resulted in a similar 
assemblage of phytoliths, governed by long cells, bilobate silica 
cells and prickles (Figures 2A–C). Low magnification scanning 
electron microscopy (SEM) revealed no variation between 
the extraction methods. Higher magnifications of phytoliths 
extracted by MAD (Figures 2D–G) and SONE (Figures 2H–K) 
revealed spherical loosely aggregated particles in long cells only 
when extracted by SONE (Figure 2J). This finding suggested that 
the SONE damaged the structure of the silicon and the occluded  
organic matter.

Magic Angle Spinning - Solid State Nuclear 
Magnetic Resonance
Direct 29Si polarization (DP) spectra detected silicon atoms 
attached to oxygen atoms that were coordinated either to 
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another silicon atom, or to hydrogen that formed a terminal 
hydroxyl. We did not identify silicon covalently bound to 
atoms other than oxygen. Species of O3-Si(OH) (termed 
Q3) at a chemical shift of −101.6 ppm, and O4-Si (Q4) at 

−111.3 ppm were detected in phytoliths from both extraction 
methods. Q2 species (O2-Si(OH)2), shifted to −91.8 ppm, 
were found only in the MAD (Figures 3A, B). The bulk (Q4) 
to surface (Q3+Q2) ratio was 2.9 in MAD and 4.8 in SONE 

FIgURe 1 | Back-scattered scanning electron micrographs (SEM) of sorghum leaves demonstrating typical silica deposition. Epidermal surface showing a row 
of bilobate silica cells (red arrows), cross cells (black arrows) randomly distributed between epidermal long cells, and prickles (blue arrows) (a), and Si EDX map 
(B). The white contrast in panel (a) matches the Si map in panel (B), showing heavily silicified bilobate and cross cells, in contrast to the prickles where silica 
accumulates at the tips. (C) Leaf cross section. (D) Close-up of the dashed rectangle in panel (C) showing a bilobate cell cut transversally (arrow), and (e) Si EDX 
map of the dashed rectangle in C. (F) Overlay of panels (D) and (e) localizing silica to the cell walls of epidermis cells and the volume of the bilobate cell. 

FIgURe 2 | Scanning electron micrographs (SEM) of sorghum phytoliths extracted by sulphuric acid-hydrogen peroxide-nitric acid extraction (SONE) or microwaved-
assisted digestion (MAD). Under low magnification (panels a–C), we did not identify differences between the extractions. (a) Long cells creating a silica skeleton imaged 
without gold coating, scale bar 50 µm. (B) Lateral view of uncoated bilobate silica cell showing asymmetric shape, scale bar 5 µm. (C) Lateral view of a prickle, scale 
bar 10 µm. High magnification scans of phytoliths extracted by MAD, showing tightly packed silica in a prickle (D), bilobate (e), long (F), and cross cell (g).  
High magnification scans of phytoliths extracted by SONE, showing a prickle (h), bilobate (I), long (J), and cross cell (K). The scale bars in panels D–K are 2 µm.
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samples. Selective excitation of surface Si by measuring an 
1H-29Si cross polarization (CP) spectrum showed that in 
the SONE the Si surface species intensity ratios Q2:Q3:Q4 
is 2.2:46.6:51.2. The MAD phytoliths showed the typical Si 
surface species intensity ratios of 6:55:39 for Q2:Q3:Q4. The 
siloxane to silanol ratio on the surface, calculated as Q4 to 
Q3+Q2, was 1.05 for SONE (Figures 3A, B) and was 0.64 
for MAD (Figures 3C, D). The higher ratio in the SONE 
indicated a more hydrophobic surface than the surface of the  
MAD phytoliths.

We examined the Q2, Q3, and Q4 line intensities in the DP 
and CP 29Si spectra and compared them to values reported 
before for plants i.e. equisetum (Bertermann and Tacke, 2014), 
rice (Park et al., 2006), and diatom cell walls, called frustules 
(Bertermann et al., 2003; Tesson et al., 2008; La Vars et al., 
2013). The bulk/surface ratio in silica from the phytoliths 
extracted by the MAD was similar to the ratio in native and 
acid extracted silica hairs of Phalaris canariensis (Mann et  al., 
1983) and extracted C. fusiform frustules (Bertermann et al., 
2003). The bulk/surface ratio in silica from the phytoliths 

FIgURe 3 | Magic angle spinning - solid state nuclear magnetic resonance (MAS-SSNMR) of 29Si atoms in sulphuric acid-hydrogen peroxide-nitric acid extraction 
(SONE) and microwaved-assisted digestion (MAD) sorghum leaf silica. Measurements of 29Si direct polarization spectrum (blue) (a), and 1H-29Si cross polarization 
spectrum (blue) (B) of SONE silica. Optimal fit was achieved by adding minor Q4 peaks. See the fitting parameters in Table S1. 29Si direct polarization spectrum 
(blue) (C), and 1H-29Si cross polarization spectrum (blue) (D) of MAD silica. Spectral decomposition into 3 lines, Q2 (green), Q3 (purple), and Q4 (cyan) is shown with 
the total simulated spectrum (red). Q2 corresponds to a Si atom bound to 2 hydroxyl groups, Q3 to 1 hydroxyl group, and Q4 to Si surrounded by oxygen bridging 
atoms with no hydroxyl groups.
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extracted by SONE was higher than any reported values  
for biosilica.

The relative intensities of the Qn lines in the CP spectrum 
are dependent on parameters of the experiment and sample 
properties. For example, the CP spectra measured on phytolith 
silica using a CP contact time of 6 ms and a recycle delay of 6 s 
are roughly comparable to diatom CP spectra measured with a 
CP contact time of 5 ms and a recycle delay of 4 s (Bertermann 
et al., 2003). The Q4/(Q3+Q2) ratio in CP of phytolith silica is, 
therefore, crudely compared to the ratios in other reported 
biosilica samples. This ratio in silica extracted by the MAD is 
similar to the ratio in E. giganteum (Bertermann and Tacke, 
2014) and dried extracted frustules of several diatoms such as C. 
fusiformis (Bertermann et al., 2003) and T. pseudonana (Tesson 
et al., 2008). In silica extracted by SONE, this ratio is similar to 
the value reported for dried C. muelleri diatom grown in high 
salt concentrations (La Vars et al., 2013). The seminal early report 
by Perry does not contain details on cross polarization times  
(Perry, 1985).

Thermogravimetric Analysis
After pyrolysis, the SONE sample lost about 17% of its weight, while 
the MAD sample lost only about 12% (Figure 4). The weight loss 
is assumed to be composed mainly of bound water (up to 150°C) 
and organic matter (150°C – 800°C). We identified a peak in the 
weight loss rate at 120°C (Figure 4), associated to bound water, 
and representing 4.9% of the weight of MAD and 3.8% weight of 
the SONE sample. The TGA is consistent with our NMR analysis, 
showing a more hydrophilic character of the silica extracted by MAD. 
Differential thermal gravimetric (DTG) broad peaks at 250°C, 380°C, 
450°C, and 700°C appear only in the SONE sample (Figure   4). 
The lack of peaks in the DTG of the MAD phytoliths indicates 
that much less organic matter remained after this extraction. The 
continuous weight loss between 150°C to 800°C in both extraction 

methods can be attributed to removal of chemically bound water 
(OH in the surface of silica powders), (Mueller et al., 2003),  
changing the surface chemistry from silanol to siloxane groups.

Microspectroscopic Characterization of 
Individual Phytoliths
Raman Analysis
We measured Raman spectra of prickle, long, and bilobate 
phytolith cells (Figures 5A, B). Due to the noncrystalline and 
nonuniform molecular structure of the silica, the Raman bands 
were broad. The signal extending from 400 to 500 cm-1 with a 
maximum at 478 cm-1 (Si-O-Si bending modes) was assigned to 
five-, six-, and seven-membered SiO ring (Sharma et al., 1981). 
Other characteristic Raman silica bands appeared at 808 cm-1 
(Si-O-Si symmetric stretching), 970 cm-1 (Si-OH stretching 
mode of nonbridging oxygen atoms) and 1,070 cm-1 (Si-O-Si 
asymmetric bond stretching), (Bertoluzza et al., 1982). To estimate 
the hydroxyl density in the different phytoliths we calculated the 
intensity ratio of the band at 970 cm-1 to that at 808 cm-1 after 
AsLS baseline correction (Figures 5C, D). The latter band was 
used for normalization because it is a lattice band characteristic 
to the silica network and remains unchanged in different silicas 
(Humbert, 1995). The ratios calculated for bilobate cells were 
significantly higher than those ratios calculated for both prickles 
and long cells under MAD and SONE (p < 0.05, T-test). No 
significant differences were detected between long cells and 
prickles. Our results suggest a larger surface to volume ratio and 
a lower degree of condensation of the silica in the bilobate cells in 
comparison to that in prickles and long cells.

All other bands in the spectrum were attributed to organic 
matter occluded within the silica: C-C twisting and rocking 
at 1,153 cm-1, CH2 deformation in alkane long chains at 1,298 
cm1, and CH2 deformation vibrations in n-alkanes at 1,440 cm-1 
(Parker, 1983). A small band at 1,613 cm-1 was attributed to C = C  
stretching or aryl stretching vibrations was also identified. We 
associated it with the presence of modified lignin (Ram et  al., 
2003). Prickle cells presented two unique features: a band at 1,665 
cm-1 that was assigned to the C = C stretching, C = O stretching, 
and amide I vibrations, and the absence of a band at 1,043 cm-1, 
which was assigned to ring vibrations of substituted benzenes 
and C-C stretches in n-alkanes (Parker, 1983), (Figure 5B). 
Raman spectra of prickles were the only place we could identify 
contributions that are typical to proteins, in peaks associated to 
amide I (1,600–1,690 cm-1) and amide II (1,480–1,580 cm-1), 
(Tuma, 2005).

Discrimination between the two extraction methods was 
achieved by PCA of the Raman spectra. The separation was 
particularly clear when the PCA was applied to the spectra of 
long cells (Figure S1A). In this case, the loading spectra that 
indicate the source of the variation, revealed differences in 
the silica structure and the amount of occluded organic matter 
(Figure S1B). Based on PCA, a separation between different 
phytolith types was possible regardless of the extraction 
method (Figure 6A). A clear separation between the bilobate 
and long cells was achieved when we analysed only the SONE 
phytoliths spectra (Figure 6C). The source of separation was 

FIgURe 4 | Thermogravimetric analyses of extracted phytoliths. Curves 
of percent weight loss (full line, left Y-axis) and derivative of weight loss by 
temperature (dashed line, right Y-axis) of the microwaved-assisted digestion 
(MAD) (red) and sulphuric acid-hydrogen peroxide-nitric acid extraction 
(SONE) (black) samples.
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studied based on the PCA loadings (Figures 6B, D). In both the 
full dataset as well as the SONE dataset the highest variation, 
which is represented by PC1, is explained by an increase in the 
bands at 475, 808 and 970 cm-1 and a decrease in the band at 
1,435 cm-1. In the scores plot, long cells and prickles appeared 
at negative values of PC1, indicating a higher contribution of  
the 1,435 cm1 CH2 deformation band, associated with lipids 
(Parker, 1983). The other bands that contribute to the variance 
represented by PC1 corresponded to vibrational modes of Si-O-Si 
and Si-OH.

PCA was also applied to the derivatives of the Raman spectra 
(Figure S2). We found high variation within the group of 
the bilobate cells in comparison to the long cells and prickles 
that formed a compact distribution in the scores plot. The 
discrimination was based on differences in the shape of bands 
between 440 and 500 cm-1, indicating differences in the structure 
of the silica.

Synchrotron Infrared Microspectroscopy
We further characterized the long and bilobate cells extracted by 
SONE by FTIR microspectroscopy (Figure 7). The main spectral 
features were attributed to the silica: the band at 800 cm-1 are 
assigned to the deformation of Si-O-Si bonds bridging between 
two adjacent tetrahedral (Kirk, 1988), and the bands at 1,000–
1,250 cm1 are assigned to Si-O asymmetric stretching modes. 
The latter band has a maximum at 1,093 cm-1 in the phytoliths 
of long cells, and at 1,020 cm-1 in bilobate cells (Figure 7A). This 
variation indicates differences in the silica structure between 
the phytolith types. PCA analysis supported this observation 
(Figure S3), resulting in clear separation of the two cell types. 
Infrared bands in the 2,700–3,100 cm-1 region suggested that 
a considerable amount of organic matter remained linked to 
the extracted silica. The spectra of the long cells display bands 
at 2,854, 2,866, 2,925, and 2,959 cm-1 (Figure 7B), which are 
attributed to C-H stretching in -CH3 and CH2 groups (Silverstein 

FIgURe 5 | Preprocessed mean Raman spectra of the most abundant sorghum leaf phytoliths and intensity ratio of the Si-OH to Si-O-Si Raman bands. Bilobate 
silica cells (S, red), long cells or plates (L, black) and prickles (P, blue) are shown in bright-field micrographs (a). Mean spectra ± standard deviation are plotted in the 
same respective colour and denoted with the same abbreviations (B). Averages of 25 spectra of phytoliths of each type extracted by microwaved-assisted digestion 
(MAD) are shown. The area of the peak at 970 cm-1, assigned to Si-OH surface groups, was normalized to the area of the 808 cm-1 band, assigned to Si-O-Si 
stretching. Ratios of band areas calculated in spectra of bilobate cells were significantly higher (p < 0.05) than both prickles and long cells under MAD (C) and 
sulphuric acid-hydrogen peroxide-nitric acid extraction (SONE) (D) methods.
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et al., 2005). These bands are expected in biological materials due 
to the presence of terminal -CH3 and of CH2 groups in cellular 
components like proteins, carbohydrates, and lipids. PCA of 
the spectra in the 2,700–3,100 cm-1 range separated the long 
cells and the bilobate cells along PC1 (Figure 7C). The loading 
of PC1 represents absorption bands of organic matter (Figure 
7D). However, these spectral features are represented in negative 
values. Therefore, the negative values for PC1 coefficients, at 
which the long cell phytoliths spectra are found (Figure 7C), lead 
to the conclusion that more organic material must be occluded in 
the long cell phytoliths as compared to the bilobate cells.

DISCUSSION
In this work, we aimed to discriminate between phytolith types 
extracted from the same sorghum leaf. Our hypothesis was that 
the phytoliths that are produced by varied cell types will vary 
in their occluded organic matter. We also assumed that the 
harsh extraction conditions alter and mask genuine variations 
between phytolith types (Alexandre et al., 2015). Our NMR 
and Raman data indicated that the extraction changes the silica 
structure. The number of silanol groups on the silica surface was 

lower in phytoliths extracted by SONE in comparison with the 
MAD (Figure 3 and Figure S1), making SONE silica less polar 
and more hydrophobic. TGA supported this by showing lower 
percentage of water molecules released below 150°C in the SONE 
sample (Figure 4). Our TGA measurements further showed that 
the SONE was less aggressive than the MAD, which left hardly 
any organic matter in the phytoliths. SEM indicated that the 
long cells behaved differently under the two extraction methods, 
in accordance with the Raman PCA that could discriminate 
between the extractions based on long cells spectra. Our results 
clearly show that long cells react differently to the extractions. 
More research is needed to elucidate the native state of the silica 
and its occluded organic matter as synthesized in the plant.

Using single particle spectroscopy, we could show that under the 
same extraction, the silica structure is different between phytolith 
types. In general, IR vibrational spectra of microscale particles are 
masked by Mie scattering that depends on the particles’ shapes. 
Even so, the spectra of bilobate phytoliths show a prominent shift 
to lower energies in the Si-O asymmetric stretching vibration as 
compared to long cells. This difference indicates variation in the 
atomic organization of the mineral. Our results thus conform with 
the hypothesis that silica organization is under biological control, 
as was suggested by Perry et al, showing that variation in the 

FIgURe 6 | Discrimination of Raman spectra of individual phytoliths. (a) Principal component analysis (PCA) scores plot of the phytolith Raman spectra showing 
discrimination between phytolith types: prickles (blue), long cells (black), and bilobate silicified cells (red), extracted by microwaved-assisted digestion (MAD) (X) 
or sulphuric acid-hydrogen peroxide-nitric acid extraction (SONE) (O). (B) Loading spectra of PC1 and PC2, indicating bands responsible for the separation. 
(C) PCA scores plot showing the discrimination between phytolith types extracted by SONE (long cells (L, black), prickles (P, blue), and bilobate cells (S, red)). 
(D) Corresponding loading spectra of PC1 and PC4.
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mineral nanostructure in correlation to cell developmental stages 
(Perry and Mann, 1989) correlates to the silanol groups exposed 
on the silica surface (Perry et al., 1990). In agreement with FTIR, 
the PCA of the Raman spectra resulted in the formation of two 
groups: one includes spectra of bilobate silica cells and another 
of prickles and long cells. The Raman spectra indicated a larger 
ratio of surface to bulk Si atoms in the bilobate cells in comparison 
to prickles and long cells (Figures 5C, D). These differences may 
arise from higher number of silica nucleation sites in bilobate 
cells in comparison to long cells and prickles. Biogenic moieties 
that integrate to the bulk mineral or attach to its surface may also 
alter the mineral structure. The variation in the mineral structure 
was persistent within a phytolith type, suggesting that within the 
same cell type, similar plant factors interact with the mineral, and 
these materials may differ between cell types—specifically between 
bilobate and long cells.

From our results, it is not possible to determine the 
hydroxylation degree of the native biosilica before its extraction. 
However, the variations between phytolith types extracted 
similarly indicate either an initially distinct variation in 
hydroxylation or structure of the silica of different phytolith types. 
Regardless of the actual origin of the variation in hydroxylation 
degree, it most probably indicates that there is more than one 
pathway of silica deposition in sorghum leaves.

The SONE allowed us to analyse organic matter that was 
intimately associated with the silica (Figure 4 and Figure S1). Our 
results indicated that the Si atoms are coordinated to oxygen, similarly 
to silica gel and opal, in agreement with analyses of in planta silica 
(Yoshida et al., 1959; Casey et al., 2004) and in vitro precipitation with 
lignin (Cabrera et al., 2016; Soukup et al., 2019). We cannot exclude 
the existence of Si-O-C bonds as detected by X-ray photoelectron 
spectroscopy in cell walls extracted from rice cell suspension (He 
et al., 2015). These bonds may be below the detection limit because 
obviously they are not abundant, and their vibrations are expected 
at very similar energies to Si-O-Si vibrations. In addition, they may 
wash out or decompose during extraction.

Si in cell walls of Equisetum arvense is associated with cell 
wall polymers, including polysaccharides, proteins, and phenolic 
acids, suggesting that silica may form in a range of chemical 
conditions independent of a charged matrix (Currie and Perry, 
2009). Raman and Infrared bands associated to lipids were more 
intense in the spectra of long cell and prickle phytoliths, suggesting 
that the cuticle incorporated into the mineral (Figure  7). This is 
in agreement with the existence of a cuticle-silica double layer, 
observed first in the epidermis of rice by Yoshida et al. (1962). 
Cell wall polymers (possibly polysaccharides) are involved in the 
deposition of silica in hairs and epidermis, similarly to hairs and 
outer epidermis cells in lemmas of the grass Phalaris canariensis 

FIgURe 7 | Synchrotron Fourier transform infrared (FTIR) spectral analysis of long and bilobate cells extracted by sulphuric acid-hydrogen peroxide-nitric acid 
extraction (SONE). (a) Representative spectra of long and bilobate cells. Yellow shade at 2,700–3,000 cm1 showing bands typical to hydrocarbons. (B) Average 
FTIR spectra ± standard error of long cell phytoliths in the range 2,700 to 3,100 cm-1. (C) Scores plot of a PCA at the spectral region 2700–3000 cm1, attributed to 
the organic matter occluded in long (L) and silica (S) cells, discriminating between the two phytolith types. (D) Loadings of the principal component analysis (PCA) 
correlate the discrimination with the terminal -CH3 and CH2 groups absorption bands.
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(Hodson et al., 1984; Perry et al., 1987). In comparison to 
long cells and hairs, we found that the mineral in bilobate 
cells contained lower fraction of organic residues. In sorghum 
bilobate cells silica deposits between the cell membrane and wall, 
constricting the protoplast and creating a secondary wall made 
of silica (Kumar and Elbaum, 2018). Thus, the bilobate silica 
deposition pathway excludes cuticle materials and includes only 
small amounts of cell wall polymers in the mineral.

Acidic proteins and glycoproteins are found in association 
with mineral phases as components of the organic matrix 
encapsulated in phytoliths (Harrison, 1996; Elbaum et al., 
2009). Specifically in bilobate, protein residues were identified 
embedded in their silica (Alexandre et al., 2015). A protein 
(Siliplant1) was identified inside sorghum bilobate cells that 
is active in in planta silica deposition (Kumar et al., 2019). 
Nonetheless, our results did not provide direct evidence 
of amino acids in bilobate cells, possibly because they 
degraded during the phytolith extraction. We suggest that 
other organic compounds such lipids and carbohydrates are 
much more abundant than proteins in the extracted sorghum 
phytoliths. The presence of more organic matter entangled 
within the silica of long cells and prickles in comparison to 
bilobate phytoliths may be explained by a slow co-deposition 
of silica and other cell wall components like lignin, cutin, 
hemicelluloses, and cellulose (Perry et al., 1987; Fry et al., 
2008; Law and Exley, 2011; Soukup et al., 2017; Kulich et al., 
2018). The observed differences in hydroxylation and amount 
of occluded organic matter between phytolith types are also 
expected to have an effect on the dissolution rate of phytoliths 
(Nguyen et al., 2019).

CONClUSIONS
Due to the strong influence of the method used to extract the 
phytoliths on the silica structure and occluded organic matter, 
it is important to study plant silicification in situ in the native 
tissues. Differences between phytolith types extracted similarly 
from the same leaf suggest that the mineral deposits through 
a cell type-dependent pathway. Two mechanisms are suggested 
by our data: one involves the mineral impregnation of a cuticle-
cellulose matrix (in long cells and prickles) and another suggests 
a low fraction of organic matrix (in bilobate silica cells) on which 
silica deposits.
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Phytoliths in the inflorescence of Poaceae plants can be of high taxonomic value in some
archaeological contexts and provide insight into plant taxonomy and crop domestication
processes. In this study, phytoliths in every inflorescence bract of 38 common
Panicoideae weeds and minor crops in China were studied. Based on dissection of the
inflorescence into different bracts using a treatment that retained the phytoliths anatomical
position, observations of inflorescence phytoliths types and distribution were described in
detail. We found that INTERDIGITATING, Blocky amoeboid, Rectangular dentate, and Elongate
dendritic with multi tent-like arch tops were of higher taxonomic value than the other types
in our studied species. Both morphological and morphometric traits of the INTERDIGITATING
were summarized and compared with previous studies; the findings suggested that
genus level discrimination of some Paniceae species could be reliable, and tribe/species
level discrimination might be feasible. The phytoliths in the involucre of domesticated and
wild type Coix lacryma-jobi provided insight into the domestication process of this plant.
Our data also indicated that phytolith production in the inflorescence bracts might be
under the genetic and molecular control of inflorescence development. Thus, the findings
of this study could assist future studies in plant taxonomy and archaeobotany.

Keywords: phytolith morphology, Poaceae taxonomy, inflorescence phytolith, seed protection strategy,
archaeobotanical implication
INTRODUCTION

Phytoliths are plant-produced micro silica bodies which can, in some cases, have a diagnostic
morphology that can be distinguished among taxa; in particular, phytoliths in the Poaceae family
can have taxonomic value in archaeological contexts and natural sediments (Twiss et al., 1969;
Wang and Lu, 1993; Piperno, 2006). Based on phytolith taxonomy and morphology, phytolith
analysis has been proven to be a reliable tool in understanding the taxonomy and evolution of plants
.org February 2020 | Volume 10 | Article 1736170
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(Prychid et al., 2003; Rudall et al., 2014; Dinda and Mondal,
2018), paleoecology (Blinnikov et al., 2002; Stromberg, 2005; Gu
et al., 2008; Stromberg et al., 2013; Dunn et al., 2015), and
paleoclimate (Prebble and Shulmeister, 2002; Lu et al., 2007; Zuo
et al., 2016; Liu H. et al., 2018); in recent years, it has been
extensively employed in investigating the origin, development,
and spread of agriculture (Lu et al., 2009a; Piperno et al., 2009;
Madella et al., 2014; Ball et al., 2016a; Hilbert et al., 2017; Deng
et al., 2018; He et al., 2018). However, compared to studies on the
leaf phytoliths of Poaceae plants, inflorescence phytoliths have
not been extensively studied and have generally focused on crop
species and their relatives (Ball et al., 2016a). Thus, a broad
and systematic investigation of inflorescence phytoliths would
provide an important advancement and enable multidisciplinary
application of phytolith analysis.

The study of inflorescence phytoliths has a long history; as early
as 1908, Schellenberg studied inflorescence phytoliths in
archaeological contexts (Schellenberg, 1908), and in 1966, Parry
and Smithson studied the inflorescence phytoliths of grasses and
cereals in Britain using an acid treatment to extract the phytoliths
and observing themunder a lightmicroscope (Parry and Smithson,
1966). Thereafter, scanning electronmicroscopy was introduced to
study inflorescence phytoliths (Terrell and Wergin, 1981; Sangster
et al., 1983; Rosen and Weiner, 1994). With the introduction of
phytolith analysis among archaeologists, Poaceae inflorescence
phytoliths were valued due to their relationship with human food
gathering activities, and the inflorescence phytoliths of both major
(HodsonandSangster, 1988;PipernoandPearsall, 1993;Tubbet al.,
1993; Pearsall et al., 1995; Zhao et al., 1998; Ball et al., 1999; Rosen,
1999; Ball et al., 2001; Pearsall et al., 2003; Rosen, 2004; Hodson
et al., 2008;Madella et al., 2014; Ball et al., 2017) andminor (Lu et al.,
2009b; Radomski and Neumann, 2011; Zhang et al., 2011; Madella
et al., 2013; Kealhofer et al., 2015; Novello and Barboni, 2015;
Weisskopf andLee, 2016; Ge et al., 2018; Zhang et al., 2018;Duncan
et al., 2019) crops were extensively studied to investigate crop
domestication. Nevertheless, many other wild relatives and minor
crops have not been studied, whichnot only results in identification
uncertainty, but also has stalled further application of phytolith
analysis in the investigation of early plant resource exploitation.

Panicoideae plants such as foxtail millet (Setaria italica),
common millet (Panicum miliaceum), and barnyard millet
(Echinocloa sp.) are widely recognized as minor crops that
could have been important plant resources in ancient times
(Bellwood, 2004; Fuller, 2006; Crawford, 2017). These millets
have been cultivated and harvested in many countries as food
crops, especially in Asia and Africa (Anderson and Martin,
1949). Compared with the long domestication history of major
crops that extends back to the early Holocene, the domestication
or utilization history of other useful species is short or unclear
(Zohary et al., 2012), and might be partially due to a lack of
evidence. The development of new methods and proxies for the
identification criteria of crop phytoliths has revealed the early
domestication process of many species (Denham et al., 2003;
Piperno and Stothert, 2003; Ezell et al., 2006; Horrocks and
Rechtman, 2009; Piperno et al., 2009; Yang et al., 2013; Yang
et al., 2015), and implies the possibility of using a similar method
Frontiers in Plant Science | www.frontiersin.org 271
to investigate the early exploitation of Panicoideae species.
Phytoliths are more stable under various preservation conditions
and are generally abundant (Wang and Lu, 1993; Piperno, 2006).
Moreover, inflorescences are thepartof theplant generally collected
for harvest; the occurrence of inflorescence phytoliths could reflect
these activities. Thus, investigating inflorescence phytoliths in
Panicoideae species could improve our understanding of the early
process of plant resource exploitation.

In this study, we examined inflorescence phytoliths in every
bract of a single specimen of the 38 most common Panicoideae
species in China to provide a preliminary detailed phytolith
morphology dataset. Further, we investigated the morphometric
differences in a phytolith morphotype that we propose naming
INTERDIGITATING (see the results for a detailed description) on the
lemma and palea of Digitaria, Oplismenus, and Paspalum genera
to determine to what level (at genus, section, or species) the
morphological traits might be robust. We also report on novel
phytolith types that may be of high taxonomic value. This study
provides insight into inflorescence phytoliths and reinforces the
importance of treatment that preserves the anatomical position
of phytolith in different bracts. Our detailed description of
phytoliths in every bract of the inflorescence could provide the
baseline information for further archaeological and
taxonomical studies.
MATERIALS AND METHODS

Sample Collection and Pretreatment
A total of 38 species (one specimen per species) (Table 1) were
collected to investigate the morphological differences of phytoliths
in the inflorescence of common Panicoideae plants in China. These
species included the most common weeds and several minor crops
from across China. They were collected during several field trips
over decades led by colleagues from the Institute of Geology and
Geophysics, the Chinese Academy of Sciences, and China
Agricultural University, and identified by colleagues from the
Institute of Botany, Chinese Academy of Sciences.

Mature spikelets from the inflorescence of collected samples
(more than three entire spikelets from the same specimen) were
dissected into different parts according to plant anatomy and
included the following five parts: (1) involucre, (2) glume, (3)
lemma, (4) palea, and (5) seed. All samples were divided into
four groups (Figure 1) according to the dissection results: type I,
with a thin and soft involucre covering other bracts and the seed;
type II, with a thick and hard involucre or glume covering other
bracts and the seed; type III, with thin and soft bracts; and type
IV, with thicker and harder lemma and palea covering the seed
compared to those of type III. After dissection under a
microscope, every part (except the seed) was ultrasonically
cleaned and dried for further treatment.

Phytolith Preparation for In Situ Analysis
Whereas traditional wet oxidation methods for phytolith
extraction (Piperno, 1988) can easily break down and
disarticulate phytoliths (Jenkins, 2009), we prepared our samples
February 2020 | Volume 10 | Article 1736

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ge et al. Inflorescence Phytolith in Panicoideae Plants

Frontiers in Plant Science | www.frontiersin.org 372
following the published methods of Lu et al., 2009b, with minor
modifications, to ensure that the phytoliths in the whole bract
structures remained articulated and undamaged. For the bracts
that were thick and hard (e.g. involucre from type II, or lemma and
palea from type IV), a saturated nitric acid (HNO3) treatment was
used. A total of 5–10 ml HNO3 was added to each bract (to merge
the bracts) in a 15 ml centrifuge tube, then the sample was placed
in a water bath at 50–60 ºC.When the bract turned transparent, all
contents in the tube were poured into a glass dish, and the bract
was carefully moved onto a slide. Distilled water was used to wash
the bract on the slide to remove the HNO3, and absolute ethanol
was used to wash the bract to remove the water. After the bract was
dry, a drop of xylol was added to it. Before the xylol was totally
volatilized, a drop of Canada Balsam was added, and the bract was
covered with a cover glass. All procedures were performed in a
fume cupboard. Similar procedures were followed for bracts that
were thin and soft, except saturated nitric acid was replaced with
hydrogen peroxide (H2O2). This method increased the chances of
keeping the whole bract structure undamaged and allowed for
articulated or in situ observation of the phytoliths in the bracts. At
least two replicates were prepared for each bract.
INTERDIGITATING Phytolith Measurement
The phytolith morphotype that we name INTERDIGITATING has
been reported to be a useful tool in discriminating samples at the
genus level for some taxa (Lu et al., 2009b; Madella et al., 2013;
Weisskopf and Lee, 2016; Ge et al., 2018), however,
discrimination at species level requires the assistance of
TABLE 1 | Species involved in this study with their spikelet types and
phytoliths types.

Tribe Genus Species Spikelet
types1

Phytoliths
types2

Andropogoneae Apluda Apluda mutica L. Type III 1-I
Andropogoneae Arthraxon Arthraxon hispidus

(Trin.) Makino
Type III 1-II

Andropogoneae Bothriochloa Bothriochloa
ischcemum (L.) Keng

Type III 1-III

Andropogoneae Capillipedium Capillipedium assimile
(Steud.) A. Camus

Type III 1-IV

Andropogoneae Cymbopogon Cymbopogon
goeringii (Steud.) A.
Camus

Type I 1-V

Andropogoneae Eremopogon Eremopogon delavayi
(Hack.) A. Camus

Type III 1-VI

Andropogoneae Coix Coix lacryma-jobi var.
ma-yuen (Romanet du
Caillaud) Stapf

Type II 2-I

Andropogoneae Coix Coix lacryma-jobi L. Type II 2-II
Andropogoneae Eulalia Eulalia speciosa

(Debeaux) Kuntze
Type III 3-I

Andropogoneae Hackelochloa Hackelochloa
granularis (L.) Kuntze

Type II 3-II

Andropogoneae Imperata Imperata cylindrica
(L.) P. Beauv.

Type III 3-III

Andropogoneae Ischaemum Ischaemum
anthephoroides
(Steud.) Miq.

Type III 3-IV

Andropogoneae Microstegium Microstegium ciliatum
(Trin.) A. Camus

Type III 4-I

Andropogoneae Microstegium Microstegium nudum
(Trin.) A. Camus

Type III 4-II

Andropogoneae Miscanthus Miscanthus floridulus
(Labill.) Warb. ex K.
Schum. & Lauterb.

Type III 4-III

Andropogoneae Miscanthus Miscanthus
nepalensis (Trinius)
Hackel

Type III 4-Iv

Andropogoneae Miscanthus Miscanthus sinensis
Anderss.

Type III 4-V

Andropogoneae Saccharum Saccharum
arundinaceum Retz.

Type III 5-I

Andropogoneae Saccharum Saccharum rufipilum
Steudel

Type III 5-II

Andropogoneae Sorghum Sorghum bicolor (L.)
Moench

Type II 5-III

Andropogoneae Spodiopogon Spodiopogon sibiricus
Trin.

Type III 5-IV

Andropogoneae Spodiopogon Spodiopogon
tainanensis Hayata

Type III 5-V

Andropogoneae Themeda Themeda caudata
(Nees) A. Camus

Type I 6-I

Andropogoneae Themeda Themeda japonica
(Willd.) Tanaka

Type I 6-II

Zeugiteae Lophatherum Lophatherum gracile
Brongn.

Type III 6-III

Paniceae Digitaria Digitaria
chrysoblephara Fig. &
De Not.

Type IV 7-I

Paniceae Digitaria Digitaria ciliaris (Retz.)
Koeler

Type IV 7-II

Paniceae Digitaria Digitaria sanguinalis
(L.) Scop.

Type IV 7-III

(Continued)
TABLE 1 | Continued

Tribe Genus Species Spikelet
types1

Phytoliths
types2

Paniceae Digitaria Digitaria ischaemum
(Schreb.) Schreb.

Type IV 7-IV

Paniceae Digitaria Digitaria violascens
Link

Type IV 7-V

Paniceae Setaria Setaria faberi R.A.W.
Herrm.

Type IV 8-I

Paniceae Setaria Setaria pallidifusca
(Schumach.) Stapf et
Hubb.

Type IV 8-II

Paniceae Setaria Setaria plicata (Lam.)
T. Cooke

Type IV 8-III

Paniceae Setaria Setaria pumila (Poiret)
Roemer & Schultes

Type IV 8-IV

Paniceae Oplismenus Oplismenus
undulatifolius (Ard.) P.
Beauv.

Type IV 9-I

Paniceae Oplismenus Oplismenus
compositus (L.) P.
Beauv.

Type IV 9-II

Paspaleae Paspalum Paspalum orbiculare
G. Forst.

Type IV 9-III

Paspaleae Paspalum Paspalum dilatatum
Poir.

Type IV 9-IV
February 2020 | Vo
lume 10 |
1Spikelet types correspond to Figure 1.
2Details of phytoliths types in the inflorescence bracts were described in the
supplementary file and shown in the Supplementary Figures 1–9.
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morphometric analysis (Zhang et al., 2011; Zhang et al., 2018).
The INTERDIGITATING phytoliths from Digitaria, Paspalum, and
Oplismenus genera were employed to aid in morphometric
discrimination from each other in our samples. The
measurement parameters are shown in Figure 2A, and are
described as follows: h-total is the width of the whole
undulation pattern; h-undulation is the mean value of the two
individual undulation parts; h-body is the difference between h-
total and h-undulation; w is the length of the protuberant ends,
and was measured along one direction (either upward or
downward) in the same sample; and L is the total length of the
undulation patterns. Two additional parameters used were: (1) R
(w/hu) = w/h-undulation; (2) R (hu/hb) = h-undulation/h-body.
All parameters were measured in 150 individuals [the number
has been tested by the suggested formula (Ball et al., 2016b)] of
each species and were measured in different areas. Fifty
Frontiers in Plant Science | www.frontiersin.org 473
measurements were taken near the base area, 50 from the center
area, and 50 from the top area. Data parameters are shown in
Table 2. All observations and measurements of inflorescence
phytolith parameters were conducted under a Leica DM 750
microscope with 400× magnification. Statistical analysis (conical
discriminate analysis) was performed using IBM SPSS Statistics
24 software.

RESULTS

In general, phytoliths were abundant in the inflorescence bracts
of the studied species. The distribution of phytolith types in the
inflorescence bracts are shown in Table 3, detailed descriptions
can be found in the Supplementary file, and the details of
phytolith morphology in different inflorescence bracts can be
found in Supplementary Figures 1–9.
FIGURE 1 | An illustration of dissected parts of spikelet for study. Type I to IV illustrate the different structures of spikelet in the samples, samples with the same
type have similar structures. Type I: the spikelet of Cymbopogon goeringii, a one spikelet covered with the involucre, b an image of a floret, c the glumes, d the
lemmas. Type II: the spikelet of Coix lacryma-jobi, a one spikelet covered with the involucre, b an image of the involucre, c and d the glumes, e the lemmas, f and g
the seed. Type III: the spikelet of Spodiopogon sibiricus, a image of a spikelet, b the glumes, c the first lemma (lower one) and first palea (upper one), d the second
lemma (upper one) and second palea (lower one). Type IV: the spikelet of Digitaria sanguinalis, a the image of a spikelet, b the lemma of sterile floret (middle one) and
the glumes (left and right ones), c the lemma (left) and palea (right) of fertile floret, d the seed.
February 2020 | Volume 10 | Article 1736

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ge et al. Inflorescence Phytolith in Panicoideae Plants
Phytolith Nomenclature and Classification
Phytolith morphology nomenclature followed ICPN 2.0 rules
(ICPT, 2019), and the description and classification of phytolith
morphology followed those of previous studies:

1. LOBATE phytoliths were firstly classified into BILOBATE, CROSS,
and POLYLOBATE, then classified by convex and concave ends
(Lu and Liu, 2003; Radomski and Neumann, 2011), and finally
classified by the 3-D structure into variant 1 (identical top and
base), variant 2 (tent-like arch top), variant 5/6 (trapezoidal or
rectangular structure on the top), variant 7 (bilobate base and
cross top), and variant saddle-like (saddle-like top with bilobate
base) (Piperno, 1984; Radomski andNeumann, 2011).Different
types of LOBATE phytoliths are shown in Figure 3.

2. Elongate phytoliths were classified into Elongate entire,
Elongate dendritic/dentate, Elongate entire cylindric,
Elongate dentate cylindric (the Elongate entire cylindric
and Elongate dentate cylindric have an obvious cylindrical
rod body while the other Elongate types have a relatively flat
plate body under microscope), and Elongate phytoliths with a
special 3-D morphology were also observed in some
specimens; the 3-D morphology was described following
previously published methods (Piperno and Pearsall, 1993):
first, according to the morphology of the base (e.g. Elongate
dendritic/dentate base), then according to the morphology of
the top (e.g. multi-tent-like echinate arch top). The presence
of Elongate dendritic/dentate phytoliths have been
extensively reported in the inflorescence of cereals (Parry
and Smithson, 1966; Hodson and Sangster, 1988; Rosen and
Weiner, 1994; Ball et al., 2009), and have been recognized as a
“silica skeleton” (Rosen, 1992; Madella et al., 2014). However,
the “silica skeleton” has been previously used not only to refer
to Elongate dendritic layers derived from silicified lumen of
Frontiers in Plant Science | www.frontiersin.org 574
epidermal long cells, but also to the silica layer between the
epidermal cuticle layer and the epidermal cells (Rosen, 1992;
Madella et al., 2013; Madella et al., 2014; Weisskopf and Lee,
2016; Ge et al., 2018). Thus, in this paper to clarify the
different morphology and anatomical origins, the ‘Elongate
dendritic’ only refers to the phytoliths derived from
epidermal long cells, and the “Interdigitating” only refers to
the phytoliths derived from the silica layer between the
epidermal cuticle layer and the epidermal cells. Different
types of Elongate phytoliths are shown in Figure 4.

3. Other morphotypes included ACUTE, ACUTE BULBOSUS,
PAPILLATE, BLOCKY AMOEBOID, and RECTANGULAR DENTATE.
ACUTE we distinguish as being derived from the silicified
hair cell wall, while ACUTE BULBOSUS from the entire silicified
hair cell. PAPILLATE we classified into disaggregated PAPILLATE
and silica layer PAPILLATE (PAPILLATE on the silica layer).
Further, the silica layer PAPILLATE we divided into PAPILLATE
attached to the main body and PAPILLATE separated from the
main body (Figure 5). BLOCKY AMOEBOID was a novel phytolith
type reported in this study; the morphology includes a
rounded rectangle/oblong base and a semi-cubic/globular
top, with an irregular granulated surface. BLOCKY AMOEBOID

phytoliths are derived from the silicified epidermal cells of the
involucre, which could aggregate together to form a silica cell
layer covering the surface of the involucre. RECTANGULAR

DENTATE phytoliths were also a novel phytolith type
observed in this study; the morphology includes a tabular/
rectangle main body and a ruminate pattern along the two
long sides that could be further divided into smooth ends (the
short sides) and protuberant ends. Morphology of these
phytolith types are shown in Figure 6.

4. The new morphotype, INTERDIGITATING, that we propose in this
manuscript, consisted of a silica layer between the epidermal
FIGURE 2 | Conceptual sketch of the distribution of INTERDIGITATING phytolith (B) and parameters used to describe the morphology of INTERDIGITATING phytolith (A).
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TABLE 2 | Parameters of the INTERDIGITATING phytolith in Digitaria, Paspalum, and Oplismenus.

Species Location Statistics Parameters (mm)

w L h-Undulation h-Body h-Total R（w/hu） R（hu/hb）

D. sanguinalis Base Mean 1.70 16.07 9.57 3.16 22.29 0.18 3.38
Median 1.63 14.70 9.05 3.06 20.55 0.19 3.16
SD 0.07 0.61 0.29 0.18 0.69 0.01 0.16

Center Mean 2.22 25.49 21.93 9.92 53.78 0.10 2.33
Median 2.11 25.89 21.98 9.80 53.57 0.10 2.25
SD 0.09 0.71 0.29 0.27 0.51 0.00 0.09

Top Mean 2.08 26.40 7.53 7.05 22.11 0.33 1.12
Median 2.04 26.24 6.49 7.03 19.92 0.26 0.92
SD 0.08 0.96 0.45 0.22 0.94 0.03 0.08

D. chrysoblephara Base Mean 2.41 26.98 9.75 8.01 27.52 0.27 1.46
Median 2.44 26.33 9.73 8.27 27.99 0.25 1.30
SD 0.09 1.00 0.48 0.39 0.93 0.01 0.14

Center Mean 3.48 29.78 20.61 8.49 49.71 0.17 2.68
Median 3.59 31.05 20.28 8.17 49.33 0.17 2.59
SD 0.12 0.78 0.33 0.35 0.74 0.01 0.16

Top Mean 2.46 25.30 9.12 7.29 25.54 0.30 1.34
Median 2.29 24.02 9.59 7.46 25.96 0.26 1.31
SD 0.09 0.88 0.40 0.24 0.84 0.02 0.08

D. ciliaris Base Mean 2.26 26.38 9.84 6.64 26.31 0.26 1.62
Median 2.08 26.61 10.21 6.25 27.36 0.22 1.50
SD 0.11 0.92 0.41 0.29 0.90 0.02 0.10

Center Mean 3.11 27.43 20.13 8.07 48.33 0.15 2.64
Median 3.10 27.21 20.32 7.67 48.68 0.16 2.62
SD 0.10 0.74 0.22 0.28 0.43 0.00 0.09

Top Mean 3.01 29.41 9.36 6.57 25.30 0.34 1.52
Median 2.95 29.36 9.06 6.55 24.99 0.32 1.38
SD 0.12 0.86 0.33 0.22 0.69 0.02 0.08

P. orbiculare Base Mean 4.43 39.75 9.98 17.03 36.99 0.47 0.60
Median 4.27 36.57 9.57 15.86 36.95 0.40 0.59
SD 0.17 1.92 0.35 0.59 1.14 0.03 0.02

Center Mean 4.72 59.98 19.44 27.25 66.13 0.25 0.75
Median 4.88 59.27 19.38 26.59 65.69 0.25 0.69
SD 0.17 1.53 0.38 0.73 0.89 0.01 0.03

Top Mean 5.32 51.37 11.56 15.12 38.24 0.48 0.79
Median 5.04 48.71 11.48 14.60 37.43 0.43 0.77
SD 0.23 2.38 0.37 0.60 1.22 0.03 0.03

P. dilatatum Base Mean 7.46 59.75 9.00 12.26 30.26 0.86 0.75
Median 7.65 60.10 9.40 11.72 30.99 0.82 0.70
SD 0.27 2.05 0.31 0.42 0.89 0.04 0.03

Center Mean 5.61 44.78 14.72 18.48 47.91 0.40 0.81
Median 4.98 45.57 14.85 18.13 47.15 0.33 0.80
SD 0.32 1.32 0.30 0.48 0.78 0.03 0.03

Top Mean 3.67 40.76 8.28 11.24 27.79 0.50 0.76
Median 3.21 39.32 7.94 10.85 25.82 0.45 0.82
SD 0.20 1.20 0.40 0.45 1.11 0.04 0.03

O. compositus Base Mean 1.47 85.83 9.05 6.70 24.81 0.19 1.43
Median 1.19 86.19 9.11 5.95 24.10 0.18 1.33
SD 0.11 2.78 0.45 0.34 1.11 0.02 0.08

Center Mean 1.31 62.66 19.17 9.57 47.90 0.07 2.06
Median 1.21 61.43 19.41 9.32 48.12 0.06 2.12
SD 0.06 2.03 0.28 0.31 0.63 0.00 0.08

Top Mean 1.72 90.69 10.06 6.65 26.77 0.19 1.66
Median 1.37 87.37 10.24 6.36 25.99 0.15 1.78
SD 0.14 3.03 0.44 0.38 0.97 0.02 0.09

O. undulatifolius Base Mean 2.35 83.02 9.96 5.66 25.59 0.25 1.85
Median 1.79 82.30 9.31 5.34 24.51 0.18 1.83
SD 0.22 3.84 0.35 0.22 0.81 0.02 0.08

Center Mean 2.84 74.28 17.82 8.47 44.11 0.16 2.17
Median 1.79 74.41 17.62 8.29 43.57 0.11 2.14
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TABLE 3 | Phytoliths types in different bracts of the studied samples.

Species Supplementary
Figure

Phytolith types

involucre glume lemma palea

fertile/upper
floret

sterile/lower
floret

fertile/upper
floret

sterile/lower
floret

Apluda mutica 1-I NB BIL conc var1
POL conc var1
ACU
INT nPAP nun
acon rbod

ACU NB NP NB

Arthraxon hispidus 1-II NB BIL conv vars
BIL conc var2
INT sPAP nun
acon rbod
ACU

BIL conv var2,
INT sPAP nun
acon rbod
ACU

NB NP NB

Bothriochloa
ischcemum

1-III NB BIL conc var1
BIL conc var2
INT nPAP nun
acon rbod
ACU

BIL conv var1
ACU

NB NP NB

Capillipedium assimile 1-IV NB BIL conc var1
POL conc var1
ELO_DET/DEN
ACU

NP NB NP NB

Cymbopogon
goeringii

1-V BIL conv var5/6
BIL conv vars
ELO_DEN/DET
ACU

BIL conv var5/6
BIL conv vars
ELO_DEN/DET
ACU

ELO_ENT
ELO_DEN/DET
ACU

ELO_ENT
ELO_DEN/DET
ACU

NB NB

Eremopogon delavayi 1-VI NB BIL conv var1
ACU_BUL
ELO_DEN/DET
ACU

ACU_BUL NP NB NB

Coix lacryma-jobi var.
ma-yuen

2-I BIL conv var1
BIL conv var 5/6 CRO
conc var1
POL conc var1
ELO_DEN/DET
SREC_DET

BIL conc var1
CRO conc var1
POL conc var1
ELO_DEN/DET
pREC_DET
ACU

BIL conc var1
CRO conc var1
POL conc var1
pREC_DET
ACU

BIL conc var1
CRO conc var1
POL conc var1
pREC_DET
ACU

BIL conc var1
CRO conc var1

NB

Coix lacryma-jobi 2-II BIL conc var1
CRO conc var1
POL conc var1
BLO_AMO

BIL conc var1
CRO conc var1
POL conc var1
ELO_DEN/DET
pREC_DET
ACU

BIL conc var1
CRO conc var1
POL conc var1
ACU

BIL conc var1
CRO conc var1
POL conc var1
ACU

NB NB

Eulalia speciosa 3-I NB BIL conv vars
ELO_DEN/DET
ACU

BIL conv vars
ELO_DEN/DET
ACU

NP NP NP

Hackelochloa
granularis

3-II NB INT sPAP nun
acon rbod
BIL conc var1

NP NP NP NP

(Continued)
Frontiers in Plant Science
 | www.frontiersin.o
rg
 776
 Februa
ry 2020 | Volume 1
TABLE 2 | Continued

Species Location Statistics Parameters (mm)

w L h-Undulation h-Body h-Total R（w/hu） R（hu/hb）

SD 0.36 2.71 0.29 0.25 0.70 0.02 0.06
Top Mean 2.57 93.30 10.92 5.82 27.67 0.25 2.00

Median 1.93 90.85 11.65 5.51 28.47 0.18 1.90
SD 0.23 3.73 0.28 0.21 0.59 0.03 0.09
0 | A
SD, standard deviation.
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TABLE 3 | Continued

Species Supplementary
Figure

Phytolith types

involucre glume lemma palea

fertile/upper
floret

sterile/lower
floret

fertile/upper
floret

sterile/lower
floret

ACU
ACU_BUL

Imperata cylindrica 3-III NB BIL conv vars
ACU

BIL conv vars
ACU

NP NP NB

Ischaemum
anthephoroides

3-IV NB RON
BIL conv vars
ACU

BIL conv var1
ACU

BIL conv var1
ELO_DEN/DET
ACU

BIL conv var1 ELO_DEN/DET

Microstegium ciliatum 4-I NB BIL conv vars
ACU

BIL conv vars
ELO_DEN/DET
ACU

NP NB NB

Microstegium nudum 4-II NB BIL conv vars
ELO_DEN/DET
ACU

ACU
ACU_BUL

NP NB NB

Miscanthus floridulus 4-III NB BIL conv vars
ACU

BIL conv vars NP NB NB

Miscanthus
nepalensis

4-Iv NB BIL conv vars
ELO_DEN/DET
ACU_BUL
ACU

BIL conv var1
ELO_DET_CYL
ACU

NP NB NB

Miscanthus sinensis 4-V NB BIL conv vars
ELO_DEN/DET
ELO_ENT
ACU
ACU_BUL

BIL conv vars
ELO_DEN/DET
ELO_ENT
ACU
ACU_BUL

BIL conv vars
ELO_DEN/DET
ELO_ENT
ACU
ACU_BUL

NP NB

Saccharum
arundinaceum

5-I NB BIL conv vars
ELO_DEN/DET
ACU

BIL conc var1
POL conc var1
ACU

BIL conc var1
POL conc var1
ACU

NP NB

Saccharum rufipilum 5-II NB BIL conv vars
ELO_DEN/DET
ACU

ELO_DEN/DET
ACU
ACU_BUL

ELO_DEN/DET
ACU
ACU_BUL

NB NB

Sorghum bicolor 5-III NB BIL conv var1
BIL conv vars
BIL conv var5/6
ELO_DEN/DET
ELO_DEN tent
ACU

BIL conv vars
ACU

BIL conv vars
ACU

NB NB

Spodiopogon
sibiricus

5-IV NB BIL conc var5/6
BIL conc vars
BIL conv var 5/6
BIL conv vars
ACU

BIL conc vars NP NP NP

Spodiopogon
tainanensis

5-V NB BIL conc var 5/6
BIL conc vars
ACU
ELO_DEN/DET

NP NP NP NP

Themeda caudata 6-I BIL conv vars
BIL conv var7
ACU

BIL conv vars
BIL conv var7
ACU

BIL conv var1
ACU

NP NP NP

Themeda japonica 6-II BIL conv var 7
ELO_DEN/DET
ELO_ENT_CYL
ACU
ELO_PAR

BIL conv var 7
ELO_DEN/DET
ELO_ENT_CYL
ACU
ELO_PAR
PRI

NP NP NP NP

Lophatherum gracile 6-III NB BIL conv var1
BIL conv vars
ACU
ACU_BUL

BIL conv var1
BIL conv vars
ACU

BIL conv var1
BIL conv vars
ACU

BIL conv var1 NB

(Continued)
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cells and the epidermal cuticle layer. This type was named after
Parry and Hodson’s first observation of the morphotype in S.
italica, in which they described what they observed on
inflorescence bracts as “interdigitating epidermal cells” (Parry
Frontiers in Plant Science | www.frontiersin.org 978
and Hodson, 1982); however, these could be the silica layer
covering the surface of the lemma and palea. Other names that
have been used by other studies to describe this type of phytolith
include “silica skeleton” (Rosen, 1992; Madella et al., 2013;
TABLE 3 | Continued

Species Supplementary
Figure

Phytolith types

involucre glume lemma palea

fertile/upper
floret

sterile/lower
floret

fertile/upper
floret

sterile/lower
floret

Digitaria
chrysoblephara

7-I NB BIL conc var1
ELO_DEN/DET
ACU

INT mPAP sun
acon rbod

BIL conv var1
ELO_DEN/DET
ACU

INT mPAP sun
acon rbod

NB

Digitaria ciliaris 7-II NB BIL conc var1
ELO_DEN/DET
ACU

INT mPAP sun
acon rbod

BIL conv var1
ELO_DEN/DET
ACU

INT mPAP sun
acon rbod

NB

Digitaria sanguinalis 7-III NB BIL conc var1
ELO_DEN/DET
ACU

INT mPAP sun
acon rbod

BIL conv var1
ELO_DEN/DET
ACU

INT mPAP sun
acon rbod

NB

Digitaria ischaemum 7-IV NB BIL conv var1
BIL conv vars
POL conv var1
ELO_DEN/DET
ACU

dPAP BIL conv var1
BIL conv vars
POL conv var1
ELO_DEN/DET
ACU

dPAP NB

Digitaria violascens 7-V NB BIL conv var1
BIL conv vars
POL conv var1
ELO_DEN/DET
ACU

dPAP BIL conv var1
BIL conv vars
POL conv var1
ELO_DEN/DET
ACU

dPAP NB

Setaria faberi 8-I NB BIL conc var1
ACU

INT mPAP oun
scon rbod

BIL conc var1
ACU

INT mPAP oun
scon rbod

NB

Setaria pallidifusca 8-II NB BIL conv var1
ACU

INT mPAP oun
scon rbod

BIL conv var1
ACU

INT mPAP oun
scon rbod

NB

Setaria plicata 8-III NB BIL conc var1
ACU

INT mPAP oun
scon rbod

BIL conc var1
ACU

INT mPAP oun
scon rbod

NB

Setaria pumila 8-IV NB BIL conv var1
ACU

INT mPAP oun
scon rbod

BIL conv var1
ACU

INT mPAP oun
scon rbod

NB

Oplismenus
undulatifolius

9-I NB BIL conc var1
CRO conc var1
CRO conc var5/6
POL conc var5/6
ELO_DEN/DET
INT nPAP nun
scon rbod
ACU

INT nPAP oun
acon rbod

CRO conc var1
POL conc var1
ELO_DEN/DET
INT nPAP nun
acon rbod
ACU

INT nPAP oun
scon rbod

CRO conc var1
POL conc var1
ELO_DEN/DET
INT nPAP nun
scon rbod
ACU

Oplismenus
compositus

9-II NB BIL conc var1
CRO conc var1
POL conc var1

INT nPAP sun
scon rbod

BIL conc var1
CRO conc var1
POL conc var1

INT nPAP sun
scon rbod

NB

Paspalum orbiculare 9-III NB BIL conc var1
POL conc var1
ACU

BIL conc var2
CRO conc var2
POL conv var2
INT mPAP oun
acon obod

BIL conc var1
POL conc var1
ACU

BIL conc var2
CRO conc var2
POL conv var2
INT mPAP oun
acon obod

NB

Paspalum dilatatum 9-IV NB BIL conc var1
POL conc var1
ACU

BIL conc var2
CRO conc var2
POL conv var2
INT mPAP oun
acon rbod

BIL conc var1
POL conc var1
ACU

BIL conc var2
CRO conc var2
POL conv var2
INT mPAP oun
acon rbod

NB
Februa
ry 2020 | Volume 1
The abbreviations used in the table refer to 1) NB, no bract; NP, no phytolith observed; 2) BIL, BILOBATE; CRO, CROSS; POL, POLYLOBATE; conv, convex ends; conc, concave ends; var1,
variant 1; var2, variant 2; var5/6, variant 5/6; var7, variant 7; vars, variant saddle-like; 3) ELO, ELONGATE; DET, dentate; CYL, cylindric; ENT, entire; DEN, dendritic; tent, multi tent-like arch
top; PAR, PAPILLAR; 4) INT, INTERDIGITATING; nPAP, no PAPILLATE; mPAP, PAPILLATE attached with main body; sPAP, PAPILLATE separated with main body; sun, smooth-type undulation; nun, n-
type undulation; oun, W-type undulation; scon, smooth connection; acon, articulated connection; obod, ovate main body; rbod, rectangular main body; 5) RON, RONDEL with small
chamber; ACU, ACUTE; ACU_BUL, ACUTE BULBOSUS; dPAP, disaggregated Papillate; BLO_AMO, BLOCKY AMOEBOID; sREC_DET, RECTANGULAR DENTATE with smooth short sides; pREC_DET,
RECTANGULAR DENTATE with protuberant short sides; PRI, PRISMATIC silicified hair base.
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Madella et al., 2014; Weisskopf and Lee, 2016), “dendriform”
(Lu et al., 2005), “silicified epidermal long cells” (Lu et al., 2009a;
Lu et al., 2009b; Zhang et al., 2011; Kealhofer et al., 2015), and
“epidermal silica layer” (Ge et al., 2018). As the anatomical
origin of this type of phytolith has been discussed by Ge (Ge
et al., 2018), and associated with a study on rice husk (Yoshida
et al., 1962), we propose INTERDIGITATING as the formal name for
this phytolith type to show its different anatomical origin and
morphology. Previous studies have shown that morphological
trait combinations could be helpful in discriminating
INTERDIGITATING. In the present study, we followed the
description of Setaria, Panicum (Lu et al., 2009b), and
Echinochloa (Ge et al., 2018) and used the morphological
traits of PAPILLATE (present or not), undulation patterns (n-
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type, smooth-type, and W-type), ending structure (smooth
connection or articulated connection), and main body (ovate
or rectangular) to describe INTERDIGITATING morphology. All the
traits that describe INTERDIGITATING morphology and are shown
in Figure 5.

5. As the treatment retained the undamaged anatomical
structure, the different types of phytoliths could combine to
form a pattern of taxonomic value. In this study, one pattern, a
BILOBATE- ELONGATE DENDRITIC/DENTATE pattern, and a special
involucre phytolith layer were observed (Figure 6). The
BILOBATE-ELONGATE DENDRITIC/DENTATE pattern was comprised
of BILOBATE and ELONGATE DENDRITIC/DENTATE, one BILOBATE and
one ELONGATE DENDRITIC/DENTATE alternating formed the
common pattern. Their long axes were parallel to the veins,
sometimes BILOBATE was replaced by PAPILLATE or ACUTE or just
disappeared. A similar pattern has been reported in the
inflorescence of cereals, the PAPILLATE- ELONGATE DENDRITIC/
DENTATE pattern (Parry and Smithson, 1966; Rosen, 1992;
Tubb et al., 1993), which includes a combination of
PAPILLATE and ELONGATE DENDRITIC/DENTATE. Sometimes
PAPILLATE could be replaced by the RONDEL, and the
PAPILLATE in this pattern has pits (radiating marks) on the
base. Thus, the BILOBATE- ELONGATE DENDRITIC/DENTATE pattern
could be a potential tool to distinguish between some
Panicoideae grasses and Pooideae cereals. The involucre
phytolith layer was found in Coix lacryma-jobi and C.
lacryma-jobi var. ma-yuen on the surface of the involucre
and was comprised of tightly connected phytoliths with
various morphologies (could be stretched or condensed in
morphology). This phytolith layer was reported for the first
time in this study and recognized as the involucre phytolith
layer. The involucre phytolith layer (Figure 6) differed among
species in our samples: (1) In cultivated C. lacryma-jobi var.
ma-yuen, the involucre phytolith layer was comprised of
different types of phytoliths, including BILOBATE (some could
be condensed or stretched in morphology) and ELONGATE
DENDRITIC/DENTATE, each in a different column and with their
long axis parallel to the veins; (2) In wild type C. lacryma-jobi,
the involucre phytolith layer was only comprised of BLOCKY

AMOEBOID, this type of phytolith was cubic or oblong with
granules on the surface. They were tightly connected with each
other and the column was parallel to the veins.
Phytoliths in Different Inflorescence Bracts
Involucres were found in Cymbopogon goeringii, C. lacryma-jobi
var. ma-yuen, C. lacryma-jobi, Themeda caudata, and Themeda
japonica. In our samples phytoliths in the involucre could be
divided into two groups, corresponding to spikelet type I and type
II (Figure 1). In the involucres of C. goeringii (Supplementary
Figure 1-V), T. caudata (Supplementary Figure 6-I), and T.
japonica (Supplementary Figure 6-II), which were spikelet type I,
phytolith types were mainly BILOBATE, ELONGATE, and ACUTE

(Table 3), and the phytoliths were separated from each other
and presented a scattered distribution in the involucre. However,
in the involucres of C. lacryma-jobi var.ma-yuen (Supplementary
Figure 2-I) and C. lacryma-jobi (Supplementary Figure 2-II),
FIGURE 3 | Illustration on the morphology of the LOBATE phytoliths.
FIGURE 4 | Illustration on the morphology of the ELONGATE phytoliths.
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FIGURE 5 | Illustration on the morphological traits of the INTERDIGITATING phytolith. Parts of the INTERDIGITATING phytolith refer to Figure 2B.
FIGURE 6 | Illustration on the morphology of other phytoliths types.
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which were spikelet type II, phytoliths were all tightly connected
to form an involucre phytolith layer on the surface. The phytolith
types were LOBATE, ELONGATE, RECTANGULAR DENTATE, and
BLOCKY AMOEBOID.

Glumes were found in all studied species. Most of the glumes
were thin and soft in the studied species; however, in Sorghum
bicolor and Hackelochloa granularis (both are spikelet type II),
glumes were thick and hard (H. granularis had a thin but hard
glume). Thus, the phytolith type in the glumes appeared to differ:
in thin and soft glumes, phytoliths were LOBATE, ELONGATE,
ELONGATE DENDRITIC/DENTATE, and ACUTE, and scattered from
each other; while in S. bicolor (Supplementary Figure 5-III),
phytoliths were LOBATE, ELONGATE, ELONGATE DENDRITIC/DENTATE,
and ACUTE, and the BILOBATE- ELONGATE DENDRITIC/DENTATE

pattern covered most of the area of the glume surface. In the
lower glume, ELONGATE DENDRITIC with multi tent-like arch tops
(Figure 4) were observed, and this type was only observed in the
lower glume of S. bicolor. In H. granularis (Supplementary
Figure 3-II) , phytol i ths in the glumes formed an
INTERDIGITATING with PAPILLATE pattern separated from the
main body, n-type undulation, articulated connection, and
rectangle main body; this type of phytolith covered the entire
surface of the glumes, and was the only type observed in H.
granularis. An exception of the soft and thin glumes was
Arthraxon hispidus , which produced weakly silicified
INTERDIGITATING (Supplementary Figure 2-II) and BILOBATE

phytoliths could be found among the INTERDIGITATING.
Lemmas were found in most of the studied species and could

be divided into lemmas of the sterile floret and lemmas of the
fertile floret. Sterile lemmas were remarkably similar to the thin
and soft glumes in morphology, and the phytolith types were the
same. The fertile lemmas could be divided into two groups
according to spikelet type (III and IV): fertile spikelet type III
lemmas were similar to the glumes and sterile lemmas in
morphology and the phytolith types were the same. Fertile
spikelet type IV lemmas were hard and glossy, INTERDIGITATING
was the major phytolith type that covered the entire surface of
the lemmas.

Paleas were similar to the lemmas; however, the paleasmay stop
growing or be absorbed during the growth of the inflorescence and
finally disappear in some of the studied species. Phytoliths in the
paleas could be the same as that in the lemmas. In the sterile paleas
and fertile spikelet type III paleas,phytolithswereLOBATE, ELONGATE,
and ACUTE, and far fewer occurred compared to the number in the
lemmas of the same floret. In the fertile spikelet type IV paleas,
phytoliths formed the INTERDIGITATING TYPE, the same as those in the
lemmas from the same floret.

In all the inflorescence bracts, LOBATE, ELONGATE, ELONGATE
DENDRITIC/DENTATE, and ACUTE phytoliths were the most
commonly observed phytolith types. The morphology of these
types could overlap among different species and were of relatively
low taxonomic value in distinguishing among the studied
species. However, phytolith types from spikelet type II and IV
(which usually produce more phytoliths than spikelet type I and
III), namely the BLOCKY AMOEBOID, RECTANGULAR DENTATE,
ELONGATE DENDRITIC with multi tent-like arch top, and
Frontiers in Plant Science | www.frontiersin.org 1281
INTERDIGITATING, as well as the combination of phytolith types
such as the BILOBATE- ELONGATE DENDRITIC/DENTATE pattern and
the involucre phytolith layer showed higher taxonomic value in
distinguishing among our samples of the studied species. The
morphological traits are summarized in Table 4.

Morphological and Morphometric
Approaches to the INTERDIGITATING Phytolith
Among the phytolith types found in inflorescences with
potentially high taxonomic value, the INTERDIGITATING had
more complex morphological traits than the others; it could be
observed in A. hispidus, H. granularis, Digitaria chrysoblephara,
Digitaria ciliaris, Digitaria sanguinalis, Setaria faberi, Setaria
pallidifusca, Setaria plicata, Setaria pumila, Oplismenus
compositus, Oplismenus undulatifolius, Paspalum dilatatum,
and Paspalum orbiculare. By using a combination of
morphological traits of the INTERDIGITATING we could
distinguishing among the taxa at the genus level for our
samples of the studied specimen.

A. hispidus (Supplementary Figure 2-II) produced the
INTERDIGITATING with PAPILLATE separated from the main body,
W-type undulation, articulated connection and rectangular main
body. BILOBATE could sometimes be found among the
INTERDIGITATING. H. granularis (Supplementary Figure 3-II)
produced the INTERDIGITATING with PAPILLATE separated from
the main body, n-type undulation, articulated connection, and
rectangle main body. These two species could be distinguished
from other species by the PAPILLATE separated from the main
body, this distinct feature allows quick discrimination of A.
hispidus and H. granularis. As these two species belongs to the
tribe Andropogoneae, and all other species belong to the tribe
Paniceae; this morphological trait might have the potential to be
a discriminating feature at the tribe level.

Some of the studied Digitaria specimen (n = 3,
Supplementary Figure 7 I-III) produced the INTERDIGITATING
with PAPILLATE attached to the main body, smooth type
undulation, articulated connection, and rectangle main body.
These morphological traits allowed discrimination from other
species in our samples. However, in Digitaria ischaemum and
Digitaria violascens (Supplementary Figure 7-IV and V), only
the PAPILLATE were silicified to form the disaggregated PAPILLATE,
and the other parts of the INTERDIGITATING were very weakly or
not silicified. The different phytolith types of Digitaria showed
the differences within the genus level, which was consistent with
the taxonomy: D. chrysoblephara, D. ciliaris, and D. sanguinalis
belongs to the section Digitaria, while D. ischaemum and
D. violascens belongs to the section Ischaemum (according to
the Flora Reipublicae Popularis Sinicae, in Chinese, http://frps.
iplant.cn/). The observed differences in our samples showed the
potential of a subgenus (section) level discrimination.

All the studied Setaria specimen (n = 4, Supplementary
Figure 8) produced the INTERDIGITATING with PAPILLATE

attached to the main body, W-type undulation, smooth
connection, and rectangle main body, which could be used for
discrimination from other species in our samples. The W-type
undulation observed in the Setaria species was mostly from the
February 2020 | Volume 10 | Article 1736
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basic type to W-II type; only a few of W-III type were observed in
the center area of the lemmas in S. faberi (Supplementary Figure
8-I). The PAPILLATE usually grew very large (compared with its
main body) in Setaria species, thereby affecting the connection
part, hampering observation of the connection part, while
PAPILLATE in other samples of our studied species did not have
such a feature. Some minor morphological traits such as
small nodes on the tip of the undulation (Supplementary
Figure 8-IV-c) and the flat top of the undulation
(Supplementary Figure 8-II-b and 8-IV-c) were not used as
morphological traits to distinguish samples. As there were
limited number of specimens, we could not confirm whether
such morphological traits were individual variation or a common
feature; however, these minor morphological traits also showed
the potential to discriminate among the taxa at species level.
Frontiers in Plant Science | www.frontiersin.org 1382
All studied Oplismenus specimens (n = 2, Supplementary
Figure 9-I and II) produced the INTERDIGITATING with no
PAPILLATE, smooth/W-type undulation, smooth/articulated
connection, and rectangle main body, which could be used for
discrimination from other species in our samples. The
combination of undulation and connection: smooth undulation
with smooth connection, andW-type (up toW-I type) undulation
with articulated connection in the two studied species, suggested
the potential of discrimination at the species level.

All studied Paspalum specimen (n = 2, Supplementary
Figure 9-III and IV) produced the INTERDIGITATING with
PAPILLATE attached to the main body, W-type undulation,
articulated connection, and ovate/rectangle main body. In
Paspalum, a larger main body than the undulation part was
observed to be the identifying feature which was not present in
TABLE 4 | Morphological traits of the inflorescence-types of phytoliths and the corresponding species.

Phytoliths types Morphological traits * Corresponding species

BILOBATE-ELONGATE
DENTATE/DENDRITIC
pattern

1 ELONGATE DENTATE/DENDRITIC
separated by BILOBATE

Cymbopogon goeringii, Eulalia speciosa,
Microstegium nudum, Miscanthus
floridulus, Miscanthus nepalensis,
Miscanthus sinensis, Saccharum
arundinaceum, Saccharum rufipilum,
Sorghum bicolor

2 some BILOBATE replaced by ACUTE Eremopogon delavayi
ELONGATE DENDRITIC 3D 1 ELONGATE DENDRITIC base

2 multi-tent like arch top
3 small pricks on the arch top Sorghum bicolor

INTERDIGITATING 1.1 PAPILLATE separated with main body Arthraxon hispidus, Hackelochloa
granularis

1.2 PAPILLATE attached to the main body
2.1 undulation smooth

3.1 connection articulated
4.1 main body rectangular Digitaria chrysoblephara, Digitaria

ciliaris, Digitaria sanguinalis
2.2 undulation W-type

3.2 connection smooth
4.1 main body rectangular Setaria faberi, Setaria pallidifusca,

Setaria plicata, Setaria pumila,
3.1 connection articulated
4.1 main body rectangular Paspalum dilatatum
4.2 main body ovate Paspalum orbiculare

1.3 no PAPILLATE attached to the main body
2.1 undulation smooth

3.2 connection smooth
4.1 main body rectangular Oplismenus compositus

2.2 undulation W-type
3.1 connection articulated
4.1 main body rectangular Oplismenus undulatifolius,

BLOCKY AMOEBOID 1 rounded rectangular or oblong base
2 semi-cubic or globular top

3 irregular granulated surface Coix lacryma-jobi
RECTANGULAR 1 tabular main body
DENTATE 2 ruminate pattern along the two long sides

3.1 smooth short sides
4.1 smooth surface Coix lacryma-jobi var. ma-yuen

3.2 protuberant short sides
4.2 granulated surface Coix lacryma-jobi

involucre phytoliths layer 1.1 composed of BILOBATE and ELONGATE Coix lacryma-jobi var. ma-yuen
1.2 composed of BLOCKY AMOEBOI Coix lacryma-jobi
F

The numbers before the descriptions showed the categories of morphological traits, using the combination of morphological traits from different categories could conduct identification of
certain species.
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other species. The shape of the main body in the two studied
species of this genus, ovate, and rectangle, also suggested the
potential of discrimination at the species level.

By using a combination of the morphological traits, we could
achieve a reliable discrimination at the genus level among our
samples. Although not enough species were studied, the variation
in the morphology within the same genus also showed the
possibility of discrimination at a more precise level (section or
species level). A general distribution pattern of INTERDIGITATING is
summarized in Figure 6-A, which shows that the undulation,
connection, and main body all have a continuum variation from
small to large along the gradient from the edge to the center.

As described above, A. hispidus and H. granularis belongs to
the tribe Andropogoneae and could be easily discriminated from
other species in our samples using the morphological traits of the
INTERDIGITATING. In Setaria species, parameters w and L could not
be measured due to the growth of PAPILLATE. In order to apply the
same parameters as in previous studies (Lu et al., 2009b; Ge et al.,
2018), morphometric analysis was only applied to Digitaria,
Oplismenus, and Paspalum genera. Measurements of the
parameters are shown in Table 4. The four basic parameters,
w, L, h-undulation, and h-body were described as follows: the w
value was highest (above 4 mm) in Paspalum, while it was low
(below 4 mm) inDigitaria andOplismenus; the L value was lowest
(below 30 mm) in Digitaria, higher in Paspalum (40–60 mm), and
highest in Oplismenus (60–90 mm); the h-undulation value
showed a large overlap among the three genera and could not
be distinguished; the h-body in Paspalum had the highest value
(10–30 mm), while it was low (below 10 mm) in Digitaria and
Oplismenus. The calculated parameters, h-total, R(w/hu) and R
(hu/hb), also varied among the three genera due to the large
main body: Paspalum had the highest h-total and R(w/hu)
values, and the lowest R(hu/hb) value, while in Digitaria and
Oplismenus, a large overlap occurred among h-total, R(w/hu),
and R(hu/hb). In our samples it could be found that the
parameters could vary from species to species, however,
parameters were much similar within the same genus and
greater differences could be found among different genera,
especially when combining all the parameters.

For statistical analysis of the parameters, a discriminant
analysis was applied to examine if morphometric parameters
could aid in distinguishing between the samples. The parameters
involved in the discriminant functions included w, L, h-
undulation, h-total, R (w/hu), and R (hu/hb) values. The h-
body parameter was excluded as it had the largest absolute
correlation between each variable and any discriminant
functions. Two discriminant functions were generated (shown
in Figure 7). The discriminant analysis showed that by using
these parameters, genus level classification could be achieved
among our samples; the genera Digitaria, Oplismenus, and
Paspalum could be classified successfully. Furthermore,
classification accuracy through cross validation reached 94.3%.
However, only 53.9% of the original data could be correctly
classified to the species level using the same dataset, suggesting
that discrimination at the genus level was much more robust
than that at the species level.
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DISCUSSION

The INTERDIGITATING and the Silica Skeleton
Although it consists of individual phytoliths articulated
together, we defined the INTERDIGITATING as a single type of
phytolith in this study, as it has a different anatomical origin
and morphology than other types of phytoliths. In the previous
studies, the term silica skeleton has been used to describe the
articulated ELONGATE DENDRITIC/DENTATE (Rosen, 1992), which
was mostly found in wheat and barley inflorescences, and
originates from silicification of epidermal long cells. Previous
studies sometimes recognized the INTERDIGITATING and the silica
skeleton as the same type of phytolith (Madella et al., 2013;Madella
et al., 2014; Weisskopf and Lee, 2016), while we note two major
differences: 1. silica skeletons originate from epidermal long cell
silicification, while the INTERDIGITATING originate between the
epidermal cells and the cuticle layer; 2. silica skeletons are
silicified single cells, such as in the PAPILLATE- ELONGATE DENDRITIC/
DENTATE pattern, and are an assemblage of single phytoliths, while
the INTERDIGITATING are an intact layer with interdigitating
ornamentation. Thus, we propose that INTERDIGITATING should be
defined as a single type of phytolith, a silicon layer with
interdigitating ornamentation that covers the surface of a bract.
According to this definition, the BILOBATE-ELONGATE DENDRITIC/
DENTATE pattern and the involucre phytoliths layer should belong
to the silica skeleton type, as well as other types of phytoliths that
originate from silicified epidermal cells.

Factors Influencing Phytolith Production
in Inflorescence Bracts
The Poaceae inflorescence structure is distinct from that of other
plants (Berbel et al., 2007), with a more complex organization of
FIGURE 7 | Canonical discriminant analysis of genera Digitaria, Paspalum,
and Oplismenus. The number of species refer to 1 Digitaria sanguinalis,
2 Digitaria chrysoblephara, 3 Digitaria ciliaris, 4 Paspalum orbiculare,
5 P. dilatatum, 6 Oplismenus compositus, 7 Oplismenus undulatifolius.
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bracts under both genetic and molecular control (Kellogg, 2007;
Kellogg et al., 2013; Zhang and Yuan, 2014). Thus, the
development of phytoliths might also be affected by both
genetic and molecular control. Glumes are leaf-like structures
that enclose the florets. In the glumes of our samples the
phytoliths were generally similar to leaf type phytoliths:
BILOBATE, ELONGATE, ACUTE, and ACUTE BULBOSUS (Table 2). In
the lemmas and paleas of sterile florets, phytolith types tended to
be the same as those in glumes; however, in the lemmas and
paleas of fertile florets, phytolith types generally differed. The
divergence of glumes, lemmas, and paleas is known to be under
genetic control (Kellogg, 2007; Kellogg et al., 2013), while the
divergence of sterile and fertile florets is mostly under molecular
control (Zhang and Yuan, 2014). We found that the types of
phytoliths produced in the inflorescence bracts differed among
those bracts whose divergence is under genetic control and those
under molecular control.

Seed setting requires more energy than flowering and is
important for plant regeneration (Bazzaz et al., 2000), thus,
seed protection is of great importance to plants. Silicon has
been proven to be beneficial to plants (Guntzer et al., 2012) as it
aids defense against insects (Massey et al., 2006) and fungi
(Remus-Borel et al., 2005); it is presumed that phytoliths in the
inflorescence bracts also provide similar effects (Ge et al., 2018).
In the present study, we observed that phytoliths were most
abundant in bracts from spikelet types II and IV, in which
phytoliths cover the surface of the bracts that wrap the seed, and
the silicification rate and phytolith quantity are positively
correlated with seed size in the studied species. As shown in
Figure 8, specimens with large, plump seeds, such as Job’s tears
(C. lacryma-jobi var. ma-yuen), produced numerous phytoliths
to form the involucre phytolith layer on the involucre surface
(spikelet type II); specimens with small, plump seeds, such as S.
pallidifusca, produced an INTERDIGITATING type covering the
lemma and palea (spikelet type IV); specimens with small,
shriveled seeds, such as Eremopogon delavayi, produced BILOBATE

and ELONGATE DENDRITIC/DENTATE phytoliths on the glume, and a
very low number of phytoliths are found on the lemmas and paleas
Frontiers in Plant Science | www.frontiersin.org 1584
(spikelet type III). As a result, the silica layers (including the
involucre phytolith layer and INTERDIGITATING) could provide seed
protection, preventing biotic and abiotic harm. Phytolith formation
consumes less energy (approximately 1/27) than that required for
lignification (Raven, 1983); therefore, species with larger seeds tend
to invest additional energy to protect the seeds. As these species
require large amounts of energy for seed setting and lignification,
phytolith formation could be a relatively economical and effective
way to protect seeds.

Lignification also affects phytolith production, as revealed by the
hard rind genetic locus (Hr) in the genus Cucurbita (Piperno et al.,
2002). Similarphenomenawere observed in the inflorescencebracts
of the present study. Strongly lignified bracts, such as the glume of
S. bicolor and the involucre of Coix sp., all produced many more
phytoliths than other bracts in the same spikelet. The bracts that
produced the INTERDIGITATING were also observed to be of stronger
lignification compared to those of other bracts, and very weakly
lignified bracts (mostly transparent) did not produce phytoliths at
all. As discussed above, a combination of lignification and
silicification might be an economical and effective way to provide
additional seed protection. Further studies on the genetic control of
inflorescence development could facilitate the identification of
genes related to phytolith production.

In the current study, more inflorescence phytoliths were
observed in species that produced edible seeds (with a larger
size and higher seed production rate that would be worth
collecting as a food resource), which belonged to the spikelet
types II and IV than other species. This corroborated prior
observations on other major and minor crops (Ball et al.,
2016a). These phenomena suggest the possibility that more
inflorescence-type phytoliths might be observed in other
unstudied species that possess edible seeds and strongly
lignified bracts than those that do not produce edible seeds.

Discrimination Among Taxa Based on
INTERDIGITATING Differences
The INTERDIGITATING was an important phytolith for
discriminating among some of the taxa in our samples. Of all
FIGURE 8 | Comparison of seed size. Big and plump seed: Coix lacryma-jobi var. ma-yuen. Small but plump seed: Setaria pallidifusca and Digitaria ciliaris. Small
and shriveled seed: Eremopogon delavayi.
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the subtypes, the INTERDIGITATING phytolith with n-type
undulation was of low taxonomic value; the n-type undulation
being the basic type of all undulation patterns (Ge et al., 2018)
and was found in both in the inflorescence and leaves of many
taxa (Wang and Lu, 1993). Based on the dataset of the present
study, the INTERDIGITATING was mostly observed in Panicoideae
species (Lu et al., 2009b; Radomski and Neumann, 2011; Zhang
et al., 2011; Madella et al., 2013; Kealhofer et al., 2015; Weisskopf
and Lee, 2016; Ge et al., 2018).

A. hispidus and H. granularis from the tribe Andropogoneae
produced INTERDIGITATING phytoliths that presented two
significant differences from other INTERDIGITATING producers in
our samples: A. hispidus and H. granularis produced the
INTERDIGITATING type on the glume and the PAPILLATE type were
separated from the main body. Based on the PAPILLATE

morphological traits, A. hispidus and H. granularis could be
easily distinguished from other INTERDIGITATING producers,
indicating that the PAPILLATE type separated from the main
body might be a potential distinguishing morphological trait at
the tribe level. Among the rest of the INTERDIGITATING producers
in our study, P. dilatatum and P. orbiculare belong to the tribe
Paspaleae. The main body of INTERDIGITATING in these two species
are wider than the undulations along the margins, in contrast to
other INTERDIGITATING producers where the undulations are larger
than the main body. This morphological trait discriminates tribe
Paspaleae from tribes Andropogoneae and Paniceae in our
samples. Thus, the morphological traits of the INTERDIGITATING:
PAPILLATE types separated from the main body and the size of the
main body showed great potential for tribe level identification.

Because we only sampled a single specimen of each of the taxa
we analyzed in this study, we recognize the need for further
analyses of many specimens for each taxon in order to confirm,
validate and/or refine our findings. We note that although the
number of specimens in the present study was limited, our
morphological trait findings were consistent with those reported
in other studies. For example, the figures and description provided
in a study on D. ciliaris (Madella et al., 2013) show that the
INTERDIGITATING had PAPILLATE attached to the main body, smooth
type undulations, and rectangular main bodies. Another study
(Radomski and Neumann, 2011) reported that disaggregated
PAPILLATE were abundant in Digitaria species (including D.
ciliaris, D. exilis, and D. iburua). A study on Digitaria
adscendans (Weisskopf and Lee, 2016) also reported “short,
regular, and cone like papillae.” All of these studies corroborate
the present study findings that Digitaria species might produce
two types of phytoliths in the lemmas and paleas. Further, figures
and descriptions of S. pumila (Madella et al., 2013; Weisskopf and
Lee, 2016), S. plicata (Lu et al., 2009b), and Setaria verticillate
(Madella et al., 2013; Weisskopf and Lee, 2016), show that the
INTERDIGITATING all have PAPILLATE attached to the main body, W-
type undulations (only level-I or II), smooth connections, and
rectangular main bodies; all these morphological traits are likewise
consistent with the findings of the present study. Similarly, a study
on Paspalum conjugatum (Weisskopf and Lee, 2016) showed that
the INTERDIGITATING had PAPILLATE attached to the main body, W-
type undulations, articulated connections, and a rectangular main
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bodies, which again are similar to our findings for P. dilatatum in
the present study. These prior studies support our findings and
confirm the possibility of genus level identification using these
morphological traits.

Within the same genus, although some minor morphological
commonalities were observed, these morphological traits might
not be useful as identification features due to the limited number
of studied specimens. The morphometric analysis showed a large
overlap within genera (Table 2 and Figure 7), and
morphological traits also overlapped among species (Zhang
et al., 2011; Kealhofer et al., 2015; Ge et al., 2018; Zhang et al.,
2018). However, some minor morphological traits also suggest
the possibility of species level identification, but again this must
be further evaluated by additional studies.

Morphological traits focusing on the presence of PAPILLATE,
undulation pattern, connection shape, and main body shape of
Paniceae species are shown in Table 5 and compared with data
from related studies (Lu et al., 2009b; Ge et al., 2018). Thus the
use of a combination of morphological traits for genus level
discrimination, and species level discrimination is promising.

Kealhofer et al. (2015) studied the common Setaria species in
China and doubted the stability of discrimination criteria with
regard to discriminating Setaria from Panicum (Lu et al., 2009b)
In their study, they did not apply a combination of morphological
traits (apply all traits to the same INTERDIGITATING phytolith), but
rather focused on singlemorphological traits (compare one trait for
all INTERDIGITATING phytoliths). The basic n-type and the level-I of
W-type, h-type, b-type, and smooth type undulation on the edge of
the bracts can behighly similar, as highlighted inour previous study
(Geet al., 2018) and this study.As shown in the present study, single
morphological traits overlapped at the genus level (Table 5),while a
combination of morphological traits could provide more robust
discrimination at the genus level. In their study (Kealhofer et al.,
2015), they also noticed the overlapping occurrence of papillae, the
morphology of undulations and connections among different
species, thus suggesting that the basic n-type should not be used
as a sole identification criterion; their data also revealed the
insufficiency of single measurements for differentiating among
Setaria species, which was consistent with the current study
findings. Thus, the key to discrimination is to identify a
diagnostic combination of the most common and representative
traits, rather than single trait variables. In this study, we identified
morphological traits that might be used to discriminate S. italica
and S. viridis from their wild relatives (Table 5); however, based our
limited sample size, further verification is required. Thus, our
findings in this preliminary study support previous published
identification criteria for distinguishing between S. italica and P.
miliaceum (Lu et al., 2009b), and the idea that examining a
combination of morphological traits has the potential to provide
reliable discrimination at the genus level.

Phytolith Types With High Taxonomic
Value in C. Lacryma-Jobi
Job’s tears (C. lacryma-jobi) is an important plant resource that
was used approximately 24,000 years ago (Liu L. et al., 2018). Liu
et al. conducted an experiment on starch and phytoliths for their
February 2020 | Volume 10 | Article 1736
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identification in archaeological remains (Liu et al., 2019). In their
study, they emphasized cross shaped BILOBATE phytoliths found
in the glumes, lemmas, paleas, and leaves, which could also be
found in other Panicoideae species (their study did not compare
other cross shaped BILOBATE phytolith producers). In the present
study, we found that RECTANGULAR DENTATE and BLOCKY AMOEBOID

phytoliths were unique to the inflorescence of this taxon, which
has not been reported before. This differentiation has the
potential to be the diagnostic criteria for Coix identification,
even at the subspecies level.

The two specimens of Job’s tears used in this study
represented the two commonly used types: edible (with an easy
to break involucre) and decorative (with a rigid involucre). The
phytoliths differed between the two types (Supplementary
Figure 2): The edible species (C. lacryma-jobi var. ma-yuen)
produced BILOBATE and ELONGATE phytoliths on the involucre
surface which had some height or thickness differences when
compared with the flat phytoliths found in the glumes, lemmas,
and paleas. The phytolith articulations were not very tight and
resulted in an easy to break involucre. However, the decorative
species (C. lacryma-jobi) produced BLOCKY AMOEBOID phytoliths
that were tightly connected to form a more rigid phytolith layer
on the involucre surface. The different phytolith types on the
involucre surface created difficulty in the hulling process; the
edible species could be hulled by hand, while the decorative
species required the use a hammer. As hulling difficulty would
have been an important selection trait (Arora, 1977) in the
domestication of Job’s tears, our preliminary results indicated
that the BLOCKY AMOEBOID involucre phytoliths have a great
potential for investigating the domestication process of Job’s
tears. As an important minor crop, the domestication of Job’s
tears has not been fully studied, partly due to lack of evidence.
The different phytolith types on the involucre surface observed in
cultivated and wild Job’s tears in this study may provide insight
into the domestication process. Again, we note that as these
findings were limited to the studied specimens, further studies
are needed to validate our findings.
CONCLUSIONS AND PERSPECTIVES

Phytoliths in every inflorescence bract of 38 common
Panicoideae species were observed, various phytolith types
were described, and the inflorescence-type of phytoliths were
identified. We proposed a new phytolith morphotype, the
INTERDIGITATING, and identified several other types of
phytoliths, BLOCKY AMOEBOID, RECTANGULAR DENTATE, and
ELONGATE DENDRITIC with multi tent-like arch top, that might be
of high taxonomic value. Some of these types we report for the
first time in the taxa analyzed in this study. From our
observations we suggest that phytoliths in the inflorescence
bracts may be positively related to inflorescence development,
which might be under both genetic and molecular control. The
inflorescence involucre phytolith layer and INTERDIGITATING

phytoliths might also be related to a seed protection strategy;
species with larger seeds might produce more phytoliths in the
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outermost bracts to protect the seeds. Thus, species with larger
seeds and lignified bracts might have higher potential to produce
more phytoliths of higher taxonomic value; more attention
should be paid to such species in future studies.

The INTERDIGITATING was an important phytolith type in the
inflorescence in our study, especially for millet identification. We
summarized INTERDIGITATING morphological traits and found that
reliable results for genus level identification among our sampleswas
possible using a combination ofmorphological traits (Table 5).We
also found that morphological variation may have the potential for
identification at the tribe level (INTERDIGITATING with PAPILLATE
separated from the main body and the size of the main body) or
species level (morphological variations within the same genus).
Again, studiesofmore specimensareneeded for confirmationof the
potential. The BLOCKY AMOEBOID and RECTANGULAR DENTATE types
fromthe involucreof Job’s tearshavegreatpotential for studying the
domestication process of Job’s tears, and the ELONGATE DENDRITIC

withmulti tent-like arch top fromthe glumesofS. bicolormight also
assist in the identification of sorghum remains. In future studies,
more species, more samples per species, and further efforts are
needed toprovide applicable and robust identification criteria at the
tribe/species level.
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Background and Aims: The role and significance of phytoliths in taxonomic diagnosis

of grass species has been well documented with a focus on the types found in foliar

epidermis and the synflorescence. The present paper is an attempt to broaden the

scope of phytoliths in species diagnosis of grasses by developing phytolith signatures

of some species of the foxtail genus Setaria P. Beauv. through in situ location and

physico-chemical analysis of various phytolith morphotypes in different parts of the plant

body.

Methods: Clearing solution and dry ashing extraction methods were employed for

in situ location and isolation of phytolith morphotypes respectively. Ultrastructural details

were worked out by Scanning Electron Microscopy (SEM) and Transmission Electron

Microscopy. Morphometric and frequency data of phytolith morphotypes were also

recorded. Biochemical architecture of various phytolith types was worked out through

SEM-EDX, XRD, and FTIR analysis. Data were analyzed through Principal Component

Analysis and Cluster Analysis.

Key Results: In situ location of phytoliths revealed species specific epidermal patterns.

The presence of cystoliths (calcium oxalate crystals) in the costal regions of adaxial leaf

surface of S. verticillata (L.) P. Beauv. is the first report for the genus Setaria. Our results

revealed marked variations in epidermal ornamentation and undulation patterns with a

novel “3” (Lamda) type of undulated ornamentation reported in S. verticillata. Dry ashing

method revealed species specific clusters of phytolith morphotypes.

Conclusions: The study revealed that phytoliths can play a significant role in resolution

of taxonomic identity of three species of Setaria. Each species was marked out by a

unique assemblage of phytolith morphotypes from various parts of the plant body. Apart

from in situ location and epidermal patterning, diagnostic shapes, frequency distribution,

size dimensions, and biochemical architecture emerged as complementary traits that

help in developing robust phytolith signatures for plant species.

Keywords: grasses, morphotypes, phytoliths, Setaria spp., silica, taxonomic demarcation
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INTRODUCTION

The foxtail genus, Setaria P. Beauv., so named by the presence of
sterile bristles that subtend spikelets in a close panicle, belongs
to the “bristle clade” (subtribe Cenchrinae, tribe Paniceae,
subfamily Panicoideae) of the grass family Poaceae (Morrone
et al., 2012). The genus has a labile morphology requiring
additional characters for the resolution of phylogenetic relations
among the 113 odd species of the genus (Clayton et al., 2016
onwards). One of the species, the foxtail millet Setaria italica
(L.) P. Beauv. has been cultivated along with other millets in
dryland farming system since prehistoric times (Madella et al.,
2016; Weisskopf and Lee, 2016). Some other species of the genus
also serve as significant sources of forage and fodder (Aliscioni
et al., 2011; Marinoni et al., 2013). Several studies have attempted
to resolve the infrageneric (Stapf and Hubbard, 1934; Webster,
1987; Pensiero, 1999) and intergeneric (Webster, 1993, 1995;
Veldkamp, 1994; Morrone et al., 2014) relations of the genus.
Molecular studies on the chloroplast gene ndhF have revealed
polyphyletic nature of the genus with three well supported clades
(Kellogg et al., 2009). Even though leaf blade anatomy has
traditionally been employed for taxonomic characterization of
grasses (Prat, 1936, 1948; Metcalfe, 1960; Ellis, 1979, 1984), the
role of anatomical characters in grass taxonomy and phylogeny
has been, so to say, rediscovered in the recent past (Ingram, 2010)
with Setaria P. Beauv. as a model genus (Aliscioni et al., 2016).
Apart from epidermal cell patterns and vasculature, phytoliths in
leaf epidermis and other parts of the plant body have been utilized
for species characterization and taxonomic analysis of grass taxa.

Phytolith studies have been utilized both for characterization
of individual Setaria species (Rovner, 1971; Hodson et al., 1982)
as also for taxonomic demarcation among species within the
genus (Zhang et al., 2011; Layton and Kellogg, 2014; Wang
et al., 2014; Madella et al., 2016) and from related genera (Hunt
et al., 2008; Lu et al., 2009; Out et al., 2014; Wang et al., 2014;
García-Granero et al., 2016; Madella et al., 2016). The ever
increasing role of phytoliths in the resolution of intrageneric and
intergeneric taxonomy of the genus can be ascribed to the simple
fact that even among grasses, Setaria spp. show exceptional
levels of silica accumulation in the form of phytoliths in all
parts of the plant body. During the present investigations, an
attempt has been made to supplement the information available
on the phytolith profiles of three closely related species of the
foxtail grass genus through a multiproxy approach and the
development of phytolith signatures as additional evidence for
their taxonomic demarcation. Analysis of several aspects of
phytoliths from different parts of the plant body of the selected
species was done through a battery of techniques employed in a
logical sequence from in situ location of phytolith morphotypes
in foliar epidermis to advanced level of physico-chemical analysis
involving sophisticated instruments and methodology. In this
context, the present study marks a significant advance toward
developing a comprehensive and robust framework for the use
of data on morphotype diversity, distribution in different parts
of the plant body and their ultrastructural and biochemical
characterization in identification and taxonomic demarcation of
plant taxa.

Silica and Phytolith Production in Plants

Plants absorb monosilicic acid (H4SiO4), which is released
to the soil by weathering of siliceous minerals, by action of
an aquaporin-like channel Low-silicon 1 (Ls1) and a proton
antiporter Low-silicon 2 (Ls2) and polymerizes it into amorphous
silica (SiO2.nH2O) in cell lumens (internal casts), intercellular
spaces, and cell walls (external casts) of the parenchymatous
tissue (Baker, 1959b; Jones and Handreck, 1967; Rovner, 1971; La
Roche, 1977; Bombin, 1984; Piperno, 1988;Mulholland, 1989;Ma
et al., 2011; Ma and Yamaji, 2015). A number of unknown silica
transporters are believed to be involved in directing silica transfer
to different silicification sites (Kumar et al., 2017). Being hard and
resistant to dessication and disfiguration, these amorphous silica
bodies are commonly called phytoliths [phyton (ϕυτoν)= plant
+ lithos (λιθoς) = stone]. As casts (both internal and external)
of plant cells, phytoliths vary in shape, size, frequency, surface
ornamentation and other structural features (Ollendorf et al.,
1988; Piperno, 1988, 2006; Lu and Liu, 2003; Lu et al., 2009;
Zhang et al., 2011; Szabo et al., 2015; Ge et al., 2016). Genetic
control of shape, size and frequency of phytoliths has been
demonstrated in some monocots (e.g., Zea mays L.) and dicots
(e.g., Cucurbita spp. L.) (Bozarth, 1987; Piperno et al., 2000).

Phytoliths have been implicated in several biological functions
including that of providing an endoskeletal framework which
prevents wilting (Parry and Smithson, 1958a) and offering
resistance to herbivory (Rovner, 1971; Stebbins, 1972, 1981;
Coughenour, 1985; Epstein, 1994, 1999), and alleviating biotic
(Jones and Handreck, 1967; Gould and Shaw, 1983; Mazumdar,
2011) and abiotic (Hodson et al., 1985; Hodson and Evans, 1995;
Lux et al., 2003; Hattori et al., 2005) stress. Phytoliths have also
been reported to play a role in checking the rate of transpiration
and at the same time reducing the heat load of plants growing in
exposed habitats (Jones and Handreck, 1967; Sangster and Parry,
1971; Krishnan et al., 2000).

Ecological functions played by phytoliths include a role
in biogeochemical and bio-cycling of silicon in terrestrial
ecosystems (Conley, 2002; Gerard et al., 2008; Borrelli et al., 2010;
Struyf and Conley, 2012) and sequestration of occluded carbon
(Rajendiran et al., 2012; Parr and Sullivan, 2014; Alexandre
et al., 2015; Ru et al., 2018; Yang et al., 2018). Isotopic dating
of phytolith occluded carbon (PhytOC) has been employed to
determine the age of sediments and that of elements of vegetation
trapped in these sediments (Parr and Sullivan, 2014). The use
of phytoliths in dating of plant fossils can be attributed to
the fact that upon death and in situ decay of the plant body,
phytoliths are released into the soil where they stay through the
millenia resisting deformation and destruction by the vagries of
geological and climatic conditions. Their long time persistence
in the soil make them ideal plant microfossils which have been
recovered from sediments as far back as 60 mya in the Cenozoic
(Jones, 1964), including the glacials (Twiss et al., 1969; Fredlund
et al., 1985) and the Holocene (Baker, 1959a; Crawford, 2009).
Phytoliths have been recovered from diverse habitats including
swamps (Baker, 1959a), arid zones (Pease and Anderson, 1969),
humid areas (Jones and Beavers, 1964) and vegetation types
including grasslands and forests (Wilding and Drees, 1973).
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Owing to widespread production across several plant groups
and excellent preservation as microfossils, phytoliths have found
an ever increasing role as proxies in diverse fields of scientific
enquiry including archeaobotany of the centers of civilization
and cultivation (Schellenberg, 1908; Pearsall, 1978; Rovner, 1983;
Piperno, 1984; Shillito, 2013; Gao et al., 2018), paleoecology and
paleoclimatology (Rovner, 1971; Carbone, 1977; Fox et al., 1996;
Piperno, 2006; Albert et al., 2007), the mapping of ancient land
use patterns, and vegetation structure (Gross, 1973; Pearsall and
Trimble, 1984; Fisher et al., 1995). Phytolith profiles of present
day crop species and soil samples of ancient sites have been
compared and calibrated for developing historical calendars for
the origin of agriculture and routes of spread and diversification
of crop species and calculating the crop ratios (Rovner, 1983;
Piperno, 1998, 2009; Pearsall et al., 2003; Albert and Henry,
2004; Fuller et al., 2007; Itzstein-Davey et al., 2007; Tsartsidou
et al., 2007; Hunt et al., 2008; Crawford, 2009; Lu et al., 2009;
Zhang et al., 2010, 2012; Zhao, 2011; Chen et al., 2012; Madella
et al., 2014, 2016; Weisskopf et al., 2014; Out and Madella, 2016;
Weisskopf and Lee, 2016), the food and non-food uses of plants in
crafts and building materials (Ryan, 2011), agricultural practices
(e.g., irrigation, Rosen and Weiner, 1994; Slash-n-burn; Piperno,
1998), paleoagrostology (Piperno and Pearsall, 1998), taphonomy
(Madella and Lancelotti, 2012) and colonization of islands and
distant lands (Astudillo, 2017).

On account of the wide range of availability and ease of
recovery from unused parts of cereals (and other crop species)
and the purity of silica obtained, phytoliths have also found a
role in nanotechnology (Neethirajan et al., 2009; Qadri et al.,
2015). In the contemporary environmental context, phytoliths
are being employed as models for assessment of the effects of
global warming and climate change (Hongyan et al., 2018).

Phytoliths in Grass Systematics
Notwithstanding the above mentioned applications,
phytoliths have found the most significant role in taxonomic
characterization and demarcation of plant taxa. At this juncture
it would be quite instructive to review the landmarks in plant
phytolith research that have provided the framework for the use
of phytoliths in grass systematics as well. After the revisionary
work of (Netolitsky, 1929), attempts were made to identify
the marker morphotypes for plant taxa at different levels of
taxonomic hierarchy. Within grasses, branched cells were
typically associated with Nardus stricta L. (Parry and Smithson,
1958a,b). Twiss et al. (1969) expanded the scope of “marker
morphotype” approach to major groups within the family
through a study of 26 morphotypes of which eight were ascribed
to festucoid group, two to chloridoid, and 11 to panicoid grasses
and the rest (five) had no particular subfamilial affiliation. Soon
afterwards, Rovner (1971) pointed out that a search for “marker”
types for plant taxa would run into difficulty on account of
“multiplicity” of types within a single species (more so for taxa
at higher ranks) and “redundancy” of occurrence of same types
“appearing in related as well as taxonomically unrelated species.”
Rovner (1971) suggested that assemblages or “type-sets” of
phytoliths would provide better taxonomic demarcation among
plant species and soil samples.

Apart from types, Mulholland (1989) presented data on
frequencies of various types to characterize 19 wild grasses
collected from their natural habitats. Piperno and Pearsall (1993)
pointed out that phytoliths from reproductive parts proved
more useful in separating maize (Zea mays L.) from teosinte.
This work focused on an organ-specific approach in using
phytoliths in taxonomic demarcation of grass species. Pearsall
et al. (1995) further narrowed it down to “silicified glumes”
as the most revealing in distinguishing cultivated rice (Oryza
sativa L.) from its wild relatives. Piperno (1998) identified
diagnostic morphotypes of phytoliths for the subfamilies
Pooideae, Arundinoideae, Chloridoideae, and described the
diagnostic and diverse types in the Bambusoideae in great detail.
Several subsequent workers have utilized typology and frequency
(abundance) approachs to phytolith analysis for taxonomic
characterization and demarcation of cultivated and wild grasses
(Piperno, 1985; Zhang et al., 2012; Tripathi et al., 2013).

Rudall et al. (2014) employed the shapes of costal phytolith
morphotypes and their orientation to elucidate phylogenetic
relationships among different grass subfamilies and supported
the recognition of three clades within the family. The APP
(Anomochloideae, Pharoideae, Puelioideae) clade was treated
as the most primitive followed by BEP (Bambusoideae,
Ehrhartoideae, Pooideae) and species rich PACCMAD
(Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae,
Aristidoideae, Danthonioideae) clades. Kealhofer et al. (2015)
carried out phytolith analysis of leaf and synflorescence of
the foxtail millet [S. italica (L.) Beauv.]. In India, Jattisha and
Sabu (2015) brought out the taxonomic significance of foliar
phytoliths as diagnostic markers in some grasses of South India.
More recently, Shakoor et al. (2016) employed phytoliths from
underground (root) and aerial (culm, leaf & synflorescence)
parts for taxonomic demarcation of two reed grasses, Arundo
donax L. and Phragmites karka (Retz.) Trin. ex Stued.

Parry et al. (1984) marked the biochemical dimension
in phytolith characterization by reporting a time dependent
accumulation of some elements (K, Cl, P, and S) along with silicon
in the silicified microhairs from the lemma of the canary grass,
Phalaris canariensis L. and giving evidence of genetic control of
silicification. In recent years, physico-chemical characterization
of phytoliths has been extended to a study of the physical states
(as amorphous vs. crystalline), the mineral composition and the
study of functional groups and their bonding patterns through
sophisticated methods of analysis (Chauhan et al., 2011; Shakoor
et al., 2016).

The work reported in this paper is a part of the ongoing
program of research on the role of phytoliths in the systematic
analysis of grass flora in the area of study. Setaria species selected
for the present investigations showmorphological similarity with
one another as well as the foxtail millet S. italica (L.) P. Beauv. and
are placed closely in keys to species identification of the genus
(Layton and Kellogg, 2014). Setaria viridis (L.) P. Beauv. had an
Asian origin with phylogenetic relations with its domesticated
derivative the foxtail millet, S. italica with which it remains
interfertile (Shi et al., 2008). The second species of the present
sample, S. verticillata is the polyploid derivative of S. viridis (L.)
P. Beauv. (Layton and Kellogg, 2014). The third species, S. pumila
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(Poir.) Roem. & Schult. had an African origin (Rominger et al.,
2003) but shares a wide distribution with S. viridis and growth in
mixed populations and is included in the “S. viridis clade” of the
genus. The foxtail millet, Setaria italica would have been a useful
and desirable addition to the material but it is not cultivated in
the Punjab plains and was thus unavailable for this work. Even
though permanent herbarium sheets of this species were available
in the departmental herbarium, sufficient material could not have
been extracted from them for the present analysis.

MATERIALS AND METHODS

Area of Study
About twenty plant specimens of S. pumila and S. verticillata
were collected from the campus of Guru Nanak Dev University,
(32.64 ◦N and 74.82 ◦E) Amritsar, Punjab (Figures 1a–c). A
similar number of plants of S. viridis were collected from the
campus of Sher-i-Kashmir University of Agricultural Sciences
and Technology, (32.65 ◦N and 74.81 ◦E) Srinagar, Jammu
& Kashmir (Figures 1d,e). The specimens were collected at
flowering and fruiting stage. Taxonomic descriptions and
illustrations of the species were made from fresh material in
the standard formats of grass description proposed by Grass

Phylogeny Working Group (GPWG (Grass Phylogeny Working
Group)., 2001) and GPWG (Grass Phylogeny Working Group
II). (2011) systems and maintained by the online sources
(Clayton et al., 2016; GrassBase—The Online World Grass Flora:
The Board of Trustees, Royal Botanic Gardens [online]. Available
at http://www.kew.org/data/grasses-db.html and 2. Tropicos
(2011) http://www.tropicos.org. Name Search.aspx. 3.eflora of
China: http://www.efloras.org. Missouri Botanical Garden, St.
Louis, MO and Harvard University Herbaria, Cambridge, MA).
The species identity of the specimens was established by
comparison of the vegetative and reproductive morphology
and micromorphometry with standard descriptions available in
works of grass floristics of the world (Bor, 1960; Gould, 1968;
Cope, 1982; Gould and Shaw, 1983; Clayton and Renvoize,
1986; Watson and Dallwitz, 1992; Kellogg, 2015; Soreng et al.,
2017 and the region Sharma and Khosla, 1989; Kumar, 2014).
For preparation of herbarium sheets, three dried specimens for
each of the species have been deposited in the Herbarium of
the Department of Botanical and Environmental Sciences, Guru
Nanak Dev University, Amritsar (Voucher nos. 7373 to 7381).

Phytolith Analysis
About five to ten plants remaining intact after taxonomic
descriptions and dry preservation for hebarium specimens, were
dismembered into underground (root) and above ground (culm,
leaf and synflorescence) parts. The material was homogenized
(part wise) into lots. Some of the material from each lot was
preserved in 70% ethanol at 4◦C for in situ location of phytoliths.
The rest of the material in each lot was washed to clear dust and
adhering soil particles, sundried and stored in plastic jars for dry
ashing and further analysis.

Methodology of the present study followed a logical
and systematic sequence from in situ visualization of the
phytoliths in the leaf epidermis to dry ashing of plant parts

for disarticulation of individual morphotypes for recording
qualitative (morphotypic) data and collection of quantitative
(micromorphometric) data on phytoliths among the species and
their parts. Quantitative assessment also included frequency
distribution of various morphotypes. After data collection at the
level of light microscopy (LM), scanning electron microscopy
(SEM) of morphotypes was carried out to record their surface
ornamentations and three dimensional structures. Transmission
electron microscopy (TEM) was employed to study variations
in texture, interplanar spacing, and crystallinity of various
morphotypes. EDX analysis was employed to study elemental
composition of phytolith morphotypes and the rhizospheric soil.
XRD analysis revealed the physical phases of silica and other
minerals in the phytoliths. Similarly, FTIR analysis was carried
out to know the functional groups of phytoliths from different
plant parts.

In Situ Location
A study of in situ location and epidermal patterning of phytoliths
on both adaxial and abaxial surfaces of the leaf was carried
out according to the method of Clarke (1959) with some
modifications. The leaf segments from mature leaves were boiled
in tubes for 5–10min in distilled water. After cooling down
the tubes, leaf segments were put in ethanol (absolute) and
heated gently (80◦C) in a water bath till they were decolorized.
Thereafter, the segments were immersed in a solution of lactic
acid and chloral hydrate (3:1 v/v) and boiled again for 20–
30min in a water bath. After clearing, they were placed on
clean ceramic tiles with the adaxial surface upwards and the
epidermis was peeled off the middle part of mature leaf blades.
Similarly, peelings from abaxial surface of leaf segments were
obtained. Epidermal peelings were stained in Gentian Violet and
passed through a dehydration series of ethanol (30% through
50, 70, 90% and absolute ethanol) and mounted in DPX for
light microscopy and microphotography with a Micro Image
Projection System (MIPS-USB 0262) mounted on an Olympus
Binocular and connected to a computer for imaging.

Dry Ashing Method
The standard protocol of Carnelli et al. (2001) with some
modifications was employed for dry ashing of the plant material.
The dried and stored material of individual parts was taken from
the plastic jars, further dried in an oven, weighed and transferred
to porcelain crucibles. The material was incinerated at 550◦C
for 4–6 h to ashes. The crucibles were taken out of the furnace,
allowed to cool and ash contents were transferred to test tubes.
A sufficient amount of hydrogen peroxide (30%) was added to
submerge the ash and the test tubes were kept at 80◦C for 1 h
in a water bath. The mixture was decanted and rinsed twice in
distilled water. Hydrochloric acid (10%) was added to the pellet
and incubated at 80◦C for 1 h. Thereafter, themixture was washed
in distilled water and centrifuged for 15min at 7,500 rpm. The
supernatant was decanted off and the pellet was washed twice in
distilled water. The process was repeated till the pellet was clear.
Finally, the pellet was oven dried for 24 h at 60◦C to a powder
form and weighed. The silica content (%) was calculated by the
formula: final ash content/dry mass× 100.
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FIGURE 1 | Distribution of sampling sites in India (a–e): Setaria pumila (Poir.) Roem. & Schult. and Setaria verticillata (L.) P. Beauv. (b,c) and Setaria viridis (L.) P.

Beauv. & Schult. (d,e).

A small amount (ca. 0.1mg) of dried ash was dipped in 10ml
of Gentian Violet in a watch glass and stirred. A drop of this
mixture was put on a glass slide and covered with a cover slip. The
slides were heated gently and excess stain drained off with a filter
paper. Ten slides were prepared for each sample. Morphotypes
of phytoliths were photographed by Olympus Micro Image
Projection System (MIPS-USB 0262) at a uniform magnification
(40X). The phytoliths isolated by the dry ashing method from
underground (root) and aerial (culm, leaf, and synflorescence)
parts showed considerable diversity of phytolith morphotypes
in terms of their shapes and were classified according to
the International Code of Phytolith Nomenclature (ICPN 1.0;
Madella et al., 2005). Some of themorphotypes whose description
was not available in the ICPN nomenclature were classified as per
the schemes presented in Table 1.

Morphometry
Morphometric measurements of phytolith morphotypes were
made using Image J software (version 1.46r.). A total of
5 morphometric parameters of size and shape descriptors
were recorded on a minimum sample size calculated as per
recommendations of the International Committee for Phytolith

Morphometrics (ICPM, Ball et al., 2016) by the formula:

Nmin = Z2
α/2×S2/(ME)2

Where:Nmin = the minimum adequate sample size; Z2
α/2

= 1.64,

which is the square of the two tailed Z value for level of
significance (α) = 0.10; S2 = the variance, and (ME)2 = the
square of the permissible margin of error (in this case 0.05)× the
sample mean. This calculation estimates the minimum adequate
sample size required for 95% confidence that the sample means
are within 5% deviation from actual population means.

Scanning Electron Microscopy (SEM)
For SEM, dry ash was spread evenly over the stubs with the help
of double-sided adhesive tape under the stereoscope. Silver paint
was applied on edges of the stub and the samples dried overnight
at 40◦C. The next day, stubs were coated with graphite using a
vacuum evaporator and later coated with gold by a sputter coater
(QUORUM) and imaged under SEM (CARL ZEISS EVO 40) at
an accelerating voltage of 40 KV.

Transmission Electron Microscopy
TEM micrographs were obtained using a JEOL JEM-2100
operating at 200 keV. Samples were prepared by suspending a
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small quantity of powder (crushed in pestle and motar) in double
distilled water (DDW). The samples were sonicated for 30min
and a drop of material was placed on a carbon coated copper
grid. The grids were dried on filter paper using an electric lamp
and were subsequently analyzed. Structural details as well as the
chemistry of the samples were worked out by High Resolution
Transmission Electron Microscopy (HRTEM) and Selected Area
Electron Diffraction (SAED) of various phytolith types.

Biochemical Architecture
Elemental analysis of phytolith morphotypes and soil samples
were carried out with Scanning Electron Microscope-Energy
Dispersive X-ray analysis (SEM-EDX). Infrared spectra of silica
powder were obtained on a Fourier Transform Infrared (FTIR)
Spectrophotometer (System92035, Perkin-Elmer, England) at
room temperature using the standard KBr method. The
functional group spectra were recorded over a wavelength
range of 500–4,000 cm−1. X-ray Diffraction (XRD) studies were
performed on powder XRD system (Bruker D8 Advance) using
Cu Kα radiation (k = 1.5418 Å) in the 2θ (Bragg’s angle) at a
range of 20–70. The data were analyzed for presence of different
polymorphic structures of silica and other compounds using the
origin pro 8 software and following the notation of the Joint
Committee on Powder Diffraction.

Elemental composition of rhizospheric soil samples was
carried out with SEM-EDX. Soil samples (ca. 5 g) from the
rhizospheric region of the specimens taken for phytolith analysis
were collected and ground into fine powder. Small bits of the
powder were spread uniformly on the stubs and were scanned
using Energy Dispersive X-ray analyzer coupled with the SEM
through Inca software.

Statistical Analysis
Descriptive statistics of morphometric and elemental
composition data was carried out with the help of paleontological
statistics (PAST) software (Hammer et al., 2001). Cluster analysis
of presence/absence data of bilobate classes of phytoliths and
Principal component analysis (PCA) of morphometric and
elemental composition data was carried out using C2 data
analysis software (Juggins, 2003). This software has also been
used for plotting the stratigraphic diagram of the frequency data
of phytoliths. Pearson’s coefficient of association of phytolith
morphotypes of the three species were also calculated employing
computer programs developed for the purpose.

RESULTS AND DISCUSSION

Taxonomic descriptions of grasses include several (vegetative and
reproductive) characteristics that help to characterize and classify
taxa from subfamily down to the species and infra specific levels.
Morphological and morphometrical characters that diagnose
Setaria pumila, S. verticillata, and S. viridis from one another
are presented in Supplementary Table 1. Whereas qualitative
characteristics provide a clear cut account of similarities and
dissimilarities in paired comparisons, quantitative characteristics
show overlapping ranges and cryptic distinctions requiring
additional evidence for taxonomic resolution. In the present

context, phytolith analysis was employed to supplement and
substantiate taxonomic demarcation among the three species of
the genus Setaria P. Beauv.

Epidermal Patterns
Leaf epidermal characteristics play an important role in
taxonomic demarcation of grass taxa due to the unique
arrangement of epidermal long and short cells in the costal and
intercostal regions (Prat, 1936, 1948; Metcalfe, 1960; Ellis, 1979;
Hilu, 1984; Rudall et al., 2014).

The present study has revealed two distinct distribution
patterns of silica cells and associated epidermal cells. The first one
comprises long-short cell alternation in the intercostal region of
the epidermis and the second one includes axial rows of closely
spaced short silica cells in the costal region. These costal rows
of silica bodies are separated from each other by a single short
intervening cell known as the cork cell and are considered highly
diagnostic in grasses (Prasad et al., 2011). The intervening cells
are relatively thin walled, but resemble silica bodies in size and
shape.

The underlying causes for the concentration of the silica
bodies over the veins remain unknown though there is an
apparent positive correlation between silica deposition and
proximity to lignified tissues of the vascular bundles. Indirect
support for this association between lignin and silica deposition
comes from studies indicating a correlation between silica
deposition and lignin metabolism in grasses (Schoelynck et al.,
2010).

Supplementary Table 2 summarizes epidermal patterning and
the distribution of silica cells and other associated epidermal
cells on the adaxial and abaxial leaf surfaces of grass species
under investigation. S. pumila revealed one to three axially
oriented rows of bilobate phytoliths with each bilobate phytolith
flanked by silica cork cell in the coastal region on the adaxial
surface of cleared leaf segments (Figures 2Aa–e). It also showed
the presence of nodular bilobate phytoliths (Figure 2Aa). The
costal rows of silica cells showed the presence of prickle
hairs (Figure 2Ae). The intercostal region on adaxial surfaces
completely lacked silica cells except for occasional prickle hairs
(Figure 2Af) with those on the margin having the length of base
greater than the barb (Figure 2Ag). The abaxial surface of cleared
leaf segments of S. pumila presented a different scenario. The
costal region showed 1–3 bilobate to cross shaped silica cells with
each bilobate/cross pair of silica cells separated by silica cork cells
(Figures 2Ah–j). The intercostal region of the abaxial surface in
S. pumila showed prickle hairs between each pair of epidermal
long cells in alternating axial rows (Figures 2Ak,l). The margins
on abaxial surfaces showed prickle hairs with a much higher base
to barb length ratio than those on the margins of adaxial surfaces.

We have classified bilobate phytolith morphotypes into
eight subtypes based upon the length of their shank (the
interconnecting segment between two lobes) and the shape of the
outer margin of their lobes as proposed by Lu and Liu (2003)
(Supplementary Tables 2, 3 and Figure 2B). The bilobate shape
is highly conserved and has been employed in identification of
grass species (Lu and Liu, 2003; Gallego and Distel, 2004; Fahmy,
2008). The costal region on adaxial surface of S. pumila showed
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FIGURE 2 | (A) In-situ location of phytoliths in leaf epidermis of Setaria pumila (Poir.) Roem. & Schult. Adaxial surface (a–g) and abaxial surface (h–l). (B)

Morphological classification of bilobate phytolith morphotypes (data in Supplementary Table 4). (C) In-situ location of phytoliths in leaf epidermis of Setaria verticillata

(L.) P. Beauv. Adaxial surface (a–i) and abaxial surface (j–k). (D) In-situ location of phytoliths in leaf epidermis of Setaria viridis (L.) P. Beauv. & Schult. Adaxial surface

(a,b) and abaxial surface (c–f).

three structural variants of the bilobate phytoliths, (III, V, and VI)
out of a total eight variants of bilobates recorded from different
parts of Setaria species (Supplementary Table 3 and Figure 2B).
The bilobate and nodular bilobate type of phytoliths with each
lobate pair separated by silica cork cells have been reported in
the costal region of S. pumila (Sharma and Kaur, 1983; Ishtiaq
et al., 2001; Shaheen et al., 2011). However, these authors did not
report structural variations within the bilobates as recorded in the
present investigations.

S. verticillata showed an axial row of phytoliths comprising of
3–6 bilobates, a cross and a nodular bilobate flanked by prickle
hairs, with each phytolith pair separated by silica cork cells in

the costal region (Figures 2Ca–d). The costal region on adaxial
surfaces of S. verticillata had only two structural variants of
bilobate phytoliths (VII and IV as compared to three variants in
S. pumila (Supplementary Table 3). Shaheen et al. (2011) reported
bilobates on adaxial surfaces of the costal region of S. verticillata.
However, this work made no mention of the presence of the
nodular bilobate type of phytolith in the costal region on adaxial
surfaces. The intercostal regions lacked silica cells and prickle
hairs but showed the presence of long hairs (Figures 2Ce,h) in
contrast to S. pumila in which prickle hairs were present and long
hairs were completely absent. The presence of cystoliths (calcium
oxalate crystals) on the adaxial epidermal surface of S. verticillata

Frontiers in Plant Science | www.frontiersin.org 12 June 2018 | Volume 9 | Article 864101

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Bhat et al. Setaria Taxonomy From Phytolith Signatures

FIGURE 3 | (A) Undulated patterns and ornamentations on the epidermal long cells of Setaria pumila (Poir.) Roem. & Schult. synflorescence. Columellate extensions

(a–c); η-I type (d–g); granulate (h) and n-I type (i) type of epidermal undulation patterns. (B) Undulated patterns and ornamentations on the epidermal long cells of

Setaria verticillata (L.) P. Beauv. synflorescence. η-I (a–c); �-I (d), 3-I (e,f) 3-II (g,h), 3-III (i) and n-I (j), and n-II (k) type of epidermal undulation patterns.

(C) Undulated patterns and ornamentations on the epidermal long cells of Setaria viridis (L.) P. Beauv. synflorescence. �-I (a,b,g), � –II with papillate structures

(encircled) (c–e) and granulate epidermal extensions (f).

leaf as quadrihedrons and hexahedrons has emerged as the most
important diagnostic feature of the species. The cystoliths showed
greater concentration in costal rather than the intercostal regions
(Figures 2Cf,g). Even though cystoliths have been reported from
leaf epidermis in several other grass species (Benecke, 1903;
Sato, 1968; Dayanandan et al., 1977; Sato and Shibata, 1981;
Lerseten, 1983; Prasad et al., 2005), the present study is the first
report of cystoliths for the genus Setaria. The abaxial surface
in the costal regions showed a single axial row of bilobate and
nodular bilobate types of phytoliths (Figure 2Cj). The bilobate
class revealed two structural variants (III and IV). The intercostal
region showed 1–2 stomatal files of high domed stomata

(Figure 2Ck). The margins on abaxial surface showed the
presence of prickle hairs with base lengths greater than the barb
(Figure 2Ci).

S. viridis showed, on the adaxial surfaces 1-4 axial rows
of bilobate and nodular bilobate type of phytoliths in the
costal region with each phytolith pair flanked by silica cork
cells (Figures 2Da,b). Three variants of bilobate phytoliths were
present in S. viridis (II, IV, and V). These phytoliths are flanked by
a pair of prickle hairs in the costal region. The intercostal region
showed prickle hairs between each epidermal long cell pair. In
contrast to S. pumila and S. verticillata, the intercostal regions
of S. viridis occasionally showed a single row of phytoliths.
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S. viridis abaxial leaf surface had 1–3 rows of bilobate phytoliths
with occasional nodular bilobate types in the costal region
(Figures 2Dc,d). The bilobate class included two structural
variants (V andVI). The species had small one celled prickle hairs
in the intercostal regions in addition to prickle hairs with bases
smaller than the barb on the leaf margins (Figures 2De,f).

Epidermal Ornamentation and Undulation
Patterns
The ornamentation and undulation patterns of epidermal
long cells of synfloresence bracts have been put into three
categories viz., �-undulated, η-undulated, and n-undulated
ornamentations (Lu et al., 2009). We propose another undulated
ornamentation which can be represented by the symbol ‘3’
(Greek-Lamda) and further categorize it into three subtypes: 3-
I, 3- II, and 3- III. The 3-type of undulations were classified on
the width of the base and the length of the lateral extensions. If
the width of the base and its length was nearly equal, it was put
as 3-I type and if the length was three times the base of lateral
extensions, it was recognized as 3-II type. Similarly, if the length
of the lateral extension is more than thrice the width of the base
of the extension, it was put as 3-III. The � and η-undulated
ornamentations are generally present on the lemmas and palea
and have been further put into subtypes based on the degree of
undulations as �-I, � -II & �-III and η-I, η-II, η-III respectively
(Lu et al., 2009). n-undulated ornamentations were reported on
the margins of lemmas and paleas (Zhang et al., 2011).

S. pumila showed columellate extensions of epidermal cells
(Figures 3Aa–c) whereas they were absent in the other two
species. In addition to columellate extensions, S. pumila showed
the presence of η-I (Figures 3Ad–g), granulate (Figures 3Ah),
and n-I (Figures 3Ai) type of undulated ornamentations. These
types of ornamentations have been reported in some other
species of Setaria including S. italica, (Lu et al., 2009; Zhang et al.,
2011). In our sample, S. verticillata showed the presence of η-
I (Figures 3Ba–c) �-I (Figures 3Bd), 3-I (Figures 3Be,f) 3 –II
(Figures 3Bg,h), 3 –III (Figure 3Bi) and n-I (Figure 3Bj) and
n-II (Figure 3Bk). S. viridis showed �-I (Figures 3C a,b,g), � –
II (Figures 3Cc–e) and granulate (Figures 3Cf,g). The epidermal
elements also showed the presence of papillae on the surface of
lemmas. Kealhofer et al. (2015) also reported the similar (� –II)
type of epidermal undulated ornamentations in S. viridis.

Phytolith Morphotypes
In the present study, a cumulative total of 58 phytolith
morphotypes were identified with an individual distribution of
38 in S. pumila, 39 in S. verticillata, and 41 in S. viridis. These
morphotypes were grouped into nine broad categories namely,
bulliform cells, epidermal elements, hairs, long cells, short cells,
tabular types, globular types, blocky types, and tracheids (Table 1
and Figures 4–6, 7A–C). The first seven categories are known to
have their origin in the epidermis, blocky types in the endodermis
and the last one in the vascular tissue system (Twiss et al., 1969;
Lu and Liu, 2003).

Except for the blocky and globular types, phytolith
morphotypes have been well reported in family Poaceae
(Twiss et al., 1969; Bonnett, 1972; Prychid et al., 2004). Both

FIGURE 4 | Phytolith morphotypes from various parts of Setaria pumila (Poir.)

Roem. & Schult. (A) (Root): Bilobate class I (a); Bilobate class VI (b,c);

Bilobate class V (d,e); Polylobate (f); Nodular bilobate (g,h); Globular

(Continued)
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FIGURE 4 | polyhedral (i,j), Blocky irregular (k,l); Oblong (m); Trapezoid (n,o);

Rectangular (p,q); Cuneiform bulliform (r); Tabular irregular (s–v); Scutiform

(w). (B) (Culm): Blocky polyhedral (a,b); Trapezoid (c); Globular polyhedral (d);

Echinate elongate (e,f); Sinuate elongate with concave ends (g); Tabular

irregular (h); Sinuate elongate (i–k); Smooth elongate (l,m); Elongate irregular

(n,o). (C) (Leaf): Tabular simple (a); Blocky irregular (b); Rectangular (c);

Globular granulate (d,e); Blocky polyhedral (f); Parrellepedal bulliform cells (g);

Trapezoid (h–l); Globular polyhedral (m); Clavate (n,o); Cuboid (p,q);

Scutiform (r,s); Ovate (t,u); Cylindrical (v,w); Smooth elongate (x). (D)

(synflorescence): Macrohairs (a–e); Cuneiform bulliform (f); Globular polyhedral

(g); Epidermal elements (h); Echinate elongate (i–k); Clavate (i); Trapezoid

(m,n), Tracheid (o), Blocky polyhedral (p,q); Elongate irregular (r,s); Horned

tower (t,u); Blocky irregular (v); Globular granulate (w); Smooth elongate (x,y);

Facetate elongate (z); Sinuate elongate (aa); Columellate elongate (ab);

Stomata (ac); Prickle hair (ad); Bilobate class I (ae); Plates (af,ag).

blocky and globular (spherical) morphotypes are considered
to be characteristic of forest trees (Runge, 1999). Even within
monocots, spinulose to tabular spheres are typically associated
with the arborescent (palm) family, Arecaceae (Kealhofer and
Piperno, 1998) wherein these types are produced in great
abundance (Albert et al., 2007). While the blocky morphotype
has been reported in some grasses (Wang and Lu, 1993; Carnelli
et al., 2004), we have not come across any report of the globular
type in the family. However, in view of the reports of the globular
type from the commelinid families, Zingiberaceae, Marantaceae,
and Strelitziaceae (Tomlinson, 1956, 1961; Kealhofer and
Piperno, 1998; Brilhante de Albuquerque et al., 2013) and the
non-commelinid family Orchidaceae (Sandoval-Zapotitla et al.,
2010), the recovery of the globular morphotype in Poaceae
during the present studies was not entirely unexpected.

The present study marks a significant addition to information
on phytolith profiles particularly from underground (root) parts
of three species of genus Setaria. Most of the previous studies in
grasses have documented phytoliths from above ground parts,
mainly the leaf (Tomlinson, 1969; Twiss et al., 1969; Bonnett,
1972; Krishnan et al., 2000; Lu and Liu, 2003; Prychid et al., 2004;
Fahmy, 2008; Barboni and Bremond, 2009; Rudall et al., 2014;
Shakoor et al., 2014; Jattisha and Sabu, 2015). Only a limited
number of reports are available on phytolith analysis of roots of
plant species (Ezell-Chandler et al., 2006; Das et al., 2014; Soukup
et al., 2014; Shakoor et al., 2016).

A comparison among the three congeneric species of Setaria
revealed that some of the phytolith morphotypes were shared by
all the three species while some others were restricted to only
one or two of the three species in the present study (Table 1).
At one extreme were some morphotypes which had a ubiquity
value of unity, i.e. they occur in at least one plant part in all
the three species. For example, bilobate class V, blocky irregular
and blocky polyhedral were present at least in one plant part in
all the three species and hence carried a ubiquity value of unity
(Table 1). Such morphotypes have the lowest diagnostic value.
Similarly, phytolith morphotypes with a ubiquity value of 0.66
indicates their presence in two out of the three species. These
types could be utilized for taxonomic diagnosis and demarcation
of pairs of species in the present sample from the one lacking
these morphotypes (Table 1). For example, bilobate class III,

FIGURE 5 | Phytolith morphotypes from various parts of Setaria verticillata (L.)

P.Beauv. (A) (Root): Cuneiform bulliform (a,b); Tabular simple (c); Blocky

irregular (d–f); Cuboid (g); Globular echinate (h); Smooth elongate (i); Bilobate

class VII (j); Blocky polyhedral (k–m); Crescent moon (n,o); Parrellepedal

bulliform cells (p,q); Rectangular (r,s); Globular polyhedral (t–v); Elongate with

concave ends (w); Cylindrical (x); Triangular (y); Trapezoid (z). (B) (Culm):

Sinuate elongate (a); Ovate (b,c); Blocky crenate (d,e); Globular psilate (f);

(Continued)
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FIGURE 5 | Trapezoid (g,h); Clavate (i); Scutiform (j,k); Blocky irregular (l–n);

Blocky polyhedral (o); Cuboid (p); Smooth elongate (q); Half-moon (r). (C)

(Leaf): Globular granulate (a,b); Globular polyhedral (c); Rectangular (d,e);

Blocky polyhedral (f); Elongate irregular (g,h); Horned tower (i–k); Tabular

irregular (l); Trapezoid (m–o); Scutiform (p); Bilobate class IV (q); Bilobate

class VII (r); Nodular bilobate (s); Cuneiform bulliform (t–v); Blocky irregular

(w,x). (D) (Synflorescence): Epidermal element with columellate extensions (a);

Cuneiform bulliform (b,c); Blocky polyhedral (d) Smooth elongate (e,f);

Rectangular (g); Cuboid (h); Clavate (i); Acicular (j,k); Polylobate irregular (l);

Rondel (m–o); Cross (p); Globular polyhedral (q,r); Scutiform (s–u);

Columellate elongate (v); Echinate elongate (w); Trapezoid (x–z).

columellate elongate, cross, horned tower, oblong and tabular
simple demarcate S. pumila and S. verticillata from S. viridis in
the present sample. Similar is the case with other morphotypes
with ubiquity value of 0.66 between other pairs of species within
the three congenerics (Table 1).

Phytolith morphotypes with ubiquity value of 0.33 indicates
their presence in only one of the three studied species. Within
the limited context of the present work, these phytoliths
marked the individual species from the other two and
helped in their taxonomic demarcation. For example, bilobate
class I (Figures 4Aa,Da,e) from roots and synflorescences,
polylobate (Figure 4Af) from roots, sinuate elongate with
concave ends (Figure 4Bg) from culms, stomatas (Figures 4Dac)
facetate elongate (Figure 4Dz), and tracheids (Figure 4Do) from
synflorescences have ubiquity values of 0.33 and diagnose
S. pumila from the other pair of species (Table 1). The
“marker” phytolith morphotypes yielded by various parts of
S. verticillata included blocky crenate (Figures 5Bd,e) from
culms, crescent moon (Figures 5An,o) and elongate with
concave ends (Figure 5Aw) from roots, half-moon (Figure 5Br),
epidermal element with columellate extensions (Figure 5Da)
and polylobate irregular (Figure 5Dl) from the synflorescences
(Table 1). Similarly, the “marker” morphotypes from S. viridis
included bilobate class II (Figures 6D-h-j), epidermal element
with short silica cells and stomata, epidermal papillate, and
prickly elongate (Figures 7Cw,y,ad,ac) from synflorescences,
bilobate class VIII (Figure 6Bv) from culms, tabular polyhedral
from the culms and leaves (Figures 6Ce, 7Cl) and carinate
(Figures 6Bt,u, 7Cx) from the culms and the synflorescences
(Table 1). What adds to the diagnostic significance of these
morphotypes is that these were recovered from all the plant
parts ranging from roots to synflorescences. Hence, the present
study reiterates the necessity and significance of analysis of
phytoliths from all the underground and aerial plant parts before
utilizing them for taxonomic diagnosis as suggested in some
earlier studies as well (Kealhofer et al., 2015; Shakoor et al., 2016).
Here, it may be emphasized that these morphotypes “mark”
the individual species only from the other two in the present
study. An unqualified use of the term marker phytolith for the
types recovered from species in the present sample would be an
overstatement implying that these types diagnose these species
individually from rest of the species of the foxtail grass genus
Setaria. The full potential of phytolith types for interspecific
diagnosis can only be realized after phytolith analysis of the entire

FIGURE 6 | Phytolith morphotypes from various parts of Setaria viridis (L.) P.

Beauv. (A) (Root): Blocky polyhedral (a,b); Triangular (c,d); Rectangular (e–g);

Blocky irregular (h); Trapezoid (i–k); cuboid (l,m); Globular psilate (n); Globular

granulate (o–q); Scutiform (r,s); Parrellepedal bulliform cells (t–v); Oblong (w).

(B) (Culm): Globular polyhedral (a–e); plates (f,g); Triangular (h); Cuneiform

bulliform (i); Rondel (j); Smooth elongate (k); Rectangular (l–n); Blocky

irregular (o,p); Blocky polyhedral (q,r); Globular echinate (s); Carinate (t,u);

(Continued)
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FIGURE 6 | Bilobate class VIII (v); Clavate (w,x); Trapezoid (y–z1); Cuboid (z2,

z3); Elongate irregular (z4). (C) (Leaf): Blocky irregular (a–d); Tabular polyhedral

(e); Clavate (f); Echinate elongate (g,h); Sinuate elongate (i); Smooth elongate

(j); Pickle hair (k); Globular granulate (l–o); Scutiform (p–s); Cuboid (t–v);

Trapezoid (w–y); Ovate (z,z1); Bilobates class VII (z2) Bilobates class VIII (z3);

Plates (z4,z5). (D) (Synflorescence): Cuneiform bulliform (a–c); Blocky

polyhedral (d–g); Bilobate class II (h–j); Blocky irregular (k,l); Parrellepedal

bulliform cells (m–o); Globular polyhedral (p–r); Ovate (s,t); Smooth elongate

(u,v); Acicular (w); Prickle hair (x); Globular psilate (y,z); Cylindrical (z1).

genus. Similarly, “marker” types for the genus and suprageneric
levels can only be identified by profiling all the taxa included in
these ranks.

SEM of phytoliths of the three congenerics of Setaria
revealed subtle differences in topography of phytolith
morphotypes which was not clear in light microscopy
(Figures 7A–C). SEM has helped to distinguish and
segregate particular phytolith morphotypes into sub-types.
For example, the globular morphotype was further resolved
into globular crenate (Figure 7Cr) globular granulate
(Figures 7Aa,d,Bi), globular echinate (Figures 7Al,Co,p),
globular polyhedral (Figures 7Aq,r,Bh,Ca,h,z), and globular
psilate (Figures 7Be,Ck) morphotypes based on the type
and degree of surface ornamentations. Similarly, the tabular
morphotype was segregated into tabular polyhedral (Figure 7Cl),
tabular irregular (Figure 7Cq) and tabular polyhedral
(Figure 7Ct). Earlier studies grouped all broad and multisided
structures into trapezoid category (Piperno, 1988, 2001; Pearsall,
2000). But recent studies have distinguished two more categories
within the trapezoid morphotype viz., blocky polyhedral and
blocky irregular morphotypes (Traoré et al., 2014). We have
also recognized blocky irregular (Figures 7Ab,o,Bj,r,Cb) and
blocky polyhedral (Figures 7Af,k,Ba,b,Cc,d,n,ab) morphotypes.
Additionally, SEM has revealed the interlocking patterns
between epidermal elements (Figures 7Cv,w,y). It has also
revealed the presence of silica short cells embedded with the
epidermal elements (Figure 7Cw).Thus, SEM has been employed
as an effective tool in elucidation of ultrastructural features of
phytolith morphotypes and their classification into subtypes that
have further helped in demarcation of the grass species under
reference.

The coefficient of association of phytolith morphotypes
based on Pearson’s association revealed highest association
among overground parts (Supplementary Table 4). The strongest
association was found among the leaf and synflorescence of
S. pumila and S. viridiswhereas S. verticillata showed significantly
lower values of association (Supplementary Table 4). The
highest values of coefficient of association between leaf and
synflorescence could be attributed to the anatomical similarities
of leaf and synflorescence bracts that produce phytoliths.
Similarly, insignificant association between the underground
and overground parts could be explained by the anatomical,
histological and physiological differences among these plant
parts and hence the phytolith morphotypes produced by
them.

Clustering of species on the presence/ absence data of bilobate
classes, using Jaccard’s similarity index was carried out. S. pumila
belongs to one clade of Setaria whereas the other two species
belong to the other clade (Doust and Kellogg, 2002). A similar
trend was observed in clusters from the totality of morphotypes
(Figure 8). S. pumila stood apart from the other two species
as it has 33% similarity of phytolith profile with S. verticillata
and 28.57% with S. viridis. However, S. verticillata and S. viridis
showed 42.85% similarity and were grouped together (Figure 8).

Frequency Distributions and Morphometric
Measurements
Several studies in the past have utilized data on morphotypes
for taxonomic characterization and identification of plant species
(Twiss et al., 1969; Lau et al., 1978; Hodson and Sangster,
1988; Ollendorf et al., 1988; Whang et al., 1998; Krishnan
et al., 2000; Ponzi and Pizzolongo, 2003; Piperno, 2006).
However, recent studies have enlarged the scope of phytolith
research by including data on morphometric measurements and
frequency distributions of phytolith morphotypes for taxonomic
demarcation of species down the taxonomic hierarchy from
family, genus, and species levels (Strömberg, 2009; Jattisha and
Sabu, 2012; Tripathi et al., 2013; Szabo et al., 2014; Shakoor et al.,
2016; Ball et al., 2017; Out and Madella, 2017).

Setaria spp. showed considerable differences in the frequency
distribution of various phytolith morphotypes (Figure 9). The
most frequent in all the three species were the trapezoids.
However, they differ significantly within and between the species
with 19.47% frequency in S. pumila, 14.38% in S. verticillata and
7.91% in S. viridis (p ≤ 0.05; χ2-test). Acicular morphotypes
present in both S. verticillata and S. viridis differed many
fold in terms of their percentage frequency with 15.17% in
the former and 2.18% in the later species. Bilobate classes
also differ significantly with respect to frequency distributions.
For example, bilobate class III were present in the leaves of
S. pumila and S. verticillata with highly variable percentage
frequency values of 9.44% and 3.10% respectively (p ≤ 0.05;
χ2-test). Similarly, bilobate class IV occurred in the leaves
of S. verticillata and S. viridis with a percentage frequency
of 8.10 and 4.39% respectively (p ≤ 0.05; χ2-test). Similarly,
other phytolith morphotypes revealed significant differences in
percentage frequency providing a definite clue that frequency
of occurrence of phytolith morphotypes provides an additional
evidence for taxonomic characterization apart from qualitative
differences in phytolith types (Figure 9).

Apart from frequency distributions, morphometric data
on size dimensions and shape descriptors of morphotypes
also revealed significant differences between the species
(Supplementary Tables 5A–C). In the present analysis, we
included data on size parameters (length, width, area and
perimeter) and one shape descriptor, the aspect ratio. Further,
length and width of the shank of bilobate types have been
employed as additional characteristics to classify the bilobates
into various subtypes in order to further supplement taxonomic
diagnosis of species (Supplementary Table 3). The use of
multivariate statistical approaches like principal component
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FIGURE 7 | Scanning Electron Micrographs (SEM) of phytolith morphotypes from various parts of: (A) Setaria pumila (Poir.) Roem. & Schult. Root: Globular granulate

(a) Blocky irregular (b); Bilobate class V (c). Culm: Globular granulate (d) Cuneiform bulliform (e). Blocky polyhedral (f); Trapezoid (g); Leaf: Trapezoid (h,i);

(Continued)
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FIGURE 7 | Blocky irregular (j); Blocky polyhedral (k); Globular echinate (l); Elonagate irregular (m). Synflorescence: Prickle hair (n); Blocky irregular (o); Epidermal

element with undulated ridges (p); Globular polyhedral (q,r); Trapezoid (s); Prickle hair (t). (B) Setaria verticillata (L.) P.Beauv. Root: Blocky polyhedral (a,b); Cuneiform

bulliform (c); Trapezoid (d); Globular psilate (e). Culm: Scutiform (f); Elongate irregular (g). Leaf: Globular polyhedral (h); Globular granulate (i); Blocky irregular (j);

Blocky polyhedral (k). Synflorescence: Echinate elongate (l); Crenate elongate (m); Columellate elongate (n); Blocky papillate (o); Trapezoid (p); Acicular (q); Blocky

irregular (r); Rugose elongate (s). (C) Setaria viridis (L.) P. Beauv. Root: Globular polyhedral (a); Blocky irregular (b); Blocky polyhedral (c,d); Trapezoid (e,f). Culm:

Trapezoid (g). Globular polyhedral (h); Epidermal element with undulated ridge (i); Blocky irregular (j); Globular psilate (k); Tabular polyhedral (l). Leaf: Trapezoid (m);

Blocky polyhedral (n); Globular echinate (o,p); Tabular irregular (q); Globular crenate (r); Bilobate class V (s); Tabular polyhedral (t). Synflorescence: Trapezoid (u);

Epidermal element (v); Epidermal element with silica short cells & stomata (w,y); Carinate (x); Globular polyhedral (z); Triangular (aa); Blocky polyhedral (ab); Prickly

elongate (ac); Epidermal papillate (ad); Scutiform (ae).

FIGURE 8 | Clustering of three species of Setaria P. Beauv. based on

presence/absence data of bilobate phytolith morphotypes. [SP, Setaria pumila

(Poir.) Roem. & Schult.; SVC, Setaria verticillata (L.) P. Beauv.; SV, Setaria viridis

(L.) P. Beauv.].

analysis has been recommended and employed in earlier studies
for taxonomic demarcation of species (Benvenuto et al., 2015;
Pearsall, 2015; Ball et al., 2016).

Joint PCA analysis of morphometric parameters of phytoliths
from different parts of the three species led to overcrowding of
the data and did not help in diagnosis of species. However, PCA
analysis of morphometric parameters of phytoliths from different
parts individually proved useful in taxonomic demarcation of
the species. PCA analysis of root phytoliths clearly separated
the three species on the basis of surface areas of different
morphotypes (Supplementary Figures 1a,b). S. pumila was
demarcated on the basis of surface areas of blocky irregular
and tabular irregular, S. verticillata by blocky polyhedral and
S. viridis by area of trapezoid morphotypes as revealed by
PCA results of component 1 and 2 (Supplementary Figure 1a).
However, the PCA plot between component 1 and 3 revealed
more clear demarcation than obtained from components 1
and 2 (Supplementary Figures 1b). PCA analysis of phytolith
morphotypes of culm of the three species brought about the

taxonomic demarcation of species on the basis of the area of
smooth elongates for S. verticillata, and tabular irregular for S.
pumila (Supplementary Figure 2). Similarly, PCA analysis of leaf
and synflorescence phytolith morphotypes of the three species
lent further support to taxonomic analysis of the three species
of Setaria (Supplementary Figures 3, 4).

Transmission Electron Microscopy
TEM allows visualization and microstructural examination
through a combination of high magnification and resolution.
It helped to distinguish various physical states including
amorphous from the crystalline and helped to study their
atomic planes, (columns of atoms in crystals). TEM images
of phytolith morphotypes from leaves and synflorescences of
S. pumila and S. verticillata showed macroscopic clusters and
agglomerates of silica that were not distinguished into particles at
nanoscale regime (Figures 10Aa–d,Ba–d,Ca–c,Da,b). However,
phytoliths from leaves and synflorescences of S. viridis revealed
silica particles of spherical and cubic morphologies of nanoscale
regime and were clustered (Figures 10Ea,b,Fa,b). The presence
of spherical and cubic nanoparticle clusters in the latter species
clearly demarcates it from the other two congenerics. Gonzalez-
Espindola et al. (2014) reported clusters and agglomerates of
phytoliths as well as spherical particles of nanoscale regime
from the leaves of the grass species Stenotaphrum secundatum.
Palanivelu et al. (2014) reported agglomerated particles of
silica nanoparticles from rice hulls collected from different
geographical locations.

High resolution transmission electron microscopy (HRTEM)
revealed the presence of ordered interplanar atomic layers
of Si–O, Si–O–Si bonds in all the species except in the
leaf phytoliths of S. verticillata (Figures 10Ae,Be,Dc,Ec,Fc),
which did not possess regular ordering of local clusters
of Si–O and the silica bodies were completely amorphous
(Figures 10Bd,e). HRTEM analysis of phytoliths from leaves
of S. pumila and S. viridis revealed microcrystalline structures
with an interplanar distance (d-spacing) of 0.1 nm which
was indicative of the presence of tetragonal cristobalite
polymorph of silica (Figures 10Ae,Fc). Similarly, silica from the
synflorescences of all the three species revealed microcrystalline
structures with a difference of interplanar distance which
was 0.08 nm for S. pumila and S. viridis and 0.083 nm
for S. verticillata. These distances correspond to tetragonal
stishovite polymorphs (Figures 10Be,Dc,Fc) whose formation
was favored by the presence of localized crystallization
centers such as extraneous cations dispersed throughout
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FIGURE 9 | Stratigraphic diagram showing percentage frequency of different phytolith morphotypes. (Description of phytolith morphotypes from Table 1).

FIGURE 10 | Continued.
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the siliceous phytoliths (Mann and Perry, 1986). The link
got substantiated and explained by the presence of cations
like Al2+, Ba2+, Fe2+,Ca2+,Cu2+, Mg2+, Na+, and K+ as

FIGURE 10 | Continued.

revealed by SEM-EDX analysis of phytoliths (Supplementary
Table 6).

Selected area electron diffraction (SAED) reveals the
chemical composition of different mineral phases by their
different patterns generated by the impact of X-rays and fast
moving electrons. Phytoliths from the leaves of S. pumila and
S. viridis revealed well defined single crystalline lattices that
could be resolved to hexagonal and orthorhombic lattices of
SiO2. (Figures 10Af,Ed) that were continuous and unbroken
in the former but lacked grain boundaries in the latter (cf.
Reid et al., 2011). The amorphous structure of phytoliths
was revealed by an absence of SAED patterns (Figure 10C).
Similarly, phytoliths from synflorescences of S. pumila revealed
single crystal lattices corresponding to SiO2 (with cubic,
tetragonal and orthorhombic morphologies) and zeolites
with a cubic lattice system (Figure 10B). The SAED pattern
of synflorescences of S. verticillata and S. viridis showed
well defined rings confirming their polycrystalline nature
(Figures 10Dd,Fd). The SAED patterns of phytoliths from
S. verticillata correspond to orthorhombic ferrierite and
tridymite and anorthic SiO2 polymorphs. Similarly, SAED
patterns of silica from S. viridis correspond to orthorhombic
ferrierite and tridymite (Figure 10Fd). Apart from taxonomic
resolution, the formation of nanoscale silica particles during dry
ashing of the plant material has applications in nanotechnology,
particularly synthesis of metal silicates (Neethirajan et al., 2009;
Qadri et al., 2015).

Biosilica Content
Grasses deposit silica in varied amounts in different plant parts
ranging from 1 to 11% (Jones and Handreck, 1967). In the
present study, the three species of Setaria revealed considerable
differences in terms of ash and silica content in their parts
(Supplementary Figure 5). The species showed higher values
of ash and silica in their foliar parts with 21.06% ash and
11.62% silica in S. pumila, 19.87% ash and 9.23% silica in S.
verticillata and 16.43% ash and 6.24% silica in S. viridis. The
ash and silica content in other parts were in the order of,
synflorescences>roots>culms. Higher amounts of silica in the
leaves and synflorescences of grasses are well reported (Lanning
and Eleuterius, 1981, 1987, 1989). The differential amounts of
silica within and between different parts of the plant body have
been correlated to the differences in the targeted cellular sites of
silicification. For example, in roots endodermal cells have been
proved to be the usual targets of silicification while in the aerial
parts of the plant body different epidermal cells and associated
structures as well as the cells of vascular bundles, and the spaces
between the cortical cells are believed to be the targeted sites of
silicification (Kumar et al., 2017; Kumar and Elbaum, 2018).

Our results indicated significantly higher silica content in the
leaves of the presently studied Setaria species as compared to
some other species of the genus. For example a much lower
amount (6.06%) was reported in S. magna Griseb. (Hodson et al.
(1982)) and other members of tribe Paniceae (1.04% for Panicum
reptans L., 3.7% for Digitaria macroblephara (Hack.) Paoli) and
related tribes (1.34% for Imperata cylindrical (L.) Raeusch. and
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FIGURE 10 | Transmission electron microscopy of Phytoliths (A,B): Setaria pumila (Poir.) Roem. & Schult. Leaf (A) (a–d) Clusters and agglomerates of silica (e)

HRTEM (f) SAED patterns (Figures in parenthesis indicate hkl values and for description of alphabets refer Supplementary Table 8) and Synflorescence (B) (a–d)

(Clusters and agglomerates of silica (e) HRTEM (f) SAED patterns (Figures in parenthesis indicate hkl values and for description of alphabets refer Supplementary

Table 8). (C,D) Setaria verticillata (L.) P. Beauv. Leaf (C) (a–c) Clusters and agglomerates of silica (d–e) HRTEM (f) SAED patterns and Synflorescence (D) (a–b)

Clusters and agglomerates of silica (c) HRTEM (d) SAED patterns (Figures in parenthesis indicate hkl values and and for description of alphabets refer Supplementary

Table 8). (E,F) Setaria viridis (L.) P. Beauv. Leaf (E) (a,b) Spherical silica particles (c) HRTEM (d) SAED patterns (Figures in parenthesis indicate hkl values and for

description of alphabets refer Supplementary Table 8) and Synflorescence (F) (a,b) Cubic and agglomerated silica (c) HRTEM (d) SAED patterns (Figures in

parenthesis indicate hkl values and for description of alphabets refer Supplementary Table 8).

2.7% for Themeda triandra Forssk.) of the subfamily Panicoideae
(Lanning and Eleuterius, 1989; Quigley and Anderson, 2014).

The variation in silicification rates in underground and aerial
parts (particularly leaf and synflorescence bracts) are known
to be controlled by a multitude of extrinsic (availability of
silica and water in the soil) and intrinsic factors including
the extent and nature of silicon transporters and channels,
sink strength and the functional anatomy of various plant
parts (Motomura et al., 2002; Ma and Yamaji, 2006; Honaine
and Osterrieth, 2011). Besides these factors of control, higher
levels of silicification in leaf laminae and the synflorescence
bracts of aerial plant parts have been correlated with higher
evapotranspiration rates in these parts. Once absorbed, silica
is transported via xylem to various plant parts through the
transpiration stream. As water evaporates during transpiration,
silicic acid solutes are progressively concentrated resulting in
super-saturated concentrations of Si(OH)4 and deposition in
tissues as amorphous silica in the form of phytoliths; the extent
of supersaturation being controlled by the concentration of silicic
acid in soil water (Jones and Handreck, 1965; Rosen andWeiner,
1994; Raven, 2003; Exley, 2015).

Elemental Composition
Thoughmainly siliceous in nature, phytoliths deposit many other
elements in addition to silicon and oxygen in varying proportions
during the course of their development (Shakoor et al., 2016).

The elemental composition of phytolith morphotypes is reported
to be controlled by species characteristics, geochemistry and
prevailing environmental conditions (Bujan, 2013; Kamenik
et al., 2013; Hodson, 2016). However, the elemental composition
of phytoliths in association with their morphology has proved
useful for taxonomic diagnosis of species. Elemental composition
has been shown to be stable enough to serve as definitive evidence
of palaeo-environments by providing clues to the type of the soil
in which a given species grew (Kamenik et al., 2013; Hodson,
2016).

The presence of different elements in phytolith morphotypes
of the present samples reflect the availability of elements in
the soil (Supplementary Table 7). However, the present study
revealed some species-specific elements as well. The elemental
composition of rhizospheric soil samples from the three sampling
sites (Figure 1) revealed a cumulative number of fourteen (14)
elements (aluminum (Al), carbon (C), calcium (Ca), copper (Cu),
iron (Fe), magnesium (Mg), sodium (Na), phosphorous (P),
potassium (K), oxygen (O), silicon (Si), sulfur (S), titanium (Ti),
and zinc (Zn). Species wise characterization of the soil revealed
11 elements (Al, Ca, C, Fe, Mg, O, K, Si, Na, Ti, and Zn excluding
Cu, P, and S from the cumulative list) from sampling sites of S.
pumila, 10 elements (excluding Cu, P, S, and Zn) from the soil
supporting S. verticillata whereas the rhizospheric soil samples
from the S. viridis sampling site revealed 12 elements (excluding
Na and Zn from the cumulative list).
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FIGURE 11 | SEM-EDX spectra of phytoliths isolated from different parts: (A) Setaria viridis (L.) P. Beauv. Root (1-a); Culm (2-b); Leaf (3-c); and Synflorescence (4-d).

(B) Setaria verticillata (L.) P.Beauv. Root (1-a); Culm (2-b); Leaf (3-c,4-d), and Synflorescence (5-e). (C) Setaria pumila (Poir. Roem. & Schult. Root (1-a); Culm (2-b);

Leaf (3-c); and Synflorescence (4-d).

SEM-EDX analysis of the phytolith morphotypes from
different parts of the three species revealed a cumulative total
of 16 elements with 12 in S. pumila 14 in S. verticillata and
11 in S. viridis (Figures 11A–C and Supplementary Table 6). A
comparison of elemental composition data of soil samples and
phytolith morphotypes revealed that soil geochemistry controls
the composition of phytoliths. However, some elements were
present in phytolith samples in traces but were not detected
in soil samples. For example chlorine (Cl) was detected in
phytoliths from all parts of S. pumila and S. verticillata. Similarly

barium (Ba), copper (Cu), and sulfur (S) were detected in the
latter named species and rubidium (Rb) and sodium (Na) in S.
viridis. This unexpected difference in elemental composition of
soil samples and phytoliths could be attributed to some sort of
“accumulation” of these elements in the living cells producing
phytoliths. Most importantly, some elements were unique to
one or the other species: barium (Ba), phosphorous (S), and
sulfur (S) were detected in S. verticillata and rubidium (Rb)
in S. viridis Principal Component Analysis (PCA) of elemental
composition data from different parts of the three congeneric

Frontiers in Plant Science | www.frontiersin.org 23 June 2018 | Volume 9 | Article 864112

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Bhat et al. Setaria Taxonomy From Phytolith Signatures

FIGURE 12 | PC analysis of elemental composition of data of phytolith

morphotypes of Setaria spp. SPR, Setaria pumila root; SPC, Setaria pumila

culm; SPL, Setaria pumila leaf; SPS, Setaria pumila synflorescence; SVCR,

Setaria verticillata root; SVCC, Setaria verticillata culm; SVCL, Setaria

verticillata leaf; SVCS, Setaria verticillata synflorescence; SVR, Setaria viridis

root; SVC, Setaria viridis culm; SVL, Setaria viridis leaf; SVS, Setaria viridis

synflorescence.

species led to demarcation of S.‘verticillata from the other two
congenerics with the first two components explaining 97.12%
(85.12% component 1+ 15% component 2) variation in the data
set (Figure 12). The present study has revealed higher atomic
and weight percentage values for carbon (C), oxygen (O), and
silicon (Si) in phytoliths whereas other elements were present
in considerably lesser amounts. The occlusion of carbon in
phytoliths has been compared to its sequestration in cellulose and
lignin (Parr and Sullivan, 2005). However, EDX analysis revealed
the element form of carbon in phytoliths rather than the organic
form.

Biomineralization of silica in plants is known to ameliorate
metal (Al, Cu, Fe) and salinity stress (Okuda and Takahashi,
1962; Matoh et al., 1986; Cocker et al., 1998; Yeo et al.,
1999). The deposition of metals like Al, Cu, Fe in phytoliths
possibly alleviates the toxicity associated with these elements.
Similarly, salinity stress seemed to be ameliorated by the
bioaccumulation of silicophytoliths as revealed by K, Ca, and
Mg in phytoliths (Anala and Nambisan, 2015). The segregation
and compartmentalization of phytoliths embodying Si and other
minerals has made isolation of these elements possible (Raven,
1983). Thus, deposition and immobilization of these toxic
elements in the silicification process may be a strategy of plant
species to get rid of these materials via their transport along the
transpirational route and final occlusion in phytoliths.

X-Ray Diffraction Analysis
Silica exists in diverse polymorphs and sub-morphs; crystalline
forms include alpha and beta-quartz, cristobalite, tridymite,

coesite, keatite, and stishovite. Amorphous silica has the same
composition as SiO2 but has a random structure of the crystal
lattice. The presence of both types in our specimens can
be attributed to the transformation of amorphous silica into
different crystalline polymorphs during dry ashing of thematerial
(Holm et al., 1967).

Powder diffractograms of phytoliths isolated from
underground and aerial parts of Setaria showed peaks
characteristic of different crystalline polymorphic phases
(Figures 13A–C). The most frequent phases were silicon dioxide
(SiO2) from all the parts of the species (except the leaf of S.
verticillata) and quartz (except in leaves and synflorescences
of S. verticillata. The other phases present in all the three
species (at least in one of the parts) included zeolites, tridymite,
stishovite, ferririte, coesite and cristobalite (Figures 13A–C and
Supplementary Table 8). However, stishovite was diagnostic of
roots and leaves of S. pumila whereas ferririte was restricted
only to the roots of S. viridis, suggesting a role in taxonomic
diagnosis as already reported for some of the grass species
(Gonzalez-Espindola et al., 2010, 2014; Shakoor et al., 2016).

The polymorphic phases have been known to have an
identical chemical composition (SiO2) but different physical
properties and lattice symmetries. They show distinct lattice
systems ranging from anorthic (triclinic), through monoclinic,
orthorhombic, hexagonal, cubic, and tetragonal. The present
studies lend further credence to the existence of polymorphic
silica in plants (Ollendorf et al., 1988; Piperno, 1988, 2006;
Lu and Liu, 2003; Lu et al., 2009; Zhang et al., 2011; Szabo
et al., 2015; Ge et al., 2016). The diffractogram of phytoliths
of S. viridis (root) and S. pumila (root and culm) showed a
unique peak corresponding to ferrierite and zeolite respectively.
(Figures 13A,C). Ferrierite is a zeolite (aluminosilicate mineral)
that binds a number of cations viz., Na+, K+, Ca2+, Mg2+ etc.
The presence of these phases can be explained by elemental
composition data.

Further, the FTIR analysis revealed a peak of Aluminosilicate
minerals in these species, thus supporting our XRD results
(Figures 14A,C). Earlier, Kow et al. (2014) confirmed the shift
from amorphous to crystalline phases of silica in cogon grass
(Imperata cylindrica (L.) P. Beauv.) in the presence of potassium
(K). Similarly, the presence of other minerals like, Na, Ca, Mg,
K etc. in phytoliths from the different parts of these congeneric
species could afford a possible explanation (acting as a controlling
factor) for the presence of different crystalline polymorphic
phases of silica. Such an association is further indicated by the
presence of only amorphous silica in the phytoliths from the
culms of S. verticillata that harbor a smaller number of elements
(only 4 besides C&H) as compared to phytoliths from other parts
of the plant body (Figure 13B and Supplementary Table 7).

FT-IR Spectroscopy
FTIR spectroscopy of silica from different parts of Setaria
spp. revealed several peaks that could be assigned to different
structural units of silica with varied vibrational degrees of
freedom (Figures 14A–C and Supplementary Table 9). The peaks
between 445.67–472.00 cm−1, 637.48–699.54 cm−1, 712.70–
801.08 cm−1, 1080.06–1094.44 cm−1, 1602.17-1616.24 cm−1,
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FIGURE 13 | XRD diffraction spectra of phytoliths isolated from different parts of Setaria spp. (A) Setraia pumila (B) Setaria verticillata (C) Setaria viridis (for description

of peak points, refer to Supplementary Table 8).

FIGURE 14 | FTIR spectra of phytoliths from different parts of Setaria sps. (A) Setaria pumila (B) Setaria verticillata (C) Setaria viridis (for description of peak points,

refer to Supplementary Table 9).
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1628.50–1641.66 cm−1, 2339.32–2366.49 cm−1, and 3346.27–
3597.36 cm−1 present in all the three species (Figures 14A–C
and Supplementary Table 9) have earlier been variously ascribed
to deformation vibration of O–Si–O group (Bertoluzza et al.,
1982), symmetrical vibration of Si–O–Si (Gopal et al., 2004),
symmetric vibration of Si–O (Brinker et al., 1990), asymmetric
vibration of Si–O–Si (Karunakaran et al., 2013; Mourhly et al.,
2015), inplane stretching vibration of C-C (Ou and Seddon,
1997), deformation vibration of H–O–H (Socrates, 2001),
inplane stretching vibration of Si–C (Socrates, 2001) and O–
H/Si–OH bonds (Brinker et al., 1990) bonds. Peaks between
530.39–563.18, 1164.92, 1218.93, 1323.08–1332.72, 1743.21–
1933.14, 2825.52, and 3006.82–3271.05 cm−1 characteristic of
S. verticillata (L.) P. Beauv. (Figure 14B and Supplementary
Table 9) could be ascribed to stretching vibration of O–Si (SiO2

defect) (Brinker et al., 1990), asymmetric vibration of Si–O–
Si (Duran et al., 1986), inplane stretching of free Si–O (Chmel
et al., 2005), symmetric deformation vibration of Si–R (Socrates,
2001), deformation vibration of R (alkyl group), symmetric
vibration of C–H (Gunzler and Gremlich, 2002), and stretching
vibration of O–H bonds (Brinker et al., 1990). Similarly,
peaks at 1463.02 and 1701.84 cm−1 characteristic of S. viridis
(Figures 14C and Table 10) could be ascribed to asymmetric
and symmetric deformation vibrations of hydrocarbons (–CH3-
CH2)– (Watling et al., 2011) and inplane stretching vibrations of
Si–C bonds.

CONCLUSIONS

Within the context, scope and parameters of reference samples
used in the present work, the three congenerics of Setaria
revealed a degree of similarity in phytolith profiles but each was
found to be well demarcated from the other in the group by
“unique” morphotypes and their characteristic assemblages and
structures. The bilobate morphotypes aptly illustrate phytolith-
assisted taxonomic demarcation of the three species. In the
present study, eight variants of the bilobate morphotype were
recognized on the basis of the length of the shanks (the
interconnecting segment between the lobes) and the shape of
the outer margin of the lobes. S. pumila showed three of the
eight structural variants of the bilobate phytoliths (III, V, and
VI) in the costal region on the adaxial surfaces. In the same
location, S. viridis also showed three of these variants (II, IV,
and V) whereas S. verticillata had only two of them (VII and
IV). Thus bilobate classes were found to be highly conserved
and useful for identification of grass species. Quadrihedral and
hexahedral cystoliths (calcium oxalate crystals) on the adaxial
epidermal surfaces of S. verticillata emerged as another diagnostic
feature of the species (a first report for the foxtail grass genus
Setaria)S. verticillata was also marked out by the presence of a
new undulation type, (the 3-lambda with three variants viz. 3-I,
3-II, and 3-III) in the long epidermal cells.

Besides qualitative differences, the present samples of
the three species also revealed interspecific variations in
frequency distribution and morphometric measurements of
various morphotypes. For example, the frequency of trapezoids

was significantly different in these species: 19.47% in S. pumila,
14.38% in S. verticillata, and 7.91% in S. viridis (p ≤ 0.05; χ2-
test). Acicular morphotypes were present in both S. verticillata
and S. viridis but differedmany fold in their percentage frequency
(15.17 and 2.18% respectively).

Principal Component Analysis of morphometric parameters
of phytoliths from different parts of the plant body proved useful
in taxonomic demarcation of the species. PCA of root phytoliths
clearly separated the three species on the basis of the surface
area of different morphotypes. S. pumila was demarcated on
the basis of the surface area of blocky irregular and tabular
irregular, S. verticillata by the surface area of blocky polyhedral
and S. viridis by the area of trapezoid morphotype.

TEM revealed three valuable distinguishing parameters
of phytoliths namely, micro-structural details, degree
of amorpho-crystalline nature and inter-atomic planer
distances in crystalline samples. Secondly, ultramicroscopy
has proved useful in comparing and collating phytolith
profiles from different parts of the plant body to develop
phytolith signatures for each species. SAED patterns revealed
by TEM showed the polycrystalline nature of silica in the
synflorescences of S. verticillata and S. viridis whereas single
crystal systems were reported in other parts of the three
species. Thirdly, indexing of SAED patterns revealed silica
polymorphism. The polymorphs of silica revealed by TEM
were further confirmed by XRD patterns, particularly the
ferrierite in S. viridis (root) and zeolite in S. pumila (root and
culm).

The elemental composition of phytolith morphotypes from
different parts of the present samples of the three species
has revealed a cumulative total of 16 elements with 12
in S. pumila 14 in S. verticillata and 11 in S. viridis.
A comparison of elemental composition of soil samples
and phytolith morphotypes revealed that soil geochemistry
controls the composition of phytoliths. Powder diffractograms
of phytoliths revealed a number of polymorphic phases
of silica. Stishovite was diagnostic of roots and leaves of
S. pumila whereas ferririte was restricted only to the roots
of S. viridis, thus strengthening a case for their role in
taxonomic diagnosis as already reported for some other grass
species.

FTIR analysis has revealed diversity of functional groups
and their modes of vibrations with some groups being
exclusively species specific. S. verticillata showed stretching
vibration of O–Si (SiO2 defect), asymmetric vibration of
Si–O–Si, inplane stretching of free Si–O bond, symmetric
deformation vibration of Si–R, deformation vibration of R (alkyl
group), symmetric vibration of C–H and stretching vibration
of O–H bonds. Similarly, groups characteristic of S. viridis
include asymmetric and symmetric deformation vibrations of
hydrocarbons (–CH3-CH2) – and inplane stretching vibrations
of Si–C bonds.

The multiproxy approach employed in the present work has
led to anatomical and physico-chemical characterization of the
phytoliths produced by the present samples of three related
species of the foxtail genus Setaria Phytolith analysis seems
to confirm the comparatively isolated position of S. pumila
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in the present triumvirate of species. S. pumila was marked
by two unique bilobate types compared to only one each
in the other two species, the absence of polycrystalline silica
in the synflorescences and the presence of the polymorphic
silica as stishovite in the roots and the leaves. Clustering of
species using Jaccard’s similarity index for presence/absence
data of the entire data set of phytolith morphotypes also
revealed that S. pumila had a low similarity (33%) of
phytolith profiles with S. verticillata and S. viridis (28.57%).
However, S. verticillata and S. viridis showed much higher
similarity (42.85%) and were grouped together (Figures 8). A
plausible explanation may lie in the difference in the centers
of origin of S. pumila (Africa) and the other two species
(Asia).

Even though the full potential of phytoliths in understanding
the taxonomy and phylogeny of the foxtail grass genus
(Setaria) must come through future research involving an
assessment of inter-population and intra-population variations
and construction of representative master profiles for each
species, the paper has made an initial contribution. We have
made plant collections from single locations and homogenized
the material part-wise but this limitation has been partly made
good by following a multiproxy and multi-organ approach
in carrying out the present work. In the larger context
of plant systematics, concerted and coordinated efforts of a
multidisciplinary nature are required to develop integrated and
robust phytolith profiles of different groups of plants and
their application in the characterization and diagnosis of plant
taxa.
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Palms are one of the most common tropical plant groups. They are widespread across

lowland tropical forests, but many are found in higher altitudes have more constrained

environmental ranges. The limited range of these species makes them particularly useful

in paleoecological and paleoclimate reconstructions. Palms produce phytoliths, or silica

structures, which are found in their vegetative parts (e.g., wood, leaves, etc.). Recent

research has shown that several palms in the lowland tropical forests produce phytoliths

that are diagnostic to the sub-family or genus-level. Here we characterize Andean palm

phytoliths, and determine whether many of these species can also be identified by

their silica structures. All of our sampled Andean palm species produced phytoliths,

and we were able to characterize several previously unclassified morphotypes. Some

species contained unique phytoliths that did not occur in other species, particularly

Ceroxylon alpinium, which is indicative of specific climatic conditions. The differences

in the morphologies of the Andean species indicate that palm phytolith analysis is

particularly useful in paleoecological reconstructions. Future phytolith analyses will allow

researchers to track how these palm species with limited environmental ranges have

migrated up and down the Andean slopes as a result of past climatic change. The

phytolith analyses can track local-scale vegetation dynamics, whereas pollen, which

is commonly used in paleoecological reconstructions, reflects regional-scale vegetation

change.

Keywords: Andean ecosystems, Arecaceae, Ceroxylon, Dictyocaryum, paleoecology, palms, phytoliths

INTRODUCTION

Arecaceae (palms) is a family of monocotyledonous plants that are important components of
tropical ecosystems (Kahn and Mejia, 1990; Henderson et al., 1997; Phillips and Miller, 2002; Kahn
and De Granville, 2012). Many palm species are widely distributed in the Neotropics, and belong
to the most commonly found plants in Amazonian rainforests (Pitman et al., 2001; Vormisto et al.,
2004; ter Steege et al., 2013). Many palms are also economically important for people, both in the
modern era and in the past (Smith, 2014). Some of the earliest archaeological sites in the Andes
and the Amazon contain evidence of a wide variety of palms consumed by people (Morcote-Rios
and Bernal, 2001; Gnecco, 2003; Mora and Camargo, 2003). Some palm species, however, have
constrained environmental tolerances or tend to be quite rare in the landscape, particularly in
the mid-elevation regions (i.e., 1,000–3,000m above sea level, hereafter masl) along the eastern
Andean flank (Moraes et al., 1995; Henderson et al., 1997). Because the specific environmental
optima vary between Andean palm species, palms are also important indicators of past climatic
and ecosystem change in palaeoecological records (Bush et al., 2005, 2011; Schiferl et al., 2017);
(Huisman et al., in revision).
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Phytoliths are silica microfossils produced by many plant
groups that can preserve in soils and lake sediments for
millions of years (e.g., Strömberg, 2004; Piperno and Sues, 2005;
Prasad et al., 2005; Piperno, 2006; Strömberg and McInerney,
2011). Phytoliths are commonly used in paleoecological and
archaeological reconstructions, and provide evidence of local-
scale vegetation dynamics because they are typically deposited
directly beneath the parent plant when it dies and decays
(Piperno, 2006). Palms are known to be particularly prolific
phytolith producers, and can often be identified to the sub-
family or genus level (Piperno, 2006; Morcote-Ríos et al.,
2016).

There have been recent advances in the ability to identify palm
phytoliths in tropical settings, particularly in the Amazonian
lowland forests, and in an archaeological context (Morcote-
Ríos et al., 2016). The phytoliths of Andean palm species,
however, remain relatively unstudied. Most palaeoecological
reconstructions of climatic change in Andean systems use
pollen, which can travel >10 km from the source plant.
Thus, the ability to identify phytoliths of Andean palms with
narrow environmental ranges would be highly advantageous in
generating local-scale reconstructions of past climatic change
in Andean systems. Here, we characterize the phytolith
morphology of 12 species of Andean palms using herbarium
specimens, to provide a foundation for future paleoecological
and archaeological reconstructions in these highly diverse and
vulnerable ecosystems.

METHODS

We collected herbarium species of Andean palm species from the
Naturalis Herbarium in Leiden, The Netherlands. We obtained
leaves, seeds, wood, and flowers (based on availability) of 12
palm species known to occur in mid-elevation Andean forests
from 1,000 to 3,000 masl (Moraes et al., 1995; Henderson
et al., 1997; Table 1). If the Andean species were unavailable,
other available species within the same genus were collected
(Table 1).

Prior to preparation, the dry plant material was ground and
heated to 450◦C for 10 h. The samples were prepared by soaking
in 33% hydrogen peroxide (H2O2), followed by 10% hydrochloric
acid (HCl), and then potassium manganate (KMnO4) to break
down the organic material. They were mounted in Naphrax and
heated on a boiling plate to stabilize the material.

All samples were analyzed under a Leica Axiophot
microscope with differential interference contrast (DIC) at
630x magnification using immersion oil. Categorization was
based on Morcote-Ríos et al. (2016), but new (sub)categories
were created for newly identified morphotypes. A total of 300
phytoliths was counted per sample to quantify the relative
abundances of morphotypes. At least 30 phytoliths were
measured per morphotype to obtain size ranges. Phytoliths were
photographed using a Fujifilm X-E2 camera and Zeiss Universal
microscope (DIC, Plan-Neofluar 63/1.4) and edited in Adobe
Lightroom CC, Adobe Photoshop CC, CorelDraw and Helicon
Focus.

TABLE 1 | Herbarium material sampled from palm species occurring on the

eastern Andean flank between 1,000 and 3,000m above sea level (masl).

Leaf Seed Wood Flower

TRIBE CEROXYLEAE

Ceroxylon alpinum Bonpl. ex DC. x x x

TRIBE CHAMAEDOREEAE

Chamaedorea pinnatifrons (Jacq.) Oerst. x

TRIBE COCOSEAE

Subtribe Bactridinae

Aiphanes aculeata Willd. x

Bactris simpliciformis Mart. x

Subtribe Euterpeae

Euterpe precatoria Mart. x x x

Euterpe catinga Wallace x

Hyospathe elegans Mart. x

Subtribe Geonomateae

Geonoma paradoxa Burret x

Geonoma undata Klotzsch x x

TRIBE IRIARTEEAE

Dictyocaryum fuscum (H. Karst.) H. Wendl. x x

Iriartea deltoidea Ruiz & Pav. x

Socratea exorrhiza (Mart.) H. Wendl.* x

Wettinia hirsuta Burret x x

The types of plant parts sampled are shown. An *Indicates species that were used if

Andean specimens were not available.

RESULTS

All species and plant parts sampled produced abundant
phytoliths, and contained one to four morphotypes (Table 2).
We identified several new subtypes of globular echinate and
conical morphotypes, which were previously characterized by
other researchers (e.g., Piperno, 2006; Morcote-Ríos et al., 2016;
Figure 1). The newly identified subtypes were defined by the
following characteristics:

1. Globular echinate variant 1: Regularly arranged projections
(Figure 1A). This globular echinate subtype contained
clear projections that were roughly evenly distributed
on the surface. Some variation in size and number of
projections occurred, but they were always clearly visible and
consistently shaped on the same phytolith. Size: 4–18µm.
This subtype was found in Euterpe and Hyospathe (Table 2).
Photo: Euterpe precatoria, seed.

2. Globular echinate variant 2: Crowded projections
(Figure 1B). This subtype appeared “hairy” due to its
high density of projections. Individual projections were
clear, with tapered ends, but the denser and seemingly
chaotic coverage distinguished this type from variant 1
(Figure 1A). Size: 4–10µm. This subtype was restricted
to Ceroxylon (Table 2). Photo: Ceroxylon alpinum, woody
parts.

3. Globular echinate variant 3: Irregular projections
(Figure 1C). This subtype was distinguished by its
irregularly shaped and arranged projections. They were
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TABLE 2 | Percentages of phytolith morphotypes found within the plant parts sampled for Andean palm species.

GE

var. 1

GE

var. 2

GE

var.3

GE

var. 4

LGG GEE

var. 1

GEE

var. 2

RE

var. 1

C var.

1

C var.

2

C var.

3

C var.

4+

TRIBE CEROXYLEAE

Ceroxylon alpinum (leaf) 76.2 15.6 7.2 1.0

Ceroxylon alpinum

(seed)

100

Ceroxylon alpinum

(wood)

19.1 65.5 15.4

TRIBE CHAMAEDOREEAE

Chamaedorea

pinnatifrons (leaf)

57.4 42.6

TRIBE COCOSEAE

Subtribe Bactridinae

Aiphanes aculeata

(wood)

54.1 45.9

Bactris simplicifrons

(leaf)

35.5 42.1 22.3

Subtribe Euterpeae

Euterpe precatoria (leaf) 12.5 75.7 4.5 7.3

Euterpe precatoria

(seed)

69.6 16.0 14.4

Euterpe precatoria

(wood)

70.0 17.7 12.3

Euterpe catinga

Wallace (leaf)

26.8 71.2 1.9

Hyospathe elegans

(leaf)

79.6 14.2 3.9 2.3

Subtribe

Geonomateae

Geonoma paradoxa

(leaf)

6.3 93.7

Geonoma undata (leaf) 54.6 45.4

Geonoma undata

(wood)

14.7 85.3

TRIBE IRIARTEEAE

Dictyocaryum fuscum

(leaf)

100

Dictyocaryum fuscum

(seed)

100

Iriartea deltoidea (leaf) 100

Socratea exorrhiza

(leaf)*

100

Wettinia hirsuta (flower) 57.4 42.6

Wettinia hirsuta (seed) 65.3 34.7

*indicates species that were used if Andean specimens were not available. +indicates direct correspondence with the categories of Morcote-Ríos et al. (2016). GE, globular echinate;

LGG, large globular granulate; GEE, globular echinate elongate; RE, reniform echinate; C, conical.

relatively few in number and of different sizes on the same
phytolith, and irregularly placed on the surface, giving a
starry rather than round overall appearance. Size: 4–15µm.
This subtype was only found in Euterpe (Table 2). Photo:
Euterpe precatoria, leaf.

4. Globular echinate variant 4: Short, bold projections
(Figure 1D). This subtype appeared similar to the “globular
echinate with dense short projections” described by

Morcote-Ríos et al. (2016). It also appeared similar to the
“large globular echinate” described by Dickau et al. (2013)
and Watling et al. (2016), but smaller in size. This phytolith
type contained many very small, bold projections. Due to
the high number and stubby shape of the projections it did
not have the typical thorny echinate outline. Size: 6–14µm.
This subtype was found in Ceroxylon and Euterpe (Table 2).
Photo: Ceroxylon alpinum, wood.
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FIGURE 1 | Phytolith morphotypes identified from herbarium material of species that are found in mid-elevation Andean forests (A) globular echinate variant 1: regularly

arranged projections; (B) globular echinate variant 2: crowded projections; (C) globular echinate variant 3: irregular projections; (D) globular echinate variant 4: short,

bold projections; (E) large globular granulate; (F) globular echinate elongate variant 1: elliptical; (G) globular elongate variant 2: straight; (H) reniform echinate variant 1:

thick; (I) conical variant 1: few (3–6) projections arranged around the top; (J) conical variant 2: many (8–20) projections arranged densely on top; (K) conical variant 3:

flat or plateaued, projections arranged randomly on top surface; (L) conical variant 4: with basal projections. The scale bar for each phytolith is 5µm in length.

5. Large globular granulate (Figure 1E). This type was clearly
distinguished by its significantly larger size and surface
ornamentation. Its projections were very short and of
different shapes, all very granulate and often with multiple
small mounds on top or in between. They were unevenly
distributed across the surface of the phytolith. Due to the
granulate and unsharp character of the projections we did
not name this type “echinate.” It was more similar in
size though had different projections than the previously
described “large globular echinate” (Dickau et al., 2013;
Watling et al., 2016). Size: 18–38µm. It was a relatively rare
type among the other echinate variants, but easy to recognize
and therefore very diagnostic. This subtype was only found
in leaves of Euterpe (Table 2). Photo: Euterpe precatoria,
leaf.

6. Globular echinate elongate variant 1: elliptical (Figure 1F).
This elongated echinate had an oval shape with curved
sides. Some were more elongated than others, but they
always presented curved sides accounting for the elliptical
shape. Length axis: 7–17µm. This subtype was found in
Ceroxylon, Euterpe, and Hyospathe (Table 2). In Ceroxylon,

the projections were generally shorter than inHyospathe and
Euterpe. Photo: Euterpe precatoria, wood.

7. Globular echinate elongate variant 2: straight (Figure 1G).
The elongated sides of this variant were straight, as opposed
to the curved sides of variant 1 (Figure 1F). This gave
a more long, stretched, and bar-like overall shape. This
variant contained well-pronounced, irregularly distributed
projections. Length axis: 6–14µm. This subtype was
abundant in Hyospathe and found in fewer numbers in the
woody parts of Euterpe (Table 2). Photo: Hyospathe elegans,
leaf.

8. Reniform echinate variant 1: thick (Figure 1H). This subtype
was a curved echinate. The curviness and thickness varied
per phytolith, but they were much thicker and mostly
bigger than the reniform type described by Morcote-Ríos
et al. (2016). Longest axis: 4–16µm. This subtype was
found in Ceroxylon, Hyospathe, and Geonoma, although less
frequently in Geonoma (Table 2). Photo: Hyospathe elegans,
leaf.

9. Conical variant 1: few (3–6) projections arranged around the
top (Figure 1I). This conical phytolith had the typical conical
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overall shape. Its projections were few in number (3–6), and
they were arranged around the top in a roughly circular
arrangement. Inmost cases the projections were pronounced
and easily discernible. Diameter/base length: 5–18µm. This
subtype was found in Bactris, Dictyocaryum, Iriartea, and
Socratea (Table 2). In Dictyocaryum and Socratea, sizes
were fairly consistent, with ca. 10 and 15µm base length,
respectively. Iriartea sizes were consistently 15–18µm, and
Bactris presented highly variable sizes. Photo: Dictyocaryum
fuscum, leaf.

10. Conical variant 2: many (8–20) projections arranged
densely on top (Figure 1J). This conical subtype had more
projections (8–20) than the former subtype, which were
arranged densely on the top of the phytolith. In some cases,
the projections were pronounced and easily discernible
despite being densely packed, but in other cases they
were blunter. The overall shape could be round, with a
very gradual transition to the top part containing the
projections (as in Figure 1J), but also elongated. In that
case the bottom part could be extensively elongated and
relatively flat, with the elevated top part being reduced to
a small, bulblike arrangement of projections (Figure S1).
Diameter/base length: 7–24µm. This subtype was found
in Chamaedorea, Aiphanes, Bactris, and Wettinia (Table 2).
Bactris simplicifrons presented very round, high, pointy
bodies that were larger than found in other species with this
subtype (18–24µm). In Chamaedorea, this subtype had a
consistent size of ca. 10µm and was not as pointy, but rather
round in overall shape. Chamaedorea and Aiphanes showed
more variation within this subtype. Photo: Chamaedorea
pinnatifrons, leaf.

11. Conical variant 3: flat or plateaued, projections arranged
randomly on top surface (Figure 1K). This subtype hardly
showed a conical shape, and its overall form was flat or
plateau-like. It was often elongated, but in contrast to the
former described subtype, it did not possess the bulblike,
elevation top part with projections. Instead, it often showed
smaller, bold, randomly placed projections on the top
surface. In some cases, the projections were centered in a
slightly elevated part or appeared seemingly ridge-like on
top of an elongated body. In other cases, the projections
occurred on top of a flat overall appearing body. The bottom
often looked crumbly or crenate and showed many different
shapes, contributing to the high overall variation. Due to
its often very small projections and hardly conical shape,
this type tended to resemble rugose spheres, which represent
arboreal taxa (Piperno, 2006). Diameter/base length: 4–
15µm. This subtype was found in Chamaedorea, Aiphanes,
Bactris, Geonoma, Dictyocaryum, and Wettinia (Table 2).
Photo:Wettinia hirsuta, seed.

12. Conical variant 4: with basal projections (Figure 1L).
This subtype resembled the conical with basal projections
type as described by Morcote-Ríos et al. (2016). Its
multiple projections extended to the base of the phytolith,
thereby covering the entire half of the phytolith. The
bottom was similar to other conical variants or appeared
jagged compared with other variants. Diameter/base length:

6–15µm. This subtype was restricted to Geonoma. Photo:
Geonoma paradoxa, leaf.

Most samples contained multiple phytolith subtypes, and
there was variation of subtypes within and between species
(Table 2). The Ceroxylon alpinum samples produced one or
more of the globular echinate or reniform subtypes (Table 2).
The seed samples, however, produced only globular echinate
variant 2. The Cocoseae tribe samples also contained the globular
echinate and reniform subtypes, but only in the Euterpeae
and Geonomateae subtribes (Table 2). The leaves of Euterpe
produced predominantly globular echinate variant 3, which was
absent in Ceroxlyon alpinum. Euterpe seed and wood samples,
and Hyospathe elegans leaf samples, had assemblages dominated
by globular echinate variant 1 (Table 2). Reniform phytoliths
occurred in low abundances in Hyospathe elegans and Geonoma
samples (Table 2).

Conical phytoliths occurred primarily in the Iriarteeae and
Chamaedoreeae tribes, and the Bactridinae and Geonomatae
subtribes of the Cocoseae (Table 2). Leaf samples from
Dictyocaryum, Iriartea, and Socratea contained 100% conical
variant 1 phytoliths. Bactris simplicifrons also contained
conical variant 1 phytoliths, but in lower abundances
(Table 2). Chamaedorea pinnatifrons, Aiphanes aculeata,
Bactris simplicifrons, and Wettinia hirsuta contained conical
variant 2 phytoliths. Those same species, Geonoma undata, and
Dictyocaryum fuscum (seeds only) contained conical variant 3
phytoliths (Table 2). Conical variant 4 phytoliths were produced
primarily by Geonoma (Table 2).

DISCUSSION

We defined several new subdivisions among the most recently
described globular echinate and conical palm phytolith
morphotypes (Morcote-Ríos et al., 2016; Figure 1). Our
subdivided morphotype categories were based on DIC
microscopy using 630x magnification, which was necessary
to characterize differences within the broader globular echinate
and conical categories, particularly when the phytoliths were ca.
10µm or smaller (Figure 1). Even with this magnification, it can
still be difficult to distinguish surface ornamentation on some
of these small phytoliths. We suggest that future identifications
of palm phytoliths should be performed using a minimum
magnification of 630x, but preferably a magnification of 1,000x.
Scanning electron microscopy can also be particularly useful
at identifying the nuances of phytolith morphotypes (Bowdery,
2015), though this approach is much more time consuming and
may not be feasible when examining more than 250 phytoliths
per sample and tens to hundreds of samples per sediment
core.

The angle of view can also complicate identification of a single
phytolith, especially in fossil samples. Silica-based microfossils
are often mounted solidly and cannot be rotated once the
mounting solution has dried, which fixes the angle of view.
Our observations from the herbarium specimens of Geonoma
indicated that the conical with basal projections type can
resemble a globular echinate when viewed straight from the top,
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but it can also appear as an arboreal rugose sphere if positioned
upside-down (Figure S2). The reference material from Euterpe
precatoria and E. catinga also indicated that symmetry, a feature
that was earlier used to distinguish echinate types (Morcote-Ríos
et al., 2016), might be hard to determine when the phytoliths
dry at different angles in the mounting solution (Figure S3).
We therefore suggest to allow for rotation of the phytoliths
by analyzing the slides before the mounting solution has fully
dried, as we partly did in this study, or by using a non-
solidifying mounting medium such as liquid Entellan, glycerine
or immersion oil (Cabanes and Shahack-Gross, 2015). However,
the refractive indices of these media are similar to phytoliths
and can make their overall features less distinguishable (Piperno,
2006). Because symmetry exists along a gradient, and identifying
symmetry can also be troubled by damage or deterioration of the
phytoliths in fossil samples, we did not include it as a diagnostic
feature in our categorization.

Though we have classified new subtypes of phytoliths, the
examination of the herbarium material suggested that phytolith
morphologies occur as a gradient as opposed to clearly defined
differences in types. For example, the newly characterized conical
variants presented here are named “conical” following the
previously described general category, which has also been called
hat-shaped in some literature (Piperno, 2006; Tomlinson et al.,
2011; Morcote-Ríos et al., 2016). Our examination of the conical
phytoliths, however, revealed that the conical variants 2 and 3 do
not always exhibit a true conical shape, and can also exhibit a
range of shapes on their base (Figures 1I–K, Figure S1). These
variations are mostly found in Chamaedorea, Aiphanes, and
Wettinia (Table 2). The flowers of Wettinia hirsuta in particular
exhibited a wide variation in shapes of the conical base and in the
configuration of projections.

There seems to be a particularly strong gradient in the
reniform echinate phytoliths, which ranged from small, thin
and highly curved specimens (Figure S4) to large, thick and
minimally curved ones (Figure 1H). Ceroxylon, Hyospathe, and
Geonoma contained thick reniform shapes, which we identified
as reniform echinate variant 1 (Table 2). The smaller, thinner
reniform shapes described by Morcote-Ríos et al. (2016) were
very rare in our samples, and we suggest those should be
considered a different variant (i.e., reniform variant 2). We
encountered a few thin reniform-like shapes in the leaves
of Geonoma paradoxa; however, some of them appeared
more randomly kinked than evenly curved and resembled
caterpillar shapes (Figure S4). We are therefore uncertain if these
“caterpillar” reniform phytoliths should be considered a separate
variant (e.g., reniform variant 3), but we have also encountered
them in fossil samples. Future studies focused on these reniform
echinate phytoliths will be able to further determine subdivisions.

Geonoma was the only palm genus where conical and
reniform echinate phytoliths co-occurred in the same sample.
Geonoma was also the only genus where previous studies have
reported the rare co-occurrence of conical phytolith with non-
conical types (Tomlinson et al., 2011; Morcote-Ríos et al., 2016).
In both of those cases, the co-occurrence happened with an
echinate subtype that we did not encounter in our samples. We
very rarely encountered echinate and conical types in the same

phytolith sample apart from in Geonoma samples, and did not
include these exceptions in Table 2 because the echinates were so
rare and we cannot rule out the possibility of contamination of
the herbarium sheets that we sampled. Even though Geonoma
produced an array of phytolith subtypes, it was the only
genus to produce high amounts of conical variant 4 phytoliths
(Table 2). Thus, in eastern Andean forests, high amounts of
conical variant 4 phytoliths likely represent Geonoma, a genus of
primarily understory palms whose Andean species grow larger
than their lowland counterparts (up to 12 cm diameter and 13m
height) (Moraes et al., 1995). Andean Geonoma species are also
economically important (e.g., Bernal et al., 2011), so the presence
or absence of Geonoma phytoliths from archaeological settings
may provide information on its past use and dispersal.

In many samples we encountered individual phytoliths
that appeared deformed. This occurred primarily in seeds
and woody parts, and much less frequently in leaf samples.
Deformations ranged from completely randomly shaped bodies
(e.g., wood/seeds of Ceroxylon alpinium, Euterpe precatoria,
and Geonoma) (Figure S5) to still recognizable diagnostic types
with smaller deformations, e.g., conical phytoliths that were
extensively elongated or “tailed” at the base in Dictyocaryum
seeds (Figure S6). We did not examine the ratios of the deformed
phytoliths within samples, primarily because these ratios would
not be applicable in a paleoecological or archaeological context
where all phytoliths are intermixed.

Ceroxylon is one of the only palm genera that is more common
at higher elevations (i.e., >2,000 masl) than at lower elevations
(Moraes et al., 1995). Ceroxylon produced primarily globular
echinate phytoliths and fewer reniform echinate phytoliths, as did
some of the Euterpeae, which typically grow at lower elevations
(Moraes et al., 1995; Table 2). Ceroxylon, however, was the only
species to produce the globular echinate variant 2 phytoliths
(Table 2, Figure 1B). Thus, the globular echinate variant 2
phytoliths in paleoecological contexts can be used to identify
Ceroxylon, and indicate colder conditions than most other palm
species prefer. Ceroxylon is also an economically important plant
species (e.g., Bernal et al., 2011), and its phytoliths (or the absence
of them) can now also be used in archaeological settings to
reconstruct past palm management practices and the dispersal
of economically important taxa. Ceroxylon also produced other
types of unique silica structures that were not found in any other
species that we sampled (Figure S7). These silica structures may
come from the “waxy wood” that has commonly been described
in Ceroxylon, which does not occur in most palm species (Moraes
et al., 1995).

Size variation can be a key distinguishing feature in phytolith
identification. In the case of Wettinia hirsuta, the variation
of phytoliths between plant parts was mostly in terms of
size. The seeds produced ca. 2–6µm larger phytoliths than
the flower. Perhaps more importantly for paleoecological and
archaeological reconstructions, we found that the size variation
of phytolith subtypes can be used to distinguish species from
each other. For example, Iriartea deltoidea and Dictyocaryum
lamarckianum produce 100% the same subtype of conical variant
1 in their leaves. The phytoliths produced by Iriartea, however,
are consistently and significantly larger than those produced by
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Dictyocaryum. Conical phytoliths from Iriartea typically range
from 15 to 18µm, whereas those found in Dictyocaryum range
from 5 to 10µm. Iriartea deltoidea is one of the most common
trees in the Amazonian lowlands (Pitman et al., 2001; ter Steege
et al., 2013), and rarely exceeds 1,300 masl (Henderson et al.,
1997). In contrast, Dictyocaryum ranges primarily from 1,000 to
2,000 masl (Moraes et al., 1995). The ability to distinguish the
conical phytoliths of these two species is therefore particularly
advantageous in reconstructions of past climatic conditions.

Our newly characterized palm phytolith types (Figure 1,
Table 2) provide a foundation to identify palm genera with
narrow altitudinal ranges in mid-elevational Andean settings.
Mid-elevation Andean ecosystems are some of the most diverse
and threatened ecosystems on Earth (Olson et al., 2001; Olson
and Dinerstein, 2002), and past climatic change has helped shape
these systems into their current configuration (e.g., Flenley, 1979;
Bush, 2002; Bush et al., 2007). Identification of an increased
number of Andean palm phytolith subtypes, and the increased
ability to associate them with a specific palm genus or set
of genera, can provide more detailed reconstructions of past
ecological dynamics in paleoecological and archaeobotanical
contexts than was previously possible. Because phytoliths reflect
local-scale vegetation dynamics (e.g., Piperno, 2006), ecological
responses to past climatic changes or human activity can also
be reconstructed at a higher spatial resolution than when using
only pollen data. If paired, pollen and phytolith analyses could
be used to determine regional vs. local vegetation change in
Andean settings, as has been done in the Amazonian lowlands
(e.g., Carson et al., 2014).

CONCLUSIONS

Mid-elevation Andean forests are some of Earth’s most
diverse and threatened ecosystems, yet their ecological
history remains understudied. Phytoliths, which represent
local-scale vegetation, are a valuable tool in reconstructing
vegetation dynamics through time. Our study provides a more
nuanced categorization of palm phytoliths than was previously
available, and also demonstrates their potential to create more
comprehensive paleoecological reconstructions of local-scale

vegetation dynamics than previously possible. Phytoliths are
becoming much more commonly used in paleoecological and
archaeological reconstructions because of their potential in
reconstructing local-scale vegetation patterns, and we stress the
need to continue referencing regionally-specific palm (and also
arboreal) phytoliths.
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In the last decade, our understanding of rice domestication has improved  by new archaeological 
findings using advanced analytical techniques such as morphological and morphometric 
analyses on rice grains, spikelet bases and phytoliths, and ancient DNA analysis on rice remains. 
Previous studies have considered the size of rice bulliform phytoliths as a proxy for tracking the 
domestication process. These phytoliths are often abundant and well preserved in sediments, 
and their shape is under the control of numerous genes, which may shift toward larger sizes 
by genetic mutation in domestication. Therefore, it has been assumed that the bulliforms of 
domesticated rice are usually larger than those of wild ones; however, morphometric data 
supporting this assumption are lacking in the literature, thereby requiring additional evidence 
to test its veracity. In this study, the vertical and horizonal lengths of bulliform phytoliths were 
measured in four rice species (domesticated Oryza sativa and wild Oryza rufipogon, Oryza 
officinalis, and Oryza meyeriana) from different regions of southern China. We found that the 
bulliform morphometric data of wild and domesticated rice overlapped and that there was no 
statistically significant difference between them. Therefore, bulliform size could not be used as 
a diagnostic indicator to distinguish domesticated rice from wild species and is a supporting 
rather than conclusive proxy for determining the domesticated status of rice in archaeological 
research. We further found that larger rice bulliform sizes likely occurred at the locations with 
higher temperature, precipitation, and water levels, indicating hydrothermal environment is an 
alternative factor influencing the size of rice bulliform phytoliths. For further archaeological use 
of an increasing size trend of bulliform phytoliths to reveal the process of rice domestication, 
we present some suggestions for controlling the influence of hydrothermal factors. Even so, 
the combination of bulliform phytolith size with other established criteria is strongly suggested 
to provide precise identification of wild and domesticated rice in future research.

Keywords: rice, bulliform phytolith, Oryza sativa, Oryza rufipogon, domestication, morphometric analysis
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INTRODUCTION

Asian rice (Oryza sativa L.) is one of the most important crops and 
forms a staple food for more than half of the global population 
(Nayar, 2014). Understanding its origins and domestication 
from wild rice (Oryza rufipogon Griff.) is thus an important aim 
for researchers. There are two major subspecies of domesticated 
O. sativa, Oryza sativa indica, which is thought to have originated 
in the Himalayan region, and Oryza sativa japonica, which is 
thought to have originated in China (Londo et al., 2006). Oryza 
rufipogon is generally recognized as the ancestor of Oryza sativa 
(Wei et al., 2012), with two distinct domestication events leading 
to the two subspecies of domesticated rice (Londo et al., 2006). 
However, this hypothesis is still being vigorously debated as other 
evidence supports a single origin of Asian rice (Huang et al., 
2012). There are more than 20 wild rice species recognized in 
the genus Oryza (Nayar, 2014; Stein et al., 2018), which belongs 
to the family: Poaceae and tribe: Oryzeae. Three of these species 
are found in China, Oryza rufipogon, Oryza officinalis, and Oryza 
meyeriana (Fan et al., 2000).

In the last decade, scientific understanding of rice 
domestication has greatly improved by new archaeological and 
genetic evidence using advanced analytical techniques such as 
flotation combined with morphometric analysis on rice grains 
and spikelet bases (Liu et al., 2007; Fuller et al., 2009; Gross and 
Zhao, 2014; Zheng et al., 2016), phytolith analysis (Wu et al., 2014; 
Huan et al., 2015; Zuo et al., 2017), pan-genome analysis (Wang 
et al., 2018a), and genome-wide association studies (Huang et 
al., 2012; Civáň and Brown, 2017; Choi and Purugganan, 2018). 
According to recent findings, a general consensus among scholars 
has been reached that rice was first domesticated in the middle 
and lower Yangtze River regions of southern China (Molina et al., 
2011; Gross and Zhao, 2014; Silva et al., 2015; Choi et al., 2017; 
Zuo et al., 2017), although some consider the Pearl River region 
to also be a part of the original area where rice domestication 
occurred (Huang et al., 2012; Wei et al., 2012).

The estimated time of origin of rice domestication is 
before 13,000 BP, based on molecular clock analysis (Molina 
et al., 2011; Choi et al., 2017; Choi and Purugganan, 2018), 
which is much older than the earliest archaeological date of 
domestication (<10,000 BP) (Fuller et al., 2014; Larson et al., 
2014). This disagreement may result from genetic studies that 
mainly focused on identifying the origins of alleles associated 
with domestication (e.g., sh4, rc, laba1, prog1), which likely 
emerged in wild rice prior to domestication (Choi et al., 2017; 
Civáň and Brown, 2017). On the other hand, archaeological 
studies attempted to detect the first appearance of morphological 
traits associated with domestication in archaeobotanical remains 
(Fuller et al., 2009; Jones and Liu, 2009). The molecular and 
archaeological chronologies may date two main phases in the 
macroevolutionary process: the emergence of a trait and the 
success of that trait (the trait becomes quantitatively significant 
within a population) (Katz, 2019). However, the most notable 
chronological dispute over the rice domestication is between 
two archaeological opinions: one suggests that the process of 
rice domestication may have begun around 10,000–9,000 BP 
(Liu et al., 2007; Zheng et al., 2007; Wu et al., 2014; Zheng 

et al., 2016; Zuo et al., 2017), while the other suggests that 
domestication of rice did not occur until around 8,000–6,000 BP 
(Fuller et al., 2007; Fuller et al., 2008; Fuller et al., 2009; Fuller 
et al., 2010; Larson et al., 2014). This debate is largely attributable 
to the differences in the methods employed, and the criteria 
used by various authors to identify domestication in rice remain 
from early sites in the Yangtze River region such as Shangshan, 
Kuahuqiao, and Xiaohuangshan. Establishing accurate and 
feasible criteria for distinguishing between domesticated and 
wild rice is thus of prime importance.

Three important lines of archaeological evidence have 
frequently been used in China, including grain size and 
morphological characteristics, spikelet bases, and phytoliths (Liu 
and Chen, 2012; Fuller and Castillo, 2014; Fuller, 2018). Grain 
morphometrics are considered to be semi-domestication traits and 
may not be diagnostic indicators of early domestication (Fuller, 
2007; Fuller et al., 2007), mostly due to the considerable variation 
and overlap in length between domesticated and wild populations 
which leads to some proportion of false assignments in ancient 
rice grains (Fuller, 2007). Many studies have focused on the form 
of spikelet base, which is thought to be the most diagnostic trait in 
rice remains in terms of identifying domestication status (Fuller, 
2018). However, these are insufficient, because the distinctive 
characteristics of immaturity, shattering, and nonshattering states 
and/or wild, japonica, and indica rice based on spikelet bases are 
divergent among the criteria provided by different researchers 
(Zheng et al., 2007; Pan, 2008; Fuller et al., 2009; Fuller et al., 2010; 
Pan, 2011; Gross and Zhao, 2014; Zheng et al., 2016), and their 
diagnostic power for domestication has the potential to be more 
reliable. More importantly, these macrobotanical remains do not 
preserve well in early sediments with acid soil; therefore, very few 
have been recovered from sites dated earlier than 9,000 BP (Zhao, 
2011; Qin, 2012; Zhao and Jiang, 2016).

Phytoliths have played an important role in the identification 
of rice remains recovered from early archaeological sites, due 
to their high resistance to decomposition (Piperno, 2006; Ball 
et al., 2016). Double-peaked phytoliths from husks and bulliform 
phytoliths from rice leaves are both certainly diagnostic indicators 
of Oryza and show variation within and between species. A 
number of identification criteria based on these phytoliths have 
been suggested and widely used in the last 20 years (Zhao et al., 
1998; Lu et al., 2002; Gu et al., 2013; Wu et al., 2014; Huan 
et al., 2015; Hilbert et al., 2017; Zuo et al., 2017; Wang et al., 
2018b). Although the utility of these methods for distinguishing 
domesticated from wild rice is still under debate (Fuller et  al., 
2010; Fuller, 2018), they are recognized as key alternative 
methodologies besides using morphological domestication 
data of rice macroremains. Three-dimensional measurements 
and discriminant function analysis of double-peaked phytoliths 
are useful in determining the wild/domesticated nature of rice 
remains; however, double-peaked phytoliths usually present their 
side and top view under the microscope, which does not meet 
the requirements of morphometric analysis (present in front 
view) (Zhao et al., 1998; Gu, 2009), making the work arduous in 
most cases.

Rice bulliform phytoliths are abundant in rice leaves and are 
often well preserved and represented in archaeological sediments 
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(Fujiwara, 1993; Wang and Lu, 1993). Generally, bulliform 
phytoliths in Oryza have a distinctive fan shape with numerous 
scale-like decorations on the half round side (lateral side) (Lu 
et al., 2002; Wang and Lu, 2012; Gu et al., 2013). Morphological 
measurements and number of scale-like decorations along the 
scalloped edge have been employed to distinguish wild Oryza 
species from domesticated ones. Studies on modern rice plants 
and paddy surface soils have suggested that bulliform phytoliths 
with ≥9 scale-like decorations were likely domesticated, while 
those with <9 were generally wild (Lu et al., 2002; Huan et al., 
2015). Whether this feature is a useful domestication indicator 
remains inconclusive and requires further validation; in 
addition, genetic explanatory mechanisms of bulliform scale-like 
decoration variation between species remain unclear and deserve 
further study.

Bulliform shape of rice appears to be under the control 
of 16 genes (QTLs) (Zheng et al., 2003a) and phytoliths may 
shift toward larger sizes as a result of genetic mutation during 
the domestication process (Zheng et al., 2003b; Piperno, 
2006; Luo et al., 2016). Some researchers have, therefore, 
assumed that the bulliforms of domesticated rice are usually 
larger than wild ones and that the trend of increasing size in 
rice bulliform phytoliths could reflect domestication of rice 
(Zheng et al., 2003b, Zheng et al., 2004; Fuller et al., 2007). 
In recent years, vertical and horizontal lengths (i.e., sizes) 
of rice bulliforms have increasingly been used as a proxy for 
tracking the domestication process or determining the degree 
of domestication at different sites, such as the Tanghu (Zhang 
et al., 2012), Zhuzhai (Wang et al., 2018b), Shunshanji (Luo 
et al., 2016), Shangshan, Hehuanshan, and Huxi sites (Zuo et al., 
2017; Qiu et al., 2019). However, to date, morphometric data 
from modern rice plants supporting this method and their 
assumptions are missing (Pearsall et al., 1995; Zhang and Wang, 
1998; Ma and Fang, 2007; Gu et al., 2013), and thus additional 
evidence is required to test its veracity.

Moreover, some studies have argued that changes in 
phytolith size may not only be triggered by domestication 
but also influenced by environmental factors, such as CO2 
concentrations (Ge et al., 2010), evapotranspiration rates 
(Issaharou-Matchi et al., 2016), and water levels in the growing 
habitat (Fuller, 2018). Fuller (2018) indicated that the 16 genes 
suggested by Zheng et al. (2003a) only explained between 37 
and 54% of bulliform variation, suggesting that the environment 
or growing conditions also play an essential role. These authors 
further speculated that if shifting bulliform morphology was 
merely a phenotypic response to environmental conditions, 
it would be a less useful indicator of domestication. Thus, 
without data supporting the exclusion of environmental factors, 
bulliform phytolith measurements alone may not be an accurate 
identification tool for distinguishing between domesticated and 
wild Oryza species.

In the present study, we tested whether the size of bulliform 
phytoliths is an effective statistical indicator for distinguishing 
between wild rice and domesticated rice, based on the comparative 
analysis of morphometric data from different rice species. In 
addition, we attempted to examine how growing conditions, 
especially climate and water levels, influence bulliform size. 

Finally, we discussed how rice bulliform phytolith morphometry 
can be used in archaeological research.

MATERIALS AND METHODS

In the present study, a total of 24 specimens of Oryza were 
sampled. The samples consisted of six specimens of the 
domestic O. sativa, and for the wild species, 16 specimens of 
O. rufipogon, 1 specimen of O. officinalis, and 1 specimen of O. 
meyeriana all collected in southern China (Table 1; Figure 1). 
All 6 specimens of O. sativa and 8 of the 16 specimens of 
O. rufipogon were sampled from the test paddy field belonging 
to Wuhan Botanical Garden, Chinese Academy of Sciences 
(CAS), at Huazhong Agricultural University, Wuhan, Hubei 
Province. Another eight specimens of O. rufipogon were 
sampled from Hainan, Yunnan, Hunan, and Jiangxi Provinces. 
The specimens of O. officinalis and O. meyeriana were sampled 
from Hainan Province.

Field collection of rice plants was assisted by a team of 
investigators from Wuhan Botanical Garden and Nanjing 
Institute of Geology and Palaeontology, CAS, with the 
permission of the owner or regulatory body for each location. 
The criteria for categorizing and naming the species collected 
were accepted from the classification scheme of the genus 
Oryza in the Flora of China (Liu and Phillips, 2006) (available 
at http://flora.huh.harvard.edu/china/PDF/PDF22/Oryza.pdf). 
The specimens of O. sativa and O. rufipogon in Wuhan were both 
mature when we collected them between September 21 and 23, 
2011, but the ripening rate of O. rufipogon was very low due 
to low temperatures. In Hainan Province, the specimens of O. 
rufipogon were in anthesis and immature while the specimens 
of O. officinalis and O. meyeriana were mature and had begun 
shattering when we collected them between December 1 and 
7, 2012. The specimens of O. rufipogon in Chaling, Hunan 
Province, were immature when we collected them between 
September 18 and 28, 2010. The specimens of O. rufipogon in 
Jiangxi and Yunnan Province were already mature when we 
collected them during October and November 2010, respectively. 
All plant samples were preserved at the Institute of Geology and 
Geophysics, CAS, Beijing.

There are different hydrological environments among 
our sampling sites. In Wuhan, specimens of O. sativa and O. 
rufipogon were simultaneously cultivated at paddy fields with 
shallow water (Figures 2a, b), which sometimes needs draining 
to achieve moderate draught during the pustulation and fruiting 
stage; O. rufipogon from Xishuangbanna Tropical Botanical 
Garden, CAS, Jinghong County, had a similar habitat. In Chaling, 
O. rufipogon grows in the Huli Marsh where there is perennial 
stagnant water (Figure 2c); O. rufipogon from Yuanjiang has 
a similar habitat. In Anjiashan and Shuitaoshuxia, Dongxiang 
County, O. rufipogon grows in a seasonal wetland with 0–100-
cm water depth. In Hainan Province, specimens of O. rufipogon 
from Wenchang and Wanning Cities grow in permanent wetlands 
where there are ponds filled with deep water with 30–150-cm 
depth (Figures 2d–g, j); O. officinalis in Lingshui County grows 
in a ravine stream in the valley and prefers shady and wet habitats 
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TABLE 1 | Information on the rice plants studied and measured data of vertical length and horizontal length of bulliform phytoliths from the studied samples.

S. no Field 
no.

Species Breed 
name

Source area Sampling 
Province

Sampling site Locality information Count 
number

VL (μm) HL (μm)

Mean SD Mean SD

1 AA31  O. sativa Qi ai zhan Guangxi Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 102 43.29 6.03 38.31 6.26

2 AA36  O. sativa C xiang 
517

Guizhou Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 102 40.36 6.23 34.81 6.86

3 AA37  O. sativa Bai zhe hu Guizhou Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 102 44.52 6.22 35.97 6.09

4 AA38  O. sativa Bai zhu jing Guizhou Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 101 37.77 4.74 32.78 4.47

5 AA48  O. sativa Wu mang zi 
ye dao

Heilongjiang Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 102 40.13 6.14 32.93 5.06

6 AA49  O. sativa Ji 90 D33 Jilin Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 100 42.22 5.59 35.44 5.73

7 Z1 O. rufipogon Dongxiang, Jiangxi Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 101 37.89 5.11 32.23 5.62

8 Z12 O. rufipogon Baise, Guangxi Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 102 37.06 5.52 30.64 5.16

9 Z13 O. rufipogon Gaozhou, 
Guangdong

Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 101 29.89 4.01 24.19 3.99

10 Z14 O. rufipogon Hezhou, Guangxi Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 105 36.81 5.34 33.6 5.54

11 Z15 O. rufipogon Zhanjiang, 
Guangdong

Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 115 35.39 4.6 32.1 4.48

12 Z23 O. rufipogon Wenchang, Hainan Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 110 41.27 7.22 34.08 7.34

13 Z27 O. rufipogon Beihai, Guangxi Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 101 38.79 5.82 32.48 5.58

14 Z41 O. rufipogon JW1 India Hubei Huazhong Agricultural 
University

30.47°N, 114.36°E, altitude 19m 110 33.31 4.82 29.04 5.05

15 HL-3 O. rufipogon Wenchang, Hainan Hainan Hulu village, Wenchang 19.79°N, 110.68°E, altitude 34m 102 46.53 7.11 40.1 6.32
16 WN-7 O. rufipogon Wanning, Hainan Hainan Mingxing village, Wanning 18.74°N, 110.41°E, altitude 10m 100 52.23 6.84 43.05 6.74
17 TS-1 O. rufipogon Wenchang, Hainan Hainan Tanshen village, Wenchang 19.73°N, 110.69°E, altitude 21m 100 47.98 7.1 41.58 6.46
18 YNY-1 O. rufipogon Yuanjiang, Yunnan Yunnan Yuanjiang protection area of 

wild rice
23.68°N, 101.86°E, altitude 
800m

102 41.63 6.21 34.3 5.04

19 P4 O. rufipogon Chaling, Hunan Hunan Huli wetland, Chaling 26.83°N, 113.67°E, altitude 
150m

100 41.06 7.32 35.95 6.53

20 DXS-1 O. rufipogon Dongxiang, Jiangxi Jiangxi Shuitaoshuxia, Dongxiang 28.11°N, 116.52°E, altitude 47m 100 43.16 5.43 39.62 5.92
21 DXA-1 O. rufipogon Dongxiang, Jiangxi Jiangxi Anjiashan, Dongxiang 28.03°N, 116.33°E, altitude 37m 100 41.41 5.21 37.89 5.81
22 XSBN O. rufipogon Xishuangbanna, 

Yunnan
Yunnan Xishuangbanna Tropical 

Botanical Garden, CAS
21.93°N, 101.26°E, altitude 
544m

100 38.34 5.86 33.14 5.22

23 LHT-1 O. meyeriana Sanya, Hainan Hainan Luhuitou Park, Sanya 18.23°N, 109.50°E, altitude 
132m

34 38.02 5.35 29.37 6.29

24 ZX-345 O. officinalis Lingshui, Hainan Hainan Zhangxian village, Lingshui 18.59°N, 110.10°E, altitude 194m 100 51.13 8.77 40.43 7.34
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(Figures 2h, k); O. meyeriana in Sanya City grows in an understory 
bush on a hill and prefers shady and dry habitats (Figures 2i, l).

For each rice specimen, we selected all leaf blades from the 
bottom to the top of a single plant, making sure to keep the leaf 
blade intact for phytolith extraction. This is because there is 
significant difference in bulliform phytolith size among different 
leaf blades of the same plant and different parts of the same leaf 
blade, with the smaller bulliform phytoliths from the lower leaves 
(Fuller and Qin, 2009). Bulliform size tends to decrease from 
leaf base to leaf apex of the same leaf blade (Wang et al., 1997). 
Therefore, variation in bulliform phytoliths from a few randomly 
selected rice leaves does not reflect the overall data, and only the 
selection of all intact leaves can guarantee the representativeness 
and reliability of the data.

Leaf blades were cleaned with distilled water in an ultrasonic 
cleaner, and then prepared for wet oxidation: 1) all samples were 
cut into 1–3-cm pieces and placed in 20 ml of 65% saturated 
nitric acid for over 12 h, then heated in a water bath for 20 min 
to oxidize organic materials completely. 2) The solutions were 
centrifuged at 3,000 rpm for 6 min, decanted and rinsed three 
times with distilled water, and then rinsed with 95% ethanol 
until the supernatants were clear. 3) The extracted phytoliths 
were mounted onto microscopic slides in neutral resin, and the 
residual samples were transferred to storage vials.

A Leica DM750 light microscope at 600× magnification 
was used for photomicrography and phytolith counting. One 
hundred or more bulliform phytoliths, including asymmetric 
types, were counted in each sample, except for the sample of 

O. meyeriana which produced only a few bulliform phytoliths. 
Two morphometric parameters, vertical and horizonal lengths 
(VL and HL), were measured to describe the size of bulliform 
phytoliths. The measurements were taken from images using 
the ImageJ software (version 1.48r.). Descriptive statistics of 
morphometric data were performed using Excel software, and 
the mean ± SD of each sample was plotted using the Grapher 
software to perform a comparative analysis. Discriminant 
function analysis in SPSS 24.0 software was then used to 
statistically determine the differences in bulliform sizes in 
different species.

In order to understand whether bulliform phytolith size 
correlated with environmental conditions and to what degree, a 
Pearson correlation analysis was performed. Eight environmental 
variables were chosen: altitude, mean annual precipitation (MAP), 
July precipitation (MP7), January precipitation (MP1), mean 
annual temperature (MAT), July temperature (MT7), January 
temperature (MT1), and relative humidity (HHH). Modern 
climatic data for the 11 sampling sites (Figure 1) were obtained 
from the nearest meteorological station to each site, since the spatial 
variation of climatic parameters exhibits a clear gradient across 
these locations. These data can be collected from the databases 
(1981–2010) of the National Meteorological Information Center, 
China (http://data.cma.cn/). Origin 8.5.1 software was used to 
conduct the correlation analysis of bulliform morphometrics and 
environmental variables, which were plotted into scatter plots. A 
linear regression was inserted into these scatter plots, and then 
the Pearson correlation coefficients (r) and significances (P) were 
taken to statistically evaluate the correlation.

RESULTS

Morphological Contrast of Bulliform 
Phytoliths in the Four Oryza Species
Overall, the bulliform phytoliths in O. sativa and O. rufipogon 
have similar shapes with an intact circular part of the fan, round 
arc of the scalloped edge, and ridge-like tubercle on the lateral 
side (Figure 3). Significant intraspecific morphological variation, 
however, was also found in both O. sativa (Figures 3a–h) and 
O. rufipogon (Figures 3i–p). Moreover, we noted that the 
bulliform phytoliths from the Xishuangbanna O. rufipogon had 
a very specific shape with a small circular part of the fan, angular 
scalloped edge, large deep decorations, and without the ridge-
like tubercle on the lateral side (Figures 3q–t). This shape was 
not only different from that of O. sativa but also distinct among 
other O. rufipogon specimens.

Bulliform phytoliths of O. officinalis are mostly large and full 
in shape with a rounded arc of the scalloped edge, irregular large 
deep decorations, longer handles, and a shorter intact circular 
part of the fan but without the ridge-like tubercle on the lateral 
side (Figure S1). From an overall perspective, this shape is 
similar to that of O. sativa and O. rufipogon.

Bulliform phytoliths of O. meyeriana are generally long and 
thin and not full in shape like the other varieties. These phytoliths 
are very small and appear similar to a teardrop or nail, with an 
angular scalloped edge, small irregular, but deep decorations, a 

FIGURE 1 | Locations of sample collection sites. Test paddy field in 
Huazhong Agricultural University, Wuhan, Hubei Province (1); Shuitaoshuxia, 
Dongxiang, Jiangxi Province (2); Anjiashan, Dongxiang, Jiangxi Province (3); 
Huli Marsh, Chaling, Hunan Province (4); Yuanjiang protection area of wild 
rice, Yunnan Province (5); Xishuangbanna Tropical Botanical Garden, CAS, 
Yunnan Province (6); Hulu village, Wenchang, Hainan Province (7); Tanshen 
village, Wenchang, Hainan Province (8); Mingxing village, Wanning, Hainan 
Province (9); Zhangxian village, Lingshui, Hainan Province (10); Luhuitou 
Park, Sanya, Hainan Province (11).
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longer handle, and shorter circular part of the fan not intact, 
without the ridge-like tubercle on the lateral side (Figure S2). 
This shape is different from that of the other three Oryza species.

Morphometric Analysis of Bulliform 
Phytoliths in the Four Oryza Species
Overall, our morphometric data demonstrated that the bulliforms 
of domesticated rice were not always larger than wild ones, and 
there was no significant difference in size. Table 1 shows the 
mean values of vertical length (VL) and horizontal length (HL) 
of bulliform phytoliths from the studied samples. For original 
measured data, see the Datasheet S1.

In the six O. sativa specimens, the maximum mean of VL 
of bulliform phytoliths was 44.52 ± 6.22 μm (AA37), while the 
minimum was 37.77 ± 4.74 μm (AA38); the maximum mean of 
HL of bulliform phytoliths was 38.31 ± 6.26 μm (AA31), while 
the minimum was 32.78 ± 4.47 μm (AA38). In all 609 bulliform 
phytoliths from O. sativa, the maximum VL was 60.27 μm occurring 
in sample AA36, while the minimum was 25.25 μm occurring in 
sample AA38; the maximum HL was 61.96 μm occurring in sample 
AA31, while the minimum was 20.94 μm occurring in sample AA48.

In the 16 O. rufipogon specimens, the maximum mean of 
VL of bulliform phytoliths was 52.23 ± 6.84 μm (WN-7), while 
the minimum was 29.89 ± 4.01 μm (Z13); the maximum mean 
of HL of bulliform phytoliths was 43.05 ± 6.74 μm (WN-7), 
while the minimum was 24.19 ± 3.99 μm (Z13). In all 1,649 

FIGURE 2 | Photos of parts of sampling locations and rice plants. Domesticated rice paddy in Huazhong Agricultural University, Wuhan, Hubei Province (site 1 in 
Figure 1) (a); wild rice paddy in Huazhong Agricultural University, Wuhan, Hubei Province (site 1 in Figure 1) (b); site of Oryza rufipogon population in Huli Marsh, 
Chaling, Hunan Province (site 4 in Figure 1) (c); site of O. rufipogon population in Hulu village, Wenchang, Hainan Province (site 7 in Figure 1) (d); site and plants 
of O. rufipogon population in Mingxing village, Wanning, Hainan Province (site 9 in Figure 1) (e, f); site of O. rufipogon population in Tanshen village, Wenchang, 
Hainan Province (site 8 in Figure 1) (g); site of O. officinalis population in Zhangxian village, Lingshui, Hainan Province (site 10 in Figure 1) (h); site of O. meyeriana 
population in Luhuitou Park, Sanya, Hainan Province (site 11 in Figure 1) (i); plant of O. rufipogon in Hainan Province (j); plant of O. officinalis in Hainan Province 
(k); plant of O. meyeriana in Hainan Province (l); the pictures of rice plants were taken by Dr. Limi Mao. The individual in Figure 2c was Dr. Jianping Zhang who had 
approved the publication of this image.
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bulliform phytoliths, the maximum VL was 70.11 μm occurring 
in sample WN-7, while the minimum was 21.30 μm occurring 
in sample Z13; the maximum HL was 59.81 μm occurring in 
sample WN-7, while the minimum was 15.54 μm occurring in 
sample Z13.

In the only specimen of O. officinalis, the mean values of VL and 
HL of bulliform phytoliths were 51.13 ± 8.77 and 40.43 ± 7.34 μm, 
respectively. In all 100 bulliform phytoliths, the maximum VL was 
80.00 μm, while the minimum was 32.94 μm; the maximum HL 
was 62.76 μm, while the minimum was 25.17 μm.

In the only specimen of O. meyeriana, the mean values of VL and 
HL of bulliform phytoliths were 38.02 ± 5.35 and 29.37 ± 6.29 μm, 
respectively. In all 34 bulliform phytoliths, the maximum VL was 
50.59 μm, while the minimum was 30.49 μm; the maximum HL was 
44.26 μm, while the minimum was 18.18 μm.

Figure 4 presents a comparison of the sizes of bulliform 
phytoliths from the studied rice species. The results revealed 
that the values of VL and HL from O. rufipogon were 
scattered and widely overlapped with the other three Oryza 
species. Although the bulliform sizes of O. sativa were larger 

FIGURE 3 | Bulliform phytoliths in some studied Oryza sativa and O. rufipogon species. Bulliform phytoliths from O. sativa (AA31) (a–d); bulliform phytoliths from 
O. sativa (AA48) (e–h); bulliform phytoliths from O. rufipogon (HL-3) (i–l); bulliform phytoliths from O. rufipogon (Z13) (m–p); bulliform phytoliths from O. rufipogon 
(XSBN) (q–t); scale bar = 30 μm. The red arrows point to the ridge-like tubercle.
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compared with O. meyeriana, they partly overlapped with 
O. rufipogon (mean VL: 37–45 μm; HL: 32–40 μm) and were 
significantly smaller than those of O. officinalis. The bulliform 
size of O. meyeriana was  smaller compared with other Oryza 

species and only larger than a few specimens of O. rufipogon. 
The bulliform size of the specimen of O. officinalis was larger, 
exceeding most of the studied samples.

Parameters VL and HL were important and used in the 
discriminant function analysis (Table S1). The following two 
canonical discriminate functions were used in the analysis: 
function 1 explained 89.5% of the variance, and function 
2 explained 10.5% of the variance. Parameter VL had the 
largest absolute correlation with function 1, indicating that 
it contributed most to function 1; parameters HL had the 
largest absolute correlation with function 2, indicating that 
it contributed more to function 2 (Table S1). These two 
functions were used to plot the data (Figure 5). Four groups 
without distinct centroids were obtained; O. sativa had a clear 
intersection with O. rufipogon, whereas there was a slight 
distinction for O. officinalis and O. meyeriana with regard to the 
other species. The accuracy of the classification was ascertained 
by cross validating the results (Table 2). Only 36.8% of the 
original data and 36.7% of the cross-validated data were 
correctly classified, suggesting that the discriminant functions 
obtained using parameters VL and HL could not be successfully 
used to discriminate O. sativa, O. rufipogon, O. meyeriana, and 
O. officinalis. Thus, it supported the conclusion that there were 
no significant differences in bulliform sizes between wild and 
domesticated rice.

The 24 specimens of rice were then divided into two groups: 
mature and immature (Figure 6). As can be seen, the sizes of 
bulliform phytoliths from mature rice were scattered and partly 
overlapped with the immature rice. In contrast, bulliform 
phytoliths of immature rice were slightly larger than most mature 
species. There was no significant difference in bulliform size 
between mature and immature rice species.

We further compared the bulliform size of rice species in 
terms of their growing region (Figure 7). It was found that 
the bulliforms of O. rufipogon and O. officinalis growing in 
the tropical Hainan were the largest with mean vertical and 
horizontal lengths greater than 45 and 40 μm, respectively. The 
bulliforms of O. rufipogon growing in Chaling, Dongxiang, 
and Yuanjiang and O. sativa growing in Wuhan were similar 
in size, with mean VL and HL ranges of 40–45 and 33–40 μm, 
respectively. O. rufipogon growing in Wuhan and Xishuangbanna 
and O. meyeriana growing in Hainan, have the smallest 
bulliform phytoliths with mean VL and HL ranges of 33–39 
and 29–34  μm, respectively. It is noted that O. rufipogon and 
O. officinalis in the Hainan population have the most favorable 
habitat in terms of water availability, with permanent deep water 
or perennial ravine streams; O. rufipogon in Chaling, Dongxiang, 
and Yuanjiang grow in marshes and seasonal wetlands where 
stagnant water converges at the roots of rice; O. rufipogon in 
Wuhan and Xishuangbanna grow in paddy fields with shallow 
water, which is occasionally drained to maintain relatively dry 
habitats; O. meyeriana in Hainan prefers a drier environment.

In addition, the effect of habitat wetness on bulliform phytolith 
size was investigated. We found that the bulliform phytolith size 
of specimens of O. rufipogon native to the warmer and wetter sites 
of Wenchang, Hainan (field no. Z23), and Dongxiang, Jiangxi 
(field no. Z1), and cultivated in the paddy fields in Wuhan, was 

FIGURE 5 | Discriminant function analyses of Oryza sativa, O. rufipogon, 
O. meyeriana, and O. officinalis.

FIGURE 4 | Oryza bulliform phytolith measurements from the studied 
species. VL, vertical length; HL, horizontal length of rice bulliform; gray error 
bar represents ± 1 SD.
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smaller than that of native species (Figure 8). Similarly, in the 
Wuhan paddy field, the species of O. rufipogon native to the 
warmer and wetter sites of Guangdong (field nos. Z13, Z15), 
Guangxi (field nos. Z12, Z14, Z27), and India (field no. Z41) 
also have smaller bulliforms (Figure 8). In the tropical Hainan, 
under parallel climate conditions, O. officinalis in the aquatic 
environment has a significantly larger bulliform size than 
those of O. meyeriana in a dry habitat (Figure 8). Therefore, 
the sizes of bulliform phytoliths from wild rice with preferable 
water habitats were mostly larger than those of wild rice under 
relatively dry conditions.

Finally, Figure 9 shows the comparison of bulliform 
phytolith sizes between O. sativa and O. rufipogon growing in 
the adjacent test paddy field in Wuhan. For O. sativa, the ranges 
of mean VL and HL of bulliforms fell into 37–45 and 32–48 μm, 
respectively. For O. rufipogon, the mean VL and HL ranges were 
29–41 and 24–34 μm, respectively. Thus, our data also indicated 
that the bulliform phytoliths of O. rufipogon may be generally 
smaller than those of O. sativa if they were artificially grown in 
the same environment.

Correlation Analysis of Bulliform 
Morphometrics and Environmental 
Variables
Summary statistics for the eight environmental variables of 
different sites are given in Table 3. The VL and HL values of 
bulliform phytoliths plotted against the different environmental 
variables and the results are shown in Figure 10 and Figure 11. 
MAP, MAT, MT1, and HHH had a positive correlation (r = 
0.438–0.610) with VL and HL, and the linear regression analysis 
revealed that these correlations were significant (p < 0.01 or 
0.05) (Figure 10), demonstrating that the bulliform phytolith 
sizes are affected by changes in these climatic parameters. In 

contrast, other environmental characteristics, including MP7, 
MT7, MP1, and altitude, were not significantly correlated with 
changes in bulliform sizes (Figure 11).

TABLE 2 | Classification results of the discriminant function analysis.

Predicted membership Total

O. sativa O. rufipogon O. meyeriana O. officinalis

Original Count O. sativa 109 232 156 112 609
O. rufipogon 226 678 447 298 1,649
O. meyeriana 4 4 24 2 34
O. officinalis 14 4 13 69 100

Percent (%) O. sativa 17.9 38.1 25.6 18.4 100
O. rufipogon 13.7 41.1 27.1 18.1 100
O. meyeriana 11.8 11.8 70.6 5.9 100
O. officinalis 14 4 13 69 100

Cross-validated Count O. sativa 107 233 157 112 609
O. rufipogon 226 678 447 298 1,649
O. meyeriana 4 4 24 2 34
O. officinalis 14 4 13 69 100

Percent (%) O. sativa 17.6 38.3 25.8 18.4 100
O. rufipogon 13.7 41.1 27.1 18.1 100
O. meyeriana 11.8 11.8 70.6 5.9 100
O. officinalis 14 4 13 69 100

Thirty-six point eight percent of original grouped cases correctly classified. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by 
the functions derived from all cases other than that case. Of cross-validated grouped cases, 36.7% are correctly classified.

FIGURE 6 | Contrast of Oryza bulliform phytolith sizes from the studied 
specimens depending on whether they were mature or immature. The 
sample codes in the figure refer to the field numbers: specimens WN-7, 
TS-1, and HL-3 were O. rufipogon from Wanning and Wenchang, Hainan 
Province, and specimen P4 was O. rufipogon from Chaling, Hunan Province.
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DISCUSSION AND CONCLUSIONS

Causes of Variations in Rice Bulliform 
Phytolith Morphometry
The results of the present study indicate that morphometric 
measurements of bulliform phytoliths from wild and domesticated 
rice widely overlap (Figure 4), exhibiting little diagnostic potential 
for taxonomic identification at the species level. These results thus 
support the conclusion that the morphometry of bulliform phytoliths 
is not as informative for distinguishing between domesticated rice 
and wild rice, as suggested by previous studies (e.g., Pearsall et al., 
1995; Wang and Lu, 2012; Gu et al., 2013). However, the above 
morphometric data have often been overlooked, and an increasing 
number of studies have recently used bulliform phytolith size 
as a proxy to track the rice domestication process (Zhang et al., 
2012; Luo et al., 2016; Zuo et al., 2017; Qiu et al., 2019). The 
bulliform phytoliths from domesticated rice really were larger 
than those from wild ones in the same test paddy field in Wuhan city 
(Figure 9), possibly indicating that domestication may result in an 
increase in bulliform phytolith size. The genetic and phylogenetic 
signal for this bulliform size variation has not been well revealed 
to date. Furthermore, this increase did not necessarily result from 
domestication and may be caused by other factors.

Previous studies have suggested that two factors, plant maturity 
and environmental conditions, may affect rice bulliform phytolith 
size. It is suggested that the bulliform phytoliths from mature rice 
leaves are usually larger than those from immature leaves (Zheng 
et al., 2003a; Qin et al., 2006; Fuller et al., 2007). This hypothesis 
may be real for the plants growing in the same location, but is not 
supported when comparing bulliform size of rice species from 

different sites (Figure 6). Because environmental conditions 
are seemingly much more important, and the effect of degree 
of maturity could be ignored when multiple environmental 
factors are considered. According to the results of the present 
study (Figures 10 and 11), from a statistical point of view, we 
can conclude that the larger rice bulliform phytolith sizes, as 
defined by the higher VL and HL values, likely occurred at the 
locations with higher temperature and precipitation. Therefore, 
the increasing trend in rice bulliform phytolith size in some 
archaeological records (Zheng et al., 2003b; Zheng et al., 2004; 
Luo et al., 2016; Zuo et al., 2017; Qiu et al., 2019) may also be 
caused by climatic changes during the early and middle Holocene 
when temperature and precipitation were gradually rising.

The present study also revealed that the growing 
microenvironment, such as water environment, can also 
influence the size of rice bulliform phytoliths. Rice growing under 
wetter conditions usually produced larger bulliform phytoliths 
than those growing under drier conditions (Figures  7 and 8). 
Therefore, except climate regimes, changes in wet/dry habitat for 
rice should be considered for the use of bulliform size to track the 
process of rice domestication.

It should be pointed out that the present study just revealed 
the hydrothermal condition as one of the environmental factors 
influencing rice bulliform size. Some factors such as plant 
genotypes, soil fertility, light period length on photosynthesis, and 
other abiotic factors may also cause these variations, which were 

FIGURE 7 | Contrast of Oryza bulliform phytolith sizes from the studied 
specimens in terms of their growing regions. WH, Wuhan; HN, Hainan; 
YN, Yunnan; CL, Chaling; DX, Dongxiang; XSBN, O. rufipogon from 
Xishuangbanna; YNY-1, O. rufipogon from Yuanjiang.

FIGURE 8 | Contrast of bulliform phytolith sizes from some studied wild rice 
in terms of water levels in their habitats. Red represents wet habitats; blue 
represents relatively dry habitats. The sample codes in the figure refer to 
the field numbers. WH, Wuhan; HN, Hainan; DX, Dongxiang; GX, Guangxi; 
GD, Guangdong.
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not controlled or excluded for this study. Conditional plantation 
experiment under controlling environments and genotypes in test 
paddy field is needed to further test if and how water levels and 
temperature can affect the bulliform phytolith size.

Implications for Archaeology of Rice 
Domestication
Changes in bulliform phytolith size of rice are regulated not only 
by domestication, which possibly represents genetic changes, but 
also by environmental factors. Given that environmental factors 
influence bulliform phytolith size of rice and that the role of 
genetic background has not yet been firmly established similar 
to established domestication traits such as non-shattering and 
increased seed size, bulliform measurement was considered as a 
semi-domestication trait (Fuller and Qin, 2009). Therefore, the 
use of rice bulliform phytolith size as an index for determining 
domesticated plants from their wild ancestors should be 
conditional. In other words, if the increasing size trend of bulliform 
phytoliths is used to reveal the process of rice domestication, the 
influence of hydrothermal conditions should be excluded first.

For further archaeological use of this index, we suggest that: 
1) if the time series of rice bulliform phytolith size from a region 
is long, then the climatic changes (fluctuations in temperature 
and precipitation) through time should be considered, and the 
results from quantitative reconstructions of paleoclimate could 
be used as an independent variable to explain bulliform size 
variation; 2) the spatial scale of studied regions should be small 
and without a clear climatic gradient; 3) parallel comparison 

FIGURE 9 | Contrast of bulliform phytolith sizes from domesticated and 
wild rice growing at the adjacent test paddy field in Wuhan. Demonstrating 
that the bulliform phytoliths of these domesticated rice specimens were 
generally larger compared with wild specimens (Oryza rufipogon) in the same 
environment. WH, Wuhan.

TABLE 3 | Summary of the environmental variables in the 11 sampling sites used for correlation analysis.

S. 
no.

Sampling site Meteorological 
stations (MS)

Code 
of MS

MAP 
(mm)

MP1 
(mm)

MP7 
(mm)

MAT 
(°C)

MT1 
(°C)

MT7 
(°C)

HHH 
(%)

Altitude 
(m)

1 Huazhong Agricultural 
University, Wuhan, Hubei 
Province

Xinzhou 57492 1,287.8 44.8 216.9 16.8 3.8 28.7 77 19

2 Shuitaoshuxia, Dongxiang, 
Jiangxi Province

Yujiang 58616 1,819.5 93.8 145 17.7 5.4 29.2 82 47

3 Anjiashan, Dongxiang, Jiangxi 
Province

Yujiang 58616 1,819.5 93.8 145 17.7 5.4 29.2 82 47

4 Huli Marsh, Chaling, Hunan 
Province

Chaling 57882 1,461.9 77.6 113.2 18.2 6.2 29.2 78 150

5 Yuanjiang, Yunnan Province Yuanjiang 56966 804.3 14.2 136.1 23.9 16.9 28.5 69 800
6 Xishuangbannan Tropical 

Botanical Garden, CAS, 
Yunnan Province 

Mengla 56969 1,513 16 316.2 21.8 16.5 25 83 544

7 Hulu village, Wenchang, 
Hainan Province

Wenchang 59856 1,975 33 192.6 24.4 18.5 28.5 86 34

8 Tanshen village, Wenchang, 
Hainan Province 

Wenchang 59856 1,975 33 192.6 24.4 18.5 28.5 86 21

9 Mingxing village, Wanning, 
Hainan Province

Wanning 59951 2,070.3 46.4 202.4 25 19.5 28.8 84 10

10 Zhangxian village, Lingshui, 
Hainan Province 

Wanning 59951 2,070.3 46.4 202.4 25 19.5 28.8 84 194

11 Luhuitou Park, Sanya, Hainan 
Province

Baoting 59945 2,162.8 12.6 316.9 24.8 20.2 27.6 82 132

MAP, Mean annual precipitation; MP1, January precipitation; MP7, July precipitation; MAT, mean annual temperature; MT1, January temperature; MT7, July temperature; HHH, 
relative humidity. Data of MAP, MAT, and HHH are obtained from the dataset of annual surface observation values in individual years (1981–2010) in China (http://data.cma.cn/data/
cdcdetail/dataCode/A.0029.0005.html); data of MP1, MP7, MT1, and MT7 are obtained from the dataset of monthly surface observation values in individual years (1981–2010) in 
China (http://data.cma.cn/data/cdcdetail/dataCode/A.0029.0004.html). These datasets belong to the National Meteorological Information Center, China, and are available online.
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FIGURE 11 | Scatter plots of bulliform phytolith sizes as defined by VL and HL for studied species versus different environmental variables. Mean VL values vs. 
observed MP7 values (A); mean HL values vs. observed MP7 values (B); mean VL values vs. observed MT7 values (C); mean HL values vs. observed MT7 values 
(D); mean VL values vs. observed MP1 values (E); mean HL values vs. observed MP1 values (F); mean VL values vs. altitude values (G); mean HL values vs. altitude 
values (H). Linear regression analysis of these data indicates no significant correlation.

FIGURE 10 | Scatter plots of bulliform phytolith sizes as defined by VL and HL for studied species versus different climatic variables. Mean VL values vs. observed 
MAP values (A); mean HL values vs. observed MAP values (B); mean VL values vs. observed MAT values (C); mean HL values vs. observed MAT values (D); mean 
VL values vs. observed MT1 values (E); mean HL values vs. observed MT1 values (F); mean VL values vs. observed HHH values (G); mean HL values vs. observed 
HHH values (H). Linear regression analysis of these data indicates significant correlation.
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of rice domestication processes in different regions using 
bulliform size should consider climatic differences between 
the regions; and 4) the changes in rice arable systems (wet/dry 
growing conditions) in any studied archaeological sites should 
be first revealed using the promising sensitive/fixed phytolith 
morphotype model defined by Weisskopf et al. (2015).

Even though the influence of environmental factors has been 
controlled or excluded, and rice bulliform phytoliths shifting 
toward larger sizes are interpreted as reflecting the domestication 
process, it is still not possible to provide a determinate range of 
bulliform size for identifying domesticated rice, due to the wide 
overlap observed in the bulliform morphometric data between 
modern wild and domesticated rice (Figure 4). Thus, rice 
bulliform phytolith size is a supporting rather than conclusive 
proxy for determining the domesticated status of rice in 
archaeological research. Combination of bulliform phytolith size 
with other established criteria can provide precise identification 
of wild and domesticated rice.

Finally, notably, frequent gene exchange occurs between 
domesticated and wild rice, and there is a co-evolutionary 
relationship between them (Song et al., 2006; Zhao et al., 2010; 
Ge and Sang, 2011; Choi et al., 2017). Recent large-scale genomic 
analysis showed that O. rufipogon populations are widely affected 
by the gene flow of domesticated rice, and that the existing 
O.  rufipogon are actually a hybrid swarm (Wang et al., 2017). 
This indicates that it is difficult to rule out the interference of the 
domesticated rice gene flow when using the existing O. rufipogon 
species as a reference for phytolith morphological analysis. Wild 
rice populations in the region with higher rice farming intensity 
are more affected by the introgression of the domesticated rice 
gene, and the genetic relationship with domesticated rice is closer 
(Song et al., 2003; Song et al., 2006), leading to the possibility of bias 
in the morphometric measurements of their bulliform phytoliths. 
Further research utilizing archaeological rice remains combined 
with ancient DNA analysis (e.g., Tanaka et al., 2010; Castillo et al., 
2016), may reduce the interference of domesticated rice gene flow, 
and thus generate credible results to establish suitable criteria for 
distinguishing between domesticated rice and wild rice.
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The theory of coevolution suggests that herbivores play an important role in the 
diversification and composition of plant communities. A prevalent idea holds that grasses 
and grazing animals participated in an evolutionary “arms race” as grassland ecosystems 
started spreading across the continents. In this race, besides other things, silicification in 
the form of phytoliths occurred in the grasses, and the graminivorous herbivores responded 
through specialized mandibles to feed on plants rich in phytoliths. It is important to 
understand whether these mandibles equip the herbivores in different environments or 
the grasses can augment their defense by channelizing their energy in high resource 
milieu. Here we used rescuegrass (Bromus catharticus; Family: Poaceae), an alien species 
of South America, to understand the mechanism of resistance offered by this species 
against a local insect herbivore (Oxya grandis; Family: Acrididae), graminivorous 
grasshopper, in different silicon-rich environments. We used different concentrations of 
silicon and observed the types of phytoliths formed after Si amendments and studied the 
effect of phytoliths on mandible wear of the grasshopper. Silicon concentrations increased 
ca. 12 fold in the highest supplementation treatments. The results reveal that higher foliar 
silica concentration in Si-rich plants did not result in changing the morphology of the 
phytoliths; still the leaf tissue consumption was lower in higher Si treatments, perhaps 
due to mandibular wear of the grasshoppers. The study opens a new dimension of 
investigating the role of Si amendments in reducing herbivory.

Keywords: herbivory, phytolith, grass, mandible wear, silicon

INTRODUCTION

The grasses (Poaceae) being the fifth most diverse family of angiosperms (800 genera and 
more than 11,000 species) have attracted the attention of paleoecologists, particularly in respect 
of their evolution and diversification (Strömberg, 2005, 2011; Bouchenak-Khelladi et  al., 2010; 
Strömberg et  al., 2013; Chen et  al., 2015). One prevalent idea is that the grasses and their 
herbivores diversified by participating in an evolutionary “arms race” during the late Cretaceous – 
Cenozoic era (Stebbins, 1981). The theory of coevolution proposes that the adaptations between 
plant species and their herbivores are reciprocal, wherein the plant anti-herbivore traits play 
a major role in determining the host preference and community structure (Endara et  al., 2017). 
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According to this hypothesis, the open-habitat grasses significantly 
augmented silicon accumulation in the form of phytoliths over 
time, and to counter tooth wear from grass phytoliths, the 
mammalian herbivores evolved hypsodont teeth (Stebbins, 1981; 
McNaughton et  al., 1985).

Phytoliths are microscopic amorphous silica bodies that 
occur as individual cell infillings to wholly silicified tissue 
sections, which toughen the plant tissues (averting food intake 
and digestion) and wear the herbivore mouthparts (affecting 
their normal life) (Strömberg et al., 2016). Although, the actual 
capacity of grass phytoliths to wear dental tissues and their 
linkage to hypsodonty evolution has limited experimental 
evidence (Damuth and Janis, 2011) and has generated much 
debate more recently (Sanson et  al., 2007; Lucas et  al., 2013, 
2017; Rabenold and Pearson, 2014; Rabenold, 2017), the role 
of silica-laden abrasive grass diet in the development of mandibles 
has been suggested in several insect taxa (Chapman, 1964; 
Dravé and Lauge, 1978; Patterson, 1983, 1984). Elevated 
mandibular wear due to increased hardness of leaves has been 
found in various beetles (Raupp, 1985; Wallin, 1988; King 
et  al., 1998), bees (Michener and Wille, 1961; Kokko et  al., 
1993; Schaber et  al., 1993), caterpillars (Korth et  al., 2006), a 
locust (Zouhourian-Saghiri et  al., 1983), a weevil (Barnes and 
Giliomee, 1992), and a bug (Roitberg et  al., 2005); and the 
wear in lepidopteran larvae fed on rice cultivars has been 
specifically ascribed to differences in silica contents (Djamin 
and Pathak, 1967; Dravé and Lauge, 1978; Ramachandran and 
Khan, 1991). However, these experiments used the model 
interactions in which the plants commonly coevolved with 
their insect herbivore. Here we  tested the model system in 
which there was a lack of shared evolutionary history between 
plants and herbivores, creating a novel interaction, wherein 
the insects were less equipped to face the evolutionary arms 
race. We  selected Bromus catharticus Vahl., an alien grass 
species, and a native herbivore Oxya grandis Willemse for 
the study.

B. catharticus is a densely tufted, robust annual or short-
lived perennial, native to South America, recently reported 
as an alien introduction to the flora of Kashmir Himalaya, 
with the potential to spread along the length and breadth 
of this biodiversity hotspot (Muzafar et  al., 2016). Its large 
openly branched seed-heads have a nodding appearance, and 
the glumes generally do not have any awns, while the florets 
usually have short awns, which make it distinct from other 
members of genus Bromus. On the other hand, O. grandis 
is considered to be  a grass-feeding generalist herbivore, 
hopping in and around the rice fields and grasslands of the 
study area (Reshi, 2007). O. grandis is a large species  
(over 30 mm) with fully developed tegmina which are extended 
beyond apices of hind femora. The supra-anal plate is  
flat, with the apical part lobe extended posteriorly. 
We  hypothesized that:

 1.  Amount of silica accumulation by plants depends on the 
presence of available silicon in the soil.

 2.  Silica polymerizes in the form of phytoliths with different 
shapes within the cells of B. catharticus.

 3.  Increased exposure of insect herbivores to silica-rich plants 
will lead to increase in deleterious effects by affecting the 
insect mandible wear.

Hence, we  performed the experiment at various Si 
concentrations, and expected silica-polymerized phytoliths within 
B. catharticus in high Si environments will affect the mandibles 
of O. grandis.

METHODOLOGY

Plant Growth Conditions
B. catharticus seeds obtained from Integrated Grass Fodder 
Research Institute (IGFRI) Srinagar, India, were grown in seed 
trays for 2 weeks containing inert growth media (perlite). Then, 
the seedlings were transplanted into earthen pots (12  cm 
diameter × 18  cm height) filled with peat. Peat with its low 
silicon content is preferred as growth substrate as it provides 
a better control for the treatments in such environments where 
additional silicon can be  supplemented (Nanayakkara et  al., 
2008). Four seedlings were planted in a pot at an equal distance 
from the edge of the pot. The experiment was conducted in 
a completely randomized design (CRD) under greenhouse 
conditions (15–25°C, 16:8 light:dark) for a period of 7 months 
till harvest.

After every 4 days, the plants from the high (T4), moderate 
(T3), and low (T2) soil-silicon treatments received 50  ml of 
2,000, 1,000, and 500  mg/L sodium silicate (Na2SiO3·9H2O) 
aqueous solution respectively. Plants from the control treatment 
received the same amount of tap water. After the third week, 
plants in all treatments were supplemented with 100  ml of 
half-strength Hoagland’s nutrient solution, which was 
continuously added till the end of the fifth week. After the 
sixth week, 100  ml of full-strength Hoagland’s solution was 
given to all the plants. Throughout the experiment, all plants 
received tap water as per requirement.

Si Analysis
The optical emission spectroscopy of atoms excited by inductively 
coupled plasma (ICP-OES), which is currently one of the most 
efficient methods for the quantitative determination of elements 
in materials, was used to detect the Si concentration. The 
method is characterized by low detection limits and a high 
selectivity combined with good reproducibility and accuracy. 
In the present study, the ICP-OES data were recorded by a 
SPECTRO ARCOS EOP (Germany), spectrometer. Plants were 
harvested at maturity and the oldest leaves were used for Si 
estimation. Leaf samples were ground in an electric grinder, 
and put in a crucible within an incinerator at 800°C for ashing. 
The ash was then dissolved with aqua-regia and diluted to a 
known volume using distilled water. A known quantity of the 
solution was taken in a beaker, and HNO3 was added and 
heated. When it started boiling, perchloric acid (HClO4) was 
added to it dropwise and heated till all the organic matter 
was destroyed. The solution was then diluted to a known 
volume, using distilled water. This analytical solution was directly 
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injected into the hot argon ICP plasma (6,000–8,000  K). The 
spectral line at 251.611  nm which is characteristic for Si was 
used for the determination of the element concentration. A 
commercial standard solution of Si was used for calibration 
of the different concentrations of Si in order to generate a 
standard curve.

Phytolith Types
The harvested plants from different treatments were washed 
with distilled water and chopped into small pieces and then 
placed in labeled centrifuge tubes (50  ml). The tubes were 
rinsed with double distilled water before oven drying the 
material to constant weight. The weighed samples (2  g) were 
transferred to porcelain crucibles. The plant material was burned 
for 4–6  h in a muffle furnace at 550°C. The ensuing ash was 
mixed with 10  ml of hydrogen peroxide (30%) and kept at 
80°C for 1  h in a water bath. The mixture was washed twice 
with double distilled water (DW). The pellet was treated with 
10  ml of 10% hydrochloric acid (1  M) and incubated at 80°C 
for 1  h. The mixture was washed with DW and centrifuged 
at 3,500  rpm for 15  min. The supernatant was poured off and 
the pellet was rinsed with DW, till the pellet became clear. 
Small amount of the dried ash was mixed with 10  ml of 
Gentian Violet and a drop of this mixture was put on a glass 
slide which was subsequently covered by a cover slip. Extra 
stain was drained off with a filter paper and the slide was 
heated gently. Phytolith morphotypes were observed under a 
compound microscope (Leica DM300, Wetzlar GMBH) fitted 
with a digital camera (DFC 320), and photographed at a 
uniform magnification (40×). Classification of the morphotypes 
extracted through this dry ashing method was done as per 
ICPN 1.0 (Madella et  al., 2005).

SEM Analyses of Grasshopper Mandibles
The laboratory colony of grasshoppers (O. grandis) was maintained 
on an artificial diet in the insect-rearing conditions (25–27°C, 
14:10 light: dark, 50–60% RH) of the Division of Entomology 
at SKUAST, Kashmir. These laboratory-reared grasshoppers 
(third instar stage) were individually caged (n  =  10) in 1-L 
sandwich boxes and starved for 24  h, much longer than the 
clearance time of grasshoppers, so that all food eaten before 
would have passed through their guts.

Pots from different Si treatments (50 replicates × 4 treatments) 
were enclosed in muslin cloth bags. Half of the pots (N = 100) 
were exposed to herbivory (infested) by two individuals per 
pot of third instar nymphs of O. grandis for 20  days. After 
20  days of infestation under different Si regimes, the adult 
grasshoppers were collected and treated with 70% ethanol. The 
preserved mandibles were detached from the mouth part and 
were cleaned in an ultrasonic shaker. Different concentrations 
of ethanol, i.e., 80, 90, and 95% were used for dehydration 
of mandible specimens. In order to make the samples conductive, 
they were mounted on sample stubs, and then coated with 
gold for 5  min using a gold sputter coater. Following coating, 
the samples were rounded to the sample stub using graphite 
paint, and the specimens were observed under the SEM (S-3000H, 
Hitachi, Japan) at constant magnifications.

Assessment of the Leaf Damage
Leaf damage due to herbivory was measured in all treatments 
by calculating the leaf area of all the leaves on each plant in 
each treatment. The leaves were put on a Leaf Area Transparent 
Belt Conveyor (LI-3050C), and it was made sure that the knob 
was tightened in a way so that the belt moves freely through 
the scanner head, after the scanner was fixed in the conveyor 
belt. Leaves were placed on the supporting platform so that 
they pass through the scanner head and the reading was noted 
from the display panel. In this way, the leaves from different 
Si and herbivore treatments were measured.

Statistical Analysis
Results are reported as means ± SE unless otherwise stated. 
Data were analyzed using the Student’s t-test (p  ≤  0.01 and 
0.001) and comparison of individual treatment groups was 
done with one-way ANOVA, and the multiple comparisons 
where each experimental mean was compared with the control 
mean were analyzed by Tukey’s post hoc test after normality 
test by the Shapiro-Wilks method. Data showing deviation 
from a normal distribution were arcsine root transformed before 
statistical analysis. All the statistical analyses were carried out 
with SPSS 20.

RESULTS

Si Analysis
Silicon addition to peat increased leaf silicon concentrations 
significantly (p  <  0.001). In control treatments, the silicon 
concentration was 0.1  ppm which increased ca. 12 fold in the 
highest silicon treatment (Figure 1).

Phytolith Morphotypes and  
Epidermal Patterns
In the current study, we  identified a total of 21 phytolith 
morphotypes in the leaves of B. catharticus that were classified 
into 6 broad groups namely, short cross shaped, epidermal 

FIGURE 1 | Si uptake potential of Bromus catharticus in different Si 
treatments (T1: No Si; T2: 500 mg/L Si; T3: 1,000 mg/L Si; T4: 2,000 mg/L Si). 
Values presented are means (n = 25). Error bars represent SE. Different letters 
on top of bars indicate significant differences ( p < 0.005) between treatments.
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elements, long hairs cells, blocky types, globular, and bulliform 
cells (Figure 2), that usually originate in the epidermis and 
endodermis (Twiss et al., 1969; Lu and Liu, 2003). It is pertinent 
to mention that Si addition did not result in changing the 
morphology of phytoliths although the frequency of the phytoliths 
was insignificantly changed. In B. catharticus, both the surfaces 
of the epidermis, i.e., adaxial and abaxial are divided into costal 
and intercostal zones which differ from each other in cell 
composition as well as silica deposition. In B. catharticus, on 
the abaxial side, the costal zone is composed of 1–3 layers of 

cells, and the intercostal zone consists of 4–8 layers of cells 
(Figure 3). A single layer of cross-shaped silica cells was present 
in the costal region on the adaxial surface. A smaller number 
of short cells were present in the intercostal region while the 
long cells were abundant in both the costal and intercostal 
regions. On the abaxial side, the costal zone contains 5–6 layers 
of cells and the intercostal zone consists of 14–18 layers of 
cells (Figure 4). In the intercostal region, a few cells were 
shorter than usual long cells. Silicified prickle hairs were present 
on the leaf border in large numbers along the margin of the leaf.

FIGURE 3 | In situ location of phytoliths in epidermis of adaxial surface (tc, trichome; sc, short cell phytoliths; st, stomata; sc, silica cells; lc, long cells; scp, short 
cell phytoliths; cs, cross-shaped phytoliths).

A B C D E F G H

I J K L M N O P

Q R S T U V W X

FIGURE 2 | Different types of phytoliths present in Bromus catharticus, (A) cross shaped, (B) orbuscular, (C) pyramidal, (D) microhair, (E) oblong, (F) trapezoid, (G) 
oblong elongated, (H) globular, (I) trapezoid, (J) elongated irregular, (K) scutiform, (L) trapeziform sinuate, (M) smooth elongated, (N) elongated irregular, (O) blocky 
irregular, (P) long hair shaped, (Q) orbuscular, (R) acicular, (S) horn like, (T) undulated, (U,V) rectangular, (W,X) pyramidal.
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Effect of Si Concentration and Grasshopper 
Herbivory on Rescuegrass Leaf Area
Soil silicon addition had a positive effect on the overall leaf 
area; however, the consumption of B. catharticus by O. grandis 
was reduced in high Si treatments. Higher Si concentrations 
caused an approximately two fold decrease in herbivory, and 
the leaf area consumption was similar in the infested and 
uninfested treatments at higher Si treatments (Figure 5). Hence 
B. catharticus seemed to deter herbivore feeding in high silicon 
diets by making leaves less palatable for the herbivore to digest.

Effect of Si Amendments on O. grandis 
Mandible Wear
The herbivore feeding on a high Si diet showed deformation 
of the incisors (which is otherwise the strongest part  

of the mandibles). The results are evident in SEM  
micrographs (Figure 6).

DISCUSSION

Effect of Silicon Concentration and 
Grasshopper Herbivory on Leaf  
Area of Rescuegrass
Rescuegrass accumulated a significant amount of Si in Si-rich 
environments. Based on Si accumulation potential, plants 
have been categorized into Si accumulators, intermediate type, 
and excluder species (Jones and Handreck, 1967; Takahashi 
et  al., 1990), and three modes of Si accumulation in plants 
(active, passive, and rejective) have been proposed for these 
corresponding types (Takahashi et  al., 1990). The resultant 
Si deposition has been ascribed to high-level phylogenetic 
position (Hodson et  al., 2005). However, the present study 
clearly demonstrates that Si accumulation also depends on 
Si availability; although, the source of Si acquired by the 
plants depends upon the type of minerals absorbed through 
various processes (Sposito, 2008; Hiradate, 2012). Therefore, 
the estimation of the Si-supplying power of soils is mainly 
determined by the available silicon present in the soil 
(Kyuma, 2004; Sauer et  al., 2006; Matsumori and Gunjikake, 
2013), and as such the actual potential of accumulation is 
seldom realized.

Phytolith Types and Epidermal Pattern
The occurrence of specific phytolith-forming cells in leaves of 
B. catharticus indicates that they are specialized for the defense 
against insect herbivory. Although Si addition did not change 
phytolith morphology in the present study, the phytolith 
frequency (particularly short cell phytoliths) was slightly higher 

FIGURE 4 | Abaxial surface showing in situ silica particles (ph, prickle shaped; lc, long cell; scp, short cell phytoliths) lining the margins of epidermis.

FIGURE 5 | Effect of different Si concentrations (T1: No Si; T2: 500 mg/L Si; 
T3: 1,000 mg/L Si; T4: 2,000 mg/L Si) on leaf area damage of Bromus 
catharticus due to herbivory. Values presented are means (n = 25). Mean 
values with two or three asterisks are significantly different as determined by 
the Student’s t-test (p ≤ 0.01 and 0.001, respectively). Error bars represent SE.
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in higher Si treatments. Silicon reduces insect herbivory as it 
increases epidermal hardness and abrasiveness of the leaf and 
that provides resistances to the plant and reduces digestibility 
for the herbivore. The hardness of the plant parts on which 
herbivore are fed reportedly caused mandibular wear in various 
beetles (Raupp, 1985; King et  al., 1998), bees (Kokko et  al., 
1993; Schaber et  al., 1993), caterpillars (Korth et  al., 2006), a 
locust (Zouhourian-Saghiri et  al., 1983), a weevil (Barnes and 
Giliomee, 1992), and even in the stylet of a true bug (Roitberg 
et  al., 2005). The short cell phytoliths present in the leaf 
epidermis may discourage both large and small herbivores by 
making plant tissues less palatable and/or digestible (Hunt 
et al., 2008; Reynolds et al., 2009) and by wearing down insect 
mandibles and teeth in mammals (Massey and Hartley, 2009; 
Müller et  al., 2014).

Herbivore Deterrence
The concentrations of Si in the leaves of B. catharticus affected 
the feeding potential of O. grandis. This increased resistance 
to herbivory has been ascribed to increased abrasiveness and 
hardness of plant tissues (especially epidermal) due to deposition 
of silica, mostly in the form of opaline phytoliths (Kaufman 
et  al., 1985; Salim and Saxena, 1992; Ma et  al., 2001; Massey 
et  al., 2006; Massey and Hartley, 2009), which might affect 
the grasshopper directly or indirectly. Si-mediated herbivore 
resistance acts by hindering the establishment of the insect 

and defense against plant penetration, which reduces the 
palatability and feeding efficiency. However, the demonstration 
of Si-laden plants acting as a mechanical deterrence due to 
opaline phytoliths is difficult to achieve, and there is significant 
scope in this research area.

Mandible Wear
The results of the current study reveal that the long, chisel-
edged incisor cusps suffered microwear once the insect fed 
on plants grown under high silicon treatments. In agreement 
with previous studies (Sasamoto, 1958; Djamin and Pathak, 
1967; Hanifa et al., 1974; Dravé and Lauge, 1978; Zouhourian-
Saghiri et al., 1983; Ramachandran and Khan, 1991; Goussain 
et  al., 2002), which reported that insect herbivores feeding 
on elevated silicon diets suffered greater mandibular wear, 
the present study showed some microwear in the incisors 
of the herbivores fed on very high Si treatments, although 
no mandible wear was witnessed at lower Si concentrations. 
Studies of dental wear require a minimum of several days 
of mastication to report measurable mandibular wear, though 
it mostly depends on the abrasiveness of the foods  
ingested (Teaford and Glander, 1991, 1996; Gügel et  al., 
2001). The difference in dental wear could be  attributed to 
higher phytolith content in plants that received higher Si 
concentrations, as the major mechanical properties controlling 
abrasiveness of particles are hardness, particle size,  

A B

C D

FIGURE 6 | SEM micrographs showing dental wear of Oxya grandis mandibles fed on: high Si concentrations (D), against control (A), and low (B) to moderate (C) 
Si concentrations.
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and geometry (Williams, 2005). As dental wear markers are 
often the only proxy system bridging extant biomes and the 
fossil record, this opens a new research area in the 
phytolith studies.
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Phytoliths are a reliable paleovegetation proxy and have made an important contribution 
to paleoclimatic studies. However, little is known about the depositional processes 
affecting soil phytoliths, which limits their use for paleoclimate and paleovegetation 
reconstructions. Here, we present the results of a study of the vertical translocation 
characteristics of phytoliths in 40 natural soil profiles in Northeast China. The results 
show that phytolith concentration decreases within the humic horizon of the soil profiles 
and that ~22% of the phytoliths are translocated below the surface of the studied soils. 
In addition, we find that the translocation rate of phytoliths varies markedly with phytolith 
type and that phytolith size and aspect ratio also have a significant effect. Phytoliths 
with length >30 μm and with aspect ratio >2 and those with length <20 μm and aspect 
ratio <2 are preferentially translocated compared to those with length  >25 μm and 
aspect ratio <2. Our results demonstrate that differential translocation of phytoliths 
within soil profiles should be considered when using soil phytoliths for paleoclimate and 
paleovegetation reconstruction.

Keywords: phytolith, transport characteristics, paleovegetation, climatic proxy, Northeast China

INTRODUCTION

Phytoliths are microscopic silica bodies that precipitate in or among cells of living plant tissues. 
Owing to their abundance and environmental sensitivity, the use of phytoliths as an environmental 
indicator has received increasing attention. Specifically, phytolith analysis has been widely used 
in paleovegetation reconstructions, such as monitoring shifts in forest–grassland boundaries, 
vegetation succession, and changes in alpine timberlines (Barboni et al., 2007; Ákos, 2013; Coe 
et al., 2013; Dickau et al., 2013; Song et al., 2016; Li et al., 2017; Novello et al., 2017). However, it has 
been observed that soil phytoliths are subject to preservation bias, and they can be dissolved from 
archaeological and sedimentary records under alkaline conditions, or due to mechanical abrasion, 
and partially dissolved phytoliths will more easily break into fragments (Fraysse et al., 2009; 
Tsartsidou et al., 2009; Cabanes et al., 2011; Novello et al., 2012; Albert et al., 2015; Prentice and Webb, 
2016). In addition, under the influences of wind, surface runoff, and human activity, soil phytoliths 
can be horizontally migrated (Wallis, 2001; Farmer et al., 2005; Esteban et al., 2017; Bremond et al., 
2017), and phytoliths maybe also translocated beneath the soil surface due to various taphonomic 
events (Osterrieth et al., 2009; Golyeva and Svirida, 2017). Such dissolution and translocation effects 
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can result in the misinterpretation of poorly preserved phytolith 
assemblages, which reduces their reliability for palaeovegetation 
and paleoclimatic reconstructions. Therefore, when using soil 
phytoliths for paleoclimate and paleovegetation reconstructions, 
the effects of these processes must be considered, and a first step 
is to improve our understanding of modern processes affecting 
phytoliths by conducting a study of their translocation within 
soil profiles.

To date, research on the vertical translocation of soil 
phytoliths has been conducted in several geographical regions 
(Borba-Roschel et al., 2006; Bradford et al., 2006; Cabanes et al., 
2012; Li et al., 2012; Boixadera et al., 2016; Inoue et al., 2016). 
These studies have mainly focused on characterizing changes in 
phytolith assemblages with soil depth, and the results indicate 
that phytolith quantity decreases with depth, principally within 
the surface layer of the soil profile (Bradford et al., 2006; Li 
et al., 2012). However, although the phenomenon of the vertical 
translocation of phytoliths can be found in undisturbed soils 
(Bradford et al., 2006), there are only a few studies about their 
translocation rates in natural soils. Experiments have been 
conducted using, for example, irrigation (a fluorescent labeling 
technique), in which phytoliths are added to phytolith-free 
sandy sediment or other soil types (Fishkis et al., 2009; Fishkis 
et al., 2010a). Changes in phytolith concentration with depth 
are then measured to determine the translocation rates of 
specific phytolith types (Fishkis et al., 2009; Fishkis et al., 2010a; 
Fishkis et al., 2010b). However, this experimental approach 
may overlook the complexity of factors influencing the vertical 
translocation of soil phytoliths under natural conditions, 
which results in an incomplete understanding of the processes 

involved. In addition, soil phytoliths are contributed by a wide 
variety of plant species, and even by mixtures of herbaceous 
plants and trees, but phytolith morphotypes studied so far are 
insufficient to be fully representative of soil phytoliths in different 
environments (Piperno, 2006). Moreover, most previous studies 
have focused on changes in phytolith morphologies with depth 
and sampling interval and have rarely considered the influence 
of soil formation on phytolith translocation.

Here, we present the results of a study of soil phytolith 
assemblages in 40 natural soil profiles in Northeast China and 
analyze the results from the perspectives of soil formation and 
soil horizonation. Our main aim is to investigate the rate of 
phytolith translocation within natural soils and the degree to 
which phytolith translocation depends on phytolith morphology. 
Our results potentially provide a basic scientific reference for 
the preservation characteristics of soil phytoliths, and they may 
help improve the reliability of phytolith-based paleoclimate and 
paleovegetation reconstructions in the temperate zone.

STUDY AREA

The study area in Jilin province of Northeast China is located 
at 39°40ʹN–53°30ʹN, 115°05ʹE–135°02ʹE (Figure 1) (Ma et  al., 
2007). The modern climate of the area is influenced by the 
East Asian monsoon, which has four distinct seasons. NE 
China also exhibits a large variety of soil types along with the 
vegetation changes, although they are all characterized by a high 
organic matter content. The vegetation zones within the study 
area exhibit a northeast–southwest (NE–SW) distribution, 

FIGURE 1 | Location of sampling sites in Northeast China. 
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reflecting the orientation of thrust faults. In the Daxing’anling 
Mountains region, in the western part of NE China, which 
belongs to the cold temperate zone, its regional average annual 
temperature is  −2.8°C, and average annual precipitation is 746 
mm; coniferous forest is widely distributed, with Larix gmelinii 
as the dominant species; and Brown coniferous forest soils 
dominate in this zone. In the Changbai Mountains region, in 
the eastern part of NE China, which belongs to the temperate 
zone, its regional average annual temperature ranges from 2 to 
6°C, and average annual precipitation ranges from 400 to 700 
mm (Li et al., 2001); the natural vegetation is typically mixed 
coniferous-broadleaved forest, characterized by Pinus koraiensis 
and Betula costata; and dark brown soils and black soils mainly 
occur in this region. Songnen Plain, in the western part of NE 
China, belongs to the temperate zone, situated along the eastern 
margin of the temperate steppe in North China; its regional 
average annual temperature ranges from 3.5 to 5.0°C, and the 
average annual precipitation ranges from 360 to 480 mm (70% of 
the region’s precipitation falls in summer) (Li et al., 2017); locally, 
the vegetation changes to forest grassland, alternatively called 
meadow grassland, dominated for example by Leymus chinensis 
and Stipa baicalensis, with occasional trees such as Populus 
davidiana and Ulmus pumila; Chernozems and Dark brown soils 
mainly occur in this region. In addition, there are also several 
intrazonal soil types (e.g., albic, meadow, and peaty soils), which 
occasionally occur locally (Guo et al., 2008; Zhao et al., 2011).

MATERIALS AND METHODS

Sample Collection
We collected samples from various soil types (dark brown soil, 
chernozem, chestnut soil, black soil, alluvial soil, and albic soil) 
and corresponding topsoil samples from 40 sampling sites in NE 
China (Figure 1). Forty soil profiles were collected based on soil 
horizonation, and as far as possible, we sampled all the diagnostic 
horizons within each profile. Forty topsoil samples were also 
collected from the uppermost 2–3 cm of surface soil, excluding 
the surface litter layer. Vegetation and soil profile information for 
these samples are listed in Table 1.

Phytolith Extraction Methods
Phytoliths were extracted from topsoil and soil profile samples 
using the wet ashing method (Li et al., 2017). The soil samples 
were air dried overnight at 80°C and then pulverized into a 
powder, and 5 g of sieved soil was weighed and added to a 50-ml 
centrifuge tube. To remove carbonates, 10% HCl was added, 
and the samples were stirred regularly until the reaction ceased. 
Distilled water was then added, and the mixture was centrifuged 
three times at 2,000 rpm for 20 min. To remove organic matter, 
concentrated HNO3 was added and the samples heated in a 
water bath at 90°C until the reaction subsided. Distilled water 
was then added, and the samples were centrifuged at 2,000 rpm 
for 20 min. Phytoliths were then extracted by floatation using 
a ZnBr2 solution with a specific gravity of 2.38, together with 
centrifugation; the supernatant was collected and washed with 

distilled water. Next, a known number of Lycopodium spores 
was added to another centrifuge tube and mixed with 10% HCl, 
which was then added to the abovementioned supernatant, and 
the mixture was centrifuged twice. Absolute ethanol was then 
added to the centrifuge tube, and the mixture was centrifuged 
at 2,000 rpm for 20 min. Finally, one to three drops of the 
suspension were placed on a glass microscope slide, which was 
heated over a spirit lamp until all the ethanol was evaporated. 
Canada balsam oil (one to two drops) was added and a cover slip 
placed on top. Observations and identification were performed 
with an Olympus microscope at a magnification of ×600. At least 
300 phytolith grains were counted for each sample.

In addition, a phytolith concentration is the amount of 
phytoliths per gram of dry soil, and the formula of phytolith 
concentration:

 
w n M

N m
= ×

×  

In the formula, n represents the number of the phytolith in 
each slide, N represents the number of lycopodium spores in 
each slide, M represents the number of lycopodium spore in a 
slice of lycopodium spores, m represents the weight of each 
experimental samples (g), and finally calculate the phytolith 
concentrations w (103 particles/g).

The physical composition was tested using a laser diffraction 
particle size analyzer (Microtrac S3500, Montgomeryville, 
Pennsylvania, USA), which can measure particle sizes from 0.02 
to 2,800.00 μm. More detailed information about the procedure 
for determining the physical composition is given in Ahmed 
et al. (2016) and Ordóñez et al. (2016).

RESULTS

Distribution of Phytoliths Within Natural 
Soil Profiles
The phytolith distributions in relation to the horizonation 
of the studied soils are illustrated in Figure 2 and Table 2. In 
most of the soil profiles, the depth distribution of phytoliths 
exhibits a consistent pattern. Phytolith concentration decreases 
systematically with depth, from the humic horizon (Ahorizon) 
to the parent material (Chorizon). However, there are several 
exceptions: at some sites, for example, the phytolith distribution 
exhibits the opposite distribution, e.g., in the profiles from 
Shuangyang (3), Shuangyang (4), and Fusong (6). In general, 
however, the depth distribution of phytoliths in the profiles 
exhibits a similar pattern, with highest concentrations occurring 
in the humic horizon.

To confirm the phytolith content of different soil horizons 
derived from the aboveground vegetation, we studied the 
relationship between phytolith concentration and soil organic 
matter content and found that there was a closely linear 
relationship between phytolith concentration and soil organic 
matter content, which was also found in previous studies (Zhang 
et al., 2011). Thus, we used the linear regression equation [Y = 
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0.5098 + 2.7971x, where Y = phytolith concentration and x = 
soil organic matter content (R = 0.673, F = 123.448, p = 0.000)] 
to estimate the phytolith concentrations of the soil profiles 
derived from the aboveground vegetation and compared the 
results with the original phytolith concentrations (Figure 3). 
Except for a few sites, the predicted phytolith concentrations 
of the illuvial (B) and eluvial (E) horizons of the soil profiles 
are all lower than the original values. On average, the original 
values of phytolith concentration of the B and E horizons of the 
soil profiles are six and four times greater than the predicted 
values, respectively.

Based on findings of soil phytolith preservation, we also 
examined differences in the content of poorly preserved (short-
cell phytoliths and Tabular) and well-preserved phytoliths 

(lanceolate, elongate, blocky, and bulliform) (Albert et al., 2006; 
Cabanes et al., 2011) within different horizons of the soil profiles. 
In ~32% of the sample sites, the depth distribution of poorly 
preserved phytoliths exhibits a similar pattern, with the highest 
content in the lower layer (Figure 4). Combined with Figure 5, 
specifically, in the lower soil layers, soil pH is high, whereas the 
content of poorly preserved phytoliths is also high.

To further assess vertical translocation of phytoliths 
within natural soil profiles, the proportions of large and 
small phytoliths are calculated. The small phytoliths mainly 
include short-cell phytolits (e.g., saddle, rondel, bilobate, and 
trapeziform sinuate) (Gu et al., 2013), whereas large phytoliths 
contain lanceolate, elongate, tabular, blocky, and bulliform. 
Subsequently, a comparison of the proportions of large and 

TABLE 1 | Soil type, horizonation and vegetation community type of the sampling sites in Northeast China.

Number Sampling site Longitude(E) Latitude(N) Soil type Horizonation Vegetation community

1 Fusong(1)[FS(1)] 127°41′13.5″ 41°52′7.6″ Dark brown soil A,E,B Acer triflorum–Urtica laetevirens community
2 Fusong(2)[FS(2)] 127°40′45.1″ 41°58′18.7″ Dark brown soil A,E Abies nephrolepis–Carex siderosticta 

community
3 Fusong(3)[FS(3)] 127°36′0.6″ 42°20′14.3″ Dark brown soil A,E Acer mono–Urtica laetevirens community
4 Fusong(4)[FS(4)] 127°23′29.7″ 42°16′59.3″ Dark brown soil A,E Acer mono–Carex siderosticta community
5 Fusong(5)[FS(5)] 127°37′52.9″ 41°57′42.5″ Alluvial soil A,B,C Juncus effusus community 
6 Fusong(6)[FS(6)] 127°34′30.5″ 42°19′41.8″ Alluvial soil A,C Hippochaetehyemale community
7 Fusong(7)[FS(7)] 127°31′42.9″ 42°14′39.6″ Albic soil A,E,B Pinnus koraiensis–Carex community
8 Hudian(1)[HD(1)] 126°42′32.9″ 42°44′58.9″ Dark brown soil A,E,C,R Juglans mandshurica–Setaria viridis community
9 Hudian(2)[HD(2)] 126°31′52.9″ 43°07′35.3″ Dark brown soil A,B,C,R Quercus mongolica–Carex siderosticta 

community
10 Hudian(3)[HD(3)] 126°44′43.1″ 42°42′13.2″ Albic soil A,E,C –
11 Changbai(1)[CB(1)] 128°02′41.5″ 41°26′13.4″ Dark brown soil A,E,C Fraxinus mandshurica–Carex rigescens 

community
12 Changbai(2)[CB(2)] 127°04′33.9″ 41°42′09.4″ Albic soil A,E,B –
13 Changbai(3)[CB(3)] 128°09′20.4″ 41°23′23.6″ Alluvial soil A,C Calamagrostisepigejos community
14 Shuangyang(1)[SY(1)] 125°30′8.3″ 43°44′18.3″ Dark brown soil A,E,C –
15 Shuangyang(2)[SY(2)] 124°27′18.2″ 43°41′23.7″ Dark brown soil A,E,C –
16 Shuangyang(3)[SY(3)] 125°36′06.4″ 43°32′09.0″ Black soil A,B –
17 Shuangyang(4)[SY(4)] 125°44′51.3″ 43°23′49.7″ Albic soil A,E,C –
18 Changchun(1)[CC(1)] 125°3′27.8″ 43°59′15″ Chernozem A,B,C –
19 Nong’an(1)[NA(1)] 124°41′11″ 44°22′31.2″ Chernozem A,B,C Leymus chinensis community
20 Dehui(1)[DH(1)] 125°26′27.5″ 44°0′33.4″ Black soil A,B –
21 Dehui(2)[DH(2)] 125°40′26.8″ 44°16′19.0″ Black soil A,B –
22 Changling(1)[CL(1)] 124°31′18.4″ 44°26′9.6″ Chernozem A,B,C Leymus chinensis community
23 Changling(2)[CL(2)] 124°25′20.8″ 44°29′30.5″ Chernozem A,B –
24 Qianguo(1)[QG(1)] 124°31′25.6″ 45°25′27.3″ Chernozem A,B,C Stipa capillata community
25 Qianguo(2)[QG(2)] 124°21′22.7″ 45°24′2.5″ Chernozem A,B –
26 Baicheng(1)[BC(1)] 123°2′23.5″ 44°57′40.7″ Chernozem A,B,C –
27 Baicheng(2)[BC(2)] 122°49′38.3″ 45°15′4.6″ Chernozem A,B,C –
28 Da’an(1)[DA(1)] 124°16′12.8″ 45°32′4.9″ Chernozem A,B,C Leymus chinensis community
29 Da’an(2)[DA(2)] 124°14′39.2″ 45°32′30.4″ Chernozem A,B,C Dactylocteniumwilld community
30 Zhenlai(1)[ZL(1)] 123°42′53.6″ 45°57′51.1″ Chernozem A,B,C Stipa capillata community
31 Zhenlai(2)[ZL(2)] 123°30′59.1″ 45°54′24.4″ Chernozem A,B,C –
32 Tailai(1)[TL(1)] 123°37′22.1″ 46°17′7.1″ Chernozem A,B,C Leymus chinensis community
33 Tailai(2)[TL(2)] 123°40′49.5″ 46°54′23.4″ Alluvial soil A,C Poa community
34 Longjiang(1)[LJ(1)] 122°55′56.1″ 47°14′40.3″ Dark brown soil A,C –
35 Longjiang(2)[LJ(2)] 122°44′21.6″ 47°18′36.8″ Dark brown soil A,E –
36 Longjiang(3)[LJ(3)] 123°0′7″ 47°18′51.5″ Chernozem A,B Leymus chinensis community
37 Zhalaite(1)[ZLT(1)] 122°28′31.1″ 47°8′24.3″ Dark brown soil A,C –
38 Zhalaite(2)[ZLT(2)] 122°7′22.5″ 46°58′39.4″ Dark brown soil A,C –
39 Zhalaite(3)[ZLT(3)] 122°28′5.4″ 47°2′24.3″ Black soil A,B –
40 Neimeng(1)[NM(1)] 121°20′17.0″ 45°06′42.9″ Chestnut soil A,E,B,R Setaria viridis community

A, humus horizon (A horizon); B, illuvial horizon (B horizon); C, parent material horizon (C horizon); E, eluvial horizon (E horizon); R, bed rock horizon (R horizon).

156

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Translocation of Phytoliths Within Natural Soil ProfilesLiu et al.

5 October 2019 | Volume 10 | Article 1254Frontiers in Plant Science | www.frontiersin.org

small phytoliths with depth was made (Figure 6). In the present 
dataset, the size distribution of phytoliths with depth within the 
profiles is consistent with pollen. In ~29% of the sample sites, 
the content of small phytoliths increases with depth, whereas 
the content of large phytoliths decreases. Thus, we conclude 
that, in natural soil profiles, small phytoliths prefer to distribute 
in the lower layers.

Vertical Translocation Rates of Phytoliths 
in Natural Soil Profiles
Total Vertical Translocation Rate of Phytoliths
In the studied soil profiles, the original phytolith concentration of 
the illuvial horizon (Bhorizon) and eluvial horizon (Ehorizon) is 
respectively six and four times greater than the values estimated 
by the linear regression model (see Section  “Distribution of  

FIGURE 2 | Distribution characteristics of phytolith concentration within the horizons of the soil profiles from different sampling sites in Northeast China. A, B, C, E, 
and R are soil horizons. 1/10: the concentration of the sampling site is the one tenth of its actual concentration.

TABLE 2 | Phytolith concentration within the horizons of the soil profiles from different sampling sites in Northeast China.

Number Site Soil horizon Number Site Soil horizon

①(A) ②(B/E) ③(C) ④(R) ①(A) ②(B/E) ③(C) ④(R)

1 BC(1) 15.81 0.00 – – 21 HD(2) 229.05 14.93 18.87 3.23
2 BC(2) 4.00 0.00 0.00 – 22 HD(3) 22.94 3.99 9.88 –
3 CB(1) 82.99 37.87 1.59 – 23 LJ(1) 26.28 0.00 – –
4 CB(2) 41.02 5.25 – – 24 LJ(2) 231.32 146.69 – –
5 CB(3) 151.02 0.00 4.09 – 25 LJ(3) 10.24 0.00 – –
6 CC(1) 113.06 26.10 25.67 – 26 NA(1) 15.52 13.08 23.67 –
7 CL(1) 14.40 3.37 0.00 – 27 NM(1) 27.88 4.69 0.00 2.22
8 CL(2) 8.03 2.13 – – 28 QG(1) 69.49 1.24 0.00 –
9 DA(1) 8.95 8.63 8.67 – 29 QG(2) 25.68 6.51 – –
10 DA(2) 11.57 4.48 0.31 – 30 SY(1) 76.63 14.34 0.00 –
11 DH(1) 6.50 1.72 – – 31 SY(2) 90.70 37.93 11.00 –
12 DH(2) 33.78 4.88 – – 32 SY(3) 18.98 34.06 – –
13 FS(1) 644.90 626.53 146.07 – 33 SY(4) 55.45 78.92 0.94 –
14 FS(2) 1,868.57 707.37 – – 34 TL(1) 56.79 1.16 0.29 –
15 FS(3) 305.92 27.99 – – 35 TL(2) 23.49 8.87 – –
16 FS(4) 1,003.18 1,019.72 – – 36 ZL(1) 4.72 0.00 0.00 –
17 FS(5) 99.80 65.74 – – 37 ZL(2) 1.86 0.23 0.66 –
18 FS(6) 321.53 297.65 8.38 – 38 ZLT(1) 60.72 0.00 – –
19 FS(7) 114.65 139.75 102.46 – 39 ZLT(2) 479.66 62.71 – –
20 HD(1) 37.57 17.91 6.43 0.83 40 ZLT(3) 30.18 2.78 – –
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Phytoliths Within Natural Soil Profiles”). Here, the predicted 
values of phytolith concentration of the Bhorizon and Ehorizon 
are regarded as the actual phytolith concentration derived from 
the aboveground vegetation. In addition, using the above rations 
(i.e., six and four), we recalculated the phytolith concentration 
of the Bhorizon and Ehorizon of the soil profiles caused by 
phytolith translocation. Finally, the recalculated phytolith 
concentration of the B, E, and C (or R) horizons may be the result 
of phytolith transport from the upper layers of the soil profile. 
To determine the phytolith translocation rate in natural soils, 
we defined various phytolith translocation indices, including the 
total translocation rate (T), translocation rate of the Chorizon 
(CT), and the relative translocation rate of the Chorizon (CT′). 
The formulae are listed below.

 T P S P= +/ ( )  

 CT P S P= +1 / ( )  

 CT P P' /= 1  

Here, S is the phytolith concentration of the humic horizon 
(Ahorizon) (103 particles/g); P is the total phytolith concentration 
of the soil profile (including the current phytolith concentration 
of the B, E, and C (or R) horizons), which is transported from 
the surface layers, but excluding the phytolith concentration 
of the humic horizon (103 particles/g); and P1 is the phytolith 
concentration of the Chorizon (103 particles/g).

T is the total translocation rate of phytoliths in the soil profile, 
and it reflects the intensity of vertical translocation of phytoliths. 
As T increases, there is an increase in phytolith translocation from 

FIGURE 3 | Comparison of the original and predicted phytolith concentrations in the B (left) and C (right) horizons of soil profiles in Northeast China. The estimated 
concentration is based on a linear regression model.

FIGURE 4 | Variation of pH within the horizons of different soil types in Northeast China. A, B and C are soil horizons.
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the surface humic horizon to the lower layers of the soil profile. 
The larger the T value, the weaker are the preservation of soil 
phytoliths. T < 18 indicates that the translocation rate of phytoliths 
is relatively low, and thus, the phytoliths are better preserved; by 
contrast, T > 30 indicates that phytoliths are poorly preserved in 
the soil, and 18 < T < 30 represents an intermediate translocation 
rate. CT is the phytolith transport rate to the Chorizon, i.e., the 
translocation distance of phytoliths within the soil profile is 
increased. CT < 4 indicates that the phytolith translocation rate of 
the Chorizon is relatively low and that the translocation distance of 
phytoliths within the soil profile is relatively low, whereas CT >  12 
represents a greater translocation distance, and 4 < CT <  12 
represents an intermediate translocation rate to the Chorizon. CT′ 
is the relative transport rate of phytoliths to the Chorizon.

There are substantial differences in T values among the 
various sampling sites in NE China (Figure 7). T ranges mainly 
from 0 to 40%, and the mean transport rate of phytoliths is 
22%. In addition, CT is 10%. Specifically, the T values of total 
phytoliths for the chernozem and chestnut soils are lower 
(designated “low”), with values of 16 and 17%, respectively. T 
values of total phytoliths for dark brown soils and albic soils are 
greater (designated “intermediate”), with values of 22 and 28%, 
respectively. The T values of total phytoliths for black soils and 
alluvial soils are the largest (designated “high”), with values of 
30 and 37%, respectively. Thus, the translocation rates of total 
phytoliths are lowest in chernozem and chestnut soils and 
highest in black soils and alluvial soils; whereas intermediate 
rates occurred in dark brown soil and albic soils. The distribution 

FIGURE 5 | Distribution of well- and poorly-preserved phytoliths within different soil horizons in the studied soil profiles in Northeast China. A, B, C, E, and R are 
soil horizons.

FIGURE 6 | Variation of the proportions of large and small phytoliths between the horizons of soil profiles in Northeast China. A, B, C, E, and R are soil horizons.
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characteristics of the phytolith translocation rates among the 
different layers in the soil profiles are illustrated in Figure 8. On 
average, ~28% of the total translocation rate of phytoliths occurs 
within the Chorizon of the soil profiles, i.e., ~72% of the total 
translocation rate of phytolith occurs within the upper horizons. 
These findings demonstrate that translocation of phytoliths 
occurs in natural soils in NE China, but the transport distance 
is minor, and only a relatively small number of phytoliths are 
transported to the Chorizon.

Vertical Translocation Rates of Different Phytolith 
Types in Natural Soil Profiles
The translocation rates of the main phytolith types among the 
different sampling sites in NE China are illustrated in Figure 9. 
Evidently, there are substantial differences in translocation 
rate among the different phytolith morphotypes. In general, 
the translocation rates of short-cell, lanceolate, and elongate 
phytoliths are greater (designated “intermediate”), with 
respective rates of 21%, 25%, and 27%. The translocation rates 
of tabular, blocky, and bulliform phytoliths are lower (designated 
“low”), with respective rates of 18%, 16%, and 17%. The CT 
values of the main phytolith morphotypes also vary. Specifically, 
the CTs of lanceolate and elongate phytoliths are the largest 
(designated “high”), with respective rates of 14% and 13%; the 
CT values of short-cell, tabular, and blocky phytoliths range 
mainly from 4% to 12% (designated “intermediate”); and the 
CT of bulliform phytoliths is low (designated “low”), only 3%. 
These findings indicate that phytolith morphotype significantly 
affects the translocation behavior, with small phytoliths being 
translocated preferentially.

In addition, we randomly measured the maximum length 
and width of short-cell, lanceolate, elongate, blocky, tabular, 
and bulliform phytoliths. For each phytolith type, 40 phytolith 
particles were measured. The maximum length and width of 
phytoliths were measured using the measuring tools provided 
by MOTIC software. The method used to determine the size 
parameters for different types of phytoliths is illustrated in Liu 
et al. (2016) and Gao et al. (2017). Scatter plots of the results are 
illustrated in Figure 10. For lanceolate and elongate phytoliths, 
their lengths are >30 μm, and their aspect ratios (namely, length/
width ratio) are >2.5. The average length of short-cell phytoliths 
is 14 μm, which is smaller than that of the other phytolith types, 
and their average aspect ratio is 1.86. By contrast, the lengths of 
tabular, blocky, and bulliform phytoliths are mainly >25 μm, and 
their aspect ratios are 1.56, 1.53, and 0.79, respectively. Therefore, 
the soil phytoliths can be grouped into three categories according 
to their lengths, widths, and aspect ratios (Table 3). Combined 
with the results shown in Figure 10, it is evident that phytolith 
size and aspect ratio significantly affect their translocation 
behavior. Phytoliths with an aspect ratio >2 (e.g., lanceolate and 
elongate phytoliths) are all preferentially translocated, at rates 
mainly >18%, and the translocation rates of phytoliths with 
length <20 μm (e.g., short-cell phytoliths) are also mainly >18%, 
indicating preferential translocation. Specifically, phytoliths with 
length >30 μm and aspect ratio >2 and those with length <20 
μm and aspect ratio <2 are preferentially translocated compared 
to those with length >25 μm and aspect ratio <2. Thus, it can be 
concluded that phytolith size and aspect ratio have a significant 
effect on phytolith translocation and that these attributes should 
be considered in future research on phytolith translocation.

FIGURE 7 | Total phytolith translocation rate (T ) and phytolith translocation rate to the C horizon (CT ) for soil profiles in Northeast China.
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FIGURE 8 | Relative translocation rate of phytoliths to the C horizon of (CT′) of soils in Northeast China.

FIGURE 9 | Box plots illustrating the distribution of total (T ) and C horizon (CT ) phytolith translocation rates for different phytolith morphotypes in soil profiles in 
Northeast China.
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DISCUSSION

Phytolith Translocation Phenomenon in a 
Natural Soil Profile
Several researchers have suggested that phytolith translocation 
within soil profiles should be considered in paleoenvironmental 
reconstruction (Alexandre et al., 1999; Humphreys et al., 2003), 
whereas others have regarded phytoliths to be immobile (Rovner, 
1983). Alexandre et al. (1999) reported phytolith translocation to 
a depth of 2.2 m in a ferrallitic soil, with a minor accumulation 
of phytoliths above an impermeable clay layer at the depth of 
1.3–1.4 m. Humphreys et al. (2003) attributed the distribution 
of phytoliths in podzolic soils mainly to their translocation 
by percolating water; however, by contrast, Rovner (1983) 
concluded that phytolith mobility could be regarded as negligible 
for the purpose of paleoenvironmental reconstructions, due 
to their weight and large size. Piperno (2006) pointed out that 
the magnitude of translocation was probably minimal because 
phytoliths typically occurred only in the upper part of recent 
soils and their concentration usually decreased in the B horizon. 

However, in recent years, it has been found that due to various 
taphonomic events, soil phytoliths could be translocated from the 
soil surface, resulting in differences in phytolith content from the 
surface to the deeper horizons of soil profiles (Wallis, 2001; Farmer 
et al., 2005; He and Zhang, 2010; Golyeva and Svirida, 2017). 
Denis (2017) observed a relative increase in the concentration 
of phytoliths in the E horizon (at the depth of 25–30 cm) of an 
eluvial soil within a catenary sequence under field conditions, 
compared with the E and A′ horizons at the same depths, 
which confirms the occurrence of the downward translocation 
of phytoliths. The results of the present study confirm the 
occurrence of vertical translocation of phytoliths in natural soil 
profiles, which is consistent with the results of previous studies. 
In our study, the depth distribution of phytoliths in most profiles 
exhibits a similar pattern, with highest concentrations occurring 
in the humic horizon. However, there are several exceptions: at 
some sites, for example, the phytolith distribution exhibits the 
opposite distribution. This may be a result of the combination 
of soil type and the climatic conditions of NE China. Winter 
arrives early in NE China, and the interval of freezing is long, 

FIGURE 10 | Scatter plots illustrating the relationship between width and length of different phytolith morphotypes in soil profiles in Northeast China.

TABLE 3 | Definition of size and aspect ratio in soil profiles in Northeast China.

Phytolith type Length (μm) Width (μm) Aspect ratio

Maximum Minimum Mean Maximum Minimum Mean

Elongate 157.10 34.70 78.74 24.70 7.30 13.39 5.90 ( >2)
Lanceolate 108.80 19.00 47.23 28.80 9.80 17.97 2.63 ( >2)
Short cell 
phytoliths

36.95 5.64 12.73 12.48 3.67 7.87 1.62 ( <2)

Block 78.00 15.20 34.40 45.70 9.10 22.40 1.53 ( <2)
Tabular 65.10 15.50 33.70 48.00 10.50 23.30 1.45 ( <2)
Bulliform 62.40 22.00 39.57 88.40 22.30 50.01 0.79 ( <2)
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which greatly inhibits soil biological activity. As a result, organic 
matter produced within a growing season is not decomposed 
completely, which results in the accumulation of organic matter 
and the formation of a thick humic horizon. Consequently, the 
organic matter content of the gleyed horizon is increased. Several 
other studies have also reported that soil phytolith concentrations 
were closely related to soil organic matter content (Zhang et al., 
2011). For Shuangyang (4) and Fusong (7), their soil types are 
albic soil. Studies have also reported that the gleyed horizon (E) 
of albic soils is always dominated by SiO2 particles and is firmer 
and contains a low porosity, which would be expected to result 
in only a limited movement of phytoliths to the next horizon 
(Yan et al., 2018). For Shuangyang (3), it belongs to black soils. 
The degree of humification of the illuvial horizon of this soil 
was higher than that in the other soil types; to a certain extent, 
organic matter can absorb and polymerize phytoliths, resulting 
in the humified layer having high phytolith content. Accordingly, 
the phytolith concentration of the gleyed horizon at these sites 
is increased.

In recent years, phytolith translocation studies based on 
experiments (e.g., irrigation, a fluorescent labeling technique) 
have further confirmed the occurrence of phytolith translocation 
in soils (Fishkis et al., 2009; Fishkis et al., 2010a; Fishkis et al., 
2010b). However, current research on the vertical translocation 
of phytoliths in soils is based mainly on experiments, which 
often overlook the complexity of factors influencing the vertical 
translocation of soil phytoliths under natural conditions. 
Consequently, this prevents a full understanding of the 
postdepositional processes affecting phytoliths in soils. Thus, 
the vertical translocation of soil phytoliths in natural soil profile 
should be assessed, and phytolith translocation rates in a natural 
soil profile should be confirmed.

In the primary stage of soil formation, soil material mainly 
consists of lithophytes such as lichen and moss. Phytoliths are 
particles of hydrated silica (SiO2•nH2O) of phytogenic origin 
present in the tissues of many vascular plants or bryophytes, and 
they are typically deposited in plant cells or in the intercellular 
spaces of plants (Piperno, 2006). In addition, phytolith fragments 
have been observed in bryophytes, but morphogenetic phytoliths 
do not exist in bryophytes (Piperno, 2006). In the primary 
stage of soil formation, morphogenetic phytoliths do not exist 
in the soil; that is say, if phytoliths do occur, their morphology 
should be markedly different from those observed so far because 
the phytolith morphologies observed so far have a constant 
species source. Therefore, the C horizons of natural soil profiles 
developed on bedrock and consisting of weathering products may 
not contain phytoliths, and any phytoliths present are possibly 
derived from phytolith translocation from the upper soil layers.

Soil organic matter content. Soil organic matter is the carbon-
containing component in soil and consists of residues of various 
plants and animals, soil microorganisms, and decomposed and 
synthesizes substances. When the parent plants die and decay, 
the phytoliths are preserved in soils and sediments on timescales 
of up to millions of years. Thus, soil phytolith concentration is 
intimately related to soil organic matter, and previous research 
has shown that soil phytoliths are closely related to soil organic 
matter (Zhang et al., 2011). Generally, the predicted phytolith 

concentrations of the illuvial (B) and eluvial (E) horizons of the 
soil profiles are all significantly lower than the original values. 
It is likely that, over time, soil phytoliths are dissolved, broken, 
and lost due to various taphonomic processes, and therefore, 
the phytoliths of the soil profiles derived from the aboveground 
vegetation predicted by the regression relationship are larger 
than the actual values. Thus, we suggest that, when a soil 
horizon develops within a profile, the phytolith concentration 
derived from the aboveground vegetation is substantially less 
than the current measured value in that horizon. Hence, for a 
given soil horizon, its excess phytoliths are possibly caused by 
the translocation of phytoliths from the upper layers, rather than 
supplied from the aboveground vegetation, although its source 
is not the only translocation process. This suggests that the 
translocation of phytoliths possibly occurs in natural soils.

Soil pH. Soil pH is an additional factor affecting phytolith 
preservation. Soil pH varies with soil type, depth, and 
horizonation. In the studied soil profiles, pH increases with 
depth (Figure 4). The pH values range mainly from 3 to 9, and 
only a few sites have pH values exceeding 9. Several studies 
have indicated that phytoliths are well preserved within the 
soil pH range of 3–9, whereas when soil pH exceeds 9, they are 
readily dissolved (Bremond et al., 2017). In addition, it has been 
found that, when soil pH exceeded 8, there was an increase in 
the number of phytoliths affected by dissolution (Fraysse et al., 
2006; Karkanas, 2010). Thus, soil phytoliths are poorly preserved 
under alkaline pH conditions, and hence, the pH of the lower 
layers within a soil profile inhibits phytolith preservation 
or results in their complete dissolution. In our study, in the 
lower soil layers, soil pH is high, whereas the content of poorly 
preserved phytoliths is also high. This trend is consistent with the 
influence of soil pH on phytolith preservation. The preservation 
of soil phytoliths is likely influenced by numerous factors, 
and the mechanisms involved are poorly understood. In the 
present study, soil pH is likely a major factor affecting phytolith 
preservation (see also Li et al., 2005; Fraysse et al., 2006). Hence, 
we infer that the high content of poorly preserved phytoliths in 
the lower layers of some studied soil profiles is at least partly the 
result of phytolith translocation.

Phytolith size. It has been suggested that the downward 
movement of pollen in soils results from the downward 
percolation of surface water and that if the process occurs to a 
significant extent, pollen grains will be separated by size, with 
the concentration of small pollen grains increasing with depth 
(Walch et al., 1970). By analogy, if there is substantial phytolith 
translocation within a soil profile, the content of small phytoliths 
should also increase with depth. In the present dataset, the 
size distribution of phytoliths with depth within the profiles is 
consistent with this inference. The content of small phytoliths 
increases with depth, whereas the content of large phytoliths 
decreases. Thus, we conclude that, in natural soil profiles, 
phytoliths may be translocated from the upper to lower layers.

In conclusion, potential translocation exists in soil phytoliths, 
and the translocation bias of soil phytoliths is a concern for deep-
time studies, as this would improve their accuracy with respect 
to phytolith assemblage reflecting original ecosystem types. 
However, more investigations are needed to further understand 
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how soil phytoliths translocate to lower layers of soil profile before 
conducting a phytolith-based paleovegetation reconstruction.

Phytolith Translocation Rates in a Natural 
Soil Profile
An experimental study of the translocation rates of phytoliths in 
loamy and sandy soils confirmed this phenomenon (Fishkis et al., 
2009, Fishkis et al., 2010a; Fishkis et al., 2010b). Fishkis et  al. 
(2009) investigated phytolith translocation in sandy sediments 
under different rainfall conditions and found that, under high-
frequency irrigation, 22% of the applied phytoliths were removed 
from the application layer. In addition, the results of the present 
study demonstrate that ~22% of the phytoliths were transported 
below the surface of natural soils in NE China. The phytolith 
translocation rates observed in our study are consistent with 
the results of other studies of experimental studies of phytolith 
translocation within soils.

We also observe differences in the vertical translocation rate 
of phytoliths among the studied soil types. The total translocation 
rates in chernozem and chestnut soils, and to a lesser extent in 
dark brown soil and albic soils, are all significantly smaller than 
in black soils and alluvial soils. In dark brown soils, they have a 
loose and porous structure, which is conducive to the vertical 
translocation of phytoliths, while the stronger earthworm 
activity in the humus horizon of dark brown soils may enhance 
the leaching of phytoliths. For albic soils, studies have shown that 
the clay particles in albic soils can be transported downwards 
with percolating water (Xiu et al., 2019). Notably, we found 
that the content of clay particles in the B layer and lower layers 
of albic soils was higher than in the upper layer (Table 4). 
Therefore, mechanical leaching occurs in these soils, namely the 
displacement of clay particles, which is consistent with the results 
of previous studies (Institute of Forestry Soil, Chinese Academy 
of Sciences, 1980). Moreover, soil clay particles can adsorb silicic 
acid; within a specific pH range, as the soil pH and the content of 
soil clay particles increase, the adsorption of both clay particles 

and silicic acid also increases (Zhang and Zhang, 1996). Therefore, 
with the mechanical leaching of clay particles in albic soils, the 
vertical translocation rate of phytoliths may also be relatively 
high. For alluvial soils, these soils are coarse textured, containing 
gravel particles with large interstices (Table 4). In addition, the 
sampling sites of alluvial soils are mainly located in the eastern 
mountainous and forested region of Northeast China, where 
erosion by rainfall and flowing water is strong. These conditions 
favor a high translocation rate of phytoliths. Conclusively, these 
findings all demonstrate that soil type is an important factor in 
determining phytolith translocation rates.

Effect of Phytolith Size on Its 
Translocation
Research on the vertical translocation of different phytolith types 
has been carried out in several geographical regions, and it has 
concentrated on an experimental approach (Fishkis et al., 2009; 
Fishkis et al., 2010a; Fishkis et al., 2010b). In these studies, plant 
phytoliths were added to sandy sediment (free of phytoliths) or 
other soil types, and changes in phytolith concentration with depth 
were observed to determine the translocation rates of different 
phytolith types. However, soil phytoliths are derived from a wide 
variety of plant species (including both herbaceous plants and 
trees), and therefore, the limited number of phytolith morphotypes 
used in experimental studies does not enable a comprehensive 
analysis of the factors affecting phytolith translocation. Our study 
of the translocation rates of different phytolith morphotypes in 
natural soils has revealed contrasts in translocation rates among 
different phytolith types, with smaller phytoliths being preferentially 
displaced. Previous studies have also shown that phytolith shape 
(such as length/width ratio) had a significant effect on translocation, 
with small phytoliths being most affected (Locke, 1986; Fishkis 
et al., 2010a). Our results are also consistent with those of column 
experiments on soil colloids, microorganism, and biochar in packed 
sand or soil (Weiss et al., 1995). Gannon et al. (1991) observed the 
more rapid translocation of small microorganisms in soil columns 

TABLE 4 | Textural composition of albic and alluvial soils.

Soil type Site Soil genetic layer Sand/% Silt/% Clay/%

Albic Changbai(3) A-horizon 39.62 54.51 5.87
E-horizon 0.57 86.44 12.99
B-horizon 67.81 29.21 2.98

Fusong(7) A-horizon 12.73 78.31 8.96
E-horizon 2.56 81.97 15.47
B-horizon 23.18 72.47 4.35

Huadian(3) A-horizon 87.02 12.98 0
E-horizon 2.56 81.97 15.47
C-horizon 39.92 54.31 5.77

Alluvial Fusong(5) A-horizon 59.77 36.45 3.78
C-horizon 89.56 10.44 0

Changbai(2) A-horizon 80.27 19.73 0
C-horizon 82.82 17.18 0

Fusong(6) A-horizon 39.02 57.68 3.3
B-horizon 0 96.51 3.49
C-horizon 22.72 72.22 5.06

A, humus horizon (Ahorizon); B, illuvial horizon (Bhorizon); C, parent rock horizon (Chorizon); E, eluvial horizon (Ehorizon).
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compared with large microorganisms. In addition, Zhang et al. 
(2010) reported that coarse biochar was readily deposited during 
mechanical filtration, whereas fine biochar was preferentially 
displaced. Similarly, Sun et al. (2012) reported that, in the same 
soil, there was a stronger surface adsorption effect between large 
soil colloids (2,049.9 nm) and the rest of the soil, compared to that 
observed for small soil colloids (246.15 nm), and the effect of this 
phenomenon was to reduce the movement of large soil colloids. As 
in the case of soil colloids, microorganisms, and biochar, phytolith 
size has a significant effect on translocation, with phytoliths of 
smaller diameter being preferentially translocated. Overall, our 
results, together with those of previous studies, emphasize the need 
to consider the effects of differential phytolith translocation in 
studies which attempt to use soil phytoliths for paleoenvironmental 
reconstruction.

Our results also demonstrate that aspect ratio has a 
significant effect on phytolith translocation: phytoliths with 
length >30 μm, aspect ratio >2 and those with length <20 μm 
and aspect ratio <2 are preferentially translocated compared to 
those with length >25 μm and aspect ratio <2. These findings 
contrast with those of previous studies. For example, Weiss 
et al. (1995) reported a higher fraction of round bacteria in 
effluent passing through a packed sand column compared 
to the inflowing suspension. Similarly, Salerno et al. (2006) 
observed the more rapid translocation of rounded polystyrene 
latex particles compared to elongated particles in columns 
composed of glass beads. We suggest that the discrepancies 
between our results and these other studies reflect the different 
transport mechanisms of bacteria or soil colloids compared to 
phytoliths. Whereas the transport of bacteria or soil colloids 
is mainly controlled by diffusion and surface interactions, 
that of phytoliths latter is strongly affected by hydrodynamic 
shear and mechanical capture in small pores (Bradford and 
Bettaha, 2005, Bradford et al., 2006; Foppen and Schijven, 
2006). Hence, the preferential transport of circular bacteria or 
colloids could be attributed to the smaller specific surface of 
rounded versus elongated particles, whereas the preferential 
transport of elongated phytoliths maybe due to the higher 
probability of detachment by water flowing through different 
pores. In addition, the results of correlation analysis of 
phytolith translocation rate and soil clay content indicate 
that the relationship between translocation rates of different 
phytolith types and soil clay content varies: translocation rates 

of phytoliths with length >30 μm and aspect ratio >2 and with 
length <20 μm and aspect ratio <2 are significantly positively 
correlated with soil clay content (p < 0.05). In contrast, the 
translocation rates of phytoliths with length >25 μm and 
aspect ratio <2 are negatively correlated with soil clay content 
(p >0.05) (Table 5). Our study provides direct evidence for a 
close relationship between phytolith translocation rate and soil 
clay content, which indicates the preferential adsorption of 
elongated phytoliths and small phytoliths by soil clay particles. 
In other words, when clay particles are translocated within the 
soil profile, the translocation rate of elongated phytoliths and 
small phytoliths is increased. The pronounced differences in 
total translocation rates among different phytolith types results 
in differences in the phytolith characteristics of soil horizons. 
Hence, differences in the percentages of different phytolith 
types with depth within a soil may reflect not only changes in 
vegetation but may also reflect the differential translocation of 
different morphotypes. This effect clearly needs to be considered 
in paleoenvironmental studies using phytoliths.

CONCLUSION

1) In most of the studied soil profiles in NE China, the depth 
distribution of phytoliths exhibits a similar pattern, which 
demonstrates the preferential accumulation of phytoliths 
within the humic horizon. Therefore, differences in phytolith 
concentration as a function of depth should be considered 
when interpreting soil phytolith assemblages for paleoclimate 
and paleovegetation reconstruction.

2) Through the relationship between the phytolith concentration 
and organic matter content of soil surface horizons, together 
with observations of the distribution characteristics of 
phytoliths based on size and preservation, we conclude that 
phytoliths are transported below the surface of natural soils 
in NE China. We estimate that ~22% of total phytoliths are 
translocated below the surface of natural soils, although the 
translocation distance is limited.

3) There are substantial differences in the total translocation rate 
among different phytolith types, with phytolith size and aspect 
ratio having a significant effect: phytoliths with length >30 μm 
and aspect ratio >2 and those with length <20 μm and aspect 
ratio <2 are preferentially translocated compared to those 

TABLE 5 | Correlation coefficients for the relationship between the T value of phytoliths and clay content of soil profiles in Northeast China.

Clay (%) Phytoliths with length >30 
μm and aspect ratio >2

Phytoliths with length <20 
μm and aspect ratio <2

Phytoliths with length >25 
μm and aspect ratio <2

Clay (%) 1
Phytoliths with length >30 μm 
and aspect ratio >2

0.801* 1

Phytoliths with length <20 μm 
and aspect ratio <2

0.848* 0.69 1

Phytoliths with length >25 μm 
and aspect ratio <2

−0.764 −0.572 −0.36 1

*Correlation is significant at the 0.05 level (two-tailed).
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with length >25 μm and aspect ratio <2. These results indicate 
that phytolith size and aspect ratio should be considered in 
future studies of phytolith translocation.
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Background and Aims: Reconstruction of past ecosystems requires a robust

understanding of modern deposition patterns and taphonomy for the proxies utilized.

Recent advances in phytolith analysis have contributed to improved understanding

of these processes, but many gaps remain. This study aims to test a few specific

hypotheses that have been proposed by research outside the tropics in the Northern

Hemisphere. Our study area focuses on the Northern Altay, a culturally important

region, entirely within Russia, north of China, and Mongolia. We collected 60 phytolith

assemblages from modern soils at 300 to 2,300m a.s.l. elevations, sampled from

20 plots in triple replicates within 13 different plant communities. Detailed releves of

these plant communities, including forests, meadows, steppe, and alpine tundra, were

obtained during the summer of 2017. We used a locally derived scheme of V. P.

Sedelnikov to assign studied communities to ecological categories based on moisture

and temperature availability.

Methods: Standard oxidation and heavy liquid flotation methods of extraction were

used. Morphotypes were counted under 400–1,000x magnification on an optical

microscope. We used a two-tier approach to phytolith morphotypes classification: a

detailed one with over 40 morphotypes included and a shorter one with only sums of

selected morphotypes. The former approach can produce some interesting results, such

as using various types of rondels (e.g., pyramidal vs. keeled) or large vs. small lanceolate

(trichomes). Using sums may be more widely applicable, because the researchers can

replicate these results better and less training is needed. However, there are fewer

diagnostic options with the sums approach.

Key Results: Our results, using discriminant analysis, canonical correspondence

analysis and other multivariate statistical methods, confirm earlier studies, both in

the region and elsewhere that despite redundancy in phytolith distributions in soils,
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there are some selected morphotypes that can reliably distinguish communities at

various positions along elevational, moisture, and temperature gradients. We developed

a regionally diagnostic key that allows researchers to quickly identify various plant

communities based on their phytolith assemblages in soils.

Conclusions: Seven of 13 regionally important communities at medium elevations in the

Altay Mountains can be distinguished by using aggregated and more detailed phytolith

morphotypes.

Keywords: elevational gradient, modern soils, phytoliths, plant communities, the Altay

INTRODUCTION

Despite much recent progress in describing modern phytolith
assemblages from temperate soils around the world (Blinnikov
et al., 2013; McCune and Pellatt, 2013; Traoré et al., 2015;
Gavrilov and Loyko, 2016; Lada, 2016; Feng et al., 2017;
Gao et al., 2018), including the Russian Altay (Speranskaja
et al., 2018), a number of issues persist that hamper phytolith
use in the identification of past communities. First, many
morphotypes are highly redundant and are found across many
communities of various composition at similar concentrations
(Blinnikov, 1994, 2005; Fredlund and Tieszen, 1994). Second,
almost all studies done in temperate regions demonstrate much
lower phytolith accumulation under forests as compared to
grasslands (Beavers and Stephen, 1958; Verma and Rust, 1969;
Volkova et al., 1995; Hyland et al., 2013) and this has to
be accounted for in the interpretation of paleoassemblages.
Third, outside of grasses, sedges, conifers, ferns, and sunflower
families, few truly diagnostic forms exist that allow unequivocal
identification of taxa in the temperate regions, although
“trees and shrubs” as a rule can be detected (Blinnikov,
1994, 2005; Yost et al., 2013; McCune et al., 2015). Fourth,
conifers produce phytoliths that may be easily confused with
grasses (Klein and Geis, 1978; An, 2016) and this may
lead to misinterpretation of some assemblages. Fifth, certain
morphotypes demonstrate higher solubility in sediments and
may be therefore underrepresented in the paleoassemblages
(Cabanes et al., 2011).

Our earlier paper (Speranskaja et al., 2018) demonstrated
utility of phytoliths in differentiating forests, meadows, and
steppes in the Altaysky Kray region of Russia, in the lowlands.

This study uses a new dataset collected from the neighboring
and considerably more mountainous Republic of Gorny Altay, a

culturally important region of the world (Reich et al., 2010). We
use bi-level classification of phytoliths across themain elevational
gradient (and associated temperature and moisture gradients) to
complement the previous study from the foothills and the plains.
The following research questions were investigated:

1) Are phytolith assemblages within the same community
statistically more similar to each other than to any other
communities (including communities of the same type
elsewhere)?

2) Can bi-level morphotype classification improve our ability
to detect specific plant communities (e.g., can we use

specific types of rondels or lanceolate forms to distinguish
communities)?

3) Which morphotypes or sums of morphotypes are able to best
distinguish communities across the gradient spanning 2,000m
of elevation difference? Conversely, which morphotypes or
sums of morphotypes are redundant? Which communities
have the most distinct phytolith record in modern soils and
which have the least?

4) What is the assemblage sensitivity to temperature and
moisture? Do common phytolith indices such as D/P or Ic
developed for the tropics work in the temperate region? Can
we modify them to allow detection of important climatic
or vegetational thresholds of change despite having few C4

grasses and no tropical vegetation in the region?

MATERIALS AND METHODS

Area of Study
Sixty samples of modern topsoil were collected from 20 different
sites (three replicates per site, same vegetation) in the northern
Republic of Altay, Russia in the summer of 2017 (Figure 1).
Samples were collected from four mountain ranges comprising
Northern Altay within the Republic of Gorny Altay in Russia:
Anuy (highest point 1,815m a.s.l.), Iolgo (highest point 2,618m
a.s.l.), Seminsky (highest point 2,507 a.s.l.), and Cherginsky
(highest point 2,014m a.s.l.) (Table 1).

The mean January temperature ranges from −28 to −16◦C
and the mean July temperature ranges from +8 to +20◦C.
The mean annual precipitation ranges from 500mm at lower
elevations to 800mm at higher elevations, especially on the
slopes with western exposure. The elevations range from 340
to 2,400m a.s.l. Elevation and locational data were obtained
in the field using a hand-held Garmin GPS unit to ∼5m
horizontal accuracy and corrected using topographic maps,
as necessary. Temperature of the warmest month (July mean
1970–2017) and mean precipitation values (1970–2017) were
estimated using a proprietary gridded GIS dataset of the Altay
State University physical geography and GIS department derived
from both published and unpublished sources, and estimates
of local orographic variation. Additionally, we relied on a
locally derived scheme of Sedelnikov (1988), who classified
all habitats in our region into a few distinct classes of long-
term temperature and moisture regimes ranging from warm
to cool to cold and from wet to semi-wet to semi-dry to dry.
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FIGURE 1 | Map of sampling sites in the Gorny Altay Republic of Russia.

To assign site to a class, we performed vegetation community
identification based on plant composition, visual appearance, and
slope position. The advantage of using this classification is that it
reflects a long-term climatic signal of each site (e.g., hydric vs.
xeric).

Twenty geobotanical relevees and herbarium sampling of all
graminoids and many forbs were obtained, one for each site.
Plant cover was estimated to about 5% accuracy, and below
that value only presence was noted. When plant identification
in the field was not sufficient, additional identification was
made using botanical keys at the herbarium of Altay State
University. Thirteen different plant communities were sampled:
pine, spruce, larch, birch-larch, and Siberian cedar pine forests;
dry meadow and steppe meadows; true steppe and meadow-
steppe; subalpine meadow, alpine meadow, alpine birch-heath,
and alpine heath. The data on phytolith production in plants
from the region are available from the research team, but were
published elsewhere (Speranskaja et al., 2018).

At each site, called Bigplot in the Results section, all above
ground plant diversity was described by percent cover in mid-
July of 2017, the peak flowering season (Table 1). Aggregated
random pinch samples of the upper 1 cm of topsoil, cleared of
all litter, were collected within each site on three 10 × 10m plots
randomly chosen within the larger site. Approximately 10 g of dry
soil was collected. Care was taken not to include any large plant
pieces. Soil was dried and sieved in the lab at a coarse sieve to

remove smaller fragments of plant matter before being subject to
chemical treatment.

Lab Procedures
Lab processing followed procedure of Golyeva (2007) as modified
in Speranskaja et al. (2018) ∼40 g of soil was boiled in 15%
hydrochloric acid for 1 h to destroy carbonates and most
organics. After that, the residue was cooled to 20◦C and sand was
removed by rapid sieving through a 250 micron sieve and settling
for 30 s to the 15 cm depth in a graduated cylinder. The residue
below the 15 cmmark in the cylinder and on the sieve was mainly
sand fraction and was discarded. The remaining suspension of
clay and silt fractions was then subjected to a few cycles of gravity
sedimentation and decantation to remove suspended clays near
the top (after 3 h, repeated 3–7 times) and the pHwas neutralized.
Phytoliths were floated in a heavy liquid solution of CdI2 and KI
at 2.3 g/cm3. The samples were mixed thoroughly with a glass
rod and centrifuged for 10min at a slow speed (∼1,000 rpm).
The floated phytoliths were collected by a Pasteur pipette from
the top 5mm of the solution, transferred to clean test tubes, sunk
by adding distilled water in proportion of 3:1, and dried. The
phytolith-rich residue was stored dry in glass vials.

Phytolith abundance was estimated as percent of the
original dry weight of the soil sample. Phytoliths were
counted in immersion oil under an Olympus optical
microscope (x400-x1000) to examine 3D shapes under
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TABLE 1 | Plant communities analyzed in this study.

Big plot Location in the Republic

of Gorny Altay

January and July

temp. ◦C,

MAP, mm

Elevation

a.s.l., m

Plant community Graminoids and ferns

HABITAT: MICROTHERMAL (TEMPERATURE 3) MESOPHYTIC (HYDRO 2)

5 Mayma district, Iolgo Range;

51◦50.008′ N 85◦44.430′ E

−15.8◦C,

+15.1◦C,

450

367 Pine forest w/Oxalis,

Aegopodium,

Matteuccia;late

successional

Matteuccia struthiopteris (L.) Tod.—main

dominant, Brachypodium pinnatum (L.)

Beauv., Calamagrostis arundinacea (L.)

Roth, Agrostis gigantea Roth, Milium

effusum L., Melica nutans L., Carex

muricata L., Athyrium filix-femina (L.) Roth,

Pteridium aquilinum (L.) Kuhn

6 Chemal district, Iolgo

Range; 51◦35.586′

N85◦49.112′ E

−15.8◦C,

+15.0◦C

450

398 Pine forest w/Mercurialis-

Carex-Pteridium; late

successional

Pteridium aquilinum (L.) Kuhn—main

dominant, Carex macroura

Meinsh.—co-dominant, Calamagrostis

langsdorffii (Link) Trin., Melica nutans L.,

Poa sibirica Roshev., P. pratensis L., Carex

muricata L., Athyrium filix-femina (L.) Roth,

Brachypodium pinnatum (L.) Beauv.

12 Shebalinsky district,

Cherginsky

Range51◦23.431′

N85◦39.127′ E

−16.4◦C,

+14.5◦C

420

705 Dry meadow w/forbs,

probably left after cutting a

birch forest

Dactylis glomerata L. Bromus inermis

Leyss., Festuca pratensis Huds, Poa

pratensis L., Phleum pratense L, Elymus

sibiricus L., Calamagrostis arundinacea

(L.) Roth, Trisetum sibiricum Rupr

11 Shebalinsky district,

Cherginsky

Range51◦34.126′

N85◦30.599′ E

−15.6◦C,

+14.6◦C

400

530 Dry meadow w/Poa-

Festuca-Leucanthemum,

probably left after cutting a

birch forest

Festuca pratensis Huds.- main dominant,

Poa pratensis L.—co-dominant, Phleum

pratense L., Elytrigia repens (L.) Nevski,

Dactylis glomerata L.

9 Ust-Kan district, Anuysky

Range 51◦21.338′

N84◦49.507′ E

−17.2◦C,

+13.8◦C

380

993 Dry meadow, probably left

after cutting a birch forest

Festuca pratensis Huds.—main dominant,

Phleum pratense L., Dactylis glomerata L.,

Poa pratensis L., Elymus sibiricus L.,

Agrostis sp., Calamagrostis sp.

HABITAT: MICROTHERMAL (TEMPERATURE 3) SEMIXEROPHYTIC (HYDRO 1)

4 Chemal district, Iolgo Range

51◦14.131′ N86◦04.068′ E

−15.8◦C,

+14.9◦C

360

471 Meadow steppe with

Stipa-Artemisia-Carex; late

successional

Carex pediformis C.A. Mey.—main

dominant, Stipa capillata L. –co-dominant,

Phleum phleoides (L.) Karst., Festuca

pseudovina Hack. ex Wiesb., Elymus

gmelinii (Ledeb.) Tzvelev

3 Chemal district, Iolgo Range

51◦10.475′ N86◦09.160′ E

−15.6◦C,

+14.6◦C

380

565 True steppe with forbs,

Carex, Stipa capillata; late

successional

Stipa capillata L.—main dominant, Carex

pediformis C.A. Mey.—co-dominant,

Phleum phleoides (L.) H. Karst., Elymus

gmelinii (Ledeb.) Tzvelev, Agropyron

pectinatum (M. Bieb.) P. Beauv., Poa

angustifolia L., Poa nemoralis L.

HABITAT: SEMICRYOPHYTIC (TEMPERATURE 2) HYDROPHYTIC (HYDRO 4)

2 Shebalinsky district,

Seminsky Range

51◦06.566′ N85◦35.445′ E

−17.6◦C,

+13.7◦C

630

1,200 Spruce swamp with

Pyrola-Sedge-Equisetum;

late successional

Equisetum palustre L.—main dominant,

Carex cespitosa L. co-dominant,

Equisetum scirpoides Michx., Equisetum

fluviatile L., Equisetum pratense Ehrh.,

Deschampsia cespitosa (L.) P. Beauv., Poa

palustris L., Calamagrostis sp., mosses

HABITAT: SEMICRYOPHYTIC (TEMPERATURE 2) SEMIHYDROPHYTIC (HYDRO 3)

13 Seminsky Range

51◦02.329′ N85◦38.072′ E

−18.0◦C,

+12.0◦C

550

1,746 Subalpine meadow with

Alchemilla-Deschampsia-

Aconitum; may have been a

cedar pine forest before

Deschampsia cespitosa (L.) P.

Beauv.—dominant, Phleum alpinum L.,

Carex perfusca V. Krecz.

14 Seminsky Range

51◦02.379′ N85◦38.019′ E

−18.0◦C,

+12.0◦C

550

1,742 Cedar pine forest w/

Alchemilla-Deschampsia-

Geranium; late

successional

Deschampsia cespitosa (L.) P.

Beauv.—dominant, Anthoxanthum

alpinum A. Love, and D. Love

Carex macroura Meinsh

(Continued)
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TABLE 1 | Continued

Big plot Location in the Republic

of Gorny Altay

January and July

temp. ◦C,

MAP, mm

Elevation

a.s.l., m

Plant community Graminoids and ferns

15 Seminsky Range

51◦02.379′ N85◦38.019′ E

−18.0◦C,

+12.0◦C

580

1,766 Cedar pine forest w/forbs

and Poa; late successional

Poa sibirica Roshev.—main dominant,

Festuca kryloviana Reverd, Juniperus

sibirica Burgsd., mosses

HABITAT: CRYOPHYTIC (TEMPERATURE 1) SEMIHYDROPHYTIC (HYDRO 3)

16 Seminsky Range, Peak

Sarlyk 51◦04.089′

N85◦43.156′ E

−18.5◦C,

+10.6◦C

600

2,208 Alpine meadow

w/Schulzia-Allium–Bistorta;

probably a heath earlier

Festuca ovina L., Deschampsia altaica

(Schischk.) O.D. Nikif., Anthoxanthum

alpinum A. Love and D. Love, Trisetum

altaicum Roshev., Luzula sibirica V.Krecz.

17 Seminsky Range, Peak

Sarlyk 51◦04.199′

N85◦43.384′ E

−18.5◦C,

+10.5◦C

550

2,343 Alpine heath w/lichens and

Dryas; late successional

Festuca ovina L., Carex melanantha C.A.

Mey.

18 Seminsky Range, Peak

Sarlyk 51◦04.210′

N85◦43.426′ E

−18.5◦C,

+10.5◦C

550

2,360 Alpine heath

w/Festuca-Carex-Bistorta;

late successional

Festuca ovina L.—dominant, Carex

melanantha C.A. Mey.—co-dominant,

Trisetum mongolicum (Hulten) Peschkova,

Anthoxanthum alpinum A. Love, and D.

Love

19 Seminsky Range

51◦03.319′ N85◦41.372′ E

−18.3◦C,

+10.6◦C

500

1,994 Birch Heath

w/Salix-Carex-forbs; late

successional

Carex rupestris All.—main dominant,

Festuca ovina L., Deschampsia alpina (L.)

Roem., and Schult., Phleum alpinum L.

HABITAT: SEMICRYOPHYTIC (TEMP 2) MESOPHYTIC (HYDRO 2)

8 Ust-Kan district,

Bashchelaksky Range

51◦04.510′ N84◦48.539′ E

−17.5◦C,

+13.7◦C

400

1,126 Steppe meadow

w/Bupleurum-Geranium-

Helictotrichon; may have

been more mesophytic

Helictotrichon pubescens (Huds.)

Pilg.—main dominant, Phleum pratense

L., Koeleria cristata (L.) Pers., Stipa

capillata L., Agrostis vinialis, Bromus

inermis Leyss., Phleum phleoides (L.) H.

Karst., Carex pediformis C.A. Mey.

1 Shebalinsky district,

Seminsky Range

51◦13.231′ N85◦38.219′ E

−17.4◦C,

+14.0◦C

600 MM

1,028 Larch forest w/Paeonia-

Geranium-Brachipodium;

late successional

Milium effusum L. —main dominant,

Brachypodium pinnatum (L.) Beauv.,

Phleum pratense L., Calamagrostis

arundinacea (L.) Roth, Festuca pratensis

Huds., Elytrigia repens (L.) Nevski,

Agrostis gigantea Roth

7 Ust-Kan district,

Bashchelaksky Range,

Keley Pass51◦07.419′

N84◦45.207′ E

−17.6◦C,

+13.7◦C

600

1,299 Larch forest w/Alchemilla-

Geranium-Deschampsia;

late successional

Deschampsia cespitosa (L.) P.

Beauv.–dominant, Milium effusum L.,

Calam. langsdorffii (Link) Trin., Bromus

inermis Leyss., Elymus sibiricus L, Dactylis

glomerata L., Agrostis tenuis Sibth.,

Elytrigia repens (L.) Nevski, Avenula

pubescens (Huds.) Dumort., P. palustris L.

20 Shebalinsky district,

Anuysky Range 51◦ 23.218′

N84◦ 56.500′ E

−16.8◦C,

+13.8◦C

620

952 Larch forest w/Millium-

Geranium-Filipendula; late

successional

Milium effusum L., Festuca gigantea (L.)

Vill., Trisetum sibiricum Rupr., Elytrigia

repens (L.) Nevski, Elymus sibiricus L.,

Phleum pratense L., Alopecurus

arundinaceus Poir., Agrostis sp.

10 Shebalinsky district,

Cherginsky Range

51◦26.446′ N85◦13.322′ E

−17.6◦C,

+13.7◦C

700

1,207 Birch-larch forest

w/forbs-Millium-Myosotis;

late successional

Milium effusum L., Agrostis clavata Trin.,

Athyrium filix-femina (L.) Roth,Equisetum

pratense Ehrh, Calamagrostis neglecta

(Ehrh.) Gaertn., B. Mey., and Schreb.,

mosses

Habitat ranking on temperature and moisture regimes from Sedelnikov (1988).

rotation. Between 500 and 600 phytoliths were counted
per sample. Phytolith morphotypes were documented
by light microphotographs and permanent reference
slides.

All identifiable phytoliths larger than 10µmwere counted, not
only short cells (rondels, bilobates, polylobates, and saddles), but

also long cells and other grains of identifiable shape. We followed
the classification system of Blinnikov (2005), originally modified
from Mulholland (1989), and Fredlund and Tieszen (1994), in
describing grass morphotypes; and Bozarth (1992) and Piperno
(2006) in describing non-grass morphotypes (Figure 2). We also
provide descriptions following the Glossary for the International
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FIGURE 2 | Microphotographs of morphotypes. Microphotographs of all phytolith morphotypes used in this study. Scale bar = 50µm and applies to all photographs.

A1—polylobate trapeziforms; B2—wavy plates; C3—saddles; D4—True bilobates (Panicoid); E5—cross (symmetrical quadrilobate); F6—trapeziform bilobate

(“Stipa-type”); G7 conical of Carex, G8—conical with wavy bottom, H—rondels, including H9—low conical rondel, H10—tall conical rondel, H11—spherical bottom

rondel, H12—elongated rondel; H13—saddle-top rondel; H14—low trapezoid (pyramidal) rondel; H15—single-keeled rondel; H16—tall trapezoid (pyramidal) rondel;

H17—multiple keeled rondel; I—lanceolates (trichomes), including I18—with large base and short awn; I19—triangular, I20—with small base and long awn;

(Continued)
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FIGURE 2 | J21—bulliform cells; K22—globular irregular; L23 spherical; M—conifer, including M24—multiangled ribbed; M25—blocky with pores (cf. conifer);

M26—club-shaped with protrusions (cf. Pinus); M27—conifer tracheids; N—long cells of grasses (possibly some belong to sedges), including N28—psilate

symmetrical; N29—psilate asymetrical; N30—psilate ribbed; N31 psilate ribbed asymmetrical; N32—psilate wavy symmetical; N33—psilate wavy asymmetrical;

N34—three-angled; N35—papillate; N36—slightly indented; N37—perforated; N38—strongly indented symmetrical; N39—strongly indented asymmetrical;

N40—dendritic asymmetrical; N41—dendritic symmetrical; O42—cuticle casts (not used in analysis); O43—microhairs; P44—irregular dentate; Q45—jigsaw dicot

epidermis; Q46—angled dicot epidermis; Q47—irregular plates; Q48—oval plates.

Code for Phytolith Nomenclature 1.0 (Madella et al., 2005) for
each morphotype.

Statistical Analyses
Assemblages were assessed at two different levels: most detailed
(55 morphotypes; Figure 2) and less detailed (22 morphotypes,
including sums of rondels, long cells, and lanceolates; Figure 3).
The former classification required more careful identification by
the analyst under the microscope. The latter classification was
easier for other analysts to replicate (for example, instead of 8
different rondel types only the sum of all rondels was used).
Whenever possible, we followed ICPN 1.0 (Madella et al., 2005)
in describing morphotypes. In some samples, a limited number
of large fragments of silicified epidermis were encountered. We
did not include them in the analysis.

Canonical correspondence analysis (CCA) of multivariate
aggregated morphotype data (ter Braak, 1986) was carried
out with the help of paleontological statistics software (PAST
3.20; Hammer et al., 2001). CCA is a direct gradient
analysis method, with three parametric environmental variables
(elevation, temperature of the warmest month, and mean annual
precipitation) used in our study to simultaneously ordinate both
morphotypes and samples in one hyperspace. CCA assumes
unimodal distribution of species (morphotypes, in our study)
along an environmental gradient, which is true for almost all
morphotypes in our study (Figure 3). CCA advantage over
Principal Components Analysis is that the former allows direct
assessment of each environmental factor contribution to the
morphotype and site distribution, and also detrends values along
each axis, thus removing arching of resulting scores, a problem
with PCA.

Cluster analysis, discriminant analysis, and mixed-effects
model using percentages of phytoliths was performed using
MINITAB version 18 (MINITAB version 18., 2018). C2 data
analysis software (Juggins, 2003) was used to plot the pseudo-
stratigraphic diagram of phytolith frequency data. Discriminant
analysis (Manly, 2004, ch. 8) classifies samples into groups, when
you have a sample with known groups. In our case, groups
were communities, and we used 22 aggregated morphotypes as
predictors. The squared distance (the Mahalanobis distance) of
sample x to the center (mean) of group t for linear discriminant
is given by the following general form:

d2t (x) =
(

x−mt) S
−1
p

(

x−mt)

where x is a sample, mt is column vector of length p containing
the means of the predictors calculated from the data in group
t, and Sp is pooled covariance matrix for linear discriminant
analysis.

RESULTS

Common Morphotypes and Phytolith
Abundance
We primarily relied on the 22 aggregated phytolith morphotypes
in reporting the results (Figure 3). Some inferences are made
from the more detailed set of 55 morphotypes later in the
paper. Of the aggregated morphotypes, 10 were explicitly grass
morphotypes, while the rest were conifer, sedge, fern, or dicot
tree, and shrub morphotypes. Lanceolate forms (trichomes) and
some long cells can be produced by both grasses and sedges. All
phytolith counts are reported as percentages of the total. The
estimates of phytolith abundance are shown on Figures 3, 4.
Percentage of phytoliths extracted relative to dry weight of the
original samples were the highest for steppe meadow (mean =

9.0%, n= 3), 2nd highest formeadow steppe (6%), 3rd highest for
alpine meadow (5.7%), and the lowest for spruce swamp (1.4%).
Most communities had values between 2 and 5%. The difference
in phytolith extract means between communities is significant
using one-way ANOVA test (F = 4.84, p < 0.001).

The most common aggregated morphotypes were long
cells (mean value = 27.3%), rondels (mean value = 19.2%),
trapeziform polylobates (13.0%), all plates except wavy (11.7%),
lanceolates (6.7%), wavy plates (4%), trapeziform bilobates
(3.75%), globular blocky (2.6%), true “Panicoid” bilobates (1.5%),
and conical of Carex (1%). All other morphotypes, including
some taxonomically important, such as conifer tracheids,
Panicoid crosses, or bulliform cells of grasses, had mean values
<1%. As expected, non-grass morphotypes were always a small
minority of the total assemblage, even in wet spruce forest with
sedges and very few grasses, or in pine forest with a heavy
presence of ferns.

Are Phytoliths on Local Plots More Similar
to Each Other, Than to Other
Communities?
We ran a MANOVA test using Bigplot as the model factor and
22 morphotypes as responses. The results were highly significant
with Wilks’ lambda F = 3.033 (p < 0.001) and Lawley-Hotteling
F = 4.883 (p < 0.001). Mean values for the three local plots
within each community (20 “big plots”) were more similar to
each other than to all other means. Not all morphotypes were
statistically significant contributors to this effect. Wavy plates,
polylobate trapezoids, bilobate Panicoid, bilobate trapeziform,
rondels, conical, lanceolate, long cells, plates, and globular
morphotypes were highly significant at p < 0.001. Conifer
phytoliths, spherical psilate, and three-sided forms were less
significant at p < 0.05. Rarer forms were significant, probably
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FIGURE 3 | Diagram of phytoliths at the aggregated level of classification (sums of rondels, long cells, lanceolates used). Bigplot numbers correspond to sampling

locations in Figure 1. Elevation is in m a.s.l. Abundance of phytoliths is expressed as % of phytolith extract relative to the original dry weight of each sample. All

morphotype values are in % of the total sum of all counted phytoliths per sample (between 500 and 600 were counted). GSSC—phytoliths of grass silica short cells.

LCSum is the sum of all long cells. TP, Ic, and Ix indices are based on phytolith data and are explained in text. Temp and hydro regime values are based on the

scheme of Sedelnikov (1988) and are explained in text.

FIGURE 4 | Boxplots quantifying phytolith extracts (% of original sample dry weight) by community.

because they were only found in a few plots. For example,
bulliform cells and saddles, both of which can be very important
indicators of ecological conditions in other regions (Fredlund
and Tieszen, 1994; Brémond et al., 2005b), were very scarce in
our study.

Discriminant Analysis
Discriminant analysis (DA) indicated that all 13 communities in
our study could be distinguished based on their soil phytolith

assemblages (Table 2). Of the 60 samples, 57 (or 95%) were
correctly classified when using the aggregated classification with

22 morphotypes. Of the three misclassified samples, one was
a dry meadow misclassified as larch forest, and two were

larch forest samples classified as a dry meadow. These two
communities have the shortest squared Mahalanobis distance

of 9.516 in the set compared to the longest distance of
214.558 between pine forest and alpine meadow. Based on
DA, the most similar assemblages are produced by: (a) the
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TABLE 2 | Results of discriminant analysis performed on aggregated phytolith morphotype percentages using squared Mahalanobis distance between groups (shortest

distance in bold shows most similar assemblages).

Alpine_meadow Birch_heath Birch_larch_forest Cedarpine_forest

Alpine_meadow 0.000 30.206 75.111 39.017

Birch_heath 30.206 0.000 66.979 17.673

Birch_larch_forest 75.111 66.979 0.000 44.842

Cedarpine_forest 39.017 17.673 44.842 0.000

Dry_meadow 72.205 73.434 13.871 51.570

Heath 24.907 20.455 91.136 39.761

Larch_forest 61.260 61.602 21.537 43.287

Meadow_steppe 116.864 128.168 100.665 117.284

Pine_forest 214.558 209.596 65.714 180.429

Spruce_forest 57.113 52.366 87.055 60.785

Steppe_meadow 61.666 93.427 111.210 93.763

Subalpine_meadow 57.787 41.971 61.739 13.529

True_steppe 116.634 141.782 116.903 126.748

Dry_meadow Heath Larch_forest Meadow_steppe Pine_forest

Alpine_meadow 72.205 24.907 61.260 116.864 214.558

Birch_heath 73.434 20.455 61.602 128.168 209.596

Birch_larch_forest 13.871 91.136 21.537 100.665 65.714

Cedarpine_forest 51.570 39.761 43.287 117.284 180.429

Dry_meadow 0.000 92.616 9.516 84.965 78.826

Heath 92.616 0.000 77.725 143.576 239.839

Larch_forest 9.516 77.725 0.000 109.153 90.299

Meadow_steppe 84.965 143.576 109.153 0.000 144.301

Pine_forest 78.826 239.839 90.299 144.301 0.000

Spruce_forest 74.002 51.641 63.047 147.032 209.642

Steppe_meadow 90.472 61.513 69.553 116.900 178.700

Subalpine_meadow 71.011 59.947 56.052 131.082 199.720

True_steppe 123.594 140.148 147.132 46.061 170.435

Spruce_forest Steppe_meadow Subalpine_meadow True_steppe

Alpine_meadow 57.113 61.666 57.787 116.634

Birch_heath 52.366 93.427 41.971 141.782

Birch_larch_forest 87.055 111.210 61.739 116.903

Cedarpine_forest 60.785 93.763 13.529 126.748

Dry_meadow 74.002 90.472 71.011 123.594

Heath 51.641 61.513 59.947 140.148

Larch_forest 63.047 69.553 56.052 147.132

Meadow_steppe 147.032 116.900 131.082 46.061

Pine_forest 209.642 178.700 199.720 170.435

Spruce_forest 0.000 92.789 78.661 162.174

Steppe_meadow 92.789 0.000 93.406 135.599

Subalpine_meadow 78.661 93.406 0.000 133.482

True_steppe 162.174 135.599 133.482 0.000

group of high-elevation communities including alpine meadow,
alpine heath, and subalpine birch; (b) Siberian cedar pine
forest (typically found near the upper treeline) and subalpine
meadow (intermediate elevations); and finally (c) true steppe
and meadow steppe of low elevations. Spruce forest and pine
forest appear individually as distinct assemblages with longer

distances to other, because they have unique conifer and moss
morphotypes.

The linear discriminant function (Table 3) suggested that
the following morphotypes were important for distinguishing
plant community types: three-sided forms—alpine meadows,
conical—birch heaths and heaths, spherical psilate—heaths,
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TABLE 3 | Results of discriminant analysis showing linear discriminant function for groups (highest score in each community for each morphotype is shown in bold).

Alpine_meadow Birch_heath Birch_larch_forest Cedarpine_forest

Constant −1767.9 −1753.5 −1893.8 −1783.4

Bulliform 122.6 127.3 142.6 123.3

Plates_wavy 43.4 42.6 45.9 43.0

Polylobate 33.1 32.9 34.3 33.3

Saddles 198.1 165.3 184.6 169.0

Bilob_Panic 54.5 54.8 58.6 56.2

Crosses 43.4 44.1 50.2 45.6

Bilob_trapezif 68.3 68.1 74.3 69.1

RondelSUM 39.7 39.6 40.4 39.7

Conical 45.7 49.8 45.2 44.6

Conical_wavybase 117.5 107.2 124.8 110.4

Blocky_withpores −52.7 −38.7 −74.6 −37.9

Conifer_trach 41.6 95.1 119.3 83.6

Club_shaped 78.6 84.5 121.1 98.1

LanceolateSUM 43.6 43.2 48.8 44.2

LCSUM 36.3 36.7 37.8 37.4

PlatesSUM 32.7 31.6 32.1 31.9

Globular 23.1 23.0 22.5 21.6

Polygonal_ribbed 8.2 6.0 3.5 5.5

Three_sided 75.2 56.6 55.6 52.3

Spherical_psilate 30.8 26.8 17.8 17.8

Microhairs 61.9 60.7 67.5 63.8

Indented 84.2 87.0 95.8 92.1

Dry_meadow Heath Larch_forest Meadow_steppe Pine_forest

Constant −1850.3 −1736.9 −1806.2 −1918.8 −2163.0

Bulliform 124.1 132.9 127.9 134.6 154.2

Plates_wavy 46.3 41.8 44.9 49.8 50.1

Polylobate 33.7 31.8 33.3 34.2 36.1

Saddles 192.7 174.1 187.6 193.0 199.3

Bilob_Panic 57.6 53.2 54.3 66.3 62.5

Crosses 47.9 44.4 46.5 52.1 58.5

Bilob_trapezif 72.4 67.9 72.1 73.4 83.4

RondelSUM 39.9 39.3 39.4 40.7 42.5

Conical 43.2 49.5 42.9 43.2 46.5

Conical_wavybase 127.9 113.6 132.2 129.0 159.5

Blocky_withpores −100.2 −31.2 −90.2 −67.6 −104.4

Conifer_trach 140.0 24.6 104.2 44.4 98.9

Club_shaped 119.0 68.1 106.7 134.2 147.8

LanceolateSUM 48.3 42.0 47.0 45.1 53.0

LCSUM 37.3 36.7 36.8 37.3 39.2

PlatesSUM 31.9 32.6 32.0 32.4 33.6

Globular 24.2 23.4 25.1 21.3 23.8

Polygonal_ribbed 7.8 5.2 10.0 8.6 7.9

Three_sided 47.1 62.8 48.3 43.8 45.8

Spherical_psilate 14.5 42.0 18.6 7.0 18.2

Microhairs 67.4 58.8 68.0 69.0 75.4

Indented 90.8 86.9 86.2 116.4 112.1

(Continued)
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TABLE 3 | Continued

Spruce_forest Steppe_meadow Subalpine_meadow True_steppe

Constant −1777.6 −1836.5 −1700.6 −2045.3

Bulliform 127.9 133.4 129.5 138.8

Plates_wavy 43.1 44.2 41.3 47.7

Polylobate 32.6 32.4 32.7 35.1

Saddles 177.7 209.5 170.4 206.7

Bilob_Panic 54.3 52.8 55.4 70.2

Crosses 42.0 46.1 46.0 54.6

Bilob_trapezif 67.5 72.2 68.5 76.8

RondelSUM 39.2 40.1 38.4 42.1

Conical 48.7 42.2 41.2 47.3

Conical_wavybase 113.9 152.9 114.0 127.8

Blocky_withpores −64.6 −65.3 −32.8 −51.2

Conifer_trach 159.1 −74.9 29.1 −3.8

Club_shaped 97.8 61.6 96.8 105.9

LanceolateSUM 45.4 43.0 42.3 45.9

LCSUM 36.6 36.8 36.4 38.7

PlatesSUM 33.1 34.4 31.9 34.7

Globular 23.2 26.1 20.2 17.7

Polygonal_ribbed 9.4 12.6 4.8 7.1

Three_sided 49.7 46.3 45.0 58.2

Spherical_psilate 29.3 27.2 14.5 15.6

Microhairs 59.5 65.8 62.7 67.4

Indented 82.7 101.9 98.1 117.8

lanceolate sum of grasses and sedges—birch-larch forest,
conifer tracheids—dry meadow (see Discussion for possible
explanation), globular and polygonal ribbed—larch forest,
indented irregular of dicots—meadow steppe, a few different
forms including conifer with pores and club-shaped—pine forest,
conical, and coniferous tracheids—spruce forest, saddles, and
conical with wavy base—steppe meadow, and trapeziform and
true bilobates, as well as crosses and sum of all plates—true
steppe. Subalpine meadows and cedar pine forests did not
have one predominately discriminant form. However, these two
assemblages were similar to each other. It is important to
note that the Siberian cedar pine community sampled near the
treeline in our study produces few phytoliths, and its forest
understory is frequently similar to that of the surrounding
subalpine meadows.

What Factors Determine Phytolith
Assemblage Composition on Plots?
Results of Mixed-Effects Model
A mixed effects model with 60 plots as random and other factors
as fixed (20 big plots, communities, temperature regime, hydro
regime, and elevation) was run on the aggregate morphotype
dataset. Testing the significance of contribution of each factor to
the overall assemblage composition, elevation was a significant
factor (p < 0.05) for seven morphotypes (wavy plate, Panicoid
and trapeziform bilobates, rondel, conical, conical with wavy
base, and long cell sum), while hydro regime was an important,

but not statistically significant, component of the variance for the
two kinds of bilobates (Panicoid and trapeziform), for long cells,
plates, and lanceolate forms. Temperature was important (but
not statistically significant) for the conical morphotype. All other
phytoliths were not numerous enough to produce significant
results with this method.

Canonical Correspondence Analysis
The main gradient in our study is the elevation, which is
inversely correlated with temperature (higher is colder, ∼6◦C
MAT decrease per 1,000m) and mostly correlated with moisture
(higher is wetter, ∼150mm increase per 1,000m), although
the spruce forest sample is the wettest habitat in the middle
of the gradient due to local soil conditions. The first axis
(eigenvalue 0.0367) accounts for 73% of all variability in the
data and represents elevational-temperature gradient (on the
left are high elevation, cold communities, on the right are
low elevation, warm communities). The second axis (eigenvalue
0.0153) accounts for most of the remaining variability in the
data (29%) and is mostly related to the moisture signal. The
axes were significantly related to the environmental data as
tested with permutation technique at 999 permutations, p-
values were <0.001. The upper left corner of the CCA diagram
(Figure 5) is occupied by high elevation alpine heath and
meadow communities characterized by rondels, polylobates,
three-sided, and spherical psilate morphotypes. The lower left
is occupied by mid-elevation moist spruce forest characterized
by polylobates, conical, coniferous tracheids, microhairs, and
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FIGURE 5 | Triplot showing ordination results by Canonical Correspondence Analysis. First two axes are shown.

plates. The upper right is occupied by meadow steppe and
true steppe characterized by wavy plates, true and trapeziform
bilobates, crosses, and saddles. These communities have the
assemblages most dominated by grass morphotypes (>90%). The
lower right are larch and birch-larch communities with some
conifer phytolith presence.

It should be noted that birch-larch and larch forests look
similar to some dry meadows, and rather different from
steppe communities. These are characterized by the presence
of conifer phytoliths, conical with wavy bases, lanceolate,

globular, polygonal ribbed, and indented irregular forms. Most
of the phytolith morphotypes found in the soils under these
communities are from non-grasses even though ∼80% of the
total phytoliths in the soil assemblage are derived from grasses
in other communities.

Cluster Analysis
Cluster analysis (Figure 6) suggests two major groups of
assemblages: those from true steppe, meadow steppe, steppe
meadow, alpine heath, alpine meadow, birch subalpine heath
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FIGURE 6 | Cluster Analysis Dendrogram (Ward’s method, Euclidean distance) linking assemblages by Community Type.

FIGURE 7 | Elevation vs. T/P index scatterplot.

and cedar pine forests near the treeline (right side of the
dendrogram) and those from pine, spruce, larch, and birch-
larch forests, subalpine meadow, and dry meadows at lower
elevations (left side of the dendrogram). The first group lacks
conifer phytoliths, has low proportion of lanceolate forms (<5%)
and has high values for rondels and some other grass silica short

cells (GSSC). The second group has some conifer phytoliths
in most samples, higher values for lanceolate forms (>8%), as
well as lower values for GSSC. Subclusters are well defined for
pine forests, birch and birch-larch forests, meadows steppes, true
steppes, and heaths. In contrast, dry meadows, spruce forests,
subalpine meadows, and alpine meadows do not fit into tight
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FIGURE 8 | Elevation vs. Ic index scatteplot. The index is explained in text.

FIGURE 9 | Elevation vs. Ix index scatterplot. The index is explained in text.
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clusters, probably reflecting the divergent composition of these
communities.

Can We Use Phytolith Indices (T/P, Ic, Ix) to
Distinguish Specific Communities?
We propose a new index Tree/Poaceae as a modified version
of the well-known D/P◦ index (Brémond et al., 2005a). In our
region there are few phytoliths produced by dicotyledonous trees
originally used for D in D/P◦ index in Africa, but there are
several produced by conifer trees. Our T/P index is the sum of all
tree and shrub phytoliths divided by grass phytoliths from short
cells:

T/P =

′Blocky_withpores′ + ′Conifer_trach′ + ′Club_shaped′ + ′Globular′ + ′Polygonal_ribbed′ + ′Spherical_psilate′ + ′Indented′

( ′Plates_wavy′ + ′Polylobate′ + ′Saddles′ + ′Bilob_Panic′ + ′Crosses′ + ′Bilob_trapezif′ + ′RondelSUM′ )

T/P ranges from 0.01 to 0.33 with the median value 0.078 and
the mean value 0.091 (Figure 7). The value 0.08 distinguishes
all forests at lower elevations from all subalpine and alpine
communities. Cedar pine forests near the treeline cannot be
distinguished from non-forested communities of the alpine and
subalpine zone using this index. Likewise, dry meadows of lower
elevations cannot be distinguished from the forests.

Ic (%) is the ratio of phytoliths mainly produced by
Pooideae to the sum of phytoliths mainly produced by Pooideae,
Chloridoideae, and Panicoideae and is typically used to detect
a temperature signal, with high values corresponding to lower
temperatures:

Ic(%) =
( ′Plates_wavy′ + ′Polylobate′ + ′Bilob_trapezif′ + ′RondelSUM′ )

( ′Plates_wavy′ + ′Polylobate′ + ′Saddles′ + ′Bilob_Panic′ + ′Crosses′ + ′Bilobtrapezif′ + ′RondelSUM′)
x100

In our study area there are few Panicoid and no Chloridoid
grasses. Nevertheless, saddles, bilobates, and crosses
(quadrilobates) are in fact produced by either Stipa or wild
Panicum related species that are more common at lower sites
with higher temperatures. The index can be used to distinguish
true steppes, meadow steppes, and pine forests of lower
elevations (Ic < 90%, warmer conditions) from high elevation
communities (Ic > 96%, cold conditions; Figure 8). However,
there is a large group of communities at intermediate elevations
that include larch and birch-larch forests, that have Ic (%) values
similar to the alpine and subalpine communities and making it
of limited use to detect the intermediate temperature signal in
our area.

Iph index was not very useful in our study, because there were
few saddles in most samples (the index uses the ratio of saddles to
bilobates to distinguish dry from wet conditions). A more useful
index for our area to detect xeric signal is:

Ix =
saddles + trapezoidal bilobates+ rondelSUM

LCSUM+ LanceolateSUM+ Conica
× 100

This index is able to easily distinguish the two most xeric
communities (group 1) in our study: true steppes and meadow
steppes, with values exceeding 120 (Figure 9). However, its utility
for separating communities at a higher level of moisture is low.
Both mesoxeric (2) and xeromesic (3) communities have values

between 30 and slightly over 100. The three wettest samples from
spruce forest (4) have slightly higher values (45–50) than some
of the samples in categories 2 and 3. We found that aggregating
morphotype sums in different ways to define this index did not
improve its performance. Thus, given the paucity of chloridoid
and panicoid phytoliths, the xeric signal is harder to detect than
the temperature signal in our study area.

Can Rondels and Lanceolate Subtypes Be
Used to Distinguish Specific Communities?
Table 4 shows the results of the discriminant analysis performed
using only nine different rondel morphotypes:

Pyramidal low rondel looks like a truncated pyramid, more
or less square in top view, and with height < length in side
view (Figure 2). Sometimes, the same morphotype is called
short cell square trapeziform. It is moderately common in many
communities and is most common in alpine meadow, alpine
birch heath, and alpine heath (values between 6 and 9% of all
phytoliths), which is confirmed by the high linear discriminant
scores for this morphotype in these three communities and
suggesting it as a characteristic morphotype of alpine habitats.

Pyramidal tall rondel has height> length in side view, and is a
rare form, most common in alpine meadow (0.9%) and for which
it has the highest discriminant value, although it is also found at
even higher values in some steppe meadow samples.

Conical low rondel looks like a truncated cone, more or
less round in top view, and with height < length in side view
(Figure 2). It is the most common rondel type, ranging from 5
to 17.5% in most communities. Its discriminant value is highest
in meadow steppe and true steppe, but because it is so common,
its overall diagnostic utility is low.

Keeled type 1 rondel has a keel, instead of flat bottom, and
its distribution is similar to pyramidal low rondel because it is
most common in alpine meadows and alpine birch heaths (about
2%) and has high discriminant values for those community types.
However, it is also slightly common (1%) in larch and pine forests
and in meadow steppe.

A ratio of pyramidal low and keeled type 1 rondel relative to
keeled low rondel may help distinguish alpine communities (high
values) from steppes (medium values) from forests (low values;
Figure 10).

RR = (′Rondel_pyramidal_low′
+

′Rondel_keeled_type1′)/
′Rondel_conical_low′

Keeled type 2 rondel is most common in birch heath and
true steppe (about 2% in each). Based on DA, its absence may
be characteristic of alpine meadows and help distinguish that
community from birch heath.

Conical high rondel (round in top view, height > length in
side view) has a high occurrence (2–12%) and a high discriminant
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TABLE 4 | Discriminant analysis results for nine morphotypes of rondels.

Linear discriminant function for groups

Alpine_meadow Birch_heath Birch_larch_forest Cedarpine_forest

Constant −40.400 −30.533 −10.283 −17.549

Rondel_pyr_low 4.950 3.282 1.387 1.680

Rondel_pyr_tall 11.129 0.295 −0.088 4.986

Rondel_conical_low 1.661 1.515 1.210 1.845

Rondel_conical_high −0.171 0.848 0.387 −0.037

Rondel_keeled1 6.199 4.477 3.266 1.655

Rondel_keeled2 −5.682 0.366 0.858 −1.234

Rondel_oblong 15.612 10.810 3.450 15.336

Rondel_saddletop 8.671 9.609 0.710 7.047

Rondel_roundbottom −8.582 −4.740 −2.433 −5.680

Dry_meadow Heath Larch_forest Meadow_steppe Pine_forest

Constant −8.271 −30.630 −8.183 −40.435 −12.595

Rondel_pyr_low 0.843 3.084 1.678 1.539 1.013

Rondel_pyr_tall 1.834 3.407 4.670 3.670 4.993

Rondel_conical_low 1.006 1.504 0.917 3.207 1.688

Rondel_conical_high 0.843 0.393 0.043 0.683 −0.115

Rondel_keeled1 2.406 0.803 2.815 2.810 3.129

Rondel_keeled2 1.091 −1.863 −1.040 −2.065 −0.853

Rondel_oblong 5.311 18.864 5.709 30.934 6.854

Rondel_saddletop 4.234 9.771 4.584 6.163 3.370

Rondel_roundbottom −2.691 1.052 −4.384 −10.316 −4.557

Spruce_forest Steppe_meadow Subalpine_meadow True_steppe

Constant −10.641 −27.239 −9.797 −37.087

Rondel_pyr_low 2.815 0.540 2.727 1.522

Rondel_pyr_tall 3.273 3.112 5.423 3.601

Rondel_conical_low 0.709 2.506 0.761 2.768

Rondel_conical_high 1.122 2.481 −0.241 1.416

Rondel_keeled1 1.182 1.486 1.062 1.995

Rondel_keeled2 −2.046 −1.316 −1.791 0.486

Rondel_oblong 6.902 16.117 7.132 23.724

Rondel_saddletop 5.224 5.611 5.231 8.883

Rondel_roundbottom −4.916 −7.586 −4.300 −10.327

The highest values for each morphotype are highlighted.

value in steppe meadows. These communities are more mesic
thanmeadow steppes and are generally found at higher elevations
(>1,200m).

Oblong rondel (elongated in top view with usually flat or
slightly keeled bottom) is the rarest rondel and is only found in
true steppe and meadow steppe (0.4–0.5%) as also confirmed by
DA scores.

Saddletop rondel has wavy, saddle-like top, but is trapeziform
in side view. It is most common in alpine heath, birch heath and
slightly less common in alpine meadows and cedar pine forests
near the treeline (1.5%). The morphotype is also found in true
steppe (1%), at much lower elevations. Its discriminant value is
highest for the two types of heath.

Round bottom rondel appears round in top view, but are not
trapeziform or conical in side view, rather, their bottom half is a
hemisphere (Figure 2). It is common only in alpine heaths (2%),
but its absence is particularly indicative of the true steppe.

We distinguished three kinds of lanceolate cells (trichomes)
(Figure 2). They are common in both grasses and sedges.
Large base lanceolate is most common in birch, birch-larch
and pine forests, and dry meadows (3%), while steppe and
alpine communities have <1% of this morphotype (Figure 11A).
Lanceolate form with long awn is most common in pine forests
(8%), but also in larch, birch-larch, and drymeadow communities
(5%) (Figure 11B). Finally, triangular lanceolate form is most
common in spruce forests (2–5%). The lanceolates as a group are
good indicators of many different forests, but not meadows or
steppe, except in the forest zone (dry meadows in our study).

We also distinguished 15 morphotypes of long cells (LC),
which mostly come from grasses, but some are found in sedges
and conifers (Figure 2). One LC with three ribs apparently comes
from ferns. Due to the ubiquity of long cells and their higher
degree of silicification with increased moisture, we did not expect
their high utility in detecting specific communities.
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The following observations can be made: long cells with
smooth parallel walls (LC psilate) were most common in spruce
forests (12%), and in cedar pine forests and nearby subalpine
meadows (∼10%). They were also common in larch and birch-
larch forests and alpine heaths (6%). Most other types were
rare in all communities (<1%), for example, dendritic cells of
Triticeae tribe were found only in alpine meadows and heaths,
dry meadows, and true steppe.

Short plates with parallel walls were by far the most common
in the spruce forest (25%) as well as polygonal ribbed phytoliths
(2–4%). Some rare types in this community may be contributed
by mosses.

Diagnostic Key for Plant Communities (All
Percent Values Are From the Total of All
Morphotypes)
Based on the results, we developed a simple diagnostic key to
quickly identify each of the 13 communities in our study area.

1. Conifer phytoliths present (blocky with pores, conifer
tracheids, and/or club-shaped) . . . . . . . . . 3

2. Conifer phytoliths absent . . . . . . . . . . . . . . . 5
3. Polylobate trapezoids<10%, plates are 30%, conical phytoliths

1–3%, club shaped absent, triangular lanceolate is 2–
5%......................Spruce forest

a. Coniferous tracheids may help detect spruce forest

4. Polylobate trapezoids>10%, plates <10%, conical phytoliths
rare (<1%), club shaped usually present, triangular lanceolate
is <2%......................Pine forest

a. Conifer with pores, club shaped and lanceolate with long
awn may be characteristic of this community

5. True bilobates and crosses (quadrilobates) present, polylobate
trapezoids <10%. . . . . . . . . . . . ..7

6. True bilobates and crosses (quadrilobates) absent, polylobate
trapezoids>10%............................. . . . . . . . . . . . . . . 11

7. True bilobates, crosses and trapeziform bilobates together
>10%, rondels >30%.... . . True steppe

8. True bilobates, crosses and trapeziform bilobates together
<7%............. . . 9

9. True bilobates, crosses and trapeziform bilobates <7%,
rondels∼27%.......Meadow steppe

a. Indented irregular plates of dicots may help detect this
community

10. True bilobates, crosses and trapeziform bilobates
<4%, rondels <22% (including conical high rondel
2–12%).......Steppe meadow

a. Saddles and conical with wavy base may help detect this
community

11. Lanceolate >10%............Dry meadow

12. Lanceolate <10%...................... . . 13
13. Rondels >30% (including pyramidal low rondel 6–9%, saddle

top and round bottom rondels may be present in small

numbers).......................... Alpine meadow, alpine heath, and

alpine birch-heath

a. Three-sided forms can help detect alpine meadow
b. Spherical psilate and conical can help detect heath
c. Conical can also help detect birch-heath

14. Rondels <30% (including pyramidal low rondel
<6%)...................................15

15. Polylobate trapezoid 20–25%, lanceolate phytoliths
3–6%...........Subalpine meadow and cedar pine forest

16. Polylobate trapezoid<20%, lanceolate phytoliths
6–10%..........Larch and birch-larch forest

a. Both of these communities may also be detected by
presence of polygonal ribbed and globular forms

b. Lanceolate may help distinguish birch-larch forests

DISCUSSION

Our study contributes to the growing body of knowledge
regarding the ability of phytoliths in subrecent assemblages
in modern soils in temperate regions of the world to detect
vegetation zones and specific plant communities (Kiseleva, 1982;
Blinnikov, 1994, 2005; Fredlund and Tieszen, 1994; Volkova
et al., 1995; Kerns, 2001; Blinnikov et al., 2013; McCune and
Pellatt, 2013; Traoré et al., 2015; Gavrilov and Loyko, 2016;
Lada, 2016; Feng et al., 2017; Gao et al., 2018). In the Republic
of Gorny Altay of Russia this is the first attempt of its kind
and complements our study of the lowlands in the Altaysky
Kray (Speranskaja et al., 2018). Overall, MANOVA results from
our study confirm that neighboring samples have more similar
phytolith assemblages compared to those further apart, even
from similar communities.

Our study also confirms the earlier findings that some
morphotypes (e.g., rectangular plates) or their sums (long cells)
are highly redundant across important environmental gradients,
such as elevation, temperature or moisture (Blinnikov, 2005;
Speranskaja et al., 2018); yet, combinations of phytoliths can
detect relatively specific community types, such as true steppes
(more grasses) vs. meadow steppes (more forbs), pine vs.
spruce forests, subalpine meadows vs. alpine meadows, etc. The
diagnostic key we developed for this study should be more widely
tested across similar communities in Central Eurasia, including
for example Altay extensions in Mongolia and Kazakhstan, the
Sayan mountains of Russia and possibly even Central Asian
mountains in Kazakhstan, Kyrgyzstan and Tajikistan.

Some of our findings pertaining to specific mountain
communities corroborate earlier work in the Caucasus (Kiseleva,
1992; Blinnikov, 1994; Volkova et al., 1995), NE China (Traoré
et al., 2015; Gao et al., 2018), the western European mountains
(Carnelli et al., 2001; Delhon et al., 2003), and temperate North
America (Kerns, 2001; Blinnikov, 2005; McCune et al., 2015). For
example, the high incidence of rondels in grassland communities
and high incidence of lanceolate forms in forests reported in
many of these studies is also supported by our study. The
Volkova et al. (1995) study of subalpine and alpine communities
of Teberda Nature Reserve in the northwestern Caucasus
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FIGURE 10 | Boxplots showing frequency of rondel ratio RR. The ratio is explained in text.

demonstrated distinct assemblages in eight communities, of
which five are broadly analogous to this study: alpine heath,
alpine meadow with forbs, alpine tussock grass community,
subalpine meadow, and mid-elevation pine forest. Many species
of plants in the Altay and the Caucasus are related vicariant
species (Körner, 2003). Therefore, we expect to see some broad
similarities in their phytolith production. In the Caucasus study,
the community with the highest proportion of rondels (“hats” in
Volkova et al., 1995) was the tussock grassland (57%) and it is
the “true steppe” with tussock grasses in this study (25%). The
alpine forb-rich meadow had high proportion of wavy forms in
the Caucasus (mean value= 11%), similar to our findings (mean
value = 12%). The alpine heath community had the highest
proportion of conical phytoliths of Carex in the Caucasus study
(6%); in our study, this community has more of this morphotype
than any other community, varying from 2 to 5%. The pine
forest assemblage from the Caucasus had 7% Pinus club-shaped
phytoliths. In our study, pine forests have only 0.5%, but this is
the highest percentage of the three communities in which this
morphotype is found.

Traoré et al. (2015) found that in NE China over 50% of
phytoliths in broadleaf forests may be of tree origin, and about
20% in pine forests at higher elevations. We did not observe
values that high in any of our forests, only in single percentage
points; the production of tree phytoliths in the humid subtropical
trees is evidently much greater than in the cold continental
species.

Gao et al. (2018) studied modern phytolith assemblages in
soils at 108 sites from Changbai and Lesser Kingan Mountains
and Songnen grassland in NE China. They listed 5 communities,
including a mixed pine forest with Pinus koraiensis, but also with
oaks; larch-birch forest with Larix olgensis and Betula platyfilla;

broadleaf forest with Quercus and Juglans; low elevation steppe,
and sparse mixed parkland. Of the five, pine and larch-birch
forests in their study are very similar to ours, albeit with different
species (but the same tree genera), and their parkland is similar
to our open Siberian cedar pine forests and subalpine meadows
mix. Similar to our study, the proportion of woody phytoliths in
their assemblages rarely exceeds 10%, while grasses account for
80–90%. Their grassland assemblage is dominated by rondels and
bilobates, as is the steppe in our study. Based on discriminant
analysis, larch and broadleaf forest have distinct assemblages in
their study (like larch forest in ours) due to presence of some
tree phytoliths, but their pine forest assemblage can be confused
with grassland or parkland because of low production of distinct
morphotypes in Korean pine. Interestingly, this is similar to
our cedar pine forests in this study, but is different for regular
pine forests of Pinus sylvestris, which has more distinct phytolith
assemblages, including pine club-shaped phytoliths (also see
Kerns, 2001; McCune et al., 2015 for the description of similar
phytoliths in Pinus ponderosa).

Delhon et al. (2003) looked at various Mediterranean
communities in the lower Rhone valley in France, including a
pine forest, a reed patch, a Pooid grassland, an oak forest and a
riparian forest. Their results generally correspond to ours for pine
forest and for grassland: pine phytoliths do occur in the forest,
but not in grassland, and rondels may represent up to 50% of all
phytoliths in the grassland.

The novel aspect of our work is the utilization of specific
rondel and lanceolate types that can be specific to particular
communities. While usually found in small quantities, some
of these morphotypes proved very useful in detecting subtle
community differences, such as alpine meadow vs. alpine heath
or birch-larch vs. larch forest. Some physiognomically different

Frontiers in Ecology and Evolution | www.frontiersin.org 18 January 2019 | Volume 7 | Article 2185

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Solomonova et al. Phytolith Assemblages of Gorny Altay

FIGURE 11 | Boxplots showing distribution of frequencies of two kinds of lanceolate forms. (A) large base short awn/”forest” and (B) small base long awn/”meadow.”

communities located at comparable elevations yield similar
phytolith records in this study (e.g., dry meadows vs. pine
forests and subalpine meadows vs. cedar pine forests). Two
explanations come to mind: first, and most obvious, is that
these communities have similar sets of phytolith producers, their
main dominants do not produce phytoliths and are therefore
“silent” or “quiet” taxa. For example, Scotch pine produces
only very small amounts of its diagnostic club shaped form,
making it a “quiet taxon” (Volkova et al., 1995; Delhon et al.,
2003), but grasses of the pine forest have copious production
and are the same species as those in the surrounding dry
meadows. Cedar pine produces almost no phytoliths (“silent

taxon”), but its understory grasses are very similar to those
of the surrounding subalpine meadows. Therefore, grass signal
masks pine presence and is almost the same in forest and non-
forest in both cases as was also noted by Gao et al. (2018) for
NE China forests. A second explanation is that a high level
of spatial heterogeneity creates a temporally shifting mosaic
commonly observed at treelines (Körner, 2003; Onipchenko,
2004). In this case, subrecent phytolith signal reflects prior
inheritance and a mixture of both communities (for example,
cedar pine vs. subalpine meadow in this study), demonstrating
that there may be limits to the usefulness of phytolith
analysis.
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Our results confirm previous research that certain narrowly-
defined morphotypes, such as various kinds of rondels (Kiseleva,
1992), and to a lesser extent lanceolate forms (Golyeva, 2007),
can be used to distinguish plant communities. Rondel subtypes
may be particularly useful in the temperate zone of the world
dominated by the Pooideae subfamily of grasses and the
consequent lack of Panicoid or Chloridoid forms. Low conical
rondels found in steppes can be produced, for example, by
Helictotrichon pubescens (Huds.) Pilg., Stipa capillata L., and
Phleum phleoides L. In cedar pine forest the same morphotype
is likely from Poa sibirica Roshev. In alpine lichen heath it may
be from Festuca ovina. In contrast, low pyramidal rondel in the
alpine and subalpine communities may be contributed by other
Festuca species, and in lowland communities by Elymus-Leymus
group of species (Speranskaya et al., 2018).

Another important morphotype that could prove useful is
trapezoidal bilobate (“Stipa-type” of Mulholland, 1989; Fredlund
and Tieszen, 1994). In North America it was originally defined
from what is now considered a separate genus Achnatherum
(Barkworth, 1981), but is ironically relatively rare in true
Stipa in Eurasia, which produces more saddles or tall rondels
(Speranskaya et al., 2018). However, in this study, many
trapezoidal bilobates were found in communities dominated by
Brachipodium pinnatum (L.) Beauv., an important dominant
grass of pine forests of Eurasia. This is a novel result, because
this species has not been evaluated for phytolith production. This
morphotype is found in small quantities in many grasses with
trapezoidal polylobate forms (e.g., Agrostis and Calamagrostis).

Lanceolate forms earlier described as “forest trichomes” (those
with a large base and a short awn) or “meadow trichomes” (those
with a small base and a long awn), have been used by Golyeva
(2007) to distinguish certain communities in European Russia.
We found that large base lanceolate forms are indeed more
common in birch-larch, pine, and larch forests, but not in spruce
or cedar pine forests (Figure 11A). They are also common in
dry meadows, where they may be either inherited from a prior
forest or produced locally by species similar to those growing
in pine forests nearby (e.g., Calamagrostis langsdorffii (Link)
Trin., C. arundinacea (L.) Roth, Brachypodium pinnatum (L.)
Beauv.). Many of these forms likely come from upland sedges
(e.g., Carex muricata L.), not from grasses. Long-awn form is also
common in the same four communities, as can be seen on the
boxplots. It is not common in any meadows, except dry meadow
at lower elevations near pine or larch forest, where its presence
can be again explained in the same fashion as their long-base
cousins.

A third, triangular lanceolate type, was found primarily in
spruce forest (which is actually a swamp in this study, not an
upland spruce community), which were reported also in soils
under spruce forests in western Siberia (Gavrilov and Loyko,
2016); it may be contributed by sedges found in this specific
habitat. We found stronger linkage between hydro regime and
lanceolate abundance than with specific community type in our
study. Mesophytic communities have more large base, short
awn (“forest type” of Golyeva) than small base, long awn
type (“meadow type” of Golyeva). More studies of lanceolate
production as it related to moisture regime is needed. In a

recent study of common reed from China, Liu et al. (2016)
found that lanceolate forms tend to be larger in plants growing
in a higher evapotranspiration regime, an effect also earlier
reported from West Africa (Brémond et al., 2005b). Attempts to
distinguish taxa based on identification of many different types
of long cells, except dendritic forms of Triticeae tribe, were not
successful.

We found utility in three phytolith indices: T/P (this
study, Delhon et al., 2003) to detect forests at values
>0.08, Ic (Brémond et al., 2005a) to detect temperature signal
(Ic>96% are cold alpine communities), and Ix (this study, to
replace Iph, which is not applicable in our region) to detect
aridity (values>120 indicate xeric communities). Given the
coarse resolution of available climate data and the relatively
short climatic gradient of our study, we cannot recommend
relying on these for derivation of reliable climate transfer
functions for the Altay, although this may be possible when
research is performed along longer gradients and in different
settings.

CONCLUSIONS

Sixty total samples from 20 sites (triple replicates at each site)
reliably differentiated 7 of 13 studied communities, including
similar communities such as true steppe vs. meadow steppe or
alpine meadow vs. alpine heath. Replicate samples from each site
were more similar to each other than to other samples even from
similar communities on different sites.

Our study failed to distinguish dry meadow from nearby
pine and larch forest, two kinds of larch forest from each other,
and cedar pine forest near the treeline from subalpine meadow,
even when a very detailed classification scheme of rondels and
lanceolate forms was followed. However, the phytolith approach
was successful distinguishing other communities. Using only
rondel, lanceolate and long cell sums is a more easily replicable,
practical approach for most researchers and that can still detect
fairly small changes in community composition. In our study
area true bilobate and saddle forms were very rare but were
occasionally found among the weedy species. Bilobate trapezoids
could be contributed by Stipa, as well as by Brachypodium of
pine forest (a novel finding). Lanceolate forms were contributed
by both grasses and sedges. The relationship between their size
and abundance with moisture regime should be subject of further
study using morphometric approach.
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Biological cycling of silica plays an important role in terrestrial primary production. Soil 
warming stemming from climate change can alter the cycling of elements, such as 
carbon and nitrogen, in forested ecosystems. However, the effects of soil warming on the 
biogeochemical cycle of silica in forested ecosystems remain unexplored. Here we examine 
long-term forest silica cycling under ambient and warmed conditions over a 15-year 
period of experimental soil warming at Harvard Forest (Petersham, MA). Specifically, we 
measured silica concentrations in organic and mineral soils, and in the foliage and litter 
of two dominant species (Acer rubrum and Quercus rubra), in a large (30 × 30 m) heated 
plot and an adjacent control plot (30 × 30 m). In 2016, we also examined effects of heating 
on dissolved silica in the soil solution, and conducted a litter decomposition experiment 
using four tree species (Acer rubrum, Quercus rubra, Betula lenta, Tsuga canadensis) to 
examine effects of warming on the release of biogenic silica (BSi) from plants to soils. We 
find that tree foliage maintained constant silica concentrations in the control and warmed 
plots, which, coupled with productivity enhancements under warming, led to an increase 
in total plant silica uptake. We also find that warming drove an acceleration in the release 
of silica from decaying litter in three of the four species we examined, and a substantial 
increase in the silica dissolved in soil solution. However, we observe no changes in soil BSi 
stocks with warming. Together, our data indicate that warming increases the magnitude 
of silica uptake by vegetation and accelerates the internal cycling of silica in in temperate 
forests, with possible, and yet unresolved, effects on the delivery of silica from terrestrial 
to marine systems.

Keywords: silica, climate change, soil, warming, phytoliths, plants, biogeochemistry

INTRODUCTION

Climate change is expected to cause pervasive alterations to ecosystem structures, functions, 
and processes in the coming decades (Grimm et al., 2013; Scheffers et al., 2016), resulting in 
complex and varied feedbacks to the climate system (Shaver et al., 2000; Field et al., 2007; IPCC, 
2013). Climactic warming affects ecosystem processes, such as carbon storage in plants (Melillo 
et al., 1993; Chapin et al., 1995; Lin et al., 2010; Melillo et al., 2011) and carbon release from soils 
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(Peterjohn et al., 1994; Rustad et al., 2001; Melillo et al., 2002; 
Carey et al., 2016; Melillo et al., 2017). Much research has been 
conducted regarding the interaction between climate change 
and the biogeochemical cycling of elements, such as nitrogen 
and carbon (Rustad et al., 2001; Melillo et al., 2011; Bernal 
et al., 2012; Butler et al., 2012), and the plant stoichiometry of 
carbon, nitrogen, and phosphorus (An et al., 2005; Elser et al., 
2010; Dijkstra et al., 2012; Sardans et al.,  2012). However, 
less attention has been paid to the effects of soil warming on  
biogeochemical cycling of other globally important elements, 
such as silicon.

Silica [silicon dioxide (SiO2)] is the most abundant compound 
in the Earth’s crust (Brown and Mussett, 1981) and soils (Epstein, 
1994; Tréguer and De La Rocha, 2013). Silica and carbon are 
coupled in terrestrial and marine ecosystems through processes 
such as mineral silicate weathering, phytolith-occluded carbon 
storage in soils, and primary production by terrestrial and 
marine silica-accumulating organisms (Street‐Perrott and 
Barker, 2008; Carey and Fulweiler, 2012a; Song et al., 2012). 
Therefore, understanding the impacts of climactic warming and 
environmental change on silica cycling is important for modeling 
and predicting future global carbon cycling.

Over geological timescales, the weathering of silicate 
minerals consumes carbon dioxide (CO2), making the process 
a significant control on atmospheric CO2 and planetary 
climate (Urey, 1952; Berner et al., 1983; Berner, 1990; Street‐
Perrott and Barker, 2008). Mineral silicate weathering is 
driven by complex interactions between the climate and 
lithosphere (Bluth and Kump, 1994; Hilley and Porder, 2008), 
as well as the biosphere (Drever, 1994; Berner, 1997; Conley, 
2002; Derry et al., 2005). The terrestrial biosphere also acts as 
a filter for weathering-derived silica before its eventual export 
to oceans (Struyf and Conley, 2012). Plants take up silica 
as dissolved silicic acid (DSi, H4SiO4), the dominant form 
of Si in soil solutions (Epstein, 1994). They convert DSi to 
biogenic silica (BSi, hydrated SiO2) whereupon it is deposited 
in siliceous structures, primarily phytoliths, in the plant 
biomass (Sangster and Parry, 1976; Canny, 1990; Fu et  al., 
2002; Trembath-Reichert et al., 2015). Silica concentrations in 
terrestrial vegetation vary widely, with some plants taking up 
silica in greater proportion than macronutrients like nitrogen 
or phosphorus (Epstein, 1994; Hodson et al., 2005). Carey and 
Fulweiler (2012a) estimate that active Si-accumulating plants 
are responsible for more than half of terrestrial net primary 
production (NPP), linking atmospheric CO2 and terrestrial 
silica cycling on biological timescales.

BSi accumulation in plants and soil has been shown to 
regulate the magnitude and phenology of forest silica cycling and 
watershed export in some systems (Meunier et al., 1999; Fulweiler 
and Nixon, 2005; Struyf et al., 2009a; Clymans et al., 2016). 
Plants return BSi to soil chiefly as fine litterfall (Bartoli, 1983; 
Struyf and Conley, 2012; Clymans et al., 2016), and phytoliths 
from this pool can accumulate throughout the topsoil (Struyf 
et al., 2009b; Cornelis et al., 2011). While many factors, such as 
pH and species differences in phytolith structure, can affect BSi 
dissolution rates in soil (Wilding and Drees, 1974; Fraysse et al., 
2009), BSi is 7–20 times more soluble than mineral silicates in 

soils, often resulting in efficient recycling to DSi (Farmer et al., 
2005; Fraysse et al., 2006; Fraysse et al., 2009; Struyf et al., 2009a; 
Cornelis et al., 2011). Thus, the soil BSi pool can be an important 
supply of DSi to soil solution and streams in diverse ecosystems, 
particularly high-Si accumulating systems, such as grasslands 
and deciduous forests, and highly weathered (Si-depleted) 
systems, such as tropical forests (Derry et al., 2005; Gérard 
et al., 2008; Struyf et al., 2009a; Lugolobi et al., 2010; Struyf and 
Conley, 2012). In a North American temperate deciduous forest 
watershed, Clymans et al. (2016) found that a minimum of 50% 
of annual soil DSi production derives from BSi dissolution, with 
98% of that supply deriving from fresh leaf litter.

Terrestrial systems supply ~78% of annual silica inputs 
to oceans (Tréguer and De La Rocha, 2013), where silica is 
essential for a wide range of species including diatoms, which are 
responsible for approximately half of marine primary production 
(Tréguer et al., 1995; Rousseaux and Gregg, 2013). Because diatom 
productivity can be limited or co-limited by silica availability 
(Nelson and Treguer, 1992; Leynaert et al., 2001; Brzezinski et al., 
2008), the magnitude of silica delivery from terrestrial to marine 
systems can impact marine and global NPP.

Anthropogenic perturbations, such as deforestation, 
urbanization, and agriculture, are known to alter terrestrial 
silica biogeochemistry (Conley et al., 2008; Laruelle et al., 2009; 
Vandevenne et al., 2012; Carey and Fulweiler, 2012b; Carey and 
Fulweiler, 2016; Unzué-Belmonte et al., 2017). However, the role 
of climate change on terrestrial silica biogeochemistry remains 
less well known. Recently, experimental CO2 and nitrogen 
enrichment was shown to increase forest silica uptake (Fulweiler 
et al., 2015), while experimental snowpack reduction and 
induced soil freezing was shown to impede plant silica uptake 
capacity (Maguire et al., 2017). Still, while there has been much 
research and discussion of the impact of temperature on long-
term silica geochemistry (Brady, 1991; Velbel, 1993; Brady and 
Carroll, 1994; Turner et al., 2010), there has been no study to 
date addressing the impact of temperature on terrestrial silica 
biogeochemistry.

To explore the effects of soil warming on terrestrial silica 
cycling, we analyzed BSi in soils, foliage, litter, and soil 
solution samples taken over 15 years of a long-term soil 
warming experiment (Melillo et al., 2011). We also conducted 
a litter decomposition experiment to explore dynamics of 
plant silica release under ambient and warmed conditions. 
We hypothesized that soil warming would increase tree 
silica uptake as a result of increased productivity. We also 
hypothesized that soil warming would increase decay rates 
thereby accelerating the release of silica from decomposing 
litter. Finally, we hypothesized that these changes would 
increase forest silica recycling with minor, if any, net effect on 
soil BSi storage over the timespan of the study.

MATERIALS AND METHODS

Site Description
The Barre Woods soil warming experiment is located in an even-
aged, mixed deciduous stand at Harvard Forest in Petersham, 
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MA (42° 28′ N, 72° 10′ W). Tree species composition is 
dominated by oak (Quercus rubra and Quercus velutina), red 
maple (Acer rubrum), and American ash (Fraxinus americana), 
comprising 42%, 29%, and 11% of basal area, respectively 
(Melillo et al., 2011; Melillo et al., 2017). The site was historically 
used for pastureland or low-intensity agriculture, and then 
came to be dominated by white pines in the first half of the 
20th century. In 1938, a hurricane destroyed much of the stand, 
which was then left to regrow to its current state (Melillo et al., 
2011). Soils at the study site are of the Canton series, with O 
horizon pH of 5.2 and subsurface mineral horizon pH of 5.5 
(Melillo et al., 2011). Mean weekly air temperature at the site 
varies from a high of approximately 20°C in July to a low of 
approximately −6°C in January, and mean annual precipitation 
is approximately 1080 mm, distributed evenly throughout the 
year (Melillo et al., 2011).

Soil Warming Experiment
Complete descriptions of the warming experiment methods 
have been previously published (Melillo et al., 2011) and are 
detailed in the Harvard Forest Data Archive (Melillo et al., 
2017). Briefly, in 2001, heating cables were buried in a 30 × 
30-m area at 10-cm depth with 20-cm spacing. An adjacent 900 
m2 plot serves as the control area, separated from the heated 
plot by a 5-m buffer. Starting in 2003, the heating cables were 
cycled on and off to maintain soil temperatures in the heated 
plot elevated at 5°C above control plot soil temperatures. Soil 
warming continued for the duration of the measurements and 
sample collection in this study.

Soil and Vegetation Sampling
Soils were sampled to 10 cm in the control and heated plots, 
divided visually into organic and mineral horizons, sieved 
to 2 mm, and dried. We subsampled soils for silica analysis 
from a pre-treatment year (2002), and from three other years 
during the study (2005, 2010, and 2016). We analyzed three 
samples per layer in each plot for each of the 4 years (n = 48). 
We subsampled only from cores taken early in the growing 
season.

Foliage (green leaves) was sampled by shotgun during the 
summer between June and August. Four to five trees from each 
plot were sampled, preferentially selecting sunlit leaves, which 
were then bulked together, dried, homogenized, and milled. 
Each year’s foliage sample, thus, represent a homogenized 
sample for a given species and plot. We measured triplicate 
subsamples of samples from 7 years between 2003 and 2016 
(approximately every 2 years during the course of the study, 
n = 28). We report green leaf BSi values as the mean of those 
three subsamples.

Leaf litter was collected in baskets installed in each plot. Wire 
baskets dispersed throughout the plots were used from 2003 to 
2006; thereafter, laundry baskets clustered in the center of the 
plots were used for litter collections. The litter was collected 
regularly from each basket during the fall, dried, and sorted by 
species. Fresh leaf litter samples were kept separate by collection 

basket (n = 3 per plot) for all years except 2008; in 2008, samples 
were bulked across baskets by species and treatment. For all 
years, the bulked litter samples were homogenized and milled. 
We analyzed subsamples from the same 7 years as the green 
foliage (n = 84). For all years, except 2008, we analyzed samples 
from each of three collection baskets for each species–treatment. 
For 2008, we analyzed three subsamples of the bulked sample 
from each species × treatment and calculated a single mean BSi 
value for that species × plot × year.

Soil Solution and Stream Water Sampling
In 2016, we collected soil water samples using lysimeters 
previously installed in the plots. Six porous cup high-tension 
lysimeters were installed in each plot at a depth of 50 cm and 
evacuated. We sampled at approximately monthly intervals 
from May to December 2016. Lysimeters were evacuated to 
~380 mm Hg the day before sampling. We retrieved as many 
samples as possible on each sampling occasion; however, 
we often recovered fewer than six samples per plot per 
sampling interval due to low soil water content. Soil water 
was filtered through a polypropylene syringe using a 0.45-μm 
nitrocellulose filter immediately upon retrieval. We retrieved 
and analyzed a total of 40 samples (21 from the heated plot 
and 19 from the control plot).

On each day that we sampled from lysimeters, we also 
sampled stream water from a nearby stream in the Prospect 
Hill tract of Harvard Forest, Bigelow Brook, at the Lower 
Pipe stream gauge. Three stream samples were collected at 
each of the seven sampling time points (n = 21), within an 
hour after lysimeter sample collection. To do this, 60 mL of 
water was drawn in a polypropylene syringe and filtered using 
0.4-µm polycarbonate filters to isolate suspended silica. We 
measured DSi in the filtered water samples and suspended BSi 
captured on the filters to estimate total stream water silica. 
All lysimeter, stream water, and filter samples were kept 
refrigerated until analysis.

Litter Decomposition Experiment
In 2016, we also conducted a litter decomposition experiment 
where we collected litter from four common species at the 
site: Quercus rubra (red oak), Acer rubrum (red maple), Betula 
spp. (mixed birch; mostly Betula lenta), and, Tsuga canadensis 
(eastern hemlock). We chose these species to align with an 
earlier wood decomposition study in the same soil warming 
plots (Berbeco et al., 2012). We collected litter from the 
forest floor, outside of the study plots, in October 2015. We 
homogenized litter by species, rinsing with deionized water 
to remove soil, and placed them in a drying oven overnight at 
60°C. We placed approximately 5 g of litter of single species 
into 20 × 20 cm bags made of 5-mm fiberglass mesh. The bags 
were closed on all sides with an impulse sealer and tagged 
with unique plastic identification tags.

We placed 21 bags of each of the four species in transects 
in each of the two plots (21 × 4 × 2 = 168 bags total) during 
May 2016. We placed litterbags between the Oi and Oe 
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horizons, with at least 10-cm spacing between bags. We 
tied the bags to plastic stakes with nylon string for future 
retrieval. Subsamples of the four litter types were used and 
was kept in the laboratory for analysis of their initial chemical 
composition. We collected three litterbags from each species 
at each plot at approximately monthly intervals from May 
through December of 2016 (3 replicates × 4 species × 2 
plots = 24 bags). Upon collection, we gently rinsed and dried 
bags at 60°C to constant mass. We then ground the contents of 
bags using a Wiley mill for subsequent silica analysis.

Chemical Analysis
We measured BSi concentrations in all of the aforementioned 
samples using a wet alkaline chemical extraction in a 1% 
Na2CO3 solution (DeMaster, 1981; Conley and Schelske, 2001). 
Duplicate subsamples were taken from each sample and weighed 
to approximately 30 mg. We digested samples in flat-bottomed 
polyethylene bottles in a shaking water bath at 85°C and 100 
rpm. For leaf and litter samples, a single aliquot was taken from 
each digestion bottle after 4 h for analysis. No separation into 
mineral and amorphous/biogenic fractions was necessary given 
that all silica contained in those samples is by definition biogenic. 
For soils and stream water filters, the fraction of DSi released 
from BSi was determined by time-course extraction (aliquots 
taken at 3, 4, and 5 h), followed by a linear extrapolation to the 
intercept (DeMaster, 1981; Saccone et al., 2007). For all digested 
samples, aliquots taken were of 1 mL and were neutralized in 9 
mL of 0.021 M HCl.

All extracted samples, as well as soil water and stream water, 
were analyzed for DSi using the molybdenum blue colorimetric 
method (Strickland and Parsons, 1968). Standards made of 
sodium hexafluorosilicate, as well as external standards, were used 
throughout the analysis to check accuracy. All errors between 
duplicate samples were less than 5%. Digestions were conducted 
at Brown University (Providence, RI), and colorimetric analyses 
were conducted at Boston University (Boston, MA) using a Seal 
AA3 flow injection autoanalyzer.

Statistical Analysis
We applied a pretreatment correction factor to our soil BSi data, 
following Melillo et al. (2011). The pretreatment correction factor 
scales the initial heated data to equal the control. Pretreatment 
samples were only available for soil, so only the soil data are 
presented with this correction.

All statistical analyses were conducted using R Version 
3.4.4 (R Core Team, 2018). Soil data were analyzed using linear 
mixed-effects models in the “nlme” R package (Pinheiro et al., 
2018), with year, layer, and treatment as fixed effects and subplot 
as a random effect. Green leaf BSi was analyzed using linear 
regression with single annual foliar concentrations as a function 
of sampling month, species, and treatment. Leaf litter BSi was 
analyzed using linear mixed-effect models with year, species, and 
treatment as fixed effects, and collection basket as random effect. 
Random effects were nested within litter basket to account for 
repeated measures and autocorrelation.

Using public litter mass data from the soil warming 
experiment (Melillo et al., 2017) and our measured BSi 
concentrations, we calculated annual litterfall masses and 
litterfall BSi fluxes. We fit the data to a linear mixed effects 
model, with litter mass per area (log-transformed) as product 
of species, treatment, year, and collection basket type, with 
specific basket location as a random effect. We excluded the 
data from 2015, when a major summertime hailstorm caused 
widespread defoliation prior to autumn leaf senescence 
and abscission.

For the decomposition experiment data, we calculated 
the percent of initial mass remaining for each litter bag as the 
quotient of final dry mass and initial dry mass. We then used a 
single exponential model to calculate a decay constant (Olson, 
1963; Berbeco et al., 2012):

k ln M ln M0 t= −[ ( ( )]/ t

where k is the decay constant, Mt is the percent of remaining 
biomass at time, t, and M0 is 100%. We also calculated the 
estimated time to decompose 95% of matter (Berbeco et al., 
2012), using the equation:

t ln k0 95 0 05. ( . )/= −

We analyzed the effects of species and treatment on mass 
loss, elemental composition, and elemental ratios using linear 
regression, with each response as a function of species, treatment, 
time, and interactions among these variables. Decay constants 
were regressed against species, treatment, and interactions. Data 
were rank-transformed prior to analysis to meet assumptions 
regarding homoscedasticity.

Stream and porewater dissolved silica were analyzed using a 
two-way ANOVA with sampling date and DSi pool as the main 
effects, followed by a post hoc Tukey’s HSD test. Data were also 
rank-transformed prior to analysis.

We evaluated the normality of model residuals using visual 
inspection and Shapiro-Wilk normality tests. Significance for 
all statistical tests was judged using an alpha of 0.05. We report 
silica concentrations by percent dry weight as SiO2 (%BSi) unless 
otherwise specified, and all errors reported in text and figures are 
standard errors of the mean.

RESULTS

Soil BSi
Soil BSi concentration across all samples (Figure 1) averaged 
0.95% ± 0.34%, and was higher in the organic layer (1.03% ± 
0.04%) than in the mineral layer (0.87% ± 0.05%).

We applied a pretreatment correction factor to our soil BSi 
data, following Melillo et al. (2011), to account for the fact that 
soil BSi concentrations were higher in the heated plot compared 
to the control plot before treatment began (17% higher in organic 
soil and 21% higher in mineral soil; uncorrected data available 
in Supplementary Tables 1 and 2). The pretreatment correction 
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factor scales the initial heated data to equal the control, so that we 
can appropriately compare control and treated samples.

Pretreatment-corrected soil BSi concentrations (Table 1) 
varied significantly between organic and mineral layers (p = 
0.001), but did not vary between control and heated treatments 
(p = 0.485) or with warming duration (p = 0.623).

Mean bulk density at the Barre Woods site was previously 
reported to be 0.37 g cm−3 in the organic layer and 0.78 g cm−3 
in the mineral layer, with mean organic layer depth of 1.4 cm 
(Melillo et al., 2011). Using these values and treatment mean BSi 

concentrations, we calculated BSi storage in the top 10 cm of soil 
for the control and heated plots (Table 2).

Foliar and Litter BSi
Silica concentrations were significantly different in foliage 
vs. leaf litter (p < 0.001), with litter having consistently 
higher BSi concentrations than green leaves. Green leaf BSi 
concentrations varied significantly by species (p < 0.001; 
Table 3) and by sampling month (p < 0.001). However, green 

TABLE 2 | Soil BSi stocks. Soil BSi stocks were calculated for the top 10 
cm in each plot, and the data reported here are means across all samples 
analyzed from all years during experimental treatment. Heated plot values are 
pretreatment-corrected.

Layer Treatment BSi (kg ha -1), pre-
treatment corrected

Organic Control 464.44 ± 35.83
Heated 488.01 ± 30.12

Mineral Control 4723.97 ± 320.07
Heated 4957.93 ± 240.47

FIGURE 1 | Organic and mineral soil BSi concentrations. Organic soil percent BSi (A) and mineral soil percent BSi (B) are shown for the pre-treatment year (2002) 
and three treatment years. Error bars represent standard errors of the mean.

TABLE 1 | Soil BSi concentrations by year. 

Layer Plot % Dry wt 
BSi (2005)

% Dry wt 
BSi (2010)

% Dry wt BSi 
(2015)

Organic Control 0.77 ± 0.06 1.08 ± 0.11 0.84 ± 0.12
Heated 0.86 ± 0.06 1.13 ± 0.05 0.84 ± 0.10

Mineral Control 0.59 ± 0.09 0.79 ± 0.08 0.73 ± 0.05
Heated 0.78 ± 0.05 0.67 ± 0.09 0.77 ± 0.03

BSi, biogenic silica. BSi concentrations are reported as percent dry weight BSi (SiO2). 
Heated plot concentrations are pretreatment-corrected.
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leaf BSi concentrations did not vary between years (p = 0.817) 
nor with warming treatment (p = 0.149).

Red maple foliar BSi was more than double that of red oak. 
Red maple foliage contained 1.29% ± 0.06% BSi (by dry mass) 

in the heated plot and 1.16% ± 0.05% in the control plot. Red 
oak BSi was 0.38 ± 0.01% in the heated plot and 0.37 ± 0.01% 
in the control plot. Foliar concentrations varied significantly 
by sampling month (p < 0.001) and were higher in years when 
sampling was conducted in the late growing season (August) 
compared with years where sampling was conducted earlier in 
the growing season (June or July; Figure 2A).

Similar to foliar BSi, litter BSi varied by species (p < 0.001) 
but did not vary by treatment (p = 0.588). Mean litter BSi 
concentrations were ~1.5× higher than green foliar 
concentrations across years, species, and treatments (Figure 
2B). As in green foliage, substantially higher BSi concentrations 
were observed in red maple litter compared with red oak leaf 
litter.

Although leaf BSi concentrations did not vary between 
treatments, litterfall production was significantly elevated in the 
heated plot relative to the control (p < 0.001, Figure 3A. Across 
all years analyzed, mean litter mass for red maple and red oak 
was elevated 29% from 227 g m−2 in the control plot to 293 g m-2 

FIGURE 2 | Foliar and litter BSi concentrations over time. (A) Foliar (green leaf) BSi concentrations. Point shape indicates species, line type indicates treatment, and 
point weight indicates the month of sample collection. Samples were collected during August in the first 2 years analyzed; samples were collected in June or July 
in all subsequent years analyzed. Error bars are not shown because only a single bulked sample was available per plot × year. (B) Leaf litter silica concentrations 
(percent dry weight BSi) are shown for each of the 7 years of analyzed samples; error bars indicate standard error of the mean. All samples were bulked across the 
duration of litterfall for the given year.

TABLE 3 | Foliar and litter BSi concentrations. The values reported are mean 
concentrations of BSi (percent dry weight) across all samples analyzed (all 
sampled during experimental treatment, from 7 years between 2003 and 2016; 
further detailed in methods above). 

Sample Type Species Treatment % BSi as dry 
weight

n

Green Leaf Red Maple Control 1.16 ± 0.05 7
Heated 1.29 ± 0.06 7

Red Oak Control 0.37 ± 0.01 7
Heated 0.38 ± 0.01 7

Leaf Litter Red Maple Control 1.86 ± 0.06 21
Heated 1.78 ± 0.07 20

Red Oak Control 0.55 ± 0.01 21
Heated 0.57 ± 0.01 21
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in the heated plot. Due to the increase in litter production, leaf 
litter BSi mass per area was significantly higher in the heated plot 
compared to the control (p = 0.008; Figure 3B). Across all years 
for which we analyzed samples, mean litter BSi masses were 7.96 
kg BSi ha−1 in control red maple and 8.91 kg BSi ha−1 in heated 
red maple. In red oak, mean litter BSi masses were 10.30 kg BSi 
ha -1 in the control and 14.03 kg BSi ha−1 in the heated plot.

Si Dynamics in Litter Decomposition
In each species and treatment, the litterbags decayed to roughly 
half of their initial masses over the 212 days for which they were 
allowed to decompose (Figure 4). Final litterbag masses were 
significantly affected by time (p < 0.001), species (p < 0.001) and 
treatment (p < 0.001), as well as interactions between treatment 
and time (p = 0.002) and between species and time (p < 0.001).

Across all samples, the modeled time to decay to 95% of 
original biomass (t95) varied between 1.8 and 5.5 years. Decay 
constants k (Table 4) varied according to species (p < 0.001) 
and treatment (p < 0.001). Heating increased mean decay rates 

by 47% for red maple, 40% for red oak, and 37% for birch. In 
contrast, decay rates decreased by 12% in the heated treatment 
for hemlock; however, it should be noted that several hemlock 
litterbags were either lost or damaged during retrieval, so the 
number of replicates was reduced and error was highest among 
hemlock samples.

The percent of litter composed of BSi (Figure 5) varied with 
species (p < 0.001), but we did not observe a significant effect 
of time (p = 0.174) or heating (p = 0.211), indicating that silica 
losses tracked mass losses over time.

Soil Solution and Stream Water DSi
Mean soil solution DSi in the control plot and stream water 
DSi+BSi tracked closely with one another, whereas mean soil 
solution DSi in the heated plot was elevated above the other 
two pools (Figure 6). Across sampling dates, mean stream 
DSi+BSi concentrations were 181.53 ± 8.51 μM (mean DSi = 
167.47 ± 7.64 μM; mean BSi = 14.06 ± 1.50 μM). Mean control 
plot soil solution DSi was 182.45 ± 7.18 μM, whereas mean 

FIGURE 3 | Annual red maple and red oak litterfall mass and litterfall BSi flux. (A) The values shown here are mass per area (g m−2); mean across all litter baskets 
per plot. Error bars indicate standard error of the mean. Litterfall was collected from wire baskets dispersed throughout the plots from 2003-2006; thereafter, litterfall 
was collected in laundry baskets clustered in the centers of the plots. (B) Litterfall BSi flux (kg BSi ha−1 yr−1) was calculated by multiplying mean BSi concentration 
by mean litterfall mass per area for each year analyzed. Error bars are not shown as measurements were calculated for only the single control plot and the single 
heated plot.
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heated plot soil solution DSi was 253.37 ± 15.57 μM, 39% 
greater relative to the control. There was a seasonal pattern 
to porewater and stream silica concentrations, with a peak in 
concentrations in August. The variation between sampling 
dates (p < 0.001) and silica pools (p < 0.001) were significant. 
The heated plot concentrations differed significantly from the 
control (p < 0.001) and the stream (p < 0.001), whereas the 

control plot soil solution was not significantly different than 
the stream water (p = 0.244).

DISCUSSION

This is the first study, to our knowledge, to estimate the effect 
of soil warming on the biogeochemical cycling of silica in 
a temperate forest, highlighting the impacts of long-term 
experimental manipulation on forest silica dynamics. We 
find evidence supporting our three hypotheses: first, soil 
warming increased net tree silica uptake, due to elevated 
biomass production and relatively constant leaf tissue silica 
concentrations. This increase in plant silica uptake was 
balanced by the increased return of BSi to the soil through 
litterfall. Second, soil warming led to an acceleration of silica 
release from decomposing litter: warming increased litter 
decomposition rates, and soil solution DSi concentrations 
were elevated in the heated plots. Third, these changes had 
no net effect on soil BSi stocks over time, likely due to silica 

FIGURE 4 | Litterbag mass loss over time. The percent of initial biomass remaining at time of harvest is plotted for each litter bag. Exponential decay curves of the 
form y = 100e−kt are plotted for the control and heated litterbags for each of the four species, where k is the mean decay constant for each species × treatment, 
and t is the number of days deployed.

TABLE 4 | Decay constants and t95 values for litterbag mass. For each set 
of litterbags (species × treatment), mean decay constant (k), time in years to 
decompose to 5% of initial mass (t95), and number of litterbags successfully 
retrieved and analyzed (n). Errors reported are standard error of the mean.

Species Treatment k t95 n

Acer rubrum Control 1.22 ± 0.24 2.05 ± 0.25 17
Acer rubrum Heated 1.79 ± 0.12 1.79 ± 0.1 21
Betula sp. Control 0.63 ± 0.06 5.45 ± 0.47 19
Betula sp. Heated 0.86 ± 0.05 3.7 ± 0.22 21
Quercus rubra Control 0.91 ± 0.05 3.51 ± 0.23 19
Quercus rubra Heated 1.27 ± 0.08 2.64 ± 0.24 21
Tsuga candadensis Control 1.18 ± 0.12 2.78 ± 0.22 13
Tsuga candadensis Heated 1.05 ± 0.15 2.66 ± 0.39 21
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inputs to the soil pool (i.e., litterfall and decay) balancing 
outputs (i.e., silica uptake by vegetation). Together, these data 
indicate faster internal silica cycling in temperate forests with 
warming. Below, we identify the likely mechanisms driving 
the observed changes.

Soil Warming Effects on Plant BSi 
Production and Return Through Litterfall
We hypothesized that we would see an increase in plant silica 
uptake due to increases in productivity, which has been observed 
for other elements, such as carbon and nitrogen with warming 
(Melillo et al., 2011; Butler et al., 2012), as well as for silica 
under free-air CO2 enrichment (Fulweiler et al., 2015). We also 
expected to see differences in leaf concentration between species 
and possibly changes in concentrations or canopy storage over 
time as a result of long-term soil warming.

In this study, we did find significant differences in leaf BSi 
concentrations between species, with red maple consistently 
exhibiting silica concentrations two- to three-fold higher 
than those of red oak under ambient and warmed conditions. 
Both maple and oak foliar BSi concentrations were within the 

range previously reported. Fulweiler et al. (2015) measured 
1.06% ± 0.12% BSi in red maple, and Clymans et al. (2016) 
measured 1.24% ± 0.42% BSi in sugar maple. Geis (1973) 
measured 0.327% BSi in red oak leaves, and Hodson et al. 
(2005) estimated 0.37%  ± 0.01% BSi by in red oak leaves in 
a meta-analysis. We also observed significantly higher silica 
concentrations in fresh leaf litter compared to green foliage, 
consistent with the previous observations that leaf litter is 
enriched in silica compared to green leaf tissues (Lovering, 
1959; Geis, 1973).

We found no difference in green leaf tissue BSi concentrations 
or leaf litter tissue BSi concentrations between the control and 
heated plot. However, we measured a 29% increase in litter 
production with warming, resulting in greater total litter BSi 
production.

This increase in plant productivity was within the expected 
range. Melillo et al. (2011) reported a 45% increase in vegetative 
carbon storage over the first 7 years of this soil-warming 
experiment, as measured by radial growth, and attribute the 
productivity enhancement to warming-driven increases in 
available nitrogen. The discrepancy of 16% between increases 
in litter production versus radial growth could be explained 

FIGURE 5 | Litterbag BSi concentration over time. Biogenic silica (BSi) concentration (percent dry weight BSi) for each litterbag at time of harvest. Linear regression 
models are plotted for the control and heated litterbags of each species.
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by many factors, such as mixing of litterfall between plots or 
differential impacts of warming on leaf and wood productivity.

The increase in litter mass was greater for red oak (31%) than 
that for red maple (19%). Year-to-year variation in the magnitude 
of litter productivity in the control and heated values closely 
tracked each other, indicating that local climate, rather than the 
warming treatment, drove inter-annual differences. Litterfall 
mass increased in both plots after 2006; however, this increase is 
likely a result of the aforementioned change in litterfall sampling 
procedures. Regardless, heated plot litter production was greater 
relative to the control in all years for red oak, and in all but 2 
years for red maple.

We found a significant effect of sampling month (June 
through August) on green leaf silica concentrations, with the 
highest foliar silica concentrations observed in samples collected 
in August During each year of this study, foliar samples were 
collected during only 1 month of the growing season, making 
it difficult to distinguish between effects of phenology (early 
vs. late growing season) versus inter-annual variability or long-
term changes on leaf silica concentrations. However, we find 
phenology to be the more likely explanation, as plants have been 
shown to continually accumulate silica in leaves throughout the 
growing season (Struyf et al., 2005; Carey and Fulweiler, 2013). 

Plant silica accumulation is driven by transpiration, and silica is 
immobile in plants after bio-silicification, leading to increased 
silica concentrations in older plant tissues (Ma and Yamaji, 
2006). Moreover, we observed no trend across years in silica 
concentrations in fresh litter, which was collected at consistent 
times each year.

Because pre-treatment samples were not collected for green 
leaves or litter, we could not apply a correction factor to these 
data. However, given that we found no treatment effect on green 
leaf or litter BSi, we expect that pre-treatment correction would 
have been unlikely to affect our results.

Scaling to Canopy BSi Production
To obtain total canopy BSi production by red maple and red 
oak, we multiplied annual mean species concentrations in each 
plot by the mass of each species’ litter in each plot. For years in 
which we did not measure foliar BSi concentrations, we used 
the mean concentration for the species × plot across all years 
analyzed. We used data only from years in which litter was 
collected in laundry baskets to eliminate discrepancy between 
methods. We estimate that 20.2-kg BSi ha−1 year−1 is fixed in 
the control plot canopy by red oak and red maple combined, 

FIGURE 6 | Soil solution and streamwater silicon over time. Mean silicon concentrations (μmol Si/L) are shown for control plot soil solution, heated plot soil solution, 
and stream water. For soil solution, silicon concentrations are measured as dissolved silica (DSi) only. For stream water, silicon concentration was measured as 
DSi plus suspended BSi to account for in-stream biological Si uptake. Error bars represent standard error of the mean. Fitted lines with shaded error bounds are 
second-degree polynomial regression models and 95% confidence intervals.
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and 27.2 kg BSi ha−1 year−1 fixed in the heated plot canopy by 
red oak and red maple combined. This constitutes an increase 
of 35% of canopy silica fixation in the heated plot relative 
to the control, and consequently, a 35% increase in the fine 
litterfall flux of BSi to the forest floor. Our data thus support 
our first hypothesis: due to an increase in tree productivity at 
constant foliar silica concentrations, soil warming increased 
tree silica uptake, and release through litterfall.

We took our measurements of red oak and red maple canopy 
BSi production and estimated concentrations for the remaining 
species using literature values (Supplementary Table 3) to 
estimate total canopy BSi production for each plot. The remaining 
species (making up a combined 29% of basal area) consisted of: 
Acer pensylvanicum, Acer saccharum, Betula sp., Castanea dentata, 
Fagus grandifolia, Fraxinus americana, Populus grandidentata, 
Prunus serotina, and Quercus alba. For A. pennsylvanicum, C. 
dentata, F. grandifolia, and P. grandidentata, species-specific 
concentrations were not available, so we used the mean of 
concentrations of the smallest available taxonomic classification 
containing each species. The published concentrations were for 
live biomass, so to obtain estimates for leaf litter concentrations, 
we applied an adjustment factor that equaled the mean of all 
leaf litter BSi concentrations measured in our study divided by 

the mean of all green foliage BSi (adjustment factor  = 1.48). 
Given that we saw no effect of heating on red maple or red oak 
leaf BSi concentrations, we assumed the same to be true for 
the other species. We then multiplied our estimated litter BSi 
concentrations by mean litterfall mass per area for each species × 
plot, and took the sum of these values all species for each plot to 
obtain total litter BSi masses per plot. For all species combined, 
we estimate that soil warming increased canopy BSi production 
from 26.9-kg BSi ha−1 in the control plot to 30.4-kg BSi ha−1 in 
the heated plot (Figure 7). While we could not measure woody 
biomass silica concentrations for this study, we expect that the 
increase in woody biomass growth in the heated plot would likely 
further increase plant silica uptake and storage.

It should be noted that because the soil warming experiment 
consists of a single control plot and single heated plot, we cannot 
report error bounds for our estimates of plot-level phenomena. 
However, our estimates for canopy BSi production and return 
through litterfall are within the range of those previously reported 
for temperate forests: Cornelis et al. (2010a) report 4.5 to 90.3 
kg BSi ha−1 in litterfall among a range of temperate forest types. 
Sommer et al. (2013) and Clymans et al. (2016) calculate overall 
uptake rates of 35 kg BSi ha−1 and 39 kg BSi ha−1, respectively, in 
similar deciduous forests.

FIGURE 7 | Annual canopy BSi production and release. A comparison between control and heated plot annual BSi uptake (and thus release through fine litterfall). 
BSi fluxes for each plot are shown for the species analyzed in this study only (red maple and red oak), as well as for our estimated of all species combined in 
each plot. 
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It should be further noted that the experiment in our study 
involved soil warming only and should not be perceived as a 
simulation of whole-ecosystem climate change. In previous 
ecosystem-scale experiments, free-air CO2 enrichment (200 
ppm) resulted in 20% increase in tree BSi uptake at the Duke 
Forest (Fulweiler et al., 2015), and soil freezing induced by 
snowpack manipulation resulted in a 28% decrease in sugar 
maple fine root Si uptake (Maguire et al., 2017). Interactions 
among these and other dimensions of global change may interact 
with soil warming in additive, synergistic, or antagonistic ways 
(Templer et al., 2017). Furthermore, given that the increase in 
silica uptake observed here depends on a nitrogen-mediated 
productivity enhancement, we note that soil warming could 
lead to contrasting or no effects of soil warming on silica cycling 
outside nitrogen-limited ecosystems. Understanding interactions 
between the biogeochemical cycles of multiple elements may be 
important for determining future alterations to terrestrial silica 
cycling.

Soil Warming Effects on Silica Release 
From Decaying Litter and Retention in Soil
In our decomposition experiment, we found an acceleration 
of litter decay rates with soil warming for red maple, red oak, 
and birch leaves. The acceleration of litter decomposition in 
the heated plot was of the same order of magnitude as the 
increase in litterfall inputs. For each of the species we studied, 
there was no effect of warming on litter silica concentration 
over the course of decomposition, indicating that loss of BSi 
from decomposing litter tracked total biomass loss during 
decay, and that silica losses from decomposing litter were 
likewise accelerated by warming. This confirmed our second 
hypothesis: the increase in litterfall BSi inputs, together with 
the increased rate of silica losses from decomposing litter, 
suggests an increase in magnitude and rate of silica release 
from decaying biomass.

Both the relative decay rates among species and magnitude of 
warming-driven decay acceleration were in line with previously 
published decomposition studies. For example, a previous 
decomposition study in the same experimental plots found 
that 5°C of soil warming resulted in a 50% increase in decay 
rate constant for small red maple debris, and a 32% increase for 
small red oak debris (Berbeco et al., 2012), quite similar to the 
increases we observed of 47% increase for red maple leaves and 
40% for red oak leaves.

In some cases, leaves (Eleuterius and Lanning, 1987) and 
coarse woody debris (Clymans et al., 2016) have been shown to 
exhibit preferential silica retention over decomposition. We note 
here that our litterbag incubation times were relatively brief and 
probably represented primarily decomposition of relatively labile 
carbon fractions. A longer-term incubation (and over-winter 
measurements) would likely have revealed slower overall decay 
rates (Harmon et al., 2009), and possibly different patterns in 
carbon-silica coupling.

Despite the increase in litterfall BSi flux to soils, we found 
no change in soil BSi concentrations over time in the organic or 
mineral layers between the control and heated plot. This again 

highlights faster internal recycling of BSi with warming, but no 
changes in net silica retention. Similar to concentrations, we saw 
no change in the overall stocks of BSi in soils with warming. 
However, soil horizon depths and bulk density were not 
measured so were assumed to be consistent over time. Further, 
due to the large stocks of BSi in the soils, detecting a change in 
BSi concentrations may take longer than 15 years. Nonetheless, 
we observe no measurable effect of warming on soil BSi 
concentrations or stocks over the duration of this experiment, as 
predicted in our third hypothesis.

While soil BSi appeared unchanged, DSi was elevated in the soil 
solution heated plots. The DSi concentrations we observed were 
within the typical range for forest soils (100–600 µM; Cornelis et 
al., 2010b), and the increase in soil solution DSi concentrations 
we observed in the heated plot reveals a probable impact of faster 
BSi decomposition in heated plots and a proximate source for 
the additional silica taken up by plants. This also supports the 
lack of change in soil BSi with warming, as increased inputs from 
litterfall appear balanced in part by increased dissolution and 
movement of Si from the soil BSi pool to the soil solution DSi 
pool.

Connections to the Global Terrestrial 
Silica Cycle
In our study, we found that heating increased the fluxes of 
plant silica uptake and release through litterfall, with no net 
effect on soil silica stocks. There are two possible explanations 
for these trends. First, it is possible that enhanced plant silica 
uptake was balanced with enhanced BSi dissolution/release 
from decomposition, indicating accelerated internal Si recycling 
through the plant soil system, without changes to the weathering 
or leaching fluxes. Second, it is also possible that enhanced plant 
uptake exceeded the enhanced BSi dissolution rates, but increased 
mineral Si weathering inputs and/or reductions in leaching losses 
maintained the constant soil BSi stocks. In this case, an imbalance 
between changes to weathering and leaching fluxes could lead 
to enhancement or reduction of Si export to coastal receiving 
waters, with potential effects on marine primary productivity by 
diatoms and other silica-requiring species (Bristow et al., 2017).

The tight coupling between DSi observed in control plot soil 
solution and stream water in this study suggests to us that soil 
solution DSi is a dominant control on stream DSi in this system. 
Given that soil solution DSi was substantially elevated in the 
heated plot, we think it is likely that at least some portion of that 
additional DSi would be leached and delivered to streams. We 
also suspect that weathering inputs to soil DSi are increased by 
warming, as mineral silicate weathering typically increases with 
temperature as a result of reaction kinetics (Velbel, 1993; Brady 
and Carroll, 1994; White and Blum, 1995). Plants also influence 
mineral weathering through the physical and chemical alteration 
of soils (Lovering, 1959; Drever, 1994; Berner, 1997; Porder, 2019); 
thus, NPP enhancements may potentially lead to weathering 
increases in certain ecosystems (Kelly et al., 1998; Brault et al., 
2017). In our study, this could lead to greater weathering inputs 
and leaching outputs of silica with warming, in addition to our 
observed enhancement of internal silica recycling.
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Overall, our results indicate that soil warming can accelerate 
the biogeochemical cycling of silica in forests and increase the 
magnitude of the terrestrial silica pump (i.e., the uptake of DSi 
by land plants; Carey and Fulweiler, 2012a). The impacts of such 
changes on net vegetative silica storage and silica export from 
terrestrial to marine systems remain unresolved, but are likely 
important over the long term.

SUMMARY AND CONCLUSIONS

Our study indicates that the biogeochemical cycle of silica, 
like that of carbon, nitrogen, and other nutrients, can be 
altered by soil warming, and thus is likely to be affected by 
changes in global surface temperatures with climate change. 
We find that soil warming increases plant silica uptake as a 
result of increased overall productivity at constant tissue silica 
concentrations. We further find an increase in the magnitude 
and return of silica from plants to soil through litterfall and 
litter decay. We additionally find that soil BSi stocks remained 
constant over the 15-year duration of this study, indicating a 
balance of increased silica inputs and outputs from the soil 
BSi pool. Our results confirm that soil warming increases 
the extent of internal silica recycling within a temperate 
forest ecosystem, with potential implications for the global 
terrestrial silica pump, and land and ocean carbon cycling. 
These results underscore the need to further explore the 
interactions between geology and biology with climatic 
change to understand and predict future alterations to the 
global silica cycle.
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Lagoons are shallow aquatic environments that typically show a broad variety in

colonization by macrophytes. We present the biogenic silica (BSi) data obtained from

11 macrophyte species randomly collected in three small lagoons (Ono, Kodjoboue, and

Hebe) of Ivory Coast during 12 consecutive months. BSi concentrations were different

between species and between lagoons with average values ranging from 2 to 36mg g−1.

The highest values were found in Hebe and Kodjoboue lagoons due to the dominance

of emergent plant species belonging to Poaceae and Cyperaceae families. However,

because total plant coverage was low (5% of the lagoon surface), the total BSi stock

in vegetation was low (0.2 and 6.1 t, respectively). Oppositely, lower BSi concentrations

were found in plants from Ono lagoon, yet the abundance of macrophytes covered 66%

of its surface area which resulted in a larger vegetation BSi stock (17.4 t). Dissolved

silica in surface water varied seasonally between 1.7 and 10.8mg L−1, and variation

is assumed to be linked to diatom blooms rather than to macrophyte uptake. Sediment

data showed that the three lagoons store a large quantity of BSi in their sediments with

values ranging from 2 to 8 t BSi ha−1. Because of macrophyte influence in these lagoons,

macrophyte phytoliths were expected to contribute significantly to this sediment BSi

stock. However, microscopic analysis revealed that this stock is absolutely dominated

by diatom frustules and sponge spicules rather than plant phytoliths. We conclude that

macrophytes in these lagoons contribute only marginally to BSi storage in sediments but

that fragile phytogenic silica structures may affect local silica cycling.

Keywords: lagoons, phytogenic silica, sediment, diatom frustules, phytoliths, tropical wetland

INTRODUCTION

Lagoons are transitional water systems between land and ocean, characterized by a shallow depth
(<5m) and occasional water exchanges with the adjacent ocean (Boynton et al., 1996). They are
subjected worldwide to increased nutrient inputs due to anthropogenic activities such as land use
change, effluent disposal and aquaculture (Caumette et al., 1996). The resulting eutrophication
is characterized by enhanced phytoplankton blooms and increased macrophyte biomass (Sidinei
et al., 2001). Macrophytes provide food and shelter for aquatic organisms and regulate nutrient and
element cycling dynamics within these systems (Rejmankova, 2011). The distribution of different
aquatic macrophyte species and growth forms in lagoons is related in various ways to the physical
characteristics of the system (depth, bottom slope, type of sediments, wind regime. . . ), to riverine
inputs of nutrients, and to the frequency of salt ocean water intrusions (Kjerfve and Magil, 1989;
Aloo et al., 2013).

205

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2019.00248
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2019.00248&domain=pdf&date_stamp=2019-09-26
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jonas.schoelynck@uantwerpen.be
https://doi.org/10.3389/feart.2019.00248
https://www.frontiersin.org/articles/10.3389/feart.2019.00248/full
http://loop.frontiersin.org/people/659240/overview
http://loop.frontiersin.org/people/658141/overview
http://loop.frontiersin.org/people/125302/overview


Koné et al. Silica in Ivory Coast Lagoons

Aquatic macrophytes are also known to store significant
amounts of silica (SiO2), thus potentially affecting silica storage,
fluxes and turnover rates in freshwater aquatic ecosystems
(Schoelynck and Struyf, 2016). Silica in plants is present in an
amorphous and hydrated form (SiO2·nH2O), usually referred
to as biogenic silica (BSi) and mostly deposited as phytoliths
(siliceous plant bodies) or associated with cell wall molecules
(Broadley et al., 2012). Studies have demonstrated the significant
roles of plant silicification in general (i.e., not only aquatic
plants, but also terrestrial vegetation) on the silica cycle. It is
well-established that 55–113 Tmol Si yr−1 is fixed globally in
the terrestrial biosphere (Avg. 84 ± 29 Tmol Si yr−1; Carey
and Fulweiler, 2012). This annual ecosystem biogeochemical
uptake exceeds the annual export from continents to the ocean
through physicochemical weathering of silicates by two orders
of magnitude (Conley, 2002), and thus exerts a strong control
on global land-ocean interactions in the silica cycle. Specifically
for freshwater aquatic ecosystems, studies have pointed to a
significant effect of phytoliths on the silica cycle, and strong
potential storage of phytolith-silica in soils and sediments (Cary
et al., 2005; Struyf et al., 2007). The carbon occluded in the
phytoliths of wetland plant species potentially even forms an
important sink to consider in the carbon cycle (Li et al., 2013).
Exemplary to this is the strong (permanent) silica sink in the
Okavango Delta sediments (Botswana) that can be associated
with a dominance of silica-rich tropical giant-grasses such as
Cyperus papyrus L. (Struyf et al., 2015; Mosimane et al., 2017;
Schoelynck et al., 2017). BSi accumulation in macrophytes, and
thus potentially in sediments, varies strongly between species.
Aquatic vegetation shows apparent plasticity regarding silica
uptake, adaptive to silica availability, water and wind dynamics,
light interception, herbivory and nutrient stress (Schoelynck
and Struyf, 2016). High silica uptake results in high BSi
concentrations in plant litter (Struyf et al., 2005; Carey and
Fulweiler, 2014), which can impact on aquatic decomposition
processes (Schaller and Struyf, 2013) and thus delays in
and/or reductions of the transfer of dissolved silica (DSi) from
land to ocean. Besides macrophytes, diatoms (Bacillariophyta,
unicellular algae), testate amoebae (polyphyletic assemblage of
protozoa with a shell) and sponges (Porifera) also contribute
significantly to the BSi storage in wetland ecosystems [see
Puppe et al. (2015) for a classification of BSi pools in terrestrial
ecosystems]. All diatom species and a large number of the testate
amoebae synthesize amorphous siliceous shells (Aoki et al., 2007;
Smol and Stoermer, 2010) or have an endoskeleton stiffened by
(sponge) spicules (Maldonado et al., 2010).

It has been shown that wetlands, as is the case for many
other nutrients, play an important role in the biogeochemical
silica cycle (Struyf and Conley, 2009). In temperate and subarctic
climates, both riparian (e.g., Struyf et al., 2009, 2010) and tidal
wetlands (e.g., Struyf et al., 2006; Müller et al., 2013) play an
essential role in Si cycling, but tropical wetlands have not yet
received similar attention. Tropical rivers deliver about 70–80%
of the global DSi load into the ocean (Beusen et al., 2009),
implying it is crucial to assess environmental factors that can
influence its transport. Studies have indicated the potential
influence of Si uptake by giant grasses and sedges (e.g., Ding

et al., 2008; Cardinal et al., 2010) on Si-isotope biogeochemistry
in tropical rivers, but did not consider the importance of the
wetlands in large scale Si balances.

In this study, we hypothesized thatmacrophyte phytoliths play
an important role in silica storage in three tropical lagoons of
Ivory Coast. The observed plant species are typical for eutrophic
waters of numerous tropical rivers, streams, reservoirs, and
natural lakes. After vegetation senescence, plant BSi (phytoliths)
may contribute to the BSi stock in lagoon sediments. We
quantified this contribution by counting the relative abundance
of plant phytoliths, diatom frustules and sponge spicules using
a light microscope. After dissolution, DSi may again be taken up
by vegetation or be transported downstream. Therefore, we made
conservative estimates of the storage of BSi in the vegetation and
sediments and compare it between the different lagoons.

MATERIALS AND METHODS

Description of the Study Area
Kodjoboue, Ono and Hebe are three small lagoons located
in the South-East of Ivory Coast with a joined surface area
of about 1,150 ha (Figure 1). These lagoons are mainly fed by
ground water seepage and flow into the Comoé River before

reaching the Atlantic Ocean through different small channels.
The catchment area of Ono lagoon has been dominated by
pineapple cultivation since 1960 while the watersheds of Hebe
and Kodjoboue lagoons are influenced by palm and coconut
crops. Today, the three lagoons behave as freshwater systems
due to the absence of seawater input since the opening of the
Vridi channel in the near of Abidjan in 1950, that discharges
most of the flow. The lagoons became gradually dominated by
freshwater macrophytes following the reduced salt water inputs.
The development of plants is particularly high in Ono lagoon
where it starts hampering water transport and fishery activities.
Between 1986 and 1989, only Salvinia molesta D.S.Mitch. and
Eichhornia crassipes (Mart.) Solms were reported occasionally
along the shores of Ono lagoon (Amon et al., 1991; Guiral and
N’da, 1991). Today, Ono lagoon is 66% covered by different
macrophyte species while the two other lagoons remain more
or less in their original state with (emergent) plants limited
to the littoral zones. The climate of the area is sub-equatorial
with bimodal character. Two rainy seasons, a long rainy season
(April–July) and a short rainy season (October to November), are
intercepted by two dry periods: a long dry season (December–
March) and a short dry season (August–September). The average
annual precipitation is 1,704mm (referred to the years 1970–
2014); average annual temperature is 26.3◦C with March as
the hottest month (27.8◦C) and August as the coolest month
(24.3◦C) of the year. Humidity is high with average values of 85%.

Sampling and Analytical Techniques
The following physicochemical parameters were measured in
situ with a probe (Ap-5000, AQUAREAD Limited, Broadstairs,
UK): depth (m), pH, temperature (◦C), and electric conductivity
(µS cm−1). Subsurface waters (depth ∼30 cm) were sampled
with a 1.7 L Niskin bottle. Water samples for DSi analyses were
filtered through Sartorius cellulose acetate filters and refiltered
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FIGURE 1 | Map showing the location of the different lagoons with a photo impression of their macrophyte cover (A, Ono; B, Kodjoboue; C, Hebe).

through 0.2µm pore size polysulfone filters. DSi concentrations
(mg L−1) were determined with a spectrophotometer (DR 6000)
according to standard techniques (Grasshoff et al., 1983). DSi
samples were collected only in Ono and Kodjoboue lagoons
during eight sampling campaigns at three different stations in
each lagoon (Figure 1). For Ono lagoon, station 1 was close
to dense Echinochloa pyramidalis (Lam.) Hitchc. and Chase
vegetation, station 2 was close to Hydrilla verticillata (L.f.) Royle
vegetation, and station 3 was devoid of macrophytes and located
in the main channel connecting Ono lagoon to the Comoé River.
In Kodjoboue lagoon, station 1 was located in the center of
the lagoon, station 2 was further to the west and close to the
main channel, and station 3 was to the east. All three stations
were devoid of macrophytes because plants are limited to the
littoral zones.

In parallel, sediment samples were randomly collected at three
occasions (April, July, and September) in Ono and Kodjoboue
lagoons (same locations as for water samples) and one time
(April) in Hebe lagoon (sampling station devoid of macrophytes
because plants are limited to the littoral zones). Sediment samples
were taken in the organic rich top layer of the sediment using a
sediment corer of 3.3 cm diameter and 15 cm length. Sediment
cores were subsampled at three different depths (0–5, 5–10, and

10–15 cm). Sediment samples were dried at 75◦C for 5 days
and manually homogenized afterwards. Sediment subsamples of
30mg were mixed with 25mL of NaOH solution (0.5M) and
incubated in a water bath maintained at 85◦C for 5 h. Subsamples
taken at 3, 4, and 5 h were filtered through 0.45µm nitrocellulose
Chromafil syringe filters (A-45/25) and analyzed for silica using
the spectrophotometric molybdate—blue method (Grasshoff
et al., 1983) on a colorimetric segmented flow analyser (SAN++,
Skalar, Breda, The Netherlands). Sediment BSi concentration
is derived from the intercept of the linear regression between
sampling time and measured concentrations, as adapted from
DeMaster (1981).

Macrophytes were collected randomly on a monthly base
from October 2015 to September 2016 in the three lagoons (12
sampling campaigns). Free floating macrophytes were collected
with a net by sweeping a demarcated quadrant (surface area:
0.315 m2). The other plants were cut manually from a fixed
area of 1 m2. After collection, macrophytes were thoroughly
rinsed to remove sediments, algae andmacroinvertebrates, sorted
per species and total fresh mass was weighted. A subsample of
±100 g fresh mass of each plant species was oven dried at 75◦C
for 5 days and weighed again. This conversion factor between
fresh and dry mass of the subsample enabled to calculate total
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macrophyte dry mass per unit surface area. The dried samples
were then ground to 300µm. BSi was extracted from 25–30mg
of dried plant material by incubation in a 0.5M NaOH solution
at 80◦C for 5 h (DeMaster, 1981), and analyzed for silica using the
spectrophotometric molybdate—blue method (Grasshoff et al.,
1983) on a colorimetric segmented flow analyser (SAN++,
Skalar, Breda, The Netherlands).

Diatom, Sponge Spicule, and Phytolith
Fixation Protocol
The presence/absence of BSi particles (primarily diatom frustules,
sponge spicules and phytoliths) was determined in 12 sediment
samples and 6 (non-rinsed) dominant plant samples (see Table 1
for species list) across all three lagoons (0–15 cm depth). Samples
were prepared for light microscopy following the method
described in Van der Werf (1955). Small parts of the sample
were cleaned by adding 37% H2O2 and heating to 80◦C for
about 1 h. The reaction was completed by addition of saturated
KMnO4. Following digestion and centrifugation (three times
10min at 3,700 rpm), cleaned material was diluted with distilled
water to avoid excessive concentrations of BSi particles on the
object slides. Cleaned material was mounted in Naphrax. The
object slides were analyzed using an Olympus BX53 microscope,
equipped with Differential Interference Contrast (Nomarski)
optics and the Olympus UC30 Imaging System. The variation in
BSi particles in both sediment and plant samples was visualized
and BSi particles were quantified (up to 100 particles) in sediment
samples on random transects at 400x magnification and the
relative abundance of each group (diatoms, sponge spicules, and
phytoliths) was determined. Diatom species were identified up
to genus level using Lange-Bertalot et al. (2017) and phytolith
morphotypes were described according to Madella et al. (2005).

Stock Calculations
To calculate the BSi stocks in macrophyte biomass, we selected
the dominant macrophyte species from each lagoon (see Table 1
for species list) and multiplied the average calculated dry biomass
of each plant species (g m−2) with their respective average BSi

concentration (mg g−1). These values were converted to t of BSi
by multiplying with the respective vegetation coverage to obtain
the total stock in vegetation in each lagoon. For Ono lagoon, the
area covered by macrophytes was obtained by a satellite image
of 2016 (Landsat 8-OLI/TIRS) using ArcGIS. For the two other
lagoons, we did not get the images but field observations (Dr.
Egnankou from the SOS Forêts, pers. obs.) show that the area
covered by macrophytes is small and represents only about 1 and
5% for Hebe and Kodjoboue lagoon, respectively. To calculate the
BSi stocks in the sediment, BSi concentrations in sediments were
converted to t of BSi by multiplying the average concentrations
(mg g−1) by the density of the sediment (gm−3), a depth of 10 cm
(ca. rooting depth of macrophytes) and by the total surface area
of the respective lagoon.

Statistical Analyses
By means of an Anova One Way test, average values of
macrophyte BSi were statistically compared between species
within the same lagoon, and average values of water DSi
were statistically compared between months within the same
lagoon [using Prism 5.00 (GraphPad)]. P-values are not explicitly
mentioned hereafter but “significant(ly)” refers to p < 0.05 and
“not significant(ly)” refers to p ≥ 0.05. Using linear regression,
we did not find relationships between plant BSi, sediment
BSi and water DSi, hence these results were excluded from
the text.

TABLE 2 | Physicochemical characteristics (average ± SD) of the three lagoons.

Lagoons

Ono Kodjoboue Hebe

Area (ha) 482 424 244

Depth (m) 2.4 ± 0.2 2.2 ± 0.3 1.9 ± 0.2

pH 6.3 ± 0.7 6.4 ± 0.8 6.8 ± 0.8

Temperature (◦C) 27.5 ± 2.1 29.2 ± 1.4 29.9 ± 1.3

Conductivity (µS cm−1) 17.7 ± 5.3 13.5 ± 6.4 36.0 ± 15.1

TABLE 1 | Characteristics and occurrence of macrophyte species collected in the three lagoons (×, presence of the species; #, species used for phytolith visualization; *,

species’ values used in BSi stock calculation).

Species Lagoon

Scientific name Common name Growth form Family Ono Kodjoboue Hebe

Acroceras zizanoides Oat grass Emergent Poaceae ×, *

Brachiaria villosa Signalgrass Emergent Poaceae × ×

Echinocloa pyramidalis Antelope grass Emergent Poaceae ×, #, * ×, #, * ×, #, *

Eichhornia crassipes Water hyacinth Free floating Pontederiaceae ×, *

Hydrilla verticillata Waterthyme Submerged Hydrocharitaceae ×, #, *

Jussiaea repens Water primrose Emergent Onagraceae ×

Panicum parvifolium Small-flower panic grass Emergent Poaceae ×, #, *

Pistia stratiotes Water cabbage Free floating Araceae ×

Pycreus lanceolatus Lance sedge Emergent Cyperaceae × ×

Rhynchospora corymbosa Matamat Emergent Cyperaceae × ×, *

Salvinia molesta African payal Free floating Salviniaceae × × ×, #, *
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FIGURE 2 | DSi concentrations (mg L−1) in the water column of Ono and Kodjoboue lagoons. Data represent averages of different sample points (n = 3) and error

bars indicate standard deviation. Different letters indicate a significant difference (p < 0.05).

RESULTS

Water Quality Parameters and DSi
Concentrations
In general, pH was low with average values below 7 (Table 2).
Conductivity was also low with average values ranging from
13.5 to 36.7 µS cm−1 showing the highest values in Hebe
lagoon and the lowest in Kodjoboue lagoon. Both parameters
are characteristic for freshwater systems and demonstrate the
present-day absence of marine influence. Temperature varied
slightly between the three lagoons with average values ranging
from 27.5 to 29.9◦C. DSi showed a strong temporal variability
with a similar pattern in Ono and Kodjoboue lagoons (Figure 2).
The highest values were observed between March and April
and the lowest in September. When comparing the two
lagoons, the highest DSi values were generally observed in
Ono lagoon. Overall, DSi concentrations ranged from 1.7
to 10.8 mg L−1.

Biogenic Silica Accumulation in
Macrophytes
Eight plant species were found in Ono lagoon, seven in
Kodjoboue lagoon and only three in Hebe lagoon (Table 1). The
most dominant species were Echinocloa pyramidalis followed by
Hydrilla verticillata and Eichhornia crassipes for Ono lagoon,
E. pyramidalis, Panicum parvifolium, and Acroceras zizanoides
for Kodjoboue lagoon, and Salvinia molesta, E. pyramidalis, and
Rhynchospora corymbosa for Hebe lagoon. All other species were
less abundant.

BSi concentrations ranged from 0.8 to 54.9mg g−1 with the
lowest concentration found in E. crassipes in Ono lagoon and
the highest found in S. molesta in Kodjoboue lagoon (Figure 3).
Generally, free floating species had low BSi concentrations and
much lower than submerged and emergent species. Among the
emergent species, Brachiaria villosa and A. zizanioides showed
the highest values while the lowest were found in Jussiaea repens.
BSi concentrations of B. villosa were significantly higher than
those of the other plants collected in Ono lagoon. In contrast,

the BSi concentrations of A. zizanioides in Kodjoboue lagoon
did not differ significantly than those of S. molesta (a free-
floating species), P. parvifolium and B. villosa. For the single
submerged macrophyte (H. verticillata) found in Ono lagoon,
the concentrations were relatively high (5.1–19.8mg g−1) and
similar to those found in emergent species. In Hebe lagoon, BSi
concentrations found in R. corymbosa were significantly higher
than those obtained in S. molesta and E. pyramidalis.

Ono lagoon stored less BSi per m² macrophyte biomass than
the two other lagoons. Average values for the three lagoons
were 0.054, 0.102, and 0.288 t BSi ha−1 for Ono, Hebe and
Kodjoboue, respectively. By extrapolating these values to the total
surface covered by macrophytes in each lagoon, the BSi stored in
macrophyte biomass was 0.2, 6.1, and 17.4 t for Hebe, Kodjoboue
and Ono, respectively.

Biogenic Silica Accumulation in Sediment
The concentrations of BSi generally decreased with depth
(Table 3): the highest values were found near the subsurface (0–
5 cm) while the lowest occurred at the bottom of the sediment
core. The lowest values were observed in July in Ono lagoon.
Overall, average BSi concentrations in sediments ranged from
49.6 to 89.4mg g−1. The BSi stock in the sediments over 10 cm
depth was higher in Kodjoboue lagoon (8.2 t BSi ha−1) in
comparison to those observed in Hebe (4.2 t BSi ha−1) and Ono
(5.5 t BSi ha−1). Extrapolating these values to the total surface of
each lagoon, the BSi stock in the sediments was 1,025, 2,651, and
3,477 t for Hebe, Ono and Kodjoboue, respectively.

Characterization of the BSi Particles in
Sediment and Plant Samples
All sediment samples were dominated by diatom frustules,
mainly belonging to the genera Aulacoseira (>90%), Pinnularia
(2–3%), Eunotia (2–3%), and Diadesmis (<1%). In the samples
from Kodjoboue lagoon, several sponge spicules were observed
(Figure 4a, arrow). Only megascleres were found. Gemmoscleres
andmicroscleres were never observed. In Ono and Hebe lagoons,
the amount of spicules was extremely low and spicules were
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FIGURE 3 | Box-plots showing average BSi concentrations in the different

macrophytes for the three lagoons. The vertical bars refer to the

minimum/maximum values and the different letters indicate a significant

difference (p < 0.05).

TABLE 3 | BSi concentrations (mg g−1) in sediments of the three lagoons

(average ± SD; nd, no data).

Months Depths (cm)

0–5 5–10 10–15

Ono

April 57.4 ± 10.9 58.5 ± 12.5 nd

July 57.0 ± 17.8 49.6 ± 12.7 49.7 ± 13.1

September 88.5 ± 17.9 77.5 ± 17.5 69.5 ± 24.6

Kodjoboue

April 89.4 ± 0.1 69.0 ± 2.9 nd

July 81.7 ± 2.6 62.6 ± 4.3 65.6 ± 16.1

September 75.8 ± 7.8 68.8 ± 16.6 55.1 ± 26.8

Hebe

April 65.9 ± 2.7 63.2 ± 1.6 nd

usually not included in the 100 particle-counts. Phytoliths were
only very rarely observed (Figure 4b). In the samples from
Ono lagoon, no phytoliths were observed, even when scanning
an entire object slide. In Hebe lagoon and Kodjoboue lagoon,
occasionally, only fragments of phytoliths were recorded after
scanning entire object slides but never during counting. The
observed phytolith fragments were not identifiable. Intact shells
of testate amoebae were not found, but very rarely idiosomes
(siliceous platelets synthesized by testate amoebae for shell
construction) were observed (Figures 4c,d).

In plant samples, phytoliths were observed in E. pyramidalis
(Figures 4e–h) and P. parvifolium (Figures 4i–k) samples
whereas in H. verticillata and S. molesta samples, no
phytoliths were found. Most phytoliths were short bilobate
or polylobate cells (Figures 4e–g,j). Occasionally, short cell cross
(Figure 4i), globular and long echinate phytoliths (Figures 4h,k)
were observed.

DISCUSSION

The Role of Macrophytes and Diatoms in
Lagoon BSi Storage
BSi accumulation in vegetation varied per lagoon and was
dependent on plant species dominance [see Prychid et al. (2003)
andHodson et al. (2005) for BSi contents in plants related to their
phylogenetic position]. The BSi stock in macrophytes ranged
from 0.054 to 0.288 t BSi ha−1, which is situated between values
reported for submerged macrophytes in the Okavango Delta
channels (0.008 t BSi ha−1; Schoelynck et al., 2017) and values
reported for emergent wetland vegetation in the Okavango Delta
(ranging from 0.010 to 1.600 t BSi ha−1; Struyf et al., 2015). The
highest BSi concentrations were found in macrophytes collected
from Kodjoboue lagoon and were related to the dominance of
emergent species (A. zizanioides, B. villosa, R. corymbosa, E.
pyramidalis, P. lanceolatus, and P. parvifolium) belonging to the
Poaceae and Cyperaceae families. Species of these two families
are often characterized by high BSi contents (Ma and Takahashi,
2002) and were also identified as a macrophyte growth form

Frontiers in Earth Science | www.frontiersin.org 6 September 2019 | Volume 7 | Article 248210

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Koné et al. Silica in Ivory Coast Lagoons

FIGURE 4 | Silica particles in the sediment and plant samples. Sediment samples originate from Kodjoboue lagoon, and are exemplary to all examined samples from

the three lagoons. (a) Large number of diatom valves, mainly belonging to the genus Aulacoseira and one sponge spicule (megasclere, see arrow). (b) Shows a few

broken diatom valves and one phytolith (see arrow). Plant samples originate from dominant plant species from across all three lagoons. (c,d) Show testate amoeba

idiosomes. (e–h) Show different phytoliths found in Echinochloa pyramidalis samples: short cell bilobate (e,f), cylindrical polylobate (g), and globular echinate (h)

phytoliths were observed. (i–k) Show different phytoliths found in a Panicum parviflorum sample: short cell cross (i), short cell bilobate (j), and long cell echinate (k)

phytoliths were observed. Scale bar represents 20µm for panels (a,b) and 10µm for panels (c–k).

with high BSi content in Schoelynck and Struyf (2016). The
generally lower BSi concentrations found in Ono lagoon were
counterbalanced by the high macrophyte coverage giving this
lagoon the highest BSi stock in vegetation of all three lagoons:
17.4 t. We did not find a relationship between plant BSi and
sediment BSi. Other studies (e.g. in the Okavango Delta, Struyf
et al., 2015) identified an impact of vegetation on phytolith
input to the soils and thus on BSi content, but results are
not always consistent. In saltmarshes, de Bakker et al. (1999)
found no relation between plant BSi content and sediment BSi
content. Carey and Fulweiler (2014) concluded that silica uptake
in saltmarsh plants is not always directly linked to sediment BSi
and sediment DSi, since active uptake mechanisms stimulated
by multiple abiotic factors (e.g., hydrological stress) can strongly
impact plant silica uptake.

Light microscopy of the lagoon sediments revealed that
the majority of BSi particles in the sediment of all lagoons
comprise almost entirely of diatom frustules, occasionally sponge
spicules and almost never phytolith particles. Tychoplanktonic

diatoms such as Aulacoseira species form long filaments of
large, heavily silicified, cylindrical cells, and are known to
bloom mainly in spring and autumn (Siver and Kling, 1997).
The light microscopy investigated samples in the current study
were taken in November 2017 and April 2018, most likely in
the middle of large Aulacoseira blooms. During this sampling
period, stimulated by the nutrient rich character of these waters,
the shallow depths and the abundant sunlight, Aulacoseira
blooms may have produced large amounts of frustules (Conley
et al., 1993). Additionally, non-rinsed plant samples were also
dominated by large amounts of epiphytic diatoms, mainly
belonging to the genus Eunotia, typically found in acidic
environments such as these lagoons (Van de Vijver, pers. obs.).
It is thus clear that diatoms could have depleted the plant-
available DSi in the water rapidly, before the plants could
take up the necessary silica to produce phytoliths. This can be
observed in Figure 2where the amount of DSi strongly decreased
between April and May suggesting either a dilution effect in the
rainy season (resulting in lower concentrations; Meunier et al.,
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2011), or an increased uptake by organisms compared to other
months (Rabosky and Sorhannus, 2009).

The fact that we do find BSi in plants but rarely
phytoliths, may be explained by different depositionmechanisms.
Rapid deposition of silica results in lumen and cell wall
phytoliths, whereas slow deposition results in silica deposition
in intercellular spaces or in an extracellular (cuticular) layer
(reviewed by Prychid et al., 2003; Hodson, 2019). These non-
homogeneous masses can be i.a. a silica ring formed around
the periphery of the cell, deposited on a dispersed organic
matrix, or laid down as deposits within the cell wall or between
the cellulose wall and the plasma membrane or in cortical
intercellular spaces within the cell (Prychid et al., 2003). In
general, these fragile phytogenic silica structures as well as very
small phytoliths (<5µm) are difficult to trace in sediments,
but they potentially play an important role in silica cycling
(Meunier et al., 2017; Puppe et al., 2017). Additionally, given
the very large number of epiphytic diatoms on non-rinsed plant
samples, it cannot be excluded that a fraction of plant-silica in our
results is actually diatom-silica, even though plants were washed
thoroughly before analysis, according to protocol. Furthermore,
it could be hypothesized that plant organic matter may float
away through the outlets of the lagoons, or accumulate on the
shores, hence not contributing to the sediment silica storage (cf.
Struyf et al., 2015). Alternatively, Puppe et al. (2017) suggest the
formation of a layer of coarse organic matter on top of sediments
from which phytoliths cannot be released easily and hence are
missing in underneath sediment layers. We have no arguments
supporting either of these hypotheses, none of our sediment cores
contained such a distinct organic top layer and samples were
visually homogeneous organic rich (fine material) over the entire
depth of the core (15 cm).

Sediments as a BSi Sink
Overall, the BSi stocks in sediments of the three lagoons ranged
from 4.2 × 103 kg ha−1 to 8.2 × 103 kg ha−1 and were much
higher than those found in the vegetation, suggesting that lagoon
sediments are important sites for long-term BSi storage. Similar
studies on African wetland BSi accumulation are scarce. The
best studied ecosystem in this regard is the Okavango Delta
(Botswana) where similar values were found: between 3.8 ×

103 kg ha−1 and 36 × 103 kg ha−1 in the riparian wetlands
[depending on flooding frequency and in top 5 cm of sediment;
Struyf et al. (2015)] and between 0.2× 103 kg ha−1 and 1.5× 103

kg ha−1 in the main channels [depending on vegetation cover
and in top 10 cm of sediment; Schoelynck et al. (2017)]. Since
phytoplankton production in the Delta is limited by low ambient
nutrient concentrations, Okavango sediment BSi particles mainly
originate from dead terrestrial and aquatic plant fragments
(Struyf et al., 2015). In case of the analyzed groundwater-fed Ivory
Coast lagoons, most of the BSi is produced within the lagoons
and not brought in by any river. Overland runoff and topsoil
erosion as in the Nyong basin in Cameroon (Cary et al., 2005)
can potentially introduce allochthonous BSi particles, especially
by transformation of an area from pristine to agricultural land
use (cf. Smis et al., 2011). However, we have no indication at
the moment that this is a significant process in the analyzed

lagoons and no phytoliths with confirmed terrestrial origin were
found in corresponding sediment samples. The investigated
lagoons sediment BSi pool is thus dominated by diatom frustules,
occasional sponge spicules and phytolith fragments, and an
unquantified amount of fragile phytogenic silica structures and
small phytoliths (<5µm). Entire shells of testate amoebae were
not observed probably because the organic cement, which glues
the idiosomes (i.e., the building blocks of the shell) together,
was destroyed during the H2O2 sample preparation step. But
also single idiosomes were very rare in our samples, although
other studies showed that they can be quite abundant in sediment
samples in general (cf. Douglas and Smol, 1987; Cary et al., 2005).

Implications for the Ecosystem Silica
Cycling
The in situ produced BSi is deposited locally due to limited
exchange with the adjacent coastal ocean (Boynton et al., 1996).
This accumulation strongly influences BSi cycling and storage
in the sediments. In general, plant and phytoplankton BSi is
returned in detritus to soil and sediments, where decomposition
processes and pedogenic transformations can result in either
stored BSi or re-dissolved DSi (Frings et al., 2014). As the
analyzed lagoons have an acidic pH (<6.4), the preservation
of diatom frustules and phytoliths can be assumed to be quite
good (Flower and Ryves, 2009) making silica only very slowly
available again for uptake. The average DSi concentration for
the Comoé river draining these lagoons is with 2.86mg L−1

rather low (Koné et al., 2008). Invertebrate fauna might be
important contributors to remineralisation processes in general
as was reported for other nutrients in Taabo Lake, which is
similar to the studied lagoons (Kouamé et al., 2011). Invertebrate
fauna, especially burrowers, are known to amplify BSi cycling
in shallow environments like coastal lagoons and estuaries
(Viaroli et al., 2013). The presumed fragile phytogenic silica in
the plants (potentially explaining the relatively high plant BSi
concentrations) may be very important in such conditions as
they may be able to dissolve more easily than homogeneous
masses (i.e., phytoliths and diatom frustules) and can hence
contribute to local silica cycling. Plants may then be an important
source of silica availability in the lagoons, although this warrants
further investigation.

Generally, BSi stored in wetland sediments is several
orders of magnitude more soluble than mineral silicates
(Farmer et al., 2005) and its temporal or permanent
storage vs. recycling or downstream transport exhibits an
important control on silica export toward the ocean (e.g.,
Derry et al., 2005; Fulweiler and Nixon, 2005; Sommer
et al., 2006), which is crucial for the silica cycling in these
(sub) tropical regions (Beusen et al., 2009). Decreasing
availability of silica compared to other nutrients can negate
any competitive advantage the diatoms have and can lead to
nuisance and toxic blooms of green and blue green algae in
coastal ecosystems (Cloern, 2001). Diatoms need an optimal
nutrient ratio of C:Si:N:P = 106:15:16:1, and diatom growth
will cease when DSi supplies are depleted, allowing other
phytoplankton classes to proliferate using any excess of N
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and P (Anderson and Burkholder, 2002). Because diatoms
are primary producers at the base of the food-web, any
change in that production might have knock-on effects to the
entire ecosystem. Phytoplankton assemblages at Ivory Coast
coastal environment show that, although diatoms are the
most species-rich, cyanobacteria are the most abundant (up to
90% of the phytoplankton biomass), and silica was identified
as predominant abiotic factor controlling phytoplankton
dynamics (Osemwegie et al., 2016). Expected human population
rise in the greater Abidjan area however, will probably put
more pressure on local water bodies and nutrient levels may
increase to levels which could escalate to dramatic levels of
eutrophication [projections made for the nearby (and larger)
Ebrié Lagoon which receives water from the Comoé River;
(Scheeren et al., 2004)].

CONCLUSION

It can be concluded that relatively recent colonization of the
lagoons by aquatic vegetation had no major effect yet on
the lagoons’ sediment BSi storage that is still dominated by
phytoplankton, entirely comparable to any other open water
system lacking plants. Perhaps it is just a matter of time
before plants start having an impact here. Values reach up
to 8.2 t BSi ha−1, which is similar to other tropical wetlands
and may exhibit an important control on fluxes toward the

tropical coastal zone. Relatively high plant BSi concentrations are
likely explained by non-homogeneous fragile phytogenic silica
structures that may be more able to dissolve and contribute to
local silica cycling, rather than the more homogeneous diatom
frustules. Using other techniques are advised measuring or
visualizing these fragile phytogenic silica structures to prove
this hypothesis.
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Phytolith-occluded carbon (PhytOC), a highly stable carbon (C) fraction resistant to
decomposition, plays an important role in long-term global C sequestration. Previous
studies have demonstrated that bamboo plants contribute greatly to PhytOC sink
in forests based on their aboveground biomass. However, little is known about the
contribution of belowground parts of bamboo to the PhytOC stock. Here, we reported
the phytolith and PhytOC accumulation in belowground trunk and rhizome of eight
monopodial bamboo species that widely distributed across China. The results showed
that the belowground parts made up an average of 39.41% of the total plant biomass
of the eight bamboo species. There were significant (p < 0.05) variations in the
phytolith and PhytOC concentrations in the belowground trunk and rhizome between
the bamboo species. The mean concentrations of PhytOC in dry biomass ranged from
0.34 to 0.83 g kg−1 in the belowground rhizome and from 0.10 to 0.94 g kg−1 in the
belowground trunk across the eight bamboo species, respectively. The mean PhytOC
stocks in belowground biomass ranged from 2.57 to 23.71 kg ha−1, occupying an
average of 23.36% of the total plant PhytOC stocks. This implies that 1.01 × 105

t PhytOC was overlooked based on the distribution of monopodial bamboos across
China. Therefore, our results suggest that the belowground biomass of bamboo
represents an important PhytOC stock, and should be taken into account in future
studies in order to better quantifying PhytOC sequestration capacity.

Keywords: PhytOC, aboveground biomass, belowground trunk and rhizome, carbon sequestration, phytolith

INTRODUCTION

Increased greenhouse gas (GHG) emissions have been widely accepted as the main cause of
climate change, which threatens the sustainability of terrestrial ecosystem (Kosten et al., 2010;
IPCC, 2014). Among the GHGs, the CO2 emission rate had increased to 3.11 × 1011 Mg per
year by 2010 at the global scale (DOE, 2008). Methods that can reduce the speed of rapidly rising
CO2 concentrations are urgently needed to contribute to climate change mitigation. Terrestrial
biogeochemical carbon (C) sequestration is one of the most promising approaches for long-term
atmospheric CO2 sequestration (IPCC, 2014).

Occlusion of C within phytoliths (PhytOC) as an effective mechanism of biotic C sequestration
has received much attention in recent years (Parr and Sullivan, 2005; Song et al., 2012a,b, 2016;
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Yang et al., 2018). Phytolith, also referred to as plant opal, is
an amorphous silica that formed in living plants (Wang and
Lü, 1993; Parr and Sullivan, 2005). During the formation of
phytolith, some organic C can be occluded in plant tissues.
Previous studies demonstrated that PhytOC is highly stable and
could be preserved in the soil for several 1000s of years after plant
decomposition (Wilding et al., 1967; Parr and Sullivan, 2005;
Santos et al., 2010). For example, Parr and Sullivan (2005) found
that PhytOC could contribute up to 82% of the total soil C pool
after 2000 years decomposition in Numundo oil palm (Elaeis
guineensis) plantations. It is also suggested that PhytOC makes
up between 15 and 37% of the estimated global accumulation rate
(24 kg C ha−1 yr−1) of stable soil C, demonstrating the significant
potential of PhytOC in the long-term terrestrial C sequestration
(Parr and Sullivan, 2005; Song et al., 2012a).

The PhytOC concentrations in different plants vary greatly
due to their differences in the capacity for phytolith accumulation
(Parr et al., 2010; Song et al., 2012b, 2017; Yang et al., 2015;
Xiang et al., 2016). Bamboo, a typical phytolith-accumulator
(Parr et al., 2010), has been shown to have a greater production
of PhytOC in comparison with other plants such as sugarcane
(Parr et al., 2009), rice (Li et al., 2013), and millet (Zuo and
Lü, 2011). Being predominantly distributed in the tropical and
subtropical regions, bamboo has a global area of 2.2 × 107

ha by 2010 and is increasing at a rate of 3% annually (Cao
et al., 2011; Zhou et al., 2011). It has been estimated that the
present annual PhytOC sink in China’s forests is 1.7 ± 0.4 Tg
CO2 yr−1, 30% of which is contributed by bamboo because the
production flux of PhytOC through tree leaf litter for bamboo
is 3–80 times higher than that of other forest types (Song et al.,
2013).

The potential of PhytOC sequestration in bamboo species
also varies depending on the rhizomatous forms (Li et al.,
2014a; Xiang et al., 2016). Monopodial scattering bamboo
(typically Moso bamboo and Lei bamboo) forests accounted
for 77.71% of the total area of bamboo forests in China
and were estimated to contribute 75% of the total PhytOC
sequestration in Chinese bamboo (Li et al., 2014b). Yang et al.
(2015) further demonstrated that the PhytOC production flux
contributed by aboveground biomass (including branches and
culms) was 1.18 to 1.78 times compared with those estimated
by leaf samples for eight monopodial bamboo species due
to their larger biomass. Although existing research suggest
the significant role of global PhytOC sequestration through
bamboo plants, their estimates were only based on the
aboveground biomass and the contribution of belowground
parts was never determined. Bamboo plants usually have
vigorous rhizomes with high biomass. For example, the
belowground biomass of Moso bamboo could account for
more than one third of total stand biomass (Wang et al.,
2013). Given the large phytolith accumulation in bamboo
branches and culm in our previous studies (Huang et al.,
2014; Yang et al., 2015), we infer that the phytolith could
also be accumulated in the bamboo rhizomes and a large
amount of PhytOC sequestered in the belowground biomass
may have been overlooked in previous studies, leading to a
severe underestimation of the PhytOC stock in bamboo forests.

The purposes of this study are (1) to examine and compare
the concentration of phytolith and PhytOC in belowground
trunk and rhizome and (2) to estimate the PhytOC stocks in
belowground biomass of bamboo species that widely distributed
across China. We hypothesize that the bamboo species differ
in PhytOC concentrations in their belowground trunks and
rhizomes, and that the belowground parts make a significant
contribution to the total PhytOC sequestration of bamboo
plants.

MATERIALS AND METHODS

Experimental Site and Sampling
We selected eight monopodial bamboo species that account
for more than 85% of the total area of monopodial bamboo
forests in Zhejiang and Anhui Provinces, China. The
eight bamboo species are Phyllostachys heterocycla (Carr.)
Mitford ‘Pubescens’ (PHMP), Phyllostachys praecox C. D.
Chu ‘Prevernalis’ (PPP), Phyllostachys prominens W. Y.
Xiong (PP), Pseudosasa amabilis (McClure) Keng f (PAMK),
Phyllostachys glauca McClure (PGM), Pleioblastus amarus
(Keng) Keng f (PAKK), Phyllostachys heteroclada Oliver
(PHO), and Bambusa piscatorum McClure (BPM). Detailed
sampling site information is given in Table 1. For each
species, four plots with an area size of 20 m × 20 m were
established in the bamboo forest. The plots in each forest had
similar site conditions including elevation, soil type, slope
gradient and aspect. The average diameter at breast height
(DBH) and stem density were determined. In each plot, one
individual bamboo plant having an DBH similar to the mean
values was selected and used to determine the biomass of
organs including leaves, branches, culms and belowground
trunk. The silicon content, phytolith content, C content of
phytolith, and PhytOC content per dry biomass were also
determined. The rhizome for each species was collected
from four subplots of 1 m × 1 m randomly established in
each plot. All leaves, branches, and culms of each sample
plant, and the belowground trunk and rhizome were weighed
separately.

Sample Measurements
Each sample was mixed, rinsed with ultrapure water and
ultrasonic cleaning to clear all clays contaminated on the bamboo
roots. The plant samples were oven-dried at 70◦C for 48 h to
a constant mass and then ground to pass through a 0.25-mm
sieve for chemical analysis. Phytoliths in samples were extracted
using a microwave digestion method (Parr et al., 2001). The
phytolith extracts were transferred into pre-weighed centrifugal
tubes, dried at 65◦C for 48 h in an oven, and then weighed.
A K2Cr2O7 solution (0.8 M) was used to detect whether the
organic matter surrounding the phytolith had been completely
removed before the determination of PhytOC (Parr et al., 2010).
The PhytOC was determined according to the PhytOC alkali
spectrophotometry method (Yang et al., 2014). The accuracy
and repeatability of this analytical method was well verified
against the results obtained with acid dissolution-Elementar
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TABLE 1 | Site information of sampling plots of eight monopodial bamboo species studied.

Bamboo species Abbreviations Sampling site Longitude and Altitude (m) Density DBHa Parent material

latitude (plants·ha−1) (cm)

Phyllostachys heterocycla (Carr.) PHMP Hangzhou, Zhejiang N 30◦14′22′ ′ 149.18 2200 9.60 Tuff

Mitford ‘Pubescens’ E 119◦2′30′ ′

Phyllostachys praecox C. D. Chu PPP Lin’an, Zhejiang N 30◦14′ 150.00 20450 3.90 Arenaceous shale

‘Prevernalis’ E 119◦42′

Phyllostachys prominens W. Y. PP Tonglu, Zhejiang N 29◦48′0′ ′ 208.35 9700 6.70 Tuff

Xiong E 119◦34′24′ ′

Pseudosasa amabilis (McClure) PAMK Lin’an, Zhejiang N 30◦15′43′ ′ 50.10 36875 2.40 Tuff

Keng f E 119◦43′38′ ′

Phyllostachys glauca McClure PGM Ningguo, Anhui N 30◦29′24′ ′ 101.50 28150 2.85 Arenaceous shale

E 119◦9′1′ ′

Pleioblastus amarus (Keng) Keng f PAKK Lin’an, Zhejiang N 30◦11′31′ ′ 150.60 78400 2.50 Tuff

E 119◦51′1′ ′

Phyllostachys heteroclada Oliver PHO Lin’an, Zhejiang N 30◦18′55′ ′ 553.63 52500 2.15 Tuff

E 119◦27′9′ ′

Bambusa piscatorum McClure BPM Lin’an, Zhejiang N 30◦19′6′ ′ 425.88 45625 2.10 Tuff

E 119◦27′20′ ′

aDBH, diameter at breast height. PHMP, Phyllostachys heterocycla (Carr.) Mitford ‘Pubescens’; PPP, Phyllostachys praecox C. D. Chu ‘Prevernalis’; PP, Phyllostachys
prominens W. Y. Xiong; PAMK, Pseudosasa amabilis (McClure) Keng f; PGM, Phyllostachys glauca McClure; PAKK, Pleioblastus amarus (Keng) Keng f; PHO, Phyllostachys
heteroclada Oliver; BPM, Bambusa piscatorum McClure.

Vario MAX CN method (Germany) (Yang et al., 2014). In this
method, a 0.01 g phytolith sample was placed into a 10 mL
centrifuge tube, 0.5 mL 10 M NaOH added, and incubated
for 12 h at 25◦C to dissolve the phytoliths. The extract was
further treated with 1.0 mL of 0.8 M K2Cr2O7 solution followed
by addition of 4.6 mL of concentrated H2SO4 to oxidize the
released organic C. The obtained solutions were placed in a
water bath at 98◦C for 1 h, and the concentration of PhytOC
in the solutions was determined colorimetrically at 590 nm
on a Hitachi 150-20 spectrophotometer (Hitachi, Ltd., Tokyo,
Japan).

Data Calculation and Statistical Analysis
C concentration in phytolith, PhytOC concentration in dry
biomass and PhytOC stock were calculated using the following
formulas:

C concentration in phytolith (g kg−1) = C content in

phytolith (g)/phytolith weight (kg) (1)

PhytOC concentration (g kg−1) = C content in

phytolith (g)/ dry biomass (kg) (2)

PhytOC stock (kg ha−1) = 6 [PhytOC

concentration (g kg−1) × biomass (kg ha−1) × 10−3
] (3)

MS Excel 2010 and SPSS 18 software were used to carry
out data processing and statistical analysis. One-way ANOVA
followed by LSD test (p < 0.05) were used to examine the
difference in phytolith and PhytOC contents among different
plant species.

RESULTS

Belowground Biomass of Eight
Monopodial Bamboo Species
The total aboveground biomass (including leaves, branches, and
culm) ranged from 20.82 to 48.68 t ha−1 per dry weight across
the eight species, with the highest in PAKK [Pleioblastus amarus
(Keng) Keng f] and lowest in PP (Phyllostachys prominens W. Y.
Xiong) (Table 2). The biomass of the rhizome was much smaller
than that of the aboveground across the eight species with the
exception that the biomass of rhizome of PP was almost three
times higher than that in the aboveground. The biomass of the
belowground trunk ranged from 1.19 to 7.18 t ha−1 across the
eight species. The proportion of belowground biomass to total
biomass varied from 18.64% for PHO (Phyllostachys heteroclada
Oliver) to 74.91% for PP, with a mean of 39.41%.

Phytolith and PhytOC Concentrations of
Bamboo in Belowground Biomass
There was a significant (p < 0.05) variation in the concentrations
of Si, phytolith, C concentration in phytolith, and PhytOC in
belowground biomass among the eight bamboo species (Table 3).
The concentration of Si and phytolith in the rhizome ranged
from 8.43 g kg−1 for PHMP [Phyllostachys heterocycla (Carr.)
Mitford‘Pubescens’] to 21.05 g kg−1 for PGM (Phyllostachys
glauca McClure), and from 11.20 g kg−1 for PAKK to 35.44 g kg−1

for PGM, respectively. The C concentration in phytolith in
the rhizome ranged from 11.02 g kg−1 for BPM (Bambusa
piscatorum McClure) to 80.42 g kg−1 for PHMP. There were
no significant differences in the C concentration in phytolith
in the rhizome among the other seven bamboo species except
PHMP.
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TABLE 2 | Biomass of eight monopodial bamboo species studied.

Bamboo Aboveground Biomass of Biomass of Belowground Ratio of

species biomass rhizome belowground trunk biomass belowground to total

(t ha−1)a (t ha−1) (t ha−1) (t ha−1) biomass (%)

PHMP 45.94 22.19 2.17 24.36 34.65

PPP 24.47 19.78 2.96 22.74 48.17

PP 20.82 60.71 1.45 62.16 74.91

PAMK 35.55 13.23 1.33 14.55 29.05

PGM 37.85 25.65 1.89 27.54 42.11

PAKK 48.68 29.68 7.18 36.86 43.09

PHO 25.24 4.28 1.50 5.78 18.64

BPM 24.52 6.83 1.19 8.03 24.66

aData were cited from Huang (2014) and Yang (2016). The aboveground biomass includes leaves, branches and culm. PHMP, Phyllostachys heterocycla (Carr.) Mitford
‘Pubescens’; PPP, Phyllostachys praecox C. D. Chu ‘Prevernalis’; PP, Phyllostachys prominens W. Y. Xiong; PAMK, Pseudosasa amabilis (McClure) Keng f; PGM,
Phyllostachys glauca McClure; PAKK, Pleioblastus amarus (Keng) Keng f; PHO, Phyllostachys heteroclada Oliver; BPM, Bambusa piscatorum McClure.

The concentration of Si and phytolith in the belowground
trunk ranged from 2.30 g kg−1 for PPP (Phyllostachys praecox
C. D. Chu‘Prevernalis’) to 14.07 g kg−1 for PHO, and from
5.88 g kg−1 for BPM to 14.95 g kg−1 for PHO, respectively.
The C concentration in phytolith in the rhizome were generally
higher than those in the belowground trunk, and both of them
varied greatly among the bamboo species. The C concentration in
phytolith was highest in PPP (179.99 g kg−1), and lowest in BPM
(23.44 g kg−1). The concentration of PhytOC in dry biomass
was also significantly higher in PPP (0.94 g kg−1) than the other
bamboo species, followed by PHO (0.61 g kg−1) and was lowest
in PP (0.10 g kg−1).

Estimation of PhytOC Stock of Bamboo
in Belowground Biomass
The PhytOC stocks in the rhizome and belowground trunk varied
among the bamboo species with the range of 2.30–23.58 and
0.13–3.73 kg ha−1, respectively (Table 4). The PhytOC stocks
in the rhizome of PP were almost 10 times higher than those
in the rhizome of PHO and BPM. The PhytOC stocks in the
rhizome were much higher than those in the belowground trunk,
accounting for more than 80% of the total belowground biomass
across the eight species with the exception of PHO (69.48%).
The PhytOC stocks in the aboveground and belowground
biomass ranged from 13.00 to 90.36 kg ha−1 and from 2.57 to

TABLE 3 | The concentrations of Si and phytolith, C concentration in phytolith and PhytOC/dry biomass in the belowground trunk and rhizome of eight monopodial
bamboo species.

Organ Bamboo Si Phytolith C concentration in phytolith PhytOC/dry biomass

species (g·kg−1) (g·kg−1) (g·kg−1) (g·kg−1)

Rhizome PHMP 8.43 ± 3.53b 14.69 ± 3.12bc 80.42 ± 16.87a 0.83 ± 0.38a

PPP 14.51 ± 2.47ab 34.93 ± 7.39a 32.27 ± 19.17b 0.83 ± 0.54a

PP 10.58 ± 5.83b 24.53 ± 9.55ab 28.33 ± 2.52b 0.38 ± 0.06a

PAMK 16.16 ± 9.17ab 19.78 ± 3.96bc 34.63 ± 27.20b 0.67 ± 0.43a

PGM 21.05 ± 15.00a 35.44 ± 17.84a 23.20 ± 19.70b 0.66 ± 0.50a

PAKK 10.47 ± 3.93b 11.20 ± 5.33c 32.14 ± 2.75b 0.58 ± 0.08a

PHO 10.70 ± 2.90ab 20.61 ± 5.57bc 23.94 ± 18.32b 0.53 ± 0.34a

RMBPM 13.90 ± 4.69ab 34.74 ± 9.77a 11.02 ± 2.21b 0.34 ± 0.04a

Belowground trunk PHMP 4.88 ± 3.75bc 10.82 ± 0.78ab 57.25 ± 23.53bcd 0.31 ± 0.05bcd

PPP 2.30 ± 0.60c 10.68 ± 1.58ab 179.99 ± 40.04a 0.94 ± 0.53a

PP 3.87 ± 1.03bc 6.13 ± 0.66c 77.71 ± 67.83bcd 0.10 ± 0.02d

PAMK 5.62 ± 2.25b 11.95 ± 4.57ab 38.51 ± 35.06cd 0.19 ± 0.08d

PGM 5.12 ± 1.23bc 9.91 ± 5.45bc 138.58 ± 139.21ab 0.25 ± 0.04cd

PAKK 6.89 ± 1.70b 9.10 ± 3.46bc 132.66 ± 82.84abc 0.54 ± 0.16bc

PHO 14.07 ± 3.67a 14.95 ± 2.79a 40.73 ± 18.44cd 0.61 ± 0.13b

RMBPM 5.05 ± 1.34bc 5.88 ± 1.19c 23.44 ± 5.57d 0.21 ± 0.06d

Values are means± standard error of four replicates. Means followed by different letters within a column are significantly different at the p < 0.05 level. PHMP, Phyllostachys
heterocycla (Carr.) Mitford ‘Pubescens’; PPP, Phyllostachys praecox C. D. Chu ‘Prevernalis’; PP, Phyllostachys prominens W. Y. Xiong; PAMK, Pseudosasa amabilis
(McClure) Keng f; PGM, Phyllostachys glauca McClure; PAKK, Pleioblastus amarus (Keng) Keng f; PHO, Phyllostachys heteroclada Oliver; BPM, Bambusa piscatorum
McClure.
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23.71 kg ha−1 among the studied bamboo species, respectively.
The PhytOC stocks in the belowground biomass accounted for
5.55–56.76% of the total PhytOC stocks of plant biomass among
the eight species, with a mean of higher than 23.36%. The highest
proportion was in PPP (56.76%), followed by PP (37.80%). The
proportion of PHO and BPM was lowest, with a mean of 7.73
and 5.55%, respectively. According to the distribution area of the
bamboo, the total PhytOC stock belowground of the eight species
was 9.14× 104 t, to which 94.84% was contributed by PHMP.

DISCUSSION

The present study showed that the phytolith and PhytOC
concentrations in belowground trunk and rhizome differed
greatly between bamboo species. Our results were partly similar
to the findings by Yang et al. (2015), who found that the phytolith
and PhytOC concentrations vary across leaf, branch and culm,
and also between bamboo species. However, in comparison
with the range of phytolith and PhytOC concentrations in
aboveground biomass found by Yang et al. (2015), the quantity
of PhytOC in the rhizome and belowground trunk in our
study was much smaller. Our study suggested that the PhytOC
production capacities of different bamboo species and different
organs of the same species vary substantially, which may be
ascribed to differences in both physiological properties and the
environments. Several studies suggested that the variation of
PhytOC concentration in plant depends on the contents of
phytolith and C concentration in phytolith, both of which are
related to the plant absorption capacities of Si (Ding et al.,
2008; Parr et al., 2010). It is well-known that although Si can
be taken up by plant roots in the form of Si(OH)4 (Gong et al.,
2004; Ranganathan et al., 2006), the ability of transpiration for
Si varies in bamboos of different species and within different
organs (Leng et al., 2009; Li et al., 2014a; Yang et al., 2015). In
addition, phylogenetic type, climate, soil, and the efficiency of C
encapsulation by the silica are also important factors influencing
the absorption and transpiration of Si (Song et al., 2013; Li
et al., 2014a,b; Zhang et al., 2017). Among these factors, soil
conditions such as water and pH could not only influence the
accumulation of soil phytoliths by affecting the stability of soil
phytoliths, but also influence plant Si uptake from soil solution
by affecting the bioavailability of Si in soils (Parr and Sullivan,
2005; Li et al., 2014c; Yang et al., 2018). For example, plants in
soils with low pH and high organic matter are reported to take
up and accumulate more Si, and consequently higher PhytOC
accumulation (Song et al., 2012b). Liu et al. (2017) found that the
contents of Si and PhytOC in the Moso bamboo leaves differed
between soils derived from different parent rocks. Similarly, Li
et al. (2014c) observed that variation of bioavailable Si of soils
developed on different parent rocks could lead to the differences
in Si absorption from soil solution and phytolith accumulation
in bamboo leaves. Nevertheless, we acknowledge that it is a
limitation of our study that the soil properties were not examined,
and the mechanisms of Si absorption and phytolith accumulation
in belowground trunk and rhizome of bamboo deserves more
studies.
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In previous studies, the potential of phytolith C bio-
sequestration has been largely assessed based on the above- rather
than belowground biomass across both agriculture, grassland
and forestry ecosystems (Parr et al., 2010; Song et al., 2012b;
Li et al., 2013; Ru et al., 2018). One of the important reasons
is that the belowground biomass including shoot stumps and
roots is usually smaller than the aboveground especially for
some Si-accumulator plants, such as sugarcane, rice, and wheat.
Another key reason is that some researchers believed that only the
aboveground biomass, such as leaves and sheath, can accumulate
phytoliths and have high PhytOC concentration (Parr and
Sullivan, 2005; Parr et al., 2009; Song et al., 2012b), leading
to the potential of belowground C sequestration by phytoliths
being overlooked. Our study showed that the belowground trunk
and rhizome of bamboo accounted for an average of 39.41%
of the total plant biomass, while the belowground material
of PP contributed 74.91% of the total weight. These results
are consistent with the findings of Wang et al. (2013). The
PhytOC stock in the belowground biomass of eight monopodial
bamboo species ranged from 2.57 to 23.71 kg ha−1, which was
comparable to those in the aboveground of grassland (1.64 to
10.36 kg ha−1) (Song et al., 2012a), wetland (0.82 to 21 kg
ha−1) (Li et al., 2013) and wheat (1.64 to 10.36 kg ha−1) (Parr
and Sullivan, 2011). The PhytOC stock in the belowground
biomass of PPP (Phyllostachys praecox C. D. Chu ‘Prevernalis’)
was even larger than that in its aboveground biomass. These
observations suggested that though the PhytOC concentrations
in belowground biomass were relatively smaller than those in the
leaves or branches of bamboo or in other plants, the large total
belowground biomass per hectare of the monopodial bamboo
could contribute greatly to the PhytOC stock in belowground.
In contrast, the PhytOC stock in the belowground biomass of
bamboo species was much lower than that in the aboveground
of sugarcane (32.73 to 98.18 kg ha−1) (Parr et al., 2009), which
could be explained by the higher phytolith accumulation ability
and greater biomass of aboveground per unit area of sugarcane
compared to monopodial bamboo (Tu, 2011). Qi et al. (2017)
observed that the PhytOC stock in belowground biomass was
about 40 times of that in aboveground biomass in a typical steppe
grassland due to the greater belowground PhytOC content and
net primary productivity. In agreement, our study for the first
time showed that the PhytOC stock in belowground biomass
makes up an average of 23.36% of the total PhytOC stocks of plant
biomass among the eight bamboo species, though the percentage
value was much smaller than that reported by Qi et al. (2017).
Taking the mean value (14.60 kg·ha−1) of PhytOC stock in
belowground biomass across the eight species and China’s current

monopodial bamboo area of 5.85× 106 ha, we estimated that the
belowground PhytOC stock of monopodial bamboo is 1.01× 105

t, and approximately 3.69 × 105 t CO2 would be sequestered in
belowground phytoliths of Chinese monopodial bamboo forests.
According to Huang et al. (2014) and Yang et al. (2015) who
estimated that the total aboveground PhytOC stock of the eight
species was 4.27 × 105 t, this study further showed that the total
belowground PhytOC stock of the eight species was 9.14× 104 t,
accounting for 21.38% of the whole plant PhytOC stock in China.
Our study provides an important finding that the belowground
biomass of bamboo is a large PhytOC stock that should be
taken into account when estimating the potential of PhytOC
sequestration of the whole bamboo biomass accurately in future
studies. Therefore, the findings here supported our hypothesis
that the bamboo species differ greatly in PhytOC concentrations
in their belowground biomass and between species, and that the
belowground parts make a significant contribution to the total
PhytOC sequestration of bamboo plants.

CONCLUSION

Our study reveals that the PhytOC concentration in the
belowground trunk and rhizome varied among the studied
bamboo species. The PhytOC stock in belowground biomass
makes up an average of 23.36% of the total PhytOC stocks of
plant biomass among the eight bamboo species. Based on our
results, approximately 3.69 × 105 t CO2 would be sequestered in
belowground phytoliths of Chinese monopodial bamboo forests,
suggesting that the belowground biomass of bamboo represent
a great PhytOC stock, and should not be overlooked in future
studies in order to better quantify the PhytOC sequestration
capacity.
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Phytolith-occluded carbon (PhytOC) can be preserved in soils or sediments for
thousands of years and might be a promising potential mechanism for long-term
terrestrial carbon (C) sequestration. As the principal pathway for the return of organic
matters to soils, the forest litter layers make a considerable contribution to terrestrial
C sequestration. Although previous studies have estimated the phytolith production
fluxes in the above-ground vegetations of various terrestrial ecosystems, the storages of
phytoliths and PhytOC in litter layers have not been thoroughly investigated, especially in
forest ecosystems. Using analytical data of silica, phytoliths, return fluxes and storages
of forest litter, this study estimated the phytolith and PhytOC storages in litter layers
in different forest types in southern China. The results indicated that the total phytolith
storage in forest litter layers in southern China was 24.34± 8.72 Tg. Among the different
forest types, the phytolith storage in bamboo forest litter layers (15.40 ± 3.40 Tg) was
much higher than that in other forests. At the same time, the total PhytOC storage
reached up to 2.68 ± 0.96 Tg CO2 in forest litter layers in southern China, of which
approximately 60% was contributed by bamboo forest litter layers. Based on the current
litter turnover time of different forest types in southern China, a total of 1.01 ± 0.32 Tg
of PhytOC per year would be released into soil profiles as a stable C pool during litter
decomposition, which would make an important contribution to the global terrestrial
long-term biogeochemical C sink. Therefore, the important role of PhytOC storage in
forest litter layers should be taken into account in evaluating long-term forest C budgets.

Keywords: forest litter layer, phytolith, phytolith-occluded carbon, carbon sequestration, forest carbon budget

INTRODUCTION

Global warming, as one of the major challenges facing human survival and development, is mainly
caused by the rapid increases in greenhouse gas (e.g., CO2) concentrations in the atmosphere
(IPCC, 2013; Fang et al., 2018). Terrestrial biogeochemical carbon (C) sequestration counteracts
about 30% of the total anthropogenic CO2 emissions to the atmosphere, and thus plays a
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crucial role in mitigating long-term climate warming
(Law and Harmon, 2011). Currently, one of the most
promising mechanisms of terrestrial biogeochemical
C sequestration is C occlusion within phytoliths
(phytolith-occluded carbon, PhytOC), which has
drawn the attention of many researchers (Parr and
Sullivan, 2005; Zuo and Lü, 2011; Song et al., 2012b;
Li et al., 2013).

Phytoliths, also called plant stones or plant opal, are the
silicified features of plants and mainly take the shapes of
plant cell walls, cell lumens and the intercellular spaces of
the cortex (Piperno, 1988; Parr and Sullivan, 2011). Generally,
silicon (Si) in the soil solution is taken up by plant roots in
the form of Si(OH)4 or Si(OH)3O−, then transported with
the transpiration stream and finally deposited as phytoliths
or nanostructures of silica bodies (Ma, 2003; Neumann,
2003). Compared with nanostructures of silica bodies, the
size of phytoliths mainly ranges from 5 to 250 µm and
phytolith morphotypes generally vary with plant species, which
makes them more stable due to their microscale internal
cavities (Piperno, 1988; Strömberg, 2004; Lu et al., 2007;
Song et al., 2016). Phytolith contents depend not only on
plant phylogeny (Hodson et al., 2005), but also on the
type of plant tissues and the soil Si availability (Van Soest,
2006; Henriet et al., 2008; Li et al., 2013; Yang X.M.
et al., 2015). As phytoliths consist mainly (66–91%) of silica
(SiO2) and show a positive correlation with Si content in
plant (Li B.L. et al., 2014), the phytolith content can be
estimated directly or indirectly from plant Si content (Hodson
et al., 2008; Parr et al., 2010; Song et al., 2012a, 2013;
Anala and Nambisan, 2015).

During the formation of phytoliths, between 0.2 and 5.8%
of organic C can be occluded within the phytoliths (Bartoli
and Wilding, 1980; Parr et al., 2010; Santos et al., 2010; Li
et al., 2013). Relative to other organic C fractions, PhytOC
is stable and can persist in the soils at a millennial scale
due to the strong resistance of phytoliths to decomposition
(Wilding, 1967; Parr and Sullivan, 2005; Zuo et al., 2014). For
example, Zhang et al. (2017) have estimated that soil phytolith
turnover time in the subtropical and tropical areas ranged
from 433 to 1018 years. Previous studies indicated that the
PhytOC accumulation rate in tropics and subtropics was 7.2–
8.8 kg ha−1 yr−1, which contributed to nearly 37% of the
global mean long-term soil organic carbon accumulation rate
(Parr and Sullivan, 2005). In addition, the average turnover
time of soil phytoliths ranged from 200 years to longer than
1000 years for most terrestrial ecosystems (Borrelli et al.,
2010; Parr et al., 2010; White et al., 2012). Although a
fraction of phytoliths may be dissolved, many studies have
demonstrated that most phytoliths are stable and could be
conserved for hundreds of years. Thus, the potential of phytoliths
for the long-term terrestrial biogeochemical sequestration of
atmospheric CO2 is quite considerable (Parr et al., 2010;
Song et al., 2012b).

In global terrestrial ecosystems, approximately 50–90% of the
total annual C flux occurs between forests and the atmosphere
(Bonan, 2008; Beer et al., 2010), indicating a significant

contribution of forests to the terrestrial biogeochemical C cycle
(Fang et al., 2002). In China, the area of forest is approximately
2.08 × 108 ha according to the Eighth National Inventory
of Forest Resources (Shen et al., 2017; Fang et al., 2018).
In terms of geographical distribution, more than 35% of the
forest resources in China are distributed in southern region.
Previous studies have focused mainly on the production fluxes
of phytoliths or PhytOC in above-ground vegetation of various
forest types. For example, Song et al. (2013) indicated that
the phytolith C sequestration in the above-ground vegetation
in China’s forest was about 1.7 Tg CO2 yr−1, approximately
30% of which was attributed to bamboo due to its high
PhytOC production. Li B.L. et al. (2014) indicated that the
phytolith C sequestration by bamboo in China was equivalent
to 0.29 Tg CO2 yr−1, approximately 75, 3, and 22% of
which was contributed by scattered, mixed and clustered
bamboo communities, respectively. However, the contributions
of phytoliths and PhytOC in forest litter layers as C storages have
not been studied in depth.

As a principal pathway for the return of organic matter
to soils, litter layers represent significant C stocks and have
a distinct influence on the C dynamics in forest ecosystems
(Harmon et al., 1986). Therefore, estimating the phytolith and
PhytOC storages in forest litter layers at a regional scale is very
essential and would play a significant role in predicting the
future evolution of forest C storages under different climatic
conditions. In the forests of southern China, previous studies
have investigated litter and its C storages in the forest litter
layer (Cornwell et al., 2010; Shen et al., 2017; Zhu et al., 2017).
However, the extent of the PhytOC storages in forest litter
layers and its distribution among different forest types remain
unknown, although a few local-scale studies have estimated
PhytOC storage in the litter layers (He et al., 2016; Xiang
et al., 2016; Ying et al., 2016). In this study, we used data on
silica, phytoliths, and forest litter return flux and storage in
forests of southern China to estimate the phytolith and PhytOC
storages in litter layers in different forest types in southern
China, aiming to provide a reference for a future re-evaluation
of forest C budgets.

MATERIALS AND METHODS

General Characteristics of the Forest
Types in Southern China
In southern China, forests are categorized into six
types, according to the principles of Chinese vegetation
regionalization (Fang et al., 2002). They are subtropical and
tropical coniferous forest (STC), subtropical coniferous and
broadleaf mixed forest (SCB), subtropical evergreen and
deciduous broadleaf forest (SEDB); subtropical evergreen
broadleaf forest (SEB), subtropical and tropical bamboo
forest (STB), and tropical monsoon forest (TM) (Table 1).
Across the six types of forest, the mean annual temperature
(MAT) varies from 2 to 25◦C, and the mean annual
precipitation (MAP) ranges from 500 to 2000 mm. The
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TABLE 1 | Properties of dominant forest types in southern China.

Forest type Area (106 ha) Altitude (m) MAT (◦C) MAP (mm) Main tree species composition

STC 29.54 300–800 8–20 800–1600 Pinus massoniana, Pinus yunnanensis, Pinus armandii, Cunninghamia
lanceolata, Cryptomeria fortunei, Cupressus funebris, Keteleeria
fortunei, Amygdalus davidiana, Cathaya argyrophylla, Pinus latteri,
Pinus fenzeri-ana

SCB 4.68 2500–3000 2–14 500–1600 Tsuga longibracteata, Juniperus chinensis, Larix griffithiana, Tilia
amurensis, Abies faxoniana

SEDB 12.48 1000–2200 16–20 800–1600 Pteroceltis tartarinowii, Sapium sebiferum, Sapium rotundifolia,
Liquidambar formosana, Cyclobalanopsis glauca, Cinnamomum
calcarea, Fagus longipetiolata, Manglietia chingii

SEB 21.37 ≤2500 15–21 750–2000 Cyclobalanopsis glauca, Cyclobalanopsis glaucoides, Cyclobalanopsis
gracilis, Castanopsis eyrei, Liquidambar formosana, Castanopsis
ceratacantha, Liquidambar formosana, Platycarya strobilacea

STB 7.2 400–800 15–20 1200–1800 Phyllostachys pubescens, Phyllostachys sulphurea, Phyllostachys
bambusoides, Phyllostachys propinqua, Shibataea kumasasa, Sasa
argenteastriatus, Dendrocalamopsis oldhami

TM 0.95 500–700 20–25 1600–2000 Ostodes paniculatus, Cinnamomum calcarea, Tarrietia parvifolia, Albizia
chinensis, Cryptocarya chinensis, Liquidambar formosana, Musa
basjoo, Hevea brasiliensis

STC, subtropical and tropical coniferous forest; SCB, subtropical coniferous and broad-leaf mixed forest; SEDB, subtropical evergreen and deciduous broad-leaf forest;
SEB, subtropical evergreen broad-leaf forest; STB, subtropical and tropical bamboo forest; TM, tropical monsoon forest.

main species composition of each forest type in this study are
shown in Table 1.

Phytolith Content–Silica Content
Transfer Function and Phytolith Content
Estimation
The data for SiO2 content of mature leaves across different
tree species in southern China were collected from published
monographs (Hou, 1982; Chen et al., 1997; Song et al., 2013)
and theses (He et al., 2016; Ying et al., 2016). To calculate
SiO2 content in forest litter, we constructed a transfer function
(Eq. 1) between SiO2 content in mature leaves and in forest
litter by a regression analysis method (Figure 1), based on the

FIGURE 1 | The correlation of SiO2 contents in mature leaves and litter layer
of different forest types.

combined data for SiO2 content in the two pools from previous
studies (Yang J. et al., 2015; He et al., 2016; Xiang et al., 2016;
Ying et al., 2016).

SiO2 content in forest litter (wt. %) = 1.211 × SiO2 content in
mature leaves (wt. %)

(R2
= 0.8979, p < 0.01) (1)

As phytoliths consist mainly of SiO2 and the phytolith content
in litter leaf is generally significantly positively correlated with
SiO2 content of the leaf litter (Parr and Sullivan, 2005; Song et al.,
2012a, 2013), phytolith content of different forest litter layers
can be estimated based on the phytolith content-SiO2 content
transfer function of the samples published in the paper by Song
et al. (2013), as follows:

Phytolith content (wt. %) = 0.953× silica content (wt. %)

(R2
= 0.96, p < 0.01) (2)

Estimation of Phytolith and Return
Fluxes and PhytOC Storages in Litter
Layers From Different Forest Types
When plants or plant parts die and decay, phytoliths formed
in plant tissues can return to the forest floor, along with
litter, maintaining their morphological integrity and their
chemical characteristics (Strömberg, 2004; McInerney et al.,
2011). Therefore, phytolith return flux of litter layers in different
forest types can be estimated based on the data of phytolith
content and the return flux of forest litter:

phytolith return flux = litter return flux × phytolith content
(3)

where phytolith return flux is the weight of phytoliths returned to
the floor in a given forest type per area per year (kg ha−1 yr−1),
phytolith content is the content of phytolith in the unit mass of
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forest litter (wt. %), and litter return flux is the net return flux of
forest litter in per area per year (kg ha−1 yr−1).

Phytolith-occluded carbon content is the organic C content
occluded within phytoliths. When the organic materials wrapped
on the surface of phytoliths are completely removed and the
phytoliths remain intact, the values of PhytOC content are
precise. Previous studies indicated that PhytOC content ranges
from less than 0.1% to up to 10%, but mainly from 0.2 to 5.8%
(Jones and Handreck, 1965; Parr and Sullivan, 2005; Santos et al.,
2012; Song et al., 2016). Therefore, in this study, we used a median
PhytOC concentration in phytoliths (3%) to estimate the PhytOC
storages in different forest litter layers. The PhytOC storages in
different forest litter layers were calculated based on the values
for litter storage per unit area, phytolith content, PhytOC content
and forest area as follows:

PhytOC storage = litter storage per area × phytolith

content × PhytOC content × forest area × [44/12] (4)

where PhytOC storage is the total PhytOC amount in each forest
litter layer (Tg CO2), litter storage per area is the storage of litter
in per area of different forest floors (t ha−1), phytolith content
is the content of phytolith in different forest litter layers and can
be estimated by Eq. 2 (wt. %), and forest area is the area of each
forest type in southern China (106 ha). The equation is multiplied
by [44/12] to transform the data from ‘Tg C’ to ‘Tg CO2.’

RESULTS

Phytolith Concentration in Different
Forest Litter Layers
There was a distinct difference in litter SiO2 concentration
among various plant species (Table 2). Phytolith concentration
in forest litters ranged from 0.64 to 203.37 g kg−1 across all
the different plant species. At the same time, the phytolith
concentration of forest litter layers also varied greatly among
the different forest types (2.45–148.54 g kg−1). Generally,
the phytolith concentration of forest litter layers in STB
was 148.54 ± 32.77 g kg−1, which was the highest among
all forest type. In SEDB, SEB, and TM, the phytolith
concentration of forest litter layers was 24.54 ± 16.34 g
kg−1, 17.18 ± 9.49 g kg−1 and 20.14 ± 14.56 g kg−1,
respectively, which were moderate values among the various
forest types. The lowest phytolith concentration of forest litter
layers were found in STC (2.45 ± 1.21 g kg−1) and SCB
(4.29± 2.30 g kg−1).

The Phytolith Return Fluxes and PhytOC
Storages of Forest Litter Layers in
Southern China
The phytolith return fluxes through forest litter were significantly
different among the different types of forest (Table 3). Generally,
the mean ± SD phytolith return flux for the six types of forest
in southern China was 168.73 ± 58.67 kg ha−1 yr−1. Phytolith
return flux was the highest in STB (484.25 ± 106.93 kg ha−1

TABLE 2 | SiO2 and phytolith contents in litter of dominant tree species from six
forest types in southern China.

Forest
types

Species SiO2 content
in litter (g

kg−1)

Phytolith
content in

litter (g kg−1)

STC Pinus massoniana 1.96 1.87

Pinus yunnanensis 0.67 0.64

Pinus armandii 3.35 3.19

Cunninghamia lanceolata 2.45 2.34

Keteleeria evelyniana 1.57 1.50

Cupressus funebris 2.44 2.33

Cupressus duclouxiana 3.27 3.12

Juniperus formosana 4.84 4.62

Average 2.57 ± 1.27 2.45 ± 1.21

SCB Larix griffithiana 8.24 7.85

Tilia amurensis 6.10 5.82

Lonicera maximowiczii 6.10 5.82

Picea purpurea 2.30 2.19

Abies faxoniana 2.97 2.83

Abies spectabilis 1.57 1.50

Tsuga chinensis 4.24 4.04

Average 4.50 ± 2.41 4.29 ± 2.30

SEDB Pteroceltis tartarinowii 48.87 46.57

Celtis sinensis 49.41 47.09

Sapium sebiferum 62.98 60.02

Sapium rotundifolia 15.99 15.24

Liquidambar formosana 26.04 24.82

Quercus fabri 18.41 17.54

Cyclobalanopsis glauca 16.92 16.13

Cinnamomum calcarea 21.01 20.03

Platycarya strobilacea 8.69 8.28

Acer negundo 17.56 16.74

Fagus longipetiolata 18.17 17.31

Acer sinense 24.34 23.20

Manglietia chingii 6.30 6.00

Average 25.75 ± 17.14 24.54 ± 16.34

SEB Cyclobalanopsis glauca 25.34 24.15

Cyclobalanopsis glaucoides 23.74 22.62

Cyclobalanopsis gracilis 16.96 16.16

Castanopsis eyrei 9.83 9.37

Liquidambar formosana 37.79 36.01

Castanopsis carlesii 11.84 11.28

Castanopsis fargesii 7.51 7.16

Castanopsis fabri 14.17 13.50

Castanopsis hystrix 9.59 9.14

Castanopsis ceratacantha 12.39 11.81

Castanopsis hystrix 20.35 19.39

Quercus fabri 18.03 17.18

Liquidambar formosana 39.67 37.81

Schima wallichii 8.36 7.96

Platycarya strobilacea 14.90 14.20

Average 18.03 ± 9.96 17.18 ± 9.49

STB Phyllostachys pubescens 113.36 108.03

Phyllostachys vivax McClure 111.54 106.30

Phyllostachys. parvifolia 119.17 113.57

Phyllostachys aureosulcata 136.25 129.85

(Continued)
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TABLE 2 | Continued

Forest
types

Species SiO2 content
in litter (g

kg−1)

Phytolith
content in

litter (g kg−1)

Phyllostachys bambusoides 126.80 120.84

Phyllostachys bambusoides 154.42 147.16

Phyllostachys heterocycla 110.70 105.49

Phyllostachys propinqua 153.08 145.89

Sinobambusa tootsik 177.06 168.74

Shibataea kumasasa 143.64 136.89

Pseudosasa japonica 136.98 130.54

Pleioblastus kongosanensis 213.40 203.37

Sasa auricoma 207.95 198.17

Sasa argenteastriatus 149.81 142.77

Bambusa multiplex 175.85 167.59

Dendrocalamus latifloru 206.61 196.90

Bambusa tuldoides 178.27 169.90

Dendrocalamopsis oldhami 190.75 181.78

Average 155.87 ± 34.39 148.54 ± 32.77

TM Ostodes paniculatus 35.24 33.59

Cinnamomum calcarea 23.37 22.28

Tarrietia parvifolia 4.36 4.16

Albizia chinensis 7.09 6.75

Cryptocarya hainanensis Merr 34.96 33.32

Liquidambar formosana 20.71 19.74

Musa basjoo 41.16 39.23

Hevea brasiliensis 2.21 2.10

Average 21.14 ± 15.28 20.14 ± 14.56

SiO2 contents in forest litter layer are estimated from silica contents of mature
leaves using forest silica content transfer function between silica content in litter
layer and mature leaves of Eq. 1. At the same time, phytolith contents in forest litter
layer are estimated base on forest phytolith content-silica content transfer function
of Eq. 2 from Song et al. (2013).

yr−1), moderate in SEDB (154.35 ± 102.94 kg ha−1 yr−1), SEB
(145.34 ± 80.28 kg ha−1 yr−1) and TM (183.31 ± 132.86 kg
ha−1 yr−1), and lowest in STC (9.94 ± 4.97 kg ha−1 yr−1) and
SCB (35.17 ± 18.81 kg ha−1 yr−1) (Table 3). Furthermore, the
total PhytOC storage in forest litter layer in southern China was
2.68 ± 0.96 Tg CO2. Similarly, PhytOC storage was the highest
in STBF (1.69 ± 0.37 Tg CO2), which contributed to more than
60% of the total PhytOC storage in forests in southern China,
followed by SEDB (0.38± 0.26 Tg CO2) and SEB (0.49± 0.27 Tg

FIGURE 2 | PhytOC storages of forest litter layers in different forest types.

CO2), with the lowest being STC (0.07 ± 0.03 Tg CO2), SCB
(0.03± 0.01 Tg CO2), and TM (0.02± 0.01 Tg CO2) (Figure 2).

DISCUSSION

Impact of Different Factors on Phytolith
Content in Forest Litter Layers
Previous studies have demonstrated that phytolith contents
ranged from less than 0.5% in most dicotyledons to more than
15% in some Gramineae, such as bamboo (Epstein, 1994; Hodson
et al., 2005; Seyfferth et al., 2013). When plants or plant parts
die and decay, phytoliths present in terrestrial plants can be
returned to the forest floors in the litters. In this study, the
phytolith concentration in forest litter layers varied significantly
among different forest types (2.45–148.54 g kg−1), due mainly to
differences in phytolith return flux, litter decomposition rate and
phytolith stability (Parr et al., 2010; Song et al., 2012b, 2016).

Phytolith return fluxes showed significant differences among
different forest types (p < 0.05), which was due to different
litter return fluxes or to different phytolith contents in the
litter (Song et al., 2013; Yang X.M. et al., 2015; Table 3). For
example, phytolith return flux in the bamboo-dominated STB
(484.25 ± 106.93 kg ha−1 yr−1) was significantly higher than

TABLE 3 | Phytolith return fluxes of forest litter layer in different forest types.

Forest type Litter return flux† (t ha−1 yr−1) Litter storage† (t ha−1) Phytolith return flux (kg ha−1 yr−1) Litter turnover time (yr)

STC 4.14 ± 0.21 8.92 ± 1.80 9.94 ± 4.97 2.15 ± 0.43

SCB 8.18 ± 0.34 11.65 ± 2.15 35.17 ± 18.81 1.42 ± 0.26

SEDB 6.30 ± 0.88 11.40 ± 0.97 154.35 ± 102.94 1.81 ± 0.15

SEB 8.45 ± 1.18 12.04 ± 3.60 145.34 ± 80.28 1.42 ± 0.43

STB 3.26 ± 0.49 14.40 ± 2.41 484.25 ± 106.93 4.42 ± 0.74

TM 9.10 ± 0.28 8.17 ± 0.05 183.31 ± 132.86 0.90 ± 0.01

†The data of litter return fluxes and storages in different forest types are from Chen et al. (1997); Peng and Liu (2002), Guan et al. (2004); Lu et al. (2012), Guo et al.
(2015); Jia et al. (2016), Ying et al. (2016), and Liu et al. (2017, 2018).
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that in other forest types (p < 0.05). Song et al. (2013) estimated
the phytolith contents in China’s forests using the biogenic
silica content-phytolith content transfer function and the results
indicated that phytolith concentration in different forests in
China ranged from 0.5 to 124.5 g kg−1 with the average phytolith
concentration in STB (105.2 g kg−1) being between four and
fifty times higher than that in other forest types (Song et al.,
2013). This reflects the high Si content of bamboos. A recent
study also indicated that the plant species composition of each
forest significantly influenced the production and accumulation
of phytoliths (Yang et al., 2018). In this study, the plant species
compositions of the six types of forest were distinctly different
(Table 1), which would be a major cause of their differences in
phytolith return flux among different forest litter layers. From our
investigation, there were distinct differences between the litter
return fluxes in various forest types in southern China (Table 3),
a variable which also plays a significant role in phytolith return
flux (He et al., 2016; Ying et al., 2016).

Phytoliths accumulated in forest litter layers could be
released into soil profiles by litter decomposition, which has
an impact on the phytolith content of the forest litter layer.
Therefore, litter decomposition rate is another factor influencing
phytolith content in forest litter layers. The drivers of litter
decomposition rate are multiple, including the effects of
environment, composition of the decomposer communities, and
the substrate characteristics of the forest litter (Cornelissen,
1996; Aerts, 1997; Cornwell et al., 2010). Previous studies have
shown that the decomposition rate of forest litter can vary under
different temperature and moisture conditions, as a result of
changes in decomposer community composition and biological
activities (Waltman and Ciolkosz, 1995; Liski et al., 2010). In
this study, climatic conditions in the different forest types show
distinct differences (Table 1), probably contributing to different
decomposition rates. Furthermore, the main plant species
composition of different forest types under various climate
conditions in southern China show fundamental differences
(Tables 1, 2), which result in different plant species traits.
Previous studies indicated that plant species traits were thought
to be a major factor that determined the litter decomposition
rates (Cornwell et al., 2010; Li Z.M. et al., 2014; Lu et al., 2017).
For example, the nutrient chemistry, stoichiometry and physical
features of the forest litter had marked effects on the activity
and abundance of microbial decomposers (Melillo et al., 1982).
At the same time, differences in the plant species composition
of different forest types in southern China, with their associated
differences in phytolith content (e.g., the phytolith-rich bamboos
dominating the STB) could affect the phytolith content in
different forest litter layers (Song et al., 2013).

Phytolith stability is another factor influencing phytolith
content in the litter layers from different forests. Previous studies
had demonstrated that the phytolith geochemical stability is
mainly controlled by phytolith properties and climatic and
edaphic conditions (e.g., pH, temperature, moisture, etc.) (Iler,
1979; Bartoli and Wilding, 1980; Li Z.M. et al., 2014). For
example, Bartoli (1985) demonstrated that phytoliths from beech
leaves had a lower degree of crystallization and a lower Al content
than those from pine needles, with beech having a much higher

equilibrium concentration of silicic acid (300 µmol Si L−1)
compared to pine (100 µmol Si L−1). Furthermore, previous
studies indicated that phytolith dissolution rate may increase
with soil pH (Fraysse et al., 2006, 2009). Blecker et al. (2006)
estimated the turnover times of soil phytoliths in the Central
Great Plains across the bioclimosequence and found a distinct
correlation of faster turnover with MAP increasing. In addition,
Song et al. (2017) estimated the phytolith stability factors in
different forest ecosystems based on the phytolith turnover time,
and the results showed that phytolith stability factors in tropical
forest, temperature forest and boreal forest ranged from 0.6 to
0.9 (Song et al., 2017). In this study, marked differences in plant
species compositions and climatic edaphic conditions among the
various forest types contributed to the differences in phytolith
stability in the various forest litter layers. Although the phytolith
contents in litter layers of different forest types are affected by
many factors, such as microbial activity, temperature, moisture
and phytolith stability so on, phytolith contents in different plant
species play the most important role in controlling phytolith
contents in litter layers of different forest types in this study.

PhytOC Storages in Forest Litter Layers
in Southern China
In this study, there were distinct differences in the litter storages
among different forest types due to the differences in stand
composition, MAT, MAP, and altitude of each forest type
(Table 3). Based on the phytolith contents and forest litter
storages in different forest ecosystems, the storages of phytoliths
in the various forest types in southern China were calculated
and the results showed that the total phytolith storages in forest
litter layers in southern China was 24.34 ± 8.71 Tg. Among
the different forest types, the phytolith storage of litter layers in
bamboo forest (15.40 ± 3.40 Tg) was much higher than that
in other forests. Assuming the median concentration of 3% C
occluded during the formation of the phytoliths, the total PhytOC
storage could reach up to 2.68± 0.96 Tg CO2 in forest litter layers
in southern China, approximately 60% of which was contributed
by bamboo forest litter layer but which occupied only 9.5% of
the forest area in this region (Figures 2, 3). Global bamboo forest
areas in 1990s and now are 1.75 × 107 ha and 2.2 × 107 ha,
respectively, and mainly distributed in the subtropical and
tropical regions (Liang, 1990; Zhou et al., 2011; Li B.L. et al.,
2014). Based on the current PhytOC content in the litter layer of
the bamboo-dominated STB and the global bamboo distribution
area in 1990s and now, we calculated that the PhytOC storages
of litter layers in the global bamboo ecosystem in 1990s and now
were 4.12 ± 0.91 Tg CO2 and 5.18 ± 1.14 Tg CO2, respectively.
It is noted that although the forest area in some countries has
obviously decreased, the distribution area of bamboo forest in
the world has increased at a rate of 3% annually over the last
decade and will continue to increase until 2050 due to bamboo
afforestation in forest-priority land (Song et al., 2013; Shen et al.,
2017). Previous studies have indicated that the global bamboo
distribution area will increase from 25 × 106 ha to 100 × 106 ha
by 2050, by which point it will occupy approximately 3% of the
world’s forest, as a result of bamboo afforestation/reforestation
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FIGURE 3 | Proportion of PhytOC storage in litter layers of different forests.

FIGURE 4 | The PhytOC storages of litter layer in the world’s bamboo
ecosystem in 1990s, present, and potential.

in the subtropical and tropical regions of the world (Zhou et al.,
2011; Song et al., 2013). Therefore, based on the rate of increase
(3%) of bamboo forest area in the world, the potential size of
the global phytolith carbon sink in the litter layer of the bamboo
ecosystems would reach up to 13.33 ± 2.94 Tg CO2 by 2050
(Figure 4), indicating that bamboo forest will play an increasingly
important role in regulating atmospheric CO2 sequestration in
the form of the bamboo forest phytolith C sink. Although the
end result (total PhytOC storage in forest litter layers in southern
China) is not fixed and has some uncertainties which are mainly
caused by land use changes, litter storages and PhytOC contents
in various forest litter, our preliminary estimation is reasonable.
In this study, we carefully calculated the minimum, maximum
and mean values of PhytOC storages of forest litter layers in
different forest types. The results will provide a baseline for
evaluating forest carbon budget in the future.

Implications for Evaluation of Forest
Carbon Budget
Phytolith-occluded carbon, as one of the long-term global
biogeochemical C sink mechanisms, has attracted the attention
of many researchers. Although some phytolith particles (<2 µm)
can be quickly dissolved due to their high surface area,
approximately 80% of phytoliths released by litter decomposition
can be preserved in soils or sediments for 400–3000 years due
to their relatively intact surfaces (Parr and Sullivan, 2005; Song
et al., 2016; Yang et al., 2018). For example, Zhang et al. (2017)
have estimated that soil phytolith turnover time in subtropical
and tropical areas ranged from 433 to 1018 years. In the present
study, all of the forest types were natural forests with minimal
human interference. Assuming that the litter storages in the
various forest types have achieved a dynamic balance, the litter
turnover time can be estimated from the litter storage size
and litter return flux. Results showed that the turnover time
in STB (4.42 ± 0.74 years) was the longest, with moderate
rates in STC (2.15 ± 0.43 years), SCB (1.42 ± 0.26 years),
SEDB (1.81 ± 0.15 years), SEB (1.42 ± 0.43 years), and
the shortest rates in TM (0.90 ± 0.01 years), findings which
were consistent with the results of Zhang and Wang (2015).
Based on the litter turnover time and the size of the PhytOC
storage in various forest litter layers, we estimate that a
total of 1.01 ± 0.32 Tg CO2, in the form of long-term
stable organic C components, are released into soil profiles
in per year by litter decomposition in southern China. The
size of the PhytOC storages in STC, SCB, SEDB, SEB, STB,
and TM were estimated to be 0.03 ± 0.02, 0.02 ± 0.01,
0.21 ± 0.01, 0.34 ± 0.19, 0.38 ± 0.08, and 0.02 ± 0.01 Tg
CO2, respectively. Furthermore, several very large national
ecological restoration projects (e.g., Natural Forest Protection
Program, the Desertification Combating Program around Beijing
and Tianjin, the Sloping Land Conversion Program, etc.) have
been implemented to slow climate change and to protect
the global environment (Fang et al., 2018), and results show
that the national forest litter stock has continuously increased
at a steady rate over the past 20 years, mainly due to
the expansion of the forest area (Zhu et al., 2017). This
implies that increasing amounts of PhytOC will be stored in
forest litter layers over the coming decades, while a small
proportion of the phytoliths will be dissolved during the
decomposition process of forest litter. Therefore, our findings
highlight that the PhytOC storage in forest litter layers should
be taken into account in the future in any evaluation of the
forest C budget, which will play an increasingly important
role in the global long-term biogeochemical C sink at a
centennial scale.

CONCLUSION

In this study we mainly estimated the sizes of PhytOC storages
in the litter layers of different forest types in southern China. The
results showed that the PhytOC storage was the highest in STB
(1.69 ± 0.37 Tg CO2), followed by SEDB (0.38 ± 0.26 Tg CO2)
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and SEB (0.49 ± 0.27 Tg CO2), with the smallest storages being
in STC (0.07 ± 0.03 Tg CO2), SCB (0.03 ± 0.01 Tg CO2) and
TM (0.02 ± 0.01 Tg CO2). The total PhytOC storage in forest
litter layers in southern China was estimated to be 2.68± 0.96 Tg
CO2, approximately 60% of which was contributed by bamboo
forest. In addition, the total amount of PhytOC, as a long-term
stable organic C component, released into soil profiles per year
by litter decomposition in southern China was estimated to be
1.01 ± 0.32 Tg CO2. Based on the current PhytOC content in
bamboo litter layers, the potential of the phytolith carbon sink
in the world’s bamboo ecosystem litter layers could reach up
to 13.33 ± 2.94 Tg CO2 in 2050 by practices such as bamboo
afforestation/reforestation in the subtropical and tropical regions
of the world. Thus, the importance of the PhytOC storage in
litter layers of the terrestrial forest ecosystems should be taken
into account when evaluating forest C budgets since it plays

a significant role in long-term C sequestration operating at
centennial-millennial scales.
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The Relative Importance of Cell Wall
and Lumen Phytoliths in Carbon
Sequestration in Soil: A Hypothesis
Martin J. Hodson*
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There has been much interest in the possibility that phytoliths might sequester
substantial amounts of carbon and might continue to do so in soils and sediments
after the death of the plant. This may contribute to mitigating climate change. However,
this idea is controversial and it is unclear how much carbon is sequestered in phytoliths.
High values would suggest that sequestration on a global scale could be significant,
but low values would indicate insignificant sequestration. Different methodologies in
preparing phytoliths give different carbon concentrations. Little interest has been shown
in determining which types of phytoliths are most important for carbon sequestration.
There are two main types of phytolith in plants, the cell wall types which are formed on
a carbohydrate matrix, and the cell lumen types which are not. A literature survey of
transmission and scanning electron microscopy studies to determine which phytoliths
are cell wall phytoliths was carried out. Cell wall silicification was common in most
plant organs and throughout the plant kingdom. Macrohairs, prickle hairs, and the
wall protrusion of papillae are certainly cell wall types. The primary cell walls of many
epidermal cells types are often silicified. Cell wall phytoliths have considerably higher
carbon concentrations than lumen types. An attempt is made to model mixtures of cell
wall and lumen phytoliths, containing different carbon concentrations. Literature data
on carbon and nitrogen concentrations in phytoliths was used to produce C/N ratios.
These showed that cell wall phytoliths had higher C/N ratios than lumen phytoliths,
and that over-extraction of phytolith mixtures removes carbon preferentially from the
cell wall types and leads to low C/N ratios. The dissolution of phytoliths in soils and
sediments is considered, and it is unknown whether cell wall or lumen phytoliths break
down faster. However, it is clear from the literature that cell wall phytoliths persist in
soils and sediments for hundreds or thousands of years. The paper is brought to a
climax with two hypotheses, one to explain what happens to carbon in phytoliths as they
undergo preparatory procedures in the laboratory, and the other looking at dissolution
and breakdown in the soil.
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INTRODUCTION

The sequestration of carbon in soils has now become a topic
of global significance. It is recognized that soils store very
considerable amounts of carbon. If we could find ways of
increasing that storage it might go some way toward stabilizing
atmospheric carbon dioxide concentrations and thereby help in
the fight against climate change. Powlson et al. (2011) pointed
out that carbon sequestration in soil suffered from a number
of constraints. Firstly, the quantity of carbon stored is finite.
Secondly, the process is reversible. Finally soil organic carbon
may be increased, but there may be changes in the fluxes of
nitrous oxide and methane, important greenhouse gasses.

Parr and Sullivan (2005) first suggested the possibility that
phytoliths could play a major part in carbon sequestration in
soils. Their proposition was that so-called phytolith occluded
carbon (PhytOC) might be locked up in phytoliths for centuries
or longer, and not be returned to the atmosphere as quickly
as other components of the soil organic matter. So the idea is
that carbon sequestered as PhytOC would be less labile, and the
reversible nature of sequestration mentioned by Powlson et al.
(2011) would be reduced. In their abstract Parr and Sullivan
wrote, “Estimated PhytOC accumulation rates were between 15
and 37% of the estimated global mean long-term (i.e., on a
millennial scale) soil carbon accumulation rate of 2.4 g C m−2

year−1 indicating that the accumulation of PhytOC within soil is
an important process in the terrestrial sequestration of carbon.”
If true, this would be a highly significant finding that could
have very major implications for our understanding of the global
carbon cycle and for methodologies to reduce global warming.
Parr and Sullivan also suggested that it might be possible to
select plant species that were particularly high in PhytOC to
increase carbon sequestration. Their work stimulated the interest
of researchers around the world, and there are now many
publications on this topic. However, work on PhytOC has not
been without controversy. As, we shall see below this has focused
on methodology, with different methods of preparing phytoliths
for analysis giving different values for PhytOC. Essentially, if
a technique gives a high value for PhytOC then when the
value is entered into the equations for estimating global carbon
sequestration it will suggest that phytoliths are very important
in this process. Conversely, if PhytOC values measured are low
then the calculated sequestration at a global scale will be low.
This has led to a vigorous debate: what is the “real” value of
PhytOC? A related, and even more disputed, area of phytolith
research at the moment is the whole topic of “old carbon” from
the soil being taken up by plants, and deposited in phytoliths,
causing problems in carbon dating. I have covered this area in
two recent reviews (Hodson, 2016, 2018) and do not intend to
look at it again here.

Phytoliths are morphologically diverse (Madella et al., 2005;
Piperno, 2006), but it is becoming increasingly evident that
they are also chemically diverse (Hodson, 2016). Kumar et al.
(2017b) reviewed the various locations where phytoliths were
found in grasses. It appears that silica deposition occurs in all
tissues, including the roots, stems, leaves, inflorescence and seed
(caryopsis), but that it is concentrated in certain organs and

tissues. In the roots, silica is deposited in the endodermis, in
the stems, leaves and inflorescence bracts the main deposition
sites are in the epidermis, and small amounts are deposited in
the seed in brush hairs and other locations. Less work has been
done on species other than grasses and cereals, but in general the
epidermis in leaves is the major location for most silica deposition
(Piperno, 2006). There are three main types of silica deposition
in plants: that where silica is deposited onto a carbohydrate
matrix such as the cell wall; that where silica deposition lacks
an obvious matrix onto which it is deposited, mainly in the
cell lumen; and in intercellular spaces (Hodson, 2016). It does
not appear that deposition in intercellular spaces is important
in the production of recognizable phytoliths that survive once
the plant dies, and so the two main types we need to consider
are those in the cell walls and the cell lumen. I have previously
assessed the evidence that the cell wall and lumen phytoliths have
very different chemistries (Hodson, 2016, 2018). Here, we will
concentrate on carbon within phytoliths. It would be expected
that higher carbon concentrations will be found in cell wall types
that are deposited on a carbohydrate matrix, and the evidence
available suggests that this is the case.

There has been very little consideration of which phytolith
types are the most important for PhytOC and carbon
sequestration. This is, perhaps, surprising given the interest in
this topic. The aim of this paper will be to bring together the
available literature and to assess the relative importance of cell
wall and lumen phytoliths in carbon sequestration. I will then
develop a hypothesis concerning what happens to phytoliths
as they are prepared for analysis and when they enter the
soil environment.

A BRIEF HISTORY OF CARBON
SEQUESTRATION IN PHYTOLITHS

Percentage carbon was first measured in phytoliths by Jones
and Beavers (1963) who found that those isolated from a Cisne
silt loam contained 0.86% carbon. They were also the first to
suggest that carbon was occluded within phytoliths where it
is protected from oxidation. For many years after that, papers
emerged with varying estimates of the concentration of carbon in
phytoliths. Table 1 gives a selection of these publications arranged
in date order. It was widely recognized that different methods
of preparing phytoliths will give different results, but there was
little controversy over this. Usually researchers were using the
same method to investigate carbon concentration in a number
of species or different organs from the same plant, and they
were not comparing their results with other publications that
used different methods. Often measuring percentage carbon was
incidental to the main focus of the investigation with workers
being more interested in carbon dating or carbon isotopes. It
was only after Parr and Sullivan (2005) suggested that PhytOC
might be important in helping to combat climate change that
the controversy really began. It now very much mattered what
concentration of carbon was to be found in phytoliths.

As can be seen in Table 1, in all of the early publications
the preparatory techniques used by those wishing to measure
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TABLE 1 | Selected examples of %C measurements in phytoliths.

Species Plant organ(s) or soil %C Preparation method Authors

Various Soil 0.86 Not given Jones and Beavers, 1963

Various Grassland soil 1.3 Oxidation in cold hydrogen peroxide Wilding, 1967

Various Grassland plants 1.2 Wet ashing followed by boiling in hydrogen peroxide Kelly et al., 1991

Various N. Minnesota sediment 0.1–0.6 Wet ashing followed by warm hydrogen peroxide Mulholland and Prior, 1993

Sugarcane Shoot 3.0 Microwave digestion Parr and Sullivan, 2005

Various Soil 0.032–5.05 Microwave digestion Parr and Sullivan, 2005

Wheat Shoot 1.65 Dry ashing followed by boiling in hydrogen peroxide Hodson et al., 2008

Sugarcane cultivars Shoot 3.88–19.26 Microwave digestion Parr et al., 2009

Grass and soil Shoot and soil < 0.1 Wet ashing (plant material) Santos et al., 2010

Bamboo species Leaves 1.6–4.0 Microwave digestion Parr et al., 2010

Wheat cultivars Leaves and stem 1.3–12.9 Microwave digestion Parr and Sullivan, 2011

Millet species Shoot 0.88–4.78 Wet ashing Zuo and Lü, 2011

Rice cultivars Stem, leaf, sheath, and grains 1.4–3.4 Microwave digestion Li et al., 2013b

Festuca arundinacea Leaves 0.51 Wet ashing Alexandre et al., 2016

Durum wheat and sorghum Leaves Up to 0.3 A variety of wet and dry ashing protocols Reyerson et al., 2016

PhytOC involved either wet ashing or dry ashing, and those
are still the preferred methods for many workers. Essentially,
wet ashing involves digestion of the plant material in strong
acids and/or treatment with strong oxidizing agents such as
hydrogen peroxide. In dry ashing, plant material is heated in
a muffle furnace to a suitable temperature (often around 450–
500◦C), that will burn off the surrounding organic matter without
damaging the phytoliths. The third method, microwave digestion,
was first introduced by Parr et al. (2001). Parr and Sullivan
(2014) compared wet ashing and microwave digestion, preferring
the latter, as it kept more organic matter within certain classes
of phytoliths (see below). A number of wet and dry ashing
techniques were investigated by Corbineau et al. (2013), and all
had some advantages and disadvantages. It would be fair to say
that there is no consensus among scientists over which is the best
method, and this has contributed to our problems in determining
the “correct” value for PhytOC.

Parr, Sullivan and their co-workers set a firm basis for work on
carbon sequestration in phytoliths. Importantly, they were able
to show considerable differences between PhytOC in phytoliths
from different sugarcane cultivars (Parr et al., 2009), bamboo
species (Parr et al., 2010), wheat cultivars (Parr and Sullivan,
2011) and rice cultivars (Li et al., 2013b). Likewise, Zuo and Lü
(2011) showed variation in PhytOC in different millet species.
More recently, Sun et al. (2017) carried out an extensive survey
of carbon sequestration in 51 rice cultivars, finding that there
were significant differences between the amounts sequestered by
different cultivars. All this work opens up the possibilities of
planting certain species or cultivars which will increase carbon
sequestration, and of breeding for this trait.

The work of Parr and Sullivan has been followed up and
extended in China, mainly by Zhaoliang Song and his group.
They have been particularly concerned to measure the potential
for carbon sequestration in different environments in China:
grasslands (Song et al., 2012a); wetlands (Li et al., 2013a); forests
(Song et al., 2013); bamboo forests (Huang et al., 2014); and
croplands (Song et al., 2014). In addition the group produced a

number of reviews where they considered carbon sequestration
at a global scale (e.g., Song et al., 2012b).

It seemed that the idea that phytoliths could sequester
substantial amounts of carbon, and thereby help in combatting
global warming, was becoming well established, but then
Alexandre, Santos and their co-workers produced a series of
papers reporting much lower values for PhytOC in their analyses
(Santos et al., 2010; Alexandre et al., 2015, 2016; Reyerson
et al., 2016). Like most of these papers Reyerson et al. (2016)
concentrated on the “old carbon” hypothesis, but they did have
a short paragraph looking at carbon sequestration in phytoliths.
There they took the maximum PhytOC value that they found
in their work (0.3%), and a phytolith stability factor of 10%
(Alexandre et al., 2011), and calculated global annual carbon
sequestration at 4.1 × 104 tC year−1. This is around 100 times
lower than the 3.7 × 106 tC year−1 suggested by Song et al.
(2014). If Reyerson et al. (2016) are correct then the amount
of carbon sequestered in phytoliths would be insignificant
on a global scale.

The controversy came to a peak with the publication of two
papers in Earth-Science Reviews in 2016 and 2017. Firstly, Song
et al. (2016) reviewed the topic from their viewpoint, and then
Santos and Alexandre (2017) responded with an almost point
by point rebuttal. Song et al. then wrote a reply to Santos and
Alexandre (2017), but this was soon “temporarily withdrawn” by
Earth-Science Reviews in early 2017, and that remains the case
(in June 2019). Clearly there are serious problems here, and it
is a great pity that very good scientists have ended up in such
a heated debate. I will not take sides here, but try to reconcile
the conflicting opinions, and to introduce some new thinking
which might help sort out a rather unfortunate situation. Where
is the main point of contention? Song et al. (2016) and Santos and
Alexandre (2017) disagree on a number of topics, and some of
these will be touched on later, but the main one is undoubtedly
the true concentration of carbon in phytoliths. Song et al.
(2016) routinely use a figure of 3% for PhytOC, and Santos and
Alexandre (2017) think this is too high and that the figure should
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be 0.1–0.5%. The technique of extraction used by Song et al.
(2016) is the microwave digestion technique developed by Parr
et al. (2001), and Santos and Alexandre worry that this may leave
organic contaminants on the surface of extracted phytoliths. The
methods of preference for Alexandre, Santos and their coworkers
are described in Corbineau et al. (2013), and involve dry ashing
and acid digestion or alternatively acid digestion and alkali
immersion. They then strongly advise checking the samples with
scanning electron microscopy (SEM) and x-ray microanalysis for
particles that have high C/Si ratios, and discarding those that
have, thus eliminating contamination. Song et al. (2016) consider
that the low PhytOC values preferred by Santos and Alexandre
(2017) are caused by oxidation and over-extraction.

We appear to have reached an impasse with highly respected
researchers taking up very entrenched positions. In the past this
whole argument would not have happened, but it is now very
important that we can determine PhytOC accurately if we are to
assess its importance in carbon sequestration. The problem is that
it is very difficult to obtain totally clean phytolith preparations
without extracting some of the carbon from inside the structures.
This may be even more difficult for cell wall phytoliths (see
below). So I am uncertain that we will ever be able to give an
exact figure for PhytOC, except in very rare circumstances. It
is probably safer to give a range of potential concentrations for
PhytOC, and to calculate carbon sequestration using a number of
values. We should also remember that all the values in Table 1
are estimates of the amount of carbon that is sequestered fairly
tightly within the structure of the phytolith. How do they relate
to the situation in the soil? Moreover, all of the data in Table 1
are for mixtures of cell wall and lumen phytoliths. As, we shall
see below the presence of two phytolith types with very different
chemistries complicates matters even more.

LUMEN AND CELL WALL PHYTOLITHS

Over many years of working on phytoliths I have talked
with numerous scientists, seen many conference presentations,
reviewed many papers, and read a lot more. I have noticed that
some scientists concentrate on cell wall phytoliths and others
on lumen phytoliths, and that this at least partly depends on
the discipline of the scientist. Chemists and plant scientists have
mostly worked on cell wall phytoliths and have a greater interest
in what happens in the cell wall. It is possible that the chemists
(e.g., Currie and Perry, 2007; Exley, 2015) prefer working on cell
wall phytoliths because they have a matrix for deposition which
makes the chemistry more interesting. The plant scientists (e.g.,
Coskun et al., 2018) see many important processes happening
in the cell wall including transport, detoxification of metals and
defense against pathogens. On the other hand, archeologists,
palaeoecologists, and biogeochemists have sometimes seemed to
downplay the significance of cell wall types, probably because
of their perceived low stability in soils and sediments. For
example, Song et al. (2017) stated that, “...C (carbon) from
cell wall phytoliths may be quite labile and easily lost at
an annual-decadal scale compared to C trapped in lumen
phytoliths, which are likely to be much more stable at a

centennial-millennial scale...” The otherwise excellent review of
phytoliths in palaeoecology by Strömberg et al. (2018) paid
almost no attention to cell wall phytoliths, even when considering
the factors likely to increase the dissolution of phytoliths in
soils and sediments.

If we are to understand this topic it is important that
we have a clear idea of which phytoliths are cell wall types
and which are lumen types. This can seem a simple question
to answer, but experience suggests that it is not that easy,
particularly just using light microscopy. Madella et al. (2005)
gave us a nomenclature to classify phytoliths according to their
morphology, but there was no mention of their chemistry as
this was not the focus of the paper. In Table 2, I present some
selected studies using transmission electron microscopy (TEM),
where it is easy to determine which phytoliths are cell wall
types and which are from the lumen. In TEM silica appears
as electron opaque deposits, and the presence of silicon can be
confirmed by x-ray microanalysis. In the context of this paper
we are most interested in cell wall phytoliths, and that will bias
the selection of publications in this section. The additional bias is
that most of this work has been on grasses and cereals. The other
methodology that is useful in some circumstances uses SEM in
tandem with x-ray microanalysis (Table 3). Using SEM it is not
always easy to distinguish between cell wall and lumen phytoliths
and I have excluded any observations that I felt were uncertain
from Table 3.

To facilitate further discussion it is helpful at this point to be
able to visualize the different types of phytolith and how they
develop. Figure 1 showing five potential pathways of phytolith
development. In Figure 1A only the primary cell wall is silicified,
whilst in Figure 1B secondary cell walls develop to almost fill
the lumen and silica is then deposited on them. In the third type
(Figure 1C), silica is deposited in the space between the primary
cell wall and the protoplast, and eventually this fills the lumen. In
Figure 1D the protoplast breaks down and silica is subsequently
deposited within the lumen, entrapping some organelles and
membranes. Finally, in Figure 1E silica is first deposited in part
of the primary cell wall, and this later grows into the lumen.
These five types are not exclusive, and other types are possible.
For example, in some cases both the primary (Figure 1A) and
secondary (Figure 1B) cell walls are silicified. It is also possible
for silicification to begin in the primary wall as in Figure 1E, and
to continue into the space between the wall and the protoplast as
in Figure 1C.

Almost all of the work on silica deposition in roots
has concerned grasses and cereals. There seem to be two
main types of deposition. In the roots of Phalaris canariensis
(Hodson, 1986) and wheat (Hodson and Sangster, 1989) the cell
walls of the endodermis become silicified (as in Figure 1A).
The sorghum root has been the most studied system, and
here deposition begins in the inner tangential wall of the
endodermis and the deposit then grows into the space between
the wall and the protoplast (Sangster and Parry, 1976). So
part of the deposit is on a carbohydrate matrix and part is
not (similar to Figure 1E). In general there have been few
reports of silica deposition in tissues of the root other than
the endodermis.
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TABLE 2 | Some publications that have used transmission electron microscopy to investigate phytoliths.

Species Plant organ Cell wall phytoliths Lumen phytoliths Authors

Wheat Root Endodermis Hodson and Sangster, 1989

Sorghum Root Endodermis Sangster and Parry, 1976

Wheat Culm Epidermis Gartner and Paris-Pireyre, 1984

Wheat Leaf blade Epidermal long cells and subepidermal sclerenchyma Silica cells Hodson and Sangster, 1990

Rice Leaf Outer walls of epidermis, papillae Silica cells, long cells, bulliform cells. Kaufman et al., 1985

Dactylis glomerata Leaf Silica cells Laue et al., 2007

Phalaris canariensis Lemma Epidermal long cells, macrohairs Hodson et al., 1984

Phalaris canariensis Glume Macrohairs, prickle hairs, papillae (wall) Silica cells, papillae (lumen) Hodson et al., 1985

Setaria italica Caryopsis Aleurone and pericarp Hodson and Parry, 1982

Wheat Caryopsis Epicarp hairs Parry et al., 1984

Urtica dioica Leaf Stinging emergence (hair) Thurston, 1974

TABLE 3 | Some publications that have used scanning electron microscopy and x-ray microanalysis to investigate phytoliths.

Species Plant organ Cell wall phytoliths Lumen phytoliths Authors

Phalaris canariensis Root Endodermis Hodson, 1986

Wheat Root Endodermis Hodson and Sangster, 1989

Wheat Culm Epidermis Gartner and Paris-Pireyre, 1984

Avena sativa Inflorescence bracts Trichomes, long cells. Silica cells Kaufman et al., 1972

Equisetum hyemale Internodes Epidermis: stomata, papillae, long cells Kaufman et al., 1973

Cannabis sativa Various shoot organs Hairs Dayanandan and Kaufman, 1976

Picea glauca Needle Hypodermis and endodermis Hodson and Sangster, 1998

Pteridium aquilinum Petiole Epidermis Parry et al., 1985

It seems that almost all of the silica deposition in grass
culms (stems) is in the outer tangential wall of the epidermis
(Gartner and Paris-Pireyre, 1984; Hodson, 1986; Hodson and
Sangster, 1990). Figure 2 shows a light micrograph of epidermal
silicification from the wheat culm in a dry ashed preparation.
The cells form a complete sheet or silica skeleton, and the
long and short cells all have thin silicified walls similar to the
situation in Figure 1A.

Silicification of grass and cereal leaves is quite varied, with
both lumen deposition in silica cells and elsewhere, and silica
deposition in the cell walls. There has been much attention given
to the silica cells (e.g., Kaufman et al., 1985; Hodson and Sangster,
1990; Laue et al., 2007). Kumar et al. (2017a) investigated the
development of silica cells in sorghum leaves, and found that the
deposits developed in the apoplastic space between the cell wall
and the protoplast (see Figure 1C).

The inflorescence bracts of grasses and cereals have received
some consideration. In the 1980s three groups all worked on
the macrohairs from the lemma of P. canariensis, and Hodson
et al. (1984) looked at the development of the highly thickened
and silicified hairs. By maturity the hairs had only a very small
lumen, and the whole wall was silicified. The long cells of the
outer epidermis also considerably thickened during development,
and silica was then deposited in the thickened cell wall (see
Figure 1B). So in this case, what appeared to be a lumen phytolith
was actually a cell wall phytolith. In the Phalaris lemma almost
all phytoliths isolated from the organ were cell wall phytoliths.
It is important to note that using light microscopy and SEM on
this system did not indicate that these long cells were cell wall

phytoliths, and that the silica was deposited on a carbohydrate
matrix (Sangster et al., 1983). It is not always easy to be sure
whether a phytolith has such a matrix. Long cells are very
important repositories for silica in the epidermis. How many
other apparently lumen types are in reality cell wall phytoliths?
The Phalaris glumes, the next layer of bracts outside the lemma,
are a completely different structure, with silica cells, and several
different types of wall phytolith (Hodson et al., 1985).

There has been less work on silica deposition in the grass
caryopsis (seed), and where present the amount is low (Hodson
and Parry, 1982; Parry et al., 1984). I have included a few
examples of work on silica deposition in non-grass species in
Tables 2, 3: nettle, Equisetum, Cannabis, white spruce, and
bracken. Recently, phytolith production in the bryophytes has
also been investigated (Thummel et al., 2018), and most silica
deposition seems to be in the cell walls of these plants. It seems
that there is little epidermal lumen deposition outside the grasses.

This survey has, of necessity, been brief and I have left
out many papers and just selected a few examples. We can
conclude that the following phytoliths are definitely cell wall
types: macrohairs, prickle hairs, papillae (wall). The cell walls
of many epidermal cell types are often silicified, and not only
in the grasses. It seems that there are some organs where cell
wall silicification is the only type (e.g., grass roots and culms).
Cell lumen deposition, particularly in the epidermis, is apparently
more common in grasses and cereals than in the rest of the plant
kingdom. Whilst it is not possible from this survey to quantify the
relative importance of cell wall and lumen phytoliths it is clear
that the former make up a very significant proportion of the total.
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FIGURE 1 | The development of phytoliths. A schematic diagram showing five
potential pathways of phytolith development. All begin with the unsilicified cell
on the left. (A) The primary cell wall is silicified, but the protoplast remains
intact. (B) Secondary cell walls develop to almost fill the lumen and silica is
then deposited on to secondary walls. (C) Silica is deposited in the space
between the primary cell wall and the protoplast, and eventually this fills the
lumen. (D) The protoplast breaks down, and silica is subsequently deposited
within the lumen, entrapping some organelles, and membranes. (E) Silica is
first deposited in part of the primary cell wall, and this later grows into the
lumen. Key: primary cell wall (yellow); cytoplasm (blue); vacuole (white); silica
(black); secondary cell wall (gray).

MODELING CARBON IN PHYTOLITHS

So far, we have seen that there is carbon in phytoliths, and that the
amounts reported vary depending both on the sample analyzed
and on the technique used to process the phytoliths. We have
tried to determine precisely which phytoliths develop as silica
is laid down onto a carbohydrate cell wall, and which are not.
In this section we will use data that is available in the literature
in an attempt to partition PhytOC between cell wall and lumen
phytoliths. We will begin with cell wall phytoliths.

Perry et al. (1987) found that the macrohairs from the
lemma of the grass, P. canariensis, consisted of 40% silica, 55%
carbohydrate, and less than 5% protein. This is the only analysis
of native cell wall phytoliths that I am aware of. It is an unusual
situation where there are considerable amounts of large silicified
hairs that are easy to harvest, and by maturity they consist only
of cell wall phytoliths (Hodson et al., 1984). For our purposes,
we need to convert the percentages for carbohydrate and protein
to percentage carbon. So for 55% carbohydrate we multiply by
12/30 to obtain a value of 22% carbon. Let us then assume that
the whole of the remaining 5% organic material is protein. Most

FIGURE 2 | Epidermal silicification from the wheat culm. A light micrograph of
epidermal silicification from the wheat (Triticum aestivum L. cv. Brock) culm in
a dry ashed preparation (Buchanan and Hodson, unpublished).

proteins consist of about 53% carbon. So the proteins in the
Phalaris macrohair account for about 2.65% carbon. The overall
PhytOC in these hairs is therefore 24.65%. This value may or
may not be typical for cell wall phytoliths, but we would expect
that these phytoliths would have significantly higher carbon than
lumen phytoliths. Thus, we have PhytOC for native cell wall
phytoliths before any treatment to remove carbon (e.g., wet or dry
ashing or microwave digestion) or degradation in the soil. This is
uncommon as all other literature analyses are for phytoliths that
have been treated in some way to remove external carbon. It is
also important to note that all of the values quoted in Table 1
above represent those obtained from mixtures of cell wall and
lumen phytoliths, and are bound to be lower than those for pure
cell wall preparations.

We do not have similar data for native lumen phytoliths,
but the percentage of carbon will undoubtedly be much lower
than in cell wall phytoliths. The silica cell phytoliths in sorghum
developed in the space between the protoplast and the cell wall
(Kumar et al., 2017a). In cases like this (Figure 1C), we would
expect that phytoliths would not only be low in carbohydrates,
but also largely devoid of membranes, DNA and other organic
compounds and have very low percentage carbon. Alexandre
et al. (2015) found carbon and nitrogen spread evenly across
short cell phytoliths from wheat, suggesting that there were no
membrane remains, but the possibility that amino acids were
present was raised (see below).

Therefore we potentially have a situation where there are two
distinct classes of phytoliths that are very different in their carbon
concentrations. What other evidence is there for this idea? Jones
and Beavers (1963) separated phytoliths on the basis of their
specific gravity, and found that those with specify gravity less than
2.10 had a carbon content of 1.6%, well above the overall sample
(0.86%). In another approach, Yin et al. (2014) heated rice straw
phytoliths and found that there were two pools of carbon within
them. They attributed the carbon released at lower temperatures
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to that in the cell wall phytoliths, and that at higher temperatures
was suggested to come from the lumen phytoliths. Yin et al.
(2014) estimated the ratio of cell wall to lumen carbon as 12 or
13 to 1. These two different approaches both confirm that there
are two types of phytolith with different carbon concentrations.

Parr and Sullivan (2014) produced the single paper that
comes closest to the overall hypothesis that I am setting out
here. They compared two methods of preparing phytoliths
from sugarcane and sorghum, microwave digestion, and a rapid
digestion using H2SO4/H2O2. The microwave digestion method
was less damaging for the phytoliths and retained much more
carbon. Parr and Sullivan suggested that there were two main
types of phytolith, cavate, and solid. Cavate phytoliths were
essentially the cell wall phytoliths of the type often seen in
the epidermal long cells where the thin walls form a hollow
structure. These would be similar to the situation depicted
in Figures 1A, 2. Solid phytoliths were silica cells and other
lumen types (Figures 1C,D). The amount of carbon found using
microwave digestion was considered by Parr and Sullivan to give
an accurate total value for carbon in their preparations, what
they termed PhytOCTot (Table 4). They thought that the rapid
digestion procedure removed all of the carbon from the cavate
(cell wall) phytoliths, but left it in the solid (lumen) types. This
was termed matrix carbon, and hence PhytOCMat. It is then a
simple matter to deduct these matrix values from the total to
give the cavate (cell wall) percentages (PhytOCCav). Neither value
comes close to the 24.65% calculated for the Phalaris macrohair
(above). This could either suggest that percentage carbon in
cell walls varies considerably depending on the source, or that
even the microwave digestion technique employed by Parr and
Sullivan is over-extracting some carbon.

As an aside, I am not that keen on “cavate” and “solid” as
descriptive terms, as many of the cell wall types mentioned in
Tables 2, 3 above are solid. But as we have seen, even my preferred
terminology of “lumen” and “cell wall” has some problems. It may
be that we will need to classify phytoliths according to whether or
not they are formed on a carbohydrate matrix.

At this point, I would like to introduce three concepts,
PhytOCmax, PhytOCmin, and PhytOCprep. These are in some
ways related to the terms suggested by Parr and Sullivan (2014).
I hope that they will prove helpful in throwing some light on
the problems we have encountered with interpreting carbon
sequestration in phytoliths. Firstly, PhytOCmax is the maximum
amount of carbon occluded within a phytolith as it drops from a
plant into the soil. This will be the amount in native phytoliths
before they begin to degrade in the soil or before any attempt
at preparation in a laboratory. In practice this is usually very
difficult to determine. When phytoliths drop into the soil they
are generally surrounded by non-silicified organic material. The

TABLE 4 | Partitioning of carbon in sugarcane and sorghum samples
(Parr and Sullivan, 2014).

Species PhytOCTot PhytOCMat PhytOCCav

Sugarcane 10.27% 0.15% 10.12%

Sorghum 3.88% 0.51% 3.37%

aim of the preparatory techniques (dry ashing, wet ashing,
and microwave digestion) is to remove all of the extraneous
organic material without touching that which is bound within
the phytolith structure. But it is only in very rare cases such as
the Phalaris macrohairs described above (Perry et al., 1987) that
we can be sure that we have accurately determined PhytOCmax.
So PhytOCmax is an important, but largely theoretical, concept.
Secondly, PhytOCmin is the amount of carbon remaining in a
phytolith after all of the easily available carbon has been removed.
Of course, this value is very likely going to differ for different types
of phytoliths. We might expect that most of the carbon in cell
wall phytoliths will be easier to remove, and maybe that in lumen
phytoliths will be less labile. In the soil it may take a long time
to reach PhytOCmin (see below for a discussion), but laboratory
preparatory techniques may well approach this value very rapidly.
A key question is how many of the measurements in Table 1
represent PhytOCmin and how many are closer to PhytOCmax?
This leads us on to the final concept, PhytOCprep. This is the
amount of carbon left within a phytolith after it has been
subjected to a suitable preparatory technique in the laboratory
(the equivalent of PhytOCTot in Parr and Sullivan’s terminology
when using microwave digestion). Of course, PhytOCprep must
lie between PhytOCmax and PhytOCmin, but exactly where is
difficult to be certain, and will depend on the technique used.
An important question is whether the PhytOCprep value of 3%
used by Song et al. (2016) is close to PhytOCmax? If that is the
case then is the PhytOCprep value of 0.1–0.5% used by Santos
and Alexandre (2017) close to PhytOCmin? So are both Song
et al. (2016) and Santos and Alexandre (2017) “correct,” but the
PhytOC values they give just represent what is present at different
times in phytolith degradation and dissolution? We will have
more to say on this point below.

Next we need to investigate mixtures of different types of
phytoliths. As, we saw above there are some cases where we are
fairly sure that nearly all of the phytoliths in an organ are cell
wall types (e.g., the wheat root, and the Phalaris lemma), but in
many cases, particularly in the grasses, there will be a mixture
of both cell wall and lumen types. The evidence presented here
and in my previous publications (Hodson, 2016, 2018) strongly
suggests that the two types have very different chemistries, and
that cell wall types have much higher carbon concentrations. So,
when we have two phytolith types with different PhytOC, how do
we calculate the overall PhytOC for the material? To do this, we
need to have some estimates of PhytOC for both lumen and cell
wall types, and some idea of the relative amounts of the two types
of phytolith in a particular sample. Once, we have those estimates
we can use the following equation:

(a× y/100)+ (b× z/100) = Total Percentage PhytOC (1)

Where:
a = Percentage PhytOC in lumen phytoliths;
b = Percentage PhytOC in cell wall phytoliths;
y = The percentage of lumen phytoliths in a sample (out of 100);
z = The percentage of cell wall phytoliths in a sample (out of 100)
(note this formula is constrained by the fact that y + z must
equal 100).
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We can then investigate a variety of potential scenarios:

(1) Let us assume that PhytOC for the cell wall phytoliths is
24.65%, as in the Phalaris macrohairs (above), and that
lumen PhytOC is 0.33%. The latter is the mean of the
two values given by Parr and Sullivan (2014) for lumen
(solid) phytoliths, and is not very different to the 0.3% used
by Reyerson et al. (2016) in their calculations on global
carbon sequestration.

(2) Let us use the estimates provided by Parr and Sullivan
(2014) for sugarcane PhytOC: cell wall, 10.12%; lumen,
0.15% (Table 4).

(3) Similarly, the Parr and Sullivan (2014) estimates for
sorghum PhytOC: cell wall, 3.37%; lumen 0.51%.

Figure 3 shows the effects of varying the ratio of cell wall
to lumen phytoliths, moving from a situation where none of
the phytoliths are cell wall types to where there are 100% in a
sample. As would be expected, for all three scenarios, a higher
percentage of cell wall types leads to a higher total PhytOC. In
general Scenario 1 gives higher total PhytOC values under almost
all conditions. It is interesting to calculate the percentage of cell
wall phytoliths that would be required to reach the 3% total
PhytOC figure that is given by Song et al. (2016) and that is
used in many of the other papers from their group. For Scenario
1 only 11% of cell wall types would be needed, for Scenario 2
(sugarcane) the figure is 29%, and for Scenario 3 (sorghum) it
is 88%. Clearly there is very big variation in these figures, but at
least in some scenarios a relatively small percentage of cell wall
phytoliths would be needed to bring us close to the 3% figure that
Song et al. (2016) preferred.

As far as I am aware nobody has attempted to quantify the
relative volumes of cell wall and lumen phytoliths in organs like
the grass leaf, and this is an important topic for future research.

FIGURE 3 | The effects of mixing different amounts of cell wall and lumen
phytoliths on total PhytOC. Potential scenarios: (1) PhytOC for the cell wall
phytoliths is 24.65% and PhytOC for lumen phytoliths is 0.33%. (2) PhytOC
for the cell wall phytoliths is 10.12% and PhytOC for lumen phytoliths is
0.15%. (3) PhytOC for the cell wall phytoliths is 3.37% and PhytOC for lumen
phytoliths is 0.51%.

Another key subject arising from this work concerns differences
in carbon allocation between species and cultivars. As we saw
above, Parr, Sullivan and their team found major differences
between PhytOC in phytoliths from different bamboo species,
and sugarcane, wheat, and rice cultivars. It has been suggested
that it might be possible to breed plants for high PhytOC. But at
the cellular level what are we breeding for? Is it simply a change
in the ratio of cell wall to lumen phytoliths? Or is it more complex
than that?

SOME THOUGHTS ON CARBON AND
NITROGEN IN PHYTOLITHS

There have been few measurements of nitrogen in phytoliths
to date. The presence of nitrogen would indicate that proteins,
amino acids, and possibly nucleic acids had been incorporated
into the phytoliths. Most proteins contain about 53% carbon and
about 16.3% nitrogen so their C/N ratio will be about 3.25. Values
higher than that would suggest that carbohydrates and/or lipids
were a significant part of the carbon present in the phytoliths.
Table 5 shows the data that I have been able to locate concerning
nitrogen concentrations in phytoliths.

Jones and Beavers (1963) were the first to measure nitrogen
in phytoliths at 0.01%, which would give a C/N ratio of 86. The
accuracy of this C/N ratio is probably somewhat questionable
given the very low nitrogen concentration, and the age of the
work. I was able to calculate the percentage nitrogen in the
Phalaris macrohairs studied by Perry et al. (1987). They estimated
that percentage protein in the hairs was less than 5% and so
the maximum percentage nitrogen will be 0.82% at PhytOCmax
in native hairs before treatment. Using the previously calculated
value for percentage carbon of 24.65% we can determine that the
C/N ratio of Phalaris macrohairs is a minimum of 30. Hodson
et al. (2008) measured nitrogen in phytoliths extracted from
various wheat organs using dry ashing followed by boiling in
hydrogen peroxide. They found low, but detectable, amounts of
0.01–0.06% nitrogen. The calculated C/N ratios varied from 7
to 43, depending on the organ, with the bulk sample containing
all organs giving a value of 41. Fragmented glycoproteins were
found in wheat leaf phytoliths by Elbaum et al. (2009), confirming
the presence of nitrogenous compounds, although they did not
quantify the amounts. The leaf short cell phytoliths of Triticum
durum were analyzed using nanoSIMS by Alexandre et al.
(2015). They were not able to quantify carbon and nitrogen
concentrations, but their C/N ratio was 3.7. In the following
year, Alexandre et al. (2016) wet ashed the leaves of Festuca
arundinacea and found that the phytoliths had a C/N ratio of 5.1.

How do we interpret the above data? Firstly, it is striking that
the values for C/N ratio in Table 5 fall into two groups with
the rachis of wheat and the analyses conducted by Alexandre
et al. (2015, 2016) giving markedly lower values than the rest.
The value for native Phalaris macrohairs calculated from Perry
et al. (1987) gives an approximate baseline for cell wall phytoliths
with a minimum C/N ratio of 30. It seems that the C/N signature
for cell wall phytoliths dominates the wheat samples analyzed
by Hodson et al. (2008) even after they have undergone dry
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TABLE 5 | Phytolith carbon and nitrogen analyses.

Species Plant organ(s) or cell type %C %N C/N ratio Technique Authors

Various Phytoliths extracted from soil 0.86 0.01 86 Not given Jones and Beavers, 1963

Phalaris canariensis Lemma macrohairs 24.65 0.82 max 30 min Analysis of native hairs Perry et al., 1987

Wheat (Triticum aestivum) Culm 1.25 0.05 25 Dry ashing followed by boiling in
hydrogen peroxide

Hodson et al., 2008

Leaf sheath 1.22 0.03 41

Leaf blade 1.72 0.04 43

Rachis 0.07 0.01 7

Inflorescence 1.67 0.06 29

Bulk 1.65 0.04 41

Triticum durum Leaves- only silica cells analyzed nd nd 3.7 Wet ashing for NanoSIMS analysis Alexandre et al., 2015

Festuca arundinacea Leaves 0.51 0.10 5.1 Wet ashing Alexandre et al., 2016

ashing and boiling in hydrogen peroxide. Alexandre et al. (2015)
were quite correct to point out that their nanoSIMS analysis for
leaf short cells strongly suggests the presence of amino acids
with a C/N ratio of 3.7 in these lumen phytoliths. This forms a
baseline for lumen phytoliths. When Alexandre et al. (2016) wet
ashed F. arundinacea leaves, the phytoliths within them had a
slightly higher C/N ratio of 5.1, again suggesting dominance of
amino acids and proteins. It seems very likely that the extraction
procedure used by Alexandre et al. (2016) was stronger than
that used by Hodson et al. (2008), and that they removed most
of the carbon from within the cell wall phytoliths, leaving that
in the lumen phytoliths largely intact. This thinking is along
similar lines to that of Parr and Sullivan (2014), where cell wall
(cavate) phytoliths were considered to be more susceptible to
extraction than lumen (solid) phytoliths. The wheat rachis sample
had very low carbon and nitrogen in its phytoliths, and I suspect
that this relatively lightly silicified organ was also over-extracted.
More work is needed employing C/N ratios for phytolith analyses
to confirm these ideas, but this ratio certainly seems to have
potential for assessing the relative contributions of carbohydrates
and amino acids within a processed sample.

THE LOSS OF CARBON FROM
PHYTOLITHS IN THE SOIL AND
SEDIMENTS

The evidence I have presented so far in this paper very strongly
suggests that lumen phytoliths generally have low PhytOC.
Even Parr and Sullivan (2014), the originators of the carbon
sequestration in phytoliths idea, are proposing values as low
as 0.15–0.51% (Table 4). As, we saw above, Reyerson et al.
(2016) calculated global carbon sequestration using a PhytOC of
0.3%, assuming that this applied to all phytoliths, and concluded
that sequestration would be insignificant. So if lumen phytoliths
are not that important for carbon sequestration the whole
hypothesis hangs on the cell wall phytoliths. However, the general
assumption is that cell wall phytoliths are less likely to remain in
soil as they are more easily broken down (Song et al., 2017). But
is this really the case?

Strömberg et al. (2018) have produced a very detailed
assessment of what happens to phytoliths when they enter the
soil, and we will not go back over all of this material, but
mostly concentrate on any differences between cell wall and
lumen phytoliths. It is clear that, in many soil environments,
a considerable amount of siliceous plant material, including
phytoliths, breaks down fairly quickly. Indeed, phytoliths are
often an important source of dissolved Si in soils as they are
much more soluble than quartz, aluminosilicates, and other soil
minerals. Working on a temperate coniferous forest, Gérard
et al. (2008) showed that 60% of the biogeochemical cycle was
controlled by biological processes, namely Si uptake by plants
and dissolution of phytoliths. There is a large labile pool of
phytogenic silica in soils (Strömberg et al., 2018), with values
for this pool ranging from 69% in short grass prairie to 92% in
tropical forest.

Puppe et al. (2017) conducted a detailed analysis of the
contribution of biogenic silica to the soil soluble silicon pool
at Chicken Creek in Brandenburg, Germany. They considered
diatoms and sponge spicules in addition to phytoliths, but it was
the latter that were by far the most important in contributing
to soluble silicon concentrations in the soil. However, they
discovered that small, delicate, phytolith fragments which were
not usually quantified using standard extraction processes made
up 84% of the phytogenic material and those larger than 5 µm
represented only 16%. The authors stressed the importance of
this large pool of small delicate material in contributing to soluble
silicon in the soil. The micrographs of the fragile phytoliths
they showed (their Figure 7) were not that dissimilar to my
Figure 2 with thin cell wall silicification. Clearly these structures
would be highly susceptible to dissolution. Presumably the larger
phytoliths that represented 16% of the phytogenic material would
remain in the soil for much longer periods.

At the global scale, the phytolith stability factor was one of
the disagreements between Song et al. (2016) and Santos and
Alexandre (2017). The former suggested a stability factor of 0.8 to
1.0 as phytoliths in most systems are stable for 500 to 3000 years.
However, Santos and Alexandre (2017) suggested a stability
factor of 20%, which combined with their much lower value of
PhytOC (0.3%), led them to suggest that carbon sequestration in
phytoliths on a global scale was insignificant. As we saw above, it
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seems very likely that the value of 0.3% PhytOC used by Santos
and Alexandre is an underestimate due to over-extraction, and
that particularly applies to cell wall phytoliths. It is difficult to
speculate on the influence of cell wall phytoliths on the stability
factor as we lack even basic data.

Next we will investigate the dissolution of lumen and cell wall
phytoliths. I recently reviewed this topic (Hodson, 2018), and a
number of factors seem to be important. Of the soil chemical
factors, high pH was the most significant, causing increased
phytolith dissolution. It is possible that aluminum in phytoliths
may decrease their dissolution, but their carbon content hardly
seems to have been considered. Cabanes and Shahack-Gross
(2015) carried out the most detailed work so far on this topic but,
with the exception of the double peaked glume phytoliths from
rice husks, most of their work concentrated on lumen types. The
key factor in increasing phytolith solubility was geometric surface
to bulk ratio. There was no indication that cell wall phytoliths
were either more or less soluble.

We should now consider what is known about cell walls
that have undergone silicification. The small number of
measurements so far available for carbon in cell wall phytoliths
shows considerable variability (see above: Perry et al., 1987;
Parr and Sullivan, 2014). If the percentage carbon is high
then percentage silicon must be low and vice versa. We would
not necessarily expect all cells walls to be silicified to the
same extent, but this will mean that they will vary in their
chemical properties, and potentially in how susceptible they
are to breakdown processes in the soil. I previously discussed
evidence that suggests that after the organic matter is removed
from cell wall phytoliths the remaining silica has a porous
structure (Hodson, 2016). Since that publication, Sola-Rabada
et al. (2018) have published the first estimate of the size of the
pores that I am aware of. In phytoliths isolated from Equisetum
myriochaetum using wet ashing the silica had a surface area of
∼400 m2

· g−1 and a pore size of ∼5 nm. Presumably, in the
native state these pores will have been filled by carbohydrates
and other organic compounds. Almost certainly pore size will
vary, and we might expect more lightly silicified material to
have larger pores. But we should remember that these cell wall
phytoliths are only porous after most of the organic matter has
been removed with drastic treatment. Will cell wall phytoliths
necessarily be more susceptible to breakdown in the soil than
lumen types just because they have higher organic matter within
them? Does being encrusted by silica slow down the microbial
degradation of organic matter in phytoliths? Conversely, does
being so intimately associated with organic matter impede the
dissolution of silica from phytoliths? We do not know the answers
to these questions yet.

There is not very much known about how silica and organic
matter are associated in the soil. However, the work of Watteau
and Villemin (2001) on the breakdown of leaves and roots
soils of a beech forest is important in this respect. Using TEM
and electron energy loss spectroscopy (EELS) they found silica
was deposited in beech leaves in the walls of the epidermal
and parenchymatous cells, in the middle lamellae, against the
walls in the cells, or in cell intersections. The authors stressed
the close relationships between biogenic silica and cellulose,

hemicellulose, and pectic substances in these samples. Deposition
was in similar locations in the cell walls of beech roots, but also
in the root cortical cells closely associated with polyphenolic
substances. In the soil the leaf and root tissues were broken
down primarily by fungi, but bacteria were also present. The
fungi attacked the carbohydrates in the cell walls, leaving the
silica largely intact, particularly that in the cell intersections.
More recently, Turpault et al. (2018) also investigated silicon
cycling in beech forests. Much of the silicon was associated with
cell walls in the beech tissues. Turpault et al found that fine
beech roots were particularly important in cycling as they had
a high Si content and were rapidly broken down and recycled.
Very little Si was lost from the system through deposition in
perennial tissues or leaching from the soil, and it was an almost
closed system. It is clear from both Watteau and Villemin
(2001) and Turpault et al. (2018) that cell wall Si deposition
is the most important in beech, and in the soils beneath the
forests. The papers also give us some insights into breakdown
of cell wall phytoliths in soils and how rapid this can be.
The beech cell walls investigated appear to be fairly thin and
relatively lightly silicified (similar to Figure 1A), and it would be
unwise to extrapolate from this situation to others where heavier
silicification has occurred.

As I was writing this paper, the Intergovernmental Panel on
Climate Change (IPCC) brought out their 2018 report on the
feasibility of keeping the global temperature rise under 1.5◦C
above the pre-industrial temperature. The report has a section
(4.3.7.3) which considers increasing carbon sequestration in
soils as one of the means of tackling the problem (de Coninck
et al., 2018). At a local scale the benefits of increasing carbon
sequestration in soils are clear, but there is much uncertainty
about how much carbon can be sequestered at a global scale and
what the costs might be. The section does consider work on the
use of biochar to increase sequestration but, rather like work on
phytoliths, there is considerable debate about its potential. Not
surprisingly, the idea that phytoliths might be involved in carbon
sequestration in soils has not yet impinged on the IPCC. We
will need much more work and much greater certainty before
that might happen.

Before we leave this topic, I have one more question to raise.
How long do we need to sequester carbon? There seems to be
a general assumption in the phytolith literature that we need to
sequester carbon for hundreds or thousands of years, and that
sequestration for shorter periods is not worthwhile. Parr and
Sullivan (2005) found phytoliths from 8710 BP at Byron Bay in
Australia still contained PhytOC, and so sequestration is possible
for very long periods of time. However, I would argue that the
problems that we are having with climate change are so severe
that we need to maximize short term sequestration, and that even
locking away carbon in phytoliths for 50 or 100 years might make
a valuable contribution. In that time we might hope that the
world will make the switch to renewable technologies, and that
we might have developed other methods for sequestering carbon.
The IPCC have made it very clear how urgent the problem of
climate change is, and the short time scales involved to reduce
what could be very serious impacts. We need to keep this in mind
as we investigate carbon sequestration in phytoliths.
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DO CELL WALL PHYTOLITHS REMAIN
IN ARCHEOLOGICAL AND
PALAEOECOLOGICAL SAMPLES?

In the previous section, we investigated what is known about
the chemistry of phytolith breakdown and dissolution in the soil
and sediments. It is highly unclear whether cell wall phytoliths
are degraded faster than lumen phytoliths as there is little
data available. Since this is the case, we will now turn to
the archeological and palaeoecological literature to investigate
whether cell wall phytoliths persist in soils and sediments.

As we have seen earlier it is not always easy to determine
whether a phytolith has a carbohydrate matrix, so we will confine
this survey mostly to macrohairs, prickle hairs and papillae
(Table 6). The double-peaked rice husk phytoliths are also cell
wall phytoliths occurring on the outer surface of the rice husk,
and they are heavily silicified (Park et al., 2003). An additional
category we will add are multi-celled phytoliths, also known as
silica skeletons (Rosen and Weiner, 1994). These are groups of
phytoliths frequently, but not only (see Figure 2), originating
from the husks of cereals. They often contain papillae within
their structures, and will inevitably enclose cell walls between
the different cells. Included within the silica skeletons are the
cut phytoliths which appear in archeological contexts, and are
diagnostic for cutting and threshing activities (Cummings, 2007).

Table 6 represents the results of a partial survey of the
literature, and there are many other papers that could have been
cited. However, it is clear that cell wall phytoliths can be found
in samples that are hundreds or thousands of years old. In two
cases (Prasad et al., 2005; Wu et al., 2018) they were found
associated with dinosaur remains from the Cretaceous. Here,
we would expect that the phytoliths discovered will be fossilized
and have lost their original organic matter, but it does indicate
that they persisted long enough to be preserved in this way.
Cell wall types have been found in many different contexts and
environments, from extremely arid to temperate, and in many
different countries. It would not be wise to attempt any sort
of quantification, particularly as we are uncertain how many
long cell phytoliths have a carbohydrate matrix (see Figure 1B
and discussion above). I have included both archeological and
palaeoecological examples in Table 6. It could be argued that
archeological contexts do not always replicate conditions from
the natural environment. However, it is now recognized that
agriculture is having a major impact on the global silicon cycle
(Struyf et al., 2010), and so, to some extent, the work on
past agricultural activity is an analog for what is happening
today. Moreover, much of the work on increasing carbon
sequestration in phytoliths in the future concerns agricultural
crops (Parr and Sullivan, 2011).

In conclusion, the small survey shown in Table 6 has strongly
indicated that cell wall phytoliths can persist in soils and
sediments for considerable periods of time. It is conceivable that
these cell wall phytoliths may have lost much of their organic
matter over time, but that their basic structure remains intact. It
is, however, more likely that they still contain substantial amounts
of carbon hidden deep within the phytolith structure. So we are
faced with the possibility that some carbon may be sequestered in

cell wall phytoliths for hundreds or thousands of years. But as we
argued above, the more important issue is how much carbon is
sequestered for short periods of time, maybe 100 years.

A HYPOTHESIS

Having gathered together data and observations from many
different sources I am now able to put forward a hypothesis which
attempts to explain the overall picture. First, let us reflect on what
happens when phytoliths are prepared for analysis by wet ashing,
dry ashing or microwave digestion:

(1) The non-silicified material is rapidly removed to expose the
phytoliths. The phytoliths are then at PhytOCmax.

(2) The more porous cell wall phytoliths will be more
vulnerable to carbon loss than the lumen phytoliths.

(3) If the extraction procedure is not too severe then carbon
will remain in both cell wall and lumen phytoliths. The
PhytOCprep value arrived at will depend on the severity of
the extraction procedure.

(4) If the process is more severe then all the cell wall phytolith
carbon will be lost, but that in the lumen phytoliths will be
much less affected. Here, we reach PhytOCmin.

(5) Only if extreme procedures are used will all the carbon
be lost from all phytoliths. For example, Yin et al. (2014)
showed that at very high temperatures (above 900◦C) most
carbon is removed from rice and millet phytoliths.

Now let us consider the situation in the soil:

(1) When plant material falls into the soil or becomes
incorporated into it, cell wall and lumen phytoliths are all
surrounded by non-silicified material.

(2) Depending on the soil conditions the non-silicified plant
matter rots fairly quickly to expose the phytoliths within it.
The phytoliths are then at PhytOCmax.

(3) The lumen phytoliths contain a small amount of carbon,
but are resistant to breakdown in the soil.

(4) The cell wall phytoliths contain a much larger amount of
carbon, but are more easily broken down in the soil.

(5) Within a short period of time (a few decades) much
of the smaller, lightly silicified cell wall and intercellular
silica deposition breaks down. The silica dissolves and
the organic material contained within it undergoes
decomposition and is released back to the atmosphere
as carbon dioxide.

(6) The remaining cell wall and lumen phytoliths then dissolve
and break down more slowly over centuries or millennia. It
may be a very long time before they reach PhytOCmin.

(7) Depending on the plant species and organs that originally
contributed the phytoliths either the lumen or cell wall
deposits are the more important in sequestering carbon
in the soil. This part of the hypothesis requires further
exploration, and this is carried out below.

From the work of Watteau and Villemin (2001) and Turpault
et al. (2018) it is evident that cell wall phytoliths are the most
important in the soils of beech forests. I am not aware of
similar work for the soils of coniferous forests. However, my
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TABLE 6 | Cell wall phytoliths in archeological and palaeoecological samples.

Location Date or historical period Cell wall phytoliths present Authors

Maidanetske central Ukraine ca. 3900-3650 BCE, Chalcolithic Silica skeletons, hairs, papillae Dal Corso et al., 2018

Taraschina, Romania Chalcolithic, 4800 to 4300 cal. BC Silica skeletons, hairs, papillae Danu et al., 2018

Court of Hoogstraeten, Brussels,
Belgium

10th to 17th century AD Silica skeletons Devos et al., 2013

Lake End Road West,
Buckinghamshire, United Kingdom

Anglo-Saxon to post-medieval Silica skeletons, epicarp hairs, papillae Hodson, 2002

Pacific Northwest, United States Modern Prickles, hairs Blinnikov, 2005

Bear Creek, Cedar County, Missouri,
United States

Holocene (back to 5000 BP) Trichomes Donohue and Dinan, 1993

Nebraska and Kansas, United States Neogene, 18 to 2 Ma Hairs, papillae Strömberg and McInerney, 2011

Monte Castelo, Amazonia, Brazil 625-5310 cal year BP Double-peaked glume phytoliths (rice) Hilbert et al., 2017

Beth Shemesh, Israel Iron age Multi-celled Asscher et al., 2017

Various sites in Israel Neolithic Multi-celled, papillae, hairs Rosen, 1993

Northern Negev, Israel 6000BP, chalcolithic Multi-celled (wheat) Rosen and Weiner, 1994

Kush, United Arab Emirates 4th to 13th century AD Silica skeletons, hairs, papillae Ishida et al., 2003

Rub’ al-Khali desert, Arabian Peninsula 8500 cal. yr BP to about 3000 cal. yr BP Hairs Parker et al., 2004

Central North China Mid-Late Neolithic, c. 5500 to 2100 cal. yr BP Double-peaked (rice), silica skeletons, hairs Zhang et al., 2010

Northeast China Modern Hairs Gao et al., 2018

Northwest China Early cretaceous (113-101 Ma) Silica skeletons Wu et al., 2018

Balathal, South Rajastan, India Late chalcolithic – early historical Silica skeletons, trichomes, hairs Kajale and Eksambekar, 2007

Pisdura, India Late cretaceous Silica skeletons, papillae Prasad et al., 2005

Various Various Cut silica skeletons Cummings, 2007

previous work on conifer needles has strongly indicated that
cell wall deposition is important in this group. For example,
Hodson and Sangster (1998) found that silica deposition was
almost entirely confined to the hypodermal and endodermal
walls of white spruce needles. Presumably this would be reflected
in the phytoliths to be found in the soils of conifer forests.
In grasslands it is probable that lumen phytoliths (particularly
short cells) will dominate in most phytolith assemblages isolated
from soils. In these cases we may need to balance a very large
number of lumen phytoliths that contain small amounts of
carbon against a smaller number of cell wall phytoliths that
contain much more carbon. It may be that a modified form of
Equation 1 could be used in these circumstances to determine
the overall PhytOC percentage. Very recently, Zhang et al.
(2019) showed the importance of bamboo litter layers in carbon
sequestration, and demonstrated the considerable potential that
exists to increase carbon sequestration in the future. But what
types of phytoliths might we expect to dominate the litter layers?
Firstly, it is clear that bamboo leaves contain much higher silicon
concentrations than the other organs (Collin et al., 2012), and
these will undoubtedly be the major contributor to phytoliths in
the litter. Lux et al. (2003) investigated silicification of bamboo
(Phyllostachys heterocycla Mitf.) leaves and found the highest
Si concentrations were in the epidermal cell walls and short
cells. This suggests that bamboo litter should contain both cell
wall and lumen phytoliths. Which will be dominant in the litter
is uncertain. We have seen that bamboo species differ in the
amount of PhytOC within their phytoliths (Parr et al., 2010),
and we might also expect that the litter will vary in the relative
amounts of cell wall and lumen phytoliths, depending on the
species involved.

I am not clear whether lumen phytoliths or cell wall phytoliths
will be the more significant in sequestering carbon at a global
scale. At the moment we have not got enough data even to make
an informed guess on the relative importance of the two phytolith
types in carbon sequestration at this scale.

PRIORITIES FOR FUTURE RESEARCH

A number of important research topics have arisen from the
present study:

(1) We have seen that there is some uncertainty about which
phytoliths are deposited on a carbohydrate matrix. This is
particularly the case for long cells. Hodson et al. (1984)
showed that silica was deposited onto thickened secondary
cell walls in the long cells of the outer epidermis of the
lemma of P. canariensis (similar to Figure 1B). I am not
aware of any other examples of this phenomenon, but
surely it cannot be the only case? Long cells are important
sites of silica deposition, and if it were discovered that
the lumen of many had a carbohydrate matrix they could
be very significant repositories for carbon sequestration.
The work would require plant scientists (probably) to use
TEM and x-ray microanalysis following a developmental
sequence as the cells silicified.

(2) What is the ratio of cell wall to lumen phytoliths in organs
where they are both present? If we knew this we would
have data that could be used in Equation 1. We would then
be able to assess the relative importance of cell wall and
lumen carbon sequestration. This work probably requires
microscopy and image analysis.
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(3) We know from the work of Parr, Sullivan and others that
there are differences between cultivars in PhytOC. But what
is the difference at the cellular level? There have also been
suggestions that it might be possible to breed for high
carbon sequestration in phytoliths. Are we breeding for a
change in the ratio of cell wall and lumen phytoliths? Again
this work will require microscopists and image analysis.

(4) It appears that the C/N ratio of phytoliths might have some
promise in indicating whether preparations are dominated
by amino acids or carbohydrates and whether samples are
over-extracted, but this work needs to be expanded. For
instance, it would be of great interest to repeat the work
of Parr and Sullivan (2014) using both drastic wet ashing
and gentler microwave digestion preparative procedures,
and then analyze for both C and N. If my thinking above
is correct I would predict that the wet ashing preparation
will have a lower C/N ratio than that obtained through
microwave digestion.

(5) We need to determine whether the breakdown and
dissolution of cell wall phytoliths is faster than that of
lumen phytoliths in experimental situations. Here, we
could repeat the work of Cabanes and Shahack-Gross
(2015) on phytolith dissolution, but specifically comparing
cell wall and lumen phytoliths.

(6) In the soil, we have a very incomplete picture of the
processes involved in phytolith dissolution, and even
more so for cell wall phytoliths. More work of the type
described by Watteau and Villemin (2001) on beech forest
soils is needed.

(7) Parr and Sullivan (2005) found carbon in phytoliths from
8710 BP. We have seen that cell wall phytoliths can remain
in archeological and palaeoecological samples for hundreds
or thousands of years, but does carbon remain within
them? If so it would suggest the potential for high carbon
sequestration, but if not then cell wall phytoliths must be
strong even once carbohydrates have been removed.

MY CONCLUSION AND PERSPECTIVE

I said at the beginning of this paper that I would not take
sides in what has become an acrimonious debate over carbon
sequestration in phytoliths. However, having carried out a
detailed analysis and weighed up all the evidence I conclude
that the hypothesis that carbon sequestration in phytoliths is
important on a global scale is probably correct, or at least cannot
yet be discarded. I think it is likely that all workers in this area
(and I include myself) have over-extracted phytoliths, and that
we have not given an accurate representation of PhytOCmax.
It is probable that Alexandre, Santos and their co-workers
have over-extracted to the point where their preparations are
approaching PhytOCmin. I am very clear that we have all not
taken enough account of heterogeneity in phytolith chemistry. It
seems very likely that cell wall phytoliths are important in carbon
sequestration, and it may even prove to be the case that they
are more significant than the lumen types. In this paper I have
considered lumen and cell wall phytoliths, but it is quite possible

that this is an oversimplification and that there are more than two
types or some gradation between the two (e.g., the situation in
Figure 1E). There is no doubt that what I have presented here
makes the whole topic of carbon sequestration in phytoliths even
more complex than it was, but if we are to move this field forward
then these complexities need to be accounted for.

I have worked on phytoliths for nearly 40 years. Much of my
work has been what some people call “blue skies” research. That is
it had no obvious immediate practical application. So, I have been
quite surprised that some of my publications on microanalysis
and phytolith development from the 1980s now have a new
relevance in 2019 when we consider carbon sequestration and
PhytOC. I suspect that quite a few of the authors cited in this
paper will be equally surprised. I do worry that financial pressures
mean that we are losing the possibility to research topics just
because they are interesting.

Many scientists from very diverse disciplines have contributed
to the picture I have painted in this paper. However, if we look
specifically at the question of carbon sequestration in phytoliths
a few people stand out. Foremost among these must be Jeffrey
Parr and Leigh Sullivan who first had the idea that phytoliths
might sequester substantial amounts of carbon. All of the data
was already there for everyone to see, but they had the idea, and
the sudden spark of brilliance that really created a whole new
field of phytolith research. They then carried out a considerable
amount of work to test their hypothesis, and particularly to look
at variation in carbon sequestration in phytoliths from related
species and cultivars. If Parr and Sullivan were the originators
of the idea, then Zhaoliang Song and his team in China were
those who tested it out in a whole string of investigations.
We should also be grateful to Ann Alexandre, Guaciara Santos
and their co-workers who “shook the tree” and made us all
wonder if sequestration of carbon in phytoliths was an important
phenomenon. I disagree with their overall conclusion on the
importance of carbon sequestration in phytoliths, but they are
very good scientists and have done some excellent work in this
area. It was through their work that I hit on the concept of
PhytOCmin, which I have described above. They also provided
some useful data on nitrogen in phytoliths which was crucial in
my thinking about C/N ratios. Finally, I must mention Carole
Perry, whose work on the chemistry of phytoliths has been
seminal. I used some of her early research to develop the idea
of PhytOCmax, and in many ways her analysis of the Phalaris
macrohair (Perry et al., 1987) was the key to unlocking this
puzzle. I am sure that Carole would never have guessed back in
the 1980s that her work would be used in this way. For me this is
a fascinating story that has developed over more than 30 years. It
is notable that much of the research I have based my ideas on was
originally “blue skies,” but now it makes a significant contribution
to a very important topic.

As I write in 2019, the evidence for the effects of human-
induced climate change is all too obvious from around the world.
The IPCC report (2018) that I mentioned above laid out what we
need to do to avoid a very perilous future. For the last 15 years I
have spent much time speaking and writing about climate change
for general, non-scientific audiences (Hodson and Hodson, 2011,
2013, 2015). Every new talk I prepare or article I write about
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climate change makes me aware of just how serious and urgent
this issue is. Now I am approaching my 40th anniversary of
working on phytoliths, and we can see that they might have a
potential role in carbon sequestration in soils. I am not convinced
that phytoliths will be a “silver bullet” for climate change, but
the work described above suggests that they may have a role
to play. We now really need a concerted and determined effort
from the whole phytolith community to test out some of the
ideas laid out above. There are key topics for scientists from
many different disciplines to work on, from those investigating
phytolith chemistry and formation at a molecular level right up to
those studying biogeochemical cycles. It is extremely important
that we maintain very good communications between all these
scientists, and not end up in disciplinary boxes. There is a lot
to recommend the phytolith superdiscipline idea of Katz (2018),
where boundaries between disciplines are dissolved.

There has been considerable tension within the phytolith
community over carbon sequestration in the last few years, and
academic disagreements have turned to friction and friction
to heat. I sincerely hope that all of the scientists working on
carbon sequestration in phytoliths will one day be reconciled (and
reconciliation is even more needed where dating of phytoliths is
concerned). This issue is too important for personal rivalries to
get in the way. I would appeal for all involved to work together
toward a common goal. That goal is working out how important
PhytOC is, and if it is important then finding ways of using

the knowledge gained as quickly as possible. Put aside previous
arguments and get on with the job. I will gladly work with anyone
who wants advice or help, and I will not be upset if some of the
thinking above is incorrect. I have put forward a hypothesis which
seems to explain the available data, but it is a hypothesis and it
needs testing. If, in 10 years’ time, someone writes, “Hodson got
it totally wrong, but he gave me some ideas, and now we have it
right,” then I will be very happy.
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Phytolith radiocarbon dating can be traced back to the 1960s. However, its reliability 
has recently been called into question. Piperno summarized recent dating evidence, but 
most phytolith dating results from China were not included in the review because they 
are written in Chinese. Herein, we summarize and evaluate previous phytolith dating 
results from China. We also review recent debates on the nature and origin of phytolith-
occluded carbon (abbreviated as PhytOC), as well as the older age of phytoliths retrieved 
from modern plants. We conclude that although PhytOC includes a small amount of 
old carbon absorbed from the soil, this carbon fraction has not always biased phytolith 
ages, indicating that in certain situations, phytoliths can be tried as an alternative dating 
tool in archaeological and paleoecological research when other datable materials are 
not available.

Keywords: older carbon, PhytOC, radiocarbon dating, phytolith age, phytolith

INTRODUCTION

Phytoliths are noncrystalline SiO2 · nH2O that are deposited within the cells and cell walls in 
different parts of plants (Piperno, 2006). The morphology of a phytolith often resembles the 
shape of the cell in which it is formed and can be used in plant taxonomy. Phytoliths occlude a 
small amount of carbon during their deposition [phytolith-occluded carbon (PhytOC)] (Smith 
and Anderson, 2001; Parr and Sullivan, 2005). When a plant dies and decays, phytoliths and their 
occluded carbon can persist in the soil for a long time owing to the high resistance of phytoliths 
against decomposition. Phytolith analysis has been applied to environmental, anthropological, 
and geological research. Radiocarbon dating of phytoliths is a long-established technique that can 
be traced back to the 1960s (Wilding et al., 1967; Kelly et al., 1991; Piperno and Becker, 1996; 
Piperno and Jones, 2003). During the past decades, several researchers have attempted to date 
phytoliths, and some of them have achieved reasonable results. However, some of them have failed, 
because they found that phytolith carbon comes from multiple sources (either photosynthetic 
or soil carbon) (Reyerson et al., 2016). Moreover, the carbon in phytoliths that is taken up from 
the soil is variable and generally unknowable, which limits phytoliths carbon as a reliable dating 
material (Alexandre et al., 2015; Alexandre et al., 2016; Santos et al., 2018). Consequently, along 
with organic matter in pottery, phytoliths are considered as problematic samples for radiocarbon 
dating (Taylor and Bar-Yosef, 2014).
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Recent debates in phytolith carbon dating research include 
the following topics: Is phytolith dating reliable? Is all phytolith 
carbon encapsulated via photosynthesis from atmospheric CO2 
during plant growth, or is some absorbed from soil, which might 
distort phytolith dating? These questions are relatively new and 
were widely discussed recently (Hodson, 2018). Researchers have 
so far failed to reach an agreement on the reliability of phytolith 
carbon dating, largely because the scientific study of the nature, 
content, and status of PhytOC is still in its infancy.

In a review article, Piperno (2016a) summarized and evaluated 
almost all previous phytolith dating results of studies from 
different regions of the world. However, the results of several 
phytolith dating studies from China were not included, possibly 
because they are written in Chinese. Herein, we briefly review the 
history of phytolith carbon dating research. We then introduce 
and summarize the history of phytolith carbon dating research in 
China. Finally, we will discuss the main focus of current debate 
and the issues associated with phytolith carbon dating.

A BRIEF HISTORY OF PHYTOLITH 
CARBON DATING RESEARCH

Jones and Beavers (1964) were the earliest researchers to discover 
that phytoliths can occlude carbon during their formation in 
plants (Wilding et al., 1967). The earliest attempt to date carbon 
in phytoliths was published in 1967 by Wilding (1967), who 
extracted approximately 75 g of phytoliths from 45 kg of a prairie 
surface soil horizon, isolated the occluded carbon, and obtained 
a date of 13,300 ± 450 a BP. Since Wilding’s pioneering research 
on phytolith carbon dating, three stages of phytolith carbon 

dating research can been identified according to the total annual 
citations of Wilding’ s 1967 article (Figure 1).

First is the early research period, from around 1970 to 1990. 
As shown in Figure 1, although Wilding’s phytolith dating results 
received some attention sporadically, only a few studies used 
phytolith dating to construct chronological sequences, mainly 
because of the time-consuming phytolith extraction process and 
the large sample size required for conventional radiocarbon dating.

Second is the revived period of research, from 1990 to 2010. 
The development of accelerator mass spectrometry (AMS) 
technology has enabled the measurement of very small samples 
containing trace amounts of carbon. Utilizing this technique, 
a much smaller amount of phytoliths would yield sufficient 
carbon for dating, greatly reducing the amount of phytolith 
extraction required. Mulholland and Prior (1993) summarized 
the process of AMS-based radiocarbon dating of phytoliths by 
presenting details of extracting and dating phytoliths. The initial 
application of phytolith carbon dating during this period was 
performed by Kelly et al. (1991). They applied phytolith carbon 
dating into three soil profiles from the northern Great Plains. The 
results showed that there may be some serious problems with 
dating phytoliths because two of the three soils they examined 
showed the phytoliths were younger at deeper horizons in the 
soil profile, contrary to expectations. Piperno and Stothert 
(2003) used phytolith carbon to date Cucurbita domestication 
through phytolith carbon-14 study during the early Holocene 
in Southwest Ecuador (Piperno and Becker, 1996; Piperno and 
Jones, 2003).

Third is the period of controversy in phytolith carbon dating 
research after 2010. Recent studies on phytolith dating of modern 
plants have argued that old carbon absorbed by plants from soils 

FIGURE 1 | Number of articles that cited the study of Wilding per year after 1967. All references were collected from Google Scholar (https://scholar.google.com).
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distorts the accuracy of phytolith carbon dating, with modern 
plants producing phytoliths radiocarbon dates up to several 
thousand years (Santos et al., 2010; Santos et al., 2012; Yin et al., 
2014; Reyerson et al., 2016). Because the age of the phytoliths 
is overestimated compared with that of other dating materials, 
phytolith carbon is considered problematic for dating by several 
researchers (Taylor and Bar-Yosef, 2014; Santos et al., 2018). 
Other researchers argue that some reasonable phytolith dates 
have been measured from both modern plants and paleo-soils 
(Sullivan and Parr, 2013; Piperno, 2016a; Asscher et al., 2017; Zuo 
et al., 2017). Meanwhile, the soil phytolith ages extracted from 
different cultural layers of several archaeological sites have shown 
good consistency with their paired dating samples collected from 
the same depth (Asscher et al., 2017; Zuo et al., 2017) (Table 1).

PHYTOLITH CARBON DATING RESEARCH 
IN CHINA

Phytolith research began in the late 1980s in China (Wang and 
Lu, 1989; Lu and Wang, 1990; Wang and Lu, 1992), which is 
over 150 years after the first report of phytoliths in living plants 
by Struve in 1835. The first report of phytolith carbon dating 

in a Chinese journal was published by Wang and Lu (1997), 
two pioneer phytolith researchers, in 1997 (Wang, 1998). They 
introduced the idea of radiocarbon dating of PhytOC to China, 
as summarized in the review of Mulholland and Prior (1993). 
Wang aimed to determine the chemical composition of phytoliths 
extracted from 16 species using an electron microprobe. Although 
the method used could not accurately measure the chemical 
composition of phytoliths, Wang was the first scholar in China 
who realized the importance of chemical aspects of phytoliths. 
However, both Wang and Lu did not actually date phytoliths.

It was only after 2010 that PhytOC and phytolith radiocarbon 
dating were studied again in China. To test the importance of 
carbon sequestration in phytoliths (Parr and Sullivan, 2005; Parr 
et al., 2009; Parr et al., 2010), we used the wet oxidation method 
to extract phytoliths from eight species of millet and showed a 
significant variation in PhytOC in different millet species (Zuo 
and Lü, 2011). Song et al. (2014; Song et al., 2017a) evaluated 
PhytOC and estimated the PhytOC accumulative rate in different 
ecosystems in China and even at the global scale. Zuo et al. (2014) 
then focused on soil phytoliths in the Chinese Loess Plateau, 
developing a wet oxidation method, modified from previous 
phytolith extraction processes, which can extract pure phytoliths 
from the soil (Piperno, 2006; Carter, 2009; Santos et al., 2010).

TABLE 1 | Researchers involved in phytolith carbon dating studies.

Authors Institution Dating materials Processing method References

L. P. Wilding Department of Agronomy, Ohio State 
University

Well-drained Brunizem soil, 
Ohio

H2O2 + HCl (1N) (Wilding, 1967)

E. Kelly Department of Agronomy, Colorado State 
University

Prairie soil, Kansas and 
Nebraska

H2O2 + HCl (6N) (Kelly et al., 1991)

D. Piperno Smithsonian Tropical Research Institute, 
Balboa, Panama

Living plants, paleo-soil, 
Central America

HCl (1N) + H2SO4 or HNO3/
KClO3

(Piperno and Stothert, 2003; 
Piperno, 2016a; Piperno, 
2016b)

S. Mulholland Duluth Archaeology Center, University of 
Minnesota

Soil H2O2 + HCl (1N) +  H2CrO4 
(1N)

(Mulholland and Prior, 1993)

C. Prior National Isotope Centre, GNS Science, 
Lower Hutt, New Zealand

Tephra, New Zealand Not given in detail (Santos et al., 2016)

G. Santos Earth System Science, University of 
California, Irvine

Living plants; volcanoclastic 
soil, hydromorphic soil, 
ferralitic soil

H2O2 + HNO3 + HClO4 + HCl
HNO3 + HClO4 + HCl

(Santos et al., 2010)

P. Reyerson University of Wisconsin–La Crosse, United 
States

Living plants HCl + H2SO4 + H2O2 + HNO3/
KClO3; HNO3 + HClO4

(Reyerson et al., 2016)

U. Rieser School of Geography, Environment and 
Earth Sciences, Victoria University of 
Wellington

Tephra, New Zealand Rigorous oxidation, not given 
in detail

(Rieser et al., 2007)

J. Parr, L. Sullivan Southern Cross GeoScience, Southern 
Cross University

Living plants, fallen leaves, 
Australian

HCl +  H2O2 + HNO3 (Sullivan and Parr, 2013)

E. Boaretto, Y. 
Asscher

D-REAMS Radiocarbon Laboratory, 
Weizmann Institute of Science

Living plants, paleo-soil, 
cultural layers, Israel

HCl (1N) (Asscher et al., 2017)

M. Madella Department of Archaeology and 
Anthropology, IMF, Spanish National 
Research Council

Paleo-soil, cultural layers, 
Sudan

H2O2 + HCl (1N) (Madella et al., 2014)

H. Lu Institute of Geology and Geophysics, 
Chinese Academy of Sciences

Paleo-soil, cultural layers, 
China

H2O2 + HCl (1N) +  HNO3/
KClO3

(Zuo et al., 2017)

X. Zuo School of Geographical Science, Fujian 
Normal University

Paleo-soil, cultural layers, 
China

H2O2 + HCl (1N) +  HNO3/
KClO3; H2O2 + HCl (1N)

(Zuo et al., 2018)

X. Wu, H. Jin, 
X. Yan

School of Archaeology and Museology, 
Peking University

Paleo-soil, paleo-soil, cultural 
layers, China, rice field

H2O2 + HCl (1N) (Jin et al., 2014; Yan, 2013)

J. Yin, X. Yang Institute of Geology, China Earthquake 
Administration

Living plants, paleo-loess, 
China

H2O2 + HCl (1N) +  
HNO3 + NaClO2

(Yang, 2013; Yin et al., 2014)
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In 2013, Wu, an expert in archeometry from Peking 
University, cooperated with us in phytolith carbon dating by 
providing secure cultural layers rich in phytoliths. We then 
used the modified wet oxidation method to extract phytoliths, 
and the recovered phytoliths were sent to the Peking University 
Radiocarbon Laboratory for radiocarbon measurement. Wu also 
sent her students to our laboratory to learn how to extract pure 
phytoliths from soil. One of them, Jin, extracted phytoliths from 
the early cultural layers of Tianluoshan site. The results showed 
that the phytolith date (4,550 ± 35 a BP) was marginally older 
than their paired seeds age (4,400 ± 40 a BP). They speculated 
that the organic material with carboxyl groups that were not 
completely removed during the extraction processes might cause 
phytolith dates older than its paired seed date (Jin et al., 2014). 
Another student, Yan (2013), further compared different dating 
substances, such as charcoal, phytoliths, fatty acids, and total 
organic carbon, collected from the same depth of storage pits in 
Cishan site and paleo rice fields in Shanlonggang site. Among 
the five paired dating samples, two phytolith dates overlapped 
with their paired charcoal ages within ±2σ uncertainty; one 
was almost 5,000 years older than its paired charcoal age, and 
the remaining two were approximately 100 years older than the 
charcoal ages (Table 2). She concluded that the phytolith age is 
usually older than the charcoal age, while the fatty acid age was 
closer to the charcoal age, as it is relatively stable among all the 
dating substances (Yan, 2013).

Furthermore, Yin, an expert in quaternary geochronology from 
the Institute of Geology, Chinese Earthquake Administration, 
joined us in phytolith carbon dating. He and his colleague 
developed a new AMS graphite target preparation line in their 
14C laboratory. They dated phytoliths extracted from paleo-loess 
with an OSL date of 71 ka. The results showed that the phytolith 
date (42,380 ± 180 a BP) was close to the background date of the 
graphite system (42,750 ± 190 a BP), suggesting that not only was 
soil PhytOC not contaminated by exogenous organic materials, 
but also very limited modern carbon was introduced during 
phytolith extraction, AMS graphite sample preparation, and 
radiocarbon measurement (Yang, 2013). They then combusted 
phytoliths extracted from modern rice and millet at different 
temperatures and the results showed that phytoliths combusted 
at lower temperatures (≤900°C) yielded more reasonable ages 
than at higher temperatures (≥1,100°C) (Yin et al., 2014). Given 
older phytolith ages at higher combustion temperatures, they 
speculated that there are probably two fractions of organic 
carbon in phytoliths, namely, labile and recalcitrant carbon.

As mentioned above, several Chinese research groups have 
shown great interest in phytolith carbon dating; however, only a 
few have provided images of phytoliths extracted from the soil to 
validate the efficiency of their extraction methods in completely 
eliminating all exogenous organic materials and other minerals. 
In this regard, we used our modified oxidation method to extract 
phytoliths from the cultural layers of several archaeological sites in 
China. Before sending the phytolith samples to Beta Analytic for 
radiocarbon measurement, we used scanning electron microscopy, 
energy-dispersive X-ray spectroscopy, and X-ray refraction to 
check the purity of phytoliths. The preliminary results showed that 
most of the phytolith ages were generally consistent with that of 
other dating materials collected from the same depth as phytolith 
samples, except for one outlier (Zuo et al., 2016). We attributed the 
inconsistency to the postdepositional processes of soil phytoliths. 
This suggests that each step of phytolith dating, including 
sampling, extracting, and measurement, should be carefully 
carried out to ensure that phytolith carbon dating is based on a 
secure archaeological context (without postdepositional processes) 
and appropriate chemical preparation (without exogenous organic 
materials). Our results showed that, for these sites, phytolith ages 
were consistent with those of other dated materials at the same 
level or context, suggesting that phytolith radiocarbon dating can 
be reliable and accurate at some sites (Zuo et al., 2017).

The reliability of phytolith dating will be discussed with 
respect to the following three aspects: 1) Is old carbon from 
the soil occluded into the phytoliths? 2) If so, how much 
will the old carbon skew the phytolith age determination? 3) 
Do the different methods (both for phytolith extraction and 
radiocarbon measurement) affect the phytolith dating results?

THE NATURE AND SOURCE OF PHYTOC: 
OLDER CARBON OR PHOTOSYNTHETIC 
CARBON?

Although there has been considerable discussion, researchers 
began to pay attention to the nature of PhytOC in the early stage 

TABLE 2 | Phytolith radiocarbon dating results from China with uncertainty ±2σ.

Archaeological 
sites

Conventional 
age (BP)

2σ Calibration 
(Cal BP)

Reference

Shangshan 19,060 ± 60 23,065–22,825 Zuo et al., 2018
Shangshan 19,920 ± 70 24,115–23,830
Hehuashan 10,800 ± 40 12,740–12,680
Zhuangling 7,470 ± 30 8,370–8,200
Guangtaoyuan 6,680 ± 30 7,590–7,505
Miaoshan 7,720 ± 30 8,560–8,425
Maanhe 5,310 ± 30 6,275–6,235
Wuluoxipo 6,350 ± 30 7,506–7,417 Zuo et al., 2016
Tianluoshan 5,940 ± 30 6,805–6,674
Tianluoshan 5,180 ± 30 5,990–5,906
Xinglefang 5,110 ± 30 5,829–5,750
Yuancun 5,310 ± 30 6,184–5,996
Yingyang 5,760 ± 40 6,659–6,465
Shangshan 8,280 ± 40 9,417–9,134 Zuo et al., 2017
Shangshan 7,280 ± 40 8,175–8,012
Hehuashan 8,130 ± 40 9,121–8,992
Hehuashan 8,040 ± 30 9,030–8,762
Huxi 7,310 ± 40 8,186–8,021
Huxi 7,180 ± 40 8,152–7,934
Huxi 7,530 ± 30 8,406–8,221
Huxi 7,680 ± 30 8,540–8,412
Huxi 7,870 ± 40 8,953–8,553
Tianluoshan 4,550 ± 35 5,190–5,052 Jin et al., 2014
Shanlonggang 2,370 ± 70 2,712–2,306 Yan, 2013
Shanlonggang 3,740 ± 40 4,197–4,232
Cishan 10,890 ± 35 12,810–12,701
Cishan 6,690 ± 40 7,622–7,478
Cishan 7,285 ± 30 8,169–8,023
Cishan 7,590 ± 35 8,433–8,346
Cishan 8,725 ± 35 9,798–9,554
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of phytolith carbon dating research in the 1960s. Infrared spectral 
data of phytoliths suggested that PhytOC is composed of a variety 
of cell-derived substances, such as humic acid, amino acids, and 
amines (Wilding et al., 1967). The significantly depleted δ13C in 
phytoliths relative to that in the host plant tissue indicated that 
PhytOC might include lipids and lignin, which might have a 
depleted carbon isotope (Kelly et al., 1991). Smith and Anderson 
(2001) also found lipids in phytoliths, but no lignin. Masion et al. 
(2017) detected several carbohydrate components in phytoliths, 
such as sugars, adenosine triphosphate, and sodium pyrogluconate, 
using a new technique of dynamic nuclear polarization nuclear 
magnetic resonance. Raman spectrum analysis of single dumbbell 
phytoliths from sorghum also revealed that phytoliths contain 
carbohydrates, lipids, and other organic substances (Gallagher 
et al., 2015). Although there are differences in the understanding 
of the nature of PhytOC, previous studies assumed organic matter 
from plant tissue is the only source of PhytOC.

Santos, an expert in isotopic analysis, was the first to question the 
reliability of phytolith carbon dating. Initially, Santos et al. (2010) 
performed radiocarbon AMS measurement of carbon occluded 
in phytoliths from living plants and unexpectedly obtained dates 
that were several thousand years old. They suggested that there are 
some possible sources of carbon contamination, which needed 
further investigation (Santos et al., 2010). In 2012, they further 
suggested that soil-derived carbon (older carbon) absorbed by 
plant roots is a possible reason for the old phytolith ages obtained 
for living plants (Santos et al., 2012), although they lacked direct 
evidence showing that phytoliths can occlude older carbon from 
the soil. If older carbon is occluded in phytoliths, not only is the 
use of phytolith carbon for dating called into question, but it also 
reduces the importance of PhytOC in global carbon sequestration 
(Santos and Alexandre, 2017), and phytolith carbon sequestration 
might not be as significant as that reported by Song et al. (2016). 
While the contribution of old soil carbon to PhytOC was debated 
by several researchers interested in PhytOC (Piperno, 2016b; 
Santos et al., 2016; Santos and Alexandre, 2017; Song et al., 2017b; 
Zuo et al., 2017; Santos et al., 2018), Santos and her group were 
seeking direct evidence of soil-derived C in phytoliths. Using the 
comparative isotopic analysis of PhytOC, host tissues, atmospheric 
CO2, and soil organic matter, they found that PhytOC is partially 
obtained from soil carbon (Reyerson et al., 2016).

It is now clear that small amounts of soil carbon are occluded 
in phytoliths, as well as in plant tissues, as some hydroponic 
experiments have indicated that plants can absorb a small amount 
of sucrose or glucose from the source medium (Wu et al., 2015; 
Zhang and He, 2015; Chen et al., 2016). Because it is not possible 
to estimate the percentage of PhytOC that is of soil origin and 
the age of the soil carbon occluded by phytoliths is unknown, 
Santos et al. (2018) suggest that radiocarbon dating of phytoliths 
is highly problematic and not trustworthy.

CONTRIBUTION OF OLDER SOIL 
CARBON TO PHYTOLITH AGES

With further understanding of the nature of phytoliths and 
PhytOC, we now realize that although most of the PhytOC is 

from atmospheric CO2 fixed by photosynthesis, a small amount 
of carbon is not photosynthetic, likely derived from soil 
organic carbon. Because plants absorb old soil carbon through 
the roots, this carbon should be homogenously distributed in 
different tissues (Gallagher et al., 2015), and the roots, stems, 
leaves, and other parts will contain old carbon from the soil. 
If the phytolith ages are skewed by older carbon from the soil, 
one would expect the same effect when dating plant tissue, but 
this is clearly not the case, because plant debris is one of the 
best dating materials in sediment. Santos et al. (2018) noted 
that compared to PhytOC 14C results, plant-C 14C results were 
not biased by old soil carbon, suggesting the asymmetric 
14C effects of soil carbon contribution to plant debris and 
PhytOC. They speculated that there must be some unknown 
processes that allow most of the soil carbon absorbed by the 
roots to accumulate in phytoliths (Alexandre et al., 2016; 
Santos et al., 2018). However, due to the limited knowledge 
about the relocation of soil carbon in plants, further studies 
are needed to investigate whether asymmetric relocation of 
soil carbon exists in plants. However, Hodson (2012; 2015) 
has stated that no mechanism can explain why soil carbon 
preferentially accumulates in phytoliths, while large amounts 
of photosynthetic carbon in plant tissues are excluded during 
the deposition of silica.

It is unreasonable to attribute all questionable phytolith-
dating results to distortion by soil carbon. Other possible factors 
influencing the process of sampling, phytolith extraction, and 
radiocarbon measurement cannot be ignored when evaluating 
phytolith ages. Studies on contamination effects on 14C dating 
showed that the introduction of 1% dead carbon can only result 
in an increase in the age by approximately 80 years (Taylor 
and Bar-Yosef, 2014). With the isotopic-labeled analysis of the 
silicon-rich hydroponic solution of grass, it was revealed that 
soil-derived carbon in phytoliths might constitute 0.15% of 
the PhytOC (Alexandre et al., 2016). Even though the actual 
percentage is likely considerably higher in natural soil conditions, 
such a small amount of older carbon will not yield phytolith ages 
thousands of years older than expected if assuming a 1.5% soil 
carbon contribution to PhytOC (10 times higher than under 
hydroponic conditions).

INFLUENCE OF DIFFERENT EXTRACTION 
AND RADIOCARBON MEASUREMENT 
METHODS ON PHYTOLITH CARBON 
DATING

The wet oxidation method is the main phytolith extraction 
method in phytolith carbon dating research, and the difference 
among different extraction methods is mainly in the oxidation 
stage before heavy-liquid flotation of phytoliths. One method 
uses H2SO4 + H2O2, known as rapid oxidation or over oxidation, 
and the other uses HNO3 or HNO3 + KClO3. Researchers who 
used the latter method suggested that the oxidation process 
should remove as much exogenous organic matter as possible; 
however, rapid oxidation is so harsh that it not only can remove 
the exogenous organic matter, but also might change the nature 
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of phytoliths, thus skewing the phytoliths ages (Sullivan and 
Parr, 2013; Song et al., 2016; Zuo et al., 2016). Whether the rapid 
oxidation method will change the nature of PhytOC remains 
unclear, but the PhytOC content will decrease significantly after 
rapid oxidation (Table 3) (Santos et al., 2010; Zuo and Lü, 2011; 
Santos et al., 2012; Corbineau et al., 2013), indicating that the 
carbon occluded in cavities of phytoliths is likely to be removed 
and that the integrity of PhytOC is destroyed (Sullivan and Parr, 
2013; Parr and Sullivan, 2014).

The overoxidation method is so strong that it might 
cause phytolith ages older than the expected ages because 
of changes in the nature and structure of PhytOC, while the 
underoxidation method and incomplete removal of organic 
material could cause older phytolith ages (Zuo et al., 2018). We 
compared the influence of two different phytolith extraction 
methods on radiocarbon dating of phytoliths. The results 
showed that phytolith ages acquired using the conventional 
extraction method that does not exclude all exogenous organic 
materials were substantially older than those obtained using 
improved extraction methods.

Nondestructive phytolith extraction methods to extract 
phytoliths without using a strong acid not only can yield pure 
phytoliths, but also can maintain the integrity of PhytOC. 
Asscher et al. (2017) only used HCl (1N) to exclude calcium 
carbonate in the phytolith extraction process. Before acid 
treatment, they used a heavy liquid (2.4 and 1.6 g/ml) to 
remove quartz, calcite, and carbonized organic matter. 
There was no heating in any step of the phytolith extraction 
process. The results showed that several phytolith ages were 
consistent with the age of carbonized seeds within the ±1σ 
correction interval at the same level; the others have slightly 
older ages (Asscher et al., 2017). These phytolith dates were 
challenged by Santos et al. because they were obtained from 
phytoliths whose purity was not assessed by scanning electron 
microscopy (SEM) and energy-dispersive X-ray spectroscopy 
(EDX) (Santos et al., 2018). The non-heating method used by 
Asscher et al. (2017) is not likely to produce a pure phytolith 
extract and thus the remaining exogenous organic matter 
might cause phytolith ages older than the paired seeds ages. 
This method was also used to extract phytoliths in the analysis 

of DNA in phytoliths, in order to avoid the influence of strong 
acids and high temperatures on DNA information that might 
be preserved in phytoliths (Elbaum et al., 2009).

POSSIBLE REASONS FOR OLDER 
PHYTOLITH AGES IN SOIL PROFILES AND 
LIVING PLANTS

After carefully reviewing previous phytolith dating reports 
and other studies where older carbon may have biased PhytOC 
dates (Kelly et al., 1991; Piperno and Becker, 1996; Kelly et al., 
1998; Krull et al., 2003; Piperno and Jones, 2003; Piperno and 
Stothert, 2003; Mcmichael et al., 2012; Sullivan and Parr, 2013; 
Madella et al., 2014), we speculate that older phytolith ages in 
soil profiles could be explained by the following two aspects. 
First, if the extracted phytoliths are pure after checking 
with SEM and EDX, then the postdepositional processes of 
phytoliths should be considered. Second, if the phytolith 
dating results are older than expected (even ten thousand 
years older), one should repeat the experiment and revaluate 
if the protocols used could exclude all carbonate and other 
minerals from the samples. Incompletely excluding sources of 
dead carbon can lead to phytolith ages hundreds to thousands 
of years older than expected. The introduction of 5% old 
carbon would make the dating sample (true age is 10,000 a 
BP) approximately 400 years older, and adding 50% very old 
carbon would make the age only about 5,000 years older. 
Thus, if no more than 1% PhytOC is taken up from the soil, 
one would not expect phytolith dates to differ from expected 
ages by thousands of years.

The unexpectedly older ages dated for extracted phytoliths 
from modern plants (Reyerson et al., 2016) may be caused 
by phytolith extraction procedures such as overaggressive 
digestion protocols that alter the structure, nature, and 
yield of PhytOC (Sullivan and Parr, 2013; Parr and Sullivan, 
2014). Recently, some detection techniques, such as 
Raman spectroscopy and nanoscale secondary ion mass 
spectrometry, have been used to determine the location, 
distribution, and chemical structure of PhytOC (Alexandre 
et al., 2015; Gallagher et al., 2015), showing a continuous 
but nonhomogeneous distribution. The amount and nature 
of PhytOC might vary considerably depending on phytolith 
morphology and different allocations within phytoliths. 
Using harsh protocols to extract phytoliths from modern 
plants (Santos et al., 2010; Santos et al., 2012; Corbineau et al., 
2013; Yin et al., 2014; Reyerson et al., 2016) might damage the 
integrity of PhytOC. Moreover, the carbon in cavate or surface 
of phytoliths might be consumed by the harsh digestion 
protocols, which would lead to underestimation of the total 
amount of PhytOC (Parr and Sullivan, 2014). The consumed 
carbon might be isotopically rich in 14C; however, the residual 
carbon fraction might be highly depleted in 14C (Figure 2). 
Given that the lipids within phytoliths are depleted in 13C 
(Smith and Anderson, 2001), this is also probably true for 14C 
(Hodson, 2016).

TABLE 3 | Several species of PhytOC content in phytoliths processed by 
different oxidation methods.

Species The 
oxidation 
methods

PhytOC of 
phytoliths 

(%)

Reference

Reed Less harsh 0.66–2.44 (Li et al., 2013a)
Rice Less harsh 1.4–3.4 (Li et al., 2013b)
Bamboo Less harsh 1.60–4.02 (Parr et al., 2010)
Wheat Less harsh 1.29–12.91 (Parr and Sullivan, 2011)
Wheat Less harsh 1.65 (Hodson et al., 2008)
Sugarcane Less harsh 3.88–19.26 (Parr et al., 2009)
Sandy grassland Less harsh 0.57–1.55 (Ru et al., 2018)
Millet More harsh 0.88–4.88 (Zuo and Lü, 2011)
Festuca More harsh 0.07–0.15 (Carter, 2009)
Sorghum, wheat More harsh 0.002–0.24 (Reyerson et al., 2016)
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RECONCILING OR REBUTTING?

As mentioned above, it is difficult for researchers to reconcile 
on the reliability of phytolith carbon dating. The focus of 
discussion is mainly on the nature of PhytOC, the actual 
contribution of soil carbon to phytolith dates, and influences 
of different extraction and measurement processes on 
phytolith dates. Santos et al. based their older carbon theory 
on the following four aspects: 1) the age of phytoliths from 
modern living plants are decades to thousands of years older 
than their sampling time (Santos et al., 2010; Santos et al., 
2012); 2) over 200 comparative isotopic measurements of 
PhytOC and isotopic-labeled experiment provide evidence of 
soil carbon in PhytOC (Reyerson et al., 2016); 3) although soil 
carbon can be absorbed by the roots, it does not skew plant-C 
14C results, but only the PhytOC 14C results; and 4) no matter 
how soil phytolith dates match their expected ages, they are all 
questionable due to the variability of soil carbon contribution 
to PhytOC (Santos et al., 2018).

As discussed in the beginning of the review, not all phytolith 
dating results are older than the expected results. Several 
phytoliths extracted from modern plants, dated by Piperno 
(2016a) and Sullivan and Parr (2013), have either returned 
postbomb 14C ages or are very close to the modern dates. 
Most of the older modern phytoliths were dated by Santos et 
al. (2010). Phytolith dates from modern plants processed with 
the harsh techniques (Santos et al., 2012; Reyerson et al., 2016) 
are often considerably older than on plants processed with 
less harsh methods (Piperno, 2016a; Asscher et al., 2017; Zuo 
et al., 2017). Moreover, the harsh techniques typically leave 

much less carbon for dating than less harsh methods, partially 
due to leakage and the dual source of carbon—one labile and 
the other resistant (Hodson, 2019). Although researchers have 
stated that they have carefully dated PhytOC, Santos et al. 
(2012) might have only dated the carbon in lumen phytoliths, 
while Piperno et al. (2016a) might have dated not only the 
carbon in lumen phytoliths but also a part of carbon in cell 
wall phytoliths. A high amount of carbon processed by less 
harsh methods might preserve the integrity of PhytOC, but a 
less amount of carbon processed by harsher methods should 
not be preferred for dating.

Another key point that must be considered is that phytoliths 
differ in several aspects from other datable materials such as 
charcoal and seeds. Dating phytoliths and charcoal from the 
same stratigraphic/sedimentary level does not mean that they 
should have exactly the same dates, since phytolith age is the 
average age of all phytoliths in that level, whereas macro-plant/
charcoal dates from a single sample represent a single moment 
in time. It is unreasonable to expect that a piece of charcoal 
or seed deposited at a single moment can completely fall 
within the age of a collection of phytoliths (Piperno, 2016a). 
A difference of hundreds of years between the dating results 
of soil phytoliths and other datable materials when sampling 
a thick soil layer of 5 to 10 cm is generally acceptable and 
reasonable (Zuo et al., 2016). Considering the depositional 
processes of phytoliths in soil, PhytOC should not be used for 
answering high-resolution chronological questions. However, 
it can be tried as an alternative dating method when other 
datable materials are absent.

FIGURE 2 |  Influence of harsh digestion protocols on phytolith carbon from different kinds of phytoliths. The red and black dots represent 14C and 13C, respectively. 
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CONCLUSIONS AND REMARKS

As an unconventional 14C dating material, phytoliths have 
been widely used during the past half century. Radiocarbon 
dating PhytOC has played an important role in constructing 
the chronological sequence of some key scientific issues, such 
as when pumpkin and rice domestication began (Piperno 
and Stothert, 2003; Zuo et al., 2017), but at the same time, 
the technique has also been criticized (Santos et al., 2016; 
Santos and Alexandre, 2017; Santos et al., 2018). A review of 
the phytolith dating literature revealed that not all phytolith 
dating results are inconsistent with expected ages. The poor 
results cannot be entirely attributed to the influence of older 
carbon absorbed from the soil, because most of the PhytOC 
is obtained from the atmospheric CO2 synthesized by 
photosynthesis. Phytolith ages thousands of years older than 
expected are probably due to impure phytolith extracts not 
completely cleaned of extraneous carbon rather than phytolith 
occluded carbon obtained from the soil.

Compared with other conventional dating materials, 
research on the mechanisms, methods, and results of 
phytolith dating is limited. There are considerable empirical 
data showing that at many sites, PhytOC dating provides 
reasonable dates. However, concerns about extract purity, as 
well as the variable nature of the PhytOC carbon pool, suggest 
that the reliability of phytolith dates is questionable in many 
cases. Whether different phytolith extraction methods will 
inevitably lead to differences in the dating results remains 
an open question. Whether the difference in the PhytOC 
content obtained using the rapid oxidation method and the 
conventional oxidation methods is due to PhytOC being 
destroyed or the organic matter in plants being incompletely 
removed is important for evaluating the phytolith dating 

results and key to reconcile the conflicting opinions. Phytolith 
researchers working with PhytOC urgently need to agree on 
a standardized extraction procedure that produces a phytolith 
extract verified by SEM and EDX to be free of extraneous 
carbon while using the least harsh chemicals possible. We 
expect that more data on phytolith dating in other regions 
and laboratories will be published in the future and will 
further clarify issues relating to 14C dating and will allow 
the expansion of the application of phytolith dating to the 
construction of chronological sequences.
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DISCIPLINARY ORIGINS OF PLANT SILICON AND PHYTOLITH

RESEARCH

Plant silicon and phytolith research stands as a good example for how a single phenomenon
or theme is studied by scholars from multiple disciplines, and for how knowledge flows among
disciplines. At its very core and origins, plant silicon and phytolith research lies in traditional
botany, since it studies the occurrence and role of silicon and phytoliths within plants and among
plant groups (e.g., Hodson et al., 2005; Katz, 2014, 2015; Strömberg et al., 2016) and can be
potentially used to improve taxonomy and systematics by providing more characters to be included
in analyses (e.g., Prychid et al., 2004; Katz, 2014, 2018a). Nevertheless, plant physiologists study
the mechanisms of silicon uptake, transport and accumulation within plants (e.g., Peleg et al., 2010;
Mitani-Ueno et al., 2014; Ma and Yamaji, 2015; Kumar et al., 2017), chemists study the mechanisms
of its deposition (e.g., Currie and Perry, 2007; Patwardhan et al., 2012), ecophysiologists identify
silicon’s and phytoliths’ functions within plant tissues (e.g., Fauteux et al., 2005; Liang et al., 2007;
Epstein, 2009; Guntzer et al., 2012; Cooke and Leishman, 2016; Coskun et al., 2016) and ecologists
study how silicon and phytoliths interact with herbivores (e.g., Massey and Hartley, 2006; Katz
et al., 2014; Hartley, 2015; Frew et al., 2016) and shape plant communities (e.g., Jacobs et al., 2013;
Schoelynck et al., 2014; Cooke et al., 2016), ecosystems (e.g., Cooke and Leishman, 2011; Cooke
et al., 2016; Schoelynck and Struyf, 2016), and even biomes and the entire ecosphere (e.g., Carey
and Fulweiler, 2012, 2016; Song et al., 2012, 2017; Katz, 2018b).

Within Earth sciences, biogeochemists study the physics and chemistry of plant silicon and
phytoliths, including their dissolution (e.g., Fraysse et al., 2009; Cabanes and Shahack-Gross, 2015)
and chemical and isotopic composition (e.g., Hodson et al., 2008; Kamenik et al., 2013; Alexandre
et al., 2015). Others study the silicon cycle (e.g., Alexandre et al., 2011; Carey and Fulweiler, 2012,
2016; Song et al., 2012, 2017) and its connections with other biogeochemical cycles (e.g., Street-
Perrott and Barker, 2008; Carey and Fulweiler, 2012, 2016; Song et al., 2012, 2017; Alexandre
et al., 2015; Cornelis and Delvaux, 2016). Plant silicon and phytoliths are also often used in
geoarchaeology to infer past human life (e.g., Tsartsidou et al., 2008; Lancelotti et al., 2014; Hart,
2016), as well as in paleontology to reconstruct ancient vegetation and ecosystems (e.g., Strömberg
et al., 2007; Albert and Bamford, 2012) and to trace the evolution of plants and animals (e.g., Prasad
et al., 2011; Strömberg, 2011; Katz, 2015; Strömberg et al., 2016).

Thus, plant silicon and phytolith research demonstrates the integration of knowledge from both
Earth and life sciences. The plant silicon and phytolith research community studies the effects of
plant silicon uptake on other organisms, ecosystems and biogeochemical cycles in tandem with the
effects of other organisms, ecosystems and biogeochemical cycles on plant silicon uptake. Likewise,
members of the community use geoarchaeological and palaeontological methods to understand the
evolution and history of plants and animals, while using knowledge of the evolution of plants and
animals to understand changes in the geosphere and Earth themselves. While all these themes are
intimately connected, share many theoretical and methodological aspects, and constitute a single
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research topic, only rarely do we see a researcher or a research
group that covers a considerable portion of this wide range.
One possible reason for this is that the question one asks, the
methods one employs to answer them, and the interpretations
of these results are strongly influenced by one’s parent discipline.
Many of us study plant silicon and phytoliths as part or in
addition to other themes within our parent disciplines, thus
hindering the formation of a common meeting ground or
language for plant silicon and phytolith researchers from various
parent disciplines. The compilation of the International Code for
Phytolith Nomenclature (Madella et al., 2005) is an advancement
toward solving part of this problem, albeit somewhat limited to
more technical rather than theoretical issues.

By remaining bound to parent disciplines, we sentence our
field to remain adjacent to the mainstream (rather than within
it) and led by parent disciplines and their agendas. Instead, we
should form a greater integrated framework that links our parent
disciplines, extends their scopes, increases dialogue among
them, and achieves high-order knowledge transfers among them
(Figure 1). This is possible now more than ever. Since Earth
and life sciences are merging, our field that sits between them
can gain a rightful place at the center stage of a new emerging
superdiscipline.

SILICON AND PHYTOLITH RESEARCH

WITHIN THE INTERDISCIPLINARY

EARTH-LIFE SCIENCES MERGER

As science progresses, so do models of knowledge transfer
(Krishnan, 2009). The simplest model is cross-disciplinary
knowledge transfer (Figure 1A), in which knowledge from one
discipline is borrowed by researchers from another discipline,
without true collaboration or dialogue among disciplines. This
model is very uncommon because of its inherent shortcoming:
that people outside a discipline use knowledge although they have
lesser understanding of its underlying assumptions and theories
or of specific methodologies (Keene, 1983; Krishnan, 2009). The
use of this model nowadays is limited strictly to methodological
technicalities.

A second, common model is of multidisciplinary
collaboration (Figure 1B), in which one discipline initiates
a research programme, on which research teams from other
disciplines work independently. The initiating discipline is
responsible for synthesis and gains most of the knowledge, while
the other disciplines gain less knowledge (often methodological
knowledge only). Examples for multidisciplinary collaborations
in plant silicon and phytolith research include the use of phytolith
analysis to increase botanical knowledge in archaeology (e.g.,
Albert et al., 1999; Tsartsidou et al., 2008; Lancelotti et al.,
2014; Hart, 2016) and palaeoecology (e.g., Albert and Bamford,
2012). Others revealed parts of evolutionary history through
new insights into plant physiology and ecology (e.g., Strömberg
et al., 2007; Prasad et al., 2011; Strömberg, 2011; Katz, 2015,
2018a). Vice versa, some scholars use plant silicon and
phytoliths to identify possible external evolutionary stimuli
that may provide insight into the function of plant silicon

FIGURE 1 | Four models for transfer and sharing among disciplines (Klink

et al., 2002; Krishnan, 2009). (A) Cross-disciplinary knowledge transfer:

Scholars from one discipline (yellow) use knowledge or methods from another

discipline asymmetrically and unidirectionally. (B) Multidisciplinary

collaboration: One discipline (yellow) initiates a research programme, on which

other disciplines work independently. Synthesis is carried out almost solely by

the initiating discipline, and although knowledge transfer is not unidirectional, it

is asymmetrical. (C) Interdisciplinary framework: Several disciplines share a

theoretical framework. All disciplines contribute knowledge to the shared

framework and take part in synthesis. Knowledge flows symmetrically, but

through a mediating intersection. (D) A superdiscipline: Disciplines are

rearranged by relaxing boundaries among them and thus looking at the union

rather than at the intersection. Each discipline bears an equal weight and

knowledge flows in all directions (ideally) free of constrains.

and phytoliths (e.g., Katz, 2014, 2015; Strömberg et al., 2016).
Finally, phytolith chemistry contributes to our understanding of
silicon dissolution in soil and transport in ecosystems (Fraysse
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et al., 2009; Alexandre et al., 2015; Cornelis and Delvaux,
2016).

A third, more complex model is the interdisciplinary
framework (Figure 1C), in which researchers from various
disciplines contribute and gain relatively equally, but all
knowledge transfer is carried out through a shared theoretical
framework. Two interdisciplinary frameworks that are of special
interest for plant silicon and phytolith researchers are Earth
System Science (ESS) and plant functional diversity. ESS is an
interdisciplinary framework that attempts “to obtain a scientific
understanding of the entire Earth System on a global scale by
describing how its component parts and their interactions have
evolved, how they function, and how they may be expected to
continue to evolve on all time scales” (Earth System Science
Committee, 1986) by applying methods and concepts from
systems and complexity theories. ESS is therefore a merger of
Earth and life sciences that uses systems and complexity theories
as the common ground. Both paleontology and ecosystem
ecology can be seen as subdivision of ESS, the former focusing
on evidence for the evolution of the entire Earth System and
the latter focusing on the direct interactions of Earth and life
components within ecosystems, hence relying on emergence
theory and ecosystem theory (respectively) as subsets of systems
and complexity theories. Some studies of the silicon cycle and
its interactions with the carbon cycle have quite explicitly used
systems and complexity theories (Alexandre et al., 2011; Carey
and Fulweiler, 2012, 2016; Cornelis and Delvaux, 2016), and thus
represent an integration of plant silicon and phytolith research
within the ESS framework.

Plant functional traits are quantitative traits whose values are
affected by environmental variables and affect plant, community
and ecosystem properties and functioning (Garnier et al., 2016).
When discussing ecosystem functions like elemental cycling,
plant functional diversity is an interdisciplinary framework that
connects Earth and life sciences, with plant functional traits as the
common ground that mediates the effects of Earth components
on plants and the effects of plants on the ecosystem, again
greatly relying on systems theory. Therefore, ESS studies and
models can improve if they take into account plant functional
traits and types (Beerling, 2007; Van Bodegom et al., 2012;
Wullschleger et al., 2014). Although often ignored bymainstream
plant functional diversity literature, plant silicon and phytolith
contents are gaining increasing recognition as a plant functional
trait, and are now known to be involved in plant responses to
their environment and plant effects on the environment (Cooke
and Leishman, 2011; Carey and Fulweiler, 2012; Song et al.,
2012, 2017; Katz, 2014, 2015, 2018b; Schoelynck et al., 2014;
Cooke et al., 2016; Schoelynck and Struyf, 2016). Therefore, plant
silicon and phytolith research is a part of the interdisciplinary ESS
framework.

AN EARTH-LIFE SUPERDISCIPLINE–A

PROMISING FUTURE

These three aforementioned models, and especially
multidisciplinary collaborations and interdisciplinary

frameworks, have served scientists very well, including in
merging knowledge from Earth and life sciences and in plant
silicon and phytolith research. However, they are not without
shortcomings, including the asymmetry of knowledge transfer,
the adherence to certain framing theories, and the limited
integration that stems from maintaining boundaries among
disciplines.

These shortcomings are overcome in the most advanced
model of knowledge transfer and sharing among disciplines,
the superdiscipline (Figure 1D), in which boundaries among
disciplines are relaxed and knowledge flows freely within the
greater domain of the superdiscipline, unbounded to any
discipline or framing theory. Although relaxing disciplinary
boundaries without the mediation of framing theories is difficult,
it is very promising when attempting to answer big, complex,
discipline-transgressing and irreducible questions (Krishnan,
2009). The seeds for a merged Earth-life superdiscipline have
been sown many years ago. Ecosystem ecology, ESS and
plant functional diversity represent great advancements in
this direction, yet as interdisciplinary frameworks they are
bound to the intersections of the parent disciplines and to
the framing of systems and complexity theories. The road
to a true Earth-life superdiscipline lies, at least in part, in
removing these boundaries, as Beerling (2007) has nicely
demonstrated in his book The Emerald Planet, which introduces
a synthesis of plant physiology, paleontology and atmospheric
sciences.

Somewhat ironically, the fact that plant silicon and phytolith
research is adjacent to the mainstream means that it is less
constrained than existing interdisciplinary frameworks, and
therefore freer to achieve superdiscilinarity and have a leading
role in the formation of an Earth-life superdiscipline. A key
reason why plant silicon and phytoliths research can take a
leading role in forming the new Earth-life superdiscipline is
that this phenomenon inherently and intimately links Earth
and life. Silicon is the second most abundant element in the
Earth’s crust, whose uptake by plants affects biotic (Massey
and Hartley, 2006; Epstein, 2009; Cooke and Leishman, 2011,
2016; Strömberg, 2011; Guntzer et al., 2012; Schoelynck et al.,
2014; Hartley, 2015; Schoelynck and Struyf, 2016; Frew et al.,
2016) and abiotic (Street-Perrott and Barker, 2008; Alexandre
et al., 2011; Carey and Fulweiler, 2012, 2016; Song et al.,
2012, 2017) processes at multiple scales. Understanding some
of these processes requires and benefits from understanding
the variation of plant silicon uptake and accumulation across
taxa (Hodson et al., 2005; Katz, 2014, 2015; Strömberg et al.,
2016), habitats, ecosystems and biomes (Carey and Fulweiler,
2012; Katz et al., 2013, 2014; Schoelynck et al., 2014; Song et al.,
2017) and geologic time (Prasad et al., 2011; Strömberg, 2011;
Katz, 2015; Strömberg et al., 2016). The references cited in this
paragraph alone (and throughout this manuscript) demonstrate
that many of us already carry out studies that cross and
relax disciplinary boundaries, either in a single study or in
a person’s or group’s combined research portfolio. It seems
that this attribute of our field puts it in a better and more
developed and advanced position to intimately merge Earth
and life sciences, possibly even compared to some fields of
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research that lay deeper within the mainstream and that are
more intensively studied, such as photosynthesis and the carbon
cycle.

Hence, embedding superdisciplinary thinking in plant
silicon and phytolith research can not only advance our
field, but increase its impact in the merger of Earth and
life sciences into a single superdiscipline. Working toward
this goal is a true new frontier for plant silicon and
phytolith research, for Earth-life sciences and for science in
general.
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