The links between emotions, bio-regulatory processes, and economic decision-making are well-established in the context of age-related changes in fluid, real-time, decision competency. The objective of the research reported here is to assess the relative contributions, interactions, and impacts of affective and cognitive intelligence in economic, value-based decision-making amongst older adults. Additionally, we explored this decision-making competency in the context of the neurobiology of aging by examining the neuroanatomical correlates of intelligence and decision-making in an aging cohort. Thirty-nine, healthy, community dwelling older adults were administered the Iowa Gambling Task (IGT), an ecologically valid laboratory measure of complex, economic decision-making; along with standardized, performance-based measures of cognitive and emotional intelligence (EI). A smaller subset of this group underwent structural brain scans from which thicknesses of the frontal, parietal, temporal, occipital, cingulate cortices and their sub-sections, were computed. Fluid (online processing) aspects of Perceptual Reasoning cognitive intelligence predicted superior choices on the IGT. However, older adults with higher overall emotional intelligence (EI) and higher Experiential EI area/sub-scores learned faster to make better choices on the IGT, even after controlling for cognitive intelligence and its area scores. Thickness of the left rostral anterior cingulate (associated with fluid affective, processing) mediated the relationship between age and Experiential EI. Thickness of the right transverse temporal gyrus moderated the rate of learning on the IGT. In conclusion, our data suggest that fluid processing, which involves “online,” bottom-up, cognitive processing, predicts value-based decision-making amongst older adults, while crystallized intelligence, which relies on “offline” previously acquired knowledge, does not. However, only emotional intelligence, especially its fluid “online” aspects of affective processing predicts the rate of learning in situations of complex choice, especially when there is a paucity of cues/information available to guide decision-making. Age-related effects on these cognitive, affective and decision mechanisms may have neuroanatomical correlates, especially in regions that form a subset of the human mirror-neuron and mentalizing systems. While superior decision-making may be stereotypically associated with “smarter people” (i.e., higher cognitive intelligence), our data indicate that emotional intelligence has a significant role to play in the economic decisions of older adults.
Information technology innovations have pushed toward the digitalization of payments. We carried out an exploratory study to understand if and how brain activity can be modulated by the method of payment (cash, card, and smartphone) or the amount of paid money (10€, 50€, 150€), or both. Sixteen healthy, right-handed, volunteers (eight females) underwent a fMRI session, during which 3 runs were presented with block-designed protocol. Each 5-min run was composed of a standard sequence of 12 videoclips, each lasting 12 s and alternated with 12s-rest periods, displaying a human hand paying, each time, through a different method. When contrasting the BOLD signal change by payment method, a greater activation of the parietal cortex (BA40) and right insula (INS) was observed during the exposure of subjects to videoclips showing payments with cash than with either card or smartphone, with any amount of money. A significant greater activation of the right BA40 was observed with 150€ than 50€ and 10€, as well as of the right INS and posterior cingulate cortex (PCC) with 150€ than with 10€, only in the cash condition. This pilot study indicates that cash enhances the salience and negative affective valence of parting with money, as suggested by the greater activity of areas processing the perceived utility of motor behavior (e.g., the parietal cortex), and the individual emotional involvement (e.g., INS). By highlighting that cash payment could represent a stronger self-regulating tool, these findings could be relevant for those interested in regulating compulsive shopping or digital gambling.
Herding behavior refers to the social phenomenon in which people are intensely influenced by the decisions and behaviors of others in the same group. Although several recent studies have explored the neural basis of herding decisions in people’s daily lives (e.g., consumption decisions), the neural processing of herding decisions underlying enterprise behavior is still unclear. To address this issue, this study extracted event-related potentials (ERPs) from electroencephalographic data when participants (i.e., top executives in real enterprises) performed a choice task in which they judged whether to let their enterprises settle in an industrial zone when the occupancy rate of the industrial zone was either low or high. The behavioral results showed that participants had a higher acceptance rate in the high occupancy rate condition than in the low one, suggesting the existence of herding tendency in top executives’ business decisions. The ERP results indicated that anticonformity choices induced a larger N2 amplitude than herding choices, demonstrating that participants might experience larger perceived risk and more decision conflict when they processed anticonformity choices. In contrast, we observed that herding choices induced a larger LPP amplitude than anticonformity choices, hinting that participants might experience better evaluation categorization and higher decision confidence when they processed herding choices. Based on these results, this study provides new insights into the neural basis of herding decisions made by top executives in business.
Frontiers in Medicine
Clinical Application of Artificial Intelligence in Emergency and Critical Care Medicine, Volume I