Seafloor Heterogeneity: Artificial Structures and Marine Ecosystem Dynamics

Cover image for research topic "Seafloor Heterogeneity: Artificial Structures and Marine Ecosystem Dynamics "
129.6K
views
64
authors
12
articles
Editors
4
Impact
Loading...
Methods
15 April 2020
Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans
Dianne L. McLean
14 more and 
Daniel O. B. Jones
Images of industrial ROVs photographed by the authors. (a) Subsea 7 work-class ROV (∼2 m tall) being deployed from the Transocean Jack Bates semi-submersible drilling rig. (b) Subsea 7 Centurion work-class ROV (∼2 m tall) on the MV Nordica. (c) Close up of Schilling Robotics Conan 7-function ROV manipulator (∼1 m tall as imaged). (d) Oceaneering Minimum Plus observation-class ROV (∼50 cm tall). (e) Detail of Oceaneering Magnum ROV (∼2 m tall) showing video and still cameras on pan-and-tilt unit (center) and lights. (f) Underwater image of Oceaneering Millennium ROV (∼2 m tall) taking push core samples of the seabed at around 1,700 m deep offshore Tanzania (taken with another ROV).

Remotely operated vehicles (ROVs) are used extensively by the offshore oil and gas and renewables industries for inspection, maintenance, and repair of their infrastructure. With thousands of subsea structures monitored across the world’s oceans from the shallows to depths greater than 1,000 m, there is a great and underutilized opportunity for their scientific use. Through slight modifications of ROV operations, and by augmenting industry workclass ROVs with a range of scientific equipment, industry can fuel scientific discoveries, contribute to an understanding of the impact of artificial structures in our oceans, and collect biotic and abiotic data to support our understanding of how oceans and marine life are changing. Here, we identify and describe operationally feasible methods to adjust the way in which industry ROVs are operated to enhance the scientific value of data that they collect, without significantly impacting scheduling or adding to deployment costs. These include: rapid marine life survey protocols, imaging improvements, the addition of a range of scientific sensors, and collection of biological samples. By partnering with qualified and experienced research scientists, industry can improve the quality of their ROV-derived data, allowing the data to be analyzed robustly. Small changes by industry now could provide substantial benefits to scientific research in the long-term and improve the quality of scientific data in existence once the structures require decommissioning. Such changes also have the potential to enhance industry’s environmental stewardship by improving their environmental management and facilitating more informed engagement with a range of external stakeholders, including regulators and the public.

24,161 views
60 citations
Examples from the literature of practical considerations preventing offshore platform sites from being returned to their historical state.
40,766 views
78 citations